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xxv

Preface
When writing a book on this subject, it is difficult to decide what to leave out. The world of mechan-
ical design engineering is very broad and covers a wide range of subjects. This book is specifically 
aimed at the student design engineer who has left full- or part-time academic studies and requires 
a handy reference handbook. Some of the titles may seem a little obscure, but in my experience, 
working in a wide range of industries from machine tools to aerospace, I have used these subjects 
regularly.

The chapters on beams and torsion are included for obvious reasons. Why a chapter on limits 
and fits? Some student engineers have difficulty in determining the correct type of fit to specify and 
select either a combination that is too loose or one that is expensive to attain.

The chapter on lugs and shear pins is important in the design engineer’s armory, as you will meet 
this design feature time and time again. It is quite surprising that some lug designs are either under- 
or overdesigned and have failed with very expensive results.

I have addressed issues with mechanical fasteners, more specifically bolts and screws. I have not 
discussed other forms of fasteners such as rivets, and so forth, because there was insufficient space 
to do the subject full justice. This may be left to future publications.

Because thick-wall or compound cylinders are not the exclusive province of the hydraulic or 
pneumatic engineer and are used quite extensively in mechanical engineering as connection fea-
tures, I felt the subject should be covered.

The chapter covering helical compression springs will be useful to the student engineer. I debated 
whether to include tension and torsion springs but decided against that for the time being. This may 
be included in future publications. The helical compression spring is the most commonly used 
spring, which justified coverage in its own chapter.

I introduce the subject of analytical stress analysis using the Mohr’s circle. It is surprising that 
there are so many student engineers who have only had a passing reference to the circle; it has been 
used by me extensively in my career, as it helps to explain quite complex stress issues. Two chapters 
are devoted to stress analysis covering both analytical and experimental analysis. Although the 
chapter on experimental stress analysis may be considered rudimentary, it will give the reader an 
introduction to the subject.

Fatigue and fracture have become very important subjects in engineering. At times, fatigue and 
fracture can produce a number of catastrophic failures, ranging from the early comet disasters to a 
number of bridges and walkways failing. In most cases, a premature failure due to fatigue can be 
attributed to design errors, and the design engineer must be on his guard when designing compo-
nents that are subject to cyclic loading.

The chapter on gear systems should be self-explanatory. Sooner or later, the engineer will be 
faced with a problem regarding gearing, and some of the examples shown will be of assistance.

Finally, the chapter on cams and followers I consider important because the information here 
will be useful in a motion control problem; this will give the reader an insight into the issues associ-
ated with cams and followers.

D
ow

nl
oa

de
d 

by
 [

M
ot

ila
l N

eh
ru

 N
at

io
na

l I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

A
lla

ha
ba

d]
 a

t 0
9:

48
 2

9 
D

ec
em

be
r 

20
13

 



D
ow

nl
oa

de
d 

by
 [

M
ot

ila
l N

eh
ru

 N
at

io
na

l I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

A
lla

ha
ba

d]
 a

t 0
9:

48
 2

9 
D

ec
em

be
r 

20
13

 



1

1 Beams

1.1  �BASIC THEORY

1.1.1  �Introduction

The following are the minimum requirements of a straight beam:

•	 The beam is straight.
•	 The cross section is uniform along its length (L).
•	 The beam has at least one longitudinal plane of symmetry.
•	 The beam is long in proportion to its depth (d).

•	 L/d is greater than 8 for metals with compact sections.
•	 L/d is greater than 15 for beams with thin webs.

•	 All loads and reactions lie in the longitudinal plane of symmetry.
•	 The beam is not disproportionally wide.
•	 The maximum stress in the beam does not exceed the proportional limit (0.2%).

1.1.2  �Simple Elastic Bending

When a beam is subjected to a transverse load, either a point load or an evenly distributed load along 
its length, a bending stress will exist within the beam cross section.

Considering the cantilever of a uniform section, as shown in Figure 1.1, subject to a bending 
moment, the bending stress will be zero at the neutral axis. The stress in the upper surface is in ten-
sion and the lower surface is in compression when subject to the bending moment.

In contrast, the stresses in the beam shown in Figure 1.2 are inverted in the beam, i.e., in com-
pression in the upper surface and in tension in the lower surface. Within the elastic range of the 
material (i.e., below the elastic limit or the yield point) the bending stress (fb) at any point in the 
cross-section (A:A) is

	 f My
Ib = 	 (1.1)

where
	M =	 bending moment at the section in question, Nm
	 I =	 moment of inertia of the section m4

	 y =	 distance from the neutral axis to the point at which the stress is required
	fb =	 bending stress (may be either tension or compression) (N/m2)

Table 1.1 gives a selection of standard bending cases.
The bending moment M may be determined from the standard beam diagrams as shown in 

Table 1.1, where a list of several of these are shown alongside with formulas for deflection and shear.
Generally there is no interest in knowing the bending stresses within the beam. Usually the bend-

ing stress at the outer fiber is needed, as this is the maximum value. In unsymmetrical sections, the 
distance y must be taken in the correct direction across that portion of the section that is in tension 
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or that portion in compression. Ordinarily only the maximum stress is needed, and this is the stress 
at the outer fiber under tension, which is at the greater distance y from the neutral axis.

1.1.3  �Shearing Force and Bending Moment

The shearing force at a section of a beam is the algebraic sum of all the forces to one side of the 
section.

The bending moment at a section of a beam is the algebraic sum of the moments of all the forces 
to one side of the section.

At the point P in the cantilever shown in the Figure 1.3(a) the shearing force is W1 + W2, which 
is tending to shear the beam, as shown in Figure 1.3(b). This is opposed by the shearing resistance 
of the beam to the left of P.

The bending moment at the point P is W1x1 + W2x2, which is tending to bend the beam, as shown 
in Figure 1.3. This is opposed by the bending resistance of the beam to the left of P.

In the case of the simple cantilever shown in Figure 1.3, the shearing force at P is either R1 – W1 
or R2 – W2. These terms are equal since they equating upward and downward forces on the beam.

	 R1 + R2 = W1 + W2

The bending moment at P is either R1a – W1x1 or R2b – W2x2. These terms are equal since they 
are equating clockwise and counterclockwise moments about P.

	 R1a + W2x2 = R2b2 + W1x1

Tensile stress

Compressive stress

A Moment

FIGURE 1.1  Stresses in a cantilever beam.

ymax 
N AN A

y´
b

d

A´
fb min

fb maxTension

Compression

Bending stress
distribution through
section

Section ‘A:A’

L

Load
A

A
R1 R2

FIGURE 1.2  Stresses generated in a beam between supports.
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3Beams

TABLE 1.1
Standard Bending Cases

Type of Beam Maximum Moment Maximum Deflection Maximum Shear

P

L
M PL=
Fixed end δ = PL

EI

3

3
V P=

P

L
M PL

Center

=
4

δ = PL
EI

Center

3

48 V P=
2

P

L
M PL= 3

16
δ = PL

EI

3

48 5
V P= 11

16

P
Guided
Free

L
M PL=

2
Both ends

δ = PL
EI

3

12
Guided ends

V P=

P

L
M PL=

8
Center & ends

δ = PL
EI

3

192
Center

V P=
2

P

L
M PL=

2
Fixed ends

δ = PL
EI

3

8
V P=

P

L
M PL=

8
Center

δ = 5
384

3PL
EI

Center
V P=

2

P

L

M PL=
8

Fixed Ends
δ = PL

EI

3

185
V P= 5

8

P Guided
Free

L

M PL=
3

Fixed end
δ = PL

EI

3

24
Guided end

V P=

P

L

M PL=
12

Both ends
δ = PL

EI

3

384
Center

V P=
2
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4 Design Engineer's Handbook

It is immaterial which side of the section is chosen for the calculation of the shearing force or bend-
ing moment. When calculating the bending moment due to the distributed load, the part of the load to 
one side of the section may be considered a concentrated load acting at the center of gravity of that part.

If the bending moment at a section of a beam changes sign, that point is called the point of inflex-
ion or contraflexure.

If the resultant force to the right of a section is upward (or to the left is downward), this is 
regarded as positive shearing force and the opposite kind of shearing will be regarded as negative 
(see Figure 1.5).

X2

X1

P

W2 W1

(a)

W1 + W2

W1 + W2

W1X1 + W2X2

(b)

(c)

FIGURE 1.3  Shearing forces and bending moments acting on a beam in (a)–(c).

a

X1 X2

P
b

W1

R1 R2

W2

FIGURE 1.4  Simply supported beam.

Positive shearing

Negative shearing

Positive bending

Negative bending

FIGURE 1.5  Conventions used in shearing and bending.D
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5Beams

If the resultant bending moment to the right of the section is clockwise (or to the left is coun-
terclockwise), this will be regarded as a positive bending moment and the opposite kind will be 
regarded as negative. Thus a positive bending moment causes the beam to bend upward (convex) and 
the negative bending moment bends it downward (concave).

1.1.4  �Shearing Force and Bending Moment Diagrams

These are diagrams that show the results of the shearing force (SF) and bending moment (BM) 
along the entire length of the beam. The four most common cases will now be considered.

1.1.4.1  �Cantilever with a Concentrated End Load (see Figure 1.6)

	SF at P = –W

	BM at P = Wx

	Maximum SF = –W

	 Maximum BM = Wl

1.1.4.2  �Cantilever with a Uniformly Distributed Load, w, per Unit Length (see Figure 1.7)

	

SF at P = –wx

BM at P = wx· x
2

= wx
2

Maximum S

2

FF = –w

Maximum BM = w
2

2

l

l

W

x

l

P

W

(–ve)

(+ve)Wl

SF

BM

FIGURE 1.6  Cantilever with a concentrated load.
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6 Design Engineer's Handbook

1.1.4.3  �Simply Supported Beam with Central Concentrated Load (see Figure 1.8)

	

SF at P =

BM at P

 SF =

W

W x

Maximum

2

2 2
= 





l –

  W
2

 BM = – W
2

·Maximum

W

l

l

2

4
= –

l
x

P

w/unit length

wl (–ve)
SF

wl 2

2 (+ve) BM

FIGURE 1.7  Cantilever with a uniformly distributed load.

W x

lW/2 W/2
P

W/2
W/2(+ve)

(–ve)

(–ve)
Wl/4

SF

BM

FIGURE 1.8  Simply supported beam with a central load.
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7Beams

1.1.4.4  �Simply Supported Beam with Uniformly Distributed 
Load, w, per Unit Length (see Figure 1.9)

	

SF at P = w
2 2

BM at P w
2

l l

l l

− −





=

=

w x

wx

x
2

–



 + = −





= −






w x

w x

Maximu

2 2

2 4

2

2
2

l

l

mm

Maximum

 SF = w
2

 BM = – w
8

l

l2

1.2  �STRESSES INDUCED BY BENDING

1.2.1  �Pure Bending

If a beam is subjected to a bending moment at each of the beam (see Figure 1.10) the moment is 
uniform throughout the length of the beam. The fibers in the upper surface of the beam are extended 
and those in the lower surface are compressed. Tensile and compressive stresses are then induced 
in the beam, which produces a moment, called the moment of resistance, and is equal and opposite 
to the applied bending moment.

X W/unit 

Wl/2 Wl/2l

Wl/2
Wl/2

(–ve)

SF

BMWl2

8

FIGURE 1.9  Simply supported beam with a uniformly distributed load.

M M 

Fibers in tension Fibers in compression 

FIGURE 1.10  Surfaces in a section due to a bending moment.
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8 Design Engineer's Handbook

In the theory of bending, which relates the stresses and curvature of the beam to the applied 
bending moment, the following assumptions are made:

•	 The beam is initially straight and the radius of curvature is large in comparison to the 
dimensions of the cross section.

•	 The material is homogeneous, elastic, and obeys Hooke’s law.
•	 The modulus of material is the same when in tension or compression.
•	 The stresses are consistent across the depth and width of the section and do not exceed the 

limits of proportionality.
•	 A transverse section that is in plane before bending should remain in plane after bending.
•	 Each longitudinal fiber is unrestrained and free to extend or contract.

1.2.2  �Stress Due to Bending

Figure 1.11 represents a cross section of a beam, to which a bending moment M has been applied; 
this is acting in a vertical plane through the centroid G. Since the section ab in Figure  1.11(b) 
remains in plane after bending, it will take up a position cd and the figure acdb will then represent 
the strain distribution diagram for the section, with ac and bd representing the strains at the top and 
bottom faces, respectively.

It is evident that the strain will vary linearly from a maximum at the top fibers to a maximum at 
the bottom fibers, and in doing so changes from tensile to compressive. The plane XX at which the 
stress becomes zero is termed the neutral plane, and its intersection with a cross section is termed 
the neutral axis.

Thus the strain at any point, and consequently from Hooke’s law, the stress is directly propor-
tional to the distance of that point from the neutral axis.

1.2.3  �The General Bending Formula

Considering the stresses induced in the beam by the bending moment acting on the beam, and con-
sidering further Figure 1.12, let the radius of curvature of the neutral axis at a particular section of 
the beam be R.

The layer originally of length ce has extended to cd.

	 ∴ = = =strain ed
cd

ed
ab

f
R

t 	 (1.2)

y
XX

a c

d b

y1

y2

M

da

G

(a) (b)

FIGURE 1.11  (a) Represents a cross-section of a beam, to which (b) a bending moment M has been applied.
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9Beams

using similar triangles:

	
ed
bd

ab
ob

y
R

= = 	 (1.3)

From Equations (1.2) and (1.3)

	
f
y

E
R

t = 	 (1.4)

Combining this with Equation (1.2) gives the general bending formula:

	
M
I

ft
y

E
R

= = 	 (1.5)

1.2.4  �Example

By way of an example consider a beam loaded as in Figure 1.13. Draw a shearing force and bending 
moment diagram for the figure. If the maximum stress due to bending in the beam is not to exceed 
110 MPa, determine the size of a universal beam manufactured to British Standard (BS) 4 rolled 
steel sections. It is proposed to consider three sizes of sections, 457 × 152 × 74 kg, 406 × 140 × 46 
kg, and 356 × 171 × 45 kg (see Table 1.2).

x

y

R

a

c
e d

b
x

o

FIGURE 1.12  Stresses induced in a beam due to bending.

20
 k

N

40
 k

N

60
 k

N

10
0 

kN

R1 R2

Uniformly distributed load 35 kN/m

1.25 m 1.25 m1.25 m1.25 m1.25 m

3.75 m
6.25 m

A B C D E F

FIGURE 1.13  Uniformly distributed and multiple loads on a beam.
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10 Design Engineer's Handbook

1.2.4.1  �To Determine Reaction Forces
Note that it is good practice to check the results to ensure no mistakes have crept into the calcula-
tions due to an oversight (which will always happen despite the best resolve).

Taking moments about R2

3 75 100 1 25 35 1 25 0 6251. . . .m R kN m kN m m× + ×( ) + × ×( ) = 220 5 40 2 5

60 1 25

35 5

kN m kN m

kN m

kN m

×( ) + ×( )
+ ×( )
+ ×

.

.

××( )2 5. m
	

	

R

kN

1
560 1563

3 75
149 375

=

=

.

.
.

Taking moments about R1

	

3 75 20 1 25 35 1 25 0 625 42. . . .m R kN m kN m m× + ×( ) + × ×( ) = 00 1 25 60 2 5

100 5 0

35

kN m kN m

kN m

kN

×( ) + ×( )
+ ×( )
+ ×

. .

.

55 0 2 5. .m m×( )

	

R

kN

2
1085 156

3 75
289 375

=

=

.
.
.

Check:
Upward forces equal the downward forces.

Upward forces:

	

R R kN kN

kN

1 2 149 375 289 375

438 75

+ = +

=

. .

.

TABLE 1.2
Section Properties

y I

Section mm m4

457 × 152 × 74 kg 228.5 324.53 × 10–6

406 × 140 × 46 kg 203.0 156.56 × 10–6

356 × 171 × 45 kg 178.0 120.98 × 10–6
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11Beams

Downward forces:

	

20 40 60 100 35 6 25

438 75

kN kN kN kN kN m

kN

+ + + + ×( )
=

.

.

1.2.4.2  �Shear Force Diagram
The shear force diagram can now be constructed as shown in Figure 1.14. The maximum shear-
ing force is 144.69 kN at position E. The greatest numerical value will be the maximum bending 
moment acting on the beam.

As the distributed load covers the entire length of the beam, it is recommended that the bending 
moment is calculated at 0.625 m intervals (Table 1.3).

20 kN

85.63 kN

63
.7

5 
kN 10

3.
75

 k
N

43
.7

5 
kN

40 kN
100 kN

144.69 kN

144.69 kN

+
+

–

–

FIGURE 1.14  Shear force diagram.

TABLE 1.3
Bending Moment Calculations

Section
Distance 

from A to m Calculation
Bending 
Moment

1 0.000 0.00

2 0.625 –(20 kN × 0.625 m) – (35 kN × 0.625 m × 0.625/2) –19,335.94

3 1.250 –(20 kN × 1.25 m) – (35 kN × 1.25 m × 1.25/2) –52,343.75

4 1.875 –(20 kN × 1.875 m) – (35 kN × 1.875 m × 1.875/2) + (149.375 kN × 0.625 m) –5,664.06

5 2.500 –(20 kN × 2.50 m) – (35 kN × 2.50 m × 2.50/2) + (149.375 kN × 1.25 m) 27,343.75

6 3.125 –(20 kN × 3.125 m) – (35 kN × 3.125 m × 3.125/2) + (149.375 kN × 1.875 m) 
– (40 kN × 0.625 m)

21,679.69

7 3.750 –(20 kN × 3.75 m) – (35 kN × 3.75 m × 3.75/2) + (49.375 kN × 2.50 m) 
– (40 kN × 1.25 m)

2,343.75

8 4.375 –(20 kN × 4.375 m) – (3.5 kN × 4.375 m × 4.375/2) + (149.375 kN × 3.125 m) 
– (40 kN × 1.875) – (60 kN × 0.625 m)

–30,664.06

9 5.000 –(20 kN × 5.00 m) – (3.5 kN × 5.00 m × 5.00/2) + 149.375 kN × 3.75 m) 
– (40 kN × 2.50 m) – (6 kN × 1.25 m)

–152,343.75

10 5.625 –(20 kN × 5.625 m) – (3.5 kN × 5.625 m × 5.625/2) + 149.375 kN × 4.375 m) 
– (40 kN × 3.125 m) – (60 kN × 1.875 m + (289.375 kN × 0.625 m)

–69,335.94

11 6.250 –(20 kN × 6.25 m) – (35 kN × 2.25 m × 6.25/2) + (149.375 kN × 5.00 m) 
– (40 kN × 3.75 m) – (60 kN × 2.50 m) + (289.375 kN × 1.25 m)

0.00
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12 Design Engineer's Handbook

From the bending moment diagram (Figure 1.15) it is clearly seen that the maximum bending 
moment occurs at position E (Figure 1.13) with a value of –152,343.75 Nm.

	

M f Z

Z M
f

Z Nm
N m

t

t

max

.

.

=

∴ =

∴ =
×

=

152343 75
110 10

1 38

6 2

55 10 3 3× − m

Table 1.4 shows the properties of sections that would match the requirements of the beam prob-
lem. Three sections are considered. 

From the above calculation it is seen that two sections will be acceptable to meet the strength 
requirements.

1.2.5  �Best Position of Supports for Beams with Overhanging Ends

In some cases it is desirable to find the most optimum positions of supports for a beam that over-
hangs the supports, which gives the least maximum bending stress.

Consider a beam ABCD (Figure 1.16(a) and (b)), which is simply supported at B and C, and 
both carrying a uniformly distributed load w per unit length throughout. It is possible to adopt a 
symmetrical arrangement of the supports or to make the overhanging ends of unequal length; the 
respective bending moment diagram shown in Figure 1.16(b).

–200000

–150000

–100000

–50000

0

50000

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000

Distance

Be
nd

in
g 

M
om

en
t

Series 1

FIGURE 1.15  Bending moment diagram.

TABLE 1.4
Sectional Properties

Section
I

m4
y

mm
Z

mm3

457 × 152 × 74 kg 316.47 × 10–6 228.5 1.385 × 10–3

406 × 140 × 46 kg 281.16 × 10–6 203.0 1.385 × 10–3

356 × 171 × 45 kg 242.38 × 10–6 178.0 1.361 × 10–3
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13Beams

In either case, let ME be the maximum positive bending moment and MB and MC be the maxi-
mum negative bending moments.

When the overhangs are equal,

	 MB = MC	 (1.6)

If the supports are moved relative to each other a position will be found for which MB, MC, and 
ME are numerically equal. This arrangement will clearly give the minimum bending moment over 
the whole length, i.e.,

	 ME = –MC = –MB	 (1.7)

For this condition, the overhanging portions will be of equal length and ME will occur at the 
middle of the beam.

	 Let l be the length of the beam and x the overhang at each end (Figure 1.17(a)).

	

M wx

M R x w

M w

B

E B

E

= −

= −



 −

∴ = −

1
2

1
2

1
8

1
2

1
2

2

2l l

l l xx w

w w x





 −

= −

1
8

1
8

1
2

2

2

l

l l

	 (1.8)

Un-symmetrical Loading

A DB C

MB
MC

ME
+

– –

(a)

Symmetrical Loading

A DB C

– –

+

MB MC

ME

(b)

FIGURE 1.16  Beams with overhanging ends.
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14 Design Engineer's Handbook

	

If M M

wx w w x

x x

x

E B� =

+ = −

∴ = −

+

1
2

1
8

1
2

4 4

4 4

2 2

2 2

2

l l

l l

l22 2 0− =l

This is a quadratic in x.

	

x = − ± +( )





= − ±( )
= −

1
8

4 16 16

1
8

4 32

1
2

2 2

2

l l l

l l

l ±±

= ±

1
2

2

0 5 0 707

l

l l. .

Since the negative root is inadmissable

	 x = 0.207l

A B C D

l

x xl – (2x)

Uniformly distributed load “w”

2
wlRB =

2
wlRC =

(a)

+

– –

ME

MCMB

(b)

FIGURE 1.17  Uniformly distributed load acting on a beam with overhanging ends. (a) Beam with a uni-
formly distributed load with symmetrical overhanging supports. (b) Bending moment diagram for the beam 
in (a).
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15Beams

1.3  �DEFLECTION IN BEAMS

There are a number of methods to compute the deflection in beams, either simply supported, encas-
tré, cantilever, etc. These include but are not limited to the following:

•	 Area moment
•	 Slope deflection
•	 Moment distribution
•	 Macaulay’s method

1.3.1  �Area Moment

The area moment method of analysis is usually attributed to Mohr, who published his method 
in 1868. It was Professor C.E. Greene of the University of Michigan who in 1872 introduced the 
principles as they are today. Professor H.F.B. Müller-Brelau extended the method to highly indeter-
minate structures.

Consider the cantilever shown in Figure 1.18. The cantilever is built in at position A and carries a 
load at C. Under the action of the load, the cantilever will no longer be horizontal except at position 
A. The slope of the beam and consequently the deflection will vary from A to C. At position B, for 
example, a short distance ds from A, the slope will be dθ and the deflection dy.

From the bending equation,

Ignoring the middle term,

	
M
I

f
y

E
R

= = 	 (1.9)

x1

Centroid of BM diagram
between A and B

Load P

C

dy
dθ

dS d1 d

dθ

R

B

B

A

A

FIGURE 1.18  Analysis of a cantilever using the area-moment method.
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16 Design Engineer's Handbook

	
M
EI R

= 1
	 (1.10)

where:
	M =	the bending moment
	 E =	the modulus of elasticity
	 R =	the radius of curvature of the beam

From Figure 1.18 it is seen that

	                         dS R d= ·  (where d  is measured in radians).θ θ
or

	

d dS
R R

dS

M dS
EI

θ = =

=

1 ·

·

Consequently the total change in slope from positions A to C will be

	
θ = ∫ M dS

EIC

A ·

Returning to the short length dS between A and B, it will be seen that the deflection d1 at C due 
to the bending of that short length alone may be found from the following equation:

	 d d x M dS
EI1 1= =θ · · 	 (1.11)

In similar circumstances, where the deflection of a member is in the horizontal direction, the 
appropriate equation will be

	 d M y dS
EIC

A
= ∫ · ·

	 (1.12)

In Equations (1.11) and (1.12), M · dS is the area of the bending moment diagram in Equation 
(1.11), x is the lever arm between the centroid of the bending moment diagram and the point of 
deflection under consideration. From these data two theorems were developed and may be expressed 
as follows:

Theorem 1

The change in slope between any two points, say A and C in Figure 1.18, in an originally straight 
beam is equal to the area between corresponding points in the bending moment diagram divided 
by EI, i.e.,

	 θ = ΣA
EI

	 (1.13)
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17Beams

where ΣA is the area of the bending moment diagram.

Theorem 2

The deflection of a point, say C in Figure 1.18, is an originally straight member under flexure. In 
the direction perpendicular to the original axis of the member and measured from the tangent at a 
second point on the member, say A, is equal to the statical moment of the BM diagram divided by 
EI taken about the first point C, i.e.,

	 d Ax
EI

= Σ
	 (1.14)

where x is the lever arm between the centroid of the BM diagram and C.

Consider a beam to demonstrate the application of the above theorems (Figure 1.19), θB being 
the angular change between A and C measured in radians, which is equal to the area of the BM 
diagram, divided by EI, and d being the deflection, in this case upwards. This is measured perpen-
dicular to the original axis of the member, of the point C from the tangent at A, this being equal to 
the statical moment of the BM diagram at C, divided by EI.

Now the angle θB is equal to the sum of the angles θA and θC at the ends of the beam. It will be 
seen that θA:θC = x:(L – x), from which it is seen that the angular change at either end of the beam 
can be obtained by calculating the support reaction at that end of the beam when it is loaded with 
its BM diagram divided by EI.

1.3.1.1  �Example
Consider a 254 × 146 mm universal beam that is loaded as in Figure 1.20 with a single point load. 
Take E as 210 GPa and I = 4.427 × 10–6 m4.

Determine the following:

	 1.	The deflection under load
	 2.	The maximum deflection
	 3.	The deflection at the center of the span

BM diagram

θA θC
C

B

x

L

d

A

FIGURE 1.19  Beam in Theorem 2.
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18 Design Engineer's Handbook

	

BM Wab
L

kNm

 at C =

= × ×

=

120 1 2
3

80

Considering the BM diagram as a load, taking moments about A and rearranging,

	

R

kNm

b = × ×
×

+ × ×
×







=

1
3

80 2 5
2 3

80 1 2
2 3

53 33 2.

Deflection at the center of the span:

	

BM at center of span =

Secondar

1 5
2

80

60

. ×

= kNm

yy BM = 53 3 1 5 60 1 5
2

1 5
3

79 95

. . – . .

. –

×( ) × ×





= 222 5

57 45

57 45 10
2

3

12 2

.

.

.
.

=

×

kNm

NmmDeflection =
11 10 4427 10

6 18

5 2 4 4× × ×

=

N mm mm

mm.

Load diagramA C B
1.0 m 2.0 m

3.0 m

120 kN

1.632 

80
 k

N
 m

65
.2

8

Bending moment diagram

FIGURE 1.20  Load and bending moment diagram for Example 1.3.1.1.
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19Beams

Deflection under the load:

	

Secondary BM = 53.3 2×( ) − × ×





=

80 2
2

2
3

106.66 53 3

53 33 3

−

=

×

.

. kNm

NmmDeflection = 53.33 1012 33

5 2 4 42 1 10 4427 10

5 75

.

.

× × ×

=

N mm mm

mm

Maximum deflection:

	
Deflection = Secondary Moment

EI

It is first necessary to determine the position of the maximum deflection:

The maximum deflection will occur where the secondary M is a maximum. As in all other cases of 
loading, the maximum BM will occur at a point of zero shear.

The point of zero shear will always occur between the load and center of the span.

Let x = distance of the point x′ of zero secondary shear from B. Then,

	

BM x

x

 at X =

=

2
80

40

·

Therefore,

	

40
2

20

53 33

2x x x·

.

=

=  whence x = 1.632 m

Secondary BM

	

= × ×( ) − ×





= ×

53 33 1 632 2 53 33 1 632
3

53 33 1

. . . .

. ..

.

632 2
3

57 99 3

×

= kNm

Maximum deflection:

	

= − ×
× ×

=

57 99 10
2 1 4427 10

6 238

12

9
.

.
. mm
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20 Design Engineer's Handbook

The slopes at the beam ends will now be considered.

Slope at end B:

	

Slope at X = 0

BM at X = 80 1.632
2

A

×

= 65 28. kNm

rrea of BM diagram between X and B = 65.28 ×11.632
2

= 53 33 2. kNm

	

Slope at B = 53.33
EI

= + ×
× ×

53 33 10
2 1 10 4427

9

5
.

. ××

=

104
0 00574.  radians

Slope at end A:

       

The total area of the BM diagram = 80 3
2
×

= 1200 2kNm

Consequently, the area of the BM diagram between X and A:

	

= −

=

120 53 33

66 67 2

.

. kNm

Therefore,

	

Slope at A = −

= − ×
× × ×

66 7

66 7 10
2 1 10 4427 1

9

5

.

.
.

EI

00
0 00717

4

= − .  radian

The result is negative, as the area is measured to the left of X.
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21Beams

Slope at C:

The area of the BM diagram between X and C == 80 65.28
2

× × −( )

=

2 1 632

26 7 2

.

. kNm

C is to the left of X; therefore:

	

Slope at C = − ×

= ×
× ×

26 7 10

26 7 10
2 1 10 442

9

9

5

.

.
.

EI

77 10
0 00287

4×

= .  radian

1.3.2  �Slope Deflection

In the method of slope deflection, joint rotations and deflections are treated as unknown quantities, 
and once they have been evaluated, the moments follow automatically by substituting these values 
in standards equations.

Consider the member AB in Figure 1.21, in which the member is one unloaded span of a continu-
ous beam and is of a uniform moment of inertia.

For the conditions shown in Figure 1.21,

	

M EK R

M EK R

AB A B

BA B A

= + −( )
= + −( )

2 2 3

2 2 3

θ θ

θ θ

where
E 	= modulus of elasticity (210 x 109 N/m2 for steel)
K 	= stiffness factor (I/L) (for the particular beam in question)
θA and θB are angles the joints make to the horizontal
R is the angle of rotation of B with respect to A when B sinks the amount of d (i.e., d/L)

With regard to sign conventions,
θ is positive when the tangent to the beam rotates in a clockwise direction.
R is positive when the beam rotates in a clockwise direction.
M is positive when the moment acts in a clockwise direction.

MAB

MBA B

L

dθA

θ
RA

FIGURE 1.21  Slope–deflection symbols.
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22 Design Engineer's Handbook

	

M EK R FEM

M EK R

BA A B AB

BA B A

= + −( ) −

= + −( ) +

2 2 3

2 2 3

θ θ

θ θ FFEMBA

Consider that the span AB carries a load acting downward in the normal fashion: FEMAB and 
FEMBA are fixed end moments that would exist if the member AB were a fixed end beam.

A selection of fixed-end moments (FEM) is shown in Table 1.3.
When end A of a beam AB is hinged, the moments for the other end are modified as follows:

	

M EK R

M EK

BA B

BA

= −( )( )
=

2 3 3

2 3

θ unloaded condition

θθ θB A BAR FEM+ −( ) + ( )3 loaded condition

When calculating the values of FEM’s for loads acting downward in the normal fashion the appro-
priate signs can be ignored, as the fundamental formulas provide the correct signs automatically.

The final BM diagram is prepared by considering all hogging moments as negative and all sag-
ging moments as positive.

When the slope deflection method is used to find the moments in a continuous beam, the slope of 
the beam over each internal support is calculated. The values of the slopes may be useful in calculat-
ing the deflections in interior spans, but care needs to be exercised with signs. In the slope deflec-
tion calculations a positive value for the slope means the beam has rotated in a clockwise direction.

Furthermore, it is essential the values used in the calculations should be consistent with the 
values used for E and I; otherwise, the values for the slopes will not relate to the units used in the 
deflection calculations.

By way of an example, see Example 1.1.

Example 1.1

Consider the continuous beam in Figure 1.22 under the action of the depicted loads; the joint B 
rotates in a counterclockwise direction. With the calculation of the rotation θB the whole beam 
can be resolved.

A CB

65 kN/m 32 kN/m

3.00 m 3.60 m

I = 0.5 m4

Load diagram

Deflection diagram
A B C

θB

Zero slope at A Zero slope at B

Points of
contraflexure

Final
bending

moments–5
6.

62
73

.1
3

–4
1.

01

–3
1.

34 51
.8

4

FIGURE 1.22  Example of a continuous beam.
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23Beams

Let the suffixes 1 and 2 be assigned to AB and BC, respectively.

A and C are fixed in direction as well as position.

Therefore:

	 θA = 0 = θC

Points A, B, and C are on the same level, therefore

	

FEM FEM

wL

kNm

FEM FEM

wL

AB BA

BC CB

=

=

=

=

=

=

12

48 75

12

3

.

44 56. kNm

Now

	 M MBA BC+ = 0

Hence

	
2 2 3 48 75 2 2 3 341 1 2 2EK R EK RB A B Cθ θ θ θ+ −( ) + + + −( ) −. .556 0=

But

	 

θ θA c

R R

K
I
L

m
m

= =

= =

= = × −

0

0

5000 10
3 0

1 2

1

8 4

.

and

	
K

I
L

m
m2

8 45000 10
3 6

= = × −

.

Therefore

 

2
5000 10

3
2 2

5000 10
3 6

2
8 8

E EB B× × ×






+ × × ×

− −

θ θ
.







= −

× + ×− −

34 56 48 75

6 667 10 5 556 105 5

. .

. .E Bθ EE Bθ

θ

= −34 56 48 75. .

Now                      E bb 6.667 10× + ×( ) = −

= −

− −5 55 556 10 14 19

14 19
0

. .

.
E Bθ

..

.

1222 10

116 121 10

3

3

×

= − ×E Bθ
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24 Design Engineer's Handbook

Using the basic formula

	

M M

EK

BA BC

B

=

= ( ) +

= − × × × ×
−

2 2 48 75

2
5000 10

3 0
2 1

1

8

θ .

.
116 121 10 48 75

41 0086

2

3

2

. .

.

×






+

=

=

kNm

M EKCB θBB( ) +

= − × × × ×







−

34 56

2
5000 10

3 6
116 121 10

8
3

.

.
.  +

=

34 56

31 3344

.

. kNm

Example 1.2

In this example, a continuous beam ABCDE involves the treatment of simply supported end spans 
and a cantilever. (see Figure 1.23).

Let the suffixes 1, 2, and 3 apply to AB, BC, and CD, respectively.

The supports A, B, C, and D are all on the same level.

Hence,	    R1 = 0 = R2 = R3

Also,	   MBA + MBC = 0

Hence,	 MCB + MCD = 0

	                  MDC = 60 kNm

The effect at C due to the cantilever DE is that FEMCD is reduced in value by half the amount of 
MDC, i.e., 30 kNm.

Now:

or	

EK R FEM EK R FEMB BA B C BC1 1 2 23 3 2 2 3 0θ θ θ−( ) + + + −( ) − =

22 2 3 3 32 2 3 3EK R FEM EK R FEMC B CB C CDθ θ θ+ −( ) + + −( ) − + MM

E E

DC

B

2 0

1 89 10 3 101 25 2 1 733 105

=

× × ( ) + + × ×− −. . .θ 55

5 5

2 58 33 0

12 6 10 3 466 10

θ θ

θ θ

B C

BE E

+( ) − =

× + ×− −

.

. . CC

C B

i

E E

+ = …

× × +( ) + +−

42 92 0

2 1 733 10 2 58 335

. ( )

. .θ θ ×× × ( ) − + =

× × +

−

−

1 467 10 3 103 1 30 0

3 466 10

5

5

. .

.

θ

θ

C

BE 111 333 10 14 77 0

12 6 10 41 199

5

5

. .

. .

E

E E

C

B

θ

θ

× − =

× +

−

− θθC ii× − = …−10 53 69 05 . ( )
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25Beams

Subtracting (i) from (ii)

	

37 733 10 96 61

2 56 10

5

5

. .

.

E

E

C

C

θ

θ

× =

= ×

−

Substituting in Equation (i),

	 EθB = –4.11 × 105

Employing these values of EθB and EθC,

	

M M

EK

BA BC

B

= −

= ( ) +

= − × × × ×−

1

5

3 101 25

1 89 10 3 4 11

θ .

. . 110 101 25

77 96

5 +

=

.

. kNm

120 kN 70 kN 70 kN 220 kN distributed 50 kN

4.5 m

2.25 m 1.25 m 1.25 m

3.75 m 3.75 m 1.2 m

A B C D E

θB θC
A B C D E

13
5 

kN
m

61
.8

3 
kN

m

10
3.

12
5 

kN
m

60
 k

N
m

77
.9

6 
kN

m

87
.5

 k
N

m

I1 = 0.085 × 10–3m4. I2 = 0.065 × 10–3m4. I3 = 0.055 × 10–3m4.

Deflection diagram

Final bending moments

FIGURE 1.23  Loading, deflection, and bending moment diagram for Example 1.2.
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26 Design Engineer's Handbook

	

M M

EK

CB CD

C B

= −

= +( ) +

= × × −

2 2 58 33

2 1 733 10 2 5

2

5

θ θ .

. . 66 2 4 11 10 58 33

61 83

5× −( ) × +

=

−. .

. kNm

1.3.3  �Deflection in Beams

1.3.3.1  �Macaulay’s Method
Consider the beam in Figure 1.24 subject to a single concentrated load applied off center to the 
beam.

From the figure it is seen that the reactions at A and B are Pb/l and Pa/l, respectively.
Considering the first part AC and taking the origin at A,

	 EI d y
dx

Pb x
2

2 = −
l

	 (1.15)

	 EI dy
dx

Pb x A= − +
l

2

12
	 (1.16)

and

	 EI Pb x A x B= − + +
l

3

1 16
	 (1.17)

When x = 0, y = 0, so that B1 = 0.
The point at which the slope is zero is unknown and the condition that y = 0 when x = 0 cannot 

be used as the equation do not apply beyond point C. Therefore, the constant of integration A1 must 
remain unknown for the present.

Now consider the part CB still keeping the origin at point A.

	 EI d y
dx

Pb x P x a
2

2 = − + −[ ]
l

	 (1.18)

	 EI dy
dx

Pb x P x ax A= − + −








 +

l

2 2

22 2
	 (1.19)

and

a b

A C Bx

l

P

Pb
l

Pa
l

FIGURE 1.24  Simply supported beam with a single offset concentrated load.
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27Beams

	

EI PB x P x a x A x B= − + −








 + +

l

3 3 2

1 16 6 2

When x = 0,, y = 0, so that B2 = −Pa Al l
2

23

	 (1.20)

For reasons similar to those given above, the constant of integration cannot be determined at 
this stage.

Equating the slope at C is given by Equations (1.16) and (1.19) when x = a:

	
− + = − + −









 +Pb a A Pb a P a a A

l l

2

1

2 2
2

22 2 2

Equating the deflection at C is given by Equations (1.17) and (1.19) when x = a,

	
− + = − + −









 + +Pb a A a Pb a P a a A a Pa

l l
l3

1

3 3 3

2

2

6 6 6 2 33 2−






A l

A1 and A2 may be determined from these two equations, and hence the slope and deflection can 
be obtained at any point using Equations (1.16) and (1.17) for x < a and Equations (1.18) and (1.19) 
for x > a.

For two concentrated loads, three sets of equations will be required for the three ranges of beam. 
This leads to six constants of integration. Two of these are obtained from the conditions that y = 0 
at x = 0 and y = l, and the remaining four are resolved by equating slopes and deflections under the 
loads.

It is clearly seen that this method is extremely cumbersome, and it should be noted that the con-
stants of integration will be different for each section of the beam.

Referring to Equation (1.18), this could legitimately be integrated as follows:

	 EI dy
dx

Pb x P x a A= − + −[ ] + ′
l

2
2

222 2
	 (1.21)

	 EIy Pb x P x a A x B= − + −[ ] + ′ + ′
l

3
3

2 26 6
	 (1.22)

The constant A2 will not be the same as A′2 previously obtained A A a
2 2

2

2
= ′ +







and B′2 will not be the same as B b B a
2 2 2

3

6
= ′ −







If the slopes at C are now equated using Equations 1.16 and 1.19 when x = a

	

− + = − + −[ ] + ′

∴ = ′ =( )

Pb a A Pb a P a a A

A A A

l l

2

1

2
2

2

1 2

2 2 2
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28 Design Engineer's Handbook

Similarly, equating deflections at C, using Equations (1.17) and (1.22) when x = a,

	

− + + = − + −[ ] + + ′

∴ = ′

Pb a Aa B Pb a P a a Aa B

B B

l l

3

1

3
3

2

1

6 6 6

22 =( )B

Thus, by this method of integration, the constants of integration for each section of the beam are 
the same. There is a further advantage in that Equations (1.18), (1.21), and (1.22) are identical with 
Equations (1.15), (1.16), and (1.17), except for the additional term involving [x – a], which only comes 
in when x > a, i.e., when [x – a] is positive.

Thus Equations (1.18), (1.21), and (1.22) may be regarded as applying to the complete beam pro-
vided that, for any value of x that makes [x – a] negative, this term is ignored.

This method is known as Macaulay’s method, and it is convenient to use square brackets for 
terms such as [x – a], which have to be treated in this special manner.

Now proceeding with this case, the deflection Equation (1.22) can be simplified to:

	
EIy Pb x P x a Ax B= − + −[ ] + +

l

3
3

6 6

When x = l, y = 0, so that A Pab b= +( )6l
l

this can therefore be ignored.

When x = 0, y = 0, so that B = 0 since [x – a]3 is negative for this value of x and the term involving 
this can therefore be ignored.

The deflection under load is given by

	

EIy Pb x Pb b a

y Pa b
EI

= − + +( )

∴ =

l l
l

l

3

2 2

6 6

3
*

*When a == b = 
2

 this will reduce down to PL3l
48EI

	 (1.23)

The maximum deflection will occur between the load points and the center of the beam. If a > b, 
this point will correspond to x < a, so that from Equation (1.21)

	
− + +( ) =Pb x Wab b
l l

l
2

2 6
0

Writing a = l – b, this will reduce to

	

x b= −





l2 2

3
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29Beams

Now substituting in Equation (1.22)

	

EIy Pb b Pab b b
max = − −





+ +( ) −
6 3 6 3

2 2 3 2 2 2

l
l

l
l l





	
or		  (1.24)

	
y

Pb b
EImax =
−( )l
l

2 2

9 3 	

As b → 0, x → l/√3, which is approximately l/13 from the center of the beam.
Thus the maximum deflection is very close to the center of the beam, even for an extremely 

unsymmetrical load, and for the most normal cases of loads on beams simply supported at both 
ends, the maximum deflection will be virtually identical with the central deflection.

1.4  �SHEAR DEFLECTION IN BEAMS

1.4.1  �Introduction

Shear deflection in beams is usually negligible in metal beams unless the span-to-depth ratio is 
extremely small, i.e., where shear stresses tend to be high. For beams where l/d ≥ 10.0 shear deflec-
tion may be ignored. Where l/d ≥ 3 use the following procedure.

Deflection due to shear forces on the beam section is given by the following equation:

	 δs F V v
A G

dx= ∫· ·
·

· 	 (1.25)

where:
	V =	 vertical shear at section due to actual load
	 v = 	vertical shear at section due to unit load at section
	A = 	area of section
	G = 	shear modulus
	F =	 form factor for shear deflection (see Table 1.5)
	y1 = 	distance from neutral axis to nearest surface of flange
	y2 =	 distance from neutral axis to extreme fiber
	t1 =	 thickness of web (or webs in box beams)
	t2 =	 width of flange
	 k =	 radius of gyration

TABLE 1.5
Form Factor for Shear Deflection

Shape (Solid Sections) Form factor (F)

Rectangular, triangular, trapezoid 5/6

Diamond 31/30

Circular 10/9

Thin tube (circular) 2

I or box section (flanges and webs of uniform thickness) 1
3

2
1 4

10
2
2

1
2

1

2
3

1

1

2
2

2+
−( )

−












y y y
y

t
t

y
k

I beam, A = area of web (approx.) 1
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30 Design Engineer's Handbook

1.4.2  �Determine the Shear Deflection in a Simply Supported 
Beam with a Central Point Load

The shear deflection (δs) may be found using one of the following relationships:

	 δs
v

xF V
AG

d= ∫ · 	 (1.26)

	 δs
F

AG
P dx= ∫· · ·
2 2
l

	 (1.27)

	 δs F P
AG

= 1
4

· · l
	 (1.28)

1.4.3  �Shear Deflection of Short Beams

In cases where l/d < 3.0, the assumption of linear stress distribution on which the simple theory of 
flexure is based is no longer valid for short beams. The equation given in (1.25) will give a relatively 
accurate result for l/d ≥ 3.0.

With l/d < 3.0 the stress distribution will change radically, and dependent upon the loading and 
support, the maximum stress may be greater than the engineering prediction for the theory of bend-
ing stresses (My/I).

In the section that follows, the ratio of the actual stress to the engineering theory is plotted 
against span/depth for a uniformly distributed load.

The distribution is considered over:

•	 The entire beam (Figures 1.26 and 1.27)
•	 The center portion (Figures 1.28 and 1.29)

1.4.4  �Short Beam with Uniformly Distributed Load over the Entire Span

Considering the ratio of the maximum stress to My/I stresses,

l

l/2

FIGURE 1.25  Simply supported beam with a central load.

Span = 0.95 l

l

d

Uniformly distributed load

FIGURE 1.26  Short beam with a distributed load over the entire span.
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31Beams

1.4.5  �Shear Deflection in a Short Beam with Uniformly 
Distributed Load over Center Span

l/d

M
ax

im
um

 S
tr

es
s/

Li
ne

ar
 E

la
st

ic
 S

tr
es

s

25

20

15

10

5

0
0 0.50 1.00 1.50 2.00 2.50 3.00

Maximum tensile stress
My/I

Maximum shear stress
(V/A)

Maximum compressive stress
My/I

FIGURE 1.27  Graph for Figure 1.26 with l/d < 3.0. Uniform load over entire length.

d

1/12 l

Span = 0.95 l

l

FIGURE 1.28  Uniform load over central portion of beam.

l/d

M
ax

im
um

 S
tr

es
s/

Li
ne

ar
 E

la
st

ic
 S

tr
es

s

25

30

20

15

10

5

0
0 0.50 1.00 1.50 2.00 2.50 3.00

Maximum compressive stress
My/I

Maximum tensile stress
My/I

Maximum shear stress
(V/A)

FIGURE 1.29  Graph of Figure 1.28 with l/d < 3.0.

D
ow

nl
oa

de
d 

by
 [

M
ot

ila
l N

eh
ru

 N
at

io
na

l I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

A
lla

ha
ba

d]
 a

t 0
9:

48
 2

9 
D

ec
em

be
r 

20
13

 



32 Design Engineer's Handbook

1.5  PROPERTIES OF A PLANE AREA

1.5.1  �Notation

δA =

=

=

Incremental area
A Area
o Datum, point of oorigin

CG Centroid, center of gravity
x, y D

=

= iistance along x and y axis from origin

x  y, ==

=

Distance of centroid from origin
x  y Dio o, sstance from centroid to shear center

A , Ax y ==

=

First moment of area
I , I Second moment x y oof area

I roduct of inertia
I Polar mome
xy

p

=

=

P
nnt of inertia

k Radius of gyration
I , Ix yy

=

′ ′ ==

    =

Principle moments of inertia
 ofθ Axis   princial axis to datum axis

e istance to = D sshear center
J Torsional constant

Warping 
=

=Γ cconstant

1.5.2  �General Definitions (see Figure 1.30)

1.5.2.1  �Area

The area may be defined as the quantity of a two-dimensional space a body occupies.

	 A A= ∫ ·δ 	 (1.29)

1.5.2.2  �First Moment of Area

The first moment of area of a section is a measure of the distribution of the area on a section. It is 
usually used to find the position of the centroid of the section.
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33Beams

	

Ay A y

Ax A x

=

=

∫
∫

δ

δ

·

·

 about the x axis.

 about thee x axis.

 about the centroid.Ax Ay= = 0

1.5.2.3  �Centroid: Center of Area
The centroid may be defined as that point in the plane of the area through which the moment of the 
area is zero.

The axis through which the section bends also passes through this point.
The position of the centroid is

	 y A y
A

x A x
A

= =· ·
	 (1.30)

where A · x and A · y = the first moment of area.

Note that the center of area coincides with the center of gravity of the area represented as an infi-
nitely thin homogeneous plate.

1.5.2.4  �Second Moment of Area
The second moments of area, or moments of inertia of a section, are quantities used in defining the 
section’s ability in resisting bending actions.

The values calculated about an arbitrary axis are usually used only as a means of finding the 
values about a centroid.

CG

Y

Y

X X

Y´

Y´

X´

X´

θ

x´, y´ –Principal axis

“y
” p

la
ne

“x” plane

“y”

y 

x

Datum point

CG

δA
“x”

k

FIGURE 1.30  Moment of inertia–general definitions.
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34 Design Engineer's Handbook

	

I A y

I A x

xx

yy

=

=









∫
∫

δ

δ

·

·

2

2
About axis through origin

	

(1.31)

		

(1.32)

	

I I A
P I A

x xx y

y yy x

= −

= −







2

2
About axis through origin

	

(1.33)

		

(1.34)

1.5.2.5  �Product of Inertia
The product of inertia is with respect to a pair of rectangular axes in its plane. The sum of the prod-
ucts obtained by multiplying each element of the area δA by its coordinates with respect to those 
axes x and y is therefore the quantity ∫δAxy. It is useful when transposing other terms to a different 
axis.

	 I A x yxy = ∫ δ · · 	 About axis through origin      (1.35)

1.5.2.6  �Polar Moment of Inertia
The polar moment of inertia can be defined as the moment of inertia of an area with respect to a 
point on its surface. It is equal to the sum of the moments of inertia with respect to any axes in the 
plane of the area, at right angles to each other and passing through the point of intersection of the 
polar axis with the plane. This term is a measure of the section’s ability to resist torque.

	    I A rp = ∫ δ · 2 	 (1.36)

	 I A x yp = +( )∫ δ · 2 2 	 (1.37)

	   I I Ip x y= + 	 (1.38)

1.5.2.7  �Radius of Gyration
The radius of gyration of a section is the distance from the inertia axis to that point where, if the 
entire mass could be concentrated at that point, its moment of inertia would remain the same.

	

Ak I

k I
A

kx I
A

ky I
A

x

x y

2

1
2

1
2

=

= 





= 





= 


,


= 





1
2

1
2

, kz I
A

p

	 (1.39)
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35Beams

1.5.2.8  �Moment of Inertia about Inclined Axes (see Figure 1.31)

	 I I I Ix xx xy yy′ = − +cos sin sin2 22α α α 	 (1.40)

	 I I I Iy xx xy yy′ = − +sin sin cos2 22α α α 	 (1.41)

	 I I I I
x y xy

xx yy
′ ′ = + −





cos sin2
2

2α α 	 (1.42)

1.5.2.9  �Principal Axes
In problems involving unsymmetrical bending, the moment of an area is frequently used with 
respect to a certain axis called the principal axis. A principal axis of an area is an axis about which 
the moment of inertia of the area is either greater than or less than that for any other axis passing 
through the centroid of the area. Axes about which the product of inertia is zero are the principal 
axes.

Since the product of inertia is zero about symmetrical axes, it follows that the symmetrical axes 
are the principal axes (for symmetrical sections). The angle between a set of rectangular centroidal 
axes and the principal axes is given by

	 θ =
−











1
2

2arctan ·I
I I

xy

x y
	 (1.43)

1.5.2.10  Principal Moments of Inertia
The principal moments of inertia are second moments of area about the principal axes. The relation-
ship between these and the moments of inertia through the centroid are as follows:

	

I I I I I I

I

x x y y x xy

y

′

′

= +( ) + −( ) +





=

1
2

1
4

1
2

2 2

1
2

II I I I Ix y y x xy+( ) − −( ) +





1
4

2 2

1
2

	

Y

X X

Y´ X´

α(+ve)

FIGURE 1.31  Moments of inertia about an inclined plane.
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36 Design Engineer's Handbook

1.5.2.11  �Mohr’s Circle for Moment of Inertia (see Figure 1.32)
A Mohr circle may be constructed to give the location of the principal axes and the values of the 
principal moments of inertia.

Given Ix, Iy, and Ixy about the center of gravity,

	 R I I Ix y
xy= −





+










2

2
2

1
2

    

Ixy about a principal axes is zero.
angle beθ ttween the principal and the x axis.

I  Imax, mmin moments of inertia about the prinipal axxis.
	 (1.44)

The following statements and equations are applicable:

•	 Any axis of symmetry is one of the principal axes.
•	 The products of inertia are zero if one of the axes is an axis of symmetry.
•	 The product of inertia through the centroid is zero.
•	 The moments of inertia and radius of gyration w.r.t. the neutral axis are less than those for 

any other parallel axis.
•	 Ip = Iox + Ioy	 (1.45)
•	 Ip = Ix + Iy

•	 Ip = Ix′ + Iy′
•	 Iθ = Iox cos2  θ + Ioy sin2  θ – Ixy sin 2θ

1.5.3  �Torsional Constant (J)

The torsional constant, J, of a member of uniform cross section is the geometric constant by which 
the shear modulus, G, must be multiplied to obtain the torsional rigidity of the member. The tor-
sional rigidity is defined as the factor by which a torque, T, applied to each end of the member has 
to be divided in order to obtain the twist per unit length. It is assumed that the ends of the member 
are not axially constrained and can be expressed by the equation

	 ϕ = twist per unit length = T
G. J

	 (1.46)

Iy

Ixy

Ixy max

Imax

Principal axes Ix, Iy

Ixy

Ix + Iy

Ixy minIx

0

Ixy axis

2θ

2 R

Imin

FIGURE 1.32  Features of the Mohr’s circle.
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37Beams

Thus the torsional constant J is dependent on the form and dimensions of the cross section. For 
circular sections (St. Venant), J = Ip (the polar moment of inertia); for other sections it may be much 
less than Ip.

1.5.3.1  �For Solid Sections

J A
I

Area
p

=

=
=

4

24π
 Area of section

I  Polar momp eent of section
	 (1.47)

1.5.3.2  �For Closed Sections

      

J A
ds
t

s

=

=
∫
4 2

peripheral length
t = thickness

A == enclosed area

	 (1.48)

1.5.3.3  �For Open Sections
The value of the torsional constant J for open sections, which can be idealized to individual rectan-
gular elements, is given by the following formulae:

	 J c b ti i i= ∑ · · 3 	 (1.49)

where	 c t
b

t
bi = − −



















1
3

0 21 1
12

4

4
. ·

·

1.5.4  �Section Property Tables (see Table 1.6)

FIGURE 1.33  Torsional constant for a solid section.

ds t
A

FIGURE 1.34  Torsional constant for a closed section.

t2

t1

t3

b1

b2

b3

FIGURE 1.35  Torsional constant for an open section.
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38 Design Engineer's Handbook

TABLE 1.6
Section Property Tables for Various Sections

Square

y1 y
x

s

y
s

y

x x

x1

p

y1 yx

s

s

y

x x

x1

p
h

Hollow Square

y

Area s2 s h2 2–

Centroid x y s= =
2

x y s= =
2

Moment of Inertia

I I s

I I s

I I I s

I I I

x y

x y

p x y

p x y

= =

= =

= + =

= +

4

1 1

4

4

1 1

12

3

6

11

42
3

= s

I I s h

I I s s h h

I I I

x y

x y

p x y

= = −

= = − −

= +

4 4

1 1

4 2 2 4

12

4 3
12

== −

= + = − −

s h

I I I s s h h
p x y

4

1 1 1

4 2 2 4

4
6

4 3
6

Radius of Gyration

k k s

k k s

k s

k

x y

x y

p

p

= =

= =

=

=

0 289

0 577

0 408

0 81

1 1

1

.

.

.

. 66s

k k s h

k k s h

k

x y

x y

p

= = +

= = +

=

0 289

0 289 4

0 408

2 2

1 1
2 2

.

.

. ss h

k s hp

2 2

1
2 20 408 4

+

= +.
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TABLE 1.6 (Continued)
Section Property Tables for Various Sections

Rectangle

y1 yx

B

H

y

x x

x1

p

y

Hollow Rectangle

y1 yx

B

H

y

x x

x1

p
h

b

y

Area BH BH – bh

Centroid x B y H= =1
2

1
2

x B y H= =1
2

1
2

Moment of Inertia

I BH I HB

I BH I HB

I BH H B

x y

x y

p

= =

= =

= +

3 3

1

3

1

3

2

12 12

3 3

12
22

1
2 2

3

( )

= +( )I BH H Bp

I
BH bh

I
HB hb

I BH bh H

x y

x

=
−( )

=
−( )

= −
+

3 3 3 3

1

3 2

12 12

3
3 hh

I HB
bh B b

I I I I I

y

p x y p x

2

1
3

2 2

1

12

1
3

3
12

( )

= −
+( )

= + = 11 1+ Iy

Radius of Gyration

k H K B

k H K B

k

x y

x y

p

= =

= =

=

0 289 0 289

0 577 0 577

0

1 1

. .

. .

.2289

0 577

2 2

1
2 2

H B

k H Bp

+

= +.

k BH bh
BH bh

k I
BH bh

k HB hb

x x
x

y

= −
−( ) =

−

= −

3 3

1
1

3 3

12

12 BBH bh
k I

BH bh

k I
BH bh

k I
BH bh

y
y

p
p

p
p

−( ) =
−

=
−

=
−

1
1

1
1
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40 Design Engineer's Handbook

TABLE 1.6 (Continued)
Section Property Tables for Various Sections

Circle

x1

p

R

y1 y
x

x
y1

Hollow Circle

p r
R

y1 y
x

x

x1

y1

Area 0 7854 22 2. D R D R= =( )π π R r2 2−( )

Centroid x y R= = x y R= =

Moment of Inertia

I I R

I I R

I R

x y

x y

p

= =

= =

=

π

π

π

4
5
4

2

4

1 1
4

4

·

I I R r

I I
R R r r

I

x y

x y

p

= = −( )

= =
− −( )

=

π

π

π

4

5 4
4

4 4

1 1

4 2 2 4

RR r4 4

2
−( )

Radius of Gyration

k k R

k k R

k R

x y

x y

p

= =

= =

=

2
1 118

0 7072

1 1 . ·

. ·

k k R r

k k R r

k R r

x y

x y

p

= = +

= = +

= +

2 2

1 1

2 2

2 2

2

5
2

2
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TABLE 1.6 (Continued)
Section Property Tables for Various Sections

Semicircle

x1

y1 y

R

p

p1

x
y

x

Hollow Semicircle
y1 y

R
p

p1

x

x1

y

x

r

Area 1 571 2. R π R r2 2

2
−( )

Centroid x R y R= = 0 4244. x R y R r
R r

= = −
−







3
4

3 3

2 2π

Moment of Inertia

I R

I R

I R

I

x

x

y

y

=

=

=

=

0 1097

0 3927

0 3927

1 963

4

1
4

4

1

.

.

.

. 77

0 5024

2 3564

4

4

1
4

R

I R

I R

p

p

=

=

.

.

I R r
R r

y

I I R r

I

x

x y

y

= −( ) −
−( )

= = −( )

π π

π

8 2

8

4 4
4 4

2

1 4 4

1 ==
−( ) +( )

= + = +

π R r R r

I I I I I Ip x y p x y

2 2 2 2

1 1 1

5
8

,

Radius of Gyration

k R

k R

k R

k R

k R

x

x

y

y

p

=

=

=

=

=

0 264

0 5

0 5

1 118

0 566

1

1

.

.

.

.

.

kk Rp1 1 225= .

k
R r

k I
R r

k R r k

x
Ix

y
y

x p

=
−( ) =

−( )

= + =

2 2

2

2 2
1

2 2

1

2 2

1π π

22

2
2

2 2

2 2

1 2 2

I
R r

k R r k I
R r

p

y p
p

π

π

−( )

= + =
−( )
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42 Design Engineer's Handbook

TABLE 1.6 (Continued)
Section Property Tables for Various Sections

Rhombus

x

x1

b
p

y1 y
x

h

p1

a b

y

Parallelogram

xy1 y

x

x1

y
h

a
b

p1

p

Area bh bh

Centroid x a b y h= +( ) =1
2

1
2

x a b y h= +( ) =1
2

1
2

Moment of Inertia

I bh

I bh

I bh a b

I bh a

x

x

y

y

=

=

= +( )

=

1
12
1
3
1

12
1
6

2

3

1
3

2 2

1
22 2

3

1
2

2 3

1
6
1
6

3 4

+ +( )

=

= +( )

b ab

I b h

I b h a b

p

p

I bh

I bh a b

I bh a b ab

x

y

y

1
3

2 2

1
2 2

1
3
1

12
1
6

2 2 3

=

= +( )

= + +(( )

= + +( )

= + + +

I bh a b h

I bh a b a h

p

p
b

1
12
1
6

2 2 3 2

2 2 2

1
2 2 22( )

Radius of Gyration

k h

k h

k a b

k

x

x

y

y

=

=

= +( )
=

0 289

0 577

0 289

0 408

1

2 2

1

.

.

.

. 22 2 3

0 408

0 408 3 4

2 2

1

a b ab

k b

k b b a b

p

p

+ +( )
=

= +( )

.

.

k h

k h

k a b

k

x

x

y

y

=

=

= +( )
=

0 289

0 577

0 289

0 408

1

2 2

1

.

.

.

. 22 2 3

0 289

0 408 2

2 2

2 2 2

1

a b ab

k a b h

k a

p

p

+ +( )
= + +( )
=

.

. 22 2 22 3 2+ + +( )b ab h
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TABLE 1.6 (Continued)
Section Property Tables for Various Sections

Right Angle Trapezoid

y1 yx

h p

y

x

x1p1
b

a

Isosocles Trapezoid

p

p1

y1
c a

y

h
x

x1

ya

yb

x
b

Area 0 5 2. · ·h a b+( ) 0 5. · ·h a b+( )

Centroid x a ab b
a b

y
h a b

a b
= + +

+( ) =
+( )
+( )

3 3
3 2

3
3 2

2 2
x b y

h b a
b a

y
h a b

a ba b= =
+( )
+( ) =

+( )
+( )2

2
3

2
3

Moment of Inertia

I
h a ab b

a b

I h a b

I

x

xI

y

=
+ +( )

+( )

= +( )

=

3 2 2

3

6 6
36 2

1
12

4

II
h a ab b a b

a b

I h a

y

y

1

2 2 2

1

3 3 4
18 2

1
12

2

=
+( ) + +( )

+( )

= 22 2

1 1 1

2 3 4a b b a b

I I I

I I I

p x y

p x y

+( ) + +( ) 

= =

= =

I
h a ab b

a b

I
h a b a c

a

x

x

=
+ +( )

+( )

=
+( ) +( )

3 2 2

1

3

4
36

2
12 ++( )

=
+( ) +( )

=
+( ) +( )

c

I
h a b a b

I
h a b a b

I

y

y

2 2

1

2 2

48

48

pp x y

p x y

I I

I I I

= =

= =1 1 1

Radius of Gyration

k h a ab b
a b

k a b
a b

k

x

x y

= + +
+

= +
+( ) =

0 236 6 6
2

4
6 2

2

2 2

1

.

, IIy
h a b

k
a a b b a b

a b

k

y

p

2

2 2 3 4
6 21

2 2

+( )

=
+( ) + +( )

+( )

=
22

2
2
21

1I
h a b

k I
h a b

p
p

p

+( ) =
+( ),

k
h b ab a

a b

k
h a c

a c

k a

x

x

y

=
+ +( )

+( )

=
+( )

+

= +

2 2

1

2

2

4
6

2
,

bb k a b

k I
h a b

k I
h a b

y

p
p

p
p

2

1

2 2

1
1

24
7

24

2 2

= +

=
+( ) =

+(, ))
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TABLE 1.6 (Continued)
Section Property Tables for Various Sections

Oblique Trapezoid

x1

y1 y

x

h p

ya

x

p1

b

c a

yb

Right Triangle

p1

p

y1
y

h

b

x2

x

x1

y

x

Area
1
2

h a b+( ) 1
2

bh

Centroid

x a b c
a b c

a b

y
h b a

a b
yb

= + + −
−( )

+










=
+( )
+( ) =

1
3

2
3

hh b c
a b
2

3
+( )

+( )

x b y h= =1
2

1
3

,

Moment of Inertia

I
h a ab b

a b

I h b a

x

x

=
+ +( )

+( )

= +( )

3 2 2

1
3

4
36

1
12

3

I bh I bh

I bh I b h

I

x x

x y

y

= =

= =

=

1
36

1
12

1
4

1
36

3
1

3

2
3 3

1

,

,

11
12
1
36
1

12

3

2 2

1
2 2

b h

I bh b h

I bh b h

p

p

= +( )

= +( )

Radius of Gyration

k h
a ab b

a b

k h a b
a b

x

x

=
+ +( )

+( )

= +
+( )

2 4
6

3
6

2 2

1

k h k h

k h k h

k

x x

x y

y

= =

= =

0 236 0 408

0 707 0 236

1

2

1

. , .

. , .

==

= +

= +

0 408

0 236

0 408

2 2

1
2 2

.

.

