
4.0  LEARN AND UNDERSTAND THE CONCEPT OF SOFTWARE DESIGN, 

CODING & TESTING 
Design:  

The activities carried out during the design phase transform the SRS document into the design document.  

Outcomes of a Design Process:  

The following Items are designed and documented during design phase 

1) Different Module required: The different modules in the solution should be clearly identified. Each 

module is a collection of functions and data shared by functions of module. 

2) Control Relationships among modules 

3) Interface between module: The exact data exchanged between the two modules when a one module 

invokes a function of other module is identified.  

4) Data Structures of the Individual Module:  Suitable Data structures for the data to be stored in a 

module are designed. 

5) Algorithms required to implement the Individual modules: The algorithms required to 

accomplish the processing activity of various modules are clearly designed. 

4.1 What is a good Software Design? 
Most researchers and software engineers agree on a few desirable characteristics that every good software 

design for general applications must possess. The characteristics are  

 Correctness: A good design should first of all be correct. This is it should correctly implement all the 

functionalities of the system.  

Understandability: A good design should be easily understandable. Unless a design solution is easily 

understandable, it would be difficult to implement and maintain it.  

Efficiency: A good design should adequately address resources, time or cost optimization issues.  

Maintainability: A good design should be easy to change. That is an important requirement, since change 

requests usually keep coming from the customer even after product releases.  

 

Given that we are choosing from only correct design solutions, understand ability of a design solution is 

possibly the most important issue to be considered while judging the goodness of a design.  

 

A design solution is understandable, if it is modular and the modules are arranged in layers.  

1. Modularity: A modular design is simple words implies that the problem has been decomposed into 

a set of modules. Decomposition of a problem in modules facilitates taking advantage of the divide 

and conquer principle.  

2. Layered Design: In layered design solution, the modules are arranged in a hierarchy of layers. A 

module can only invoke functions of the modules in the layer immediately below it.   

 

4.2    Define and Classify Cohesion and Coupling 
Coupling: Two modules are said to be highly coupled, in either of the following two situations arises.  

 If the function calls between two modules involve passing large chucks of shared data, the modules 

are tightly coupled.  

 If the interactions occur through some shared data, then also we say that they are highly coupled. 

 

If two modules either do not interact with each other at all or at best interact by passing no data or only a 

few primitive data items, they are said to have low coupling.  

 

Cohesion: When the functions of the module cooperate with each other for performing a single objective, 

the modules have good cohesion. If the functions of each module do very different things and do not 

cooperate with each other to perform a single piece of work, then the modules have very poor cohesion.  

 

4.2.1 Classification of Cohesion: Cohesiveness of a module is the degree to which different functions 

of the module cooperate to work towards a single objective. The cohesiveness increases from coincidental to 

functional cohesion. That is coincidental is the worst type of cohesion and functional is the best cohesion 

possible.  

 



 
Coincidental Cohesion: A module is said to have coincidental cohesion, if it performs a set of tasks that 

relate to each other very loosely, if at all.  

Functional Cohesion: A module is said to be possess functional cohesion, if different functions of the 

module cooperate to complete a single task.  

 
 

Logical Cohesion: A module is said to be logically cohesive, if all elements of the module perform similar 

operations such as error handing data input, data output etc.,  

 

Temporal Cohesion: When a module contains functions that are related by the fact that these functions are 

executed in the same time span, then the modules is said to possess temporal cohesion.  

 

Procedural Cohesion: A module is said to possess procedural cohesion. If the set of functions of the 

module are executed one after the other, through these functions may work towards entirely different 

purpose and operate on very different data.  

 

Communicational Cohesion: A module is said to have communicational cohesion, if all functions of the 

module refer to or update the same data structure.  

 

Sequential Cohesion: A module is said to posses sequential cohesion, if the different functions of the 

module execute in sequence, and the output from one function is input to the next in the sequence.  

 

4.2.2 Classification of Coupling: The coupling between two modules indicates the degree of 

interdependence between them. If two modules interchange large amount of data, then they are highly 

interdependent or coupled.  

 



Data coupling: Two modules are data coupled. If they communicate using am elementary data items that is 

passed as a parameters between the two, e.g an integer, a float, a character etc.,  

 

Stamp Coupling: Two modules are stamp coupled, if they communicate using a composite data items such 

as a record in PASCAL or a structure in C.  

 

Control Coupling: Control coupling exist between two modules, if data from one module is used to direct 

the order of instruction execution in another.  

 

Common Coupling: Two modules are common coupled, if they share some global data items.  

 

Content Coupling: Content coupling exists between two modules, if they share code. That is a jump from 

one module into the code of another module can occur.  

 

4.3    Know the two approaches of Software Design:  
There are two fundamentally different approaches to software design that are in use today – Function-

oriented design, and Object – oriented Design. These two design approaches are radically different; they are 

complementary rather than competing techniques. The object oriented approach is a relatively newer 

technology and is still evolving. Function oriented designing is a mature technology and has a large 

following. 

