Mobile
Computing
Handbook

Agent-Based Manufacturing and Control
Systems: New Agile Manufacturing
Solutions for Achieving Peak Performance
Massimo Paolucci and Roberto Sacile
ISBN: 1574443364

Curing the Patch Management Headache
Felicia M. Nicastro
ISBN: 0849328543

Cyber Crime Investigator's Field Guide,
Second Edition

Bruce Middleton

ISBN: 0849327687

Disassembly Modeling for Assembly,
Maintenance, Reuse and Recycling

A. J. D. Lambert and Surendra M. Gupta
ISBN: 1574443348

The Ethical Hack: A Framework for
Business Value Penetration Testing
James S. Tiller

ISBN: 084931609X

Fundamentals of DSL Technology
Philip Golden, Herve Dedieu,

and Krista Jacobsen

ISBN: 0849319137

The HIPAA Program Reference Handbook
Ross Leo
ISBN: 0849322111

Implementing the IT Balanced Scorecard:
Aligning IT with Corporate Strategy
Jessica Keyes

ISBN: 0849326214

Information Security Fundamentals
Thomas R. Peltier, Justin Peltier,

and John A. Blackley

ISBN: 0849319579

Information Security Management
Handbook, Fifth Edition, Volume 2
Harold F. Tipton and Micki Krause
ISBN: 0849332109

Introduction to Management

of Reverse Logistics and Closed
Loop Supply Chain Processes
Donald F. Blumberg

ISBN: 1574443607

Maximizing ROI on Software Development
Vijay Sikka
ISBN: 0849323126

Mobile Computing Handbook
Imad Mahgoub and Mohammad llyas
ISBN: 0849319714

MPLS for Metropolitan
Area Networks
Nam-Kee Tan

ISBN: 084932212X

Multimedia Security Handbook
Borko Furht and Darko Kirovski
ISBN: 0849327733

Network Design: Management and
Technical Perspectives, Second Edition
Teresa C. Piliouras

ISBN: 0849316081

Network Security Technologies,
Second Edition

Kwok T. Fung

ISBN: 0849330270

Outsourcing Software Development
Offshore: Making It Work

Tandy Gold

ISBN: 0849319439

Quality Management Systems:
A Handbook for Product
Development Organizations
Vivek Nanda

ISBN: 1574443526

A Practical Guide to Security
Assessments

Sudhanshu Kairab

ISBN: 0849317061

The Real-Time Enterprise
Dimitris N. Chorafas
ISBN: 0849327776

Software Testing and Continuous
Quality Improvement,

Second Edition

William E. Lewis

ISBN: 0849325242

Supply Chain Architecture:

A Blueprint for Networking the Flow
of Material, Information, and Cash
William T. Walker

ISBN: 1574443577

The Windows Serial Port
Programming Handbook
Ying Bai

ISBN: 0849322138

AUERBACH PUBLICATIONS

www.auerbach-publications.com
To Order Call: 1-800-272-7737 o Fax: 1-800-374-3401

Copyright © 2005 by CRC Press

Mobile
Computing
Handbook

Mohammad Ilyas

Imad Mahgoub
Editors

A

AUERBACH PUBLICATIONS

CCCCCCCCCCCCCCCC

Library of Congress Cataloging-in-Publication Data

Mobile computing handbook / Mohammad Ilyas and Imad Mahgoub, editors.
p. cm.
Includes bibliographical references and index.
ISBN 0-8493-1971-4 (alk. paper)
1. Mobile computing--Handbooks, manuals, etc. |. llyas, Mohammad, 1953- 1.
Mahgoub, Imad.

QA76.59.M644 2004
004.6--dc22
2004052491

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or
internal use of specific clients, may be granted by CRC Press, provided that $1.50 per page photocopied
is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee
code for users of the Transactional Reporting Service is ISBN 0-8493-1971-4/05/$0.00+$1.50. The fee
is subject to change without notice. For organizations that have been granted a photocopy license by the
CCC, a separate system of payment has been arranged.

The consent of CRC Press does not extend to copying for general distribution, for promotion, for creating
new works, or for resale. Specific permission must be obtained in writing from CRC Press for such
copying.

Direct al inquiries to CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

Visit the Auerbach Web site at www.auer bach-publications.com

© 2005 by CRC Press
Auerbach is an imprint of CRC Press

No claim to original U.S. Government works
International Standard Book Number 0-8493-1971-4
Library of Congress Card Number 2004052491
Printed in the United States of America 1 2 3456 78 90
Printed on acid-free paper

Copyright © 2005 by CRC Press

http://www.auerbach-publications.com/home.asp

Contributors

AHMED ABUKMAIL Computer and Information Science and Engineering
Department, University of Florida, Gainesville, Florida

ANDREA ACQUAVIVA Istituto di Scienze e Tecnologie dell’Informazione,
Universita di Urbino, Urbino, Italy

SYED A. AHSON iDEN Subscriber Division, Motorola, Inc., Plantation, Florida

JAMAL N. AL-KARAKI Lab for Advanced Networks (LAN), Department of
Electrical and Computer Engineering, lowa State University, Ames, lowa

IARA AUGUSTIN Computing and Electronic Department, Federal University of
Santa Maria, Rio Grande do Sul (RS), Brazil

RAJVE BAGRODIA Computer Science Department, The University of California,
Los Angeles, Los Angeles, California

SANTOSH BALAKRISHNAN Computer and Information Science and Engineering
Department, University of Florida, Gainesville, Florida

NicHoLASs BAMBOS Department of Electrical Engineering and Department of
Management Science and Engineering, Stanford University, Stanford,
California

GURUDUTH BANAVAR IBM TJ Watson Research Center, Hawthorne, New York

JORGE Luis VICTORIA BARBOSA School of Computer Science, Catholic University
of Pelotas, Rio Grande do Sul (RS), Brazil

PriTHWISH BASu BBN Technologies, Cambridge, Massachusetts

CHRISTIAN BECKER Institute of Parallel and Distributed Systems, University of
Stuttgart, Stuttgart, Germany

PAoLO BELLAVISTA Dipartimento di Elettronica, Informatica e Sistemistica,
Universita di Bologna, Bologna, Italy

Luca BENINI Dipartimento di Elettronica, Informatica e Sistemistica, Universita
di Bologna, Bologna, Italy

Nikita Borisov Computer Science Division, University of California at
Berkeley, Berkeley, California

DARIO BoTTAZZI Dipartimento di Elettronica, Informatica e Sistemistica,
Universita di Bologna, Bologna, Italy

SoNJA BUCHEGGER Laboratory for Computer Communications and
Applications, Swiss Federal Institute of Technology EPFL-IC-LCA,
Lausanne, Switzerland

Copyright © 2005 by CRC Press

GUOHONG CA0 Department of Computer Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania

lIonuTt CARDEI Department of Computer Science and Engineering, Florida
Atlantic University, Boca Raton, Florida

GERSON GERALDO HoMRICH CAVALHEIRO Applied Computing Interdisciplinary
Post Graduation Program, University of Vale do Rio dos Sinos, Rio Grande
do Sul (RS), Brazil

EpwARD CHAN Department of Computer Science, City University of Hong Kong,
Kowloon, Hong Kong

YH-FARN CHEN Research, AT&T Labs, Florham Park, New Jersey

HARrY CHEN Computer Science and Electrical Engineering Department,
University of Maryland Baltimore County, Baltimore, Maryland

A. CHOCKALINGAM Department of Electrical Communication Engineering,
Indian Institute of Science, Bangalore, India

NoRMAN COHEN IBM TJ Watson Research Center, Hawthorne, New York

ANTONIO CORRADI Dipartimento di Elettronica, Informatica e Sistemistica,
Universita di Bologna, Bologna, Italy

LuciaNO CAVALHEIRO DA SILVA Federal University of Rio Grande do Sul, RS,
Brazil

Yu Du Department of Computer Science and Engineering, Arizona State
University, Tempe, Arizona

DING-ZHU Du Department of Computer Science and Engineering, University of
Minnesota, Minneapolis, Minnesota

MARGARET H. DUNHAM Department of Computer Science and Engineering,
Southern Methodist University, Dallas, Texas

Hesuam EL-RewINt Department of Computer Science and Engineering,
Southern Methodist University, Dallas, Texas

CoRrrADO FEDERICI Dipartimento di Elettronica, Informatica e Sistemistica,
Universita di Bologna, Bologna, Italy

Tim FININ Computer Science and Electrical Engineering Department,
University of Maryland Baltimore County, Baltimore, Maryland

GusTAvO FRAINER Federal University of Rio Grande do Sul, RS, Brazil

CrAupio FERNANDO RESIN GEYER Federal University of Rio Grande do Sul, RS,
Brazil

Savvas GITZENIS Department of Electrical Engineering, Stanford University,
Stanford, California

SaNDEEP K.S. GUPTA Department of Computer Science and Engineering,
Arizona State University, Tempe, Arizona

ZYGMUNT J. HAAS School of Electrical and Computer Engineering, Cornell
University, Ithaca, New York

ABDELSALAM (Sumi) HELAL Computer and Information Science and Engineering
Department, University of Florida, Gainesville, Florida

LLoyD HUANG VSee Lab, San Jose, California

VALERIE ISSARNY INRIA-Rocquencourt, Paris, France

Copyright © 2005 by CRC Press

RitTwik JANA Department of Dependable Distributed Computing and
Communication Research, AT&T Labs, Florham Park, New Jersey

ANupaM JosHl Computer Science and Electrical Engineering Department,
University of Maryland Baltimore County, Baltimore, Maryland

LALANA KAGAL Computer Science and Electrical Engineering Department,
University of Maryland Baltimore County, Baltimore, Maryland

SRIDHAR KALUBANDI Department of Electrical and Computer Engineering,
Cleveland State University, Cleveland, Ohio

AHMED E. KAMAL Lab for Advanced Networks (LAN), Department of Electrical
and Computer Engineering, lowa State University, Ames, lowa

GEORGIA KasTiDOU Computer Science Department, University of loannina,
loannina, Greece

WaNG KE Department of Electrical and Computer Engineering, Boston
University, Boston, Massachusetts

RAMANDEEP SINGH KHURANA Department of Computer Science, University of
Nebraska at Omaha, Omaha, Nebraska

MyuNGcHUL Kim School of Engineering, Information and Communications
University, Daejon, Korea

JiEjun KonGg Computer Science Department, University of California, Los
Angeles, Los Angeles, California

UWwE KUBACH SAP Research, SAP AG, Karlsruhe, Germany

Kam-Yw Lam Department of Computer Science, City University of Hong Kong,
Kowloon, Hong Kong

JEAN-YVES LE BouDEc EPFL-IC-LCA, Laboratory for Computer Communications
and Applications, Swiss Federal Institute of Technology, Lausanne,
Switzerland

BEN LEE School of Electrical Engineering and Computer Science, Oregon State
University, Corvallis, Oregon

Tnomas D.C. LitTLE Department of Electrical and Computer Engineering,
Boston University, Boston, Massachusetts

YouzHONG Liu Computer and Information Science and Engineering
Department, University of Florida, Gainesville, Florida

WEI Lou Department of Computer Science and Engineering, Florida Atlantic
University, Boca Raton, Florida

Sonewu Lu Computer Science Department, University of California, Los
Angeles, Los Angeles, California

Haiyun Luo Computer Science Department, University of California, Los
Angeles, Los Angeles, California

IMAD MAHGoOUB Department of Computer Science and Engineering, Florida
Atlantic University, Boca Raton, Florida

Tnomas L. MARTIN Department of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, Virginia

SANGMAN MoH Department of Internet Engineering, Chosun University,
Gwangju, Korea

Copyright © 2005 by CRC Press

REBECCA MONTANARI Dipartimento di Elettronica, Informatica e Sistemistica,
Universita di Bologna, Bologna, Italy

Awmy L. MurpHY Department of Informatics, University of Lugano, Lugano,
Switzerland

PANAGIOTIS PAPADIMITRATOS School of Electrical and Computer Engineering,
Cornell University, Ithaca, New York

Jim PARKER Computer Science and Electrical Engineering Department,
University of Maryland Baltimore County, Baltimore, Maryland

THomAs PHAN Computer Science Department, The University of California, Los
Angeles, Los Angeles, California

GIAN PIETRO Picco Dipartimento di Elettronica e Informazione, Politecnico di
Milano, Milano, Italy

EVAGGELIA Prtoura Computer Science Department, University of loannina,
loannina, Greece

RODRIGO ARAUJO REAL Federal University of Rio Grande do Sul, RS, Brazil

GRUIA-CATALIN ROMAN Department of Computer Science and Engineering,
Washington University, St. Louis, Missouri

NokL Ruiz Computer Science Department, University of California, Los
Angeles, Los Angeles, California

FRANCOISE SAILHAN INRIA-Rocquencourt, Paris, France

GEORGE SAMARAS Computer Science Department, University of Cyprus, Nicosia,
Cyprus

Ravi SANKAR Department of Electrical Engineering, University of South Florida,
Tampa, Florida

YUCEL SAYGIN Faculty of Engineering and Natural Sciences, Sabanci University,
Turkey

AySE YASEMIN SEYDIM Central Bank of the Republic of Turkey, Information
Technology Department, Ankara, Turkey

VINOD SHARMA Department of Electrical Communication Engineering, Indian
Institute of Science, Bangalore, India

DANIEL P. SIEWIOREK Institute for Complex Engineered Systems and Human
Computer Interaction Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania

AsiM SMAILAGIC Institute for Complex Engineered Systems and Human
Computer Interaction Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania

DANNY SOROKER IBM TJ Watson Research Center, Hawthorne, New York

ILLYA STEPANOV Institute of Parallel and Distributed Systems, University of
Stuttgart, Stuttgart, Germany

RiKY SUBRATA Parallel Computing Research Laboratory, Department of
Electrical and Electronic Engineering, University of Western Australia,
Perth, Western Australia

Kian-LEe TAN Department of Computer Science, National University of
Singapore, Singapore

Copyright © 2005 by CRC Press

JING TIAN Institute of Parallel and Distributed Systems, University of Stuttgart,
Stuttgart, Germany

DANIELA TIBALDI Dipartimento di Elettronica, Informatica e Sistemistica,
Universita di Bologna, Bologna, Italy

GEORGE VARGHESE Department of Computer Science and Engineering,
University of California, San Diego, San Diego, California

SiLvia VECcHI Dipartimento di Elettronica, Informatica e Sistemistica,
Universita di Bologna, Bologna, Italy

JoLIN WARREN Department of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania

JIE WU Department of Computer Science and Engineering, Florida Atlantic
University, Boca Raton, Florida

CHIEN-HSING WU Electrical Engineering Department, National Chung-Cheng
University, Min-Hsiung, Taiwan

ADENAUER CORREA YAMIN Center of Computer Science, Federal University of
Pelotas, Rio Grande do Sul (RS), Brazil

Hao YANG Computer Science Department, University of California, Los
Angeles, Los Angeles, California

FaN YE Computer Science Department, University of California, Los Angeles,
Los Angeles, California

CHANSU YU Department of Electrical and Computer Engineering, Cleveland
State University, Cleveland, Ohio

Joe C.H. YUEN Department of Computer Science, City University of Hong Kong,
Kowloon, Hong Kong

PETROS ZERFOS Computer Science Department, University of California, Los
Angeles, Los Angeles, California

LixiA ZHANG Computer Science Department, University of California, Los
Angeles, Los Angeles, California

ALBERT Y. ZOMAYA Parallel Computing Research Laboratory, Department of
Electrical and Electronic Engineering, University of Western Australia,
Perth, Western Australia

Copyright © 2005 by CRC Press

Contents

SECTIONI1 INTRODUCTION AND APPLICATIONS
OF MOBILE COMPUTING

Chapter 1
Wearable Computing
Asim Smailagic and Daniel P. Sewiorek
Abstract
1.1 Introduction
1.2 Issues in Wearable Computing
1.3 Example Systems
1.3.1 Procedures with Static Prestored Text/Graphics
1.3.2 Master/Apprentice (Live Expert) Help Desk
1.3.3 Team Collaboration
1.3.4 Context-Aware Collaboration — Proactive Synthetic
Assistant
1.4 Evaluation
1.4.1 Prestored Procedures
1.4.2 Master/Apprentice Help Desk
1.4.3 Team Collaboration
1.4.4 Context-Aware Collaboration — Proactive Synthetic
Assistant
1.5 Summary and Future Challenges
Acknowledgments
References

Chapter 2
Developing Mobile Applications: A Lime Primer
Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman
Abstract
2.1 Introduction
2.2 Linda in a Nutshell
2.3 Lime: Linda in a Mobile Environment
2.3.1 Model Setting and Overview
2.3.2 Creating a Lime Tuple Space

Copyright © 2005 by CRC Press

2.3.3 Enabling Transient Sharing
2.3.4 Reconciling Different Forms of Mobility
2.3.5 Restricting the Scope of Operations
2.3.6 Reacting to Changes
2.3.7 Accessing the System Configuration
2.3.8 Implementation Details
2.4 Application Example
2.4.1 Requirements
2.4.2 Design and Implementation
2.4.2.1 Tuple Spaces and Tuples
2.4.2.2 User Actions
2.4.2.3 Display Update
2.4.3 Beyond the Puzzle
2.5 Building Middleware Functionality on Top of Lime
2.5.1 Transiently Shared Code Bases
2.5.2 Service Provision
2.6 Related Work
2.7 Conclusions
2.7.1 Availability
Acknowledgments
Notes
References

Chapter 3
Pervasive Application Development: Approaches and Pitfalls
Guruduth Banavar, Norman Cohen, and Danny Soroker
Abstract
3.1 What Are Pervasive Applications?
3.1.1 Basic Concepts and Terms
3.2 Why Is It Difficult to Develop Pervasive Applications?
3.2.1 Heterogeneity of Device Platforms
3.2.1.1 User Interface
3.2.1.2 Interaction Modalities
3.2.1.3 Platform Capabilities
3.2.1.4 Connectivity
3.2.1.5 Development and Maintenance Complexity
3.2.2 Dynamics of Application Environments
3.3 Approaches for Developing Pervasive Applications
3.3.1 Developing Mobile Applications
3.3.2 Presentation Transcoding
3.3.3 Device-Independent View Component
3.3.3.1 Runtime Adaptation
3.3.3.2 Design-Time Adaptation
3.3.3.3 Visual Tools for Constructing
Device-Independent Views

Copyright © 2005 by CRC Press

3.3.4 Platform-Independent Controller Component
3.3.5 Host-Independent Model Component
3.3.6 Developing Context-Aware Applications
3.3.7 Source-Independent Context Data
3.4 Conclusions
Acknowledgments
References

Chapter 4
ISAM, Joining Context-Awareness and Mobility
to Building Pervasive Applications
lara Augustin, Adenauer Corréa Yamin, Jorge Luis Victéria Barbosa,
Luciano Cavalheiro da Slva, Rodrigo Aradjo Real, Gustavo Frainer,
Gerson Geraldo Homrich Cavalheiro, and Claudio Fernando Resin Geyer
Abstract
4.1 Introduction
4.2 The ISAM Application Model
4.3 The ISAM Architecture
4.4 ISAMadapt Overview
4.4.1 Context
4.4.2 Adapters
4.4.3 Adaptation Commands
4.44 Adaptation Policies
4.5 EXEHDA Overview
4.6 The WalkEd Application
4.6.1 The GUI Being: Alternative Behaviors
4.6.2 The Spell Being
4.6.3 The Print Being
4.6.4 The ISAMadapt IDE
4.6.5 Execution Aspects
4.7 Conclusions
Acknowledgments
References

Chapter 5
Integrating Mobile Wireless Devices into the Computational Grid
Thomas Phan, Lloyd Huang, Noel Ruiz, and Rajive Bagrodia
5.1 Introduction
5.2 Background
5.3 Motivation: Mobile Devices and the Grid
5.4 The LEECH Architecture
5.4.1 Key Challenges
5.4.2 Overview of Architecture
5.4.3 Grid/Cluster and LEECH
5.4.4 Application Major Component and Minor Component

Copyright © 2005 by CRC Press

5.4.5 Interlocutor
5.4.6 Minion
5.4.7 Availability Adaptation and Job Management

5.5 The LEECH Programming Model

5.6 Experiments and Analysis
5.6.1 Synthetic Application for Measuring Communication

Overhead

5.6.2 RSA Decryption

5.7 Looking to the Future

References

Chapter 6
Multimedia Messaging Service
Syed A. Ahson
6.1 Introduction
6.2 MMS Architecture
6.2.1 MMS Interfaces
6.2.2 Addressing in MMS
6.2.3 Technical Specifications
6.2.4 Supported Formats
6.2.5 MMS Messages
6.3 Message Submission
6.4 Message Transfer
6.5 Delivery Report
6.6 Read-Reply Reports
6.7 Message Notification
6.8 Message Retrieval
6.9 Message Forwarding
6.10 Future Directions
References

SECTION II LOCATION MANAGEMENT

Chapter 7
A Scheme for Nomadic Hosts Location Management Using DNS
Ramandeep Singh Khurana, Hesham El-Rewini, and Imad Mahgoub
Abstract
7.1 Introduction
7.2 Using the DNS for Location Management of Nomadic Hosts
7.2.1 DNS Server
7.2.2 Server Process: Web Server
7.2.3 Client Process: Web Browser
7.2.4 Security

Copyright © 2005 by CRC Press

7.3 Experiments
7.3.1 Cache Time versus Time-to-Live
7.3.2 Scalability Analysis
7.4 Concluding Remarks
References

Chapter 8
Location Management Techniques for Mobile Computing
Environments
Riky Subrata and Albert Y. Zomaya
8.1 Introduction
8.2 Location Management
8.2.1 Location Update
8.2.2 Location Inquiry
8.2.2.1 Delay Constraint
8.3 Location Management Cost
8.4 Network Topology
8.5 Mobility Pattern
8.5.1 Memoryless (Random Walk) Movement Model
8.5.2 Markovian Model
8.5.2.1 Cell History
8.5.2.2 Directional History
8.5.3 Shortest Distance Model
8.5.4 Gauss-Markov Model
8.5.5 Activity-Based Model
8.5.6 Mobility Trace
8.5.7 Fluid-Flow Model
8.5.8 Gravity Model
8.6 Call Arrival Pattern
8.6.1 Poisson Model
8.6.2 Call Arrival Trace
8.7 Location Update Strategies
8.7.1 Always-Update Strategy
8.7.2 Never-Update Strategy
8.7.3 Time-Based Strategy
8.7.4 Movement-Based Strategy
8.7.5 Distance-Based Strategy
8.7.6 Location Area
8.7.6.1 Static Case
8.7.6.2 Dynamic Case
8.7.7 Reporting Center
8.7.7.1 Static Case
8.7.7.2 Dynamic Case
8.7.8 Adaptive Threshold Scheme

Copyright © 2005 by CRC Press

8.7.9 Profile-Based
8.7.10 Compression-Based
8.7.11 Hybrid Strategies

8.8 Location Inquiry Strategies
8.8.1 Simultaneous Networkwide Search
8.8.2 Paging Area
8.8.3 Expanding Ring Paging
8.8.4 Intelligent Paging

8.9 Summary

References

Chapter 9
Locating Mobile Objects
Evaggelia Pitoura, George Samaras, and Georgia Kastidou
9.1 Introduction
9.2 Location Management
9.3 Architectures of Location Directories
9.3.1 Two-Tier Scheme
9.3.2 Hierarchical Scheme
9.4 Optimizations of the Architectures
9.4.1 Call to Mobility Ratio
9.4.2 Partitions
9.4.3 Caching
9.4.4 Replication
9.4.5 Forwarding Pointers
9.5 Taxonomy and Location Management Techniques
9.6 Case Studies
9.6.1 Mobile IP
9.6.2 Globe
9.6.3 Mobile Agents Systems
9.6.3.1 Ajanta
9.6.3.2 Voyager
9.7 Summary
References

Chapter 10
Dependable Message Delivery to Mobile Units
Amy L. Murphy, Gruia-Catalin Roman, and George Varghese
Abstract
10.1 Introduction
10.1.1 Distributed versus Mobile Computing
10.1.2 Algorithm Development
10.2 Message Delivery
10.2.1 Related Work

Copyright © 2005 by CRC Press

10.2.2 Mobile Environment
10.2.3 Model and Problem Definitions
10.3 Broadcast Search
10.3.1 Motivation
10.3.2 From Distributed Snapshot Algorithms
to Announcement Delivery
10.3.3 Snapshot Delivery Algorithm
10.3.4 Properties
10.3.5 Extensions
10.3.5.1 Multiple Announcement Deliveries
10.3.5.2 Rapidly Moving Mobile Units
10.3.5.3 Route Discovery
10.3.5.4 Multicast
10.3.5.5 Mobile Agents
10.4 Tracking for Delivery
10.4.1 From Diffusing Computations to Mobile Unit Tracking
10.4.2 Extension: Backbone-Based Message Delivery
10.5 Reality Check
10.5.1 FIFO Channels
10.5.2 Multiple RBSs per MSC
10.5.3 Base Station Connectivity
10.5.4 Reliable Delivery on Links
10.5.5 Involvement Level of MSCs
10.5.6 Storage Requirements
10.6 Conclusions
Acknowledgments
References

SECTION Il LOCATION-BASED SERVICES

Chapter 11

Location-Dependent Query Processing in Mobile Computing

Ayse Yasemin Seydim, Margaret H. Dunham

11.1 Introduction

11.2 Related Work
11.2.1 Location-Dependent Data and Queries
11.2.2 Moving Object Databases Research
11.2.3 Spatial Database Management

11.3 Location Relatedness and the Query Model
11.3.1 Query Model
11.3.2 Location-Aware Queries
11.3.3 Location-Dependent Queries
11.3.4 Moving Object Database Queries
11.3.5 Query Classification

Copyright © 2005 by CRC Press

11.4 Query Translation Steps in LDQ Processing
Acknowledgments

Note

References

Chapter 12
Simulation Models and Tool for Mobile Location-Dependent
Information Access
Uwe Kubach, Christian Becker, Illya Sepanov, and Jing Tian
Abstract
12.1 Introduction
12.2 Spatial Model
12.2.1 Location Models
12.2.2 Spatial Information Models
12.3 Mobility
12.3.1 Existing Mobility Models
12.3.1.1 Random Mobility Models
12.3.1.2 Advanced Models
12.3.2 Generic Mobility Model
12.4 Information Access Model
12.4.1 Zipf Distribution
12.4.2 Location-Dependent Access
12.5 A Tool for User Mobility Modeling
12.5.1 Objectives
12.5.2 Software Architecture
12.5.3 Usage
12.6 Conclusion
References

Chapter 13
Context-Aware Mobile Computing
Rittwik Jana and Yih-Farn Chen
Abstract
13.1 Introduction and Motivation
13.2 What Is Context?
13.3 Context Acquisition
13.3.1 Acquisition of Sensor Data
13.3.2 Location Sensing Techniques
13.4 What Is Context-Awareness?
13.4.1 Technology Independent Framework and Application
Programming Interfaces
13.4.1.1 Parlay: Integration of Telecom and Internet
Services
13.4.1.2 IETF OPES Group
13.4.1.3 iMobile: a Mobile Service Platform

Copyright © 2005 by CRC Press

13.5 Gluing Contextware and Middleware
13.5.1 Integrating Location Determination with the Service
Platform
13.5.2 Managing Location Information in iMobile
13.5.3 Location-Based Services with iMobile
13.5.4 Preserving Privacy in Environments with
Location-Based Services
13.6 Context-Related Research Initiatives and Projects
13.7 The Future of Context
13.8 Conclusions
Notes
References

Chapter 14

Mobile Agent Middlewares for Context-Aware Applications

Paolo Bellavista, Dario Bottazzi, Antonio Corradi, Rebecca Montanari, and

Slvia Vecchi

Abstract

14.1 Mobile Computing and Context Awareness

14.2 Mobile Agents and Mobile Computing

14.3 An Overview of MA-Based Supports for Mobile Computing

14.4 MA-Based Middlewares with Context Awareness:
State-of-the-Art and Emerging Research Directions

14.5 Lessons Learned and Open Issues

Acknowledgments

References

SECTION IV CACHING STRATEGIES

Chapter 15
Cache Management in Wireless and Mobile Computing
Environments
Yu Du and Sandeep K.S. Gupta
15.1 Introduction
15.2 State of the Art
15.3 Cache Consistency Strategies
15.3.1 A Taxonomy of Cache Consistency Strategies
15.4 Cache Consistency Strategies in Architecture-Based
Wireless Networks
15.4.1 Invalidation-Based Consistency Strategy
15.4.1.1 Stateful Approaches
15.4.1.2 Stateless Approach
15.4.2 TTL-Based Cache Consistency Strategy
15.4.2.1 Handling Disconnections
15.4.2.2 Achieving Energy and Bandwidth Efficiency

Copyright © 2005 by CRC Press

15.5 Open Problems
15.5.1 Cache Consistency Strategy in the Ad Hoc
Network Environment
15.5.2 Cooperate Caching in Ad Hoc Network Environment
15.6 Summary
References

Chapter 16
Cache Invalidation Schemes in Mobile Environments
Edward Chan, Joe C.H. Yuen, and Kam-Yiu Lam
16.1 Introduction
16.2 Summary of Existing Cache Invalidation Schemes
16.3 Temporal Data Model for Mobile Computing Systems
16.4 Cache Invalidation Using AVI
16.4.1 Validity Period of Data in Client Cache
16.4.2 The IAVI Cache Invalidation Scheme
16.4.3 Server Algorithm
16.4.3.1 Invalidation Report Generation
16.4.3.2 AVI Adjustment
16.4.4 Client Algorithm
16.4.4.1 Implicit Invalidation
16.4.4.2 Explicit Invalidation
16.5 Performance Study
16.5.1 System Model
16.5.2 Performance Metrics
16.5.3 Performance Evaluation
16.5.3.1 Impact of Database Size
16.5.4.2 Impact of Update Rate
16.6 Conclusion
References

Chapter 17
Hoarding in Mobile Computing Environments
Yucel Saygin
17.1 Introduction
17.2 Coda: The Pioneering System for Hoarding
17.3 Hoarding Based on Data Mining Techniques
17.3.1 SEER Hoarding System
17.3.2 Association Rule-Based Techniques
17.3.3 Partitioning the History into Sessions
17.3.4 Utilization of Association Rules for Hoarding
17.3.5 Construction of the Candidate Sets and the Hoard Set
17.4 Hoarding Techniques Based on Program Trees
17.5 Hoarding in a Distributed Environment
17.6 A Brief Comparison of the Various Hoarding Techniques

Copyright © 2005 by CRC Press

17.7 Future Directions for Hoarding Techniques
References

Chapter 18
Power-Aware Cache Management in Mobile Environments
Guohong Cao
Abstract
18.1 Introduction
18.2 Cache Invalidation Techniques
18.2.1 Cache Consistency Model
18.2.2 The IR-Based Cache Invalidation Model
18.2.2.1 The Broadcasting Time Stamp Scheme
18.2.2.2 The Bit Sequences Scheme
18.2.3 The UlR-Based Cache Invalidation Model
18.2.4 Using Prefetch to Improve Cache Hit Ratio and
Bandwidth Use
18.2.4.1 Remarks
18.3 Techniques to Optimize Performance and Power
18.3.1 The Basic Scheme
18.3.1.1 The Basic Adaptive Prefetch Approach
18.3.2 The Value-Based Prefetch Scheme
18.3.3 The Adaptive Value-Based Prefetch Scheme
18.3.3.1 The Value of N,
18.3.3.2 AVP_T: Adapting N, to Reach a Target
Battery Life
18.3.3.3 AVP_P: Adapting N, Based on the
Power Level
18.4 Conclusions and Future Work
Note
References

Chapter 19
Energy Efficient Selective Cache Invalidation
Kian-Lee Tan
19.1 Introduction
19.2 Preliminaries
19.3 A Taxonomy of Cache Invalidation Strategies
19.3.1 Content of the Invalidation Report
19.3.2 Invalidation Mechanisms
19.3.3 Update Log Structure
19.3.4 Cache Invalidation Schemes
19.4 Selective Cache Invalidation Schemes
19.4.1 Selective Dual-Report Cache Invalidation
19.4.2 Bit-Sequences with Bit-Count
19.4.3 Discussion

Copyright © 2005 by CRC Press

19.5 Conclusion
References

SECTION V. MOBILE AND AD HOC WIRELESS
NETWORKS I

Chapter 20
Self-Policing Mobile Ad Hoc Networks
Sonja Buchegger and Jean-Yves Le Boudec
Abstract
20.1 Introduction and Overview
20.2 Node Misbehavior in Mobile Ad Hoc Networks
20.2.1 Reasons and Enablers for Misbehavior
20.2.2 Attacks
20.2.2.1 Traffic Diversion
20.2.3 The Effect of Misbehavior
20.3 Overview: Main Solution Tracks
20.3.1 Payment Systems
20.3.2 Secure Routing with Cryptography
20.3.2.1 Secure Routing Protocol
20.3.2.2 Ariadne
20.3.2.3 Secure Efficient Distance
20.3.2.4 Security-Aware Ad Hoc Routing
20.3.3 Detection, Reputation, and Response Systems
20.3.3.1 Watchdog and Path Rater
20.3.3.2 CONFIDANT
20.3.3.3 CORE
20.3.3.4 Context-Aware Inference
20.3.3.5 OCEAN
20.3.4 Discussion
20.4 Self-Policing for Mobile Ad Hoc Networks
20.4.1 Enhanced CONFIDANT — a Robust Reputation
System Approach
20.4.2 Issues in Reputation Systems for Mobile
Ad Hoc Networks
20.4.2.1 Spurious Ratings
20.4.2.2 Information Dissemination
20.4.2.3 Type of Information
20.4.2.4 Response
20.4.2.5 Redemption, Weighting of Time
20.4.2.6 Weighting of Second-Hand Information
20.4.2.7 Detection
20.4.2.8 Identity

Copyright © 2005 by CRC Press

20.5 Conclusions
References

Chapter 21

Securing Mobile Ad Hoc Networks

Panagiotis Papadimitratos and Zygmunt J. Haas

Abstract

21.1 Introduction

21.2 Security Goals

21.3 Threats and Challenges

21.4 Trust Management

21.5 Secure Routing

21.5.1 The Secure Routing Protocol
21.5.1.1 The Neighbor Lookup Protocol
21.5.1.2 The Basic Secure Route Discovery
Procedure

21.5.1.3 Priority-Based Query Handling
21.5.1.4 The Route Maintenance Procedure
21.5.1.4 The SRP Extension

21.6 Secure Data Forwarding

21.6.1 Secure Message Transmission Protocol
21.7 Discussion
References

Chapter 22
Ad Hoc Network Security
Hao Yang, Haiyun Luo, Jigjun Kong, Fan Ye, Petros Zerfos, Songwu Lu, and
Lixia Zhang
Abstract
22.1 Overview
22.2 Link-Layer Security
22.2.1 802.11 MAC Vulnerabilities
22.2.2 802.11 WEP Vulnerabilities
22.3 Network Layer Security
22.3.1 Message Authentication Primitives
22.3.2 Proactive Approach to Secure Ad Hoc Routing
22.3.2.1 Source Routing
22.3.2.2 Distance Vector Routing
22.3.2.3 Link State Routing
22.3.2.4 Other Routing Protocols
22.3.3 Reactive Approach to Protecting Packet Forwarding
22.3.3.1 Detection
22.3.3.2 Reaction
22.3.4 Sophisticated Intrusion Detection System

Copyright © 2005 by CRC Press

22.4 Supporting Element: Trust and Key Management
22.4.1 Trusted Third Party
2242 Web-of-Trust
2243 Localized Trust
22.5 Future Directions
22.5.1 Security in Depth
22.5.2 Evaluation
22.5.3 Solutions Anticipating Unknown Attacks
Note
Bibliography

Chapter 23
Modeling Distributed Applications for Mobile Ad Hoc
Networks Using Attributed Task Graphs
Prithwish Basu, Wang Ke, and Thomas D.C. Little
Abstract
23.1 Introduction
23.2 Modeling Distributed Tasks with Task Graphs
23.2.1 A Modeling Framework for Task Execution
23.2.1.1 Preliminaries
23.2.1.2 Tasks and Task Graphs
23.2.1.3 A Taxonomy of Tasks
23.2.1.4 A Data Flow Tuple Representation Model
for Distributed Tasks
23.2.2 Embedding Task Graphs onto Networks
23.2.3 Metrics for Performance Evaluation
23.3 Algorithms and Protocols for Task Graph Instantiation
23.3.1 Optimization Problem Formulation
23.3.2 An Optimal Polynomial-Time Embedding Algorithm
for Tree Task Graphs with Distinct Labels
23.3.3 A Greedy Algorithm for Task Graph Embedding
23.3.4 A Distributed Algorithm for Task Graph Instantiation
23.3.4.1 Handling Device Mobility
23.3.4.1 Impact of Disconnections on Application
Layer
23.4 Performance Evaluation
23.4.1 Dilation
23.4.2 Embedding Time
23.4.3 Effective Throughput
23.4.4 Number and Time of Reinstantiation
23.4.5 Cumulative ADU Delay Distributions
23.5 Related Work
23.6 Conclusion
Acknowledgment

Copyright © 2005 by CRC Press

Notes
References

Chapter 24
Medium Access Control Mechanisms in Mobile Ad Hoc Networks
Chansu Yu, Ben Lee, Sridhar Kalubandi, and Myungchul Kim
Abstract
24.1 Introduction
24.2 MAC Protocols
24.2.1 Random Access MAC
24.2.2 DCF of IEEE 802.11 MAC
24.2.2.1 ACK for Collision Detection
24.2.2.2 RTS/CTS and NAV for Solving Hidden
Terminal Problem
24.2.2.3 IFS for Prioritized Access to the Channel
24.2.2.4 Backoff Algorithm with CW to Provide
Fair Access with Congestion Control
24.2.2.5 EIFS to Protect ACK from Collisions
24.2.2.6 Performance Limit of DCF
24.3 Enhancing Temporal Channel Utilization
24.3.1 RTS/CTS Mechanism
24.3.1.1 Optimal Setting of RTSThreshold to
Tradeoff between Control and Collision
Overhead
24.3.2 Exponential Backoff Algorithm
24.3.2.1 Conservative CW Restoration to Reduce
Collisions
24.3.2.2 Different Treatment of New and Lost Nodes
for Fairness
24.3.2.3 Dynamic Tuning of CW to Minimize the
Collision Probability
24.4 Enhancing Spatial Channel Utilization
24.4.1 Busy Tone to Solve the Exposed Terminal Problem
24.4.2 Transmission Power Control to Reduce Interference
Range Radially
24.4.3 Directional Antenna to Reduce Interference Range
Angularly
24.4.3.1 oRTS/oCTS-Based DMAC
24.4.3.2 DRTS/oCTS-Based DMAC
24.4.3.3 DRTS/DCTS-Based DMAC
24.4.3.4 Other DMAC Protocols
24.5 Conclusions
Note
References

Copyright © 2005 by CRC Press

SECTION VI MOBILE AND AD HOC WIRELESS
NETWORKS II

Chapter 25
Quality of Service Routing in Mobile Ad Hoc Networks:
Past and Future
Jamal N. Al-Karaki, Ahmed E. Kamal
Abstract
25.1 Introduction
25.2 Quality of Service in MANETSs: The Basics
25.2.1 QoS Metrics
25.2.2 Challenges of QoS Routing Support in MANETSs
25.3 QoS Routing Protocols in MANETSs: Current Trends
25.3.1 QoS Routing in Flat Networks
25.3.1.1 Proactive QoS Routing Protocols
25.3.1.2 Reactive QoS Routing Protocols
25.3.1.3 Predictive QoS Routing Protocols
25.3.1.4 Ticket-Based Probing Routing
25.3.1.5 Bandwidth Calculation Based Routing
25.3.2 Hierarchical QoS Routing Protocols
25.3.3 Position-Based QoS Routing Protocol
25.3.4 Power-Aware QoS Routing in MANETSs
25.4 QoS Routing in MANETS: Future Research Directions
25.5 Conclusion
Note
References

Chapter 26
Issues in Scalable Clustered Network Architecture for Mobile
Ad Hoc Networks
Ben Lee, Chansu Yu, and Sangman Moh
Abstract
26.1 Introduction
26.2 Classification of Cluster Architecture-Based Routing
Protocols
26.2.1 Flat Routing Protocols and Their Scalability
26.2.2 Cluster Architectures
26.2.3 Cluster Architecture-Based Routing Protocols
26.3 LCA for Routing Backbone
26.3.1 Clustering Algorithms
26.3.1.1 Master Selection Algorithms for LSG
26.3.1.2 Cluster Maintenance Algorithms for LSG
26.3.1.3 Master Selection Algorithms for LNG

Copyright © 2005 by CRC Press

26.3.2 LSG-Based Routing Protocols
26.3.2.1 CGSR and HSR: Proactive Protocol with
Conventional Master-to-Gateway Routing
26.3.2.2 DSCR and LANMAR: Proactive Protocols
with Flat Routing toward M,
26.3.2.3 CBRP and ARC: On-Demand Protocols
with Conventional Master-to-Gateway Routing
(Allowing No, Single, or Joint Gateways)
26.3.3 LNG-Based Routing Protocols (On-Demand Protocols
with Master-to-Master Routing)
26.4 Cluster Architecture for Information Infrastructures
26.4.1 Clustering Algorithms
26.4.2 LLog-Based Routing Protocols
26.4.2.1 CEDAR Protocol
26.4.2.2 Zone Routing Protocol
26.4.3 LGeo-Based Routing Protocols
26.4.3.1 ZHLS Routing Protocol
26.4.3.2 GLS Protocol
26.5 Summary and Conclusion
Note
References

Chapter 27
Routing and Mobility Management in Wireless Ad Hoc Networks
Ravi Sankar
27.1 Introduction
27.2 Ad Hoc Network: Definition, Characteristics, and
Applications
27.3 Desired Characteristics of Routing Protocols for MANETSs
27.4 Conventional Routing Protocols
27.4.1 Problems with Conventional Routing
27.5 Review of Ad Hoc Routing Protocols
27.5.1 Table-Driven Routing Protocols
27.5.1.1 Destination-Sequenced Distance Vector
27.5.1.2 Wireless Routing Protocol
27.5.1.3 Link State Routing Protocols
27.5.1.4 Clusterhead Gateway Switch Routing
27.5.1.5 Hierarchical Routing Protocols
27.5.1.6 Summary of Table-Driven Protocols
27.5.2 On-Demand Routing Protocols
27.5.2.1 Dynamic Source Routing
27.5.2.2 Ad Hoc On-Demand Distance Vector
Routing

Copyright © 2005 by CRC Press

27.5.2.3 Associativity Based Routing
27.5.2.4 Summary of On-Demand Protocols
27.5.3 Hybrid Routing Protocols
27.5.3.1 Zone Routing Protocol
27.5.3.2 Temporally Ordered Routing Algorithm
27.5.4 Comparison of the Routing Protocols
27.5.5 Other Protocols
27.5.5.1 Power-Aware and QoS-Aware Routing
27.5.5.2 Location-Based Routing
27.5.5.3 Flooding and Multicasting
27.5.5.4 Multipath Routing
27.6 Performance Issues and Challenges
27.7 Mobility Management in Ad Hoc Networks
27.8 Conclusion
Note
References

Chapter 28
Localized Broadcasting in Mobile Ad Hoc Networks Using
Neighbor Designation
Wei Lou and Jie Wu
28.1 Introduction
28.2 Classification
28.2.1 Probabilistic Algorithms
28.2.1.1 Counter-Based Scheme
28.2.1.2 Distance-Based Scheme
28.2.1.3 Location-Based Scheme
28.2.2 Deterministic Algorithms
28.2.2.1 Global
28.2.2.2 Quasi-Global
28.2.2.3 Quasi-Local
28.2.2.4 Local
28.2.3 Local Algorithms
28.3 Neighbor-Designating Broadcast Algorithms
28.3.1 Forward Node Selection Process
28.3.2 Multi-Point Relays
28.3.3 Dominant Pruning
28.3.4 Total Dominant Pruning and Partial Dominant
Pruning
28.3.5 C(DS-Based Broadcast Algorithm
28.4 Other Extensions
28.4.1 Cluster-Based Broadcast Algorithm
28.4.2 K-hop Zone-Based Algorithm
28.4.3 Reliable Broadcast Algorithm

Copyright © 2005 by CRC Press

28.5 Summary
Acknowledgment
References

Chapter 29

Energy-Efficient Wireless Networks

lonut Cardei and Ding-Zhu Du

Abstract

29.1 Introduction

29.2 Power-Aware Link Layer Adaptation

29.3 Energy Harvesting

29.4 Scheduling Node and Radio Activity
29.4.1 Power-Aware Medium Access Control
29.4.2 Energy-Efficient MAC Protocols for WSN
29.4.3 Node Activity Scheduling

29.5 Energy Conservation in Ad Hoc Routing
29.5.1 Energy-Efficient Routing Protocols
29.5.2 Power-Aware Broadcast and Multicast Tree

Construction

29.6 Energy-Aware Connected Network Topology

29.7 Conclusion

References

SECTION VI POWER MANAGEMENT

Chapter 30
Power Management for Mobile Computers
Thomas L. Martin, Daniel P. Sewiorek, Asim Smailagic, and Jolin Warren
Abstract
30.1 The Relationship between Power and Energy
30.2 Batteries
30.3 Power Supplies
30.4 Hardware Power Management States
30.5 Software
30.6 Case Study
30.6.1 Memory Bottleneck and Dynamic CPU Speed-Setting
30.6.2 Dependence of Battery Capacity on Load Power
30.7 General Guidelines
30.7.1 An “Amdahl’s Law” for Power Management
30.7.2 Evaluating Power Management Options
30.8 Conclusions
References

Copyright © 2005 by CRC Press

Chapter 31
Power Awareness and Management Techniques
Ahmed Abukmail and Abdelsalam (Sumi) Helal
31.1 Introduction
31.1.1 Motivation
31.1.2 Taxonomy of Research and Industry Solutions
31.2 Hardware and Architecture Techniques
31.2.1 Smart Batteries
31.2.1.1 Battery Basics
31.2.1.2 Intelligent Power Drainage
31.2.2 Energy-Aware Processors
31.2.3 Reducing Power through CMOS Circuitry
Components
31.2.3.1 The Power Consumption Equation
31.2.3.2 Voltage and Frequency Scaling
31.2.3.3 Capacitance Load Reduction
31.2.4 Power Reduction through Architectural Design
31.3 Operating Systems and Communication Techniques
31.3.1 Energy Management Solutions
31.3.2 Memory and I/O Management
31.3.3 Communication Techniques
31.3.4 Scheduling
31.4 Software Application Techniques
31.4.1 Compilation Techniques
31.4.1.1 Reordering Instructions
31.4.1.2 Reduction of Memory Operands
31.4.1.3 Code Generation through Pattern Matching
31.4.1.4 Remote Task Execution
31.4.2 Application-Level Techniques
31.5 Tools and Packages for Low-Power Design and Measurement
31.5.1 PowerScope
31.5.2 Derivatives of SimpleScalar
31.5.2.1 The Power Analyzer
31.5.2.2 The Wattch Project
31.5.3 Other Power Estimation Techniques
31.6 Conclusion
References

Chapter 32
Adaptive Algorithmic Power Optimization for Multimedia
Workload in Mobile Environments
Luca Benini and Andrea Acquaviva
32.1 Introduction
32.2 Scalability and Energy Optimization
32.2.1 Scalability in Modern Multimedia Applications

Copyright © 2005 by CRC Press

32.2.1.1 Scalable Source Coding with Wavelets
32.2.1.2 Scalable Source Coding in MPEG-4
32.2.2 Energy Scalability
32.3 Adaptive Algorithmic Power Optimization
32.3.1 Stand-Alone Power Management
32.3.1.1 Adaptive Encoding Algorithms
32.3.1.2 Adaptive Decoding Algorithms
32.3.2 Collaborative Power Management
32.3.2.1 Operating System Collaborative Techniques
32.3.2.2 Server-Assisted Collaborative Techniques
32.4 Conclusion
References

Chapter 33
Energy-Aware Web Caching over Hybrid Networks
Francoise Sailhan and Valérie Issarny
Abstract
33.1 Introduction
33.2 Power-Aware Communication
33.2.1 Energy Saving at the MAC Layer
33.2.1.1 Minimizing Collisions
33.2.1.2 Minimizing Channel Listening
33.2.2 Energy Saving at the Routing Layer
33.2.2.1 Ad Hoc Routing Protocols
33.2.2.2 Energy-Aware Ad Hoc Routing
33.2.3 Energy Saving at the Transport Layer
33.3 Web Caching in Ad Hoc Networks
33.3.1 Ad Hoc Communication for Cooperative Web Caching
33.3.2 Ad Hoc Cooperative Caching
33.4 Local Caching
33.4.1 Cache Management
33.4.2 Prefetching
33.5 Evaluation
33.5.1 Energy Consumption of Ad Hoc Networking
33.5.2 Energy Consumption of Ad Hoc Cooperative Caching
33.6 Conclusion
Notes
References

Chapter 34
Transmitter Power Control in Wireless Computing
Sawvas Gitzenis and Nicholas Bambos
34.1 Introduction
34.1.1 Power Control Issues in Wireless Packet
Communication

Copyright © 2005 by CRC Press

34.2 Packet Forwarding over Single-Mode Wireless Links
34.2.1 Optimally Emptying the Transmitter Buffer
34.2.1.1 The Simple Case of Independent Channel
Interference — Power Phases
34.2.2 Incorporating Packet Arrivals and Buffer Overflows
34.2.3 Design of PCMA Algorithms — Responsive Channel
34.2.4 The Multi-Transmitter/Multi-Receiver Case
34.3 Packet Forwarding over Multimode Transmission Links
34.3.1 Optimally Emptying the Transmitter Buffer
34.3.2 Structural Properties — The Independent Channel
Stress Case
34.3.3 Design of Multimode PCMA Algorithms for
Responsive Channels
34.4 Data Prefetching over Single-Mode Transmission Links
34.4.1 System Model
34.4.1 The Dynamic Programming Formulation
34.4.2 The Structural Properties of the Power Decision p
34.4.3 Online Look-Ahead Heuristics for Efficient Buffer
Control
34.4.3.1 No Prefetching — Efficient Data Downloading
34.4.3.2 Neighbor Prefetching — Depth-1 Look-Ahead
34.4.3.3 Deep Prefetching
Notes
References

SECTION VIII PERFORMANCE AND MODELING

Chapter 35
A Survey on Mobile Transaction Models
Abdelsalam (Sumi) Helal, Santosh Balakrishnan, Margaret H. Dunham, and
Youzhong Liu
Abstract
35.1 Introduction
35.2 Reference Model
35.3 Mobile Transactions: Definition, Characteristics, and Issues
35.3.1 Characteristics
35.3.2 Definition
35.3.3 Issues
35.4 Applicable Transaction Models
35.4.1 Open Nested Transactions
35.4.1.1 Properties of Open Nested Transactions
35.4.2 Split Transactions
35.4.2.1 Split Transaction Semantics
35.4.2.2 Properties of Split Transactions

Copyright © 2005 by CRC Press

35.4.3 Sagas
35.4.3.1 Properties of Sagas
35.4.3.2 Limitations of Sagas
35.4.3.3 Extensions of Saga Model
35.4.3.4 Noncompensating Transactions
35.5 Approaches to Mobile Transaction Models
35.5.1 Reporting and Cotransactions
35.5.1.1 Properties of Reporting Transactions
35.5.1.2 Properties of Cotransactions
35.5.2 The Clustering Model
35.5.2.1 Clusters
35.5.2.2 Weak and Strict Transactions
35.5.2.3 Transaction Migration and Proxying
35.5.3 The Multi-Database Transaction Processing Manager
35.5.3.1 Architecture
35.5.3.2 Transaction Model
35.5.4 Pro-Motion
35.5.5 Prewrite
35.5.6 Semantic Transaction Processing
35.5.6.1 Exploiting Semantics for Concurrency and
Caching
35.5.6.2 Fragmentable and Reorderable Objects
35.5.7 The Kangaroo Transaction Model
35.5.7.1 Reference Model
35.5.7.2 Transaction Model
35.5.7.3 Properties
35.5.8 Time-Based Consistency Model
35.5.9 Two-Tier Replication
35.5.10 Isolation-Only Transactions
35.5.10.1 The Approach Taken
35.5.10.2 The Coda File System
35.5.10.3 What Is an IOT?
35.5.10.4 10T Execution Model
35.5.10.5 Why Isolation Only?
35.5.10.6 10T Consistency Guarantees
35.5.11 Bayou
35.5.11.1 Two-Tier Replication and Weak Consistency
35.5.11.2 Antientropy
35.5.11.3 Session Guarantees
35.5.12 A New Transaction Management Scheme
35.6 Comparative Analysis of Transaction Models
35.6.1 Consistency and Concurrency
35.6.2 Additional Infrastructure Requirements and
Compatibility with Commercial Databases
35.6.3 Communication Cost and Scalability

Copyright © 2005 by CRC Press

35.7 Open Issues in Mobile Transactions
35.8 Summary
References

Chapter 36
Analytic Mobility Models of PCS Networks
Chien-Hsing Wu
Abstract
36.1 System Models
36.1.2 Cellular Systems
36.1.2 Markov Walk Models
36.2 Analysis for Location Update
36.2.1 Location Tracking and Updates
36.2.2 Two Renewal Processes and o,
36.2.3 Recursive Markov Analysis
36.2.4 Distributions p(u) and ¢ (c)
36.3 Paging and Cost
36.4 Performance Evaluation
References

Chapter 37
Battery Power Management in Portable Devices
Vinod Sharma and A. Chockalingam
Abstract
37.1 Introduction
37.1.1 Relaxation Phenomenon in Batteries
37.2 System Model
37.2.1 Battery Discharge/Recharge Model
37.3 Analysis
37.3.1 Extensions and Generalizations
37.3.1.1 Exhaustive Service with Vacations
37.3.1.2 Nonexhaustive System with Vacations
37.3.1.3 Multi-Battery System
37.4 Performance Results and Discussion
37.4.1 Lithium lon Battery Simulation Results
37.5 An Optimal Scheduling Problem
Notes
References

SECTION IX SECURITY AND PRIVACY ASPECTS
Chapter 38

Challenges in Wireless Security: A Case Study of 802.11
Nikita Borisov

Copyright © 2005 by CRC Press

38.1 Introduction
38.1.1 Overview of 802.11
38.1.2 History

38.2 Wireless Security Threats

38.3 Encryption
38.3.1 Keystream Reuse
38.3.2 RC4 Weaknesses
38.3.3 New Standards

38.4 Integrity Protection
38.4.1 Integrity-Based Attacks
38.4.2 Replay Attacks
38.4.3 New Protocols

38.5 Authentication and Access Control
38.5.1 Authentication Extensions
38.5.2 Mutual Authentication
38.5.3 New Protocols

38.6 Key Management
38.6.1 New Protocols

38.7 Conclusion

References

Chapter 39
Security for Mobile Agents: Issues and Challenges
Paolo Bellavista, Antonio Corradi, Corrado Federici, Rebecca Montanari, and
Daniela Tibaldi
Abstract
39.1 Security: a Missing Link for MAs’ Acceptance
39.2 Security Requirements
39.3 Security Countermeasures
39.3.1 User—Agent Trust
39.3.2 Protecting Agent Platforms
39.3.2.1 Secure Agent Code
39.3.2.2 Agent Authentication
39.3.2.3 Agent Authorization
39.3.3 Protecting Agents
39.4 Overview of Security Solutions in MA-Based Systems
39.5 Open Issues and Directions of Work in Secure MA Systems
39.5.1 Agents and Trust
39.5.2 Dynamic Configuration of Access Control
39.6 Conclusions
Acknowledgments
References

Copyright © 2005 by CRC Press

Chapter 40
Security, Trust, and Privacy in Mobile Computing Environments
Lalana Kagal, Jim Parker, Harry Chen, Anupam Joshi, and Tim Finin
40.1 Introduction
40.2 Policies and Their Role in Security in Pervasive Computing
Systems
40.2.1 Introduction
40.2.2 Related Work
40.2.3 Approach
40.2.4 Discussion
40.3 Toward Privacy Protection in Pervasive Computing
Environments
40.3.1 Introduction
40.3.2 Previous Work
40.3.3 Design Principles for Building Privacy Systems
40.3.3.1 Notice and Consent
40.3.3.2 Proximity and Locality
40.3.3.3 Anonymity and Pseudonymity
40.3.4 Implementations of the Privacy Systems
40.3.4.1 Notice and Consent
40.3.4.2 Proximity and Locality
40.3.4.3 Anonymity and Pseudonymity
40.3.5 Context Broker Architecture
40.3.6 Privacy Policy Language
40.3.7 Meta-Reasoning with Policies
40.3.8 Discussion
40.4 Intrusion Detection in Mobile Ad Hoc Networks
40.4.1 Introduction
40.4.2 Environments and Devices
40.4.3 Intrusion Detection
40.4.4 Ad Hoc Network ID
40.4.5 Research
40.4.6 Multiple Malicious Nodes
40.4.7 Directional Antennas and Power Control
40.4.8 Discussion
40.5 Conclusion
References

Copyright © 2005 by CRC Press

Preface

The past decade has witnessed significant advances in the technology of
personal computers, wireless communication, and the Internet. Today,
small, inexpensive, yet powerful portable computers are available. The
Internet continues to experience exponential growth. The coming together
of these trends has made it possible to use computer resources and access
information anywhere and at anytime. This new computing paradigm,
widely known as mobile computing, is set to drive technology over the
next decade. However, there are a lot of challenges to meet. This makes
mobile computing a hot research and development area. Mobile comput-
ing is being projected as the future growth area in both academia and
industry.

This handbook explores the challenges in mobile computing and
includes current efforts and approaches to address them. It provides tech-
nical information about various aspects of mobile computing ranging from
basic concepts to research grade material, including future directions.
This handbook captures the current state of mobile computing and serves
as a source of comprehensive reference material on mobile computing.

This handbook is intended for researchers and practitioners in the field
and for engineers and scientists involved in the design and development of
mobile computing systems and their applications. This handbook can also be
used as the textbook for graduate courses in the mobile computing area.

This handbook has 40 chapters written by experts from around the
world. It is organized in nine sections:

1. Section I — Introduction and Applications of Mobile Computing
2. Section Il — Location Management

3. Section Ill — Location-Based Services

4. Section IV — Caching Strategies

5. Section V — Mobile and Ad Hoc Wireless Networks I

6. Section VI — Mobile and Ad Hoc Wireless Networks Il

7. Section VIl — Power Management

8. Section VIII — Performance and Modeling

9. Section IX — Security and Privacy Aspects

Copyright © 2005 by CRC Press

This handbook has the following salient features:

It serves as a comprehensive source of information and reference
material on mobile computing.

It deals with an important and timely topic of emerging computing
paradigm of tomorrow.

It presents accurate, up-to-date information on a broad range of
topics related to mobile computing.

It presents material authored by experts in the field.

It presents the information in an organized and well-structured manner.

Many people have contributed to this handbook in their unique ways.
The first and the foremost group that deserves immense gratitude is the
group of highly talented and skilled researchers who have contributed
chapters to this handbook. Without their expertise and effort, this hand-
book would never have come to fruition. It has also been a pleasure to work
with Mr. Rich O’Hanley, Ms. Karen Schober, and Ms. Claire Miller of CRC
Press. We are extremely grateful for their support and professionalism. Our
families have extended their unconditional love and strong support
throughout this project and they all deserve very special thanks.

Imad Mahgoub and Mohammad Ilyas
Boca Raton, Florida

Copyright © 2005 by CRC Press

Section |
Introduction
and
Applications
of Mobile

Computing

Chapter 1
Wearable Computing

Asim Smailagic and Daniel P. Siewiorek

Abstract

This chapter describes a taxonomy of wearable computers and their appli-
cations, focusing on their problem solving capabilities. Wearable and con-
text-aware computers have been developed from our iterative design
methodology, with a wide variety of end users, mainly mobile workers. The
taxonomy is illustrated by wearable systems evolving from basic stored
information retrieval through synchronous/asynchronous collaboration
within a team to context-aware platforms with a proactive assistant. Exam-
ple evaluation methods illustrate how user testing can quantify the effec-
tiveness of wearable systems.

1.1 Introduction

Carnegie Mellon’s Wearable Computers project is helping to define the
future not only for computing technologies, but also for the use of comput-
ers in daily activities. The goal is to develop a new class of computing sys-
tems with a small footprint that can be carried or worn by a person and be
able to interact with computer augmented environments [1]. Because
users are an integral part of the system, techniques such as user-centered
design, rapid prototyping, and in-field evaluation are used to identify and
refine user interface models that are useful across a wide spectrum of
applications [2, 3, 4]. Over two dozen wearable computers have been
designed and built over the last 12 years, with most tested in the field. The
application domains range from inspection, maintenance, manufacturing,
and navigation to on-the-move collaboration, position sensing, and
real-time speech recognition and language translation. At the core of these
paradigms is the notion that wearable computers should seek to merge the
user’s information with the user’s workspace. The wearable computer
must blend seamlessly with existing work environments, providing as little
distraction as possible. This requirement often leads to replacements for
the traditional desktop paradigm, which generally requires a fixed physical
relationship between the user and devices such as a keyboard and mouse.
Identifying effective interaction modalities for wearable computers, as well

Copyright © 2005 by CRC Press

as accurately modeling user tasks in software, are among the most signifi-
cant challenges in designing wearable systems.

The goals for this chapter are:

¢ To present a map of wearable system functionality to application types
e To summarize examples of four user interface models

1.2 Issues in Wearable Computing

Wearable computers at Carnegie Mellon have ranged from proof of concept
to customer-driven systems design based on a task specification to vision-
ary design predicting the form and functionality of wearable computers of
the future. Four wearable computers — VuMan 3, MoCCA, Digital Ink, and
Promera — have been awarded prestigious international design awards.