.

h

k b h

k b h

p

p
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TABLE 1.6 (Continued)
Section Property Tables for Various Sections

Equilateral Triangle

y
p1

y1 yx

h

b

x

x1

p

x2

Isosocles Triangle

p1

y1 y

h

b

xp

x2

x1
y

x

Area
1
2

bh 1
2

bh

Centroid x b y h= =1
2

1
3

, x b y h= =1
2

1
3

,

Moment of Inertia

I bh I bh

I bh I hb

I

x x

x y

y

= =

= =

=

1
36

1
12

1
4

1
48

3
1

3

2
3 3

1

,

,

77
48
1

24
5

24

3

3
1

3

b h

I b h I b hp p= =,

I bh I bh

I bh I b h

I

x x

x y

y

= =

= =

=

1
36

1
12

1
4

1
48

3
1

3

2
3 3

1

,

,

77
48
1

144
4 3

1
48

4 7

3

3 3

1
3 3

b h

I bh b h

I bh b h

p

p

= +( )

= +( )

Radius of Gyration

k h k h

k h k b

k

x x

x y

y

= =

= =

0 236 0 408

0 707 0 204

1

2

1

. , .

. , .

==

= =

0 504

0 289 0 6461

.

. , .

b

k b k bp p

k h k h

k h k b

k

x x

x y

y

= =

= =

0 236 0 408

0 707 0 204

1

2

1

. , .

. , .

==

= +

= +

0 504

0 118 4 3

0 204 4 7

2 2

1
2 2

.

.

.

b

k h b

k h b

p

p
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TABLE 1.6 (Continued)
Section Property Tables for Various Sections

Equilateral Triangle

y
p1

y1 y

h

b

x

x1

p

x2

cx

Isosocles Triangle

p1

y1 yx

h

b

xp

x2

x1

y

bh
b+c

c

Area
1
2

bh 1
2

bh

Centroid x b c y h= −( ) =1
3

2 1
3

, x b c y h= −( ) =1
3

2 1
3

,

Moment of Inertia

I bh I bh

I bh

I bh b c

x x

x

y

= =

=

= + −

1
36

1
12

1
4
1
36

3
1

3

2
3

2 2

,

bbc

I bh h b c bcp

( )

= + + −( )1
36

2 2 2

I bh I bh

I bh

I bh b bc

x x

x

y

= =

=

= + +

1
36

1
12

1
4
1
36

3
1

3

2
3

2

,

cc

I bh b bc c

I bh h b bc

y

p

2

1
2 2

2 2

1
12

3 3

1
36

( )

= + +( )

= + + + cc2( )

Radius of Gyration

k h k h

k h

k b c

x x

x

y

= =

=

= +

0 236 0 408

0 707

0 236

1

2

2

. , .

. ,

. 22

2 2 20 236

−

= + + −

bc

k h b c bcp .

k h k h

k h

k b b

x x

x

y

= =

=

= +

0 236 0 408

0 707

0 236

1

2

2

. , .

. ,

. cc c

k b bc c

k h b bc c

y

p

+

= + +

= + + +

2

1
2 2

2 2

0 408 3

0 236

.
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TABLE 1.6 (Continued)
Section Property Tables for Various Sections

Ellipse

x1

y1 yx = b

y = b
x

p

Hollow Ellipse

yx = by1

y = b
x

x1

dp

c

Area πab π ab cd−( )

Centroid x a y b= =, x a y b= =,

Moment of Inertia

I ab ab

I ab ab

I

x

x

y

= =

= =

=

1
4

0 7854

1 25 3 927

3 3

1
3 3

π

π

.

. .

11
4

0 7854

1 25 3 927

1
4

3 3

1
3 3

π

π

a b a b

I a b a b

I

y

p

=

= =

=

.

. .

ππab a b2 2+( )

I ab cd I a b c d

I ab cd

x y

x

= −( ) = −( )

= −(

π π

π

4 4

4

3 3 3 3

1
3 3

,

)) + −( )( )

= −( ) + −( )( )

π

π π

ab cd b

I a b c d ab cd ay

2

1
3 3 2

4
II I Ip x y= +

Radius of Gyration

k b k b

k a k a

k a b

x x

y y

p

= =

= =

= +

1
2

1 118

1
2

1 118

1
2

1

1

2

, .

, .

22

k ab cd
ab cd

k I
ab cd

k a b c

x x
x

y

= −
−( ) =

−( )

= −

3 3

1
1

3 3

4
,

π

dd
ab cd

k I
ab cd

k I
ab cd

y
y

p
p

4 1
1

−( ) =
−( )

=
−( )

,
π

π
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TABLE 1.6 (Continued)
Section Property Tables for Various Sections

Semi Ellipse

y1 yx = a

x1

x
yp b

p1

Hollow Semi-Ellipse

yx = ay1

x

x1

dp

c

b

p1

y

Area
1
2

π ab 1
2

π ab cd−( )

Centroid x a y b= =, .0 424 x a y ab cd
ab cd

= = −
−









, 4

3

2 2

π

Moment of Inertia

I ab I ab

I a b I

x x

y y

= =

= =

0 1098 0 3927

0 3927

3
1

3

3
1

. , .

. , 11 9635

0 3927 0 1098

1 9

3

2 2

1

.

. .

.

a b

I ab a b

I ab

p

p

= +( )
= 6635 0 39272 2a b+( ).

I ab cd
ab cd ab cd

ab cdx = −( ) −
−( ) −

−





π π
π8 2
4

3
3 3

2 2




= −( ) = −( )

=

2

1
3 3 3 3

1

1
8

1
8

1
8

I ab cd I a b c d

I

x y

y

π π

π

,

aa b c d a ab cd

I I I I Ip x p x y

3 3 2

1 1 1

1
2

−( ) + −( )

= = +

π

,

Radius of Gyration

k b k b

k a k a

k a

x x

y x

p

= =

= =

=

0 2646 1
2

1
2

1 118

0 25

1

1

. ,

, .

. 22 2

1
1

0 06987

2

+

=

. b

k I
abp

p

π

k I
ab cd

k ab cd
ab cd

k I
ab

x
x

x

y
y

=
−( ) = −

−( )

=

2
4

2

1

3 3

π

π

,

−−( ) =
−( )

=
−( ) =

cd
k I

ab cd

k I
ab cd

k

y
y

p
p

p

,

,

1
1

1

2

2 2

π

π
II

ab cd
p1

π −( )
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TABLE 1.6 (Continued)
Section Property Tables for Various Sections

Parabolic Segment
y1 y1x

x

x1
a

y = b
p

Parabolic Half-Segment

y1 yx

p y b

a
x1

x

Area
4
3

ab 2
3

ab

Centroid x a y b= =0 6. , x a y b= =0 6 0 375. , .

Moment of Inertia

I ab

I ab

I a b

I

x

x

y

y

=

=

=

=

0 2667

1 6

0 0914

0 571

3

1
3

3

1

.

.

.

. 44 3a b

I I Ip x y= +

I ab

I ab

I a b

I

x

x

y

y

=

=

=

=

0 0395

0 1333

0 0457

0

3

1
3

3

1

.

.

.

.22857 3a b

I I Ip x y= +

Radius of Gyration

k b k b

k a k a

x x

y y

= =

= =

0 4472 1 095

0 2619 0 6546

1

1

. , .

. , .

II I
abp

p=
3
4

k b k b

k a k

x x

y y

= =

= =

0 2437 0 4472

0 2619 0 6546

1

1

. , .

. , . aa

I I
abp

p=
3
2
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TABLE 1.6 (Continued)
Section Property Tables for Various Sections

Regular Hexagon

x1

x

y

y1 y
x

a

p
h

b

Regular Octagon

y

y1 y

x R

p
x

x1

Area 0 866 2 5982 2. .h a= 2 8286 2. R

Centroid x b a y h= = =1
2

1
2

, x y R= =

Moment of Inertia

I I h

I h

I h

I

x y

x

y

p

= =

=

=

=

0 0601

0 2766

0 3488

0

4

1
4

1
4

.

.

.

.11203 4h

I I R

I I R

I R

x y

x y

p

= =

= =

=

0 6381

3 4667

1 2763

4

1 1
4

4

.

.

.

Radius of Gyration

k k h a

k h

k h

x y

x

y

= = =

=

=

0 2635 0 4564

0 5651

0 6346

1

1

. .

.

.

kk hp = 0 3727.

k k R

k k R

k R

x y

x y

p

= =

= =

=

0 4748

1 1072

0 6717

1 1

.

.

.
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TABLE 1.6 (Continued)
Section Property Tables for Various Sections

Circular Complement
y1 y

R

p
p1

x

y
x
x1

Elliptical Complement

p

y

x

c
y1 y

x

b

Area 0 2146 2. R 0 246 1 1
4

. bc bc= −





π

Centroid x y R= = x c y b= =0 2236
1 288

. ,
.

Moment of Inertia

I I R

I I R

I R

I

x y

x y

p

p

= =

= =

=

00075

0 0182

0 0150

4

1 1
4

4

1

.

.

== 0 0365 4. R

I b c

I bc

I bc b c

x

y

p

=

=

= +

0 7545

0 007545

0 007545

3

3

2

.

.

. 22( )

Radius of Gyration

k k R

k k R

k R

k

x y

x y

p

p

= =

= =

=

=

0 187

0 292

0 265

0 41

1 1

1

.

.

.

. 22R

k b

k c

k b c

x

y

p

=

=

= +( )

0 18751

0 18751

0 03516 2 2

.

.

.
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TABLE 1.6 (Continued)
Section Property Tables for Various Sections

Parabola Fillet in Right Angle

y1 y
x

x

b

t
c

t y

p

Circular Section

R

a

a
p

yy1

x

x1

x

y

“a” in radians

Area
1
6

2t R a2

Centroid

x t b t

y t c t

= =

= =

1
5

1
2

4
5

1
2 2

,

,
x R a

a
y R a= 





=2
3

sin , sin

Moment of Inertia
I I t

I t

x y

p

= =

=

0 00524

0 0105

4

4

.

.

I R a a a

I R a a a R a

x

x

= −( )

= −( ) +

1
4
1
4

4

1
4 4

sin cos

sin cos ssin

sin sin

2

4 2 2

1

1
4

16
9

1
2

1

a

I R a
a

a a

I

y

y

= − +





=
44

1
4

2 16
9

4

4 2

R a a a

I R a
a

ap

+( )

= −





sin cos

sin

Radius of Gyration
k k t

k t

x y

p

= =

=

0 173

2 449

.

.

k R
a

a a k
R a

k R
a

a

x x
x

y

= − =

= +

1
2

1 1 1

1
2

1 1

1
1

2sin cos ,

sin ccos sin

sin cos

a
a

a

k R
a

a a

k R

y

p

−

= +

= −

16
9

1
2

1 1

1
2

2

2
2

1

116
9 2

2

a
asin
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TABLE 1.6 (Continued)
Section Property Tables for Various Sections

Hollow Circular Section

y1 y

R

r

x

x1

y

x

a

a

“a” in radians

p

Area R r a2 2−( )

Centroid x
a R r

a R r
y R a=

−( )
−( ) =

2
3

3 3

2 2

sin
, sin

Moment of Inertia

I a R r
a

a a

I a R r

x

x

= −( ) −





= −

1
4

1 1

1
4

4 4

1
4 4

sin cos

(( ) −





+ −( )

=

1 1

1
4

4 4 2 2

a
a a a R r R a

I ay

sin cos sin

RR r
a

a a
a R r

a R4 4
2 2

1 1 1 2
3

−( ) +





−
−( )sin cos sin 33 3

2

1
4 41

4
1 1

−( )





= −( ) +


r

I a R r
a

a ay sin cos 


= +I I Ip x y

Radius of Gyration

k R r
a

a a

k I
R r

x

x
x

= +( ) −





=
−(

1
2

1 12 2

1
1

2 2

sin cos

)) =
−( )

= +( ) +

a
k I

R r a

k R r
a

a a

y
y

y

,

sin cos

2 2

1
2 21

2
1 1





=
−( )k I

R r a
p

p
2 2
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TABLE 1.6 (Continued)
Section Property Tables for Various Sections

Circular Segment

y1 y

R

x

x1

y

x

a

a

“a” in radians
“A” = Area

p

I Section
y1 y

x

h

y

a a

b

x1

x

t

c

Area
1
2

2 2 2R a a−( )sin bh ac− 2

Centroid x R a
a a

y R a=
−( ) =4 3

3 2 2
sin
sin

, sin
x b

y h

=

=

1
2
1
2

Moment of Inertia

I AR a a
a a ax = −

















1
4

1 2
3

2
3sin cos

– sin cos 


= + −( )( )

= +

I R a a a

I AR

x x

y

1
4 2

2

1 1
2

2 2

4
1 2

sin sin

sinn cos
sin cos

sin3 6 6

2

4
9

4
1

a a
a a a

R a
A

I AR
y

−








 −

= −−
−











= +

2 3sin cos
sin cos

a a
a a a

I I Ip x y

I bh Ac

I bh Ac c h

I t

x

x

y

= −( )

= +( )

=

1
12

2

1
3

3

1
12

2

3 3

1
3 2 2

bb ct3 2+( )

Radius of Gyration

k R a a
a a a

k I

x

y
y

= −
−( )











=

2 3

4
1 2

3

2

sin cos
sin cos

RR a a

k I
R a ap

p

2

2

2

2
2 2

−( )

=
−( )

sin

sin

k bh Ac
bh Acx = −

−( )
3 32

12 2
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TABLE 1.6 (Continued)
Section Property Tables for Various Sections

Z  Section
y1 y

x

d
y

a b

b

x1

x

t

c

t

x2

y2

a

T  Section
y1 y

h
y1

x1

x

y2

d

a
c

b

e

Area t d a+( )2 ae bd+

Centroid y d x b t= = −
2

2
2

, y h dh ce
dh ce

y h y1

2 2

2 1
1
2

2
2

= − +
+







= −,

Moment of Inertia

I bd a d t

I I I I

x

x x y xy

= − −( )( )
= + −

1
12

23 3

2
2 2cos sinα α ssin

cos

2

1
12

2 63 3 2

2
2

α

α

I d b a a c ab c

I I

y

y y

= +( ) − −( )
= ++ +

=
−

= +

I I

abct
I I

I I I I

x xy

x y

p x y

sin sin

tan

,

2 2

2

α α

α

xxy abct= 1
2

I ay c b y dy

I ea bd

x

y

= − −( ) +





= +

1
3

2

12

2
3

1
3

1
3

3 3

Radius of Gyration

k I
t d a

k I
t d a

x
x

y
y

=
+( )

=
+( )

2

2

k I
ae bd

k ea bd
ea bd

x
x

y

=
+

= +
+( )

3 3

12
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1.5.5  �Section Shear Centers

The shear center (also known as the flexural center) can be defined as the point in a plane of the 
cross section through which an applied transverse load must pass for bending to occur unaccompa-
nied by twisting.

To obtain the shear center a unit transverse load is applied to the section at the datum point.
The shear distribution, thus shear flow distribution, thus shear force distribution, is obtained for 

each element of the section.
Equating the torque given by the shear distribution to the torque given by the transverse load will 

produce the position of the shear center.

F

Transverse load

Resultant shear stresses

F
Angle section

Bending about its principal axis

Channel section

�e shear center must lie in a plane
outside the channel

F

Symmetric “I ” section

�e shear center coincides with
centroid or section

FIGURE 1.36  Shear flows around various sections.D
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1.5.5.1  �Location of Shear Center: Open Sections

q1, Fi

E1
Ri

s = 0

s

ti

vy

ds

y

y

x x
Xi Xo

yoyi Centroid

s = si

FIGURE 1.37  Location of shear center–open section.

1.5.5.2  �Section Constants

	

Z I
I I I

Z I
I I I

Z I

x
xx

xx yy xy

y
yy

xx yy xy

xy
xy

=
−

=
−

=

·

·

2

2

II I Ixx yy xy· − 2

1.5.5.3  �Shear Flow in an Element

	
q t x V y V Z x V Z y V Zi i i y i x xy i x x i y y= +( ) − − · · · · · · dds qo

si

+∫0

where:
	qo =	the value of qi at s = o
	xi =	horizontal distance from the element centroid to the section centroid
	yi =	vertical distance from the element centroid to the section centroid

1.5.5.4  �Shear Force in an Element

	 F q dsi i= ·

1.5.5.5  �Torque/Moment Given by Element

	 T F Ri i i= ·

Centroid chosen as datum point, but it could be any convenient point.
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1.5.5.6  �Horizontal Location of the Shear Center
To locate the horizontal position of the shear center, we apply a vertical unit force through the 
unknown position of the shear center xo, yo, i.e., Vy = 1 and Vx = 0.

	
∴ = −( ) +∫ q x Z y Z t ds qi i xy i y

s

i o
i

· ·
0

Shear forces and total torque ∑ Ti are calculated as defined previously.

1.5.5.7  �Vertical Location of the Shear Center
To locate the vertical position of the shear center, a horizontal unit force is applied through the 
unknown position of the shear center xo, yo, i.e., Vy = 0 and Vx = 1.

	
∴ = −( ) +∫ q y Z x Z t ds qi i xy i x

s

i o
i

· ·
0

Note: 
If a beam cross-section has two axes of symmetry, the shear center will be located at the centroid 
of the section. If the beam has one axis of symmetry, the shear center will be located at one axis of 
symmetry.

1.5.5.8  �Shear Center of a Curved Web

	

q y
I

t ds

y R ds R d

q t
I

xx

x

θ

θ θ

θ

θ

= − 





= =

=

∫ · ·

·cos

1
0

xx

xx

R R d

q t
I

R

0

2

θ

θ θ

θ θ

∫
=

cos ·

sin

0

Ixy=o

ds

t

R

θ

Vy

e

FIGURE 1.38  Shear center for a curved web.
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1.5.5.9  Horizontal Location

	

=

=

=

q ds R

q Rds R

R t
I

d
x

· ·

· ·

· sin ·
4

θ θ

Moment of force of element about 0.

Total moment:

	

=

= −[ ]

=

∫R t
I

d

R t
I

R t
I

xx

xx

xx

4

0

4

0

42

sin

cos

θ θ

θ

π

π

Vertical component of force of element:

	 = q · ds · sin θ

Therefore total vertical force:

	

=

=

∫R t
I

d

R t
I

xx

xx

3
2

0

3

2

sin

·

θ θ

π

π

Taking moments about 0,

	

R t
I

e R t
Ixx xx

3 4

2
2· ·π =

Horizontal location:

	
e R= 4

π
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60 Design Engineer's Handbook

Alternatively for a solid section:

h

q

A´

FIGURE 1.39  Shear flow around a semicircle.

where
	 q =	web shear flow
	A =	enclosed area
	 h =	web depth

Vertical equilibrium:

	 qh = Vy

Moment equilibrium:

	 2 Aq = Vy · e

	
e A

h
= 2
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61Beams

TABLE 1.7
Shear Center Positions for Various Sections

Section Position of Shear Center

1. Open Thin-Walled Circular Tube

aa

aa
t

e

R
S.C

e R

e R

= −
−







= =

2

2
4

sin cos
sin cos

α α α
α α α

α π
π

For 

FFor α π= =e R2

where α is in radians

2. Semicircular Area

R

e

S.C

e R= +
+













8
15

3 4
1π

ν
ν

where ν = Poisson’s Ratio

3. Channel—Equal Flanges and Uniform Thickness

y b
t

a

e

x
S.C

e a H
I

xy

x
=

where Hxy is the product of inertia 
for the area above the x axis

If t is uniform and small:

e a b t
I

b

b
a

b
a

x
= =







+ 






















2 2

4

3

1 6 

Ix is the moment of inertia of 
whole section about the “x” x axis
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62 Design Engineer's Handbook

TABLE 1.7 (Coninued)
Shear Center Positions for Various Sections

Section Position of Shear Center

4. Section—Equal Flanges

y
b

x

t

t
b

y
d

S.C o

Shear center at centroid
x

y

o

o

=

=

0

0

5. Section with Unequal Flanges and Uniform Thin Web

1 2

a

e
S.C

e a I
I I

=
+







2

1 2

where I1 and I2 are the moments of 
inertia of flanges 1 and 2 about the “x” axis

6. Section—Unequal Flanges

b1

x

t1

t2
b2

y
d

S.C

Centroide

yo

t3

x

y e y

e dt b
t b t b

o

o

=

= −

=
+

0

1 1
3

1 1
3

2 2
3

FURTHER READING

Constrado. 1983. Steel Designers’ Manual. 4th ed. UK.
Young, Warren C. Roark’s Formulas for Stress and Strain. 1989. 6th ed. New York: McGraw-Hill.
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2 Torsion of Solid Sections

2.1  �INTRODUCTION

If a shaft is subjected to a pure torque, i.e., without any bending, buckling, or axial thrust, every 
cross section is in a state of pure shear. The shearing stress induced in the shaft produces a moment 
of resistance, equal and opposite to the applied torque.

List of Symbols

T = Applied torsional moment
L = Length of member
G = Modulus of rigidity
Ip = Polar moment of inertia of section
J = Torsion constant of section
τ = Applied shear stress
q = Applied shear flow
θ = Angle of twist
A = Area of cross section

2.2  �BASIC THEORY

In the theory of twisting, which relates the shear stress and angle of twist to the applied torque, it 
is assumed that:

	 1.	The material is homogeneous, elastic, and obeys Hooke’s law; i.e., the shear stress at any 
point is proportional to the shear strain at that point.

	 2.	Stresses do not exceed the limits of proportionality.
	 3.	Radial lines remain radial after twisting.
	 4.	The plane cross section remains plane after twisting. (For noncircular shafts, the assump-

tion that the plane sections remain plane after twisting is not justified and this theory 
ceases to apply.)

From the third assumption above, it follows that the strain (and hence the stress) is directly pro-
portional to the radius. Thus, if the shear stress at the surface of the shaft is τ, then the stress τ′ on 
an element da at a distance x from the axis (see Figure 2.1).

	 ′ =

∴ =

∴

τ τ

τ

x
r
x
r

dashear force on element

moment oof force about 

total moment of r

O x
r

da x=

∴

τ

eesistance =

=

∫τ

τ
r

x da

r
J

2
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This is equal to the applied torque T, i.e.,

T
r

J

T
J r

=

=

τ

τor
	 (2.1)

This formula gives the shear stress at the surface in terms of T and J, but the stress at any other 
radius can be readily found since it is proportional to the radius at that point.

2.3  �MODULUS OF SECTION

The maximum shear stress in a shaft is given by

	

τ =

=

T
J

r

T
J r/

The quantity J/r is known as the Modulus of Section and is denoted by Z.

Thus	 τ = T
Z

	 (2.2)

For a solid shaft

	

Z
d

d

d

=

=

π

π

4

3

32

2

16

	 (2.3)

r x

da

Elemental point
within the cross section

o

FIGURE 2.1  Cross section of a circular shaft subject to pure torsion.

D
ow

nl
oa

de
d 

by
 [

M
ot

ila
l N

eh
ru

 N
at

io
na

l I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

A
lla

ha
ba

d]
 a

t 0
9:

48
 2

9 
D

ec
em

be
r 

20
13

 



65Torsion of Solid Sections

For a hollow shaft

	 Z

D d

D=

−( )π 4 4

32

2

	 (2.4)

where D and d are the outer and inner diameters, respectively.

	 Z D d
D

= −





π
16

4 4
	 (2.5)

2.4  �ANGLE OF TWIST

Due to the shear strain in the shaft, the longitudinal line AB (see Figure 2.2) will rotate to the posi-
tion AC, the end A being considered fixed.

The angle BAC is the shear strain, φ, and the angle BOC is the angle of twist, θ.

	

BC L r

G
G
L

= =

∴ = =

∴ =

ϕ θ

ϕ θ τ

τ θ

   r
L

  
r

	 (2.6)

Combining this with Equation (2.1) gives the general twisting formula:

	
T
J r

G
L

= =τ θ
	 (2.7)

2.5  �PURE TORSION OF OPEN SECTIONS

2.5.1  �Thick-Walled Open Sections

These types of sections have relatively thick rectangular elements having fillets at the junctions.

L

B
C

A φ
θ

r r

0

FIGURE 2.2  Angle of twist.

D
ow

nl
oa

de
d 

by
 [

M
ot

ila
l N

eh
ru

 N
at

io
na

l I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

A
lla

ha
ba

d]
 a

t 0
9:

48
 2

9 
D

ec
em

be
r 

20
13

 



66 Design Engineer's Handbook

TABLE 2.1
Torsional Properties of Solid Sections

Cross-Section Torsional Constant

J in  = T
GJ

θ l
Torsional Shear Stress

fs

2R

Circle

J R= π 4

2

Max T
R

 f

at outer surface

s = 2
3π

2Ro

2Ri

�ick Tube

J
R Ro i

=
−( )π 4 4

2

Max TR
R R

o

o i
 f

at outer surface

s =
−( )

2
4 4π

Solid Ellipse

2a

2b

c

J a b
a b

=
+

π · ·3 3

2 2

Max T
a b

 f

at c

s = 2
2π · ·

Square

2a
J a= 2 25 4. ·

Max T
a

 f

At midpoint of each side

s = 0 601
3

. ·

c

c

Rectangular

J ab a
b

b
a

= − −


















3
4

4
16
3

3 36 1
12

.

For a ≥≥ b

Max T a b
a b

 f

At midpoint of lo

s = +





3 1 8
8 2 2

.

nng sides

2a

r

c

Circular Segment

J cr

h r

c

=

= −( )

≤

= −

2

1

1 0

0 7854 0 33

4

cos

.

. .

α

for 0 ≤ h
4

333

2 6183 4 1595

3 076

2 3

h
r

h
r

h
r

− 





+ 





−

. .

. 99 0 9299
4 5h

r
h
r







+ 





.

Max T
r

 f at c

For 0 ≤ h
r

s = ( )

≤

= +

β

β

3

1 0

0 6366 1 7

.

. . 3398

5 4897 14 062

14 5

2 3

h
r

h
r

h
r

− 





+ 





−

. .

. 11 6 434
4 5h

r
h
r







+ 





.
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67Torsion of Solid Sections

Consider an L-shaped section as shown in Figure 2.3(a). At the point where the curvature is con-
cave or re-entrant is negative, the approximate maximum stress is given by:

	
f T

J
ns = and occurs at point c

	 (fs = shear stress)

J for various sections is given in Tables 2.2 and 2.3.

The parameter n is defined as follows:

For the concave radii as shown in Figure 2.3(a)

where	 n d
r

=
+







+ −



 − d

1 ·d
16A

2 4

2
π

1 0 118 1
2

0. ln .. tanh238
2

2d
r















θ
π

For convex curves (such as bulbs) as shown in Figure 2.2(b)

	

n d
A

d
r

  d

1 ·d
16A

2 4

2

=
+







+ −

π

π1 0 15
16 2

2 4

2.













2.5.2  �Thin-Walled Open Sections

The torsion in a thin-walled open section is balanced by the shear flow, q, about the periphery of the 
section. Consider Figure 2.4. The stress distribution is assumed to be linear across the thickness of 
the section as indicated in Figure 2.4.

	

Torsional Constant J 1
3

b t

Maximum sh

i i
3

i=1

n
= ∑

eear stress f T
J

·ts =

Note that this applies to pure torsion only; the effect of warping and associated differential bend-
ing loads in the flanges will be considered separately (see Table 2.4).

r

r

c θ

(a) (b)

d

FIGURE 2.3  (a) L-shaped section. Concave curve. c = point of maximum stress; r = radius of fillet; θ = angle 
between elements (radians); d = diameter of largest inscribed circle; A = area of cross section. (b) Convex 
curve (i.e., at bulb).
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68 Design Engineer's Handbook

2.6  �THIN-WALLED CLOSED SECTIONS

2.6.1  �Single Cell Sections

The torsion of thin-walled closed sections is balanced at any section along a member by a uniform 
shear flow around the section. The stress is assumed to be uniform through the thickness of the section.

It will be obvious that the maximum stress will occur at the thinnest part of the section (see 
Figure 2.5).

	 Shear flow q load /mm T
2A( ) = 	 (2.8)

	        Shear stress f T
2At

q
ts = = 	 (2.9)

The torsional constant J for thin walled closed sections subjected to a torque is given by:

	

J = 4A
d
t

4A2
b
t

2

s

0

b
i

ii = 1

n

∫ ∑
=

TABLE 2.2
Torsional Constants for Various Sections (Part 1)

Section Torsional Constant

J as in T  and in fs
l

GJ
T
J

n=

b1

t1

b2

d

r

t2

J K K ad

t

a t
t

r
t

= + +

≥

= +





1 2
4

2

2

1 1
0 15 0 10

if t1

. .

iif t

for t

2

2

≥

= +





<

t

a t
t

r
t

t

1

1

2 1

1

0 15 0 10

2

. .

++( )

= + + − +( ) +( )





r

d t t r r t r t2 3 2 2 22 1 1 2

b1

b2t1

t2

r

d

J K K ad

t

a t
t

r
t

= + +

≥

= +





1 2
4

2

2

1 1
0 07 0 076

if t1

. . 

≥

= + + − +( ) +( )





if t2 t

d t t r r t r t

1

2 1 1 22 3 2 2 2
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69Torsion of Solid Sections

TABLE 2.3
Torsional Constants for Various Sections (Part 2)

t2

t1

t1

b2

b1

d

J K K ad

a t
t

r
t

where

= + +

=
′

+





1 2
4

1
0 15 0 1. .

             t  minimum of t  or t

            

1 2=

′′ =t   maximum of t  or t

              For 

1 2

tt 2 t   t

d
t r

2 1 2

1

< +( )

=
+( ) + +

+( )

2
2

2
2

1

4
2

r t t

r t

·

S

r

t

r

t

J st

r
t

s
t

= +
+ 



























1
3

1
4 14 4 71

3

4

. .















for ‘n’ at bulb or fillet see paragraph (2.1.6.1)

Sections composed of 3 or more
rectangular elements.

J = J of the constituant tee and angle secΣ ttions:

= + +Σ Σ ΣK K a d1 2
4·

Where K  and K  are given as:

K b t 1
3

1 2

1 1 1
3= − 0 2. 11 1

12

1
3

0

1

1

1
4

1
4

2 2 2
3

t
b

t
b

K b t

−


















= − .1105 1
192

1
3

2

2

2
4

2
4

3 2 2
3

t
b

t
b

K b t

−


















=
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b length of portion of the wall

t thicknes

i

i

=

= ss of portion of the wall

angle of twist q T= ll

l

GJ

rate of twist q
2AG

d
t
sθ = ∫

	 (2.10)

		

(2.11)

θ

T

T

l

(a)

b1

b2

t2
b3

t3

t1

fs

(b)

FIGURE 2.4  Torsion in a thin-walled section.

θ

Axis of
Rotation

l

t

t

ds

fs

Median

q at median line

FIGURE 2.5  Torsion in a closed section. A = area enclosed by median contour; b = total length of median 
contour; ds = length of differential element along median contour; t = local wall thickness.
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71Torsion of Solid Sections

2.7  �CURVED MEMBERS

2.7.1  �Curved Torsion Members

In the previous section the maximum torsional shear stress on straight members was shown. This sec-
tion will introduce an additional factor, k, to account for the effects of curvature on curved members.

If the member’s radius of curvature is less than 10 times the member’s depth, i.e., R/d < 10, then 
this factor will need to be applied. It is also assumed that the material properties will remain elastic.

TABLE 2.4
Torsional Constants for Thin-Walled Open Sections

Cross-Section Torsional Constant

J in T
GJ

θ = l
Torsional Shear Stress

f T
J

ts =

�in Rectangular

t

b

J b t= 1
3

3· f T
bts = 3

2

R

t
�in Circular

R = Mean radius.

J Rt= 2
3

3π f T
RTs = 3

2 2π

Any Formed Section

t

b

J b t= 1
3

3· f T
bts = 3

2

J bi ti
i

n

=
=

∑1
3

3

1

·
f T

J
rt

f T
J

t

si i

s

=

=max max
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2.7.2  �Circular Section

For a straight member:

	
f

T d

J
T

d

smax

·

·
·

 =







=

2

16
3π

	 (2.12)

TABLE 2.5
Torsional Constants for Thin-Walled Closed Sections

Cross-Section Torsional Constant

J in  = T
GJ

θ l
Torsional Shear Stress

f T
ats =

2

ri

ro

Tube

J r ro i= −( )1
2

4 4π f Tr
r r

s
o

o i
=

−( )
2

4 4π

Ellipse

b

a

t
J

t a t b t

U
U l

=

−





−

















=

4 1
2

1
2

2
2 2

π

enngth of ellipitical median boundary

U = π a + bb t
a b

a b t
−( ) +

−( )
+ −( )













1 0 258
2

2.

f T

t a t b t
s =

−





−





2

2 1
2

1
2

π

Rectangle

b

a

t t1 J
tt a t b t
at bt t t

=
−( ) −( )

+ − −
2 1

2
1

2

1
2

1
2

f T
t a t b t

T
t a t b

s1
1

1

2

2

=
−( ) −( )

=
−( )

Short sides

fs2 −−( )t1
Long sides

tp

t

c

ds

General

J A
d
t

A
b
t

J A t
b

b
i

ii

n= =

=

∫ ∑
=

4 4

4

2

0

2

1

2

Constant t:

at

T
At

f T
At

p

s

 c

Fsp =

=
2

A = area of enclosed cell; b = length of median line.
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73Torsion of Solid Sections

For a curved member:

	

f k T
d

k d
R

smax · ·
· =











= + 



 +

1 3

1

16

1 5
8

7
32

π

dd
R







2
	 (2.13)

2.7.3  �Square Section

For a straight member:

	 f T
bsmax

. ·= 0 601
3 	 (2.14)

For a curved member:

	 f k T
bsmax

. ·= 





2 3
0 601

	 (2.15)

	 k b
R

b
R

b
R2

2 3

1 1 2 0 56 0 5= + 



 + 



 + 



. . . 	

d

R

Position of
maximum shear 

T

32
J =

π.d 4

FIGURE 2.6  Torsion in a circular section.

R

2bPosition of
maximum

shear stress

T

J = 2.25.b4

FIGURE 2.7  Torsion in a square section.
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2.7.4  �Rectangular Sections

For a straight member:

	 f T a b
a bsmax

.
· ·

= +









3 1 8
8 2 2 	 (2.16)

For a curved member:

	

f k T a b
a b

k b
R

smax · .
· ·

.

= +









= + 


2 2 2

2

3 1 8
8

1 1 2 
 + 



 + 



0 56 0 5

2 3

. .b
R

b
R

	 (2.17)

The above formulas will apply as in Figure 2.9.

2.7.5  �Springs

Spring Nomenclature

α	=	Pitch angle of coils
n	 =	Number of active coils in spring
δ	 =	Axial deflection
G	=	Modulus of rigidity
P	=	Applied force
ν	 =	Poisson’s ratio

R

2a

2b

T

− 3.36
12a4

b4
1 −b

a
3

16J = ab3

FIGURE 2.8  Torsion in a rectangular section.

for    

R

2a
R

2a

for
b
R

b
R

> 5

> 3

FIGURE 2.9  Ratio of R to b for the aspect ratio of the section.
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75Torsion of Solid Sections

The axial deflections of springs are as follows:

For circular sections:	 δ ν
ν

= − 



 + +

+( ) (64 1 3
64

3
2 1

3

4

2P R n
G d

d
R

a· ·
·

tan ))











2
	 (2.18)

For square sections:	 δ = >2 789 3
3

4
. · ·

·
P R n

G b
for c         	 (2.19)

For rectangular sections:	  δ π π= − 



 +3

8
0 627

2
0

3

4
· · · ·

· ·
. tanh .P R n

G b
a
b

b
a

0004
1

















−

	 (2.20)

2.8  TORSIONAL FAILURE OF TUBES

Failure in tubes due to torsion may be attributable to material failure or instability of the tube walls.
The instability may be due to either:

•	 d/t ratio may be too large
•	 plastic regions existing in the wall of the tube

α

R

(a) (b)

P P

R

d

FIGURE 2.10  Spring forms. (a) Circular section; (b) square section.

l

t

rorm

ri

T

T

FIGURE 2.11  Notation.
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76 Design Engineer's Handbook

r  = radius to mean thickness
t = wall thick

m
nness

l = tube length
T = applied torque
T = alllowable torque
J = torsional constant

f  = s aapplied shear stress
f  = allowable elastsbe iic buckling stress at the mean radius (r )m

FF  = allowable shear stress at r
F  = a

st o

stb lllowable buckling stress at the outside raddius (r )
F  = allowable plastic stress a

o

stp tt r
F  = allowable ultimate shear stress 

o

su ffor tube material

The shear stress curve is similar to that of the tensile stress curve with a 1/√3 factor applied to the 
ordinates. Plastic torsion in tubes is treated similar to a bar in plastic bending (Figure 2.12 shows the 
elastic and plastic stress distribution in a solid shaft.)

The allowable shear stress, Fst, is also referred to as the torsional modulus of rupture. This is a 
fictitious stress acting at the surface of the tube and represents the same resisting moment as the 
true stress in the section.

Material property curves for the torsional modulus of rupture can be taken from MIL-HDBK 5* 
for a wide range of materials.

2.8.1  �Modulus of Rupture: A Theoretical Approach

The first step to determine the modulus of rupture, Fst, is to calculate the stress that will lead to an 
instability failure, Fstb, and the stress to cause a material shear failure, Fstp.

The allowable Fst for a tube is the minimum of Fstb or Fstp.
The effects of any imperfections in the plastic range are considered small and can be disregarded.

2.8.1.1  �Instability Failure
The elastic buckling stress (Fstb) is calculated by setting Esec = E and Mr = 1.0 in the following equation:

*	 MIL-HDBK 5 (Military Handbook 5): U.S. Government publication that covers a wide range of materials including 
steels, aluminium, copper, etc.

fs
Fst

Elastic stress
distribution

Plastic stress
distribution

FIGURE 2.12  Elastic and plastic stress distribution.
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77Torsion of Solid Sections

Plastic Buckling Stress (Fsb)

	 F
H A H B C E

Dsb =
[ ]+ +[ ] 3 2074 0 082134 8. . · sec

	 (2.21)

where:

	

A K
Mr

K

B
H

= + +



 +

=

37 3063 7 0422 1 1 2

1
0 0276

4 2. .

. 44 2

4

0 1660 3 1 1

1
0 9608 0 9802 3

+ −( ) +( )
=

+

.

. .

Mr H

C
H Mr −−( ) +( )1 12H

	

D H
t

H
t r

K
H

E S

m

= 





=










=

=

10 773

2

1

1
4

.

·

sec

l

l

eecant Modulus 

The modulus ratio, Mr, is the ratio of the secant to the tangent modulus at a stress level equivalent 
to Fsb; hence an iteration is required to obtain a value.

	 Mr
m f

F
f

F

s
m

s
=

+ 





+ 





−

1 3
7

3

1 3
7

3

0 7

1

0 7

( )
.

.
mm

E
E sb

−
=

1

sec

tan
at F 	 (2.22)

Esec, Etan,	 Secant and Tangent modulii at Fsb

m	 Stress-Strain curve shape factor.

Allowable Buckling Shear Stress, Fstb

	 F Fstb sb= + − −
−







1
1 4

2 3ν ν ν
ν

· 	 (2.23)

where

	
ν = − ( )1 1

ro
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The associated allowable torque is:

	
T F  b

stb

o

J
r

= ·

where

	
J

r ro i
=

−( )π 4 4

2

equivalent to Fsb, hence iteration is required to obtain a value.

2.8.2  �Material Failure under Plastic Torsion

The allowable plastic stress at ro	 F F
r r r
r rstp su
o i o

o i
=

− 
− 

3
4

3 3

4 4· 	 (2.24)

Assuming a constant shear stress, Fsu through the thickness:

The allowable plastic torque:	 T F r rp su o i= − 
2
3

3 3π · 	 (2.25)

2.9  �SAND HEAP ANALOGY FOR TORSIONAL STRENGTH

An experimental method for determining the torsional strength of noncircular sections has been 
developed by Bendix Aviation and McDonnell Aircraft Company and enables a fairly simple solu-
tion to complex shapes as found on aircraft landing components.

The procedure is presented here, as it has been helpful in the past and used by the author for 
checking complex shapes.

The following is a preamble to the method and is provided for information only.
A solid body, if subject to a severe twisting moment, will deform plastically when the intensity of 

the shear stress reaches the yield point in shear. The sand heap analogy method is an experimental 
representation of the stress distribution acting over the cross section of a component in a completely 
plastic state. The theory predicts that the maximum twisting moment a body can sustain before fail-
ure is equal to twice the volume enclosed by the surface, formed by the stress function. The slope of 
this surface will then be a maximum and therefore analogous to the natural sloping surface formed 
under gravity by heaping sand on a piece of cardboard having the proportional geometric configura-
tion of the component’s cross section.

Mass distribution and shape of the stress curve are important factors in limiting the maximum 
shear stress for calculation purposes. Experiments have verified the feasibility of using Fsu as a con-
servative means of calculating the ultimate twisting moment.

2.9.1  �Method (Solid Cross Section)

A horizontally positioned piece of cardboard shaped to the component’s cross section is heaped 
with a fine-grade casting sand, such that a natural roof, defined by gravity, is formed.
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79Torsion of Solid Sections

In terms of the physical slope and sand volume, the following formula will apply.

	 T F q
kC

q
kC

F
kC

su
su= ( ) =

( ) ( ) =
2 2
2 2 54

2 0 061
3 3 3 3.

.
 

 qq Fsu2( ) 	 (2.26)

thus

	 T q
C

Fsu= ( )0 083 23
.  

where:
T	 =	Allowable twisting moment (in.-lb)
q	 =	Sand volume (cubic centimeters)
Fsu	=	Ultimate shear stress
C	 =	Scale factor, i.e., double scale, C = 2

Calculation of K and T is as follows:

K value:

Plastic torsion capacity	 T g f
C

st= 2
2543 3

 
 K

For a solid circular section:

Plactic torsion capacity	 T f
r

Jst= 4
3

0.168" 0.157"

0.
17

3"

3.206"

0.361"0.35"

3.
79

"

0.
15

6"

3.
93

4"

0.356" 0.341"

2.8
42

"

FIGURE 2.13  Sand heap analysis–example section.
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80 Design Engineer's Handbook

where

J d

T f rst

=

=

π

π

4

3

32

2
3

 

∴  For Circle:	
2

2 54
2
33 3

g f
C

fst
st

 
 K

 
.

= π

	
K g

r C
= 3

2 543 3 3π · .

where:
g	 =	volume of circle (cm3)
C	=	scale factor, or double scale c = 2.0
K	=	slope of repose angle, constant for same kind of sand

or:

	           
g r h C= π 2 3 32 54

3
( . · )     for a circle

	
h 3g

π r ·2.54 ·C2 3 3=

	
K h

r
3g

π r ·2.54 ·C3 3 3= =

Calculation of T is as follows:

Measuring the sand volume of the desired section in cm3

	
T g f

K C
st= 2

2 543 3.

K  

h

r

 

FIGURE 2.14  Angle of repose.
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81Torsion of Solid Sections

where:

fst	=	ultimate shear allowable (ksi)
g	 =	sand volume of desired section (cm3)
C	=	scale factor
K	=	repose angle (can be calculated from (I))

Note that this method requires the shear stress allowable to be measured in ksi (1,000 lbf/in.2).

EXAMPLE 2.1

Consider a cone with a base of 1.50 and a height of 1.063.

	

Total volume of cone  =

=
( )

42

3 42
1 5 2

3

3

cm

K .
. · .π 554 1

0 725

3 3( )
= .

	

let h

Volume of fru

=

= =

0 4

3 81 3 231

.

( . . )

cm

R cm r cm

sstum = 11 cm3

sectionT = 2 11 168
2 54 0 725 13

· ·
. · . · 33

311 095= . MPa

EXAMPLE 2.2

Figure 2.15 shows a section through a nose landing wheel strut. The original analysis used the sand 
heap method to establish the allowable torsion to be applied to the section.

A

A4

A5

A6

A7

A3

A2

A1
A

X

α

Section on “A:A”

10.16 mmX =
5

= 2.032 mm

FIGURE 2.15  Section for Example 2.2.
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82 Design Engineer's Handbook

Use a suitable CAD drawing program and setting the outer profile. The profile is then offset at 
the X dimension. The area is then calculated and tabulated.

By analysis of Figure 2.15, the following individual areas were obtained:

A1	= 1,317.12 mm2

A2	= 856.29 mm2

A3	= 422.87 mm2

A4	= 45.20 mm2

A5	= 2.95 mm2

A6	= 60.19 mm2

A7	= 4.74 mm2

A8	= A4 + A6 = 47.20 mm2 + 60.19 mm2 = 105.39 mm2

A9	= A5 + A8 = 2.95 mm2 + 4.74 mm2 = 7.69 mm2

	

V A A A A A A A A
total = + −



 + + −



 + +2

1 2
3

2 3
82 2

33 8
9

8 9

2 2

856 29 1

−



 + + −










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3 Design and Analysis 
of Lugs and Shear Pins

3.1  NOTATION

The following notation is used in this design guide.

d

c c

a

W W

d

a

c c

t

Notation.

The dimensions a, c, d, t, and W are defined in the diagrams above.

σtu	 =	Ultimate tensile strength of lug material (Pa)
σtuw	=	Ultimate tensile strength of lug material with the grain (Pa)
σtux	 =	Ultimate tensile strength of lug material across grain (Pa)

When the plane of the lug contains both long- and short-transverse grain directions, σtux is the 
smaller of the two values.

σty	 =	Tensile yield strength of the lug material (Pa)
σtyw	=	Tensile yield strength of the lug material with grain (Pa)
σtyx	 =	Tensile yield strength of the material across grain (Pa)

When the plane of the lug contains both long- and short-transverse grain directions, σtyx is the 
smaller of the two values.

σcy	 =	Compressive yield strength of the bush material (Pa)
Pl	 =	Applied limit load (N)
Pu 	 =	Applied ultimate load; this value is usually 1.5 Pl (Pa)
Py 	 =	Applied yield load, this value is usually 1.15 Pl (Pa)
M	 =	Applied bending moment on shear pin (Nm)
α	 =	Angle between direction of loading on lug and the central plane of lug (degree)
P′u 	 =	Allowable ultimate load (N)
P′bru	 =	Allowable ultimate load as determined by shear bearing (N)
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P′bry	 =	Allowable yield-bearing load on bushing (N)
P′tu	 =	Allowable ultimate tension load (N)
P′tru	 =	Allowable ultimate transverse load (α = 90°) (N)
Abr	 =	Projected bearing area (m2)
At	 =	Minimum net section for tension (m2)
Aav	 =	Weighted average area for transverse load (m2)
Kbr	 =	Efficiency factor for shear bearing
Kt	 =	Efficiency factor for tension
Ktru	=	Efficiency factor for transverse loading (ultimate)
Ktry	=	Efficiency factor for transverse load (yield)
C	 =	Yield factor
γ	 =	Pin bending moment reduction factor for peaking
r	 =	(a – (D/2))/t
R	 =	Load ratio in interactive equation
Rα	 =	Load ratio for axial load (α = 0°)
Rtr	 =	Load ratio for transverse load (α = 90°)

3.2  �INTRODUCTION

Lugs and shear pins are found in a number of aerospace applications, including landing gear attach-
ment points (typical to that shown in Figure 3.1) together with general engineering components, 
such as the attachment of hydraulic and pneumatic cylinders, etc.

In 1950 an article appeared in the magazine Product Engineering titled “Analysis of Lugs and 
Shear Pins Made from Aluminum or Steel Alloys.” The article was written by F.P. Cozzone, M.A. 
Melcon, and F.M. Hoblit of the Lockheed Aircraft Corporation. There was a follow-up article written 
in June 1953 in the same magazine entitled “Developments in the Analysis of Lugs and Shear Pins.”

These two articles set the ground rules on how lugs and shear pins were to be analyzed and 
quickly became the standard used in the aerospace industry.

This guide will show the methods for analyzing lugs with either parallel or tapered sides with 
either round or square end forms, and deals with lug and shear pin failure modes associated with 
different load conditions covering axial, transverse, oblique, and out-of-plane loading.

Lubrication hole

Bushing

High tensile pin

Anti-rotation
boss

Lug

Nut

Bushing

Lug

P

FIGURE 3.1  Typical lug assembly.
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85Design and Analysis of Lugs and Shear Pins

This guide also shows how to analyze lugs with clearance fit shear pins and bushes. The stresses 
associated with the use of interference-fit pins or bushes are also considered.

The shear pin analyses investigate shear pin bending, and shear in double shear joints and pin 
shear in single shear joints will also be considered.

3.2.1  �Method

The method described is semiempirical and is applicable to aluminum or steel alloy lugs.
A set of mutually perpendicular axes is applied to the lug, referred to as axial, transverse, and 

out-of-plane directions. The axial direction is parallel to the lug feature. The transverse direction 
lies perpendicular to the axial direction in the plane of the lug, and the out-of-plane direction lies 
perpendicular to the plane of the lug.

The axes intersect at the hole center (see Figure 3.2). The lug is independently analyzed for loads 
applied in the axial and transverse directions and for the combined oblique loading case. An out-of-
plane check is also included.

3.2.2  �Loading

The types of static loading considered in the analysis of lugs and shear pins follow:

Axial
Transverse
Oblique
Out-of-plane

3.2.3  �Material Limitations

The calculation method may be applied to either steel or aluminum alloy materials.
In the case of axial failure modes it may be applied to lugs manufactured from any metallic material.

3.2.4  �Geometric Limitations

When the hole diameter (d) is less than the lug thickness (t) it is recommended that the thickness (t) 
should be set equal to the hole diameter (d) throughout the calculations, except when considering 
shear pin bending.

When the hole diameter (d) is greater that the lug thickness (8 × t), lug stability should be checked.
The method for determining transverse areas is valid for the lug shapes shown in Figure 3.3.

Out-of-plane

Transverse

Axial

Oblique

α

FIGURE 3.2  Lug loading.
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3.2.5  �Failure Modes

The failure modes (Figure 3.4) follow:

Tension
Shear tear out or bearing (shear bearing)
Yield

3.2.6  �Notes

The margins of safety should be reduced by the relevant fitting or casting factors (see Section 3.4). 
If both fitting and casting factors are applicable, only the greater of the two need to be considered.

Margins of safety > 0.2 are preferable on lugs for use in aerospace vehicles. In general, in engi-
neering projects where weight is not so important, the margin of safety (MoS) can be increased to 
0.3 and above without any detrimental effects.

Tension
TensionShear bearing

Pin shear

Pin bending

Pin Failure Mode Bush Failure

Bushing yield

P

P/2 P/2

Shear bearing

Yield Yield

Axial Load Failure Transverse Loading Failure

FIGURE 3.4  Lug failure modes.

FIGURE 3.3  Types of lugs.
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87Design and Analysis of Lugs and Shear Pins

3.3  �ANALYSIS OF LUGS WITH AXIAL LOADING: ALLOWABLE LOADS

A lug-shear pin combination under a tension load can fail in a variety of ways, each of which will 
require to be evaluated by the methods presented in this section.

Tension across the net section: Here stress concentrations will need to be considered.
Shear tear-out or bearing: These two conditions are closely related and are covered by a single 

calculation using empirical curves.
Shear acting on the pin: This will be analyzed in the usual way.
Bending of the shear pin: The ultimate strength of the pin is based on the Modulus of Rupture.
Excessive yielding of bushing (if used).
Yielding of the lug is considered to be excessive at a permanent set equal to 0.2 times the shear 

pin diameter. This condition must always be checked, as it is frequently reached at a lower 
load than would be anticipated from the ratio of the yield stress (Fty) to the ultimate stress 
(Ftu) for the material.

Note the following:

	 1.	Hoop tension at the tip of the lug is not a critical condition, as the shear-bearing condition 
precludes a hoop tension failure.

	 2.	The lug should be checked for side loads (due to misalignment, etc.) by conventional beam 
formulas (see Section 3.4).

3.3.1  �Analysis Procedure to Determine the Ultimate Axial Load

Calculate e/d, W/d, d/t, Abr = dt, At = (W – d)/t (see Figures 3.5 and 3.6 for nomenclature).
Determine Kbr using the coordinates e/d and d/t.

The ultimate load for shear-bearing failure, P′bru, is

	 P′bru = Kbr Ftu Abr	 (3.1)

Ultimate load for tension failure:
From Figure 3.6 using W/d, obtain Kt for the lug candidate material.

The ultimate load for tension failure P′tu is

	 P′tu = Kt Ftu At	 (3.2)

where Ftu = ultimate tensile strength of lug material.

d

d hW

W/2

Bushinge

Pt

FIGURE 3.5  Detail of lug with bushing.
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Load for yielding of the lug.
From Figure 3.8 with coordinates of e/d to obtain Kbry.

The yield load, P′y, is

	 P′y = Kbry Abr Fty  (for Kbry, see Figure 3.8)	 (3.3)

Load for yielding of the bushing in bearing (if used).

	 P′bry = 1.85 Fcy Abrb	 (3.4)

where Fcy = compressive yield stress of the bushing material.

For the shear pin bending stress see Section 3.7.

Curve 1.
4130, 4140, 4340, and 8630 steel.
2014-T6 and 7075-T6 plate ≤ 0.5 in (12.7 mm) (L, T).
7075-T6 bar and extrusion (L).
2014-T6 hand-forging billet ≤ 144 in2 (92903 mm2) (L).
2014-T6 and 7075-T6 die forgings (L).

F
W

e

d Load

0
1.00 1.50 2.00 2.50 3.00

W/d
3.50 4.00 4.50 5.00

0.10

0.20

0.30

K t

0.40

0.50

0.60

0.70

0.80

0.90

1.00

7

6

5
4

3
2

1

8

FIGURE 3.6  Effect of grain direction subject to axial load. L, T, N indicates the grain direction “F” in 
sketch; L = Longitudinal; T = Long transverse; N = Short transverse (normal).
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89Design and Analysis of Lugs and Shear Pins

Curve 2.
2014-T6 and 7075-T6 plate > 0.5 in, ≤ 1.0 in (>12.7 mm, ≤25.4 mm).
7075-T6 extrusion (T, N).
7075-T6 hand-forged billet ≤ 36 in2 (23226 mm2) (L).
2014-T6 hand-forged billet > 144 in2 (92903 mm2) (L).
2014-T6 hand-forged billet ≤ 36 in2 (23226 mm2) (T).
17-4 PH
17-7 PH-THD.

Curve 3.
2024-T6 plate (L, T).
2024-T4 and 2024-T42 extrusion (L, T, N).

Curve 4.
2024-T4 plate (L, T).
2024-T3 plate (L, T).
2014-T6 and 7075-T6 plate > 1.0 in (25.4 mm).
2024-T4 bar (L, T).
7075-T6 hand-forged billet > 36 in2 (23226 mm2) (L).
7075-T6 hand-forged billet ≤ 16 in2 (10323 mm2) (T).

Curve 5.
195T6, 220T4, and 356T6 aluminium alloy casting.
7075-T6 hand-forged billet > 16 in2 (10323 mm2) (T).
2014-T6 hand-forged billet > 36 in2 (10323 mm2) (T).

Curve 6.
Aluminium alloy plate, bar, hand forged billet and die forging (N).
Note: for die forgings, N direction exists only at the parting plane.
7075-T6 bar (T).

Curve 7.
18-8 stainless steel, annealed.

Curve 8.
18-8 stainless steel, full hard.
Note: for 1/4, 1/2, and 3/4 hard interpolate between curves 7 and 8.

In Figure 3.7, curve A is a cutoff to be used for all aluminum alloy hand-forged billets when the 
long-transverse grain direction has the general direction G. Curve B is to be used for all aluminum 
alloy plate, bar, and hand-forged billets when the short-transverse grain direction has the general 
direction G, and for die forgings when the lug contains the parting plane in a direction approxi-
mately normal to the direction G.

In addition to the limitations provided by curves A and B, in no event shall a Kbr greater than 
2.00 be used for lugs made from 12.7 mm thick or thicker aluminum alloy plate, bar, or hand-forged 
billets. (See Figure 3.8.)
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0
0.60 1.000.80 1.401.20 1.801.60 2.202.00

e/d
2.602.40 2.80 3.203.00 3.603.40 4.00

30

20
25
15

10
9
8

d/
t
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4

3
2

3.80

0.20
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0.60

0.80
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FIGURE 3.7  Shear efficiency factor Kbr.

0
0 1.00 2.00 3.00 4.00

e/d

0.50

1.00

1.50

2.00

2.50

 K
br

y

FIGURE 3.8  Factors for calculating yield axial loads attributable to shear bearing of lug and pin.
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91Design and Analysis of Lugs and Shear Pins

3.4  �ANALYSIS OF LUGS WITH TRANSVERSE LOADING: ALLOWABLE LOADS

In the case where the loading being applied to the lug is at α = 90°, as in Figure 3.9, the loading 
is treated as transverse. In order to determine the ultimate and yield loads for the lug, the shape 
of the lug must be taken into account. This is accomplished by the use of a shape parameter 
given by

	
Shape parameter = Aav

Abr

where
Abr	= the bearing area = dt
Avr	 = the weighted average area given by:

A

A A A A

vr =






+ 





+ 





+ 





6
3 1 1 1

1 2 3 4


A1, A2, A3, and A4 are areas of the lug sections indicated in Figure 3.9.
Obtain the areas A1, A2, A3, and A4 as follows: A1, A2, A3, and A4 are measured on the planes 

indicated in Figure  3.9(a) (perpendicular to the axial center line), except that in a necked lug 
(Figure 3.9(c)). A1 and A4 should be measured perpendicular to the local centerline.

A3 is the least area on any radial section around the hole. Since the choice of areas and the 
method of averaging has been substantiated only for the lugs of the shapes shown in Figure 3.10, 
thought should always be given to ensure that the areas A1, A2, A3, and A4 adequately reflect the 
strength of the lug.

A4

A1 A2

A3
A4

A1 A2

A345°

45°

A4

A
A2

A3

Note:
Stress concentration at
neck not covered by this
analysis.

(a) (b) (c)

FIGURE 3.9  Transverse areas calculations.

FIGURE 3.10  Substantiated lug shapes.
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Obtain the weighted average of these areas using

	

A

A A A A

vr =






+ 





+ 





+ 





6
3 1 1 1

1 2 3 4


Compute:

	
A dt and A

Abr
av

br
= ,   

Determine the allowable ultimate load:

	

′P = K A F    

P = Allowable ultima

tru tru br tux

tru tte load as determined for the transverse looad.

K = Efficiency factor for transversetru   load (ultimate) (see Figure 3.11).

A = Prbr oojected bearing area.

F = Ultimate tensiltux ee strength of the lug material across the ggrain.   

where:

Yield load P′y of the lug:

Obtain Ktry from Figure 3.11.

	 P′y = Ktry Abr Ftyx

where:

	 P′y	=	Allowable yield load on the lug
	Ktry	=	Efficiency factor for transverse load (yield); see Figure 3.11
	Abr	=	Projected bearing area
	Ftyx	=	Tensile yield stress of lug material across the grain

Determine the allowable yield-bearing load on the bushing using

	Pbry	=	1.85 FcyAbrb

where:

	Pbry	=	Allowable yield-bearing load on bushing
	Fcy	=	Compressive yield stress of bushing material
	Abrb	=	The smaller of the bearing areas of bushing on pin or bushing on lug (the latter may be 

smaller as a result of external chamfer on the bushing)

In Figure 3.11 all curves are for Ktru except for the one noted as Ktry.
Note that the curve for 125,000 HT steel agrees closely with test data. Curves for other materials 

have been obtained by the best available means of correcting for material properties and may pos-
sibly be very conservative in some places.
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93Design and Analysis of Lugs and Shear Pins

In no case should the ultimate transverse load be taken as less than that which can be carried by 
cantilever beam action of the portion of the lug under the load (Figure 3.12). The load that can be 
carried by cantilever beam action is indicated very approximately by curve A in Figure 3.7; should 
Ktru be below curve A, separate calculations, as a cantilever beam, are warranted.

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

K t
ru

 an
d 

K t
ry

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Aav/Abr

0.8 0.9 1.0 1.1 1.2 1.3 1.4

7075-T6 hand forged billet > 0.0103 m2 (16 ins2).
2014-T6 hand forged billet > 0.023 m2 (36 ins2). 

2014-T6 and 7075-T6 plate > 25 mm (1.0 ins).
7075-T6 hand forged billet ≤ 0.0103 m2 (16 ins2). 

2024-T6 plate
2024-T4 and 2024-T42 extrusion.

2014-T6 and 7075-T6 plate > 12.7 mm (0.5 ins), ≤25 mm (1.0 ins).
7075-T6 extrusion.
2014-T6 hand forged billet ≤ 0.023 m2 (36 ins2).
2014-T6 and 7075-T6 die forging.

2014-T6 and 7075-T6 plate ≤ 12.7 mm (0.5 ins)
Curve 1

Curve 4

Curve 5

Curve 3

Curve 2

Note:

5

4

3
2

1

4130 Steel
H.T. = 125 ksi

H.T. = 150 ksi

Ktry for all
aluminum and steel

H.T. = 180 ksi

2024-T3-T4 plate
t ≤ 0.5 in

356-T6

Curve A-approximate
cantilever strength, if

Ktru is below this curve,
see Fig. 7.5.10.

2024-T3 or -T4
plate > 0.5 in
2024-T4 bar

FIGURE 3.11  Efficiency factor for transverse load Ktru. 

P

FIGURE 3.12  Lug as a cantilever carrying load.
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Investigate pin bending as for axial load (see Section 3.6) with the following modifications:

Take (P′u) min = P′tru.

In the equation:

	
r = 

e – d
2

t
  use for the e – d

2











 











 term the edge distance at a =  90°

3.5  OBLIQUE LOADING: ALLOWABLE LOADING

In the analysis of lugs subject to oblique loading it is convenient to resolve the loading into axial 
and transverse components; these are denoted by subscripts a and tr, respectively (see Figure 3.13). 
The two cases are analyzed separately and utilize the results by means of an interaction equation. 
The interaction equation:

	 R Ra tr
1 6 1 6 1. .+ =

where Ra and Rtr are ratios of applied to critical loads in the indicated directions, is to be used for 
both ultimate and yield loads for both aluminum and steel alloys.
where, for ultimate loads:

	

R axial component of applied ultimate load
a =

ssmaller of P and P  (from Equations bru tu′ ′ 33.1 and 3.2)

R transverse component of ap
tr = pplied ultimate load

P  (from analysis prtru′ oocedure for a = 90 )o

and for yield load:

	

R axial component of applied yield load
Pa

y
=

′   (fom Equation 3.3) 

R transverse compone
tr = nnt of applied yield load

P  (from analystry′ iis procedure for a = 90 )o

Ra

Rtr 
Oblique
loading

FIGURE 3.13  Oblique loading.
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95Design and Analysis of Lugs and Shear Pins

3.5.1  �Analysis Procedure

Resolve the applied load into axial and transverse components and obtain the lug ultimate and yield 
margins of safety from the interaction equation.

	

MoS
R Ra tr

.
. . .=

+ =( )
−1

1
1

1 6 1 6 0 625

Check pin shear and bushing yield as in Section 3.7.
Investigate pin bending using the procedure for axial load modified as follows:

	

( )min . . .′ =
+ =( )

P P
R R

u
a tr

  
1 6 1 6 0 625

1

In the equation

	

e d
t

− ( ) 2

use for the [e–(d/2)] term the edge distance at the value of α corresponding to the direction of the 
load acting on the lug.

3.5.2  �Out-of-Plane Loading

In general lugs should not be subject to out-of-plane loading; however, if there is a small compo-
nent in the RZ direction (Figure 3.14), then it is advisable to check the minimum section for com-
bined bending and shear. This check may be incorporated into the oblique load interaction formula 
detailed in Section 3.5.1.

The allowable load in the out-of-plane (RZ) direction at section A:A in Figure  3.14 can be 
expressed as

	

P W d t F

d
K t

F
F

z
h tu

h tu

su

=
−( )





 + 





· ·

3 2 2 
 













A

A

dh/2

Px

Py

Px, Py

P
Pz

θ

FIGURE 3.14  Out-of-plane loading, load direction, and bending section.
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96 Design Engineer's Handbook

where K is the form factor for bending. The allowable oblique load becomes

	

P
Cos Cos

P
Cos Sin

ux

=
( ) ( )





+ ( ) (
1

1 6
θ α θ α

 min

. ))





+ ( )















P

Sin
Puy z

1 6 1 6 0 6. . .
θ

225

Estimate the oblique angle θ. Generally, if no design data are available, the oblique angle may be 
assumed to be at least 10° to allow for any misalignment, etc.

3.6  �BEARING AT LUG-TO-PIN OR -BUSH INTERFACE

The allowable bearing loads at the lug-to-pin interface are given below. A combined shear tear-out and 
bearing check has previously been performed for axial, transverse, and oblique loadings, respectively. 
However, this check may be a separate requirement, particularly for lugs subject to compression.

MIL HDBK 5 provides values of allowable ultimate and yield-bearing stress for (a/d) values of 
1.5 and 2.0, valid for values of (d/t) up to 5.5. Bearing allowables for other values of (a/d) can be 
estimated by linear interpolation, as shown below.

	

a
d

range

a
d

Equation for bearing strength

0 5. < ≤ 11 5 0 5

1 5 2 0

1 5. .

. .

.F a
d

F

a
d

F F

br br

br

n

n

= −





< < = bbr br br

br

a
d

F F

a
d

F n

1 5 2 1 52 1 5

2 0

. ..

.

+ −



 −( )

≥ == Fbr2
	

Ultimate bearing:

	 P F d tbru bru pin= · ·

Yield bearing:

	 P F d tbry bry pin= · ·

Note that the dimension a, the distance from the center of the hole to the edge of the lug, is denoted 
as e in MIL HDBK 5.