 

4.3.1 Function-Oriented Design: The following are the silent features of the function-oriented design 

approaches.  

Top-Down Decomposition:  In Top-down decomposition starting at high level view of the system, each 

high level function is successively refined into more detailed functions.  

 

For example, consider a function create-new-library member which essentially creates the records for a 

new records. This high level function may be refined into the following sub-functions  

 Assign-membership-number 

 Create-member-record 

 Print-bill 

Centralized system state: The system state is centralized and shared among different functions.  

For example, in the library automation system, several functions such as the following share data such as 

member-records for reference and updation.  

 Create-new-member 

 Delete-member 

 Update-member-record 

A large number of function-oriented design approaches have been proposed in the past. A few of the well 

established function-oriented design approaches are  

 Structured design by Constaintime and Yourdon 

 Jackons Structured Design by Jackson 

 Step-wise refinement by Wirth.  

  

4.3.2 Object-Oriented Design: 

 
In the object-oriented design (OOD) approach, a system is viewed as being made up of a collection of 

objects. Each object is associated with a set of functions that are called its methods. Each object contains its 

own data and is responsible for managing it. The data internal to an object cannot be accessed directly by 

other objects and only through invocation the methods of objects. The system state is decentralized since 

there is no globally shared data in the system and data is stored in each object.  

 

Similar objects constitute a class. Each object is a member of some class. Classes may inherit features from 

a super class. Objects communicate by message passing.  

 



4.3.3  Function-Oriented vs Object-Oriented Design 
The following are some of the important differences between the function-oriented and object-oriented 

design.  

1. Unlike function-oriented design methods, in OOD, the basic abstraction is not the services available 

to the users of the system.  

2. In OOD, state information exists in the form of data distributed among several objects of the system. 

In contrast, in a procedural design, the state information is available in a centralized shared data 

store.  

3. Functional-oriented techniques group functions together if as a group they constitute a higher level 

function. On the other hand, object-oriented techniques group functions together on the basis of the 

data they operate on.   

4.  

4.4 Understand the concept of User Interface Design 
The user interface portion of software is responsible for all interactions with the user. The user interface part 

of any software product is of direct concern to the end-user. Users often judge software product based on its 

user interface. For many interactive applications, as much as 50% of the total development effort is spent on 

developing the user interface.  

4.4.1   List the Characteristics of a good User Interface 

1. Speed of Learning: A good user interface should be easy to learn. Speed of learning is based on syntax 

and semantics of commands. A good user interface should not require its users to memorize commands. The 

following 3 issues are crucial to enhance speed of learning. 

Use of Metaphors and intuitive command names: Speed of learning an interface is greatly 

facilitated if these are based on some day – to -day real life examples or some physical objects with 

which the users are familiar with.  

Consistency: User should be able to use the similar commands in different circumstances for 

carrying out similar actions.  

Component based Interface: Users can learn an interface faster if the interaction style of the 

interface is very similar to the interface of other application with which the user is already familiar 

with.  

 

3. Speed of Use: Speed of use of an interface is determined by the time and user effort to execute 

different commands. It indicates how fast the user can perform their intended tasks. This is achieved 

through careful design of the interface. Example: The most frequently used commands should have 

smallest length or available at the top of a menu.  

4.  

3. Speed of recall: Once the users learn how to use an interface, the speed with which they can recall the 

command issue procedure should be maximized. This is achieved with use of Metaphors, symbolic 

command issue procedure.  

 

4. Error prevention: A good user interface should minimize the scope of committing errors while initiating 

different commands.  

 

5. Attractive: A good user interface should be attractive to use.  

 

6. Consistency: The commands supported by a user interface should be consistent. Consistency facilitates 

speed of learning, speed of recall and also helps in reduction of error rate.  

7. Feedback: A good user interface must provide feedback to various user actions. Ex: if a user request 

takes more than few seconds of process, the user should be informed about the state of processing of his 

request.  

8. Support for Multiple skill levels: A good user interface should support multiple levels of sophistication 

of command issue procedure for different categories of users.  

9. Error recovery (undo Facility): While issuing commands, even the expert users can commit errors. A 

good user interface should allow a user to undo a mistake.  

10. User guidance and Online Help: Users seek guidance and online help when they either forget a 

command or unaware of some feature of software.  



4.4.2   Understand the Basic Concepts - User Guidance and Online Help - Mode Based vs Modeless 

Interface -Graphical User Interface (GUI) vs Text-Based User Interface. 

 

Online Help system: Users expect the online help messages to be tailored to the context in which they 

invoke the help system. A good help system should keep track of what a user is doing while invoking the 

help system and provide the output message in a context dependent way.  

 

Guidance Message: The guidance messages should be carefully designed to prompt the user about the next 

actions he might pursue, the current state of the system, the progress so far made in processing his last 

command etc., A good guidance system should have different levels of sophistication for different categories 

of users.  

