UNIT-3 Understand the Number Systems

Number systems:

Number system contains a set of numbers that have common characteristics. In any number system; three aspects determine the value of each digit with in a number.

- \checkmark The digit itself.
- \checkmark The position of the digit in that number
- \checkmark The base of the number system

3.1 various number systems used in digital computer:

The most important number systems for computer are:

- Decimal number system
- Binary number system
- Octal number system
- Hexadecimal number system

Radix(or) Base of a number:

The base of a number system is the number of different symbols or digits used in that system.

1)Decimal number system:

- \checkmark The number system that we use in our day-to-day life is called the decimal number system.
- \checkmark It is positional number system and is the mostly widely used system for representing numbers.
- ✓ In decimal number system the <u>BASE is 10</u>, because it uses <u>10</u> different symbols or digits(i.e.) <u>0,1,2,3,4,5,6,7,8,9 (0 to 9).</u>

Example: The decimal number 1234 (written as $(1234)_{10}$) represents the Polynomial.

POSITION	3	2	1	0
VALUE(WEIGHTS)	10^{3}	10^{2}	10 ¹	10^{0}
DECIMAL POINT	1	2	3	4

 $=(1X10^{3}) + (2X10^{2}) + (3X10^{1}) + (4X10^{0})$

=(1X1000) + (2X100) + (3X10) + (4X1)

=1000 + 200 + 30 + 4

=1234

=(1234)₁₀

2) Binary number system:

- ✓ Binary number system is a very important number system so far as the digital computers concerned, because computers work with binary numbers.
- ✓ Binary number system is the positional binary system.
- ✓ The <u>BASE</u> of Binary number system is <u>2</u> and it uses two digits (i.e.) 0 & 1.
- ✓ These <u>symbols or digits</u> are abbreviated as bits. Thus the word bit stands for either of the binary digits namely 0 or 1.

Example: the decimal equivalent of the binary number 11010 is

POSITION	4	3	2	1	0
VALUE(WEIGHTS)	2^4	2^{3}	2^{2}	2^{1}	2^{0}
BINARY POINT	1	1	0	1	0

 $(11010)_{2} = (1X2^{4}) + (1X2^{3}) + (0X2^{2}) + (1X2^{1}) + (0X2^{0})$

= (1X16) + (1X8) + (0X4) + (1X2) + (0X1)

=16 + 8 + 0 + 2 + 0

=26

 $(11010)_2 = (26)_{10}$

3) Octal number system:

- ✓ The base or radix of the octal number system is 8,because it uses 8 symbols or digits (i.e.) 0,1,2,3,4,5,6,7
- \checkmark This system is also used in computer industry.
- ✓ This system was issued to provide a shorthand way to deal with long strings of 0's & 1's creates in binary.

Example: the decimal equivalent of the octal number 2056 is

POSITION	3	2	1	0
VALUE(WEIGHTS)	8 ³	8 ²	8^{1}	8^0
OCTAL POINT	2	0	5	б

$$(2056)_{8} = (2X8^{3}) + (0X8^{2}) + (5X8^{1}) + (6X8^{0})$$
$$= 2X512 + 0X64 + 5X8 + 6X1$$
$$= 1024 + 0 + 40 + 6 = 1070$$
$$(2056)_{8} = (1070)_{10}$$

4) Hexadecimal Number System:

- ✓ The base or radix of the octal number system is 16, because it uses 16 symbols or digits
- ✓ The first ten symbols are represented by digits 0 to 9 and the remaining six by the letters 'A' through 'F'.

A=10, B=11, C=12, D=13, E=14, F=15.

✓ This number system is also used to provide a shorthand way to deal with long strings of 0's and 1's created in binary.