For pervasive or ubiquitous computing to reach its potential, the aver-
age person should be able to take advantage of the information on or off
the job. Even while at work, many people do not have desks or spend a
large portion of their time away from a desk. Thus, mobile access is the gat-
ing technology required to make information available at any place and at
any time. In addition, the computing system should be aware of the user’s
context, not only to be able to respond in an appropriate manner with
respect to the user’s cognitive and social state, but also to anticipate the
needs of the user.

Today’s computer systems distract a user in many explicit and implicit
ways, thereby reducing their effectiveness. The systems can also over-
whelm users with data leading to information overload. The challenge for
human computer interaction design is to use advances in technology to
preserve human attention and to avoid information saturation.

We have identified four design principles for mobile systems:

1. User interface models — what is the appropriate set of metaphors
for providing mobile access to information (i.e., what is the next
desktop or spreadsheet)? These metaphors typically take over a
decade to develop (i.e., the desktop metaphor started in early 1970s
at Xerox Palo Alto Research Center (PARC) and required over a
decade before it was widely available to consumers). Extensive
experimentation working with end users is required to define and
refine these user interface models.

2. Input/output modalities — although several modalities mimicking the
input/output capabilities of the human brain have been the subject of
computer science research for decades, the accuracy and ease of use
(i.e., many current modalities require extensive training periods) are
not yet acceptable. Inaccuracies produce user frustrations. In addition,
most of these modalities require extensive computing resources,

Copyright © 2005 by CRC Press

which will not be available in lightweight, low-power wearable com-
puters. There is room for new, easy-to-use input devices such as the
dial developed at Carnegie Mellon University (CMU) for list-oriented
applications.

3. Matched capability with application requirements — many mobile
systems attempt to pack as much capacity and performance in as
small a package as possible. However, these capabilities are often
unnecessary to complete an application. Enhancements such as
full-color graphics not only require substantial resources, but also
may compromise ease of use by generating information overload for
the user. Interface design and evaluation should focus on the most
effective means for information access and resist the temptation to
provide extra capabilities simply because they are available.

4. Quick interface evaluation methodology — current approaches to
evaluate a human computer interface require elaborate procedures
with scores of subjects. Such an evaluation may take months and is
not appropriate for reference during interface design. These evalu-
ation techniques should focus on decreasing human errors and frus-
tration.

Over the past 12 years, we have built wearable computers for over a
dozen clients in diverse application areas. We have observed several func-
tionalities that have proven useful across multiple applications. These
functionalities form the basis for four user interface models, each with
their unique user interface, input/output modality, and capability:

1. Procedures — text and graphics — maintenance and plant operation
applications are characterized by a large volume of information that
varies slowly over time. For example, even simple aircraft may have
over a hundred thousand manual pages (like the aircraft manuals at
the US Airways hangar at Pittsburgh International Airport). But due
to operational changes and upgrades, half of these pages are obso-
lete every six months for even mature aircraft. Rather than distribute
CD-ROMs for each maintenance person and running the risk of a
maintenance procedure being performed on obsolete information,
maintenance facilities usually maintain a centralized database to
which maintenance personnel make inquiries for the relevant man-
ual sections on demand. A typical request consists of approximately
ten pages of text and schematic drawings. Changes to the centralized
information base can occur on a weekly basis. Furthermore, the
trend is toward more customization in manufacturing. In aircraft
manufacturing, no two aircraft on an assembly line are identical. The
aircraft may belong to different airlines or be configured for different
missions. Customization extends to other industries. One leading
manufacturer produces over 70,000 trucks per year, representing

Copyright © 2005 by CRC Press

over 20,000 different configurations. The customer can select the
transmission, the engine, and even the stereo system. In the near
future, trucks will be accompanied by their own documentation
describing them as “built,” “modified,” or “repaired.” When person-
nel carrying out manufacturing or scheduled maintenance arrive for
a day’s work, they receive a list of job orders that describe the tasks
and include documentation such as text and schematic drawings.
Thus, this information can change on a daily or even hourly basis.

2. Master/apprentice help desk — there are times, however, when an
individual requires assistance from experienced personnel. Histori-
cally, an apprenticeship program, wherein a novice observes and
works with an experienced worker, has provided this assistance. A
simple example of this is the help desk, wherein an experienced person
is contacted for audio and visual assistance in solving a problem.

3. Team maintenance/collaboration — the help desk can service many
people in the field simultaneously. Today, with downsizing and pro-
ductivity improvement goals, teams of people are geographically
distributed, yet are expected to pool their knowledge to solve imme-
diate problems. An extension of the help desk is a team of personnel
such as field service engineers, police, and firefighters, who are
joining together to resolve an emergency situation. Information can
be expected to change on a minute-by-minute and sometimes even
second-by-second basis.

4. Context-aware collaboration — proactive synthetic assistant — con-
text-aware computing describes the situation where a mobile com-
puter is aware of its user’s state and surroundings, and modifies its
behavior based on this information. The system can monitor a user’s
state and act as a proactive assistant, linking information derived
from many contexts, such as location and schedule. Distractions are
even more of a problem in mobile environments than desktop envi-
ronments, because the user is often preoccupied with walking, driv-
ing, or other real-world interactions. A ubiquitous computing
environment that minimizes distraction should be context-aware. If a
human assistant were given such context, he or she would make deci-
sions in a proactive fashion, anticipating user needs. The goal is to
enable mobile computers to play an analogous role, exploiting context
information to significantly reduce demands on human attention.

The remainder of the chapter is organized as follows:

¢ Section 1.3 describes the four user interface models and gives exam-
ples of how they address the three design principles of user interface
models, input/output modalities, and functional capability require-
ments.

¢ Section 1.4 provides examples of how systems can be evaluated for
each of the four user interface models.

Copyright © 2005 by CRC Press

7 VuMan 3

Navigator 2

“ SenSay

Figure 1.1A. Examples of Wearable Computer Platforms

1.3 Example Systems

Four wearable computer user interface models will be illustrated using
example CMU wearable computer systems. It is interesting to note that
these user interface models can also be found in systems developed by
other organizations. Figure 1.1A shows examples of wearable computer
platforms, corresponding to each of the four user interface models. Figure
1.1B illustrates the relationship between wearable computer platforms and
their applications. This representation is based on Kiviat diagrams [5].
These examples include:

® Procedures — text and graphics
— VuMan 3 text-based inspection of U.S. Marines heavy military
vehicles, CMU [6]
— Navigator 2 graphical inspection of Boeing aircraft, CMU [1]
— Georgia Tech wearable computer for quality assurance inspec-
tion in food processing plants [7]

Copyright © 2005 by CRC Press

Application

Master / Apprentice

Procedures-Graphics

Procedures-

Text 1993

VuMan 3

Navigator 2

TIA-P

Platform

Figure 1.1B. Relationship between Wearable Platforms and Their Applications

e Master/apprentice help desk

— TIA-P (Tactical Information Assistant — Prototype) used for C-130
help desk, CMU [8]

— NetMan enables technicians in the field and office-based experts
to collaborate in real-time using audio and video, University of
Oregon [9]

e Team collaboration

— MoCCA (Mobile Communication and Computing Architecture) to
support collaboration of geographically distributed field engi-
neers, CMU [10]

— Land Warrior integrated infantry soldier system for close combat.
Designed to avoid information overload [11]

e Synthetic collaboration — proactive synthetic assistant

— Context-aware cell phone, which modifies its behavior based on
its user’s state and surroundings, CMU

— Touring machine, which combines the overlaid 3D graphics of
augmented reality with the untethered freedom of mobile com-
puting to support users in their everyday interactions with the
world, Columbia University [12]

Copyright © 2005 by CRC Press

Team Collaboration

Master / Apprentice

3D Ani Inspection-Graphics extual Information

Inspection-

Output

Figure 1.2. Input/Output Modalities for the User Interface Models

A synthetic assistant is a technology that allows a computer model of a
human expert to interact conversationally, provide advice, read proce-
dures, and answer questions to a human. This technology is developed at
CMU [8, 13].

Figure 1.2 summarizes the four user interface models with respect to the
first design principle and input/output modalities. The knowledge source
and user interface models will be illustrated by system examples in Section
1.3.1 to Section 1.3.4.

The following subsections elaborate further and give examples of each
problem solving capability. Figure 1.3 depicts the four problem solving
capabilities in a state diagram. The system examples in the following four
subsections will illustrate each capability in turn.

1.3.1 Procedures with Static Prestored Text/Graphics

The prestored capability is illustrated by the sheet metal inspection of a
military aircraft. Approximately 100 defects are identified during an aver-
age 36 hour inspection. The inspection starts with selecting a region on the
aircraft body and proceeds with inspecting the object, referencing informa-
tion from the manuals, archival storage of observations, and recording the

Copyright © 2005 by CRC Press

. Synchronous
Static/Prestored Procedures

~Where is the object?
- Shared whiteboard with picture
- How to do it
- Audio
- Pointer on shared whiteboard
- What does result of test mean?
- Shared document scrolling
- Availability
- Contact state (available, busy, off-duty
- Mode (pager, phone, whiteboard)

-Select region
-Maintain object

-Store observations
-Reference information
-Record status

Reference
a Human Expert

Proactive | Assistant

Asynchronous

-“Remote” Synthetic Helper
- Reading procedure and

answering questions
- Frequently asked questions —

synthetic interview

- Where is the object?
- Shared to-do list

- Cotext Aware Synthetic Expert - How to do it
- Location specific information - Audio B Boards
- Schedule - Tips

- Provide advice based on
cognitive model
- overload

- What does result of test mean?
- Audio B Boards
- Tips

- cycling

Figure 1.3. State Diagram of Problem Solving Capabilities

status. Once the user chooses to begin an aircraft inspection, the field of
interest is narrowed from major features (such as left wing, right tail) to
more specific details (individual panes in the cockpit window glass, aircraft
body polygons), as shown in Figure 1.4. The area covered by each defect as
well as the type of defect, using a “How Malfunctioned” code such as cor-
roded, cracked, or missing, are recorded. To maximize usability, each item
or control may be selected simply by speaking its name or, in the case of
more complicated phonemes, a designated numeral. This two-dimensional
selection method, in which defect locations are specified on a planar
region, and overall user interface design have received favorable feedback
from the Boeing aircraft inspectors at McClellan Air Force Base in California.

1.3.2 Master/Apprentice (Live Expert) Help Desk

The C-130 project is designed to use collaboration to facilitate training and
to increase the number of trainees per trainer. Inexperienced users are
being trained to perform a cockpit inspection and the trainers are remotely
located. The trainee loads the inspection procedures and performs the
inspection. A desktop system manages the normal job order process and is
used by the instructors to observe the trainee’s behavior. In collaboration,
the instructor looks over the shoulder (through a small video camera
attached to the top of the trainee’s head-mounted display) and advises the

Copyright © 2005 by CRC Press

Selecta defectlocation 14:38 E/NEEEEE)F S

Aircraft Body Main Menu Type of defect

Corroded
U Crac ked
. 8 § 88 8§ & & Dered
Deteriorated
300 /-ﬁ"’_-ﬁ Loose
280 2z Missing
7] o Worn
lﬂ 3 Other...
240
O:ZI_ Complete Remove
200 | 8
D

Figure 1.4. Example User Interface for Static/Prestored Information

trainee. In addition to a two-way audio channel, the instructor can provide
advice via a cursor for indicating areas on a captured video image, which
is being shared through a whiteboard. The instructor manages the sharing
session and whiteboard. The trainee’s use of the whiteboard is limited to
observation.

The capability for the master/apprentice paradigm is in the synchro-
nous communication bubble in Figure 1.3. Synchronous communications
facilitate answering questions such as: Where is the object? (drawing on a
captured image), How to do it? (audio guidance through prestored mate-
rial), and What does the result of the test mean? (audio discussion). This
model also uses the static/prestored capability.

1.3.3 Team Collaboration

MoCCA [10] is designed to support a group of geographically distributed
field service engineers (FSEs). The FSEs spend up to 30 to 40 percent of
their time in a car driving to customer sites. Half of what they service is
third-party equipment for which they may not have written documenta-
tion. The challenge was to provide a system that allowed the FSEs to access
information and advice from other FSEs while on customer sites and while

Copyright © 2005 by CRC Press

commuting between sites. Synchronous and asynchronous collaboration
(Figure 1.3) are supported for both voice and digitized information.

An additional challenge arose from user interviews that suggested that
the FSEs desired the functionality of a laptop computer including a larger
color display with an operational cycle of at least eight hours. The system
had to be very light, preferably less than one pound, and required access
to several legacy databases. Further discussions with the FSEs indicated
that the most frequently used databases were textually oriented. Only on
rare occasions is access to graphical databases required. A novel architec-
ture combined a lightweight alphanumeric satellite computer with the high
functionality of a base unit included in the FSE’s tool kit. The base unit can
be carried into any customer site providing instant access to the global
infrastructure.

The team problem solving asynchronous capability (Figure 1.3) includes
audio bulletin boards and tips for shared collaboration space between
remote FSEs and their colleagues. The concept of an audio bulletin board
is equivalent to a storehouse for audio clips describing the problems that
the FSEs encounter while on the job. Each trouble topic contains a list of
audio responses from other FSEs with the possible solution. Figure 1.5
shows the integrated user interface, which starts with the call list, list of
available FSEs, and information about the incoming request for service.

1.3.4 Context-Aware Collaboration — Proactive Synthetic Assistant

A context-aware cell phone has been designed that provides the remote
caller feedback on the current context of the person being called. Time
(e.g., calendar), location, and audio environment sensing or interpretation
are used to derive user context. We have focused on the callee being the
driver of a car. The goal is for the caller to interact with the driver in a man-
ner similar to that of a passenger in the car. For example, when there is a
particularly difficult driving situation that has a high cognitive load (e.g.,
passing a truck on a downhill curve at night in the rain), a passenger is sen-
sitive to the situation and suspends the conversation until the driving sit-
uation has passed. With contemporary cell phones, however, the caller is
unaware of the driver’s context and continues talking, perhaps causing the
driver to enter a state of cognitive overload.

We have developed SenSay (sensing and saying) [14], a context-aware
mobile phone that modifies its behavior based on its user’s state and sur-
roundings. It adapts to dynamically changing environmental and physio-
logical states and also provides the remote caller information on the cur-
rent context of the phone user. To provide context information, SenSay
uses light, motion, and microphone sensors. The sensors are placed on
various parts of the human body with a central hub, called the sensor box,
mounted on the waist (Figure 1.1A).

Copyright © 2005 by CRC Press

Pager Messages
Bbomd | Cas | Phone | FSE| Avaisbiiy | Pages | T | O | P | i | i | o]

Cellphone access B::m ;lm Emm Mh e L — —
to Voice BBoard — 0 =
Mni WAk | 5220064 mirwick e cam Fag Ony e Bl | Sending
i \ I\P/Ia;%z; o
e Availability Selection J

Changr Your Avelk liry
1. Make Topic @ heldh O peeoy O pmeoy O mos O tedes
2. List Topic |G | teavina]
3. Add Message
4. Delete Topic Detailed Call Information
T T—T— e
A o
Call Time CallBack Absiract
Camnegie Mellon 12/0404 " Errm EBad MSCP Statue
Thuitrersity 1z:02on [B | H2-227-1864 || R g B Drive
Eaufimare's 120380 Baei Lam 412.555-1223 Hetwrork noreing,
Departmert Store || 10:40 43 | 255 || Holden i oo slow,
Sy -
TiE FiItering
Call List es
[Tl S 2 nid 1 [D .
I s) Vet .'—..__-" 7 2l
I Clowee M sarsts - i

el —

Call Logging

Figure 1.5. MoCCA Integrated Interface

Copyright © 2005 by CRC Press

DECISION LOGIC

Windows 000 [l] Decision module
9 Action module

Preprocessing Sensor

module

Serial

4v

Serial

handspring

Scheduler
f GSM

Caller

X-Axis
accelerometer
Y-Axis
accelerometer
Z-AXxis
accelerometer
Bluetooth
microphone
Ambient
microphone
Light

Figure 1.6. Context-Aware Cell Phone System Architecture

naoxomzZzmwm

SenSay introduces the following four states:

1. Uninterruptible

2. Idle

3. Active

4. Normal (the default state)

A number of phone actions are associated with each state. For example, in
the uninterruptible state, the ringer is turned off.

A three-tier architecture was adopted:

1. Sensor box
2. Decision module
3. Phone

The following components are shown in Figure 1.6. The sensor module,
located in the bottom left, collects physical sensor data, which is then sent
to the notebook computer (henceforth called the platform) through the
serial port. The decision module at the top is then notified of data arrival
and a series of preprocessing steps are done to the incoming data before
the data is acted upon. Finally, the decision module instructs the phone to
act based on the current user context. The decision module uses another
serial port to communicate with the phone.

Copyright © 2005 by CRC Press

We built a custom sensor module containing two subsystems — the
microcontroller and sensors. A microcontroller is used to process the que-
ries from the sensor module and return the requested sensor data as a
ten-bit word. The sensors include three accelerometers used to capture
three axes of motion (%, y, z) and a light sensor. A Bluetooth® microphone
is used for detecting user speech and another microphone is added to
serve as an ambient noise detector.

The Bluetooth microphone communicates with a USB Bluetooth trans-
ceiver connected to the platform.

The platform software monitors sensors and phone status and makes
decisions concurrently using three modules. The sensor module resides
on the platform, which connects to the sensor box and the phone monitors
all sensors. Similarly, the action module handles all interactions between
the decision logic and the phone. The decision module determines user
context and is responsible for triggering phone actions.

The decision module determines user context using sensor data and
electronic calendar entries. It stores and examines the collected data and
passes a phone action notification to the action model, which it may
ignore. When the user is busy, Short Message Service (SMS) is used to auto
respond to the caller. The action module is responsible for issuing changes
and operations to the Treo™ smartphone. It accepts requests from the
decision module and accesses the phone.

The decision module inspects the gathered data and determines the
state that the phone should enter. Figure 1.7 shows the state diagram used
by the decision module. To prevent bouncing between states too quickly,
up to ten minutes of recent sensor data are stored and examined. Running
averages are computed to give reasonable weight to previous data and
phone state. Furthermore, four states are identified by the system, repre-
senting descending levels of uninterruptibility, as follows:

1. Uninterruptible state — the system enters this state when the user
is involved in a conversation or has scheduled an important event
in the electronic calendar. The ringer is disabled; vibrate is enabled
only when the light level is low. The caller has an option to override
this in case of emergency by calling again within three minutes.

2. Active state — high physical activity or high ambient noise level
puts the system into this state. The ringer is set to high and vibrate
is enabled.

3. Idle state — the system goes into this state when there is little
movement and low ambient level. The system reminds the user of
missed calls and provides suggestions to the user.

4. Normal state — the ringer and vibrate modes are set to the phone’s
default values.

Copyright © 2005 by CRC Press

Uninterruptible (Busy)
Ringer Vibrate| Incoming
off on Call
Y
Vibrate
off
Call
Active goes
through
physical Ringer Vibrate
-]
movement high on
Idle
Make suggestions)
(if available) Picks UpY
Caller calls
back within N
Normal 3 min
—-]
User’s

ringer and Send SMS

vibrate to caller
state

physical
movement ¥

Figure 1.7. Left: State Diagram Showing What Happens When an Incoming Call
Is Made in Uninterruptible Mode. Right: State Diagram Showing How the Phone
Determines Which Mode to Place the Phone In

A series of threshold analysis tests were run while recording sensor val-
ues and noting trends over time. Microphones and accelerometer values
were recorded from 11 subjects. In addition to the raw sensor values, aver-
age sensor values were also observed over various periods of time.

As an example of threshold experiments, consider user activity. The sen-
sor board was taped to the user’s abdomen. The physical activity test was
run using the three-axis accelerometer. The maximum of the three absolute
component values was used as the movement data. The data is split into
three ranges.

1. Low activity includes sitting, sleeping, etc. Short, intense movements
are averaged out.

2. Medium activity represents walking or other comparable activity.
Medium movement indicates that the user is not idle.

3. High activity includes movements such as running.

To find generic threshold values, 11 subjects were asked to perform a test.
After walking for 40 seconds, they were asked to sit down for 10 seconds.

Copyright © 2005 by CRC Press

s}
(=1
=1

wak st run walk sit

—=— Subject 4

S Subject 5
820 ki 1 ~— Subject &
‘ i Subject 7
500 5 ! Subject 11
y ﬁ ! — Low-medium
450 i | F ot == medium-high
k1 L]
B Vel |
b % NE |
i 1 1
i

%

o

=
T

amplitude

w s
(=] o
=] =]
e

I

e
s i ——

]
i3]
=

.

b
=]
=

wm
k=

i F
N E—— . - _:é; Lait.. _._!_|._:_ e e o o o
§] "
f

o
=
-

t

wm
<

Figure 1.8. Motion State Thresholds

Then they were required to run for 30 seconds and afterward walk again.
After walking for 20 more seconds, they sat down again for an additional 25
seconds. Figure 1.8 shows the resulting values. From this experiment,
thresholds for differentiating between low, medium, and high activity were
found and annotated on the diagram. Other tests were conducted for the
microphones and light sensors.

1.4 Evaluation

Evaluation of all four applications was performed with laboratory prototypes.
Metrics used in this evaluation include time on task and accuracy. These
tests can be used as examples of how to evaluate wearable computer sys-
tems.

1.4.1 Prestored Procedures

Field tests were performed at the Digital Equipment Corporation facility in
Forrest Hills, Pittsburgh, Pennsylvania. Five FSEs participated in tests that
included performing a set of typical operations related to troubleshooting
and repair operations on computing equipment. Each of the FSEs per-
formed all of these operations. The subject systems included printers,
motherboards, and networks. The use of the prototype contributed to a
significant saving of time (35 to 40 percent), as shown in Figure 1.9. During
these field tests, the FSEs used the system for the first time. A larger sav-
ings in time is expected with continued use. In addition, MoCCA allowed

Copyright © 2005 by CRC Press

90 —
80 @ Traditional
o 70
B MoCCA
£ 60]
£ 50 1
% 40
E %
= 20 A
10 i
0 ‘
O R\) R O R
o\\o Q,Q'z’ 0\\0 Q,QQ’ O&\o @Qrzr
o < o < o <
5 & 5 Q& N {
NS (‘\\ & > NS QO
& N & & & 5
o o N o 2
<§ <§ < <§ <
& Q @o\ Q&
‘\\(\ & a@
< BN &
N
S
Problem type

Figure 1.9. Improvement in Problem Solving with Prestored Knowledge versus
Traditional Approach

the FSEs to fix some problems immediately, which otherwise would have
required return trips to find and bring back manuals.

1.4.2 Master/Apprentice Help Desk

Performance on a bicycle repair task when working alone was compared to
working with a helper who could provide guidance through the repair pro-
cess. There was a video link between the worker and expert, as well as an
audio connection. Participants consisted of 60 CMU students (69 percent
male) and 2 bicycle repair experts. Workers do substantially better at per-
forming these repair tasks with collaborative help. A repeated measures
analysis of variance (ANOVA) test [15] was used to examine statistical sig-
nificance of the results. In a bicycle repair experiment, average time to
complete the tasks with a remote expert was half as long as in the solo con-
dition (7.5 versus 16.5 minutes respectively; p < .001). This means that the
probability that the two average times are the same is less than 0.1 percent.
The quality of the repairs they completed was superior when they had
assistance than when they worked alone (79 percent of the quality points
for the collaborative condition versus 51 percent for the solo condition; p
<.001). Although having access to an expert dramatically improved perfor-
mance, having better tools for communication with the expert did not
improve the number of tasks completed, the average time per completed
task, or performance quality. In particular, neither video (comparison of
full duplex audio/video with full duplex audio/no video) nor full duplex

Copyright © 2005 by CRC Press

audio (comparison of full duplex audio/video condition with half duplex
audio/video) helped workers perform more tasks, perform tasks more
quickly, or perform them better [16].

1.4.3 Team Collaboration

IDEALINK provides a virtual space for groups to manipulate graphical
objects related to their work task, sharing observations with each other
[17]. IDEALINK is well-suited for use in wearable computers because it
enables users to have ad hoc meetings and design sessions, providing
them with a canvas on which they can sketch their ideas for a remote user.
Asynchronous audio tags enable users to record an audio explanation or
annotation of a particular object or procedure. Each session is recorded
and archived for later playback, making the knowledge contained within
them available for later reference.

To test IDEALINK’s effectiveness, we conducted an experiment in which
groups of four participants collaborated on the design of a remote control
for a CD player. Each session concluded when all participants agreed upon
a final design. They were encouraged, but not required, to begin by individ-
ually sketching their ideas, then proceed to discuss their sketches with the
rest of the group, and conclude by collaborating on a final design based
upon a combination of the sketches.

We noted occurrences of mechanics of collaboration as defined by
Gutwin and Greenberg [18]. Explicit communication occurs when “group
members intentionally provide each other with information” either “ver-
bally” or “in combination with pointing to an artifact.” Consequential com-
munication is “information that is unintentionally given off by others as
they go about their activities” including “information given off by artifacts
as they are manipulated by others” and “the characteristic actions of a per-
son’s embodiment in the workspace.” Coordination of action takes place
when “people organize their actions in a shared workspace so that they do
not conflict with others”; for example, when turns are taken. Planning
occurs when people “reserve areas of the workspace for their use or con-
sider various courses of action by simulating them.” Monitoring actions
are ones that gather information about others in the workspace. Assis-
tance happens when another group member explicitly asks for help or
when someone sees that assistance would be helpful. Finally, protection
describes actions that a participant takes to prevent others from “inadvert-
ently altering or destroying work” that they have done.

In addition, we also recorded instances of misunderstood illustrations,
usage of body language to describe the remote control (that does not fall
into any of the areas listed above), off task discussion, and equipment fail-
ure. The results of this are shown in Table 1.1.

Copyright © 2005 by CRC Press

Table 1.1. IDEALINK User Evaluation

Whiteboard IDEALINK
Session Number 123 |4 Toal [5|6]7]8] Total
Mechanics of Collaboration Events
Explicit communication 81| 13| 15| 18 54 7110 12| 4 33
errors and difficulties 0 3 0 0 3 0 0 010 0
Implicit communication 9 8 51| 18 40 2 4 110 7
errors and difficulties 0 2 0 0 2 0 0 010 0
Cooperation 7 1 0 1 9 0 0 110 1
errors and difficulties 0 6 0 0 6 0 1 110 2
Planning 2 5 4 2 13 7 1 411 13
errors and difficulties 0 0 0 0 0 0 1 110 2
Monitoring 1 0 0 0 1 1 2 4| 2 9
Assistance 1 1 1 0 3 0 1 110 2
Protection 0 0 0 0 0 0 0 010 0
Other Observed Events
Misunderstood diagram 0 1 0 0 1 1 2 51 4 12
Body language 5 0 0 0 5 0 3 710 10
Off task 2 0 0 1 3 3 3 1] 1 8
Equipment failure 0 0 1 0 1 8 | 11 9| 8 36

Participants tended to communicate with each other more verbally
when they were using the whiteboard. In particular, they were more likely
to use explicit and implicit references to positions and locations of objects.
These implicit references were occasionally flawed, as occurred in session
2. Furthermore, use of the whiteboard caused more discussion of how to
coordinate activities.

While using IDEALINK, participants more frequently monitored other
participants’ screens. They also used more body language to describe the
remote control, even using the computer’s shape and size as a proxy
remote control.

We observed that participation was more evenly distributed among par-
ticipants when they used IDEALINK than when they used the whiteboard.
In the first whiteboard-based session, one participant dominated discus-
sion. He spent a significant amount of time at the front of the room, listed
his ideas on the board first, and frequently interrupted others’ discussions.

Copyright © 2005 by CRC Press

While using IDEALINK, his interference with others was minimized. The
other participants were able to focus their attention away from the central
whiteboard at the front of the room and on the Idealink screen in front of
them. They made their own sketches as he was talking and directed their
attention toward these sketches. This resulted in a more effective meeting,
as more time was spent focusing on the prototype sketches and less time
was spent debating whether the remarks made by the dominant partici-
pant were valid.

1.4.4 Context-Aware Collaboration — Proactive Synthetic Assistant

Two experiments tested the hypothesis that a context-aware cell phone
could change caller and driver behaviors. Experiment 1 tested whether
remote cell phone callers would slow or stop their conversation with a
driver when signaled. Experiment 2 tested whether a driver’s performance
while speaking on a cell phone would be improved by slowing or stopping
the remote caller’s conversation.

Participants (n = 24) were asked to role-play a person seeking to rent an
apartment. Each participant made successive cell phone calls to three
landlords, played by the experimenter. Participants were provided a list of
questions to ask the landlord about each apartment (e.g., how many bed-
rooms the apartment had). At a prespecified point in each call, the landlord
would unexpectedly pause for ten seconds.

Results show that the callers said less than half the number of sentences
during the pause when they were sent a signal compared to when the
driver remained silent. The spoken message: “The person you have called
is busy. Please hold.” was the most effective signal.

Experiment 2 used a driving simulator composed from a virtual reality
authoring environment and allowed users to navigate a vehicle through a
test track. Before beginning the experiment, participants (n = 20) practiced
using the driving simulator until they said they felt comfortable. Partici-
pants then completed one circuit of the track on the driving simulator
under each of three conditions:

1. Control (no phone call)
2. Call without pause
3. Call with pause

Results show that talking on the cell phone caused people to crash more
(6.8 crashes) as compared to driving without a call (3.55 crashes). Inducing
pauses during the call caused the driver to crash less (3.65 crashes) when
using the cell phone.

1.5 Summary and Future Challenges

In this chapter, we have introduced and described a taxonomy of problem
solving capabilities for wearable and context-aware computers. We have

Copyright © 2005 by CRC Press

shown how these capabilities impact choices of input/output modalities
and user interface models.

An important set of challenges must be addressed to make wearable
computing effective with ubiquitous computing environments. How do we
develop social and cognitive models of applications? How do we integrate
input from multiple sensors and map them into user social and cognitive
states? How do we anticipate user needs? How do we interact with the user?

In the future, we will focus our efforts on development of a virtual coach,
which will capture a wearable augmented cognition platform and software
application, as well as be able to monitor an individual’s cognitive load and
route tasks to less loaded individuals. Cognitive performance will be
assessed online. Providing immediate suggestions to a user for cognitive
augmentation and arbitration of resource redeployment will further
enhance performance.

Acknowledgments

This material is based upon work supported by the National Science Foun-
dation under Grant no. 0205266 and work supported by the Defense
Advanced Research Projects Agency (DARPA) under Contract no.
NBCHC030029. We would also like to acknowledge funding support
received from the Pennsylvania Infrastructure Technology Alliance.

References

1. Smailagic, A. and Siewiorek, D.P., The CMU mobile computers: A new generation of
computer systems, in Proc. [EEE COMPCON 94, P. 467, 1994.

2. Smailagic, A., Siewiorek, D.P. et al., Benchmarking an interdisciplinary concurrent
design methodology for electronic/mechanical design, in Proc. ACM/IEEE Design Au-
tomation Conference, P. 514, 1995.

3. Siewiorek, D.P., Smailagic, A., and Lee, J.C., An interdisciplinary concurrent design
methodology as applied to the Navigator wearable computer system, J. Computer and
Software Engineering, Ablex Publishing Corporation, vol. 2, no. 3, P. 259, 1994.

4. Smailagic, A. and Siewiorek, D.P., Application design for wearable and context-aware
computers, [EEE Pervasive Computing, vol. 1, no. 4, P. 20, 2002.

5. Ferrari, D., Computer Systems Performance Evaluation, Englewood Cliffs, NJ: Prentice
Hall, P. 44, 1978.

6. Smailagic, A., Siewiorek, D.P,, Stivoric, J., and Martin, R., Very rapid prototyping of
wearable computers: A case study of custom versus off-the-shelf design methodolo-
gies, J. Design Automation for Embedded Systems, vol. 3, P. 217, 1998.

7. Najjar, L., Thompson, J.C., and Ockerman, J.J., A wearable computer for quality
assurance in a food processing plant, in Proc. Int. Symp. Wearable Computers, Piscat-
away, NJ: IEEE Computer Society Press, P. 163, 1997.

8. Smailagic, A., An evaluation of audio-centric CMU wearable computers, ACM Journal
on Special Topics in Mobile Networking, vol. 6, pp. 59-68, 1998.

9. Bauer, M., Heiber, T., Kortuem, G., and Segall, Z., A collaborative wearable system
with remote sensing, in Proc. Int. Symp. Wearable Computers, Piscataway, NJ: IEEE
Computer Society Press, P. 10, 1998.

Copyright © 2005 by CRC Press

10.

11.
12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

Smailagic, A., Siewiorek, D.P. et al., MoCCA: A mobile communication and computing
architecture, in Proc. Int. Symp. Wearable Computers, Piscataway, NJ: IEEE Computer
Society Press, P. 64, 1999.
http://www.fas.org/man/dod-101/sys/land/land-warrior.htm.

Feiner, S., MacIntyre, B., and Hollerer, T., A touring machine: Prototyping 3D mobile
augmented reality systems for exploring the urban environment, in Proc. Int. Symp.
Wearable Computers, Piscataway, NJ: IEEE Computer Society Press, P. 74, 1997.
Marinelli, D. and Stevens, S.M., Synthetic interviews: The art of creating a ‘dyad’
between humans and machine-based characters, in Proc. IEEE Workshop on Interactive
Voice Technology for Telecommunications Applications, Torino, Italy, 1998.

Siewiorek, D.P, Smailagic, A. et al., SenSay: A context-aware mobile phone, in Proc.
Int. Symp. Wearable Computers, Piscataway, NJ: IEEE Computer Society Press, P. 248,
2003.

Girden, E.R., ANOVA Repeated Measures, Thousand Oaks, CA: Sage Publications, 1992.
Fussell, S.R., Kraut, R.E., and Siegel, J., Coordination of communication: Effects of
shared visual context on collaborative work, in Proc. ACM Conference on Computer
Supported Cooperative Work, New York: ACM Press, P. 21, 2000.

Garlan, D., Siewiorek, D.P., Smailagic A., and Steenkiste, P., Project Aura: Toward
distraction-free pervasive computing, /EEE Pervasive Computing, vol. 1, P. 22, 2002.
Gutwin, C. and Greenberg, S., The mechanics of collaboration: Developing low cost
usability evaluation metrics for shared workspaces, in Proc. IEEE Int. Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises, Piscataway, NJ: IEEE
Computer Society Press, P. 98, 2000.

Billinghurst, M., Weghorst, S., and Furness Ill, T., Wearable computers for three-di-
mensional CSCW, in Proc. Int. Symp. Wearable Computers, Piscataway, NJ: IEEE Com-
puter Society Press, P. 39, 1997.

Dey, A., Futakawa, M., Salber, D., and Abowd, G., The conference assistant: combining
context-awareness with wearable computing, in Proc. Int. Symp. Wearable Computers,
Piscataway, NJ: IEEE Computer Society Press, P. 21, 1999.

Healey, J. and Picard, R., StartleCam: A cybernetic wearable camera, in Proc. Int. Symp.
Wearable Computers, Piscataway, NJ: IEEE Computer Society Press, P. 42, 1998.
Rekimoto, J., Transvision: A hand-held augmented reality system for collaborative
design, in Proc. Virtual Systems and Multimedia, 1996.

Starner, T., Weaver, J., and Pentland, A.,, A wearable computer based American
sign-language recognizer, in Proc. Int. Symp. Wearable Computers, Piscataway, NJ: IEEE
Computer Society Press, P. 130, 1997.

Copyright © 2005 by CRC Press

http://www.fas.org/man/dod-101/sys/land/land-warrior.htm

Chapter 2

Developing Mobile
Applications:

A Lime Primer

Gian Pietro Picco, Amy L. Murphy, and
Gruia-Catalin Roman

Abstract

Mobility poses peculiar challenges that must be addressed by novel pro-
gramming constructs. Lime (Linda in a Mobile Environment) tackles the
problem by adopting a coordination perspective inspired by work on the
Linda model. The context for computation, represented in Linda by a sin-
gle, globally accessible, persistent tuple space, is reinterpreted in Lime as
the transient sharing of the tuple spaces carried by individual mobile units.
Additional constructs provide increased expressiveness, by enabling pro-
grams to deal with the location of tuples and to react to specified states.
The resulting model provides a minimalist set of abstractions that promise
to facilitate rapid and dependable development of mobile applications. In
this chapter, we illustrate the model underlying Lime, present the program-
ming interface of the companion middleware, and discuss how applica-
tions and higher level middleware services can be built using it.

2.1 Introduction

Distributed computing has been traditionally associated with a rather
static environment, where the topology of the system is largely stable and
so is the configuration of the deployed application components. Today,
this vision is being challenged by various forms of mobility, which are
effectively reshaping the landscape of modern distributed computing. On
one hand, the emergence of wireless communication and portable comput-
ing devices is fostering scenarios where the physical topology of the sys-
tem is continuously modified by the free movement of the mobile hosts,
whose wireless communication devices enable them to dynamically create

Copyright © 2005 by CRC Press

and sever links based on proximity. In its most radical incarnation, repre-
sented by mobile ad hoc networks (MANETS), the system is entirely con-
stituted by mobile nodes and the fixed network infrastructure is totally
absent. Together with this physical mobility of hosts, another form of mobil-
ity has emerged, where the units of mobility are program fragments belong-
ing to a distributed application and are relocated from one host to another.
This logical mobility of code brings unprecedented levels of flexibility in the
deployment of application components. In some domains, it enables signif-
icant improvements in the use of communication resources.

Mobility undermines several common assumptions. Disconnection is no
longer an infrequent accident: in applications involving physical mobility,
it is often triggered by the user in order to save battery power and hence
becomes a defining characteristic of the environment. The fluidity of the
physical and logical configuration of the system renders it impractical —
and often impossible — to make assumptions about the availability of a
specific user, host, or service. In general, the computational context is no
longer fixed and predetermined, rather it becomes continuously changing
in largely unpredictable ways. As a consequence, a large fraction of the
body of theories, algorithms, and technology must be recast in the mobile
scenario. Application development demands appropriate constructs and
mechanisms to accommodate the required level of dynamicity and decou-
pling necessary to cope with mobility. Nevertheless, thus far the problem
has been tackled only in a limited context. Pioneering work in mobile com-
puting targeted supporting mobility at the operating system level (e.g., the
work on Coda [14]) or for specific application domains (e.g., reposi-
tory-based in Bayou [34]). On the other hand, many commercial applica-
tions mask mobility by relying on proxy architectures, but assume the
existence of a fixed infrastructure. Clearly, these approaches are limited in
that they either solve issues that are specific for a given application
domain or do not address unconstrained mobile settings.

Lime [18, 26] is a model and a middleware expressly designed for sup-
porting the development of mobile applications. In contrast with many of
the existing proposals, Lime provides the application programmer with a
set of general-purpose programming constructs. Moreover, by adopting a
peer-to-peer architecture that does not rely on any fixed infrastructure, it
addresses the needs of the most radical forms of mobility and in particular
of MANETSs.

The design of Lime is inspired by the realization that the problem of
designing applications involving mobility can be regarded as a coordina-
tion problem [30] and that a fundamental issue to be tackled is the provi-
sion of good abstractions for dealing with, and exploiting, a dynamically
changing context. Coordination is defined as a style of computing that
emphasizes a high degree of decoupling among the computing components

Copyright © 2005 by CRC Press

of an application. As initially proposed in Linda [9], this can be achieved by
allowing independently developed components to share information
stored in a globally accessible, persistent, content-addressable data struc-
ture, typically implemented as a centralized tuple space. A small set of
operations enabling the insertion, removal, and copying of tuples provides
a simple and uniform interface to the tuple space. Temporal decoupling is
achieved by dropping the requirement that the communicating parties be
present at the time the communication takes place and spatial decoupling
is achieved by eliminating the need for components to be aware of each
other’s identity to communicate. A clean computational model, a high
degree of decoupling, an abstract approach to communication, and a sim-
ple interface are the defining features of coordination technology.

Lime reinterprets Linda within the mobile scenario in an original way.
Each mobile unit is permanently associated with a local tuple space, whose
content is transiently shared with the content of similar tuple spaces
attached to the other units within range. Hence, the tuple space used for
coordination is no longer unique, global, and persistent — assumptions
that macroscopically conflict with mobility. Instead, it is dynamically built
out of the spaces contributed by the mobile units within range and reflects
the current configuration of the system. Transiently shared tuple spaces
are the key to shielding the programmer from the complexity of the system
configuration, while still providing an effective abstraction for handling
communication among application components. In addition, Lime defines
constructs providing increased expressiveness by introducing the ability
to react asynchronously to the presence of a tuple and to control the place-
ment of a tuple and its access within the global tuple space. Finally,
because no assumption is made about the nature of the mobile units, the
computational model naturally encompasses both physical mobility of
hosts and logical mobility of agents. The computational model is embodied
in a Java™-based middleware, made available as open source [33], which
has been successfully employed for developing mobile applications.

In this chapter, we present Lime by focusing on the model concepts and
the programming and design techniques useful to the developer of mobile
applications. Other available documents describe the design of the middle-
ware [18] and the formal semantics of the model [19]. This chapter is orga-
nized as follows:

¢ Section 2.2 provides the minimal Linda background necessary to
understand Lime.

e Section 2.3 contains an overview of the Lime model and of the
application programming interface of the companion middleware.

¢ Section 2.4 walks through a case study application and shows how
its requirements are satisfied through a design exploiting Lime.

Copyright © 2005 by CRC Press

e Section 2.5 presents some middleware extensions to Lime that we
built entirely as an application layer on top of the original middle-
ware.

e Section 2.6 places Lime in the context of related work.

e Section 2.7 completes our chapter with some brief concluding
remarks.

2.2 Linda in a Nutshell

In Linda, processes communicate through a shared tuple space that acts as
a repository of elementary data structures or tuples. A tuple space is a
multi-set of tuples that can be accessed concurrently by several processes.
Each tuple is a sequence of typed fields, such as <" f 00", 9, 27.5>, and
contains the information being communicated.

Tuples are added to a tuple space by performing an out (f) operation
and can be removed by executing i n(p). Tuples are anonymous, thus their
selection takes place through pattern matching on the tuple content. The
argument p is often called a template or pattern and its fields contain either
actuals or formals. Actuals are values; the fields of the previous tuples are
all actuals, and the last two fields of <" f 00", ? integer, ? float>are
formals. Formals act like wild cards, and are matched against actuals when
selecting a tuple from the tuple space. For instance, the template above
matches the tuple defined earlier. If multiple tuples match a template, the
one returned by i n is selected nondeterministically. Tuples can also be
read from the tuple space using the nondestructive r d(p) operation. Both
i n and r d are blocking, i.e., if no matching tuple is available in the tuple
space, the process performing the operation is suspended until a matching
tuple becomes available. A typical extension to this synchronous model is
the provision of a pair of asynchronous primitives i np and r dp, called
probes, which allow nonblocking access to the tuple space.! Moreover,
some variants of Linda (e.g., [32]) provide also bulk operations, which can
be used to retrieve all matching tuples in one step. In Lime, we provide a
similar functionality through the i ng and r dg operations, whose execu-
tion is asynchronous like in the case of probes.?

2.3 Lime: Linda in a Mobile Environment

Communication in Linda is decoupled in time and space, i.e., senders and
receivers do not need to be available at the same time and mutual knowl-
edge of their identity or location is not necessary for data exchange. This
form of decoupling is of paramount importance in a mobile setting, where
the parties involved in communication change dynamically due to their
migration or connectivity patterns. Moreover, the notion of tuple space
provides a straightforward and intuitive abstraction for representing the

Copyright © 2005 by CRC Press

computational context perceived by the communicating processes. On the
other hand, decoupling is achieved thanks to the properties of the Linda
tuple space, namely its global accessibility to all the processes and its per-
sistence — properties that are clearly hard if not impossible to maintain in
a mobile environment.

Lime [18, 26] adapts Linda to the mobile environment in an original way
and provides a coordination layer that can be exploited successfully for
designing applications that exhibit logical mobility, physical mobility, or
both. In this section, we present the Lime model with the description of
how its constructs are made available through the application program-
ming interface of the companion middleware. The reader interested in
additional programming details can find extensive documentation and
examples on the Lime Web site [33].

2.3.1 Model Setting and Overview

The fundamental entities in Lime are agents, hosts, and tuple spaces. Agents
are the only active components. Hosts can be mobile and are mainly roam-
ing containers that provide connectivity and execution support for agents.
Agents can be mobile as well and migrate across hosts of their own voli-
tion. The connectivity patterns among agents and hosts constrain coordina-
tion in Lime. Mobile hosts are connected when a communication link is
available. Mobile agents are connected when they are colocated on the
same host or they reside on hosts that are connected. Changes in connec-
tivity among hosts depend only on changes in the physical communication
links. Connectivity among mobile agents may depend also on arrival and
departure of agents, with creation and termination of mobile agents being
regarded as special cases of connection and disconnection, respectively.

Tuple spaces provide the coordination media among agents, as in Linda.
Nevertheless, in Lime each agent is permanently associated with at least
one interface tuple space (ITS). This tuple space constitutes the only access
to the data context for the agent it is associated with and, at the same time,
it contains the tuples the agent is willing to make available to the rest of the
system. At any time, an agent can access, through its ITS, the union of the
content of the ITS of all the agents currently connected. In essence, Lime
shifts from the fixed context characteristic of Linda to a dynamically
changing one by breaking up the single global tuple space into many and
by introducing rules for transient sharing of these individual tuple spaces
based on connectivity. The expressive power of the model is then
increased further by the ability to execute reactive and asynchronous
operations and to restrict the scope of operations based on location. We
now describe in more detail the features of the Lime model and middleware.

Copyright © 2005 by CRC Press

Table 2.1. The Class Li vTupl eSpace, Representing a Transiently Shared
Tuple Space

public class LimveTupl eSpace {

public LineTupl eSpace(String nane);

public String getNane();

public bool ean i sOwer();

publ i c bool ean i sShared();

publ i c bool ean set Shar ed(bool ean i sShared);

public static bool ean set Shared(Li meTupl eSpace[] Its,

bool ean i sShared);

public void out (I Tuple tuple);

public | Tuple in(lTuple tenplate);

public | Tuple rd(ITuple tenplate);

public voi d out (Agent Location destination,

| Tupl e tuple);
public | Tuple in(Location current, AgentLocation
destination, |Tuple tenplate);
public | Tuple inp(Location current, AgentLocation
destination, |Tuple tenplate);
public | Tuple[] ing(Location current, AgentlLocation
destination, |Tuple tenplate);
public | Tuple rd(Location current, AgentLocation
destination, |Tuple tenplate);
public | Tuple rdp(Location current, AgentLocation
destination, |Tuple tenplate);
public | Tuple[] rdg(Location current, AgentlLocation
destination, |Tuple tenplate);
publ i c Regi steredReacti on[] addStrongReaction
(Local i zedReaction[] reactions);
public Regi steredReacti on[] addWakReacti on
(Reaction[] reactions);
public voi d renpveReacti on(Regi st eredReacti on[]
reactions);
publ i c bool ean i sRegi st eredReacti on(Regi st eredReacti on
reaction);
public Regi steredReaction[] get Regi steredReactions();

2.3.2 Creating a Lime Tuple Space

Table 2.1 shows the public interface® of the class Li meTupl eSpace, which
embodies the concept of a Lime transiently shared tuple space. The asso-
ciation between an agent and the tuple space is established at creation
time by invoking the constructor. Agents may have multiple ITSs distin-
guished by a name, as this is recognized [6] as a useful abstraction to sep-
arate related application data. The name of the tuple space is specified as
a parameter of the constructor. In the current implementation, agents are

Copyright © 2005 by CRC Press

single-threaded and only the thread of the agent that creates the tuple
space is allowed to perform operations on the Li neTupl eSpace object;
accesses by other threads fail by returning an exception. This represents
the constraint that the ITS must be permanently and exclusively attached
to the corresponding mobile agent.

When the [TS is first created and bound to an agent, its sharing status is
private, meaning that the only agent that can access the ITS’s data is the
one associated with it at creation time. A private ITS can be used as a step-
ping stone to a shared data space, allowing the agent to populate it with
data prior to making it publicly accessible. Alternately, it can be useful as
a primitive data structure for local data storage. Lime operations, shown in
the remainder of Table 2.1 and discussed in the rest of this section, are
available also on a private tuple space. For instance, the i np operation is
provided through the method i np, which accepts a parameter represent-
ing the template to be matched against and returns a matching tuple, if any,
or nul I . The only requirement for tuple objects is to implement the inter-
facel Tupl e, which is defined in a separate package called LighTS [23] that
provides access to a lightweight tuple space implementation. Note also
that i np, and similarly the other operations, are overloaded with addi-
tional parameters representing locations, whose meaning is discussed
later in this section.

One relevant difference is that blocking operations are forbidden on a
private tuple space and return an exception. Because the private tuple
space is exclusively associated to one agent, the execution of ani n orrd
when no matching tuple is present would suspend the agent forever: effec-
tively making the agent wait for a tuple that no other agent can possibly
insert.

2.3.3 Enabling Transient Sharing

When an agent is alone in the system, i.e., there are no other agents colo-
cated on the same machine or on machines in range, the ITS of the agent is
the only available data repository accessible by it. On the surface, this
could seem a situation identical to an agent owning a private tuple space,
but the two cases are actually rather different. Irrespective of the system
configuration, a private tuple space is never shared and its existence is
known only to the agent that owns it. Instead, a nonprivate tuple space is
available for sharing with other units according to connectivity.

When multiple mobile units* are able to communicate, either directly or
transitively, we say these units form a Lime group. We can restrict the
notion of group membership beyond simple communication, but for the
purposes of this document, we consider only connectivity. The semantics
of Lime is such that the content of the ITSs of all group members are
merged, or transiently shared, to form a single, large context that is

Copyright © 2005 by CRC Press

accessed by each unit through its own ITS. The sharing itself is transparent
to each mobile unit, however as the members of the group change, the con-
tent of the tuple space each member perceives through operations on the
ITS changes in a transparent way. The joining of a group by a mobile unit
and the subsequent merging of its local context with the group context is
referred to as engagement, which is performed as a single, atomic opera-
tion. A mobile unit leaving a group triggers disengagement, that is, the
atomic removal of the tuples representing its local context from the
remaining group context. In general, whole groups can merge and a group
can split into several groups due to changes in connectivity.

In the case of multiple tuple spaces associated to agents, the sharing
rule relies on tuple space names: only identically named tuple spaces are
transiently shared among the members of a group. Thus, for instance,
when an agent @ owning a single tuple space named X joins a group consist-
ing of one single agent b that owns two tuple spaces named X and ¥, only X
becomes shared between the two agents. Tuple space Y remains accessi-
ble only to b and potentially to other agents owning Y that may join the
group later on.

Because all tuple spaces are initially created private, sharing must be
explicitly enabled by calling the instance method set Shar ed, shown in
Table 2.1. The method accepts a Boolean parameter specifying whether
the transition is from private to shared (t r ue) or vice versa (f al se). Call-
ing this method effectively triggers engagement or disengagement of the
corresponding tuple space. The sharing status can also be changed in a
single atomic step for multiple tuple spaces owned by the same agent by
using the st at i ¢ version of set Shar ed (Table 2.1). Engagement or disen-
gagement of an entire host, instead, can be triggered explicitly by the pro-
grammer by using the methods engage and di sengage, provided by the
Li meSer ver class (not shown here). Otherwise, they are implicitly called
by the runtime support according to connectivity. The Li meSer ver class
is essentially an interface to the runtime support that exports additional
system-related features, e.g., loading of an agent into a local or remote run-
time support, setting of properties, and so on. In particular, it also allows
the programmer to limit transient sharing to the tuple spaces residing on
the host, instead of spanning the whole system.

2.3.4 Reconciling Different Forms of Mobility

One of the key features of Lime is the ability to encompass both physical
mobility of hosts and logical mobility of agents in a single coordination
framework. The relationship between the two forms of mobility is illustrated
in Figure 2.1. The transiently shared ITSs belonging to the agents colocated
on a host define a host-level tuple space. This, in turn, can be regarded as the
ITS associated to the host; hence, transient sharing determines a federated

Copyright © 2005 by CRC Press

Mobile Host g
Mobile Agents

Host-Level Tuple Space Z7 Interface Tuple Space
Federated Tuple Space

Figure 2.1. Transiently Shared Tuple Spaces Encompass Physical and Logical
Mobility

tuple space. When a federated tuple space is established, a query on the
shared ITS of an agent returns a tuple that may belong to the tuple space
carried by that agent, to a tuple space belonging to a colocated agent, or to
a tuple space associated with an agent residing on some remote, con-
nected host.

Although Lime provides a uniform treatment of these two forms of
mobility, it is worth making some observations. First, many applications do
not need both forms of mobility. However, straightforward adaptations of
the model are possible. For instance, applications that do not exploit
mobile agents but run on a mobile host can employ one or more stationary
agents (i.e., programs that do not contain migration operations). In this
case, the design of the application can be modeled in terms of mobile hosts
whose ITS is a fixed host-level tuple space. Instead, applications that do not
exploit physical mobility — and do not need a federated tuple space span-
ning different hosts — can exploit only the host-level tuple space as a local
communication mechanism among colocated agents.

Second, it is interesting to note how mobility is not dealt with directly in
Lime (i.e., there are no constructs for triggering the movement of agents or
hosts). Instead, the effect of migration is made indirectly manifest in the
model and middleware only through changes observed in the connectivity
among components. This choice, which sets the nature of mobility aside,
keeps our model general and enables different instantiations of the model
based on different notions of connectivity. This choice is retained also at
the middleware level, where agent mobility is not supported directly.
Instead, as with tuple spaces, agent migration is decoupled from the rest of
the system by an adaptation layer that simplifies the integration of a
mobile agent system. The currently available implementation relies on an
adaptor built for the pCode mobile code toolkit, developed by one of the
authors [24] and available as open source [22]. This adaptation layer

Copyright © 2005 by CRC Press

allows a mobile agent to carry along one or more Lime tuple spaces and
automatically deals with their engagement or disengagement. Upon migra-
tion, the agent tuple spaces are all toggled to private and hence disen-
gaged. These tuple spaces are serialized as part of the agent state and
migrated to the destination along with the agent, where they are deserial-
ized and shared again before the agent code begins to execute. More
details about the adaptation layer and how to integrate a mobile agent sys-
tem with Lime are available in the Lime documentation and on the Lime
Web site [33].

2.3.5 Restricting the Scope of Operations

Transiently shared tuple spaces foster a style of coordination that reduces
the details of distribution and mobility to content changes in what is per-
ceived as a local tuple space. This view is powerful and greatly simplifies
application design in many scenarios by relieving the designer from the
chore of maintaining explicitly a view of the context consistent with
changes in the configuration of the system. On the other hand, this view
may hide too much in situations where the designer needs more
fine-grained control over the portion of context that must be accessed. For
instance, the application may require control over the agent responsible
for holding a given tuple, something that cannot be specified only in terms
of the global context. Also, performance and efficiency considerations may
come into play, as in the case where application information would enable
access aimed at a specific host-level tuple space, thus avoiding the greater
overhead of a query spanning the whole federated tuple space. Such
fine-grained control over the context perceived by the mobile unit is pro-
vided in Lime by extending the Linda operations with tuple location param-
eters that operate on user-defined projections of the transiently shared
tuple space. Further, all tuples are implicitly augmented with two fields, not
directly accessible to the programmer, representing the tuple’s current and
destination locations. The current location identifies the single agent respon-
sible for holding the tuple when all agents are disconnected; the destination
location indicates the agent with which the tuple should eventually reside.

The out [A] operation extends out with a location parameter represent-
ing the identifier of the agent responsible for holding the tuple. The seman-
tics of out [A](f) involve two steps. The first step is equivalent to a conven-
tional out (¢), whose effect is to insert the tuple ¢ in the ITS of the agent
calling the operation, say w. At this point ¢ has a current location w and a
destination location A. If the agent A is currently connected, the operation
is completed as a single atomic step by moving the tuple ¢ to the destina-
tion location. On the other hand, if 1 is currently disconnected, the tuple
remains at the current location — the tuple space of w. This misplaced tuple,
if not withdrawn,> will remain misplaced unless A becomes connected. In this
case, the tuple will migrate to the tuple space associated with A as part of

Copyright © 2005 by CRC Press

Table 2.2. Accessing Different Portions of the Federated Tuple Space
Using Location Parameters

Current Location | Destination Location | Defined Projection

unspecified unspecified Entire federated tuple space

unspecified A Tuples in the federated tuple space
and destined to A

0] unspecified Tuples in w’s tuple space

Q unspecified Tuples in £’s host-level tuple space,
i.e., belonging to any agent at Q

0] A Tuples in w's tuple space and destined
to A

Q A Tuples in £’s host-level tuple space

and destined to 4

o and A are agent identifiers.
Qis a host identifier.

the engagement. By using out [A], the caller can specify that the tuple is
supposed to be placed within the ITS of agent A. This way, the default pol-
icy of keeping the tuple in the caller’s context until it is withdrawn can be
overridden and more elaborate schemes for transient communication can
be developed.

Variants of the i n and r d operations using location parameters are
allowed as well. These operations, of the form i n[w,A](p) and r d[w,A](p),
enable the programmer to refer to a projection of the current context
defined by the value of the location parameters, as illustrated in Table 2.2.
The current location parameter enables the restriction of scope from the
entire federated tuple space (no value specified) to the tuple space associ-
ated to a given host or even a given agent. The destination location is used
to identify misplaced tuples.

Location parameters are specified in the middleware by using the classes
Agent Locat i on and Host Locat i on, both subclasses of Locat i on. These
classes enable the definition of globally unique location identifiers for
hosts and agents and are used to specify different scopes for Lime opera-
tions. For instance, a probe i np(cur, dest, t) may be restricted to the
tuple space of a single agent if cur is of type Agent Locat i on or it may
refer the whole host-level tuple space, if cur is of type Host Locati on,
according to Table 2.2. The constant Locat i on. UNSPECI FI EDis used to
allow any location parameter to match. For instance, i n(cur, Locat i on.
UNSPECI FI ED, t) returns a tuple contained in the tuple space of cur,
regardless of its final destination, including also misplaced tuples. Note
how typing rules allow the proper constraint of the current and destination

Copyright © 2005 by CRC Press

locations according to the rules of the LIME model. For instance, the des-
ti nati on parameter is always an Agent Locat i on object, as agents are
the only carriers of tuples in Lime. In the current implementation, probes
are always restricted to a local subset of the federated tuple space, as
defined by the location parameters. An unconstrained definition, as the
one provided for i n and r d, would involve a distributed transaction to pre-
serve the semantics of the probe across the federated tuple space.

2.3.6 Reacting to Changes

Lime extends Linda not only by providing transiently shared tuple spaces,
but also by introducing the notion of reaction. A reaction R(s,p) is defined
by a code fragment s that specifies the actions to be executed when a tuple
matching the pattern p is found in the tuple space. Informally,® a reaction
can fire if a tuple matching pattern p exists in the tuple space. After every
regular tuple space operation, a reaction is selected nondeterministically
and, if it is enabled, the statements in s are executed in a single, atomic
step. This selection and execution continues until no reactions are
enabled, at which point normal processing resumes. Blocking operations
are not allowed in s, as they may prevent the execution of s from terminating.

Reactions provide the programmer with powerful constructs for speci-
fying the actions that need to take place in response to a state change and
ensure their execution in a single atomic step. In particular, it is worth not-
ing how this model is much more powerful than many event-based ones
[31], including those exploited by tuple space middleware such as TSpaces
[12] and JavaSpaces™ [13], which are typically stateless and provide no
guarantee about the atomicity of event reactions.

Nevertheless, this expressive power comes at a price, especially in a dis-
tributed setting. When multiple hosts are present, the content of the feder-
ated tuple space is scattered among several agents. Thus, maintaining the
requirements of atomicity and serialization imposed by reactive state-
ments requires a distributed transaction encompassing several hosts —
often, an impractical solution. For specific applications and scenarios,
such as those involving a limited number of hosts or those exploiting only
local interactions among mobile agents, these kind of reactions, referred to
as strong reactions, are still reasonable. For practical performance reasons,
however, our implementation currently limits the use of strong reactions
by restricting the current location field to be a host or agent and by
enabling a reaction to fire only when the matching tuple appears on the
same host as the agent that registered the reaction. As a consequence, a
mobile agent can register a reaction for a host different from the one where
it is residing, but such a reaction remains disabled until the agent migrates
to the specified host. These constraints effectively force the detection of a
tuple matching p and the corresponding execution of the code fragment s to

Copyright © 2005 by CRC Press

take place (atomically) on a single host and hence do not require a distrib-
uted transaction.

To strike a compromise between the expressive power of reactions and
the practical implementation concerns, we introduced another reactive
construct that allows some form of reactivity spanning the whole federated
tuple space but with weaker semantics. The processing of a weak reaction
proceeds as in the case of a strong reaction, but detection and execution
do not happen atomically: instead, execution is guaranteed to take place
only eventually, after a matching tuple is detected. The execution of s takes
place on the host of the agent that registered the reaction.

The use of reactions involves the operations in Li meTupl eSpace and
the classes shown in Table 2.3. Reactions can be registered on a tuple
space by invoking either addSt r ongReact i on or addWeakReact i on.
These methods return an object Regi st er edReact i on, which can be
used to deregister a reaction with the method r enbveReact i on and pro-
vide additional information about the registration process. The decoupling
between the reaction used for the registration and the Regi st er ed-
React i on object returned allows for registration of the same reaction on
different ITSs and for the same reaction to be registered with strong and,
subsequently, with weak semantics.

Reactions can be annotated with location parameters, with the same
meaning discussed earlier for i n and r d and shown in Table 2.2. Reactions
can be either of type Local i zedReact i on, where the current and destina-
tion location restrict the scope of the operation, or Ubi qui t ousReact i on,
which specifies the whole federated tuple space as a target for matching.
In the current implementation, strong reactions are confined to a single
host and hence only a Local i zedReacti on can be passed to
addSt r ongReact i on. The reaction type is used to enforce the proper
registration constraint through type checking. The common ancestor class
React i on defines a number of accessors for the properties established for
the reaction at creation time. Creation of a reaction is performed by speci-
fying the template that needs to be matched in the tuple space, a
React i onLi st ener object that specifies the actions taken when the reac-
tion fires, and a reaction mode that controls the extent to which a reaction
is allowed to execute. A reaction registered with mode ONCE is allowed to
fire only one time: after its execution it becomes automatically deregis-
tered. Instead, a reaction registered with mode ONCEPERTUPLE is allowed
to fire an arbitrary number of times, but never twice for the same tuple.
The React i onLi st ener interface requires the implementation of a single
method r eact sTo that is invoked by the runtime support when the reac-
tion actually fires. This method has access to the information about the
reaction carried by the React i onEvent object passed as a parameter to
the method.