 

Mode-Based versus Modeless Interface:  

A mode is a state or collection of states in which only a subset of all user interaction tasks can be performed. 

In a modeless interface, the same set of commands can be invoked at any time during the running of the 

software. Thus a modeless interface has only a single mode and all the commands are available all the time 

during the operation of the software. On the other hand in a mode based interface, different sets of 

commands can be invoked depending on the mode in which the system is.  

 

Graphical User Interface (GUI) Vs Text Based User Interface:  

 In a GUI multiple windows with different information can simultaneously be displayed on the user 

screen.  

 Iconic information representation and symbolic information manipulation is possible in a GUI 

 A GUI usually support command selection using an attractive and user friendly menu section system 

 In a GUI, a pointing device such as a mouse or a light pen can be used for issuing commands.  

 On a flip side a GUI requires special terminal with graphics capabilities for running and also requires 

special input devices such as mouse. On the other hand a text based user interface can be 

implemented even on a cheap alphanumeric display terminal. 

 

4.4.3 List the two types of User Interfaces - Command Language Based Interface -  Menu Based 

Interface - Direct Manipulation Interfaces. 

Broadly speaking user interfaces can be classified into the following three categories.  

Command Language based Interface 

Menu based Interface 

Direct Manipulation Interface 

Command Language Based Interface: Command language based Interface is based on designing a 

command language which the user can use to issue the commands. A simple command language based 

interface might simply assign unique names to the different commands. A more sophisticated command 

language based interface may allow users to compose complex commands by using a set of primitive 

commands reduces the number of command names one would have to remember.  

Advantages: 

 Among 3 interfaces, the CLI allows for most efficient command issue procedure requiring minimal 

typing.  

 A CLI can be implemented even on cheap alphanumeric terminals  

 A CLI is easier to develop compared to a menu based or a direct manipulation interface because 

compiler writing techniques are well developed.  

 

Disadvantages:  

 Usually CLI are difficult to learn, and require the user to memorize the set of commands. 

 Most users make errors while formulating commands in the command language and also while 

typing them.  

 In a CLI based interface all interactions with the system is through a keyboard and cannot take 

advantage of effective interactive devices such as a mouse.  

 

 



 

Menu-Based Interface: An important advantage of a menu based interface over a command 

language based interface is that a menu based interface does not require the users to remember 

the exact syntax of the command. In menu based interface the typing effort is minimal as most 

interactions are carried out through menu selection using a pointing device.  

However experienced users may find a menu based interface to be slower than a command 

based interface because an experienced user can type fast and can get speed advantage by 

composing different commands. 

 

The following are some of the techniques available to structure a large number of menu items.  

 

1. Scrolling Menus: When a full choice list cannot be displayed within the menu area, 

scrolling of the menu items is required. In a scrolling menu all the commands should 

be highly correlated, so that the user easily locates a command that he needs. An 

example situation where a scrolling menu is frequently used is font size selection.  

2. Walking Menu:  Walking menu is a very commonly used to structure a large 

collection of menu items. In this technique, when a menu item is selected, it causes 

further menu items to be displayed adjacent to it in a submenu.  

3. Hierarchical Menu:  In this technique, the menu items are organised in a hierarchy or 

tree structure. Selecting a menu item causes menu display to be replaced by an appropriate sub menu. 

One can consider the menu and its various sub menu to form a hierarchical tree like structure.  

 

Direct Manipulation Interface:  
Direct manipulation interfaces present the interfaces to the user 

in the form of visual models (i.e Icons or Objects). For this 

reason, direct manipulation interfaces are sometimes called as 

iconic interfaces. In this type of interfaces, the user issues 

commands by performing actions on the visual representation 

of the object, ex pull an icon representing a file into an icon 

presenting trash box for deleting the file.  

Important advantages of iconic interfaces include the fact that 

the icons can be recognized by the user very easily and that 

icons are language independent. Experienced users find direct 

manipulation interface difficult.  

 

4.4.4 Know about Component Based GUI Development Window System and Types of Widgets. 

 

The current style of user Interface 

development is component-based. It 

recognizes that every user interface can 

easily be built from a handful of predefined 

components such as menus, dialog boxes, 

forms etc., Besides the standard 

components, and the facilities to create 

good interfaces from them, one of the basic 

support available to the user interface 

developers is the windows system.  

 

Window: A window can be divided into 

two parts – Client part, and non-client part. 

The client area makes up the whole of the 

window, except for the border and scroll 

bars. The client area is the area available to 

a client application for display. The non-

client part of the window determines the 



look and feel of the window. The window manager is responsible for managing and maintaining the non-

client area of a window.  

 

Window Management system (WMS): 

A GUI consists of a large number of windows. It is necessary to have some way to manage these windows. 

Most GUI do this though Window Management system (WMS).  

