

A.A.N.M & V.V.R.S.R Polytechnic,
IX-UNIT
UNDERSTAND USER DEFINED FUNCTIONS
9.1: Define function:
		A function is a self-contained block of code that performs a particular task. Once a function has been designed and packed it can be treated as a black-box that takes some data from the main program and returns a value.
Types of function: there are 2-types of functions known as
1. Predefined functions (or) library functions
2. User-define functions.
	Predefined functions (or) library functions

	User-define functions.

	· They are not required to implement

· To use library functions we must include corresponding header file into our program.
· E.g.: printf(),scanf(),sqrt(),strcat()……….
	· Where as a user-defined function has to be developed by the user at the time of writing a program.
· Here we need not include any header file to use it. just call to use it.

· E.g.: main ()…..

9.2 State the need for user defined functions:
· If a program is divided into functional parts, then each part may be independently coded and later combined into a single unit. These independently coded programs are called subprograms or functions that are easier to understand, debug and test instead of putting everything in main program that lead to program become too large and complex.
· In some times certain operations or calculations are repeated at many points throughout a program. In such situations, we may repeat the program statements whenever they are needed.
So, if we use the functions that can be called and used whenever required. This saves both time and space.

9.3 Discuss the advantages of functions:
· It provides modularity to the program.
· Easy to re-use the code by simply calling that functions.
· In case of large program with thousands of code lines, debugging and editing and testing becomes easy if we use functions.
9.4 Discuss the elements of function: In order to use a user-defined function, we need to establish 3-elements that are related to functions.
Elements of functions are:
1 function definition
2 function call
3 function declaration.
1. Function definition (or) function implementation: Is an independent program module that is specially written to implement the requirements of the function. The general format of a function definition is:

	return_type function_name (arguments list)
{
Local-variable declaration;
 execution statement1;
execution statement1;
execution statement1;
…
…
…
return statement;
}

Function definition has following 6-elements:
1. Function name.
2. Function or return type.
3. List of parameters or arguments.
4. Local variable declarations.
5. Function statements.
6. A return statement.
All the six elements are grouped into 2-parts. Namely,
· Function header(first three elements)
· Function body(second three elements)
1. Function header: the header consists of 3-parts: the function type, The function name,The formal parameter list.
Return type and Function name: return type specifies the type of value(like int,float…) that the function is expected to return to the calling function. If function is not returning any values, we need to specify the return type as void.
The function name is nay valid C identifier and follows same rules as for variable names in C.
The formal parameter list: the parameter list declares the variables that will receive the data sent by the calling program. They serve as input data to the function to carry out the specified task.
		Parameter list contains declaration of variables separated by commas and surrounded by parentheses.
e.g.: 		float mul(int a, int b,int c){ ………	}	
int sum(int a, int b){ ………	}	
double power(double x,int n){……….}
Note: a function need not always receives values from the calling program. In such cases, we use keyword void.	
			int sum(void)
			{
				……..
			}
2. Function Body: contains declarations and statements necessary for performing the required task. The body enclosed in braces, contains
· Local variable declarations that specify the variables needed by the function
· Function statements that perform the required task.
· A return statement that returns the value evaluated by the function.
	float mul(float x,float y)
{
 float r; /*local variable*/
 r=x*y; /*computes the product*/
 return (r); /* returns the result*/
}
	void sum(int a,int b)
{
printf(“sum=%d”,a+b) /*no local variables computes sum*/
 return; /* nothing returning*/
}

9.5 Discuss about return values and their types:a function may or may not send back any value to the calling function, if it does, it is done through the return statement. The general form is:
		return;
		or
		return(value);
		or
		return value;
Note 1: a function may have more than one return statements.
E.g.: if(x>0)
 return 0;
 else
	 return(1);
Note 2: if a function that do computations using doubles, yet return int. then return value is truncated to an integer.
	int product(void)
	{
		return(2.5*3.0);
	}
Will return only 7.

9.6 Define a function call: A function can be called by simply using the function name followed by a list of actual parameters , enclosed in parentheses.
e.g.: 		main()
		{
			int y;
			y=mul(10,5);			/*function call*/
			printf(“%d”, y);
		}
When the compiler encounters a function call, the control is transferred to the function mul(). The function call sends two integer values 10,5 to the function
			int mul(int x,int y)
· There are many different ways to call a function. Such as,
mul(10,5);
mul(m,5);
mul(m,n);
mul(m+5,5);
mul(10,n-2);
mul(10,mul(12,5));
Note 1: the function used in expression, must return a value.for e.g.: y=mul(p,q); in this the function definition of mul() must have a return statement.
Note 2: a function can’t be used on the left side of assignment statements.
mul(a,b)=15; illegal;
9.7 Define function prototype or function decalration:
Like variables, all functions in a C program can be declared, before they are used.
A function declaration or prototype consists of 4-parts.
· Function type
· Function name
· Parameter list
· Terminating semicolon.
General Format is:
		Function-type function-name(parameter list);
		e.g.: int mul(int m,int n);
Note:
· The Parameter list must be separated by commas.
· The Parameters names do not need to be same in the prototype declaration and function definition.
· The parameters must match in type and in number and order
· Use of parameter names in declaration is optional.
The equivalent acceptable forms of declarations are:
		int mul(int,int);
		int mul(int a, int b);
		void display(void);
Aprototype or function declaration may be placed in 2-places in a program:
1. Above all the functions(global declaration)
2. Inside a function definition.
Note: prototype or function declaration is optional