3.7  �SHEAR PIN ANALYSIS

3.7.1  �Shear Pin Bending in Double Shear Joint

In static tests of a single bolt fitting, failure of the shear pin due to bending failure will not be shown 
to be a factor in the failure of the lug. However, it is important to provide sufficient bending strength 
to ensure permanent bending deformation does not occur when subject to the limit loads so that the 
shear pin can be readily removed for inspection and maintenance operations.
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97Design and Analysis of Lugs and Shear Pins

Weakness in the shear pin can cause peaking up non-uniform-bearing loads on the lugs, influ-
encing the lug tension and shear strength. The big unknown factor in shear pin bending is the true 
value of the bending moment acting on the pin because the moment arm to the resultant bearing 
forces is difficult to quantify.

An approximate method that is commonly used to determine the moment arm on the shear pin 
in a double shear joint is shown below:

	 Moment arm ( ) . .b t t d= + +0 5 0 251 2

If there is no gap (δ = 0) between the lug faces (see Figure 3.15) the moment arm is taken as

	 b t t= +0 5 0 251 2. .

The applied shear pin bending moment is given by

	
m b P= ×

2

where P is the minimum failure load for the center lug or twice that of the outer lugs, and b is the 
moment arm (see Figure 3.15). It is assumed that the maximum shear pin load is the minimum lug 
failure load.

Calculate bending stress from

	
σm

M
Z

=

where

Z d

M

=

=

π
32

3

Bending moment

If the pin strength is found to be inadequate by the above check, then use may be made of the 
tendency of the pin loads to peak near the shear faces, thereby reducing the bending moment arm.

P/2 P/2

P

b

t1

δ δ

t2/4

t2 t1

FIGURE 3.15  Pin moment arm.
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98 Design Engineer's Handbook

No peaking in the outer lugs can occur unless a substantial head or nut bears firmly on the outer 
lugs. The reduction in the moment arm will apply only to the central lug.

A reduction in the shear pin bending up to 25% can be expected.

3.7.1.1  �Shear Pin Bending: Load Peaking between Center Lug and Pin
If it is desired to take into account the reduction of pin bending that results from load peaking, 
as shown in Figure 3.16, the moment arm is obtained as follows: Calculate the inner lug r (use db 
instead of d, if bushing is used).

	
r

a
D

D

t
=





 −





1
2

2

Take the smaller of Pbru and Ptu for the inner lug as (Pu)min and calculate

	

P
A F

u

br tux

( )min

From Figure 3.17 using 
P

A F
u

br tux

( )min  and r obtain the reduction factor γ for peaking and calculate the 
moment arm.

The maximum bending moment in the shear pin:

	
h t t= 



 + + 





1 2

2 4
δ γ

and calculate the bending stress in the shear pin that results from M, assuming an MD/2I distribu-
tion (where I = moment of Inertia of the pin) and its Margin of Safety (MoS) as:

	 MoS

MD
I

Fb
=





 −2 1

where Fb = the Modulus of Rupture determined from Figure 3.18 or other sources.

	
M P hu=

2

Pu/2 Pu/2

t1 t2

t1

δ

t1

t1
γt2

h

Pu/2Pu/2

FIGURE 3.16  Pin moment arm with clearance.
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99Design and Analysis of Lugs and Shear Pins

3.7.1.2  �Shear Pin Bending, Including Excess Strength of Lug
This approach should only be used if there is an excess margin in the strength of the lug and the pin 
is still inadequate.

In this circumstance it may be assumed that a portion of the lug thickness in the joint is inactive 
(see Figure 3.19). The active thicknesses are chosen by trial and error to give approximately equal 
margins of safety (MoS) for the lug and the pin.

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(Pu)min/AbrFmu

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0.1
0.2
0.3
0.4

γ

0.5
0.6
0.7
0.8
0.9
1.0

a – D/2 

t2

D

r = = –a – (D/2)
t2

D
t2

a
D

1
2

0.02
0.04

0.06
0.08

0.10

0.15
0.20

0.25
0.30

0.35
0.40

0.45
0.50

0.55
r

FIGURE 3.17  Peaking factors for pin bending. (Dashed lines indicate where the theoretical curves are not 
substantiated by test data.)

0
0

500

1000

1500

620 MPa
655 MPa

860 MPa

1030 MPa

1240 MPa
1380 MPa
1500 MPa
1650 MPa
1800 MPa

σ m
u M

Pa

2000

2500

3000

10 20 30
d/t

40 50 60

d

t

FIGURE 3.18  Bending Modulus of Rupture.
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100 Design Engineer's Handbook

Using the smaller of

	

2c
d R

t

tu

λ

and

	

2a
d R

s

tu

λ

for the inner lug, obtain the reduction factor γ for peaking where:

	
r a d

ta
= − 2

and ta is the active thickness shown in Figure 3.19(a), noting that γ applies only to the inner lug. Calculate 
the moment arm h as indicated below:

Maximum shear pin bending moment as bM P hu=
2

eefore.

If the eccentricity occurs in an outer lug (see Figure 3.19b), the structure must be capable of 
withstanding the induced bending; otherwise, the shear pin must be strong enough for the analysis 
by the method given in Section 3.7.1.1.

3.7.2  �Pin Shear

The allowable shear load for a solid shear pin in a double shear joint:

	 P K F AS s s pin=

= =

h

Pu/2 Pu/2

Pu/2

t2

ts

ta
γta/4

Eccentricity

(a) (b)

ts = Shaded inactive thickness

ta = Active thickness = t2 – ts

Pu/2Pu/2

FIGURE 3.19  Load peaking.
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101Design and Analysis of Lugs and Shear Pins

where

	
A d

pin
pin= ×  π 2

4

In double shear, the applied load will be the load in the outer lugs or half the load in the center 
lug.

The allowable shear stress Fs is to be factored by Ks to allow for the variation in the ratio (dh/t).
Ksu can be determined from Figure 3.20. Limitations on the use of the curve are as follows:

	

d
t

t th
o i< >4 0 0 75. .       

For a single shear joint the above equation will still apply, but in this case Ksu = 1.0.

3.8  �BUSH ANALYSIS

The allowable yield load on bushing:

	 P F Abry cy brb= 1 85.

where Abrb is the smaller bearing area of the busing on the shear pin or bushing on lug.
The bearing area on the lug may be less if the bushing has been chamfered. Fcy is the allowable 

compressive yield stress on the bush material.

0.70
0 1.00 2.00

dh/t
3.00 4.00

0.75

0.80

K S
U 0.85

0.90

0.95

1.00

FIGURE 3.20  Allowable shear stress factor for pin in double shear.
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102 Design Engineer's Handbook

3.9  �SPECIAL CASES

3.9.1  �Oil Holes

3.9.1.1  �Axial Load
The calculation of Ptux or Pqux, respectively, should be modified depending on the location of the 
lubrication hole (see Figure 3.21). For the modification of these parameters the lug tension and bear-
ing areas should be based on the lug thickness minus the lubrication hole diameter. The value of 
Kqux will need to be recomputed to account for the reduction in thickness.

3.9.1.2  �Transverse Load
Obtain Puy neglecting the lubrication hole and multiply by:

	
0 90 1. −





d
t

Lubrication hole

3.9.1.3  �Oblique Load
In this case proceed as normal and obtain Ttux and Pqux as per Section 3.9.1.1 and obtain Puy as per 
Section 3.9.1.2. Disregard the lubrication hole in calculating the yield margin.

3.9.2  �Eccentric Hole

If the hole is laterally located (see Figure 3.22(a)), i.e., e1 is less than e2, the ultimate and yield lug 
loads are determined by calculating P′bru, P′tu, and P′y for the equivalent lug shown in Figure 3.22(b) 
and multiplying by the factor below:

	
Factor = + +

+
e e d

e d
1 2

2

2
2 2

3.9.3  �Multiple Shear Connection

A shear pin-lug combination having a geometry shown in Figure 3.23 can be solved according to 
the following procedure:

10°

45°60° For hole in this
region, modify
Pqux 

Modify Ptux

Modify Ptux

FIGURE 3.21  Modification of allowable load for the presence of a lubrication hole.
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103Design and Analysis of Lugs and Shear Pins

	 1.	The load carried by each individual lug can be determined by distributing the total applied 
load among the lugs, as shown in Figure 3.23. β is obtained from Table 3.1.

	 2.	The maximum shear load acting on the shear pin is also given in Table 3.1.
	 3.	The maximum bending moment on the shear pin is given by the formula

	
M P= × β

2
where β is given in Table 3.1.

a

e1

e1

d

e1

e2

d

(a) Eccentric hole (b) Equivalent lug

FIGURE 3.22  Equivalent lug for a lug with an eccentric hole

βP´

βP´

P´

P´

P˝

P˝

P˝

PP

Outer lugs equal thickness
not less than βt́

Inner lugs equal
thickness t´


ese lugs equal
thickness t˝

FIGURE 3.23  Multiple shear connections.

TABLE 3.1
Pin Shear and Moment Arms in Multiple Shear Lugs

Number of Lugs
Including Side Lugs β Pin Shear Moment Arm

  5 0.35 0.50 P′ 0.28 (t′ + t″)/2

  7 0.40 0.53 P′ 0.33 (t′ + t″)/2

  9 0.43 0.54 P′ 0.37 (t′ + t″)/2

11 0.44 0.54 P′ 0.39 (t′ + t″)/2

Infinity 0.50 0.50 P′ 0.50 (t′ + t″)/2
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104 Design Engineer's Handbook

3.10  STRESSES DUE TO INTERFERENCE-FIT PINS AND BUSHES

The insertion of circular interference-fit shear pins or bushes of similar or dissimilar materials in 
flat bars, strips, or lugs will introduce elastic stresses in these components. The analysis will be 
treated in two parts: solid shear pins (Section 3.10.1) and bushes (Section 3.10.2).

The method is based upon a two-dimensional analysis and will only give an average stress 
through the thickness of the lug. Local variations away from the average values will most likely be 
nonsignificant unless taper pins are used.

It is assumed that the material will be isotropic (obeys Hooke’s law), but the method can be used 
for most engineering materials without any significant error.

3.10.1  �Solid Circular Interference-Fit Shear Pins

In the case of an interference-fit shear pin fitted in an infinitely wide plate, i.e., dh/W = 0, the cir-
cumferential tensile, radial compressive, and shear stresses will be uniform around the hole.

For a plate of finite width, the stresses will vary around the hole, with the maximum value being 
dependent upon dh/W.

Referring to Figure 3.24, at the points marked B the tensile stress σ, shear stress q, and inter-
ference pressure p will approach the values as determined for a shear pin in an infinite plate. The 
maximum tensile and shear stresses will occur at the points marked A, although the shear stress 
will only be slightly above its value as predicted at points B. The interference pressure will be at a 
maximum at points B and a minimum at points A.

At point A:
Maximum tensile and shear stresses
Minimum pressure

At point B:
Tensile and shear stresses will tend to reach values as predicted for an infinite plate
Maximum pressure

An estimate of the interface pressure at B is given by

	

p
E e

d
W

q
E el

h

l  
= − 















 ×






1
2

Shear stress is given by:

	

q
E e E

E
d
W

l l p

p
l

h

=
+

−( ) − −( )

















1

2
1

1 1
µ

µ – 












2

A

A

B
B

FIGURE 3.24  Points of high stress in bore.
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105Design and Analysis of Lugs and Shear Pins

Tensile stress is given by:

	

  σ
E e

q
E e

d
Wl l

h

· ·
= + 

















1
2

These formulas are derived from a pin in a ring, but they may be used with reasonable accuracy 
for a pin in a lug provided (dh/W) < 0.8.

3.10.2  �Interference-Fit Bushes

In the following analysis db is the bush internal diameter and K is the bush shape factor.
The maximum tensile stress occurs at the points marked A in Figure 3.24. The maximum shear 

stress is given by

	
q p

max =
+( )σ
2

The form of the end of a bushed lug affects the interference pressure and maximum stress. 
Figure 3.25 provides a correction factor to (dh/W) for the effect of round- and square-ended lugs.

The interference pressure is given by

	

p
E e K d W

K d W
El h

h
l

l
  

 

=
+ ( )
− ( )













+ +

1
1
1

2

2
/
/

µ
EE

d d
d db

b h

b h
b

1
1

2

2
+ ( )
− ( )

−












/
/

µ

0
0 0.1 0.2 0.3 0.4

dh/W
0.60.5 0.7 0.8

0.1

0.2

K.
 d

h/
W

0.3

0.4

0.5

0.6

0.7

0.8
Round-ended lugs:
Square-ended lugs:

FIGURE 3.25  Bush shape factor.
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and tensile stress is given by:

	

σ
E e

p
E e

d d
d dl l

b h

b h
=

+ ( )
− ( )













1
1

2

2
/
/

3.11  �STRESS CONCENTRATION FACTOR AT LUG-TO-PIN INTERFACE

The method presented in this section is to determine the axial failure factor, Ktux.
For axially loaded lugs the stress concentration at the lug-to-pin interface is defined by the fol-

lowing equation:

	
K K K K Ke e th= + −( )( )0 2 100 0 2. .η

where:
	Ke	 =	 Hole stress concentration factor for lugs with e percent clearance
	K0.2	 =	 Stress concentration factor for 0.2% dh clearance; refer to Figure  3.26 for round and 

square-ended lugs
	K100	=	 Stress concentration factor for point loading; refer to Figures 3.26 and 3.27 for round and 

square-ended lugs (e ≤ 0.1 dh)
	ηe	 =	 Lug-to-pin clearance correction factor; refer to Figure 3.29
	Kth	 =	 Lug thickness factor from Figure 3.30

In the case of square-ended lugs (e < 0.1% dh) Ke may be determined from Figure 3.28.
This case represents a practical lower limit to the stress concentration.

3.12  �EXAMPLES

In this example, a fitting (Figure 3.31) will be considered. This comprises of two lugs that connect to 
two struts. The fitting is used in an engine nacelle and is subject to engine heat.

2.0
0 0.1 0.2 0.3 0.4

dh/W
0.70.5

2.5

3.0

K e 3.5
0.6

0.4

0.5

0.6

Infinity

4.0 0.5

4.5 0.4

5.0
a/W

K(0.2)
K(100)

FIGURE 3.26  Stress concentration factor for round lugs.
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107Design and Analysis of Lugs and Shear Pins

Considering the dimensional and material properties of the lug:

Principal Lug Dimensions
a	 =	 30.0 mm
c	 =	 22.00 mm (a – dh/2)
dh	 =	 17.50 mm (hole diameter with bush) (included for repairability)
d	 =	 16.00 mm (hole diameter without a bush)
W	=	 60.00 mm

1.5
0.1 0.2 0.3 0.4 0.5

dh/W
0.7 0.80.6

2.5

3.0

K e

3.5

0.5
1.0
Infinity

4.0

4.5

5.0

2.0

a/W

FIGURE 3.27  K0.2 stress concentration factor for square lugs.

1.5
0.1 0.2 0.3 0.4 0.5

dh/W
0.7 0.80.6

2.5

3.0

K e

3.5

0.5

1.0

Infinity

4.0

4.5

5.0

2.0

a/W

FIGURE 3.28  K(e < 0.1) stress concentration factor for square lugs.D
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–0.30
0.01 0.1 1.0

e, Pin to Hole Clearance as % of Hole Diameter.
100.010.0

–0.10

0

η

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

–0.20

Note: At clearnace >10%
conditions are similar to

point loading.

Surface finish and
non-circularity effects
can cause considerable

FIGURE 3.29  Correction factor for pin to hole clearance.
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0.1 0.5 1.0 1.5 2.0

t/dh
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K t
h

1

3

2.5

1.5

FIGURE 3.30  Effect of lug thickness.
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109Design and Analysis of Lugs and Shear Pins

R 	 =	 30.00 mm (W/2)
t 	 =	 7.50 mm
r 	 =	 8.75 mm (dh/2)

Material properties and operating temperatures:

Material: 15-5PH Stainless Steel Bar/Forging (AMS 5659) Heat Treated to H1025

The in-flight operating temperature in the engine nacelle Top 	 = 150°C
Ultimate tensile stress with thermal factor for 150°C Ftu 	 = 972.51 MPa
Yield tensile stress with thermal factor for 150°C Fty 	 = 909.42 MPa
Yield compressive stress with thermal factor for 150°C Fcy 	 = 877.50 MPa
Ultimate shear stress with thermal factor for 150°C Fsu 	 = 608.60 MPa
Ultimate bearing stress with thermal factor for 150°C Fbru 	= 1,650.12 MPa
Yield-bearing stress with thermal factor for 150°C Fbry 	= 1,323.86 MPa
Young’s modulus at 150°C E 	 = 192.57 GPa

The table above summarizes the material properties used for the construction of the lug, and the 
allowables cover both longitudinal and transverse directions. Therefore, the analysis does not have 
to consider grain directions.

Note that the shear pin is made up of a nut-and-bolt assembly.

Summary of Allowables’ Nut and Bolt Strengths

Bolt maximum ultimate shear	 32.47 N
Bolt maximum ultimate tension	 45.37 N
Nut maximum ultimate tension	 32.87 N

The bolt is manufactured from A286, and at the operating temperature of 150°C, there is no 
temperature knock-down factor to be applied.

220.00 Centers

16.00 Dia’

Line of force

60
.0

0
75

.0
0

75
.0

0
22

.00

30.00

t = 7.50

Typ
18.82°

FIGURE 3.31  Detail of fitting.
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110 Design Engineer's Handbook

Consider the axial tension acting on the lug. From Figure 3.31 it is clearly seen that the load act-
ing on the lug is considered to be axial. The nominal load is

	 Ptensile = 76.33kN tensile
and
	 Pcompresssive = 76.70kN compressive

This analysis will consider the bore to be fitted with a bush, as this will give the minimum strength 
in the ligaments of the lug.

The fitting factor (ff) used throughout this analysis is 1.15.
From Figure 3.34,

a	 = 30.00 mm
dh	= 17.50 mm
t	 = 7.50 mm

Hence:

a/dh 	= 1.875
dh/t 	= 2.133

The allowable axial load:

	

P K F A

P MPa m

tu t tu t

tu

= × ×

= × ×0 9231 972 51 318 75. . .  mm

P Ntu

2

285498 5= .  

          

RF P
F ff

N
N

RF

t

a
=

×

=
×

=

  
 

285498 5
76330 1 15

3 25

.
.

.
Consider the allowable shear-bearing load. 
Kbr is first deduced from Figure 3.7.

	 e/d = 1.87

	 d/t = 2.133

	

P K A F

mm MPa

qu br br tu= × ×

= × ×

 

 1 824 131 25 972 512. . .

PP Nqu = 232818 89.

          

RF P
F ff

N
N

RF

qu

a
=

×

=
×

=

  
 

232 819
76330 1 15
2 65

.
.

.

Consider the yield/proof of the lug. This section checks the minimum proof strength for either 
tension or shear bearing. (The critical bore size used is dh, with bush included).

where:
	Ppx	 =	 Allowable yield load in the axial direction
	Kbry	=	 Axial yield factor
	Fty	 =	 Minimum allowable tensile yield stress, with respect to the grain direction in plane of the lug
	Ftu	 =	 Minimum allowable ultimate tensile stress, with respect to the grain direction in plane of 

the lug

D
ow

nl
oa

de
d 

by
 [

M
ot

ila
l N

eh
ru

 N
at

io
na

l I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

A
lla

ha
ba

d]
 a

t 0
9:

48
 2

9 
D

ec
em

be
r 

20
13

 



111Design and Analysis of Lugs and Shear Pins

P K F
F

P Ppx bry
ty

tu
tu qu= × × ( ),   (This is checked  for the larger of P and P )

 (

tu qu

Kbry = 1 586. ffrom Figure 3.8)
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FF = 4 824.

FURTHER READING

Cozzone, F.P., Melcon, M.A., and Hoblit, F.M. Analysis of lugs and shear pins made from aluminum or steel 
alloys. Product Engineering 1950.

Melcon, M.A., and Hoblit, F.M. Developments in the analysis of lugs and shear pins. Product Engineering 1953.
Niu, Michael C. Airframe structural design. Hong Kong: Conmilit Press Ltd., 1999.
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4 Mechanical Fasteners

4.1  �THREADED FASTENERS

This chapter covers threaded fasteners. These are a very flexible method for attaching components 
as they allow future easy disassembly.  Threaded fasteners are designed principally for tensile loads 
but will accept a small level of shear load. This chapter begins with a general description of threads 
and then progresses to cover pre-tension diagrams, and so forth. 

4.2  �BASIC TYPES OF THREADED FASTENERS

Bolt
A bolt is a threaded fastener that passes through clearance holes in mating members and is 

secured with a nut at the end opposite the head of the bolt (Figure 4.1).
Screw
A screw is a threaded fastener that passes through a clearance hole in one member and into a 

threaded hole in the other mating member (Figure 4.2).
Threaded fasteners are available in a wide variety of head shapes (Figure 4.3), including some 

of the following.

4.3  �THREAD STANDARDS

There are several national and international standards covering fastener threads. These include 
those listed in Table 4.1.

4.4  �THREAD PROFILES

The pitch line or diameter is located at 0.5 the height of the theoretical sharp v-thread profile 
(Figure 4.4).

4.5  �THREAD SERIES

The number of threads per unit length distinguishes groups of diameter-pitch combinations from 
each other when applied to a specific diameter.

ISO Metric Series. Metric system of diameters, pitches, and tolerance/allowances. This sys-
tem is now the most common thread system in Europe and many parts of the world. There 
are two series of metric thread: metric coarse and metric fine.

Unified Coarse Thread Series (UNC). Most commonly used in the majority of bolts, screws, 
and nuts in general engineering applications. This system is most commonly used in the 
United States and in Europe on old designs not yet converted to metric systems.

Unified Fine Thread Series (UNF). This system is used when there is a requirement for a 
finer pitch of thread, i.e., when the length of thread engagement is restricted.

Unified Fine J Series (UNJ). This series offer a finer pitch than that of the UNF series. Its 
most common application is in the aerospace industry.
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TABLE 4.1
National and International Standards

Country Standard Number Description

UK BS 3643 ISO metric screw threads

UK BS 1500 Unified thread series

U.S. B1.1-1949 Unified threads

U.S. ANSI B1.1-1989/ASME B1.1-1989 Revision to B1.1-1949

U.S. ANSI B1.13M-1983 (R1989) Metric threads (M series)

FIGURE 4.1  Bolt.

FIGURE 4.2  Screw.

Counter sunk head screwSocket head cap screw Pan head screw

FIGURE 4.3  Types of heads.
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115Mechanical Fasteners

4.6  �THREAD DESIGNATIONS

4.6.1  �Metric Series

The following is an example of how a metric thread combination is described in a drawing or 
a specification.

M6 × 1.0p – 4g6g

Metric series

Nominal
diameter Pitch

Tolerance
Classification 

4.6.2  �Imperial (Inch Series)

The following is how an imperial thread combination is called up on a drawing or a specification.

1/4 - 20UNC – 2A

Nominal
size


reads
per inch


read
series


read
class

External
thread

Critical external
thread tensile

plane (ASME B1.1)

P

60°

Gap

Pitch line

3 
H

/1
6

0.
37

5 
H

0.
50

 H

H

In
ter

na
l t

hr
ea

d

Ex
ter

na
l t

hr
ea

d

FIGURE 4.4  Typical thread profile.
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TABLE 4.2
ISO Metric Course Thread

Size 
Designation

Nominal 
Major 

Diameter
mm

Pitch 
Diameter

mm

Effective 
Diameter

mm

Minor 
Diameter

mm

Minor 
Diameter 

Area
mm2

Depth
mm

Shear Area

External
mm2

Internal
mm2

M3   3.00 0.50   2.675   2.387     4.473 0.307

M3.5   3.50 0.60   3.110   2.764     6.000 0.368   4.674   6.606

M4   4.00 0.70   3.545   3.141     7.750 0.429   5.473   7.768

M5   5.00 0.80   4.480   4.018   12.683 0.491   7.073   9.997

M6   6.00 1.00   5.350   4.773   17.894 0.613   8.645 12.189

M8   8.00 1.25   7.188   6.466   32.841 0.767 12.160 16.826

M10 10.00 1.50   9.026   8.160   52.292 0.920 15.578 21.473

M12 12.00 1.75 10.863   9.853   76.247 1.074 18.975 26.113

M14 14.00 2.00 12.701 11.546 104.710 1.227 22.422 31.028

M16 16.00 2.00 14.701 13.546 144.120 1.227 26.095 35.563

M18 18.00 2.50 16.376 14.933 175.135 1.534 29.525 40.754

M20 20.00 2.50 18.376 16.933 225.189 1.534 33.276 45.379

M22 22.00 2.50 20.376 18.933 281.527 1.534 37.027 50.004

M24 24.00 3.00 22.051 20.319 324.274 1.840 40.458 54.999

M27 27.00 3.00 25.051 23.319 427.095 1.840 46.169 62.997

M30 30.00 3.50 27.727 25.706 518.990 2.147 51.633 69.537

M33 33.00 3.50 30.727 28.706 647.195 2.147 57.419 76.603

M36 36.00 4.00 33.402 31.092 759.274 2.454 63.091 84.043

Note:	 All dimensions in mm.

TABLE 4.3
UNC Threads

Core Diameter
Effective 
DiameterDesignation O Diameter Nut Bolt Pitch Depth

1/4—20 UNC 0.2500 0.1959 0.1887 0.05000 0.03067 0.2175

5/16—18 UNC 0.3125 0.2524 0.2443 0.05556 0.03408 0.2764

3/8—16 UNC 0.3750 0.3073 0.2983 0.06250 0.03834 0.3344

7/16—14 UNC 0.4375 0.3602 0.3499 0.07143 0.04382 0.3911

1/2—13 UNC 0.5000 0.4167 0.4056 0.07692 0.04719 0.4500

9/16—12 UNC 0.5625 0.4723 0.4603 0.08333 0.05112 0.5084

5/8—11 UNC 0.6250 0.5266 0.5135 0.09091 0.05577 0.5660

3/4—10 UNC 0.7500 0.6417 0.6273 0.10000 0.06134 0.6850

7/8—9 UNC 0.8750 0.7547 0.7387 0.11111 0.06816 0.8028

1.0—8 UNC 1.0000 0.8647 0.8466 0.12500 0.07668 0.9188

1 1/8—7 UNC 1.1250 0.9704 0.9497 0.14286 0.08763 1.0322

1 1/4—7 UNC 1.2500 1.0954 1.0747 0.14286 0.08763 1.1572

1 3/8—6 UNC 1.3750 1.1946 1.1705 0.16667 0.10224 1.2667

1 1/2—6 UNC 1.5000 1.3196 1.2955 0.16667 0.10224 1.3917

1 3/4—5 UNC 1.7500 1.5335 1.5046 0.20000 0.12269 1.6201

2—4 1/2 UNC 2.0000 1.7594 1.7274 0.22222 0.13632 1.8557

Note:	 All dimensions in inches.
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117Mechanical Fasteners

4.7  �MATERIAL AND STRENGTH DESIGNATIONS

TABLE 4.4
Metric Grades of Steels for Fasteners

Grade Fastener Size
Tensile Strength 

MPa
Yield Strength 

MPa
Proof Strength 

MPa

  4.6 M5 to M36 400 240 225

  4.8 M1.6 to M16 420 340a 310

  5.8 M5 to M24 520 415a 380

  8.8 M16 to M36 830 660 600

  9.8 M1.6 to M16 900 720a 650

10.9 M6 to M36 1,040 940 830

12.9 M1.6 to M36 1,220 1,100 970

a	 Yield strength is approximate and is not included in the standard.

TABLE 4.5
SAE Grades of Steels for Fasteners

Grade 
Number

Fastener Size 
(in)

Tensile Strength 
(ksi)

Yield Strength 
(ksi)

Proof Strength 
(ksi)

Head 
Marking

1 1/4 to 11/2   60   36   33 None

2 1/4 to 3/4   74   57   55 None

>3/4 to 11/2   60   36   33

4 1/4 to 11/2 115 100   65 None

5 1/4 to 1.0 120   92   85 3 points

>1.0 to 11/2 105   81   74

7 1/4 to 11/2 133 115 105 5 points

8 1/4 to 11/2 150 130 120 6 points

TABLE 4.6
ASTM Standard for Fastener Steels

ASTM Grade
Fastener Size 

in.
Tensile Strength 

(ksi)
Yield Strength 

(ksi)
Proof Strength 

(ksi)
Head 

Marking

A307 1/4 to 4   60   —   — None

A325 1/2 to 1 120   92   85 A325

>1.0 to 1 1/2 105   81   74

A354-BC 1/4 to 2 1/2 125 109 105 BC

A354-BD 1/4 to 2 1/2 150 130 120 6 points

A449 1/4 to 1.0 120   92   85

> 1.0 to 1 1/2 105   81   74

>1 1/2 to 3.0   90   58   55

A574 0.060 to 1/2 180   — 140 (Socket head

5/8 to 4.0 170   — 135 cap screws)
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118 Design Engineer's Handbook

4.8  �TENSILE AND SHEAR STRESS AREAS

4.8.1  �Tensile Stress Area

The average axial stress in a fastener is calculated using a tensile stress area (Figure 4.5).
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where
fave	=	Average axial stress
F	 =	Axial force
Dr	 =	Root diameter
Dp	 =	Pitch diameter
At	 =	Tensile stress area

An unthreaded rod having a diameter equal to the mean of the pitch diameter and minor diam-
eter will have the same tensile strength as the threaded rod.
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FIGURE 4.5  Tensile stress area.
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119Mechanical Fasteners

where
Dt	=	 Diameter at critical plane
db	 =	 Diameter of fastener
H	 =	 Theoretical height of thread
n	 =	 1/p (threads per unit length)

This is the formula used by manufactures of imperial fasteners to publish the tensile area in 
their catalogs.

	
A d

nt b= −



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π
4

0 9328 2.

This formula is used to obtain a similar result for metric threads.

4.8.2  �Shear Area of External Threads

The interaction between mating threads needs to be considered to establish the shear area of an 
external thread (Figure 4.6).
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FIGURE 4.6  Shear area of external thread.
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where:
As,c 	 =	Shear area of external thread
Kn,max	=	Maximum minor diameter of internal thread
te 	 =	Thickness of external thread at critical shear plane
n 	 =	Threads per unit length

The gap equation is based on the tolerance data:

Es,min	 =	Minimum pitch diameter of the external thread
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This equation is in the British Standards (BS) and American National Standards Institute (ANSI) 
standards and gives the shear area per unit length of engagement, Le, to obtain the actual shear area.
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4.8.3  �Shear Area of Internal Threads

	 A D t ns i s i, ,min· · ·= π

where:
Ds,min 	=	Minimum major diameter (external thread)
ti 	 =	Thickness of internal thread (critical plane)

Similar to the previous derivation, the shear area of an internal thread (Figure 4.7) can be derived 
by taking into account the tolerances of the thread system.

	
A D n

n
D Es i s s n, ,min ,min ,max· · ·= + −( )





π 1
2

1
3

En,max	 =	Maximum pitch diameter of the internal thread

4.9  �LENGTH OF ENGAGEMENT

The length of engagement is considered the number of threads in engagement in either a nut or 
component multiplied by the thread pitch.

4.9.1  �Length of Engagement Using Equal Strength Materials

If the external and internal thread materials have the same strengths, then:
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121Mechanical Fasteners

Tensile strength (external thread) S F
At

t
= max

SShear strength (internal thread) 0 5. max
St

F=
AA L

F S A S A L

L

s i e

t t t s i e

e

,

max ,

·

. · ,= =

=

0 5

2Hence: AA
A

t

s i,

4.9.2  �Length of Engagement Using Dissimilar Strength Materials

If the external and internal thread material does not have the same strengths, then:

Tensile strength (external thread) S F
t e,

max=
AA

F
t

t iShear strength (internal thread) 0 5. , = mmax

,

max , ,

·

. · ,

A L

F S A S A L

s i e

te t t i s i e= = 0 5

Hence: LL A S
A Se

t t e

s i t i
= 2 ·

·
,

, ,

4.10  �FASTENER AND NUT DESIGN PHILOSOPHIES

Standard fasteners and nuts of equal strengths are designed for the bolt to fail before the threads in 
the nut are stripped.

The design engineer has a responsibility to ensure that a failure of a machine element or other 
artifact will not endanger life. In this instance the length of thread engagement is an important con-
sideration when designing machine elements using threaded fasteners.
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FIGURE 4.7  Shear area of internal thread.
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122 Design Engineer's Handbook

4.11  �PITCHING OF FASTENERS

Considerable latitude exists for selecting the number of fasteners for a given application, as this 
will be influenced by the combination of pitch and size of fasteners in relation to the stiffness of the 
component being clamped.

Minimum pitch will be determined by spanner or socket clearances.
Maximum pitch may be determined by:

•	 Fretting.
•	 Leakage aspect. This will be determined by the permissible degree of sealing required: the 

type of media involved (i.e., oil, fuel air, etc.) and the pressures involved.

4.11.1  �Pressure Cone

In general it is assumed that a 90° frustum of a cone commences at the edges of a spreader washer 
or fastener head. The aim is to have the base of each cone at least coincidental at the joint face. The 
effect of the flange thickness on the fastener pitch is shown in Figure 4.8.

An increase in the number of small-diameter fasteners is preferable to a lesser number of large-
diameter fasteners. Where a small number of fasteners will adequately deal with the externally 
applied load, it is still desirable to increase the number to give a reasonable pitch. This will reduce 
the frettage effects, especially in the case of flanged bearing outer races, where, in the interest of 
weight saving, a small number would otherwise be adopted.

4.12  �TENSION CONNECTIONS

The purpose of a bolt is to join two elements together. In general most bolted static joints when torqued 
to a particular value will be sufficient to maintain adequate joint pressures and meet its requirements.

It is important for the design engineer to ensure that the joint pressures are maintained through 
the life of the component and not lead to premature failure of the fastener due to either:

	 1.	A significant overload causing a joint separation resulting in an overload in the fastener
	 2.	The joint being subject to fatigue loading

This section will describe the elements of the bolted joint and lead to an understanding of a 
pretension diagram. 

It is important to realize that threaded fasteners are designed for static tension loading. They will 
tolerate a small amount of shear loading together with a degree of bending in the head if the clamp-
ing surfaces are not truly parallel.

6 d

(a)

3.5 d

(b)

FIGURE 4.8  Effects of flange thickness on fastener pitch.
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123Mechanical Fasteners

If the fastener is expected to take a large amount of shear load then shear bolts should be 
considered.

Alternatively, dowel pins should be used to take out the shear component in the fittings.
In Figure 4.9 a typical bolted joint is depicted with an external force P applied trying to separate 

the joint faces.

4.13  �TORQUE-TENSION RELATIONSHIP

The formula (Equation (4.1)) is a good theoretical approximation for the torque required to tighten 
a nut onto a fastener, so to develop an end load Pi

	  
 

T P p E d d
i

s o i= 



 + + +

2 2 4
1

2π
µ

α
µ

cos
	 (4.1)

The torque is in three parts: Pi(p/2π) represents that part of the torque absorbed in driving the mat-
ing thread helices over each other against the action of the axial load Pi to which they inclined, 
while Pi(Esμ1)/(2 cosα) and Pi((do – di)/4)μ2 represent that absorbed in overcoming friction, in the 
first case between the threads and in the second case at the bearing face under the nut. A typical 
distribution between the terms would be, in the order of 10%, 40%, and 50% of the total. Friction 
conditions are therefore of predominating importance and unless known with a good degree of 
accuracy together with the bearing areas there is no point in using an expression more complicated 
than the simple empirical formula (Equation 4.2).

	 T P D P T
Di i= =1

5
5· or 	 (4.2)

where:
T	 =	 Tightening torque
Pi	 =	 Initial tensile load in the fastener developed by tightening
D	 =	 Basic major diameter (i.e., nominal diameter)

This applies to nuts and bolts of normal proportions and for threads that are lubricated with a thin 
film of grease or oil. This is generally accurate to about ± 20%.

This does not apply to assemblies that are torque tightened from the bolt head.

PP

PP

FIGURE 4.9  A typical bolted joint.
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124 Design Engineer's Handbook

4.14  �PROOF LOAD AND PROOF STRESS

4.14.1  �Fastener Preload

A preload in a bolt-nut combination is achieved by tightening the nut to a specified torque setting 
(Figure 4.10).

It should be borne in mind that not all the torque applied to the nut will be converted into a load 
in the bolt. A substantial amount of torque will be lost in friction between the contact faces of the 
bolt head and the nut, together with another loss due to the friction within the thread itself.

There will be an extension in the bolt due to the preload and a small compressive force in the 
abutment. In the analysis of the fastener preload the bolt and its associated abutments are treated as 
springs.

The bolt stiffness is treated as two separated parts.

Ld	=	 Plain portion of the bolt
Lt	 =	 Threaded portion of the bolt

This latter part is for the part of the thread above the nut. The bolt stiffness can be described (see 
Figure 4.11):

	

δ δ δ

δ

δ

δ

= +

=

=

=
+

=

d t

d
i

d

t
i

t

i
d t

d t

i b

F
k

d

F
k

F k k
k k

F k

 
 

 ··n

	 (4.3)

4.15  �INTRODUCTION TO PRETENSION

It is not widely understood how a fastener in a fully tightened joint can survive in a situation where 
an untightened or loosely tightened fastener will fail within a very short space of time. When a 

Bolt
preload

P P

PP

Grip

FIGURE 4.10  Bolt preload.
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125Mechanical Fasteners

force is applied to a joint fitted with a fully tightened fastener, the fastener is exposed to only a small 
amount of the force. When a force is applied to a joint fitted with a fully tightened fastener as shown 
in Figure 4.9, the fastener is exposed to only a small amount of the force. The following description 
will explain this. The bolt can be treated as a solid spring as shown in Figure 4.11 and when fitted 
through the connecting parts as shown in Figure 4.12, the bolt is extended under the tightening 
force. The connecting parts are subjected to a compressive force under the abutment faces of the bolt 
head and nut. If these forces are plotted in a tension diagram (Figure 4.13), an understanding of the 
loads involved becomes obvious. The following text explains this in more detail.

Grip

Ld

Lt

kd

kt
Fi Fi

Fi Fi

FIGURE 4.11  Bolt stiffness.

L1

L2

L3

FIGURE 4.12  Abutment stiffness.

ΔP

Initial bolt
load   “Pi”

Clamping load
“Pc”

External load
“Px”

Po

Δy

Pt

A
B

D

φ βyb ya
CO

FIGURE 4.13  Tension diagram.
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126 Design Engineer's Handbook

4.15.1  �Why Preload?

Consider the arrangement shown in Figure 4.14(a), where a fastener is located in a two-part joint and 
a compression spring is fitted under the head of the fastener; a pointer is also fitted to the head against 
a scale. The fastener has been partially tightened with a small load in the fastener and joint faces.

In Figure 4.14(b) the nut has been tightened to compress the spring so that the pointer indicates 
1 on the scale. A working load has yet to be applied.

In the next figure (Figure 4.14(c)), with the same force in the fastener, a load of 1 unit is applied 
to the joint. This should have the effect of forcing the joint open, and it would be imagined that this 
additional force would increase the force in the fastener.

The initial reaction is to believe that the load in the fastener will increase and the joint faces will 
separate, producing a gap. But in fact, the fastener will keep its original value on the scale. What 
actually happens is the action of the force is to reduce the clamping force that exists between the 
end of the fastener to 0.5 unit, but the pointer on the scale will still register 1 unit. The fastener will 
not “feel” any of the applied force until it exceeds the clamping force.

Practically, when tightening takes place there will be an elongation of the fastener and a corre-
sponding compression on the joint. This compression results in the fastener sustaining a proportion 
of the load. As the applied force reduces the clamping force that exists in the joint, an additional 
strain is felt by the fastener, which increases the force it sustains. The amount of the additional force 
the fastener sustains is less than the applied load acting on the joint. The actual amount of the force 
the fastener sustains will depend upon the ratio of stiffness of the fastener to the joint material.

4.16  �JOINT DIAGRAMS

To help the design engineer visualize the loading within the bolted connection, joint diagrams have 
been developed. A joint diagram is a ready means of visualizing the load deflection characteristics 
of the fastener and the material it clamps. These diagrams assist in helping to understand how the 
joint sustains an external force and why the fastener does not sustain the whole of this force.

Figure 4.15 shows how a basic joint diagram is constructed. As the nut is tightened against the 
joint, the bolt will extend. Internal forces within the fastener resist this extension and a tension 
force or preload is generated. The reaction to this force is a clamping force that is the cause for the 
joint to be compressed. The force-extension diagram shows the fastener extension and the joint 

Spring

0 1 2 3 4 5

Scale to indicate force
present in fastener

(a)

Force in fastener
registers 1 on the scale

0 1 2 3 4 5

Compressed
spring

(b)

Force in fastener
registers 1 on the scale

0 1 2 3 4 5

(c)

Compressed
spring

F

F

F

FIGURE 4.14  Description of preload.
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127Mechanical Fasteners

compression. The slopes of the lines represent the stiffness of each component, the clamped joint 
being usually stiffer than the fastener.

Moving the compression line of the joint to the right forming a triangle, as it is recognized, forms 
the basic diagram shown in Figure 4.16, with the fastener and the joint in equilibrium. The clamping 
force tending to compress the joint is then seen to be equal to the preload in the fastener. Positive 
extension is to the right, such as that sustained by the fastener; negative extension (compression) is 
to the left and is sustained by the joint material.

4.16.1  �Joint Diagrams with an External Load Applied

When an external force is applied to the joint it has the effect of reducing some of the clamping 
force caused by the fastener preload and applying an additional force to the fastener itself. This is 
illustrated in the joint diagram in Figure 4.17.

The external force acts through the joint material and then subsequently into the fastener.
It can be seen that the load on the fastener cannot be added without a subsequent reduction in 

the clamp force acting on the joint. As can be observed from a study of the diagram, the actual 
amount of increase in the fastener force is dependent upon the relative stiffness of the fastener to 
the joint.

As an illustration of the importance of the relative stiffness of the fastener to the joint, two fig-
ures are shown, Figure 4.18(a) presents a hard joint (low stiffness fastener with a high stiffness joint) 
and Figure 4.18(b) a soft joint (a high stiffness fastener with a low stiffness joint).

With a hard joint, because of the steep joint stiffness slope, in this case the fastener will only 
sustain a small proportion of the applied force.

Fastener
extension line

Joint
compression

line

ExtensionCompression

Fo
rc

e

FIGURE 4.15  Basic joint diagram.
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FIGURE 4.16  Basic pre-tension diagram.
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128 Design Engineer's Handbook

A soft joint has a slope for the fastener greater than that of the joint. The fastener will therefore 
sustain the majority of the applied force.

High-performance fasteners generally have their shank diameters reduced down to the stress 
diameter of the thread. If the fastener is modified in this manner the stiffness of the fastener is 
reduced so that it will not support as much of any applied load that it would otherwise do. Provided 
that the shank diameter is not reduced below that of the stress diameter, the strength of the fastener 
will not normally be impaired.

4.16.2  �Effects of a Large Increase in the External Load

With an increase in the external load, the force acting on the fastener proportionally increases, and 
at the same time there is a reduction in the clamping force acting on the joint.

If the external force continues to increase, then either:

	 1.	The proportion of the external force acting on the fastener’s preload would result in the 
yield of the fastener material being exceeded with the possibility of the fastener failure.

		  Even if failure does not occur immediately, with the removal of the external load the 
preload will be reduced due to a permanent deformation of the fastener.

	 2.	The clamping force acting on the joint will continue to reduce to a point when it becomes 
zero. Any further increase in the external force will result in a gap forming within the joint, 
with the fastener then supporting all the additional force (Figure 4.19).
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Joint 
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Joint clamp
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FIGURE 4.17  Pre-tension diagram with preload.
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FIGURE 4.18  Effects of fastener stiffness.
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129Mechanical Fasteners

		  If a gap forms within the joint comprising the joint, then the fasteners are almost always 
subjected to nonlinear loadings from bending and shear forces. This will quickly result in 
the fastener failure; therefore, it is normal for the design criteria to include a statement that 
the applied forces must not under any circumstances result in a gap forming within the 
joint.

4.16.3  �The Effect of a Compressive External Load

If a joint is subjected to a compressive external force (Figure 4.20), this has the effect of increasing 
the clamping force acting on the joint and decreasing the tension within the fastener. If the compres-
sive external force is large enough, then:

	 1.	The tension in the fastener can be reduced to a low value; if the joint is subjected to a cyclic 
load, the fastener could fail due to fatigue as it experiences tension variations under a com-
pressive force. The fastener will be most susceptible to loosening due to vibration.

	 2.	The yield limitations of the clamped material are exceeded, as the joint is supporting a 
compressive load in addition to that provided by the fasteners’ preload. A loss of preload 
will result from permanent deformation when the external load is released.

Bolt pretension, also called preload or prestress, is generated when a nut is tightened on a threaded 
bolt or screw. The load in the fastener increases and the deformation of the fastener also increases.
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FIGURE 4.19  Effect of increase in the external load.
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130 Design Engineer's Handbook

4.16.4  �Nomenclature

A	 =	 Area of plate subject to load
Ab	=	 Bolt cross section (bolt thread root area) (mm2)
Db	=	 Bolt thread root diameter (mm)
d	 =	 Bolt nominal diameter (mm)
Fe	 =	 External load (N)
Ft	 =	 Thermal load (N)
Fp	 =	 Preload (N)
F	 =	 Total load on bolt (N)
Ez	 =	 Modulus of elasticity (N/mm2)
L	 =	 Length of bolt joint (mm)
Lb	 =	 Length of bolt (mm)
Lj	 =	 Length of joint (mm)
kz	 =	 Stiffness of component (N/mm)
kb	 =	 Stiffness of bolt (N/mm)
kj	 =	 Stiffness of joint (N/mm)
tz	 =	 Thickness of plate (mm)
T	 =	 Bolt tightening torque (Nmm)
xz	 =	 Deflection of item z/unit load (mm/N)
xb	 =	 Deflection of bolt/unit load (mm/N)
αz	 =	 Coefficient of thermal expansion of component z (mm/mm/deg.C)
δ	 =	 Deflection (mm)

4.16.5  �Notes

A bolt tightened to a specific value is considered safer than a bolt simply tightened to an arbitrary 
value. A preload between 75 and 80% of the proof strength of the bolt material is normally used.

Consider a bolt being used to clamp a joint to a set preload value. The bolt has a low stiffness and 
the joint has a very high stiffness. An external load, when applied to the joint, will tend to separate 
the joint. Part of this load will cause a further extension in the bolt, and the remaining part of the 
load will result in a reduction of the compressive load on the joint.

It follows that an infinitely stiff bolt will result in no separation of the joint faces. The question is 
to determine a realistic stiffness for the bolt to withstand the influences of the external force.
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FIGURE 4.20  Effect of a compressive load.
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131Mechanical Fasteners

Consider Figure 4.21, which shows an assembly bolted with a preload of Pi and an external load 
of Px is applied.

For an infinitely stiff bolt, separation will not occur, as all the external load will be directly 
applied to the bolt with no resulting extension. For an infinitely stiff joint, separation will take place 
when the external load exceeds the preload.

The bolt loading diagrams (Figures 4.22 and 4.23) show the loading regime on the bolt and joint.
The calculation for the proportion of the load taken by the bolt and the joint using the component 

stiffness values uses the same basic formula as that for spring rate, i.e.,

	
Stiffness = =k P

δ

4.17  �FASTENER STIFFNESS

The relationship E = stress/strain = f/ε is used to determine the stiffness of a bolt.

t4t3t2t1

PiPx Px

FIGURE 4.21  Bolted assembly with a preload and external load applied.
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FIGURE 4.22  Bolt loading diagram with preload and external load applied.
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If the bolt length clamping the joint includes a number of different sections, then the resulting 
stiffness is determined using the relationship

	

1 1 1 1 1
1 2 3 4k k k k kbt

= + + +

To allow for a certain degree of elasticity of the bolt head and nut, a correction factor is often 
used to modify the length used in the stiffness calculations shown in Figure 4.24.

The stiffness of the bolt results from the stiffness of the bolt shank (diameter ds) and the stiffness 
of the bolt thread (root diameter dr).

The length used to calculate the shank stiffness = Lse = Ls + 0.4ds.
The length used for the threaded length section = Lte + Lt + 0.4dr.
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FIGURE 4.23  Bolt loading diagram with external load matching preload.
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133Mechanical Fasteners

4.18  �JOINT STIFFNESS

It is very difficult to calculate the stiffness of a joint that is based on holes drilled in a plate (see 
Figure 4.25). A rough estimation can be made by assuming the joint is an annulus with an outside 
diameter (OD) of 2.5 times the bolt diameter and an inside diameter (ID) equal to the bolt diameter.

The total joint stiffness is related to the individual stiffness values as follows:

	

1 1 1 1 1
1 2 3 4k k k k kjt

= + + +

4.18.1  �Calculation of Load Distribution Using Fastener/Joint Stiffness

A joint preload with a force Px is then subject to an additional load Pe, which tends to separate the 
joint. The resulting deflections of the joint and bolt are the same providing that Pe is less than the 
separating force.

	
d F

k
F
k

F F Fbe

b

je

j
e be je= = = +

It follows that

	

F F k
k

k
k

F F

k
k k

F

be je
b

j

b

j
e be

b

b j
e

=

= −( )

=
+( )

LtLs

d s d r

Lse = Ls + 0.4 ds
Lte = Lt + 0.4 dr

FIGURE 4.24  Stiffness characteristics of a bolt.

1 2 3 4

FIGURE 4.25  Multiple clamping surfaces.
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Also

	

F k
k k

Fje
j

b j
e=

+( )

Following the application of the external force, the resulting total force on the bolt is

	

F F F

F k
k k

F

p be

p
b

b j
e

= +

= +
+( )

the total force on the joint

	

F F F

k
k k

F F

j p je

j

b j
j p

= +

=
+( ) −

4.19  �THERMAL LOADING

If all the materials of the joint and the bolt are the same, then any changes in temperature will have min-
imal effects on the joint loadings. However, if the joint materials have thermal expansion coefficients 
different than the bolt material, changes in the joint loading will result from changes in temperature.

	

Coefficient of thermal expansion of joint maaterial = 

Coefficient of thermal expansi

jα

oon of bolt = 

Change of temperature = T

L

bα

∆

eength of joint = length of bolt = L  = L  j b == L  
(as ambient temperature)

Expansion of

( )

  joint = L  = T·L

Expansion of bolt = 

j j∆ ∆

∆

α

LL  = T·Lb bα ∆

Overall stiffness of the joint is calculated as follows:

	

1
k

= 1
k

+ 1
kt j b

Therefore

	

k k k
k kt

b j

b j
=

+( )
·

The resulting change in the joint load is calculated as follows:
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F k k
k k

L L

k k
k k

T L

t
b j

b j
j b

b j

b j

=
+( ) −( )

=
+( )

·

· ·

∆ ∆

∆ α jj b−( )α

The total bolt load following temperature change:

Let	 F = Fp +Ft

4.19.1  �Initial Tension in Bolt

The initial tension in a bolt is roughly estimated for a bolt tightened by hand of an experienced 
mechanic, as follows.

The tension resulting from this equation would be reasonably safe for M8 grade 8.8 bolts and above.

	 Fp = K ·  d

where:
Fp	 =	 Preload (N)
K	 =	 Coefficient (varies between 1.75 × 106 N/m and 2.8 × 106 N/m)
d	 =	 Nominal diameter of bolt (mm)

For a bolt tightened with a torque wrench, the torque required to provide an initial bolt tension 
may be approximated by the formula

	 T = Fp· K · d

Typical K factors:

Steel thread condition	 K
As received, stainless on mild or alloy	 0.30
As received, mild or alloy on same	 0.20
Cadmium plated	 0.16
Molybdenum-disulfide grease	 0.14
Polytetrafluoroethylene (PTFE) lubrication	 0.12

A more accurate value can be obtained from the following:

	

T

F d pp m

=

= +

thread torque + collar torque

 · ·
2

π µµ α
π µ α

µ· ·sec
· · ·sec

· ·d
d p

F rm

m
p c c

 
 

 
−







+

where
F  = desired bolt preload (N)
p = thread pit
p

cch (mm)
d  = mean diameter of thread (mm)

 
m
µ == coefficient of thread friction

 = coeffcµ iicient of collar friction
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136 Design Engineer's Handbook

 α = the thread angle/2 (α = 30° for standard metric threads and α = 29°/2 for acme threads).
r  = collar friction radius (mm)c

It can be proved that the majority of the torque is required to overcome the thread and collar 
friction forces (approximately 90%). Therefore, any errors in the value of the friction coefficient 
will have a large variation on the bolt tensile load. The above formula is in essence not a lot more 
accurate than the approximate formulas above.

4.20  �FASTENERS SUBJECT TO COMBINED SHEAR AND TENSION

4.20.1  �Interaction Curves: Load Ratios and Factors of Safety

Bolts and screws under combined tension stresses or loads may be predicted without using principal 
stresses or loads by using the interactive method.

The method represents applied and allowable stress or load conditions on the shank of a fastener 
by loads.

Load ratios are nondimensional coefficients R given by

	
R = applied load

allowable load

The method involves determining the allowable load for each separate failure mode such as ten-
sion, compression, bending, buckling, and shear. Load ratio R for each separate failure condition is 
calculated and combined using interaction equations if these loads act simultaneously on the fastener.

The equations generally take the following form:

	 R R Rx y z
1 2 3 1 0+ + … = .

where xyz are exponents defining interaction relationship.
Failure is when the sum of the load ratios is greater than 1.0.

4.20.2  �Interaction Curve

The margin of safety (MoS) assuming each load increases proportionately until failure occurs at a 
point B (see Figure 4.26):

	
MS OB

OA
= −1

The margin of safety assuming R1 remains constant with R2 increasing until failure occurs at 
point C:

	
MS EC

EA
= −1

The margin of safety assuming R2 remains constant with R1 increasing until failure occurs at 
point D:

	
MS FD

FA
= −1
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137Mechanical Fasteners

4.20.3  �Interaction Equation

	

MS
R Rt s

=
+

−1 1
2 2

where:

R  = applied ultimate tension load
allowablet   ultimate tension load

R  = applied ultimat
s

ee shear load
allowable ultimate shear load

Note that when calculating Rs, shear is applied to the bolt shank; this area should be used in 
calculating the allowable shear load.

4.21  �ECCENTRIC LOADS

The design engineer is sometimes confronted with a problem requiring the design of a bracket to 
attach to an existing structural member, such as that depicted in Figure 4.27.

In this case the line of action passes outside the bolt group and as a consequence will create a 
shear load on the fasteners.

Figure 4.28 considers the loading seen by each fastener.
Let u1 = load/fastener per unit distance from O.

	 PL u I u Ia b= +4 21
2

1
2 	 (4.3)

EXAMPLE 4.1

Consider a bracket similar in design to that depicted in Figure 4.28 with the principal load and 
dimensions as follows:

P 	= 150 kN
L 	= 225 mm
Ia 	= 111.803 mm
Ib 	= 111.803 mm
n 	= 6

B

C

D

E

F

1.0

1.0

R2

0 R1

A

Margin of Safety
R1 = constant.
R2 = variable

Margin of Safety
proportional loading
R1/R2 = constant

Margin of Safety
R2 = constant
R1 = variable

Point A is located with the coordinates R1 and R2

FIGURE 4.26  Interaction curve.
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138 Design Engineer's Handbook

Determine the size of the fasteners if the allowable shear stress on the fasteners is to be limited 
to 400 MPa.

Rearranging Equation (4.3) to solve for u1:

	

u
PL

I I

u

a b

1 2 2

1

4 2

450 0

= ( ) + ( )





=

.

. .

.  
kN
m

Load on fastener due to turning moment:

	 Lt = u1.Ia

	 Lt = 50.312 kN

Now, direct load on fastener due to load:

	

L
P
n

L kN

d

d

=

= 250

1

654

2 3

PL

Ib

Ia

O

FIGURE 4.28  Centroid of bolt group.

P

L

Part of rigid
frame

Bracket with the
load P lying in the
shear plane

FIGURE 4.27  Bracket subject to shear loading.
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139Mechanical Fasteners

Resultant load (solve using the sine and cosine rules) (see Figure 4.29 for angle of forces):

	

c
L

c kN

t=

=

· .
.

.

0 894426
0 6877428

65 432

This is the maximum shear load acting on fastener 6.

4.21.1  �Permissible Shear Stress

	 ffastener = 400 MPa

Diameter of fastener:

	

dia d
f

f

d
kN mm

s

fastener

' ( )
·

·

· . /
·

 

 

=

=

4

4 65 432 2

π

π 4400

14 432

 

 

MPa

mm= .

Selecting a stock size fastener:

	 d = M16 × 1.75 pitch

4.22  �PRYING FORCES

EXAMPLE 4.2

Consider the bracket in Figure 4.30 where the applied force is in the plane of the connections. 
In this case the load produces a tension and shear force in the fasteners. (The fasteners have no 
preload applied in this example.)

B = 19.9832°

a = 50.312 kN

Resultant c = 116.5651°

b = 250 kN

A

c = 

O

FIGURE 4.29  Angle of forces for Example 4.1.
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Maximum stress

f
F
A

f

tension
t

tension

 

  

  

=

= 61 3. 88

59 683

   

    

     

MPa

f
P

n A

f MP

shear

shear

=

=

.

. aa

	

P kN= 150                                              

 Moment arm      

y mm y

e mm

a = +

=

20

250 ( )                 

 

y mm y

y mm pitch

b = + ×

=

20 2

83 3

( )

.                                    y mmc = +20 33

250

×

=

y

Y mm

)

                                             y mm y

n bolts

d mm

A

d = + ×

=

=

=

20 4

8

20

( )

ππ ·d2

4
                                              

  

Σy y y y y

A mm

a b c d
2 2 2 2 2

2314 16

= + + +

=

( )

.                                   Σy2 243 0= . 887 10

37 5 10

3 2

1

1
3 2

1

2

1

×

=

= ×

=

=

mm

P P e

P kN mm

Y
y
Y

Y

·

. /

Σ

9972 347. mm

O
Center of
rotation

e = 250 mm

3 
pi

tc
he

s @
 8

3.
3 

m
m

20
 m

m
= 

25
0 

m
m

a

b

c

d

8 × ø24 bolts

P P

FIGURE 4.30  Bracket without preload.
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141Mechanical Fasteners

The resultant stress on the top fastener is a vector quantity derived from the tensile stress ftension 
and the direct shear stress fshear.

	

F f f

F MPa

r tension shear

r

= +

=

( )

.

.2 2 0 5

85 613 

Using fasteners to BS3692 strength grade 4.6, yield strength = 235 kN/mm2.

	 f MPaallowable = 235

Factor of Safety (FoS)

	

FoS
f

F

FoS

allowable

r

=

= 2 745.

Tensile load on top fastener.

	

F
P e

Y

F kN

t

t

=

=

·
·

.

2

19 283

1

Direct load

	

F
P
n

F kN

s

s

=

= 18 75.

Note that the above calculation is based on the fact that due to no preload on the fasteners the 
bracket will heel about the point of origin O. It is considered that if the prying load is high enough, 
plastic deformation will occur in the bracket at this point.

If this happens, then this will have the effect of reducing the loads, as the heel point will migrate 
upwards toward the first row of fasteners. Some argue that this is the point where the moment 
should be measured from. It is considered that the former position should be adopted, as the sec-
ond position will have the effect of reducing the load on the fasteners.

In this second example of the above bracket (Figure 4.31), the fasteners have preload applied, 
so this will minimize any separation between the bracket and the supporting steelwork. From 
Figure 4.30 it is clearly seen that the fastener deflections due to the applied moment are signifi-
cantly reduced compared to Example 4.1.

4.23  �FASTENERS SUBJECT TO ALTERNATING EXTERNAL FORCE

Consider a M12 × 1.75p grade 8.8 bolt used to clamp a fitting to a structural member.
The cross section of the part is (12 × 16 mm) = 192 mm2 and is subject to an alternating load 

between 0 and 20,000 N.
Assume the stress concentration factor (SCF) for the thread is 3.0. Calculate the following:

	 1.	The FoS for the bolt without any preload
	 2.	The minimum preload required to prevent any loss of compression
	 3.	The FoS for the bolt with a preload of 22,000 N
	 4.	The minimum force in the part when the preload is 22,000 N
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142 Design Engineer's Handbook

From BS 6104, Part 1, 1981, Table 6, the ultimate tensile load for this size and type of fastener is 
quoted as 67,400 N. The fastener core area is 84.267 mm2.

The ultimate tensile stress (UTS) will be (67,400 N/84.267 mm2) = 799.838 MPa. It is assumed 
that the yield strength is 500 MPa and the fatigue endurance limit for this material is 50% of the 
UTS = 400 MPa.

4.23.1  �Factor of Safety (FoS) with No Preload

The factor of safety (FoS) is determined by multiplying the mean stress and the stress amplitude, 
multiplied by the SCF and plotted on a modified Goodman diagram.

The mean stress	 S MPam =
×

=20000
2 84 3

118 6
.

.  	

With no preload the entire load will be carried by the fastener.
For a load alternating between 0 and 200,000 N, the mean load is 10,000 N and the amplitude of 

the stress, multiplied by the SC (3.0), is (118.6 MPa × 3) = 355.8 MPa.
Plotting this on the diagram in Figure 4.32 shows that point A falls outside the safe zone, and 

therefore the fastener will be unsafe.

	

1
FoS

mean
S

stress
y

=






+ × stress  amplitude sccf

3.0
400

S

FoS

e







= 



 + ×1 118 6

500
118 6. .





hence:
	 FoS = 0.887

e = 250 mm
P P

Center of gravity
of the fastener 

a

b

d

c

FIGURE 4.31  Bracket with preload.

D
ow

nl
oa

de
d 

by
 [

M
ot

ila
l N

eh
ru

 N
at

io
na

l I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

A
lla

ha
ba

d]
 a

t 0
9:

49
 2

9 
D

ec
em

be
r 

20
13

 



143Mechanical Fasteners

4.23.2  �The Minimum Preload to Prevent Any Loss of Compression

For components of similar material and equal length, the spring constants are proportional to the 
cross-sectional areas of the part and fastener.

Therefore, when the part has zero compression, the preload in the fastener is

	

P A P
A A

mm

pre load
s

s p
-

max·

.

=
+( )

= ×

  

  192 0 200002 NN
mm mm

kN

84 267 192 0

13 90

2 2. .

.

  +( )
=

4.23.3  �Calculate the FoS for the Bolt with a Preload of 22,000 N

	

P P x A
A A

Pb average
average b

p b
pre lo 

    
  

=
+

+ −( ) aad

b averageP N x mm
mm      

 
= 10000 84 267

192 0

2.
. 22 284 267

22 00

25050 2

   

  

+
+

=

.
.

.

mm
kN

N

En
du

ra
nc

e S
tr

es
s  
S e

 (M
Pa

)

Yield Stress  Sy (MPa)

A

B

C D

400

105.5

118.6 296.5 500 

355.8

0

FIGURE 4.32  Modified Goodman diagram for Example 4.3.
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Stress P
A

N
mm

mean
b average

b
=

=

 

 
 

25050 2
84 267 2

.
.

==

= ×
+

297 27.   

 
 

MPa

P A P
A Ab amplitude

b b average

b pp

mm N
N N

= ×
+

=

84 267 10000
84 267 192 0

3 050

2.
. .

.

  
  

22 kN

	

Stress P
A

 N

amplitude
b amplitude

b
=

= 3050 2
84 2

.
. 667

36 197
 mm
 MPa

2

= .

Point C (Figure 4.32) is inside the safe zone when plotted on the diagram; therefore, the bolt has 
a FoS when measured graphically from the diagram OD/OC:

	

1 314 29
368 51

1 0 8529

1 173

FoS
OC
OD

FoS
FoS

= =

=

=

.

.

.

.

Algebraically:

	

1 297 27
500 0

3 0 36 197
FoS

MPa
MPa

M= 



 + ×.

.
. . 

 
 PPa

MPa

FoS

 
 400 0

1 155

.

.







=

The effect of the preload is to significantly reduce the magnitude of the alternating force and 
stress in the fastener (which is normally much more critical) while increasing the mean fastener 
force and stress (normally less critical). This is shown in the lower part of Figure 4.33.
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4.23.4  �The Minimum Force in the Part when the Preload is 22,000 N

	

P A P
A A

P

P

pre p
b b

pre

pre

-load min -load

-loa

=
+

−max

dd min = ×
+




192 0 20000
192 0 84 267

2

2 2
.

. .
mm N

mm mm



−

= −

22 00

81 00

.

.

kN

kN Compression

Pa

0

Pm

0

Pm Pa

FIGURE 4.33  Effect of preload on the magnitude of the alternating force.
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5 Limits and Fits

5.1  �INTRODUCTION

The International Organization for Standardization (ISO) system (ISO 286-1988 and 2:1988) (on 
which the British Standards BS EN 20286-1993 and 2:1993 are based) provides for a wide range of 
hole and shaft tolerances to cater for a wide range of conditions.

However, it has been found for normal manufacturing processes that the range can be condensed 
to a small number of tolerance combinations.

The most commonly applied hole and shaft tolerances include:
Selected hole tolerances: H7, H8, H9, and H11
Selected shaft tolerances: c11, d10, e9, f7, g6, h6, k6, n6 p6, s6 and u6
The general standard adopted is the basic hole; the measurement of holes is generally controlled 

using plug gauges with “go no go” features, whereas a shaft is easily checked using micrometers or 
gap gauges.

In some instances a manufacturer may choose to use a shaft-based system, particularly where 
a single shaft may have to accommodate a variety of accessories, such as bearings, couplings or 
collars, etc.