 

A WMS simplifies the task of GUI designer 

to a great extent by providing the basic 

behaviour of various windows such as move, 

resize, iconify etc., and provides routines to 

manipulate the windows from application 

programs such as creating, destroying, change 

attributes etc.,  

 

A WMS consists of two parts  

 A Window Manager  

 A window system  

 

 

Window manger and Window System: 

Window manager is the component of WMS 

with which the end user interacts to do 

various window related operations such as 

window repositioning, window resizing, 

iconification etc.,  

 

Window manager is built on top of window system in the sense that it makes use of various services 

provided by window system. The end user can either interact with the application itself or with the window 

manager and both the application and the window manager invoke services of the window system.  

 

Most user interface development systems usually provide a high-level abstraction called widgets for user 

interface development. A widget is the short form of a window object. Widgets are the standard user 

interface components. A user interface us usually made up by integrating several widgets.  

 

Component based development: A development style based on widgets is called component based GUI 

development style. The advantages are  

They help users learn an interface fast.  

It reduces the application programmer’s work significantly.  

Types of Widgets  

1. Label Widget: A label widget does nothing except to display a label.  

2. Container widget: It is used to contain other widgets. Other widgets are created as children of the 

container widget.  

3. Pop-Up Menu: A popup menu appears upon pressing the mouse button irrespective of mouse 

position.  

4. Pull-Down Menu: You have to move the cursor to a specific location and pull down this type of 

menu.  

5. Dialog Box: Dialog boxes ask you to enter information, some dialog boxes are merely informative 

and then Clock ok to dismiss the box.  

6. Push Button: A push button contains key words or a picture that describes the action that is 

triggered when you activate the button.  

7. Radio Button: A set of radio buttons are used when only one option has to be selected out of many 

options.  

8. Combo Boxes: A combo box looks like a button until the user interacts with it. When the user 

presses or clicks it, the combo box displays a menu of items to choose from. 



4.5    Understand the concept of Software Coding and Testing 
Coding is undertaken once the design phase is complete and the design document has been successfully 

reviewed. After all the modules of a system have been coded and unit tested, the integration and system 

testing phase is undertaken. The objective of the coding phase is to transfer the design of a system into code 

in a high-level language, and then to unit test this code.  

 

4.5.1 Coding Standards and Guidelines - Code Review- Code Walk Throughs - Code Inspection. 

 

Coding Standards and Guidelines:  
Good software development organisations require their programmers to follow some well defined and 

standard style of coding standard. The main advantages of following coding standards are  

1. Coding standard gives a uniform appearance to the codes written by different engineers. 

2. It facilitates code understanding 

3. It promotes good programming practices.  

Good software organizations usually develop their own coding standards and guidelines what suits their 

organisations best. We shall list some general coding standards and guidelines which are commonly adopted 

by many software companies.  

 

Representative Coding standards  

1. Rules for limiting the use of Globals:  These rules list what types of data can be declared global 

and what cannot.  

2. Standard Header to precede the code of different modules: The information contained in the 

headers of different modules should be standard for an organisation. The following is an example of 

header format adopted by some companies.  

a. Name of the Module 

b. Date on which the module was created  

c. Authors Name 

d. Modification history 

e. Synopsis of the module  

f. Different functions supported in the module, along with their input/ output parameters  

g. Global variables accessed / modified by the module.  

3. Naming Conventions for Global variables, local variables and constant identifiers: A popular 

naming conventions is that variables are named using mixed case lettering. Global variables names 

would always start with a capital letter (Ex GlobalData) and local variables names start with small 

letter (ex:localData).Constant names should be formed using capital letters only (ex: CONSTDATA) 

4. Conventions regarding error return values and exception handling mechanisms: The way error 

conditions are reported by different functions in a program should be standard within an 

organisation. For example, all functions while encountering an error condition should either return 0 

or -1.  

Representative coding guidelines: 

1. Do not use a coding style that is too clever or too difficult to understand: Code should be easy to 

understand. Many inexperienced engineers take pride by writing clever coding. Clever coding 

reduces understanding as a result maintenance and debugging difficult and expensive.    

2. Avoid obscure side effects: The side effects of function call include modifications to the parameters 

passed by reference, modification of global variables, and I/O operations. An obscure side effect is 

one that is not understandable from the casual examination of the code. Obscure side effect makes it 

difficult to understand a piece of code.  

3. Do not use an identifier for multiple purposes: Programmers often use the same identifier to 

denote several temporary entities. Example programmers use temporary loop variable for also 

computing and storing final result. Some of the problems caused by use of a variable for multiple 

purpose are  

a. Each variable should be given a descriptive name indicating its purpose. This is not possible 

if an identifier is used for multiple purposes.  



b. It makes further enhancement more difficult. For example changing the final computed result 

from integer to float type, the programmer might notice that temporary loop variable cannot 

be a float type.  

4. The code should be well documented: As a rule of thumb, there should be at least one comment 

line on the average for every three source lines of code.  

