
 UNIT-4
KNOW MULTI THREADED PROGRAMMING AND EXCEPTION HANDLING
4.1 Explain The Thread Model Of Java
Thread Model of java:

A program is divided into two or more sub programs, which can be implemented in
parallel. Each of this sub program is called a thread. Thus a thread is similar to a program that
has a single flow of control. It has a beginning, a body and executes commands sequentially.

A Unique property of java is its support for multithreading i.e. java enables us to use
multiple flows of control in developing programs. Each of control may be thought of as a
separate tiny program known as thread, which runs in parallel to others. A program that
contains multiple flows of control is known as multithreaded program.

Multithreading is a specialized form of multitasking. Multitasking threads required less
overhead than multitasking processes. Processes are heavy weight task that required their own
address separate spaces. On the other hand threads are light weight and share the same
address space.

The advantage of multithreading is, when a thread blocks in a java program only the
single thread is blocked pauses. All other threads continue to run.
Threads exist in several states:

 A thread can be running that the processor has given its time to the thread for its
execution.

 A running thread can be suspended, which temporarily suspends it’s activity.

 A suspended thread can be resumed, allowing it to pick up where it left off.

 A thread can be blocked, when waiting for a resource.

 At any time a thread can be terminated, which halts it’s; execution immediately.

 Once terminated a thread cannot be resumed.
Differences between Multithreading and Multitasking

SNO Multithreading Multitasking

1 It is a programming concept in which a program or
a process is divided into two or more sub programs
or threads that are executed at the same time in
parallel.

It is an operating system concept in
which multiple tasks are performed
simultaneously

2 It support execution of multiple parts of a single
program simultaneously

It support execution of multiple
programs simultaneously

3 The processor has to switch between different parts
or threads of a program

The processor has to switch between
different programs or processes

4 It is cost –effective in case of context switching It is expensive in case of context
switching

5 Light-weight process Heavy weight process

4.2 Explain Thread Priorities
Every thread in java is assigned a priority value, which affects the order in which it is

scheduled for running. Generally, highest priority thread is running before the lowest priority
thread. The threads of the same priority are given equal treatment by the java scheduler and,
therefore, execute on a FCFS basis.

Java permits us to set the priority of a thread using the setPriority() method as follows:
 Threadname.setPriority(int number);

The int number is an integer value to which the thread’s priority is set. The Thread class
defines several priority constants:

1) Thread. MIN_PRIORITY—1
2) Thread . MAX_PRIORITY—10
3) Thread. NORM_PRIORITY—5
The DEFAULT PRIORITY is Thread .NORM_PRIORITY

whenever multiple threads are ready for execution, the java system chooses the
highest priority threads and executes it , for a thread, of lower priority to given control, one of
the following things should happen:

1) It stops running at the end of run().
2) It is made to sleep using sleep().
3) It is told to wait using wait().

Example1:
class Priorities extends Thread
{

public void run()
{
System.out.println(“thread is running…”+Thread.currentThread().getName());
System.out.println(“thread priority is “+Thread.currentThread().getPriority());
}

}
Class PriorityDemo
{
public static void main(String args[])
{

Priorities ob=new Priorities();
Thread t1=new Thread(ob);
Thread t2=new Thread(ob);
t1.setName(“T1”);
t2.setName(“T2”);
t1.setPriority(2);
t2.setPriority(8);
t1.start();
t2.start();

}
}

Example 2:
 class A extends Thread

{
public void run()
{

System.out.println(“thread is started”);
for(int i=1;i<=5;i++)
{

System.out.println(“from thread A: i=”+i);
}

}
System.out.println(“exit from A”);
}

}
class B extends Thread
{

public void run()
{

System.out.println(“thread B started”);
for (int j=1;j<=5;j++)
{

System.out.println(“from thread B:j=”+j”);
}
System.out.println(“exist from B”);

}
}
class C extends Thread
{

public void run()
{

System.out.println(“thread C started “);
for (int k=1;k<=5;k++)
{

System.out.println(“from thread C: K =”+K);
}
System.out.println(“exist from C”);