9.8 Illustrate function declaration in programs:
int sum(int,int); 	/*function prototype or declaration*/
int main()
{
	int a,b,result;

	printf("enter any 2 values\n");
	scanf("%d%d",&a,&b);
	result=sum(a,b); 	/*calling function sum*/
	printf("sum of two given numbers is%d",result);
	return 0;
}
int sum(int x,int y) 	/*function definition*/
{
	int result;		/*local variable declaration*/
	result=x+y;
	return result;		/*return statement*/
}
9.9 Discuss and illustrate functionswith no arguments and no return values with sample programs:
· When a function has no arguments, it does not receive any data from the calling function.
· When it does not return a value, the calling function does not receive any data from the called function.
· i.e., no data transfer between the calling function and the called function.
[bookmark: _GoBack] (
Function2()
{
………………
………………
……………….
………………..
………………..
}
) (
Function1()
{
…………….
……………..
Function2()
……………..
……………..
}
)
	 No input
	
	
	

	 No output
	
	
No data communication between functions
	/* functios without arguments and without return values*/
 void sum();
void main()
{
sum();
}
void sum(void)
{
Int a,b;
printf("entera, b values");
scanf("%d%d",&a,&b);
printf(“addition of two numbers=%d”,a+b);
}

9.10Discuss and illustrate functions with arguments with no return values with sample programs:
· The nature of data communication between the calling function and the called function with arguments but no return value is :
· The actual and formal arguments should match in number, type and order.
· The values of actual arguments are assigned to the formal arguments on a one to one basis , starting with the first argument as shown in below:
 (
Function2(f)
{
………………
…………
………………
………
…………
.
}
) (
Function1()
{
……………….
Function2(a)
……………….
……………….
}
)
	Values of arguments

					No return value

One-way data communication

	/* functios with arguments and without return values*/
void sum(int,int);
void main()
{
inta,b;
printf("entera,b values\n");
scanf("%d%d",&a,&b);
sum(a,b);
}
void sum(int x, int y)
{
printf(“addition of two numbers=%d”,a+b);
}

9.10Discuss and illustrate functions with arguments with return values with sample programs:
· This type of functions will have two-way data communication as shown in fig:
 (
Function2 (f)
{
……………..
……………..
…………….
…………..
…………..
r
eturn(e)
}
) (
Function1()
{
………………..
Function2(a)
…………
……………….
}
)
				 Values of arguments

					Function result

			Two- way data communication between functions

	/* functios with arguments and with return values*/
Int sum(int,int);
Void main()
{
Int a,b,result;
printf("entera,b values\n");
scanf("%d%d",&a,&b);
result=sum(a,b);
printf("addition of two numbers=%d",result);
}
int sum(int x, int y)
{
int result;
result=a+b;
return(result);
 }

9.10 Discuss and illustrate functions with no arguments with return values with sampleprograms:
· In some occasions we may need to design functions that may not take any arguments but returns a value.
e.g: getchar() function , it cannot take any parameter from the calling program but returns an integer type data that represents a character.

	/* functios with out arguments and with return values*/
int sum();
void main()
{
int result;;
result=sum();
printf("addition of two numbers=%d",result);
}

int sum(void)
{
inta,b,result;
printf("entera,b values\n");
scanf("%d%d",&a,&b);
result=a+b;
return(result);
}

9.13: illustrate functions that return multiple values with sample programs:
1.We know a return statement can return only one value. Suppose, we want to get more information from a function, we can’t use return statement.
2. But, we can achieve this in C using the arguments not only to receive information but also to send back information to the calling function.
3. The arguments that are used to “send out” information are called “output parameter”.
4. The mechanism of sending back information through arguments is achieved using what are known as the address operator (&) and indirection operator (*).
For e.g.:
	void mathoperation (int x,int y,int *s,int *d);
void main()
{
	int x=20,y=10,s,d;
	mathoperation(x,y,&s,&d);
	printf("s=%d\n d=%d",s,d);
}
void mathoperation(int a, int b , int *sum, int *diff)
{
	*sum =a+b;
	*diff=a-b;
}

When the function is called the following assignments occurs:
					Value of 	x to a
					Value of 	y to b
					Address of 	s to sum
					Address of 	d to diff
The sum & diff in the header store the address, not actual values of variables. Now the variables sum & diff point to the memory locations of s &d respectively.
	The statement *sum=a+b adds values of a& b and the result is stored in the memory location pointed by sum, here the location pointed by sum is same as s.
	Similarly, the value of a-b is stored in the location pointed by diff, which is same as d.
Note: here, the s and d are passed by address for communicating with called function; this type of communication is called as “pass –by-reference” or “pass-by-address”.