Example: Decimal equivalent of Hexadecimal number AF3D is

POSITION	3	2	1	0
VALUE(WEIGHTS)	16 ³	16 ²	16 ¹	16 ⁰
HEXA-DECIMAL				
POINT	А	F	3	D

 $(AF3D)_{16} = (AX16^{3}) + (FX16^{2}) + (3X16^{1}) + (DX16^{0})$ = (10X4096) + (15X256) + (3X16) + (13X1)= 40960 + 3840 + 48 + 13= 44861 $(AF3D)_{16} = (44861)_{10}$

Comparison of the Binary, Octal, Decimal and Hexadecimal:

Attribute	Binary	Octal	Decimal	Hexadecimal
Base	2	8	10	16
Lower Digit	0	0	0	0
Highest Digit	1	7	9	F

IMPORTANT TABLE EQUIVALENT VALUES OF DIFFERENT SYSTEM:

Decimal System	Binary System	Octal System	Hexadecimal System
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	. 9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10

3.2 Convert Decimal Number into Binary Number:

- > The <u>integer and fractional parts</u> of the decimal number are dealt with separately.
- Divide the integer part of the given decimal number repeated by 2 and writing down the remainder after each division.
- > The remainder are then taken in <u>reverse order (bottom to top)</u> to form the binary equivalent of the integer part of the decimal number.
- The Fractional part of the given decimal number is multiplied repeatedly by 2 each time recording carry.
- The integers (carry) taken from (top to bottom) to form the binary equivalent of fractional part to the decimal number.

EXAMPLES on Conversion of Decimal Number into Binary Number:

Examp	ole 1:		Example 2:
		number125 into binary	Convert decimal number 0.4375 into binary
numb	ber	-	number
Answe	<u>r:</u>		
	0 1	then Divide the given decimal	Answer:
	-	by 2 and writing down the	It is a Fractional part then multiplies the given
remain	der after e	ach division.	decimal number repeatedly by 2 each time
Div	vision	Remainder	recording carry.
2	125		Multiplication product carry
2	62		$0.4375 \ge 2 = 0.8750 \qquad 0$
2	31	> 0	$0.8750 \ge 2 = 1.750 =1$
2	15	1	$0.750 x \ 2 = 1.50 \ 1$
2	7	> 1	$0.50 x \ 2 = 1.00 \ 1$
2	3	> 1	It is an fractional part the carry is taken
2	1	> 1	from top to bottom is 0111
	O	> 1	Thus $(0.4375)_{10} = (0.0111)_2$
		part the remainder is taken op is 1111101 Thus $(125)_{10} = (1111101)_2$	

EXAMPLE 3: Convert the decimal number 43.375 to equivalent binary number

Answer: It consists of integer part (i.e.) 43 & fractional part (i.e.) 0.375

For in	teger part (i.e	<u>e.) 43</u>	For fractional pa	For fractional part (i.e.) 0.375			
It is integer part then Divide the given decimal			It is a Fractional	It is a Fractional part then multiplies the given			
number repeated by 2 and writing down the			decimal number	repeatedly by 2 eac	ch time		
remainder after each Division.		recording carry.					
Division Remainder							
2	43						
2	21	1	<u>Multiplication</u>	product	<u>carry</u>		
2	10	> 1	0.375 x 2	= 0.750	0		
2	5	> o	0.750 x 2	= 1.50	1		
2	2	>1	0.50 x 2	= 1.00	1		
2	1	> 0					
	0	>1					
It is an integer part the remainder is taken from bottom to top is 101011 $(43)_{10} = (101011)_2$		to bottom is 011	1 part the carry is ta (0.011)2	aken from top			
The fit	nal answer is	$(43.375)_{10} = (101011.011)_2$					

Example: 4 convert the decimal number 282.0 to equivalent binary number. Answer: It consists of integer part (i.e.) 282 & fractional part (i.e.) 0.0