}
}
class ThreadPriority
{

public static void main(String args[])
{

A threadA=new A();
B threadB=new B();
C threadC=new C();
threadC.setPriority (Thread.MAX_PRIORITY);
threadB.setPriority(threadA.getPriority()+1);
threadA.setPriority(Thread.MIN_PRIORITY);
System.out.println(“start thread A”);
threadA.start();
System.out.println(“start thread B”);
threadB.start();

System.out.println(“startthreadC”);
threadC.start();
System.out.println(“End of main thread”);

}
}

4.3 Explain The Concept Of Synchronization
Synchronization:

When a thread is already acting on an object, preventing any other thread from acting
on the same object is called ‘thread synchronization’ or ‘thread safe’. The object on which the
threads are synchronized is called synchronized object.
 Thread synchronization is recommended when multiple threads are used on the same
object.

Synchronized object is like a locked object. It is like a room with only one door. A person
who entered the room locks it. The second person who wants to enter the room should wait
until the first person comes out.

A thread also locks the object after entering it. Then the next thread can’t enter it till the
first thread comes out. This means the object is locked mutually on threads. So, this object is
called ‘mutex’ (mutually exclusive lock)
 We can synchronize our code in either of two ways.
Using Synchronized keyword:

We can synchronize an entire method by using synchronized keyword.
When we declare a method as Synchronized, Java creates a monitor and hands it over to

the thread that calls the method first time. As long as the thread holds the monitor no other
thread can enter the synchronized section of code. A monitor is like a key and the thread that
holds the key can only open the lock.

 Synchronized void display()
{
------ // code here is synchronized

}

Sample program:
class A
{

synchronized void multi(int i)
{

for(int n=1;n<=5;n++)
{
 System.out.println(Thread.currentThread().getName()+":"+(i*n));
}

}
}
class Example extends Thread
{

A ob=new A();
public void run()
{
 ob.multi(100);

 }
}
class ThreadSynch
{
 public static void main(String args[])
 {

 Example ob=new Example();
 Thread t1=new Thread(ob);
 Thread t2=new Thread(ob);
 t1.setName("T1");
 t2.setName("T2");
 t1.start();
 t2.start();

 }
}

Using synchronized Block:
Here we can embed a group of statements of the object (inside run()) within a synchronized
block. Here object represents the object to be locked or synchronized.
 Synchronized(object)
 {
 statements to be synchronized;
 }
The statements inside the synchronized block are available to only one thread at a time. They
are not available to more than one thread simultaneously.
Example
import java.util.*;
class Reservation implements Runnable
{

 int avail=10;
 int wanted;
 Scanner s=new Scanner(System.in);

 public void run()
 {
 synchronized(this)
 {

 System.out.println("Available berths are="+avail);

 System.out.println("Enter how many berths you want");
 wanted=s.nextInt();
 if(avail>=wanted)
 {
 String name=Thread.currentThread().getName();
 System.out.println(wanted+"berths are reserved for"+name);
 avail=avail-wanted;
 }

 else
 System.out.println("sorry berths are not available");
 }
 System.out.println("thank you and happy journey");
 }

}
class ThreadSyncDemo
{
 public static void main(String args[])
 {
 Reservation obj=new Reservation();
 Thread t1=new Thread(obj);
 Thread t2=new Thread(obj);
 t1.setName("passenger1");
 t2.setName("passenger2");
 t1.start();
 t2.start();
 }
}

4.4 Create thread using Thread Class
CREATING THREADS: Creating threads in java is simple. In most general we can create a thread
by instating a object of type ‘Thread’. which is accomplished into two ways:
1) By extending thread class itself.
2) By Implementing Runnable interface.
By extending thread class itself:

We can make our class runnable as thread by extending the class java.lang.Thread. This
gives us access to all the thread methods directly.It includes the following steps:
 Declare the class as extending the Thread class.
 Implement the run() method that is responsible for executing the sequence of code that

the thread will execute.