5. The length of any function should not exceed 10 source lines: A lengthy function is usually very 

difficult to understand as it probably has a large number of variables and carries out many different 

types of computations.  

6. Do Not use GO TO statements: Use of GOTO statement makes a program unstructured, thereby 

making it very difficult to understand, debug and maintain the program.  

 

Code Review:  
Code review for a module is undertaken after the module successfully compiles. That is all the syntax errors 

have been eliminated from the module. Code reviews are extremely cost effective strategies for eliminating 

coding errors and for producing high quality code. The following two types of reviews are carried out on the 

code of a module.  

Code inspection  

Code Walkthrough.  

Code Walkthrough: Code walkthrough is an informal code analysis technique. In this, a module is taken 

for review after the module has been coded, successfully compiled and all syntax errors have been 

eliminated. A few members of the development team are given the code a couple of days before the 

walkthrough meeting. Each member selects some test cases and simulates execution of the code by hand. 

The main objective of code walkthrough is to discover the algorithmic and logical errors in the code. 

Even Code walkthrough is a informal technique, several guidelines have evolved over years.  

 The Team performing Code walkthrough should not be either too big or too small. Ideally it should 

consist of between 3 to 7 members.  

 Discussions should focus on discovery of errors and avoid discussions on how to fix the discovered 

errors.  

 Managers should not attend the code walkthrough meeting.  

Code Inspection: The principal aim of code inspection is to check for the presence of some common types 

of errors that usually creep into code due to programmer oversight and to check whether coding standards 

have been stick to. Following is a list of some classical programming errors which can be checked during 

code inspection.  

 Use of uninitialized variables  

 Jumps into loops 

 Non-Terminating loops 

 Incompatible assignments  

 Array indices out of bound 

 Improper storage allocation and de allocation 

 Mismatches between actual and formal parameters in procedure call 

 Use of incorrect logical operators or incorrect precedence among operators.  

 Improper modification of loop variables.  

 Comparison of equality of floating point values etc, 

 

4.5.2  Clean Room Testing - Software Documentation- Software Testing 
 

 Clean Room Testing: Clean Room testing was pioneered by IBM. This type of testing relies heavily on 

walkthroughs, inspection and formal verification. The programmers are not allowed to test any of their code 

by executing the code other than doing some syntax testing using a compiler.  

This technique reportedly produces documentation and code that is more reliable and maintainable than 

other development methods relying heavily on code execution based testing. The main problem with this 

approach is that testing effort is increased as walkthrough, inspection and verification are time consuming 

for detecting all simple errors. 

 



Software Documentation: When a software product is developed, in addition to the executable files and the 

source code, several kinds of documents such as user manuals, software requirements specification (SRS), 

design document, test document, installation manual etc are developed as part of software engineering 

process. Good documents are very useful and serve the following purpose.  

 Good document help enhance understand ability of a software product.  

 Document helps the user to understand and effectively use the system.  

 Good document help in effectively tackling the manpower turnover problem. When engineers leave 

the organization and new engineer comes in he can built up the required knowledge.   

 Production of good documents helps the manager to effectively track the progress of the project.  

 

Different types of documents can broadly be classified as  

Internal Documentation: These are provided in the source code itself.  

External Documentation: These are the supporting documents that usually accompany a software product.  

 

Internal Documentation: Internal documentation can be provided in the code in several forms. The 

important types of internal documentation are the following 

 

 Comment embedded in the source code 

 Use of meaningful variables names 

 Module and function headers 

 Code indentation  

 Code structuring (Code decomposed into modules and functions) 

 Use of enumerated types.  

 Use of constant identifiers  

 Use of User-defined data types.  

  

Careful experiments suggest that out of all types of internal documentation, meaningful variable names are 

most useful while trying to understand a piece of code.  

 

External Documentation:  External documentation is provided through various types of supporting 

documents such as user manuals, software requirements specification document, design document, test 

document etc.  

An important feature of good external documentation is consistency with the code. If the different 

documents are not consistent, a lot of confusion is created for somebody trying to understand the problem.  

All documents developed for a product should be up to date.  

Another important feature of External documents is proper understand ability by the category of users for 

whom the document is designed.  

 

Software Testing 
The aim of testing is to identify all defects in a program. However, in practice, even after satisfactory 

completion of testing phase it is not possible to guarantee that a program is error free. This is because the 

input data domain of most programs is very large. Testing a program involves providing the program with a 

set of test inputs (or test cases) and observing if the program behaves as expected. If the program fails to 

behave as expected, then the input data and the conditions under which the failure occurs are noted for later 

debugging and error condition.  

The following are some commonly used terms associated with testing.  

An error is a mistake committed by the development team during any of the development phases.  

 

A Failure  is a symptom of an error (or defect or bug).  

 

A test case is a tiplet [I,S,O] where I is the data input to the system, S is the state of the system at which the 

data is input, and O is the expected output of the system.  