Copyright © 2005 by CRC Press

Table 2.3. The Classes React i on, Regi st er edReact i on, Reacti onEvent
and the Interface React i onLi st ener Required for the Definition of
Reactions on the Tuple Space

public abstract class Reaction {

public final static short ONCE;

public final static short ONCEPERTUPLE;

public | Tupl e get Tenpl ate();

public ReactionLi stener getlListener();

public short getMde();

public Location getCurrentlLocation();

publ i c Agent Location getDestinationLocation();

}

public class UbiquitousReaction extends Reaction {
publ i c Ubi quit ousReaction(l Tupl e tenpl ate,
Reacti onLi st ener |i stener,
short node);
}
public class LocalizedReaction extends Reaction {
public LocalizedReaction(Location current, AgentlLocation
destination, |Tuple tenplate,
Reacti onLi st ener |istener,
short node);
}
public class Regi steredReacti on extends Reaction {
public String get Tupl eSpaceNane();
public Agentl D get Subscri ber();
publ i c bool ean i sWakReaction();
}
public class ReactionEvent extends java.util.Event Cbject {
public | Tupl e get Event Tupl e();
public Regi steredReacti on getReaction();
public Agentl D get Sour ceAgent () ;
}
public interface ReactionLi stener extends java.util.
Event Li stener {
public void reactsTo(Reacti onEvent e);

}

2.3.7 Accessing the System Configuration

Thus far, our extension of Linda operations with location parameters hides
completely the details of the system configuration. For instance, if the
probe i np[w,A](p) fails, this simply means that no tuple matching p is
available in the projection of the federated tuple space defined by the loca-
tion parameters [w,A]. It cannot be directly inferred whether the failure is

Copyright © 2005 by CRC Press

due to the fact that agent w does not have a matching tuple or that agent o
is currently not part of the group.

Without awareness of the system configuration, only a partial context
awareness can be accomplished, where applications are aware of changes
only in the portion of context concerned with application data. Although
this perspective is often enough for mobile applications, in many others
the portion of context more closely related to the system configuration
plays a key role. For instance, in some circumstances it becomes necessary
to react to the departure of a mobile unit or to determine the set of units
currently belonging to a Lime group. Interestingly, Lime provides this form
of awareness of the system configuration by using the same abstractions
discussed thus far, that is, through a transiently shared tuple space con-
ventionally named Li meSyst emto which all agents are permanently
bound. The tuples in this tuple space contain information about the mobile
units present in the group and their relationship, such as which host is sup-
porting which agents or which agent is sharing which tuple spaces. Inser-
tion and withdrawal of tuples in Li meSyst emis a prerogative of the runt-
ime support. Nevertheless, applications can read tuples and register
reactions to respond to changes in the configuration of the system.

2.3.8 Implementation Details

The core Lime package is roughly 5000 noncommented source statements,
resulting in an approximately 100 Kbyte j ar file. The LighTS lightweight
tuple space implementation and the adapter for integrating multiple tuple
space engines add an additional 20 Kbyte j ar file. When using mobile
agents, the pCode toolkit adds approximately 30 Kbyte in a j ar file. Com-
munication is handled completely at the socket level, requiring no support
for remote method invocation (RMI) or other communication mechanisms.
The latest version of Lime exploits global positioning system (GPS) to auto-
matically trigger engagement and disengagement based on physical posi-
tion, along the lines of the algorithm described in [29]. Thus far, Lime has
been tested successfully on personal computers running various versions
of Windows® and Linux® operating systems and exploiting both wired
Ethernet as well as IEEE® 802.11 wireless technology. Moreover, Lime runs
successfully on personal digital assistants (PDAs) equipped with Personal-
Java™ software.

2.4 Application Example

Lime has been successfully applied in the development of several applica-
tions in the mobile environment. In this section, we present a single appli-
cation, a jigsaw assembly game, throughout the development process from
requirements to implementation, showing the thought process applied
when designing mobile applications over Lime.

Copyright © 2005 by CRC Press

2.4.1 Requirements

The goal is to build a jigsaw assembly game for multiple players in the
mobile ad hoc environment. The game should reasonably emulate the
physical world process of assembling a jigsaw puzzle where an individual
player starts a puzzle by dumping the pieces out of the box into a common
area. Other players join and the puzzle is assembled through the joint
effort of the individual players.

When considering this process in a mobile environment in which each
player is equipped with a palm- or laptop computer, the following require-
ments must be met. First, players who are currently connected should be
able to see the piece assemblies of one another as soon as possible. In
other words, if one player, p,, assembles two puzzle pieces on her laptop
and another player, p,, is connected, p,’s display should be updated
quickly to show that the pieces have been assembled. Second, as this is a
mobile game and the players are not expected to remain connected for the
duration of the puzzle assembly, it should be possible for a player to make
assemblies of pieces while disconnected. This leads to the next require-
ment, namely that when two previously disconnected players reconnect,
their displays should be updated to show the changes made by one
another. Finally, the game should be able to support multiple, concurrent
puzzles, and a single player should be able to participate in more than one
puzzle at a time.

2.4.2 Design and Implementation

The requirements sketched above are intentionally vague, leaving many
options available. The design and implementation take into consideration
the programming style encouraged by Lime as well as the constraints of
the wireless, mobile environment. Here we describe the puzzle application,
originally assigned as a course project, outlining first the design choices
for the use of the tuple spaces and tuples, followed by the implementation
of the user actions, and finishing with the updating of the user interface.

2.4.2.1 Tuple Spaces and Tuples. The first choices in the design of all
Lime applications are the use of the federated tuple spaces and the format
of the tuples. To support multiple concurrent puzzles, an obvious choice is
to use a separate tuple space for each puzzle. This effectively separates the
actions and pieces of distinct puzzles and easily allows a player to partici-
pate in as many puzzles as she would like. When a player chooses to start
a puzzle, she must provide a name to be used as the tuple space name.
Because the names of all active puzzles are present in the Li neSyst em
tuple space, the puzzle application can query this space and display the
available games to the user. Joining a puzzle is equivalent to creating a
tuple space with its name.

Copyright © 2005 by CRC Press

Because each tuple space is used as the repository for the current state
of a single puzzle, the next choice is how to represent this information in
tuples. This is achieved with two kinds of tuples — image and assembly. An
image tuple exists for every puzzle piece and contains two fields — the
identifier and the bitmap of the piece. The second kind of tuple, the assem-
bly, represents a group of connected puzzle pieces. Each such tuple con-
tains a single field with the list of the identifiers of the connected pieces.
When a new game starts, for each puzzle piece two tuples are inserted with
a corresponding out operation: one contains the image and one contains
the representation of an assembly with a single piece, i.e., a list whose sin-
gle element is the piece identifier. When two pieces are assembled, the two
assembly tuples of the original pieces are replaced by a single tuple repre-
senting the change.

There are two important benefits of our choice for representing the puz-
zle data, thanks to the fact that, when puzzle pieces are assembled, image
tuples do not change. Because these tuples contain bitmaps that are likely
to be large in comparison to the assembly tuples, we save the computation
time necessary to remove and reinsert the large image tuple each time an
assembly is made, and we also save bandwidth as the images are not
repeatedly transmitted over the wireless link.

2.4.2.2 User Actions. The next decision is where the tuples should
reside throughout the federated tuple space. It is clear that when all play-
ers are connected, all the tuples representing the puzzle, both images and
assemblies, are present. However, when the players are disconnected, the
puzzle pieces are divided among the tuple spaces of the players and there-
fore are not accessible to everyone. This brings us to the first of the user
operations, namely the ability to select a piece and become its owner.
When a player owns a piece, that piece resides in her portion of the feder-
ated tuple space and remains with the player even after disconnection.
This notion of ownership is on the assembly level, but must also extend to
images. In other words, when a player takes ownership of an assembly, it
must also take ownership of the images associated with the pieces of the
assembly.

At the user interface level, selection of a piece is achieved by right click-
ing on one of the pieces displayed on the screen. To show the player which
pieces have been selected by which players, we associate a color with each
player and outline the selected pieces with this color, as shown in Figure
2.2. In Lime, selection is accomplished by performing i np operations to
retrieve both the image and assembly tuples, followed by out operations
to reinsert the tuples into the tuple space. Because we do not specify a des-
tination location for the out operations, the default assigns tuples a cur-
rent field equal to the new player’s agent. Because the i np operation must

Copyright © 2005 by CRC Press

Figure 2.2. Jigsaw Assembly Game

The left two images show the puzzle trays of the black and white players while they
are disconnected and able to assemble only their selected pieces. The right two im-
ages show the black and white puzzle trays after the players re-engage and see the
assemblies that occurred during disconnection.

specify the (current) location from which to retrieve the tuples, this infor-
mation is stored with each puzzle piece appearing on the display.

This choice to have pieces belong to players allows a player to assemble
pieces while disconnected. However, it implies that a player should only be
allowed to assemble pieces that she owns. It also prevents two discon-
nected players from using the same piece in two different assemblies. This
maintains the consistency of the puzzle, despite disconnections. One can
argue that because there is only one correct way to assemble a puzzle, the
use of a piece in more than one assembly can easily be resolved upon
reconnection of the players, thus our choice is overly restrictive. However,
for the sake of the example, we have chosen to model an application where
such concurrent changes are not permitted.

Piece assembly, the core of the game, is similar to selection. First, the
two assembly tuples representing the pieces are removed from the player’s
tuple space with i np operations, then the new assembly tuple is written
with an out operation. Nevertheless, concurrency issues become relevant

Copyright © 2005 by CRC Press

at this point. Consider the case where player p, is trying to assemble pieces
t, and t, while player p, is trying to select piece ¢, from p,’s tuple space. The
following sequence of actions may take place: p; successfully issues the
first i np removing t;, p, successfully removes t, and hence becomes its
owner, and finally p, executes its second i np, which at this point is bound
to return nul | . In this case, p; cannot successfully complete the assembly
and must reverse the assembly process by reinserting f, into the tuple
space, thereby retaining consistency of the puzzle state. To the user, we
indicate this failure with an audible beep.

2.4.2.3 Display Update. The main display for each player is one puzzle
tray for each puzzle she is participating in. The requirements state that the
puzzle tray must be kept up-to-date as changes are made. Unlike the previous
operations, which are performed at the user’s request, the updating of the
puzzle tray is done in response to changes and thus is most naturally imple-
mented with a Lime reaction. Specifically, we use a single ONCEPERTUPLE,
ubiquitous reaction on the federated tuple space, registered for assembly
tuples. When this reaction fires, the list of pieces in the assembly tuple, con-
tained in the React i onEvent object passed to the listener code, is exam-
ined. If these pieces are already in the puzzle tray, they are rearranged to
reflect the connection contained in the assembly list. If they are not in the
tray, the images of the pieces are retrieved with r dp operations and the puz-
zle tray is updated. Lime requires that r dp operations specify the current
location of the tuples. In this case, the reaction contains the source of the
assembly tuple; this value is used to retrieve the image tuples.

This single reaction, installed at each player’s client, updates the screen
in all cases including the initiation of a new puzzle, piece selection, assem-
bly, and updating the puzzle tray upon reconnection. When a new puzzle is
started, this reaction fires once for every assembly tuple, the r dp is exe-
cuted to retrieve the image tuples, and the puzzle tray is populated with
the puzzle pieces. When a player selects a piece, the out operation that
reinserts the assembly tuple causes the reaction to fire. This time, because
the graphic for the tuple has already been displayed, the image tuple is not
retrieved, but the screen is updated to reflect the change in the outline
color of the puzzle piece. Assembly of pieces similarly creates a new
assembly tuple that is reacted to, updating the display accordingly. Finally,
when two players reconnect after a disconnection, the requirements state
that the puzzle trays of the players must be updated to reflect the changes
made during the disconnection. Because these changes are represented in
assembly tuples that are new to the previously disconnected player, the
reaction fires and the display is updated. Figure 2.2 shows the appearance
of the puzzle tray during disconnection and after reconnection.

It is interesting to note how a huge fraction of the application behavior
is handled through a single reaction. The ability to specify asynchronous

Copyright © 2005 by CRC Press

state-based reactive behavior and declaratively specify the whole system
as its scope, together with the notion of transiently shared tuple spaces,
greatly simplifies the programmer’s task. Indeed, a look at the source code
reveals that a great deal of the programming effort was devoted to proper
implementation of the user interface, with only a small percentage of the
code devoted to managing distribution and mobility with Lime.

2.4.3 Beyond the Puzzle

From the description, it is evident that our jigsaw assembly game embod-
ies a pattern of interaction where the shared workspace displayed by the
user interface of each player provides an accurate image of the state of all
connected players, but only a weakly consistent image of the global state
of the system. For instance, a user’s display contains only the last known
information about each puzzle piece in the tray. If a disconnected player
has assembled two pieces, this change is not visible to others. However,
this still allows the players to work toward achieving the global goal, i.e.,
the solution of the puzzle, through incremental updates of their local state.

This application is a simple game that nonetheless exhibits the charac-
teristics of a general class of applications in which data sharing is the key
element. Hence, the design strategy we exploited here may be adapted eas-
ily to handle updates in the data being shared by real applications. One
example could be collaborative work applications involving mobile users,
where our mechanism could be used to deal with editorial changes in sec-
tions of a document or with paper submissions and reviews evaluated by
a program committee.

Other applications exhibiting diverse patterns of interaction are avail-
able, in source code form, at the Lime Web site [33].

2.5 Building Middleware Functionality on Top of Lime

In designing Lime we strived for minimality, in an attempt to identify a core
of concepts and constructs general enough to be used as building blocks
for higher level services and yet powerful enough to satisfy the basic needs
of most mobile applications. Application development with Lime, an exam-
ple of which we described in the previous section, gave us the opportunity
to evaluate the expressive power of Lime constructs in building mobile
applications. In this section, we report on experiences that show how Lime
can be used effectively also to build high-level middleware services that,
nonetheless, do not require modifications to the original middleware.

2.5.1 Transiently Shared Code Bases

In our description of Lime, we always implicitly assumed that a Lime tuple
space contains data. Instead, in the work described in [25], we explored
the opportunities opened by storing code in a Lime tuple space, while still

Copyright © 2005 by CRC Press

exploiting its transient sharing and reactive features. Although the idea is
simple, its implications are far reaching and hold the potential to change
fundamentally the mechanisms usually exploited for supporting mobility
of code.

Currently available support for mobile code is mostly limited to varia-
tions of a code on-demand approach [8] where the code is dynamically
downloaded from a well-known site at name resolution time. Examples are
Java applets in Web browsers and dynamic downloading of stubs in
Java/RMI and Jini™ network technology. Unfortunately, in its most com-
mon incarnations this approach has at least two relevant drawbacks. First
of all, the local code base — the set of classes locally available — is usually
accessible only to the runtime support and hence it remains hidden from
the applications. This prevents the development of code caching schemes
with application-level policies (e.g., to intelligently cache or discard code
on resource-constrained devices). Moreover, remote dynamic linking usu-
ally relies on a well-known centralized code base. This scheme evidently
breaks when applied in a fluid scenario as the one defined by MANETS, but
has drawbacks also in a fixed scenario, because it does not exploit the
potential presence of suitable code on nearby hosts.

Using Lime tuple spaces to store code changes the situation dramati-
cally. An agent can now manipulate its own code base using Lime primi-
tives. Moreover, because each tuple space is permanently and exclusively
associated with its agent, when the latter moves its code base migrates
along with it. Finally, transient sharing effectively stretches the boundaries
of an agent code base to an extent possibly covering the whole system at
hand. These characteristics provide an elegant solution to the problem we
mentioned earlier. A proper redefinition of the class loader, as the one
described in [25], can operate on the Lime tuple space associated with the
agent for which the class needs to be resolved and query it using the oper-
ations provided by Lime. Thus, the class loading mechanism can now
resolve class names by leveraging off the federated code base to retrieve
and dynamically link classes in a location transparent fashion (e.g.,
through a r d) or use location parameters to narrow the scope of searches
(e.g., down to a given host or agent).

Nevertheless, the use of transiently shared tuple spaces need not be
confined to the innards of the class loading mechanism, rather agents can
be empowered with the ability to directly manipulate the federated code
base. Hence, not only can an agent proactively query up to the whole sys-
tem for a given class, but it can also insert a class tuple into the code base
of another agent by using the out [A] operation, with the semantics of
engagement and misplaced tuples taking care of disconnection and subse-
quent reconciliation of the federated code base. This new class can then be
used by the receiving agent to execute tasks in previously unknown ways

Copyright © 2005 by CRC Press

or it can behave according to a new coordination protocol. Blocking oper-
ations acquire new uses, allowing agents to synchronize not only on the
presence of data needed by the computation, but also on the presence of
code needed to perform, or augment, the computation itself. Lime reactive
operations provide additional degrees of freedom, by allowing agents to
monitor the federated code base and react to changes with different atom-
icity guarantees. Reactions can be exploited to monitor the federated code
base for new versions of relevant classes. Replication schemes can be
implemented where a new class in an agent’s code base is immediately rep-
licated into the code base of all the other agents. The content of an agent’s
code base can be monitored to be aware of the current “skills” of the agent.
The possibilities become endless.

Essentially, by exploiting the notion of transiently shared tuple space for
code mobility, we defined an enhanced coordination approach that,
besides accommodating reconfiguration due to mobility and providing var-
ious degrees of location transparency, enables a new form of coordination
no longer limited to data exchange, but encompassing also the exchange of
fragments of behavior.

2.5.2 Service Provision

Lime’s flexible support for application development over ad hoc networks
received renewed validation as we considered the issue of service provi-
sion, an area in which the client-server model continues to dominate. Cen-
tral to supporting service provision is the notion of discovering services at
runtime by relying on the service registration and discovery mechanisms.
Lime made it possible to offer a solution that entails a new kind of service
model built as a simple adaptation layer. The resulting veneer [10] uses
Lime tuple spaces to store service advertisements and pattern matching to
find services of interest and exploits the transient tuple space sharing fea-
ture of Lime to provide consistent views of the available services. The
resulting system completely eliminates network awareness from the pro-
cess of service discovery and utilization. The client only has to ask for the
service it needs; it does not have to know how the service will be reached.
Furthermore, the model provides a distributed service registry that is
guaranteed to reflect the real availability of services at every moment in a
mobile ad hoc environment. Consistent representation of service availabil-
ity is obtained by atomically updating the view of the service repository as
new connections are established or existing ones break down.

At the implementation level, a Jini-like interface [17] provides primitives
for service advertisement and lookup. Every agent employs a tuple space
to hold its own service registry where it advertises the services it provides.
Advertisements may include proxies offering a service interface and
encapsulating the communication mechanisms; the latter can be done in a

Copyright © 2005 by CRC Press

manner that accommodates the mobility of both service providers and cli-
ents. As agents and hosts move, the registries of colocated agents are auto-
matically shared. Thus, an agent requesting a service that is provided by a
colocated agent can always access the service. If two hosts are within com-
munication range, they form a community and their service registries
engage, forming a federated service registry. Upon engagement, the primi-
tives operating on the local service registry are extended automatically to
the entire set of service registries present in the ad hoc network. The shar-
ing of the service registries is completely transparent to agents as agents in
the community access the federated registry via their own local registries.

The reliance on Lime concepts allowed for the fast deployment of the
new service infrastructure specialized for mobile ad hoc settings with min-
imal programming effort. Later efforts [11] built upon this result to add
secure service provision to the system by protecting tuple spaces with
passwords and by using the same passwords to generate keys used to
encrypt wireless traffic involving tuple spaces in general and federated reg-
istries in particular.

2.6 Related Work

A number of models and systems developed for either physical or logical
mobility exhibit ideas that are somewhat similar to those put forth by
Lime. Nevertheless, the concept of transiently shared tuple spaces and the
semantics of reactions are unique to Lime. It is also the first system to
explicitly address mobile ad hoc networks and to unite physical and logical
mobility under a common coordination framework.

Distributed Linda implementations have been studied extensively, but
mostly with the goal of providing fault tolerance [1, 36] and data availabil-
ity [28]. These systems typically exploit replication, as opposed to tran-
sient sharing, and assume a high degree of connectivity among the nodes
hosting the distributed portions of the tuple space, a property that ham-
pers their direct use in the mobile environment.

Recent years have seen a revitalization of Linda, also from an industrial
perspective. Sun and IBM have developed their tuple space implementations
for client-server coordination, i.e., JavaSpaces [13] and TSpaces [12], respec-
tively. These systems present a centralized tuple space, accessible by remote
clients. It is often claimed that these systems support mobility. This is true, in
that they provide the equivalent of a proxy architecture. However, as we dis-
cussed earlier, this architecture exhibits a high-degree of centralization and is
inappropriate for the full-fledged mobility of ad hoc networks.

The only Linda-like system explicitly supporting physical mobility that we
are aware of is Limbo [2, 35]. In this system, however, the emphasis is not on
providing a general purpose programming platform for mobile computing,

Copyright © 2005 by CRC Press

but on providing network-level quality of service. The information neces-
sary to this end is stored in dedicated tuple spaces on the mobile hosts and
can be made remotely accessible to agents sitting on different hosts. Inter-
estingly, the Limbo universal tuple space, serving as a registry for all tuple
spaces, is similar to Lime’s Li meSyst emtuple space. However, instead of
describing the current system context, the universal tuple space remem-
bers all tuple spaces the host has ever encountered irrespective of the cur-
rent connectivity. In general, although Limbo tuple spaces may span multi-
ple hosts, the mechanisms governing distribution (e.g., relocation of
tuples) are unclear. Moreover, no form of reaction or event notification is
provided.

As for logical mobility, a number of models are inspired by Linda. Never-
theless, in these models the tuple space is always exploited as a data
repository explicitly accessed at a well-known location, rather than implic-
itly and transiently shared as in Lime. TuCSoN [21] and MARS [4] provide
programmable tuple spaces supporting event notification and query adap-
tation through a notion of reaction, which is nonetheless rather different
from that of LiME. When an agent issues a query on the tuple space, the
code associated with a reaction matching the query is executed atomically,
albeit asynchronously with respect to the query. Although Lime reactions
form a core concept for the application programmer, MARS and TuCSoN
reactions are meant to be used at the system support level to provide an
intermediate adaptation layer that allows the customization of the way
queries are issued and results are obtained for specific classes of agents.
Moreover, a tuple space name can be fully qualified with the name of the
host where it resides, hence enabling remote operations. Nevertheless, it
requires connectivity and explicit agent knowledge about the tuple space
location, as opposed to the Lime model that operates over the current con-
text transparently. Furthermore, in MARS and TuCSoN, mobile agents have
access only to the tuple spaces whose location they know, they do not
carry tuples as they migrate, and there is no implicit data exchange among
tuple spaces.

The Klaim [20] model supports a programming paradigm where code
migrates during execution, using tuple spaces to provide the medium for
interaction among processes. Tuple spaces have locality, but unlike in
Lime, these tuple spaces are not permanently associated to a process.
Instead, Klaim processes placed at a given locality implicitly interact
through the colocated tuple space. There is no transient sharing among
tuple spaces, but a process can explicitly interact with any tuple space by
identifying its locality and a process can migrate to a new locality to inter-
act there. Moreover, Lime leaves the details of process migration outside
the model, while Klaim includes them in the formal specification making
migration an integral part of the model.

Copyright © 2005 by CRC Press

As alluded to in Section 2.3, the notion of reaction put forth in Lime is
profoundly different from similar event notification mechanisms such as
those provided by TuCSoN, MARS, TSpaces, and JavaSpaces. In these sys-
tems, the events respond to operations issued by processes on the tuple
spaces (e.g., out ,rd,i n).In Lime, instead, reactions fire based on the state
of the tuple space itself. Further, Lime reactions execute as a single atomic
step and cannot be interrupted by other operations. This makes it straight-
forward for a single Lime reaction to probe for a tuple, react if it is found,
and register a reaction if it is not. This same operation in the other systems
requires a transaction. Finally, the atomicity of strong reactions increases
the power of Lime reactions. For example, with a strong, local reaction, the
execution of the listener is guaranteed to fire in the same state in which the
matching tuple was found. No such guarantee can be given with an event
model where the events are asynchronously delivered. Nonetheless, Lime
supports also this second approach through weak reactions.

As work on Lime becomes increasingly recognized, it is being used also
as a basis for alternative models. At Purdue University, a group extracted
the features of Lime necessary for mobile agents by removing host-level
sharing and created a model referred to as CoreLime [5]. On top of this
restricted model, they proposed some initial ideas for tuple space security.
A group at the University of Bologna proposed a calculus-based specifica-
tion [3] of a model that embeds choices different from the original Lime,
including reacting to tuple space operations instead of tuple space con-
tents and blocking agents that generate tuples destined for disconnected
agents rather than creating misplaced tuples.

As we conclude this section, we note that the effort that went into devel-
oping Lime also contributed to the emergence of a more abstract and gen-
eral coordination concept and methodology called Global Virtual Data
Structures (GVDS) [27]. It is centered on the notion of constructing individ-
ual programs in terms of local actions whose effects can be interpreted at
a global level. A Lime group, for instance, can be viewed as consisting of a
global set of tuples and a set of agents that act on it in some constrained
manner. The set has a structure that changes in accordance with a pre-
defined set of policies. This structure governs the specific set of tuples
accessible to an individual agent through its local interface at any given
point in time. The analogy to the concepts of virtual memory and distributed
shared memory are strong and other research projects have picked up the
GVDS theme and instantiated it in their own unique ways. The XMIDDLE [15]
system developed at University College of London, for instance, presents the
user with a tree data structure based on Extensible Markup Language (XML)
data. When connectivity becomes available, trees belonging to different users
can be composed, based on the node tags. Upon disconnection, operations
onreplicated data are still allowed and their effect is reconciled when connec-
tivity is restored. In addition, PeerWare [7], a project at Politecnico di Milano,

Copyright © 2005 by CRC Press

exploits a tree data structure, albeit in a rather different way. In PeerWare,
each host is associated with a tree of document containers. When connec-
tivity is available, the trees are shared among hosts, meaning that the doc-
ument pool available for searching under a given tree node includes the
union of the documents at that node on all connected hosts.

2.7 Conclusions

In this chapter, we described Lime, a computational model and middleware
specifically designed to support logical mobility of agents and physical
mobility of hosts in both wired and wireless settings. Lime reinterprets the
notion of tuple space introduced by Linda and adapts it in an original fash-
ion to the mobile environment. Transparent management of tuple space
sharing, contingent on connectivity, offers an effective context awareness
mechanism although reactions provide an effective and uniform vehicle for
responding to context changes regardless of their nature or trigger. The net
result is a simple model with precise semantics and applicability in a wide
range of settings, from mobile agent systems operating over wired net-
works, at one extreme, to mobile ad hoc networks lacking any infrastruc-
ture support, at the other. The experience to date with building applica-
tions and higher level middleware layers with Lime is encouraging and
appears to confirm the value of the conceptual and technological tools put
forth by Lime.

2.7.1 Availability

Lime continues to be developed as an open source project, available under
GNU’s Library General Public License (LGPL). Source code and develop-
ment notes are available at | i me. sour cef or ge. net .

Acknowledgments

This research was supported in part by the National Science Foundation
under Grant no. CCR-9970939. Any opinions, findings, and conclusions or
recommendations expressed in this chapter are those of the authors and
do not necessarily reflect the views of the research sponsors.

Notes

1. Additionally, Linda implementations often include also an eval operation, which
provides dynamic process creation and enables deferred evaluation of tuple fields.
For the purposes of this work, however, we do not consider this operation further.

2. Hereafter, we often do not mention this pair of operations. They are useful in practice,
but do not add significant complexity either to the model or to the implementation.

3. Exceptions are not shown for the sake of readability.

4. In the following, we use the term unit when we want to refer to agents and hosts,
without making a distinction.

Copyright © 2005 by CRC Press

5.

Specifying a destination location A implies neither guaranteed delivery nor ownership
of the tuple f to A. Linda rules for nondeterministic selection of tuples are still in
place; thus, it might be the case that some other agent may withdraw ¢ from the tuple
space before A, even after t reached A’s ITS.

6. The semantics of reactions are based on the Mobile UNITY reactive statements [16].

The reader interested in formal details is redirected to [19].
References

1. D.E. Bakken and R. Schlichting. Supporting fault-tolerant parallel programming in
Linda. IEEE Trans. on Parallel and Distributed Systems, vol. 6, no. 3, pp. 287-302, 1994.

2. G. Blair, N. Davies, A. Friday, and S. Wade. Quality of service support in a mobile
environment: An approach based on tuple spaces. In Proc. of the 5th IFIP Int’l. Work-
shop on Quality of Service (IWQoS’97), May 1997.

3. N. Busi and G. Zavattaro. Some thoughts on transiently shared dataspaces. In Proc.
of the Workshop on Software Engineering and Mobility, colocated with the 23rd Int’l.
Conf. on Software Engineering (ICSE), 2001.

4. G. Cabri, L. Leonardi, and F. Zambornelli. MARS: A programmable coordination archi-
tecture for mobile agents. I[EEE Internet Computing, vol. 4, no. 4, pp. 26-35, 2000.

5. B. Carbunar, M.T. Valente, and J. Vitek. Lime revisited: Reverse engineering an agent
communication model. In 5th Int’l. Conf. on Mobile Agents (MA2001), G.P. Picco, Ed.,
Atlanta, December 2001.

6. N. Carriero, D. Gelernter, and L. Zuck. Bauhaus-Linda. In Object-Based Models and
Languages for Concurrent Systems, LNCS 924, Springer, 1995.

7. G. Cugola and G.P. Picco. PeerWare: Core middleware support for peer-to-peer and
mobile systems. Technical report, Politecnico di Milano, Italy, 2001. Available at
www.elet.polimi.it/upload/picco.

8. A. Fuggetta, G.P. Picco, and G. Vigna. Understanding code mobility. /[EEE Trans. on
Software Engineering, vol. 24, no. 5, 1998.

9. D. Gelernter. Generative communication in Linda. ACM Computing Surveys, vol. 7, no.
1, pp. 80-112, January 1985.

10. R. Handorean and G.-C. Roman. Service provision in ad hoc networks. In F. Arbab and
C. Talcott, Eds., Proc. of the 5th Int’l. Conf. on Coordination Models and Languages,
Lecture Notes in Computer Science, vol. 2315, pp. 207-219. New York: Springer-Verlag,
2002.

11. R. Handorean and G.-C. Roman. Secure sharing of tuple spaces in ad hoc settings. In
Proc. of the st Int’l. Workshop on Security Issues in Coordination Models, Languages,
and Systems (SecCo 2003), Electronic Notes in Theoretical Computer Science (ENTCS),
2003.

12. IBM. TSpaces Web page. http://www.almaden.ibm.com/cs/TSpaces.

13. JavaSpaces. The JavaSpaces Specification Web page. http://www.sun.com/jini/specs/
jinil.2htm/js-title.html.

14. J.J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system.
ACM Trans. on Computer Systems, vol. 10, no. 1, pp. 3-25, 1992.

15. C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich. XMDDLE: A data-sharing mid-
dleware for mobile computing. Kluwer Personal and Wireless Communications Journal,
vol. 21, no. 1, April 2002.

16. P.J. McCann and G.-C. Roman. Compositional programming abstractions for mobile
computing. /[EEE Trans. on Software Engineering, vol. 24, no. 2, pp. 97-110, 1998.

17. Sun Microsystems. Jini Web page. http://www.sun.com/jini.

18. A.L. Murphy, G.P. Picco, and G.-C. Roman. LIME: A middleware for physical and logical

mobility. In F. Golshani, P. Dasgupta, and W. Zhao, Eds., Proc. of the 21st Int’l. Conf. on
Distributed Computing Systems (ICDCS-21), pp. 524-533, May 2001.

Copyright © 2005 by CRC Press

http://www.almaden.ibm.com/cs/TSpaces
http://www.sun.com/jini
http://www.elet.polimi.it/upload/picco/

19.

20.
21.
22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

A.L. Murphy, G.P. Picco, and G.-C. Roman. Lime: A coordination middleware support-
ing mobility of hosts and agents. Technical Report WUCSE-03-21, Department of
Computer Science, Washington University, St. Louis, MO, May 2003.

R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: A kernel language for agents interaction
and mobility. JEEE Trans. on Software Engineering, vol. 24, no. 5, pp. 315-330, 1998.
A. Omicini and F. Zambonelli. Tuple centres for the coordination of Internet agents.
In Proc. of the 1999 ACM Symp. on Applied Computing (SAC’00), February 1999.

G.P. Picco. pCode Web page. mucode.sourceforge.net.

G.P. Picco. LighTS Web page. lights.sourceforge.net.

G.P. Picco. pCode: A lightweight and flexible mobile code toolkit. In Proc. of the 2nd
Int’l. Workshop on Mobile Agents (MA9S8), Lecture Notes in Computer Science, vol.
1477. New York: Springer-Verlag, 1998.

G.P. Picco and M.L. Buschini. Exploiting transiently shared tuple spaces for location
transparent code mobility. In F. Arbab and C. Talcott, Eds., Proc. of the 5th Int’l. Conf.
on Coordination Models and Languages, Lecture Notes in Computer Science, vol. 2315,
pp- 258-273. New York: Springer-Verlag, 2002.

G.P. Picco, A.L. Murphy, and G.-C. Roman. Lime: Linda Meets Mobility. In D. Garlan,
Ed., Proc. of the 21st Int’l. Conf. on Software Engineering, pp. 368-377, May 1999.

G.P. Picco, A.L. Murphy, and G.-C. Roman. On global virtual data structures. In D.
Marinescu and C. Lee, Eds., Process Coordination and Ubiquitous Computing, pp. 11-29.
Boca Raton, FL: CRC Press, 2002.

J. Pinakis. Using Linda as the basis of an operating system microkernel. PhD thesis,
University of Western Australia, Perth, Australia, August 1993.

G.-C. Roman, Q. Huang, and A. Hazemi. Consistent group membership in ad hoc
networks. In Proc. of the 23rd Int’l. Conf. on Software Engineering, pp. 381-388, Toronto,
May 2001.

G.-C. Roman, A.L. Murphy, and G.P. Picco. Coordination and Mobility. In A. Omicini,
F. Zambonelli, M. Klusch, and R. Tolksdorf, Eds., Coordination of Internet Agents:
Models, Technologies, and Applications, pp. 254-273. New York: Springer-Verlag, 2000.
D.S. Rosenblum and A.L. Wolf. A design framework for Internet-scale event observa-
tion and notification. In Proc. of the 6th European Software Engineering Conf. held
Jjointly with the 5th ACM SIGSOFT Symp. on the Foundations of Software Engineering
(ESEC/FSE97), Zurich, September 1997. Lecture Notes in Computer Science, vol. 1301,
New York: Springer-Verlag, 1997.

A. Rowstron. WCL: A coordination language for geographically distributed agents.
World Wide Web Journal, vol. 1, no. 3, pp. 167-179, 1998.

Lime Team. Lime Web page. lime.sourceforge.net.

D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser. Managing
update conflicts in Bayou, a weakly connected replicated storage system. Operating
Systems Review, vol. 29, no. 5, pp. 172-183, 1995.

S.P. Wade. An investigation into the use of the tuple space paradigm in mobile
computing environments. PhD thesis, Lancaster University, England, September 1999.
A. Xu and B. Liskov. A design for a fault-tolerant, distributed implementation of Linda.
In Digest of Papers of the 19th Int’l. Symp. on Fault-Tolerant Computing, pp. 199-206,
June 1989.

Copyright © 2005 by CRC Press

Chapter 3

Pervasive Application
Development:
Approaches and
Pitfalls

Guruduth Banavar, Norman Cohen, and
Danny Soroker

Abstract

In this chapter, we examine the challenges in building pervasive-computing
applications — applications that support mobility and context-awareness.
We summarize the key approaches being employed to address the difficul-
ties and point out the pitfalls those approaches are trying to avoid. Using
the model-view-controller (MVC) structure of applications, we identify four
techniques being used to address complexity — device-independent
views, platform-independent controllers, host-independent models, and
source-independent context data.

3.1 What Are Pervasive Applications?

The vision of pervasive computing has been written about extensively. In
a nutshell, pervasive computing is about enabling users to get access to
the relevant applications and data at any location and on any device, in a
manner that is customized to the user and the task at hand. This fundamen-
tally takes computing off the desktop and into the spaces that we live in
everyday. Mark Weiser [Wei91] called it “invisible” computing. This vision
of pervasive computing leads to two fundamental characteristics of perva-
sive applications — mobility and context-awareness. Both of these charac-
teristics are a result of the extremely dynamic nature of pervasive comput-
ing environments.

Copyright © 2005 by CRC Press

Mobility has three implications. First, applications must run on a wide
variety of devices, including the devices embedded in various environ-
ments and devices carried by users. Second, because devices may be
transported to locations where a high-bandwidth network connection is
not available, applications must work (perhaps in a degraded mode) with
low-bandwidth network connections or in the absence of any network con-
nection. Third, applications that make use of a user’s location must
account for the possibility that the location will change.

The need for context-aware applications arises because pervasive com-
puting makes applications available in contexts other than a computer
workstation with a keyboard, mouse, and screen. The users of a perva-
sive-computing application will typically be focused upon some task other
than the use of a computing device and may even be unaware that they are
using a computing device. Applications must customize themselves to
interact with a user in a manner appropriate to the user’s current context
and activities, exploiting locally available devices, without distracting the
user from the task at hand.

In the simplest case, a mobile application is any standalone application
that can execute on a mobile device. However, the more interesting and
useful case is an application that is networked to other software compo-
nents executing at different points in the network infrastructure. Ideally, an
application is hosted on the network and is able to execute on any device.
In this case, the application must be written in such a way as to be able to
execute on multiple software platform architectures and in a manner that
exploits the user interface characteristics of multiple device platforms.
Although we have made great strides in network connectivity, not all
devices and not all locations support continuous network connectivity.
Thus, applications should support disconnected and weakly connected
operation. In summary, supporting mobility implies two major technologi-
cal requirements — supporting device platform heterogeneity and sup-
porting network heterogeneity.

A context-aware application is one that is sensitive to the environment
in which it is being used (e.g., the location or the particular user of the
application). The application can use this information to customize itself
to the particular location or the user. This implies the following technolog-
ical requirements:

¢ Identifying and binding to data sources that provide the right infor-
mation

¢ Composing the information from these sources to create information
that is useful for an application

¢ Using that information in meaningful ways within the application
itself

Copyright © 2005 by CRC Press

As a simple example, a pervasive calendar application will have the fol-
lowing features. First, the application will be able to run on multiple device
platforms, from a networked phone (with a limited user interface and lim-
ited bandwidth, but always connected) to a smart personal digital assis-
tant (PDA) (with a richer user interface and higher bandwidth, but not
always connected) to a conference room computer (with a very rich user
interface and very high bandwidth and always connected). Furthermore, I
(as the user) should be able to interact with this application using multiple
user interface modalities, such as a graphical user interface (GUI), a voice
interface, or a combination of the two. Second, the application will be sen-
sitive to the environment in which it is running; for example, if [bring up
the calendar at home, the application might bring up my family calendar by
default. If I bring up my calendar in my office when I’'m almost late for my
next meeting, the application might bring up my work calendar with the
information about my next meeting highlighted.

In this chapter, we discuss the software engineering challenges and
approaches to building pervasive applications with the characteristics
mentioned above. This chapter considers the application developer’s
point of view (as opposed to the infrastructure developer’s) and discusses
the programming models and tools that can support pervasive application
development. The purpose of this chapter is not to propose new tech-
niques for addressing development issues, but rather to summarize some
of the promising approaches already being developed and to point out
some of the pitfalls that these approaches are trying to avoid. The software
infrastructure elements for supporting the execution of such applications
are discussed elsewhere [Ban00, Ban02, Coh02a, and Coh02b].

3.1.1 Basic Concepts and Terms

A multi-device application is one that is able to execute on devices with dif-
ferent capabilities. A multimodal application is one that supports multiple
user interface modalities such as GUI, voice, and a combination of the two.

In this chapter, we consider an application model in which the applica-
tion is partitioned according to the well-known MVC application structure
[Kra88]. The view represents the presentation, and the controller repre-
sents the application flow, including the navigation, validation, error han-
dling, and event handling. The view and the controller together deal with
the user interaction of the application. The model component includes the
application logic as well as the data underlying the application logic.

In this chapter, we consider only networked applications, because they
represent the bulk of interesting and useful pervasive applications. In these
networked applications, the application components described above are
distributed across two or more physical computers with a network connec-
tion between them. A device platform is the distributed software platform to

Copyright © 2005 by CRC Press

which a pervasive application is targeted. A thin-client application is a net-
worked application in which the user interface rendering component is
executing on the user’s device, whereas the rest of the application is exe-
cuting on a networked computer. A thick-client application, on the other
hand, has significant application components executing on the user’s
device. A disconnectable application is one that is able to continue to exe-
cute when there are different levels of connectivity between the different
components of the application.

The attributes of the environment of an application are referred to as the
context of the application. The context of an application includes some of
the user’s significant attributes, such as location, destination, the identi-
ties of other people in the vicinity, and the attributes of the task being per-
formed, such as the objective and the artifacts necessary for the task. A
context-aware application is one that is able to sense some aspects of the
environment in which it is executing and adapt its behavior to the sensed
environment.

3.2 Why Is It Difficult to Develop Pervasive Applications?

There are fundamental reasons why pervasive application development is
more difficult than conventional application development. One reason is
the heterogeneity of environments in which a pervasive application must
be able to execute. The other reason is the need for applications to adapt
to dynamic environments. These reasons are discussed in more detail in
this section, as are the software engineering issues that arise from them.

3.2.1 Heterogeneity of Device Platforms

End user devices, such as smart phones and PDAs, come in many varieties
and have widely varying capabilities, both hardware (form factor, user
interface hardware, processor, memory, and network bandwidth) and soft-
ware (operating system, user interface software, services, and applica-
tions). These capabilities are so varied and broad that there are industry
standards (e.g., Composite Capabilities/Preferences Profiles [CC/PP] and
User Agent Profile [UAProf], by the W3C Consortium [Kly03]) being devel-
oped for describing the capabilities of individual devices. There are com-
mercial offerings that support and maintain several hundred device pro-
files, with new devices being introduced at the rate of more than one every
week at the current time. Furthermore, the number of applications that
need to support a nontrivial number of these devices is on the rise.

The impact of device heterogeneity on application developers is that
applications need to be developed (or ported) to each device and main-
tained separately for each device. In terms of the MVC Application Model
described before, the following sections describe the specific impacts of
device heterogeneity.

Copyright © 2005 by CRC Press

3.2.1.1 User Interface. The capabilities of the user interface include
the output capabilities, such as the screen characteristics (e.g., size and
color); the input capabilities, such as the number of hard buttons, rollers,
and other controls; and the software toolkit available to manipulate these
input and output capabilities. Because of differences in these capabilities
from one device to another, the view component of an application will have
to be rewritten for each device. In some cases, the structure of the view will
also impact the structure of the controller.

3.2.1.2 Interaction Modalities. Informally, an interaction modality is a
significant method of user interaction that leverages a user’s natural or
learned ability. Examples are keyboard or mouse, speech, pen, and tactile
interfaces. (In this chapter, we consider primarily keyboard or mouse and
speech.) The view and controller portions of applications may need to be
significantly rewritten to enable each modality. For example, a speech-
based application could have a different structure from a GUI-based
application.

Furthermore, multimodal interfaces can use multiple modalities within a
single application. For example, a single application may use GUI and
speech modalities to reap the benefits of both modalities — GUI for rapid
interaction and speech for eyes-free and hands-free operation. Writing
such an application requires synchronizing the two modalities, so that
when a particular utterance is played, the corresponding elements are dis-
played on the screen. This synchronization requires careful attention by
the application developer.

3.2.1.3 Platform Capabilities. The soffware platform for a device is the
distributed software infrastructure on which an application executes,
including the device software infrastructure and the server software infra-
structure. In many cases, the programming models on the device and the
server are different, for example, a Java™-based Web programming model
on the server and a C-based Application Processing Interface (API) on the
device. Even if the programming models are the same on the device and the
server, an application may need to be partitioned differently between the
device and the server depending on the processor, memory, and network
capabilities of a device.

3.2.1.4 Connectivity. If an application needs to execute in a dynamic
environment that supports multiple levels of connectivity, the application
developer needs to worry about dynamically varying the partitioning of
the application between the various connectivity scenarios and resyn-
chronizing partitioned components after reestablishing connectivity.
This adds a significant amount of complexity to the application develop-
ment process.

Copyright © 2005 by CRC Press

3.2.1.5 Development and Maintenance Complexity. To summarize the
above discussion, there are several software engineering challenges in
writing pervasive applications. Consider the development scenario for a
pervasive application targeted to N device platforms. In the worst case,
this requires one to build N different versions of the application. If the
application is targeted to O devices that support multimodal interaction,
there will be further complexity in developing versions of the application
for separate modalities and for synchronizing the application across those
modalities. There may be P different partitions of the application to sup-
port various platform and connectivity characteristics. Thus, the worst
case development complexity for a single application is a factor of (V + O)
* P times the complexity of developing the application for a single plat-
form. This results in significant increase in developer time, which is the
costliest resource in a software development organization. Maintenance of
the application (i.e., fixing bugs and making enhancements) has a similar
complexity.

This complexity is fundamentally a scalability issue. Conventional appli-
cation development methodologies do not scale for the large numbers of
devices and platforms that are in existence today. To address this issue,
new methods of reusing application components are being developed.
These will be discussed later in this chapter.

3.2.2 Dynamics of Application Environments

In describing our vision earlier, we stated that pervasive applications
should be customized to the user and task at hand — also referred to as the
context of the application. The context can be highly dynamic. The data
sources that provide information about the application’s environment are
called context sources. Consider the complexities of application develop-
ment in the face of dynamic and heterogeneous context sources.

The context data from different context sources could have different
schemas and formats. For example, location data from a cell tower is differ-
ent from the location data from an IEEE® 802.11 base station. If each perva-
sive application that uses context data were responsible for collecting and
normalizing context data from different sources, applications would
indeed be quite complex.

The context information from any one source could be too low-level to
be useful for an application. For example, if an application is interested in
knowing whether Jane is at lunch, it is not enough to know Jane’s exact lat-
itude or longitude, but also how that lat or long corresponds to a building’s
map (also known as geocoding). If Jane’s exact status is not available, it
may be possible to determine whether she is at lunch from other context
sources, such as the time of day, her calendar, the lights in her office, the
activity on her computer, and knowledge of her normal habits. Combining

Copyright © 2005 by CRC Press

these lower level forms of context into a higher level notion of “Is Jane at
lunch?” should not be the responsibility of the application that requires
that information.

The actual context sources themselves could be highly dynamic. For
example, the location of a person can be obtained by a multitude of
sources, including a cell tower, a telematics gateway, a wireless local area
network (LAN) hub, and an active-badge access point. Each of these
sources of location may have a different APl and may be more or less appli-
cable to different locations. Applications should not be responsible for dis-
covering these context sources and explicitly binding to them.

In summary, the complexity of using dynamic context information boils
down to the question of division of responsibility between the application
and a reusable infrastructure. The reusable functions of mediation [Wie92]
(including normalization, composition, and binding) should be supported
by the infrastructure. The application should only be responsible for
implementing the business logic, given the high-level context event.

3.3 Approaches for Developing Pervasive Applications
3.3.1 Developing Mobile Applications

Mobile applications may be standalone applications that run on mobile
devices; they may be networked applications executing partly on the
mobile device and partly in a networked server environment (which, by
the way, does not imply that network connectivity is always available).
This chapter focuses on the latter variety, because it is more relevant to
realizing the pervasive computing vision. Web-based applications,
whether they are browser-based or use standalone renderers that access
Web services on a network, are examples of this kind of application. To
understand the most common approaches to developing such mobile
applications, let us keep in mind the MVC decomposition of an application.

As described earlier, the basic problem of mobile application develop-
ment to multiple devices, modalities, and connectivity environments is
that of complexity, because the same application may have to be rewritten
multiple times. The following is a discussion of the approaches that are
being used to address this problem.

3.3.2 Presentation Transcoding

An early approach to making Web applications accessible via multiple
devices was transcoding. The basic idea behind transcoding is to repur-
pose existing content written for one device, say a desktop personal com-
puter (PC), to different devices, via an automated runtime transcoder, typ-
ically on a server. This might involve parsing the presentation, typically
represented in Hypertext Markup Language (HTML) and converting it into

Copyright © 2005 by CRC Press

a markup language that is understood by a Web browser on the device,
such as Website META Language (WML) [WMLO02] or compact HTML
(cHTML) [Kam98]. In this process, images and other multimedia content may
also be transformed into a format that can be handled by the target device.

This approach works to a limited extent, but has not been widely
adopted in the industry. There are several reasons for the limited success
of this approach:

¢ The input does not convey the full semantics of the content, but
only the presentation, so transcoders can do no more than reformat
the content in ways that are usable and pleasing to the end user on
different devices.

¢ Content authors have little to no control on how a Web page is
displayed on a device.

¢ Content providers are usually protective of their content and do not
want runtime intermediaries to alter the carefully tailored presenta-
tion that was originally designed.

Enhancements to the basic idea of transcoding included the ability for
the developer to annotate the content with some of the semantics behind
the content. Although this may be reasonable in some cases where there is
static content, this notion breaks down when there is dynamic content.
Transcoding was not widely adopted because it fundamentally does not
handle the deeper structure and semantics of applications.

3.3.3 Device-Independent View Component

A more widely used approach evolved, in which the view aspects of an
application are conveyed in a device-independent representation. This
device-independent representation describes the intent behind the user
interaction within a view component (such as a page), rather than the
actual physical representation of a user-interface control. For example, the
fact that an application requires users to input their ages is represented by
a generic | NPUT element with a range constraint; an adaptation engine
determines, based on the target device characteristics, usability consider-
ations, or user preferences, whether the | NPUT element should be realized
as a text field, a selection list, or even voice input. Several device-indepen-
dent view representations have evolved over the years, including User
Interface Markup Language (UIML) [Abr99], Abstract User Interface
Markup Language (AUIML, previously known as Druid) [Mer99], XForms
[Dub03], and Microsoft® ASP.NET Mobile Controls [Mic03].

3.3.3.1 Runtime Adaptation. This device-independent representation

is typically converted to a device-specific representation via some kind of
automatic runtime adaptation. The runtime adaptation engine gets the

Copyright © 2005 by CRC Press

device identifier via the request header of a Web application (specifically,
the user agent field) and maps that to a database record containing
detailed device information. The information in this database record
guides the adaptation of the device-independent representation to device
specific representations. Microsoft, Oracle, and Volantis have commercial
products using some variation of runtime adaptation.

One of the pitfalls of this approach is to rely entirely on automatic runt-
ime adaptation of the device-independent representation. Fully automatic
adaptation can work in certain cases: when the content is simple or when
the device variations are not too great. However, experience shows that it
is extremely difficult for fully automatic adaptation to produce highly cus-
tomized and usable interfaces that are comparable to hand-crafted user
interfaces. This is especially true in modern, highly interactive applica-
tions. As a result, most successful systems that use this technique provide
a way for developers to provide additional information to guide or aug-
ment the runtime adaptation process. The extra information can take sev-
eral forms:

¢ Meta-information (e.g., where to split content into multiple pages)

¢ Style information (e.g., templates and style attributes to use for
different devices or classes of devices)

¢ Code modules that plug into the runtime adaptation engine and alter
its behavior for particular target devices

3.3.3.2 Design-Time Adaptation. Design-time adaptation is a technique
that converts the device-independent representation to device-specific
representations before the application is deployed to the runtime. The
result of design-time adaptation is a set of target-specific artifacts that can
be viewed and manipulated by the developer. At the end of this process,
the developer ends up with a set of target-specific view components, simi-
lar to the components that a developer would have built by hand [Ber02].
There are two major advantages to this approach:

e The developer has full control over the adaptation process and the
generated artifacts. If the developer is not satisfied with the output,
the process can be rerun with different parameters, until the result
is satisfactory. The generated artifacts can also be manipulated to
add device-specific capabilities for particular devices.

¢ There is no runtime performance overhead for translating applica-
tions, because the translations have occurred at design time.

In the design-time adaptation technique, applications are converted
from a higher level to a lower level representation and the generated rep-
resentation can be manipulated by the developer. In this scenario, if the
developer modifies the higher level representation and regenerates the

Copyright © 2005 by CRC Press

application, it is critical that the changes made previously to the lower level
representation be preserved. This preservation of changes to a generated
artifact after the artifact is regenerated is called “round-trip” [Med99]. Fail-
ure to enable round-trip is a potential pitfall of the design-time adaptation
technique. There are multiple ways to support round-trip. One way is to
provide markers in the generated artifacts that indicate where the devel-
oper can make modifications. The developer modifications made within
these markers are left untouched by the generation process. The other
approach is to capture the history of changes to a generated artifact and to
provide the capability to reapply these changes selectively to regenerated
artifacts.

Design-time adaptation alone cannot be relied upon, for two reasons:

1. Design-time adaptation only supports devices that were known at
design time. If there are new devices that need to be supported after
an application has been deployed, it may not be reasonable to
depend on the application provider to target those devices via the
design-time tool.

2. For dynamic content (again, that will be unknown at design time),
it is necessary to have some level of runtime adaptation.

For these reasons, some systems, such as Multi-Device Authoring Tool
(MDAT) [Ban04] support a hybrid of design-time and runtime adaptation.
Design-time adaptation results in one or more device-specific application
versions that can be deployed to a Web application server. Additionally,
devices can be classified into a hierarchy of device categories (e.g., PDAs,
phones, color phones, and so on) and the application can be adapted at
design time according to this classification. When a device requests the
application, the runtime Web application dispatcher determines if the
request can be satisfied by an existing device-specific application version
or whether it falls into a category that has been defined. If not, a
device-specific version of the application is generated on the fly and deliv-
ered to the device. Thus, runtime adaptation allows MDAT to service
requests from devices that do not have a predefined device-specific appli-
cation version.

3.3.3.3 Visual Tools for Constructing Device-Independent Views. Regard-
less of the adaptation technique used, systems supporting device-indepen-
dent views also provide a number of integrated development environment
tools for authoring the device-independent content and for specifying the
additional kinds of information described above. Consider a visual design
tool for developing device-independent content. Typically, visual design
tools for developing concrete device-specific content support the
well-known What You See Is What You Get (WYSIWYG) paradigm. One pit-
fall that a visual design tool for device-independent content can fall into is

Copyright © 2005 by CRC Press

to attempt to support WYSIWYG capability. In a device-independent con-
tent tool, what the user sees is not what the user is going to get in general,
because only a single device can be emulated in the interface. The user
may be tempted to customize the design for one particular device, rather
than thinking about the overall intent that is appropriate for all devices. A
device-independent representation should thus be editable in an editor
that displays a generic logical representation that conveys the relation-
ships among elements, such as order, grouping, and any layout hints that
may be specified. These issues are discussed in detail in [Ber01].

3.3.4 Platform-Independent Controller Component

The section above discussed adaptation of the view component of an appli-
cation to multiple devices. As described earlier, the controller of an appli-
cation represents the control flow, including data validation and error han-
dling, typically via event handlers. To address the full range of
applications, it is necessary to consider the role of the controller in mod-
ern interactive applications. There are several reasons why the controller
of an application needs to be targeted to multiple devices:

e Different devices may have different input hardware, ranging from a
keyboard, tracking device, and microphone on a PC to a pair of
buttons and a scrolling wheel on a wristwatch.

e The flow of an application may be different on different devices. For
example, an application that contains a secure transaction may not
support this transaction on a device that does not have the appro-
priate level of security infrastructure. Similarly, an application that
supports rich content may choose to skip those pages on devices
that are not capable of presenting rich content.

e When a device-independent page is adapted and rendered on mul-
tiple devices, the page may be split into multiple device-specific
pages for any device that is too small to contain the entire page.

e The controller execution framework may be different for different
device platforms. Recall that a device platform is the end-to-end
distributed platform that supports the execution of all components
of the application. One device platform may support a Java-based
Apache Struts™ framework, whereas another may support a differ-
ent framework such as the base servlet framework, or a different
language altogether, such as PHP or C*.

As a result, a complete solution for targeting multiple devices must
include the application controller. One approach [Ban04] is to represent
the controller in a declarative way using a generic graph representation,
where the nodes are device-independent pages and the arcs are control
flow transitions from one page to another. This representation addresses
the three requirements above as follows:

Copyright © 2005 by CRC Press

1. Developers can modify the flow of the application for particular
target devices. These are represented as incremental changes to the
generic controller.

2. When a device-independent page is split into multiple pages, the
appropriate controller elements to navigate among those pages are
also automatically generated.

3. The concrete controller code for specific controller platforms (e.g.,
Apache Struts) is automatically generated from the declarative con-
troller representation. The specific controller framework can be
changed as necessary.

3.3.5 HostIndependent Model Component

The above sections discussed approaches for targeting the view and con-
troller components of an application to multiple devices. In this section, we
discuss how to deal with the heterogeneity of connectivity environments.

Networked mobile applications vary in the distribution of logic and data
between the mobile device and the server, as illustrated in Figure 3.1.

In a thin-client application, views are generated on the server and then
rendered on the client device by a component such as a Web browser. Con-
troller logic, model logic, and model data all reside on the server, so discon-
nected operation is impossible. In a thick-client application, the model still
resides on a server, perhaps accessed through Web services, but the rest
of the application resides on the client device. Caching of data before con-
nection and queuing of updates to be performed upon reconnection enable

On Device
View View View
Controller Controller Controller
Model Model Model
On Server
Thin Thick Autonomous
Client Client Client
Full Weak Disconnected
connectivity connectivity operation
required required supported

Figure 3.1. Distribution of Logic and Data between the Mobile Device and the
Server

Copyright © 2005 by CRC Press

limited forms of offline operation in a weakly connected environment. The
operations allowed are those that can proceed sensibly in the absence of a
complete and current model. An autonomous-client application resides
entirely on the client device. It maintains its own fully functional model,
which may be synchronized from time to time with replicas of the model on
a server. As the arrow at the bottom of the diagram suggests, thin-client,
thick-client, and autonomous-client applications represent points on a con-
tinuum rather than three clearly delineated categories. For example, some
nearly autonomous applications have a disconnected mode that closely
resembles the connected mode, except that updates made to the model
are considered tentative until the model is synchronized with a server-
based replica.

Thick-client applications have been supported with varying levels of
success. The main drawback of the thick-client approach is that it may not
support all the needed functions to support rich interactions in discon-
nected mode, because the model component is missing on the mobile
device. The autonomous-client approach, on the other hand, is the most
general technique, because it can support varying levels of connectivity.
The remainder of this section is concerned with autonomous-client appli-
cations.

A key consideration here is the programming model used for supporting
disconnectable applications. We need a programming model that allows
the model components of an application (like the view and controller com-
ponents) to be shared by multiple versions of a disconnectable applica-
tion. In this case we are concerned with connected and disconnected ver-
sions of the application.

In the ideal scenario, the logic and the data for the model component is
specified once and the tools and infrastructure supporting the program-
ming model extract the right subset of the logic and data for the discon-
nected mode on each supported device. In reality, this extraction process
will likely need to be guided extensively by the developer. The developer
will likely specify the model, view, and controller in a generic way (view
and controller as described in previous sections). The tools will enable the
developer to incrementally refine this generic representation to particular
target environments. This is an ongoing area of work and there are signifi-
cant issues that need to be resolved.

It should be noted that there is a significant level of runtime infrastruc-
ture needed for disconnectable applications:

¢ An application hosting and execution environment is needed on the
mobile device.

e If application code is to be downloaded from the server to clients
upon demand, a code-migration component is needed on the server

Copyright © 2005 by CRC Press

and device sides to coordinate the partitioning and loading of appli-
cation components.

¢ A data synchronization component is needed for updating both the
device and server instances of the application with changes to the
data on the other sites and to resolve any possible conflicts.

There are difficult architectural and policy issues in the above infra-
structure components. A discussion of these issues is beyond the scope of
this chapter.

3.3.6 Developing Context-Aware Applications

One can think of a context-aware application as having a triggering aspect
and an effecting aspect [Sow03]. The triggering aspect binds to data
sources, collects data, analyzes the data, and ensures that the data is rele-
vant to the application. If so, it notifies the effecting aspect, which takes the
action corresponding to the trigger. For example, in an application that
invokes a computer backup facility when a user Jane is away from her com-
puter, the event that “Jane is at lunch” is the trigger and the act of invoking
the backup utility is the effect.

Recall that context-aware applications have three sources of complexity:

1. The heterogeneous nature of data sources
2. The dynamic nature of context sources
3. The multiple sources of potentially low-level context data

Observe that these are all in the triggering component of applications.
Current approaches to addressing these issues have focused on creating a
reusable infrastructure (middleware or toolkit) that exposes a program-
ming model that hides these complexities [Coh02a]. This approach is sum-
marized below.

3.3.7 Source-Independent Context Data

An application obtaining data from heterogeneous sources with inconsis-
tent availability and quality of service should not name a specific source of
data. Rather, it should describe the kind of data that is required, so that the
underlying infrastructure can discover an appropriate source for the data.
This approach, known as descriptive, data-centric, or intentional naming
([Adj99], [Bow93], [Int00]), has a number of advantages. It allows the sys-
tem to select the best available source of data, based on current condi-
tions. If the selected source should fail, the infrastructure can rebind to
another source satisfying the same description, thus making the applica-
tion more robust. New data sources satisfying a description can be intro-
duced, or old data sources removed, without modifying the application;
likewise, the application can be ported to an environment in which there is
a different set of sources for the described data.

