
A.A.N.M & V.V.R.S.R Polytechnic

UNIT-5

DECISION MAKING

5.1 Decision Making in Programming:

C is a set of statements which are normally executed sequentially in the order in which they

appear. This happens when no options or no repetitions of certain calculations are necessary. This

involves a kind of decision making to see whether a particular condition has occurred or not and then

direct the computer to execute certain statements accordingly.

C language possesses such decision making capabilities by supporting the following statements:

1. if statement

2. switch statement

3. Conditional operator statement

4. goto statement

These statements are popularly known as Decision making statements. These statements

‘control’ the flow of execution, they are known as Control statements.

5.2 Decision Making Statements:

C programming language provides following types of decision making statements:

Statements Description
If statement An if statement consists of a Boolean expressions

followed by one or more statements.

If.....else
An if statement can be followed by an expression

optional else statement which executes when the

Boolean expression is false.

Nested if You can use one if or else if statement inside

another if or else if statements.

Switch statement A switch statement allows a variable to be tested
for equality against a list of values.

Nested switch statement You can use one switch statement inside another
switch statement.

5.3 Relational Operators with Precedence:

Following table shows the Relational Operators:

Operator Description
==

!=

>

<

>=

<=

Checks if the values of two operands are equal or not, if yes then the condition

becomes true.

Checks if the values of two operands are equal or not, if values are not equal then
condition becomes true.
Checks if the value of left operand is greater than the value of right operand, if yes

then condition becomes true.

Checks if the value of left operand is less than the value of right operand, if yes then

condition becomes true.

Checks if the value of left operand is greater than or equal to right operand, if yes then

the condition becomes true.

Checks if the value of left operand is less than or equal to right operand, if yes then the

condition becomes true.

Precedence:

< , > ,<= , >= 1
st

precedence

== , != 2
nd

precedence

Associativity:
 Left to Right

A.A.N.M & V.V.R.S.R Polytechnic

5.4 Logical Operators with Precedence:

Following table shows all the Logical Operators supported by C language.

Operator Description

&&

||

!

It is called Logical AND operator. If both the operands are non-zero, then the

condition becomes TRUE.

It is called Logical OR operator. If one of the operand is non-zero, then the

condition becomes TRUE.

It is called Logical NOT operator. Use of reverse the logical state of its
operand. If a condition is TRUE then Logical NOT operator will be FALSE.

Precedence:

! 1
st

precedence

&& 2
nd

precedence

|| 3
rd

precedence

Associativity:
 Left to Right

5.6 Simple If Statement:
The general form of a simple if statement is:

if(test expression)

{
Statement-block;

}
Statement-x;

The ‘statement-block’ may be a single statement or a group of statements. If the test

expression is true, the statement-block will be executed; otherwise the statement-block will be skipped
and the execution will jump to the statement-x.

Note: When the condition is true both the statement-block and the statement-x are executed in

sequence.
The flowchart for simple if is given below:

Entry

Test

expression

True

False

Statement-x

Statement-block

Next statement

A.A.N.M & V.V.R.S.R Polytechnic

Example program:

#include<stdio.h>
main()

{

int n;

clrscr();

printf("Enter n value\n");
scanf("%d",&n);

 if(n<0)

 {

 n=-n;

}
printf(" AbsoluteValue =%d\n",n);
getch();

}

5.7 If......Else statement:
The if.....else statement is an extension of the simple if statement. The general form is:

if(test expression)

{

}

else
{

}

True-block statements;

False-block statements;

Statement-x;

If the test expression is true, then the true-block statements, immediately following the if

statements are executed; otherwise, the false-block statements are executed.
The flow chart for if.....else statement is shown below

Entry

True
test

expression ?

