

A.A.N.M & V.V.R.S.R POLYTECHNIC,
 UNIT-12
UNDERSTAND BASICS OF FILE MANAGEMENT AND PREPROCESSOR DIRECTIVES
12.1: DEFINE FILE:
	A file is a place on the disk, where a group of related data is stored. C supports a no.of functions that the ability to perform basic file operations, like:
· Naming a file.
· Opening a file.
· Reading data from a file.
· Writing data to a file.
· Closing a file.
There are 2 ways to perform file operations in C. they are:
1. Using low-level I/O and uses UNIX system calls.
2. Using high-level I/O functions.
	function name
	operation

	fopen()

	· creates a new file for use.
· opens an existing file for use.

	fclose()
	· closes a file which has been opened for use.

	getc()
	· reads a character from a file.

	putc()
	· writes a character to a file.

	fprintf()
	· writes a set of data values to a file.

	fscanf()
	· reads a set of data values from a file.

	getw()
	· reads an integer from a file

	putw()
	· writes an integer to a file

	fseek()
	· sets the position to a desired point in the file.

	ftell()
	· gives the current position in the file

	rewind()
	· sets the position to the beginning of the file

When a C program begins execution , the following three streams are already open:
1.stdin (Standard Input): stdin is the file from which input is received and normally from the keyboard which is the defaut input device.
2 .stdout(Standard Output): stdout is the default output file.
3 . stderr(Standard Error): The purpose of stderr is to display the error messages to the standard device i.e., to the screen.
12.2 know how to declare file pointer to a file.
To perform any operation on a file we must specify following things they are:
1. File name: is a string of characters that make up a valid filename. It contains two parts , a primary name and an optional period with the extension.
2. Data structure: is defined as FILE in library of standard I/O function
3. Purpose: specifies what we want to do with the file.
Following is the general format of declaring a File
	 FILE *fp;

The above statement declares the variables fp as a “pointer to the data type FILE”. FILE is a structure that is defined in the I/O library. The “fp” pointer , which contains all the information about the file, is used as communication link between the system and program.
12.3 Illustrate the concept of file opening in various modes.
When we open a file , we must specify what we want to do with file . The general format for opening a File is :
 fp=fopen(“filename”,”mode”);
The above statement opens the file named filename and assigns to the FILE type pointer fp.
The statement also specifies the purpose of opening this file.The modes can be of the following:
	r
	open the file for reading only.

	w
	open the file for writing only.

	a
	open the file for appending only.

	r+
	the existing file is opened to the beginning for both reading and writing.

	w+
	same as w except both for reading and writing.

	a+
	same as a except both for reading and writing.

When trying to open a file, one of the following.
1. If mode is “writing” file is created if the file does not exist. The contents are deleted, if the file already exists.
2. If mode is “reading” and if it is exists, then file is opened with the current contents safe otherwise an error occurs.
3. If mode is “appending”, file is opened with the current contents safe. A file with specified name is created if the file does not exist,
Consider the following statements:
 file *fp1,*fp2;
 fp1=fopen(“data”, “r”);
 fp2=fopen(“result”,”w”);
The file data is opened for reading and results is opened for writing.
 12.4 Illustrate the concept of closing a file:
A file must be closed as soon as all operations on it have been completed for following reasons
· Any accidental misuse of the file will be prevented.
· Sometimes we have to close a file when we want to reopen the same file in a different mode.
The I/O library supports a function to do this for us. It takes the following segment:
	fclose(file_pointer);

			
e.g:
 file *fp1,*fp2;
 fp1=fopen (“data”, “r”);
 fp2=fopen (“result”, ”w”);
		 ………….
		 ………….
		 fclose(fp1);
		 fclose(fp2);
		 ……….
 ……….
This program opens two files and closes them after all operations on them are completed.
12.5 Illustrate the concept of input/output operations on a file:
Once a file is opened , reading from and writing data to it is accomplished using the standard I/O functions:
1. The getc() and putc() Functions:
The simplest file I/O functions are getc() and putc(). These are similar to getchar() and putchar() for handling one character at a time.
	Assume that a file is opened with w and file pointer fp1 , then the statement
			putc (c,fp1);
Writes the character contained in the character variable c to the file associated with file pointer fp1.
	Similarly, getc used to read a character from a file that has been opened in read mode.for example the statement:
				c=getc(fp2);
would read a character form the file whose file pointer is fp2.
Note:
1. The file pointer moves by one character position for every operation of getc or putc.
2. The getc will return an end-of-file EOF, when end of the file has been reached. Therefore, the reading should be terminated when EOF is encountered.
	#include<string.h>
#include<stdio.h>
main()
{
	FILE *fp;
	char c;
	fp=fopen("data","w");
	printf("enter the data into data file\n");
	while((c=getchar())!=EOF)
	{
		putc(c,fp);
	}
	fclose(fp);	/*closing the file data*/
	printf("\n output data in data file\n");
	fp=fopen("data","r");	/*re-opening data file*/
	while((c=getc(fp))!=EOF) /*reading data from file and putting onto screen*/
	{
		printf("%c",c);
	}

	fclose(fp);	/*closing the opended file*/
}

2.The getw and putw functions:
· The getw and putw are integer oriented functions.
· They are similar to the getc and putc functions and used to read and write integer values.
· The general form of getw and putw are:
	 putw(integer,fp);
integer=getw(fp);