Copyright © 2005 by CRC Press

The basic idea of this approach is for an application to specify the
desired context data without specifying the exact location and data type of
the source, or whether it is coming from multiple sources. These are con-
siderations that will be handled transparently by the infrastructure. In
some cases, the infrastructure may discover a data source, such as a
device or a Web service that directly provides the described data. For
example, suppose an application specifies that it is interested in a Boolean
value for “Is Jane at lunch?” The infrastructure may discover a data source
that directly reports whether Jane’s location is the cafeteria. Alternatively,
the infrastructure may discover a programmed component, called a com-
poser in [Coh02a], which computes the described data from other data. In
our example, some combination of Jane’s calendar, office status, and com-
puter status might be combined by a composer to determine with a degree
of certainty whether she is at lunch. A composer may be reusable across
multiple applications and may itself be built on top of other composers
that handle lower level, more generic, data. For example, the query “Is X at
lunch?” could be answered using the answer to a query of the form “Is X
located at Y?” and queries of that form might themselves be answered by
consulting multiple sources of location data (e.g., active badge, 802.11, or
cell tower) with different resolutions, and inferring a composite location
with a certain degree of confidence.

Once a composer that can answer the question “Is X at lunch?” is written
and added to the infrastructure, it can be reused by all context-aware appli-
cations. A composer is itself a data source, just like a sensor, a Web service,
or a database, and may be discovered by the infrastructure in response to
a query for data satisfying a given description.

Some data sources, such as request-response Web services, are passive
or pull-based. Other data sources, such as sensors that trigger alarms, are
active or push-based. Flexible infrastructure is capable of discovering both
kinds of data sources. An application can then pull the current value from
a passive data source or subscribe to be notified each time an active data
source generates a new value.

This application development model presents several challenges. One
challenge is to define a model for the computations performed in retrieving
data from pervasive sources. Another is to provide the application devel-
oper with a simple but powerful means for specifying the behavior of a
composer. Still another is to devise an appropriate system for describing
data-source requirements. The remainder of this section addresses each of
these three challenges.

A wide variety of computation models has been proposed. Some sys-
tems, such as Tapestry [Ter92] from the Xerox Palo Alto Research Center
and Cougar [Bon00] from Cornell University, view sensor data as being
added to an append-only database and use Structured Query Language-like

Copyright © 2005 by CRC Press

models to retrieve the data. In contrast, NiagaraCQ [Che00] defines
data-retrieval compositions in terms of continuous queries over XML infos-
ets, specified in an XQuery-like language. The Rome system [Hua99] from
Stanford University and the Solar system [Che02] from Dartmouth Univer-
sity specify composer-like entities, called respectively triggers and opera-
tors. Both presume that all data sources are passive. The iQueue computa-
tion model [Coh02a] from IBM Research allows a composer to obtain input
from lower level data sources, including both passive and active sources,
and allows the composer itself to act as either a passive or an active
source; this model is based on an expression that is evaluated whenever
data is pulled from the composer or whenever one of the composer’s input
sources pushes a new value.

The means for specifying the behavior of a composer depends, of
course, on the underlying computation model. For the expression-based
model of [Coh02a], the appropriate specification is the expression itself.
The language iQL, described in [Coh02b], is specifically tailored to the
kinds of expressions that are useful in writing composers.

The description of data-source requirements poses a difficult challenge
because of the wide variety of data sources. Different kinds of data sources
have different interesting attributes and new kinds of data sources are con-
tinually being invented. It is untenable to adopt a fixed vocabulary of kinds
of data in which current applications are interested, let alone those in
which next year’s applications will be interested. However, it is feasible to
categorize each new data source registered with the infrastructure as
belonging to a specified provider kind that can be named in a descriptive
query. Some new data sources can be categorized as belonging to provid-
ers of an existing kind, although new provider kinds will have to be regis-
tered for other data sources. Provider kinds can be categorized in a super-
kind-subkind hierarchy, such that all attributes of a provider kind are
inherited by its subkinds. A query for a provider of kind k& can be satisfied
a provider of any subkind of k.

3.4 Conclusions

This chapter has discussed the key difficulties in writing pervasive appli-
cations — applications that support mobility and context-awareness —
and summarized the main approaches that are currently being employed
to address these difficulties. The key issue is application development
complexity to deal with heterogeneous devices, varying degrees of connec-
tivity, and dynamic data sources. Reuse of application components is the
fundamental means of addressing this complexity.

Four basic approaches to enhancing reuse were discussed, based on the
well-known MVC application structure:

Copyright © 2005 by CRC Press

1. Device-independent views — these allow an application to capture
the basic interaction structures that should be reused across mul-
tiple devices and modalities. They should be combined with the
ability to fine-tune the presentation when necessary.

2. Platform-independent controllers — these allow an application to
specify the overall control flow across multiple execution platforms,
but still allow an application to have different control flow structures
for different devices and uses.

3. Host-independent models — these allow an application to encapsu-
late the business logic and data in a manner that can be reused
regardless of which host a component is instantiated on.

4. Source-independent context data — this allows an application to
specify the intended context data to be supplied by reusable infra-
structure components, which in turn are concerned with the specific
data formats, locations, and combinations of physical data sources
that provide the actual data.

These approaches have reached different levels of maturity (interest-
ingly, the above order represents the highest to lowest in terms of matu-
rity) in research projects and commercial offerings. Several challenges
remain before these approaches can become widely useful.

Acknowledgments

This chapter is a compendium of many ideas that have evolved from
projects and discussions with many individuals in the pervasive comput-
ing group at IBM, including Jeremy Sussman, Larry Bergman, Rich Cardone,
Shinichi Hirose, Andreas Schade, and Apratim Purakayastha.

References

[Abr99] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, Stephen M. Williams,
and Jonathan E. Shuster. UIML: An appliance-independent XML user interface lan-
guage. WWWS8/Computer Networks, vol. 31, no. 11-16, pp. 1695-1708, 1999.

[Adj99] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley. The
design and implementation of an intentional naming system. Proceedings of the 17th
ACM Symposium on Operating Systems Principles (SOSP’99), December 12-15, 1999,
Kiawah Island Resort, SC, published as Operating Systems Review, vol. 33, no. 5, pp.
186-201, December 1999.

[Ban00] Guruduth Banavar, James Beck, Eugene Gluzberg, Jonathan Munson, Jeremy B.
Sussman, and Deborra Zukowski. Challenges: An application model for pervasive
computing. MOBICOM 2000, pp. 266-274.

[Ban02] Guruduth Banavar and Abraham Bernstein. Software infrastructure and design chal-
lenges for ubiquitous computing applications. CACM, vol. 45, no. 12, pp. 92-96, 2002.

[Ban04] Guruduth Banavar, Lawrence Bergman, Richard Cardone, Vianney Chevalier, Yves
Gaeremynck, Frederique Giraud, Christine Halverson, Shin-ichi Hirose, Masahiro Hori,
Fumihiko Kitayama, Goh Kondoh, Ashish Kundu, Kohichi Ono, Andreas Schade,
Danny Soroker, and Kim Winz. An authoring technology for multidevice Web applica-
tions, IEEE Pervasive Computing, vol. 3, no. 3, July-September 2004, pp. 83-93, 2004.

Copyright © 2005 by CRC Press

[Ber01] Lawrence D. Bergman, Tatiana Kichkaylo, Guruduth Banavar, and Jeremy B. Sussman.
Pervasive application development and the WYSIWYG pitfall. EHCI 2001, pp. 157-172.

[Ber02] Lawrence D. Bergman, Guruduth Banavar, Danny Soroker, and Jeremy Sussman.
Combining handcrafting and automatic generation of user-interfaces for pervasive
devices. Proceedings of the 4th International Conference on Computer-Aided Design of
User Interfaces (CADUI 2002), Valenciennes, France, May 15-17, pp. 155-166, 2002.

[Bon00] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. Querying the physical
world. IEEE Personal Communications, vol. 7, no. 5, pp. 10-15, October 2000.

[Bow93] Mic Bowman, Saumya K. Debray, and Larry L. Peterson. Reasoning about naming
systems. ACM Transactions on Programming Languages and Systems, vol. 15, no. 5, pp.
795-825, November 1993.

[Che00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: A scalable
continuous query system for Internet databases. Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, Dallas, May 15-18, 2000, pp. 379-390.

[Che02] Guanling Chen and David Kotz. Context aggregation and dissemination in ubiquitous
computing systems. Proceedings of the 4th IEEE Workshop on Mobile Computing Sys-
tems and Applications (WMCSA 2002), Callicoon, NY, June 20-21, 2002, pp. 105-114.

[Coh02a] Norman H. Cohen, Apratim Purakayastha, Luke Wong, and Danny L. Yeh. iQueue:
A pervasive data-composition framework. Proceedings of the 3rd International Confer-
ence on Mobile Data Management, Singapore, January 8-11, 2002, pp. 146-153.

[Coh02b] Norman H. Cohen, Hui Lei, Paul Castro, John S. Davis II, and Apratim Purakayastha.
Composing pervasive data using iQL. Proceedings of the 4th I[EEE Workshop on Mobile
Computing Systems and Applications (WMCSA 2002), Callicoon, NY, June 20-21, 2002,
pp. 94-104.

[Dub03] Micah Dubinko, Leigh L. Klotz, Jr., Roland Merrick, and T.V. Raman, Eds. XForms 1.0.
W3C recommendation, October 14, 2003. http://www.w3.org/TR/xforms/.

[Hua99] Andrew C. Huang, Benjamin C. Ling, Shankar Ponnekanti, and Armando Fox. Perva-
sive computing: What is it good for? Proceedings of the International Workshop on
Mobile Data Management, Seattle, August 20, 1999, pp. 84-91.

[Int00] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed diffu-
sion: a scalable and robust communication paradigm for sensor networks. Proceed-
ings of the 6th Annual International Conference on Mobile Computing and Networking
(MobiCom 2000), Boston, August 6-11, 2000, pp. 56-67.

[Kam98] Tomihisa Kamada. Compact HTML for small information appliances. W3C Note,
February 9, 1998. http://www.w3.0rg/TR/1998/NOTE-compactHTML-19980209,.
[Kly03] Graham Klyne, Franklin Reynolds, Chris Woodrow, Hidetaka Ohto, Johan Hjelm, Mark
H. Butler, and Luu Tran, Eds. Composite capability/preference profiles (CC/PP): Struc-
ture and vocabularies 1.0. W3C proposed recommendation, October 15, 2003. http://

www.w3.org/TR/CCPP-struct-vocab/.

[Kra88] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view-con-
troller user interface paradigm in smalltalk-80. Journal of Object-Oriented Program-
ming, vol. 1, no. 3, pp. 26-49, August/September 1988.

[Med99] Nenad Medvivovic, Alexander Egyed, David S. Rosenblum. Round-trip software
engineering using UML: From architecture to design and back. Proceedings of the 2nd
Workshop on Object-Oriented Reengineering (WOOR), Toulouse, France, September
1999, pp. 1-8.

[Mer99] Roland A. Merrick. Defining user interfaces in XML. Proceedings of the POSC Annual
Meeting, London, England, September 28-30, 1999. http://www.posc.org/notes/sep99/
sep99_rm.pdf .

[Mic03] Microsoft. Mobile Web development with ASP.NET. 2003. http://msdn.microsoft.com/
mobility/prodtechinfo/devtools/asp.netmc/default.aspx .

[Sow03] Daby M. Sow, David P. Olshefski, Mandis Beigi, and Guruduth Banavar. Prefetching
based on Web usage mining. Middleware 2003, pp. 262-281.

Copyright © 2005 by CRC Press

http://www.w3.org/TR/xforms/
http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/
http://www.w3.org/TR/CCPP-struct-vocab/
http://www.w3.org/TR/CCPP-struct-vocab/
http://www.posc.org/notes/sep99/sep99_rm.pdf
http://www.posc.org/notes/sep99/sep99_rm.pdf
http://msdn.microsoft.com/mobility/prodtechinfo/devtools/asp.netmc/default.aspx
http://msdn.microsoft.com/

mobility/prodtechinfo/devtools/asp.netmc/default.aspx

[Ter92] Douglas Terry, David Goldberg, David Nichols, and Brian Oki. Continuous queries
over append-only databases. Proceedings of the 1992 ACM SIGMOD International Con-
ference on Management of Data, San Diego, June 2-5, 1992, pp. 321-330.

[Wei91] Mark Weiser. The computer for the twenty-first century. Scientific American. Septem-
ber 1991, pp. 94-104.

[Wie92] Gio Wiederhold. Mediators in the architecture of future information systems. IEEE
Computer, vol. 25, no. 3, March 1992, pp. 38-49.

[WML02] Website META Language. October 19, 2002. http://thewml.org/.

Copyright © 2005 by CRC Press

Chapter 4

[SAM, Joining
Context-Awareness and
Mobility to Building
Pervasive Applications

lara Augustin, Adenauer Corréa Yamin,

Jorge Luis Victoria Barbosa, Luciano Cavalheiro
da Silva, Rodrigo Araijo Real, Gustavo Frainer,
Gerson Geraldo Homrich Cavalheiro, and
Claudio Fernando Resin Geyer

Abstract

The essence of pervasive computing is that the user’s applications are
available in a suitable adapted form, wherever that user goes. Our ongoing
research aims at integrating the concepts of context-aware, grid, and
mobile computing toward building a pervasive computing infrastructure.
The ISAM approach is the integration of programming language and the
middleware that supports its execution. This integration is based on
abstractions to describe context, alternative behavior, adaptation mecha-
nisms, and policies. ISAM includes a model for writing pervasive applica-
tions and a correspondent middleware that provides a pervasive comput-
ing environment. This text exposes the most important ideas of the ISAM
architecture. These ideas are illustrated by the construction of a pilot
application called WalkEd (Walking Editor).

4.1 Introduction

The term mobile computing is still under definition. In our perspective,
mobile computing is “the distributed computing in which the location of
the involved elements may change during the computation execution.”
Some scenarios derive from this definition depending on which element
has mobile capacity:

Copyright © 2005 by CRC Press

Hardware — wireless computing
User — nomadic computing
Software — mobile code
Computation — mobile agent

The most general scenario that joins all of them is the one provided by per-
vasive computing, which allows physical and logical mobility while main-
taining a global network connection. This last scenario is the focus of the
ISAM architecture [1, 2].

In our viewpoint about the pervasive infrastructure, the computational
power is in the whole network, different from traditional networks in which
each computer is a computational island. To reach this power, we believe
that the pervasive applications run in an environment that manages the
distributed execution and provides facilities to programming such applica-
tions. Toward supporting this view of pervasive computing, we propose a
software architecture that joins many aspects focused by context-aware,
grid, and mobile computing. How to integrate them in a consistent way is
the challenge of the ISAM project (Infraestrutura de Suporte as Aplicagcées
Moveis — Mobile Applications Support Infrastructure). The ISAM architec-
ture aims to provide a model, language, and runtime support to build and
execute pervasive applications. The initial efforts of many research
projects in pervasive computing [3, 4] focus on enabling the environment
and directly accessing services within that environment. None of those
projects addresses application development in a general purpose way.

This chapter shortly describes a way of integrating context-aware, grid,
and mobile computing to reach the management of the context-aware
adaptation process and to execute the pervasive applications in the ISAM
platform. This chapter is organized as follows:

Section 4.2 introduces the ISAM Application Model.
Section 4.3 presents the summary of ISAM architecture and its con-
text-aware behavior.
Section 4.4 introduces [SAMadapt, a main ISAM component.
Section 4.5 introduces EXEHDA, a main ISAM component.

e Section 4.6 presents a pilot application, named WalkEd. This was built
using the ISAM constructs to explore context adaptation strategies.

¢ Section 4.7 contains concluding remarks.

4.2 The ISAM Application Model

Mobile devices in nomadic computing are seen as small desktops where
applications are programs running on them, accessing code and data
stored locally. The ISAM Application Model is different, it considers that
the computer is the whole network. The computing environment (data,
device, code, service, resource) is spread in composed cells. Users can

Copyright © 2005 by CRC Press

Distributed Mobile Application

dns

ISAMadapt (Holoparadigm)

User Virtual Scheduler ISAM Context Aware:
Environment Server ness
Naming| Comu- | Migra- Repli- |Interoper-| Loca- | Monito-
nication tion cation ability tion ring
Java Virtual Machine

Native Operating System

Static Network + Mobile Network

Figure 4.1. ISAM Architecture

Context

NH3LNI
VYaH3IX3

4NI

move around, having both their applications and virtual environment fol-
lowing them. Mobile device is an interface device that executes a small
part of the application in a collaborative way. It is an application portal, not
a code or data repository. Required applications are installed on-demand
and can migrate among hosts to find better resources and services. Appli-
cation code explores the capabilities of the network that compose its vir-
tual environment and adapts to it. The adaptive behavior of the application
and the decisions of runtime management are defined by the current con-
text where the application’s components are inserted. Details of ISAM com-
ponents, that implement this semantic, are described in the next sections.

4.3 The ISAM Architecture

Mobile software development is complex because its components change
in time and space in terms of connectivity, portability, and mobility. To
reduce the impact of these changes, the application must have a con-
text-aware adaptive behavior. Context-aware adaptation is a fundamental
concept for pervasive computing. An application to be run in the pervasive
environment should not make undue assumptions neither about the
devices upon which it will run nor the environment services it will use.
However, adaptation is not of easy implementation because of its ad hoc
specific nature. Traditional adaptive systems were created based on
assumptions about the environment, such as permanent connection and
resource availability, which are not true in the mobile environment. This
fact, for example, prevents direct use of solutions from the distributed sys-
tems area.

Figure 4.1 illustrates our approach for the adaptation problem in mobile
computing. We have designed the ISAM software architecture to deal with
context-aware adaptation and collaborative behavior between the system

Copyright © 2005 by CRC Press

EXEHDAbase

.. EXEHDAcell

~.
-~ Gt
iz -
- -

ISAM_PE -—-—~"

Figure 4.2. ISAM_PE

and the application. The architecture is organized in layers with three
abstraction levels; it is directed to getting the maintenance of quality of
service provided to the mobile user through the context-aware adaptation
concept. The ISAM architecture adopts a modular organization. In Figure
4.1, the context module is virtual because it is a concept present in the
design of many other modules. An important component of the architec-
ture is the scheduling module. Adaptation decisions, from application to
runtime management levels, are based on the behavior profile of three enti-
ties — mobile user, application, and the system itself — which are part of
the execution context.

The applications run in the ISAM_PE (ISAM Pervasive Environment).
ISAM_PE is composed of elements that have correspondents in the physi-
cal infrastructure of the mobile network, as Figure 4.2 shows. The physical
organization adopted in ISAM is the cellular hierarchy. The devices belong-
ing to the same cell communicate directly to each other (using a plane
organization). In communications with resources outside the cell, a spe-
cific host (base) acts as a gateway. The hierarchical characteristic allows a
cell to recursively contain other ones. This organization assists the need of
context confinement, necessary to the application model adopted for ISAM.

With the motivation of exploring the concept of adaptation in pervasive
environment, our system was designed to support multilevel collaborative
adaptation at application and system levels. In ISAM architecture, the sys-
tem adapts itself to provide quality, and the application adapts at different

Copyright © 2005 by CRC Press

quality levels tolerated by mobile user. The innovation of this project is in
the uniform treatment of adaptation and its suitability to general purpose
mobile applications, where:

¢ The execution system is responsible for some adaptations related
to performance or application and resource management.

e The application is responsible for decisions related to context-aware
adaptations or concerning to domain specific adaptations.

¢ Both the applications and the execution system are responsible for
adaptation decisions negotiated in many cases.

4.4 ISAMadapt Overview

[SAMadapt is the architecture component that deals with the con-
text-aware adaptability issue through the perspective of the programming
language. Distributed applications in the pervasive computing environ-
ment must be designed based on several functionalities that adapt to the
current environment. These alternative functionalities are managed auto-
matically by the application management system (ISAMadaptEngine). This
new concept of applications, which modify their own behavior in function
of the environmental changes, demands new language abstractions, as well
as an execution system integrated with language.

The ISAM pervasive applications are modeled with Holoparadigm
abstraction, which designs the application using the beings concept [5].
Beings are naturally mobile and they enable the expression of physical and
logic mobility. They use a coordination model that supports implicit invo-
cations based on reading and writing in a blackboard, call history. Each
being has a history encapsulated inside itself. In the case of a composed
being, the history is shared by component beings. The component beings
take part in the development of shared history and they suffer the reflexes
of history changes. So, the existence of several levels of encapsulated his-
tory is possible. However, the being only accesses the history in its own
composition level. The history is implemented as multiple distributed
tuple space and some tuples may have a reactive behavior. At the
moment, the Hololanguage is mapped to the Java™ language. This strat-
egy makes it possible to quickly explore the proposed architecture on
pilot applications.

ISAMadapt extends the Hololanguage constructions with a semantic of
context-awareness and dynamic adaptation to allowing your use in the
design of pervasive applications. For implementing those semantics, [ISAM-
adapt introduces new abstractions in the language — context, adapters,
adaptation commands, and policies. Each abstraction is implemented in
two ways — static (at programming time) and dynamic (at running time).
Figure 4.3 shows the relationship among these abstractions.

Copyright © 2005 by CRC Press

__________ Main code T T
e [:
.E 'U
2 adaptive being () o 2
e { context.... & 9
o E -
3 - z o)
S ®
= z
= | [—
w| ...l __|subscribe .
g4 :
gl L register [——% manager e
ARE E
Siig —— E
ISAMbda E D%
On- Bt notifier \]
demand 2|] '
o :
code | E Sensored
S 7 LSA_MC_OYE%I_SE@LE_____/_ -
: | T B m
' ' . . x
: : /! : a
: PRIMITIVES TER POLICIES —} o

Figure 4.3. ISAM Adapt Abstractions

4.4.1 Context

In ISAM, context is defined as “all the relevant information to the applica-
tion that can be obtained from the support system.” The application explic-
itly identifies and defines the entities that characterize a situation and
those that integrate its context using the [ISAMadapt Development Environ-
ment software. State alterations in these entities trigger an adaptation pro-
cess in the application being. So, the context definition can then be refined
to “every entity for which a state alteration triggers an adaptation process
in the application.” This way, the context conception allows focusing on
aspects relevant to a particular situation, while ignoring others.

The context-aware nature of the applications becomes explicit on three
moments:

1. Description — defined at programming time and generates the appli-
cation context descriptor.

Copyright © 2005 by CRC Press

—
E Manager = o
[2]
%)_ 5) g é g
S 2 Q ans? £ o8 o
Bt Discoverer S g x
e gt © g S
Register pe =
N
)l S S/ g
o\
gred o
) 1>|
EXEHDAbase >
)
""""""""""""""" '/‘("'"X""'"'"'"'"'""""""""""""
collector
J collector
monitor
m
sensors monitor %
- EXEHDAnNode %
sensors Q
| EXEHDAnNode)Cl>
P
monitor
ISAMcontext Server
sensor
EXEHDAmMob_node

Figure 4.4. ISAMContextServer

2. Activation — executed at application load time and reconfigures and
activates the [ISAMcontextServer components.

3. Execution — the server will monitor the environment and notify the
application when significant context changes occur.

The ISAMcontextServer component of architecture provides this ser-
vice of context recognition (Figure 4.4). It runs independently of applica-
tions, being designed based on pipeline paradigm to model the sensored
data treatment and publish-subscribe paradigm to model the relationship
with the application. The application registers its interests within the mid-
dleware in order to receive information when elements of its context
change. The server collects and interprets relevant information to the
applications, generating higher level information.

Copyright © 2005 by CRC Press

The server is composed of components with the functions:

Collector — obtains sensored data

Aggregator — performs preliminary data treatment

Translator — translates data to an abstract representation
Predictor — makes a forecast analysis of data behavior

Notifier — sends changes to the application

Register — registers the monitoring interests of the application
Discoverer — replies the queries about services and resources avail-
able in its scope

The information of a change in the context triggers the application
reconfiguration at runtime. It is managed by the ISAMadaptEngine of the
application. The reconfiguration occurs by the choice of the best alterna-
tive among the codes programmed for the current environment, which is
loaded on-demand.

4.4.2 Adapters

ISAMadapt allows three forms of coding the sensibility to the context. The
onCont ext command is inserted in the language, it can be associated to
other commands such asi f, whi |l e, i n, out, and net hod cal | . By defi-
nition, the onCont ext command is asynchronous and schedules a task,
codified in its inside block, in the ISAMadaptEngine. This task runs when
the context is available. The sync qualifier behaves the command as syn-
chronous. The adaptive behavior can also be expressed in the language
through the definition of adapters. Adapters associate alternative code to
the execution of a being’s method or all the being’s behavior. The adaptive
being’s method behaves as a generic function, whose code can be dynam-
ically and transparently selected, among the alternatives provided, based
on the current context. This process is managed by the ISAMadaptEngine,
which uses EXEHDA's services that are responsible for:

¢ Deciding the validity of the adaptation
e Selecting one among the alternatives
e Triggering the decision execution

The ISAMadaptEngine runs in conjunction with the ISAMcontextServer, in
a relation based on publish-subscribe model (registers the application’s
monitoring interests, asks for server reconfiguration, receives ISAMcon-
textServer notification, activates/deactivates the notification received).
Another way of expressing context-awareness is to use the adaptation
commands of the language.

4.4.3 Adaptation Commands

Some adaptation commands are made available by the system and can be
used in the adapters and beings codification. The main commands with
adaptive behavior are:

Copyright © 2005 by CRC Press

Creation or replication (clone command)

Migration (move command)

Rescheduling (reschedule command)

Resource and services discovering (discovery command)
Push code (install command)

Disconnection (disconnect command)

Reconnection (reconnect command)

On-demand code load is a natural mechanism of ISAM architecture and it
is present in the behavior of the entire application.

4.4.4 Adaptation Policies

The adaptation commands are implemented with an adaptive behavior
based on collaboration between the middleware and the application. Poli-
cies express this collaboration. Policies consist of orientations given by
the application to the system, contributing to the system decision, which
controls the overall application behavior. Some policies are global, but oth-
ers are specific to some application’s beings (see Section 4.6.4).

4.5 EXEHDA Overview

EXEHDA (Execution Environment for High Distributed Applications) is the
architecture component that provides a pervasive execution environment
to the ISAMadapt applications. It is designed as a middleware, having as its
main strategies:

¢ Adaptive instantiation of software — the EXEHDA loads in the nodes
(mobile or fixed) a minimum set of software components, from both
the middleware and the application, that guarantee the application
execution based on the application’s profile. The other components,
if any, will be requested on-demand, characterizing a pull strategy
operation. This feature is important in the presence of high hetero-
geneous resources.

¢ Prefetching of application — the instantiation process begins when
the user executes its authentication in EXEHDAbase, before request-
ing the execution of application. It has adopted in this case a push
strategy for software components and information dissemination.
This instantiation can also happen with a longer anticipation, using
as reference an expectation of the user’s itinerary according to his
mobility already consolidated. To anticipate the traffic in the struc-
tured part of the networks (with physical connection) it is an alter-
native proposed to increase the global acting of the mobile
application and, consequently, reduce the waiting/connection time
of the mobile device.

e Support to adaptive pervasive execution — EXEHDA offers to the
ISAM architecture a pervasive execution environment that can be

Copyright © 2005 by CRC Press

tuned in function of both the ISAMadapt provided adaptation poli-

cies and the state of execution context. For a pervasive operation,

EXEHDA integrates two mechanisms at ISAMadapt runtime:

— A manager of multiple object spaces - EXEHDA- CC- , whose control
syntax is a variation of the Linda protocol [6], enabling an anony-
mous and asynchronous communication and coordination strategy

— An execution controller - EXEHDA- H\t , which keeps the relation-
ships between the beings (Holotree), whose core uses a distrib-
uted naming service

The resources the application uses (databases, specific services,

etc.) are also registered within the execution controller. This makes

it possible to manage replicas of beings and resources, enabling a

uniform handling of lookup operations for both resources and pro-

cesses (beings) by the resource management (scheduling, mapping)
mechanism.

The EXEHDA middleware uses a set of primitives for monitoring in both
the system and application levels and also for object scheduling. These set
of primitives, provided by PRIMOS (PRIMitives for Object Scheduling) [7],
comprises:

¢ Remote object instantiation and migration

¢ Optimized communication primitives

¢ Parameterizable native host sensors, which may be extended by
application provided sensors

From the ISAM physical point of view, the system is built of hosts, net-
work segments, and computing cells. A host is the base building block and
represents, as it would be expected, a machine in the system. Hosts are
described by static and dynamic indexes, relatives to processor and mem-
ory capabilities, among other things. A network segment groups a set of
hosts that share the same interconnection medium/technology and is
described statically by its nominal latency and throughput (e.g., Ethernet
bus, Token Ring, Myrinet cluster). Dynamic data is added to the static
information, which reports how much of the network capabilities of a given
segment are used at a given time.

Network segments are arranged in computing cells, which would be
interpreted as institution boundaries in the scope of a distributed architec-
ture (EXEHDACell). Each computing cell has an information server associ-
ated. This server keeps track of all dynamic and static sensors available in
the cell. The publishing of load indexes from each host to the cell’s collec-
tor is triggered by a variation of such indexes above a configured threshold
(which may be changed dynamically). The computing cells are grouped
into cell groups. Each cell is responsible for publishing its summarized
load information to the other cells in the group. This publishing at cell
group level is accomplished through a probabilistic protocol [8], which

Copyright © 2005 by CRC Press

HISTORY

Figure 4.5. ISAM WalkEd Beings

tends, with a given probability, to keep all cells updated. To connect cell
groups, one cell is configured to belong to both intended groups. Such pub-
lishing architecture has an interesting aspect to management decisions:
the quality of the information about other host in the system is inversely
proportional to the logical distance to that host. This property can be used
to improve locality in scheduling decisions.

4.6 The WalkEd Application

To exemplify the conception and behavior of an [SAMadapt pervasive
application, a well-known application was modeled using the abstractions
provided. The objective of such application is to demonstrate the use of
ISAMadapt constructs in order to conceive a pervasive application that is
able to adapt itself to modifications in its execution context. The WalkEd
application consists of a text editor with basic editing functionalities,
which was modeled using the being abstraction of Holoparadigm. As Figure
4.5 shows, there are four main beings in the WalkEd application:

1. GUI being — implements the editor’s graphical user interface (GUI)

2. Dict being — provides access to an external dictionary database and
is used as a helper service for implementing the spell checking
functionality

3. Spell being — implements the spell checking service

4. Print being — provides access to external printing services

The WalkEd application may be used from both desktops in the wired net-
work or mobile wireless devices (e.g., laptops and personal digital assistants
[PDAs]). Figure 4.6 shows a possible physical disposition of the beings that
compose WalkEd, at different moments, as new beings are created.

Notice that the devices used may present differences both in connec-
tivity and with respect to processing and visualization capabilities. In this
sense, a key characteristic of the WalkEd application is being able to

Copyright © 2005 by CRC Press

EXEHDAnode
(file server)

Pmmmmmmm—m---- P , P mmmmmsm———o- T s '
I i | I i |
I i | I I |
I i | I I |
I i | I i '
I i | I i |
I i | I I |
I i h I i '
I i | I i |
I i | I i |
I i | I I |
I i | I i '
I i | I i |
I i | I I |
e ____. e ____. | e ____. | e ____.
(1) (2)
,,,,,,,,,,,,,, Fmmmmm o el el
EXEHDAnode EXEHDAnode

EXEHDAnode
(file server)

EXEHDAnode
(file server)

,,,

EXEHDAnode
| (dictionary) | (dictionary) (print server)

EXEHDAnode EXEHDAnode

Figure 4.6. ISAM Physical Beings

adapt itself to varying execution contexts. The adaptation semantic of
the application is f ol | ow- me: components migrate closer to the
resource, following the user movements and adapting to the current state
of the environment.

The WalkEd application starts its execution by the creation of the edi-
tor’s graphical interface, as illustrated in the code fragment presented in
Figure 4.7. In the instantiation of the being that corresponds to the editor’s
interface, given by the execution of the clone primitive, the first level of
adaptation in the application occurs. It consists in selecting the GUI being
implementation (adapter being) most appropriate to the device where the
application is being launched. The GUI being is locally created, in the
device where the application has been launched, keeping the edited text in
its history. The interface code is loaded on-demand, using the context
information — devi ce type — provided by the ISAMcontextServer.

During the execution, the user may require services like spell checking
and file. Such requests trigger the creation of the Spell, Dict, and Print

Copyright © 2005 by CRC Press

//
// WalkEd entry point
//

being holo

{
clone (GUI, Gui_id);
}

/7
// graphic interface adapted to display device
// @context: display
//
adaptive being GUI
{

openFile(filename)
{
clone(File(filename), filename);

content = being(filename).getContents();

history!list(filename, contents);

}
saveFile(filename) { ... }
setActiveBuffer (bufferName) { ... }
insertLine(pos,text) { ... }
deleteLine(pos,n) { ... }
moveCarret(line,pos) { ... }
gotoMyHost ()

(move (self, "myHost");

}
gotoMyDesktop ()

{

move (self, "myDesktop");

}

Figure 4.7. ISAM WalkEd Code

beings, which may be placed on nodes distinct from those where the GUI
is running. The second level of adaptation in WalkEd comes from that: the
whole application adapts itself to states of connection and disconnection,
because the beings that compose the application may be physically
located in distinct nodes of the distributed system. The criteria used in
placement of the being consider the being’s dependencies to external
resources. In WalkEd, for example, the Dict and Print beings are created
closer to the dictionary and printer resources.

The third level of adaptation in WalkEd is related to the f ol | ow- e
semantic. In this level of adaptation, a migration of the GUI being (activated

Copyright © 2005 by CRC Press

by the got o interface menu) triggers a relocation of the beings Spell, Dict,
and Print, aiming to reduce communication costs, although respecting its
access dependencies to external resources.

4.6.1 The GUI Being: Alternative Behaviors

The WalkEd GUI adapts itself with respect to the display capabilities of the
device used. The differences between the two actual implementations may
be observed in Figure 4.8 and Figure 4.9.

The adapters define code alternatives for each state of the display con-
text element — PDA and desktop — as shown in Figure 4.10. The being’s
methods use the adaptation commands cl one and nove. Communication
between beings is accomplished through blackboards (history in Holopar-
adigm), which are accessed using the operations i n (consume), out
(write), and r ead. The tuples in the history are composed of strings which
represent the text being edited. Because the Hololanguage currently does
not provide an Application Programming Interface (API) for building GUISs,
code directly written in the Java language is used for that purpose (native
Java command).

The WalkEd GUI provides the more often used commands for text edit-
ing (Figure 4.8 and Figure 4.9). The open command creates a file system

7] walked - New -
File Edit | Tools

d undo| € Redo |
| fortunel.vxt | fortune2.tat |

Yesterday is histony.

Tomorrow is a mystery.

Today is a gift.

That's why it is called 'present’.

Figure 4.8. ISAM Desktop Interface

Copyright © 2005 by CRC Press

o
WalkEd - fortunel.txt X

File Edit Tools Buffers |Uptions
Full Window Edit

127

Yesterday is history
Tomorrow is a mistery
Today is a gift

That’s why it is called present’

K3

<X 13)

II Save Htlpen ” Close l

]
3
?
| £
&...7-8 SPER ([1556

Figure 4.9. ISAM PDA Interface

being, which populates its history with records that compose the text file.
The file being provides methods for other beings to acquire (get Cont ent s)
and modify (set Cont ent s) the contents of the underlying file. It is also
implemented using the adaptation concept of ISAM: the actual file being
implementation used type of the storage (i.e., context) that serves the
underlying file (e.g., database or file system). The edition commands oper-
ate on the GUI being’s history.

In both target platforms, WalkEd allows the simultaneous manipulation
of multiple edition buffers, although the mechanism provided to the user
to access the edition buffers was conceived differently for each platform.
On the PDA, the existing buffers are accessed through the Buf f er s GUI
menu. On the other hand, in the desktop implementation, each buffer is
mapped to tab in the edition pane.

At any moment, the user may request to continue the WalkEd execution
at other node of the system. This is accomplished through the activation of
the got o GUI submenu, after which the user is requested to select the

Copyright © 2005 by CRC Press

// file: GuiPDA.adp ///////1/117117717771777777177117717711171177
//
// WalkEd GUI implementation for PDA
//
// @description: implementation initialy targeted to the
// Zaurus PDA. It uses AWT/PersonalJava APIs.

//
// @context: display::PDA
//

adapter being Gui::GuiPDA()

{

// context state declaration
context network::(disconnected,connected);

// Constructor
GuiPDA()

{

native Java {
// use java.awt components to build WalkEd's GUI
// and register menu callbacks

}

enableSpellChecking();

}

// menu call backs
startSpellCheck(line) { ... }
enableSpellChecking()

{

native Java {
// update gui state
}
// schedules feature disabling to next disconnection
onContext network::disconnected {
disableSpellChecking()
}

}
disableSpellChecking()

{

native Java {
// update gui state
}

// schedules feature enabling to next reconnection
onContext network::connected {
enableSpellChecking()

}

}

// other methods
}

// file: GuiDesktop.adp ////////17717777771777177777717717771771771177

//
// WalkEd GUI implementation for desktop
//
// @description: It uses Swing/J2SE APIs.

Figure 4.10. ISAM GUI Being Adapters

Copyright © 2005 by CRC Press

//
// @context: display::desktop, display::laptop
//
adapter being Gui::GuiDesktop()
{
// Constructor
GuiDesktop()
{
native Java {
// use javax.swing components to build WalkEd's GUI
// and register menu callbacks
}
}

// other methods

Figure 4.10. ISAM GUI Being Adapters (Continued)

destination node (e.g., MyHost , MyDeskt op, MyPDA). The system evaluates
the abstract targets at runtime, using the user preferences stored into the
User Virtual Environment (UVE), to determine the real destination of the
migration. At the destination node, the application continues its execution.

4.6.2 The Spell Being

The Spell being is created as a child of the GUI being, typically colocated,
and creates a Dict being, which is placed by the system close to the dictio-
nary resource, following the scheduling policy configured for the applica-
tion (see Section 4.6.4).

The Spell being is context-aware with respect to the connectivity state of
the node in which it is running. On its normal operation mode (connected),
the Spell being stays in the background reading words from modified para-
graphs in the GUI and sending those words to the inner Dict being. Such
communication with the Dict being is done through the Spell being’s his-
tory. When the node becomes disconnected, the Spell being stops sending
words to the Dict being in order to reduce local memory consumption,
because the produced words will not be consumed by the Dict being at that
time. This way, it retains more memory to be used by the GUI being in text
edition.

The source code of the Spell being is presented in Figure 4.11. Notice
that the connectivity state also affects the GUI by enabling or disabling the
spell checking feature.

4.6.3 The Print Being

The Print being creates a printer system being, which is colocated with the
underlying print server. The location of the print server is the dynamic

Copyright © 2005 by CRC Press

// file: Spell.holo ///////71117/117717771711777177177117717771111117
being Spell
{
context network::(disconnected,connected);

adaptive bgSpellCheckWords();
Spell()
{
// create the dictionary used to validate words

clone (Dict, dict);

onContext network::connected {

bgSpellCheckWords () ;
}
}
spellCheckWords ()
{
// synchronous spell checking
}
}
// file: bgSpellCheckWordsVl.adp /////////1111117171111171117711171111
//
// @context: network::connected
//
adapter Spell.bgSpellCheckWords::v1()
{

// blocking read,

// waits for a modified paragraph to be available

// in the parent history
out(history)#(modified_text);

// send words to the Dict Being
history!list(check,language,words);

// schedules next verification
onContext network::connected {
spellCheckWords () ;
}

// file: bgSpellCheckWordsV2.adp ////////71117111777111771117171171111

//
// @context: network::disconnected
//

adapter Spell.bgSpellCheckWords::v2()
{

// do nothing while disconnected to avoid filling up
// the device's memory

Figure 4.11. ISAM Spell Being Code

information provided by the resource discovery mechanism of the I[SAM-
contextServer. The print being provides the user with a way of sending the
edited text to the system print queue.

Copyright © 2005 by CRC Press

<scheduling>

<policy composition="append">
<being name="Spell"/>
<max sensor="HOST_BENCH[bogomips]"/>
<anchor being="GUI"/>
</policy>
<policy composition="replace">
<anchor resource="Dictionary"/>
</policy>

</scheduling>

Figure 4.12. ISAM WalkEd Policy

4.6.4 The ISAMadapt IDE

The ISAM framework provides an application development environment,
the ISAMadapt IDE, for edition of beings and adapters source code. Fur-
thermore, the ISAMadapt IDE allows the specification and specialization of
the context elements the application is interested in, as well as the definition
of global and per being scheduling policies and associations between adapt-
ers and adaptive beings. Such information is represented by three Extensible
Markup Language (XML) documents — cont ext . xm , pol i cy. xm , and
adapt ers. xm — which are stored into the pervasive storage base,
ISAMbda. This information guides the compilation process and also the
application execution.

A fragment of the scheduling policy used for the WalkEd application,
related to the Spell and Dict beings is shown in Figure 4.12.

4.6.5 Execution Aspects

The Hol ol anguage+| SAMadapt code is currently translated to Java
source code, which is then compiled with a standard j avac tool to gener-
ate the executable code. The WalkEd prototype was developed with two
modalities of the Java platform in mind — PersonalJava™ application for
PDAs and J2SE™ platform for desktops — which have differences in the
supported APIs. The application was tested using a few wired desktop per-
sonal computers and a wireless Sharp Zaurus™ 6500 PDA. The ISAM core
middleware was installed on these devices prior to running the application.

The ISAM core middleware provides the user with commands for ses-
sion management which, by complementing the other features provided
by middleware, enable the implementation of the f ol | ow ne semantic for
applications. In this sense, the main session management commands pro-
vided are described below:

¢ Login:
— Authenticates the user using an asymmetric public key mecha-

nism. The public key is provided in certificates, for each user,
those certificates are stored in the cell base (EXEHDAbase).

Copyright © 2005 by CRC Press

— Activates the user default session. The activation of the default
session restarts applications that were interrupted when the user
last logged out.

— Provides access to the workspace with the applications already
installed.

¢ Logout:

— Frees the application execution context management related re-
sources that integrate the default user session in the logout
moment.

— Notifies the [ISAMadaptEngine about the end of the applications,
which performs the ISAMcontextServer unsubscription.

— Stores the Def aul t Sessi on state in the UVE for future loading
when the user logs in again.

¢ Save/restore session — the user may have an arbitrary number of
sessions additionally to its default session. Those sessions are man-
aged through the commands — save sessionandrestore ses-
si on. The command save sessi on enables the applications to
move from the default session to an alternative one, stored in the

UVE. The command r est or e sessi on provides the opposite func-

tionality, providing the user with the capability of reincorporating

applications saved in sessions alternative to the default session.

¢ Disconnect/Reconnect — these commands take effect in the con-
nectivity state of the user controlled device, moreover, they imple-
ment a planed disconnection protocol. Each change in the
connectivity state of the device is published as a piece of information
to the ISAMcontextServer, which is running on the cell management
node (EXEHDAbase). Additionally, a broadcast to all the local ISA-

MadaptEngine is performed, this notification triggers the adapta-

tions related to the local beings previously registered as sensible to

this kind of context change.

¢ Application launching — in the conception of ISAM, the installation
process of the application is consisted of the copy of the launch
descriptor to the ISAM workspace. The launch descriptor of the
application is a XML document; as Figure 4.13 shows, it is generated
during the compilation phase of the application. The launch descriptor
provides metadata that describes the application in an abstract way
and independently from the ISAM_PE cell where the user is located.

When the application is launched, this descriptor is expanded and

the relative references are resolved for absolute references to the

resources needed by the application.

After the on-demand loading of the Starter being code, the application
has its context sensibility interests subscribed to the ISAMcontentServer
and adaptive execution proceeds as described in Section 4.6. As long as new
beings are created by the application, the application interests previously

Copyright © 2005 by CRC Press

<?xml version="1.0" encoding="UTF-8"?>
<isamapp spec="1.0" href="WalkEd.isam">
<info>
<title>WalkEd</title>
<vendor>ISAM team</vendor>
<description>The Walking Editor</description>
<icon href="WalkEd.png"/>
</info>
<code>
<main class="isam.demo.walked.Main"/>
<jar href="WalkEd.jar"/>
</code>
</isamapp>

Figure 4.13. ISAM Launch Description

registered in the ISAMcontextServer are updated to reflect these new
demands.

Our future experiments with WalkEd will lead to a better understanding
of how context sensibility can be used to design adaptive behavior in per-
vasive applications. We want to improve the user interface and explore oth-
ers adaptation strategies. The initial feedback we got from the experiments
showed promising results, especially with respect to adaptation and mobil-
ity. Our next steps will be to explore more deeply the issues related to mul-
ticell, multi-institutional executions, as well as better caching strategies to
improve the overall system performance.

4.7 Conclusions

The innovation of our approach is the introduction of context-aware and grid
computing associated with physical mobility to provide a support infrastruc-
ture by pervasive applications. Another contribution is providing a uniform
treatment of the context-aware adaptation in the whole system from the base
to the programming paradigm. Besides, it is not compromised to a specific
application domain. These decisions are based on our belief that there is a big
potential to use mobile application in various application domains. So, it is
necessary to provide an infrastructure for general purpose applications,
which makes the expression of mobility and adaptability as simplified as
possible. We believe that the collaborative multilevel adaptation is a real
alternative to achieve a general purpose architecture, capable of guaran-
teeing good performance levels in different applications that are arising in
the pervasive computing scenario.

Acknowledgments

ISAM project is supported in part by FAPERGS Foundation. The consortium
partners are Federal University of Rio Grande do Sul, Federal University of
Santa Maria, Federal University of Pelotas, and University of Vale do Rio
dos Sinos, Brazil. ISAM project page: www.inf.ufrgs.br/~isam.

Copyright © 2005 by CRC Press

www.inf.ufrgs.br/~isam

References

1.

Yamin, A., Augustin, 1., Barbosa, J., and Geyer, C., ISAM: A Pervasive View in Distrib-
uted Mobile Computing, in Proc. Network Control and Engineering for QoS, Security
and Mobility with Focus on Policy-Based Networking (Net-Con 2002), Paris, France,
2002, Paris: IEEE/IFIP.

Augustin, 1., Yamin, A., Barbosa, J., and Geyer, C., ISAM — A Software Architecture
for Adaptive and Distributed Mobile Applications, in Proc. 7th IEEE Symposium on
Computers and Communications, Taormina, Italy, 2002.

Garlan, D., Steenkiste, P., and Schmerl, B., Project Aura: Toward Distraction-Free
Pervasive Computing, /[EEE Pervasive Computing, vol. 1, no. 3, 2002.

Roman, M. et al., Gaia: a Middleware Infrastructure to Enable Active Spaces, IEFEE
Pervasive Computing, vol. 1, no. 4, 2002.

Barbosa, J. and Geyer, C., A Multiparadigm Language Oriented to Distributed Software
Development, in Proc. V Brazilian Symposium of Programming Languages (SBLP), 2001.
Gelernter, D., Generative Communication in Linda, ACM Computing Surveys, vol. 7, no.
1, 1985.

Silva, L.C. and Geyer, C.R., Primitives for Supporting Object Distribution Targeted to
Pervasive Computing, Master Thesis, CPGCC — Federal University of Rio Grande do
Sul, Porto Alegre, Brazil, 2003.

Yamin, A., Augustin, 1., Barbosa, J., Silva, L., Real, R., Cavalheiro, G., and Geyer, C., A
Framework for Exploiting Adaptation in High Heterogeneous Distributed Processing,
in Proc. Symposium on Computer Architecture and High Performance Computing, Vitoria,
Brazil, 2002, Piscataway, NJ: IEEE Press.

Copyright © 2005 by CRC Press

Chapter 5

Integrating Mobile
Wireless Devices
into the
Computational Grid

Thomas Phan, Lloyd Huang, Noel Ruiz, and
Rajive Bagrodia

5.1 Introduction

One application domain the mobile computing community has not yet
entered is that of grid and cluster computing: the aggregation of net-
work-connected computers to form a large-scale, distributed system that
can be used for resource-intensive scientific or commercial applications in
a scalable and cost-effective manner [1, 3, 15]. Current grid efforts have
leveraged predeployed clusters of workstations as computing nodes, while
at a larger scale, grid-like distributed applications such as Seti@home and
Folding@home have enlisted home personal computer (PC) enthusiasts to
volunteer their desktop computers.

In this chapter, we consider grid and cluster computing from a different
architectural perspective, namely from the view of using small-scale,
highly heterogeneous devices that can serve as nodes within a distributed
grid system. This class of small-scale devices comprises laptops, tablet
PCs, personal digital assistants (PDAs), and other home consumer devices
that can be connected to the Internet, potentially all through wireless links.
As recent investigations have shown, using such heterogeneous devices is an
interesting extension to contemporary grid computing efforts [6, 30, 40].

The integration of these devices into high-performance grid and distrib-
uted computing is not without difficulties. Small-scale devices are hetero-
geneous and lack the computational, storage, bandwidth, and availability
characteristics [14] commonly required for high-performance distributed

Copyright © 2005 by CRC Press

computing. With widespread use of these devices (including next-genera-
tion intelligent appliances whose characteristics cannot be readily fore-
seen), heterogeneity will only increase, making this combination ostensi-
bly unlikely.

However, many technological, commercial, and consumer trends sup-
port the inclusion of such devices within a computational grid. First,
Moore’s Law of increasing transistor density will continue to drive central
processing unit (CPU) performance in small-scale devices just as it has in
other markets. For instance, Intel’s lines of XScale® and Centrino™ proces-
sors for mobile devices continue to show improved performance with each
generation. Second, availability of wide area wireless communications will
be more prevalent. This increased connectivity can be seen in current 2.5G
(generation) and upcoming 3G networks based on Wideband Code Division
Multiple Access (W-CDMA)/CDMA2000, as well as wireless local area net-
work (LAN) hotspots and meshes. Third, consumer use of small-scale,
intelligent electronics continues to grow yearly, as can be clearly seen by
increasing popularity of smart cell phones and home electronics such as
networked fourth-generation video game systems and digital video record-
ers. Fourth, trends in ubiquitous/pervasive computing [42] suggest a
future where small devices will be the predominant form-factor of choice,
relegating desktop devices to the minority. We posit that these signs point
toward the confluence of small, heterogeneous devices and computing in
the future.

With these observations, our research project, LEECH (Leveraging
Every Existing Computer out tHere), aims to identify and address the
research challenge of using a wide range of heterogeneous systems as con-
tributors to computational grids. In this chapter, we will take a look at how
our LEECH system has been designed from the start to address the heter-
ogeneity issues of small-scale devices for grid and cluster computing. Our
experimental testbed used to evaluate our system adheres to our hetero-
geneity goal, as it includes a mix of wirelessly connected laptops and PDAs
as well as a wired PlayStation® 2. We do note that the issue of power con-
sumption in small-scale, portable devices is an ongoing, open research
area that remains a significant challenge, one that we are continuing to
investigate and will address in future work.

To mitigate the effects of wide heterogeneity and unpredictable avail-
ability commonly associated with small-scale devices, we designed the
LEECH architecture using a hierarchical organization to abstract away the
underlying devices. Specifically, we used a proxy-based clustered infra-
structure to provide small-scale devices with favorable deployment,
interoperability, scalability, adaptivity, and resiliency characteristics. In
our design we created groups of devices clustered around a nearby proxy,
as shown in Figure 5.1. Unlike contemporary peer-to-peer [40] or mobile ad

Copyright © 2005 by CRC Press

Distributed Grid/Cluster

-
*

’.. Interlocutor

Minions

Figure 5.1. A Broad View of the LEECH Proxy-Based Clustered Architecture

hoc routing [4] approaches that also use clustering around a proxy or gate-
way node, in our system the proxy additionally serves the important roles
of service negotiator and resource request partitioner for abstract classes
of devices in its group.

Additionally, we designed and implemented a programming model,
Application Programming Interface (API), and lightweight library to
accompany the LEECH architecture. Distributed programming libraries,
such as Message Passing Interface (MPI) [33], commonly used today for
the development of grid applications, do not sufficiently support heteroge-
neous, small-scale, and dynamically available devices as grid nodes. The
LEECH Programming Model allows a grid programmer to use whatever
computational power is available through LEECH proxy machines.
Although fundamentally different, the LEECH API is designed to behave,
from the programmer’s perspective, similarly to traditional message-pass-
ing APIs such as MPI, the de facto message-passing communication library
used today.

To demonstrate the effectiveness of our architecture, programming
model, and library, we use three benchmarks:

1. A RSA keybreaker using exhaustive search
2. A numerical integration program
3. A synthetic communication-intensive application

Through experimentation, we show that LEECH is lightweight with less per
message overhead than MPI, an important factor for small-scale devices.

Copyright © 2005 by CRC Press

Parallel applications executed through LEECH scale well over an increasing
number of added nodes. Finally, our system provides resilient operation in
the face of node failure through managed replication and job control.

5.2 Background

Grid and cluster computing has roots within the field of high-performance
parallel computing, which has traditionally been successful on massively
parallel processor (MPP) systems designed following a nonuniform mem-
ory access (NUMA) or uniform memory access (UMA) architecture. Such
MPPs have used multiple CPUs within a single chassis to produce higher
performance manifest through increased throughput. However, such sys-
tems become prohibitively expensive for large CPU configurations. A differ-
ent approach is taken with grid and cluster computing: by bringing
together available machines, such as workstations on either a local or wide
area scale, an aggregation of computational resources can be formed in a
cost-effective manner.

Local area networks of workstations (NOW) [1] take advantage of clus-
ters of uniprocessor workstations connected via a network such as Myri-
net or Ethernet. Taking advantage of such commodity parts, NOWs can
provide high performance at low cost. For example, Beowulf systems [3]
look to leverage low-cost, high-performance Linux® PCs with LAN network-
ing. Additionally, Condor [28] provides the capability to schedule jobs
across a UNIX® NOW to achieve load balancing.

Much pioneering work in grid computing support libraries has been
done with the Legion [20] and Globus [15, 18] research efforts. Globus is
the de facto middleware standard for a number of different grid projects
and provides a four-layer stack to control hardware, communications,
resource sharing, and collective coordination. Our LEECH architecture is
intended to integrate seamlessly with such existing systems.

To the best of our knowledge, ours is the first effort to produce a general
framework for using small-scale, heterogeneous devices for grid and dis-
tributed computing. Other researchers ported the Cactus environment
onto PDAs, but did not address the limitations of small-scale devices in
general [6]. The University of Illinois at Urbana-Champaign recently cre-
ated a cluster of 100 PlayStation 2 game consoles, outfitted with a special
version of Red Hat® Linux, to take advantage of that machine’s high-perfor-
mance Emotion Engine graphics processor [30, 40]. However, the use of
these devices is no different from that of a statically configured, homoge-
neous PC Beowulf cluster with no specific treatment of the issues we raise
in this chapter. In our own experiments, we too use PDAs and a PlayStation
2 together as part of a heterogeneous testbed to demonstrate the architec-
ture, programming model, and library of LEECH.

Copyright © 2005 by CRC Press

In our work we propose to use small clusters of small-scale devices to
improve scalability, interoperability, and other factors we discuss later.
These devices are clustered around a proxy node that interacts with the
rest of grid on the devices’ behalf. We note the ostensible similarity
between our approach and those of other clustering techniques intended
to rein in a loosely assembled group of devices. For example, many ad hoc
routing schemes [4] use such clustering. In an ad hoc wireless network,
particular devices are chosen as gateways or clusterheads to facilitate
cluster organization and routing only, without the consideration of aggre-
gate computation. Bluetooth®-enabled devices assemble themselves into
piconets of seven or less nodes centered about a master device [22, 31].
Landmark routing [36] suggests a similar approach. Mobile Internet Proto-
col (IP) [38] facilitates the integration of mobile computers into the Inter-
net by using home agents to act on behalf of mobile nodes. ALICE [21] pro-
vides a similar capability but at the application layer to support Common
Object Request Broker Architecture (CORBA)-enabled applications. Our
clustering approach performs request negotiation, routing, and most
importantly, data partitioning and aggregation within its cluster.

Clustering is also used by the file-sharing peer-to-peer Kazaa™ program
using the Fast Track infrastructure [40] to facilitate scalable searching. In
this system, peer nodes are clustered around so-called supernodes. These
supernodes serve as indexing repositories for search requests from peers,
thereby negating the need for multicast searches in infrastructures such as
Gnutella or centralized search indices as with Napster™. However, these
supernodes perform only indexing (because the central objective of Kazaa
is file sharing).

5.3 Motivation: Mobile Devices and the Grid

We suggest that a logical step in expanding grid and cluster computing sys-
tems to have the ability to incorporate more computational power lies with
the use of heterogeneous mobile consumer devices connected through a
potentially unreliable wireless or unstable wired network. In this section,
we present opposing views to this assertion.

A number of problems hinder the use of contemporary small-scale
devices in grid and cluster computing. For PDAs, hardware and operating
system (OS) heterogeneity issues are pervasive as palmOne and
Microsoft’s PocketPC compete aggressively for market share. Mobile com-
puting devices are also well-known for other inherent disadvantages, such as:

e Heterogeneous hardware

e Unreliable low-bandwidth wireless connectivity

e Unpredictable extended periods of complete disconnectivity
¢ Heightened power-consumption sensitivity

Copyright © 2005 by CRC Press

¢ Software noninteroperability
¢ Small secondary storage
¢ Incomplete security

In an ideal world, wireless networks would provide as much bandwidth
and work as reliably as wired connections. Unfortunately, real-world con-
ditions such as multipath disturbances, power-signal degradation, and
intercell hand-off, among others, do not facilitate the high bandwidth,
always-on characteristics expected of computation nodes. Present grid
and cluster computing applications typically target idle desktop PCs that
receive portions of a larger problem, perform computation, and return
results within bounded time. Unreliable connectivity and prolonged peri-
ods of intended disconnectivity break this expectation. Even when connec-
tivity is not an issue, present wireless technology cannot provide the high
bandwidth typical of wired connections. Most wired LANs provide a mini-
mum of 100 megabits per second (Mbps) commonly found with Fast Ether-
net and are moving quickly to 1 gigabit per second (Gbps) Gigabit Ethernet.
On the other hand, wireless bandwidth varies among different technolo-
gies, as we will discuss shortly.

Other problems are prevalent. Battery technology has matured slowly
over the last decade and has failed to keep up with increased power
demands from contemporary PDAs and laptops. Recent developments in
lithium polymer replacements for lithium ion show promise in this field
[12]. Little to no investment has been made in developing software that
supports small-scale devices in grid and cluster computing, resulting in
such problems as software integration, service discovery, and applica-
tion-level interoperability. In terms of secondary storage, the limitation of
flash memory in handhelds is a major factor against using small-scale
devices. Applications need storage to place temporary and permanent
data for reuse or aggregation, but contemporary PDAs typically come with
only around 64 megabytes (MB) of memory or less. Grid systems also need
permanent and temporary storage for system software. Perhaps the use of
miniature secondary storage devices, such as IBM’s 1 GB Microdrive or
SanDisk®s 4 GB CompactFlash® card, will become more prevalent in the
near future. This, however, adds to the higher power requirements of the
device. Finally, security is always an issue with mobile wireless devices
because wireless transmission is susceptible to a wide range of attacks.

In addition to the technological issues just presented, other socioeco-
nomic problems become evident. We raise these issues in turn and address
them directly.

First, the issue of why one would even consider the use of small-scale
devices with restricted resources for grid and cluster computing at this
time, particularly when only a small fraction of Internet-connected desktop

Copyright © 2005 by CRC Press

Table 5.1. System Specifications for Contemporary PDAs

System CPU Storage Connectivity
Casio Cassiopeia 150 MHz NEC 32 MB RAM, 56K modem via cf.
E-125 VR4122 CompactFlash

Compagq iPAQ 3975 400 MHz Intel 64 MB RAM, Secure | Built-in Bluetooth
XScale Digital Card

Compagq iPAQ 5555 400 MHz Intel 128 MBRAM, Secure | Built-in Bluetooth,
XScale Digital Card 802.11b

Palm Tungsten C 400 MHz Intel 64 MB RAM, Secure Built-in 802.11b
XScale Digital Card

PCs currently contribute to the grid and grid-like distributed applications.
The argument for including small-scale devices in grids and clusters is
based on the sheer weight of numbers. The ubiquity of computing devices
in people’s pockets, briefcases, and homes has potentially become a vast
new source of processing power. According to Gartner Dataquest, a market
research firm, 12.1 million PDAs were shipped worldwide in 2002 [16].
Although this was a decline from the 13 million shipments in 2001, pro-
jected sales of PDAs remain promising. Of those sold annually in 2002, over
47 percent were Palm and Sony devices running the PalmOS® operating
system. In Table 5.1, we list the hardware specifications of some contempo-
rary PDAs. As can be seen from the table, the raw processing power of the
handhelds is not trivial given their mobility.

The argument for laptop PCs is more intuitive. It can be informally
observed that laptops are typically 0.5 generations behind desktops in
terms of storage capacity and CPU performance; at the time of this writing,
2.6 gigahertz (GHz) CPUs are now available in high-end laptops. Market
research showed that in 2002, sales of mobile PCs outgrew those of desk-
tops [17]. A user who owns a small-scale device can wirelessly connect to
the Internet and potentially to grids and clusters by using any of the cur-
rent or emerging wireless LAN or cellular standards shown in Table 5.2. The
emergence of new products using the 3G standards CDMA2000 or W-CDMA
will only further strengthen the argument in favor of inclusion. An evaluation
of the potential aggregate power of these machines is indeed compelling.

We add to our argument by considering five trends we believe will be
prevalent in the future:

1. Moore’s Law suggests increases in CPU performance for small-scale
devices as has been seen for desktop PCs. Such products as Intel’s
XScale line of power-efficient, fast CPUs specifically for the handheld
market bode well for future PDAs.