Answer: It consists of integer part (i.e.) 282 & fractional	part (i.e.) 0.0				
For integer part (i.e.)282It is integer part then Divide the given decimal numberrepeated by 2 and writing down the remainder after eachdivision.Division22282	for fractional part (i.e.) 0.0It is a Fractional part then multiplies the given decimal number repeatedly by 2 each time recording carry.Multiplicationproductcarry				
2 141 →0					
2 70 →1	$0.0 \ge 2 = 0.00 =0$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	It is an fractional part the carry is taken				
$2 4 \rightarrow 0$	from top to bottom is 0				
2 2 >0	$(0.0)_{10} = (0)_2$				
2 1 →0					
• T It is an integer part the remainder is taken from					
bottom to top is 100011010					
$(282)_{10} = (100011010)_2$					
<u>Final answer is:</u> $(282.0)_{10} = (100011010.0)_2$					
EXAMPLE 5:	EXAMPLE:6				
Convert the decimal number 1024 to	Convert the decimal number 0.65 to equivalent				
equivalent binary number. Answer:	binary number.				
It is integer part then Divide the given decimal	Answer:				
number repeated by 2 and writing down the	It is a Fractional part then multiplies the given				
remainder after each Division	decimal number repeatedly by 2 each time				
Division Remainder	recording carry.				
2 1024					
2 512 → 0	Multiplication product carry				
2 256 ••• • •	$0.65 \times 2 = 1.30 - 1$				
2 <u>128</u> > 0	$0.30 \times 2 = 0.60 - 0$				
2 64 → 0	$0.60 \times 2 = 1.20 - 1$				
2 32 → 0	0.20 x 2 = 0.40 - 0				
2 16> 0	$0.40 \ \text{x} \ 2 = 0.80 \ \dots \ 0$				
2 8 ~> 0	The fraction may never terminated so stopped				
2 4 > 0	the multiplication				
2 2 > 0					
2 1 → 0	It is a fractional part the carry is taken from				
	top to bottom is 10100 Thus $(0.65)_{10} = (10100)_2$				

Thus $(0.65)_{10} = (10100....)_2$

 $(1024)_{10} = (1000000000)_2$

from bottom to top is 1000000000

It is an integer part the remainder is taken

3.3 Convert Binary number into Decimal number:

➢ For Integer:

We can convert a binary number to its decimal equivalent by multiplying each binary digit with its position weight and sum of all bits gives the decimal number.

➢ For Fraction: It can be done in two steps.

<u>Step-1:</u> Multiplying the digits which lie after the decimal point by 2⁻¹, 2⁻², 2⁻³ ... <u>Step-2:</u> Simplifying the resulting fractions and adding them to get decimal number. **EXAMPLE 1:**

Convert the binary number 100101 to equivalent decimal number.

It is an integer part so we can multiply each binary digit with its position weight and sum of all bits gives the decimal number.

POSITION	5	4	3	2	1	0
VALUE(WEIGHTS)	2 ⁵	2^4	2^{3}	2^{2}	2^{1}	2^{0}
BINARY POINT	1	0	0	1	0	1

$$(100101)_2 = (1x2^5) + (0x2^4) + (0x2^5) + (1x2^2) + (0x2^1) + (1x2^0)$$
$$= 32 + 0 + 0 + 4 + 0 + 1$$

$$=32+0+0+4+0$$

=37

$$(100101)_2 = (37)_{10}$$

EXAMPLE 2:

Convert the binary number 0.111 to equivalent decimal number

Answer: It is a fractional part it can be done in two steps.

Step-1: Multiplying the digits which lie after the decimal point by 2^{-1} , 2^{-2} , 2^{-3}

Step-2: Simplifying the resulting fractions and adding them to get decimal number.

$$(0.111)_{2} = (1x2^{-1}) + (1x2^{-2}) + (1x2^{-3})$$

= $\frac{1}{2} + \frac{1}{4} + \frac{1}{8}$
= $\frac{4 + 2 + 1}{8}$
= $\frac{-7}{8}$
= 0.875
 $(0.111)_{2} = (0.875)_{10}$

EXAMPLE 3:

Convert the binary number 101101.101 to decimal number.