 Create a Thread object and call the start() method to initiate the thread execution.
Example:

class Sample extends Thread
{

public void run()
{
System.out.println("thread is running");
}

}
class ThreadDemo1
{

public static void main(String args[])
{

Sample ob=new Sample();
ob.start();

 }
}

Note:To create a new thread, our program will either “extends” Thread class (or)
implementing the Runnable interface.
4.5 Create Thread using Runnable interface
By Implementing runnable interface:

Easiest way to create a thread is to create class that implements “Runnable” interface
which abstracts a unit of executable code. Then constructs a thread or any object that
implements the Runnable.
1.Declare the thread class as implementing the runnable interface
2.Implements the run () method
3.Create a thread by defining an object that is instantiated from this “runnable ” class as the
target of the thread
4.Call the threads start () method to run the thread
Example:

class Sample implements Runnable
{

public void run()
{
System.out.println("thread is running");
}

}
class RunnableDemo
{

public static void main(String args[])
{

Sample ob=new Sample();

Thread t=new Thread(ob);
ob.start(ob);

 }
}

4.6 Create Multiple Threads

We have been using only two threads: The main thread and the child thread. However, our
program can create as many threads as it needs. It is implemented in the below program.
 We can create multiple threads to perform single task.
 We can create multiple threads to perform multiple tasks.

Example program multiple threads to perform single task:
class SingleTask extends Thread
{

public void run()
{
System.out.println("thread running");
}

}
class MultiDemo
{

public static void main(String args[])
{
SingleTask t1=new SingleTask();
SingleTask t2=new SingleTask();
t1.start();
t2.start();
}

}

Example program on multiple threads to perform multiple tasks.

class A extends Thread
{

public void run()
{
 for(int i=1;i<=3;i++)
 System.out.println("thread of A is running..");
}

}

class B extends Thread
{

public void run()
{
 for(int i=1;i<=3;i++)
 System.out.println("thread of B is running..");
}

}
class C extends Thread
{

public void run()
{
 for(int i=1;i<=3;i++)
 System.out.println("thread of c is running..");
}

}
class MultiDemo1
{

public static void main(String args[])
{

A t1=new A();
B t2=new B();
C t3=new C();
t1.start();
t2.start();
t3.start();

}
}

4.7 Understand Alive (), Join (), Suspend (), Resume () methods
The thread class has several methods. Here we will discuss about the following thread methods
isAlive(), join(), suspend(), resume().
isAlive ():This method tests whether the thread is alive or not.

public final Boolean isAlive();
The isAlive() method returns true, if the thread upon which it is called is still running, otherwise
it returns false. isAlive() method is occasionally useful.
join(): This method used to wait for a thread to terminate. The calling thread will simply wait
until the thread it is joining with either completes the task or is not alive. The general form is

final void join() throws InterruptedException;
Suspend():This method is used to temporarily stop the execution of the thread. When the code
encounters suspend() method, it saves all the states and resources of the thread. Such a
suspended thread can be restarted by another thread calling the resume() method. This
method can lead to deadlocks and therefore it should be avoid.The general form of suspend()
method is

final void suspend();
Resume():This method resumes the execution of a suspended thread. After executing this
method, if the suspended thread has a higher priority than the running thread, the running
thread method will be preempted; otherwise this resumed thread will wait in queue for its turn
to run. Like suspend () method the resume() method can lead to deadlocks and therefore it
should be avoided. The general form of resume() is final void resume();
Example program for join() and isAlive():
class TestJoinMethod2 extends Thread
{
 public void run()
{
 for(int i=1;i<=5;i++)
{
 try
{
 Thread.sleep(500);
 }
catch(Exception e)
{
System.out.println(e);
}
 System.out.println(Thread.currentThread().getName()+" :"+i);
 }
 }

}
class TestJoin123
{
public static void main(String args[])
{
 TestJoinMethod2 t1=new TestJoinMethod2();
 TestJoinMethod2 t2=new TestJoinMethod2();
 TestJoinMethod2 t3=new TestJoinMethod2();
 t1.start();
System.out.println("Thread one"+t1.isAlive());
System.out.println("Thread two"+t2.isAlive());
 try
{
 t1.join();
 }

catch(Exception e)
{
System.out.println(e);
}
t2.start();
t3.start();
System.out.println("Thread one"+t1.isAlive());
System.out.println("Thread two"+t2.isAlive());
System.out.println("Thread three"+t3.isAlive());
}
}
Example program for suspend() and resume()
class MyThread extends Thread
{

public void run()
{

try
{

for(int i=1;i<=5;i++)
{

Thread.sleep(1000);
}

}
catch(InterruptedException e)
{

System.out.println(Thread.currentThread().getName+”interrupted”);
}
System.out.println(Thread.currentThread().getName+”:”+i);