Copyright © 2005 by CRC Press

Table 5.2. Wireless LAN and Cellular Technologies

Bandwidth Range
Bluetooth 1 Mbps 10 meters
802.11a 54 Mbps 50 meters
802.11b 11 Mbps 100 meters
802.11g 54 Mbps 50 meters
Atheros Dynamic Turbo Mode | 108 Mbps 33 meters
HomeRF 10 Mbps 50 meters
UltraWideband 200 Mbps 5 meters
Former Metricom 128 kbps Cellular
2.5G 144 kbps Cellular
3G 2 Mbps Cellular

Sources: RHR, IBM, Verizon, Metricom, EE Times, and The Economist.

2. Wireless communication will grow with improved reliability for both
local area (using IEEE®802.11, Bluetooth, or Ultra Wideband) as well
as wide area (using 3G technology or perhaps ad hoc meshes of
wireless LANs).

3. Consumers will migrate away from tethered devices for everyday
applications such as word processing, spreadsheets, and Internet
browsing, as can be seen by the increased usage of desktop replace-
ment notebooks.

4. Battery efficiency will not substantially improve.

5. Grid and cluster applications will be more widely used.

We firmly believe that careful anticipation of such future developments
will lead to better preparation for later research down the road and will
provide a glimpse into a future grid of completely heterogeneous
machines. The time is ripe to start investigating the use of small-scale
devices for grids and clusters, due largely to the expected growth of mobile
processors, wireless communication, and consumer use of the first three
trends. An architecture will be needed to mitigate the fourth trend of lim-
ited battery efficiency, as well as to address issues of availability, interop-
erability, security, and network latency. Finally, all of this is in favor of meet-
ing the potential widespread adoption of grid and cluster technology as
stated in the fifth trend.

As a second issue against small-scale devices in grid and cluster com-
puting, it may be argued that research in this area should wait until these
devices gain sufficiently powerful CPUs and other resources so that their
contribution is more meaningful. Unfortunately, there will always be tiered

Copyright © 2005 by CRC Press

heterogeneity, no matter what year it is. Our research addresses the prob-
lem of dealing with the lowest rung of the technological ladder, the current
small-scale device, in order to address the technological issues that arise.
Similar problems may be evident in the future for whatever PDA-like device
may exist at that time. Research performed now helps us anticipate the
long-term use of lowest-rung devices on the grid and cluster computing in
the future.

Third, by their very nature, it may be doubtful that users will ever want
to give up their power-limited small-scale devices for others’ use. Slow
improvements in battery technology only compound the problem. There
are two ways to address this problem. A system architecture and program-
ming model can be designed to assuage the problem of small-scale device
overusage as perceived by the user. Our LEECH architecture can accom-
plish that by allowing device owners to autonomously decide whether or
not to participate without adversely affecting ongoing grid or cluster activ-
ity thanks to an adaptive availability scheme, as discussed later. Addition-
ally, the small-scale owner must be given a persuasive incentive to contrib-
ute his device. Elements of game theory suggesting commercial and
monetary incentives may be needed to encourage users [5].

Fourth, users typically do not leave their small-scale devices on all the
time and thus allow these machines to automatically shut off. This may
substantially reduce the potential number of resource contributors. If
users are motivated enough to want to contribute in the first place (as we
have suggested in the previous point), they will be able to allow such
devices to be always-on, a trait confluent with upcoming always-on 3G
wireless technology. People who demand always-on, always-connected
mobile devices can thus obtain savings by putting their machines in semi-
standby mode, where, for example, the CPU clockspeed can be reduced
and the energy-draining liquid crystal displays (LCDs) can be turned off
while the machine continues with computations. With these techniques,
battery conservation can be increased along with the amount of work that
can be done in the background. Two other points are noteworthy. In con-
temporary society, users at their desk, either at home or work, tend to
leave their small-scale device plugged into a rechargeable cradle or into
the wall socket when not in use anyways. In addition, although many
small-scale devices may be shut down, there will most likely always be
active devices to be used due to the potentially large number of users
involved.

Finally, there may not be a clear grid and cluster application domain that
can leverage the use of small-scale devices. Grid and cluster computing, in
general, has already established the context for its own existence: resource
sharing and distributed computation in a scalable, cost-effective manner.
Our research looks to preserve the grid abstraction by simply contributing

Copyright © 2005 by CRC Press

small-scale device resources for contemporary and future applications.
The most significant issue is that, as we have mentioned, small-scale
devices are typically constrained in hardware, software, and network con-
nectivity. Applications intended to leverage small-scale devices must be
written (or be adapted retroactively) such that their problem space can be
decomposed and distributed among small-scale devices accordingly to fit
these limitations, as we shall show. Furthermore, as the small-scale devices
evolve within the next few years, due to constant semiconductor improve-
ments, the computational power that can be extracted from them becomes
increasingly compelling.

5.4 The LEECH Architecture

Given that the use of small-scale devices in a grid is compelling and poten-
tially useful, a system architecture must be constructed to facilitate their
integration. In this section, we present an overview of our LEECH architec-
ture designed to meet this goal.

5.4.1 Key Challenges

A naive approach to an architecture design would be simply to run grid or
cluster software on the small-scale devices, connect the devices together,
and allow the devices to behave and assume the same responsibility as
typical desktop PC nodes. Although this approach may work, in practice a
number of significant obstacles will be encountered:

¢ (Grid/cluster software overhead — there is a memory and CPU use
overhead incurred for running grid or cluster software. Currently,
Globus is available only for desktop machines. Similarly, the
Seti@home distributed application runs only as a Windows® screen-
savetr. It is unlikely that small-scale devices, particularly PDA devices
with limited memory and CPU performance, will be able to operate
as full-fledged nodes.

¢ Device heterogeneity — the variety of devices is potentially large.
Workload spread across such machines cannot be generalized. For
example, the workload to be performed by Seti@home nodes
includes nontrivial Fast Fourier Transforms. Such an expectation for
the smaller devices is not realistic.

¢ Scalability and management — even for existing distributed systems,
scalability is a major issue. When one considers the inclusion of
hundreds of thousands of small-scale devices, scalability and the
management of these machines becomes an even larger issue.

e Service discovery — small-scale devices need to be able to find grid
nodes in order to participate.

e Dynamic, unpredictable availability — device owners are privileged
to turn off their devices at times of their own choosing.

Copyright © 2005 by CRC Press

e Power consumption — of course, the power consumption require-
ments of devices is a major factor.

e Multi-hop wireless network participation — if the devices participate
in a wireless network, what are the ramifications with regard to
routing and discovery?

5.4.2 Overview of Architecture

To address these issues, we chose a proxy-based clustered architectural
approach to integrating small-scale, heterogeneous devices to computa-
tional grids and clusters. The LEECH architecture enables communication
between small-scale, heterogeneous devices and a computational grid or
distributed system via a proxy middleware. We term the proxy node an
interlocutor and we call the small-scale, heterogeneous devices to which it
is connected its minions. In our system, minions are closely associated
with an interlocutor, which in turn is responsible for hiding the heteroge-
neity of its minions from the rest of the grid system. We suggest that inter-
locutors can support a large number of minion devices and that the aggre-
gation of many minions’ resources can be presented to the distributed
system as an interlocutor’s own resources. This hierarchical organization,
similarly seen on the Internet with hierarchical routing and domain name
system (DNS), improves scalability by intentionally limiting the number of
devices that is globally visible.

On each interlocutor and minion, we instantiate a daemon process that
facilitates communication and interactivity within the LEECH system. The
interlocutor daemon provides functionality for service discovery, session
management, adaptive control, and job scheduling. In a similar fashion, the
minion daemon handles service discovery beaconing, application frag-
ment management, and session control.

5.4.3 Grid/Cluster and LEECH

In Figure 5.2, we show the interaction between nodes using MPl and LEECH.
In the context of MPI alone, programmers develop their parallel applica-
tions while using MPI library calls (such as MPl _Send and MPI _RecvV) to
send and receive buffers of data. An interconnectivity fabric, whether a
communication bus within a multiprocessor, an Ethernet network within a
LAN, or the Internet for distributed grids, facilitates message delivery.

We also note that distributed shared memory can be used as a program-
ming model for distributed applications, but in this chapter we focus on
message-passing applications.

Figure 5.2 also shows how the LEECH architecture fits in with existing
systems. The existing grid or cluster remains unchanged, save for the exe-
cution of LEECH components on chosen nodes, which act as both a grid

Copyright © 2005 by CRC Press

Figure 5.2. Communication Architecture of a Distributed Application Using
LEECH as Part of a Grid/Cluster System

node as well as an interlocutor. Communication between the interlocutor
with other grid nodes still uses MPI, although communication between the
interlocutor and the minions is through our LEECH API.

5.4.4 Application Major Component and Minor Component

An application that runs atop the LEECH architecture is divided into two
parts — the major component and the minor component. The major compo-
nent contains the application logic and MPI communication calls as well as
LEECH calls. Note that in the absence of LEECH, the major component is
executed on the grid/cluster like any other MPI program. On the other
hand, using the application within the LEECH architecture requires that
the major component be written to contain LEECH communication calls as
well as programming logic to partition tasks and data among the minions.
Additionally, if the major component runs within LEECH but without min-
ions, then the programming logic should appropriately handle normal
computational activities within the cluster or grid.

The minor component runs on minion devices and should be written
to contain the application logic to handle an apportioned segment of
computation and data. This minor component communicates with a

Copyright © 2005 by CRC Press

major component through the LEECH API. This configuration allows the
interlocutor running the major component to interact with other cluster
nodes (via MPI) on behalf of the minions running the minor components.

The logical division of a distributed application into our major compo-
nent and minor component allows code executed on the minion nodes to
be smaller than the entire distributed application and thus more easily exe-
cuted on small-scale devices with limited memory.

Furthermore, the grid or cluster MPI runtime overhead may be too large
for such devices, so MPI communication does not reach the minor compo-
nent in our architecture. This application division also introduces a differ-
ence between LEECH applications and typical MPI applications: MPI appli-
cations are typically data parallel, but LEECH applications can be task
parallel or data parallel.

5.4.5 Interlocutor

A LEECH interlocutor node is itself a grid/cluster node that has been
deemed an interlocutor by its administrators based on a machine’s hard-
ware and network capabilities. Interlocutor nodes should be placed strate-
gically such that they are geographically close to a focal point where a
large number of minions often come online to reduce network latency
between the minion and the interlocutor. In a wireless LAN environment,
interlocutors should be colocated with wireless base stations where large
numbers of wireless minions regularly connect. Current distributed/grid
architectures require nodes to have fairly powerful processors, more than
moderate amounts of primary and secondary storage, and reliable net-
work connections. The small-scale devices we consider do not meet these
requirements, so interlocutor nodes are typically mid-range desktop PC or
workstation systems or greater. (In our experiments, we used a low-end
Sun Sun Blade™ 100 workstation.) Furthermore, an interlocutor may itself
be a work node and perform a part of an application’s computation, but we
leave that software design choice to the application programmer.

Although an interlocutor is designed to be coupled with a grid or cluster
system through the distributed application itself, it is important to note
that the LEECH system, in particular the daemons and the communication
library, can run standalone (i.e., without MPI or Globus) outside of a grid or
cluster. In this mode, a parallel message-passing application can still be
written using only our APIs and daemons to run within an isolated group of
minions and an interlocutor. It is also possible for a LEECH system to be
organized in a hierarchical manner, such that an interlocutor can be a min-
ion of another interlocutor. Because the focus of this chapter is on LEECH
itself, we will leave a closer analysis of LEECH’s interaction with other grid
infrastructures like Globus for future work.

Copyright © 2005 by CRC Press

The interlocutor software is a daemon process logically divided into
four main services or components. The service discovery server (SDS)
allows minions to discover and register with interlocutors in the vicinity.
The major component handles connections and communication with the
major component running on the same machine as the interlocutor dae-
mon. This session manager allows major components to post new work to
be computed and pick up results, if any, from completed computations.
The interlocutor-to-minion session manager acts as a server waiting for
connection requests from minions and handles communication sessions
with its minions. The interlocutor-to-minion session manager communi-
cates directly with the minion-to-interlocutor session managers in its min-
ions. Finally, the job manager and availability adaptation scheme handles
the scheduling and assignment of jobs to minions, working closely with the
interlocutor-to-minion session manager.

5.4.6 Minion

A minion executes a LEECH minion daemon process responsible for:

Receiving a job from the interlocutor with which it has registered
Making some computation based on the job’s data

Sending results back to the interlocutor

Repeating the three previous steps, until going offline

The minion daemon process is the middleman between the minor compo-
nent and the interlocutor. The minion, much like the interlocutor, has three
main components:

1. Service discovery agent (SDA)
2. Minion component session manager
3. Minion-to-interlocutor session manager

However, unlike the interlocutor, the minion’s services run serially to allow
operation on small-scale devices whose operating systems may not sup-
port multi-threading. The SDA allows a minion to discover local interlocu-
tors. The SDA advertises minion services to interlocutors it has discov-
ered. The minion component session manager handles connection setup
and teardown and communication with minor components running on the
same small-scale machine as the minion daemon process. Finally, the min-
ion-to-interlocutor session manager handles connections and communica-
tion with interlocutor daemons that have been discovered by the minion’s
SDA. The minion-to-interlocutor session manager works directly with the
interlocutor’s interlocutor-to-minion session manager.

5.4.7 Availability Adaptation and Job Management

On the small-scale class of devices we are considering, we cannot expect
results returned from a node that has gone offline and will not be coming

Copyright © 2005 by CRC Press

back online. The grid community has identified this unreliability problem
but has not yet addressed it [9]. Typical MPI programming idioms deal with
node failures with fail-stop semantics.

Instead, resiliency can be facilitated by the parallel programming library
or by the application itself. In LEECH, we provide support to handle
dynamic minion availability within the library because low availability
(and even periods of complete disconnectivity) is common. We have devel-
oped an availability adaptation scheme to gracefully accommodate mobile
systems that come and go in and out of the network before completing the
computation of some job whose results must eventually be submitted to
the interlocutor. The two main features that facilitate our availability adap-
tation scheme are the LEECH job and replicated job assignments.

ALEECH job is a partition of the computation and data of an application.
More specifically, it comprises a unique set of initial data, the computation
of this data by one or more minion nodes, and its results. A job is created
at the interlocutor by calling a LEECH send function and its results are col-
lected by calling a LEECH receive function.

We chose to keep minions anonymous from the major component rather
than to provide named communication. If we supplied the application pro-
grammer with a means of establishing and maintaining named communica-
tion between the interlocutor and a specific minion, providing resiliency
would mean adding checkpoints for each set of communications back and
forth between each interlocutor and minion pair and restoring checkpoints
when failures occur. We can easily see how adapting to dynamic availabil-
ity, but providing direct, named communication would cause LEECH to
grow in complexity, shrink in scalability, and lose significant potential per-
formance gains.

The LEECH job supports the communication model above by allowing
interlocutors to submit and collect jobs from minion classes rather than
from individual minions. Each job is individualized with a unique job ID
(JID). The LEECH interlocutor generates JIDs and manages the mappings
between jobs and the minions; however, this mapping is invisible to the
application programmer.

A job uses one round trip communication exchange between the inter-
locutor and a minion. If a minion fails or goes offline unexpectedly, the
interlocutor’s SDS component’s lease manager notifies the job manager,
which simply reassigns the job to a new minion. The subsequent computa-
tion of this reassignment entails only one job’s amount of additional work
and only one repeated transmission.

Replicated job assignments add another level of resiliency to the LEECH
architecture. Once all submitted jobs have been assigned to some set of

Copyright © 2005 by CRC Press

minions, the interlocutor begins replicating job assignments across avail-
able minions. If all of the minions assigned to a replicated job eventually
fail, the interlocutor begins reassigning the job to a new set of available
minions. This rule guarantees that a job submitted to the LEECH system
will eventually be completed, even in the case that all minion node connec-
tions are extremely unreliable. As soon as one minion returns a job’s
results, the interlocutor commands the minions computing the job’s repli-
cations to abort and free their resources and makes the results available to
the application.

5.5 The LEECH Programming Model

LEECH implements its own message-passing programming model, API, and
communication library, described here. A full discussion is beyond the
scope of this chapter and more detailed results can be found in our com-
panion research papers. Our system supports the so-called embarrass-
ingly parallel programming style also found in other grid or distributed sys-
tems. In standard grid or cluster architectures, nodes interoperate through
the use of a communication library such as MPI [33]. Distributed variants
of MPI include MPICH [34], a portable version commonly used in Beowulf
workstation clusters, and MPICH-G2 [35], used within the Globus grid tool-
kit. In this chapter, we will use MPI to represent this broad family of vari-
ants.

However, unlike processor nodes in a high-bandwidth grid system, the
minions in a LEECH system are small-scale, potentially mobile devices that
cannot necessarily maintain high levels of availability or reliability due to
limitations in network connectivity. Due to this reason, the communication
semantics of message-passing libraries, such as MPI, cannot be followed.
For example, a downed processor results in a MPI communication call fail-
ure; the accepted programming idiom in response to a failed MPI call is to
terminate the program. With minions, intermittent connectivity or avail-
ability is the norm. Furthermore, the overhead of running the MPI library
or the Globus system on small-scale devices may be prohibitively expen-
sive. Our tiered proxy-based architecture presented in the last section sug-
gests a means to hide minion heterogeneity, but even with this design, the
communication model that we expect between the interlocutor and min-
ions would still make MPI an inappropriate choice.

There is a need for a more responsive and adaptive programming model.
Our approach uses a lightweight communication library that can be inte-
grated in a grid/distributed application. The LEECH architecture and APIs
do not require the porting of entire applications; rather, LEECH function
calls are added at key points in the application code where data and com-
putation can be decomposed and sent to minions.

Copyright © 2005 by CRC Press

The LEECH APIs are modeled after standard message passing library
APIs to minimize the learning curve for application programmers. How-
ever, unlike standard message passing libraries, LEECH does not provide
named communication between the interlocutor and a particular minion.
For instance, the MPI runtime system assigns a unique identifier called a
rank to each processing node and communication calls use this rank (or a
wildcard) to identify senders and recipients. Such a model is appropriate
for the homogeneous, highly available nodes common in contemporary
grid or cluster systems. On the other hand, a minion contributing its
resources to a LEECH system is free to come and go at any time it pleases.
To gracefully facilitate this situation, our APIs provide anonymous commu-
nication between the interlocutor and classes of minions, while still giving
the programmer the feel of named communication.

One of the distinguishing characteristics of our programming model is
that we take into consideration the fact that available compute resources
will be heterogeneous by nature. We defined an abstract virtual class ID, or
VID, that allows a set of devices to be grouped into abstract categories rel-
ative to their heterogeneous characteristics. An interlocutor’s minion
nodes are grouped into VIDs ranging from 1 to 10, where 1 represents the
lowest amount of resource power and 10 the highest. Nodes can be
grouped into VIDs by a combination of 1 or more characteristics. As men-
tioned earlier, the use of VIDs is in contrast to direct, named communica-
tion, such as MPI's use of ranks. Although MPI allows the formation of com-
munication groups, this capability is intended to facilitate parallel
algorithm design rather than to hide heterogeneous hardware. In our cur-
rent implementation, a system administrator assigns devices into VID
classes, thereby allowing programmers to address devices by classes
through the API. The runtime system then matches jobs with VID classes.
In future work, we plan to provide an automated methodology for catego-
rizing minions into their respective VIDs by a combination of CPU perfor-
mance, network bandwidth, and storage or the specific model of a branded
minion device. One particularly important metric we intend to follow in
future work is that of power consumption. LEECH also gives the applica-
tion programmer the option of using a built-in default algorithm to decom-
pose or partition a distributed task and scheduling these tasks among
available processors by way of the LEECH distribute and gather functions.

5.6 Experiments and Analysis

Here we analyze the performance of the LEECH library against MPI on a
testbed of small-scale devices running parallel applications. Our results
will show that MPI is a poor choice for communication within a small-scale
device environment. In particular, we will show that LEECH has lower com-
munication overhead (particularly relevant for communication-intensive

Copyright © 2005 by CRC Press

programs), exhibits better resiliency in the face of minion failure, and pro-
vides flexible tools for more convenient data and computation partitioning.

Due to chapter space constraints, we omit results from our applications
that use the interlocutor and minions within a larger grid cluster (where
the interlocutor acts as a grid node). This larger scenario already encom-
passes the interactivity between the interlocutor and the minions, which is
the critical path we are studying.

The experiments in this section were chosen to represent classes of
communication-intensive or computation-intensive applications. For the
latter, although the interlocutor’s major component could have been writ-
ten to perform application computation, we chose to have the interlocutor
execute only partitioning and daemon functionality; this allowed us to
focus on the performance of the minions in computationally intensive pro-
grams.

We wanted a broad range of small-scale devices that we could easily pro-
gram. We thus chose a set of low-end laptops (Dell™ 3800 and 4000 models
over 2 Mbps 802.11b running Red Hat Linux), PDAs (Compaq iPAQ 3650 and
3670 models over 2 Mbps 802.11b running Familiar Linux), and a PlaySta-
tion 2 (connected with Fast Ethernet) with varying CPU, storage, and com-
munication characteristics. All of the machines have some form of Linux
installed on them. The PlayStation 2 in particular used the Linux Kit from
Sony, which provided a special Red Hat distribution along with a hard drive
and Ethernet adapter. Except for the synthetic communication experiment,
we used a Sun Blade 100 workstation running Solaris™ operating system as
the interlocutor. All testbed devices used alternating current (AC) power
during the course of the experiments. In future work, as our testbed is
expanded, we will look at how power constraints affect the system, partic-
ularly when users are working on the devices at the same time. We will look
into relevant power metrics and heuristics to react to them.

5.6.1 Synthetic Application for Measuring
Communication Overhead

In our first experimental set, we wanted to show the overhead of the LEECH
communication library against that of MPI. We used MPICH, a popular
implementation of MPI used in current Beowulf cluster computing. We
installed MPICH version 1.25 on all our machines except for the iPAQ PDAs
because our cross-compiler could not compile the MPICH code. Another
notable fact is that the memory footprint of MPICH’s MPD messaging dae-
mon is over 800 kilobyte (KB), whereas our LEECH minion daemon
required only 400 KB. Although the PDAs could have run the MPICH dae-
mons in theory, other more memory-constrained devices, particularly
smaller embedded devices, may not.

Copyright © 2005 by CRC Press

In Figure 5.3, we show the execution of a synthetic communication
benchmark, written as both LEECH and MPI versions, to reveal the round
trip latencies between two laptops connected over an 802.11 network. The
times measured for both versions include other 802.11 traffic. This applica-
tion simply passes message buffers back and forth between one machine
and another without any further computation. We varied the buffer size
from 5 KB to 1000 KB, as shown on the x-axis. It can be seen in this graph
that the LEECH version incurs a much lower communication overhead
than does MPICH/MPD. This difference increases as the size of the buffer
increases.

It has been previously noted that MPI has a high degree of communica-
tion overhead proportional to the message size [25]. Contributing factors
include message headers, management of large data structures to handle
unfulfilled function calls, and group organization. LEECH is much more
lightweight with minimal message headers and simple internal manage-
ment schemes.

5.6.2 RSA Decryption

This experimental set was chosen to show the performance of LEECH for a
computationally intensive application. The application we chose, RSA key-
breaking, requires a large amount of computation with little communica-
tion.

RSA is a popular public key cryptographic system [39] and decryption
of its key is a computationally intensive operation that involves factoring a
large integer key into its prime factors. Specifically, given a large number n
that is a product of two large primes p and q, we need to find p and q. A
brute force method is to check for all odd numbers in the interval between
3 and the square root of n, which can be extremely time-consuming
because n is typically very large. Fortunately, this process can be parallel-
ized by dividing the searching task to multiple machines and involves
dividing the interval into nonoverlapping subintervals and letting each
node work on one of them. Thus, the data transfer involves passing to each
worker only the subinterval bounds and the value of n. We wrote MPI and
LEECH versions of the application. They use standard C and the publicly
available gnp library for handling large numbers.

Figure 5.4 shows the results of several experimental runs. We varied the
key size, shown along the x-axis, and measured the application’s time to
completion. There are three pairs of graph lines: there is a pair from the
LEECH and MPI versions for three different experiments using two, three,
and four nodes. The nodes were taken from the set of laptops and the Play-
Station 2.

Copyright © 2005 by CRC Press

Synthetic Communication Benchmark
20 T T T T T T T T T

15

10

Time in seconds

0 1 1 I 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Message size in kilobytes

Figure 5.3. Average Round-Trip Latencies Measured from Execution of Synthetic Communication Benchmark
Experiments were measured across two laptops.

Copyright © 2005 by CRC Press

RSA Keybreaker

120 :
LEECH with 2 nodes
MPI with 2 nodes -
LEECH with 3 nodes - o
MPI with 3 nodes --------
100 + LEECH with 4 nodes ——-m=--—
MPI with 4 nodes ————
80
[}
2 "
[‘ "
O =t
8 K
s o |
= it
E ot R s
; ° _:__:__’._:'l:": =t
40 |
20 & |
0 1 | . :
0 Se+16 le+17 1.5e+17 2e+17 250+17

Key space

Figure 5.4. Average Execution Times of RSA Keybreaker Application
Two-node experiments were performed on two laptops. Three-node experiments were performed on
three laptops. Four-node experiments were performed on three laptops and the PlayStation 2.

Copyright © 2005 by CRC Press

We note that current RSA practices suggest 512-bit keys, which is about
10155, A 512-bit key supposedly takes $1 million in equipment cost to crack
in about eight months [35]. In our experiments, we obviously did not want
to approach these key lengths; instead, our keys ranged from 10> to 107,
which allowed trial runs to be completed within reasonable time bounds to
facilitate experimentation.

This graph shows two important properties of the LEECH system. First,
the application scales well with an increasing number of nodes, which is
what one would obviously expect from a program run on parallel process-
ing nodes. The LEECH runtime system in no way hinders this highly sought
characteristic. Second, each run of the LEECH version is slightly slower
than the pure MPI version on a consistent basis. We saw earlier that the
communication overhead for LEECH is less than that of MPI; however,
because this RSA application is computation-intensive rather than commu-
nication-intensive, this advantage is insignificant. Instead, this graph
shows us that LEECH suffers from a small overhead that cannot be amor-
tized for computationally bounded applications. This overhead comes
from the job and session management subsystem. However, as can be seen
in the graph, this overhead becomes less consequential with larger execu-
tion times.

5.7 Looking to the Future

Using small-scale devices for grid and cluster computing will potentially
have an important role. What we have described in this chapter is LEECH,
a system that supports this vision. Our use of a proxy-based architecture
allows minion heterogeneity to be hidden, but our programming model and
library give programmers the means to address devices as composite
classes rather than extremely wide-varying individual machines. We
showed through experimentation that the communication library has less
overhead than MPICH and programs written to use our system demon-
strate good scalability properties. Our experiments involved a heteroge-
neous mix of devices, including wireless laptops, PDAs, and a PlayStation
2 gaming console.

This research area is rich in technical challenges and opportunities.
Potential topics include:

e (luster topology configuration — we would like to gain insight from
the field of mobile ad hoc networking to determine optimal topology
strategies for our clusters. If the interlocutor is a stationary node,
does it act in a similar way to a base station in an 802.11 network?
If the interlocutor is mobile, is it similar to a clusterhead/gateway
in a mobile ad hoc network? What if the cluster is in a multi-hop
wireless network that reaches the wired grid? What if the grid system
is itself in an all-wireless network? These are the types of issues that

Copyright © 2005 by CRC Press

arise when we try to find technical issues shared between our sys-
tem and ad hoc networks.

¢ Security — we need to develop a trust model to accommodate our
system architecture. Wireless security will play a major part in our
attempts to provide a secure environment for small-scale device
owners to participate. Network layer security protocols, such as
IPsec, readily provide qualitative protection between a wireless host
and a trusted LAN or a trusted host. Transport layer security pro-
tocols, such as Secure Socket Layer (SSL), Transport Layer Security
(TLS), Wireless Transport Layer Security (WTLS), provide similar
protection for user sessions. Nevertheless, much work remains, such
as addressing the lack of security of 802.11 Wired Equivalent Privacy
(WEP) and Bluetooth.

¢ (Code deployment — code deployment of application code will need
to take into account software interoperability with Globus, security,
and feasibility. We are looking to leverage the research done in the
field of mobile code.

¢ Economic model — economic modeling is a potential area of inter-
esting research. Such a model may be needed in our plans because
we are dealing with consumers and their devices. Naturally, consum-
ers are hesitant to volunteer their machines due to concerns of
power consumption, resource usage, and privacy. Will they respond
to our LEECH system favorably? In one sense, this question has
already been answered by the strong success of the Seti@home
project: users are indeed willing to contribute their machines for
the greater good of distributed computing. However, users will be
less likely to allow their machines to be used than they would their
resource-rich desktop PCs. As mentioned earlier, users need to be
motivated on two fronts. First, a sufficiently persuasive support
architecture of technical merit must be available that is proven to
mitigate the issues inherent in devices. Our design will hopefully
provide reassurance to the users that their limited machines are
being efficiently used. However, no system architecture will com-
pletely mask these limitations. To further urge owners not fully
convinced of the effectiveness of our system architecture, we sug-
gest a second, complementary approach: users will need commer-
cial and financial incentive to contribute what they may perceive to
be their units’ limited resources. We believe this project provides a
great opportunity for our research group to contribute work in the
field of economic modeling for distributed systems.

¢ Performance and scalability prediction — performance modeling
and measurements will play a key role in this project. Performance
modeling is traditionally used in the design of complex systems to
assist in the selection of protocol/architecture alternatives; the inter-
pretation of measured results; and the extrapolation of performance

Copyright © 2005 by CRC Press

behavior observed in a small testbed to larger, more realistic system
scenarios. In our project, we will use modeling and simulation in all
the above capacities. The most important (and challenging) contri-
bution, however, will be in the extrapolation and scaling of the
results. The design of a highly scalable system such as our proposed
LEECH environment, where a multitude of diverse clients are exe-
cuting on heterogeneous networks, requires careful a priori model-
ing to avoid serious mistakes in the implementation and deployment.
These types of systems are notoriously complex to model: they are
analytically intractable, abstract simulations of mobile wireless sim-
ulations are inaccurate, and detailed simulation models may be com-
putationally impractical for any but small configurations. Further,
previous performance studies of mobile and wireless systems have
typically emphasized either the application or the network such that
only one of the two major system components is modeled in detail
and the other component is represented by an abstract model. Thus,
networking-oriented simulators (e.g., GloMoSim, NS, OPNET) will
tend to develop a detailed model of the network possibly including
models of the protocol, together with propagation medium and radio
models for wireless networks, while representing the application
simply as stochastic, or possibly trace-based, traffic streams.

References

1.

2.

10.

T. Anderson, D. Culler, D. Patterson, and the NOW Team. A Case for NOW (Networks
of Workstations), IEEE Micro, February 1995.

M. Baker, R. Buyya, and D. Laforenza. The Grid: International Efforts in Global Com-
puting, in Proceedings of the International Conference on Advances in Infrastructure for
Electronic Business, Science, and Education on the Internet, July 31-August 6, 2000.
D. Becker, T. Sterling, D. Savarese, J. Dorband, U. Ranawak, and C. Packer. Beowulf:
A Parallel Workstation for Scientific Computation, in Proceedings of the International
Conference on Parallel Processing, 1995.

J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva. A Performance Comparison
of Multi-Hop Wireless Ad-Hoc Network Routing Protocols, Mobile Computing and
Networking, pp. 85-97, 1998.

R. Buyya, K. Branson, J. Giddy, and D. Abramson. The Virtual Laboratory: Enabling
On-Demand Drug Design with the World Wide Grid, in Proceedings of the IEEE Inter-
national Symposium on Cluster Computing and the Grid, May 21-24, 2002.

Cactus. From Supercomputers to PDAs: Cactus on an iPAQ, August 27, 2002. www.
cactuscode.org/News/Ipaq.html.

T. Cai, P. Leach, Y. Gu, Y. Goland, and S. Albright. Simple Service Discovery Protocol,
IETF Internet Draft, October 1999.

H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLeS Parameter Sweep
Template: User-Level Middleware for the Grid, in Proceedings of Supercomputing, 2000.
K. Czajkowski, S. Fitzgerald, 1. Foster, and C. Kesselman. Grid Information Services
for Distributed Resource Sharing, in Proceedings of the 10th IEEE International Sym-
posium on High-Performance Distributed Computing (HPDC), 2001.

H. Dail, H. Casanova, and F. Berman. A Decoupled Scheduling Approach for the GrADS
Program Development Environment, in Proceedings of Supercomputing, 2002.

Copyright © 2005 by CRC Press

www.

cactuscode.org/News/Ipaq.html

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

3L

32.

T. DeFanti, I. Foster, M. Papka, R. Stevens, and T. Kuhfuss. Overview of the I-WAY:
Wide-Area Visual Supercomputing, The International Journal of Supercomputing Appli-
cations and High Performance Computing, vol. 10, no. 2, Summer-Fall 1996.

Hooked on Lithium, The Economist, Technology Quarterly, June 22, 2002.

J.Flinn, S. Park, and M. Satyanarayanan. Balancing Performance, Energy Conservation,
and Application Quality in Pervasive Computing, in Proceedings of ICDCS, July 2002.
G. Forman and J. Zahorjan. The Challenges of Mobile Computing, IEEE Computer, vol.
27, no. 4, April 1994.

L. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit, Interna-
tional Journal of Supercomputer Applications, vol. 11, no. 2, 1997.

Gartner, Gartner Dataquest Says Worldwide PDA Market Suffers through a Dismal
Year in 2002, Gartner Press Release, January 27, 2003. www3.gartner.com/ 5_about/
press_releases/pr27jan2003a.jsp.

Gartner, Gartner Says Worldwide PC Shipments Experienced Third Consecutive Quar-
ter of Positive Growth, Gartner Press Release, April 17, 2003. www3.gartner. com/5_
about/press_releases/prapr172003a.jsp.

Globus, www.globus.org.

F. Gonzalez-Castano, J. Vales-Alonso, M. Livny, E. Costa-Montenegro, and L. Anido-Rifon.
Condor Grid Computing from Mobile Handheld Devices, ACM Mobile Computing and
Communications Review, vol. 7, no. 1, January 2003.

A. Grimshaw, W. Wulf, J. French, A. Weaver, and P. Reynolds, Jr. Legion: The Next
Logical Step toward a Nationwide Virtual Computer, University of Virginia Technical
Report no. CS-94-21, 1994.

M. Haahr, R. Cunningham, and V. Cahill. Supporting CORBA Applications in a Mobile
Environment, in Proceedings of the 5th International Conference on Mobile Computing
and Networking, August 1999.

J. Haartsen. BLUETOOTH — the Universal Radio Interface for Ad-Hoc Wireless Con-
nectivity, Ericsson Review, no. 3, 1998.

K. Kennedy, M. Mazina, J. Mellor-Crummey, K. Cooper, L.Torczon, F. Berman, A. Chien,
H. Dail, and O. Sievert. Toward a Framework for Preparing and Executing Adaptive Grid
Programs, in Proceedings of NSF Next Generation Systems Program Workshop, April 2002.
T. Kimura and H. Takemiya. Local Area Metacomputing for Multidisciplinary Prob-
lems: A Case Study for Fluid/Structure Coupled Simulation, in Proceedings of the
International Conference on Supercomputing, 1998.

M. Kobler, J. Kim, and D. Lilja. Communication Overhead of MPI, PVM, and Sckt
Library, University of Minnesota Tech Report HPPC-98-06, 1998.

C. Lee, C. DeMatteis, J. Stepanek, and J. Wang. Cluster Performance and the Implica-
tions for Distributed, Heterogeneous Grid Performance, in Proceedings of 9th Hetero-
geneous Computing Workshop, May 2000.

C. Lee, S. Matsuoka, D. Talia, A. Sussman, M. Mueller, G. Allen, and J. Saltz. A Grid
Programming Primer, Technical report, Advanced Programming Models Research
Group, August 2001.

M. Litzkow, M. Livny, and M.W. Mutka. Condor — A Hunter of Idle Workstations, in
Proceedings of the 8th International Conference of Distributed Computing Systems, June
1988.

S. Lyer, L. Luo, R. Mayo, and P. Ranganathan. Energy-Adaptive Display System Designs
for Future Mobile Environments, in Proceedings of ACM Mobisys, May 2003.

J. Markoff. From PlayStation to Supercomputer, The New York Times, May 27, 2003.
G. Miklos, A. Racz, Z. Turanyi, A. Valko, and P. Johansson. Performance Aspects of
Bluetooth Scatternet Formation, in Proceedings of the Ist Annual Workshop on Mobile
Ad Hoc Networking and Computing, 2000.

M. Migliardi, M. Maheswarn, B. Maniymaran, P. Card, and F. Azzedin. Mobile Interfaces
to Computational, Data, and Service Grid Systems, ACM Mobile Computing and Com-
munications Review, vol. 6, no. 4, October 2002.

Copyright © 2005 by CRC Press

www.globus.org

33.
34.
35.

37.

38.

39.

40.

41.

42.

43.

MPI: A Message Passing Interface Standard, June 1995. www.mpi-forum.org.

MPICH — A Portable MPI Implementation, www-unix.mcs.anl.gov/mpi/mpich/.
MPICH-G2 homepage, www3.niu.edu/mpi/.

M. Robshaw. Security Estimates for 512-bit RSA, Technical note, RSA Laboratories,
1995.

G. Pei, M. Gerla, and X. Hong. LANMAR: Landmark Routing for Large Scale Wireless
Ad Hoc Networks with Group Mobility, in Proceedings of IEEE/ACM MobiHOC, August
2000.

C. Perkins and D. Johnson. Mobility Support in IPv6, in Proceedings of the 2nd Annual
International Conference on Mobile Computing and Networking, November 1996.

RSA Laboratories, Cryptography Frequently Asked Questions, http://www.rsasecurity.
com/rsalabs/faq/index.html.

K. Truelove and A. Chasin. Morpheus out of the Underworld, www.openp2p.com/pub/
a/p2p/2001/07/02/morpheus.html.

UIUC, Scientific Computing on the Sony PlayStation 2 at the University of Illinois,
Urbana-Champaign, arrakis.ncsa.uiuc.edu/ps2/index.php.

UPNP, Universal Plug and Play Device Architecture Reference Specification, Microsoft
Corporation.

M. Weiser. The Computer for the Twenty-First Century, Scientific American, September
1991.

Copyright © 2005 by CRC Press

http://www.rsasecurity.

com/rsalabs/faq/index.html
http://www.rsasecurity.

com/rsalabs/faq/index.html
www.openp2p.com/pub/

a/p2p/2001/07/02/morpheus.html
www.openp2p.com/pub/

a/p2p/2001/07/02/morpheus.html

Chapter 6
Multimedia
Messaging Service

Syed A. Ahson

6.1 Introduction

Messaging has become one of the most dominant applications in the world
of mobile computing. Short Message Service (SMS) and Enhanced Messag-
ing Service (EMS) are very successful services in second generation (2G)
networks such as Global System for Mobile (GSM). Third Generation Part-
nership Project (3GPP) and Wireless Access Protocol (WAP) Forum have
defined Multimedia Messaging Service (MMS) as the messaging service for
2.5G and 3G networks. MMS allows for the exchange of messages contain-
ing multimedia elements. Multimedia messages can also be composed as a
slide show containing text, audio, video, and picture elements. MMS is
designed to work well with existing multimedia messaging services such as
SMS, EMS, and e-mail. The 3GPP and WAP Forum have worked together to
standardize MMS. The 3GPP has been responsible for high level service
requirements, architectural aspects of MMS, message structures, and con-
tent formats. The 3GPP has also produced technical realizations of
selected interfaces between the network elements. WAP Forum has defined
technical realizations of selected interfaces on the basis of WAP and Inter-
net transport protocols. The 3GPP has provided four releases of service
definitions and WAP Forum has completed technical realizations of two of
them. MMS 1.0, the first technical realization is based on the WAP proto-
cols. MMS 1.1, which is the current technical realization, enables devices
and network elements to use Internet transport protocols.

The 3G networks are designed to provide for high bandwidth connec-
tions. High bandwidth connections will enable transfer of larger messages.
MMS users will be able to compose from simple text messages, as in SMS,
to complex multimedia messages as found in the Internet. MMS messages
are similar to Microsoft® PowerPoint® presentations. Each slide is com-
posed of text, audio, video, and images to be laid out on a graphical region.
The time for which a slide is shown can be configured by the content

Copyright © 2005 by CRC Press

User

Message . Databases
Store
E _:i @Q

MM5 Home Location
MMS Server Register (HLR)
MMS User MM1 MMS8 Billing
Agent System
MM2
MM7 MMS
VAS
MMS Relay
& Z
O %,
External Remote
Server MMSC

Figure 6.1. MMS Architecture

author and can be adjusted by the viewer. MMS inherits many powerful fea-
tures of existing messaging systems such as group sending, delivery, and
read-reply reports. MMS messages have class and priority attributes. MMS
users are informed of incoming MMS messages by notifications. MMS mes-
sages can be downloaded automatically or deferred until the user requests
it. MMS allows for persistent network-based storage. Messages can be
stored persistently in the network and manipulated remotely by users.
MMS supports content adaptation to accommodate the broad range of
device capabilities. MMS messages can be manipulated for the recipient’s
device configuration. MMS service is now widely available across the globe
and has been identified by business analysts as a major revenue generator.

6.2 MMS Architecture

Several entities work together to provide the MMS Experience. Figure 6.1
illustrates the different entities required in a typical MMS environment.
MMS user agent (MMS UA) is the software application resident in the
mobile handset. This software application allows for composition, viewing,
sending, and retrieval of multimedia messages. MMS UA is responsible for
the presentation of notifications, read-reply, and delivery reports. The
MMS environment (MMSE) is a set of MMS entities under the control of a
single MMS provider. MMS relays are responsible for routing MMS mes-
sages. MMS servers are responsible for storing messages. Usually the MMS
server and MMS relay functionality is combined into a single element. This

Copyright © 2005 by CRC Press

Table 6.1. 3GPP to WAP Forum Terminology Mapping

3GPP Terminology | WAP Forum Terminology

MM1 MMSy,

MM2 MMSg

MM3 E (e-mail server) and L (legacy)
MM4 MMSg

MM5 not referred to

MM6 not referred to

MM7 not referred to

MMS8 not referred to

combined element is known as the MMS center (MMSC). The MMSC also
presents an interface to other existing messaging systems such as SMSC
and e-mail servers. This ensures interoperability with Internet users and
SMS, EMS devices. MMSC can deliver MMS messages in two modes —
batch mode and streaming mode. In batch mode, entire messages are deliv-
ered to the user agent. In the optional streaming mode, messages are deliv-
ered part by part to the user agent. MMSC is responsible for content adap-
tation. MMSC tailor the MMS message to be delivered based on capabilities
of the user agent. MMSC generate charging data records (CDR) for billing
purposes. MMS may offer additional capabilities such as blocking sub-
scribers and blacklists.

6.2.1 MMS Interfaces

In the MMS environment transactions between network entities are associ-
ated with interfaces. An MMS transaction proceeds by exchange of infor-
mation elements across the interfaces. The 3GPP has termed these inter-
faces as MM1 through MMS. These interfaces are illustrated in Figure 6.1.
MM1 is the interface between MMS UA and MMSC. MM2 is the interface
between MMS relay and MMS server. MM3 is the interface between MMSC
and external servers such as e-mail servers and SMSC. MM4 is the interface
between two MMSCs. MM5 is the interface between MMSC and network ele-
ments such as Home Location Register (HLR). MM6 is the interface
between MMSC and user databases. MM7 is the interface between MMSC
and external value added service applications. MMS8 is the interface
between MMSC and a billing system. WAP Forum has used different termi-
nology for the MMS interfaces. Mapping between terminology used by
3GPP and WAP Forum is given in Table 6.1. In MMS1.0 network configura-
tion, MMSC to WAP gateway transactions use Hypertext Transfer Protocol
(HTTP) as the transport protocol. WAP gateway to MMS UA transactions

Copyright © 2005 by CRC Press

Mobile Internet/

MMS User [Network WAP Intranet MMSC

Agent Gateway
MMS UA MMSC Ul
WSP WSP
HTTP HTTP
WTP WTP
WTLS WTLS | SSL SSL
WDP Mobile | WDP | TCP | |nternet/ TCP
Network Intranet

Bearer Bearer IP IP

Figure 6.2. MMS 1.0 Network Configuration

Mobile Internet/
MMS User |_Network Wireless Intranet MMSC
Agent IP Router
MMS UA MMSC Ul
HTTP HTTP
TCP TCP
IP Mobile Internet/ IP
- Network - - Intranet -
Wireless Wireless| Wired Wireless

Figure 6.3. MMS 1.1 Network Configuration

are performed over the Wireless Session Protocol (WSP). The WAP gateway
converts HTTP requests and responses to WSP requests and responses
and vice versa. MMS1.0 network configuration and associated protocol
stack are illustrated in Figure 6.2. In MMS1.1 network configuration, the
MMS UA can interact directly using HTTP as the transport protocol.
MMS1.1 network configuration and associated protocol stack are illus-
trated in Figure 6.3.

6.2.2 Addressing in MMS

MMS supports two modes of addressing — e-mail addressing and mobile
station integrated services digital network (MSISDN) addressing. In e-mail
addressing mode, each subscriber has an e-mail address associated with it.
In MSISDN addressing, MMS subscribers are identified by their MSISDN

Copyright © 2005 by CRC Press

number. An example of an e-mail address is To: Syed Ahson
<syed@mrs. not or ol a. net >/ TYPE=r f c822. An example of a MSISDN
address is To: + 9543709672/ TYPE=PLMN. MMS also allows for address
hiding. MMS messages may be delivered to recipients without providing
the sender’s details. MMS also supports group sending.

6.2.3 Technical Specifications

The 3GPP is responsible for the definition of high-level requirements, over-
all MMS architecture and MMS transaction flows. The 3GPP has also pro-
duced technical specification for several interfaces. WAP Forum has con-
centrated on the technical realization of MM1 interface. The 3GPP has
produced three releases of technical specifications corresponding to a set
of features with each set being backward compatible. The three 3GPP
releases are MMS release 99, MMS release 4, and MMS release 5. WAP
Forum has produced technical realizations corresponding to release 99
and release 4 that are referred to as MMS 1.0 and MMS 1.1, respectively. The
technical specification [3GPP-22.140] introduced in release 99 states
high-level service requirements for MMS. The technical specification
[3GPP-23.140] introduced in release 99 describes MMS architecture and
transaction flows. The technical specification [3GPP-26.140] introduced in
release 5 describes media formats and codecs. The technical specification
[3GPP-32.235] introduced in release 4 describes procedures for manage-
ment of CDR. MMS Architecture Overview [WAP-205] outlines how MMS is
implemented in the WAP framework. MMS Client Transaction [WAP-206]
illustrates the transactions between MMS UA and MMSC over the MM1
interface. MMS encapsulation [WAP-209] details the protocol data units
exchanged over the MM1 interface.

6.2.4 Supported Formats

The minimum requirement for MMS enabled devices is to support United
States — American Standard Code for Information Exchange (US-ASCII)
text only. MMS enabled devices may allow natural and synthetic audio con-
tent to be present in MMS messages. If the device supports natural audio
content then Adaptive Multi-Rate (AMR) codec must be supported. Sup-
port for Motion Picture Experts Group (MPEG) Audio Layer-3 (MP3) is sug-
gested. If the device supports synthetic audio content then Musical Instru-
ment Digital Interface (MIDI) may be supported. MMS enabled devices may
allow image content to be present in MMS messages. If the device supports
image content then Joint Photographic Experts Group (JPEG) codec must
be supported. Support for GIF87a (GIF — Graphics Interchange Format),
GIF89a, and WBMP (wireless bitmap) is suggested. MMS enabled devices
may allow video content to be present in MMS messages. If the device sup-
ports video content then H.263 codec must be supported. Support for
MPEG4 is suggested. MMS enabled devices may allow scene description to

Copyright © 2005 by CRC Press

Originator Originator Recipient Recipient
MMS UA MMSC MMSC MMS UA

MM1_submit.REQ

MM1_submit.RES

MM4_forward.REQ

Message
MM4_forward.RES Notification
] Followed by
MM4_delivery_report.REQ Retrieval

MM4_delivery_report.RES

MM1_delivery report.REQ MM1_read_reply recipient. REQ

MM4_delivery_report.REQ

MM4_delivery report.RES

MM1_read_reply originator.RE

Figure 6.4. Message Submission and Transfer

be specified for MMS messages. If the device supports scene descrip-
tion/message presentation then Synchronized Multimedia Integration Lan-
guage (SMIL) must be supported. Support for Wireless Markup Language/X
Hypertext Markup Language (WML/XHTML) is suggested.

6.2.5 MMS Messages

Nontextual elements such as image, audio, and video are included in a
MMS message by formatting the message as a multipart message according
to Multipurpose Internet Mail Extensions (MIME). MMS messages may
optionally contain graphical layout and time synchronization information
for included media elements. This description is specified according to for-
matting languages such as SMIL, XHTML, or WML. MMS messages that
have synchronized media elements are of multipart/related content type.
MMS messages that have unrelated media elements are of multipart/mixed
content type. The MMS protocol data unit (PDU) consists of a PDU header
and a PDU data section. The MMS PDU is inserted in the data section of a
WSP or HTTP request/response. The content type of a WSP/HTTP request/
response containing a MMS PDU is appl i cat i on/ vnd. wap. mms- nessage.

6.3 Message Submission

The MMS UA submits MMS messages to the MMSC over the MM1 interface.
Figure 6.4 illustrates the message submission transaction. MML_subni t .

REQ corresponds to the submission request and MML_submi t . RES corre-
sponds to the response. The message originator’s MMSC consults its rout-
ing tables and forwards the MMS message to the recipient’s MMSC. The

Copyright © 2005 by CRC Press

Table 6.2. MM1 Submit Request

Information
Elements WAP Implementation Type Values
Recipient address | To, Cc, Bcc String
Sender address From String
Date and time Dat e Integer
Time of expiry X- MVB- Expi ry Date
Earliest delivery X- MVS- Del i very-Ti me Date Immediate
time (default)
Reply charging X- MVB- Repl y- Char gi ng Requested,
Requested
text only
Reply deadline X- MVB- Repl y- Char gi ng- Date
Deadl i ne
Reply charging X- MVB- Repl y- Char gi ng- Si ze | Integer
size
Reply charging X- MVB- Repl y- Chargi ng-1D String
identification
Delivery report X- MVB- Del i very- Report Yes, No
Read-reply X- MVB- Read- Repl y Yes, No
Message class X- MVB- Message- O ass Personal
(default),
Auto
Priority X-MVB-Priority Low,
Normal
(default),
High
Sender visibility X- MVB- Sender-Visibility Hide,
Show (default)
Subject Subj ect String
Content type Content -type String
Content Message body

recipient’s MMSC stores the message and generates a notification. This
notification is delivered to the recipient’s MMS UA. The MMS UA can then
immediately retrieve the message or defer it. WAP technical realizations
have termed the MML_subni t. REQas M Send. req and MML_subni t.
RES as M Send. conf . Information elements present in a MM1 message
submission request are shown in Table 6.2.

Copyright © 2005 by CRC Press

Table 6.3. MM1 Submit Response

Information Elements | WAP Implementation Type | Values

Request status X- MVB- Response- St at us Okay, error codes
listed in Table 6.4

Request status text X- MV5- Response- Text String

Message Identification | Message- 1D String

As part of the message submission request, the message originator can
request a delivery report to be generated upon delivery of the message.
The message originator can also request a read-reply report to be gener-
ated once the message has been read. MMS introduces the concept of reply
charging. The message’s originator can indicate in the submission request
that he or she will pay for the reply. The message’s originator can specify
certain conditions to be met such as a reply deadline and a maximum reply
size. MM1 message submission request includes the mandatory recipient
address (To, Cc, Bce) information elements. The request also includes the
mandatory sender address (From) information element. Contents of the
message are indicated by the mandatory content type information ele-
ment. Date and time of message submission by the subscriber is indicated
by the optional date information element. The MMSC may overwrite the
date information element. Validity duration of the MMS message is indi-
cated by the optional X- MM5- Expi r y information element. If the message
originator requests reply charging, the reply charging (X- MVI5- Repl y-
Char gi ng) information element will be present. Reply charging deadline is
specified by the X- MVS- Repl y- Char gi ng- Deadl i ne information ele-
ment. Reply charging size is specified by the X- MV5- Repl y- Char gi ng-
Si ze information element. If a message is being submitted as reply mes-
sage for which reply charging was requested in the original message, iden-
tification of the original message is indicated by the X- MVS- Repl y-
Char gi ng- | Dinformation element. Delivery reports may be requested by
the X- MM5- Del i very- Report information element. Read-reply reports
may be requested by the X- MV5- Read- Repl y information element. Mes-
sage class is indicated by the X- MVS- Message- Cl ass information ele-
ment. Message priority is indicated by the X- MM5- Pri ori ty information
element. The message originator may request address hiding by setting the
X- MMS- Sender - Vi si bi |l ity field to hide. Subject of the message is
present in the subject information element. Message content type is indi-
cated by the content-type information element. Content of the message is
present in the message body.

The MMSC generates a MML_submi t . RES response for the MML_ sub-
m t . REQ WAP Forum has termed MML_subni t . RES as M Send. conf.
Information elements present in a MM1 message submission request are
shown in Table 6.3. Request status information element (X- MVS-

Copyright © 2005 by CRC Press

Response- St at us) of the response indicates acceptance or rejection of
the submit request. The MML_subni t . REQ may be rejected because of
several permanent or transitory error conditions. Optional Request Status
text information element (X- MV5- Response- Text) provides textual
description of the status. Permanent and transitory error codes are listed
in Table 6.4. The MMSC assigns a message identification to each accepted
MMS message. This is present in the message identification (Message- | D)
information element. This message identification is used to pair up delivery/
read-reply reports and reply charging messages to the original message.

6.4 Message Transfer

The message originator MMSC is responsible for routing the incoming
MMS message. The MMS message could be destined for another sub-
scriber in the MMSE. Alternatively, the MMS message could be destined for
a non-MMS subscriber or another MMS subscriber in a different MMSE.
MMS messages destined for MMS subscribers in a different MMSE are for-
warded by the MVA_f or war d. REQ The message originator MMSC can
request an acknowledgment from the recipient’s MMSC. Figure 6.4 illus-
trates the message transfer transaction. In the technical realization, MM4
transactions are performed using Simple Message Transfer Protocol
(SMTP). Information elements present in a MM4 message forward request
are shown in Table 6.5. The recipient’s MMSC acknowledges the
MW _f orward. REQwith MM _f or war d. RES. Information elements
present in a MM4 message forward response are shown in Table 6.6. MV4_
f or war d. RES contains the request status. MM4 Forward Response errors
are listed in Table 6.7.

6.5 Delivery Report

Delivery reports may be requested by the message originator as part of the
MML_subm t. REQ The recipient’s MMSC generates a MVA_del i very__
report. REQon message delivery or deletion and forwards it to the origi-
nator’s MMSC. Figure 6.4 and Figure 6.5 illustrate delivery report transac-
tion. M_del i very_report . REQincludes original message identification
and original message time-stamping information elements that pairs the
delivery report with the original message and indicates the time it was han-
dled. The delivery status information element indicates the status of delivery
such as “message retrieved,” “message deleted,” or “message rejected.”
MV4_del i very_report . REQtransaction is performed using SMTP.

The recipient’s MMSC may request an acknowledgment from the origi-
nator’s MMSC. Information elements present in a MM4 delivery report
request are shown in Table 6.8. The originator’s MMSC acknowledges the
delivery report with a delivery report forward response (MM4_del i very_
report. RES). Information elements present in a MM4 delivery report
response are shown in Table 6.9.

Copyright © 2005 by CRC Press

Table 6.4. MM1 Submit Response Errors

Binary
Value WAP Implementation Description
192 Error-transient-failure Valid request, but cannot be
processed due to some
temporary conditions.
193 Error-transi ent - sendi ng- MMSC cannot resolve
addr ess-unresol ved address due to some
temporary conditions.
194 Error-transi ent - nessage- not - MMSC cannot retrieve
f ound message due to some
temporary conditions.
195 Error-transi ent - net wor k- probl em | MMSC cannot process
request due to some
overload conditions.
224 Error-permanent-failure Unspecified permanent
error.
225 Er r or - per manent - servi ce-deni ed Service authorization and
authentication failures.
226 Error - per manent - nessage- f or nat - Problem with message
corrupt format.
227 Er r or - per manent - sendi ng- Unable to resolve
addr ess-unresol ved recipient’s address.
228 Er r or - per nanent - mnessage- not - Unable to retrieve the
f ound message.
229 Error - per manent - cont ent - not - MMSC cannot process
accept ed message due to content
format or message size
limitation.
230 Error - per manent - r epl y- char gi ng- Reply charging
limtations-not-met requirements not met.
231 Error - per manent - r epl y- char gi ng- Reply charging request is
request - not - accept ed rejected due to service or
user configuration.
232 Er r or - per manent - r epl y- char gi ng- Forwarding request is
f or war d- deni ed denied due to reply
charging requirements.
233 Error - per manent - r epl y- char gi ng- MMSC does not support
not - support ed reply charging.

Copyright © 2005 by CRC Press

Table 6.5. MM4 Message Forward Request

Information
Elements 3GPP Header Type Example Values
3GPP MMS version | X- Mhs- 3GPP- String 5.2.0
MVS- Ver si on
Message type X- Ms- Message- String MVA_f orwar d. REQ
Type
Transaction X- Mrs- String
identification Transacti on-
I D
Message X- Mrs- Message- String
Identification I D
Recipient’s To, Cc
address
Sender’s Address From String
Message subject Subj ect String
Message class X- Mrs- Message- String
Cl ass
Message date and Dat e Date
time
Time of expiry X- Ms- Expiry Date or
duration
Delivery report X- Ms- Yes, No
Del i very-
Report
Read-reply report X- Mrs- Read- Yes, No
Repl y
Priority X-Mrs-Priority Low, Normal, High
Sender visibility X- Mrs- Sender - Hide, Show
Visibility
Forward counter X- Mrs- For war d- Integer
Count er
Previously sent by | X- Mrs- String 1, syed@mt or ol a. net
Pr evi ousl y- with 2, steve@ppl e. net
Sent - By index
Previously sent X- Mrs- Date with 1,Thu Aug 07 21:00:00
date and time Previ ousl y- index 2003
Sent - Dat e- 2,Tue Jan 07 07:00:00
And- Ti me 2003
Request for X- Mrs- Ack- Yes, No
acknowledgment Request

Copyright © 2005 by CRC Press

Table 6.5. MM4 Message Forward Request (Continued)

Information
Elements 3GPP Header Type Example Values
Content-type Cont ent - Type String
X- Mrs- String
Origi nator-
System
Message- 1 D String
Content type Message Body

Table 6.6. MM4 Message Forward Response

Information
Elements 3GPP Header Type | Example Values
3GPP MMS version | X- Mrs- 3GPP- MVB- Ver si on | String | 5.2.0
Message type X- Mrs- Message- Type String | MVA_f orwar d. RES
Transaction X- Mrs- Transacti on-1D String
identification
Message X- Mrs- Message- | D String
identification
Request status X- Mrs- Request - St at us- Okay,
code Code error codes

defined in Table 6.7

Status text X- Mrs- St at us- Text String
Address of sender’s | Sender String
MMSC
Address of To String
recipient’s MMSC
Message- | D String
Message date and Dat e Date

time

Request status information element of the MVA_del i very_report.
REQindicates the status of the delivery report forwarding request. The
delivery report is delivered to the message originator over the MM1 inter-
face. The originator’'s MMSC generates a MML_del i very_report. REQ
MML_del i very_report. REQincludes information elements that indicate
the original message identification, time of handling, and delivery status.
Information elements present in a MM1 delivery report request are shown
in Table 6.10. MM1 delivery report status codes are listed in Table 6.11.

Copyright © 2005 by CRC Press

Table 6.7. MM4 Forward Response Errors

Status Code Description
Error-unspecified Unspecified error.
Error-service-denied Authentication or authorization failure.
Error - message-fornat - corrupt Badly formatted message format.
Error - sendi ng- addr ess- MMSC was unable to resolve one of the
unr esol ved recipient addresses.
Er r or - net wor k- pr obl em MMSC capacity overload.
Er r or - unsupport ed- nessage MMSC does not support the request type.
Error-cont ent - not - accept ed MMSC cannot process message due to
content format or message size
limitation.
Originator Originator
MMS UA MMSC

MM1_delivery_report.REQ
M-Delivery.ind

Figure 6.5. MM1 Delivery Report

6.6 Read-Reply Reports

The MMS message originator can request to be notified when the recipi-
ents have read the message. Figure 6.4 and Figure 6.6 illustrate the
read-reply report transaction. The recipient’s MMS UA generates a
read-reply report when the recipient has read the message. The recipient’s
MMS UA submits a MML_read _repl y_reci pi ent. REQto the recipient’s
MMSC. Original message identification, original message time-stamping
and read-reply status information elements pair up the read-reply report
with the original message, its time of handling and status (message had
been read or message has been deleted without being read). Information
elements present in a MML_read_repl y_reci pi ent. REQare shown in
Table 6.12. MM1 read-reply report status codes are listed in Table 6.13.

The recipient’s MMSC forwards the read-reply report over the MM4
interface to the originator’s MMSC. Information elements present in a MM4
read-reply report request are shown in Table 6.14. The MVA_read_repl y_
report. REQtransaction is performed using SMTP.

Copyright © 2005 by CRC Press

Table 6.8. MM4 Delivery Report Request

Information
Elements 3GPP Header Type | Example Values
3GPP MMS version X- Mrs- 3GPP- MVB- String | 5.2.0
Ver si on
Message type X- Mrs- Message- Type String | MV_del i very_
report. REQ
Transaction X- Mrs- Tr ansacti on-1 D | String
identification
Message identification X- Mrs- Message- | D String
Recipient’s address From
Sender’s address To, Cc String
Message date and time Dat e Date
Request for X- Mvs- Ack- Request Yes, No
acknowledgment
Message status code X- Mrs- MMt St at us- Code | String | Expired,
Retrieved,
Rejected,
Deferred,
Indeterminate,
Forwarded,
Unrecognized
Message status text X- MM St at us- Text String
Address of sender’s Sender String
MMSC
Message- | D String

The recipient’s MMSC may request an acknowledgment for the
MV4_read_reply_report. REQThe message originator’s MMSC will
then reply with a MVA_r ead_r epl y_report . RES. Information elements
present in a MM4 read-reply report response are shown in Table 6.15. The
message originator’s MMSC delivers the read-reply report to the origina-
tor’'s MMS UA over the MM1 interface (MML_r ead_r epl y_ori gi nat or.
REQ). Information elements presentina MML_r ead_r epl y_ori gi nat or.
REQare shown in Table 6.12.