	Example 2: reading digits and placing them into a file, and writing even numbers,odd numbers among them into other files.
#include<string.h>
#include<stdio.h>
main()
{
	FILE *f1,*f2,*f3;
	int number,i;
	f1=fopen("data1","w"); /*opening the file data1 with filepointer f1*/
	printf("enter the data into data file\n");
	for(i=1;i<=30;i++)
	{
		scanf("%d",&number);
		if(number==-1)
			break;
		putw(number,f1); /*writing a digit to data1 file*/
	}

	fclose(f1);	/*closing the file data1*/
	f1=fopen("data1","r");
	f2=fopen("even","w");
	f3=fopen("odd","w");
	printf("\n read data from data1 file\n");
	while((number=getw(f1))!=EOF)
	{
		if(number%2 == 0)
			putw(number,f2); /*writing to even file*/
		else
			putw(number,f3); /*wrinting to odd file*/
	}

	fclose(f1);	/*closing the opended file data1*/
	fclose(f2);	/*closing the opended file even*/
	fclose(f3);	/*closing the opended file odd*/

	f2=fopen("even","r");	/*opening the file even in read mode*/
	f3=fopen("odd","r");	/*opening the file odd in read mode*/

	printf("\n contents of file even\n");
	while((number=getw(f2))!=EOF)
	{
		printf("%d\t",number);
	}

	printf("\n contents of file odd\n");
	while((number=getw(f3))!=EOF)
	{
		printf("%d\t",number);
	}
	
	fclose(f2);
	fclose(f3);
}

3.using fprintf and fscanf functions:
· The functions fprintf and fscanf perform I/O operations that are similar to the functions printf and scanf , except that they work on files.
 The general form of fprintf is:
			fprintf(fp, “control string”, list);

· fp-is the file pointer
· the control string contains output specifications for the items in the list.
· The list include variables or constants or strings.
e.g.: fprintf(fp, “%d %s %f”, age, name, 7.5);
 The general form of fscanf is:
			fscanf(fp, “control string”, list);

· this statement would read the items in the list form the file specified by the file pointer fp.
 e.g.: fscanf(fp, “%d %s %f”,& age, name, &price);
	#include<stdio.h>
main()
{
	FILE *fp;
	char item[10];
	int number,quantity,i;
	float price,value;
	fp=fopen("inventory","w");
	printf("itemname number	price	Quantity\n");
	for(i=1;i<=3;i++)
	{
		scanf(“%s%d%f%d",item,&number,&price,&quantity);
		fprintf(fp,"%s%d%f%d",item,number,price,quantity);

	}

	fclose(fp);	/*closing the file data*/
	printf("\n \n");

	fp=fopen("inventory","r"); /*re-opening data file*/
	printf("itemname number	price	Quantity\n");

	for(i=1;i<=3;i++)
	{
		fscanf(fp,"%s%d%f%d",item,&number,&price,&quantity);
		value=price*quantity;
		fprintf(fp,"%s %d %f %d %f",item,number,price,quantity,value);

	}

	fclose(fp);	/*closing the opended file*/
}

12.6: illustrate the concept of random access to files.
· When we are interested in accessing only a particular part of a file and not in reading the other parts, then this can be achieved with the help of the functions fseek, ftell, and rewind.
ftell(): Takes a file pointer and returns the current position. This function is useful in saving the current position of a file, which can be used later in the program.
It takes the following form:
n=ftell(fp);
rewind(): Take a file pointer and resets the position to the start of the file. For e.g: the statement
rewind(fp);
n=ftell(fp);
Would assign 0 to n because the file position has been set to the start of the file by rewind.
fseek(): is used to move the file position to a desired location within the file . It takes the following form:
		 fseek(filepointer, offset, position);
· Filepointer is a pointer to the file ,
· Offset is a number or variable of type long –specifies number of positions to be moved from the location specified by position.
· Position is an integer number . and it has one of the following 3-values:
	Value
	Meaning

	0
	Beginning of file

	1
	Current position

	2
	end of the file

	Example program on random access of a file:
#include<stdio.h>
main()
{
	FILE *fp;
	char c;
	long n;
	fp=fopen("random","w");
	printf("enter the data into the RANDOM file\n");
	while((c=getchar())!=EOF)
	{
		putc(c,fp);
	}
	printf("\n no.of characters entered=%ld \n",ftell(fp));

	fclose(fp);	/*closing the file random*/

	fp=fopen("random","r");	/*re-opening random file*/
	n=0L;
	while(feof(fp)==0) /*reading data from file and putting onto screen*/
	{
		fseek(fp,n,0);		/*position to starting of file*/
		printf("position of %c is %ld \n",getc(fp),ftell(fp));
		n=n+5L;
	}
	}
[image:]