}
}
class ThreadResume
{

public static void main(String args[])
{
MyThread t1=new MyThread ();
MyThread t2=new MyThread ()

 t1.start();
t2.start();
try
{

Thread.sleep(1000);
t1.suspend();
System.out.println(“thread one is suspended”);
Thread.sleep(1000);
t1.resume();
System.out.println(“thread one is resumed”);
t2.suspend();

System.out.println(“thread two is suspended”);
Thread.sleep(1000);
t2.resume();
System.out.println(“thread two is resumed”);

}
catch(InterruptedException e)
{

System.out.println(“main thread interrupted”);
}

}
}
4.8 Inter Thread Communication

Inter thread communication can be defined as the exchange of messages between two
or more threads. The transfer of messages takes place before or after the change of state of a
thread. For example, an active thread may notify to another suspended thread just before
switching to the suspend state. Java implements inter-thread communication with the help of
the following three methods:
notify(): This method releases an object and sends a notification to a waiting Thread that the
object is available. The object class declaration of notify() method is shown below:

final void notify();
notifyAll():This method releases an object and sends a notification to all waiting Thread that
the object is available.The execution of these threads happens as per priority. The object class
declaration of notify all() method is shown below:

final void notifyAll();
wait(): This method makes a Thread wait for the object till it receives a notification from
notify() or notifyAll() methods. One can also specify the time for which thread has to wait. The
desired waiting time period is specified as an argument to the wait () method. The object class
declaration of wait () method is shown below

final void wait();
Since, the methods are declared final they cannot be overridden. All the three methods throw
”INTERRUPTEDEXCEPTION”
Example program for interthread communication
class Customer
{

int amount=10000;
synchronized void withdraw(int amount)
{

System.out.println("going to withdraw...");
if(this.amount<amount)
{
System.out.println("Less balance; waiting for deposit...");
try
{
wait();
}

catch(Exception e)
{
}

 }
this.amount -= amount;
System.out.println("withdraw completed...");

 }
 synchronized void deposit(int amount)
 {

System.out.println("going to deposit...");
this.amount += amount;
System.out.println("deposit completed... ");
notify();

 }
}
class Test
{

public static void main(String args[])
{

final Customer c=new Customer();
new Thread()
{
public void run()
{
 c.withdraw(15000);
}
}.start();
new Thread()
{
public void run()
{
 c.deposit(10000);
}
}.start();

}

}
4.9 Explain Dead Lock

DeadLock occurs when two Threads have a circular dependency on a pair of
synchronized objects.

That is, when a Thread has locked on object and waiting for another object to be
released by another thread, and the other Thread is also waiting for the first Thread to release
the first object, both the threads will continue waiting forever.

Ex: Assume that the thread A must access method1 before it can release method2, but the
thread B cannot release method1 until it gets hold of method2. Because these are mutually
exclusive conditions a deadlock occurs. The code below illustrates this:
Thread A
Synchronized method2()
{
Synchronized method1()
{

}
}
Thread B
Synchronized method1()
{
Synchronized method2()
{

}
}
Example:
class BookTicket extends Thread
{
 Object train,comp;
 BookTicket(Object train, Object comp)
 {
 this.train=train;
 this.comp=comp;
 }
 public void run()
 {

Synchronized(train)
{
 System.out.println(“bookticket is locked by train”);

try
{

Thread.sleep(1000);
}
catch (InterruptedException e)
{
}
System.out.println(“book ticket is waiting to lock on compartment”);
Synchronized(comp)
{

System.out.println(“bookticket locked on compartment”);
}

}
 }
}
class CancelTicket extends Thread
{
 Object train,comp;
 CancelTicket(Object train, Object comp)
 {
 this.train=train;
 this.comp=comp;
 }
 public void run()
 {

Synchronized(comp)
{
 System.out.println(“cancelticket is locked by compartment”);

try
{

Thread.sleep(1000);
}
catch (InterruptedException e)
{
}
System.out.println(“cancel ticket is waiting for train ticket object to

lock”);
Synchronized(train)
{

System.out.println(“cancelticket locked on train”);
}

}
 }
}
class DeadLock
{
 Public static void main(String args[])
 {
 Object train=new Object();

Object comp=new Object();
BookTicket obj1=new BookTicket(train,comp);
CancelTicket obj2=new CancelTicket(train,comp);
Thread t1=new Thread(obj1);
Thread t1=new Thread(obj2);
t1.start();
t2.start();

}
}

Advantages Or Usage Of Threads?
With a thread package, a programmer can create several threads within a process.