<u>Answer</u>: It consists of integer part (i.e.) 1101 & fractional part (i.e.)0.101 For integer part (i.e.) 101101:

It is an integer part so we can multiply each binary digit with its position weight and sum of all bits gives the decimal number.

			-				-
POSITION	5	4	3	2	1	0	
VALUE(WEIGHTS)	2 ⁵	2^4	2^{3}	2^{2}	2^{1}	2^{0}	
BINARY POINT	1	0	1	1	0	1	

$$(101101)_{2} = (1X2^{5}) + (0X2^{4}) + (1X2^{3}) + (1X2^{2}) + (0X2^{1}) + (1X2^{0})$$

= (1X32) + (0X16) + (1X8) + (1X4) + (0X2) + (1X1)
= 32 + 0 + 8 + 4 + 0 + 1
= 45
(101101)_{2} = (45)_{10}

For fractional part (i.e.) 0.101:

It is a fractional part it can be done in two steps.

Step-1: Multiplying the digits which lie after the decimal point by 2^{-1} , 2^{-2} , 2^{-3} Step-2: Simplifying the resulting fractions and adding them to get decimal number $(0.101)_2 = (1x2^{-1}) + (0x2^{-2}) + (1x2^{-3})$

$$= \frac{1}{2} + 0 + \frac{1}{8}$$
$$= \frac{4 + 0 + 1}{8}$$
$$= \frac{5}{8}$$
$$= 0.625$$
$$(0.111)_2 = (0.625)_{10}$$

The final answer is (101101.101)2 = (45.625)10

EXAMPLE 4: Convert the binary number 100101.0 to decimal number

Answer: It consists of integer part (i.e.) 100101 & fractional part (i.e.)0.0

□ For integer part (i.e.)100101:

It is an integer part so we can multiply each binary digit with its

position weight and sum of all bits gives the decimal number.

POSITION	5	4	3	2	1	0
VALUE(WEIGHTS)	2 ⁵	2^{4}	2^{3}	2^{2}	2 ¹	20
BINARY POINT	1	0	0	1	0	1

$$(100101)_{2} = (1x2^{5}) + (0x2^{4}) + (0x2^{3}) + (1x2^{2}) + (0x2^{1}) + (1x2^{0})$$

= (1x32) + (0x16) + (0x8) + (1x4) + (0x2) + (1x1)
= 32 + 0 + 0 + 4 + 0 + 1
= 37

 $(100101)_2 = (37)_{10}$

 \Box For fractional part (i.e.) 0.0

It is a fractional part it can be done in two steps. <u>Step-1:</u> Multiplying the digits which lie after the decimal point by 2^{-1} , 2^{-2} , 2^{-3} <u>Step-2:</u> Simplifying the resulting fractions and adding them to get decimal number

 $(0.0)_2 = (0x2^{-1})$ =0 $(0.0)_2 = (0)_{10}$

The final answer is $(100101.0)_2 = (37.0)_{10}$

3.4 Convert binary number into hexadecimal number:

<u>METHOD -1</u> for converting a binary number to its hexadecimal form first we convert binary number to decimal number and then convert decimal number to hexadecimal number.

METHOD-2

For INTEGER PART:

STEP-1: Divide the binary digits into groups of four (from RIGHT TO LEFT) **STEP-2:** Convert each group of 4 binary digits to its hexadecimal equivalent If any group does not have 4 bits it can be extended by adding 0's. For integer part 0's can be added on left side of group

FOR FRACTIONAL PART:

STEP-1: Divide the binary digits into groups of four (from LEFT TO RIGHT) **STEP-2:** Convert each group of 4 binary digits to its hexadecimal equivalent If any group does not have 4 bits it can be extended by adding 0's For fractional part 0's can be added on right side of group

EXAMPLE: Convert binary number 101110.100010 to hexadecimal number. **ANSWER:**

METHOD-1

It consists of integer part (i.e.) 101110 & fractional part (i.e.) 0.100010

For integer part (i.e.) 101110:

Binary to decimal: $(101110)_2 = (?)_{10}$

It is an integer part so we can multiply each binary digit with its position weight and sum of all bits gives the decimal number.