False

True-block

statement

False-block

statements

Statement-x

Example program:

#include<stdio.h>

main()

{
int n;

clrscr();

A.A.N.M & V.V.R.S.R Polytechnic

printf("Enter any number\n");
scanf("%d",&n);

if(n%2==0)
printf("The given number is even\n");

else

printf("The given number is odd\n");
getch();

}

5.7.1 Nesting of if.......else statements:
When a series of decisions are involved, we may have to use more than one if....else statement

in nested form. The logic of execution is shown below:

if(test condition-1)

{
if(condition-2)

{

}

else

{

}

else
{

}

Statement-1;

Statement-2;

Statement-3;

}
Statement-x;

If the condition-1 is false, the statement-3 will be executed; otherwise it continues to perform

the second test. If the condition-2 is true, the statement-1 will be evaluated; otherwise the statement-2
will be evaluated and then the control is transferred to the statement-x.

The flowchart for nested if.....else statement is given below:

Entry

False Test

condition-1

True

True Test

condition-2
False

Statement-3 Statement-2 Statement-1

Statement-x

Next statement

Example program:

A.A.N.M & V.V.R.S.R Polytechnic

#include<stdio.h>
main()

{

int a,b,c;

clrscr();

printf("Enter a,b,c values\n");
scanf("%d %d %d",&a,&b,&c);

if(a>b)

{
if(a>c)

printf("A is big\n");
else

printf("C is big\n");

}
else

{
if(b>c)

printf("B is big\n");
else

printf("C is big\n");

}
getch();

}

5.8 The else if ladder statement:

There is another of putting ifs together when multipath decisions are involved. A multipath
decision is a chain of ifs in which the statement associated with each else is an if. It takes the

following general form:
if(condition-1)

statement-1;
else if(condition-2)

statement-2;

else if(condition-3)
statement-3;

else if(condition-n)
statement-n;

else
default-statement;

statement-x;

This construct is known as the else if ladder. The conditions are evaluated from top downwards.

As soon as a true condition is found, the statement associated with it is executed and the
control is transferred to the statement-x. When all the n conditions become false, then the final else
containing the default-statement will be executed.

A.A.N.M & V.V.R.S.R Polytechnic

The flowchart of else if ladder is shown below:

True

Condition-1 False

Statement-1

True

Condition-2

False

Statement-2

True

Condition-n

False

Statement-n
Default-

statement

Statement-x

Next-

statement

Example program:

#include<stdio.h>
main()

{

int marks;

clrscr();

printf("Enter marks\n");
scanf("%d",&marks);

if((marks>=80)&&(marks<=100))
printf("Honours\n");

else if((marks>=60)&&(marks<=79))
printf("First Division\n");

else if((marks>=50)&&(marks<=59))

printf("Second Division\n");
else if((marks>=40)&&(marks<=49))

printf("Third Division\n");

else if((marks>=0)&&(marks<=39))
printf("Fail\n");

else
printf("Marks given above 100 or below \n");

A.A.N.M & V.V.R.S.R Polytechnic

getch();

}

5.9 Importance of Indentation:

The importance of indentation is given below:

 Indent statements that are dependent on the previous statements; provide at least three spaces
of indentation.

 Align vertically else clause with their matching if clause.
 Use braces on separate lines to identify a block of statements.
 Indent the statements in the block by at least three spaces to the right of the braces.

 Align the opening and closing braces.
 Use appropriate comments to signify the beginning and end of blocks.
 Indent the nested statements as per the above rules.

 Code only one clause or statement n each line.

5.10 Switch statement:

C has a built-in multiway decision statement known as a switch. The switch statement tests
the value of a given variable against a list of case values and when a match is found, a block of

statements associated with that case is executed.
The general form of the switch statement is shown below:

switch(expression)

{
case value-1:

case value-2:

..............

..............

..............

default:

}

block-1;

break;

block-2;

break;

default-block;

break;

Statement-x;

The expression is an integer expression or characters. Value-1, value-2 ... are constants or

constant expressions and are known as case labels. Each of these values should be unique within a
switch statement. Block-1, block-2 ... are statement lists and may contain zero or more statements.