Threads execute concurrently, and within a multithreaded process, there are multiple points of
execution at any time. Threads execute within a single address space. Multithreaded
programming offers the following advantages:
Performance: Threads improve the performance (throughput, computational speed,
responsiveness, or some combination) of a program. Multiple threads are useful in a
multiprocessor system where threads run concurrently on separate processors.

You cannot make any assumptions about the start or finish times of threads or the
sequence in which they execute, unless they are explicitly synchronized.
Shared Resources: When you use multiple threads instead of separate processes multiple
threads share a single address space, all open files, and other resources.
Potential Simplicity: Multiple threads may reduce the complexity of some applications that are
inherently suited for threads.
Explain thread properties
Thread class:As we know already, java provides two ways of creating threads.

 By extending thread class

 By implementing the runnable inter face
Thread class is defined in java.lang package
The thread class provides

 Constructors

 Methods

 fields
Constructors of thread class:
Thread(): allocates a new thread object.
 Thread(string name): creates a new thread object with a given name.

 Thread(runnable target):creates a thread object for a given a runnable object .

 Thread (runnable thread target, string name): creates a thread object for a given a
runnable object .and give a name to the thread.

Methods of thread class:

 currentThread ():Returns a reference to the currently executing thread object.

 yield ():Causes the runtime to context switch from current thread to next available
thread.

 sleep (int n):Current thread sleeps for n milliseconds.

 start (): Used to start a thread. Run () will be called

 run (): It is the body of the running thread to be overridden.

 stop () : Causes the thread to stop immediately.

 setName(string name):Sets the name for the current thread.

 getName():Returns the name of the current thread

 activeCount():Returns the no of active threads in the current threads groups.

 getThreadGroup():Returns the thread group to which this thread belongs.

 getState():Returns the state of the thread

 getPriority():obtains a thread ‘s priority.

 isAlive():determine if a thread is still running.

 join():wait for a thread to terminate.
Fields of the threads class:

yield

These are the fields of the thread classes, and they are

 1.Thread.MAX_PPRIORITY

 2.Thread.NORM_PRIORITY

 3.Thread.MIN_PRIORITY
Life cycle of thread:

 During the life time of a thread, there are many states it can enter. They include:
1. Newborn state
2. Runnable state
3. Running state
4. Blocked state
5. Dead state

A thread is always in one of five states. It can move from one state to another via a variety of
ways as shown in figure.

Newborn state: when we create a thread object, the thread is born and
is said to be in newborn state. The thread is not at scheduled for running at this state we can do
only one of the following things with it.

1. Schedule it for running using start() method.
2. Kill it using stop() method.

If scheduled, it moves to the runnable state.
Runnable state: The runnable state means that the thread is ready for execution and is waiting
for the availability of the processor. If all threads have equal priority then they are given time
slots for execution in round robin fashion i.e. first come first serve manner. The thread that
relinquishes control joins the queue at the end and again waits for its turn. This process of
assigning time to threads is known as time – slicing.

Running Runnable

Blocked

born

Dead

born

New Thread

Active Thread

start stop

stop

stop

Killed

 Thread

suspend

sleep

wait

resume

notify

yield

Idle Thread

(Not Runnable)

 New Born

Fig: Relinquishing control using yield() method
Running state: Running means that the processor has given its time to the thread for its
execution. The thread runs until it relinquishes control on its own or it is preempted by a higher
priority thread. A running thread may relinquish its control in one of the following situations.

1. It has been suspended using suspend() method. A suspended thread can be revived by
using the resume() method. This approach is useful when we want to suspended a
thread for some time due to certain reason, but do not want to kill it.