 

A test suite is the set of all test cases with which a given software product is tested.  



4.5.3 Know What is Testing? Testing involves performing the following main activities.  

1. Test suite design: The set of test cases using which a program is to be tested is designed using different 

test case design techniques.  

2. Running test cases and checking the results to detect failures: Each test case is run and result are 

compared with the expected results. A mismatch between the actual result and expected results indicates a 

failure. The test cases for which the system fails are noted down for later debugging.  

3. Debugging: For each failure observed during the previous activity, debugging is carried out to identify 

the statements that are in error.  

4. Error Correction: After the error is located in the previous activity, the code is appropriately changed to 

correct the error.  

 

 
4.5.4  Differentiate Verification and Validation :  

Verification is the process of determining whether the output of one phase of software development 

conforms to that of its previous phase, whereas validation is the process of determining whether a fully 

developed system conforms to its requirements specification. Alternatively, we can state the different 

between verification and validation in the following words.  

“While verification is concerned with phase containment of errors, the aim of validation is to make the final 

product error free’’.  

 

4.5.5 List 2 Designs of Test Cases  
 

When test cases are designed based on random input data, many of the test cases don not help detect any 

additional defects not already being detected by other test cases in the suite.  

A minimal test suite is a carefully designed set of test cases such that each test case helps detect different 

errors. This is in contrast to testing using some random input values.  

There are 2 main approaches to design test cases  

1. Black Box approach.   

2. White Box (or Glass box ) approach  

 

In Black Box approach test cases are designed using only the functional specification of software. Test cases 

are designed based on an analysis of the input / output and does not require any knowledge of the internal 

structure of the program. For this reason block box testing is also called functional testing.  

 

On the other hand, white box test cases requires a thorough knowledge of the internal structure of a program, 

and therefore white box testing is also called structural testing.  

 

Two approaches to test case design are complementary. Program has to be tested using the test cases 

designed by both the approaches.  



4.5.6 Differentiate Testing in the Large vs Testing in the Small: 
A Software product is normally tested in three levels or stages:  

Unit Testing  

Integration Testing  

System Testing 

Unit testing is referred to as testing in the small, whereas integration and system testing are referred to as 

testing in the large.  

After testing all the units individually, the units are slowly integrated and tested after each step of 

integration. Finally the fully integrated system is tested. Integration and system testing are known as testing 

in the large.  

 

4.5.7 Understand Unit Testing - Driver and Stub Modules 
Unit testing is undertaken after a module has been coded and reviewed. Before carrying out unit testing, the 

unit test cases have to be designed and the test environment for the unit under test has to be developed.  

Drive and Stub Modules:  In order to test a single module, we 

need a complete environment to provide all relevant code that is 

necessary for execution of the module.  

 The procedures belonging to other modules that the 

module under test calls.  

 Nonlocal data structures that the modules accesses.  

 A procedure to call the functions of the module under test 

with appropriate parameters.  

Stub: The role of stub and drive modules is pictorially shown in 

figure. A stub procedure is a dummy procedure that has the same 

I/O parameters as the given procedure, but has a highly 

simplified behaviour.  

Drive: A drive module should contain the non-local data 

structures accessed by the module under test. Additionally it should also have the code to call the different 

functions of the module under test with appropriate parameters values for testing.  

 

4.5.8 Understand Black - box Testing and White Box Testing. 
 

Black-Box testing: In a black box testing, test cases are designed from an examination of the input/ output 

values only and no knowledge of design and code is required. The following are the two approaches 

available to design black-box test cases.  

 Equivalence Class partitioning  

 Boundary Value Analysis.  

 

Equivalence Class Partitioning: In the equivalence class partitioning approach, the domain of input values 

to the program under test is partitioned into a set of equivalence classes. The partitioning is done such that 

for every input data belonging to the same equivalence class, the program behaves similarly. Therefore 

testing the code with any one value belonging to an equivalence class is as good as testing the code with any 

other value belonging to the same equivalence class.  

Example: For a software that computers the square root of an input integer that can assume values in the 

range 0 to 5000. Determine the equivalence class test suite.  

Ans: There are three equivalence classes- the set of negative integer, the set of integers in the range of 0 to 

5000, and the set of integers larger than 5000. A possible test suite can be {-5,500,6000}.  

 

Boundary Value Analysis: Boundary value analysis – based test suite design involves designing test cases 

using the values at the boundaries of different equivalence classes.  

Example: For software that computers the square root of an input integer that can assume values in the range 

0 to 5000. Determine the boundary value test suite.  

Ans: There are three equivalence classes. The set of negative integers, the set of integers in the range of 0 to 

5000, and the set of integers larger than 5000. The boundary value based test suite is: {0,-1,5000,5001} 



White Box Testing:  
White Box testing is an important type of Unit Testing. A large number of white box testing strategies exist. 

Each testing strategy essentially designs test cases based on analysis of some aspect of source code.  