6.7 Message Notification

The MMSC generates a notification for each incoming multimedia message.
This notification indicates that a multimedia message is awaiting retrieval
in the MMSC store. The MMS UA is responsible for retrieving the MMS mes-
sage corresponding to the notification. The MMS UA may retrieve the MMS

Copyright © 2005 by CRC Press

Table 6.9. MM4 Delivery Report Response

Information
Elements 3GPP Header Type | Example Values
3GPP MMS X- Mrs- 3GPP- M- Ver si on String | 5.2.0
version
Message type X- Mrs- Message- Type String | MV4_del i very_
report. RES
Transaction X- Mrs- Transacti on-1 D String
identification
Message X- Mrs- Message- | D String
identification
Request status | X- Mhs- Request - St at us- Code Okay,
code error codes
defined in Table 6.7
Status text X- Mrs- St at us- Text String
Address of Sender String
sender’s
MMSC
Address of To String
recipient’s
MMSC
Message- 1 D String
Message date Dat e Date
and time
Table 6.10. MM1 Delivery Report Request
Information Elements 3GPP Header Type Example Values
Message identification Message- | D String
Recipient address To String
Event date Dat e Date
Message status X- MVB- St at us Expired,
Retrieved,
Rejected,
Indeterminate,
Forwarded

message without notifying the user. This is known as immediate retrieval.
Alternatively, the MMS UA may present the notification to the user and the
user is responsible for initiating the download of the MMS message. This is

Copyright © 2005 by CRC Press

Table 6.11. MM1 Delivery Report Status Codes

Binary | WAP
Value Implementation | Description
128 Expired MMS message has expired before it could be
retrieved.
129 Retrieved MMS message has been retrieved by the recipient’s
MMS UA.
130 Rejected The recipient’s MMS UA is not willing to retrieve the
MMS message.
133 Indeterminate MMS message may or may not have been retrieved by
the recipient’s MMS UA.
134 Forwarded The MMS message has been forwarded.
Originator Originator
MMS UA MMSC

MM1_read_reply_report. REQ
M-Read-Orig.ind

Read Reply Report
is Forwarded over
the MM4 Interface

Originator Originator
MMS UA MMSC

MM1_read_reply_recipient.REQ)|
M-Read-Rec.ind

Figure 6.6. MM1 Read-Reply Report

known as deferred retrieval mode. Figure 6.7 illustrates the message notifi-
cation transaction. Information elements present in a MM1 Notification
Request are shown in Table 6.16.

The optional from information element of the MML_not i fi cati on. REQ
indicates the message originator’s address. The mandatory X- MV5- Mes-
sage- C ass information element indicates the message class (personal,
advertisement, informational, auto) of the MMS message. The mandatory

Copyright © 2005 by CRC Press

Table 6.12. MM1 Read-Reply Report Request

Information Elements | 3GPP Header Type | Example Values
Recipient address To String
Originator address From String
Message identification | Message-| D String
Date and time Dat e Date
Message status X- MMG- Read- St at us Read,
Deleted without being
read

Table 6.13. MM1 Read-Reply Report Status Codes

Binary Value | WAP Implementation Description
128 Read Recipient has read the MMS message.
129 Deleted without being read | MMS message has been deleted
without being read by the message
recipient.

X- MMB- Expi ry information element indicates the time of expiry of the
MMS message. The optional X- M- Del i very- Repor t information ele-
ment indicates that the message originator has requested a delivery report
for that message. Reply charging attributes of the MMS message are indi-
cated by the optional X- MV5- Repl y- Char gi ng, X- MV5- Repl y- Char g-
i ng-1 D, X- MVS- Repl y- Char gi ng- Deadl i ne, and X- MVS- Repl y-
Char gi ng- Si ze information elements. Message priority and message
subject are indicated by the optional X- MV5- Pri ori t y and subject infor-
mation elements. Message size of the MMS message is indicated by the
mandatory X- MV5- Message- Si ze information element. The incoming
MMS message is indicated by the mandatory X- MV- Cont ent - Locat i on
information element.

The MMS UA acknowledges a MML_noti fi cati on. REQwith a MVL_
noti fi cati on. RES. Information elements present in a MM1 Notification
Response are shown in Table 6.17. The mandatory X- MV5- St at us infor-
mation element indicates the status of the message retrieval. Possible val-
ues are Retrieved, Rejected, Deferred, Forwarded, and Unrecognized. The
optional X- MMS- Report - Al | owed information element indicates
whether a delivery report should be generated. MM1 Notification
response/status codes are listed in Table 6.18.

Copyright © 2005 by CRC Press

Table 6.14. MM4 Read-Reply Report Request

Information

Elements 3GPP Header Type | Example Values

3GPP MMS version | X- Mrs- 3GPP- MVB- Ver si on | String | 5.2.0

Message type X- Mrs- Message- Type String | M_read_reply_
report. REQ

Transaction X- M- Transacti on-1D String

identification

Message X- Mvs- Message- | D String
identification

Recipient’s address | From

Sender address To String
Message date and Dat e Date
time
Request for X- Mrs- Ack- Request Yes, No
acknowledgment
Message status X- Mrs- Read- St at us- Code | String | Read,
code Deleted without
being read
Message status X- MM St at us- Text String
text
Sender String
Message- | D String

6.8 Message Retrieval

The recipient’s MMS UA requests the message by issuing a MML_
retri eve. REQ The MMSC may alter contents of the MMS message to
match the capabilities of the recipient’s user agent. The MMS message is
delivered to the recipient as part of the retrieve response (MML_
retrieve. RES). Figure 6.8 illustrates immediate and deferred message
retrieval transaction. Information elements present in a MM1 Retrieval
Response are shown in Table 6.19.

The mandatory Message- | D information element indicates the mes-
sage identification of the message. The optional to, cc, and from informa-
tion elements indicate address of the recipients and sender respectively.
Message class (personal, advertisement, informational, auto) is indicated
by X- MVB- Message- O ass. Date and time of message submission or for-
warding is indicated by the mandatory date information element. Request
for delivery reports is indicated by the optional X- MVS- Del i very-
Report information element. Reply charging options are indicated by the

Copyright © 2005 by CRC Press

Table 6.15. MM4 Read-Reply Report Response

Information
Elements 3GPP Header Type | Example Values
3GPP MMS X- Mrs- 3GPP- M- Ver si on String | 5.2.0

version
Message type X- Mrs- Message- Type String | MVM_read_reply_

report. RES

Transaction X- Mrs- Tr ansacti on-1 D String

identification
Request status X- Mrs- Request - St at us- Okay,

code Code error codes

defined in Table 6.7

Status text X- Mrs- St at us- Text String
Address of Sender String

sender’s

MMSC
Address of To String

recipient’s

MMSC

Message- | D String

Message date Dat e Date

and time
Recipient Recipient Recipient Recipient

MMSC MMS UA MMSC MMS UA

MM1_notification.REQ

Figure 6.7. MM1 Notification

M-Notification.ind

Immediate Retrieval
(Implicit Notification
Response)

MM1_notification.REQ

M-Notification.ind

MM1_notification.RES

M-Notify-Resp.ind

| Deferred Retrieval |

X- MM5- Repl y- Char gi ng, X- MMS- Repl y- Deadl i ne, X- MMS- Repl y-
Char gi ng- Si ze, and X- MMS- Repl y- Char gi ng- | D information ele-
ments. Message priority is indicated by the X- MVB- Pri ori t y information
element. Read-reply report may be requested by the optional X- MV5-
Read- Repl y information element. Message subject is indicated by the

Copyright © 2005 by CRC Press

Table 6.16. MM1 Notification Request

Information
Elements WAP Implementation Type Values
Sender address | From String
Message class X- MVB- Message- C ass Personal (default),
Advertisement,
Informational,
Auto
Time of expiry X- MVB- Expiry Date
Delivery report | X- MV5- Del i very- Report Yes, No
Reply charging | X- MVB- Repl y- Char gi ng Requested,
Requested
text only
Reply deadline | X- MVB- Repl y- Char gi ng- Date
Deadl i ne
Reply charging | X- MVB- Repl y- Char gi ng- Si ze | Integer
size
Reply charging | X- MVB- Repl y- Char gi ng-1 D String
identification
Priority X-MVB-Priority Low,
Normal (default),
High
Subject Subj ect String
Message size X- MVB- Message- Si ze Integer
Message X- MVB- Cont ent - Locat i on String
reference (URD)

Table 6.17. MM1 Notification Response

Information Elements

WAP Implementation

Type Values

Message status

X- MMG- St at us

Retrieved,
Rejected,
Deferred,
Forwarded,
Unrecognized

Delivery report allowed

X- MVB- Report - Al | owed

String | Yes (default),
No

Copyright © 2005 by CRC Press

Table 6.18. MM1 Notification Response/Status Codes

Binary Value | WAP Implementation | Description
129 Retrieved The recipient’s MMS UA has already
retrieved the MMS message.
130 Rejected The recipient’s MMS UA is not willing to
retrieve the MMS message.
131 Deferred The recipient’s MMS UA is not willing to
immediately retrieve the MMS message.
The recipient’s MMS UA will retrieve the
MMS message at a later time.
132 Unrecognized This status code is used for version
management.
Recipient Recipient Recipient Recipient
MMSC MMS UA MMSC MMS UA

MM1_notification.REQ
M-Notification.ind

MM1_notification.RES
MM1_retrieve.REQ

WSP/HTTP GET.req

MM1_retrieve.RES
M-retrieve.conf

MM1_acknowledgement.RES
M-acknowledge.ind

MM1_notification.REQ
M-Notification.ind

MM1_notification.RES
M-NotifyResp.ind

MM1_retrieve.REQ
WSP/HTTP GET.req

MM1_retrieve.RES
M-retrieve.conf

MM1_acknowledgement.RES
M-acknowledge.ind

Figure 6.8. MM1 Immediate and Deferred Message Retrieval

optional subject element. Retrieve status and textual description of the
retrieve status is indicated by the X- MV5- Ret ri eve- St at us and X- MV5-
Retri eve- Text fields, respectively. Retrieve status (X- MVB- Ret ri eve-
St at us) error codes are listed in Table 6.20.

Address of user agents that have submitted or forwarded the MMS mes-
sage prior to the MMSC are listed in the optional X- MVS- Pr evi ousl y-
Sent - By information element. Date and time of these user agents is specified

Copyright © 2005 by CRC Press

Table 6.19. MM1 Retrieval Response

Information
Elements WAP Implementation Type Values
Message Message- | D String
identification
Recipient To, Cc String
address
Sender address From String
Message class X- MVB- Message- Cl ass Personal (default),
Advertisement,
Informational,
Auto
Date and time Dat e Integer
Delivery report | X- MVS- Del i very- Yes, No
Report
Reply charging X- MVB- Repl y- Requested,
Char gi ng Requested
text only
Reply deadline X- MVB- Repl y- Date
Char gi ng- Deadl i ne
Reply charging X- MVB- Repl y- Integer
size Char gi ng- Si ze
Reply charging X- MVB- Repl y- String
identification Chargi ng-1 D
Priority X-MVB-Priority Low,
Normal (default),
High
Read-reply X- MVB- Read- Repl y Yes, No
report
Subject Subj ect String
Retrieve status X- MVB- Retri eve- Okay,
St at us Error codes listed in Table
6.15
Status text X- MVB- Ret ri eve- Text String
Previously sent | X- M- Previ ousl y- String 1, syed@rot or ol a. net
by Sent - By with | 2, steve@ppl e. net
index
Previously sent | X- Mvs- Previ ousl y- Date 1,Thu Aug 07 21:00:00 2003
date and time Sent - Dat e- And- Ti e with 2,Tue Jan 07 07:00:00 2003
index
Content type Content -type String

Content

Message body

Copyright © 2005 by CRC Press

Table 6.20. MM1 Retrieval Response Errors

Binary
Value WAP Implementation Description
192 Error-transient-failure Valid request but cannot be
processed due to some
temporary conditions.
193 Error-transi ent - message- not - MMSC cannot retrieve
f ound message due to some
temporary conditions.
194 Error-transi ent - net wor k- MMSC cannot process
probl em request due to some
temporary conditions.
224 Error-pernmanent-failure Unspecified permanent error.
225 Error- per manent - servi ce-deni ed | Service authorization and
authentication failures.
226 Err or - per manent - nessage- not - Unable to retrieve the
f ound message.
227 Er r or - per manent - cont ent - MMSC cannot process
unsupport ed message due to content
format or message size
limitation.

Table 6.21. MM1 Retrieval Acknowledgment

Information Elements WAP Implementation Type Values

Delivery report allowed X- MVB- Report - Al | owed String | Yes (default),
No

by the optional X- MV5- Pr evi ousl y- Sent - Dat e- and- Ti ne information
element. Message content type is indicated by the mandatory message
content type information element. The message itself is contained in the
message body information element. The recipient’s user agent acknowl-
edgesthe MML_retri eve. RESwitha MML_acknowl edgnent . REQ. Infor-
mation elements present in a MM1 Retrieval Acknowledgment are shown in
Table 6.21. X- MMS- Report - Al | owed information element of the
MML_acknow edgnent . REQindicates whether the recipient allows a
delivery report to be sent to the message originator.

6.9 Message Forwarding

MMS messages may be forwarded by the user agent by submitting a previ-
ously received MMS message as a MML_submi t . REQ. Additionally, MMS

Copyright © 2005 by CRC Press

Recipient Recipient
MMSC MMS UA

MM1_forward.REQ
M-Forward.req

MM1_forward.RES
M-Forward.conf

Figure 6.9. MM1 Message Forward

Table 6.22. MM1 Message Forward Request

Information Elements | WAP Implementation Type Values

Recipient address To, Cc, Bcc String

Forwarding address From String

Date and time Dat e Integer

Time of expiry X- MVB- Expiry Date

Earliest delivery time | X- MVS- Del i very- Ti me Date Immediate
(default)

Delivery report X- MVB- Del i very- Report Yes, No

Read-reply X- MVB- Read- Repl y Yes, No

Message reference X- MV- Cont ent - String (URI)

Locati on

messages that have not been retrieved may be forwarded by
MML_f or war d. REQ Figure 6.9 illustrates message forwarding transaction.
Information elements present in a MM1 Message Forward Request are
shown in Table 6.22.

Address of recipients of the forwarded message is listed in the manda-
tory to, cc, bcc information elements. Address of the forwarding user agent
is listed in the optional from information element. Date and time of for-
warding the message is indicated by optional date information element.
Time of expiry of the message is set in the optional X- MV5- Expi ry infor-
mation element. The earliest time of delivery may be specified by the
optional X- MVS- Del i ver y- Ti me information element. Delivery reports
may be requested by the optional X- MVS- Read- Repl y information
element.

Copyright © 2005 by CRC Press

Table 6.23. MM1 Message Forward Response

Information Elements | WAP Implementation Type | Values

Request status X- MVB- Response- St at us Okay,
error codes
listed in Table 6.4

Request status text X- MVB- Response- Text String

Message identification | Message- | D String

The MMSC generates a MML_f or war d. RES in response to the MML_
f orwar d. REQ Information elements present in a MM1 Message Forward
Response are shown in Table 6.23. Status of the forward request is indi-
cated by the mandatory X- MV5- Response- St at us information element.
Message identification of the message to be forwarded is indicated by the
mandatory Message- | D information element. Textual description of the
request status is indicated by optional X- MV5- Response- Text informa-
tion element. The forwarding MMSC may route the message to the recipients
MMSC over the MM4 interface to another non-MMS messaging interface.

6.10 Future Directions

MMS is a powerful messaging service. It allows for a wide range of content
formats to be presented as a multimedia slideshow. MMS has been
designed to be interoperable with existing messaging systems such as
e-mail, SMS, and EMS. This chapter describes extensively the MMS proto-
col, its PDU formats, and features offered. Several features of the MMS pro-
tocol are still under investigation. MMS notifications consume precious
bandwidth and an optimized method for flow control of notifications is
needed. Persistent storage and manipulation of MMS messages on a
remote sever are currently being looked at. The MM1 interface needs to be
extended to allow a MMS UA to remotely manipulate MMS messages. The
functional specification for persistent storage is termed MMBox (Multime-
dia Message Box) and is presented in [3GPP-23.140] release 5. The MM2
interface between the MMS server and MMS relay needs to be defined. The
MM3 interface for internetworking with voice messaging systems, SMS,
and e-mail systems needs to be standardized. The MM6 interface
(MMSC/user databases) also needs to be defined. The MMS8 interface
(MMSC/billing system) also needs to be defined. Digital Rights Manage-
ment (DRM) is required for providing permission to subscribers for for-
warding, modification, and redistribution of digital media. Integration of
Instant Messaging and Presence managing systems in a MMSE needs to be
addressed. Usage of Wireless Transport Layer Security (WTLS), Secure
HTTP (HTTP-S), and Secure MIME in a MMSE for providing end-to-end secu-
rity is another consideration.

Copyright © 2005 by CRC Press

References

3GPP Documents

[3GPP-22.140] 3GPP TS 22.140: Multimedia Messaging Service (MMS), stage 1.

[3GPP-23.140] 3GPP TS 23.140: Multimedia Messaging Service (MMS), stage 2.

[3GPP-26.140] 3GPP TS 26.140: Multimedia Messaging Service, media formats, and codecs.

[3GPP-32.235] 3GPP TS 32.235: Charging management, charging data description for applica-
tion services.

WAP Forum Documents

[WAP-205] WAP-205-MMSArchOverview-20010425-a: Multimedia Messaging Service Architec-
ture Overview, version 25, WAP Forum, April 2001.

[WAP-206] WAP-206-MMSCTR-20020115-a: WAP MMS Client Transactions Specification, ver-
sion 15, WAP Forum, January 2002.

[WAP-209] WAP-209-MMSEncapsulation-20020105-a: WAP MMS Encapsulation Protocol, ver-
sion 5, WAP Forum, January 2002.

Copyright © 2005 by CRC Press

Section Il
Location
Management

Chapter 7

A Scheme for Nomadic
Hosts Location
Management

Using DNS

Ramandeep Singh Khurana, Hesham El-Rewini,
and Imad Mahgoub

Abstract

In this chapter, we study a simple scheme for location management of
nomadic hosts on the Internet by using the existing Domain Name System
(DNS) infrastructure. Most applications contact hosts on the Internet by
using a Fully Qualified Host Name (FQHN) instead of the host’s Internet
Protocol (IP) number. The scheme presented in this chapter outlines a
mechanism for dynamically updating the DNS server’s name-to-IP mapping
for the nomadic host thereby facilitating direct communication between
the nomadic host and other hosts on the Internet. We outline the scheme
and present the results of two experiments that were conducted to study
the scalability and limitations of the scheme.

7.1 Introduction

The goal of mobility support is to provide the means by which computers
are able to communicate even when their points of attachment to the net-
work may have changed. Several approaches for accommodating mobile
hosts on the Internet have been proposed and are described in [3-11].
Mobile IP is perhaps the most feasible approach among the various options
available to support host mobility [2, 5, 10, 13, 14]. The Mobile IP working
group of the Internet Engineering Task Force (IETF) has introduced this
protocol to allow mobile computers equipped with wireless network inter-
faces to communicate with computers on the fixed network. It allows a
mobile host to move around the Internet without changing its [P number.

Copyright © 2005 by CRC Press

Mobile IP involves operations such as agent discovery, location registra-
tion, and tunneling. Mobile IP is designed to support complete mobility
(i.e., during its movement, a mobile host maintains all the connections,
transport level sessions, and its IP number remains constant). This might
add an additional requirement that a mobile node must implement Mobile
IP operations, otherwise, the existence of a foreign agent becomes neces-
sary. This will make Mobile IP dependent on operating system vendors for
deployment.

It has been observed that the number of deployments of Mobile IP is still
insignificant. Singh et al. believe that the lack of widespread deployment of
Mobile IP is due to the lack of compelling applications, which is also a
result of the lack of Mobile IP deployment [12]. They introduced the
Reverse Address Translation (RAT) protocol as an attempt to help develop
more applications that will in turn help achieve significant deployment of
Mobile IP. Using Network Address Translation, RAT supports limited mobil-
ity of nomadic hosts that moves from one network to another, but is not
constrained by the requirement of maintaining open sessions and connec-
tions during the move [12]. In this chapter, we use a similar approach to
support mobility of nomadic hosts. It is not designed to be a replacement
of Mobile IP; rather it is meant to provide nomadic hosts that do not have
to be Mobile-IP-aware with some mobility support. It should help develop
more applications that can eventually encourage more deployments of
Mobile IP.

We present a simple scheme that takes advantage of the fact that most
hosts on the Internet are identified by a unique, fully qualified Internet
name rather than a unique IP number. Unlike Mobile IP, this scheme is not
supposed to maintain transport and higher layer connections when a
mobile host changes its network location. Rather, it is designed to support
limited mobility of nomadic hosts. Such hosts may exhibit stop-and-go pat-
terns, where they become part of a network for a while, then they move to
another network and so on. As part of the move, a nomadic host could be
assigned a different IP number. In fact, Dynamic Host Configuration Proto-
col (DHCP) allows a host on a network to acquire a complete IP configura-
tion from a DHCP server. If the DHCP server is configured in synchroniza-
tion with the DNS configuration, it can provide the host with its FQHN as
part of its IP configuration. However, if the host moves to a foreign network,
it may contact a DHCP server maintained by a different administration,
which may not have access or control of the home domain for that host.
Hence the DHCP server on the foreign network may not be able to assign
the same FQHN to the nomadic host as part of its IP configuration. For the
nomadic host to retain its original FQHN, the DNS server that controls that
domain must change the name-to-address binding whenever the host
receives a new IP address and must remove the binding when the lease
expires. To our knowledge, there is no standard protocol for dynamic DNS

Copyright © 2005 by CRC Press

update and until such a protocol is developed, there is no mechanism to
maintain permanent hostnames while allowing DHCP to change IP
addresses.

The scheme presented in this chapter uses the existing DNS infrastruc-
ture to allow a dynamic update of the name-to-IP binding for a particular
host. When a nomadic host moves to a foreign network, it obtains a new IP
address. It then sends its new IP configuration and an expected time for
which it expects to keep that IP number, to a server in its home network. A
server process, after authenticating the validity of the update request,
updates the DNS name-to-IP mapping for that host. After the update, each
subsequent request for the name resolution for that particular host results
in the DNS server sending the new IP address. This allows all other hosts
to communicate directly with the mobile host using its new IP address.

The rest of the chapter is organized as follows:

e Section 7.2 provides an overview of the scheme, which uses the
existing DNS services to facilitate location management of nomadic
hosts.

e Section 7.3 presents two experiments that were conducted to study
the validity of the proposed scheme.

¢ Section 7.4 presents concluding remarks.

7.2 Using the DNS for Location Management of Nomadic Hosts

Although the IP addresses provide a unique and compact method to
address hosts on the Internet, users prefer to address the hosts using pro-
nounceable, easily remembered names. The DNS facilitates the use of
names by providing a name-to-IP binding for each host. The DNS has
proven that it is a robust and scalable system for providing name resolu-
tion for the Internet. However, it was not designed to support mobility of
hosts. It is limited in the sense that it assumes that each host has a static
IP. During server startup, each DNS server caches the binding information
for all the hosts in that domain. It does not support any mechanism where
this binding can be changed dynamically.

The scheme presented in this chapter uses the existing DNS infrastruc-
ture to allow a dynamic update of the name-to-IP binding for a particular
host. This allows the nomadic hosts to authenticate themselves to the DNS
and provide their latest IP configuration as they move. The hosts would
also provide an estimate regarding how long they expect to keep that IP
number.

The scheme consists of the following components:

¢ DNS server — authoritative for the domain to which the nomadic
host belongs.

Copyright © 2005 by CRC Press

DNS Server

Server | 3,4 DNS 5 Other

Prociy Host
1,2

6

Client
Process
Nomadic
Host

Figure 7.1. Name-to-IP Mapping Update Process

Server process — runs on the same machine as the DNS server. This
process is responsible for communicating with the clients and updat-
ing the DNS server information based on the information received
from the client.

Client process — runs on the nomadic host. This process is executed
whenever the nomadic host is assigned a new IP address. It is
responsible for communicating with the server process and provid-
ing the server process with the client’s current IP configuration and
expected time-to-live (TTL) value.

Once the nomadic host is assigned a new IP address in a foreign net-
work, the following sequence of events typically occurs (Figure 7.1):

1.

The client process on the nomadic host (client) contacts the server
process using a prespecified port number and authenticates the
client to the server process.

. Once the authentication is successful, the client provides its new IP

number and an estimate regarding how long it expects to keep that
IP number.

The server process then dynamically updates the name-to-IP binding
for that host in the database of the DNS server. It also updates the
minimum TTL value for that binding, so that the validity of the
information can follow the mobility pattern of each user.

. After the update, the server process signals the DNS server process

to reload its zone information so that it can update its cache.
Each subsequent request for the name resolution for that particular
host results in the DNS server sending the new IP address.

This allows all other hosts to communicate directly with the mobile
host using its new IP address.

7.2.1 DNS Server

A DNS server stores all the information regarding the domains that it is
authoritative for, in multiple text files. Usually, DNS administrators maintain a

Copyright © 2005 by CRC Press

separate text file for each domain that the DNS server is authoritative for.
All such text files begin with a Start of Authority (SOA) resource record.
The SOA record indicates that this name server is the best source of infor-
mation for the data within the domain. The SOA record has the following
information:

e Serial number — applies to all the data in the zone. It is used to
synchronize the data between the primary and the secondary name
servers for that domain.

¢ Refresh — tells the secondary how often to check that its data is
up to date. All secondary servers of the domain will make one SOA
query per refresh interval.

¢ Retry — if the secondary fails to reach the primary name server after
the refresh period, it starts trying to connect every retry seconds.

e Expire — if the secondary fails to contact the primary server for
expire seconds, it expires its data and stops giving out answers
about the data because the data is too old to be useful.

e TTL — applies to all the resource records in the domain. The name
server supplies this TTL value in query responses, if a TTL value is
not explicitly specified in the resource record itself. The TTL is the
amount of time any name server is allowed to cache the data. After
the TTL expires, the name server must discard the cached data and
get new data from the authoritative name servers.

In addition to the SOA record, the domain files contain information
regarding hostname to address mapping. Such records are called Address
or A records. An A record has the following structure:

<fully qualified internet nane for the host> <TTL> IN A
<| P Address>

For example, an A record for the | apt opl in the domain cs. unonmaha. edu
with a TTL value of 1 hour and an IP address of 192.168.0.1, will be specified
as:

| apt opl. cs. unomaha. edu. 3600 IN A 192.168.0.1

The TTL value in the A record will override the TTL value specified in
the SOA record. If the TTL value specified in the SOA record is 86,400 sec-
onds (1 day), and the TTL value in the A record is 3600 seconds (1 hour),
then all servers will cache the I[P number for | apt opl. cs. unonmaha. edu
for only 1 hour even though they will cache the other entries in the domain
for one day.

The setting for the TTL value represents a trade-off between perfor-
mance and consistency. If the TTL value is low, remote servers will expire
their information more frequently and will be forced to query the authori-
tative servers more often. This will increase the load on the primary and

Copyright © 2005 by CRC Press

secondary name servers for the domain. However, a low TTL value helps
maintain the consistency of information among all servers. The scheme
presented in this chapter manipulates the TTL value of the individual
resource record of the mobile host in question to better reflect how long
the user expects to maintain that particular IP address.

7.2.2 Server Process: Web Server
The server process has the following functions:

e Accept connections from clients on a prespecified port number

¢ Authenticate the validity of the client using some security mechanism

¢ Accept information regarding the new IP number and TTL value for
that client

e Update the text file for that zone with the new mapping and TTL
information for the client. Also, increment the serial number to
denote that the information has changed

¢ Signal the DNS server process to reload its zone information so that
it can update its cache

In the implementation of this scheme, we used a Web server with a Com-
mon Gateway Interface (CGI) as the server process. When a client submits
an update request, the Web server gets the request and presents the client
with the username and password screen for authentication. After it
receives the correct username and password, it passes all this information
to a CGI program. The CGI program then processes all the information,
updates the DNS entries and passes a confirmation message back to the
Web server, which passes it on to the client.

The Web server provides the information regarding the nomadic host-
name, its IP address, and the TTL value in a text file that serves as the input
file for the CGI program. The CGI program reads the hostname from the
input file and then searches the DNS zone file to see if the hostname exists
in the domain. If the hostname does not exist, it sends an error message
back to the Web server. If it finds the hostname, it overwrites the TTL value
and the IP number for that host in the zone file and then sends a reload sig-
nal to the DNS server, which then updates its cache with the latest informa-
tion. Each subsequent request to the DNS server for the name resolution of
that host results in the new IP number being sent to the requester.

7.2.3 Client Process: Web Browser
The client process has the following functions:

¢ Connect to the server process using a predefined address and port
number.

e After connection is established, provide the security information.

¢ Provide the mobile hostname, current IP number, and TTL estimate
for this IP.

Copyright © 2005 by CRC Press

In the implementation of this scheme, we used a standard Web browser as
the client process. The browser has a predefined URL as its address and it
makes connection to the Web server on port 80 (standard for all Hypertext
Transfer Protocol [HTTP] communication). After connecting to the pre-
defined URL, the client is presented with an interface to provide the infor-
mation regarding the hostname and the TTL value it expects to keep the [P
address for.

When the client submits the information, the Web server authenticates
the validity of the nomadic host by asking the user for a username and
password. After the user has provided the correct username and pass-
word, the Web server and the CGI application process the information and
then update the DNS information. It should be noted that the user does not
have to explicitly enter the new IP number because the Web server gets
that information automatically as part of update request. This is a step in
the security process, where a mapping can only be changed to the IP num-
ber that is currently assigned to the machine that is sending the update
request. After the update is completed, the Web server sends a confirma-
tion message to the user.

7.2.4 Security

For the scheme to be accepted and used by the Internet community, it
needs to address some basic security issues. It must prevent unauthorized
users from performing a mapping update for a certain hostname. It should
make sure that the mapping update provides the correct new IP address
for that host.

Both of these security issues have been addressed in the implementa-
tion of the scheme. A username and password is created for all the hosts
in the domain and each user is provided that information. Whenever the
Web server receives a mapping update request, it requests the user for the
correct username and password. If the user cannot provide the correct
username and password, the Web server does not forward the information
to the CGI program and no update is performed. The Web server is also
configured to log all unsuccessful authentication requests in a log file, so
that if somebody tries to hack into the system, an alarm signal can be sent
to the administrator via e-mail. To address the second security issue, the
CGI program is configured to use the remote I[P number that the Web server
received as part of the update request. The user is not provided an oppor-
tunity to specify an IP number. This prevents an unauthorized user from
modifying the IP number of a host to any number other than the IP number
of the machine making the update request. The implementation of this
scheme is designed to use the HTTP protocol for communication thereby
providing the Secure Socket Layer (SSL) level security.

Copyright © 2005 by CRC Press

Table 7.1. Hosts Used to Query Name Server

Hostname Local DNS Server Name
cse. unl . edu el k. unl . edu

unl i nfo.unl.edu hoss. unl . edu

cw s. unonaha. edu dns. unonaha. edu

nrcdec. nrc. state. ne. us nrcdec. nrc. state. ne. us

m crosoft.com dnsl. m crosoft.com

7.3 Experiments

The scheme was tested with an implementation of the DNS called Berkeley
Internet Name Domain (BIND), on the Windows NT® platform. Although the
scheme has been implemented for BIND, it will work with any DNS imple-
mentation. Several experiments were conducted to evaluate the effective-
ness, scalability, and limitations of this scheme. We experimented with dif-
ferent TTL values to see how other name servers responded to mapping
updates. To evaluate the name server responses, we used five hosts to
send query messages to the name server (Table 7.1).

We used two different tools to determine the IP number for a particular
hostname, namely nsl ookup and di g. Both of these tools are standard
DNS query tools. A C program was written to send nsl ookup requests to
different name servers after a specified repeat interval. This allowed us to
simulate query load on the DNS server by running the C program on all of
the above servers simultaneously. Querying the DNS server via
nsl ookup, the user gets two responses:

1. The IP address of the hostname
2. Information on whether the response of the local name server is
authoritative or nonauthoritative

If the response of the local server is nonauthoritative, this implies that
the local server is providing the reply from the information that it has in its
cache. If the response is authoritative, the information was obtained as a
result of a resolve query that was sent to the authorized name server for
that domain.

However, this information was not adequate for the requirements of this
project. We are also interested in obtaining the TTL values associated with
the replies. The TTL values for nonauthoritative replies would depict how
long the local server would keep the data in its cache. To obtain that infor-
mation, we used di g.

Copyright © 2005 by CRC Press

7.3.1 Cache Time versus Time-to-Live

As mentioned earlier, the TTL value in the resource record or SOA record
determines how long a name server can cache that particular information.
According to the specifications of the DNS, after the TTL expires, the name
server must discard the cached data and get new data from the authorita-
tive name servers. This implies that the first resolution request for a par-
ticular host, after the TTL for that record has expired, should result in a
resolve query being sent by the local host to the authoritative DNS server.
To test the above implication, we performed several experiments using the
following setup. We used a laptop to connect to a local Internet Service Pro-
vider (ISP) that does dynamic IP assignment. This ensured that on each
connection, we would be assigned a different IP number. The laptop per-
formed the function of the nomadic host. On each connection, we ran the
Web browser to update the name-to-IP mapping for that machine and pro-
vided a different TTL value for that connection. Then, we ran the C pro-
gram on all the test machines allowing them to cache the mapping. After
the simulation program started on each machine, we made a new connec-
tion to the ISP and updated the DNS mapping on the DNS server. We then
monitored the execution of the simulation program to determine how long
it took the different machines to obtain the new IP number.

In this chapter, the term cache time refers to the time period, starting
from the time the local server cached the name-to-IP binding for a particu-
lar host, to the time it sent a resolution request to the authoritative DNS
server for the same host. Suppose that at time /, the local name server
resolves and caches the name-to-IP binding for a particular host. If, at time
s, the local name server sends another resolve query for the name-to-IP
binding for the same host, the cache time, ¢, can be obtained as ¢ =s-f. Our
effort was to determine if the cache time was equal to the TTL specified in
the resource records, at all times. If the cache time matched the TTL time
for all servers, the scheme would provide a feasible method for location
management of nomadic hosts on the Internet.

As we can see from Table 7.2, when the TTL value is close to five minutes
and above, the cache time for all servers is identical to the TTL value.
When the TTL value is below five minutes, the cache time for different serv-
ers is unpredictable. Some servers (el k. unl . edu, dns. unonaha. edu,
and dnsl1. i crosof t. com respond as expected by keeping the cache
times same as the TTL values. However, hoss. unl . edu responded by
always keeping the cache time at least five minutes, irrespective of the TTL
specified. Similarly, nr cdec. nrc. st at e. ne. us responded by keeping
the cache time at least two minutes, irrespective of the TTL specified.

One possible explanation of this behavior could be the fact that most
DNS servers have the negative caching implemented with a hard coded

Copyright © 2005 by CRC Press

Table 7.2. TTL Value versus Cache Time

Cache Time
dns. dnsl.
Specified TTL | elk.unl. | hoss.unl. | nrcdec.nrc. unomaha. microsoft.

(seo) edu edu state.ne.us edu com
0 0 0 0 0 0
50 50 300 120 50 50
100 100 300 120 100 100
150 150 300 150 150 150
200 200 300 200 200 200
250 250 300 250 250 250
300 300 300 300 300 300
350 350 350 350 350 350
400 400 400 400 400 400
450 450 450 450 450 450
500 500 500 500 500 500
550 550 550 550 550 550
600 600 600 600 600 600

value of 10 minutes. In addition, keeping the TTL value very low could
result in a high load on the DNS server. It appears that the designers of the
different DNS servers have not followed any definite standard on determin-
ing the minimum cache time for their servers. However, when the TTL
value was specified as 0, no server cached the data, irrespective of what its
minimum cache time value was. A TTL value of 0 always resulted in the
response from the local servers being authoritative. Hence, if the expected
TTL value of any server needs to be below 30 seconds, the server should
specify the TTL value as 0 so as to ensure that all remote servers would
always get the latest name-to-IP mapping on all resolution requests.

7.3.2 Scalability Analysis

To perform a scalability analysis on the scheme, we increased the number
of nomadic hosts in the DNS database file and tested the time it took for the
client to perform a binding update on the DNS server. This time is mea-
sured from the time the Web client presses the Update button to the time
the Web client displays the confirmation message. During that time, the
CGI program receives the mapping update request, locks the DNS data file,
parses the data file to find the entry for the nomadic host, updates the data

Copyright © 2005 by CRC Press

T~

=
[&)]
G

l: /
_//‘

1 10 100 1,000 10,000 100,000
Number of Hosts in DNS Database File

Mapping Update Time
(Seconds)

Figure 7.2. Scalability Analysis

file with the new information, and then sends the reload signal to the DNS
server.

It should be noted that scalability issues arise only when large numbers
of clients are trying to update their mappings, not when large numbers of
servers are querying the primary DNS for mapping resolutions. The root
servers maintained by InterNICSM have already proven that scalability in
terms of servicing resolution requests can be resolved by increasing the
compute power of the physical machines and increasing the bandwidth of
their Internet connections. Statistics from InterNIC show that their root
name server, Ns. i nt er ni c. net, receives 255,600 queries per hour, or
almost 71 queries per second [1]. In addition, having multiple DNS servers
and implementing some load sharing mechanism for those servers can
reduce the load on the name servers.

As we can see from Figure 7.2, the mapping update time for the server is
less than a second for up to a thousand hosts. It then increases by a factor
of five (approximately), as the number of servers increase by a factor of
ten.

With the infrastructure used in the experiments, the scalability factor
introduced the following problem. When the number of hosts became very
large (around 100,000), such that mapping update time was about 20 sec-
onds, all subsequent mapping update requests within the 20 second period
failed. The main reason for the failure was that the instance of the CGI pro-
gram handling the first update request had locked the DNS data file and all
subsequent instances of that program were unable to lock the file. This
problem can be rectified by increasing the computing power of the server.
This would provide faster processing of the data file and hence reduce the
mapping update time. Also, implementing a queuing mechanism in the CGI
program should help. Each instance of the CGI program should check if it
is able to lock the data file. If the lock succeeds, the CGI program should

Copyright © 2005 by CRC Press

update the mapping information. If the lock fails, the CGI program should
sleep, waiting on the event that its lock will succeed and it can go ahead
with its update. This way, all updates will be performed in a queued fash-
ion.

7.4 Concluding Remarks

In this chapter, we presented a simple scheme that performs location man-
agement of nomadic hosts on the Internet. This scheme takes advantage of
the existing DNS architecture to allow the nomadic hosts to update their
name-to-IP binding dynamically. In addition to its simplicity, this approach
has several advantages. It integrates well with the existing DNS infrastruc-
ture and can be implemented easily without requiring any changes in the
Internet architecture. Because it uses the existing DNS infrastructure,
which has proven to be scalable, it can be used to perform location man-
agement for a large number of hosts. This scheme allows the nomadic host
to enter its own Keep Valid time, which could vary for different hosts. This
allows the name-to-IP mapping validity to mirror the expected host mobil-
ity pattern. Because this scheme allows the individual hosts to specify
their own TTL values, and the scheme is scalable, the name-to-IP mappings
are not dependent on the frequency of movement of hosts. The hosts move
and update their bindings as often as they like. It can be used for the loca-
tion management of any host on the Internet and once the name-to-IP bind-
ing of the host has been updated, the changes are reflected throughout the
whole Internet.

This scheme has some limitations and areas of improvements. One
problem is that the queue may become very large when many requests
come in for hostname-to-IP updates. One solution to this problem is to
have a multi-threaded database running on a multiprocessor computer: a
custom written implementation of BIND that does the standard caching of
information, but instead of reading from the text files, it reads the data from
the database. This would allow multiple updates and multiple requests to
take place at one time.

In addition, this scheme was implemented using the BIND implementa-
tion of the DNS server. BIND supports the feature of specifying the TTL
value for each resource record. If the scheme is to be ported on any DNS
server that does not provide this facility, it needs to be modified to circum-
vent this problem. Creating a separate subdomain for the nomadic hosts
and controlling the TTL value of the SOA record for the subdomain may cir-
cumvent this problem. This TTL value would then apply to all hosts in the
subdomain. The TTL value of the subdomain should be the minimum of the
TTL values specified by each host. In this case, the CGI program upon
receiving the TTL value for the mapping update for a host would compare
that value to the TTL value of the SOA record for the subdomain. If the

Copyright © 2005 by CRC Press

specified TTL value is less than the one in the SOA record, the program
would modify the TTL value in the SOA record. If the specified TTL value is
the same or higher, the CGI program would just update the mapping for
that host.

References

1.

2.

10.

11.

12.

13.

14.

Paul Albitz and Cricket Liu, DNS & Bind, 2nd ed., Sebastopol, CA: O’Reilly & Associates,
Inc., January 1997.

Pravin Bhagwat and Charles Perkins, A Mobile Networking System based on Internet
Protocol, IEEE Personal Communication Magazine, February 1994.

Tomasz Imielinski and Henry F. Korth, Mobile Computing, Norwell, MA: Kluwer Aca-
demic Publishers, 1996.

David B. Johnson and David A. Maltz, Protocols for Adaptive Wireless and Mobile
Networking, http://monarch.cs.cmu.edu.

David B. Johnson and Charles E. Perkins, Route Optimization in Mobile IP, draft-ietf-
mobileip-optim-07.txt-work in progress, November 1997.

Kevin Lai, Mema Roussopoulos, Diane Tang, Xinhua Zhao, and Mary Baker, Experi-
ences with a Mobile Testbed, Proc. of the 2nd International Conference on Worldwide
Computing and lts Applications (WWCA98), March 1998, http://mosquitonet.stan-
ford.edu/ publications.html.

Ben Lancki, Abhijit Dixit, and Vipul Gupta, Mobile-IP: Supporting Transparent Host
Migration on the Internet, http://anchor.cs,binghampton.edu.

Refik Molva, Didier Samfat, and Gene Tsudik, Authentication of Mobile Users, IEFE
Network, vol. 8, no. 2, 1994, pp. 26-34.

Brian Noble, Giao Nguyen, Mahadev Satyanarayanan, and Randy Katz, Mobile Network
Tracing, Internet RFC 2041, October 1996.

Charles E. Perkins, Mobile IP — Design Principles and Practices, Boston: Addison
Wesley, 1998.

Mahadev Satyanarayanan, Mobile Computing, I[EEE Computer, vol. 26, no. 9, 1993, pp.
81-82.

Rhandev Singh et al., RAT: A Quick (and Dirty?) Push for Mobility Support, in Proc.
of the 2nd IEEE Workshop of Mobile Computing Systems and Applications, New Orleans,
February 1999.

M. Spreitzer and M. Theimer, Scalable, Secure, Mobile Computing with Location
Information, Communications of the ACM, vol. 36, no. 7, 1993.

Subhashini Rajgopalan and B.R. Badrinath, Adaptive Location Management for Mo-
bile-IP, Proc. of the 1st ACM International Conference on Mobile Computing and Net-
working—Mobicom’95, November 1995.

Copyright © 2005 by CRC Press

http://monarch.cs.cmu.edu

Chapter 8

Location Management
Techniques for Mobile
Computing
Environments

Riky Subrata and Albert Y. Zomaya

8.1 Introduction

One of the challenges facing mobile computing is the tracking of the cur-
rent location of the user — the area of location management. To route
incoming calls to appropriate mobile terminals, the network must from
time to time keep track of the location of each mobile terminal.

Mobility tracking expends the limited resources of the wireless network.
Beside the bandwidth used for registration and paging between the mobile
terminal and base stations, power is also consumed from the portable
devices, which usually have limited energy reserve. Furthermore, frequent
signaling may result in degradation of quality of service (QoS), due to inter-
ferences. On the other hand, a miss on the location of a mobile terminal will
necessitate a search operation on the network when a call comes in. Such
an operation requires the expenditure of limited wireless resources. The
goal of mobility tracking, or location management, is to balance the regis-
tration and search operation, so as to minimize the cost of mobile terminal
location tracking.

Most, if not all, today’s wireless network consists of cells. Each cell con-
tains (or is represented by) a base station, which is wired to a fixed wire
network. The base stations interact with the portable handheld devices
and provide these devices the wireless link to the network. One typical cel-
lular network plan is shown in Figure 8.1. Cells are then grouped into
regions. Each region contains the whole allotted frequency spectrum, with
each cell in the region using part of the frequency spectrum. The frequency

Copyright © 2005 by CRC Press

Figure 8.1. Typical Cellular Network Plan
Shown are regions having four and seven cells. The cells are smaller in the areas
where more users are expected.

spectrum is then reused in the other regions, with cells in other regions
reusing the same frequency band, governed by the minimum distance
between cells allowed. Detailed discussions on frequency reuse and cell
planning can be found in [31, 86]. Further information on wireless networks
and communications can also be found in [16, 20, 70, 71, 86].

As the demand for wireless communication grows, cells sizes have con-
tinually decreased in size to achieve higher frequency reuse, especially
important due to the limited frequency spectrum available. Due to the
smaller cell sizes, cell crossover in mobile users’ movements would
undoubtedly become more frequent. As such, an efficient location manage-
ment system is needed to ensure timely delivery of incoming calls to the
user.

The next section is an overview of location management and its opera-
tions. The concept of location management cost, for the purpose of loca-
tion management strategies evaluation and comparison is then described.
This is followed by a discussion of common network topologies, as well as
several common mobile users’ call arrival and mobility patterns used for
network simulation purposes. Finally, an overview of a number of location
update and general location inquiry strategies that have been proposed in
the literature over the years is given.

Copyright © 2005 by CRC Press

| Location management |

| Location update | | Location inquiry |

| Authentication | | Database updates| | Paging | | Database queries ‘

Figure 8.2. Location Management Components
(Source: LF. Akyildiz, J. McNair, J.S.M. Ho, H. Uzunalioglu, and W. Wenye, Proceedings of the
IEEE, vol. 87, no. 8, pp. 1347-1384, 1999. Used with permission.)

8.2 Location Management

Location management, or the tracking of mobile users’ location inside the
network, involves two elementary operations — location update and loca-
tion inquiry (Figure 8.2). Note that there are also fixed-wire communica-
tions within the network between the different controllers for location
updates as well as location inquiries — network interrogation. This is
mainly for database updates during a location update and database que-
ries during a location inquiry (Figure 8.2).

8.2.1 Location Update

Location update is initiated by a mobile terminal and is used to inform the
network of its current location inside the network. This is done so as to
limit the search space, should the need arise, to locate the user at a later
point in time. That is, location update strategies, although not necessary,
are used to reduce the amount of signaling required to locate a mobile ter-
minal should the need arise.

8.2.2 Location Inquiry

In location inquiry, the system initiates the search for a user. The system
can do this by polling cells where the user might be in. Specifically, the fol-
lowing procedure can be used [4]:

¢ Send polling signal to a target cell.

e If areply is received before a specified time-out, the mobile terminal
is in the target cell.

¢ If a time-out occurs and no reply is received, the mobile terminal is
not in the target cell.

8.2.2.1 Delay Constraint. In many cases, in order to maintain a
required QoS, it is desirable to impose a maximum allowable time delay in
locating a user. Unfortunately, this added time constraint adds to the com-
plexity of update schemes and schemes that work well with no delay con-
straint may need to be adjusted to work well under the delay constraint.

Copyright © 2005 by CRC Press

8.3 Location Management Cost

To be able to effectively compare the different location management tech-
niques available, one needs to associate with each location management
technique, a value or cost.

As noted above, location management involves two elementary opera-
tions of location update and location inquiry, as well as network interroga-
tion operations. Clearly, a good location update strategy would reduce the
overhead for location inquiry. At the same time, location updates should
not be performed excessively, as it expends the limited wireless resources.

To determine the average cost of a location management strategy, one
can associate a cost component to each location update performed, as well
as to each polling/paging of a cell. The most common cost component is
the wireless bandwidth used (wireless traffic load imposed on the net-
work). That is, the wireless traffic from mobile terminals to base stations
(and vice versa) during location updates and location inquiry. Although
there is also fixed-wire network traffic (and database accesses and loads)
between controllers within the network during location updates and loca-
tion inquiry — network interrogation — this is considered much cheaper
(and much more scalable) and is usually not considered.

The total cost of the above two cost components — location update and
cell paging — over a period of time T, as determined by simulations (or ana-
lytically or by other means) can then be averaged to give the average cost
of a location management strategy [87]. For example, the following simple
equation can be used to calculate the total cost of a location management
strategy:

Total Cost =C-N,;, + N, B.1)

where N, ;denotes the number of location updates performed during time
T, Np denotes the number of paging performed during time T, and C is a con-
stant representing the cost ratio of location update and paging. The above
cost formula can be used to compare the efficiency of different location
management techniques. Several things, however, should be noted:

¢ The more complex location management strategy will almost always
require more computational power at the mobile terminal, the sys-
tem, or both. It may also require greater database cost (e.g., record
size). These parts of the location management cost are usually
ignored as they are hard to quantify.

¢ The cost of location update is usually much higher than the cost of
paging — up to several times higher [38], mainly due to the need to
setup a signaling channel. Several authors use C = 10, for example
in [34, 108].

Copyright © 2005 by CRC Press

Figure 8.3. Cellular Network and Corresponding Graph Model

e If location management cost is obtained through simulations (or
analytically), then depending on the location update strategy used,
the total number of location updates performed over a period T may
depend on the mobile users’ mobility and call arrival patterns. To a
certain extent, it may also depend on the network topology used in
the simulation.

¢ Asinthe case for location update, if simulations are used for location
management strategy evaluation, then the total cost of location
inquiry over a period T would depend on the number of calls
received by the users, that is, on the users’ call arrival patterns. It
may also be influenced by the users’ mobility pattern and the net-
work topology used in the simulation.

Noting the above issues, it is clear that any simulation results would be
strongly influenced by users’ mobility and call arrival patterns chosen for
the simulation [59, 84]. In other words, users’ mobility and call arrival pat-
terns are especially of interest in location management.

The next few sections provide overviews of common network topolo-
gies, as well as several users’ mobility and call arrival patterns commonly
used in network simulations to determine the effectiveness of a location
management strategy.

8.4 Network Topology

A general graph model can represent arrangement of cells in a real cellular
network (Figure 8.3). In the graph model, each node represents a base sta-
tion (center of cell) and neighboring cells are represented by edges con-
necting the nodes. Other simpler models have also been used for simula-
tion purposes, which include one-dimensional and structured two-
dimensional models.

Copyright © 2005 by CRC Press

Figure 8.4. One-Dimensional Network

Figure 8.5. Two-Dimensional, Mesh Configuration Network

In the one-dimensional model, each user has two possible opposing
moves (e.g., left or right) as shown in Figure 8.4. Common two-dimensional
models include the mesh configuration (Figure 8.5), and the hexagonal con-
figuration (Figure 8.6). In the hexagonal configuration, each cell can have a
maximum of six neighboring cells. In the mesh configuration, each cell can
have a maximum of either four or eight neighbors, depending on whether
diagonal movements are allowed.

8.5 Mobility Pattern

In a real cellular network, one would expect the mobility level of each
mobile user to be a time varying quantity. For example, users are more
likely to be more mobile during rush hour and working hours, in general,
than after hours. Several approaches have been proposed in the literature
to model and approximate a mobile user’s movement pattern. Some com-
mon approaches are described below.

8.5.1 Memoryless (Random Walk) Movement Model

In the memoryless, Random Walk Movement Model, the user’s next cell
location does not depend on the user’s previous cell location. That is, the
next cell location is selected with equal probability from the neighboring
cells. Purely Random Walk Model is usually used to model pedestrian traffic,

Copyright © 2005 by CRC Press

Figure 8.6. Two-Dimensional, Hexagonal Configuration Network

whose movements are usually irregular with frequent stops and directional
changes.

8.5.2 Markovian Model

Unlike the memoryless movement model described above, the Markovian
Movement Model incorporates memory and user’s movements are influ-
enced by the user’s previous movements. Such memory can include a list
of recently visited cells (cell history) or recent directions in movement
(directional history).

8.5.2.1 Cell History. In this model, each of the neighboring cells has a
different probability of being the user’s next cell location, depending on the
set of cells the user has visited.

For a discrete time, one-dimensional ring network, a first order Markov
Movement Model with a geometrically distributed cell residence time can
be defined as follows. Suppose a mobile user is at cell £ at time ¢. Then at
timet + 1, the user will stay at cell k with probability q or move to one of the
two neighboring cells a or b with probability P(a | k) and P(b | k), respec-
tively.

The definition above can also be extended to a higher order Markov
Model. For example, for a second order Markov Model, the probabilities of
moving to one of the two neighboring cells would be P(al jk) and P(b | jk),
where j and k denotes the last two cells the user visited. Clearly, the Ran-
dom Walk Model described earlier can be thought of as a zeroth order
Markov Model (that is, no memory).

Copyright © 2005 by CRC Press

0 1 2
3 4 5
6 7 8

Figure 8.7. A 3x3 Network
The cells on the edge of the network wrap around and connect to the cells on the
opposite side.

The definition for a continuous time Markov Movement Model is similar.
For example, the user’s cell residence time can be exponentially distrib-
uted with mean 1/A. In this case, only the transitional probabilities P(a I k)
and P (b | k) — assuming a first order Markov Model, are needed. Similar sit-
uations exist for higher order Markov Model.

Finally, the definitions above can be readily extended to a two-dimen-
sional network with arbitrary topologies. In [23, 82], a discrete time, first
order Markov Movement Model is used on a two-dimensional graph model.

8.5.2.2 Directional History. The concept of memory for cells visited
can also be extended to include directions of movement the user has taken.
The directional information is used to model the user’s movements partic-
ularly in highly structured network topology, such as the mesh configura-
tion and hexagonal configuration network. Different ways of implementing
such directional information exist.

In a mesh configuration network, one can define four possible move-
ment directions — up, down, left, and right. To ensure that each cell has
exactly four possible movement directions, the network can be made to
wrap around on the edges. For example, in Figure 8.7, cell 0 connects to cell
2 and cell 6, as well as cell 1 and cell 3.

If a first order Markov Model is considered, then the movement direc-
tion the mobile user takes in the next time instant would depend on that
user’s last movement direction. One possible transition model, used in
[112], is shown in Figure 8.8. In this case, the mobile user’s residence time
in each cell is modeled as an exponentially distributed random variable
with mean 1/A.

Note though, the use of purely directional information for mobility mod-
eling does not differentiate the geographical locations (e.g., attraction
points such as shopping centers) of the different cells in the network.

Copyright © 2005 by CRC Press

Psame Psame

Move Popposite Move
Up Down

P, o[her/ 2 P other/ 2
Move Move
Left Popposite Right
Psame Psame

Figure 8.8. Transition Diagram for Four Possible Directional Moves

8.5.3 Shortest Distance Model

In this model [1], users are assumed to follow a shortest path from source
to destination. At each intersection, a user chooses a path that maintains
the shortest distance assumption. The model is particularly suited for
vehicular traffic, whereby each user has a source and destination. Under
such condition, the shortest distance assumption is certainly reasonable.

8.5.4 Gauss-Markov Model

The model, described in [51], captures some essential characteristics of
real mobile users’ behavior, including the correlation of users’ velocity in
time. Under a discrete time model, a mobile user’s velocity v, at time slot
n can be represented as follows [51]:

v, = 0w, , +(1—0c)u +V1-0o’x, , 8.2)

where o € [0,1], M is the asymptotic mean of v, when n approaches infinity,
and x, is an independent, uncorrelated, and stationary Gaussian process.
X, has zero mean and standard deviation equals to the asymptotic stan-
dard deviation of v, when n approaches infinity. In the extreme cases, the

Copyright © 2005 by CRC Press

Table 8.1. Activity Transition Probabilities for a Mobile User

Time Current Activity Next Activity Probability
1 2 3 0.3
1 2 4 0.5

Gauss-Markov Model simplifies to the memoryless movement model and
constant velocity Fluid-Flow Model (described below).

8.5.5 Activity-Based Model

The central concept of an activity-based model is that of activity. Each
activity represents a trip purpose: that is, the activity requires the user to
travel to a destination associated with the activity. New activities are then
selected/generated based on such factors as the previous activities and
time of day.

Certainly, several implementations of such activity-based mobility
model are possible. In an implementation described in [81], each activity
has with it several parameters, including time of day, duration, as well as
location of the activity. New activities are then selected or generated based
on the previous activity, and time of day, as shown on Table 8.1. When a
new activity is selected, it is assigned a duration based on the time of day.
Based on the activities information, a path taken from origin to destination,
as well as the times of the cell crossings, can be determined and used for
simulation. Parameter values needed for the activity-based model can be
obtained from a population survey.

The activity-based mobility model captures, to an extent, movement
behavior of real mobile users. The activity-based mobility model is dis-
cussed and implemented in [28, 67, 81, 84].

8.5.6 Mobility Trace

Actual mobility trace of users in a cellular network — that is, actual move-
ment behavior of users in a real cellular network or geographical area —
can also be used for simulation. Such trace is certainly more accurate and
realistic than other mathematical models. However, such trace is not
readily available, especially one of a large enough size to be useful for net-
work simulation. Furthermore, movement behavior of users in one net-
work may not be the same or valid for other network, which may depend,
among other things, on the size of the network and geography. Several

Copyright © 2005 by CRC Press

mobility traces have been collected and used for evaluation purposes, for
example in [95, 96, 99].

In [43], a trace generator, which was corroborated using real-world data,
is described. The traces include call information as well as movement
information of mobile users. Output from such a generator can be obtained
from [92].

8.5.7 Fluid-Flow Model

Although the above models describe an individual user’s mobility, there
are also models that describe systemwide (macroscopic) movement
behavior. The Fluid-Flow Model is one such model. In this model, mobile
users’ traffic flow is modeled as fluid flow, describing the macroscopic
movement pattern of the system. In this model, each mobile user is
assumed to move at an average speed v and is uncorrelated with the move-
ment of other users. Further, the direction of each mobile user’s movement
is uniformly distributed in the range {0, 2r}. For a region with length L and
population density p, the average number of users moving out of the area
per unit of time is given by:

N=P= (8.3)

The Fluid-Flow Model is suitable for vehicular traffic, where users do not
make regular stops and interruptions, as opposed to pedestrian traffic,
which can be irregular with frequent stops and directional changes. Pedes-
trian traffic is usually modeled using a Random Walk Model. Fluid-Flow
Model is discussed and used in [40, 49-51, 83, 98, 103, 110]. Because the
Fluid-Flow Model describes macroscopic movement behavior, it is not suit-
able in cases when individual user’s mobility patterns are important.

8.5.8 Gravity Model

In this model, movement traffic between two sites/regions i, j is a function
of each site’s gravity P, P; (e.g., population) and an adjustable parameter
K(i, j). For example, the following simple formula can be used to model the
amount of traffic from site i to site j:

T,,=K,;PP, 8.4

where K, is a positive constant, and P; and P, can represent the population
of site i and site j, respectively. As in the case of Fluid-Flow Movement
Model, the gravity model describes systemwide, or macroscopic, move-
ment behavior. As such, it cannot be used in simulations involving the indi-
vidual user’s mobility patterns. Gravity models have been used to model
traffic in different geographical areas [29, 30, 85].

Copyright © 2005 by CRC Press

0.7 4
0.6
0.54
0.4 1
0.3 1
0.2 1
0.1+

Call arrival probability

0-8 8-18 18-24
Hour

Figure 8.9. Estimated Weekday’s Call Arrival Probability Distribution

8.6 Call Arrival Pattern

The call arrival rate of mobile users in a real cellular network is a time vary-
ing quantity; for example, a higher call arrival rate is expected during work-
ing hours than after hours.

8.6.1 Poisson Model

In this model, call arrivals to a particular mobile station are assumed to fol-
low a Poisson probability distribution, resulting in exponentially distrib-
uted (continuous time) or geometrically distributed (discrete time slot)
call interarrival time.

Data suggests that macroscopically (in aggregate), the Poisson call
arrival rate accurately reflects call arrivals in existing cellular networks.
However, an individual user may not have a Poisson call arrival rate. For an
individual user, other factors come into play, such as time of day (e.g.,
working hours, after hours) and special days (e.g., holidays).

8.6.2 Call Arrival Trace

To overcome the problem, a time-varying call arrival model can be used,
which generates call events based on the time. For example, greater call
arrivals may be generated during working hours than after hours (Figure
8.9). The call arrival distribution to be used for the model can be readily
obtained from users’ call records.

Actual call arrival trace of an existing cellular network can also be used
for simulation. Such trace certainly provides a more accurate and realistic
representation of actual call arrivals than other mathematical models,
such as the Poisson Model. Also, unlike mobility traces, trace data of users’
call arrivals are readily available from the users’ call records. However, a
time-varying call arrival model described above may be enough to accu-
rately represent call arrival patterns of actual users.

Copyright © 2005 by CRC Press

A trace generator that was corroborated using real-world data is described
in [43]. The traces include call information as well as movement information
of mobile users. Output from such a generator can be obtained from [92].

8.7 Location Update Strategies

Ideally, a location update strategy should efficiently use the limited
resources of the network and should not require excessive computing
power at the mobile terminal. This is especially true in the dynamic update
strategy (discussed below), where many of the calculations need to be
done at the mobile terminal. Further, it should be (easily) scalable to
accommodate future expansion of the network.

Location update strategies can be classified as either static or dynamic.
In the static update strategy, location update is performed independent of
each user’s mobility and call arrival patterns. On the other hand, dynamic
strategies take into account each user’s mobility and call arrival patterns.
Undoubtedly, static update strategies are easier to implement in a network
and require minimal processing power on the mobile terminal. However,
dynamic strategies may result in lower overall signaling costs (location
management cost).