Shaft-based systems may offer economies particularly where bar stock material may be avail-
able to standard shaft tolerances to the ISO system. For the nomenclature used in limits and fits, 
see Figure 5.1.

5.2  �TOLERANCE GRADE NUMBERS

5.2.1  �Tolerance

Tolerance is the difference between the maximum and minimum size limits of a component.

5.2.2  �International Tolerance Grade Numbers

Tolerance grade numbers are used to specify the size of a tolerance zone.
In the British Standard, the tolerance is the same for both the internal (hole) and external (shaft) 

parts having the same tolerance grade numbers.
Tolerance grades IT0 through IT16 are covered in the National and International standards.

Grade
number

12IT

International
tolerance
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5.3  �FUNDAMENTAL DEVIATIONS

5.3.1  �Preamble

Consider a 25.000 mm nominal diameter hole and shaft.
An example of a fit specification:

25H7 hole
25g6	 shaft

Note:
•	 All hole deviations are specified in uppercase.
•	 All shaft deviations are specified in lowercase.

Max. size dmaxUpper deviation δu

Lower deviation δl Min. size dmin

International tolerance
grade, Δd (IT number)

Fundamental deviation
δF (letter)

Basic size D(d)
Lower deviation. δl

Upper deviation. δu

Fundamental deviation
δF (letter)

International tolerance
grade, ΔD (IT number) Min, size, Dmin

Min, size, Dmax

D = basic size of hole

d = basic size of shaft

δu = upper deviation

δl = lower deviation

ΔD = tolerance grade for hole

Δd = tolerance grade of shaft

FIGURE 5.1  Nomenclature used in limits and fits.
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5.3.2  �Fundamental Deviation

Fundamental
deviation  

25g6

Tolerance
grade

Basic size
(D = d = 25.0)

From the tolerance grade table for a basic size of 25.000 mm diameter, the variation between the 
upper and lower deviations for a grade IT6 will be 0.013 mm (see Table 5.1, 25.000 mm), and for 
grade IT7 will be 0.021 mm.

From Table 5.2, for ø25.000 g the upper deviation is –0.007 mm. The lower deviation will be 
–0.007 to 0.013 mm = 0.020 mm.

Hence the tolerance on a 25.000 mm diameter shaft machined to g6 is

	 ø25.000 mm –0.007/–0.020 mm

TABLE 5.1
Tolerance Grades

Basic Sizes

Tolerance Grades

IT5 IT6 IT7 IT8 IT9 IT10 IT11 IT12

0–3 0.004 0.006 0.010 0.014 0.025 0.040 0.060 0.100

3–6 0.005 0.008 0.012 0.018 0.030 0.048 0.075 0.120

  6–10 0.006 0.009 0.015 0.022 0.036 0.058 0.090 0.150

10–18 0.008 0.011 0.018 0.027 0.043 0.070 0.110 0.180

18–30 0.009 0.013 0.021 0.033 0.052 0.084 0.130 0.210

30–50 0.011 0.016 0.025 0.039 0.062 0.100 0.160 0.250

50–80 0.013 0.019 0.030 0.046 0.074 0.120 0.190 0.300

  80–120 0.015 0.022 0.035 0.054 0.087 0.140 0.220 0.350

120–180 0.018 0.025 0.040 0.063 0.100 0.160 0.250 0.400

180–250 0.020 0.029 0.046 0.072 0.115 0.185 0.290 0.460

250–315 0.022 0.032 0.052 0.081 0.130 0.210 0.320 0.520

315–400 0.025 0.036 0.057 0.089 0.140 0.230 0.360 0.570

400–500 0.027 0.040 0.063 0.097 0.155 0.250 0.400 0.630

Source:	 BS EN 20286-2:1993.
Note:	 Values in mm
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5.3.3  �Fundamental Deviations for Shafts

TABLE 5.2
Fundamental Deviation (Shaft)

Basic 
Size 

Upper Deviation Letter Lower Deviation Letter

c d f g h k n p s u

0–3 –0.060 –0.020 –0.006 –0.002 0 0 0.004 0.006 0.014 0.018

3–6 –0.070 –0.030 –0.010 –0.004 0 0.001 0.008 0.012 0.019 0.023

  6–10 –0.080 –0.040 –0.013 –0.005 0 0.001 0.010 0.015 0.023 0.028

10–14 –0.095 –0.050 –0.016 –0.006 0 0.001 0.012 0.018 0.028 0.033

14–18 –0.095 –0.050 –0.016 –0.006 0 0.001 0.012 0.018 0.028 0.033

18–24 –0.110 –0.065 –0.020 –0.007 0 0.002 0.015 0.022 0.035 0.041

24–30 –0.110 –0.065 –0.020 –0.007 0 0.002 0.015 0.022 0.035 0.048

30–40 –0.120 –0.080 –0.025 –0.009 0 0.002 0.017 0.026 0.043 0.060

40–50 –0.130 –0.080 –0.025 –0.009 0 0.002 0.017 0.026 0.043 0.070

50–65 –0.140 –0.100 –0.030 –0.010 0 0.002 0.020 0.032 0.053 0.087

65–80 –0.150 –0.100 –0.030 –0.010 0 0.002 0.020 0.032 0.059 0.102

  80–100 –0.170 –0.120 –0.036 –0.012 0 0.003 0.023 0.037 0.071 0.124

100–120 –0.180 –0.120 –0.036 –0.012 0 0.003 0.023 0.037 0.079 0.144

120–140 –0.200 –0.145 –0.043 –0.014 0 0.003 0.027 0.043 0.092 0.170

140–160 –0.210 –0.145 –0.043 –0.014 0 0.003 0.027 0.043 0.100 0.190

160–180 –0.230 –0.145 –0.043 –0.014 0 0.003 0.027 0.043 0.108 0.210

180–200 –0.240 –0.170 –0.050 –0.015 0 0.004 0.031 0.050 0.122 0.236

200–225 –0.260 –0.170 –0.050 –0.015 0 0.004 0.031 0.050 0.130 0.258

225–250 –0.280 –0.170 –0.050 –0.015 0 0.004 0.031 0.050 0.140 0.284

250–280 –0.300 –0.190 –0.056 –0.017 0 0.004 0.034 0.056 0.158 0.315

280–315 –0.330 –0.190 –0.056 –0.017 0 0.004 0.034 0.056 0.170 0.350

315–355 –0.360 –0.210 –0.062 –0.018 0 0.004 0.037 0.062 0.190 0.390

355–400 –0.400 –0.210 –0.062 –0.018 0 0.004 0.037 0.062 0.208 0.435

Source:	 BS EN20286-2:1993.
Note:	 Values in mm

5.3.4  �Fundamental Deviations for Holes

TABLE 5.3
Fundamental Deviation (Hole)
Basic Size Lower Deviation

H
0–3 0.000

3–6 0.000

  6–10 0.000

10–14 0.000
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TABLE 5.3 (Continued)
Fundamental Deviation (Hole)
Basic Size Lower Deviation

H
14–18 0.000

18–24 0.000

24–30 0.000

30–40 0.000

40–50 0.000

50–65 0.000

65–80 0.000

  80–100 0.000

100–120 0.000

120–140 0.000

140–160 0.000

160–180 0.000

180–200 0.000

200–225 0.000

225–250 0.000

250–280 0.000

280–315 0.000

315–355 0.000

355–400 0.000

Note:	 Values in mm

5.3.5  �Upper and Lower Deviations

5.3.5.1  �Shaft Letter Codes c, d, f, g, and h
Upper deviation is equivalent to the fundamental deviation.

Lower deviation is equivalent to:

	 Upper deviation – tolerance grade

5.3.5.2  �Shaft Letter Codes k, n, p, s, and u
Lower deviation is equivalent to the fundamental deviation.

Upper deviation is equivalent to:

	 Lower deviation + tolerance grade

5.3.5.3  �Hole Letter Code H
	 Lower deviation = 0

	 Upper deviation = tolerance grade
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5.4  �PREFERRED FITS USING THE BASIC HOLE SYSTEM

TABLE 5.4
Preferred Fits Using the Basic Hole

Type of Fit Description Symbol

Clearance Loose running fit: For wide commercial tolerances or allowances on external members.
Free running fit: Not for use where accuracy is essential, but good for large temperature 
variations, high running speeds, or heavy journal pressures.

Close running fit: For running on accurate machines and for accurate location at moderate 
speeds and journal pressures.

Sliding fit: Where parts are not intended to run freely, but must move and turn freely and 
locate accurately.

Locational clearance fit: Provides snug fit for location of stationary parts, but can be freely 
assembled and disassembled.

H11/c11
H9/d9

H8/f7

H7/g6

H7/h6

Transition Locational transition fit: For accurate location, a compromise between clearance and 
interference.

Locational transition fit: For more accurate location where greater interference is 
permissible.

H7/k6

H7/n6

Interference Locational interference fit: For parts requiring rigidity and alignment with prime accuracy of 
location but without special bore pressure requirements.

Medium drive fit: For ordinary steel parts or shrink fits on light sections, the tighter fit usable 
with cast iron.

Force fit: Suitable for parts that can be highly stressed or for shrink fits where the heavy 
pressing force required is impractical.

H7/p6

H7/s6

H7/u6

5.4.1  �Loose Running Fit (Example)

Determine the loose running fit tolerance for a hole and shaft that has a basic diameter of 25.000 mm.
From Table 5.4, the specification for a loose running fit is 25H11/25c11, as detailed in Table 5.5.

TABLE 5.5
Hole and Shaft Sizes for Loose Running Fit (H11/c11)

Hole Shaft

Tolerance grade 0.130 mm 0.130 mm

Upper deviation +0.130 mm –0.110 mm

Lower deviation 0 –0.240 mm

Maximum diameter 25.130 mm 24.890 mm

Minimum diameter 25.000 mm 24.760 mm

Average diameter 25.065 mm 24.825 mm

Maximum clearance Cmax = Dmax – dmin = (25.130 – 24.760) = 0.370 mm

Minimum clearance Cmin = Dmin – dmax = (25.000 – 24.890) = 0.110 mm
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153Limits and Fits

There are two forms of showing the tolerances on a drawing:

The first method:

Hole	 Shaft

Ø25.000 mm + 0.130/–0 mm	 Ø25.000 mm – 0.110/–0.240 mm

The second method:

Hole	 Shaft

Ø25.000 mm	 Ø24.825 mm

Ø25.130 mm	 Ø24.760 mm

This second method is preferred from a machining point of view. It gives the machinist a specific 

dimension to aim for; if the mean dimension is calculated and if he or she misses it there is still 

a small margin to recover the machined feature and still remain within the tolerance zone. This 

method is sometimes referred to as maximum metal conditions.

5.4.2  �Location Clearance Fit (Example)

Determine the location clearance fit tolerance for a hole and shaft that has a basic diameter of 

25.000 mm.

From Table 5.4, the specification for a location clearance fit is 25H7/25h6, as detailed in Table 5.6.

TABLE 5.6
Hole and Shaft Sizes for Location Clearance Fit (H7/h6)

Hole Shaft

Tolerance grade 0.021 mm 0.013 mm

Upper deviation 0.021 mm 0.000 mm

Lower deviation 0.000 mm –0.013 mm

Maximum diameter 25.021 mm 25.000 mm

Minimum diameter 25.000 mm 24.987 mm

Average diameter 25.011 mm 24.994 mm

Maximum clearance Cmax = Dmax – dmin = (25.021 – 24.987) = 0.034 mm

Minimum clearance Cmin = Dmin – dmax = (25.000 – 25.000) = 0.000 mm

As with the example in Section 5.4.1, there are two methods for showing the tolerances.

The first method:

Hole	 Shaft

Ø25.000 mm + 0.021/–0 mm	 Ø25.000 mm + 0/+0.013 mm

The second method:

Hole	 Shaft

Ø25.000 mm	 Ø24.987 mm

Ø25.021 mm	 Ø25.000 mm
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5.5  �SURFACE FINISH

Any discussion about limits and fits invariably brings up the question of surface finish. It is imprac-
tical to apply a close tolerance such as 25g6 (0.013) to a machined part that has a surface roughness 
in the order of, say, 12.5 microns.

Table 5.7 gives an indication of the surface roughness obtained by the various manufacturing 
processes.

TABLE 5.7
Surface Roughness Values Obtainable by Standard Manufacturing Processes

Manufacturing Process Obtainable with Difficulty Normally Obtainable Roughing

Casting Sand casting
Permanent mold
Die casting

0.8–1.6 6.3–12.5
1.6–6.3
0.8–3.2

12.5–25

Manual Forging
Extrusion
Rolling

1.6–3.2
0.4–0.8
0.4–0.8

3.2–25
0.8–6.3
0.8–3.2

Surface process Flame cut
Hack saw
Bandsaw, chipping
Filing
Emery polish

0.8–1.6
0.1–0.4

25–50
6.3–50
3.2–50
1.6–12.5
0.4–1.6 1.6–3.2

Machining Shell milling
Drilling
Planing and shaping
Face milling
Turning
Boring
Reaming
Cylindrical grinding
Centerless grinding
Internal grinding
Surface grinding
Broaching
Super finishing
Honing
Lapping

1.6–3.2
3.2–6.3

0.8–1.6
0.2–1.6
0.2–1.6
0.4–0.8

0.025–0.4
0.05–0.4

0.024–0.4
 0.025–0.4

0.2–0.8
0.025–0.1
0.025–0.1
0.006–0.05

3.2–25
6.3–25
1.6–12.5
1.6–12.5
1.6–6.3
1.6–6.3
0.8–6.3
0.4–3.2
0.4–3.2
0.4–3.2
0.4–3.2
0.8–3.2
0.1–0.4
0.1–0.4

0.05–0.4

25–50

12.5–50
6.3–50
6.3–50
6.3–12.5
3.2–6.3

3.2–6.3
3.2–6.3
3.2–6.3

Gear 
Manufacturing

Milling, spiral bevel
Milling, with form cutter
Hobbing
Shaping
Planing
Shaving
Grinding (crisscross)
Grinding
Lapping

1.6−3.2
1.6−3.2
0.8−3.2
0.4−1.6
0.4−1.6
0.4−0.8
0.4−0.8
0.1−0.4

0.05−0.2

3.2−12.5
3.2−12.5
3.2−12.5
1.6−12.5
1.6−18.5
0.8−3.2
0.8−1.6
0.4−0.8
0.2−0.8

12.5−25
12.5−50
12.5−50
12.5−250
12.5−50
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6 Thick Cylinders

6.1  �INTRODUCTION

When the wall thickness of a pressure vessel such as a cylinder or pipe is greater than one-tenth of 
the inside radius of the vessel, the meridional and circumferential (hoop) stresses cannot be consid-
ered uniform throughout the wall thickness and the radial stress will not be negligible. At this point 
the vessel will be considered to be a thick-walled cylinder as in Figure 6.1.

i.e.

	
σ σ θ σ θ σ

θ σ σ

r r r c

r r c

d r dr d rd dr dr

rd dr

+( ) +( ) = +

+ =

2
2

ddr

or	 σ σ σr
r

cr d
dr

+ = 	 (6.1)

If the longitudinal stress and strain are denoted by σl and εl, respectively then:

	
ε σ ν σ σ
l

l r c

E E
= − +





It is assumed that εl is constant across the thickness, i.e., a plane cross section of the cylin-
der remains plane after the application of pressure, and that σl is also of uniform thickness, both 
assumptions being reasonable on planes that are remote from the ends of the cylinder.

6.2  �A THICK-WALLED CYLINDER SUBJECT 
TO INTERNAL AND EXTERNAL PRESSURES

Consider a thick-walled cylinder as shown in Figure 6.1(a) with internal and external radii r1 and r2, 
respectively, and subjected to internal and external pressures p1 and p2, respectively. Figure 6.1(b) 
shows the stresses acting on an element of radius r and thickness dr, subtending an angle dθ at the 
center.

The radial and circumferential stresses, σr and σc, are assumed to be compressive, which in this 
context is considered positive.

Tensile stresses are positive; compressive stresses are negative.
The pressures p, p1, p2, and pf are negative.
The following relationships are assumed for the strains ε1, ε2, and ε3 associated with the stresses 

σ1, σ2, and σ3. See Figure 6.2 for the orthogonal stress relationship.

	 ε1 = σ1/E – νσ2/E – νσ3/E
	 ε2 = σ2/E – νσ1/E – νσ3/E
	 ε3 = σ3/E – νσ1/E – νσ2/E

It follows from these assumptions that σr + σc is a constant; this will be denoted by 2a.
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σ3

σ1

σ2

FIGURE 6.2  Stress relationships.

Pi

Po

(a) (b)

dr

σr

σc

σr + dσr

σc

dθ

r
ri

ro

FIGURE 6.1  Elements of a thick-walled cylinder.

TABLE 6.1
Nomenclature
p1 = Internal pressure (pa) r = Radius at point of analysis (m)

p2 = External pressure (Pa) r1 = Inside radius of cylinder (m)

pf = Interface pressure (Pa) r2 = Outside radius of cylinder (m)

σr = Radial stress – compressive (Pa) rf = Interface radius of cylinder (m)

σc = Circumferential stress – compressive (Pa) εr = Radial strain

σa = Axial/longitudinal stress – tensile (Pa) εc = Circumferential strain

E = Modulus of elasticity (Pa) εa = Axial/longitudinal strain

ν = Poisson’s ratio u = Radial deflection (m)

νh = Poisson’s ratio – hub us = Radial deflection of shaft (m)

νs = Poisson’s ratio – shaft uh = Radial deflection of hub (m)

d = Diameter at point or analysis (m) ut = Radial deflection of hub and shaft (m)

d1 = Inside diameter of cylinder (m) δrh = Radial increase in hole (m)

d2 = Outside diameter of cylinder (m) δrs = Radial decrease in hole (m)
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157Thick Cylinders

Thus:	 σ σc ra= −2 	 (6.2)

Substituting Equation (6.2) into Equation (6.1):

	
σ σ σr

r
rr d

dr
a+ = − 2

or	 2 2 02σ σ
r

rr r d
dr

ar+ − =

Multiplying both sides by r

i.e.,	
d
dr

r arrσ 2 2 0−( ) =

Therefore	 σ rr ar b2 2− = ′

or	 σ r a b
r

= + 2 	 (6.3)

and from Equation (6.2)	 σc a b
r

= − 2 	 (6.4)

Equations (6.3) and (6.4) are known as Lamé’s equations; in any given application there will 
always be two conditions sufficient to solve for the constants a and b, together with the radial and 
circumferential stresses at any radius r, which can then be evaluated.

6.3  �GENERAL EQUATIONS FOR A THICK-WALLED CYLINDER 
SUBJECT TO AN INTERNAL PRESSURE

Considering the common case of a cylinder subjected to an internal pressure only, see Figure 6.3.

	 σ r i i = P when r = r

and	 σ r o= 0 when r = r

	
P a b

ri
i

= + 2

and	 0 2= +a b
ro
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from which	 a P r
r ri

i

o i
=

−
–

2

2 2

and	 b P r r
r ri

o i

o i
=

−

2 2

2 2

Therefore

	

σ r

i
i

o i

o

a b
r

P r
r r

r
r

= +

= −
−

+






2

2

2 2

2

21 

and

	

σc

i
i

o i

a b
r

P r
r r r

= −

= −
−

+





2

2

2 2 21 1 

The maximum radial and circumferential stresses occur at r = ri, when σr = P.

	 σc i
o i

o i
P r r

r r
= − +

−

2 2

2 2   the negative sign indiicates tension. 	 (6.5)

6.4  �THE GENERAL EQUATION FOR A THICK-WALLED CYLINDER 
SUBJECT TO INTERNAL AND EXTERNAL PRESSURES

The general equation for a thick-walled cylinder subject to internal and external pressures can easily 
be obtained from Equations (6.3) and (6.4).

ro

Pi

ri

σc

σr

FIGURE 6.3  Thick cylinder subject to an internal pressure.
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159Thick Cylinders

Consider a cylinder with an internal diameter di, subject to an internal pressure Pi. The outside 
diameter do is subject to an external pressure Po. The radial pressures at the surfaces are the same 
as the applied pressures; therefore:

	

σ

σ

r

c

a b
r

a b
r

= +

= −

2

2

	 (6.6)

as the radial pressures at the surfaces are the same as the applied pressures; therefore

	

− = +

− = +

P a b
r

P a b
r

i
i

o
o

2

2
	

The general equation for a thick-walled cylinder is

	

Subtracting b

Sub

=
−( ) 

−( )
P P r r

r r
o i i o

o i

2 2

2 2

sstituting this equation a =
−( )P r P r

r
i i o o· ·2 2

oo ir2 2−( )

and the resulting general equation is shown as follows:

	

σ r
i i o o

o i

o i i oP r P r
r r

P P r r
=

−( )
−( ) +

−( )· · · ·2 2

2 2

2 2

rr r r

P r P r
r r

P

o i

c
i i o o

o i

o

2 2 2

2 2

2 2

·

· ·

−( )

=
−( )
−( ) −σ

−−( )
−( )

P r r
r r r

i i o

o i

· ·
·

2 2

2 2 2

If the external pressure is zero, the equation reduces to

	

σ σr
i o

o i
i c

i or r r
r r r

P and
r r r

=
−( )
−( ) =

+2 2 2

2 2 2

2 2

·
· 22

2 2 2
( )

−( )r r r
P

o i
i·

If the internal pressure is zero, the equation reduces to:

	     

σ σr
o i

o i
o c

o ir r r
r r r

P and
r r

=
−( )
−( ) = −

+2 2 2

2 2 2

2 2

·
· rr

r r r
P

o i
o

2

2 2 2
( )

−( )








·
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If the cylinder has closed ends, the axial stress can be found using the force equilibrium consid-
erations only.

The pressure Pi acts on an area given by π ri
2.

The pressure Po acts on an area given by π ro
2.

The axial stress σz acts on an area given by π(ro
2 – ri

2).

Force equilibrium then gives

	
σz

i i o o

o i

P r P r
r r

= −
−







· ·2 2

2 2

EXAMPLE 6.1: INTERFERENCE FIT

When considering a force fit of a shaft into a hub, generally they are manufactured from the same 
material. This is a simple example of a compound cylinder.

Consider a press fit of a shaft into a hub. The compression of the shaft and the expansion of the 
hub result in a compressive pressure at the interface between the shaft and hub. The conditions are 
shown in Figure 6.4 and the individual components are shown in Figure 6.5.

The radial interference δrf = sum of the shaft deflection δrs and the hole deflection δrh.

ut

I

r1

us

us
rf

r2

FIGURE 6.4  Interference fit.

rf

r2

(a) Assembly (b) Hub

Hub

Shaft

(c) Shaft

FIGURE 6.5  Components of shaft and hub.
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161Thick Cylinders

The longitudinal pressure, and hence σa, is assumed to be zero, and the internal pressure in the 
shaft hole and the external pressure outside the hub are also assumed to be zero.

	 E E u
rc c a r c rε σ υσ υσ σ υσ= = − − = − 	 (6.7)

The radial increase in the hole diameter = uh.

	
u r

Eh
f

h
c r= 





−( )σ υσ σ·

The radial decrease in the shaft diameter = us

	

u r
Es

f

s
c r= 





−( )σ υσ σ·

The total interference ut = uh + us

The equations for the hole:

	

σ

σ

r
f f

f f
f

c
f

r r r
r r r

P

r r

=
−( )
−( )

=
+( )

2 2
2
2

2
2
2 2

2
2 2

·
·

rr r
P

f
f

2
2 2−

The equations for the shaft:

	

σ

σ

r
f f

f
f

c
f

r r r
r r r

P

r r

=
−( )
−( )

= −
+( )

2
1
2 2

2 2
1
2

2
1
2

·
·

rr r
P

f
f2

1
2−











The interference equations are:

For the hole:

	
u r P

E
r r
r rh

f f

h

f

f
h= +

−
+







· 2
2 2

2
2 2 υ

For the shaft:

	
u r P

E
r r
r rs

f f

s

f

f
h= − +

−
−







· 2
1
2

2
1
2 υ
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The total interference is therefore:

	

u u u

r P
E

r r
r r

t h s

f f

h

f

f
h

= + −( )

= +
−

+






+· 2
2 2

2
2 2 υ rr P

E
r r
r r

f f

s

f

f
h

· 2
1
2

2
1
2

+
−

−






υ

If the hub and shaft are manufactured from the same material having an identical modulus of 
elasticity (E) and Poisson’s ratio (ν), the above equation will simplify to:

	

u r P
E

r r r
r r r rt

f f f

f f
=

−( )
−( ) −( )






· 2 2
2
2

1
2

2
2 2 2

1
2






In a normal engineering application where the shaft is solid, i.e, when r1 = 0, the equation is 
further simplified to:

	

u r r P
E r rt

f f

f
=

−( )
2 2

2

2
2 2
· ·

There is often a requirement to calculate the interface pressure when the radial interference ut is 
known (i.e., the shaft interference/2). When calculating the torque that can be transmitted or the 
force required to either make or separate the interference joint,

	
P

E r r u
r rf

f t

f
=

−( )2
2 2

2
22

·
· ·

By way of an example, consider a steel shaft 50 mm diameter pressed into a hub that has an 
outside diameter of 150 mm. The length of the hub is 50 mm and the interference is 0.05 mm. The 
assumed coefficient of friction is μ = 0.15.

The hub and shaft are both steel with the modulus of elasticity (E) = 210 × 109 Pa and the 
Poisson’s ratio υ = 0.3.

	

P
E r r u

r rf
f t

f
=

−( )

=
× −

2
2 2

2
2

9 2

2

210 10 0 05 0 02

·
· ·

· . . 55 0 5 10
2 0 15 0 025

6 013 10

2 6

2

6

( ) ×

= ×

−· .
· . · .

. Nm

Torque:

	

T d L P r

mm mm Pa

f f=

= × × × ×

π µ

π

· · · · ·

.50 50 204 167 106  ×× ×

= ×

0 15 25

6 013 103

.

.

 

  

mm

Nm

D
ow

nl
oa

de
d 

by
 [

M
ot

ila
l N

eh
ru

 N
at

io
na

l I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

A
lla

ha
ba

d]
 a

t 0
9:

49
 2

9 
D

ec
em

be
r 

20
13

 



163Thick Cylinders

EXAMPLE 6.2: RADIAL DISTRIBUTION OF STRESS

A steel cylinder has an outside diameter of 200 mm and an inside diameter of 100 mm. The cylin-
der is subject to an internal pressure of 150 MPa. Determine the radial and circumferential stress 
distributions and show the results in the form of a spreadsheet. Assume the cylinder has closed ends.

The section is divided into incremental radii increasing from the inner radius of 50.0 mm at 2.5 
mm intervals to the outside radius of 100.0 mm. The resultant stress is calculated at each incremen-
tal radius. The resultant stresses are tabulated in Table 6.2 and Figure 6.6 shows the results of the 
analysis.

TABLE 6.2
Spreadsheet Results for Example 6.2

Position
Pi

MPa
Po

MPa
r1

mm
r0

mm
r

mm
Radial Stress

MPa
Circ Stress

MPa
Axial Stress

MPa

  1 150 0 50 100 50.0 150.000 250.000 50.000

  2 150 0 50 100 52.5 131.406 231.406 50.000

  3 150 0 50 100 55.0 115.289 215.289 50.000

  4 150 0 50 100 57.5 101.229 201.229 50.000

  5 150 0 50 100 60.0   88.889 188.889 50.000

  6 150 0 50 100 62.5   78.000 178.000 50.000

  7 150 0 50 100 65.0   68.343 168.343 50.000

  8 150 0 50 100 67.5   59.739 159.739 50.000

  9 150 0 50 100 70.0   52.041 152.041 50.000

10 150 0 50 100 72.5   45.125 145.125 50.000

11 150 0 50 100 75.0   38.889 138.889 50.000

12 150 0 50 100 77.5   33.247 133.247 50.000

13 150 0 50 100 80.0   28.125 128.125 50.000

14 150 0 50 100 82.5   23.462 123.462 50.000

15 150 0 50 100 85.0   19.204 119.204 50.000

16 150 0 50 100 87.5   15.306 115.306 50.000

17 150 0 50 100 90.0   11.728 111.728 50.000

18 150 0 50 100 92.5     8.437 108.437 50.000

19 150 0 50 100 95.0     5.402 105.402 50.000

20 150 0 50 100 97.5     2.597 102.597 50.000

21 150 0 50 100 100.0     0.000 100.000 50.000

15.0000

10.0000

5.0000

0.0000

–5.0000

–10.0000

Series1
Series2
Series3
Series4
Series5St

re
ss

es
 (M

Pa
)

0.0 20.0 40.0 60.0 80.0 100.0 120.0

Legend

Radius (mm)

FIGURE 6.6  Thick cylinder stresses.
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7 Compound Cylinders

7.1  �INTRODUCTION

A compound cylinder consists of two concentric cylinders, as shown in Figure 7.1, where the outer 
cylinder is shrunk onto an inner cylinder such that the latter is initially in compression prior to the 
application of any internal pressure.

The final stresses in the assembly will then be the result of those due to prestressing and those 
due to the internal pressure.

Compound cylinders are used to increase the pressure that can be contained in cylinders. 
Applications involving compound cylinders include gun barrels, etc.

If the radius of the common surface (or interface diameter) is ro and the pressure at this sur-
face before the application of any internal pressure is po, the initial stresses are determined by 
considering the two cylinders separately, the boundary conditions for the outer cylinder being 
σr = Po when r = ro and σr = 0 when r = r1. For the inner cylinder σr = Po when r = ro and σr = 0 
when r = r2.

The stresses due to the internal pressure are obtained by considering the cylinder to be homog-
enous, with σr = P at r = r2 and σr = 0 at r = r1.

The various stresses are then combined algebraically, as shown in Figure 7.2(a), from which it is 
evident that the maximum resultant circumferential stress is less than for a homogeneous cylinder of 
the same cross section with the same internal pressure. Alternatively, for the same maximum stress, 
a thinner cylinder can be used if it is prestressed, the optimum conditions being when the resultant 
circumferential stress is the same at the inner surface of each cylinder as shown in Figure 7.2(b).

7.2  �SHRINKAGE ALLOWANCE

It is necessary for the inside diameter of the outer cylinder to be slightly smaller than the outside 
diameter of the inner cylinder to produce a desired initial pressure po at the common surface of the 
compound cylinder. It is common practice for the outer cylinder to be heated until it is possible 
to slide over the inner cylinder, and when cooled to the ambient temperature, it will generate the 
required pressure at the common surface. This procedure is termed the shrinkage allowance.

Let the circumferential stress at the outer surface of the inner cylinder due to po be σ′c.

The circumferential strain at the outer surface: = ′ =σ νc o

E
p
E

Therefore:	              = ′ −( )2r
E

po
c oσ ν

For the outer cylinder, let the circumferential stress at the inner surface due to po be σ″c.

The circumferential strain at the inner surface: = ′′ −σ νc o

E
p
E
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Therefore the decrease in diameter = ′′ −( )2r
E

po
c oσ ν

	

Initial difference in diameter = ′ −(2r
E

po
c oσ ν )) − ′′ −( ){ }

= ′ − ′′( )

σ ν

σ σ

c o

c c

p

r
E
2

When the materials of the two cylinders have different modulii of elasticity, E1 and E2, together 
with the Poisson’s ratio υ1 and υ2, respectively, for the inner and outer cylinders,

	
Shrinkage allowance = ′ − − ′′ −2 1

1

2r p
E

p
o

c o c oσ ν σ ν
EE2









(a)

(b)

Initial stresses

Initial stresses

Stresses due to P

Resultant 
stresses

Resultant 
stresses

σc

r2 ro r1

P

σr

r2 r1ro

Po

Resultant stresses

Initial stresses

Stresses
due to P

FIGURE 7.2  Algebraic combination of stresses. (a) Stress distribution in a homogeneous cylinder. (b) Stress 
distribution in a compound cylinder.

r1

ro

r2

FIGURE 7.1  Compound cylinder.
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167Compound Cylinders

EXAMPLE 7.1

Consider a compound cylinder subjected to an internal pressure of 150 MPa.
The radii of the inner, interface, and outer surfaces are, respectively, 100, 140, and 200 mm. 

Determine the shrinkage pressure necessary for the resultant maximum circumferential stress to 
be as small as possible and calculate this stress.

Initial stresses:	          r1 = 200 mm (outside radius)

Let the shrinkage pressure = p	          ro = 140 mm (interface radius)

	     r2 = 100 mm (inside radius)

For the inncer cylinder:	 p2 = 150 MPa

σr p mm= = at r 140

	   

p a
b

a
b

p a b

= +

= +
×

∴ = + × −

1
1

2

1
1

3

1
6

140

19 60 10

51 02 10

.

. 11

1
1

2

1
1

3

0
100

10 10

  

 

= +

= +
×

a
b

a
b

	 ∴ = + × −0 100 101
6

1a b 	 (7.1)

	 p a b= + × −
1

6
151 02 10.  	 (7.2)

Subtracting Equation (7.2) from (7.1)  p b= − × −48 98 10 6
1.

Therefore:	 b p1
320 4167 10= − ×. 	 (7.3)

Substituting Equaion (7.3) into (7.2)

	                  

p a p

p a p

= + × × − ×

= −

−
1

6 3

1

51 02 10 20 4167 10

1 0417

. ( . )

.

∴∴ =   a p1 2 0417.
	

(7.4)

Therefore at the inner surface:

	

σ

σ

σ

c

c

c

a
b

p
p

= −

= −

=

1
1

2

2

100

2 0417
2 0417

100

4 0

.
( .

.

 
 

8833 p
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For the outer cylinder:

σr = p at r = 140 mm
	   

∴ = +

= + × −

 

      

p a
b

a b

2
2

2

2
6

2

140

51 02 10.

	

(7.5)

σr = 0 at r = 200 mm

	        

 

 

0
200

0 25 0 10

2
2

2

2
6

2

= +

= + × −

a
b

a b.
	

(7.6)

Subtracting Equation (7.6) from (7.5): p a b

a b

p

= + ×

= + ×

= +

−

−

2
6

2

2
6

2

51 02 10

0 25 00 10

2

.

.

 

 

   66 02 10

38 432 10

6
2

2
3

.

.

×

= ×

−  

and  

b

b p 	 (7.7)

Substituting Equation (7.7) into (7.5):   

 

p a p

p a p

a

= + × × ×( )
= +

−
2

6 3

2

51 2 10 38 432 10

1 9608

. .

.

 

 

22 0 9608= − .  p

Therefore at the inner surface:

	         

σc p
b

p
p

= − −

= − − ×

0 9608
140

0 9608
38 432 10
19 6

2
2

3

.

.
.
. 000 10

0 9608 1 9608

2 922

3×

= − −

= −

σ

σ

c

c

p p

p

 . .

.

Stresses due to the internal pressure:

∴  σr = 100 MPa at r = 100 mm
	

100
100

100 10

2

6

= +

= + × −

a
b

a b

	

(7.8)

∴  σr = 0 at r = 200 mm
	        

0
200

25 00 10

2

6

= +

= + × −

a
b

a b.

	

(7.9)
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169Compound Cylinders

Subtracting Equation (7.9) from (7.8)

	    

100 100 10

0 25 00 10

6

6

= + ×

= + ×

−

−

a b

a b.

Hence:
	

100 75 00 10

1 333 10

6

6

= ×

= ×

−.

.

b

b

Substituting in Equation (7.8)

	           

100 100 10 1 333 10

100 133 33

3

6 6= + × × ×( )
= +

= −

−a

a

a

.

.  

33 33.

Therefore at r = 100

	        

σc a
b= −

= − − ×

= − −

100

33 33
1 333 10

100

33 33 133

2

6

2
.

.

. .33

166 67σc MPa= − .

and at r = 140 mm

	        

σ

σ

c

c

a
b

M

= −

= − − ×

= −

140

33 33
1 333 10

140

101 34

2

6

2
.

.

.  PPa

For the resultant maximum circumferential stress to be as small as possible, the resultant stresses at 
the inner surfaces of each cylinder must be equal, as will be evident from Figure 7.2, i.e., –166.67 
+ 4.0833 p = –101.34 – 2.922 p.

From which:

	

− + = −

− =

166 67 101 34 2 922 4 0833

65 33 7 0053

. . . .

. .

p p

p

666 67
7 0053

9 326

.
.

.

−
=

=

p

MPa p

Resultant maximum stress:	 –101.34 – (3 × 9.326) = 129.32 MPa
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EXAMPLE 7.2

A compound steel cylinder has a bore of 75.0 mm with an external diameter of 175.0 mm; the 
diameter of the interface is 120.0 mm. Determine the radial pressure at the interface, which must 
be provided by shrinkage. If the resultant maximum circumferential stress in the inner cylinder 
under a superimposed internal pressure of 60 MPa is to be half the value of the maximum hoop 
tension, which would be produced in the inner cylinder if that cylinder alone were subjected to 
an internal pressure of 60 MPa.

Determine the final hoop tensions at the inner and outer surfaces of both cylinders under the 
internal pressure of 60 MPa and sketch a graph to show the circumferential stress varies across 
the cylinder wall.

	 1.	 Initial stresses in the inner cylinder.

        Let the shrinkage pressure be p.	           r1 = 87.5 mm (outside radius)

	          ro = 60.0 mm (interface radius)

	           r2 = 37.5 mm (inside radius)

	          P = 60.0 MPa

       σr = p at r = 60.0 mm	         p a
b= +1

1
260 0.

       hence:	         p a b= + × −
1

6
1277 778 10.  	 (7.10)

       and σr = 0 at r = 37.5 mm	         0
37 51

1
2

= +a
b
.

	

	          0 711 111 101
6

1= + × −a b.  	 (7.11)

    

 Subtracting Equation (7.10) from (7.11)

	

p a b

p a b

p

= + ×

= + ×

= −

−

−

1
6

1

1
6

1

277 778 10

711 111 10

43

.

.

33 33 10

2307 705

6
1

1

.

.

×

= −

− b

b p

       Substituting in Equation (7.10)	      p a p

p a p

= + × ×( )
= −

−
1

6

1

277 78 10 2307 705

0 64103

1

. .

.

.6641 1p a=

       Therefore at the inner surface:	        

 

σc a
b

p
p

p

= −

= +

= +

1
1

2

2

37 5

1 641
2307 705

37 5

1 641

.

.
.
.

. 11 641

3 282

.

.

p

pcσ =
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171Compound Cylinders

	 2.	Stresses due to the internal pressure.

              σr MPa at r mm= =60 37 5    . 	 60
37 52

2
2

= +a
b
.

	            60 711 111 102
6

2= + × −a b.  	 (7.12)

              and at at r mmr     σ = =0 87 5. 	     0
87 52

2
2

= +a
b
.

        	              0 130 612 102
6

2= + × −a b. 	 (7.13)

 
     

      Subtracting Equation (7.13) from (7.12)	

        	    

60 711 111 10

0 130 612 10

60 5

2
6

2

2
6

2

= + ×

= + ×

=

−

−

a b

a b

.

.

880 50 10

103 359 10

6
2

3
2

.

.

×

× =

− b

b

 
     

      Substituting in Equation (7.12)	

        	             

60 711 111 10 103 359 10

60 73 50

2
6 3

2

= + × × ×( )
= +

−a

a

. .

.

660 73 50

13 50

2

2

− =

− =

.

.

a

a

     

Therefore, at the inner surface:

	                         

σ

σ

σ

c

c

c

a
b

a b

= −

= − ×

= − −

−

2
2

2

2
6

2

37 5

711 111 10

13 50

.

.

. 7711 111 10 103 59 10

13 50 73 50

87

6 3. .

. .

× × ×( )
= − −

= −

−

.. .0 2 8928+ p
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	 3.	 Inner cylinder alone with internal pressure.

              σr = 60 MPa at r = 37.5 mm 	 60
37 53

3
2

= +a
b
.

	             60 711 111 103
6

3= + × −a b. 	 (7.14)

        σr  = 0 at r = 60.0 mm 	    0
60 03

3
2

= +a
b
.

	 (7.15)

              Subtracting Equation (7.15) from (7.14)

	        

60 711 111 10

0 277 78 10

60

3
6

3

3
6

3

= + ×

= + ×

=

−

−

a b

a b

.

.

    + ×

× =

−433 333 10

138 462 10

6
3

3
3

.

.

b

b

              Substituting in Equation (7.14)

	                          

60 711 111 10 138 462 10

38 4616

3
6 3

3

= + × × ×

= −

−a

a

( . . )

.

              At the inner surface:

	   

σ

σ

σ

c

c

c

a
b= −

= − − ×

3
3

2

3

37 5

38 4616
138 462 10

37 52

.

.
.

.

== −

− + = −

=

136 923

87 0 2 8928
136 923

2

6 408

.

. .
.

.

MPa

p

p 55 MPa
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	 4.	 Initial stresses in the outer cylinder:

              σr = p at r = 60.0 mm	   ∴ = + p a
b

4
4
260

	          p a b= + × −
4

6
4277 78 10. 	 (7.16)

              σr = 0 at r = 87.5 mm	  ∴ = + 0
87 54

4
2

a
b
.

	               0 130 612 104
6

4= + × −a b. 	 (7.17)

             
Subtracting Equation (7.17) from (7.16)

	                    p a b= + × −
4

6
4277 780 10.

	

0 130 612 10

147 166 10

6795

4
6

4

6
4

= + ×

= + ×

−

−

a b

p b

.

.   

..06 4 p b=

             
Substituting in Equation (7.16)

	          

p a p

p a p

= + × ×

= +

−

−
4

6

4

277 78 10 6795 06

1 8875

0 8

( . . )

.

. 8875 4p a=

             
The resultant circumferential stresses in the compound cylinder are then as follows:

             
Inner cylinder, inner surface:

	

σ

σ

c

c

MPa

MPa

1

1

136 923
2

68 4615

= −

= −

.

.  

             
Inner cylinder, outer surface:

	                                 

σc a
b

a
b

2 1
1

2 2
2

260 0 60 0

1 64

 = −






+ −






=

. .

. 110
2307 705

60 0
13 50

103 36
2

 
 

p
p+ −





+ − − ×.
.

.
. 110
60 0

1 00 6 4085 42 211

35 8

3

2

2

.

. . .

.








= × −

= −σc 0025 MPa
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Outer cylinder, inner surface:

	                             

σ

σ

c

c

a
b

a
b

3 4
4

2 2
2

2

3

60 0 60 0

0

= −






+ −






= −

. .

..
.
.

.
.

8875
6795 06

60 0
13 50

103 359
62

p
p−







+ − −
00 0

59 995

2

3

.

.







= −σc MPa

            Outer cylinder, outer surface:

	                              

σ

σ

c

c

a
b

a
b

4 4
4

2 2
2

2

4

87 5 87 5

0

= −






+ −






= −

. .

..
.
.

.
.

8875
6795 06

87 5
13 50

103 359
2

p
p−







+ − − × 110
87 5

38 375

3

2

4

.

.








= −σc MPa

           
The variation in the circumferential stress across the cylinder is shown in Figure 7.3.

FURTHER READING

Warren C. Young. Roark’s Formulas for Stress and Strain. 6th ed. New York: McGraw-Hill, 1989.

–68.46 MPa

ro = 60.0 mmr1 = 37.5 mm r2 = 87.5 mm

–35.803 MPa

–38.375 MPa

–59.99 MPa

FIGURE 7.3  Variation in the circumferential stress across the cylinder.
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8 The Design and Analysis 
of Helical Compression Springs 
Manufactured from Round Wire

8.1  �ELASTIC STRESSES AND DEFLECTIONS OF HELICAL COMPRESSION 
SPRINGS MANUFACTURED FROM ROUND WIRE

8.1.1  �Introduction

This chapter covers the design data for helical compression springs manufactured from round wire 
and acting within the elastic range of the material. It is in four sections:

8.1: Elastic Stresses and Deflections of Helical Compression Springs Manufactured from 
Round Wire

8.2: Allowable Stresses for Helical Compression Springs Manufactured from Round Wire
8.3: Notes on the Design of Helical Compression Springs Made from Round Wire
8.4: Nested Helical Compression Springs

The design of a helical compression spring to meet specific requirements will require going 
through a number of iterations before a suitable spring design is finally established.

The procedure outlined in this chapter will enable a suitable spring design to be arrived at very 
quickly when all the constraints are clearly identified.

The design process outlined below identifies the use of each subsection in Section 8.1, although 
not all subsections will be required for any one spring design. This process may have to be iterated 
a number of times before a suitable design will be established.

	 1.	The type of end coil will need to be decided. These will influence both the stresses and 
the number of active coils in the spring. See Section 8.3, Notes on the Design of Helical 
Compression Springs Made from Round Wire.

	 2.	Establish a suitable material and a value for the working stress. Guidance on this is given 
in Section 8.2, Allowable Stresses for Helical Compression Springs Manufactured from 
Round Wire.

	 3.	The external diameter (Do) or internal diameter (Di) of the spring is often fixed by the 
design problem or can be easily established. Section 8.1.5 may be used to determine d and 
hence c and D.

	 4.	Section 8.1.5 also covers the spring rate, deflection characteristics, and number of turns.
	 5.	The spring will require to be checked that it conforms to the limitations of Section 8.1.3.
	 6.	The closed length characteristic is checked using Section 8.1.7.
	 7.	The buckling characteristic is checked using Section 8.1.8.
	 8.	The outside diameter of the spring will increase slightly when loaded. This increase is gen-

erally less than 2%, but may be accurately determined, if necessary, by using Section 8.1.10.
	 9.	Additional stresses may be incurred if the spring is subject to transverse loading (see 

Section 8.1.9).
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	 10.	Helix warping produces a stress increase over and above that which is predicted in 
Section 8.1.11. The increase is slight (being less than 5% for springs for which N > 11) 
and needs to be considered only in spring designs near their stress limit or where fatigue 
is the governing failure mode. See Section 8.1.11, for springs with ends closed and 
ground.

8.1.2  �Notation

P	 = Axial load applied to spring
q	 = Shear stress due to P
δ	 = Deflection due to P
S	 = Rate or stiffness of spring
G	 = Modulus of rigidity
D	 = Mean diameter of coil
d	 = Diameter of wire
c	 = D/d spring index
n	 = Number of active coils
N	 = Total number of coils
Lo	 = Free length
Lc	 = Solid length including end coils
Lc’	 = Solid length omitting end coils (nd)
Do	 = Outside diameter of coil
Di	 = Inside diameter of end coils
C1 to C5	 = Functions of c

8.1.3  �Notes

The data in this chapter are subject to the following limitations.

	 1.	The helix angle of a spring should not exceed 10°; therefore, for an unloaded compres-
sion spring,

	 Lo < 0.55noD + d′	 (8.1)

	 where values of d′ are given in Table 8.1.
	 2.	The deflection per coil under load should not be more than about a quarter of the coil diam-

eter, D.

Most springs will conform to conditions 1 and 2, but if these limitations are exceeded, then 
significant errors will arise; in this case it should be considered that the single spring should be 
replaced by a nest of two or more springs, each conforming to the conditions above (see Section 8.4).

TABLE 8.1
Allowances for End Coil Forms

End coil formation d′
One coil at each end closed and ground flat 1.5d

End coils unclosed but ground –0.5d

End coils unclosed and unground d

One coil at each end closed but unground 3.0d
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8.1.4  �Compression Spring Characteristics

8.1.4.1  �Material Specifications
The materials covered in this chapter (but not limited to) are as shown in Table 8.2.

8.1.4.2  �Wire Diameter
The wire diameter may be quoted in either imperial or metric diameters using readily available sizes.

Tables 8.7 and 8.8 gives approximately allowable stresses for standard wire sizes between 0.0076 
and 0.300 in. and 0.250 and 12.00 mm.

8.1.4.3  �Mean Diameter
The mean diameter is a basic characteristic of the helical spring. Although the outside or inside 
diameter of the spring may be quoted, the mean diameter will be found by either subtracting or add-
ing the wire diameter to these diameters.

8.1.4.4  �Spring Index c
The spring index is found by dividing the mean diameter D by the wire diameter d.

The preferred index is between 4 and 12. If the index is less than 4 the spring may be too dif-
ficult to manufacture and be too highly stressed; if the index is greater than 12 the spring may be 
too flimsy, tangle easily, or the coils may slip over each other as the spring is compressed to solid.

The larger the index the greater the deflection in comparison to the solid length.

8.1.4.5  �Spring Rate
This is another characteristic of the helical spring: in a helical spring design the deflection is pro-
portional to the force acting on the spring. This is the same for most springs where the spring rate 
is linearly proportional.

8.1.4.6  �Number of Active Coils
The number of active coils is those coils that actually deflect when the spring is either compressed 
or extended when subjected to the force.

8.1.4.7  �Total Number of Coils
The total number of coils equals the number of active coils plus the number of end coils, if any, and 
may be taken as follows:

Type of Spring Ends

Closed and ground flat	 = N = n + 2	 where N = total number of coils
Closed but not ground	 = N = n + 2	                 n = number of active coils
Open	 = N = n

TABLE 8.2
Material Specifications

Spring Material Specification

Steel S201 or S202

Stainless steel S205

Nimonic 90 HR501HD

Nimonic 90 HR502

Phosphor bronze BS 384
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8.1.4.8  �Solid Length
This is the length of the spring when all the coils are compressed and touching each other plus the 
type of spring end.

If the design calls for plating or an alternative coating, bear this in mind as this will increase the 
solid length.

The solid length should be specified as the maximum dimension. It should not be the same as the 
calculated nominal solid length.

8.1.4.9  �Initial (Free) Length
This is the overall length of the spring in its fully unloaded condition.

If loads are specified then the free length should be a reference dimension. This will allow the 
spring maker to vary the free length to maintain the spring force relative to the spring deflection or 
specified length.

8.1.4.10  �Clearance at Maximum Load
The free length of the spring should be chosen so that sufficient clearance is left between coils when 
the spring is compressed by the maximum working load.

This clearance should be not less than 15% of the deflection of the spring from the free length 
to the solid length.

8.1.4.11  �Direction of Wind
A helical spring can be wound either right or left hand. If the direction of wind is not specified, it 
can be coiled either way.

If the springs are nested then the wind must be in opposite directions to eliminate coil binding.
When the spring is fitted over a screw thread then the coiling should be in the opposite direction 

of the screw thread.

8.1.4.12  �Allowable Stresses
The allowable stresses will be determined by the material being specified and the operating tem-
perature of the spring.

As a rule of thumb it is generally considered that if the maximum working stress in the spring is 
kept below 40% of the allowable stress for the material specified, then the spring will have an unlim-
ited life. This will lead to a bulky spring, but if weight is not a problem, then this will be acceptable.

Where spring weight is critical care will be required in calculating the maximum stress in the 
spring for the particular application, and the life of the spring will need to be calculated.

Tables 8.9 to 8.11 tabulate the temperature reduction factors and maximum temperatures required 
for the standard materials covered in this chapter.

8.1.4.13  �Finish
Depending on the operating environment the spring will be working in, it may be desirable to 
specify a finish to the spring to protect against corrosion, etc. Care will be required in selecting the 
correct specification.

Some finishes or plating may have a detrimental effect on the fatigue life of the spring that could 
lead to premature failure.

8.1.5  �Static Shear Stress

8.1.5.1  �Basic Formulas
8.1.5.1.1  �Spring Rate
The rate or stiffness of a spring is the load required to produce a unit of deflection.
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S P= = × ×

×δ π
or S 8 P D

d3

Note that several authorities introduce a correction factor for variation in spring index, but this 
factor is small and can be safely ignored. The number of working coils cannot be precisely defined 
except by careful tests on individual springs, and the possibility of error from this source is greater 
than the effect of possible correction factors.

8.1.5.2  �Maximum Shear Stress
This is the stress at the surface of the spring wire produced by a given load. The stress is higher on 
the inner surface of the coil.

Uncorrected for coil curvature:

	
q = × ×

×
8 P D

d3π

With curvature correction:

	
q P D

d
K K c

c
= × ×

×
× = +

−
8 0 2

13π
    Stress conc( . )

( )
( eentration factor for curvature where c = D//d)

8.1.5.2.1  �Note A
This curvature correction factor was first proposed by National Physical Laboratory (NPL) in 
England in Spring Design Memorandum 1, published by the Ministry of Supply in 1943. It gives 
values very close to those obtained with Wahl’s formulas:

	
K c

c c
= −

−
+4 1

4 4
0 615.

The previous formula is much simpler to apply.

8.1.5.2.2  �Note B
The correction factor should always be applied to springs subject to fatigue or compression to clo-
sure for extended periods of time.

The uncorrected formulas may be applied where fatigue or sustained compression (e.g., clamp-
ing, etc.) is not involved.

Alternatively:

	
q G

c Lc
= ×

× ×
δ

π 2

8.1.5.3  �Useful Relations
Note that imperial or Système International (SI) units may be used providing that they are consistent.

The problem of design is to find the dimensions of a spring for a specified performance. This is 
the inverse of the problem of finding rate and stress, when all the dimensions are known. The design 
problem can be solved from the basic formulas by a process of successive approximation, but the use 
of the following functions of the spring index gives the solution more readily:
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D c d D c d

d D
c

o i

o

= + × = − ×

=
+

( ) ( )1 1                 

11 1
                        d D

c
c D D

D
i o i

o
=

−
= +

− DD
c D d

di

o          = −

Do is used in preference to D, since the problem may be to find the remaining dimensions when 
the spring housing diameter is given. values for the above functions are given in Tables 8.3 and 8.4 
(covering imperial and metric (SI) springs, respectively), for the range of values of c from 2.0 to 
12.0. Wherever possible, c should be restricted to the range from 3.0 to 10.0; greater than 10.0 may 
sometimes be necessary to avoid excessive lengths of springs.

A single spring of circular section is completely defined if any four of the following six param-
eters are known, P, δ, q, Do, d, and n. (Note that S, Lc1, c, etc., are included in the forgoing since

	
S P L n d c D

dc= = × =
δ

                  

If only three parameters are specified, a value will need to be assumed for one of the unspecified 
parameters before the design can be completed. A satisfactory spring can be designed by taking a 
value of c in the middle of the range.

8.1.5.4  �Relationships
Values of design functions, C1, C2, C3, C4, and C5.

	
C D

L x S
C D q

P
Co

c
o1

2
4 2 3= = =

  
                   δ

LL q
C D q

P
C D

L Sc
i

i

c
                      4 5

2
= =

×
44

For imperial springs values of G other than 11.5 × 106 lbf/in2 C1 and C2 should be multiplied by

	

11 5 106. ×
G

and C3 multiplied by

	

11 5 106
4 . ×

G

TABLE 8.3
Values of Design Functions C1, C2, C3, C4, and C5 
(to be used for imperial springs)

c Di /Do C1 C2 C3 C4 C5

2.00 0.333 0.084 10.00 0.000700 3.350 0.049

3.00 0.500 0.132 14.00 0.001240 7.000 0.093

3.10 0.512 0.137 14.40 0.001290 7.380 0.097

3.20 0.524 1.142 14.90 0.001350 7.770 0.102

3.30 0.535 0.147 15.40 0.001400 8.170 0.106

3.40 0.545 0.152 15.90 0.001450 8.580 0.111
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TABLE 8.3 (Continued)
Values of Design Functions C1, C2, C3, C4, and C5 
(to be used for imperial springs)

c Di /Do C1 C2 C3 C4 C5

3.50 0.555 0.157 16.30 0.001500 9.012 0.116

3.60 0.565 0.162 16.80 0.001560 9.451 0.121

3.70 0.574 0.167 17.30 0.001610 9.900 0.126

3.80 0.583 0.172 17.80 0.001660 10.359 0.132

3.90 0.592 0.177 18.40 0.001710 10.826 0.137

4.00 0.600 0.183 18.90 0.001770 11.300 0.142

4.10 0.608 0.188 19.40 0.001820 11.800 0.147

4.20 0.616 0.193 19.90 0.001870 12.300 0.152

4.30 0.623 0.199 20.50 0.001920 12.800 0.157

4.40 0.630 0.204 21.00 0.001980 13.300 0.162

4.50 0.637 0.209 21.60 0.002030 13.800 0.167

4.60 0.643 0.215 22.10 0.002080 14.300 0.172

4.70 0.649 0.220 22.70 0.002130 14.800 0.177

4.80 0.655 0.225 23.30 0.002190 15.300 0.182

4.90 0.661 0.231 23.80 0.002240 15.800 0.188

5.00 0.667 0.237 24.40 0.002290 16.300 0.193

5.10 0.672 0.242 25.00 0.002340 16.800 0.198

5.20 0.677 0.248 25.60 0.002400 17.300 0.204

5.30 0.682 0.253 26.20 0.002450 17.900 0.209

5.40 0.687 0.259 26.80 0.002500 18.400 0.215

5.50 0.692 0.264 27.40 0.002550 19.000 0.220

5.60 0.697 0.270 28.00 0.002610 19.500 0.226

5.70 0.702 0.276 28.60 0.002660 20.100 0.231

5.80 0.706 0.281 29.20 0.002710 20.600 0.236

5.90 0.710 0.287 29.80 0.002760 21.200 0.242

6.00 0.714 0.293 30.40 0.002820 21.700 0.247

6.10 0.718 0.299 31.10 0.002870 22.300 0.253

6.20 0.722 0.304 31.70 0.002920 22.900 0.258

6.30 0.726 0.310 32.40 0.002970 23.500 0.264

6.40 0.730 0.316 33.00 0.003030 24.100 0.207

6.50 0.733 0.322 33.70 0.003080 24.700 0.276

6.60 0.737 0.328 34.30 0.003130 25.300 0.282

6.70 0.740 0.344 35.00 0.003180 25.900 0.287

6.80 0.744 0.340 35.70 0.003240 26.500 0.293

6.90 0.747 0.346 36.30 0.003290 27.100 0.299

7.0 0.750 0.352 37.00 0.00334 27.70 0.305

7.1 0.753 0.358 37.70 0.00339 28.40 0.311

7.2 0.756 0.364 38.40 0.00344 29.00 0.316

7.3 0.759 0.370 39.00 0.00350 29.60 0.322

7.4 0.762 0.376 39.70 0.00355 30.20 0.328
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TABLE 8.3 (Continued)
Values of Design Functions C1, C2, C3, C4, and C5 
(to be used for imperial springs)

c Di /Do C1 C2 C3 C4 C5

7.5 0.765 0.382 40.40 0.00360 30.90 0.334

7.6 0.767 0.388 41.10 0.00365 31.50 0.340

7.7 0.770 0.394 41.80 0.00371 32.20 0.346

7.8 0.773 0.400 42.50 0.00376 32.80 0.351

7.9 0.775 0.406 43.20 0.00381 33.50 0.357

8.0 0.778 0.412 44.00 0.00386 34.20 0.363

8.1 0.780 0.418 44.70 0.00392 34.90 0.369

8.2 0.783 0.424 45.40 0.00397 35.50 0.375

8.3 0.785 0.431 46.10 0.00402 36.20 0.382

8.4 0.787 0.437 46.90 0.00407 36.90 0.388

8.5 0.789 0 443 47.60 0.00412 37.60 0.394

8.6 0.792 0.449 48.30 0.00418 38.30 0.400

8.7 0.794 0.456 49.10 0.00423 39.00 0.406

8.8 0.796 0.462 49.80 0.00428 39.70 0.412

8.9 0.798 0.468 50.60 0.00433 40.40 0.418

9.0 0.800 0.474 51.30 0.00439 41.10 0.424

9.1 0.802 0.481 52.10 0.00444 41.82 0.430

9.2 0.804 0.487 52.90 0.00449 42.55 0.437

9.3 0.806 0.494 53.60 0.00454 43.29 0.443

9.4 0.808 0.500 54.40 0.00460 44.03 0.449

9.5 0.810 0.506 55.20 0.00465 44.77 0.456

9.6 0.811 0.513 55.90 0.00470 45.51 0.462

9.7 0.813 0.519 56.70 0.00475 46.25 0.468

9.8 0.815 0.526 57.50 0.00480 46.99 0.475

9.9 0.817 0.532 58.30 0.00486 47.70 0.481

10.0 0.818 0.539 59.10 0.00491 48.40 0.487

10.1 0.820 0.545 59.90 0.00496 49.15 0.493

10.2 0.821 0.552 60.70 0.00501 49.90 0.499

10.3 0.823 0.558 61.50 0.00507 50.65 0.505

10.4 0.825 0.565 62.30 0.00512 51.41 0.512

10.5 0.826 0.571 63.10 0.00517 52.16 0.518

10.6 0.828 0.578 63.90 0.00522 52.92 0.524

10.7 0.829 0.584 64.70 0.00528 53.69 0.531

10.8 0.831 0.591 65.50 0.00533 54.45 0.537

10.9 0.832 0.598 66.40 0.00538 55.23 0.544

11.0 0.833 0.604 67.20 0.00543 56.00 0.551

12.0 0.846 0.671 75.70 0.00596 64.10 0.617
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Values of design functions, C1, C2, C3, C4, and C5.

	
C D

L S
C D q

P
C

L
o

c
o

c
1

2
4 2 3=

×
= =                   δ

××
= =

×q
C D q

P
C D

L Si
i

c
                      4 5

2
4

For metric springs values of G other than 79.3 MPa C1 and C2 should be multiplied by

	

79.3 MPa
G

and C3 multiplied by

	

79.3 MPa
G

4

TABLE 8.4
Values of Design Functions C1, C2, C3, C4, and C5 

(to be used for metric springs (SI Units))

c Di /Do C1 C2 C3 C4 C5

2.00 0.333 0.292 10.00 0.0084 3.350 0.170

3.00 0.500 0.458 14.00 0.0149 7.000 0.323

3.10 0.512 0.475 14.40 0.0155 7.380 0.337

3.20 0.524 0.493 14.90 0.0163 7.770 0.354

3.30 0.535 0.510 15.40 0.0169 8.170 0.368

3.40 0.545 0.527 15.90 0.0175 8.580 0.385

3.50 0.555 0.545 16.30 0.0181 9.012 0.403

3.60 0.565 0.562 16.80 0.0188 9.451 0.420

3.70 0.574 0.580 17.30 0.0194 9.900 0.437

3.80 0.583 0.597 17.80 0.0200 10.359 0.458

3.90 0.592 0.614 18.40 0.0206 10.826 0.475

4.00 0.600 0.635 18.90 0.0213 11.300 0.493

4.10 0.608 0.652 19.40 0.0219 11.800 0.510

4.20 0.616 0.670 19.90 0.0225 12.300 0.527

4.30 0.623 0.691 20.50 0.0231 12.800 0.545

4.40 0.630 0.708 21.00 0.0238 13.300 0.562

4.50 0.637 0.725 21.60 0.0244 13.800 0.580

4.60 0.643 0.746 22.10 0.0250 14.300 0.597

4.70 0.649 0.763 22.70 0.0257 14.800 0.614

4.80 0.655 0.781 23.30 0.0264 15.300 0.632

4.90 0.661 0.802 23.80 0.0270 15.800 0.652

5.00 0.667 0.822 24.40 0.0276 16.300 0.670

5.10 0.672 0.840 25.00 0.0282 16.800 0.687

5.20 0.677 0.861 25.60 0.0289 17.300 0.708

5.30 0.682 0.878 26.20 0.0295 17.900 0.725

5.40 0.687 0.899 26.80 0.0301 18.400 0.746
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TABLE 8.4 (Continued)
Values of Design Functions C1, C2, C3, C4, and C5 

(to be used for metric springs (SI Units))

c Di /Do C1 C2 C3 C4 C5

5.50 0.692 0.916 27.40 0.0307 19.000 0.763

5.60 0.697 0.937 28.00 0.0314 19.500 0.784

5.70 0.702 0.958 28.60 0.0320 20.100 0.802

5.80 0.706 0.975 29.20 0.0326 20.600 0.819

5.90 0.710 0.996 29.80 0.332 21.200 0.840

6.00 0.714 1.017 30.40 0.0340 21.700 0.857

6.10 0.718 1.038 31.10 0.0346 22.300 0.878

6.20 0.722 1.055 31.70 0.0352 22.900 0.892

6.30 0.726 1.076 32.40 0.0358 23.500 0.916

6.40 0.730 1.097 33.00 0.0365 24.100 0.718

6.50 0.733 1.117 33.70 0.0371 24.700 0.958

6.60 0.737 1.138 34.30 0.0377 25.300 0.979

6.70 0.740 1.194 35.00 0.383 25.900 0.996

6.80 0.744 1.180 35.70 0.0390 26.500 1.017

6.90 0.747 1.201 36.30 0.0396 27.100 1.038

7.0 0.750 1.222 37.00 0.0402 27.70 1.058

7.1 0.753 1.242 37.70 0.0408 28.40 1.079

7.2 0.756 1.263 38.40 0.0414 29.00 1.097

7.3 0.759 1.284 39.00 0.0422 29.60 1.117

7.4 0.762 1.305 39.70 0.0428 30.20 1.138

7.5 0.765 1.326 40.40 0.0434 30.90 1.159

7.6 0.767 1.346 41.10 0.0440 31.50 1.180

7.7 0.770 1.367 41.80 0.0447 32.20 1.201

7.8 0.773 1.388 42.50 0.0453 32.80 1.218

7.9 0.775 1.409 43.20 0.0459 33.50 1.239

8.0 0.778 1.430 44.00 0.0465 34.20 1.260

8.1 0.780 1.451 44.70 0.0472 34.90 1.281

8.2 0.783 1.471 45.40 0.0478 35.50 1.301

8.3 0.785 1.496 46.10 0.0484 36.20 1.326

8.4 0.787 1.517 46.90 0.0490 36.90 1.346

8.5 0.789 1.537 47.60 0.0496 37.60 1.367

8.6 0.792 1.558 48.30 0.0503 38.30 1.388

8.7 0.794 1.582 49.10 0.0509 39.00 1.409

8.8 0.796 1.603 49.80 0.0515 39.70 1.430

8.9 0.798 1.624 50.60 0.0521 40.40 1.451

9.0 0.800 1.645 51.30 0.0529 41.10 1.471

9.1 0.802 1.669 52.10 0.0535 41.82 1.492

9.2 0.804 1.690 52.90 0.0541 42.55 1.517

9.3 0.806 1.714 53.60 0.0547 43.29 1.537

9.4 0.808 1.735 54.40 0.0554 44.03 1.558
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185The Design and Analysis of Helical Compression Springs Manufactured from Round Wire

8.1.6  �Spring and Deflection Characteristics

The axial spring rate, S, of a compression spring may be calculated from Equation (8.2).
Data on the transverse spring rate, St, is presented in Section 8.1.9.