 Fig: Relinquishing control using suspend() method

2. It has been made to sleep, we can put a thread to sleep for a specified time period using
the method sleep(time) where time is in milliseconds. This means that the thread is out
of the queue during this time period. The thread re –enters the runnable state as soon
as this time period is elapsed.
 Fig: Relinquishing control using sleep() method

It has been told to wait until some event occurs. This is done using the wait() method.
The thread can be scheduled to run again using the notify() method.

Fig: Relinquishing control using wait() method

Blocked state: A thread is said to be blocked when it is prevented from entering into the
runnable state and subsequently the running state. This happens when the thread is

Running Runnable Waiting

notify

wait

Running Runnable Waiting

resume

suspend

Running Runnable Waiting

resume

sleep

Running

suspended, sleeping, or waiting in order to satisfy certain requirements. A blocked thread is
considered “not runnable” but not dead and therefore fully qualified to run again.
Dead state: Every thread has a life cycle. A running thread ends its life when it has completed
executing its run() method. It is a natural death. However, we can kill it by sending the stop
message to it at any state thus causing a premature death to it. A thread can be killed as soon it
is born, or while it is running, or even when it is in “not runnable”(blocked) condition.

4.10 Explain the Source Of Errors
SOURCE OF ERRORS: Errors are the wrongs that can make a program wrong. Errors may be

classified into 2 categories:-

i) Compile time errors

ii) Run time errors

COMPILE TIME ERRORS:

 These are syntactical errors found in the code, due to which a program fails to compile.

 Whenever the compiler displays errors, it will not create the .class file. It is necessary

that we correct all the errors before we can successfully compile and run program.

The most common compile time errors are:

 Missing semicolons

 Missing (or) mismatch brackets in classes and methods

 Misspelling of identifiers and keywords

 Missing double codes in strings

 Use of undeclared variables

 Incompatible type in assignments (or) initialization

 Use of equal to in place of double equal to operator etc.

RUN TIME ERRORS: These errors represent inefficiency of the computer system to execute a
particular statement. Sometimes a program may compile successfully creating the .class file
but may not run properly.

Run-time errors are not detected by the Java compiler. They are detected by the JVM,

only at run-time.

Most common run time errors are:

 Dividing an integer by zero

 Accessing an element i.e. out of the bounds of an array

 Trying to store a value into an array of incompatible class or type

 Passing a parameter i.e. is not in a valid range (or) value for a method.

 Trying to illegally change the state of thread.

 Attempting to use a negative size for an array.

 Converting invalid string to a number

 Accessing a character i.e. out of bounds of string

LOGICAL ERRORS: These errors explain flaws in the logic of the program.
e.g.: The programmer might be using a wrong formula or the design of the program itself is
wrong. Logical errors are not detected either by Java compiler or JVM. The programmer
himself is responsible for them.

4.11 Write the Advantages Of Exceptions:

1. Separating error handling code from regular code.

2. It prevents the program for automatic termination.

3. Grouping error types and error differentiation.

4.12 Explain How To Deal With Exceptions:

EXCEPTION: An exception is a run time error in the program.

EXCEPTION HANDLING: When, the java interpreter encounters an error such as dividing an

integer by zero, it creates an exception object and throws it i.e. informs an error has occurred.

 If the exception object is not caught and handle properly, the interpreter will display an

error message. If we want the program to continue with the execution of the program to

continue with the remaining then we should try to catch the exception object thrown by the

error condition and then display an appropriate message for taking corrective action. This task

is known as exception handling.

Java exception handling is managed by using the keywords. Those are

1. Try

2. Catch

3. Throw

4. Throws

5. finally

TRY AND CATCH KEYWORDS:

TRY BLOCK: The programmer should observe the statements in his program, where there may

be a possibility of exceptions. Such statements should be written inside a try block.

Syntax: try
 {
 //statements
 }

When JVM understands that there is an exception, in the try block, then it stores the exception
details in an exception stack and then jumps into a catch block.
CATCH BLOCK: Immediately following the try block includes catch where we should display the

exception details to the user.

Syntax:

catch (ExceptionType variable)

{

 // stmts to be displayed when exception occurred

}

A try block and its catch statement form a unit. Remember that every try statement

should be followed by at least one catch statement otherwise compile time error will occur.