Below are some of the update strategies that have been proposed over
the years. Some of these strategies are static update strategies and some
are dynamic update strategies. Still, some of the strategies can be imple-
mented both statically and dynamically.

8.7.1 Always-Update Strategy

In this static location update strategy, each mobile terminal performs a
location update whenever it enters a new cell. In this case, the current cell
location of each user is always known. As such, no search operation would
be required for incoming calls. However, the resources used (overhead) for
location update would be high. Such strategy is suitable when the user is
not highly mobile or the cell size is quite large and users do not move in or
out of cells often.

8.7.2 Never-Update Strategy

This static location update strategy is the opposite of the always-update
strategy in that no location update is ever performed. Instead, when a call
comes in, a search operation is conducted to find the intended user. In this
case, the overhead for the search operation would be high, but no
resources would be used for the location update. This scheme may be suit-
able for small cell size and highly mobile users with low call arrival rates.

Although the always-update and never-update strategies represent the
two extremes of location management strategies — whereby one cost is

Copyright © 2005 by CRC Press

minimized and the other maximized — other location update strategies
exist that use a combination of the above two strategies. These are
described below.

8.7.3 Time-Based Strategy

In this dynamic location update strategy, each mobile terminal updates its
location every T time units. This strategy is relatively easy to implement,
as each mobile terminal needs only an internal clock to keep track of how
long it has been since its last location update. More importantly, the value
T can be adjusted for each mobile user, according to the individual user’s
mobility/movement patterns and call arrival rate/pattern.

Further, due to the nature of its periodic signaling, the network knows
that the mobile terminal is powered-off or outside the coverage area if it
does not perform a location update at its required times (implicit detach-
ment). As such, this may reduce the signaling load due to unnecessary pag-
ing operations [57]. However, such a scheme would lead to unnecessary
location updates for stationary or low mobility users. Furthermore, mobile
users’ location uncertainty is not bounded: when a call arrives, the search
operation cannot be limited to a set of cells.

In [74], using a one-dimensional network model, Poisson call arrival, and
assuming the user’s location probability distribution as a function of time
is known, it was found that the time-based method performs better than
the static location area strategy (discussed later). Similar discussions can
be found in [72, 73, 75, 77]. In particular, the time-based approach is
extended [73, 75, 77] to a state-based approach, whereby the time since
last update, as well as the user’s current location, is taken into account in
determining when to do a location update.

8.7.4 Movement-Based Strategy

In its simplest form, this dynamic location update strategy requires a
mobile terminal to keep track (a counter) of the number of cells visited (or
the number of cell-boundary crossings) since the last location update.
Location update is performed when the counter exceeds a threshold value
M, which can be determined on a per user basis. An example is shown in
Figure 8.10, where M = 2.

This strategy is harder to implement than the time-based strategy, as
each mobile terminal needs to be aware of boundary crossing. Also, cyclic
user movements would trigger unnecessary location updates. One simple
improvement to partially solve the cyclic movement problem is to reset
the counter when the user reenters the last known cell location (e.g., the
cell of the last location update performed by the mobile terminal). Such
strategy is discussed in [18]. Similar strategy is discussed in [56]. One
advantage of the movement-based strategy over the time-based strategy,

Copyright © 2005 by CRC Press

Figure 8.10. Movement-Based Location Update with Movement Threshold M = 2
Location update is triggered whenever the user crosses more than two cells. In the
figure, each dot represents a location update. The first location update occurs
when the mobile terminal is switched on.

however, is that a mobile terminal’s location is limited to a radius of M
cells. As such, when a call arrives, a search can be limited to cells within
the radius M.

8.7.5 Distance-Based Strategy

In another dynamic location update strategy, the distance-based strategy
(also called the distance-based location area [DBLA] strategy), each
mobile terminal needs to keep track of the distance (in number of cells) it
has traveled since its last location update. When the distance (in number
of cells) traveled exceeds a certain threshold value D, a location update is
performed (Figure 8.11). A modification of the existing [S-41 standard to
incorporate the distance-based location update scheme is discussed in
[112].

Clearly, the distance-based scheme limits location inquiries to the cells
within the radius D. As such, in a location miss, at worst case only the cells
within the radius D needs to be paged.

Undoubtedly, this strategy is harder to implement than either the
time-based or the movement-based strategy above. However, the savings
in the limited radio bandwidth (that may have otherwise been used for

Copyright © 2005 by CRC Press

Figure 8.11. Distance-Based Location Update with Distance Threshold D = 2
Location update is triggered whenever the distance traveled is greater than two
cells. In the figure, each dot represents a location update. The first location update
occurs when the mobile terminal is switched on.

location updates and paging) may outweigh the extra complexity incurred.
In [8], using Random Walk and Markovian Mobility Models, results show
the distance-based strategy performs better than either the time-based
strategy or the movement-based strategy.

In [107], the scheme is applied to a cellular network with arbitrary cell
topologies. Using the graph model (Figure 8.3), first order Markovian Move-
ment Model, and Poisson Call Arrival Model, optimal location update
boundaries are obtained. Whenever users enter one of their update cells,
location update is performed. New location update boundary is then calcu-
lated. It was shown that each location update cell might not necessarily
have the same distance (in terms of the minimum number of cells to be tra-
versed to get to the cell) to the current cell. That is, the update boundary
is not circular. Distance-based strategies are discussed further in [9, 53, 66,
102].

8.7.6 Location Area

The location area (LA) method of location management is the most com-
mon and widely used location management technique used in today’s
existing cellular networks [82].

Copyright © 2005 by CRC Press

Figure 8.12. Regions Representing Location Areas and Individual Cells
Here there are 4 LAs, each consisting of 16 cells.

Figure 8.13. Oscillating User Location

8.7.6.1 Static Case. In this scheme, the network is partitioned into
regions or LAs, with each region consisting of one or more cells (Figure 8.12).
The never-update strategy can then be used within each region, with location
update performed only when a user moves out to another region or LA.

One of the advantages of the LA scheme over the time-based scheme
discussed earlier is that location inquiry of a mobile user is limited to
within the LA.

One shortcoming of the static LA scheme is that if a mobile terminal fre-
quently crosses the LA’s boundaries, then there will be excessive, unneces-
sary location updates (Figure 8.13). To overcome this, the boundary of LA

Copyright © 2005 by CRC Press

Figure 8.14. Overlapped Location Areas

1 and LA 2 can be overlapped, as shown in Figure 8.14. Note that the over-
lapping cells can be thicker than two cells or can be just one cell wide. If a
user moves within the overlapping cells, then no location update is per-
formed and the user is deemed to be in one LA only, which depends on
where the user originally comes from.

Note however, that the use of overlapping results in the overlapping
cells having to handle the paging of the LAs in which they are included,
which can be quite high, especially if it involves more than two LAs.

Another problem inherent in the LA strategy is that because location
update is performed at boundary crossings, more signaling traffic is gener-
ated around the boundary cells. Here are a couple of solutions for this
problem:

¢ Provide extra bandwidth to the boundary cells to compensate for
the extra traffic.

¢ Assign each mobile user to a group. The network would then have
several groups, with each group having its own LA mapping and
number of users (Figure 8.15). With appropriate parameters to each
group, uniformly distributed location update traffic can be achieved.
However, the use of grouping leads to increased complexity of the
system, both in the planning process, and also in that the network
has to be aware of each user’s group.

Some of the above improvements can also be combined together to give
a hybrid concept. The multilayer concept, introduced in [65] involves the
overlapping (layering) improvement to prevent oscillating location update
and grouping improvement to redistribute location update traffic.

Another variant is proposed in [52], called the two-location algorithm
(TLA). In this strategy, the system uses two LAs, instead of one, for each
mobile user. Each mobile terminal performs a location update only when it
enters a new cell not within the two previously registered LAs. It was found

Copyright © 2005 by CRC Press

Group 1

Group 2
location areas

Figure 8.15. Grouping of Location Areas

that in the case of high mobility and low call arrival rate, the TLA might sig-
nificantly outperform the standard LA strategy.

The LA planning problem can be defined as the problem of finding an opti-
mal set of LAs, whereby the location management cost (of location update
and location inquiry) is minimized. Minimizing location management cost is
often a major goal for network operators. Unfortunately, most cost formula-
tion (using different movement and call arrival patterns, among other things)
for the LA planning problem results in an optimal formulation that is NP-com-
plete (NP = nondeterministic polynomial). As such, different heuristic and
approximation algorithms have been proposed for solving different versions
of the LA planning problem. One popular algorithm is genetic algorithm (GA),
used for example in [32, 34, 105]. In [34], a GA is used to solve a version of the
LA planning problem. In this version, the location management cost is formu-
lated using average movement between cells and average call arrivals in each
cell. Near optimal solutions to the LA partitioning problem, using simulated
annealing, tabu search (TS), and GA is also described in [24, 25]. Other algo-
rithmic techniques are shown in [12, 17, 21, 22, 26, 58, 79, 97, 103].

8.7.6.2 Dynamic Case. To overcome the shortcoming of the static LA
schemes above, several dynamic variants of the LA scheme have been pro-
posed. One dynamic variant is shown in [80]. Here, each user’s mobility

Copyright © 2005 by CRC Press

history is used to create individualized LAs for the user. To do this, a set of
counters N,, (that represents the number of transitions the user has made
from cell a to cell b) is maintained for each user. In the LA creation proce-
dure, the user’s current cell is automatically included in the LA. To find the
next cell to be included in the LA, the following procedure is used. First, the
average transition value W (from the current cell to the neighboring cells)
is calculated. Neighboring cells with transition value (N,,) > W is then
added to the LA, in descending order according to its transition value (that
is, neighboring cell with the highest transition value is added first, followed
by the second, and so on). Once the first ring of neighboring cells is added
to the LA, the same procedure is used to calculate the second ring of neigh-
boring cells. The procedure is repeated until the required number of cells
has been included in the LA or no more neighboring cells with known tran-
sition data N, is left. Using an activity-based mobility model, results show
that this strategy performs better than the static case.

Another variant is proposed in [90], whereby each user’s mobility pat-
terns are used to create individualized LAs (for each user). The proposed
scheme is flexible and can be used in network with arbitrary cell topolo-
gies. Results show the proposed scheme gives better performance than the
distance-based location update scheme.

There is also the method proposed in [1], whereby the design of the LA
is formulated as a combinatorial optimization problem, subject to a con-
straint on the number of cells in the LA. Assuming independent, identically
distributed cell residence time distribution, and shortest distance mobility
model, it was shown that the LA design problem is NP-complete. A greedy
heuristic is then proposed that gives irregular LA shapes. It was then
shown that optimum rectangular LA shapes are a good approximation to
the irregular LA shapes obtained from the greedy heuristic.

8.7.7 Reporting Center

Another location management scheme similar to the LA scheme described
above is suggested in [7]. As in the case for the LA scheme, the reporting
center scheme can be implemented statically or dynamically.

8.7.7.1 Static Case. In the static reporting center method, a subset of
regions in the network is predefined as the reporting centers (Figure 8.16).
Each region can represent an individual cell — in which case a reporting
center corresponds to a reporting cell — or group of cells, such as a LA.
Each mobile terminal performs a location update only when it enters one
of these reporting centers (or reporting cells when each region consists of
a single cell). When a call arrives, the search is confined to the reporting
cell the user last reported and the neighboring bounded nonreporting
cells. For example, in Figure 8.16, if a call arrives for user X, then search is

Copyright © 2005 by CRC Press

Figure 8.16. Network with Reporting Cells (Shaded Areas Represent Reporting
Cells)

confined to the reporting cell the user last reported in and the nonreport-
ing cells marked P. Obviously, certain reporting cells configuration leads to
unbounded nonreporting cells, as shown in Figure 8.17, which one may
want to avoid.

Following from the simple examples above, one can define the reporting
center planning problem as the problem of finding an optimal set of report-
ing centers, such that the location management cost (of location update
and location inquiry) is minimized. The cost formulation may vary depend-
ing, among other things, on the movement and call arrival patterns used. In
a version of the reporting center planning problem [7], it was shown that
finding an optimal set of reporting cells/centers, such that the location
management cost is minimized, is a NP-complete problem. In [88, 89], GA,
TS, and several variants of ant colony algorithm are used to find optimal
and near optimal solutions to the reporting center problem. An evolving
cellular automata system is also experimented in [91]. Other heuristics
and approximation algorithms are implemented in [35, 68].

Because the subset of cells designated as the reporting cells are pre-
defined, the scheme is easy to implement and requires minimal computing
power on the mobile terminal. However, the scheme does not take into
account each mobile user’s mobility and call arrival patterns. For example,
if a mobile terminal frequently moves in and out of a reporting cell, then
there will be excessive, unnecessary location updates.

Copyright © 2005 by CRC Press

Figure 8.17. Network with Reporting Cells and Unbounded Nonreporting Cells

One study shows that this scheme at least performs better than both the
always-update strategy and never-update strategy; a heuristic method to
find near optimal solutions is proposed and the results are compared [35].

8.7.7.2 Dynamic Case. Each mobile user can also be assigned its own
set of reporting centers. One such proposal is considered in [23, 82]. In this
scheme, it is assumed the network has been partitioned into several static
LAs. Using each LA as a region, the set of reporting centers is then individ-
ualized for each mobile user, whereby a mobile terminal decides, upon
entering a LA, whether to perform a location update. The user’s mobility
and call arrival patterns are used to formulate the average location man-
agement cost and the problem is then solved using a GA.

Another similar scheme is proposed in [39], called the probabilistic
location update (PLU) scheme. In this scheme, upon entering a new region
(here, aregion is defined as a LA), the mobile terminal will perform a loca-
tion update with probability p. The optimal value for p, which varies
according to the user’s mobility and call arrival patterns, can then be opti-
mized for each individual user. The authors suggest an adaptive control for
the value p, based on the concept of an exponential back-off scheme
described in [27].

Copyright © 2005 by CRC Press

8.7.8 Adaptive Threshold Scheme

This method was proposed in [63, 64] (there is also a similar discussion in
[62]). In this adaptive threshold scheme, location update is performed not
only according to each mobile user’s mobility and call arrival pattern, but
also according to the signaling load currently in the cell. In case of low sig-
naling load, users transmit location updates more frequently.

To implement this scheme, each cell in the network is assigned a regis-
tration threshold level, which would depend, at any time, on the signaling
load within the cell. Each mobile terminal then computes its own threshold
level (according to its own mobility and call arrival pattern). The mobile
terminal then sends an update message when its own threshold or priority
level exceeds that of the cell. It was shown that this method reduces paging
cost in comparison to the time-based method.

8.7.9 Profile-Based

In the method proposed in [69, 93], the system keeps a profile of which
regions each user spends the most time in. Each region can represent an
individual cell, or group of cells, such as a LA. When the user moves out of
its profile’s regions, a location update is performed to inform the system of
its new region. However, while the user is moving around inside its profile’s
regions, no location update is performed.

Due to the profile kept (and maintained) for each user, the location prob-
ability of the user in each of the cells in the profile is also known. As such,
in a search/paging operation (to find the user), the cells in the profile can
be paged sequentially — in order of decreasing location probability — or
in other ways involving the user’s location probabilities (discussed later).

One condition of the scheme is a certain degree of predictability in
users’ movements. In [93], it was shown that introduction of the scheme
results in lower location management costs, when users have medium to
high predictability in their movement.

8.7.10 Compression-Based

In [14], the authors proposed the LeZi-update scheme, which uses the
commonly used Ziv and Lempel compression algorithm [113]. Essentially,
location update is considered as a stream of data to be transferred. The idea
then, is to compress these data, resulting in fewer bits to be transferred.

In the LeZi-update scheme, it is assumed that there is a degree of pre-
dictability in users’ movements. The raw location update scheme consid-
ered is the always-update coupled with periodic (time-based) location
updates. Such combination of updates ensures complete knowledge of

Copyright © 2005 by CRC Press

users’ movements, as well as length of time spent on each cell (longer time
spent results in longer character repetition in the stream). Location update
is then performed only when a path is not in the dictionary/profile. When
a call arrives for a user, the system pages the user based on location prob-
abilities information in the profile. For this reason, the mobile station and
the system needs to keep an identical dictionary/profile — the mobile sta-
tion uses it for location updates and the system uses it for location inquiry:.

Simulation done in [15] shows that there is performance improvement
when users’ mobility patterns remain stationary for long intervals; the
improvement diminishes otherwise. It was also reported that, using the
location probabilities profile, there are infrequent cases of long exhaustive
searches for a mobile user.

8.7.11 Hybrid Strategies

Some of the individual location update strategies described above can also
be combined to create hybrid strategies. For example, the use of LAs and
time-based strategy is suggested in [44, 94]. Although a location update is
performed when a user crosses a LA boundary, a location update is also
performed periodically within the LAs. This allows the system to recover
users’ locations in case of system failure. Other hybrid strategies are dis-
cussed in [19, 33, 48, 66, 111].

8.8 Location Inquiry Strategies

In the previous section, a number of location updates, and paging/location
inquiry strategies specific to particular location update strategies are dis-
cussed. In this section, general location inquiry strategies are discussed.
These general strategies are applicable to most of the location update
strategies discussed above.

8.8.1 Simultaneous Networkwide Search

In its simplest form, locating a mobile terminal can be done by simulta-
neously paging all the cells within the network. This technique will also take
the least time to locate a mobile terminal. However, this technique will result
in enormous signaling traffic, particularly for moderate to large networks.

It is highly desirable to be able to limit the location inquiry (search oper-
ation) to a set of cells, or region, in the network (e.g., a LA). This is because,
unlike location update, in location inquiry if a cell is paged and no response
is received from the mobile terminal, two possibilities exist:

1. The mobile terminal is not in the paged cell.

2. The mobile terminal is in the paged cell, but the paging signal is not
received by the terminal (e.g., because of interference). That is, the
paging signal is lost.

Copyright © 2005 by CRC Press

In the event that the second reason proved true (remote though it may
be), cells in the network may need to be paged again. If the location possi-
bilities of a mobile terminal can be limited to a region, however, then the
repeat of the search can be confined to the region.

Besides simultaneously paging all the cells in the network (or region/LA
the user is in), sequential paging (i.e., multistep paging) can be used. In
sequential paging, cells (or defined regions) in the network are paged, one
after another, until the required mobile terminal is found. One problem
with multistep paging is the inevitable extra time delay in locating a mobile
terminal, resulting in a lower QoS. Further, in a search operation, the user
may move to a cell already paged previously, necessitating a simultaneous
networkwide (or regionwide) search as a last stage of the search operation
if the user is still not found. This implies that some cells may be paged
twice. However, because such a possibility is remote, the second paging
can be used to cover such a possibility and the possibility that the first pag-
ing signal is lost.

The next few sections discuss and highlight several general, sequential
paging methods. Each of these strategies can be thought of as a variant of
each other as they all belong to the sequential paging methods.

8.8.2 Paging Area

One simple improvement to simultaneously paging all the cells within the
network is to group cells into paging areas (PAs). Cells within each PA are
paged simultaneously. Each PA can then be polled sequentially, until the
required user is found. The size and number of PAs can be adjusted to
accommodate any delay constraint and QoS requirements of the network.
Paging under delay constraints is discussed in [2, 3, 36, 76, 78, 106, 109].

In the PA technique, cells in the network need to be grouped into PAs.
Further, once the cells have been grouped into PAs, the order of PAs’ poll-
ing needs to be determined. Such planning, required on the network oper-
ator, can be time-consuming and expensive. One simple technique would
be to arbitrarily or randomly group cells into several PAs and randomly
assign the PA polling sequence. Beside arbitrary assignment, user’s loca-
tion probabilities can be used. The use of users’ location probabilities is
discussed under the intelligent paging method, discussed later below.

8.8.3 Expanding Ring Paging

In this technique, the last known cell location (or other cells deemed to
have the highest location probability), also called ring 0, of a mobile termi-
nal is paged first. On a miss, all the cells surrounding the last known cell —
ring 1, are paged. This “ring of cell” paging can continue until the required
mobile terminal is found. This ring of cells is illustrated for a hexagonal
configuration network in Figure 8.18.

Copyright © 2005 by CRC Press

Figure 8.18. Expanding Ring Paging on Hexagonal Configuration Network

From one perspective, this technique can be thought of as an improve-
ment to the PA scheme described above. Using this technique, time-con-
suming page area planning can be avoided. However, the complexity for
this technique can be greater than the PA technique, as the ring must be
computed or predefined for each cell in the network.

To accommodate any delay constraint, a networkwide search may be
used when a user is not found within a specified maximum paging ring.

Besides paging the network ring by ring, a combination of rings can also
be used at each paging step. For example, in the first paging step, ring 0 and
ring 1 can both be paged simultaneously, followed by ring 2, ring 3, and ring
4 in the second paging step, and so on.

8.8.4 Intelligent Paging

Other than the simultaneous networkwide search, the other paging meth-
ods described above sequentially page groups of cells, until the required
user is found. Ideally, we want to page the cells in the order of location
probability (with cells that have the highest probability being paged first).
In a sense, we would need to predict the current location of the user. To do
this, many factors could be taken into account. This includes (but is not
limited to):

¢ Geographical attraction points for users (e.g., shopping centers,
schools), as well as road conditions (e.g., users on freeway, neigh-
borhood streets) and layout

Copyright © 2005 by CRC Press

¢ User’s mobility pattern
¢ Time, including time of day (e.g., peak hours), day of week (weekdays
and weekends), as well as seasonal holidays

This extended paging strategy has been studied extensively [2, 6, 10, 11,
13, 37, 41, 45-47, 54, 60, 61, 69, 93, 100, 101, 104]. In the absence of any time
delay constraint (in finding the user), minimum paging cost can be
achieved by sequentially paging each cell in the order of user’s location
probabilities. That is, the cell with the highest probability of finding the
user is paged first, followed by the cell with the second highest location
probability, and so on. In real cellular networks, however, due to time delay
constraints and QoS requirements, only a limited number of paging steps
can be conducted.

A successful find in the first paging operation ensures limited time delay
in finding a mobile terminal, thus maintaining a required QoS. As such, the
probability of success in the first paging step should be sufficiently high
(e.g., 90 percent [54]).

Undoubtedly, the added intelligence leads to a rather complex system
with considerable computing and memory requirement. Besides the added
complexity and requirements on the system, extra storage and processing
is likely to be required on the mobile terminal, which usually has limited
energy reserve and processing power. The ever decreasing costs of storage
and processing power, however, means intelligent paging is becoming a rel-
atively more viable strategy for location management. Very high paging
cost savings have also been reported for the intelligent paging method
[42], as is evident by the high success in the first paging operation.

Note that because an intelligent paging strategy takes into account each
mobile user’s profile (or each class of mobile users), it is clear that such
strategy can be classified as an individualized and dynamic (sequential)
paging strategy. It is also clear, however, that by definition, an individual-
ized strategy requires individual information/profiles of each user, and its
dynamic nature means each profile needs to be maintained and updated
(on a regular basis). The kinds of data kept in the profile, as well as how
such information/profile are obtained, stored, and maintained, directly
affects, and at the same time is influenced by, the paging method imple-
mented. One simple implementation is described below.

In [55], a location accuracy matrix (LAM) is used to take into account
the different factors influencing the mobility of users in real mobile net-
works: attraction points (shopping centers, schools), road conditions, and
layout (freeway, neighborhood streets). Specifically, given the last known cell
location of a mobile user, the location accuracy matrix specifies the average
probability of locating the mobile user in each of the cells in the network. The
LAM is of size n x n, where n is the number of cells in the network. Each row

Copyright © 2005 by CRC Press

1 0.3 0.05 0.2
2 0.1 0.11 0.5
n 0.02 0.1 0.08

Figure 8.19. Location Accuracy Matrix

Each row in the matrix represents the last known cell location of the user and each
column represents the probability of locating the mobile user in each cell in the net-
work.

in the matrix represents the last known cell location of the user, with each
column entry representing the probability of locating the mobile user in
each cell in the network (given the last known cell location of the user) as
shown in Figure 8.19. To calculate each of these probabilities, paging
responses can be recorded and inputted into the LAM. For example, if a
user’s last known location is cell j, and a response is received from cell k
(that is, the user is in cell k), then the hit counter at (j, k) of the LAM can
be incremented. From these statistics, the location probabilities can be cal-
culated.

8.9 Summary

This chapter provided an overview on location management. The concept
of cost in location management, used for evaluation and comparison pur-
poses, is discussed. Common network topologies, users’ call arrival pat-
terns, and users’ mobility patterns used in network simulation for location
management evaluation purposes, are also discussed.

An overview of basic location update strategies and a number of novel
location update strategies that have been proposed in the literature over
the years are also provided. Performances and drawbacks for several of
the strategies are also discussed.

Finally, general location inquiry/paging strategies, as well as their
advantages and disadvantages are discussed. The simultaneous network-
wide search, PA, and expanding ring paging strategies are general in nature
and should work well with most location update strategies.

References

1. A. Abutaleb and V.O.K. Li, Location update optimization in personal communication
systems, Wireless Networks, vol. 3, no. 3, pp. 205-216, 1997.

2. A. Abutaleb and V.O.K. Li, Paging strategy optimization in personal communication
systems, Wireless Networks, vol. 3, no. 3, pp. 195-204, 1997.

Copyright © 2005 by CRC Press

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

LF. Akyildiz and J.S.M. Ho, A mobile user location update and paging mechanism
under delay constraints, Computer Communication Review, vol. 25, no. 4, pp. 244-255,
1995.

LF. Akyildiz, J.S.M. Ho, and B.L. Yi, Movement-based location update and selective
paging for PCS networks, [EEE/ACM Transactions on Networking, vol. 4, no. 4, pp.
629-638, 1996.

LF. Akyildiz, J. McNair, J.S.M. Ho, H. Uzunalioglu, and W. Wenye, Mobility management
in next-generation wireless systems, Proceedings of the IEEE, vol. 87, no. 8, pp.
1347-1384, 1999.

D.O. Awduche, A. Ganz, and A. Gaylord, An optimal search strategy for mobile stations
in wireless networks, in Proceedings of the IEEE International Conference on Universal
Personal Communications, 1996, vol. 2, pp. 946-950.

A. Bar-Noy and I. Kessler, Tracking mobile users in wireless communications net-
works, IEEE Transactions on Information Theory, vol. 39, no. 6, pp. 1877-1886, 1993.
A. Bar-Noy, I. Kessler, and M. Sidi, Mobile users: to update or not to update? Wireless
Networks, vol. 1, no. 2, pp. 175-185, 1995.

A. Bera and N. Das, Performance analysis of dynamic location updation strategies for
mobile users, in Proceedings of the 20th IEEE International Conference on Distributed
Computing Systems, 2000, pp. 428-435.

P.S. Bhattacharjee, D. Saha, and A. Mukherjee, An intelligent paging strategy for
personal communication services network, in Proceedings of IEEE Region 10 Confer-
ence (TENCON 99), 1999, vol. 2, pp. 1244-1246.

P.S. Bhattacharjee, D. Saha, and A. Mukherjee, Intelligent paging strategies for third
generation personal communication services networks, Journal of Interconnection
Networks, vol. 1, no. 3, pp. 153-171, September 2000.

P.S. Bhattacharjee, D. Saha, A. Mukherjee, and M. Maitra, Location area planning for
personal communication services networks, in Proceedings of the 2nd ACM Interna-
tional Workshop on Modeling, Analysis, and Simulation of Wireless and Mobile Systems,
1999, pp. 95-98.

P.S. Bhattacharjee, D. Saha, and N. Mukherjee, Paging strategies for future personal
communication services network, in Proceedings 6th International Conference High
Performance Computing (HiPC '99), 1999, pp. 322-328.

A. Bhattacharya and S.K. Das, LeZi-update: An information-theoretic approach to track
mobile users in PCS networks, in Proceedings of the 5th Annual ACM/IEEE International
Conference on Mobile Computing and Networking, 1999, pp. 1-12.

A. Bhattacharya, S.K. Das, and S. Roy, Toward a universal model for personal mobility
management, in Proceedings of the IEEE Wireless Communications and Networking
Conference, 2000, vol. 3, pp. 1578-1583.

U. Black, Emerging Communications Technologies, 2nd ed. Upper Saddle River, NJ:
Prentice Hall, 1997.

P. Carle and G. Colombo, Sub-optimal solutions for location and paging areas dimen-
sioning in cellular networks, in Proceedings of the 4th IEEE International Conference
on Universal Personal Communications, 1995, pp. 672-676.

G.V. Casares and O.J. Mataix, On movement-based mobility tracking strategy — an
enhanced version, IEEE Communications Letters, vol. 2, no. 2, pp. 45-47, 1998.

G.V. Casares and O.J. Mataix, Global versus distance-based local mobility tracking
strategies: A unified approach, [EEE Transactions on Vehicular Technology, vol. 51, no.
3, pp. 472-485, 2002.

M.F. Catedra and J.P. Arriaga, Cell Planning for Wireless Communications. Boston:
Artech House, 1999.

LA. Cimet, How to assign service areas in a cellular mobile telephone system, in
Proceedings of the IEEE International Conference on Communications Serving Humanity
through Communications (SUPERCOMM/ICC °94), 1994, vol. 1, pp. 197-200.

Copyright © 2005 by CRC Press

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

P. Curle and G. Colombo, Sub-optimal solutions for location and paging areas dimen-
sioning in cellular networks, in Proceedings of the 4th IEEE International Conference
on Universal Personal Communications, 1995, pp. 672-676.

S.K. Das and S.K. Sen, A new location update strategy for cellular networks and its
implementation using a genetic algorithm, in Proceedings of the 3rd Annual ACM/IEEE
International Conference on Mobile Computing and Networking, 1997, pp. 185-194.

P. Demestichas, N. Georgantas, E. Tzifa, V. Demesticha, M. Striki, M. Kilanioti, and M.
Theologou, Computationally efficient algorithms for location area planning in future
cellular systems, Computer Communications, vol. 23, no. 13, pp. 1263-1280, 2000.

P. Demestichas, E. Tzifa, V. Demesticha, N. Georgantas, G. Kotsakis, M. Kilanioti, M.
Striki, M.E. Anagnostou, and M.E. Theologou, Control of the location update and
paging signaling load in cellular systems by means of planning tools, in Proceedings
of the IEEE 50th Vehicular Technology Conference, 1999, vol. 4, pp. 2119-2123.

I. Demirkol, C. Ersoy, M.U. Caglayan, and H. Delic, Location area planning in cellular
networks using simulated annealing, in Proceedings of the IEEE Conference on Com-
puter Communications (INFOCOM 2001), 2001, pp. 13-20.

G.J. Dong and S.J. Wha, Performance of an exponential backoff scheme for slot-
ted-ALOHA protocol in local wireless environment, I[EEE Transactions on Vehicular
Technology, vol. 44, no. 3, pp. 470-479, 1995.

W. Donggen and C. Tao, A spatio-temporal data model for activity-based transport
demand modelling, International Journal of Geographical Information Science, vol. 15,
no. 6, pp. 561-585, 2001.

J.M. Dutton, Computer Simulation of Human Behavior. New York: Wiley, 1971.

L. Fridstrom and L.H. Thune, An econometric air travel demand model for the entire
conventional domestic network: The case of Norway, Transportation Research, Part
B Methodological, vol. 3, pp. 213-223, 1989.

A. Gamst, Application of graph theoretical methods to GSM radio network planning,
in Proceedings of the IEEE International Symposium on Circuits and Systems, 1991, vol.
2, pp. 942-945.

J.M. Gil and C.S. Hwang, A location area partitioning strategy using genetic algorithms
for mobile location tracking, in Proceedings of the 17th IASTED International Conference
Applied Informatics, 1999, pp. 349-352.

V.C. Giner and J.M. Oltra, Mobility tracking: Fixed location areas with hysteresis and
with selective paging, in Proceedings of Virginia Tech’s 7th Symposium on Wireless
Personal Communications, 1997, pp. 1-12.

PR.L. Gondim, Genetic algorithms and the location area partitioning problem in
cellular networks,” in Proceedings of the IEEE 46th Vehicular Technology Conference,
1996, vol. 3, pp. 1835-1838.

A. Hac and X. Zhou, Locating strategies for personal communication networks, a
novel tracking strategy, IEEE Journal on Selected Areas in Communications, vol. 15,
no. 8, pp. 1425-436, 1997.

J.S.M. Ho and LF. Akyildiz, Mobile user location update and paging under delay
constraints, Wireless Networks, vol. 1, no. 4, pp. 413-425, 1995.

I.L. Huey and P.L. Chien, A geography based location management scheme for wireless
personal communication systems, in Proceedings of the IEEE 51st Vehicular Technology
Conference, 2000, vol. 2, pp. 1358-1361.

T. Imielinski and B.R. Badrinath, Querying locations in wireless environments, in
Proceedings Wireless Communications Future Directions, 1992, pp. 85-108.

D.G. Jeong and W.S. Jeon, Probabilistic location update for advanced cellular mobile
networks, IEEE Communications Letters, vol. 2, no. 1, pp. 8-10, 1998.

K.W. Jyhi, S.H. Yee, H.C. Chao, and P.Y. Wei, On the traffic estimation and engineering
of GSM network, in Proceedings of the 7th IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC’96), 1996, vol. 3, pp. 1183-1187.

Copyright © 2005 by CRC Press

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

TK. Kim and C. Leung, Generalized paging schemes for cellular communication sys-
tems, in Proceedings of the IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing, 1999, pp. 217-220.

N.E. Kruijt, D. Sparreboom, F.C. Schoute, and R. Prasad, Location management strat-
egies for cellular mobile networks, Electronics and Communication Engineering Journal,
vol. 10, no. 2, pp. 64-72, 1998.

D. Lam, D.C. Cox, and J. Widom, Teletraffic modeling for personal communications
services, [EEE Communications Magazine, vol. 35, no. 2, pp. 79-87, 1997.

D.J. Lee and D.H. Cho, On optimum timer value of area and timer-based location
registration scheme, IEEE Communications Letters, vol. 5, no. 4, pp. 148-150, 2001.
H.C. Lee and S. Junping, Mobile location tracking by optimal paging zone partitioning,
in Proceedings of the IEEE 6th International Conference on Universal Person Communi-
cations Record Bridging the Way to the 21st Century, 1997, vol. 1, pp. 168-172.

Z. Lei and C. Rose, Probability criterion based location tracking approach for mobility
management of personal communications systems, in Proceedings of the IEEE Global
Telecommunications Conference (GLOBECOM °97), 1997, vol. 2, pp. 977-981.

Z. Lei and C. Rose, Wireless subscriber mobility management using adaptive individ-
ual location areas for PCS systems, in Proceedings of the IEEE International Conference
on Communications Conference, 1998, vol. 3, pp. 1390-1394.

A. Leonhardi and K. Rothermel, A comparison of protocols for updating location
information, Cluster Computing, vol. 4, no. 4, pp. 355-367, 2001.

K.K. Leung, W.A. Massey, and W. Whitt, Traffic models for wireless communication
networks, IEEE Journal on Selected Areas in Communications, vol. 12, no. 8, pp.
1353-1364, October 1994.

K.K. Leung, W.A. Massey, and W. Whitt, Traffic models for wireless communication
networks, in Proceedings of the IEEE Conference on Computer Communications (INFO-
COM ’94) Networking for Global Communications, 1994, vol. 3, pp. 1029-1037.

B. Liang and Z.J. Haas, Predictive distance-based mobility management for PCS net-
works, in Proceedings of the IEEE Conference on Computer Communications, 1999, vol.
3, pp- 1377-1384.

Y.B. Lin, Reducing location update cost in a PCS network, I[EEFE/ACM Transactions on
Networking, vol. 5, no. 1, pp. 25-33, 1997.

A. Lombardo, S. Palazzo, and G. Schembra, A comparison of adaptive location tracking
schemes in personal communications networks, International Journal of Wireless
Information Networks, vol. 7, no. 2, pp. 79-89, 2000.

G.L. Lyberopoulos, J.G. Markoulidakis, D.V. Polymeros, D.F. Tsirkas, and E.D. Sykas,
Intelligent paging strategies for third generation mobile telecommunication systems,
IEEE Transactions on Vehicular Technology, vol. 44, no. 3, pp. 543-554, 1995.

S. Madhavapeddy, K. Basu, and A. Roberts, Adaptive paging algorithms for cellular
systems, in Proceedings of the IEEE 45th Vehicular Technology Conference Countdown
to the Wireless 21st Century, 1995, vol. 2, pp. 976-980.

Z. Mao and C. Douligeris, Two location tracking strategies for PCS systems, in Pro-
ceedings 8th International Conference on Computer Communications and Networks,
1999, pp. 318-323.

J.G. Markoulidakis and M.E. Anagnostou, Periodic attachment in future mobile tele-
communications, [EEE Transactions on Vehicular Technology, vol. 44, no. 3, pp.
555-564, 1995.

J.G. Markoulidakis, G.L. Lyberopoulos, D.F. Tsirkas, and E.D. Sykas, Evaluation of
location area planning scenarios in future mobile telecommunication systems, Wire-
less Networks, vol. 1, no. 1, pp. 17-29, 1995.

J.G. Markoulidakis, G.L. Lyberopoulos, D.F. Tsirkas, and E.D. Sykas, Mobility modeling
in third-generation mobile telecommunications systems, I[FEE Personal Communica-
tions, vol. 4, no. 4, pp. 41-56, 1997.

Copyright © 2005 by CRC Press

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

S. Mishra and O.K. Tonguz, Most recent interaction area and speed-based intelligent
paging in PCS, in Proceedings of the IEEE 47th Vehicular Technology Conference Tech-
nology in Motion, 1997, vol. 2, pp. 505-509.

S. Mishra and O.K. Tonguz, Analysis of intelligent paging in personal communication
systems, Electronics Letters, vol. 34, no. 1, pp. 12-13, 1998.

Z. Naor, Tracking mobile users with uncertain parameters, in Proceedings of the 6th
Annual International Conference on Mobile Computing and Networking, 2000, pp.
110-119.

Z.Naor and H. Levy, Minimizing the wireless cost of tracking mobile users: an adaptive
threshold scheme, in Proceedings of the IEEE Conference on Computer Communications
17th Annual Joint Conference of the IEEE Computer and Communications Societies, 1998,
vol. 2, pp. 720-727.

Z. Naor and H. Levy, LATS: A load-adaptive threshold scheme for tracking mobile
users, IEEE/ACM Transactions on Networking, vol. 7, no. 6, pp. 808-817, 1999.

S. Okasaka, S. Onoe, S. Yasuda, and A. Maebara, A new location updating method for
digital cellular systems, in Proceedings of the 41st IEEE Vehicular Technology Confer-
ence, 1991, pp. 345-350.

J.M. Oltra, V.C. Giner, and P.G. Escalle, Evaluation of tracking local strategies in
wireless networks with stochastic activity networks, in Proceedings of the IEEE Inter-
national Conference on Universal Personal Communications Conference, 1998, vol. 1,
pp. 735-740.

A. Pal and D.S. Khati, Dynamic location management with variable size location areas,
in Proceedings of the IEEE International Conference on Computer Networks and Mobile
Computing, 2001, pp. 73-78.

M.C. Pinotti and L. Wilson, On the problem of tracking mobile users in wireless
communications networks, in Proceedings of the 31st Hawaii International Conference
on System Sciences, 1998, vol. 7, pp. 666-671.

G.P. Pollini and S. Tabbane, The intelligent network signaling and switching costs of
an alternate location strategy using memory, in Proceedings of the 43rd IEEE Vehicular
Technology Conference Personal Communication Freedom through Wireless Technology,
1993, pp. 931-934.

T.S. Rappaport, Cellular radio and personal communications: selected readings, Pis-
cataway, NJ: IEEE, 1995.

T.S. Rappaport, Wireless Communications: Principle and Practice, Inglewood Cliffs, NJ:
Prentice Hall, 1996.

C. Rose, Minimization of paging and registration costs through registration deadlines,
in Proceedings of the IEEE International Conference on Communications (ICC ’95)
Communications Gateway to Globalization, 1995, vol. 2, pp. 735-739.

C. Rose, A greedy method of state-based registration, in Proceedings of the IEEE
International Conference on Communications (ICC '96) Converging Technologies for
Tomorrow’s Applications, 1996, vol. 2, pp. 1158-1162.

C. Rose, Minimizing the average cost of paging and registration: a timer-based method,
Wireless Networks, vol. 2, no. 2, pp. 109-116, 1996.

C. Rose, State-based paging/registration: A greedy technique, IEEE Transactions on
Vehicular Technology, vol. 48, no. 1, pp. 166-173, 1999.

C. Rose and R. Yates, Minimizing the average cost of paging under delay constraints,
Wireless Networks, vol. 1, no. 2, pp. 211-219, 1995.

C. Rose and R. Yates, Location uncertainty in mobile networks: A theoretical frame-
work, [EEE Communications Magazine, vol. 35, no. 2, pp. 94-101, 1997.

C. Rose and R.D. Yates, Paging cost minimization under delay constraints, in Proceed-
ings of the IEEE Conference on Computer Communications 14th Annual Joint Conference
of the IEEE Computer and Communications Societies, 1995, vol. 2, pp. 490-495.

Copyright © 2005 by CRC Press

79.

80.

81.

82.

83.

84.

85.
86.
87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

I. Rubin and W.C. Cheon, Impact of the location area structure on the performance
of signaling channels of cellular wireless networks, in Proceedings of the IEEE Inter-
national Conference on Communications (ICC '96) Converging Technologies for Tomor-
row’s Applications, 1996, vol. 3, pp. 1761-1765.

J. Scourias and T. Kunz, A dynamic individualized location management algorithm,
in Proceedings of the IEEE International Symposium on Personal, Indoor, and Mobile
Radio Communications Technical Program, 1997, vol. 3, pp. 1004-1008.

J. Scourias and T. Kunz, Activity-based mobility modeling: realistic evaluation of
location management schemes for cellular networks, in Proceedings of the IEEE Wire-
less Communications and Networking Conference, 1999, vol. 1, pp. 296-300.

S.K. Sen, A. Bhattacharya, and S.K. Das, A selective location update strategy for PCS
users, Wireless Networks, vol. 5, no. 5, pp. 313-326, 1999.

I. Seskar, S.V. Maric, J. Holtzman, and J. Wasserman, Rate of location area updates in
cellular systems, in Proceedings of the 42nd Vehicular Technology Society Conference
Frontiers of Technology from Pioneers to the 21st Century, 1992, vol. 2, pp. 694-697.
A.A. Siddiqi and T. Kunz, The peril of evaluating location management proposals
through simulations, in Proceedings of the 3rd International Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communications, 1999, pp. 78-85.
P.B. Slater, International migration and air travel: global smoothing and estimation,
Applied Mathematics and Computation, vol. 53, no. 2-3, pp. 225-234, 1993.

G.L. Stuber, Principles of Mobile Communication. Boston: Kluwer Academic, 1996.

R. Subrata and A.Y. Zomaya, Location management in mobile computing, in Proceed-
ings of the ACS/IEEE International Conference on Computer Systems and Applications,
2001, pp. 287-289.

R. Subrata and A.Y. Zomaya, Artificial life techniques for reporting cell planning in
mobile computing, in Proceedings of the Workshop on Biologically Inspired Solutions
to Parallel Processing Problems (BioSP3) [published in the CD-ROM Proceedings of the
IEEE 16th International Parallel and Distributed Processing Symposium], 2002, pp.
203-210.

R. Subrata and A.Y. Zomaya, A comparison of three artificial life techniques for
reporting cell planning in mobile computing, /EEE Transactions on Parallel and Dis-
tributed Systems, vol. 14, no. 2, pp. 142-153, 2003.

R. Subrata and A.Y. Zomaya, Dynamic location management in mobile computing,
Telecommunication Systems, Vol. 22, pp. 169-187, 2003.

R. Subrata and A.Y. Zomaya, Evolving cellular automata for location management in
mobile computing networks, IEEE Transactions on Parallel and Distributed Systems,
vol. 14, no. 1, pp. 13-26, 2003.

SUMATRA, http://www-db.stanford.edu/sumatra.

S. Tabbane, An alternative strategy for location tracking, [EEE Journal on Selected
Areas in Communications, vol. 13, no. 5, pp. 880-892, 1995.

S. Tabbane, Location management methods for third generation mobile systems, /EEE
Communications Magazine, vol. 35, no. 8, pp. 72-78, 83-84, 1997.

D. Tang and M. Baker, Analysis of a metropolitan-area wireless network, in Proceedings
of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Net-
working, 1999, pp. 13-23.

D. Tang and M. Baker, Analysis of a metropolitan-area wireless network, Wireless
Networks, vol. 8, pp. 107-120, 2002.

D.W. Tcha, T.J. Choi, and Y.S. Myung, Location-area partition in a cellular radio net-
work, Journal of the Operational Research Society, vol. 48, no. 11, pp. 1076-1081, 1997.
R. Thomas, H. Gilbert, and G. Mazziotto, Influence of the moving of the mobile stations
on the performance of a radio mobile cellular network, in Proceedings of the 3rd Nordic
Seminar, 1988.

Copyright © 2005 by CRC Press

http://www-db.stanford.edu/sumatra

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

C.K. Toh, Performance evaluation of crossover switch discovery algorithms for wire-
less ATM LANSs, in Proceedings of the IEEE INFOCOM "96 The Conference on Computer
Communications 15th Annual Joint Conference of the IEEE Computer Societies, 1996,
vol. 3, pp. 1380-1387.

O.K. Tonguz, S. Mishra, and R. Josyula, Impact of random user motion on locating
subscribers in mobile networks, in Proceedings of the IEEE International Conference
on Personal Wireless Communications, 1999, pp. 491-495.

M. Verkama, Optimal paging — A search theory approach, in Proceedings of the 5th
IEEFE International Conference on Universal Personal Communications, 1996, vol. 2, pp.
956-960.

M. Verkama, A simple implementation of distance-based location updates, in Proceed-
ings of the IEEE 6th International Conference on Universal Personal Communications,
1997, vol. 1, pp. 163-167.

M. Vudali, The location area design problem in cellular and personal communications
systems, in Proceedings of the 5th IEEE International Conference on Universal Personal
Communications, 1996, vol. 2, pp. 591-595.

K. Wang, J.M. Liao, and J.M. Chen, Intelligent location tracking strategy in PCS, IEEE
Proceedings Communications, vol. 147, no. 1, pp. 63-68, 2000.

T.P. Wang, S.Y. Hwang, and C.C. Tseng, Registration area planning for PCS networks
using genetic algorithms, IEEE Transactions on Vehicular Technology, vol. 47, no. 3,
pp. 987-995, 1998.

W. Wang, LF. Akyildiz, and G.L. Stuber, Reducing the paging costs under delay bounds
for PCS networks, in Proceedings of the IEEE Wireless Communications and Networking
Conference, 2000, vol. 1, pp. 235-257.

V.W.S. Wong and V.C.M. Leung, An adaptive distance-based location update algorithm
for next-generation PCS networks, IEEE Journal on Selected Areas in Communications,
vol. 19, no. 10, pp. 1942-1952, 2001.

H. Xie, S. Tabbane, and D.J. Goodman, Dynamic location area management and per-
formance analysis, in Proceedings of the 43rd IEEE Vehicular Technology Conference
Personal Communication Freedom through Wireless Technology, 1993, pp. 536-539.

A. Yener and C. Rose, Paging strategies for highly mobile users, in Proceedings of the
IEEE 46th Vehicular Technology Conference Mobile Technology for the Human Race,
1996, vol. 3, pp. 1839-1842.

K.L. Yeung and T.S.P. Yum, A comparative study on location tracking strategies in
cellular mobile radio systems, in Proceedings of the IEEE Global Telecommunications
Conference, vol. 1, pp. 22-28, 1995.

W.H.A. Yuen and W.S. Wong, A contention-free mobility management scheme based
on probabilistic paging, I[EEE Transactions on Vehicular Technology, vol. 50, no. 1, pp.
48-58, 2001.

J.H. Zhang and J.W. Mark, A local VLR cluster approach to location management for
PCS networks, in Proceedings IEEE Wireless Communications and Networking Confer-
ence, 1999, vol. 1, pp. 311-315.

J. Ziv and A. Lempel, Compression of individual sequences via variable-rate coding,
IEEE Transactions on Information Theory, vol. IT-24, no. 5, pp. 530-536, 1978.

Copyright © 2005 by CRC Press

Chapter 9
Locating Mobile
Objects

Fvaggelia Pitoura, George Samaras, and
Georgia Kastidou

9.1 Introduction

In distributed computing, the notion of mobility is emerging in many forms
and applications. Increasingly, many users are not tied to a fixed access
point but instead use mobile hardware such as cellular phones or personal
digital assistants. Small devices (e.g., sensors) are mounted on moving
objects such as vehicles or airplanes. Furthermore, mobile software (i.e.,
code or data that move among network locations) offers a new form of
building distributed network-centric applications. In the presence of
mobility, the cost of communicating with a mobile object or invoking it is
augmented by the cost of locating it (i.e., identifying its current location).

Often, mobility is related to wireless mobile computing [9, 14, 32],
because wireless communications allow the free movement of users.
Future personal communication systems (PCSs) will support a huge object
population and offer numerous customer services. In such systems, the
signaling and directory traffic for locating mobile users is expected to
increase dramatically [45]. Thus, deriving efficient strategies for locating
mobile users (i.e., identifying their current location) is an issue central to
wireless mobile computing research.

Besides mobility tied to wireless hardware, data, or code may be relo-
cated among different network sites for reasons of performance or avail-
ability. Mobile software agents [1, 44] are a popular form of mobile soft-
ware. Mobile agents are processes that may be dispatched from a source
computer and be transported to remote servers for execution. Mobile
agents can be launched into an unstructured network and roam around to
accomplish their task [2], thus providing an efficient, asynchronous
method for collecting information or attaining services in rapidly evolving
networks. Other applications of moving software include the relocation of

Copyright © 2005 by CRC Press

an object’s personal environment to support ubiquitous computing [46] or
the migration of services to support load balancing, for instance the active
transfer of Web pages to replication servers in the proximity of clients [5].

The goal of this chapter is to survey and compare the various location
management mechanisms proposed in the literature for storing, querying,
and updating the location of both hardware and software mobile objects.
The emphasis is on the underlying system architectures.

The remainder of this chapter is structured as follows:

¢ Section 9.2 introduces the location management problem and a tax-
onomy of the various approaches to its solution.

e Section 9.3 presents the basic architectures proposed.

e Section 9.4 discusses the main optimization techniques, such as
caching and location forwarding that can be applied to the basic
architectures to improve their efficiency.

e Section 9.5 introduces a detailed taxonomy of the proposed
approaches.

e Section 9.6 presents concrete examples of location management
protocols used in Mobile IP, Globe, and two mobile agents systems
— Ajanta and Voyager®.

e Section 9.7 concludes the chapter.

9.2 Location Management

In mobile distributed computing, mobile objects (i.e., mobile software,
data, or users using wireless hardware) may relocate from one location to
another. Although, the emphasis in this chapter is on objects moving
among networks sites, the approaches presented also apply to objects
moving in physical space. Although in the former case, location corre-
sponds to a network address (network point of attachment), in the latter
case, location is most often specified by the spatial coordinates of the
object. We shall use the term location to refer to both cases.

The exact mechanisms for locating a mobile object depend on the
underlying network architecture. In cellular digital architecture as well as
in wireless LAN technologies, the network configuration consists of fixed
backbone networks extended with a number of mobile objects (called
mobile hosts (MHs) in this context) communicating directly with station-
ary transceivers called mobile support stations or base stations. The area
covered by an individual transceiver’s signal is called a cell. Each mobile
host can communicate with other hosts, mobile or fixed, only through the
base station of the cell in which it resides. In this case, to locate a mobile
object, the current cell must be found. In other applications, such as in the
case of mobile agents, locating an agent reduces to specifying the address
of the machine that is currently hosting it. Finally, mobile objects may be

Copyright © 2005 by CRC Press

-~ All sites

Availability
Whole address
space .
Set of _.- Nosite
locations YV
Exact B Precision
location R \ Currency
' Never update

Always 'prdate

Figure 9.1. Dimensions of Quality of the Stored Location Information for a
Mobile Object

equipped with location sensing devices. The most widely known location
sensing system today is the global positioning system (GPS) [10, 11]. GPS
enables objects equipped with a relatively cheap transceiver to deduce
their latitude, longitude, and altitude with accuracy of a few meters. These
spatial coordinates are computed based on time-of-flight information
derived from radio signals broadcast by a constellation of satellites in
earth’s orbit. In this case, location refers to such information.

To efficiently locate an object, that is, identify its current position (in
space or in a computer network), related information may be stored at
databases at specific network sites. We call such databases that store the
location of moving objects location directories. In abstract terms, location
management involves two basic operations — lookups and updates. A
lookup is invoked each time there is a need to locate a mobile object, in
order, for example, to communicate with it, interchange data, or computa-
tion. Updates of the location of a mobile object stored in the location direc-
tory are initiated when the object moves.

To balance the cost of lookups against the cost of updates, the quality of
the stored location information for an object varies. In particular, various
approaches compromise the availability, precision, or currency of the loca-
tion information stored for each mobile object (Figure 9.1).

In terms of availability, choices range between saving (replicating) the
location of each mobile object at all network sites to not storing the loca-
tion at all. In between these two approaches, location information may be
maintained selectively at one or more specific network sites. There is a
wide range of selection criteria for the sites that are used for saving location

Copyright © 2005 by CRC Press

information for each user. For example, a choice may be to save the loca-
tion of objects at the sites of their frequent callers.

Precision of location information refers to the granularity of the location
information stored for each object. This may vary from maintaining the
exact location to maintaining a wider region or a set of possible locations.
In the case in which either a set of potential locations or a wider region is
stored, there is need to search for the object either in each of the specified
locations or inside the region.

Currency refers to when the stored location information is updated. For
instance, for a highly mobile object, it may make sense to defer updating its
stored location every time the object moves. Potential policies for initiat-
ing updates include a time-based, a movement-based, and a distance-based
policy [7]. In the time-based update policy, the stored location for each
mobile object is updated periodically every T time units. In the move-
ment-based update policy, the stored location is updated after the object
has performed a predefined number of moves. Finally, in the dis-
tance-based (or dead-reckoning [36]) update policy, the stored location is
updated when the distance of the stored location from the actual location
of the object exceeds a predefined threshold value D. Analytical perfor-
mance results show that distance-based update policies outperform the
other policies in most cases. However, distance-based approaches are
more difficult to implement because they require knowing and computing
a distance function.

When precise and current location information is stored at every net-
work site, locating an object reduces to just querying the local location
directory. On the other hand, each time the location of the object changes,
a large number of associated location directories must be updated. At the
other extreme, when no information about the location of the object is
stored at any directory, to locate a mobile object, a global search for the
object must be initiated. However, in this case, when an object moves,
there is no cost associated with updating location directories. In general,
when there is no current or precise information about the location of the
object available locally, locating the object involves a combination of some
search procedure and a number of queries posed to an appropriate set of
location directories.

Besides the efficient support of location lookups and updates, a chal-
lenging issue is the management of more advanced location queries. Exam-
ples of such queries include finding the nearest service when the service or
the user is mobile or queries that refer to future time, such as “find all
objects that will enter a specified region within the next hour”. To this end,
a database management system (DBMS) with extended support for spa-
tiotemporal data may be used as a location directory. This is an issue

Copyright © 2005 by CRC Press

attracting much current research and is beyond the scope of this chapter;
the interested reader is referred to [47] and other chapters of this book.

9.3 Architectures of Location Directories

In this section, we describe the basic architectures of location directories.
The simplest approach is to maintain a centralized location directory in
which to store the location of all mobile objects. Such an approach does
not scale with the number of objects and their degree of distribution. Fur-
thermore, it suffers from a single point of failure. Thus, the two most com-
mon approaches are a two-tier scheme, in which the current location of
each mobile object is maintained at two network sites, and a hierarchically
structured distributed location directory, in which the address space is
hierarchically decomposed into subregions.

9.3.1 Two-Tier Scheme

In the two-tier approach, a home directory, called Home Location Register
(HLR) is associated with each mobile object. The HLR is located at a site
(network location, geographical region, or cell) prespecified for each
object. It maintains the current location of the object. The lookup and
update procedures are simple. To locate an object, its HLR is identified and
queried. When an object x moves to a new location, its HLR is contacted
and updated to maintain the new location.

As an enhancement to the above scheme, Visitor Location Registers
(VLRs) are maintained at each site. The VLR at a site i stores the identifiers
of all objects currently located at site i When a lookup for an object x is
issued at a site i, the VLR at site i is queried first and only if the object is not
found there, is the HLR of x contacted. When an object x moves from site i
to site j, in addition to updating x’s HLR, the entry for x is deleted from the
VLR at site i and a new entry for x is added to the VLR at site .

The two prevailing existing standards for cellular technologies, the Elec-
tronics Industry Association/Telecommunications Industry Association’s
(EIA/TIA) Interim Standard 41 (IS-41) commonly used in North America and
the Global System for Mobile Communications (GSM) used in Europe, both
support carrying out location strategies using HLRs and VLRs [26].

One problem with the home location approach is that the assignment of
the home register to a mobile object is permanent. Thus, long-lived objects
cannot be appropriately handled, because their home location remains
fixed even when the objects permanently move to a different region.
Another drawback of the two-tier approach is that it does not scale well
with highly distributed systems where sites are geographically widely dis-
persed. To contact an object, the possibly distant home location must be con-
tacted first. Similarly, even a move to a nearby location must be registered at

Copyright © 2005 by CRC Press

a potentially distant home location. Thus, locality of moves and lookups is
not taken advantage of.

9.3.2 Hierarchical Scheme

Hierarchical location schemes extend two-tier schemes by maintaining a
hierarchy of location directories. In this hierarchy, a location directory at
a higher level contains location information for objects located at levels
below it. Usually, the hierarchy is tree-structured. In this case, the location
directory at a leaf serves a single site (cell) and contains entries for all
objects residing in this site. A directory at an internal node maintains infor-
mation about objects registered in the set of sites in its subtree. For each
mobile object, this information is either a pointer to an entry at a lower
level directory or the object’s actual current location. In cellular architec-
tures, the directories are usually interconnected by the links of the intelli-
gent signaling network, e.g., a Common Channel Signaling (CCS) network.
For instance, in telephony, the directories may be placed at the telephone
switches. It is often the case that the only way that two sites can commu-
nicate with each other is through the hierarchy; no other physical connec-
tion exists among them.

The type of location information maintained in the location directories
affects the relative cost of updates and lookups as well as the load distri-
bution among the links and nodes of the hierarchy. We consider two cases:

1. Internal nodes that keep pointers to the appropriate lower level
directory
2. Internal nodes that maintain the exact location of the objects

We use the term LCA(, j) to denote the least common ancestor of node i
and node j.

Let us discuss first the case of keeping at all internal directories pointers
to lower level directories. For example, in Figure 9.2 [left] for an object x
residing at site (cell) 18, there is an entry in the directory at node 0 pointing
to the entry for x in the directory at node 2. The entry for x in the directory
at node 2 points to the entry for x in the directory at node 6, which in turns
points to the entry for x in the directory at node 18. When object x moves
from site i to site j, the entries for x in the directories along the path from j
to LCA(, j) and from LCA(, j) to i are updated. For instance, when object
x moves from 18 to 20, the entries at node 20, node 7, node 2, node 6, and
node 18 are updated. Specifically, the entry for x is deleted from the direc-
tories at node 18 and node 6, the entry for x at the directory at 2 is updated,
and entries for x are added to the directories at node 7 and node 20. When
a lookup is initiated at site i for an object x located at site j, the lookup pro-
cedure queries directories starting from node i proceeding up the tree until
the first entry for x is encountered. This happens at node LCA(, j). Then,

Copyright © 2005 by CRC Press

entries for objects x when entries for object x when
the location directories the location directories

maintain pointers X ! X 18 maintain actual locations

X 18 X 18

_ mobile object x
is at site 18

Figure 9.2. Hierarchical Location Scheme
Location directories’ entries at the left are pointers at the lower level directories
and location directories’ entries at the right are actual locations.

the lookup procedure proceeds downward following the pointers to node
J. For instance, a lookup placed at site 21 to object x located at node 18 (Fig-
ure 9.2 [left]), queries directories at node 21 and node 7 and finds the first
entry for x at node 2. Then, it follows the pointers to node 6 and node 18.

Let us now consider the case of directory entries that maintain the
actual location of each object. Then, for object x registered at 18 (Figure 9.2
[right]), there are entries in the directories at node 0, node 2, node 6, and
node 18, each containing a pointer to location 18. In this case, a move from
site i to site j causes the update of all entries along the paths from j to the
root and from the root to i. For example, a relocation of object x from site
18 to site 20 involves the entries for x at 20, 7, 0, 2, 6, and 18. After the
update, entries for x exist in the directories located at node 0, node 2, node
7, and node 20, each containing a pointer to 20 and the entries for x in the
directories at node 6 and node 18 are deleted. On the other hand, the cost
of a lookup from node i to an object located at node j is reduced, because
once the LCA(], j) is reached, there is no need to query the directories on

Copyright © 2005 by CRC Press

the downward path to j. For example, a lookup from node 21 to object x
(Figure 9.2 [right]) queries directories at node 21, node 7, node 2, and then
node 18 directly (without querying the directory at node 6).

When hierarchical location directories are used, there is no need for
binding an object to a HLR. The object can be located by querying the
directories in the hierarchy. In the worst case, an entry for the object will
be found in the directory at the root.

A hybrid scheme using both hierarchical entries and preassigned HLRs
is also possible. Assume that directory entries are maintained only at
selective nodes of the hierarchy and that a HLR is used. In this case, a
lookup originating from site i for an object x starts searching for the
requested object from site i. It proceeds following the path from i to the
LCA of i and the x’s HLR and then moves downward to x’s HLR, unless an
entry for x is found in any directory on this path. If such an entry is encoun-
tered, it is followed instead [45].