	 S G d
n c

= ×
× ×8 3 	 (8.2)

The relationship between N and n is shown in Table 8.5. The value of N – n represents the total 
number of ineffective coils at both ends of the spring. In each range, the higher number corresponds to 
the compression under a large load and the lower number to compression under a small load.

TABLE 8.4 (Continued)
Values of Design Functions C1, C2, C3, C4, and C5 

(to be used for metric springs (SI Units))

c Di /Do C1 C2 C3 C4 C5

9.5 0.810 1.756 55.20 0.0560 44.77 1.582

9.6 0.811 1.780 55.90 0.0566 45.51 1.603

9.7 0.813 1.801 56.70 0.0572 46.25 1.624

9.8 0.815 1.825 57.50 0.0578 46.99 1.648

9.9 0.817 1.846 58.30 0.0585 47.70 1.669

10.0 0.818 1.871 59.10 0.0591 48.40 1.690

10.1 0.820 1.891 59.90 0.0597 49.15 1.711

10.2 0.821 1.916 60.70 0.0603 49.90 1.732

10.3 0.823 1.936 61.50 0.0611 50.65 1.753

10.4 0.825 1.961 62.30 0.0617 51.41 1.777

10.5 0.826 1.982 63.10 0.0623 52.16 1.798

10.6 0.828 2.006 63.90 0.0629 52.92 1.818

10.7 0.829 2.027 64.70 0.0636 53.69 1.843

10.8 0.831 2.051 65.50 0.0642 54.45 1.864

10.9 0.832 2.075 66.40 0.0648 55.23 1.888

11.0 0.833 2.096 67.20 0.0654 56.00 1.912

12.0 0.846 2.329 75.70 0.0718 64.10 2.141

TABLE 8.5
Number of Ineffective Coils 
for Various End Coil Forms

End Coil Formation

Total Number 
of Ineffective Coils 

(N–n)

One coil at each end closed and ground 1.5–2.0

End coils unclosed but ground 0.5–1.0

End coils unclosed and unground    0–0.5

One coil at each end closed but unground 1.5–2.0
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8.1.7  �Solid Length Characteristics

The nominal solid length of a spring is the length in which all coils are touching (see Figure 8.1). 
Some additional notes on the solid length are covered in Section 8.3.

Most springs are scragged to introduce favorable residual stresses into the wire. If advantage of 
this process is not taken, then it will be necessary to ensure the spring will not be overstressed when 
compressed solid. At the minimum working length, clearance should be maintained between the 
coils. More detailed notes are contained in Section 8.3.

The nominal length of the spring will vary dependent upon the type of end coil formation and 
total number of coils in the spring, N. The relationship between n and N is presented in Table 8.5, 
and expressions for the nominal solid length are given in Table 8.6.

8.1.8  �Buckling of Compression Springs

A compression spring will buckle if the deflection under a maximum force, as a proportion of the 
free length of the spring, exceeds a critical value of HD/Lo. A range of values of H for various end 
conditions is shown in Figure 8.2, and critical values of HD/Lo are shown in Figure 8.3.

There are two main reasons why a range of values for H has been given for each end condition:

	 1.	The exact end condition as shown in Figure 8.2 is rarely met in actual practice.
	 2.	Buckling is affected to a large extent by the squareness of the end of the spring under load.

Do

D

Di

d Lo

δ1

L1

δ2

Lc

δc

P1
P2

P2P1

Pc

Pc

Applied
Load

Length

Shear stress
at intrados

1a 1b 1c 1d

0

Free length
Lo

0

Minimum working
load P1

Maximum working
length L1

q1

Maximum working
load P2

Maximum working
length L2

Load at solid length
Pc

Solid length
Lc

q2 qc

L2

FIGURE 8.1  Compression spring with ends closed and ground flat under 4 stages of loading.
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187The Design and Analysis of Helical Compression Springs Manufactured from Round Wire

For the purposes of calculation the minimum value of H is used.

8.1.9  �Transverse Loading

In some designs the compressed spring may be subjected to a combined horizontal force as depicted 
in Figure 8.4.

The transverse rate of the spring with the end coils restrained to remain parallel to each other is 
given by Equation (8.3).

	 S S
L
D

t p
o

( ) =
+( )

+
+( ) 





=0 2
2 1

1 2
3

ν
ν

	 (8.3)

In most instances, the spring may be subjected to an axial load and the transverse rate is then 
given by Equation (8.4).

TABLE 8.6
Effect of End Coil Forms on the Solid Length of the Spring

End Coil Formation Lc

One coil at each end closed and ground d(N – 0.5)a

One coil at each end closed but unground d(N + 1)

End coils unclosed and unground d(N + 1)

End coils unclosed and ground d(N – 0.5)a

a	 This expression assumes that the tip of the end coil has been ground down to 
a thickness of 0.25d. That is, in the case of one coil at each end closed and 
ground, ¾ of the end coil is ground.

H = 1.6 to 2.0

Both ends
fixed

H = 1.2 to 1.5

One end
pivoted

H = 0.8 to 1.0

Both ends
pivoted

H = 0.4 to 0.5

One end
pivoted

H = 0.8 to 1.0

Both ends
fixed

Laterally constrained Not laterally constrained

FIGURE 8.2  End function “H” for various end conditions.
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	 S
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








tan k
k

1

	 (8.4)

0
0

0.10

0.20

030
Fa

ct
or

 H
D

/L
o

0.40

0.10 0.20 0.30 0.40 0.50
Relative Deflection δ/Lo

0.60 0.70 0.80 0.90 1.00

Unstable

Stable

FIGURE 8.3  Critical values of HD/Lo.

SQ

FQ

FQ

F

L

F

FIGURE 8.4  Compression spring under combined axial and transverse loading.
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where	 k L
D

L
L

L
Lo

o

= −
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
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+
+


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

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




ν

.

8.1.10  �Increase of Spring Diameter under Compression

The coil diameter of a compression spring will increase when the spring is compressed. In general 
this expansion is within the region of 2%. The expansion will be dependent on whether the end coils 
are free to rotate about the helix angle.

The following derivation has been developed from Wahl.

8.1.10.1  �Ends Free to Rotate
The relative change in the diameter of the spring, ΔD, during compression from the free length, Lo, 
to the solid length, Lc, is given by

	
∆D
D

p d pd
D

= − −1 3 0 3
13

2 2

2
. .

	 (8.5)

where the unloaded pitch,

	 p L d
n
o= −

0
	 (8.6)

8.1.10.2  �Ends Restrained against Rotation
The relative change in the diameter during compression from free length, Lo, to solid length, Lc, is 
given by

	
∆D
D

p d
x D

= + −





−1 1
2 2

2 2

1 2

π   

/

	 (8.7)

In reality, the actual coil expansion will be between the values derived from Equations (8.5) 
and (8.7).

8.1.11  �Helix Warping in Compression Springs

Various assumptions have been made in Section 8.1 about the deflection behavior of helical com-
pression springs. Wahl (1953) gives a more detailed examination and shows that these assumptions 
lead to an underestimation of the stress, particularly in short springs.

Figure 8.5 gives the relationship between qw/q and the stress increase due to helix warping and 
N for springs with one coil at each end closed and ground flat.

8.1.12  �Natural Frequency

The majority of helical compression springs are subject to dynamic applications such as:

•	 Restraining a cam follower such as an inlet and exhaust valve
•	 Absorbing shock or deaccelerating a load
•	 Providing an accelerating force to a load
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All springs have their own natural frequency, and it is the responsibility of the engineer to ensure 
that the spring will operate well under its first natural frequency; there will be a risk of damage, say 
in the case of an inlet or exhaust valve in an engine colliding with the piston if the spring cannot 
return the valve in time.

8.1.12.1  �First Natural Frequency
A natural frequency curve is shown in Figure 8.6. The first natural frequency for a helical spring 
that is fixed at both ends is found to be

	 f d
D n

G
nat

t
=

9 2 ρ
	 (8.8)​

where
d	 =	 wire diameter
D	 =	 nominal coil diameter
nt	 =	 total number of coils
G	 =	 shear modulus
ρ	 =	 material density

Figure 8.7 shows typical stresses induced in a spring that is subjected to various cyclic loading.
Springs subjected to resonant forcing frequencies do exhibit a degree of damping. Figure 8.8 

shows a typical damping curve for steel springs.

8.1.13  �Example 1

8.1.13.1  �Design of a Helical Compression Spring
A compression spring is to provide a load of 30 N when compressed to a length of 50 mm and a load 
of 85 N when compressed a further 20 mm. The outside diameter must not exceed 32 mm.

Both ends of the spring are fixed and laterally guided.

2
1.00

1.06

1.10

1.16

1.18

1.14

1.12

1.08

1.04

1.02

q w
/q

1.20

4 6 8 10 12 1614
N

18 20 22 24 26 28 30

FIGURE 8.5  Stress increase due to helix warping.
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191The Design and Analysis of Helical Compression Springs Manufactured from Round Wire

The spring shall have a fatigue life in excess of 107 cycles when driven by a cam rotating at 500 
rev/min (8.33 Hz).

From the above information Figure 8.9 is produced.

8.1.13.1  �End Coil Formulation
In this case it was considered that one coil at each end closed and ground flat would be appropriate.

8.1.13.2  �Working Stress
A value of 500 MN/m2 was chosen for the static design shear stress.

8.1.13.3  �Determination of D, d, and c
The coil growth under compression is not considered to exceed 2% of the diameter, and allowing for the 
possible maximum tolerance on the outside diameter, a value of Do = 30 mm is considered appropriate.
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FIGURE 8.6  Natural frequency curve.
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FIGURE 8.7  Stresses in spring subject to various cyclic loading.
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FIGURE 8.8  Damping coefficient.
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193The Design and Analysis of Helical Compression Springs Manufactured from Round Wire

At maximum working load:
	 = 0.17 × 10–6 m2

Considering case 2 from Table 8.3,

	

C D q
Po2

3
6

30 10 500 10
85

72 76

=

= × ×

=

− 

 .

From Table 8.4 the spring index c corresponding to a value of C2 = 72.76:
	                                                              = 11.654 (by interpolation)

Corresponding wire diameter d is calculated from

	

d D
c

m

say

o=
+

= ×
+

= ×

−

−

1

30 10
11 654 1

2 371 10

2 37

3

3

.

.

. 11 mm

L2

L1 = 50 mm

20 m

Lo

P1

P2

δ1

δ2

FIGURE 8.9  Compression spring diagram.
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As this wire diameter does not correspond to a standard wire size, a wire diameter of 2.50 mm 
will be chosen for this calculation. Choosing a larger wire size will reduce the working stress.

Hence recalculating the spring index c:

	

c D d
d

c

o= −

= −

=

( )

.
.

 30 2 5
2 5

11

and
	 D = 30 – 2.5
	      = 27.5 mm

Recalculating the working stress in the spring at the maximum working load:

	

q PD
d

c
c

x

= × +
−

= ×
×

=

 

   

 

8 0 2
1

8 85 27 5
2 5

426

3

3

π

π

.

.
.

.667 MPa

8.1.13.4  �Determining Spring Rate, Deflection Characteristics, and Number of Coils

	

S = Final load – initial load
Deflection from  initial load to final load

 = −
−

85 30
50 30

N N
( ))

/

×

=

−10

2750

3m

S N m 	

Assuming a value of G for steel of 79.3GN/m2,
Considering the number of working coils:

	

S Gd
nc

n Gd
Sc

=

=

= × × ×
× ×

−

8

8

79 3 10 2 5 10
8 2750 11

3

3

9 3. .
33

6 77= .  coils

From Table 8.5 for springs with ends closed and ground flat:

	 N – n = 1.75 (mid-range)
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195The Design and Analysis of Helical Compression Springs Manufactured from Round Wire

Therefore,

	 N = 1.75 + 6.77
	        = 8.52 total coils

The initial deflection (δ1) produced by the initial load of 30 N is

	

δ

δ

1

1

=

=

=

P
S

N30
2750
10 91

 N/m
 mm.

and the free length (Lo)

	        

L0 = +

= +

=

1δ L

10.91 mm 50 mm

60.91 mm

1

8.1.13.5  �Conformity with Limitations of Section 8.3
From Equation 8.1 and Table 8.1, together with the assumptions of Section 8.1.13.1 that one coil at 
each end is closed and ground,

	 no = N – 2

	 Lo < +0.55n  D do

Since Lo = 60.91 mm is less than 102.8 mm, the helix angle of the unloaded spring is less than 10°.

Furthermore, the deflection is given by

	       

0 55 0 55 2 1 5

0 55 6 55 27 5

0. � . ( ) .

. . .

n D d N D d+ = × − × +

= × × ++ ×

=

1 5 2 5

102 82

. .

. mm
This is less than

	

D
4

 mm27 5
4

6 88. .



 =

and so both criteria of Section 8.1.3 are satisfied.

8.1.13.6  �Closed Length Characteristics

	            

δ2

0

10 91 20 0
6 55

4 72

n
mm mm

mm

      

  

= +

=

. .
.

.
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Using Table 8.6, the nominal solid length is given by

	   

L d N

mm

mm

c = −

= −

=

( . )

. ( . . )

.

0 5

2 5 8 52 0 5

20 05

  

 

Since the minimum working length is 30 mm, the spring does not approach the solid length when 
working. If the working length was only slightly larger than the nominal solid length, it would be nec-
essary to compare the dimensional tolerances on the working length with the maximum solid length.

The additional load necessary to close the spring to its solid length is given by

	   

( ) ( .

.

L L S

N

c2
3 330 10 20 05 10 2750

27 36

− × = × − × ×

=

− −

 

Therefore, the total load needed to close the spring is

	 = 27.36 N + 85 N

	 = 112.36 N

and the shear stress at closure:

	     

=






= ×

=

 

 

112 36

112 36 462 39
85

611 225

.

. .

.

P
q

MN // m2

This stress would be permissible for a spring manufactured from BS 2803, which is low tempera-
ture, heat treated, and prestressed.

8.1.13.7  �Buckling Characteristics
For a nonpivoted spring, as both ends of the spring are fixed and laterally constrained, from 
Figure 8.2 H has the values of 1.6 to 2.0.

In practice, however, H should be reduced by 20%, so H is taken to have a value of 1.6. Therefore,

	

HD
L0

= ×

=

= ×

=

1.6 27.5
60.91

0.722

Ha
L

1.6 0
60.91

0
0

From Figure 8.3, where HD/Lo is greater than 0.4, the spring will be stable for any deflection.
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8.1.13.8  �Determination of Coil Growth under Compression
From Equation 8.6,

	

p L d
n

mm

o

o
= −

= − ×

=

60 91 1 5

8 727

. .

.

2.5
6.55

For a worst case, that is, ends free to rotate, Equation (8.5) applies:

	

∆D
D

p d pd
D

= − −

= × − ×

1 3 0 3
13

1 3 8 727 0 3 2 5

2 2

2

2

. .

. . . .

  

22

2
8 727 2 5

13 27 5
0 00766

− ×
×

=

. .
.

.

Thus, the increase in the diameter of the spring is given by

	 ΔD = 0.00766 × 27.5 mm

	 = 0.211 mm

The maximum outside diameter of the spring will be 30.21 mm.
It is recommended to increase the outside diameter to 31.0 mm to cover any variations of manu-

facturing tolerances.

8.1.13.9  �Natural Frequency of the Spring
From Equation (8.8) the natural frequency of the spring is calculated as follows:

	
ω

ρn
t

d
D n

G=
9 2

where:
d	 =	 2.5 mm
D	 =	 27.5 mm
nt	 =	 8.52
G	 =	 79.3 × 109 Pa
ρ	 =	 7,850 kg/m3

hence,
ωn	=	 137 Hz

In this example the operating frequency of the spring is 500 rev/min (8.33 Hz), which is well 
below the natural frequency of the spring. Therefore, in this example there will be no significant 
increase in the stress in the spring.
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8.1.13.10  �Stress Increase Due to Helix Warping
From Figure 8.5 with N = 8.52, qw/q = 1.068, this indicates that the stress in the spring previously 
calculated is some 6% low. Thus, the stress at static working load is

	        q = 425 MN/m2 × 1.068

	 = 453.9 MN/m2

Similarly, the surge stress will be

	     = 561.77 MN/m2

The closure stress will not be affected by helix warping.

8.2  �ALLOWABLE STRESSES FOR HELICAL COMPRESSION 
SPRINGS MANUFACTURED FROM ROUND WIRE

Section 8.2 provides data on both the static and fatigue strengths of various spring materials. The 
data relate to prestressed springs that have been heat treated after manufacture in cases where this 
has a beneficial effect on the fatigue life of the spring and operating in a noncorrosive ambient 
environment. For most carbon steel spring materials, an ambient temperature is within the range of 
–20 to +150°C.

In general the static and fatigue strengths should be checked in the design. Static criteria alone 
may be used for springs that are limited to a few hundred cycles in their working life.

8.2.1  �Static Strength Data

Once the major parameters are established, the stress when the spring is compressed to solid may 
be calculated.

Usually, one of the first steps in spring design is to choose a value of stress that corresponds to 
the maximum working load. For a spring that only sustains a static load, this should be as high as 
reasonably possible, normally about 85% of the limiting static shear stress of the spring material.

This should give an adequate clearance between the coils when the spring is compressed to its 
minimum working length.

The shear stress q in Figures 8.10 and 8.11 refers to springs that have a degree of prestress. 
Prestressing allows springs to be loaded in service beyond the point that ordinarily produces plastic 
deformation and therefore a permanent set. Figures 8.10 and 8.11 show the stress distribution during 
the prestressing process. The compression spring is initially wound to be longer than required and 
is then stressed elastically under a compressive force from P to Q (Figure 8.10) and then plastically 
to closure from Q to R.

Releasing the force leads to a reverse residual stress to be generated, –qs. Subsequently, the 
spring is able to accept a change of stress, •qs• + •qr•, while remaining elastic. In practice the spring 
is compressed to solid five or six times (S to T) to complete the process.

8.2.2  �Fatigue Data

Fatigue data are generally presented on modified Goodman diagrams as in Figure 8.12(a). This 
figure shows how these stresses are presented on the modified Goodman-type diagram and their 
relationship to the working stress cycle of the spring is shown in Figure 8.12(b).

These diagrams are specifically generated for springs of a particular wire diameter and material 
relating to springs that have been prestressed.
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199The Design and Analysis of Helical Compression Springs Manufactured from Round Wire

8.2.2.1  �Estimation of an S-N Curve
Figure 8.13 shows a typical S-N curve; the stress amplitude (Sa) is plotted against the number of 
cycles to failure (N). The curve indicates the number of cycles to failure of the material, for a given 
specific stress amplitude, between 0 and 107 cycles. N is usually plotted on a logarithmic scale 
because the value may range between a few thousand to a few million cycles. The stress may also 
be plotted on a logarithmic scale. The line represents the best fit for the data points generated from 
the numerous fatigue tests undertaken. The fatigue test may have been a straight push-pull type of 
test or a bend test based on the Wohler rotating beam test.

The curve in Figure 8.13 is for a material manufactured from BS 1408 range 3 (unpeened carbon 
steel) subject to a constant mean stress of 500 MN/m2.

8.2.3  �Factors Affecting Spring Life

8.2.3.1  �Spring Geometry
At small values of the spring index, c, the shear stress at the inner surface of the coil is signifi-
cantly increased due to the curvature of the wire. This effect is accounted for in the curvature 
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FIGURE 8.11  Shear stress distribution before, during, and after prestressing superimposed on wire diameter.
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correction factor (see Section 8.1.5.2) when calculating q. Springs coiled from small-diameter wire 
can withstand higher operating stresses than larger wire diameters. There are two reasons for this:

	 1.	A greater reduction in wire diameter by drawing during the manufacturing process 
improves the mechanical properties.

	 2.	The springs may be coiled from cold wire. If hot coiled springs are subsequently heat 
treated, then decarburation problems may result.

R 0 R 0.25 R 0.50 R 0.75 R 1.0 
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qminA

C
B

D

q1

q2

q2

q1

q

Time

Stress Range

Lines of constant
stress

E
Line ECB
denotes qmax under
static loading

Line ABCD denotes area of 
allowable range of operating stress 
for a specific endurance.

R 0 to R 1.0 denotes Stress Ratio

(a) Example of a modified Goodman diagram
for specified values of N and d

(b) Stress – time diagram for a spring
cyclically loaded between stress values

of q1 and q2

FIGURE 8.12  Presentation of fatigue data.
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FIGURE 8.13  Estimated S-N curve for BS 1408 Range 3 at a constant mean stress: 500MN/m2.
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201The Design and Analysis of Helical Compression Springs Manufactured from Round Wire

8.2.3.2  �Corrosion
The fatigue life of the spring may be significantly reduced if the spring is operating in a corrosive 
atmosphere. The fatigue life could reduce to as little as 10% of the fatigue life. Plating or other anti-
corrosion treatments may protect springs, but care will be required to ensure the treatment will not 
have a deleterious effect on the life of the spring due to, say, hydrogen embrittlement.

Corrosion-resistant materials such as titanium, stainless steel, or copper-nickel alloys would be 
a better choice of material.

8.2.3.3  �Surface Finish
Machine marks or other surface damage on the surface of the spring may lead to early fatigue fail-
ure, as these will allow crack initiation to start much easier. A good surface finish can be obtained 
by specifying valve spring quality wire.

8.2.3.4  �Elevated Temperatures
High operating temperatures tend to induce a permanent set or loss of load in springs at a fixed 
deflection and a reduction in the shear modulus. Temperatures as low as 120°C may cause a relax-
ation of, for instance, music wire (BS 1408M, ASTM A228, etc.), although other materials can 
withstand higher temperatures.

8.2.4  �Treatments for Improving the Fatigue Life of Springs

8.2.4.1  �Prestressing
Prestressing is a process where the compression spring is cycled between its operating range several 
times to improve the static and fatigue properties. It is described in more detail in Section 8.3.2.

8.2.4.2  �Shot Peening
Shot peening is a process where small pellets are fired at the surface of the spring under very 
high pressure. It has the most beneficial effect where the torsional stress is greatest on the inside 
of the coils. Shot peening is difficult to accomplish with springs of small diameter wire and close 
coiled springs.

After shot peening the spring should be given a low-temperature heat treatment to further enhance 
its fatigue life. Peening leaves a very active surface, which should be protected against corrosion.

The process improves the fatigue life in three ways:

	 1.	The process induces compressive stresses into the outer skin of the spring surface, thereby 
reducing the overall effects of the tensile stresses at the surface.

	 2.	Part of the improvement in fatigue life due to shot peening may be attributed to increasing 
the surface hardness. It should be noted that shot peening has less effect on harder wires.

	 3.	The process improves the surface finish and can remove small surface imperfections; the 
small indentations left by the shot will have no deleterious effects on crack propagation.

The process should not be relied on to improve very poor or decarburized surfaces.

8.2.4.3  �Abrasive Cleaning
Abrasive cleaning improves the fatigue life by smoothing the surface of the spring, although it has 
the disadvantage of removing material from the wire. It is accomplished by blasting abrasive par-
ticles at the surface using compressed air or water. The surface should be immediately protected 
against corrosion.
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TABLE 8.7
Spring Wire Data: Imperial Sizes and Allowables

Dimensions used:
Temperature: Degrees Centigrade
Strength: Lbf/in.2

Modulus: Lbf/in.2

Density: Lbf/in.3

Material Wire 
Diameter

Stainless Steel 
S205

Steel S201 
or 202

Steel Def. 
106

Nimonic 90 
HR501 HD

Nimonic 90 
HR502

HD Phos. Brz. 
BS 384

0.3000 63,616 62,720 85,120 76,000 62,650 49,250

0.2760 63,616 62,720 85,120 76,000 62,650 49,250

0.2520 69,888 71,680 89,600 76,000 62,650 49,250

0.2320 69,888 71,680 89,600 76,000 62,650 49,250

0.2120 72,576 71,680 89,600 76,000 62,650 49,250

0.1920 75,266 80,640 94,080 80,640 62,650 49,250

0.1760 77,952 80,640 94,080 80,640 62,650 49,250

0.1600 80,640 80,640 94,080 80,640 62,650 49,250

0.1440 84,224 80,640 98,560 80,640 62,650 49,250

0.1280 86,910 89,600 98,560 80,640 62,650 49,250

0.1160 89,600 89,600 103,040 80,640 62,650 49,250

0.1040 89,600 89,600 107,520 80,640 62,650 52,000

0.0920 92,288 89,600 116,480 80,640 62,650 52,000

0.0800 95,872 98,560 116,480 80,640 62,650 52,000

0.0720 98,560 98,560 116,480 80,640 62,650 52,000

0.0640 98,560 98,560 125,440 80,640 62,650 52,000

0.0560 101,248 98,560 125,440 80,640 62,650 52,000

0.0480 103,936 107,520 125,440 80,640 62,650 52,000

0.0400 103,936 107,520 129,920 80,640 62,650 52,000

0.0360 107,520 107,520 134,400 89,340 62,650 52,000

0.0320 110,208 116,480 138,880 89,340 62,650 52,000

0.0280 112,896 116,480 143,360 89,340 62,650 52,000

0.0240 116,480 116,480 147,840 89,340 62,650 52,000

0.2200 116,480 125,440 147,840 89,340 62,650 52,000

0.0200 119,168 125,440 152,320 89,340 62,650 52,000

0.0180 119,168 125,440 152,320 89,340 62,650 0

0.0164 119,168 125,440 152,320 0 0 0

0.0148 121,856 125,440 152,320 0 0 0

0.0136 121,856 125,440 152,320 0 0 0

0.0124 121,856 125,440 152,320 0 0 0

0.0116 124,544 125,440 152,320 0 0 0

0.0108 124,544 134,400 152,320 0 0 0

0.0100 124,544 134,400 152,320 0 0 0

0.0092 124,544 134,400 0 0 0 0

0.0084 124,544 134,400 0 0 0 0

0.0076 124,544 134,400 0 0 0 0

Torsional modulus 10.00 × 106 12.00 × 106 12.00 × 106 12.00 × 106 12.00 × 106 12.00 × 106   6.50 × 106

Bending modulus 29.00 × 106 29.00 × 106 29.00 × 106 29.00 × 106 29.00 × 106 29.00 × 106 18.00 × 106

Density 0.283 0.283 0.283 0.283 0.300 0.300 0.320
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TABLE 8.8
Spring Wire Data: Metric Sizes and Allowable Stresses

Dimensions used:
Temperature
Degrees Centigrade
Strength: N/m m2

Modulus: N/m m2

Density: N/m m3

Material Wire 
Diameter

Stainless Street 
S205

Steel S201 
or 202

Steel Def. 
106

Nimonic 90 
HR501 HD

Nimonic 90 
HR502

HD Phos. Brz. 
BS 384

12.000 400 431 567 400 432 340

9.000 400 431 567 400 432 340

8.000 440 431 567 400 432 340

7.100 440 431 567 400 432 340

6.300 480 494 618 400 432 340

5.600 500 494 618 400 432 340

5.000 520 557 618 556 432 340

4.500 540 557 649 556 432 340

4.000 560 557 649 556 432 340

3.550 580 557 680 556 432 340

3.150 600 616 680 556 432 340

2.800 620 616 710 556 432 340

2.500 640 616 741 556 432 358

2.240 640 616 803 556 432 358

2.000 660 679 803 556 432 358

1.800 680 679 803 556 432 358

1.600 700 679 865 556 432 358

1.400 700 679 865 556 432 358

1.250 720 741 865 556 432 358

1.120 720 741 865 556 432 358

1.000 740 741 895 616 432 358

0.900 740 741 926 616 432 358

0.800 760 804 957 616 432 358

0.710 760 804 988 616 432 358

0.630 780 804 988 616 432 358

0.560 800 863 1,019 616 432 358

0.500 820 863 1,050 616 432 358

0.450 820 863 1,050 616 432 358

0.400 840 863 1,050 616 432 358

0.355 840 918 1,050 616 432 358

0.315 840 918 1,050 616 432 358

0.280 860 918 1,050 616 432 358

0.250 860 918 1,050 616 432 358

Torsional modulus 68.95 × 103 82.74 × 103 82.74 × 103 82.74 × 103 82.74 × 103 44.82 × 103

Bending modulus 200 × 103 200 × 103 200 × 103 200 × 103 200 × 103 12.41 × 103

Density 76.81 × 106 76.81 × 106 76.81 × 106 81.43 × 106 81.43 × 106 86.85 × 106

D
ow

nl
oa

de
d 

by
 [

M
ot

ila
l N

eh
ru

 N
at

io
na

l I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

A
lla

ha
ba

d]
 a

t 0
9:

49
 2

9 
D

ec
em

be
r 

20
13

 



204 Design Engineer's Handbook

TABLE 8.9
Spring Wire Data: Variation of Material Strength with Temperature

Material 
Temperature

Stainless Steel 
S205 Steel

Steel 201 
Def. 106

Nimonic 90 
HR501

Nimonic 90 
HR502

HD Phos. Brz. 
BS 384

  20 1.000 1.000 1.000 1.000 1.000 1.000

100 0.980 0.958 0.958 1.000 1.000 1.000

150 0.966 0.933 0.933 1.000 1.000 0.000

200 0.955 0.917 0.917 1.000 1.000 0.000

225 0.000 0.000 0.000 0.907 1.000 0.000

250 0.000 0.000 0.000 0.857 0.997 0.000

275 0.000 0.000 0.000 0.857 0.987 0.000

300 0.000 0.000 0.000 0.857 0.975 0.000

325 0.000 0.000 0.000 0.000 0.958 0.000

350 0.000 0.000 0.000 0.000 0.940 0.000

375 0.000 0.000 0.000 0.000 0.913 0.000

400 0.000 0.000 0.000 0.000 0.887 0.000

425 0.000 0.000 0.000 0.000 0.855 0.000

450 0.000 0.000 0.000 0.000 0.822 0.000

475 0.000 0.000 0.000 0.000 0.783 0.000

500 0.000 0.000 0.000 0.000 0.733 0.000

525 0.000 0.000 0.000 0.000 0.688 0.000

550 0.000 0.000 0.000 0.000 0.633 0.000

575 0.000 0.000 0.000 0.000 0.583 0.000

600 0.000 0.000 0.000 0.000 0.517 0.000

TABLE 8.10
Spring Wire Data: Maximum Allowable Temperatures and Variations of Bending and 
Torsional Modulus with Temperature

Material Type Maximum Temperature

S205 200°C

S201 200°C

DEF 106 200°C

Nimonic 90 HR501 300°C

Nimonic 90 HR502 600°C

BS 384 HD wire 100°C

Material 
Temperature

Stainless Steel 
S205 Steel S201

Steel Def. 
106

Mimonic 90 
HR501

Nimonic 90 
HR502

ID Phos. Brz. 
BS 384

100 1.000 1.000 1.000 1.000 1.000 1.000

200 0.980 0.958 0.958 1.000 1.000 1.000

300 0.966 0.933 0.933 0.992 0.992 0.000

600 0.955 0.917 0.917 0.979 0.979 0.000
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205The Design and Analysis of Helical Compression Springs Manufactured from Round Wire

8.3  �NOTES ON THE DESIGN OF HELICAL COMPRESSION 
SPRINGS MADE FROM ROUND WIRE

8.3.1  �General Notes

This section presents basic concepts and principles relating to the design and operation of helical 
compression springs manufactured from round wire.

Detailed treatment of their design is covered in Section 8.1, and the allowable stresses are cov-
ered in Section 8.2.

Springs having a constant wire diameter, coil diameter, and pitch are the essential concern of this 
chapter; deviations from these conditions are only permitted within the normal manufacturing tolerances.

There are many wide applications requiring compression springs, including:

•	 To store and return energy as in a cam-operated system
•	 To apply and maintain a constant force as in a relief valve
•	 To attenuate vibration as in a machine structure

The energy stored in a spring is proportional to the square of the stress in the spring. Therefore, 
for the most efficient use of the volume of the spring material, the highest reasonable stress levels 
should be used as the basis of design.

Springs used in the most critical of applications, such as a pressure relief valve, require the most 
careful attention to every possible detail of the spring performance and manufacture. The cost of 
the spring should be viewed in relation to the cost of the associated equipment and replacement if 
a failure occurred.

Not all springs perform such critical duties, and since extra precision adds to the part cost, care-
ful attention needs to be given to the function of each spring and tolerances relaxed according to 
its application.

It needs to be stressed that all the information resulting from the design considerations is passed 
on to the spring manufacturer in a clear and concise manner. A checklist for the manufacturing 
requirements is covered in Section 8.3.7.6.

8.3.2  �Prestressing

In Section 8.2.4.1, the prestressing of the compression spring was considered. Prestressing (also 
known as scragging or presetting) induces beneficial residual stresses into the spring at the manu-
facturing stage. To carry out this process the spring is wound over length and is compressed to its 
solid length a number of times, usually five or six. This induces plastic deformation in the outer 
fibers of the spring coil. On release of all of the load, owing to the plastic flow that has occurred, the 
outer fibers of the coil, which in operation are the most highly stressed, are subjected to a residual 
shear stress by the inner fibers. This shear stress is in the opposite sense to that applied in the opera-
tion. The effect is to reduce the maximum stress, although the stress range remains unchanged. 
Therefore, the static strength and fatigue endurance of the spring are increased.

Figure 8.10 shows the spring load/deflection plot for a spring being prestressed. The first loading 
cycle is OPQR. Successive cycling of the load leads to a new load/deflection curve RnQ parallel to 
OP, where Rn is the number of cycles the spring has been subject to.

The process also has the effect of increasing the apparent elastic limit of the material. The result 
of this prestressing means that in static loading the load carrying capacity of the spring is increased.

The improvements in the fatigue life and the static strength increase up to an optimum value 
with increasing overstrain. The amount of the increase and optimum overstrain will vary with the 
material. Discussions with the spring manufacturer will ensure the best possible results from the 
prestressing will be attained and the final details need not concern the designer.
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206 Design Engineer's Handbook

8.3.3  �Choice of Material

The choice of material is dictated by the following considerations.

8.3.3.1  �Operation Reliability
Material of high quality and assured properties are required if the spring is to operate for a large number 
of cycles (i.e., in excess of 107 cycles) or at an unavoidably high stress (e.g., because of space restric-
tions), or because a failure will be particularly serious. Alternatively, materials of a lower quality may be 
acceptable where the spring is only loaded infrequently or the load is constant or is lightly stressed, or if 
replacement of the spring is simple and acceptable. Where the spring weight is to be kept to a minimum 
(as in aerospace applications) alternative materials such as titanium alloy may be acceptable.

8.3.3.2  �Corrosion and Protection
Corrosion (including stress corrosion) is a common problem with many spring materials, and as a 
result, their fatigue strength may be seriously reduced. Particular care must be exercised in select-
ing a suitable material and surface finish depending up on the environment the spring will be 
operating in.

Usually it is best practice to use a nonreactive material rather than to attempt to protect the mate-
rial that is prone to corrosion. If the corrosion protection were to break down, then the spring would 
be subject to corrosion attack.

If it is necessary to provide a surface protection, then it may be achieved by various methods. 
Plating should be done to an approved specification (such as BS 1706), although in arduous condi-
tions pin holes are always likely to occur in the plating, leading to a general breakdown in the cor-
rosion protection.

Painting or coating with a plastic film is feasible, but again, failure of the protection is always 
likely at the loading points or if the coils contact.

Immersion in oil or grease may be a means of providing the required protection. Titanium alloy 
springs give a greatly improved service if the cost will allow, but will require anodizing after manufacture.

If shot peening is carried out the surface of the spring is in a chemically active condition and 
must be protected immediately after peening. Protection should be an invariable sequel to shot 
peening, but it is advisable to make this clear when ordering.

8.3.3.3  �Working Temperature
At high temperatures, oxidation and general reduction of material properties, such as stress relax-
ation, make carbon steel springs generally unacceptable. In such cases it may be necessary to con-
sider using alloy steels or suitable nonferrous materials.

At low subzero (cryogenic) temperatures allotropic or embrittlement may be a problem, and 
again it may be necessary to avoid carbon steels and some alloy steels.

A guide to the suitability of a number of acceptable spring materials is listed in Tables 8.11 and 
8.12. For more specific information on the material properties, reference should be made to the 
quoted standard or to the manufacturer.

8.3.3.4  �Special Requirements
The choice of material may be dictated by specific physical properties that may be required in an 
application. As an example, instrument springs may require exceptional stability of the material 
properties or low hysteresis. A special alloy Ni-span C902 may be used when a constant modulus 
over a range of temperatures is required.

8.3.4  �Loading

Depending how the spring is loaded will affect the permissible stress level and the magnitude of 
the induced stress.
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207The Design and Analysis of Helical Compression Springs Manufactured from Round Wire

TABLE 8.12
Nonferrous Materials

Material

Maximum 
Wire 

Diameter 
mm 

Normal Working 
Temperature Range of 

Spring °C

Type Specification Minimum Maximum

Phosphor-bronze with 8% tin

Beryllium-copper with 2% beryllium

Ni-span C902a

Nickel-copper (Monel K-400)b

Nickel-copper-aluminum (Monel K-500)b

Nickel-chromium-iron (Inconel 600)b

Nickel-chromium-cobalt (Nimonic 90)b

Nickel-chromium P.H. (Inconel X-750)b

Titanium alloy (Ti-6A1-4V)

BS 2873 

ASTM B159-46

BS 2873

ASTM B197-51T

—

BS 3075-NA13

BS 3075-NA18

BS 3075-NA14

BS 3075-2HR

—

IMI 318b

6.5

6.5

3.0
10.0
8.0

10.0
8.0

12.5

0

–50

–50
–40

–200
–200
–200
–200
–200

+100

+100

+100

+200

+230

+370

+550

+540

+125

a	 U.S. trade description.
b	 UK trade description.

TABLE 8.11
Alloy Steel Springs

Material

Maximum 
Wire 

Diameter 
mm 

Normal Working 
Temperature Range 

of Spring °C

Type Specification Minimum Maximum

Carbon steels BS 5216: HS2 13.25 –20 +130

BS 5216: HS3 13.25 –20 +130

BS 970: Pt. 5: 070A72 12.0 –20 +150

BS 970: Pt. 5: 070A78 12.0 –20 +150

BS 2803: 094A65 HS 12.5 –20 +150

Low-alloy steels Silicon manganese
0.6–0.9% chromium

BS 970: Pt. 5: 250A58 40.0 –20 +150

BS 970: Pt. 5: 250A61 40.0 –20 +150

BS 970: Pt. 5: 527A60 80.0 –20 +150

0.5% nickel-chromium
Molybdenum

BS 970: Pt. 5: 805A60 80.0 –40 +150

1% chromium-vanadium BS 970: Pt. 5: 735A50 40.0 –20 +175

Alloy steels Austenitic chromium-nickel BS 2056: EN58A
BS 970: Pt. 4: 302S25

10.0
25.0

–200
–200

+250
+250

Austenitic chromium-nickel-
molybdenum

BS 2056: EN58J
BS 970: Pt. 4: 416S16

10.0
25.0

–200
–200

+250
+250

17-7 chromium-nickel 
precipitation hardening

DTD 5086a

FV 520Bb

10.0
70.0

–90
–90

+320
+400

a	 UK Ministry of Defense specification.
b	 UK Trade description.
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208 Design Engineer's Handbook

It is essential to ensure that the spring is not stressed outside its elastic range during manufacture, 
assembly, or operation. The nominal working stress should be low enough to preclude overstressing. 
The additional loading factors described below should be taken into consideration when determin-
ing the nominal working stress, as these will tend to increase the stress values if not considered.

8.3.4.1  �Cyclic Loading and Fatigue Properties
If the spring is subject to cyclical loading, consideration should be given to the fatigue life and 
endurance of the selected material. There are two factors that that will increase the working stress.

	 1.	The nonuniform distribution of strain along the length of the spring
	 2.	Natural frequency (see Section 8.1.12)

The actual size of these effects will depend upon the relationship of the loading frequency to the 
natural frequency of the spring. The natural frequency will only be known when the final dimen-
sions of the spring are fixed.

8.3.4.2  �Transverse Loading
When the spring is subject to a transverse load, this does not occur in isolation; it is generally com-
bined with an axial load, as in a vibratory conveyor, for example.

The stress increase due to the transverse load will need to be determined to ensure that prema-
ture failure will not occur. The combined transverse and axial stress must not exceed the stress 
when the spring is compressed to its solid length due to the axial load alone. If there is a danger that 
this may occur, then the designer should provide a stop to prevent any excessive deflection occurring 
in both planes. The design procedure is covered in detail in Section 8.1.9. The designer should pay 
particular attention to the spring housing and end locations to ensure the spring remains in position 
under the influence of the transverse load.

8.3.4.3  �Impact
In some designs the compression spring will be subject to a shock load (as in the case of an engine 
valve or pneumatic drill). The shock loading will create a surge wave of torsional stress along the 
wire of the spring. If the spring is subject to shock loading it will be necessary to reduce the design 
stress to minimize the spring being inadvertently overstressed.

8.3.4.4  �Eccentric Loading
An eccentric load will have a significant effect on the spring behavior. The load/deflection charac-
teristics will deviate from the axially loaded spring, and there will be a greater tendency to buckle 
where the maximum stresses will be higher.

A further problem with compression springs is that the eccentricity of the load in respect to the 
axis of the spring will induce uneven loading around each coil, causing the coil to warp, or take 
up a form other than the true helical shape. Helix warping will increase the maximum stress in the 
spring, but an increase in the number of coils will reduce the effects of the warping. Helix warping 
in compression springs is covered in more detail in Section 8.1.11.

8.3.4.5  �Buckling
In Section 8.1.8 it was stated that buckling of an unrestrained compression spring will occur when 
the length/mean diameter ratio exceeds 4.

It is recommended that all spring designs be checked against buckling. The onset of buckling 
will be affected greatly by the type of seating, which may be represented by the theoretical end 
condition factor C. These factors are considered in Figure 8.2 for the various types of seating. It has 
been found that compression springs tend to buckle earlier than the predicted theory due to spring 
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209The Design and Analysis of Helical Compression Springs Manufactured from Round Wire

ends tending to lift off on a nonpivoted seating as the critical buckling deflection is approached; 
there may be some slight initial curvature of the spring axis and out-of-squareness of the ends.

If the spring as designed is found to be unstable and the dimensions cannot be altered to avoid 
this condition, it may be possible to restrict the lateral deflection of the spring by means of a close-
fitting housing or rod. This may lead to fretting fatigue failure. When a long spring, say 10 to 20 
times the mean diameter, is required, it may be preferable to stack several springs over a rod using 
spigotted washers between each spring, and this will reduce the tendency to buckle.

8.3.5  �Design Features

8.3.5.1  �End Forms
In a compression spring the center coils, remote from the ends, are the truly functional part of the 
spring; the shape and form of the end coils are extremely important. The end shape will govern 
the load carrying capacity. The type of end coil fabrication will affect both the free length of the 
unloaded spring and its solid length when fully compressed. Section 8.1.3 gives guidance on the 
estimation of the free length, and Section 8.1.7 covers the solid length calculations for each type of 
end coil formation.

It is good practice to locate the ends of the spring in either a recess or a spigot, particularly when 
there are significant lateral loads.

There are various forms used for the end coils of compression springs. The more common ones 
are those used in Figure 8.14:

	 a.	Coils left unclosed and not ground.
	 b.	Coils left unclosed, but ends are ground flat, square to the axis.
	 c.	One or more coils at each end closed but not ground.
	 d.	One or more coils at each end closed and ground flat, square to the axis.

It must be remembered that the more rigorous the requirements, the more expensive the spring 
will become. A spring of the form 8.14(d) could cost as much as three times the cost of 8.14(a).

Springs with end forms of the type 8.14(d) will be preferred for precision applications such as 
spring balances, etc. This form will give the minimum load tolerance and have the minimum ten-
dency to buckle; the loading will be carried more uniformly through the spring. It will also fit in its 

(a) (c)

(b) (d)

FIGURE 8.14  Spring end forms.
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210 Design Engineer's Handbook

seat without deformation of the end coils and provide good axiality of the load. The spring rate will 
also be more uniform over the whole loading range.

Form 8.14(c) is cheaper to produce than form 8.14(d), and while the end will settle into its seat, an 
offset load is produced by the deformation of the end coils as the load is applied. This will induce 
early buckling.

Form 8.14(b) will be cheaper again; the end coils will deform more under load, which means the 
spring rate is not constant and the spring is much less stable.

Form 8.14(a) is in the as coiled state and is therefore the cheapest form to produce. Its application 
is very limited and is consequently only used where the application is not critical.

8.3.5.2  �Free Length
The nominal free length of a compression spring is one of the basic dimensional requirements 
required by the spring manufacturer. It is the length of the spring in the unloaded state and is mea-
sured between two parallel plates perpendicular to the axis of the spring and in contact with the end 
coils, or part of the end coils (see Figure 8.14).

Normally a good quality compression spring is made over the length, so that after prestressing 
the material is elastic, and the free length is as specified by the designer.

8.3.5.3  �Solid Length
The solid length of a compression spring is the overall dimension along the axis when all the coils 
are touching.

Compression springs are normally designed and manufactured so that the yield stress is not 
exceeded when they are compressed from the free length to the solid length. This is to avoid 
changes in the free length should the spring be accidentally compressed solid during its operation 
or assembly. The nominal solid lengths for this calculation are given in the Table 8.13 and are also 
necessary to avoid the possibility for some coils contacting at the spring’s minimum working length 
due to irregular pitching. If some do touch, others may be overstressed and the spring rate may alter. 
Experience has shown the minimum clearance between coils should be 15% of the wire diameter, 
and this will normally avoid the problem.

Table 8.13 relates to springs manufactured from wire less than 13 mm in diameter.

8.3.5.4  �Tolerances
Care should be exercised when assigning dimensions and tolerances. Unnecessarily close tolerances 
will raise the cost of the spring substantially. Overspecification of the spring dimensions and toler-
ances should be avoided; examples of this are not uncommon, such as specifying the outside diameter, 
wire diameter, and inside diameter together. A spring performing a particularly critical duty will have 
to have minimum tolerances in order to achieve the required precision and consistency in manufacture.

The following features will require tolerances to be defined:

Final load/length requirements
Spring rate

TABLE 8.13
Nominal Solid Length for End Coil Formations

End coil formation Maximum solid length

One coil each end closed and ground flat Nd

One coil each end closed but unground (N + 1.5)d

End coil unclosed and unground (N + 1)d
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211The Design and Analysis of Helical Compression Springs Manufactured from Round Wire

Wire diameter
Coil diameter (outside or inside)
Free length
Straightness
End squareness and parallelism

A suitable dimensioning and tolerancing system that helps to avoid these difficulties is given in 
BS 1726 Part 1 on helical compression springs.

It should be recognized that even with these acceptable dimensional and load tolerances, the 
resulting shear stress may vary by as much as ±12%.

8.3.5.5  �Surface Finish
Surface defects on the wire (such as scratch-like grooves left by the drawing process) can lead to 
premature failure. It is the responsibility of the spring manufacturer to avoid these through good 
material specification and quality control. It is good design practice to draw attention to the surface 
finish requirements in the design specification.

It is also good practice to avoid identification marking, but if it is essential, the identification 
mark should be etched rather than stamped, as again this could lead to premature failure of the 
spring. The marking should be applied in an area of minimum stress, such as the end coils.

The use of ground wire will avoid any decarburization of the surface. If the compression spring 
is subsequently hot formed, the manufacturer will need to ensure that no further decarburization 
takes place during coiling or heat treatment.

8.3.5.6  �Surface Treatment
As discussed in Section 8.2.4.2, shot peening is the process of bombarding the surface of the spring 
with small hard pellets at high velocity. This is carried out to improve the fatigue life of the spring 
by inducing beneficial residual stress in the outer surface of the wire. It may not be possible to carry 
this out on small-diameter or closely coiled springs, as accessibility to the inner surface will be 
difficult. In this instance, the result of shot peening is to leave the surface very susceptible to cor-
rosion, and it must be protected immediately. Other surface treatments, including plating, painting, 
anodizing, and plastic coating, are acceptable methods of protecting the surface to reduce corro-
sion. None of these coating methods will affect the strength of the spring apart from improving the 
fatigue life of the spring.

8.3.6  �Design Procedures

8.3.6.1  �Basic Design
The physical dimensions of the compression spring may be determined from the design working 
stress, loading requirements, and space limitations. The recommended sequence for preparing a 
design is given in Section 8.1.2, followed by details of the design procedure.

8.3.7  �Manufacturing Requirements

Unlike the manufacture of machine components, spring manufacturers require as much latitude as 
possible compatible with the real design requirements. To a certain extent, the spring duty may dic-
tate what information the manufacturer requires. From a previous example, a pressure relief valve will 
require an accurate spring rate or an engine valve specifying two precise points for force and deflections.

In the case of specific design requirements such as the end fixing arrangements, fit over a spigot 
or inside a recess will need to be supplied in full.
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212 Design Engineer's Handbook

The manufacturer will normally stock material to the standard wire gauge sizes over a wide 
range. In the case of compression springs manufactured from nonstandard wire diameter this may 
be obtained by grinding to size from standard wire before coiling. There may be a limit on the 
minimum diameter that can be obtained by this method, and a full discussion with the manufacturer 
will identify this.

It is essential that full descriptions of the material, geometric, surface finish, and end form require-
ments are provided if the spring is to meet the design requirements, with predictable and repeatable 
characteristics. Table 8.14 presents a suitable template showing the required spring details.

This data sheet is taken from BS 1726-1:2002.
It may not be possible for all the information to be identified due to the designer not always hav-

ing the specialist knowledge and being able to prescribe all the requirements, but an experienced 
manufacturer will be able to supply this information, particularly for heat treatment, shot peening, 
and prestressing.

Table 8.15 should be completed with all the data required to manufacture in the spring. Table 8.16 
will only be relevant to the designers and should be kept in the design file.

TABLE 8.14
Example of Spring Manufacturing Requirements
Designation of Spring:

Reference drawing number/part number:

Material:

Geometric 
data

Diameter (or gauge) of wire: Tolerance Only one diameter to 
be specifiedInside coil diameter: Tolerance

Mean diameter of coil: Tolerance

Outside coil diameter: Tolerance

Number of coils: Working

Total

Type of ends:

Free length:

Solid length:

Performance Initial tension: Tolerance Give sufficient 
information without 
duplication of data

Load P1: Tolerance

Load P2: Tolerance

Length at load P1: Tolerance

Length at load P2: Tolerance

Spring rate: Tolerance

Treatments Heat treatment:

Prestressing: State yes or no

Surface treatment:

Surface protection:

Details to be 
finalized

Maximum load:

Deflection for assembly:

Wire length:

Weight:

Quantity required:

Other information
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213The Design and Analysis of Helical Compression Springs Manufactured from Round Wire

TABLE 8.15
Information Required by the Manufacturer
Designation of Spring:

Reference drawing number/part number:

Material:

Geometric 
data

Diameter (or gauge) of wire: Tolerance Only one diameter to 
be specifiedInside coil diameter: Tolerance

Mean diameter of coil: Tolerance

Outside coil diameter: Tolerance

Number of coils: Working

Total

Type of ends:

Free length:

Solid length:

Performance Initial tension: Tolerance Give sufficient 
information without 
duplication of data

Load P1: Tolerance

Load P2: Tolerance

Length at load P1: Tolerance

Length at load P2: Tolerance

Spring rate: Tolerance

Treatments Heat treatment:

Prestressing: State yes or no

Surface treatment:

Surface protection:

Details to be 
finalized

Maximum load:

Deflection for assembly:

Wire length:

Weight:

Quantity required:

Other information

TABLE 8.16
Spring Specification Data Not Relevant to the Manufacturer
Shear stress in coils under load P1:

Shear stress in coils under load P2:

Shear stress in coils at solid length:

Design life cycles:

Maximum allowable temperature:

Minimum allowable temperature:

Environmental limitations:

Natural frequency:

Special notes:
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214 Design Engineer's Handbook

8.4  �NESTED HELICAL COMPRESSION SPRINGS

8.4.1  �General Notes to Section 8.4

When there is insufficient space available to fit a single spring without exceeding the maximum 
permissible stress, a design option may be to fit a nested spring, i.e., a spring within a spring.

The design of nested springs is treated here as a modification of the single spring, which satisfies 
the condition of loading, but not of space or stress.

The nest of two or three springs will give a higher volumetric efficiency, which may be used to either:

	 1.	Reduce the outside diameter
	 2.	Reduce the length
	 3.	Reduce the maximum stress

Tables 8.18 to 8.20 enable a nest of springs to be derived from an equivalent single spring accord-
ing to the requirements of either 1, 2, or 3.

Clearance between the coils is provided by a factor x, illustrated in Figure  8.15. Clearance 
between the nest and the housing requires a separate allowance. Recommended values of the clear-
ance factor are given in Table 8.17.

ØiA = ØoA*((c – 1)/(c + 1)) 

ØoB = ØoA*((c – 1)/(c + 1))*X 

ØoA

Inner spring C

Middle spring B

Outer spring A

DiC = DoA*((c – 1)/(c + 1))3*X2

ØiB = ØoA*((c – 1)/(c + 1))2*X

ØoC = ØoA*((c – 1)/(c + 1))2*X2

FIGURE 8.15  Nest of three springs.
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215The Design and Analysis of Helical Compression Springs Manufactured from Round Wire

Each spring in a nest should have the same effective solid length and the same deflection for any 
given stress. It follows that each spring must have the same index c. Then if Do of the outer spring 
and c are known, the coil and wire diameters can be written as in Figure 8.15.

Outside diameter of nests of two or three springs with clearance factors of 0.98, 0.94, and 0.90. 
The diameters are stated as fractions of the outside diameter of the single spring designed for the 
same load, stress, and effective solid length.

TABLE 8.17
Recommended Values of Clearance Factor x

Outside Diameter 
of Inner Spring Clearance

Inside Diameter 
of Outer Spring Value of x

  20.0 0.063   20.5 0.92

  25.0 0.079   25.0 0.93

  50.0 0.128   50.0 0.94

  75.0 0.159   80.0 0.95

100.0 0.179 105.0 0.95

125.0 0.208 130.0 0.95

150.0 0.228 160.0 0.96

180.0 0.258 180.0 0.97
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216 Design Engineer's Handbook

TABLE 8.18
To Reduce the Outside Diameter

Index c

Nn = 2 Nn = 3

Clearance Factors

0.98 0.94 0.90 0.98 0.94 0.90

2.0 0.951 0.954 0.958 0.944 0.950 0.955

3.0 0.898 0.905 0.912 0.878 0.888 0.897

4.0 0.862 0.871 0.880 0.826 0.839 0.852

4.1 0.859 0.869 0.877 0.822 0.836 0.849

4.2 0.856 0.866 0.875 0.818 0.832 0.845

4.3 0.853 0.863 0.872 0.814 0.828 0.841

4.4 0.851 0.861 0.870 0.810 0.824 0.838

4.5 0.848 0.858 0.868 0.806 0.821 0.835

4.6 0.846 0.856 0.865 0.802 0.817 0.832

4.7 0.844 0.854 0.863 0.798 0.814 0.829

4.8 0.842 0.852 0.861 0.796 0.810 0.825

4.9 0.840 0.850 0.859 0.792 0.807 0.822

5.0 0.837 0.847 0.858 0.788 0.804 0.819

5.1 0.835 0.845 0.856 0.785 0.801 0.816

5.2 0.833 0.843 0.854 0.782 0.798 0.814

5.3 0.831 0.841 0.853 0.779 0.795 0.811

5.4 0.829 0.840 0.851 0.776 0.792 0.808

5.5 0.828 0.838 0.849 0.773 0.790 0.806

5.6 0.826 0.837 0.848 0.770 0.787 0.804

5.7 0.824 0.835 0.846 0.768 0.785 0.801

5.8 0.822 0.834 0.844 0.765 0.782 0.799

5.9 0.820 0.832 0.843 0.763 0.780 0.797

6.0 0.819 0.830 0.841 0.760 0.777 0.795

6.1 0.817 0.829 0.840 0.758 0.775 0.793

6.2 0.816 0.827 0.838 0.756 0.773 0.791

6.3 0.815 0.826 0.837 0.753 0.771 0.789

6.4 0.814 0.825 0.836 0.751 0.769 0.757

6.5 0.812 0.824 0.835 0.749 0.767 0.785

6.6 0.811 0.822 0.833 0.747 0.765 0.783

6.7 0.810 0.821 0.832 0.745 0.763 0.781

6.8 0.808 0.820 0.831 0.743 0.761 0.779

6.9 0.807 0.819 0.830 0.741 0.759 0.777

7.0 0.806 0.817 0.829 0.739 0.757 0.775

7.1 0.805 0.816 0.828 0.737 0.756 0.774

7.2 0.804 0.815 0.827 0.735 0.754 0.772

7.3 0.802 0.814 0.826 0.734 0.752 0.770

7.4 0.801 0.813 0.825 0.732 0.751 0.769
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217The Design and Analysis of Helical Compression Springs Manufactured from Round Wire

TABLE 8.18 (Continued)
To Reduce the Outside Diameter

Index c

Nn = 2 Nn = 3

Clearance Factors

0.98 0.94 0.90 0.98 0.94 0.90

7.5 0.800 0.812 0.824 0.730 0.749 0.768

7.6 0.799 0.811 0.823 0.728 0.747 0.766

7.7 0.798 0.810 0.822 0.726 0.746 0.765

7.8 0.797 0.809 0.821 0.725 0.744 0.763

7.9 0.796 0.808 0.820 0.723 0.742 0.762

8.0 0.795 0.807 0.819 0.722 0.741 0.761

8.1 0.795 0.806 0.818 0.721 0.740 0.759

8.2 0.794 0.805 0.818 0.719 0.738 0.758

8.3 0.793 0.804 0.817 0.718 0.737 0.757

8.4 0.792 0.804 0.816 0.716 0.736 0.755

8.5 0.791 0.803 0.815 0.715 0.735 0.754

8.6 0.790 0.802 0.814 0.714 0.734 0.753

8.7 0.789 0.801 0.814 0.712 0.733 0.752

8.8 0.789 0.801 0.813 0.711 0.732 0.751

8.9 0.788 0.800 0.812 0.710 0.730 0.749

9.0 0.787 0.799 0.811 0.708 0.827 0.748

10.0 0.780 0.793 0.805 0.698 0.718 0.738

TABLE 8.19
To Reduce Stress

Index of 
Single Spring

Nn = 2 Nn = 3

Clearance Factors

0.98 0.94 0.90 0.98 0.94 0.90

2.0 2.05 2.04 2.04 2.06 2.05 2.04

3.0 3.16 3.15 3.13 3.20 3.18 3.16

4.0 4.28 4.26 4.24 4.38 4.34 4.31

4.1 4.40 4.37 4.35 4.50 4.46 4.43

4.2 4.51 4.48 4.46 4.62 4.58 4.55

4.3 4.62 4.59 4.57 4.74 4.70 4.66

4.4 4.74 4.71 4.69 4.86 4.82 4.78

4.5 4.85 4.83 4.80 4.98 4.94 4.90

4.6 4.97 4.94 4.91 5.10 5.06 5.02

4.7 5.08 5.05 5.02 5.28 5.18 5.13

4.8 5.19 5.17 5.14 5.34 5.30 5.25

4.9 5.31 5.28 5.25 5.46 5.42 5.37

5.0 5.42 5.39 5.36 5.58 5.53 5.48

5.1 5.53 5.50 5.47 5.70 5.65 5.60
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218 Design Engineer's Handbook

TABLE 8.19 (Continued)
To Reduce Stress

Index of 
Single Spring

Nn = 2 Nn = 3

Clearance Factors

0.98 0.94 0.90 0.98 0.94 0.90

5.2 5.64 5.61 5.58 5.82 5.77 5.71

5.3 5.75 5.72 5.69 5.95 5.89 5.83

5.4 5.87 5.83 5.80 6.07 6.01 5.95

5.5 5.98 5.95 5.91 6.19 6.13 6.07

5.6 6.10 6.06 6.03 6.32 6.25 6.19

5.7 6.22 6.18 6.15 6.45 6.38 6.31

5.8 6.33 6.30 6.26 6.57 6.50 6.43

5.9 6.44 6.41 6.37 6.69 6.62 6.54

6.0 6.56 6.52 6.48 6.81 6.76 6.66

6.1 6.67 6.63 6.60 6.93 6.86 6.78

6.2 6.78 6.74 6.71 7.05 6.98 6.90

6.3 6.90 6.86 6.82 7.17 7.10 7.02

6.4 7.02 6.97 6.93 7.30 7.22 7.14

6.5 7.13 7.08 7.04 7.42 7.34 7.26

6.6 7.24 7.20 7.15 7.54 7.46 7.38

6.7 7.36 7.31 7.27 7.66 7.57 7.49

6.8 7.47 7.42 7.38 7.78 7.69 7.61

6.9 7.58 7.53 7.49 7.90 7.81 7.73

7.0 7.69 7.64 7.60 8.03 7.93 7.84

7.1 7.81 7.76 7.71 8.15 8.05 7.96

7.2 7.92 7.87 7.82 8.27 8.17 8.08

7.3 8.04 7.99 7.93 3.39 8.29 8.20

7.4 8.15 8.10 8.04 8.52 8.41 8.32

7.5 8.27 8.22 8.16 8.65 8.54 8.44

7.6 8.38 8.34 8.28 8.77 8.66 8.56

7.7 8.49 8.45 8.39 8.89 8.78 8.68

7.8 8.61 8.56 8.50 9.01 8.90 8.79

7.9 8.72 8.67 8.61 9.13 9.02 8.91

8.0 8.84 8.78 8.72 9.25 9.14 9.03

8.1 8.95 8.89 8.84 9.38 9.26 9.15

8.2 9.06 9.00 8.95 9.50 9.38 9.27

8.3 9.18 9.12 9.06 9.62 9.50 9.39

8.4 9.29 9.23 9.17 9.75 9.63 9.51

8.5 9.41 9.34 9.28 9.87 9.75 9.63

8.6 9.52 9.45 9.39 9.99 9.87 9.75

8.7 9.64 9.57 9.51 10.11 9.99 9.87

8.8 9.75 9.68 9.62 10.23 10.11 9.99

8.9 9.87 9.8 9.73 10.36 10.23 10.10

9.0 9.98 9.91 9.84 10.48 10.35 10.22

10.0 11.12 11.04 10.98 11.71 11.56 11.42
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219The Design and Analysis of Helical Compression Springs Manufactured from Round Wire

TABLE 8.20
To Reduce Length

Index of 
Single Spring 

Nn = 2 Nn = 3

Clearance Factors

0.98 0.94 0.90 0.98 0.94 0.90

2.0 2.18 2.16 2.14 2.23 2.20 2.17

3.0 3.40 3.37 3.34 3.52 3.47 3.42

4.0 4.64 4.59 4.54 4.90 4.81 4.72

4.1 4.76 4.71 4.66 5.04 4.94 4.85

4.2 4.88 4.83 4.78 5.18 5.08 4.99

4.3 5.01 4.95 4.9 5.32 5.22 5.12

4.4 5.13 5.08 5.02 5.46 5.35 5.25

4.5 5.26 5.20 5.14 5.6 5.48 5.38

4.6 5.38 5.32 5.26 5.74 5.62 5.51

4.7 5.50 5.44 5.38 5.88 5.76 5.65

4.8 5.63 5.57 5.51 6.02 5.90 5.79

4.9 5.76 5.69 5.63 6.16 6.04 5.92

5.0 5.88 5.81 5.75 6.30 6.17 6.04

5.1 6.00 5.94 5.87 6.44 6.30 6.18

5.2 6.13 6.06 5.99 6.59 6.44 6.31

5.3 6.25 6.18 6.11 6.73 6.58 6.44

5.4 6.38 6.31 6.24 6.87 6.72 6.58

5.5 6.50 6.43 6.36 7.01 6.86 6.71

5.6 6.63 6.55 6.48 7.15 7.00 6.85

5.7 6.76 6.68 6.60 7.29 7.13 6.98

5.8 6.80 6.80 6.72 7.43 7.27 7.11

5.9 7.01 6.92 6.84 7.57 7.40 7.25

6.0 7.13 7.04 6.96 7.72 7.54 7.38

6.1 7.26 7.17 7.08 7.86 7.68 7.72

6.2 7.38 7.30 7.20 8.00 7.82 7.65

6.3 7.51 7.42 7.33 8.14 7.96 7.78

6.4 7.64 7.54 7.45 8.28 8.10 7.92

6.5 7.70 7.67 7.57 8.42 8.25 8.05

6.6 7.89 7.79 7.69 8.56 8.27 8.18

6.7 8.01 7.91 7.81 8.71 8.50 8.32

6.8 8.14 8.03 7.94 8.85 8.64 8.45

6.9 8.26 8.16 8.06 8.99 8.77 8.59

7.0 8.38 8.28 8.18 9.13 8.91 8.72

7.1 8.51 8.40 8.30 9.27 9.05 8.85

7.2 8.63 8.52 8.43 9.42 9.19 8.99

7.3 8.76 8.65 8.55 9.56 9.33 9.12

7.4 8.88 8.77 8.67 9.70 9.47 9.26
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220 Design Engineer's Handbook

Values of index C for nests of two and three springs with clearance factors of 0.98, 0.94, 
and 0.90. The values of the index are tabulated against the index of the single spring, which 
has the same outside diameter, load, deflection, and effective solid length. The stress in each 
spring of the nest designed from this table will be lower than the stress in the corresponding 
single spring.