FINALLY:

 Finally creates a block of code that will be executed after a try/catch block has

completed and before the code following the try/catch block. Cleanup operations code is

written inside the ‘finally’ block.

 The finally block will be executed whether or not an exception is thrown. The finally clause is

optional.

Syntax:

finally

{

Block of statements which releases the resources;

}

EXAMPLE: The following program includes a try block and a catch block which process the

Arithmetic Exception generated by the division by zero error.

class A

{

public static void main (String args[])

{

int d=0;

try

{

int a=42/d;

System.out.println(“not printed”);

}

catch (ArithmeticException e)

{

System.out.println(“division by zero not possible”);

System.out.println(“after try/catch block”);

}

 finally

 {

 System.out.println(“ I am finally block..”);

 }

}

}

OUTPUT:

division by zero not possible

after try/catch block

I am from finally block

THROW:

In general, we are catching exceptions that are thrown by java runtime system.

However, is possible for our program throw an exception explicitly, using the throw

statement.

The general form of throw is here

 Syntax: throw throwableinstance;

Here, throwable instance must be an object of type Throwable class
Ex: in the following program, we are creating an object of NullPointerException class and
throwing it out of try block as shown here:

throw new NullPointerException(“exception data”);
In the above statement NullPointerException class is created and ‘exception data’ is stored

into its object. Then it is thrown using throw statement now, we can catch it using catch block
as,

Example:

class Throwdemo

{

static void demo()

{

try

{

throw new NullPointerException(“demo”);

}

catch (NullPointerException ne)

{

System.out.println(“caught inside demo”);

}

}

public static void main(String args [])

{

 demo();

}

}

OUTPUT: caught inside demo

THROWS:

 A throws clause lists the types of exception that a method may throw. All exception that

a method can throw must be declared in the throws clause.

The general form at a method declaration that includes a throws clause is

Syntax:

catch(NullPointerException ne)
{
}

 type method_name(parameters list) throws Exception list

 {

 Body of method;

 }

Here, Exception list is a comma separated list of the exceptions that a method can throws.

Example:

class Throwsdemo

{

static void divide() throws ArithmeticException

{

int x=22,y=0,z;

z=x/y;

}

public static void main(String args[])

{

try

{

divide();

}

catch(ArithmeticException e)

{

System.out.println(“caught”+e);

}

}

}

OUTPUT: caught java.lang. ArithmeticException: / by zero

4.13 Explain The Concept Of Multi-Catch Statements Programs:

Multi catch statements:

 In some cases more than one exception could be raised by a single piece of code. To

handle this type of situation we can specify two or more catch classes, each catching a different

type of exception. Then an exception is thrown each catch statement checked in order and one

whose type matches that of the exception is executed. After one catch statement is executes,

the other catch blocks are not checked.

Example:

class edemo

{

public static void main (String [] args)

{

try

{

int n=args.length;

System.out.println("n=" +n);

int a=45/n;

System.out.println ("DIVISION VALUE = "+a);

int b[]={10,20,30};

b[50]=100;

}

catch(ArithmeticException Ae)

{

System.out.println(Ae);

System.out.println ("DONT ENTER ZERO FOR DENOMINATOR...");

}

catch(ArrayIndexOutOfBoundsException A)

{

System.out.println(A);

System.out.println ("ARRAY INDEX IS OUT OF RANGE..");

}

finally

{

System.out.println ("I AM FROM FINALLY...");

}

}

}

NESTED TRY STATEMENTS:

The try statement can be nested. That is, a try statement can be inside the block of

another try. There could be situations where there is possibility of generation of multiple

exceptions of different types with in a particular block of the program code. We can use nested

try statements in such situations. The execution of the corresponding catch blocks of nested try

statements is done using a stack.

Syntax:

try

{

 statement 1;

 statement 2;

 try

 {

 statement 1;

 statement 2;

 }

 catch(Exception e)

 {

 }

}

catch(Exception e)

{

}

....

When nested try blocks are used, the inner try block is executed first. Any exception thrown in

the inner try block is caught in the corresponding catch block. If a matching catch block is not

found, then catch block of the outer try block are inspected until all nested try statements are

exhausted. If no matching blocks are found, the Java Runtime Environment handles the

execution.