 

A white box testing strategy can be either coverage-based or fault based.  

Fault-Based Testing: A fault based testing strategy targets to detect certain types of faults.  

Coverage-Based Testing: A coverage based testing strategy attempts to execute (ie cover) certain program 

elements for discovering failure.  

 

A white box testing strategy is said to be stronger than another strategy, if all types of program elements 

covered by the second testing strategy are also covered by the first testing strategy and the first strategy 

additionally covers some more types of elements not covered by the second strategy. If a stronger testing has 

been performed then a weak testing need not be carried out. 

 

 
 

Statement Coverage: The statement coverage based strategy aims to design test cases so as to execute 

every statement in a program at least once. The principal idea governing the statement coverage strategy is 

that unless a statement is executed, there is no way to determine whether an error exist in that statement.  

Branch Coverage: Branch coverage based testing requires test cases to be designed so as to make each 

branch condition in the program to assume true and false value in turn. Brach testing is also called edge 

testing.  

Condition Coverage: In condition coverage based testing; test cases are designed to make each to make 

each component of a composite conditional expression to assume both true and false values.  

Path Coverage: Path Coverage bases testing strategy requires designing test cases such that all linearly 

independent paths in the program are executed at least once. 

Mutation Testing: The idea behind mutation testing is to make a few arbitrary changes to a program at a 

time. Each time the program is changed, it is called a mutated program and the change effected is called a 

mutant. A mutated program is tested against the original test suite of the program. If there exist at least one 

test case in the test suite for which a mutated program yields an incorrect result, then the mutant is said to be 

dead. If a mutant remains alive even after all the test cases have been exhausted, the test suite is enhanced to 

kill the mutant.  

 

4.6 Explain the concept of Debugging 
After a failure has been detected, it is necessary to first identify the program statements that are in error and 

are responsible for the failure, the error can then be fixed.  

4.6.1   Explain the Debugging Approaches:  
The following are some of the approaches that are popularly adopted by the programmers for debugging.  

 

Brute Force Method: This is most common method of debugging, but is the least efficient method. In this 

approach, print statements are inserted though out the program to print intermediate values with the hope 

that some of the printed values will help to identify the statement in error.  



This approach become more systematic with the use of source code debugger, because values of different 

variables can be easily checked and break points and watch points can be easily set.  

 

Backtracking: In this approach, beginning from the statement at which an error symptom has been 

observed, the source code is traced backwards until the error is discovered.  

 

Casual elimination method: In this approach, once a failure is observed, the symptoms of the failure are 

noted. Based on the failure symptoms the causes which could possibly have contributed to the symptom is 

developed and tests are conducted to eliminate each.  

 

Program Slicing: This technique is similar to back tracking. However, the search space is recued by 

defining slices.  

 

4.6.2   List the Debugging Guidelines:  
Debugging is often carried out by programmers based on their creativity and experience. The following are 

some general guidelines for effective debugging.  

 Many times debugging requires a thorough understanding of the program design. Trying to debug 

based on a partial understanding of the program design may require an inordinate amount of effort to 

be put into debugging even for simple problems.  

 Debugging may sometimes even require full redesign of the system.  

 One must be beware of the possibility that an error correction may introduce new errors. Therefore 

after every round of error fixing, regression testing must be carried.  

 

4.6.3   Program Analysis Tools - Static Analysis Tools - Dynamic Analysis Tools. 
A program analysis tool usually is an automated tool that takes either the source code or the executable code 

of a program as input and produces reports regarding several important characteristics of the program such 

as its size, complexity, sufficiency of commenting, adherence to programming standards, sufficiency to 

testing etc., We can classify various program analysis tools into the following two broad categories.  

 Static Analysis Tool  

 Dynamic Analysis Tools 

Static Analysis Tool: Static Program Analysis Tool assesses and computes various characteristics of a 

program without executing it. Code review techniques such as code walkthrough and code inspection might 

be considered as static analysis methods since that target to detect error based on analysing the source code.  

 

A major practical limitation of the static analysis tool lies in their inability to analyse run time information 

such as dynamic memory references (pointer variables and pointer arithmetic’s etc).  

 

Static analysis tool often summarize the results of analysis of very function in a polar chart known as Kiviat 

chart. A Kiviat chart typically shows the analysed values for cyclomatic complexity, number of source lines, 

percentage of comment lines, Halstead metrics etc.,  

 

Dynamic Analysis Tool: Dynamic program analysis tools can be used to evaluate several program 

characteristics based on analysis of the run time behaviour of a program.  

The code when executed, records the behaviour of the software for different test cases. The dynamic 

analysis tool can report the statement, branch, and path coverage achieved by the test suite. If the coverage 

achieved is not satisfactory more test cases can be designed, added to the test suite and run.  

 

Normally the dynamic analysis results are reported in the form of a histogram or pie chart to describe the 

structural coverage achieved for different modules of the program.  