Values of the index c for nests of two or three springs with clearance factors of 0.98, 0.94, and 
0.90. The values of the index are tabulated against the index of the single spring, which has the same 
outside diameter, load, deflection, and stress.

The length of each spring of a nest designed from this table will be less than the corresponding 
single spring.

8.4.2  �Example 2

The following example considers replacing a single spring with a nest of three springs.
The single spring has the following characteristics:

Do	=	 120.0 mm
d	 =	 20.0 mm
D	 =	 100.0 mm
C	 =	 5.0
n	 =	 8
Lc1	=	 n.d = 160 mm

TABLE 8.20 (Continued)
To Reduce Length

Index of 
Single Spring 

Nn = 2 Nn = 3

Clearance Factors

0.98 0.94 0.90 0.98 0.94 0.90

7.5 9.00 8.89 8.79 9.84 9.61 9.39

7.6 9.12 9.01 8.91 9.98 9.75 9.53

7.7 9.25 9.14 9.03 10.12 9.89 9.66

7.8 9.37 9.25 9.15 10.27 10.03 9.80

7.9 9.50 9.38 9.27 10.41 10.16 9.93

8.0 9.63 9.51 9.39 10.55 10.30 10.07

8.1 9.75 9.63 9.51 10.69 10.44 10.20

8.2 9.88 9.75 9.64 10.83 10.58 10.34

8.3 10.00 9.88 9.76 10.97 10.72 10.47

8.4 10.13 10.00 9.88 11.12 10.86 10.61

8.5 10.25 10.12 10.00 11.26 10.99 10.74

8.6 10.38 10.25 10.13 11.40 11.13 10.88

8.7 10.50 10.37 10.25 11.54 11.27 11.01

8.8 10.63 10.52 10.37 11.68 11.41 11.15

8.9 10.75 10.62 10.49 11.82 11.55 11.28

9.0 10.88 10.74 10.61 11.97 11.68 11.41

10.0 12.14 11.98 11.83 13.40 13.06 12.76
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221The Design and Analysis of Helical Compression Springs Manufactured from Round Wire

Lc	 =	 (n – 1)d = 180
P	 =	 62,560 N
δ	 =	 86.36 mm
S	 =	 201.4 N/mm
K	 =	 1.3
q	 =	 696.4 MPa

Let Lc1 and q be retained. Find the outside diameter of a nest of three springs.
Section 8.1.5.2 shows that the maximum stress q remains unchanged only if c = 5.0, and therefore 

the stress concentration factor K is retained.
As the inside diameter of the coil of the single spring is Di = (D – d) = 80.0 mm, the clearance 

factor recommended in Table 8.17 is x = 0.95.
From Table 8.18 for Nn = 3, x = 0.95 and c = 5.0, the ratio Do (nest)/Do (single spring) = 0.79 is 

found by interpolation. Hence Do (nest) = 0.79 × 120.0 = 94.8 mm.
The outside diameters of the other two springs will be obtained by means of the terms given in 

Figure 8.15.

Namely:
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The outside diameter of the middle and inner spring is obtained from Figure 8.15:
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Table 8.21 can now be constructed.
The reduction in the outside diameter (Do) compared with the single spring:
It will also be noted that the solid length (Lc1) is also shorter than the single spring.
This example of a spring nest is impracticable, as the inner spring is laterally unstable (see 

Section 8.3.4.5). The solution is to redesign the nest using only two springs. In this design the inner 
spring is stable and practicable.
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From Table 8.22, considering N = 2, x = 0.95, and c = 5.0 and interpolating:

	 Do = 0.8395 × 120.0 mm

	 = 100.74 mm

The reduction in the outside diameter:

	

Reduction = −





=

1 100 74
120 00

100

16 05

.

.
·

. %

TABLE 8.21
Summary of Nest Details for Example 2

Do mm 94.8 60.04 38.03

d D
c

o=
+1

mm 15.8 10.07 6.338

D = Do –d mm 79.0 49.97 31.69

Di = D – 2d mm 63.2 39.90 25.35

n L
d
c= 1 mm 10.13 15.89 25.24

Lc = Lc1 + d mm 175.8 170.07 166.34

S Dd
nD

=
4

38
N/mm 118.54 49.27 19.08 ΣS = 186.89 N/mm

Lc = Lc1 + d mm 175.85 170.08 166.31

TABLE 8.22
Summary of Nest Details for Example 2

Do mm 100.74 63.80

d D
c

o=
+1

mm 16.79 10.63

D = Do – d mm 83.95 53.17

Di = D – 2d mm 67.16 42.54

n L
d
c= 1 mm 9.529 15.05

Lc = Lc1 + d mm 176.79 170.63

S Dd
nD

=
4

38
N/mm 133.91 53.70 ΣS = 187.60 N/mm
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8.4.3  �Nested Springs in Series

This arrangement of spring assembly (see Figure 8.16) is generally used to vertically balance a mass 
such as a cover. It has the advantage that the deflection can be large but the solid length is small. In a 
housing of specific dimensions, the spring assembly will have a lower stress and also offer a greater 
resistance to buckling compared to that of a single spring.

The proportions in which the total working deflection (δw) comprises the deflections δ1 and δ2.
These deflections will depend upon the space required to accommodate the tube that transmits 

the load from the inner spring to the outer spring.
An approximate estimate of these deflections can be determined from the following formula:

	

d
L

d
L

d
L L

w1

1

2

2 1 27 3 7 3
= =

+

For example if L2 = 0.5    L1, the proportion of the total deflection that is due to the outer spring will be:

	

d
d

L
L L

L
Lw

1 1

1 2

2

2

7
7 3

14
17

0 824

=
+

=

= .

Unloaded Position.

Initial Load

Final Load Position.

δ1 δ2

L1

L2

δw = δ1 + δ2

Inner spring Outer spring

FIGURE 8.16  Nested springs in series.
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8.4.4  �Example 3

A telescopic spring is required to balance an assembly to meet the following requirements:

Load range	 6,900–12,200 N
Corresponding working deflection (δw)	 320 mm
Maximum working stress (q)	 827.4 MPa
Stress to closure limited to	 956.3 MPa
Outside diameter of the nest not to exceed	 140.0 mm

The inner spring is to be half the length of the outer spring in the initial loaded condition.

Considering the outer spring:

	

L L and
w

w

1 2
12 14

17

0 824

1 0 824

0 824 32

= =

=

=

=

δ
δ

δ δ

.

.

. · 00

263 53

mm

mm

.

. .=

Spring rate:

	

= −

=

12200 6900
263 53

20 11
.

. /N mm

Total deflection:

	

d N
N mm

mm

=

=

12200
20 11

606 663

. /

.

Initial deflection:

	
δ1

6900
20 11

= N
N mm. /

	   

C D q
P

MPa
N

o2

140 0 827 3
12200

36

= 





=






=

. . 

..457
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Hence, c = 6.922.
C3 = 0.03974 (by interpolation from Table 8.4).

Now:

	

C d
L q

L

c

c

3
1

1
0 03974 606 663

827 37

=






=



.

. .
· .




∴ =  L mmc1 464 29.

Deflection to closure:

	

δc mm MPa
MPa

mm

=

=

606 66 956 27
827 32

701 22

. · .
.

.

 
 

Free length Lo′ :

	     

= +

=

701 22 464 3

1165 50

. ·

.

mm mm

mm

Length at initial load:

	   

= ′ = ′

= −

=

L L

mm mm

mm

o t–

. .

.

δ

1165 5 343 113

822 387

 

Number of working coils:

	

n L
d

mm
mm

c=

=

=

1

464 3
17 67

26 27

.
.

.  coils

Free length (Lo):

	 

L L d

mm mm

mm

o c= +

= + ( )
=

1 2

1165 5 2 17 67

1200 844

. · .

.
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Inner spring:

	

d d d

d mm mm

mm

w2 1

2 320 0 263 53

56 47

= −

= −

=

. .

.

Spring rate:

	

= −

=

12200 6900
56 47

93 86

N N
mm

N mm

. .

. / .

Length of spring at initial load L2:

	

L L

mm

mm

2 10 5

0 5 822 37

411 19

=

=

=

.

. · .

.

 

Initial deflection di:

	

d N
N mm

mm

i =

=

6900
93 855

73 52

. /

.

Deflection to closure:

	

 δc
N

N mm
MPa
MPa

=

=

12200
93 855

956 27
827 32

150

. /
· .

.

.. .25 mm

	          

∴ = + −

= + −

=

 

  

L L

mm mm mm

c i c1 2

411 19 73 52 150 25

δ δ

. . .

3334 46. mm

	   

C
L q

mm mm
mm

c
3

1

56 47 73 52
334 464 82

=






= +

δ
·

. .
. · 77 37

0 02167

.

.

MPa






=
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By interpolation from Table 8.4:

	

c

C

D C P
qo

=

=

=






=

4 0617

19 2085

19 2085 1220

2

2

.

.

. 00
827 37

73 76

2
N

N mm

mm

. /

.







=

Number of working coils n:

	

n L
d

mm
mm

coils

c=

=

=

1

334 464
14 572

22 95

.
.

.

FURTHER READING

Ministry of Supply. Notes on the design of helical compression springs. In Spring Design Memorandum 1. 
London: HMSO, June 1942.

Wahl, A.M. Diametral expansion of helical compression springs during deflection. J. Appl. Mech., 20, 1953.
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9 Introduction to Analytical 
Stress Analysis and the 
Use of the Mohr Circle

9.1  �INTRODUCTION

Of all the graphical methods used by an engineer there is little doubt that the Mohr circle is the best 
known; in its various applications it is an aid to visualizing a stress or strain problem.

The object of this chapter is to explore with a reasonable thoroughness three important uses of 
the circle. These applications confront the engineer and designer in many branches of mechanical 
and structural engineering.

In the development of the circle construction it has been considered desirable to present a con-
cise account of the underlying theory. It is possible for the reader more interested in applications to 
accept these results and go straight to those sections dealing with the constructions and applications.

Nearly all textbooks, of necessity, deal with the circle in too cursory a manner and leave many 
detailed questions unanswered. It is hoped that this chapter devoted solely to the circle will answer 
more of these questions. In illustrating the text with examples of a practical nature other topics of 
strength of materials will be quoted, the background of which can be found in most strength of 
materials textbooks.

9.2  �NOTATION

A	 =	 Area
a	 =	 Circle constant
B	 =	 Breadth (of beam cross section)
D	 =	 Depth (of beam section)
E	 =	 Modulus of elasticity
e	 =	 Strain (usually with suffix to indicate direction)
F	 =	 Force
h	 =	 Distance
I	 =	 Second moment of area (with suffix of the type xx or cg)
J	 =	 Polar moment (with suffix of the type xy)
M	 =	 Moment (with suffix to indicate axis)
n	 =	 Factor of safety
O	 =	 Origin of graph
P	 =	 Force, or pole point
P1,2	=	 Pole points
R	 =	 Radius of circle, radius of curvature
T	 =	 Torque (usually with suffix to indicate axis)
y	 =	 Distance from neutral axis of a beam to a given point
β	 =	 Angle
γ	 =	 Poisson’s ratio, angle
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δ	 =	 Deflection
θ	 =	 Angle of plane
θp	 =	 Angle of principal plane
σ	 =	 Stress (with suffix of the type x to indicate plane)
σy	 =	 Yield stress, or normal stress in y direction
σw	 =	 Working stress
τ	 =	 Shear stress (with suffix of the type xy)
φ	 =	 Shear strain (with suffix of the type xy)

9.3  �TWO-DIMENSIONAL STRESS ANALYSIS

Consider the rectangle ABCD shown in Figure 9.1 of unit thickness and subject to direct stresses, 
σx and σy, together with shearing stresses, τxy.

The stress normal to the plane of the diagram σz is equal to zero. This is the condition of plane 
stress.

It is necessary to investigate the stress conditions on any plane making an angle θ with the side 
AB and the consequence that follows from the existence of such stresses.

A triangular element is isolated from the rectangle, the stresses on the original planes AB and 
AE being known and the sloping side being an unknown normal stress of σn and an unknown 
shearing force τ are postulated. The problem is to obtain expressions for these unknown stresses by 
considering forces (not stresses, please note) acting on this triangular element of unit thickness. The 
length BE is assumed to be one unit as shown in Figure 9.2. The forces are then resolved in  normal 
and tangential directions to the slope BE.

For equilibrium the sum of all the forces in a given direction must equal zero.
Thus resolving normally to BE in accordance with the sign convention accompanying Figure 9.2,

	 ΣPn = –σx CosθCosθ + τxy CosθSinθ + τxy CosθSinθ – σy SinθSinθ + σn = 0

	 σn = σx Cos2θ + σy Sin2θ – 2τxy SinθCosθ

and in terms of double angles:

	 σn = ½(σx + σy) + ½(σx – σy) Cos2θ – τxy Sin2θ	 (9.1)

τxy

τyx

τxy

τyx

σy

σy

σx σx
θ

A

B

D

C

E

Unit
�ickness

FIGURE 9.1  A unit thickness element subject to a biaxial stress field.
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231Introduction to Analytical Stress Analysis and the Use of the Mohr Circle

Resolving tangentially along BE and again carefully following the sign convention,

	 ΣPθ = –σx CosθSinθ – τxy Cos2θ + σy SinθCosθ + τxy Sin2θ + τ = 0

	 τ = ½(σx – σy) Sin2θ + τxy Cos2θ	 (9.2)

9.4  �PRINCIPAL STRESSES AND PRINCIPAL PLANES

σn is clearly a quantity that varies with the angle θ. By differentiating with respect to θ and equating 
to zero, the conditions for maximum and minimum normal stress can be found from Equation (9.1):

	
d
d

Sin Cosn
x y xy

σ
θ

σ σ θ τ θ= − −( ) − =2 2 2 0 	 (9.3)

Thus

	 Tan xy

x y
2 2θ τ

σ σ
= −

−( ) 	 (9.4)

A comparison of Equations (9.2) and (9.3) shows that τ is zero on the planes where the maximum 
or minimum normal stresses are found.

This is an extremely important finding: the conditions for σmax or σmin have been derived, and 
on the planes where these stresses occur the shear stresses are zero. There are two of these planes 
because there are two values of θ, 90° apart, which satisfy Equation (9.4).

These planes are called principal planes, and the normal stresses σmax and σmin acting on these 
planes are called principal stresses. On all the other planes shear stresses will be acting. It is also 
possible to show that in a three-dimensional system there are three mutually perpendicular planes 
that possess no shear stresses.

Figure 9.3(a) and (b) shows, respectively, the complex stress situation and the equivalent princi-
pal stress pattern. It must be clearly understood that these are equivalent systems. In the solution of 
a problem the engineer chooses the system that best fits the purpose. Generally the stresses shown 
in Figure 9.3(a) are obtained by some preliminary calculations and the principal stress system is 
then deduced. Frequently this second system is the one more easily assessed. Expressions for the 
principal stresses, now to be called σ1 and σ2, can be obtained from Equations (9.1) and (9.3), giving

Unit �ickness
let BE = unity

Positive directions

B

A E

θ

σxCosθ 
στ

τ

τxySinθ

τxyCosθ

σy Sinθ

FIGURE 9.2  Section of element in Figure 9.1.
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σ σ σ σ σ σ σ τ

σ
1 2

2
0 5 0 5 0 5

, . ( ) . ( )· . ( )= + + − − +
x y

x y x y xy

xx y
xy

−





+σ τ
2

2
2

	 σ σ σ σ σ τ1 2

2
20 5

2, . ( )= + ± −





+x y
x y

xy 	 (9.5)

9.4.1  �Maximum Shear Stress

If now Equation (9.2) is differentiated and equated to zero, the condition for maximum shear stress 
within the element can be obtained:

	

d
d

Cos Sinx y xy
τ
θ

σ σ θ τ θ= −( ) − =2 2 2 0

Hence,

	 Tan x y

xy
2

2
θ σ σ

τ
= −



·

	 (9.6)

This is the negative reciprocal of Equation (9.3). Consideration of Equations (9.3) and (9.5) shows 
the values of 2θ defined by each differ by 90°. Thus θ differs by 45° in each case. This means that 
the maximum shear stress occurs on planes 45° to the planes of principal stress. This is shown in 
Figure 9.4(a) and (b). It is worth noting that the maximum shears are accompanied by normal stresses.

Equation (9.6) can be used to obtain τmax from Equation (9.2):

	

τ σ σ σ σ τ

σ σ
max

. ( ) . ( )= − − +

−





0 5 0 5

2

2

2
x y x y xy

x y ++

= ± −





+

τ

σ σ τ

xy

x y
xy

2

2

2 2

	 (9.7)

σy

σy

σxσx

τxy

τxy

τyx

τyx

σ2

σ1

(a) Complex stress. (b) Equivalent principal stress system.

FIGURE 9.3  Principal stresses and planes: complex stress system.
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Expressions (9.5) and (9.7) lead to two simple and important relations:

i.e.,

	 τmax = half the principal stress difference

and

	 σ σ σ σ1 2+ = + =x y  a constant value

Thus the sum of the normal stresses on any pair of perpendicular faces is invariant.

	
τ σ σmax = −( )1

2 1 2

This small number of equations forms the basis of stress analysis. In the following sections the 

geometric interpretation of these equations will be considered.

9.4.2  �Geometric Interpretation

For the present purpose Equations (9.1) and (9.2) are rearranged as follows:

	

σ σ σ σ σ θ τ θ

τ σ

n x y x y xyCos Sin− −( ) = −( ) −

=

1
2

1
2

2 2

1
2

· ·

xx y xySin Cos−( ) +σ θ τ θ· ·2 2

Squaring each side these become:

	

σ σ σ σ σ θ σ σn x y x y x yCos− −( )





= −( ) − −1
2

1
4

2
2

2 2· (( ) +

= −( )

· · ·τ θ θ τ θ

τ σ σ

xy xy

x y

Sin Cos Sin2 2 2

1
4

2 2

2 2 SSin Sin Cos Cosx y xy xy
2 2 22 2 2 2θ σ σ τ θ θ τ θ+ −( ) +· · ·

σ2

(a) (b)

σ2

σ1σ1

σq

σqσp

σp

τmax

τmax

τmax

τmax

45°

FIGURE 9.4  Principal stresses and planes: maximum shear stresses.
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and adding the two equations together,

	 σ σ σ τ σ σ τn x y x y xy− +( )





+ = −( )1
2

1
4

2
2 2 2· 	 (9.8)

Note the right-hand side of Equation (9.8) is a constant quantity for a given system of applied 
stresses. On inspection the equation can be seen to be of the type

	 (x – a)2 + y2 = R2

and is thus the equation of a radius of a circle.
This circle is the graphical representation of Equations (9.5) and (9.7) and thus defines all pos-

sible stress conditions.

9.5  �CONSTRUCTION OF THE MOHR CIRCLE

The starting point is any two-dimensional stress system, as shown in Figure 9.3(a). In some cases 
some stresses may be zero. The Mohr circle is fundamentally a graph, and as such it requires hori-
zontal and vertical axes.

The horizontal axis is used to represent direct or axial stresses, and the vertical axis is reserved 
for shear stresses. If a circle is to be produced, then both axis scales must be identical; otherwise, 
an ellipse will be generated.

The stresses σx and σy are marked off along the horizontal axis, and from these points ordinates 
are projected to equal τxy and its complementary τyx. This is shown in Figure 9.6, where these coor-
dinates define the points A and B.

A consistent sign convention needs to be adopted for the stresses, and here it is assumed that σx 
and σy will be positive and drawn to the right-hand side of the origin when they represent tensile 
stresses.

Shear stress systems give rise to a surprising number of sign convention possibilities, and in this 
instance shear stresses producing a clockwise couple on an element will be taken as positive (see 
Figure 9.5).

Returning to the construction again, the points A and B just obtained are joined up. The joining 
line cuts through the base line at M. Now draw a circle, at center M and radius AM.

Examination of Figure 9.6 shows that

	
OM x y= +σ σ

2
and that

	
ME x y= −σ σ

2

The radius is

	
MA x y

xy= −





+σ σ τ
2

2
2

Thus the diagram is analogous to the various related formulas derived earlier.
It is important to note (and remember) that the angle CMB = 2θp on the circle diagram corre-

sponds to the angle θp on the original stresses element.
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235Introduction to Analytical Stress Analysis and the Use of the Mohr Circle

9.5.1  �Conclusions and Deductions

The construction of the circle can quickly become an automatic activity. There is no need to con-
sciously use the algebraic equations because the circle provides an alternative.

The two principal stresses σ1 and σ2 can be measured immediately. Figure 9.7 shows that there 
is no shear stress associated with the principal stress. The principal stresses are also clearly seen to 

τxy

τxy

Positive or
clockwise shear.

FIGURE 9.5  Sign conventions.

σ

σ1

σ2

2

σy
σx + σy 

σx

τ y
x

τ x
y

A

O D E M

B

CF

2θp

τ

FIGURE 9.6  Mohr circle diagram.

σ1

σ2
C

C

b

b

aa

σxσx

σy

σy

θp

τyx

τyx

τxy

τxy

FIGURE 9.7  Stresses acting on the element.
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be the maximum and minimum values of the normal stress. The half height of the circle gives the 
maximum shear stress (accompanied, in general, by an axial stress).

Note also that the principal stresses, on the circle, are 180° apart, and also that the maximum 
shear stress is 90° away from the principal stresses. This signifies that the corresponding angles in 
the element are 90° and 45°, respectively.

Point c on the diagram represents the maximum principal stress σ1 and is separated from B by a 
counterclockwise rotation of 2θp. On the element the principal plane upon which σ1 acts is therefore 
at an angle θp counterclockwise from the planes b (Figure 9.7). The plane for the minimum principal 
stress σ2 is obtained by turning through a further 90°, since D on the circle is 180° from C.

9.6  �RELATIONSHIP BETWEEN DIRECT AND SHEAR STRESS

At this point in the discussion it may be of interest to the reader to show the graphical relationship 
between the direct stress σ and shear stress τ.

Consider a bar of cross-sectional area A subjected to an axial tensile load P, and it is required 
to investigate the nature of the stresses on any plane x:x making an angle θ with the normal cross 
section (Figure 9.8).

Let σθ and τθ be the normal, i.e., direct and tangential (shear), components of the resultant stress 
on the interface, the directions being assumed to be as shown.

Stress on the normal cross section:	           σ = P/A

Area of section x:x: 	                     = A Secθ = A/Cosθ

Resolving forces perpendicular to x:x:	 σθ × A/Cosθ = P Cosθ

Therefore,	                σθ = (P/A) Cos2θ

Hence,	          σθ = σCos2θ

Since Cos2θ is positive for all values of θ, σθ can never be negative, i.e., compressive.
The maximum value of σθ occurs when Cos2θ is a maximum, i.e., when θ = 0°. Then σθ = σ.
This is the stress on y:y.

θ

P P

y

y

x

x

PP

P Cos θ P Sin θ

Section x:x
A Sec θ

A

Section y:y

σθ

τθ
θ

FIGURE 9.8  Section through a prismatic bar.
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237Introduction to Analytical Stress Analysis and the Use of the Mohr Circle

Resolving forces parallel to x:x,	 τθ × A/Cosθ = P Sinθ

Therefore,	 τθ = P/A Sinθ Cosθ

Hence,	 τθ = 1/2 σ Sin2θ

For values of θ greater than 90° the above expression becomes negative and the direction of τθ is 
the reverse of that assumed.

The maximum value of τθ occurs when Sin2θ is a maximum, i.e., when Sin2θ = 1. Then 2θ = 
90°, i.e., θ = 45°. Then τθ = σ/2.

9.7  �THE POLE OF THE MOHR CIRCLE

The method just outlined would be sufficient to answer any two-dimensional stress problem. 
However, with a very simple addition the circle can be made to indicate directly the axes or planes 
of the stresses. The circle diagram of Figure 9.6 can be extended by drawing through point B a line 
parallel to the τ axis and cutting the circle at P1, which is termed the pole. This point P1 is the pole 
for the axes of direct stresses. If a line is drawn from any point on the circle to pass through the pole, 
then the direction of this line gives the axis for the stress component represented by the point on the 
circle from which the line originated. This is shown in Figure 9.10.

If instead of drawing lines through A and B parallel to the stress axes, you draw lines parallel to 
the planes upon which the stresses act, then the pole point P2 will be formed from which planes of 
any stress condition can be found. This is shown in Figure 9.11. The two pole points are diametrally 
opposite of each other, that is, 180° apart on the circle and 90° on the element, as one would expect 
for planes and axes. These simple ideas will now be used for a number of different examples.

9.7.1  �A Few Special Cases

Before moving on to typical practical examples it is useful to examine some simple stress situations, 
both for the practice of visualizing the conditions as represented by the circle and for the useful 
place certain of these cases possess as working concepts in stress analysis.

10

A

2

30 50 70 90

σR = σ Cos θ

σθ = σ Cos2 θ

θ°

σ = P

τθ = 0.5 Sin 2σ

45
°

σ
St

re
ss

FIGURE 9.9  Distribution of stress from Figure 9.8.
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238 Design Engineer's Handbook

The following thumbnail sketches in Figure 9.12 will be considered in turn:

(a) and (b): The single stress shown is, of course, a principal stress of zero. Note that the maxi-
mum shear stress shown by the circle is τmax = 1/2σy.

(c): In the example of pure torque, say a shaft, the counterclockwise, and hence negative, 
shearing stresses shown by the vertical arrows are balanced by the clockwise, therefore 
positive, complementary shear stresses. These are marked off the vertical axis of the dia-
gram and a circle, center O is drawn to touch them. The circle demonstrates that this shear 
system gives rise to tensile and compressive stresses equal in magnitude and, as shown by 
the pole construction, at 45° to the shear planes.

σ2

σ1
σ1

σ1

σ2

A

B

σ2 σx σy

P1
(axes)

τ

σ0

Plane of σ1Plane of σ2

P2
(planes)

FIGURE 9.11  The pole of the Mohr circle (b).

σ1

σ1

σ2

σ2A

B

σ2 σ1
σx

σy

H (any point)

K

Axis of σ2

P1
(axes)

τ

σ

Axis of σ1

0

τhk

σk

FIGURE 9.10  The pole of the Mohr circle (a).
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239Introduction to Analytical Stress Analysis and the Use of the Mohr Circle

(d): This example illustrates the so-called two-dimensional hydrostatic stress system where 
equal compressive stresses act in the x and y directions. The circle now shrinks to a point 
showing there is no shear. The case of equal tensile stresses is similar and has important 
consequences in certain theories of elastic failure.

9.8  �EXAMPLES

In this section the ideas so far developed will be used in examples of a more realistic nature. It is 
hoped that the ease of the method will become apparent and that the reader will be able to make 
similar analysis for his or her own problems. The first two examples are not taken directly from a 
practical problem, but indicate the form into which a practical problem must be put before it can be 
analyzed by the circle, or indeed, by any other method.

(c) Pure shear

σ

τ

σ2 σ1 = σ

σ1 = τ
σ2 = –τ

–τ

P1

0

τ

σ

0

Zero radius circle

σ

σ

σ

(d) Hydrostatic pressure

σy

σy

σ
σy0

τmax
τ

(a) Uniaxial Tension
σy

σy

–σ
–σy 0

τmax
τ

(b) Uniaxial compression

FIGURE 9.12  Types of loading that is treated using the Mohr circle.
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240 Design Engineer's Handbook

Example 9.1

Given a complex stress situation, find the principal stresses and their inclination.
The complex stress situation is shown in Figure 9.13(a). Choose a suitable scale for the stress 

and draw horizontal and vertical axes. Mark off the 90 MPa in the positive direction, and from this 
position draw in vertically the shear stress of 80 MPa. Note that the shears on the vertical plane 
are counterclockwise and therefore negative, so that the resulting point B lies below the σ axis.

Similar treatment of the stresses on the horizontal planes gives the point A. AB is a diameter of 
the basic Mohr’s circle, which may therefore be constructed with center M and radius MA. The val-
ues of the maximum and minimum principal stresses can be scaled to give +118 MPa and –147 MPa.

A line is drawn from point A parallel to the axis of the 120 MPa stress cutting the circle, and as 
a check, another line from B parallel to the axis of the 90 MPa stress; then these will meet on the 
circle at P1, which is the pole point for the axes.

If the principal stress points C and D are joined to P1, CP1, and DP1 give the directions of the 
axes of σ1 and σ2, respectively. The angle DCP1 gives the inclination of the axis of maximum prin-
cipal stress to that of the 90 MPa stress in the original system and is found by measurement to be 
approximately 18°.

If it had been necessary, a pole point P2 for planes could have been drawn just as easily. It 
would appear at the opposite end of the diameter to P1.

Example 9.2

Find the stress components on any plane when the principal planes and stresses are given.
Figure 9.14(a) shows two principal stresses, and it is required to investigate the value of the 

stresses on a given line or plane, 40° from the vertical plane.
On the σ axis measure off the two principal stresses. In this example note that these provide the 

circle extremities because the shear stress component is zero. Find the midpoint of the distance 
AB and draw in a circle. The construction for the pole of the planes P2, as indicated in Figure 9.10, 
shows that in this case P2 coincides with B. Draw a line through P2 parallel to the required plane.

80MPa
A

σ2 σ1

C
σ

BP1
(Axes)

D
120MPa

M
O 90MPa

18°

τ

147MPa

147MPa

118MPa

118MPa18°

(c)

90MPa

120MPa

120MPa

90MPa

a

a

b
b

80MPa

80MPa

(a)

(b)

FIGURE 9.13  Numerical example for treatment by Mohr circle.
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241Introduction to Analytical Stress Analysis and the Use of the Mohr Circle

This cuts the circle at C, which has coordinates OD and DC. OD is the normal stress on the 
plane and is found to be 63 MPa, positive and hence tensile. DC is the shear stress and is –32 MPa; 
consequently, it acts counterclockwise, as shown in Figure 9.14(c).

Example 9.3

The loading on a shaft is such that it causes simultaneous bending and twisting. It is required to 
calculate the stresses at the surface of the shaft due to these moments acting separately and then 
using the Mohr’s circle to find the principal stresses and planes for the combined loading.

Finally, to calculate the factor of safety based on a given yield stress, use the Von Mises shear 
stress-strain energy criterion.

Data
Bending moment M	 = 1,600 Nm
Twisting moment T	 = 850 Nm
Yield in pure tension	 = 300 Mpa
Diameter d	 = 65 mm
Factor of safety (FoS)	 To be determined
Material 	 Mild steel

In the following calculations the simple theory of bending and torsion will be assumed. The 
appendix briefly describes the main theories of elastic failure.

Calculation of the Bending Stress

	

I
d

I mm

xx

xx

=

=

π ·

.

4

4

64

876240 51

C

A σ1

100MPa35MPa

σd = 63MPa

τ = 32MPa

B D MO

P2

σ

τ

(b)

63MPa
32MPa

32MPa
(c)

40°

100MPa

35MPa35MPa

100MPa

b

b

a

(a)

40°

FIGURE 9.14  Example.
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242 Design Engineer's Handbook

Now applying the beam theory:

	

σ

σ

x
xx

x

M d
I

MPa

=

=

·
·

.

2

59 34

Calculation for the shear stress due to torsion:

	

J
d

J mm

=

=

π ·

.

4

4

32

1752481 01

Now applying the torsion theory:

	

T
d

J

T MPa

xy

xy

=

=

τ ·
·

.

2

15 76

The system of maximum stresses at the shaft surface is shown in Figure 9.14(a), in which it should 
be noted that the circumferential direct stress is zero and that the bending stress is taken as ten-
sile. An identical system will exist at the opposite end of the shaft, except the bending stress will 
be compressive.

All stresses in MPa

0

0

59.559.5

15.8

15.8

(a)

A τ = 15.8

σ2 O M
59.5

σ1 σ

B P2

τ

(b)

(planes)

–4.5

–4.5

64.2
64.2

(c)

FIGURE 9.15  Example–loading on a shaft.
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243Introduction to Analytical Stress Analysis and the Use of the Mohr Circle

The above values are now used to construct the circle in Figure 9.14(b); from the points A 
and B lines are drawn parallel to the appropriate planes to obtain a pole point P2. The principal 
stresses are measured and found to be 64.2 MPa tensile and 4.5 MPa compressive. The principal 
stress points on the circle are joined up to the pole P2 and the principal plane diagram is drawn in 
Figure 9.14(c). Carefully note that this is a pole for planes, and the axial stresses are at right angles 
to the plane. It would help to fix ideas if the reader would sketch in a pole P1 for the axes of the 
direct stresses and show that it produces an identical result.

To Find the Factor of Safety (FoS)

The Von Mises theory for a two-dimensional stress system is given by

	
σ σ σ σ σy

2
1
2

2
2

1 2= + − ·

where σ1 and σ2 are the principal stresses at which failure will occur if the yield stress in pure 
tension is σy.

In this case there is a Factor of Safety (FoS) = σy /σw where σw is the working stress given by:

	

σ σ σ σ σ

σ

σ
σ

w

w

y

w

MPa

FoS

FoS

2
1
2

2
2

1 2

66 564

4

= + −

=

=

=

·

.

.5507

If the circle construction were applied at the opposite end of the shaft, where the bending stress 
is compressive, the principal stresses would be numerically identical but opposite in sign, so that 
σw and consequently FoS would have the same value as above.

Example 9.4

Figure 9.16(a) shows a cross section of a universal beam 416 mm × 154 mm × 74 kg/m3. The other 
dimensions relative to the problem are shown on the diagram.

A vertical shear force of 140 kN is applied to the section together with a bending moment of 
100 kNm, which acts simultaneously with the shear force. The second moment of area is 270 × 
106 mm4.

In the first instance it is required to estimate the maximum principal stress, which would occur 
just above the flange in the web.

Second, if the maximum principal stress is limited to 100 MPa, find how much the shear stress 
and force could be increased, if the bending moment is maintained constant.

Figure 9.16(b) shows the element under consideration. There will be a tensile stress due to bend-
ing and shearing stresses due to the vertical shear force. These are calculated in the following section.

The stress due to bending can be calculated from the beam theory:

	

M Nm

y mm

I mm

My
Ib

b

= ×

=

= ×

=

=

100 10

190

270 10

70 3

3

6 4

σ

σ . 77
2

N
mm
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244 Design Engineer's Handbook

For the shear stress at the required point the following relationship is used:

	

Q N

I m

= ×
= ×

140 10

270 10

3

6

 (vertical shear force)

mm

A mm

4

22772

−
=

second moment of area

 (area of  section above the line upon which shear sttress is required)

 (vertical distany mm= 199 cce of centroid of this area from neutral axxis line)

 (width of section at the b mmo = 10 ppoint where shear stress is required)

τxy
Q=

II b
Ay

N mm m m
o

xy

· ( )
= × × × ×

×
τ 140 10 154 18 199

270 10

3

6 mmm mm

N
mmxy

4

2

10

28 6

×

=τ .  

154 mm

41
6 

m
m y =

 1
99

 m
m

10 mm

18
 m

m

(a)

τxy = 28.6 MPa

σb σb = 70.5 MPa

(b)

τxy

0

A

B

σ2
σ1σb

τ

σ

σ2

σ1

(c)

Pole

FIGURE 9.16  Example–universal beam part 1.

D
ow

nl
oa

de
d 

by
 [

M
ot

ila
l N

eh
ru

 N
at

io
na

l I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

A
lla

ha
ba

d]
 a

t 0
9:

49
 2

9 
D

ec
em

be
r 

20
13

 



245Introduction to Analytical Stress Analysis and the Use of the Mohr Circle

For the stress system shown the Mohr circle has been constructed in accordance with 
Figure 9.16(c). Point A represents the stress condition on the vertical face and point B that on the 
horizontal face of the element. For completeness the pole point for the planes has been obtained 
and the orientation of the principal stress system shown. The value of the maximum principal 
stress is 80.6 N/mm2.

The Mohr circle for the second part of the problem is shown in Figure  9.17. The bending 
moment, and hence the stress due to bending, does not change. The maximum principal stress 
is given so the extremity of the circle can be placed on the horizontal axis at C. The center of the 
circle must lie halfway between the origin O and the point D representing σb. The point M is the 
center of the circle.

Thus the circle of radius MC can be drawn. Points A and B can now be obtained and the allow-
able shear stress read off the diagram.

New shear stress = 53.9 MPa

Hence the new value of shear force can be obtained, pro rata, from the original value.

	

Q

kN

= ×

=

140 53 9
28 6

264

.
.

9.9  �THE ANALYSIS OF STRAIN

Previous sections have shown the basis for the use of the Mohr circle when solving complex stress 
problems. However, in some areas of analysis the starting point may be data recorded as strains 
generally obtained from electrical resistance strain gauges of one kind or another.

Ultimately this information has to be processed and converted into information about stresses. 
Therefore, the next section will derive a set of equations relating to strains.

9.9.1  �Sign Conventions for Strains

For linear strain, extensions are considered positive. For the case of shear strain it is desirable to choose 
a system that is simple to use and is fully consistent with the stress conventions already adopted.

MO D σb

C
σ1

B

A

τ

σ
70.5MPa 100MPa

FIGURE 9.17  Example–universal beam part 2.

D
ow

nl
oa

de
d 

by
 [

M
ot

ila
l N

eh
ru

 N
at

io
na

l I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

A
lla

ha
ba

d]
 a

t 0
9:

49
 2

9 
D

ec
em

be
r 

20
13

 



246 Design Engineer's Handbook

Figure 9.18(a) and (b) shows a pure shear stress system with the signs added in accordance with 
the conventions to be used here. The deformation of the element is shown and the signs are chosen 
for the semishear strains to correspond to those used for the stresses.

From the early sections the reader will recall that the first letter in the double suffix notation 
refers to the plane and the second letter gives the direction of the normal to the plane on which the 
stress acts.

Note that now τxy, which is positive, accompanies ½φxy, which is a counterclockwise rotation and 
is also taken as positive. This has the added advantage of agreeing with the standard mathematical 
usage. The other rotation of ½φyx is negative and corresponds with the stress conditions.

It can be shown that the equations for transforming the strains are as follows:

	 ε ε ε ε ε θ γ θx
x y x y xyCos Sin1

2 2
2

2
2= + + − + 	 (9.9)

	 ε ε ε ε ε θ γ θy
x y x y xyCos Sin1

2 2
2

2
2= + + − − 	 (9.10)

	 γ
ε ε

θ γ θxy
x y xySin Cos1

2
2

2
2=

− −( ) + 	 (9.11)

9.10  �COMPARISON OF STRESS AND STRAIN EQUATIONS

	

σ σ σ σ σn x y x y xyCos t Sin= +( ) + −( ) −1
2

1
2

2Θ Θ    From  equation (9.1)           

1
2aε ε ε ε= +( ) +x y

1
2 xx y xyCos Sin−( ) −ε ϕ2 2 2Θ Θ

	 (9.12)

and

	

τ σ σ= −( ) +1
2

2 2x y xySin t Cos     From equationΘ Θ   (9.2)

 1
2

1
2

2 1
2

2
ϕ

ε ε ϕ
ab

x y xySin Cos= −( ) −Θ Θ
	 (9.13)

+τxy

+τxy

–τyx
–τyx

–½φyx

+½φxy

(a) (b)

FIGURE 9.18  Sign conventions for strain.
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247Introduction to Analytical Stress Analysis and the Use of the Mohr Circle

The stress and strain equations are seen to be completely analogous except that the strain quan-
tity corresponding to τxy is 1/2φxy and not φxy.

Provided the vertical axis is represented by 1/2φ the circle can be represented by a circle diagram.
The construction of the strain circle will be identical to the stress circle if the linear and shear 

strains are part of the data.

9.10.1  �The Strain Rosette

One of the most common methods of measuring strain on a component is to use an electrical resis-
tance strain gauge. They can only measure tensile or compressive strains but are not able to measure 
shearing strains. When the direction of the principal strains is not known, it is usual practice to fit 
a strain rosette consisting of three gauges, which are displaced with an angular relationship to each 
other. Figure 9.19 shows some arrangements of strain gauge rosettes.

9.10.2  �Construction

	 1.	Select suitable scales for the linear strain axis (abscissa) and half the shear strain (ordinate).
	 2.	Considering Figure 9.19(c). The points representing the strains ε1 and ε3 must lie on the cir-

cumference of the circle and be 180° apart (since grids 1 and 3 are 90° apart). To establish 
the center of the circle, algebraically add ε1 and ε3, divide by 2, and plot the result, observ-
ing the sign on the abscissa.

	 3.	To establish the radius, the magnitude of φ1.3 is determined by ε2 − (ε1 + ε3)/2; the value is 
laid off from ε1 (observing the sign) parallel to the ordinate. The circle is then drawn.

	 4.	Values for εmax and εmin occur where the circle crosses the ε axis (since the shearing strains 
are zero at these points). γmax is the diameter of the circle on the γ /2 scale (i.e., twice the 
radius). The angle of the maximum principal strain is that subtended by the abscissa 
and the radius (where γ1,3 meets the circle), divided by 2, the sign according to the code 
illustrated.

The Mohr’s strain circle can also be constructed for strains measured at angles other than 45°.
The method is due to F. A. McClintock.
Let the measured strains be orientated as shown below.
The strains (ε) can have any value including the angles (θ).

To draw the Mohr’s strain circle:

	 1.	The rosette axes are arranged by extending, if necessary, so that they are:
	 a.	 Arranged in sequence, i.e., in order of ascending or descending order of strain magnitudes
	 b.	 The included angles between the axes of the maximum and minimum strains are less 

than 180°

60°

ea eb

ec

45°

(a) (b) (c)

FIGURE 9.19  The strain rosette.
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248 Design Engineer's Handbook

If α = angle between the max and strain axes, and β = angle between the intermediate and 
min strain axes, rearrange the layouts such that the intermediate strain is in the vertical 
position.

In case 3 the axis of max strain falls to the left of the intermediate, and hence further exten-
sions will be necessary.

	 2.	Plot the strains as shown without inserting an x axis.
	 3.	Construct a circle through points DEF. This is Mohr’s strain circle. Now draw X axis.

For the case where εa > εb > εc, ε1 and ε2, and the principal strains, the points E, A, and F represent 
εa, εb, and εc, respectively. They must be chosen to satisfy the following requirements:

	 1.	The magnitudes of εa, εb, and εc.
	 2.	The rotational sequence must correspond to the rosette layout.

Principal stresses are given by

	
σ

ε νε
ν

σ
ε νε

ν1
1 2

2 2
2 1

21 1
=

+( )
−

+
+( )

−
E E,

εc C

εb B

εa A

θ2

θ1

FIGURE 9.21  Rosette strains.

ε (+ve)

γ/2 (−ve)

2

2

γ/2 (+ve)

γmax

εmax

εmin

2θp

+ –

– +

ε (−ve)

ε2 − ε1 − ε3

ε1 + ε3

FIGURE 9.20  Mohr strain circle.
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C min
B inter

A max

θ2

θ1

θ2

θ2

θ1

θ1

C inter
B max

A min

C min
B max

A inter

1

2

3

εa = max
εb = intermediate
εc = min

εb = max
εc = intermediate
εa = min

εb = max
εa = intermediate
εc = min

FIGURE 9.22  Rosette axes.

1 α = θ1
β = θ2

α = θ1
β = 180 − (θ1 + θ2)

α = θ1
β = 180 − (θ1 + θ2)

β

α

2

β α

3
α β

αβ

FIGURE 9.23  Rearrangement of rosette axes
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εmin

εinter

εmax

FIGURE 9.24  Strain plot.

β a

E

F

D

1 2&

β a

E

F

D

3

FIGURE 9.25  Construction of Mohr strain circle.

E

F

D

1 2&
C

A

εc εb εaε2

ε1

FIGURE 9.26  Construction of Mohr strain circle (continued).
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9.10.3  �Conclusion

This concludes the introduction to the construction of the Mohr’s circle, and the author hopes that it 
has given the student an understanding of the construction and use of the circle in solving complex 
stress problems, together with the use of the circle in transposing strains derived from electrical 
resistance strain gauges to principal stresses.

There are other areas where the circle is useful: notably in certain flat plate problems and soil 
mechanics. These topics are rather specialized and have not been treated in this text.

However, a familiarity with the uses advocated here should make it a comparitively easy task to 
extend its use in these and other topics.

9.11  �THEORIES OF ELASTIC FAILURE

9.11.1  �Steady Load Failure Theories

Elastic failure is assumed to occur when the internal stresses in the test piece reach the elastic limit 
stress for the material, which will be denoted by σo when subjected to a simple tension test. When a 
component is subjected to a complex stress system, elastic failure may not necessarily occur when 
the greatest principal stress reaches the elastic limit stress σo. The other (lesser) principal stresses 
in the orthogonal directions may affect the limiting value of the greatest principal stress at failure, 
which may then be greater or lesser than σo.

The effect of the lesser principal stresses depends upon a number of factors and applications, i.e., 
such as if the applied forces are in the same or opposite directions to the greatest principal stress and 
whether the material is either ductile or brittle.

Various theories have been proposed on the elastic failure of a material under complex stress, and 
these are usually associated with the name of the originator. Substantial research has been under-
taken on these theories, and the most important applications are given after each theory.

The system of stresses applied to a component can be resolved into three principal stresses, as 
shown in Figure 9.27 and in the following. It is assumed that σx > σy > σz and that they are all the 
same sign.

9.11.2  �Maximum Principal Stress (Rankin’s) Theory

Failure will be considered to have occurred when one of the principal stresses reaches the elastic 
limit stress in a simple tensile stress test, irrespective of the other principal stresses (see Figure 9.28).

1
2

3

σ1

σ2 σ2

σ1

σ3

σ3

σ1, σ2, σ3 are principal stresses
where σ1 > σ2 > σ3.

FIGURE 9.27  Principle orthogonal principal stresses.
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Failure occurs when

	 σ1 = σt1    σt1 = yield strength in tension

	          σ3 = σc1    σc1 = yield strength in compression

In a biaxial stress condition the theory implies that if the stress state falls within the boundary 
depicted in Figure 9.28, the material will not fail.

The theory has been found to be approximately true for brittle materials but not for ductile 
materials. Rupture will usually take place on a plane inclined to the plane of greatest direct stress, 
indicating that failure is due to shear.

9.11.3  �Maximum Principal Strain (St. Venant’s) Theory

This theory predicts that failure will occur when the greatest of the three principal strains becomes 
equal to the strain corresponding to the yield strength (see Figure 9.29), i.e.,

	

E

E

E

y

y

ε σ ν σ σ σ

ε σ ν σ σ σ

ε σ

1 1 2 3

2 2 1 3

3

= − + = ±

= − + = ±

=

( )

( )

33 1 2− + = ±ν σ σ σ( ) y

E = Modulus of elasticity.
ν = Poisson’s ratio

For a biaxial condition: (plane stress)
ie.,

	

σ

σ νσ σ

σ νσ σ

3

1 2 y

2 1 y

0

 

 

=

= ±

= ±

as long as the stress state falls within the polygon, the material will not yield.
This theory is not substantiated by experiment and finds little general support.

σt1–σt1

σc1

σc1

σ2

σ1

Stress state in
material

Locus of failure
states

FIGURE 9.28  Maximum principal stress (Rankin’s) theory.
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253Introduction to Analytical Stress Analysis and the Use of the Mohr Circle

9.11.4  �Maximum Shear Stress (Guest’s or Tresca’s) Theory

Yielding begins whenever the maximum shear stress in a part becomes equal to the maximum shear 
stress in a tension test specimen that begins to yield.

Yielding will occur if any of the following criteria are met (Figure 9.30):

	

± = −

± = −

± = −

σ σ σ

σ σ σ

σ σ σ

y

y

y

1 2

2 3

1 3

For the biaxial case (plane strain) σ3 = 0.

	

± = −

± =

± =

σ σ σ

σ σ

σ σ

y

y

y

1 2

2

1

Note: In quadrants I and III the Maximum Principal Stress Theory and the Maximum Shear 
Stress Theory are the same for the biaxial case.

This theory gives good correlation with experimental results obtained from ductile material.

9.11.5  �Distortion Energy Theory

9.11.5.1  �Strain Energy (Haigh’s) Theory
Yielding will occur when the distortion energy per unit volume equals the distortion energy per unit 
volume in a uniaxial tension specimen stressed to its yield strength (see Figure 9.31).

The strain energy per unit volume is given by the equation

	

U

Units

U N mm mm

= + +

[ ] = [ ]

1
2

1
2

2

1 1 2 2 3 3σ ε σ ε σ ε· · ·

:

/ * // . /mm N mm mm[ ] =  
3

An expression for the strain energy per unit volume in terms of stress only can be obtained by 
making use of the stress-strain relationship.

σ1

σ2

σy

σy

–σy

–σy

Stress state in
material

Locus of failure
states

FIGURE 9.29  Maximum principal strain (St. Venant’s) theory.
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In algebraic format:

	

ε σ νσ νσ

ε σ νσ νσ

ε σ ν

1 1 2 3

2 2 1 3

3 3

1

1

1

= − −( )

= − −( )

= −

E

E

E
σσ νσ

σ ε σ ε σ ε

σ

1 2

1 1 2 2 3 3

1

1
2

1
2

1
2

1
2

1

( )

= + +

=

U

E

· · · · · ·

·· ·σ νσ νσ σ σ νσ νσ1 2 3 2 2 1 3
1
2

1− −( )





+ − −( )
 E




+ − −( )





= + +

1
2

1

1
2

1 2

3 3 1 2

2 2

σ σ νσ νσ

σ σ

E

U
E

·

σσ ν σ σ σ σ σ σ3 22
1 2 2 3 3 1− + +( )( )· · ·

σ2

σ1σy

σy

–σy

–σy

I

III
IV

II
Locus of failed

states

FIGURE 9.30  Maximum shear stress (Guest or Tresca’s) theory. Note: In quadrants I and III the maximum 
principal stress theory and the maximum shear stress theory are the same for the biaxial case.

U

εj ε

σj

FIGURE 9.31  Strain energy (Haigh’s) theory.
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In matrix format:	

ε
ε
ε

ν ν
ν ν
ν ν

1

2

3

1
1

1

















=
− −

− −
− −















 
σσ
σ
σ

1

2

3

















This theory is well supported by experimental results on ductile materials, particularly with 
thick cylinders. It breaks down in the case of hydrostatic pressure (σ1 = σ2 = σ3):

It predicts failure when

	

σ σ
ν

=
−( )
o

3 1 2·

when in fact no failure would occur.

9.11.5.2  �Shear Strain Energy (Von Mises’s) Theory
This theory is known by a number of names.

•	 Maximum shear strain energy per unit volume theory
•	 Distortion energy theory
•	 Von Mise’s-Hencky theory
•	 Maximum octahedral shear stress theory

This theory is commonly known as Von Mise’s theory.
Failure is predicted to occur when the shear strain energy stored per unit volume in a strained 

material reaches the shear strain energy per unit volume at the elastic limit in a simple tension test. 
This is similar to the previous theory, but it assumes that the volumetric strain energy plays no part 
in producing elastic failure.

Thus	
1

6 6
2 2 2

G x y z x y y z z x
o σ σ σ σ σ σ σ σ σ σ+ + − + +( )  =· · ·
GG

or	        σ σ σ σ σ σ σ σ σ σx y z x y y z z x o
2 2 2 2+ + − + +( ) =· · ·

This theory has received considerable verification in practice and is widely regarded as the most 
reliable basis for design.

9.11.6  �Conclusions

It has been found that both the distortion energy theory and the maximum shear stress theory 
provide reasonable estimates for the onset of yielding in the case of static loading for ductile, 
homogeneous, isotropic materials whose compression and tensile strengths are the same.

Both distortion energy theory and the maximum shear stress theory predict the onset of yielding 
and are independent of hydrostatic stress. This agrees reasonably well with experimental data for 
moderate hydrostatic pressures.

Both the distortion energy theory and the maximum shear stress theory underpredict the strength 
of brittle materials loaded in compression. Brittle materials often have much higher compressive 
strengths than tensile strengths.

The distortion energy theory is slightly more accurate than the maximum shear stress theory. 
The distortion energy theory is the yield criteria most often used in the study of plasticity. Its con-
tinuous nature makes it more mathematically amenable.
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9.12  �INTERACTION CURVES, STRESS RATIO’S MARGINS 
OF SAFETY, AND FACTORS OF SAFETY

9.12.1  �Interaction: Stress Ratio

Yielding or failure of a structural member subjected to combined stresses may be predicted without 
using principal stresses by using what is known as the interactive method.

The method represents applied and allowable stress conditions on a structural member by stress ratios.
Stress ratios are nondimensional coefficients R given by

	
R= applied stress

allowable stress

Load ratios may also be used instead of the stress ratios if this is more convenient.
The method involves determining the allowable stress or loading for each separate failure mode, 

such as tension, compression, bending, buckling, and shear. Stress ratio R for each separate failure 
condition is calculated and combined using interactive equations, if these loads act simultaneously 
on the member.

The equation generally takes the following form:

	 R1
xR Ry z

2 3 1 0+ … = .

where x, y, z are exponents defining interactive relationships.
Failure is when the sum of the stress ratios is greater than 1.0.

9.12.2  �Interactive Curve

Interactive curves are used, for convenience, to show the relationship given by the interaction equa-
tions (see Figure 9.32); e.g.,

Point A is located with the coordinates R1 and R2.
The margin of safety assuming each load increases proportionately until failure occurs at point 

B.

	
MS OB

OA
= −1

1.0 C

B

D

O

F

E 1.0

A

Margin of Safety
R1 = constant
R2 = variable

Interaction Curve

Margin of Safety
proportional loading
R1/R2 = constant

Margin of Safety
R1 = variable
R2 = constant

R2

R1

FIGURE 9.32  Interaction curve.
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The margin of safety (MS) assuming R1 remains constant with R2 increasing until failure occurs 
at point C.

	
MS EC

EA
= −1

The margin of safety assuming R2 remains constant with R1 increasing until failure occurs at 
point D.

	
MS FD

FA
= −1

9.12.3  �Interaction, Stress Ratios, Yield Conditions

To investigate yielding on a compact structure (crippling and buckling not pertinent) under the 
action of two-dimensional combined stresses, the following method may be used, as an alternative 
to calculating principal stresses.

A maximum equivalent Stress Ratio R is computed and the MS (yield) obtained there from:

	
MS

R
yield( ) = −1 1

R is given by the following formula (which is based on the maximum shear stress energy per unit 
volume theory):

	
R R R R R Rn n n n s= + − + 1

2
2 1 2

2 0 5.

where Rn = Rt + Rb or Rc + Rb and subscripts 1 and 2 indicates mutually perpendicular directions.
Stress ratios due to direct stress are positive for tension and negative for compression. The effect 

of bending stress may be added to the above, ensuring consistency of signs; i.e., bending stresses are 
positive for tension and negative for compression.

	

R f
F

R f
F

R R f

t
t

ty

c
c

cy

s s
s

=

=

= = =shear stress ratio
FFsy

where Fsy = may be taken as 0.577. Fty.
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9.12.4  �Interaction Equations: Yield Conditions

TABLE 9.1
Interaction Equations – Yield Conditions

Type of Combined Loading
Tension Stresses +ve

Compression Stresses –ve

ft ft

fs

fs

Uniaxial Tension and Shear R f
F

R f
F

R

t
t

ty
s

s

sy
= =

+Interaction formula = Rt
2

ss

t s

M S
R R

2

2 2 0 5

1

1 1

=

=
+( )

−. . .

fc fc

fs

fs

Uniaxial Compression and Shear R f
F

R f
F

F

c
c

cu
s

s

sy

sy

= =

=Where F

Interaction f

cu 2

oormula = Rc
2 + =

=
+( )

−

R

M S
R R

s

c s

2

2 2 0 5

1

1 1. . .

ft2

ft2

ft1ft1

Biaxial Tension
No interaction between axes

M.S.

R is gr

= −1 1
R

eeater of R  and Rt1 t2

R f
F

R f
Ft

t

ty
t

t

ty
1

1

1
2

2

2
= =

fc1 fc1

fc

fc

Biaxial Compression
No interaction between axes

M.S.

R is gr

= −1 1
R

eeater of R  and Rc1 c2

R f
F

R f
Fc

c

cy
c

c

cy
1

1

1
2

2

2
= =

fs

fs

f2

f2

f1f1

Biaxial Normal Stresses and Shear
R R R Rn t n t1 1 2 2= = or R  or R

Interaction For

c1 c2

mmula

M.S. = 1
Rn1

2

= + − + =

+

R R R R Rn n n n s1
2

2
2

1
2

2
2 2 1

RR R R Rn n n s2
2

1
2

2
2 2 0 5 1

− + 
−.

D
ow

nl
oa

de
d 

by
 [

M
ot

ila
l N

eh
ru

 N
at

io
na

l I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

A
lla

ha
ba

d]
 a

t 0
9:

49
 2

9 
D

ec
em

be
r 

20
13
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9.12.5  �Interaction Equations: Failure Conditions

9.12.5.1  �Compact Structures: No Bending
The following interaction equations for failure conditions are similar to those for the yield condi-
tions, as shown, except for the following:
where:

	

R f
F

R f
F

R f
F

t
t

tu

c
c

cu

s
s

su

=

=

=

where:

Ftu 	=	ultimate allowable tensile strength of the material.

Fcu 	=	ultimate allowable compressive strength of the material.

Fsu 	=	ultimate allowable shear strength of the material.

9.12.6  �Compact Structures: Bending

	 1.	Bending within the elastic limit. The stresses resulting from bending, i.e., ft and fc, and the 
resulting stress ratios should be treated as per the yield conditions.

	 2.	Bending in the plastic range. Pure bending in the plastic range is covered in Chapter 1, 
where the allowable bending moment Mb is evaluated.

	
R M

Ms
b

b
=

		  where
		  Mb is the applied bending moment
		  Mb is the allowable bending moment

	 3.	Plastic bending and flexural shear.

	
R f

fs
s

su
=

		  where
		  fs is the applied bending moment
		  Fsu is the allowable bending moment

		  Interaction equation

	

≈ + =

=
+ 

−

 R R

M S
R R

b s

b s

2 2

2 2

1

1
0 5

1. .
.
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9.12.7  �General Interaction Relationships (Figures 9.33–9.36)

Example 9.5
Consider a structural member subject to a combined axial compression and bending.

In this case, the axial compression will cause additional deflection, which in turn increases the 
moment of the bending load. This increase can easily be taken care of by an amplification factor k.

	

 k
P
Pcr

=
−

1

1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

R 2

R1

0 1.00.90.80.70.60.50.40.30.20.10

R1
3 + R2

3 = 1

R1
3 + R2

2 = 1

R1
2 + R2

2 = 1

R1
2 + R2  = 1

R1 + R2
2 = 1

R1 + R2 = 1

FIGURE 9.33  General interactive relationships.

P P

L

FIGURE 9.34  Direct compression and bending.

P P

L

FIGURE 9.35  Offset compression and bending.
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where

	
P

E I
Lcr = π2

2

	

k =










1

2
cos

π
 

P
P

 
cr

The bending moment applied to the structural member (chosen at the maximum cross section) 
is then multiplied by the amplification factor k, and this value is then used as the applied moment 
M in the ratio:

	
R

M
Mb

u

=

The chart in Figure  9.36 is then used to determine the amplification factor k for the bending 
moment applied to a beam when it is also subject to axial compression.

The resulting combined stress is then found from the following:

	
σ = ±P

A
kM

I
c

Example 9.6
A loading platform is to be fabricated from a 10.0 mm thick top plate and an under frame manu-
factured from 25 mm equal angle. The whole structure is in the form of a truss (Figure 9.37).

It is required to determine the compound stress (axial compression and bending) in the top 
compression panel.

P P
A transverse load

Constant bending moment

P P

A transverse load

Constant bending moment

P
1

k

4.0
3.8
3.6
3.4
3.2
3.0
2.8
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0

0 0.10 0.20 0.30 0.40 0.50 0.60 0.70
Pcr = L2

π2.E.I

Pcr
1–

k =

P
Pcr

P
2

1

Pcr
cos

k =
π

FIGURE 9.36  Amplification factor “k” for bending moment.
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Summary
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Obtaining the amplification factor k for the sinusoidal bending moment from the curve 
(Figure 9.36):
	 k = 1.692

The actual applied moment due to the extra deflection is found to be

	

M k M

M kN mm

actual

actual

 =

= ×

=

·

. . ·

.

1 692 771 75

1 306 ×× 106 N mm·

Transverse load
w = 35 n/mm

w = 35 N/mm
uniformly distributed load

Top panel
width ‘w’ = 1420 mm
thickness ‘t’ = 10 mm

420 mm

P = 560 kN
axial compression
force

FIGURE 9.37  Truss diagram.
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The resulting combined stress above the neutral axis of the top panel is:

	
σc

actualP
A

M t
I

= + ·
·2

	 σc = 94 611.  MPa

	
σL

P
A

t
I 2

= − Mactual·
·

	 σL 15.738 MPa= −

9.12.8  �Determination of Safety Factors

The ultimate load values for this structural member are in compression alone.
For the values for bending alone, i.e., without the combined compression, the following is to be used.
Assuming material properties, aluminum plate to BS 1470 5154A-H4,

	 σ0.2 = 225 MPa

Interaction curve

P = 560 × 103 P ‘a’

7.
98

7 
× 

10
6  N

.m
m‘Mactual’ – Applied bending

                    moment × 106 N.mm

1.
30

6 
× 

10
6  N

.m
m

‘P
’ –

 C
om

pr
es

siv
e l
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d 

× 
10

6  N

Pcr = 1.369 × 106 N 1.4

1.2

1.0

0.8

0.6
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0.2

0
0 1 2 3 4 5 6 7 8

FIGURE 9.38  Interaction curve for truss beam example.
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For compression alone:

	

Since L
r

       where r = radius of gyra= 150 ttion

assume  P Pu cr

( )

( ) =

For bending alone:

The plastic or ultimate bending moment is:

	

Mu W t t

Mu N mm

= 





= ×

· ·

 ·

σ0 2

6

2 2

7 987 10

.

.

These ultimate values are represented on the interactive curve shown in Figure 9.38.
Plotting the present load values indicates that there is an approximately 2.4:1 factor of safety 

before the top panel will begin to buckle.
If this had been an extremely short plate (very low L/r ratio), the critical value (Pcr) could be much 

higher than the actual ultimate value (Pu).
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10 Introduction to Experimental 
Stress Analysis

It is important that design calculations are verified, particularly when the design is a complex structure 
such as an air vehicle wing box or fuselage. A number of factors are used in the analytical analysis, 
essentially to compensate for lack of specific knowledge generally associated with materials. These 
factors are referred to as factors of ignorance or “fudge” factors. These factors are used essentially to 
enable the design to proceed with the analysis being revisited when there is better information available.

With the enormous improvements in the use of computers in engineering analysis (CAE) and 
design (CAD) many designs are bought to the marketplace without any preliminary models being 
produced. The manufacturers rely upon the analytical calculations to identify any high-stressed 
areas that may lead to a design failure. In most cases a mechanical failure in something like a hair 
drier will only cause an inconvenience to the owner, but when a failure occurs in the aforementioned 
wing box or fuselage, then the outcome will be a catastrophic accident with a potential for loss of life.

In this instance the manufacturer will produce a full or scale model of the part or assembly and 
apply appropriate loading to it and monitor any high-stressed areas to see if the part will reach or 
exceed its calculated design life. The analysis will be undertaken using a variety of instrumentation, 
including but not restricted to the following:

•	 Photoelastic coatings
•	 Brittle lacquer coatings
•	 Electrical resistance strain gauges

10.1  �PHOTOELASTICITY

For many years photoelastic analysis was at the forefront of experimental stress analysis where 
solid models were manufactured from photoelastic material. These were loaded in a like manner 
to the actual part, then heated and allowed to carefully cool in a low-temperature oven over several 
hours. When the model was cured it was carefully cut up and the sections analyzed using a polari-
scope; the technique relied upon the use of polarized light, and changes in the stress patterns in the 
material created fringes. These fringes gave an indication of the internal stresses locked into the 
part, and using special calibration techniques, accurate stresses could be assigned to these fringe 
patterns. This article discusses the principles behind both three-dimensional and two-dimensional 
photoelastic models.

10.1.1  �The Principles of Photoelasticity

The underlying principles will be outlined covering the basic optical instrument, the polariscope, 
and its different variations are described together with the techniques used for the determination of 
separating the principal stress values from the photoelastic data.

This chapter will not cover the detailed optical theory of the photoelastic effect and the various 
forms of the polariscope; this material is given in standard textbooks covering this subject.

Photoelastic stress analysis is an extremely powerful technique that enables a “whole field” anal-
ysis to be carried out on a model of the component, compared with using strain gauges, which only 
consider the strain at a single point on the component.
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This work, when carried out at the design stage, will verify the results of a finite element analy-
sis. In some case studies, using the photoelastic method, stresses as much as 20% higher were found 
than were predicted in the finite element (FE) model. The accuracy of the FE model is totally depen-
dent upon the mesh density. With modern high-speed computers it is possible to increase the mesh 
density to improve accuracy, but at a cost in computing power.

The technique of photoelastic analysis involves the making of a scale model, either full size or to 
scale, manufactured from a suitable material (usually Araldite CT 200), and then placing the model 
in a beam of polarized light using an instrument called a polariscope.