POSITION	5	4	3	2	1	0
VALUE(WEIGHTS)	2^{5}	2^4	2^{3}	2^{2}	2^{1}	2^{0}
DIGITS	1	0	1	1	1	0

 $(101101)_{2} = (1x2^{5}) + (0x2^{4}) + (1x2^{3}) + (1x2^{2}) + (1x2^{1}) + (0x2^{0})$ = (1x32) + (0x16) + (1x8) + (1x4) + (1x2) + (0x1) = 32 + 0 + 8 + 4 + 2 + 0 = 46 (101110) = (46)

 $(101110)_2 = (46)_{10}$

Finally Decimal to hexadecimal: $(46)_{10} = (?)_{16}$

It is integer part then Divide the given decimal number repeated by 16 and writing down the remainder after each division.

It is an integer part the remainder is taken from bottom to top is 214

 $(46)_{10} = (214)_{16}$ (46)₁₀ = (2E)₁₆ (E=14) Final answer for integer part (101110)₂ = (46)₁₀ = (2E)₁₆

For fractional part (i.e.) 0.100010

BINARY TO DECIMAL: $(0.100010)_2 = (?)_{10}$

It is a fractional part it can be done in two steps.

Step-1: Multiplying the digits which lie after the decimal point by 2^{-1} , 2^{-2} , 2^{-3} Step-2: Simplifying the resulting fractions and adding them to get decimal number $(0.100010)_2 = (1x2^{-1}) + (0x2^{-2}) + (0x2^{-3}) + (0x2^{-4}) + (1x2^{-5}) + (0x2^{-6})$

 $= \frac{1}{2} + 0 + 0 + 0 + \frac{1}{32} + 0$ $= \frac{16+1}{32}$ $= \frac{17}{32}$ = 0.53125

$(0.100010)_2 = (0.53125)_{10}$

FINALLY DECIMAL TO HEXADECIMAL: $(0.53125)_{10} = (?)_{16}$

It is a Fractional part then multiplies the given decimal number repeatedly by 16 each time recording carry.

product Multiplication carry 0.53125 x 16 = 8.5 _____ 8 _____ 8 0.5 x 16 = 8.00.0 = 0.00_____ 0 x 16

It is a fractional part the carry is taken from top to bottom is 880 Final answer for fractional part $(0.53125)_{10} = (0.880)_{16}$

 $(101110.100010)_2 = (46.53125)_{10} = (2E.880)_{16}$

METHOD-2

FOR INTEGER PART:

STEP-1: Divide the binary digits into groups of four (from RIGHT TO LEFT) STEP-2: Convert each group of 4 binary digits to its hexadecimal equivalent If any group does not have 4 bits it can be extended by adding 0's For integer part 0's can be added on left side of group

FOR FRACTIONAL PART:

STEP-1: Divide the binary digits into groups of four (from LEFT TO RIGHT) STEP-2: Convert each group of 4 binary digits to its hexadecimal equivalent If any group does not have 4 bits it can be extended by adding 0's For fractional part 0's can be added on right side of group

 $\begin{array}{rll} 101110.100010 &= (0010) \ (1110 \). & (1000) \ (1000) \\ &= \ (2) & (E) \ . & (8) & (8) \\ (101110.100010)_2 &= (2E.88)_{16} \end{array}$

3.5 CONVERT HEXADECIMAL TO BINARY NUMBER

Method-1: Given hexadecimal first convert into decimal and then convert it into the Binary number. **Method-2:** To convert a hexadecimal to its binary form each digit of the given should be converted In to the 4 bit binary.

EXAMPLE: convert the hexadecimal number FB2.1CE8 to binary number. **Answer: method-1**

First convert the given hexadecimal into decimal and then convert it into the Binary number.