The hierarchical scheme leads to reductions in communication cost
when most calls and moves are geographically localized. In such cases,
instead of contacting the HLR of the object that may be located far away
from the object’s current location, a small number of location directories in
the object’s neighborhood are accessed. However, the number of location
directories that are updated and queried increases relative to the two-tier
scheme.

Another problem with the hierarchical schemes is that the directories
located at higher level of the hierarchy must handle a relatively large num-
ber of messages. Furthermore, they store more entries than nodes at lower
levels. One solution is to partition the directories at the high-level nodes
(e.g., at the root) into smaller directories at subnodes so that the entries of
the original directory are shared appropriately among the directories at
the subnodes [40, 41].

Table 9.1 summarizes some of the pros and cons of the hierarchical
architectures when compared with the two-tier architecture.

Table 9.1. Summary of Pros (+) and Cons (-) of Hierarchical Architectures

(+) | No preassigned HLR

(+) | Support for locality

(=) | Increased number of operations in terms of both network messages and
location directory accesses (lookup and update operations)

(=) | Increased processing load and storage requirements at the higher levels of the
hierarchy

Copyright © 2005 by CRC Press

9.4 Optimizations of the Architectures

In this section, we describe a number of enhancements of the two basic
architectures of location directories: namely partitions, caching, replica-
tion, and forwarding pointers. These approaches are orthogonal to each
other in the sense that they can be combined to improve performance fur-
ther. In the following, we use the term requestor object to denote the object
that initiates a lookup for a mobile object and the term requested object for
the object whose location is sought. We first introduce an important metric
called call to mobility ratio.

9.4.1 Call to Mobility Ratio

A parameter that affects the performance of most location management
schemes is the relative frequency of move and lookup (or call) operations
of each object. This is captured by the call to mobility ratio (CMR). Let C;
be the expected number of searches for object P, over a time period T and
U, the number of moves made by P, over 7, then:

CMR, = C,/U.

Another important parameter is the local call to mobility ratio, LCMR,;
that also involves the site of the requestor object. Let C;;be the expected
number of calls made from site j to an object P, over a time period 7, then

the local call to mobility ratio LCMR, ; is defined as:
LCMR;; = C;;/U.

For hierarchical location schemes, the local call to mobility ratio
(LCMR,)) for an internal node j is extended as follows:

LCMR,; = 2, LCMR,,

where k is a child of j. That is, the LCMR for an object P, and an internal
node j is the ratio of the number of lookups for P, originated from any site
at j’s subtree to the number of moves made by P,

9.4.2 Partitions

To avoid maintaining location entries at all levels of the hierarchy, and at
the same time reduce the search cost, partitions are deployed [4]. The par-
titions for each object are obtained by grouping the sites (cells) among
which the object moves frequently and separating the sites between which
it relocates infrequently. Thus, partitions exploit locality of movement. Par-
titions can be used in many ways. We describe next one such parti-
tion-based strategy.

For each partition, the information whether the object is currently in the
partition is maintained at the LCA of all sites in the partition, called the rep-
resentative of the partition. The representative knows that an object is in
its partition but not its exact location [4]. This information is used during

Copyright © 2005 by CRC Press

IN(@)P1 © P4
(4) (5) P2 (6) @rs (8) (9)
WO VVWE: WOB VWY @ ©® :
B R NN e Resions b
Position 1 i .
object x Position 2 Position 4
object x
new location

Figure 9.3. Four Partitions (P1, P2, P3, and P4)
The IN entry at node 1 indicates that object x is in partition P1.

a flat search (i.e., top-down search starting from the root) to decide which
subtree in the hierarchy to search. Thus, partitions reduce the overall
search cost as compared to flat searches. There is an increase however on
the update cost: when an object crosses a partition, the representatives of
its previous and new partitions must be informed. For example, assume
that object x often moves inside four different sets of sites (i.e., partitions)
and infrequently between these sets. Let the sites of each partition be {10,
12, 14, 15}, {16, 18}, {19, 20, 21} and {22, 23, 25, 26, 27} (Figure 9.3). The rep-
resentative node of each partition is highlighted. When object x is at node
14 in partition 1, the representative of the associated partition, node 1,
maintains the information that the user is inside its partition. When x
moves to node 16, that is, outside the current partition, both node 1, the
representative of the old partition, and node 6, the representative of the
new partition, are updated to reflect the movement.

9.4.3 Caching

In two-tier architectures, every time a lookup for the location of an object
x is initiated, x’s location is cached at the VLR at the requestor’s site, so
that any subsequent lookups of x originated from this site can reuse this
information [18]. To locate an object, the cache at the VLR of the
requestor’s site is queried first. If the location of the requested object is
found at the cache, then a query is launched to the indicated location with-
out contacting the object’s HLR. Otherwise, the HLR is queried.

Copyright © 2005 by CRC Press

A problem associated with caching is that, when an object moves, its
cached location becomes obsolete. There are two basic approaches to
cache updates — eager and lazy caching.

In eager caching, every time an object moves to a new location, all cache
entries for this object’s location are updated. Thus, the cost of move oper-
ations increases for those objects whose location is cached. In this type of
caching, the locations of the cache entries for an object’s location must be
known globally for the updates to be initiated. This leads to scalability prob-
lems as well as making the scheme susceptible to fault tolerance problems.

In lazy caching, a move operation signals no cache updates. Then, when
at lookup, a cache entry is found there are two cases:

1. The object is still in the indicated location and there is a cache hit.
2. The object has moved out, in which case a cache miss is signaled.

In the case of a cache miss, the usual procedure is followed: the HLR is con-
tacted and after the call is resolved, the cache entry is updated. Thus, in
lazy caching, the cached location for any given object is updated only upon
a miss. The basic overhead involved in lazy caching is in cases of cache
misses, because the cached location must be visited first. So, for lazy cach-
ing to produce savings over the noncaching scheme, the hit ratio p for any
given object at a specific site must exceed a hit ratio threshold:

P = Cu/Cy

where Cj is the cost of a lookup when there is a hit and Cj the cost of the
lookup in the noncaching scheme. Among other factors, C; and C; depend
on the relative cost of querying HLRs and VLRs. A performance study for
lazy caching is presented in [12, 18] for a given signaling architecture.

The hit ratio for the cache of the object’s i location at site j can also be
directly related to the LCMR,; of the object [18]. For instance, when the
incoming calls follow a Poisson distribution with arrival rate A and the
intermove times are exponentially distributed with mean g, then p = /(A + L))
and the minimum LCMR, denoted LCMR, required for caching to be bene-
ficial is found to be LCMRT = p;/(1 - pp). So, caching can be selectively done
per object i at site j, when the LCM,; is larger than the LCMR; bound. In gen-
eral, this threshold is lower when objects accept calls more frequently
from objects located nearby.

Another approach to cache invalidation, suggested in [24], is to con-
sider cache entries obsolete after a certain time period. To determine when
a particular cache should be cleared, a threshold T is used. T is dynami-
cally adapted to the current call and mobility patterns such that the overall
network traffic is reduced.

Copyright © 2005 by CRC Press

When the cache size is limited, cache replacement policies, such as
replacing the least recently used (LRU) location, may be used. Another
issue is how to initialize the cache entries. Object profiles and other types
of domain knowledge may be used to initially populate the cache with the
locations of the objects most likely to be requested. Finally, although in the
approach we have described, caching is performed on a per object basis
(i.e., the cache maintains the address of the object last requested), another
approach is to apply a static form of caching. For instance, one may cache
the addresses of a certain group of objects or certain parts of the network
where the objects’ CMRs are known to be high on average.

Caching techniques can also be deployed to exploit locality of calls in
hierarchical architectures. Recall that in hierarchical architectures, when a
lookup is initiated from site i to object x located at site j, the search proce-
dure traverses the tree up from i to LCA(, j) and then down to j. We also
consider an acknowledgment message that returns from j to i. To support
caching, during the return path, a pair of bypass pointers, called forward
and reverse, is created [16]. A forward bypass pointer is an entry at an
ancestor of i, say s that points to an ancestor of j say ¢ the reverse bypass
pointer is from t to s. During the next lookup from site i to object x, the
lookup message traverses the tree up until s is reached. Then, the message
travels to directory t either via LCA(i,j) or via a shorter route if such a route
is available in the underlying network. Similarly, the acknowledgment mes-
sage can bypass all intermediate pointers on the path from 7 to s. For exam-
ple, let a lookup be placed from site 13 to object x at site 16 (Figure 9.4). A
forward bypass pointer is set at node 1 pointing to node 6; the reverse
bypass pointer is from 6 to 1. During the next lookup from site 13 to object
X, the search message traverses the tree from node 13 up to node 1 and
then at node 6, either through LCA(1,6), that is node 0, or via a shorter
path. In any case, no queries are posed to directories at node 0 and node 2.

The level of node s and node ¢ where the bypass pointers are set varies.
In simple caching, s and t are both leaf nodes, although in level caching, s
and ¢ are nodes belonging to any level and possibly each to a different one
(as in the previous example). Placing a bypass pointer at a high-level node
s makes this entry available to all lookups originated from sites at s’s sub-
tree. However, lookups must traverse a longer path to reach s. Placing the
pointer to point to a high-level node ¢ increases the cost of lookup, because
to locate an object, a longer path from ¢ to the leaf node must be followed.
On the other hand, the cache entry remains valid as long as the object
moves inside f's subtree. An adaptive scheme can be considered to set the
levels of s and ¢t dynamically.

Caching is orthogonal to partitions. In fact, in [40, 41] caching is used in
conjunction with partitions. In particular, instead of caching the current
location of the requested object, the location of its representative is

Copyright © 2005 by CRC Press

forward bypass
pointer

levelse
bypass

(4) P pointer P (6) t @) (8) (9)
' R

\
\

OO ®OO @@@ W@ @®@ @©®@

object x
lookup procedure
Figure 9.4. Caching in Hierarchical Location Schemes

For simplicity, the acknowledgment message is not shown; it follows the reverse
route of the lookup procedure.

cached. For example, assume that partitions are defined as in Figure 9.3
and object x is at node 14. Let a lookup be placed for object x. Instead of
caching location 14 (or a pointer to it), location 1 (e.g., the representative
of the current partition) is cached. This significantly reduces the cost of
cache updates, because a cache entry becomes obsolete only when an
object moves outside the current partition.

9.4.4 Replication

To reduce the lookup cost, the location of specific objects may be repli-
cated at selected sites. Replication reduces the lookup cost, because it
increases the probability of finding the location of the requested object
locally as opposed to issuing a high latency remote lookup. On the other
hand, the update cost incurred increases considerably, because replicas
must be consistent every time the object moves.

In general, the location of an object i should be replicated at a site j, only
if the replication is judicious, that is the savings due to replication exceed
the update cost incurred. As in the case of caching, the benefits depend on
the LCMR. Intuitively, if many lookups of i originate from site j, then it
makes sense to replicate i at j. However, if i moves frequently, then replica
updates incur excessive costs. Let o be the cost savings when a local
lookup (i.e., a query of the local VLR) succeeds as opposed to a remote

Copyright © 2005 by CRC Press

query and S the cost of updating a replica, then a replication of the location
of object i at site j is judicious if:
o*C,,2B*U, “.1)

L=

where C,; is the expected number of calls made from site j to i over a time
period T and U, the number of moves made by i over T.

In addition to cost, the assignment of replicas to sites must take into
account other parameters, such as the service capacity of each directory
and the maximum memory available for storing replicas. The replication
sites for each object may be kept at its HLR. Besides location information,
other information associated with mobile objects may also be replicated
[38]. Instead of the exact location of an object, more coarse location infor-
mation (e.g., the object’s current partition) may be replicated. The coarse-
ness or granularity of location replicas presents location schemes with a
trade-off between the update and the lookup costs. If the information rep-
licated is coarse, then it needs to be updated less frequently in the expense
of a higher lookup resolution cost.

Choosing the network sites at which to maintain replicas of the current
location of a mobile object resembles the file allocation [8] and the direc-
tory allocation [29] problem. These classical problems are concerned with
the selection of sites at which to maintain replicas of files or directory par-
titions. The selection of sites is based on the read/write pattern of each file
or partition, that is the number of read and write operations issued by each
site. In the case of location management, this corresponds to the
lookup/update pattern of an object’s locations. However, most schemes for
file or directory allocation are static: they are based on the assumption
that the read/write pattern does not change. The Adaptive Data Replica-
tion (ADR) algorithm [48] presents a solution to the general problem of
determining an optimum in terms of the communication cost set of replica-
tion sites for an object in distributed computing when the object’s
read/write pattern changes dynamically.

The objective of the per object profile approach [39] is to minimize the
total cost of moves and lookups, while maintaining constraints on the max-
imum number r, of replicas per object P; and on the maximum number p; of
replicas stored in the directory at site Z. Let M be the number of objects
and N be the number of sites. A replication assignment of an object’s profile
P,to a set of sites R(P) is found, such that the system cost expressed as the

sum:
N M
SIS luac)
i=1 dmed j=1,7 €R(P) ’

Copyright © 2005 by CRC Press

is minimized and any given constraints on the maximum number of repli-
cas per directory at each site and on the maximum number of replicas per
object are maintained.

The working set method [34] relies on the observation that each object
communicates frequently with a small number of other objects, called its
working set, thus it makes sense to maintain copies of its location at the
members of this set. The approach is similar to the per object replication
except from the fact that no constraints are placed on the directory stor-
age capacity or the number of replicas per user. Consequently, the decision
to provide the information of the location of a mobile object P, at a site Z;
can be made independently by each object P, Specifically, inequality (9.1)
is evaluated locally at the object each time at least one of the quantities
involved in the inequality changes.

In hierarchical architectures, in addition to leaf nodes, the location of a
mobile object may be selectively replicated at internal nodes of the hierar-
chy. As in the replication schemes for two-tier architectures, the location of
an object should be replicated at a node only if the cost of replication does
not exceed the cost of nonreplication. However, in a hierarchical location
directory scheme, if a high LCMR value is the determining factor for select-
ing replication sites, then the directories at higher levels will tend to be
selected as replication sites over directories at lower levels, because they
possess much higher LCMR values. In particular, if a directory at level j is
selected, all its ancestors are selected as well. Recall that the LCMR for an
internal node is the sum of the LCMRs of its children. Such a selection
would result in excessive update activities at higher level directories. To
compensate, replication algorithms for hierarchical directories must also
set some maximum level of the hierarchy at which to replicate. To this end,
Hiper proposed in [19] is a family of location management techniques with
four parameters — N, ..., Spiw Smaw @and L — where N, determines the max-
imum number of replicas per object, S, and S,,,. together determine when
a node may be selected as a replication site, and L determines the maxi-
mum level of the hierarchy at which replicas can be placed.

9.4.5 Forwarding Pointers

When the number of moves that an object makes is large relative to the
number of lookups for its location, it may be too expensive to update all
directory entries holding its location each time the object moves. Instead,
entries may be selectively updated and lookups directed to the current loca-
tion of an object through the deployment of forwarding pointers (Figure 9.5).

In particular, in the case of two-tier architectures, if the mobility of an
object is high while it is located far way from its HLR, an excessive amount of
messages is transmitted between the serving VLR and the HLR. Thus, to

Copyright © 2005 by CRC Press

level m

DO DV BOO® OO OB ©®O

/object X \ object x
old location new location .
——— old entries for x

----- = new entries for x

Figure 9.5. Example of Forwarding Pointers (Entries Are Pointers to Lower
Level Directories)

reduce the communication overhead, as well as the query load at the HLR,
the entry in x’s HLR is not updated each time the mobile object x moves to
a new location [17]. Instead, at the VLR at x’s previous location, a forward-
ing pointer is set up to point to the VLR in the new location. Now, lookups
for a given object will first query the object’s HLR to determine the first
VLR at which the object was registered and then follow a chain of forward-
ing pointers to the object’s current VLR. To bind the time taken by the
lookup procedure, the length of the chain of forwarding pointers is allowed
to grow up to a maximum value of K. An implicit pointer compression also
takes place when loops are formed as objects revisit the same areas.
Because the approach is applied on a per object basis, the increase in the
cost of call operations affects only the specific object.

The pointer forwarding strategy, as opposed to replication, is useful for
those objects that receive calls infrequently relative to the rate at which
they relocate. Clearly, the benefits of forwarding depend also upon the cost
of setting up and traversing pointers relative to the costs of updating and
contacting the HLR.

A method for dynamically determining whether to update the HLR or
not is proposed in the local anchoring scheme [13], where a pointer chain
length of, at most, one is maintained. For each mobile object, a VLR close
to it is selected as its local anchor (LA). In some cases, the LA may be the

Copyright © 2005 by CRC Press

same as its serving VLR. Otherwise, the LA maintains a forwarding pointer
to the current VLR of the object. For each object, the HLR maintains its
serving LA. To locate a mobile object, the HLR is queried first and then the
associated LA is contacted. If the LA happens to be the serving VLR, no fur-
ther querying is necessary, otherwise the forwarding pointer is used to
locate the object. After a lookup resolution, the HLR knows the current
location of the requested mobile object; therefore, the HLR is always
updated after a lookup to record the current VLR. Depending on whether
the HLR is updated upon a move, two schemes are proposed — static and
dynamic local anchoring. In static local anchoring, the HLR is never
updated at a move. In dynamic local anchoring, the serving VLR becomes
the new LA if this will result in lower expected costs.

To reduce the update cost, forwarding pointer strategies may be also
deployed in the case of hierarchical architectures. In a hierarchical loca-
tion scheme, when a mobile object x moves from site i to site j, entries for
x are created in all directories on the path fromj to LCA(j, i) and the entries
for x on the path from LCA(j, i) to i are deleted. Using forwarding pointers,
instead of updating all directories on the path from j through LCA(j, i) to i,
only the directories up to a level m are updated. In addition, a forwarding
pointer is set from node s to node f, where s is the ancestor of i at level m
and t is the ancestor of j at level m (Figure 9.5). As in caching, the level of s
and f can vary. In simple forwarding, s and ¢ are leaf nodes, although in level
forwarding, s and f can be nodes at any level. A subsequent lookup reaches
x through a combination of directory lookups and forwarding pointer tra-
versals.

Take for example, object x located at node 14 that moves to node 17
(Figure 9.5). Let level m = 2. A new entry for x is created in the directories
at node 17, node 6, and node 2, the entries for x in the directories at node
14 and node 5 are deleted, and a pointer is set at x’s entry in the directory
at node 1 pointing to the entry of x in the directory at node 2. The entry for
x at node 0 is not updated. When an object, say at site 23, lookups object
X, the search message traverses the tree from node 23 up to the root node
0 where the first entry for x is found, then goes down to 1, follows the for-
warding pointer to 2, and traverses down the path from 2 to 17. On the
other hand, a lookup initiated by an object at 15 results in a shorter route:
it goes up to 1, then to 2, and follows the path down to 17.

Forwarding techniques can also be deployed for hierarchical architec-
tures in which the entries of the internal nodes are actual addresses, rather
than pointers to the corresponding entries in lower level directories. The
example above is repeated in Figure 9.5 for the case in Figure 9.6. Entries
for x are updated up to level m = 2 and a forwarding pointer at leaf node 14
is set to redirect calls to the new location 17. Such an architecture with

Copyright © 2005 by CRC Press

level m
0 R i 2
@ &) S G ®)

WWE® ©BWE WO W @®W @@
(xl1a) /ixlar pmm i N,

v For vending Partner . () old entries for x
object x

Id locati 773 new entries for x
(o] ocation

object x
new location

Figure 9.6. Example of Forwarding Pointers (Entries Are Actual Locations)

internal nodes storing actual addresses, rather than tree pointers, is con-
sidered in [23], where a performance analysis of forwarding is presented.
Besides forwarding, the scheme in [23] also supports caching: leaf caching
(i.e., caching the address of the requested object only at the site of the
requestor) called jump updates and level caching (i.e., caching the address
of the requested object at all nodes on the search path) called path com-
pression.

Obsolete entries in directories at levels higher than m (e.g., the entry at
node 0 in Figure 9.5 and Figure 9.6) may be updated after a successful
lookup. Another possibility for updates is for each node to send a location
update message to the location servers on its path to the root during
off-peak hours.

To avoid the creation of long chains of forwarding pointers, some form
of pointer reduction is necessary. To reduce the number of forwarding
pointers, a variation of caching is proposed in [31]. After a lookup to object
X, the actual location of the object is cached at the first node of the chain.
Thus, any subsequent calls to x directed to the first node of the chain use
this cache entry to directly access the current location of x, bypassing the
forwarding pointer chain. Besides, this form of caching that reduces the
number of forwarding pointers that need to be traversed to locate an
object, the directory hierarchy must also be updated to avoid excessive
lookup costs. Besides deleting forwarding pointers, this also involves the

Copyright © 2005 by CRC Press

— old entries for x
- -- -+ new entries for x

'
I
'

7
<

!
\
A

WWE WO WWE W@ @@ @ Ce)eE weedn

Figure 9.7. An Example of Pointer Purging

deletion of all entries in internal directories on the path from the first node,
i, of the chain to the LCA of i and the current location, j, and the addition
of entries in internal directories on the path from the LCA to j. Take for
example, chain 11 — 18 — 26 — 14 that resulted from object x moving from
node 11 to node 18, node 26, and node 14, in that order. The entries for x at
node 11, node 18, and node 26 are deleted. Then, the entries in higher level
directories leading to 11 are also deleted. In particular, the entry for x at 4
is deleted and entries are set at node 1 and node 5 leading to node 14, the
new location (Figure 9.7). Two conditions for initiating updates are pro-
posed and evaluated based on setting a threshold either on the number of
forwarding pointers or on the maximum distance between the first node of
the chain and the current location.

Forwarding pointer techniques find applications in mobile software sys-
tems to maintain references to mobile objects, such as in the Experimental
Machine Example-based Reasoning and Learning Disciple (EMERALD) sys-
tem and in Storage Service Provider (SSP) chains. EMERALD [21] is an
object-based system in which objects can move within the system. SSP
chains [37] are chains of forwarding pointers for transparently migrating
object references between processes in distributed computing. The SSP
chain shortcutting technique is similar to the simple update at calls
method.

9.5 Taxonomy and Location Management Techniques

The techniques proposed in the previous sections are based on exploiting
knowledge about the lookup and moving behavior of mobile objects. Basi-
cally, two characteristics are considered — stability of lookups and moves

Copyright © 2005 by CRC Press

and locality of moves and lookups. Stability in the case of lookups means
that most lookups for each object originate from the same set of locations,
for example, a mobile user may receive most calls from a specific set of
friends, family, and business associates. Stability of moves refers to the fact
that objects tend to move inside a specific set of regions. For instance,
mobile users may follow a daily routine: drive from their home to their
office, visit a predetermined number of customers, return to their office,
and then back to their home. This pattern can change, but remains fixed for
short periods of time. Locality refers to the fact that local operations are
common. In particular, in the case of lookups, an object frequently receives
requests from nearby places, but in the case of moves, the object moves to
neighbor locations more often than to remote ones.

Another determinant factor in designing location techniques is the rela-
tive frequency of lookups and moves expressed in the form of an appropri-
ate CMR. In general, techniques tend to decrease the cost of either the
move or lookup operation in the expense of the other. Thus, the CMR deter-
mines the efficacy of the technique. Figure 9.8 summarizes the various
techniques that exploit locality, stability, and CMR. These techniques are
orthogonal; they can be combined with each other.

Besides developing techniques for the efficient storage of location infor-
mation, the advancement of models of movement can be used in guiding
the search for the current location of a mobile object (see for example, [3,
35]), when the stored information about its location is not current or pre-
cise. For instance, potential locations may be searched in descending
order of the probability of the object being there.

An important parameter of any lookup and movement model is time.
The models should capture temporal changes in the movement and lookup
patterns and their relative frequency as they appear during the day, the
week, or even the year. For instance, the traffic volume in weekends is dif-
ferent than that during a workday. Thus, dynamic adaptation to the current
pattern and ratio is a desirable characteristic of location techniques.
Another issue is the basis on which each location technique is employed.
For instance, a specific location technique may be employed on a per
object basis. Alternatively, the technique may be adopted for all objects or
for a group of objects based either on their geographical location (i.e., all
objects in a specific region), on their mobility and lookup characteristics
(i.e., all objects that receive a large number of lookups) or a combination of
both.

Table 9.2 and Table 9.3 summarize, respectively, the variations of the
two-tier and hierarchical location scheme and their properties.

Finally, another parameter that affects the deployment of a location
strategy is the topology of network sites, how they are populated, and their

Copyright © 2005 by CRC Press

Pattern of Moves and Lookups Relative Frequency of Moves and Lookups (LCMR)

/Stability\ Locality Small LCMR Large LCMR
Lookups Moves Hierarchical Partial updates—forward pointers Cache-Replicate

| | Structures

Cache (replicate) at frequent requestors Partition the locations

Figure 9.8. Techniques along the Dimensions of Locality, Stability, and Call to Mobility Ratio

Copyright © 2005 by CRC Press

Table 9.2. Summary of Enhancements to the Basic Two-Tier Scheme

Method Variations Applicable When
Caching: Eager Cache update Large LCMR
When x is looked up caching overhead occurs at Lookup Stability

by y, cache x’s moves

location at y’s site Lazy Cache update

caching overhead occurs at
lookups

Replication: Per object Additional constraints Large LCMR
Selectively replicate profile are set on the Lookup Stability

X’s location at the replication number of replicas

sites from which it per site and on the

receives the most number of replicas

lookups per object

Working set | Adaptive and
distributed: the
replication sites are
computed
dynamically by each
mobile object locally

ForwardingPointers: | Restrict the length of the chain of Small LCMR

When x moves, add a forwarding pointers
forwarding pointer
from its old to its
new location

geographical connectivity. How the strategy scales with the number of
mobile objects, location operation, and geographical distribution is also an
important consideration.

9.6 Case Studies

In this section, we present some example location management mecha-
nisms, namely, the Mobile IP protocol that has been used for locating
mobile hardware computing devices, the location mechanism of the Globe
distributed system, and the location mechanisms of two mobile agent sys-
tems — Ajanta and Voyager.

9.6.1 Mobile IP

Mobile IP [27, 30] is a modification to wireline Internet Protocol (IP) that
allows mobile devices (for simplicity, we shall call them nodes) to contin-
uously receive messages independently of their point of attachment to the
Internet. Mobile IP is designed within the Internet Engineering Task Force
(IETF) and is outlined in a number of requests for comments (RFCs) [15].

Copyright © 2005 by CRC Press

Table 9.3. Summary of Proposed Enhancements to Hierarchical
Location Schemes

Method Issues/Variations Appropriate When
Caching: Up to which tree Large CMR Lookup
When x at site i is looked up by object level to maintain Stability

y at site j, cache at a node on the cache entries

path fromjto LCA(i,j), a pointer toa | When to update

node on the path from i to LCA(i,)) cache entries

to be used by any subsequent
lookups of x from site j.

Replication: Large CMR Lookup
Selectively replicate x’s location at Stability
internal and/or leaf directory.
Forwarding Pointers: When and how to Small LCMR
When x moves from site i to site j, purge the
instead of updating all directories forwarding
on the path from i to LCA(i,j) and pointers
from LCA(i,j) to j, update all Setting the level m

directories up to some level m and
add a forwarding pointer at the level
m ancestor of i to point to the level
m ancestor of j.

Partitions: Move Stability

Divide the locations into sets
(partitions) so that the object
moves inside a partition frequently
and crosses the boundary of a
partition rarely. Keep information
about the partition in which the
object resides instead of its exact
location.

Wireline [P assumes that the network address of a node uniquely identifies
the node’s point of attachment to the Internet. Thus, a node must be
located on the network indicated by its IP address to receive messages des-
tined to it. To remedy this, in Mobile IP, there are two IP addresses associ-
ated with each mobile node — the home address and the care-of address.

The home address is used to identify a node and is treated administra-
tively just like a permanent IP address; the care-of address is associated
with the object’s current location and represents its current point of
attachment. The purpose of the home address is to provide location trans-
parency, in other words, to give the illusion that the mobile node can con-
tinually receive messages on its home network, while it changes its loca-
tion and consequently its point of attachment. The node’s home network is
the network that is associated with the node’s home address. The Mobile

Copyright © 2005 by CRC Press

IP protocol requires the existence of a network node, known as the home
agent that receives all the packages/messages destined to the mobile node
and redirects them to the mobile node’s current location.

Each time a mobile object moves, it notifies its home address by regis-
tering its new point of attachment (care-of address). More specifically, the
procedure begins when the mobile node sends a registration (update)
request, which contains information about its new care-of address. Every
time that the home agent receives a registration request, it updates its
location directory (routing table) with the information included in the
above request and replies with an acknowledgment.

For the case in which the mobile node cannot contact its home node,
either because of a failure or a temporal disconnection, Mobile IP provides
a mechanism that allows a mobile node to register with another unknown
home agent located in its home network. This method is known as auto-
matic home agent discovery and is based on using a broadcast IP address as
a target for the registration request instead of the home agent’s IP address.
Registration request broadcasting aims at collecting the addresses of other
home agents of the object’s home network. As soon as a home agent
receives the above request, it sends a rejection answer, which contains its
address. Then the object selects one of the above addresses and attempts
to register with a new home agent that is associated with the specific
address.

The procedure for routing a packet from a node to another mobile node
is quite simple. The packet is at first destined to the mobile node’s home
network and then the home agent redirects the packet to the node indi-
cated by the care-of address. The redirection procedure includes the con-
struction of a new IP header, which contains the mobile node’s care-of
address as the packet’s destination IP address. When a packet arrives at
the care-of address, the Transmission Control Protocol (TCP) or (a higher
layer protocol) applies the reverse procedure and the destination IP of the
packet is set back to the node’s home address.

Thus, in abstract terms, the Mobile IP protocol implements a variation
of the two-tier schemes, where the HLR and VLR correspond to the home
address and the care-of address, respectively. Furthermore, the router
optimization extensions to IETF Mobile IP protocol include pointer for-
warding in conjunction with lazy caching [20].

9.6.2 Globe

Globe, the Global Object-Based Environment [6, 42], is an experimental
worldwide distributed system. It implements a two-tier location mecha-
nism that is organized in a hierarchical scheme based on the division of the
network into regions.

Copyright © 2005 by CRC Press

The location mechanism in Globe associates with each system object an
identifier, called an object handle, which is a location-independent, univer-
sally unique reference to the object. In addition, the address of the object
is described by one or more addresses called contact addresses, which
maintain information about the location of the object and also the location
of its replicas (one contact address per replica). The directory that stores
the contact addresses is called contact record.

Each region of the system is associated with a directory node, which
stores the contact record of the objects that are located in the specific
region. The directories are organized in a hierarchical structure, which is in
practice a distributed search tree. For each object in the system, its con-
tact address is stored at a leaf node and all nodes in the path from the
object’s leaf node to the root maintain a forwarding pointer to the specific
leaf node. The set of addresses that each leaf stores is determined by the
domain covered by the node. In particular, each leaf node represents the
smallest network in which the contact addresses can reside and an internal
node represents the domain that is the union of all domains covered by its
children.

Caching is used to improve the efficiency of the location management
mechanism. The type of caching used is based on the observation that in
the case of highly mobile objects, it is more efficient to maintain informa-
tion about the node that covers the region in which the mobile object
moves instead of the object’s exact location. Thus, this node is cached
instead of the exact location.

Object relocation (move) is a two phase procedure. In the first phase,
the insertion of the object’s new address takes place, while in the second
phase the object’s old address is deleted. The reason for distinguishing
between the two phases is to allow concurrent accesses to the directory. If
the old contact address about the object was deleted before its new con-
tact address was inserted, the object would be temporarily unreachable.

During the insertion phase, the leaf node that is associated with the
object’s contact address receives an insertion request. A node cannot
store directly the contact address of an object, but instead it must be
granted permission from its parent node. In the case in which the parent
node refuses to grant permission, the node will not store the contact
address of the object and the procedure will be repeated with the parent
node this time acting as the initial node. A parent node can refuse to grant
permission to its child node, if it prefers to store the address itself (instead
of just storing a forwarding pointer). When a node that managed to grant
permission from its parent is reached, it stores the contact address of the
object. Then, forwarding pointers are installed upward to all nodes from
the path of the node where the contact address was stored to the node

Copyright © 2005 by CRC Press

which already maintains another contact address of the object (or in the
worst case to the root).

The deletion phase works as follows. A deletion request is sent to the
leaf that is associated with the region to which the contact address of the
object belongs. Then the request is forwarded until the node that stores
the specific request is reached and the contact address is deleted. The con-
tact record will be deleted too in the case in which the deleted contact
address was the only record in the contact record. Finally, a recursive pro-
cedure will take place in which all the forwarding pointers that were point-
ing to the deleted contact address will be removed.

The lookup procedure first checks if the nearest leaf maintains informa-
tion about the requested object. If not, then the lookup procedure will be
repeated by asking this time the higher level node and so on until a node
that stores either a forwarding pointer to the contact address of the
requested object or the contact address of the object is reached. If a for-
warding pointer is found, the mechanism repeats the procedure by follow-
ing the forwarding pointer to discover the object’s contact address.

9.6.3 Mobile Agents Systems

Mobile agents are processes that may be dispatched from a network site
and be transported to another one for execution. The ability to communi-
cate with agents in real-time as agents move from one network node to
another is essential for retrieving any data or information that they have
collected and for supporting coordination and cooperation among them.
This subsumes the knowledge of the agent’s current location.

9.6.3.1 Ajanta. Ajanta’s location mechanism [22, 43] implements an
HLR/VLR scheme in which a registry maintains information for all the
agents located in its domain. In addition, each registry maintains the pre-
cise current location of all agents that were created in its domain.

In Ajanta, the name of each agent contains information about the registry
at which the agent was created. Particularly, Ajanta implements a Uniform
Resource Name (URN) scheme, which provides persistent location inde-
pendent resource identifiers. An example of a URN in Ajanta is:

ur n: ans: domai n/ User Nane/ Resour ceName

where the domain field indicates the domain where the agent was created,
the field User Nane is a naming authority or a subdomain of the creation
domain and Resour ceNane is a unique string in this subdomain.

The lookup (or name resolution) procedure in Ajanta works as follows.
First a request is sent to the local registry. If the local registry cannot serve
the request, thus the agent is not colocated with its requestor, the procedure

Copyright © 2005 by CRC Press

Table 9.4. Summary of Location Management Mechanisms
of the Presented Systems

Location Mechanism Optimization
Systems Architectures Techniques
Mobile IP HLR/VLR Caching
Globe Two-tier hierarchical scheme | Caching

Mobile agents — Ajanta HLR/VLR —

Mobile agents — Voyager Centralized scheme Forwarding pointers

continues by asking the agent’s creation domain’s registry, which main-
tains information about the exact current location.

9.6.3.2 Voyager. Voyager [28] implements a centralized schema with
forwarding pointers. Every agent, that wishes to be located by other
agents, registers to one or more directories called name services. Each
time an agent moves, it informs all the name services that it has registered
to. To locate an agent, one needs to know either one of the name services
to which the agent has registered or (under some circumstances) a node
that the agent has visited during its trip (these nodes will forward the
request until the agent is reached).

In Voyager, one can send a request to an agent even if the agent has
moved from the node where it was located. The request can be sent to the
last known address of the agent. If the agent has left from the specific loca-
tion, the request will search for a forwarder, which is an object that will
indicate the next location of the agent. If the message locates a forwarder
refering to the agent, the forwarder forwards the message to the agent’s
new location. The above procedure will be repeated until the request
reaches the requested agent.

Table 9.4 summarizes the case studies.

9.7 Summary

Managing the location of moving objects is becoming increasingly impor-
tant as mobility of users, devices, and programs becomes widespread. This
chapter focuses on data management techniques for locating (i.e., identify-
ing the current location of) mobile objects.

The efficiency of techniques for locating mobile objects is critical
because the cost of communicating with a mobile object is augmented by
the cost of finding its location. Location management techniques use infor-
mation concerning the location of moving objects stored in location direc-
tories in combination with search procedures that exploit knowledge

Copyright © 2005 by CRC Press

about the objects’ previous moving behavior. The directories for storing
the location of mobile objects are distributed in nature and must support
high update rates because the location of objects changes as they move.
Various enhancements of these techniques include partitions, caching,
replication, and forwarding pointers.

References

1.
2.
3.

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

Special Issue on Intelligent Agents, Communications of the ACM, vol. 37, no. 7, 1994.
Special Issue on Internet-based Agents, IEEE Internet Computing, vol. 1, no. 4, 1997.
LF. Akyildiz and J.S.M. Ho, Dynamic Mobile User Location Update for Wireless PCS
Networks, ACM/Baltzer Wireless Networks Journal, vol. 1, no. 2, 1995.

B.R. Badrinath, T. Imielinski, and A. Virmani, Locating Strategies for Personal Com-
munications Networks, Proceedings of the 1992 International Conference on Networks
for Personal Communications, 1992.

M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm, Enhancing the Web’s
Infrastructure: From Caching to Replication, /[EEE Internet Computing, vol. 1, no. 2, pp.
18-27, March 1997.

A. Baggio, G. Ballintijn, M. van Steen, and A.S. Tanenbaum, Efficient Tracking of Mobile
Objects in Globe, The Computer Journal, vol. 44, no. 5, 2001.

A. Bar-Noy, . Kessler, and M. Sidi, Mobile Users: To Update or Not to Update?,
ACMy/Baltzer Wireless Networks Journal, vol. 1, no. 2, 1995.

L.W. Dowdy and D.V. Foster, Comparative Models of the File Assignment Problem,
ACM Computing Surveys, vol. 14, no. 2, pp. 288-313, June 1982.

G.H. Forman and J. Zahorjan, The Challenges of Mobile Computing, IEEE Computer,
vol. 27, no. 6, pp. 38-47, April 1994.

GPS — Introduction to GPS Applications. www.redsword.com/gps/apps/index.htm.
GPS-USCG Navigation Center GPS Page, www.navcen.uscg.gov/gps/.

H. Harjono, R. Jain, and S. Mohan, Analysis and Simulation of a Cache-Based Auxiliary
User Location Strategy for PCS, Proceedings of the International Conference on Net-
works for Personal Communications, March 1994.

J.S.M. Ho and LF. Akyildiz, Local Anchor Scheme for Reducing Signaling Cost in
Personal Communication Networks, IEEE/ACM Transactions on Networking, vol. 4, no.
5, 1996.

T. Imielinski and B.R. Badrinath, Wireless Mobile Computing: Challenges in Data
Management, Communications of the ACM, vol. 37, no. 10, October 1994.

IP Routing for Wireless/Mobile Hosts Working Group, RFC Documents, http://www.ietf.
org/html.charters/mobileip-charter.html.

R. Jain, Reducing Traffic Impacts of PCS Using Hierarchical User Location Databases,
Proceedings of the IEEE International Conference on Communications, 1996.

R. Jain and Y.B. Lin, An Auxiliary User Location Strategy Employing Forwarding
Pointers to Reduce Network Impacts of PCS, Wireless Networks, vol. 1, pp. 197-210,
1995.

R. Jain, Y.B. Lin, C. Lo, and S. Mohan, A Caching Strategy to Reduce Network Impacts
of PCS, IEEE Journal on Selected Areas in Communications, vol. 12, no. 8, pp. 1434-1444,
October 1994.

J. Jannink, D. Lam, N. Shivakumar, J. Widom, and D.C. Cox, Efficient and Flexible
Location Management Techniques for Wireless Communication Systems, ACM/Baltzer
Journal of Mobile Networks and Applications, vol. 3, no. 5, pp. 361-374, 1997.

D.B. Johnson and D.A. Maltz, Protocols for Adaptive Wireless and Mobile Networking,
IEEE Personal Communications, vol. 3, no. 1, 1996.

Copyright © 2005 by CRC Press

http://www.ietf.org/
http://www.ietf.org/
www.redsword.com/gps/apps/index.htm
www.navcen.uscg.gov/gps/

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

E. Jul, H. Levy, N. Hutchinson, and A. Black, Fine-Grained Mobility in the EMERALD
System, ACM Transactions on Computer Systems, vol. 8, no. 1, pp. 109-133, February 1988.
N.M. Karnik and A.R. Tripathi, Design Issues in Mobile Agent Programming Systems,
IEEFE Concurrency, vol. 6, no. 3, pp. 52-61, July-September 1998.

P. Krishna, N.H. Vaidya, and D.K. Pradhan, Static and Dynamic Location Management
in Mobile Wireless Networks, Journal of Computer Communications [special issue on
Mobile Computing], vol. 19, no. 4, March 1996.

Y.B. Lin, Determining the User Location for Personal Communications Service Net-
works, IEEE Transactions on Vehicular Technology, vol. 43, no. 3, August 1994.

Y.B. Lin and S.K. DeVries, PCS Network Signaling Using SS7, IEEE Personal Communi-
cations, June 1995.

S. Mohan and R. Jain, Two User Location Strategies for Personal Communication
Services, IEEE Personal Communications, vol. 1, no. 1, pp. 42-50, January-February,
1994.

The Mobile IP tutorial, http://www.computer.org/internet/v2nl/perkins.htm.
ObjectSpace Voyager: Technical overview, December 1997. http://www.objectspace.
com/voyager/whitepapers/VoyagerTechOview.pdf.

M.T. Ozsu and P. Valduriez, Principles of Distributed Database Systems, Upper Saddle
River, NJ: Prentice Hall, 1991.

C.E. Perkins, Mobile IP: Design Principles and Practices, Boston: Addison Wesley, 1998.
E. Pitoura and 1. Fudos, An Efficient Hierarchical Scheme for Locating Highly Mobile
Users, Proceedings of the 7th International Conference on Information and Knowledge
Management (CIKM’98), pp. 218-225, November 1998.

E. Pitoura and G. Samaras, Data Management for Mobile Computing, Norwell, MA:
Kluwer Academic Publishers, 1998.

E. Pitoura and G. Samaras, Locating Objects in Mobile Computing, /EEE Transactions
on Knowledge and Data Engineering, vol. 13, no. 4, pp. 571-592, July/August 2001.

S. Rajagopalan and B.R. Badrinath, An Adaptive Location Management Strategy for
Mobile IP, Proceedings of the Ist ACM International Conference on Mobile Computing
and Networking (Mobicom’95), October 1995.

C. Rose and R. Yates, Location Uncertainty in Mobile Networks: a Theoretical Frame-
work, [EEE Communications Magazine, vol. 35, no. 2, 1997.

A.P. Sistla, O. Wolfson, S. Chamberlain, and Y. Yesha, Updating and Querying Data-
bases that Track Mobile Units, Distributed and Parallel Databases, vol. 7, no. 3, 1999.
M. Shapiro, P. Dickman, and D. Plainfosse, SSP Chains: Robust, Distributed References
Supporting Acyclic Garbage Collection, Technical Report 1799, INRIA, Rocquentcourt,
France, November 1992.

N. Shivakumar, J. Jannink, and J. Widom, Per-User Profile Replication in Mobile Envi-
ronments: Algorithms, Analysis, and Simulation Results, ACM/Baltzer Journal of Mo-
bile Networks and Applications, vol. 2, no. 2, pp. 129-140, 1997.

N. Shivakumar and J. Widom, User Profile Replication for Faster Location Lookup in
Mobile Environments, Proceedings of the 1st ACM International Conference on Mobile
Computing and Networking (Mobicom’95), pp. 161-169, October 1995.

M. van Steen, F.J. Hauck, G. Ballintijin, and A.S. Tanenbaum, Algorithmic Design of
the Globe Wide-Area Location Service, The Computer Journal, vol. 41, no. 5, pp.
297-310, 1998.

M. van Steen, F.J. Hauck, P. Homburg, and A.S. Tanenbaum, Locating Objects in
Wide-Area Systems, IEEE Communications Magazine, pp. 104-109, January 1998.

M. van Steen, and A.S. Tanenbaum, Distributed Systems: Principles and Paradigms,
Upper Saddle River, NJ: Prentice Hall, 2002.

AR. Tripathi, N.M. Karnik, T. Ahmed, R.D. Singh, A. Prakash, V. Kakani, M.K. Vora, and
M. Pathak, Design of the Ajanta System for Mobile Agent Programming, Journal of
System and Software, May 2002.

Copyright © 2005 by CRC Press

http://www.computer.org/internet/v2n1/perkins.htm

44.

45.

46.

47.

48.

J. Vitek and C. Tschudin, Eds., Mobile Object Systems: Toward the Programmable
Internet, Lecture Notes in Computer Science, vol. 1222, New York: Springer-Verlag, 1997.
J.Z. Wang, A Fully Distributed Location Registration Strategy for Universal Personal
Communication Systems, IEEE Journal on Selected Areas in Communications, vol. 11,
no. 6, pp. 850-860, August 1993.

M. Weiser, Some Computer Science Issues in Ubiquitous Computing, Communications
of the ACM, vol. 36, no. 7, pp. 75-84, July 1993.

O. Wolfson, Moving Objects Information Management: The Database Challenge, Pro-
ceedings of the 5th Workshop on Next Generation Information Technologies and Systems
(NGITS’2002), Caesarea, Israel, June 25-26, 2002.

O. Wolfson, S. Jajodia, and Y. Huang, An Adaptive Data Replication Algorithm, ACM
Transactions on Database Systems, vol. 22, no. 2, pp. 255-314, June 1997.

Copyright © 2005 by CRC Press

Chapter 10
Dependable
Message Delivery
to Mobile Units

Amy L. Murphy, Gruia-Catalin Roman, and
George Varghese

Abstract

Mobile computing is emerging as a novel paradigm with its own character-
istic problems, models, and algorithms. Much effort is being directed to
integrate mobile units with fixed networks, providing bridges to connect
wireless to wired. The result is a fixed core of wire-connected static nodes
and a fluid fringe of wireless mobile units, a computing system similar to
the cellular telephone network. The model we put forward uses the graph
of fixed nodes as a foundation and models the mobile units themselves as
persistent messages moving through this network graph. Such a model
allows algorithms from traditional distributed computing to be directly
implemented in the mobile environment; however, it has been shown that
the unique properties of mobility, such as limited bandwidth and disconnec-
tion, make such direct translation impractical. This chapter presents a funda-
mentally different idea. Instead of recreating the functionality of distributed
algorithms in the mobile domain, we show how distributed algorithms can be
adapted to solve problems unique to the mobile environment. Specifically, we
focus on the problem of dependably delivering a message to a moving unit.
We demonstrate this technique with two new algorithms, the first based on
distributed snapshots and the second on diffusing computations.

10.1 Introduction

Mobile computing reflects a prevailing societal and technological trend
toward ubiquitous access to computational and communication
resources. Wireless technology and the decreasing size of computer com-
ponents allow users to travel within the office building, from office to

Copyright © 2005 by CRC Press

home, and around the world with the computer at their side. As this new
world of computing is taking form, many fundamental assumptions about
the structure and the behavior of computer networks are being challenged
and redefined. This results in at least two kinds of research questions:

1. What is the precise relationship between mobile computing and
traditional distributed computing?

2. How are particular tasks (e.g., maintaining file consistency, point to
point communication, etc.) solved in a mobile setting?

This chapter attempts to make contributions to both kinds of questions.
On the modeling side, we describe a simple approach to modeling mobile
units that has considerable similarity to the standard distributed comput-
ing model. This model in turn allows us to transfer results from classical
distributed computing to the new mobile setting, leveraging off a large
body of existing research in an emerging research area. On the computing
side, we describe new algorithms for sending messages to mobile units.

10.1.1 Distributed versus Mobile Computing

A common model of a distributed computing system is a graph where the
nodes represent computing components and the edges represent commu-
nication. With the exception of faults that can render parts of the network
temporarily inoperational, the system is generally static. A mobile comput-
ing environment analogous to a cellular telephone system can be similarly
modeled with two components. The first is a graph where the nodes repre-
sent base stations and the edges wired communication. The second part
models the movement of mobile units among base stations as temporary,
wireless connections to base stations. The resulting model is a fixed core
of static components and a fluid fringe of mobile units. The similarities
between the mobile computing model and the distributed computing
model, as well as the ease of integrating this model with wired networks,
have helped it become dominant in mobile computing research [2, 12].

Yet another model of mobility emerges from the study of code and data
moving through a network of hosts [8, 9, 20]. In this case, the mobile com-
ponents, commonly referred to as mobile agents, move entirely within the
network, migrating by explicit message passing between hosts. We suggest
a slight modification of this model to encompass both physical and logical
mobility, thus moving the mobility model closer to the traditional distrib-
uted computing model. The basic idea is to treat mobile units as roving
messages that preserve their identity as they travel across the network.
For a cellular mobile system, this means that while a mobile unit is within
acell, it is modeled as a message residing at a node. When moving to a new
cell, the handover protocol is modeled as the traversal of a channel
between two nodes.

Copyright © 2005 by CRC Press

10.1.2 Algorithm Development

Our interest in this model rests with its ability to facilitate the development
of algorithms in mobile computing based on established algorithms of tradi-
tional distributed computing. To illustrate this point, this chapter shows
how snapshot algorithms can be adapted for unicast and multicast mes-
sage delivery and how the idea of diffusing computations can be adapted
to track and deliver messages to mobile units.

In the presentation, we bring together the two concerns of the chapter:
applying techniques from distributed algorithms to mobile computing and
the problem of message delivery. The rest of this chapter is organized as
follows:

e Section 10.2 defines the problem we intend to solve, namely message
delivery in a mobile setting and describes prior work in the area.

e Section 10.3 explores the use of snapshot algorithms as a search
mechanism for message delivery, presents the motivation, algorithm
properties, and possible extensions.

e Section 10.4 outlines the diffusing computation approach to tracking
mobile units.

e Section 10.5 outlines adaptations that make the approach viable in
a model similar to the cellular telephone system.

e Section 10.6 concludes the chapter.

10.2 Message Delivery

Although disconnected operation or working in isolation is a practical use
of mobile units [13], many applications require units to communicate with
one another while on the move, exchanging voice or data. Thus a funda-
mental problem in mobile computing is the delivery of a message from a
source to a mobile unit. In this section, we discuss previous work on mes-
sage passing in mobile environments, define our model of the mobile envi-
ronment, and formally define the problem of message delivery.

10.2.1 Related Work

Standard solutions to message delivery to mobile units fall into two cate-
gories — tracking and searching. Fundamentally, the tracking solution
involves knowing the current location of the mobile unit in either a central-
ized or distributed manner; the searching solution maintains no such infor-
mation and instead searches for the mobile unit in order to deliver a mes-
sage. Both styles apply depending on the mobility scenario. For example,
tracking mechanisms are most effective in systems with low or slow mobil-
ity and high traffic levels, whereas systems with high or fast mobility and
moderate traffic are more amenable to search solutions. This chapter con-
siders solutions to both.

Copyright © 2005 by CRC Press

Most standard forms of message delivery rely on tracking. For example,
in cellular systems, as a phone involved in an active session moves into an
adjacent cell and detects a stronger signal from the new cellular tower, a
handover is requested [10, 23]. The cellular system constantly keeps track
of the association between phones and towers to forward voice packets to
users. In Mobile IP [19], packet delivery is accomplished by the mobile unit
registering its new location with its home agent and having the home agent
forward any packets for that mobile unit to the registered location. Other
approaches propose changing the routers to adapt to the movement of the
mobile units, for example, intercepting packets en route to the home agent
and directing them toward the mobile unit itself [18]. Such approaches
involve fundamental changes to the routers and are less well accepted
than Mobile IP.

One disadvantage to tracking arises if the mobile unit moves quickly
from one base station to another. Each time the unit changes its point of
attachment to the network, a tracking system must send update messages,
even if the mobile unit is not actively receiving any messages. In fact, the
transmission overhead of tracking information scales poorly with the
speed of movement.

In search solutions, because the location of the mobile unit is not kept
anywhere in the system, in order to deliver a message, the sender must
either broadcast a search request to locate the mobile unit then forward
the message to the resulting location or the sender can simply broadcast a
copy of the message. The first mechanism has been suggested for mobile
ad hoc environments where there is no infrastructure along which to route
packets [4]. This approach takes advantage of the natural broadcasting
nature of wireless radio communication to send a message to all neighbor-
ing mobile units within range. This same style of route discovery is also
useful in base station environments with moderate movement of mobile
units where a route to a mobile unit is viable long enough for both route
discovery and message delivery. Clearly, searching the entire Internet for a
mobile unit appears ludicrous; however, a search strategy can take advan-
tage of the inherent organization of the Internet into domains and subnets
to reduce the scope of the search.

Although the unicast problem of delivering a message to a single recipi-
ent is important, multicast has also received attention. For example, multi-
cast support through the multicast backbone (MBONE) has become a stan-
dard part of the Internet [7] and is finding use for audio and video
conferencing [11, 14] and video distribution. Additionally, the Mobile IP
specification addresses the issues of enabling a mobile unit to function as
either a sender or a receiver for multicast messages [19]. In this chapter,
we show how our algorithms can be adapted from unicast to multicast
delivery with minimal effort.

Copyright © 2005 by CRC Press

Figure 10.1. Cell-Based Broadcast Using a Spanning Tree
Each cell is a base station and adjacent cells can communicate on a wired channel.

10.2.2 Mobile Environment

We address the delivery of announcements within a network of fixed
mobile support centers (MSCs) and radio base stations (RBSs). For sim-
plicity, we assume each MSC controls only one RBS and all neighboring
MSCs have a fixed communication channel between them. This channel is
used by both messages and mobile units.

In Figure 10.1 each cell represents an (MSC, RBS) pair, and the MSCs of
all neighboring cells are connected by a fixed network link. A mobile unit
can send and receive messages from only one RBS at a time and only when
it is in the cell associated with that RBS. The simplifying assumption that
all neighboring base stations be physically connected can be easily
removed by adding virtual channels between the physically adjacent cells.
For simplicity, we also ignore the MSC/RBS distinction. We return to both of
these in Section 10.5, providing details of implementing virtual channels
and allowing multiple RBSs per MSC.

10.2.3 Model and Problem Definitions

As described in the introduction, the model we consider is one where the
infrastructure of the mobile environment is viewed as a graph of nodes and
channels; both the mobile units and the data messages are represented as
messages that travel through the network. More specifically, mobile units
are viewed as persistent messages, but data messages disappear from the
system after delivery. For all temporary messages, to avoid confusion in
terminology between control and data traffic, from this point forward, we
use the term announcement to refer specifically to data messages, but a
message can be either data or control. A mobile unit can send and receive
messages and announcements only when it is present at some node in the
fixed network, a situation that models the existence of an established con-
nection between a mobile unit and a support center. When a mobile unit is
on a channel, it is viewed as being temporarily disconnected from the net-
work and unable to communicate.

Copyright © 2005 by CRC Press

Because we no longer differentiate between communication lines and
physical movement, it is reasonable to question what happens when mes-
sages (both announcements and control messages) and mobile units are
found on the same channel. We make the assumption that all channels pre-
serve message ordering (i.e., they are first in, first out [FIFO]). This appears
to require that mobile units travel through space and reconnect to the next
support center as fast as messages can be transmitted across a network
channel. The FIFO behavior, however, can be realized by integrating the
handover protocol with message passing. Essentially, in the cellular model,
a mobile unit moves directly between cells; however, in the graph repre-
sentation, the mobile must move onto a channel before arriving at the new
cell. This is a natural assumption when the details of the handover are con-
sidered, the details of which are expanded in Section 10.5. Two other
assumptions we make are that a node can deliver any announcements
before the mobile unit moves to a new base station and that the network is
connected (i.e., there is always some path to deliver the announcement to
its destination mobile unit no matter which node it is located at). Finally,
we assume bidirectional channels.

The announcement delivery problem can now be formulated as follows:

Given a connected network with FIFO channels and guaranteed message
delivery, an announcement located at one node, and a mobile unit to
which the announcement is destined, develop a distributed algorithm that
guarantees single delivery of the announcement and leaves no trace of the
announcement, at either a node or a mobile unit, within a bounded time
after delivery. Minimizing storage requirements across the network should
also be considered.

Because mobile units do not communicate directly with one another, the
network must provide the mechanism to transmit the announcement. The
original announcement is assumed to be in the local memory of some pro-
cessing node, presumably left there by the mobile unit that is the source of
the announcement. Because a mobile unit is not required to visit all nodes
to gather its announcements, the announcement cannot remain isolated at
the node on which it is dropped off, but instead must be distributed
through the network. The specifics of this distribution mechanism are left
to the algorithm and are the focus of the remainder of this chapter.

10.3 Broadcast Search

Our first approach to announcement delivery takes a broadcast search
approach, meaning that a message is broadcast throughout the network in
search of the mobile unit. Although this seems like a simple method, apply-
ing it directly is not trivial due to the movement of the mobile unit during
the broadcast. For example, it is possible for the mobile unit to move one
step ahead of the broadcast and eventually pass the announcement in the

Copyright © 2005 by CRC Press

opposite direction. This problem can be solved by storing the announce-
ment at all nodes for an indefinite period; however, Internet routers have
neither the storage capability nor the intention to store application
announcements. Therefore, announcements must be garbage collected
quickly if the scheme is to have any chance of being practical. Our solution
has the attractive property of guaranteeing delivery exactly once while
allowing rapid garbage collection in time proportional to one round trip
delay on a single link.

10.3.1 Motivation

A straightforward broadcasting scheme designed for our model of mobility
is to construct a spanning tree over the MSCs and send the announcement
along this tree. In Figure 10.1, such a spanning tree is indicated by the solid
lines. A disadvantage of this scheme is that a mobile unit may move and not
receive the announcement. For example, consider a mobile unit located at
cell 1, near the border of cell 2. Suppose the broadcast of an announcement
begins at the centermost cell. Following the proposed spanning tree broad-
cast scheme, the MSC in the initiating cell broadcasts the announcement
locally; next the announcement is forwarded on the outgoing links of the
spanning tree. After successfully sending the announcement, the initiator
deletes its copy of the announcement, minimizing the storage time. The
MSCs downstream behave in a similar manner, broadcasting locally, for-
warding the announcement to their children, and finally deleting their copy
of the announcement.

If the mobile unit does not move away from cell 1, it will receive a copy
of the announcement when it is broadcast by MSC,. However, when the
mobile unit is on the border between cell 1 and cell 2, it is possible for a
handover to be initiated and for the mobile unit to lose contact with MSC,
and pick up communication with MSC,. If this handover occurs after MSC,
deletes its copy of the announcement and before MSC, broadcasts its copy
of the announcement, the mobile unit will not receive the announcement
even though it was connected to the network during the entire broadcast
lifetime of the announcement. Although in reality, messages travel through
the network much faster than a mobile unit can travel through space,
because a handover requires very little time to complete, and the length of
the path along the spanning tree could take longer to traverse than for the
handover to complete, it is reasonable for a simple broadcast mechanism
such as this to fail.

10.3.2 From Distributed Snapshot Algorithms to
Announcement Delivery

To guarantee delivery in any circumstance, we propose an alternative
broadcast algorithm that is based on the classical notion of distributed

Copyright © 2005 by CRC Press

snapshots. Before addressing announcement delivery, we first note the
general properties of snapshot algorithms especially those important in
announcement delivery.

The goal of a snapshot algorithm is to provide a consistent view of the
state of a network of nodes and channels. The state consists of the process
variables and any messages in transit among the nodes. A simple snapshot
algorithm would freeze the computation until all messages are out of the
channels, record the state of the processors (including outgoing message
queues), and then restart the computation. Although this is an impractical
solution in most distributed settings, it provides the intuition behind a
snapshot algorithm, in particular that the consistent global state is con-
structed by combining the local snapshots from the various processors. In
general, a snapshot is started by a single processor and control messages
are passed to neighboring nodes informing them that a snapshot is in
progress, thereby initiating local snapshots. The main property of snap-
shots that we exploit is that every message appears exactly once in the
recorded snapshot state.

Although snapshot algorithms were developed to detect stable proper-
ties, such as termination or deadlock, by creating and analyzing a consis-
tent view of the distributed state, minor adjustments described here adapt
them to perform announcement delivery in the dynamic, mobile environ-
ment. To move from the network of nodes and channels into the mobile
computing environment, we return to the mobility model for the cellular
structure of mobile support centers and radio base stations. As described
earlier, these components and the wires connecting them map directly to
the network graph of standard distributed computing. The mobile units are
simply represented as persistent messages in the distributed environment,
meaning they are always somewhere in the system, either at a node (when
in communication with a base station) or on a channel (during a han-
dover).

At this point, we have a structure on which to run the snapshot. We note
that because the mobile unit is a message and the snapshot records the
location of messages, the global snapshot of the mobile system will show
the location of the mobile unit. Therefore, one option is to simply deliver
the announcement directly to this location; however, it is possible (and
likely in systems with rapid movement) that the mobile unit will move
between the time its position is recorded and when the announcement
arrives at the recorded position. Therefore, we alter the snapshot record-
ing to deliver the announcement by augmenting the control messages with
a copy of the announcement itself and changing the recording of messages
into the delivering of announcements. We further note that the global state
of the system is no longer important for delivery, so no system state infor-
mation is collected.

Copyright © 2005 by CRC Press

Global Snapshot Mobile Delivery

/

!
—ﬂ*) * i mobile unit

(a) processor state to be (c) mobile unit to be = message
recorded delivered to while stationary | Y marker/announcement

_ i/ “ % 77 X next action
/
started snapshot/
i». !»6 i» i B | ceived announcement
i i [notinvolved in snapshot/
(b) message to be recorded | (d) mobile to be r_JeIlvered to has no announcement
on channel upon arrival

Figure 10.2. Translation of Concepts from Global Snapshots into Mobile Delivery
The curved arrow shows the processing of an element from a channel and the text
describes the action triggered by such movement.

10.3.3 Snapshot Delivery Algorithm

Throughout this section, we use the Chandy-Lamport snapshot algorithm
[5] and show its adaptation to announcement delivery. In making the tran-
sition to the mobile environment, we carry the restrictions of the original
distributed algorithm and clarify certain characteristics of the mobile
model moving from the cell structure to the graph setting.

In the Chandy-Lamport algorithm, it is possible for the snapshot to be
initiated at more than one location in the graph, however, we assume that
the announcement will be located initially at one point in the network;
therefore the snapshot will originate from a single MSC. The Chandy-Lam-
port algorithm consists of two main localized actions to collect the local
snapshot — the processing of the control messages (mar