If the model is loaded in a similar direction to that of the actual component, an interference 
pattern will be visible in the model. The interference pattern will consist of colored fringes called 
isochromatics. These fringe patterns can be interpreted to give information on the magnitudes of 
the principal stresses that are present in the model.

Using a simple formula, the stresses in the actual part can then be determined even though the 
component material may be either steel, aluminum, cast iron, ceramic, or even plastic itself.

A second set of interference fringes is also visible under certain conditions; these fringes are 
termed isoclinics. Isoclinics enable the directions of the principal stresses at any point in the model 
to be determined, and from these, stress trajectories or stress flow lines can then be drawn for the 
actual component under similar loading conditions.

10.1.2  �Principles

The process is based on the property of birefringence, which is exhibited by certain transparent mate-
rials. Birefringence is a property where a ray of light passing through a birefringent material experi-
ences two refractive indices. Many optical crystals exhibit the property of birefringence or double 
refraction. But photoelastic materials show this property of birefringence only when the model, man-
ufactured from this material, has a stress applied to it and the magnitude of the refractive indices at 
each point in the model is directly related to the state of stress existing at that point. Thus, the state 
of the stress in the model will be similar to the state of the stress in the actual structural component.

When a ray of plane-polarized light is passed through a photoelastic material, it will be resolved 
along the two principal stress directions, and each of these components experiences different refrac-
tive indices. The difference in the refractive indices leads to a relative phase retardation between 
the two component waves. The “stress optic law” gives the magnitude of the relative retardation.
where R is the induced retardation, C is the stress optic coefficient, t is the specimen thickness, σ11 
is the first principal stress, and σ22 is the second principal stress.

	
R CT= −( )σ σ11 22

The two waves are bought together in a polariscope. The phenomenon of optical interference 
then takes place and a fringe pattern is produced, depending upon the relative retardation. From the 
study of the fringe pattern the state of stress at various points in the material can then be determined.

10.1.3  �Isoclinics and Isochromatics

Two types of fringe patterns can be observed in photoelasticity: isoclinic and isochromatic fringes 
are viewed when the source light is monochromatic. These fringes appear as light and dark fringes; 
whereas with white light illumination, colored fringes are observed. The difference in principal 
stresses is related to the birefringence, and hence the fringe color through the stress optic law.

The definition of an isoclinic is that it is the locus of points at which there is a constant inclination 
of principal stress directions, i.e., wherever either principal stress direction coincides with the axis 
of polarization of the polarizer.
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267Introduction to Experimental Stress Analysis

Isoclinics cannot give information on the magnitude of the principal stress differences, but give 
valuable information on the principal stress directions.

Isochromatics are the locus of the points along which the difference in the first and second 
principal stresses will remain the same; hence they are the lines that join the points with equal 
maximum magnitudes of shear stress. When viewed in white light the fringes are seen in brilliant 
colored bands and have the same colored sequence as is observed with a film of oil on water and 
with Newton’s rings.

10.1.4  �Plane Polariscope

In this setup the plane polariscope (Figure 10.1) consists of two linear polarizers and a light source. 
The light source can emit either monochromatic or white light, depending upon the investigation 
being carried out.

First the light passes through the first polarizer, which converts the light into plane-polarized 
light. The apparatus is set up in such a way that this plane-polarized light then passes through the 
stressed test specimen. This light then follows, at each point of the specimen, the direction of prin-
cipal stress at that point. The light is then made to pass through the analyzer and the fringe pattern 
can then be observed.

The fringe pattern in a plane polariscope setup consists of both the isoclinics and isochromatics. The 
isoclinics change with the orientation of the polariscope, while there is no change in the isochromatics.

10.1.5  �Circular Polariscope

Two quarter-wave plates are added to the experimental setup of the plane polariscope. The first 
quarter-wave plate is placed in between the polarizer and the test specimen, and the second quarter-
wave plate is placed between the specimen and the analyzer. The effect of adding the quarter-wave 
plates is to generate circularly polarized light.

The essential advantage of a circular polariscope (Figure 10.2) over a plane polariscope is that 
in a circular polariscope setup, only the isochromatics will be seen. The isoclinics are eliminated. 
This will eliminate the problem of trying to differentiate between the isoclinics and isochromatics.

10.1.6  �Two-Dimensional and Three-Dimensional Photoelasticity

Photoelasticity can be applied to either two- or three-dimensional analysis.

Analyzer
(linear polarizer)

Axis of
polarization

Axis of polarization

Polarizer
(linear polarizer)

Light

Model stage 

Z

FIGURE 10.1  Schematic of the working components for a plane polariscope.
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Two-dimensional photoelasticity is carried out on test specimens manufactured from thin mate-
rial shaped to the basic profile under investigation, and when mounted in a special test rig, allows 
loads to be applied to the specimen and the change in the fringes to be observed in real time.

Three-dimensional photoelasticity is more complex. It requires a three-dimensional model to be 
manufactured and to be fitted in a special heated oven. A steady load is applied to the model prior to 
a heating program being applied. The model is then heated and cooled under a carefully controlled 
heating program. This allows stresses generated due to the loading arrangement to be locked into 
the model on withdrawal from the oven.

This is known as stress freezing technique.
The model is then sliced up in the areas of specific interest. The samples can then be observed 

and analyzed as two-dimensional specimens using either the plane or the circular polariscopes, 
depending upon the experimental setup.

10.1.7  �Further Development

Photoelastic analysis has been used on a wide range of stress analyses and was the preferred experi-
mental stress analysis method before the advent of finite element analysis (FEA).

When using FEA, it is crucial to assess the accuracy of the numerical model. This can only be 
assessed by using experimental verification. As an example, a threaded joint experiences nonuni-
form contact. This is difficult to incorporate accurately into the finite element model. Idealized 
models tend to significantly underestimate the actual stress concentrations at the root of the thread.

Photoelastic analysis still remains a major tool in the modern stress analyst’s arsenal, validating 
mathematical models and identifying the accurate placing and orientation of electrical resistance 
strain gauges.

10.2  �PHOTOELASTIC COATINGS

In certain instances it may be desirable to carry out a dynamic or static examination of a physical 
part, such as a landing gear structure or a gearbox housing to determine the surface strains. With 
the use of photoelastic coating it is possible to mold a special strain-sensitive coating around the part 
under examination. The technique is “full field” identical to the two- and three-dimensional methods.

Analyzer
(Linear polarizer)

Polarizer
(Linear polarizer)

Axis of
 polarization

Light 

A
Axis of

polarization

Model stage

First quarter–wave 

Second quarter–wave 

Fast
axis

Slow
axis

Fast
axis

Slow
axis π/4

π/4

π/4
π/4

Z

FIGURE 10.2  Schematic of the working components for a circular polariscope.
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269Introduction to Experimental Stress Analysis

Photoelastic coating has a history of successful applications in a wide range of situations cover-
ing manufacturing and construction where stress analysis is used, including aerospace, automotive, 
pressure vessels, etc. Other applications are found in medical engineering, including the determina-
tion of the strength of femur prostheses.

10.2.1  �Preparation of the Coating

A liquid plastic is cast on a flat-plate mold and allowed to partially polymerize. While it is still in 
a pliable state, the sheet is removed from the mold and formed by hand to the contours of the test 
part. When fully cured, the plastic coating is bonded in place with special reflective cement and the 
part is then ready for testing.

For plane surfaces, premanufactured flat sheets are available and can be cut to size and bonded 
directly to the test part.

10.2.2  �Analysis of the Coating

The coating is illuminated by polarized light from a reflection polariscope (Figure 10.3). When 
viewed through the polariscope, the coating displays the strains in identical patterns to the plane 
and circular polariscopes used on the two-dimensional models.

The polariscope is similar to the circular polariscope (Figure 10.2) and is able to be handheld or 
mounted on a tripod.

The polariscope can be fitted with an optical transducer (compensator) where quantitative stress 
analysis can then be quickly performed. The use of photography or video recording can maintain a 
permanent record of the overall strain distributions, particularly in dynamic analysis.

Although the coating is not permanent, the coating will have a reasonable life for fairly long-term 
examinations to be carried out. Unlike brittle lacquer coatings, the photoelastic coating method may 
be used over a wide range of loading spectra. Providing the coating is protected, the results are not 
subject to environmental effects such as humidity or temperature.

The light source can either be a standard light source for taking static measurements or be 
replaced with a stroboscopic light accessory for cyclic dynamic measurements.

Polarizer Quarter-wave plate

Quarter-wave plate

Analyzer

Light
source

Observer

Test piece

Photoelastic coating

Reflective
adhesive

FIGURE 10.3   Schematic representation of a reflection polariscope.
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10.2.3  �Coating Materials

A wide selection of coatings are available from specialist suppliers in either flat sheet and liquid 
form for applications to metals, concrete, rubber, and most other materials.

Also available are specially designed application kits for the installation on most test parts.

10.2.4  �Full Field Interpretation of Strain Distribution

Photoelastic coatings allow strain measurement to be undertaken in either the laboratory or on-site 
for in situ measurements during construction or manufacture. The advantage of the photoelastic 
coatings is that it is full field. Areas of high stresses can be easily identified together with the prin-
cipal stress direction, so that the coating can be locally cut away and an electrical resistance strain 
gauge fitted, allowing for a quantitative measurement to be taken to confirm the strain reading. It 
has to be born in mind that the strain gauge reading may not match that of the photoelastic coating; 
this is due to the length of the gauge chosen. Standard length gauges will have a gauge length of 
12.5 mm, and therefore the strain reading will be integrated over this length, resulting in a lower 
strain reading. If a shorter gauge length is chosen, then the reading will be higher as the integration 
length is reduced.

The interpretation of the fringe patterns is identical to the two- and three-dimensional photo-
elastic analysis technique. Photoelastic fringes have their own characteristic patterns, which is very 
helpful in interpreting the fringe patterns. As an example, the fringes are ordinarily continuous 
bands, forming either curved lines or closed loops, like the isobars on a weather map. The black 
zero-order fringes are usually isolated spots, lines, or areas surrounded by higher-order fringes. 
The fringes never intersect or otherwise lose their identity. The fringe order, and therefore the strain 
level, is uniform at every point on a fringe. Also, the fringes always exist in a continuous sequence 
by both number and color; i.e., if the first and third fringes are identifiable, the second-order fringe 
will lie between them. The color sequence in any direction establishes if the fringe order and strain 
level are increasing or decreasing in that direction.

If there is a zero-order fringe within the field of view, it will be obvious by the black color. 
Assuming that the coated test piece has a free square corner or pointed projection, the stress in this 
area will always be zero, and a zero-order fringe will exist at this position, irrespective of the load 
magnitude. The zero-order fringe may shrink slightly as the load magnitude is increased.

From Table 10.1 note the fringe order counting from the zero-order fringe. It is important to note 
that the analyst should have good color vision; otherwise misinterpretation of the color fringes will 
occur. Most people tend to have a problem with the color green, and this could lead to reading the 
stresses a magnitude higher. To overcome this problem, it is possible to view the model in mono-
chromatic light and physically count the fringes from the zero-order fringe to the area of interest.

Generally, when viewing the photoelastic coating without any load applied, it is possible to note 
the direction of the fringes as the load is incrementally applied. Without any load being applied the 
color of the coating will be dominated by the zero-order fringe (black), and as the load is progres-
sively applied, additional colored fringes in the correct color sequence will begin to appear and 
spread across the test piece. The analyst will note the appearance of the fringes; closely spaced fine 
fringes will denote steep strain gradients. Areas where almost uniformly black or gray exist usually 
indicate a significantly understressed region.

10.3  �INTRODUCTION TO BRITTLE LACQUER COATINGS

10.3.1  �Introduction

The advantages offered for using brittle lacquer is it can be applied to a wide range of materials, 
including metals, many plastics, glass, ceramics, and wood products. It is inexpensive and requires 
no instrumentation to analyze the results.
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271Introduction to Experimental Stress Analysis

The coating is sprayed on to the surface and then allowed to cure in either air or heat to attain the 
brittle properties. As the component is loaded, the coating will begin to crack when the threshold 
strain or strain sensitivity is exceeded.

10.3.2  �Loading and Testing Techniques

The brittle lacquer coating fractures in response to the surface strain underneath it. Analysis of 
the coating indicates the direction and magnitude of stress within the elastic limit of the test piece 
material. The brittle lacquer coating gives a graphic picture of the distribution, direction, location, 
sequence, and magnitude of the tensile strains. The coating cracking is a predetermined value, 
which is determined by a simple calibration procedure.

Under normal conditions the coating will crack in the range from 5.08 × 10–6 to 76.2 × 10–6 m/m. 
In terms of stress these values represent between 41 and 620 MPa.

The qualitative picture of the stress distribution gives an immediate visual indication for imme-
diate design improvements. With very careful handling it is possible to obtain quantitative results 
with a ±10% accuracy.

Flaking of the brittle lacquer coating is an indication of local yielding in the test piece.
Cracking occurs where the strain is highest, giving an immediate indication of the presence of 

stress concentrations. The cracks also indicate the directions of maximum strain at these areas, as 
they always align at right angles to the direction of the maximum principal tensile strain. The method 
has been in use for many years, principally to provide test engineers with quick and reliable infor-
mation about the strain response of the material to which the coating has been bonded. In addition, 
as it provides information on the principal strain directions, this information is of great use in the 
selection, location, and orientation of strain gauges for the accurate measurement of peak stresses.

10.3.3  �Effects of Change in Relative Humidity and Temperature

The lacquers generally have a nominal threshold sensitivity of 500 microstrain at specified tempera-
tures and humidity conditions specified by the lacquer manufacture in a coating selection chart. The 

TABLE 10.1
Isochromatic Fringe Characteristics

Color Fringe Order

Black 0.00

Pale yellow 0.60

Dull red 0.90

Red/blue transition 1.00

Blue-green 1.22

Yellow 1.39

Rose red 1.82

Red/green transition 2.00

Green 2.35

Yellow 2.50

Red 2.65

Red/green transition 3.00

Green 3.10
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selection of a suitable coating depends upon the environmental conditions occurring at the time of 
the test.

The coating begins to lose its brittleness and sensitivity begins to shift as the relative humidity 
rises above 20%. This only begins to become noticeable over large changes in the relative humidity.

Other disadvantages include that it is affected by humidity and temperature, i.e., requiring the 
test temperature to be maintained so that an approximate strain level can be determined by com-
parison with calibration test pieces.

Strain sensitivity changes by approximately 4 microstrain per 1% change in relative humidity.
The effect of temperature on the coating is approximately 70 microstrain per degree Celcius 

change. As the temperature increases the coating begins to soften and becomes more plastic, and 
therefore loses its sensitivity. The opposite applies as the temperature falls. According to StressKote 
(a major supplier of brittle lacquer coatings), a simple ready calculation is that a 5°C change will 
cause a sensitivity shift to 360 microstrain, whereas at a constant temperature a 25% change in rela-
tive humidity will cause a shift of 100 microstrain.

The grade of coating selected for the test will be dependent upon the test temperature and rela-
tive humidity.

Prior to the test program, a calibration test strip is prepared and loaded as per the manufacturer’s 
instructions. The calibration is carried out at the test temperature and relative humidity. This allows 
the microstrain sensitivity of the coating to be read from the calibration test strip.

The calibration bar is simply a rectangular bar and fits into a calibration jig that supports the bar 
at one end. The bar is then essentially a cantilever. An eccentric cam is located at the free end of the 
cantilever, and this produces a known strain distribution along the cantilever length. When the lac-
quer on the bar is fully cured, the cam is rotated to depress the bar by a known amount. The position 
at which the cracking of the lacquer begins gives the strain sensitivity when compared with a marked 
strain scale. Quantitative measurements of strain levels can then be made on the component under 
test, as, for example, if the calibration sensitivity is shown to be 1,000 microstrain (strain × 10–6), then 
the strain at the point on the component at which cracks first appear will also be 1,000 microstrain.

10.3.4  �Measuring Strain under Static Loading

The technique required is to incrementally load the component, holding the load for a few minutes 
and releasing it to zero prior to the application of the next increment, noting the crack patterns at 
each load application. It is recommended to mark key information with a wax pencil. Photographs 
can be taken with a camera fitted with a flash. Care should be taken when using floodlights, for if 
they are too close to the test piece, the heat may soften the coating and cause the cracks to heal.

10.4  �INTRODUCTION TO STRAIN GAUGES

The most widely used experimental stress analysis technique in industry today is the strain gauge. 
The gauges come in different types, but the most common are vibrating wire strain gauges and 
electrical resistance strain gauges.

10.4.1  �Vibrating Wire Strain Gauges

Vibrating wire stain gauges are mostly used in civil engineering for monitoring bridge and tunnel 
loads. They generally have a large gauge length and are not unduly affected by the size of the aggre-
gate used in concrete. The gauge comes in a variety of fittings. It may be embedded in concrete, able 
to be spot welded to steel beams or columns among a variety of alternative attachments.

The basic construction is that of a fine wire supported under tension between two supports 
(see Figure 10.4). As the structure to which the gauge is secured moves, this will cause tension 
on the wire and in turn affect the frequency of the wire. When a measurement is required, the 
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273Introduction to Experimental Stress Analysis

wire is electrically “plucked” and a pick-up then measures the frequency of the vibrating wire. 
Instrumentation converts this frequency into a strain reading.

The advantage of the vibrating wire gauge is that it is able to lie dormant for several hours or days 
without any power being applied to it, and when required it can be switched at will to give an accurate 
reading without any further calibration required. Indeed, the connection to the gauge can be severed, 
and provided the gauge position is not disturbed, a calibrated signal will be available when the signal 
cable is reconnected. Other advantages include being weatherproof and able to operate in any envi-
ronmental conditions, including corrosive atmospheres provided adequate protection is provided.

Because of its large gauge length (it can be supplied in shorter gauge lengths) the vibrating 
wire strain gauge has little application in engineering measurements outside of the field of civil 
engineering.

10.4.2  �Electrical Resistance Strain Gauges

In 1843 Charles Wheatstone published his work on the bridge circuit he had invented. He had 
noticed the change in resistance in an electrical conductor due to the effects of mechanical stress.

William Thomson (1824–1905) went further with some work published in 1956.
In 1938, two workers in the United States, Edward E. Simmons and Arthur C. Ruge, developed 

the basics of the modern strain gauge.
The electrical resistance strain gauge is simply a length of wire or foil formed into a shape of a 

continuous grid, as shown in Figure 10.5. This grid is cemented to a nonconductive backing.
The gauge can then be bonded securely to the surface of the component under investigation. Any 

strain experienced in the surface of the component will be transmitted to the gauge itself.

Tensioning
flange Wire Flange

Attachment
plate

BasePlucker and
pick-up

FIGURE 10.4  Schematic diagram of a vibrating wire strain gauge.

Backing strip Grid Electrical
connection tabs

FIGURE 10.5  Elements of a linear electrical resistance strain gauge.
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The fundamental equation for the electrical resistance R of a length of the conductor is

	 R L
A

= ρ
	 (10.2)

where L is the length of the conductor, A is the cross-sectional area, and ρ is the specific resistance 
or resistivity. Any change in the length of the gauge, and hence sectional area, will result in a change 
of resistance. Measurement of this resistance change using suitably calibrated equipment enables a 
direct reading of the linear strain to be obtained. The relationship that exists for a number of alloys 
over a substantial strain range between the change in resistance and strain may be expressed as 
follows:

	
∆ ∆R
R

K L
L

= × 	 (10.3)

where ΔL and ΔR are the change in length and resistance, respectively, with K being termed the 
gauge factor.

Thus,

	 Gauge factor K = R R∆
∆

∆
L L

R R=
ε

	 (10.4)

where ε is the strain. The strain gauge manufacturer will always supply the value of the gauge factor 
and can be checked using simple calibration procedures if required. Typical values of K for most con-
ventional foil strain gauges will lie in the region of 2.0 and 2.2, and most modern strain gauge instru-
ments, with the value of K set accordingly, allow the strain values to be recorded directly.

Changes in resistance produced by normal strain levels that are experienced in engineering com-
ponents are very small, and as a consequence, sensitive instrumentation is required to measure 
these changes. Strain gauge instruments are based on the Wheatstone bridge networks as shown in 
Figure 10.6. The condition of balance for this network is

	 R R R R1 3 2 4× = × 	 (10.5)

In its simplest half-bridge wiring system, gauge R1 is the active gauge, i.e., the gauge actually 
being strained. Gauge R2 is called a dummy gauge and is bonded to a piece of material identical to 
that which R1 is bonded to, but in this case it is unstrained. The purpose for this is to cancel out in 
gauge R1 any resistance change due to temperature changes. Gauges R1 and R2 represent the work-
ing half of the network—hence the name half-bridge system (Figure 10.7). Gauges R3 and R4 are 
standard resistors built into the measuring instrument. Alternative wiring systems utilize one (quar-
ter bridge) or all four (full bridge) (Figure 10.8) resistors of the bridge resistance arms.

G

R1 R2

R4 R3

FIGURE 10.6  Wheatstone bridge circuit.
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275Introduction to Experimental Stress Analysis

10.4.3  �Unbalanced Bridge Circuit

With the bridge initially balanced to zero, any strain that occurs at gauge R1 will cause the galva-
nometer needle to deflect. The deflection can be calibrated to read the strain in R1, as stated above, 
and the circuit can have an arrangement where the gauge factor can be adjusted. Strain readings can 
therefore be taken with the pointer off the zero position and the bridge is thus unbalanced.

10.4.4  �Null Balance or Balanced Bridge Circuit

An alternative measurement procedure is to make use of a variable resistance in one arm of the bridge. 
This will cancel out any deflection of the galvanometer needle. This adjustment can be calibrated 
directly as strain, and the readings are taken with the pointer on zero, i.e., in the balanced position.

10.4.5  �Installation Procedures

The quality and success of any strain gauge installation are influenced by the consideration and 
choice of the installation procedure together with the choice of the adhesive. The apparently mun-
dane procedure of actually cementing the gauge onto the component is a critical step in the opera-
tion. Every precaution must be taken to ensure a scrupulously clean surface if perfect adhesion is to 
be attained. J. Pople covers full details of the surface preparation and installation techniques in the 
BSSM (British Society for Strain Measurement) Strain Measurement Reference Book.

Following the successful attachment of the gauge to the surface, lead wires are then attached to 
the electrical connection tabs using solder. Extreme care is required in this operation, as it is very 
easy to generate a dry joint with its associated noise. An insulation check needs to be carried out to 

RG

RG

Active gauge

Dummy gauge

RL

RL

R

R

Common
shield cable

G

FIGURE 10.7  Three lead-wire system for half-bridge (dummy-active) setup.

RG

RL

RL

Bridge-completion
resistor

R

R

G

FIGURE 10.8  Three lead-wire system for quarter-bridge (dummy-active) set-up with a single self-temperature 
compensated gauge.
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confirm the installation; the installation resistance to ground (RTG) should be a minimum of 104 
megaohms at 30 V.

The sequence for successfully installing an electrical strain gauge is as follows:

	 1.	Determine the measurement required. What feature do you want to measure? Bending, 
torsion, tension, compression, etc.?

	 2.	Select the most appropriate strain gauge for that measurement.
	 3.	What is the specimen material? Select the appropriate adhesive for the particular applica-

tion and compatible with the gauge backing.
	 4.	Select the area where the gauge is being fitted and ensure there is adequate access for fit-

ting the gauge.
	 5.	Follow the installation procedure carefully, ensuring the gauge, if clamped, is equal over 

its length and the pressure is between 34 and 138 kPa. Unequal clamping will result in an 
unequal glue line.

	 6.	Select the style of terminal pad and bond adjacent to the strain gauge.
	 7.	Select the correct type of cable between the gauge and bridge. This is of vital importance, 

as the cable in a quarter-bridge configuration forms part of the measuring circuit. Any 
change in the cable resistance will affect the accuracy of the strain measurement.

	 8.	Select the correct type of solder and flux for the application: only use the solder and flux 
that has been approved by the gauge manufacturer. Many types of commercial solders and 
fluxes are unsuitable for strain gauge applications.

	 9.	Carefully solder the jumper leads between the strain gauge and the terminal pad and the 
lead wire from the terminal pad to the bridge.

	 10.	The lead wire may have to terminate in a plug and socket at an appropriate point if the mea-
suring point is a distance from the instrumentation. It is essential that the resistance remains 
consistent during the measurement phase and the resistance value is as low as possible.

	 11.	Depending upon the application, a choice will have to be made if the strain gauge requires 
protection. This will depend upon the environmental conditions the gauge is expected to 
operate in. If the gauge is operating in clean air conditions within laboratory conditions 
and the test is expected to last a very short time, the gauge can in this circumstance be 
painted with a paint compatible with the lead insulation to prevent any oxidation at the 
gauge-structure interface. But if the test is being undertaken in workshop conditions, then 
a minimal degree of protection will be required. Encapsulating the gauge in an insulating 
layer of polysulfide rubber (Bostik 2114-5) will provide this. This will give protection for 
up to 6 months against any moisture ingress.

	 12.	 In situations where the gauge is expected to operate in the most adverse conditions, a suit-
able metal surround will be required, particularly if the gauge has to face sea water condi-
tions such as on oil rigs, together with the extremes of temperature. Layers of polysulfide 
epoxy further protect the polysulfide rubber encapsulation. The mechanical housing has 
an extension to it providing a totally leak-proof connection for the signal cable. This is also 
fitted with an adequate insulation.

	 13.	At several points in the installation of the gauge, the insulation will have to be tested using 
a gauge insulation tester to ensure that the insulation resistance is in excess of 20,000 
megaohms for foil strain gauges when installed under laboratory conditions. A value of 
10,000 megaohms should be considered a minimum. Readings below this figure generally 
indicate trapped foreign matter, moisture, residual flux, or backing damage due to solder-
ing, as well as incomplete solvent evaporation from the overcoating.
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277Introduction to Experimental Stress Analysis

10.5  �EXTENSOMETERS

Extensometers were developed for use on tensile testing machines for measuring strains; they 
measure the very small extensions or contractions in the test pieces when under increasing load. 
They are not precluded from use in measuring strains in other applications. The extensometer was 
invented by Dr. Charles Huston in the 1870s (Figure 10.9).

Modern extensometers utilize electronics in their construction, using a very sensitive displace-
ment transducer. Special clip-on fasteners enable the extensometer to be quickly attached to the test 
specimen. These instruments are extremely accurate, having a resolution of less than 0.3 µm. These 
instruments require a conditioning module for their operation.

These extensometers are known as contact extensometers.

10.5.1  �Contact Extensometers

Figure 10.10 shows an extensometer for measuring strains in plastic test pieces.

Scale

Test specimen

Pointer
Clamps

Pivot

G
au

ge
 le

ng
th

FIGURE 10.9  Huston’s extensometer.

FIGURE 10.10  Extensometer for plastic test coupons.
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10.5.2  �Noncontact Extensometers

Another class of extensometers, known as noncontact, utilize lasers for performing the strain or 
elongation measurements. The principle utilizes the reflection of a laser light from the surface of 
the test specimen via a charge-coupled interface digital (CCD) camera. Resolutions of typically 0.1 
µm can be attained.

Targets are attached to the test specimen at a known distance apart, and a laser unit scans the 
targets and measures the distance apart. Although costly compared to the contact type, they are 
very easy to set up. The laser light is very low power, and therefore, providing the operator does not 
stare into the light, they are safe to use.

10.5.2.1  �General Notes
The big disadvantage with these types of extensometers is the “gauge length,” which tends to be 
rather large for very local strain measurements. As with the electrical resistance strain gauge as well 
as the vibrating wire gauges, the strain is integrated over a larger length than those of the electrical 
resistance strain gauges, and hence are very local strains or not identified. Having said that, they 
are on a par with the vibrating wire strain gauges, where these do have quite large gauge lengths.

In civil engineering, where most of the structures are made using concrete, the size of the aggre-
gate will dictate the gauge length. In some instances the size of the aggregate can be as large as 
25 mm, in which case the gauge length will need to be greater than 100 mm to be able to yield any 
meaningful results.

The disadvantage with these, as with the electrical resistance strain gauges, is that the datum read-
ing will be lost if there is a power failure. Therefore it is essential to have a reliable battery backup.

10.5.3  �Applications

As with the vibrating wire strain gauges, these extensometers have found a use in the civil engineer-
ing and mining industries for monitoring walls, etc. Plotting displacements against time, geotechni-
cal engineers can predict if a failure is imminent.

FIGURE 10.11  Extensometer for metal test coupons. 
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11 Introduction to Fatigue 
and Fracture

11.1  �INTRODUCTION AND BACKGROUND TO THE HISTORY OF FATIGUE

The earliest investigation into metallic fatigue was undertaken by August Wöhler between 1852 and 
1870, who had been commissioned by the French Railway Company SNCF. It had experienced a 
number of axle failures and wanted to know and understand the reasons for them.

Wöhler constructed a rotating bending test rig (see Figure 11.1) to emulate and investigate the 
loading on a full size railway axle. These axles were subjected to a range of rotation speeds and loads.

Figure 11.2 shows a representation of the rotating cantilever test rig identifying its major com-
ponent part.

He constructed a curve (Figure 11.3) comparing the applied load on the axle to the number of 
cycles to failure. From this curve he observed that the curve exhibited an endurance limit where 
stresses below that limit did not display any further damage.

From these results it was established that metals had a limiting stress where failure could be 
estimated with a reasonable degree of accuracy under the conditions prevailing at that time.

The next breakthrough in understanding the mechanics of fatigue was observed by Bauschinger 
in 1886. His experiments showed that the limit of elasticity on the first compression loading is less 
than the initial tension loading; this is called the Bauschinger effect. Figure 11.4 shows that if point C 
is extrapolated, C′, using the B-C slope, then Δεb will show the permanent cyclic strain softening or 
cyclic strain hardening. The second part of Figure 11.4 is drawn to an absolute scale for stress–strain.

When strain hardening occurs, as in cast aluminum, this effect becomes more apparent. These 
plots are generated during a fatigue test showing the Bauschinger effect and are often referred to as 
hysteresis loops.

The first fatigue tests were conducted using a fully reversible cycle, i.e., alternating loads between 
compression and tensile with the mean stress at 0.

This situation very rarely occurs in real life, and a way was found to offset the normal Wöhler 
type curve. Goodman, Soderberg, and Gerber undertook this work. Their work is based on either 
the ultimate tensile stress σuts or yield stress σyield, and the endurance limit stress σe or the fatigue 
strength for a given number of cycles σam (for zero mean stress) as the baseline for a safe design and 
is drawn on two axes, with the x axis representing the mean stress and the alternating stress plotted 
on the y axis. Figure 11.5 shows these three most widely used empirical relations. The straight line 
joining the alternating fatigue stress to the tensile stress is the modified Goodman law. Goodman’s 
original law included the assumption that the alternating fatigue limit was equal to one-third of the 
tensile stress, but this has been modified to the relation shown, using the alternating fatigue stress 
determined experimentally. The original law is no longer used and has been replaced by the modi-
fied law; this is referred to as the Goodman law.

Gerber deduced that the early results found by Wöhler fitted closely to a parabolic relation, and 
this is often referred to as Gerber’s parabola. A straight line connecting the alternating fatigue stress 
to the static yield stress gives the third relation, known as Soderberg’s law. For many purposes it is 
essential that the yield stress is not exceeded, and this relation is intended fulfill the condition that 
neither fatigue failure nor yielding shall occur.



280 Design Engineer's Handbook

The Goodman curve gives good results for brittle materials and conservative results for ductile 
materials. The Gerber relation will give good results for ductile materials.

It was found that a compressive mean stress improved the fatigue life of a component and 
decreased with a tensile mean stress. Gerber’s parabolic relationship may therefore produce errone-
ous results to the conservative side in the compressive mean stress region.

Spring adjustment

Loading spring

Bearing
Drive Coupling Test piece

FIGURE 11.2  Representation of a rotating cantilever test rig.
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FIGURE 11.3  The S-N curve as described by Wöhler. (1 centners per zoll2 = 0.75 Mpa.)

FIGURE 11.1  Wöhler’s original railway axle.
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281Introduction to Fatigue and Fracture

11.1.1  �Later Developments

Old notions regarding the fatigue mechanism based on the crystallization theory were proved incor-
rect by Ewing and Rosenheim in 1900, closely followed by Ewing and Humfrey in 1903, showing 
that slip bands developed in many grains of the polycrystalline material. These slip bands broaden 
as cyclic deformation continues, leading to extrusions and intrusions on the surface of the compo-
nent, and then one dominant flaw will then lead to failure.

The empirical relationship of the stress-cycle or S-N curve was proposed by Basquin in 1910 
using a log-log scale showing the linear relationship (see Equation 11.1).

	
∆σ σ σ
2

2= ′ ( )a f f
bN· · 	 (11.1)

B
E

F

C´

A D

F

E

(a) (b)

C
B

A D
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|σ|σ

ε |ε|

∆εb
∆σb

FIGURE 11.4  The stress and strain curve for cyclic loading.
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FIGURE 11.5  Fatigue stress–static stress diagram.
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where Δσ is the stress range for one fully reversed cycle, σf is the fatigue strength coefficient, b is 
the fatigue stress exponent, and Nf is one fully reversed cycle.

One fully reversed cycle will be in the following sequence (see Figure 11.4(a)):

	 A B C D E F→ → → → →  back to A

Palmgren in 1924 and Miner in 1945 also noticed the accumulation of damage and presented 
a linear cumulative damage rule that excluded any sequence of loading. The equation is shown in 
Equation 11.2:

	
n
N

f

fi

m






=
=

∑ 1
1

	 (11.2)

where ni is the number of cycles corresponding to the amplitude σai, which is the stress amplitude, 
and Nfi is the number of cycles to failure σai.

Notch effects at the tip of a notch had been found by Neuber to follow the well-known rule as in 
Equation 11.3.

	 K K Kt = σ ε· 	 (11.3)

where Kσ is the ratio of the maximum local stress to the nominal stress, and Kε is the ratio of the 
maximum local strain to the nominal strain.

With strain being the concentration now, this will also address the plastic deformation at the tip 
of the notch. The same can also be performed for the fatigue notch factor by replacing Kt with Kf.

Kt can be viewed as the macroscopic stress-strain notch factor, and Kf as the stress-strain notch 
factor associated with the microscopic properties, such as material, surface finish, and inclusions.

11.1.2  �Recent Developments

Further development was independently undertaken by Coffin and Manson, where they proposed 
that plastic strain was responsible for fatigue damage. They also proposed an empirical relationship 
between the number of load reversals to failure and plastic strain.

	
∆ε εp

f f
cN

2
2= ′ ( )· · 	 (11.4)

where Δεp is the strain range for one fully reversed cycle, ε′f can be set equal to εf, which is the 
fracture ductility in a simple monotonic test, and c is in the range of –0.5 to –0.7 for most metals.

Fracture mechanics has its origins in the stress analysis of Inglis and the energy method of 
Griffith. In their analysis of brittle solids and later work by Irwin it was shown that the amplitude 
of the stress singularity ahead of the crack tip can be expressed by the stress intensity factor, K.

The stress fields at the crack tip can be derived for three major modes of loading, each involving 
different crack surface displacements (Figure 11.6):

Mode I: Opening or tensile mode. Crack surfaces moving directly apart.
Mode II: Sliding or in plane shear mode. Crack surfaces moving relative to one another, nor-

mal to the crack front.
Mode III: Tearing or antiplane shear mode. Crack surfaces moving relative to one another 

parallel to the crack front.
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283Introduction to Fatigue and Fracture

Most engineering situations involving cracked components are covered by mode I loading. Mode 
III occurs in pure shear situations. Mode II is rarely encountered except in rolling contact bearing 
races. Mixed modes are encountered in biaxial loading situations.

Equation 11.5 gives a relationship for the stress intensity factor:

	 K F a1 = · · ·σ π 	 (11.5)

with I generally indicating mode I, Fa geometrical factor that will refer to the crack size and loading 
condition, all in relation to the specimen, and “a” the crack size in depth. Further work by Paris, 
Gromez, and Anderson showed that the range in stress intensity factor could be related to the change 
in fatigue crack length per load cycle. Equation 11.6 shows this law.

	
da
dN

C Km= ·∆ 	 (11.6)

where:

	 ΔK = Kmax – Kmin

where C and m are material constants.
The knowledge of crack initiation and subsequent slip bands that formed to initiation cracks has 

been increased with the development and use of the electron and optical microscopes. This has led 
to the discovery of so-called persistence slip bands (PSBs) by Zappfe and Worden. The term persis-
tence refers to the phenomenon that even after a layer of surface material is removed where the slip 
bands have previously occurred, the slip bands will occur in the same place.

The next area of interest is that the stress intensity factor can change as a result of the crack 
advancement. In other words, the ΔK can be influenced by the details of crack closure or fracture 
surface contact in the wake of the advancing fatigue crack tip. Elber showed that under certain 
conditions cracks will stay closed in a cyclic tensile load. The fatigue crack growth is therefore not 
only influenced by the values of ΔK alone, but also by the prior history and crack size. The so-called 
short crack phenomenon was identified by Pearson, who showed that small fatigue flaws, typically 
an order smaller than other fatigue cracks, will exhibit faster crack growth to when the crack length-
ens. Figure 11.7 shows a typical crack growth rate curve.

This has been a brief introduction into the mechanics of fatigue and fracture. The following sec-
tions in this chapter will give more detail on this subject.

Mode I Mode IIIMode II

FIGURE 11.6  Various modes of failure.
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11.1.3  �Basic Definitions

The following are definitions of some terms frequently used in the discussion of fatigue analysis 
(please refer to Figure 11.8):

Stress cycle: The smallest division of the stress-time function that is repeated.
Nominal stress: Obtained from the simple theory in tension, bending, and torsion, neglecting 

geometric discontinuities.
Maximum stress: The largest or highest algebraic value of a stress in a stress cycle. Positive 

for tension (Smax).
Minimum stress: The smallest or lowest algebraic value of a stress cycle. Positive for tension (Smin).
Mean stress: The algebraic mean of the maximum and minimum stress in one cycle (Smean).
Stress range: The algebraic difference between the maximum and minimum stresses in one 

cycle (Sr).
Stress amplitude: Half the value of the algebraic difference between the maximum and mini-

mum stresses in one cycle, or half the value of the stress range (Sa).
Stress ratio: The ratio of minimum stress to maximum stress.
Fatigue life: The number of stress cycles that can be sustained for a given test condition.
Fatigue strength: The greatest number of stress cycles that can be sustained by a member for 

a given number of stress cycles without fracture.
Fatigue limit: The highest stress level that a member can withstand for an infinite number of 

load cycles without failure.
Fatigue life for P percent survival, Np: The fatigue life for which P percent of the sample has a 

longer life; for example, N90 is the fatigue life for which 90% will be expected to survive 
and 10% will fail.

∆K

Long cracks
Short cracks

da
dN

= C . (∆K)mda
dN

FIGURE 11.7  Crack-growth rate curve.
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FIGURE 11.8  Stress versus time curve.
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285Introduction to Fatigue and Fracture

11.2  �THE FATIGUE PROCESS

From the introduction it is seen that from the tests undertaken by Wöhler, the catastrophic failures 
of the rail axles were due to fatigue. The axles had failed due to the repeated application of a sinu-
soidal cyclic load, each of a magnitude, well below the yield stress of the material used. Clearly it 
can be seen that at any point on the axle, it would be subjected to a fully reversed stress cycle each 
single revolution of the axle. See Figure 11.9 for a schematic arrangement.

Modern fatigue testing very rarely subjects the complete component or assembly to a fatigue test, 
but usually relies on subjecting a standardized test specimen to the test loads. This has the advan-
tage that the test is subjected to identically similar geometric components, and a detailed database 
can be developed comparing the results loading, frequency, and materials.

Modern fatigue testing subjects the standardized specimens to a wide range of types of testing 
strategies, including push-pull, two- and three-point bending, fluctuating torsion, and other modes 
of stressing besides rotating bending.

The nature of the testing has to be carefully considered in light of the nature of the failure mode 
being investigated. In Wöhler’s case he subjected his test pieces to a rotating bending test. It would 
not be appropriate to compare the results from a push-pull test with those of a rotating bending test. 
They are essentially totally dissimilar tests.

The simple rotating cantilever test imposes a sinusoidal loading cycle about a zero mean stress. 
More complex fatigue tests may superimpose a fluctuating stress on a mean stress that will not be 
zero or use load cycles that may not be sinusoidal.

In carrying out fatigue tests, a batch of nominally identical test specimens is prepared and a 
single specimen is subject to a load W and the number of cycle to failure Nf is counted and logged. 
The remaining specimens are tested at other loads, W1, W2, W3, …,Wn, to determine the lives Nf1, 
Nf2, Nf3, …, Nfn.

Stress amplitudes S corresponding to the full load cycle are calculated according to the specimen 
size and geometry, and the results are presented as a plot of S vs. log Nf. A typical plot is shown 
diagrammatically in Figure 11.10, and these graphs are referred to as S/N curves.

There are two types of S/N curves:

	 a.	This curve shows a definite horizontal portion or “knee” at long lives.
	 b.	Here the curve becomes asymptotic to the N axis at very high values of N.

For curve a, the horizontal portion of the curve defines a value of S below which failure is not 
likely to occur, however large the value of N becomes. This value of S is known as the fatigue limit 
of the material (or endurance limit) when expressed in units of stress. This type of behavior is typi-
cal of ferrite steels (and also some aluminum alloys). For most materials this value, as a rough guide, 
is about 40% of the uniaxial tensile strength.

In contrast, most nonferrous alloys and polymeric materials exhibit an S-N curve, which contin-
ues to fall as the stress amplitude is lowered. Curve b in Figure 11.10 is a typical example, and the 

Load

–ve

BallraceSpecimen

+ve

FIGURE 11.9  Schematic arrangement of a Wöhler fatigue test.
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286 Design Engineer's Handbook

endurance limit is defined as the stress amplitude necessary to cause fatigue failure after a specified 
number of stress cycles (for example, N = 107 cycles).

Fatigue testing is not limited to the rotating bending mode. Other tests include push-pull, plane 
bending, fluctuating torsion, and other modes of stressing. The control of load amplitude may be 
replaced by other parameters, such as total strain, plastic strain amplitude, or displacement.

The simple rotating cantilever test imposes a sinusoidal load cycle acting about a zero mean 
stress on the specimen. More complex tests may superimpose a fluctuating stress on a mean stress 
that is not zero, or use a load cycle that is not sinusoidal and employs load sequences that attempt 
to simulate service conditions (Figure  11.11). At its most complex, a whole structure such as a 
vehicle chassis or aircraft structure may be subjected to computer-controlled cyclic loading that 
more approximately represents those that will be experienced in service.

Fatigue testing is essential for the acquisition of data to help predict a fatigue failure in a compo-
nent. This is performed in a variety of ways, depending upon the stage of the design or production 
phase. The following main types of tests can be identified:

•	 Stress-life testing of small specimens
•	 Strain-life testing of small specimens
•	 Crack growth testing
•	 S-N tests of components
•	 Prototype testing for design validation

The first three tests are generally idealized tests using standard specimens; these are used for 
producing information on the material response. The use of the results from these tests in life 
prediction of components and structures requires additional knowledge of the influencing factors 
related to size, geometry, surface conditions, and any corrosive environment.

105
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FIGURE 11.10  Typical fatigue curves.
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FIGURE 11.11  Example of a typical flight cycle.
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287Introduction to Fatigue and Fracture

Life prediction tests are normally carried out using standardized specimens for producing more 
accurate S-N curves that are not influenced by the presence of notches and other surface conditions.

Rotating bending machines have been used in the past for generating large amounts of test data 
in a relatively inexpensive way. These are now being replaced by the use of closed-loop electro
hydraulic test machines; these are fitted with hydraulic grips that facilitate the insertion and removal 
of the test specimens.

Figure  11.12 depicts an axial (push-pull) electrohydraulic servo fatigue test machine that is 
widely used in the majority of material test laboratories. These machines are capable of precise 
control of almost any type of stress-time, strain-time, or any load patterns.

Special equipment such as environmental chambers allow the test specimens to be tested at high 
or low temperatures in addition to providing corrosive atmospheres around the specimen and evalu-
ate the fatigue characteristics in these atmospheres.

11.3  �INITIATION OF FATIGUE CRACKS

Fatigue failure in metals starts with the initiation of a crack invariably at a free surface. Then fol-
lows a period where the crack begins to nucleate with other local cracks and starts a slow growth 
until the remaining section cannot carry the load and a catastrophic separation occurs.

There are two distinct fatigue processes involved: initiation and propagation.

Loading 
frame 

Strain 

Load

Displacement 

Mode selector

Analogue 
controller 

Digital 
Computer 

Digital 
Processor 
Interface 

Readout 
Instrumentation 

Load

Strain 
Specimen 

Servo 
valve 

Hydraulic 
actuator 

Displacement 
transducer 

Load 
cell 

Strain 
Transducer 

Hydraulic 
grip 

FIGURE 11.12  Electrohydraulic fatigue test machine.
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288 Design Engineer's Handbook

The initial crack in engineering alloys will often occur at a site other than a slip band. Grain 
boundaries, second-phase particles, particle-matrix interfaces, corrosion pits, and machining 
marks have all been observed at sites of crack initiation. The common feature of these sites is that 
they must be capable of localizing plastic deformation that occurs in directions that intersect a 
free surface.

If a crack or crack-like defect preexists, then there will be no initiation process required and the 
whole life of the specimen is then spent in crack growth.

The cyclic slip process (shear controlled) has been widely held to be responsible for crack ini-
tiation on the surface of uniform polished specimens. It is believed that slip will occur between 
crystals orientated in the direction of the maximum shear stresses, which is roughly at an angle of 
45° to the applied cyclic load.

Several equivalent models have been proposed to try and explain the initiation of fatigue cracks 
by local deformation. Wood has proposed a model depicted in Figure 11.13. During the rising load 
part of the cycle, slip occurs on a favorably orientated slip plane. In the falling load part slip takes 
place in the reverse direction on a parallel slip plane.

Since slip on the first plane is inhibited, strain hardening is by oxidation of the newly created 
free surface. This first cyclic slip can give rise to an extrusion or intrusion in the metal surface. An 
intrusion can grow into a crack by continuing plastic flow during subsequent cycles.

An intrusion-induced crack or imperfection appears on the metal surface, and once started (stage 
I crack growth) can also grow by a mechanism of reversed slip, leading to microcracking, which in 
turn will lead to a macrocrack (stage II crack growth).

Many components live most of their lives with microcracks preexisting within them. It is obvious 
that for many components it is the ability to propagate cracks rather than initiate them that is important.

Stage I initiation (slip band growth) may be completely absent in practical cases where cracks 
originate from highly stressed, sharply notched. Stage I growth can account for up to 90% of the 
total fatigue life of smooth ductile specimens at low stresses.

Stage II propagation is the later stages of the crack growth and represents the remaining 10% 
of the growth to failure. The fracture surfaces may show the well-known macroscopic progression 
marks known as beach marks.

These marks are often curved, with the center of curvature at the origin. They serve as a useful 
guide to direct the investigator to the fracture initiation site.

11.4  �FACTORS AFFECTING FATIGUE LIFE

It would be perfect if the effect of any single variable on the separate processes of stage I and 
stage II crack growth was fully understood. Unfortunately, many investigators have only studied 
the effects of particular variables on the total number of cycles to failure (Nf). The effect is further 

Su
rfa
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Extrusion

Intrusion

FIGURE 11.13  Wood’s model for fatigue crack initiation.
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289Introduction to Fatigue and Fracture

complicated, as a single variable may have different effects in low-stress/high-cycle fatigue from 
those of high-stress/low-cycle fatigue. Variables may also interact; as an example, frequency of 
cycling is apparently a single variable, but altering it will usually also change strain rate and the 
time available for environmental effects at the crack tip opened by the tensile component of the 
load cycle.

11.4.1  �Stress Amplitude

The effect of stress amplitude on the cycles to failure is large, as indicated by the S/log N curves, 
and it is generally accepted that the tensile component is the most damaging. The effect of periodic 
large amplitude loading is complex, and it may be either beneficial or damaging. A large load early 
in the life may induce some work hardening or blunt a notch or groove by plastic deformation; either 
event will have beneficial results. A tensile overload during stage II growth may induce compressive 
residual stresses at the crack tip, slowing down crack growth during the immediate or immediately 
subsequent cycles. A sufficiently large tensile overload during stage II growth may produce a burst 
of overload failure that will extend the crack a considerable distance. This effect is referred to as 
crack jumping.

Summarizing, increasing the stress amplitude will result in early crack initiation and an increase 
in the rate of both modes of crack growth.

11.4.2  �Mean Stress

It is unusual for engineering components to be subject to stress cycling about a zero mean stress. It 
is more usual for an alternating stress to be superimposed on a mean stress that is either compressive 
or tensile (see Figure 11.14).

In the case where the stress amplitude is expressed as a maximum and minimum, as in 
Figure 11.15, the mean stress is conveniently expressed by a dimensionless parameter R, where:

	
R = σ

σ
min

max

It is well established that tensile mean stress reduces fatigue life, and plotting the stress ampli-
tude S against mean stress shows the relationship σmean for a particular value of Nf (see Figure 11.16).

As described in Section 11.1, a number of models have been proposed for the analytical and 
graphical representations of the relationship between the mean life and the alternating stress for 

Compression–
compression

Pulsating
compression

Pulsating
tension

Tension–
tension

0< R > 1R = 0R = –1R = ∞R > 1

Alternating

FIGURE 11.14  Stress cycles with different mean stresses and “R”-ratios.
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290 Design Engineer's Handbook

a given fatigue life. The most well-known among these models are those proposed by Gerber, 
Goodman, and Soderberg. The life plots are displayed in Figure 11.17 and are described by the fol-
lowing expressions:

	

Gerber parabola:

Goodman

σ
σ

σ
σ

a

e
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ult
+ 


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=
2

1

  line:

Soderberg line:
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FIGURE 11.15  Amplitudes of the stress cycle.
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FIGURE 11.16  Comparison of Gerber, Soderberg, and Goodman laws viewed against stress amplitude and 
mean tensile stress.
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FIGURE 11.17  Typical master diagram.
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291Introduction to Fatigue and Fracture

where:

	σa =	 Fatigue strength in terms of stress amplitude when σm ≠ 0
	σe =	 Fatigue strength (for a fixed life) in terms of stress amplitude for a fully reversed loading 

(σm = 0 and R = –1) in some references σe = σao)
	σult =	Ultimate tensile strength of material
	σys =	 Material yield strength

Most metals and alloys give results that lie between the Goodman’s line and the Gerber’s parab-
ola, with the Goodman’s line matching experimental data quite closely for brittle materials but is 
conservative for ductile alloys.

The Soderberg line is more conservative than the Goodman line but is physically more meaning-
ful in that it puts the maximum possible mean stress as equal to the yield stress.

Gerber’s parabola is generally good for ductile alloys.
Whole families of these diagrams are needed to describe the behavior of a material over a range 

of Nf values, and it is simpler to show the effect of R on a so-called master diagram of the sort shown 
in Figure 11.17. It is usual in such diagrams to normalize alternating stress (plotted on the y axis) and 
the mean stress (plotted on the x axis) by dividing the values by the tensile stress. A single diagram 
can thus be used as a guide to a whole range, such as steel or aluminum alloys.

Such diagrams may be plotted from experimental data but are frequently derived from empirical 
formulas. Heywood uses the following formula to plot a master diagram giving the fatigue life of 
unnotched steels as a function of mean stress and alternating stress amplitude:

	

σ
σ

σ
σ

γa

t

m

t
o oA A= −





+ −( ) 1 1

where

	
A N

No = +
+

1 0 0038
1 0 008

4

4
.
.

and

	
γ

σ σ
σ

σ
=

+



m

m

t

t

2

3
where:

σm	=	mean stress
σa	 =	alternating stress
σt	 =	ultimate tensile stress
N	 =	cycles to failure

11.5  �STRESS CONCENTRATIONS

Any discussion on fatigue analysis has to include a discussion on the effects stress concentrations 
have on the life of a component.

Consider a component in Figure 11.18 manufactured with a hole in the middle of the strip and 
subject to a tensile force P.

At position 1, the stress is uniform across the section and equal to the load divided by the cross-
sectional area, i.e.:

	
σ1

1
= P

A
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292 Design Engineer's Handbook

At position 2, it is clearly seen that the stress is significantly higher at the edge of the hole and 
then drops off rapidly with the transverse distance from the hole. At a distance of about one hole 
diameter, the stress is less than P/A2; this is due to reasons of equilibrium. That is:

	

σ2

2

dA P
A

+∫
	 (11.8)

The integral of the normal stress over the whole area must equal the applied force, since the aver-
age normal stress times the total area balances the applied force. Therefore, if the stress is greater 
than P/A2 on one portion of the cross section, it has to be less than P/A2 elsewhere.

11.5.1  �The Elastic Stress Concentration Factor

The index of the severity of the stress concentration is referred to as the stress concentration factor, 
and the commonly accepted symbol is Kt for statically loaded parts.

The stress concentration factor is defined as the ratio of the maximum stress to the nominal stress 
at the section containing the discontinuity, or as in Figure 11.18.

	 K P
A

t
nom

= =σ
σ

σ2

2

2

2

max max 	 (11.9)

By way of an example:

If P = 20,000 N and A2 = 120 mm2,

	 σ2 167nom MPa=

In this instance, if the maximum stress was found to be 420 MPa,

	 σ2 420max = MPa

Then

	
K MPa

MPat = =420
167

2 51.

σmax

σnom

Position 2 Position 1

P P

FIGURE 11.18  Effect of a stress concentration.
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293Introduction to Fatigue and Fracture

In this instance a safety factor as high as 2, based on the nominal stress at the critical section, 
would still be insufficient to prevent a failure. This is a case where a safety factor should not be used 
to allow for the presence of a stress concentration.

11.5.2  �The Fatigue Stress Concentration Factor

The presence of any surface discontinuities, either external or internal, as discussed previously, will 
have a significant effect on the endurance limit of the component.

The static stress concentration factor will not be applicable to the stress concentration factor used 
for fatigue analysis. The stress concentration factor for fatigue is denoted Kf. This is influenced by 
the presence of notches from which, due to the high stress concentration, cracks may start to grow, 
depending upon the severity of the notch. The effect of the notches in fatigue Kf is defined as the 
unnotched to notched fatigue strength, obtained from fatigue tests (see Figure 11.19).

	
Kf = fatigue strength of unnotched specimen

ffatigue strength of notched specimen

Both material strengths are measured at the same value of Nf.

The difference in magnitude of Kf and Kt for some materials permits the definition of a notch 
sensitivity factor q where

	 q K
K

f

t
= −

−
1
1

	 (11.10)

For fully notch-sensitive materials Kf = Kt and q = 1. For totally notch-insensitive materials Kf = 
1 and q = 0. Ductile materials have lower notch sensitivity than stronger, more brittle materials, so 
that little benefit is usually gained in changing from a low-strength steel in attempting to improve 
notch fatigue life. Heywood gives excellent and detailed accounts of notch fatigue strength and 
extensive data on many materials.
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FIGURE 11.19  Experimental S-N curves for a notched and un-notched specimen.
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294 Design Engineer's Handbook

11.6  �STRUCTURAL LIFE ESTIMATIONS

Estimation of fatigue life is a fairly simple process but one beset with several complexities. Obviously 
load magnitude and sequence are very important elements of the process. Although a number of 
techniques have been developed to satisfy specific conditions, the simplest and most widely used, as 
well as practical, is the Palmgren-Miner hypothesis. As discussed in Section 11.1, Palmgren devised 
the technique in 1924 relative to calculating the life of ball bearings. In 1945 Miner presented a 
paper reporting its application to structural elements. The Palmgren-Miner method merely proposes 
that the fraction of the fatigue life used up in service is the ratio of the applied number of load cycles 
at a given level divided by the allowable number of load cycles to failure at the same variable stress 
level. If several levels of variable stresses are applied to a part, then the sum of the respective cycle 
ratios is the fraction of fatigue life used up.

This damage is usually referred to as the cycle ratio or cumulative damage ratio. If the repeated 
loads are continued at the same level until failure occurs, the cycle ratio will be equal to unity. When 
fatigue loading involves a number of stress amplitudes, the total damage is the sum of the different 
cycle ratios and failure should still occur when the cycle ratio sum equals unity.

where:

	 D n
N

i

ii

k

= 





=
=

∑ 1
1

	 (11.11)

where
	ni =	 Number of loading cycles at the ith stress level
	Ni =	 Number of loading cycles to failure for the ith stress level based on a constant amplitude
	 k =	 Number of stress levels to be considered in the analysis

Fatigue crack initiation is assumed to occur when the D value is equal to unity. There are three 
parameters, which affect the magnitude of the summation of the cycle ratios.

	 1.	The order of the load applications. Consider, for example, two different stress levels, f1 and 
f2, and their respective cycle lives, N1 and N2. Consider also that f1 is greater than f2; if f1 is 
applied prior to f2 the life will be shorter than if f2 is applied first.

	 2.	Summation of cycle ratios. The second effect on the summation of cycle ratios is due to the 
amount of damage caused by continuous loading at the same level. The summation of cycle 
ratios for different stress levels is accurate only if the number of continuous cycles at each 
stress level is small. For most applications, the loading is random and the stress level is 
constantly changing. The number of continuous cycles at a particular level should be small 
and the summation of cycle ratios is considered fairly accurate.

	 3.	Notched and unnotched features. This parameter affects the summation of the cycle ratios 
and whether or not the fatigued part is notched (such as fastener holes, etc.) or unnotched. 
The unnotched part generally gives a summation less than unity, while the notched part 
gives a summation greater than unity. Since most of the structural fatigue failures originate 
in some form or other from a notch, it indicates that a good average value of 1.5 should be 
used for the cycle ratio to predict failure of, say, an airframe major structural member, such 
as a wing box. For simpler structural members a cycle ratio of 1.0 should be used.

11.7  �INTRODUCTION TO LINEAR ELASTIC FRACTURE MECHANICS

Notation:
a	 =	 Crack half-length for a crack free to extend at both ends
ac	 =	 Critical crack length at failure
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295Introduction to Fatigue and Fracture

a0 	 =	 Initial crack length
2b	 =	 Characteristic dimension of component width
C	 =	 Coefficient in simple crack growth rate law defined by da/dN = C(ΔK)n

E	 =	 Modulus of elasticity
G	 =	 Release rate of potential energy/unit area
K	 =	 Stress intensity factor (mode I)
Kc	 =	 Critical value of stress intensity factor (also plane stress fracture toughness)
KIc	=	 Plane strain fracture toughness in mode I
ΔK	=	 Stress intensity range
N	 =	 Number of cycles
R	 =	 Stress ratio, Smin/Smax

r	 =	 Polar coordinate of stress in component
Sc	 =	 Critical stress at failure
t	 =	 Thickness of component in the region of the crack tip
α	 =	 Geometric factor in stress intensity factor
σy	 =	 Yield (or 0.2% proof) stress of material
σr	 =	 Stress along axis of polar coordinate r
θ	 =	 Angle of polar coordinate r from the x axis
ν	 =	 Poisson’s ratio

11.7.1  �Preamble

The first major study into the fracture phenomenon in cracked bodies was undertaken by A.A. 
Griffith, who presented the paper “The Phenomena of Rupture and Flow in Solids” in 1921 follow-
ing his work on glass specimens. His basic premise was that unstable propagation of a crack occurs 
if any increment of crack growth results in more stored energy being released than being absorbed 
by the creation of the new crack surface. From further testing he developed a constant failure value 
relating to the applied stress field and crack length over a range of crack lengths.

During World War II there were a series of catastrophic failures involving mass-produced Liberty 
cargo ships that fractured into two pieces on or immediately after being launched. There followed 
further spectacular failures immediately after the war, notably the Comet aircraft in the 1950s, and 
there was a resurgence of activity in developing the concept of fatigue and failure analysis. G.R. 
Irwin evolved an alternative interpretation of fracture phenomena known as the stress intensity fac-
tor approach in the 1950s. This work then focused attention on the mechanics near the crack tip and 
is now widely used for solving both the residual strength and fatigue life calculations.

11.7.2  �Comparison of Fatigue and Fracture Mechanics

Similarities and dissimilarities between fatigue and fracture mechanics are summarized in 
Table 11.1. Both fatigue and fracture mechanics rely on results from testing; however, the fracture 
mechanics concept makes it possible to handle fracture considerations in a quantitative manner and 
has shown greater applicability to fatigue crack propagation.

11.7.3  �The Difference between Classical Fatigue Analysis and Fracture Mechanics

The fundamental difference between fatigue analysis and fracture mechanics is that in fatigue anal-
ysis, the analysis is based on the rate of crack growth. No consideration is given to the preexistence 
of flaws or cracks that would eventually lead to the generation of a starting crack, or the time spent 
in the stage I phase. The S-N curves indicate the average number of cycles taken to a failure for a 
given stress value, the specimens either precracked or being manufactured with a standard groove 
in the test coupon. This groove creates a stress concentration that then leads to the starting crack in 
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296 Design Engineer's Handbook

a small number of cycles. The original fatigue test results for a large number of materials, including 
aluminum alloys and steels, have been lost; therefore it is not possible to subject these results to any 
modern statistical analysis.

The underlying premise of fracture mechanics is that all parts contain minute sharp-edge cracks. 
These cracks grow in a stable manner under either static or cyclic stress, and when a crack has 
reached a critical length, the growth rate then becomes unstable, leading to fast or brittle fracture 
on the next load cycle.

Referring to cracks as defects does not imply that the material is defective; it implies that it 
is inevitable that engineering size cracks and other discontinuities such as voids, cold-shuts, and 
incomplete weld penetrations will exist.

11.7.4  �Stress Intensity

Fracture mechanics gives a numerical description of the elastic stress field near the crack tip, called 
the stress intensity factor, and characterizes the behavior of the stress field just beyond the small 
plastic zone at the crack tip in the presence of small-scale yielding.

The stress intensity factor relates the level and mode of the loading, as well as geometry, to the 
stress state at the crack tip. It has to be emphasized that the factor is not to be considered as a stress 
concentration factor in the geometric sense of the term. However, having said that, the square root of 
the crack length used in the stress intensity factor corresponds to the square root of the notch radius 
used to calculate the stress concentration factors.

There is no single equation that describes the general relationship between the applied stress 
and stress intensity. The relationship for a specific case is dependent on the mode of loading and 
geometry.

For a constant stress amplitude and through thickness cracks, the stress intensity factor is given 
by

	 K a1 = σ π 	 (11.12)

TABLE 11.1
Similarities and Dissimilarities between Fatigue and Fracture Mechanics

Fatigue Characteristics or Considerations Fracture Mechanics Characteristics or Considerations

Considers no initial material flaws, e.g., voids, inclusions, 
etc.

Data presented in the form of a plot of stress versus number 
of cycles to failure, S.N. curve.

Life prediction utilises cumulative damage theories. 
Analysis carried out in two steps: 
1. Relating repeated loads to stress.
2. �Evaluating stresses using the cumulative damage theory 

to predict structural life.
Does not consider sustained loading.
A purely analytical fatigue design method is not yet 
available.

The scatter inherent in fatigue behaviour and in service 
conditions would require that results be interpreted 
statistically.

Considers fractures for relatively large numbers of cycles 
only (10.103 and over).

Assumes pre-existence of flaws, inhomogeneities and 
discontinuities in a material.

Data presented in the form of stress intensity factor versus 
cycles to failure or flaw growth rates.

Life prediction is based on minimum flaw growth potential, 
i.e., the growth of an initial flaw to critical value.

Imposes limits on non-destructive inspections and 
procedures.

Predicts fatigue behaviour such as those stemming from 
stress corrosion or fatigue.

Considers sustained loading.
Considers sequence of operational load.
Has shown greater applicability to fatigue crack 
propagation because conditions for fatigue less than 
critical.

Considers fractures for relative small numbers of cycles 
(0 < cycles < 10.103)
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297Introduction to Fatigue and Fracture

11.7.4.1  �General Stress Intensity Solution
Irwin used classical stress analysis methods to investigate the detailed stress distributions near the 
crack tip. Based on the complex stress function approach of Wesergaard, Irwin showed that the 
elastic stress field in the neighborhood of the crack tip (see Figure 11.20) was given by
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It should be noted that these stress distributions are inversely proportional to the square root of 
the distance from the crack tip. At the crack tip itself (r = 0), the stress distributions predict infinite 
stresses, but this is an idealized situation, known as a stress singularity, resulting from the assump-
tion of elastic behavior without any limiting criterion. On the plane of the crack (θ = 0, y = 0), the 
shear stress is zero and the direct stress components are given by

	 σ σ
πx y

K
r

= =
2

	 (11.16)

The term σ√(πr) is dependent only on the applied stress and crack size and defines the gradient 
of stress with inverse square root of the distance away from the singularity at the crack tip. The 
term σ√(πr) was defined by Irwin as the stress intensity factor and given the symbol K. It should be 
noted that K is not a stress concentration factor and has dimensions with units of stress x √(length). 

a

CL of crack

Critical stress intensity at crack 

σx

Crack tip

r
θ

Element is close to
the crack tip

σ

σ

σy

σy

σx

τxy
y

x

2b

b

a

2a

FIGURE 11.20  Mode I crack under a biaxial stress field.
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Although the definition of the stress intensity factor as K = σ√(πr) is the one generally used, in the 
case of a central crack in an infinite plate subject to remote tension, there are some papers in the lit-
erature where an alternative definition is used without the π, namely, K = σ√(a). Care must be taken 
to check which definition is being used in any particular case. In these notes the Irwin definition of 
K = σ√(πr) is used throughout.