There is no need to braces around these blocks.

NOTE: case labels must end with colon (:).
When the switch is executed, the value of the expression is successfully compared against the

values value-1, value-2..... If a case is found whose value matches with the value of the expression,

then the block of statements that follow the case are executed.

The break statement at the end of each block signals the end of a particular case and causes
an exit from the switch statement, transferring the control to the statement-x following the switch.

The default is an optional case. When present it will be executed if the value of the

expression does not match with any of the case values. If not present, no action takes place if all

matches fail and the control goes to the statement-x.
The flowchart of switch statement is shown below:

Rules for Switch statement:
 The switch expression must be an integer type.

 Case labels must be constants or constant expressions.
 Case labels must be unique. No two labels can have the same value.

 Case labels must end with colon.

A.A.N.M & V.V.R.S.R Polytechnic

 The break statement transfers the control out of the switch statement.

 The break statement is optional.
 The default label is optional.

 There can be at most one default label.
 The default may be placed anywhere but usually placed at the end.

 It is permitted to nest switch statements.

Example program:

#include<stdio.h>
main()

{
int a,b,c,x;

clrscr();

printf("Enter a,b values\n");
scanf("%d%d",&a,&b);

printf("1.Addition\n2.Subtraction\n3.Multiplication\n4.Division\n5.Modulo Division\n");
printf("Enter ur choice\n");

scanf("%d",&x);
switch(x)

{

case 1:c=a+b;

printf("C value is %d\n",c);

break;

case 2:c=a-b;
printf("C value is %d\n",c);

break;
case 3:c=a*b;

printf("C value is %d\n",c);
break;

case 4:c=a/b;

printf("C value is %d\n",c);
break;

case 5:c=a%b;
printf("C value is %d\n",c);
break;

default:printf("Invalid choice\n");

}
getch();

}

5.11 Conditional Operator:

The C language has an unusual operator, useful for making two-way decisions. This operator is a
combination of ? and :, and takes three operands. This operator is popularly known as conditional

operator. The general form of use of the conditional operator is as follows:

Conditional operator? expression1: expression2
The conditional expression is evaluated first. If the result is non-zero, expression-1 is

evaluated and is returned as the value of the conditional expression. Otherwise, expression-2 is

evaluated and its value is returned.

For example,
if(x<0)

flag=0;
else

flag=1;

can be written as

flag=(x<0)?0:1;

5.5 Evaluation of Logical Expression:
Logical Expression: An expression which combines two or more relational expressions
using logical operators is called logical expression or compound relational expressions.
 e.g.: a > b && x==10

A.A.N.M & V.V.R.S.R Polytechnic

A logical expression also yields a value of one or zero, according to the truth table shown
in fig:

 Op1 Op2 Op1 && op2 Op1 || op2 !op1

 0 0 0 0 1

 0 1 0 1 1

 1 0 0 1 0

 1 1 1 1 0

The relative precedence of relational and logical operators is as follows:
Precedence:
 FIRST PRECEDENCE: !
 SECOND PRECEDENCE: &&
 THIRD PRECEDENCE: ||

 Associativity:
 Left to Right
The relative precedence of relational and logical operators is as follows:
Highest !(Right to left)
 >, >= , < ,< =
 = =, !=
 &&
Lowest ||

Associativity:
 Left to Right

Example 1: x=((-10&&10)||(-20&&20))
 x=1||1
 x=0
Example2: a=20,b=30
 c = (!(a>b)&&(a||(!b==a)))
 c = (!(20>30)&&(20||(!30==20)))
 c = (1&&(20||0))
 c = (1&&1)
 c = 1
 Example program:
 #include<stdio.h>

main()
{

 int a=20,b=30,c;
 clrscr();
 c = (!(a>b)&&(a||(!b==a)));
 printf("c =%d\n",c);

getch();
}