12.7 State the need of preprocessor directives:
Another unique feature of C language is the preprocessor . The C preprocessor provides several tools that are available in other language .
· Easy to modify.
· Easy to read.
· Portable.
· More efficient.
· It is used transport form one machine to another.
· Programs easier to develop.
12.8 Explain preprocessor directives.
Preprocessor : is a program that processes the source code before it passes through the compiler. It operates under the control of preprocessor command line or directives.
	Directives are placed in the source program before the main line, and appropriate actions are taken and then the source program is handed over to the compiler.
 All preprocessor commands(Directives) should
· Begin with pound symbol(#).
· Begin in first column.
· Be placed before main()
The list of C preprocessor directives are given below
	Directive
	Function

	#define
	Defines a macro substitution.

	#undef
	Un defines a macro

	#include
	Specifies the files to be included.

	#ifdef
	Test for a macro definition.

	#if
	Test a compile-time condition.

	#else
	Specifies alternatives when #if test fails.

	#endif
	Specifies the end of #if

	#ifndef
	Tests whether a macro is not defined.

Preprocessor directives can be divided into 3-categories:
 1.Macro substitution directives: Used to define and undefined user defined macros.
2. File inclusion directives: Used to include header files and other C files in a C program .
3.Compiler control directives : Used to provide conditional compilation and to change the natural flow of control in macro substitution and handle errors.
12.9 Explain macro substitution using #define with an example:
		Macro substitution is a process where an identifier in a program is replace by a string composed of one or more tokens using #define statement. It takes the following form:
			#define identifier string
	If this statement is included in the program at the beginning, then the preprocessor replaces every occurrence of the identifier in the source code by the string.
There are different forms of macro substitutions and are:
1. Simple macro substitution.
2. Argumented macro substitution.
3. Nested macro substitution.
· Simple macro substitution: examples are
				#define COUNT 	 100
				#define FALSE 	 0
				#define SUBJECTS 6
				#define Pi	 3.14
Example :
			#define M 	5
			……
			…..
			Total=M+200; /*5 will be substituted in M*/
			Printf(“%d”,M); /* 5 will be displayed on screen*/
Note:
1. It can include expressions as well.
e.g.:		#define area		5*12.46
		#define size		sizeof(int)*4
		#define D		(45-32)
2. We can also use macro to define almost anything.
e.g:		#define TEST	if(x>y)
		#define AND	
		#define PRINT	printf(“x is big”);
to build statement as follows:
				TEST AND PRINT.
This is equivalent to
			If(x>y) printf(“x is big”);
3. Some more useful macro substitutions are:
#define EQUALS	==
#define AND	&&
#define OR		||
· Argumented macro substitution: It takes the form:
#define 	identifier(x1,2,……….x3)	string
e.g.:	
	#define		cube(x)	x*x*x
If the following statement appears later in the program:
		Volume=cube(side);
Then the preprocessor would expand this statement to:
		Volume=(side*side*side);

· Nested macro substitution: by using this we can use one macro in the definition of another one.
e.g.:			#define	M	5
				#define	N	M+1
3. File inclusion directives:
An external file containing functions, variables or macro definitions can be includes as apart of our program.
The #include directive is used to inform the preprocessor to include or attach the specified header to the source code that we write.
The #include can be used in two ways
#include<filename>: include the system header files
#include “filename”: include the user defined header files
Compiler control directives :
#ifdef:
#ifdef is the simplest form of conditional preprocessor directive and is used to check for the existence of macro definition.
Syntax:
#ifdef MACRO
CONTROLLED TEXT
#endif

#ifndef:
It checks whether the macro has not been defined.
Syntax:
#ifndef MACRO
controlled text
#endif

#if:
The if directive is used to control the comp[ilation of portions of a source file.
If the specified condition has a non-zero value,the controlled text immediately following the #if directive is retained in the translation unit.
Syntax:
#if condition
controlled text
#endif

#else:
The #else directive can be used within the controlled text of a #if directive to provide alternative text to be used if the condition is false.
Syntax:
#if condition
Controlled text 1
#else
Controlled text 2
#endif

#elif:
The #elif directive is used when there are more than two possible alternatives.
The #elif directive is like #else directive embedded within the #if directive.
Syntax:
#if condition
Controlled text 1
#elif new-condition
Controlled text 2
#endif

#endif:
The #endif directive is used to end the conditional compilation directive.
Syntax:
#endif

image2.png
enter the data into the RANDOM file

no.of characters entered=27
position of a is @
position of £ is 5
position of k is 10
position of p is 15
position of u
position of z
position of @ is

g8