It is important to recognize that the stress singularity and the stress intensity factor, which domi-
nate the stress field at the crack tip, are features of tension loading. These arise because tension forces 
cannot be transferred across the free surface of the crack and are redistributed around the edges of 
the crack in a nonuniform manner. When compression loading is applied to the cracked plate, if the 
crack surfaces are in contact, forces can be transmitted directly through the crack, so there is no 
requirement for redistribution, and hence no stress singularity, and the stress intensity factor is zero. 
This has important consequences when fatigue loading is applied to a cracked component.

11.7.5  �Fracture Toughness and Crack Growth

Fracture toughness is the second premise after the stress intensity factor of fracture mechanics, and 
it characterizes the crack growth of a material containing a defect, either surface breaking or subter-
rarium, and is a material property found by experiment (usually performed using the Charpy test).

Fracture toughness is the ability of a part containing a crack or defect to sustain a load without 
catastrophic failure. As long as the stress intensity factor K stays below a critical value of K1c (the 
parameter representing a critical value for fracture toughness in mode I) (see Figure 11.6), the crack 
is considered stable. If K reaches or exceeds K1c, the crack will propagate and lead to sudden failure. 
Propagation rates can reach speeds over 1,500 m/s.

Analytical techniques involving the application of fracture toughness data have become indispens-
able tools for the design of fail-safe structures, particularly those involving high-strength materials.

From the work of Paris and Erdogan it has been established that there is a simple relationship 
between crack growth rate and the range of stress intensity factor during the loading cycle.

	
da
dN

A K m= ( )∆ 	 (11.17)

This is known as the Paris-Erdogan law, where A and m are constants and determined 
experimentally.

If the crack propagation law for the material is known, it is possible to calculate by integration the 
number of cycles required for the crack to propagate from one length to another. Further, if the frac-
ture toughness value for the material is known, then it is possible with the value of the maximum 
design stress to calculate the critical value of crack length at which fast fracture will occur—hence, 
by integration of the Paris law, the total life in cycles of the cracked component.

During fatigue crack growth, ΔK = Δσa1/2.α, where α is the compliance factor for the given 
geometry. The crack growth law gives da/dN = A(ΔK)m = A(Δσ.αc1/2)m.

Integrating this expression for the number of cycles required for the crack to grow from an initial 
length a0 to the critical length for fast fracture gives:
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Note that this expression fails at m = 2.
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299Introduction to Fatigue and Fracture

Early literature reported values of m mostly lying between 2 and 4, although values much higher 
have been encountered. It is becoming clear that for the purpose of the above calculation appropri-
ate values of m lie between 2 and 3, the higher values being found in materials of low toughness. 
Thus, when m = 3,

	 N
A a af

i f
=

( )
−







2 1 1
3 3∆σ  

	 (11.18)

Although integrating for total life is a useful procedure, more information is obtained if the cal-
culation is carried out in a stepwise manner. This demonstrates that growth of the crack accelerates 
with respect to life, as shown in Figure 11.21.

In fact, the real situation is worse than this because it is now known that the Paris-Erdogan law 
applies only over the middle range of crack growth rates, i.e., between rates of about 10–6 and 10–4 
mm/cycle. A plot of log da/dN against log ΔK shows three regimes of behavior, and the central 
regime in which the Paris-Erdogan law applies is preceded and followed by the regimes in which m 
varies and takes much higher values (Figure 11.22).

Region 1 shows that there exists a value of ΔK below which the crack is nonpropagating; i.e., 
it merely opens and closes without growing forward. This is called the threshold for fatigue crack 
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FIGURE 11.21  Fatigue crack as a function of life measured in cycles of stress.
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FIGURE 11.22  Fatigue crack growth rate as a function of stress intensity function.
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growth, ΔKth. The rate of crack growth in the threshold region is much slower than calculation from 
the Paris-Erdogan law would predict.

If ΔK can be held below the value for ΔKTH for the specific material, then an effective infinite 
fatigue life can be obtained despite the presence of cracks. This does tend to lead to very low design 
stresses even for small macrocracks.

In region 3, as Kmax approaches the limiting fracture toughness of the material, KIC or KC, the 
Paris-Erdogan law underestimates the fatigue crack propagation rate. This acceleration of the loga-
rithmic growth rate is associated with the presence of noncontinuum fracture modes, such as cleav-
age, intergranular, and fibrous fractures (these are activated at high levels of K). It is also found there 
will be a marked sensitivity to the mean stress.

11.8  �FATIGUE DESIGN PHILOSOPHY

When designing a part or structure that will be subject to fatigue loading, consideration needs to be 
given to the design philosophy concept that the assembly has been designed against. There are two 
design philosophy concepts currently being used: fail-safe and safe-life.

11.8.1  �Fail-Safe

A structure designed for a fail-safe philosophy will support designated loads with any single mem-
ber failed or partially damaged. Sufficient stiffness shall remain to prevent divergence, sever vibra-
tions, or other uncontrolled conditions within the normal design envelope.

Summarizing the fail-safe philosophy:

•	 Structure has the capability to contain fatigue or other types of damage
•	 Requires knowledge of:

•	 Multiplicity of structural members
•	 Load transfer capability between members
•	 Tear-resistant material properties
•	 Slow crack propagation properties

•	 Inspection controls
•	 Fatigue is a maintenance problem

11.8.2  �Safe-Life

Safe-life components are those whose failure would result in a catastrophic failure with the potential 
for loss of life. These components must remain crack-free during their service life. The life of the 
component or structure in cycles is obtained by fatigue analysis or fatigue testing results divided by 
an appropriate life reduction factor, which will indicate that premature fracture is extremely remote.

The design philosophy will dictate the level of inspection that a component or structure is sub-
jected to and the time when the part is withdrawn from service.

Summarizing the safe-life philosophy:

•	 Structure resists damage effects of variable load environment
•	 Requires knowledge of:

•	 Environment
•	 Fatigue performance
•	 Fatigue damage accumulation

•	 Limit to service life
•	 Fatigue is a safety problem
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301Introduction to Fatigue and Fracture

11.9  �CYCLE COUNTING METHODS

11.9.1  �Introduction to Spectrum Cycle Counting

The actual service history of an aircraft, automotive, or rail vehicle is variable amplitude spectrum 
waveforms. To predict the durability of a structure, it is essential to decompose the complex variable 
cycles of the history data into events that can be processed with constant amplitude fatigue data, 
which are normally obtained from test or laboratory results. The procedure converts a complex 
irregular load-time history (Figure 11.23) into a series of simple peak-trough events containing 
individual cycles, equivalent to constant amplitude cycles. These are characterized by mean and 
amplitude values (or max/min values), called cycle counting.

Various methods for cycle counting of a load sequence can be found from literature. The most 
widely used counting methods are range-pair counting and the rain-flow counting. Both of these 
methods define individual cycles as closed stress-strain hysteresis loops.

There are a number of methods used for cycle counting; these include peak stress, level cross-
ing (with or without reset levels), and range-mean. These methods have been shown to overes-
timate the fatigue life of a component subject to cumulative fatigue. Range-mean is found to 
most closely approach the true situation but is strongly influenced by the appropriate gate level or 
threshold used.

The rain-flow technique approaches closest to the true loading sequence, and in nearly all cases 
will give the most conservative fatigue life estimate.

It is this method that will be described here in more detail. The rain-flow or Pagoda roof method 
works in an analogy with raindrops falling and rolling on successive roofs. When one looks at the 
load history turned through 90°, with the time axis now as the vertical axis (Figure 11.25), it is 
clearly seen why it is called a Pagoda roof. This method requires one to keep track of all the wet 
parts of the roof.

Figure 11.24 shows the load history of a component that will be analyzed using the rain-flow method.
The rain-flow rules follow:

	 1.	Rain-flow starts at the beginning of the test and again at the inside of every peak.
	 2.	Rain flows down a pagoda roof and over the edge, where it falls vertically until it reaches 

a level opposite a maximum more positive (minimum more negative) than the maximum 
(minimum) from where it started.

	 3.	Rain also stops when it is joined by rain from the pagoda roof above.
	 4.	The beginning of the sequence is a minimum if the initial straining is in tension.
	 5.	The horizontal length of each rain-flow is then counted as a half-cycle at the strain range.

Time

FIGURE 11.23  Schematic stress history of a detail subject to random variable amplitude loading.
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In Figure 11.25 the rain-flow starts at 1, which is considered a minimum. It continues down to 2 
and from there to 2′, and then down to 4, and finally stops opposite of 5. This is a (minimum) peak 
more negative than 1. Thus, a half-cycle from 1 to 4 is extracted.

The next rain-flow starts inside peak 2 and proceeds to 3, falling to a point opposite 4, which is 
more positive than the starting maximum 2. A half-cycle 2-3 is therefore extracted. A third flow 
starts at 3 but terminates at 2′, due to the rainfall from above 2. The half-cycle 3-2′ is extracted and 
paired with 2-3, since 3-2′ and 2-3 form a closed stress-strain loop 2′-3-2.

The next rain-flow begins inside peak 4 and proceeds to 5. The range 1-4 is now counted as a 
half-cycle. The rain-flow continues down to 5′ and then down to 7, where it falls to a point opposite 
of 10. This is a maximum greater than the maximum from which the rainfall started at 4. A half-
cycle 4-5-7 is then extracted.

Rain now begins to flow from inside peak 5 and then continues down to 6, where it falls to a level 
opposite of 7, this being a greater minimum than 5. A half-cycle 5-6 is then extracted.

The flow from inside of peak 6 ends at 5′, which is where rain from above joins it. The half-cycle 
6-5′ is paired with 5-6 to form a complete cycle 5′-6-5, which is extracted.

The next peak to be considered is 7, from where rain proceeds to 8 down to 8′ and then on to 
the final peak at 10. The range 4-5-7 is now counted as a half-cycle. The half-cycle 7-8-10 is then 
extracted. Rain starting from inside of 8 continues to 9 and then downwards until it is level with 10, 
which is more positive than 8. A half-cycle 8-9 is extracted and paired with the final half-cycle 9-8′. 
A full cycle 8′-9-8 is then counted.

Thus the strain-time record shown contains three full cycles, 2′-3-2, 5′-6-5, and 8′-9-8, plus three 
half-cycles or reversals, 1-2-4, 4-5-7, and 7-8-10. Figure 11.25 shows that this combination of cycles 
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FIGURE 11.24  Stress–strain response for strain history shown in Figure 11.25.
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303Introduction to Fatigue and Fracture

and half-cycles is a true representation of the stress-strain behavior of the material exposed to the 
strain-time history. The three closed loops are clearly seen, as are the three half-cycles.

Note that each part of the strain-time record is counted once and once only. It is assumed that 
damage caused by a large event is not affected by its interruption to complete a small stress-strain 
loop. The damage of the interruption is simply added to that of the larger cycle or half-cycle.

Using this method a varied amplitude history can be reduced to a series of half-cycles whose 
maximum can be calculated and the cycles or half-cycles completely defined. Fatigue life can be 
calculated from constant amplitude data using a cumulative damage law.
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FIGURE 11.25  Rainflow diagram.
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12 Introduction to 
Geared Systems

12.1  �INTRODUCTION

Rotary transmission between shafts is accomplished using different methods:

	 1.	Pulleys, using v-belts, timing belts, chains
	 2.	Hydraulic pumps and motors, servo-electro motors
	 3.	Gearing

It is this third group that will be discussed in this chapter. Very simplistically, a gearbox is 
a device for mechanically transmitting power from one shaft to another and either maintaining, 
increasing, or decreasing the speed N of the second shaft to the first. Because of the speed change 
there will be a change in the torque T.

The gearbox designer’s prime task is to design a system, which will provide the required charac-
teristics to match the demands of the drive system, whether it be a metal-cutting machine tool drive, 
automotive gearbox, winch drive, etc.

Gears are wheels that mesh with each other through interlocking teeth. Rotation of one wheel 
will cause the rotation of the other, albeit in the opposite direction, without any slip between them. 
There are a number of gear teeth designs; the most common is the cycloidal and involute form. The 
fundamental basis of the involute form is there is no sliding between the tooth surfaces, the action 
is purely rolling, and hence there is minimum damage between the teeth, providing the tooth size is 
adequate for the power being transmitted and there is adequate lubrication in the gearbox.

12.2  �TYPES OF GEARS

There are many different types of gears and the classification or identification depends largely on 
how the gears are used. The most common combination is where the two shafts are parallel with 
each other; here the gears will be either spur or helical and the shafts will rotate in the opposite 
direction to each other. When the two shafts are not parallel with each other the connecting gears 
can be either skew or spiral or even bevel gears.

This chapter will identify the more common configurations.

12.2.1  �Spur Gears

This type of gear (Figure 12.1) is most commonly used to connect two parallel shafts that rotate in 
opposite directions. The teeth are parallel to the axis of the gear and are identical in profile. There 
is no axial force generated due to the tooth loading, and therefore used as sliding gears for change 
speed mechanisms in gearboxes.

The spur pinion (i.e., the gear having the smaller number of teeth in a pair of mating gears) is 
also used to mesh with an internal spur gear. The principal problem with straight-cut spur gears is 
that they are inherently noisy.
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12.2.2  �Internal Spur Gears

In this case the teeth are cut on the internal diameter of an annulus or ring (Figure 12.2). The teeth 
are parallel to the axis and the same profile meshing in a similar manner to the spur gear. The gears 
are used to connect two parallel shafts usually opposed, and when engaged, the shafts run in the 
same direction.

This type of gear is used in epicyclic transmissions, reduction gears for machine tools, and for 
clutches and couplings. In the latter case, however, the external spur pinion has the same number of 
teeth as the internal wheel and therefore rotates as a single body in the same direction.

12.2.3  �Rack and Pinion

The pitch line of a spur rack moves in a longitudinal direction and the rack may be considered a spur 
gear of infinite radius or zero curvature (Figure 12.3).

A spur pinion (as in Figure 12.1) is most commonly used to transmit the longitudinal motion to 
the rack, and the most common application can be found on lathes, when in this case the rack is 
used to transmit motion to the saddle. The rack tooth is of fundamental importance to the study of 
involute teeth.

FIGURE 12.1  Spur gear.

FIGURE 12.2  Internal spur gear.
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307Introduction to Geared Systems

12.2.4  �Helical Gears

Helical gears (Figure 12.4) are used in the same way as spur gears, but differ from them in that the 
teeth are cut on the periphery of the gear blank and are of helical or screw form.

The pinion cannot be moved longitudinally along its axis without imparting angular motion to its 
mating wheel, and for this reason helical gears are used in automotive gearboxes as constant mesh 
on syncro-mesh applications.

The transverse section of a helical gear is identical with a spur gear insofar as the tooth profile is 
concerned and is involute on this section. Mating gears must, however, be made with the same helix 
angle but opposite hand, and the tooth loading produces an axial thrust.

Helical gears are considered quieter than spur gears, and where noise will be a problem, these 
will be used in those applications where possible.

FIGURE 12.3  Rack and pinion.

FIGURE 12.4  Helical gears.
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12.2.5  �Double Helical Gears

As the name implies, double helical gears (Figure 12.5) are the equivalent of two helical gears 
secured together, but in actual practice they are manufactured as one piece. The teeth may be con-
tinuous or separated by a gap, although the two helices forming the double helix are opposite hand 
and meeting at a common apex. They are produced by a variety of processes and are distinguished 
by the name of the manufacturing process by which the teeth are cut.

It is the usual practice when cutting this type of gear to know which direction of the teeth in rela-
tion to the driving end, especially in the case of shaft gears.

12.2.6  �Spiral Bevel Gears

Spiral bevel gears (Figure 12.6) are identical to helical gears; the only reason they are called spiral 
gears is that the two gears are used to connect two shafts that are not parallel with each other.

Spiral gears used in this way give only a theoretical point contact instead of a line contact, as is the 
case for the previous gear types, and a longitudinal sliding motion is introduced between the teeth.

12.2.7  �Bevel Gears

In the case of two intersecting shafts, bevel gears (Figure 12.7) would be used in this application. 
The most common type is that in which the teeth are radial to the point of intersection of the shaft 
axes or apex. Such gears are called straight bevel gears.

The teeth are similar to spur gears in that they make a line contact across the face of the teeth. 
The teeth are proportionally smaller at the front of the gear than the tooth form at the back of the 
gear in the ratio of:

FIGURE 12.5  Double helical gears

FIGURE 12.6  Spiral bevel gear.
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309Introduction to Geared Systems

	 1.	Distance from apex to the front end
	 2.	Distance from the apex to the rear face

The shaft angle most commonly encountered is 90°, and the bevel gears with this angle are often 
referred to as miter gears.

12.2.8  �Spiral Gears

Spiral gears (Figure 12.8) are similar to helical gears; the only reason they are called spiral gears is 
that the two gears are used to connect two shafts that are not parallel with each other.

Spiral gears used in this way give only a theoretical point contact instead of a line contact, as is the 
case for the previous gear types, and a longitudinal sliding motion is introduced between the teeth.

12.2.9  �Worm and Worm Wheels

Worm gears (Figure 12.9) are used in the same manner as spiral gears, i.e., to connect skew shafts, 
but not necessarily at right angles.

FIGURE 12.7  Bevel gears.

FIGURE 12.8  Spiral gears.
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The worm exactly resembles one of a pair of spiral gears, but the wheel is throated and has 
concave teeth. While resembling spiral gears in purpose and general dimensions, worm gears dif-
fer from them in that they give line contact instead of point contact and will carry greater loads. A 
further difference in spiral gears is that the center distance is important in relation to the helix angle. 
This problem does not arise when calculating the worm gears.

The sliding velocity is high when compared with other types of gears, and very special attention 
is necessary with the choice of materials and lubrication.

12.3  �FORM OF TOOTH

The function of a pair of gears is to transmit motion from one shaft to another with a uniform 
velocity ratio. Either the cycloidal or the involute form of tooth will satisfy this requirement, but the 
cycloidal has the disadvantage that a slight variation in the theoretical center distance destroys the 
uniformity of angular velocity.

It is very difficult to ensure that the exact theoretical center distances can be maintained under 
all circumstances. The involute tooth form is much more tolerant to the small errors that can occur 
between the theoretical and manufactured center distances. This has ensured the universal adoption 
of the involute tooth form.

A further factor for the adoption of the involute tooth form is that it can be produced by a straight-
sided rack cutter, and in fact every type of involute gear was originally produced by means of this 
basic principle. It can therefore be stated that all the types of gears produced in Section 12.2 are 
produced with an involute tooth form with the exception of bevel gears (Figure 12.7) and spiral 
bevel gears (Figure 12.8).

In the case of bevel gears, the teeth are generated by a straight-sided cutter, representing the side 
of a tooth of an imaginary crown gear, and the form of tooth produced is termed octoid.

A crown gear is in effect a bevel gear having a pitch angle of 90°, and the teeth of a true involute 
crown gear should have very slightly curved tooth profiles.

The difference between the tooth shapes on a gear being cut by an imaginary crown gear having a 
straight-sided cutter and one with a tooth profile that is slightly curved is so small that it can be ignored.

Both forms give theoretically correct action, and for practical purposes it can be safely assumed 
that the form of tooth produced on the transverse plane of both straight and spiral bevel gears is of 
involute form.

FIGURE 12.9  Worm and worm wheel.
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311Introduction to Geared Systems

Spur gears (Figure  12.1), spur racks (Figure  12.3), helical gears (Figure  12.4), spiral gears 
(Figure 12.8), and worm and worm wheels (Figure 12.7) are all of involute form on their transverse 
planes, i.e., on the plane of rotation.

This point should be kept in mind when undertaking any calculations or layouts regarding the 
form of the tooth, especially in the case of helical gears, spiral gears, or worms.

For these types of gears, which in any case are closely related to each other, the form of tooth on 
the normal and axial planes is such that the form is entirely dependent on the involute form on the 
transverse plane and the spiral or helix angle.

12.4  �LAYOUT OF INVOLUTE CURVES

The involute tooth form has been constructed on the transverse plane of the spur gear pair shown in 
Figure 12.1, and it will be particularly noted that the origin of the wheel and pinion tooth shapes is 
based on the base circle diameters Do and do.

The base circle diameter should be considered as a disc around which a line of tape is wrapped 
around the diameter, the two ends of the tape commencing and finishing at point A, as shown in 
Figure 12.10.

By securing one end of the string or tape at position A, unwinding the free end of the tape will 
describe the path of the involute curve, through points B, C, D, and E, when the tape is tangential to 
the base disc at the corresponding points B1, C1 D1, and E1.

Before the involute form can be applied to a gear tooth, some considerations should be given to 
the question of the pitch diameter and pressure angle.

The pitch diameter and pressure angle together with the addendum and dedendum define which 
part of the involute curve is being utilized on a gear tooth, and before any tooth layout can made it 
is necessary to have this information.

0

Base circle
diameter

A
90°

90°

90°

90°

B
B1

C1

D1

E1

C

D

E

Involute curve

FIGURE 12.10  Development of the involute curve.
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The pitch diameter is always greater than the base circle, and where the involute bisects the pitch 
diameter circle, it is called the pitch point. From this point the pressure angle is obtained in conjunc-
tion with the base circle and the center of the gear.

In Figure 12.11 is shown the construction of a spur gear tooth in relation to the pressure angle 
and the pitch diameter; it should be noted that a right angle triangle is formed by the three sides a, 
b, and c when

	 a = Base diameter
2

	 (12.1)

	 b = Pitch diameter
2

	 (12.2)

	 ψ = pressure angle of gear	 (12.3)

Therefore, given the pitch diameter D and the pressure angle ψ of a gear, the base circle diameter 
Do is equal to D Cos ψ when D = 2xc and Do = 2xa.

Alternatively, given D and Do, the pressure angle can be obtained as follows:

	 Cos D
D

oψ = 	 (12.4)

There are several methods of setting out the involute tooth form, and the method selected is 
dependent on the accuracy required for the purpose for which it is proposed to use the tooth shape.

For example, if an accurate projection drawing is required, it is recommended that the tooth 
shape is generated, especially if a gear has a small number of teeth, as the shape changes very rap-
idly on gears of this nature.

Involute curve

Pitch point

90°
Pitch diameter

Base circle diameter
Root diameter

c

b

a

0

Pressure angle Dedendum

Outside diameter

Addendum

FIGURE 12.11  Description of the involute tooth.
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313Introduction to Geared Systems

For a gear having a large number of teeth, the shape does not change, and in fact it will be found 
that the shape is practically equivalent to the arc of a circle.

For setting out tooth shapes when the accuracy is not the first essential, the following procedure 
can be followed. This method is suitable for helical, spiral, worm, and bevel gears on their trans-
verse planes as well as spur gears.

Referring to Figure 12.12, the first step is to draw the pitch diameter D together with the outside 
and root diameters. The outside diameter is larger than the pitch circle diameter by an amount equal 
to twice the addendum. The root diameter is smaller than the pitch diameter by an amount equal to 
twice the dedendum of the gear. The pressure angle ψ is then set out from the center line of the gear 
and from the gear center O, while another line from the pitch point C at right angles to the line OC1 
is drawn to form a triangle OCC1. The base circle is drawn equal to a radius of OC1.

An arc is drawn from C to D measuring C1C. A further arc is then drawn from D to E measuring 
D1D. This process is repeated until the involute curve reaches the outside diameter and a similar 
procedure is adopted for the curve below the pitch diameter to the base circle.

In the example above, only four points have been used in the construction of the involute curve 
in the figure. More points could be used, and in fact greater accuracy will be obtained, but all this 
will be dependent on the size of the tooth being set out.

The other side of the tooth is drawn in an identical way after setting off the tooth thickness on the 
pitch line. The arcs used to construct the curve are exactly the same as were used for the first side.

12.5  �INVOLUTE FUNCTIONS

In addition to being able to generate gear tooth profiles on their transverse planes in the manner 
described, it is also possible to plot the tooth form using coordinates previously calculated by means 
of involute trigonometry in conjunction with which involute functions are used.

To define an involute function, an involute tooth form is shown in Figure 12.13, where:

	 Ψ	 =	 Pressure angle of gear on transverse plane at radius D/2
	 D	 =	 Pitch circle diameter

Outsid
e diameter

Pitch diameter D

Base circle diameter

Root diameter

Dedendum
Addendum

Ce
nt

er
lin

e

ψ

0

ψ

90°
typical

E
D

C

B

E1
D1

C1
B1

FIGURE 12.12  Layout of the involute tooth.
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314 Design Engineer's Handbook

	 Do	=	 Base circle diameter
	 J	 =	 Outside diameter
	 Ψ1	=	 Involute function of angle ψ

The involute function is the vectorial angle (in radians) of an involute curve from its origin and is 
also a function of the pressure angle at the radius at which the vectorial angle is taken. The pressure 
angle at the point of origin B is zero.

The vectorial angle at A on the involute curve is therefore ψ1, which is the angle subtended by 
OB and OA, the pressure angle at A at radius D/2 being ψ.

Therefore, the angle ψ1 (in radians) is known as the involute function of the angle ψ and is written 
inv · Ψ.

	 Now b/a = tan ψ and b = a · tan ψ

Length b is then rewound on the base circle diameter and is then equal to a · (ψ + ψ1).
Therefore:

	 a · (ψ + ψ1) = a · tan ψ

	 (ψ + ψ1) = tan ψ

	       Ψ1 = tan ψ	 Ψ radians

	          Ψ1 = inv · ψ

When the number of teeth are not an integer this will require one of the given variables to be 
modified, keeping as close to the theoretical values as possible. For spur gear dimensional terms see 
Figure 12.14, and for basic spur gear design formula, see Table 12.1.

c

0

a

DB
J. outsid

e diameter

D. pitch circle diameter

Do. base circle diameter

A

b

C

FIGURE 12.13  Involute function.
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Pitch
point

Pitch
circles

Ce
nt

er
 d

ist
an

ce
 C

Base
circle

Base circle

Backlash

db

Db
Dp

Do

Dr

dp
do
dr

Contact
line

Pressure
angle

FIGURE 12.14  Spur gear dimensional terms.

TABLE 12.1
Spur Gear Design Formulae

Description Formulae

Center distance C Given

Outside diameter Do Given

Pressure angle ψ Given

Pitch diameter Dp N × m

Number of teeth N D/m

Module m Given

Addendum A 1.00 × m

Dedendum B 1.25 × m

Circular pitch Pc πDp / N, πm

Base circle diameter Db Dp × cos(C)

Root diameter Dr Dp – (2.5 × m)
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Example 12.1

To find the involute function of 20° the procedure is as follows:

Let:	 ψ = 20°= 0.3490658 radians

	 Invψ1 = tanψ – arcψ

where
tanψ = natural tan of given angle
arcψ = numerical value of given angle in radians

Therefore:
Invψ = tan 20° – 20° (converted to radians)
Invψ = 0.3639702 – (20*0.0174533)

Note:
1° = 0.0174533 radians
Invψ = 0.3639701 – 0.3490659

Hence:	 inv20° = 0.0149043

The involute function for 20° is 0.0149043, accurate to seven decimal places.
Using this procedure with the modern programmable calculators, it is safer to calculate the involute 
function rather than use the functions from a table of involute functions, as these may contain errors.

12.6  �BASIC GEAR TRANSMISSION THEORY

Consider a simple gear drive with input and output shafts (Figure 12.15).
In this simple case the gear ratio (n) is defined as

	 n N
N

= =input speed
output speed

1

2
	 (12.5)

Usually the speed of the shafts is described as rev/min, but the ratio will be the same if the units 
of angular velocity (ω) are used, i.e.,

	
n = =input speed

output speed
ω
ω

1

2

N2
N1

FIGURE 12.15  Simple gear drive.
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12.6.1  �Torque and Efficiency

The shaft power (SP) transmitted by a torque T Nm applied to a shaft that is rotating at N rev/min 
is given by

	
S NT

P = 2
60
π

In an ideal gear drive, the input and output powers are the same:

	

S N T N T N T N T

n T
T

N
N

P = = =

= =

2
60

2
60

1 1 2 2
1 1 2 2

2

1

1

2

π π

It follows then that as the input shaft speed is reduced, the torque will increase and vice versa.
In a real drive or gearbox power is lost due to heat and friction and the power output will be reduced.
The efficiency of the gear drive is defined by

	 η π
π

= = ×
×

=power out
power in

2 60
2 60

2 2

1 1

2 2N T
N T

N T
NN T1 1

	 (12.6)

As the input and output torques are different, the gearbox will require restraining to prevent it 
from rotating. A holding torque T3 has to be applied to the gearbox through its attachments.

The total torque must equate to zero, i.e., T1 +T2 +T3 = 0.
Using the convention that anticlockwise rotation is positive and clockwise is negative, the 

holding torque, together with its direction of rotation, can be determined. The direction of rota-
tion of the output shaft will be dependent upon the internal configuration of the gears within 
the box.

12.7  �TYPES OF GEAR TRAINS

12.7.1  �Simple Gear Train

Figure 12.16 shows a typical spur gears drive chain. The direction of rotation is reversed from one 
gear to another. The only function of the idler gear is to change the direction of rotation; it has no 
effect on the gear ratio.

t 	 = Number of teeth on the specific gear
D 	 = Pitch circle diameter (PCD).
m 	 = Modem = D/t
DA	 = m · tA

DB	 = m · tB

DC	= m · tC

ω 	 = Angular velocity
v 	 = Linear velocity on the pitch circle diameter; v = ω.D/2
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Considering the velocities of the gears at the pitch circles we have:

Linear velocity at point p1	 V
Dp1

1

1 2
= ω

	 (12.7)

Linear velocity at point p2	 V
Dp2

2

2 2
= ω

	 (12.8)

Linear velocity at point p3	 V
Dp3

3

3 2
= ω

	 (12.9)

The velocity v of any point on the PCD must be the same for all the gears; otherwise they would 
be slipping. It follows that

	

ω ω ω

ω ω ω

ω

A A B B C C

A A B B C C

A

D D D

D D D

· · ·

· · ·
2 2 2

    = =

= =

mmt mt t

t t t

N t N t N

A B B C C

A A B B C C

A A B B C

= =

= =

= =

ω ω

ω ω ω

· · ··tC

	 (12.10)

In terms of rev/min	 N t N t N tA A B B C C· · ·= =

If gear A is the input and gear C the output:

	 n N
N

t
t

A

C

C

A
= = 	 (12.11)

 

vp1

Gear A 
Gear B 

Gear C 

ωA

ωB

ωC

vp2

vp3

 

Idler 

p1

p2

p3

FIGURE 12.16  Simple gear train.
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319Introduction to Geared Systems

12.7.2  �Compound Gears

A compound gear train has one or more gears fitted on one shaft, as illustrated in Figure 12.17.
In this example gears A and C are driving gears, and gears B and D are driven gears. Gears B 

and C are locked on the same shaft and therefore revolve at the same speed.
The velocity of each tooth on gears A and B is the same, so that ωA.tA = ωB.tB as they are simple 

gears. Likewise for gears C and D, ωC.tC = ωD.tD.

	

ω ω ω ω

ω ω ω

ω

A

B

B

A D

D

C

A
B B

A
C

D D

C

A

t t t t

t w
t

t
t

= =

= =

and C

· ·

·· · · ·
·

·

·

ω ω ω ω ω

ω ω
ω

C
B B

A

D D

C

B D

A C
B D

A C

t
t

t
t

t t
t t

= × = ×

BB D

B D

A C

t t
t t·

·
·ω

=

As gears B and C are fitted on the same shaft, ωB = ωC

	

ω
ω

A

D

B D

A C

t t
t t

n= =·
·

and since ω = 2πN then the gear ratio can be written as

	
N t t

t t
nB D

A C

(in)
N(out)

= =·
·

	 (12.12)

12.8  �POWER TRANSMISSION IN A GEAR TRAIN

In a gear train, power is lost between the teeth due to friction due to loads imposed on them and in the 
bearings. Power loss due to overcoming shaft inertia also contributes to the reduction in efficiency.

Consider the gear train for a hoist driven by an electric motor. The drive chain consists of two 
sets of reducing gears (Figure 12.18).

A motor is attached to the system with a moment of inertia Im. The moment of inertia of the 
middle shaft is IT, and IH is the combined moment of inertia of the hoist; this acts as a load to the 
system. The gear ratio and gear efficiency of the gear set 1 – 2 are n1/2 and η1/2.

Gear set 3 – 4 consists of n3/4 and η3/4, respectively.

Input Output

A
B

C D

FIGURE 12.17  A compound gear set.
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Let:	 Tm = torque at the motor

	 TH = torque of the hoist

	 TB = friction torque of bearings

Draw a free body diagram using Newton’s second law, ΣT = Iα.

In this instance, consider rotation in a clockwise direction as positive.

For shaft (A):

	 T T Im m m− =1 ·α 	 (12.13)

For shaft (B):

	 T T IT T2 3− = ·α 	 (12.14)

Note: As there is a gear mating between gear 1 and gear 2, the analysis has to include its own 

gear ratio and gear efficiency and relate it to the transfer shaft, IT.

Previously	 η1 2
2

1
1 2= T

T
n

it follows that:

	 T T
n2
1 2 1

1 2
=

η ·
	 (12.15)

For shaft (C):

Direction of rotation

Motor
(A)

(B)

(C)
Hoist

Tm ωm

T2 ωT

T4 ωG TH

TB

T3

T1
1

2 3

4

FIGURE 12.18  Diagram of motor/hoist gear drive.
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also
	

T T T I

T T
n

B H H H4

4
3 3 4

3 4

− − =

=

·α

η 	 (12.16)

Using power, P = Tm.ωm, the power transfer to each gear component is:

	 1.	Power transfer by the motor:

	 PM = Tm.ωm

	 2.	Power at gear 1:

	 P1 = T1ωm = (Tm – Im.αm)ωm

	 3.	Power at gear 2:

	 P2 = P1.η1/2

	 4.	Power at gear 3:

	 P3 = T3.ωT = (T2 – IT.αT)ωT

	 5.	Power at gear 4:

	 P4 = P3.η3/4

	 6.	Power at hoist:

	 PH = TH.ωH = (T4 – TB – IH.αH)ωH

	 7.	Overall power transfer efficiency, ηo:

	
ηo

H

m

P
P

=

Thus if friction torque, TB effect is neglected.

	
η η ηo

H

m

T

m

H

m

P
P

P
P

P
P

= = × = ×1 2 3 4/ /

Also;	 ηo
H

m

T
T

n n= 1 2 3 4/ /·
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12.9  �REFERRED MOMENT OF INERTIA, (IREFERRED)

Consider a simple gear system. In order for the driver gear A to begin to rotate, it must have enough 
torque available to overcome its own inertia, IA, and then additional torque to begin to accelerate 
the driven gear B. The torque required to accelerate B needs to be initially calculated.

	 1.	Torque at B to overcome IB:

	 TB = IB.αB

	 To refer αB to gear A, the gear ratio is used:

	
n B

A

B

A
= =ω

ω
α
α

	 Thus TB = IB· nαA.
	 2.	The gear efficiency is related to power and torque of the mating gears:

	
ηG

B

A

B

A

P
P

T n
T

= = ·

		  where ηG is the efficiency of the gear set.
	 3.	Torque required at gear A to accelerate IB:

	
T I n I n n I n

A
B B

G

B A

G

B A

G
= = = ( ) =T ·nB

Gη
α

η
α

η
α

η
· 2

	 4.	Total torque required at gear A to accelerate IA and IB:

	

T I T

T I I n

Total A A A

Total A
B

G
A

= +

= +










·α

η
α

2

ωB

rB

IB
ωA

rA

IA

Driver gear
A

Driven gear
B

FIGURE 12.19  Referred inertia for a simple gear.
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This can be expressed in a general form TTotal = Iequiv · αA when referred to gear A.

Hence	 I I I n
equiv A

B

G
= +







2

η

This derivation of Iequiv for the simple gear system can be extended to cover for a double set of reduc-
ing gears, as discussed in Section 12.8, by neglecting the friction torque effect TB.

Hence:	 I I I n I n n
equiv m

T G= + ( ) + ( ) ( ) 1 2
2

1 2

1 2
2

3 4
2

1

/

/

/ /

η η // /2 3 4( )( )η

12.10  �GEAR TRAIN APPLICATIONS

Example 12.2

An electric motor accelerates a 500 kg load with an acceleration of 0.6 m/s2 using a simple gear 
system (shown in Figure 12.20). The load is carried by a rope that encircles a hoist pulley that has 
a diameter of 1.0 m. The gear connected to the hoist has 200 teeth, and the gear connected to the 
motor shaft has 20 teeth. Assume the gear efficiency is 90%.

The masses and the radius of gyrations for each shaft are tabulated below:

Mass
(kg)

Radius of Gyration
(mm)

Motor shaft   250 100
Hoist shaft 1,100 300

Calculate the torque required by the motor to raise the load with an acceleration of 0.6 m/s2. 
Friction losses may be neglected.

Total torque required by motor to raise load:

	 Ttotal = Tm + Tequiv

where:
Tm	 = Torque to accelerate load through the gear system
Tequiv	= Torque to overcome equivalent inertia (referred to the motor)

500 kg

1.
00

 m
 d

ia
’

Hoist

0.
6 

m
/s

2

20 teeth 

200 teeth

Motor

FIGURE 12.20  Diagram of hoist.
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From I I
I n

I motor shaft inerti

equiv m
H

g

m

 

  

= +

=

· 2

η

aa

I m r

kg m

kgm

I kg

m

H

=

= × ( )
=

= ×

·

.

.

2

2

2

250 0 1

2 5

1100 0

 

..

.

30

99 0 2

m

kgm=

Motor shaft:

	

I kgm
kgm

equiv = + ×











=

2 5
99 0 0 1

0 9

3

2
2 2

.
. .

.

.

 

66 2kgm

Gear ratio (n):

	

n
N
N

n

=

=

=

1

2

20
200

0 10.

Acceleration of hoist:

	

a r

H
a
r

m s
m

rad

H H H

H

H

=

=

=

=

α

α

·

. /
.

. / sec

0 6
0 5

1 2

2 
 

 

From the gear ratio calculate the angular acceleration of the motor.

	

α α
m

H

n

rad

rad

=

=

=

1 2
0 1

12 0

. /sec
.

. / sec
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Torque due to equivalent inertia:

	

T I

rad

Nm

m equiv m= ×

= ×

=

α

3 6 12

43 2

. /sec

.

 

Torque required at hoist (see Figure 12.21):

From Newton’s second law:

	 ΣF = ma

	 F – 500g = 500aH F = 500 (g + a)

	 F = 500 × (9.81 + 0.6)

	 F = 5,205 N

Torque at hoist:

	 TH = F · r

	 = 5,205 N × 0.5 m

	 = 2,602 Nm

Due to the gear efficiency (as the hoist is connected to the gear system):

Torque required to accelerate the load:

	

Tequiv =

= ×

=

T ·n

0.1
0.9

Nm

H 1/2

1/2η

2602 5

289 17

.

.

r

TH

500 kg

aL F

500 kg

Hoist

FIGURE 12.21  Torque required by hoist.
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Total torque referred to motor:

	 Ttotal = 43.2 + 289.17 Nm

	 = 332.37 Nm

Example 12.3

An electric motor is used to raise and accelerate a load using a hoist and driving through two sets 
of reducing gears as in Figure 12.22.

Moment of Inertia
kgm2 Gear Ratio

Motor shaft, Im     5 Set 1/2 = 1:3.5
Transfer shaft, IT   40
Hoist shaft, IH 500 Set ¾ = 1:4.5

Gear efficiency for both sets of gears is 90%. Neglecting friction, determine the total torque 
required by the motor to accelerate a load of 5 tonnes at an acceleration of 0.5 m/s2.

Given that:

	

I

: .

:

m

T

H

kgm

I kgm

I kgm

n

n

=

=

=

=

=

5

40

500

1 3 5

1 4

2

2

2

1 2

3 4 ..

.

5

0 9ηG =

3.5 T

5.0 T

1

2

3

4

1.
2 

m
D

ia
m

et
er

Hoist

Motor Im

IT

IH

0.5 m/s2

FIGURE 12.22  Diagram of hoist mechanism for Example 12.3.

D
ow

nl
oa

de
d 

by
 [

M
ot

ila
l N

eh
ru

 N
at

io
na

l I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

A
lla

ha
ba

d]
 a

t 0
9:

49
 2

9 
D

ec
em

be
r 

20
13

 



327Introduction to Geared Systems

Neglecting friction effects:

Total torque required by the motor is

	 Ttotal = Tm1 + Tm2

where:
	Tm1 =	Torque to overcome equivalent inertia (referred to motor)
	Tm2 =	Torque to accelerate the load through the gear system

Consider Tm1:

	 Tm1 = Iequiv αm

For a compound gear set neglecting friction:

	

I I
I n I n n

equiv m
T

G

H= + +.( ) .( ) (
(

/

/

/ /1 2
2

1 2

1 2
2

3 4

η ηGG G

equivI

1 2 3 4

2

5
40 1 3 5

0 9

500 1 3

/ /).( )

/ .

.

/

η

= +
( )

+
.. / .

. . .

.

5 1 4 5

0 9 0 9

11 116

2 2( ) ( )
( ) ( )

= Nm

Given that the linear acceleration of the load aH = 0.5 m/s2,

	

αH
H

H

a
r

=

=

=

0 5
0 5

1 0

.
.

.

 m/s
 m

 rad/s

2

2

From the gear ratio:

	

α
α

α
α

α
α

H

m

= ×

= ×

=

H

T

T

m

1
4 5

1
3 5

1
15 75

. .

.

Thus,

	

α α

α

m H

m

=

= ( )
=

15.75·

 rad/s2

15 75 1 0

15 75

. · .

.
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Therefore,

	

T Im equiv1 =

= ×

=

·αm

11.116 15.75

175.08 Nm

Determine Tm2:

From Newton’s second law ΣF = ma

	     

3500 3500

3500

3500 9 31

32585

1

1

– ·

–

.

F a

F g a

=

= ( )
= ( )
=   N

	

F g

F

2

2

5000

46550

− =

= ( )
=

5000 a

5000 g a

 N

·

–

Resultant force at hoist:

	 Fr = F2 – F1

	       = 13,965 N

Torque at hoist:

	 TH = Fr × rH

	           = 13,965 × 0.5
	            = 6,982.5 Nm

Tm2 = TH referred to the motor.

	

T

T

m

m

2

2

6982 5 1 3 5 1

=

=
( )

T  n n
.

H 1/2 3/4

1/2 3/4η η

. / . /44 5

0 9 0 9

547 33

.

. .

.

( )
( )( )

=  Nm

Total torque at the motor is

	     Ttotal = Tm1 + Tm2

	               = 175.08 + 547.33
	      Ttotal  = 722.41 Nm
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13 Introduction to Cams 
and Followers

13.1  �INTRODUCTION

Modern-day automated production machinery relies on servo-driven motion control systems, and 
this has unquestionably provided considerable flexibility in the design of machine units. This has 
led to a revolution in machine design where motion control can be accomplished using servo-motors 
that are connected to its control system by cables instead of drives and linkages.

An added advantage is that the “cam profile” is stored electronically and can be amended within 
the control unit program without the need to modify or machine a new cam profile.

It is important for the design engineer to be aware of the history of the early motion control and 
the reasons for its evolution.

Cams are a very versatile mechanism with many applications. They generate motion, including 
rectilinear, oscillatory, or rotary motion to a mechanical element nominally referred to as a follower. 
This is in contact with the cam profile.

Many types of motion are possible for the follower, as the cam face can have any desired profile 
within certain limitations, including acceptable dynamic forces.

The cam is generally attached to a rotating shaft. In some cases the rotation may not be continu-
ous but can be oscillatory. The cam profile will determine the type of motion the follower will have, 
such as a slow rise at a particular acceleration to a given value followed by a dwell for a limited 
period and a rapid return to the start point of the cycle.

13.2  �BACKGROUND

In the early and mid twentieth century, high production automatic machinery was exclusively driven 
by cams and gears. In the late twentieth century the electric servo and hydraulic servo systems 
began to be developed with a high degree of reliability and offered a more versatile operating sys-
tem. Although this was thought to be the death knell of the use of cams in machinery, this has not 
occurred across the board. There are numerous examples, including packaging machinery, labeling, 
etc., where repetitious and accurate movements are required to position or provide a stop within 
a process line. These are usually provided by a cam-operated mechanism, as it generally offers a 
cost-effective and reliable method. Most people’s thoughts generally turn to the automotive engine, 
where cams are used to operate the valve gear for the induction and exhaust process. This is under-
taken under the most adverse conditions of heat and vibration and provides a very reliable and cheap 
system that has not found any alternative to replace it.

This section will provide the design engineer with some advice on the design of a suitable 
cam-operated system using either a plate cam or a cylindrical cam. An imaginary project is con-
sidered such that the various elements can be demonstrated and the effect on the overall design is 
considered.
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13.3  �REQUIREMENTS OF A CAM MECHANISM

The basic requirements for a cam-operated mechanism should consider the following points:

	 1.	The mechanism should be “stiff” and have minimal deflections in any linkages, etc.
	 2.	The cam follower must be able to maintain contact with the cam profile under all operat-

ing conditions.
	 3.	The mechanism must be able to operate and maintain positional tolerances.
	 4.	The mechanism must be able to operate at the design speed and maintain clearances with 

other mechanisms operating within the same space envelope.
	 5.	The output from the follower must meet the design requirements.

13.4  �TERMINOLOGY

There are two principal designs of rotary cams: plate cams and cylindrical cams.

13.4.1  �Plate Cams

Plate-type cams are the most common and recognizable form of a cam, where examples can be 
found in automotive engines for the operation of the inlet and exhaust valves where the cam is 
machined onto the “cam shaft.” Other examples will be found in automatic machine tools, packag-
ing machinery, and some quick-release work vices. In general, the profiles can easily be machined 
using standard machine tools.

The cam followers for plate-type cams come in two forms: sliding follower and rotary or swing-
ing arm follower.

The cam followers move in a plane perpendicular to the cam face.
Figures 13.1 and 13.2 show both forms of follower and also show the terminology used in the 

cam designations.

Xm

Ym

XC

YC
Reference

circle

Cam axis

Cam axis

Nominal point
of contact

Pitch curve

Follower line of action

Follower

Direction of
rotation

Pressure
angle

Tangent

FIGURE 13.1  Cam driving an offset translating follower.
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13.4.2  �Cylindrical Cams

In certain instances it may not be possible to fit a plate-type cam due to space limitations. In this 
instance a cylindrical cam (Figure 13.3) may be a more convenient solution.

In this design the cam follower moves in a plane parallel to the axis of the cam.
Depending on the size of the cam, the cam track may be made up of segments allowing for the 

track to be modified to meet particular requirements. This type of cam and follower arrangement 
is more likely to be found in earlier versions of metal-cutting automatic lathes where the follower 
connects to a cross-slide carrying the cutting tool. The track will advance the follower at a specific 
linear rate for either form cutting or even cross-drilling, and on completion this will be followed by 
a short dwell and then a rapid return to its starting position.

An advantage to the use of the cylindrical cam is the roller follower is essentially trapped in the 
cam track and therefore follows the cam profile accurately. The mechanism is sometimes fitted with 
a light spring to keep the roller against one side of the track when returning to the start position.

A further variation to the cylindrical cam is where the cam profile is machined onto the edge of 
the cylinder. These are referred to as a face or shell cams.

Path of follower
center

Ym

Xm

Follower arm
pivot

Yc

Xc

Cam profile

Reference
circle

Pitch curve

Cam axis

Cam axis

Follower

Follower arm

Nominal point
of contact

Axis fixed in machine

Direction of
rotation

FIGURE 13.2  Cam driving a swinging arm follower.

FollowerFollower roller

Cam track
Direction of

rotation

FIGURE 13.3  Cylindrical cam and follower.
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13.4.3  �Typical Cam Follower Arrangements for Plate-Type Cams

Figure 13.4 illustrates a selection of cam followers commonly used on plate-type cams:

(a)	 Depicts a knife edge follower. These are seldom used, as the stresses at the tip of the fol-
lower are very high and subject to rapid wear due to sliding at the cam face. They are only 
used in slow-moving cams.

(b)	 Roller followers are more commonly used as they eliminate any sliding between the roller 
and the cam face. They tend to be used in moderate to high-speed systems.

(c)	 Although friction between the cam face and the flat head followers may present a problem 
without correct surface treatment of the follower and cam face, the advantage of this type 
of follower is that it eliminates any side thrust between the contact surfaces.

Figure 13.4(d)–(f) shows variations from (b) and (c), with the centerline position of the roller posi-
tion in (d) being offset, and (e) and (f) show swinging cam followers for the roller and flathead designs.

The advantage of using this type of cam followers in (e) and (f) is the pressure angle of the cam 
system can be increased. This will be discussed in Section 13.7.

13.5  �THE TIMING DIAGRAM

The timing diagram is an important feature in the cam design. As the name suggests, this covers all 
aspects of the mechanism’s operating envelope, including the cam rise time, dwell, return, and final 
dwell, usually the base circle of the cam.

Once a preliminary design has been selected, consideration should be given to its operation using 
the timing diagram (Figure 13.5). This will investigate the feasibility of the design and highlight 
any potential problems, including any possible crash points in the design.

(a) Knife follower (b) Roller follower (c) Flat-head follower

Offset

(d) Offset roller (e) Swinging roller (f) Swinging flat head

FIGURE 13.4  Typical cam follower designs.
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The timing diagram is only concerned with the angular rotation of the cam or the timescale the 
cam operation is based upon. The shape of the cam profile is irrelevant, as the timing diagram is 
only concerned with the start of the lift period and its completion. Other machine activities may be 
in operation at the same time, and the diagram will help to synchronize these operations.

13.6  �CAM LAWS
The cam profile is important as it dictates the following:

	 1.	The speed of rotation of the cam
	 2.	How the follower behaves (will the follower leave the profile?)
	 3.	The life of the follower

The profile can be classified by examination of the follower motion requirements, investigating 
the velocity, acceleration, and jerk generated due to the profile.

The cam laws cover and include the following:

Constant velocity
Parabolic (constant) acceleration
Simple harmonic motion
Cycloidal (sine) acceleration

The first step is to identify the cam rotation required to lift (or drop) the follower from the lower 
dwell to the upper dwell point on the cam profile. This is best carried out using the timing diagram 
(Figure 13.6). In constructing the diagram, a straight line is drawn between the lower and upper 
points between the dwell points, without giving consideration to the profile requirements at this point.

The cam duration can be expressed in either degrees (θ) or time in seconds (t).
The following expression can describe the follower displacement y due to a rotation θ of the cam:

	 y f or y f t= ( ) = ( )θ 	 (13.1)

depending on the units of the x axis used.
The first differential of y with respect to t gives the velocity of the follower:

	 v dy
dt

y df t
dt

df
d

d
dt

df
d

= = ( ) = ( ) =� θ
θ

θ ω
θ

	 (13.2)

Upper
Dwell

Fo
llo

w
er

 L
ift

0 90 180 270 360
Cam Rotation (degrees)

Lower
Dwell

Rise

Fall

FIGURE 13.5  Typical timing diagram.
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where ω = angular velocity of the cam.
The second differential of y with respect to t will give the acceleration of the follower:

	 a d y
dt

y d f
dq

df
dq

= = +
2

2
2

2�� �ω ω 	 (13.3)

The third differential of y with respect to t will give the jerk* of the follower:

	
J d y

dt
y df

dq
d f
dq

d f
dq

= = = + +
3

3

2

2
3

3

33��� �ω ωω ω

In the case of the cam rotating at a constant rotational speed the above equations for acceleration 
can be reduced to the following:

Acceleration:	 a d f
d

= ω
θ

2
2

2

Jerk:	 J d f
d

= ω
θ

3
3

3

let

	

T = time taken for the cam to ratate throughh an angle of  degrees

= 

α

α
ω

where α is the rotation of the cam in degrees for a follower rise of h.
If a cam is designed to have a rise or fall at a constant velocity, it will experience very large 

changes in acceleration and jerk.

*	Jerk is an undesirable feature, as it can result in the follower leaving the cam profile momentarily, or at its worst, resulting 
in substantial damage to the follower.
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FIGURE 13.6  Timing diagram.
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335Introduction to Cams and Followers

13.6.1  �Constant Velocity of the Follower

In this first case, the follower moves at a constant velocity from the base circle O to the maximum 
lift of the follower A (Figure 13.7).

Consider a nominal cam profile with the following characteristics:

h	 = 25.0 mm	 Full lift
α	= 65°	 Angular rotation to full lift
θ	 = 6.5°	 Interval spacing
ω	= 360°/s	 Angular velocity

Displacement:

Velocity:

y ht
T

or y h

v h
T

or v h

= =

= =

θ
α

ωω
α

Acceleration: a = 0

At positions O and A where the acceleration will be infinite. Tabulating the above using a set of 
notional values.

Table 13.1 shows the above using a set of notional values.
This type of motion is unacceptable except at very low speeds.
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FIGURE 13.7  Constant velocity curve.
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336 Design Engineer's Handbook

13.6.2  �Parabolic Motion

In this second case (Figure 13.8), the profile is also known as a constant acceleration cam law. This 
law has been widely used in the past, as it produces the lowest maximum follower acceleration. It 
does produce an infinite jerk at both the beginning and the end of the motion cycle and also at the 
point of inflection. This makes this a very poor choice where dynamic considerations are important, 
and for this reason it is only suitable for low-speed systems.

Mathematically we have:

Displacement:

Ve

y h t
T

or y h= 



 = 



2 2

2 2θ
α

llocity:

Acceleration:

v h t
T

or v h

a h
T

= =

=

4
2

4

4

2
ωθ

α

oor a h

J

=

=

4

0

2

2
ω

α

Jerk: Except at o, B and A wherre it is infinite.

The tabulated values of the notional cam are shown in Table 13.2.
Due to the sharp increase and decrease in the acceleration curve, jerk will be extremely high, 

resulting in the possibility of the follower leaving the cam profile. For this reason this kind of profile 
is only suitable for low-speed systems.

13.6.3  �Simple Harmonic Motion

This third case of cam laws shows an improvement on the velocity and acceleration curves com-
pared that of the parabolic cam law in that they are smoother without any discontinuities.

TABLE 13.1
Constant Velocity Values

y	= 25 mm
α	= 65°
θ	= 2.5°
w	= 360°/s

y
mm θ°

v
mm/s

a
mm/s2

  0.0   0.0 138.46 Infinity

  2.5   6.5 138.46 0

  5.0 13.0 138.46 0

  7.5 19.5 138.46 0

10.0 26.0 138.46 0

12.5 32.5 138.46 0

15.0 39.0 138.46 0

17.5 45.5 138.46 0

20.0 52.0 138.46 0

22.5 58.5 138.46 0

25.0 65.0 138.46 Infinity
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337Introduction to Cams and Followers

See Table 13.3 to consider the mathematics and Figure 13.9 to compare the displacement, veloc-
ity, acceleration, and jerk curves for this type of motion.

Displacement: y h t
T

or y h= −



 = −

2
1

2
1cos cosπ πθθ

α

π π π ω
α

π







= =Velocity: v h
T

t
T

or v h
2 2

sin sin θθ
α

π π π ω
α

Acceleration: a h
T

t
T

or a h= =
2

2

2 2

22 2
cos coos

sin sin

πθ
α

π π π ω
α

πJerk: orJ h
T

t
T

J h= − = −
3

3

3 3

32 2
θθ

α
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TABLE 13.2
Parabolic Motion Values
y	= 25 mm
α	= 65°
θ	= 2.5°
ω	= 360°/s

Y
mm θ°

Disp.
mm

v
mm/s

a
mm/s2

J
mm/s3

0.0 0.0 0.0 0.0 3,067.46 0

2.5 6.5 0.5 55.4 3,067.46 0

5.0 13.0 2.0 110.8 3,067.46 0

7.5 19.5 4.5 166.2 3,067.46 0

10.0 26.0 8.0 221.5 3,067.46 0

12.5 32.5 12.5 276.9 0.00 0

15.0 39.0 17.0 221.5 –3,067.46 0

17.5 45.5 20.5 166.2 –3,067.46 0

20.0 52.0 23.0 110.8 –3,067.46 0

22.5 58.5 24.5 55.4 –3,067.46 0

25.0 65.0 25.0 0.0 –3,067.46 0

TABLE 13.3
Simple Harmonic Motion Values
y	= 25 mm
α	= 65°
θ	= 2.5°
ω	= 360°/s

y
mm θ°

Disp
mm

v
mm/s

a
mm/s2

Jerk
mm/s3

0.0 0.0 0.000 0.00 3,784.32 0.0

2.5 6.5 0.612 67.21 3,599.10 –20,347.4

5.0 13.0 2.387 127.84 3,061.58 –38,703.1

7.5 19.5 5.153 175.96 2,224.37 –53,270.2

10.0 26.0 8.637 206.85 1,169.42 –62,622.9

12.5 32.5 12.500 217.49 0.00 –65,845.6

15.0 39.0 16.363 206.85 –1,169.42 –62,622.9

17.5 45.5 19.847 175.96 –2,224.37 –53,270.2

20.0 52.0 22.613 127.84 –3,061.58 –38,703.1

22.5 58.5 24.388 67.21 –3,599.10 –20,347.4

25.0 65.0 25.000 0.00 –3,784.32 0.0
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339Introduction to Cams and Followers

13.6.4  �Cycloidal Motion

This fourth case (Figure 13.10) has the highest nominal acceleration of the cam laws reviewed so 
far. This case also has a finite jerk.

Although the acceleration has a greater value than that of the simple harmonic motion for the 
same cam parameters, this curve is widely used in high-speed applications. Since the curve has 
zero acceleration at the beginning and the end of the motion segment, it is easily coupled to dwells 
at these points.

Coupling two cycloidal curves together without a dwell period in between is to be avoided, as the 
pressure angle will tend to be high in this instance. See Table 13.4 for the tabulated values.
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FIGURE 13.9  Simple harmonic curve.
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The mathematics for the cycloidal curve:

Displacement: y h t
T

t
T

or y h= −



 = −1

2
2

π
π θ

α
sin 11

2
2

1 2

π
πθ
α

π

sin

cos







= −


Velocity: v h
T

t
T  = −





=

or v h

a h

ω
α

πθ
α

π

1 2

2

cos

Acceleration:
TT

t
T

or a h

J h
T

2

2

2

3

3

2 2 2

4

sin sin

co

π π ω
α

πθ
α

=

= −Jerk: ss cos2 4 22 3

3
π π ω

α
πθ
α

t
T

J hor = −
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FIGURE 13.10  Cycloidal motion curve.
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341Introduction to Cams and Followers

13.7  �PRESSURE ANGLE

The pressure angle at any point on the cam profile can be defined as the angle between the follower 
direction of motion and the normal to the tangent at the point of contact of the follower with the 
cam profile (see Figure 13.11). The value of the pressure angle is important, as it dictates the forces 
acting on the follower. From Figure 13.11 it can be seen that the force acting at the pressure angle α 
can be resolved into two components, one tangential to the direction of travel and the second at right 
angles to it. This angle α is referred to as the pressure angle. Therefore,

	 P = Pt + Pn

Pressure
angle

Tangent

Cam

Roller

Pn

Pt

FIGURE 13.11  Pressure angle.

TABLE 13.4
Cycloidal Motion Values
y	= 25 mm
α	= 65°
θ	= 2.5°
ω	= 360°/s

y
mm θ°

Disp
mm

v
mm/s

a
mm/s2

J
mm/s3

0.0 0.0 0.0 0.0 0.00 167,675

2.5 6.5 0.2 26.4 2,832.15 135,652

3.5 13.0 1.2 95.7 4,582.52 51,814

7.5 19.5 3.7 181.2 4,582.52 –51,814

10.0 26.0 7.7 250.5 2,832.15 –135,652

12.5 32.5 12.5 276.9 0.00 –167,675

15.0 39.0 17.3 250.5 –2,832.15 –135,652

16.0 45.5 21.3 181.2 –4,582.52 –51,814

20.0 52.0 23.8 95.7 –4,582.52 51,814

22.5 58.5 24.8 26.4 –2,832.15 135,652

25.0 65.0 25.0 0.0 0.00 167,675
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Pn is undesirable as it exerts a side thrust on the follower guides or bearings, and if this is large 
enough, it will cause the follower to bind and increase the friction.

It is common practice for conventional translating-type followers to keep the pressure angle 
below 30° and at or below 45° for swinging-type followers. These values are on the conservative 
side and in many cases may be increased, but beyond these limits trouble could develop and further 
analysis will be required.

The pressure angle is important for the following reasons:

•	 As stated above, the pressure angle increases the side thrust acting on the follower, and this 
in turn increases the forces between the follower and cam profile, resulting in undesirable 
wear.

•	 Reducing the pressure angle increases the size of the cam, and often this is undesirable 
where space is at a premium. Furthermore, large cams require greater care in manufacture.

•	 Larger cams also mean more mass, and hence higher inertia forces. This in turn will lead 
to increased vibration in high-speed machines.

•	 The inertia of the larger cam may impede with quick starting and stopping.

There are ways to reduce the pressure angle; these include:

•	 Increase the base circle diameter.
•	 Reduce the total follower travel.
•	 Increase the amount of cam rotation for a given follower displacement.
•	 Change the follower motion type.
•	 Change the follower offset; this may generally be reduced.

13.8  �DESIGN PROCEDURE

The following is a recommended design procedure to establish an optimum cam-operated 
mechanism.

	 1.	Determine a timing diagram highlighting the key requirements for displacements, veloci-
ties, and accelerations.

	 2.	Determine the space constraints in which the mechanism will be required to fit.
	 3.	Select a suitable cam mechanism such as a plate-type cam or cylindrical cam that will fit 

best in the available space.
	 4.	Consider the cam laws the mechanism will be required to meet.
	 5.	Calculate the minimum size of cam that will meet the pressure angle and profile constraints.
	 6.	Calculate the maximum contact stress and dynamic load on the follower.
	 7.	Do the dimensions of the cam mechanism and materials meet the design requirements?
	 8.	Will an external supplier manufacture the cam mechanism? If so, ensure it is in the consul-

tation loop.
	 9.	Finally, prepare a product design specification (PDS).

13.9  �GRAPHICAL CONSTRUCTION OF A CAM PROFILE

In the graphical design of cams the problem of construction is simplified by employing inver-
sion, that is, to imagine the cam being held stationary and the follower then being rotated in the 
opposite direction to the cam rotation. This preserves the correct sequence when the motion 
takes place.

To illustrate the point, Figures 13.12 and 13.13 are shown; the profile of the cam and the follower 
is then placed in equal increments around the periphery.
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343Introduction to Cams and Followers

The first construction (Figure 13.12) shows a cam designed for imparting a constant velocity on a 
translating-type roller that is on the centerline of the cam. For the purposes of the construction, one 
complete revolution of the cam is to give one rise and one fall to the follower.

Example 13.1

A plate cam fitted with a translating-type follower (Figure 13.12) with the following details is to 
be designed:

Shaft diameter = 10.0 mm
Base circle diameter = 23.0 mm
Roller diameter = 7.0 mm
Rise and fall of follower = 15.0 mm
Rotation of the cam = clockwise

Step 1. Draw the shaft diameter and base circle at center O and extend the centerline upwards 
to represent the follower position. The original drawing was produced using AutoCad; 
therefore it was drawn full size.

Step 2. Offset the base circle diameter plus half the radius of the follower diameter by the rise 
dimension (15.0 mm) to position B. Considering the cam is held stationary, the follower will 
rotate in a counterclockwise direction.

Direction of motion
of follower

B
6
57
48
39
210

11 1
11

10

h 
= 

Ri
se

 an
d 

fa
ll

9

8

7

6

5

4

3

2

1 12 A

0

FIGURE 13.12  Constant velocity of follower–graphical construction.
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344 Design Engineer's Handbook

Step 3. Subdivide the line A:B into six equal parts, numbering them 1, 2, 3, …, and produce a 
series of arcs continuing around the circle as shown in Figure 13.12.

Step 4. Radiate from the center O a series of lines at 30° angular rotation.
Step 5. Locate positions 1, 2, 3, …, and on the intersections draw the rollers.
Step 6. If you are using a drafting program such as AutoCad, the next step is to draw straight 

lines between the points of intersection, following this with a “PEDIT” command. The lines 
are joined and followed by the “SPLINE-FIT.” This will generate a suitable curve.

Example 13.2

It is required to design a cam using a swinging link that is fitted with a roller follower. The profile 
is to have uniform velocity for both the rise and fall segments of the cam.

Cam data:

Shaft diameter = 10.0 mm
Base circle diameter = 23.0 mm
Roller diameter = 7.0 mm
Position of the pivot from the cam centerline:

X = 30.0 mm
Y = 15.0 mm

Total angular movement of the link = 30°
Rotation of the cam = clockwise

Refer to Figure 13.13.

Step 1. Draw the shaft diameter and base circle at center O and position the swinging link at 
position P with a length P:A. The original drawing was produced in AutoCad; therefore, it 
was drawn full size.

Step 2. Draw a circle with a radius of O:P in order for the successive positions of the link to be 
positioned. Subdivide this circle into 12 equal parts and number them as P1, P2, P3, …, P12. 
Considering the cam is held stationary, the follower will rotate in a counterclockwise direction.

Step 3. From the position P construct an arc of a circle A:B with a radius P:A such that the angle 
A:P:B = 30°. Divide this arc into six equal parts, numbering them 1, 2, 3, …, and produce a 
series of arcs continuing around the circle.

Step 4. From each position of P1, P2, P3, …, construct an arc as in step 2, originating from P2, 
P3, etc.

Step 5. Locate points 1, 2, 3, …, on these lines and with these points as centers; then draw 
the rollers.

Step 6. As in the previous example, if you are using AutoCad, “PEDIT” and “SPLINE-FIT” will 
produce a suitable curve.
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FIGURE 13.13  Swinging link follower having a uniform angular velocity–graphical construction.
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