
5.0 RELIABILITY, QUALITY MANAGEMENT & MAINTENANCE

5.1 Understand the concept of Software Reliability
The reliability of a software product essentially denotes its trustworthiness and dependability.

Alternatively, the reliability of a software product can also be defined as the probability of the product

working correctly over a given period of time.

It is obvious that a software product having a large number of defects is unreliable. It is also very reasonable

to assume that the reliability of a system improves as the number of defects in it is reduced.

If an error is removed from an instruction that is frequently executed then large improvement of reliability

figure. On the other hand, removing errors from parts of the program that are rarely used, may not cause any

appreciable change to the reliability of the product.

The main reasons that make software reliability more difficult to measure than Hardware reliability:

 The reliability improvement due to fixing a single bug depends on where the bug is located in the

code.

 The perceived reliability of a software product is observer dependent.

 The reliability of a product keep changing as error are detected and fixed.

 5.1.1 Differentiate Hardware Reliability and Software Reliability;
Hardware components fail due to very different reasons as compared to software components. Hardware

components fail mostly due to wear and tear, whereas software components fail due to bugs.

To a fix hardware fault, one has to either replace or repair the failure part. In contrast, a software product

would continue to fail until the error is tracked down and either the design or the code is changed to fix the

bug. For this reason when a hardware part is repaired its reliability would be maintained at the level that

existed before the failure occurred. Whereas when the software failure is repaired, the reliability may either

increase or decrease.

A comparison of the changes in failure rate over the product lifetime for a typical hardware and software

product are shown in figure.

For hardware components the failure rate is initially high, but decreases as the faulty components are

identified are either repaired or replaced. The system then enters its useful life, where the rate of failure is

almost constant. After some time, the major components wear out and the failure rate increases.

The software product shows the highest failure rate just after purchase and installation. As the system is

used, more and more errors are identified and removed resulting in reduced failure rate.

5.1.2 List the different Reliability Metrics

1. Rate of OCurrence Of Failure (ROCOF): ROCOF measures the frequency of occurrence of failures.

ROCOF measure of a software product can be obtained by observing the behaviour of a software product in

operation over a specified time interval and then calculating the ROCOF value as the ratio of the total

number of failures observed and the duration of observation.

2. Mean Time to Failure (MTTF): MTTF is the time between two successive failures, averaged over a

large number of failures. To measure MTTF we can record the failure data on n failures. Let the failures

occur at the time instants t1,t2,..,tn. Then MTTF can be calculated as

3. Mean Time To Repair (MTTR): Once the failure occurs, some time is required to fix the error. MTTR

measures the average time it takes to track the errors causing the failure and to fix them.

4. Mean Time Between Failure (MTBF): The MTTF and MTTR metrics can be combined to get the

MTBF metric: MTBF = MTTF + MTTR. Thus MTBF of 300 hours indicates that once a failure occur, the

next failure is expected after 300 hours.

5. Probability Of Failure On Demand (POFOD): POFOD measures the likelihood of the system failing

when a service request is made. For example, a POFOD of 0.001 wound mean that 1 out of every 1000

service requests would result in a failure.

6. Availability: Availability of a system is a measure of how likely would the system is available for use

over a given period of time. This metric not only considers the number of failures occurring during the time

interval, but also takes into account the repair time when a failure occurs.

5.1.3 Understand the Reliability Growth Modelling: A reliability growth model can be used to

predict when (or if at all) a particular level of reliability is likely to be attained. Thus, reliability growth

modelling can be used to determine when to stop testing to attain a

given reliability level.

Jelinski and Moranda Model: The simplest reliability growth model

assumes that reliability increases by a constant increase each time an

error is detected and repaired. This model assumes that all errors

contribute equally to reliability growth is highly unrealistic.

Littlewood and Veralls Model: This model allows for negative

reliability growth to reflect the fact that when a repair is carried out, it

may introduce additional errors. It also models the fact that errors are

repaired the product reliability per repair decreases.

5.2 Define Statistical Testing
Statistical testing is a testing process whose objective is to determine the reliability of the product rather than

discovering errors. To carry out statistical testing we need to first define the operation profile of the product.