 

 

 

 



4.6.4   List and Explain the four Integration Testings - Phases vs Incremental 

Integration Testing- System Testing - Performance Testing. 
 

List and Explain the four Integration Testings: Integration testing is carried out after all the modules have 

been unit tested. Successful completion of unit testing, to a large extent ensures that the unit as a whole 

works satisfactorily. The objective of integration testing is to check whether different modules of a program 

interface with each other properly.  

During integration testing, different modules of a system are integrated in a planned manner using an 

integration plan. The integration plan specifies the order in which modules are combined to realize the full 

system. After each integration step, the partially integrated system is tested.  

 

Any one (or a mixture) of the following approaches can be used to develop the test plan.  

 

Big- Band Integration testing: Big-band testing is the most obvious approach to integration testing. In this 

approach, all the modules making up a system are integrated in a single step. In simple words all modules of 

the system are simply linked together and tested. However this technique can be used only for very small 

systems. The main problem with this approach is it is very difficult to localize error as the error may lie in 

any of the modules.  

 

Bottom-Up Integration Testing: Large software products are often made up of several subsystems. In 

bottom-up approach integration testing, first the modules for the each subsystem are integrated. Thus the 

subsystem can be integrated separately and independently.  

 

Top – Down Integration Testing: Top-Down integration testing starts with the root module and one or 

more subordinate modules in the system. After the top-Level skeleton has been tested, the modules that are 

at the immediately lower layer of the skeleton are combined with it and tested.  

 

Mixed Integration Testing: The mixed (also called Sandwiched) integration testing follows a combination 

of top-down and bottom-up testing approach. In top-down approach, testing can start only after the top-level 

modules have been coded and unit tested. Bottom-up testing can start only after the bottom level modules 

are ready. The mixed approach overcomes this shortcoming testing can start as and when modules become 

available after the unit testing.  

 

Phases vs Incremental Integration Testing: Big-bang integration testing is carried out in a single 

step of integration. In contrast, in the other strategies, integration is carried out over several steps. In these 

later strategies, modules can be integrated either in phased or incremental manner. A comparison of these 

two strategies is as follows.  

 In incremental Integration testing, only one new module is added to the partially integrated system 

each time.  

 In phased integration, a group of related modules are added to the partial system each time.    

  

Phased integration requires less number of integration steps compared to the incremental integration 

approach. However, when failures are detected, it is easier to debug the system while using the incremental 

testing approach.  

 

System Testing: After all the units of a program have been integrated together and tested, system testing 

is taken up. System tests are designed to validate a fully developed system to assure that it meets its 

requirements. The test cases are therefore designed solely based on the SRS document.  

There are essentially three main kinds of system testing.  

 

1. Alpha Testing: Alpha testing refers to the system testing carried out by the test team within the 

developing organisation.  

2.  Beta Testing: Beta testing is the system testing performed by a select group of friendly customers.  

3. Acceptance testing: Acceptance testing is the system testing performed by the customer to 

determine whether he should accept the delivery of the system.  



The system test cases can be classified into functionality and performance test cases.  

The functionality tests are designed to check whether the software satisfies the functional requirements as 

documented in the SRS document. The performance tests on the other hand test the conformance of the 

system with the non-functional requirements of the system.  

 

 Performance Testing: Performance testing is carried out to check whether the system meets the non-

functional requirements identified in the SRS document. All performance tests can be considered as black-

box tests.  

1. Stress Testing: Stress testing is also known as endurance testing (survival Testing). Stress testing 

evaluates system performance when it is stressed for short periods of time. Stress testing is especially 

important for systems that usually operate below their maximum capacity but may be stressed at 

some peak demand hours.  

 

2. Volume Testing;   Volume testing checks whether the data structures (buffers, arrays, queues, stack 

etc) have been designed to successfully handle extraordinary situations. 

 

  
3. Configuration Testing: Configuration testing is used to test system behaviour in various hardware 

and software configurations specified in the requirements.  

 

4. Compatibility Testing: This type of testing is required when the system interfaces with external 

systems (ex: databases, servers, etc).  

 

 

5. Regression Testing:  This type of testing is required when the system being tested in an up 

gradation of an already existing system to fix some bugs or enhance functionality, performance etc.,  

 

6.  Recovery Testing: Recovery testing tests the response of the system to the presence of faults, or 

less of power, devices, services, data etc.  

 

 

7. Maintenance Testing: This addresses testing the diagnostic programs, and other procedures that are 

required to help maintenance of the system.  

 

8. Documentation Testing: It is checked whether the required user manual, maintenance manuals, and 

technical manuals exist and are consistent.  

 

 

9. Usability testing: Usability testing concerns checking the user interface to see if it meets all user 

requirements concerning the user interface.  

 

10. Security testing: Security testing is essential for software products that process confidential data. In 

needs to be tested whether the system is fool-proof from security attacks such as intrusion by 

hackers. 

 

 

 

 

 

 

 