The following example illustrates how to use nested try blocks

Example:

class Nestedtryex

{

public static void main(String args[])

{

try

{

String s1=args[0];

String s2=args[1];

int n1=Integer.parseInt(s1);

int n2=Integer.parseInt(s2);

try

{

 int n3=n1/n2;

 System.out.println(“division value:”+n3);

}

catch(ArithmeticException ae)

{

System.out.println ("DONT ENTER ZERO FOR DENOMINATOR...");

}

}

catch(ArrayIndexOutOfBoundsException aioobe)

{

System.out.println ("PASS ONLY TWO ARGUMENTS...");

}

catch(NumberFormatException nfe)

{

System.out.println ("PASS ONLY INTEGER VALUES...");

 }

}

}

4.14 Explain The Types Of Exceptions:

Hierarchy of Exception types: all exception types are sub classes of built in class Throwable.
Thus, Throwable class is at the top of the exception class hierarchy. This Throwable class
partitions the exceptions into –2distinct branches

 1. Exception
 2. Error

 java.lang
 |
 Throwable
 |
 |
 --
 Exception Error
 | |
 Run-time exception other exceptions
 | |
 ------------------ --------------------

 | | | | | |
 Sub classes of Runtime Sub classes of other
 Exceptions exceptions
Exception class: this class is used for exceptional conditions that user programs should catch.
We can also create our own custom exception types below this class among those these is an
important sub class called ‘runtime exception ‘.
 Exceptions of this type are automatically handled examples are division by zero, invalid
array indexing…..

Error class: this class defines exceptions that are not expected to caught under normal
circumstances by our program.
 Exceptions of type error are used by the java run time system to indicate errors and can
be caught by java run time itself.
 Ex: stack overflow

 Checked Exceptions: Checked exceptions are checked at compile-time.

It is named as checked exception because these exceptions are checked at Compile

time. Checked exceptions are extended from the java.lang.Exception class.

 Unchecked Exceptions: The exceptions that are checked at runtime by the JVM. Unchecked

exceptions are extended from the java.lang.RuntimeException class.

Types of Exceptions: Following are the exceptions available in Java:

1. Built-in Exceptions
2. User-defined Exceptions

Built-in Exceptions: Built-in Exceptions are the exceptions which are already available in Java.
These exceptions are suitable to explain certain error situations. Table 21.1 lists the important
Built-in Exceptions.

Exception class Meaning

ArithmeticException Thrown when an exceptional condition has occurred in
an arithmetic operation.

ArrayIndexOutOfBoundException Thrown to indicate that an array has been accessed
with an illegal index. The index is either negative or
greater than or equal to the size of the array.

ClassNotFoundException This exception is raised when we try to access a class
whose definition is not found.

FileNotFoundException Raised when a file is not accessible or does not open.

IOException Thrown when an input-output operation failed or
interrupted.

InterruptedException Thrown when a thread is waiting, sleeping, or doing
some processing, and it is interrupted.

NoSuchFieldException Thrown when a class does not contain the field for (or
variable) specified.

NoSuchMethodException Thrown when accessing a method which is not found.

NullPointerException Raised when referring to the members of a null object,
null represents nothing.

NumberFormatException Raised when a method could not convert a string into a
numeric format.

RuntimeException This represents any exception which occurs during
runtime.

StringIndexOutOfBoundsException Thrown by String class methods to indicate that an
index is either negative or greater than the size of the
string.

User-defined Exceptions: sometimes, the built-in exceptions in java are not able to describe a
certain situations. In such situations, like built-in exceptions, the user can also create his own
exceptions which are called “user-defined” exceptions. The following steps are followed in
creation of user-defined exceptions.
1. The user should create an exception class that extends Exception class.

class MyException extends Exception

2. Create either default constructor or parameterized constructor to store exception details. In
this constructor call super class i.e., Exception constructor from this & send the string there.

MyException() MyException(String str)
{ {
 (or) super(str);
} }

Default constructor does not store any exception details.
3. When the user wants to raise his own exception, he should create an object to his exception

class & throw it using throw clause.
e.g.:

MyException me=new MyException(“Exception details”);