Operation Profile: Formally, we can define the operation profile of a software as the probability of a user

selecting the different functionalities of the software. If we denote the set of various functionalities offered

by the software by {fi}, the operational profile would associate with each function {fi} with the probability

with which an average user would select {fi} as his next function to use.

The operational profile of a software product can be determined by observing the usage pattern of the

software by number of users

Steps in Statically Testing: The first step is to determine the operation profile of the software. The next

step is to generate a set of test data corresponding to the determined operation profile. The third step is to

apply the test cases to the software and record the time between each failure. Next the reliability can be

computed.

Pros and Cons of Statistical Testing:

Pros: The reliability estimation arrived by using statistical testing is more accurate.

Cons: There is no simple and repeatable way of defining operational profile. The number of test cases

should be statistically significant.

5.3 Define Software Quality:
Traditionally the quality of a product is defined in terms of its fitness of purpose. The modern view of a

quality associates with a software product several quality factors such as

1. Portability: A software product is said to be portable, if it can be easily make to work in different

hardware and OS environments.

2. Usability: If different categories of users can easily invoke the functions of the product.

3. Reusability: If different modules of the product can easily be reused to develop new product.

4. Correctness: If different requirements as specified in the SRS document have been correctly

implemented.

5. Maintainability: If errors can be easily corrected, new functions can be easily added to the product.

5.4 Software Quality Management System:
A quality management system (also referred to as quality systems) is the principal methodology used by

organisations to ensure that the product they develop has the desired quality.

A quality system is the responsibility of the organisation as a whole. Every organisation has a separate

quality department. The quality system of an organisation should have the full support of the top

management.

The quality system activities encompass the following

 -Auditing of projects

 -Review of the quality system

 -Development of standards, procedures and guidelines etc.,

-Production of reports for the top management summarizing the effectiveness of the quality system

in the organisation.

5.4.1 Understand the Evolution of Quality Systems:

Quality systems have rapidly evolved over the last six decades. Prior to World War II the usual method to

produce quality products was to inspect the finished products to eliminate defective products. The initial

product inspection method gave way to quality control (QC) principles.

Quality Control (QC) focuses not only on detecting the defective products and eliminating them, but also on

determining the causes behind the defects, so that the product rejection rate can be reduced.

The basic principle of modern quality assurance is that if organisations processes are good and are followed

rigorously, then the product are bound to be of good quality. The modern Quality assurance model includes

guidance for recognizing, defining, analysing, and improving the production process.

Total Quality Management

(TQM) advocates that the

process followed by an

organisation must

continuously be improved

through process

measurements.

Product metrics help measure

the characteristics of a

product being developed,

whereas process metrics help

measure how a process is

performing.

5.5 Define SEI Capability Maturity Model:
SEI capability Maturity Model (SEI CMM) was proposed by Software Engineering Institute (SEI) of the

Carnegie Mellon University,USA.

CMM is a reference model for appraising the software process maturity into different levels. It must be

remembered that SEI CMM can be used two ways capability evaluation and software process assessment.

Capability evaluation provides a way to assess the software process capability of an organisation. Software

process assessment is used by an organisation with the objective to improve its own process capability.

SEI CMM classifies software development industries into the following five maturity levels.

Level 1: Initial – A software development organisation at this level is characterised by adhoc activities.

Very few or no processes are defined and followed.

Level 2: Repeatable – At this level, the basic project management practices such as tracking cost and

schedule are established. Configuration management tools are used on items identified for configuration

control. Size and Cost estimation techniques such as function point analysis, COCOMO etc., are used.

Level 3: Defined – At this level, the processes for both management and development activities are defined

and documented. There is a common organisation wide understanding of activities, roles and

responsibilities. The process through defined, the process and product qualities is not measured.

Level 4: Managed – At this level, the focus is on software metrics. Both process and product metrics are

collected. Quantitative quality goals are set for the products and at the time of completion of development it

checked whether the quantitative quality goals for the product are met.

Level 5: Optimizing – At this stage, process and product metrics are collected. Process and product

measurement data are analysed for continuous process improvement. At CMM Level 5 an organisation

would identify the best software engineering practices and innovaitions (which may be tools, methods, or

processes).