It consists of integer part (i.e.) FB2 & fractional part (i.e.) 0.1CE8

For integer part (i.e.) FB2 **FIRST HEXADECIMAL to decimal:** $(FB2)_{16} = (?)_{10}$

It is an integer part so we can multiply each binary digit with its position weight and sum of all bits gives the decimal number.

0										
	POSITION	2	1	0						
	VALUE(WEIGHTS)	16^{2}	16 ¹	16^{0}						
	DIGITS	F	В	2						
(FB2	$(E_{16} = (Fx16^2) + (Bx16^1))$	$+(2x16^{\circ})$)							
=(Fx256) + (Bx16) + (2x1)										
	=(15x256)+(11x)	(16) + (2x1)) (F=15, H	B =11)						
	= 3840 + 176 + 2									
	=4018									
(F)	$B2)_{16} = (4018)_{10}$									
N										

➢ Finally decimal to binary

It is integer part then Divide the given decimal number repeated by 2 and writing down the remainder after each Division

It is an integer part the remainder is taken from bottom to top is 111110110010

 $(4018)_{10} = (111110110010)_2$

FINAL ANSWER FOR INTEGER PART: $(FB2)_{16} = (4018)_{10} = (11110110010)_2$

FOR FRACTIONAL PART (i.e.) 0.1CE8: HEXA DECIMAL TO DECIMAL NUMBER For fractional part it can be done in two steps.

Step-1: Multiplying the digits which lie after the decimal point by 16⁻¹, 16⁻², 16⁻³.....

Step-2: Simplifying the resulting fractions and adding them to get decimal number.

 $(0.1CE8)_2 = (1x16^{-1}) + (Cx16^{-2}) + (Ex16^{-3}) + (8x16^{-4})$

= 1/16 + C/256 + E/4096 + 8/65536

= 1/16 + 12/256 + 14/4096 + 8/65536 (C=12, E=14)

=4096+3072+224+8

65536

```
= 7400/65536
```

$$= 0.1129$$

 $(0.1CE8)_2 = (0.1129)_{10}$

FINALLY DECIMAL TO BINARY:

It is a Fractional part then multiplies the given decimal number repeatedly by 2 each time recording carry.

Multiplication product carry $0.1129 \times 2 = 0.2258 \dots 0$ $0.2258 \times 2 = 0.4516 - 0.4516$ $0.4516 \times 2 = 0.9032 \dots 0$

 $0.9032 \times 2 = 1.8064 \dots 1$

 $0.8064 \times 2 = 1.6128 - 1$

> The fraction may never terminated so stopped the multiplication

It is a fractional part the carry is taken from top to bottom is 00011...

Thus $(0.1129)_{10} = (0.00011....)_2$

FOR fractional part: $(0.1CE8)_{16} = (0.1129)_{10} = (0.00011....)_2$

FINAL ANSWER: (FB2.1CE8)₁₆ = $(4018.1129)_{10} = (111110110010.00011....)_2$

Answer: method-2

To convert a hexadecimal to its binary form each digit of the given hexadecimal should be converted to its 4 bit binary equivalent & combine into a single binary number

FOR INTEGER PART(i.e.) FB2	FOR FRACTIONAL PART(i.e.) 0.1CE8
$(F)_{16} = (15)_{10} = (1111)_2$	$(1)_{16} = (1)_{10} = (0001)_2$
$(\mathbf{B})_{16} = (11)_{10} = (1011)_2$	$(C)_{16} = (12)_{10} = (1010)_2$
$(2)_{16} = (2)_{10} = (0010)_2$	$(E)_{16} = (14)_{10} = (1110)_2$
All the source taken from table	$(8)_{16} = (8)_{10} = (1000)_2$
$(FB2)_{16} = (111110110010)_2$	All the source taken from table
	$(0.1CE8)_{16} = (0.0001101011101000)_2$

FINAL ANSWER: $(FB2.1CE8)_{16} = (111110110010.0001101011101000)_2$

Coding schemes Introduction

A Computer accepts and processes data in binary form. The process of converting data into binary form is called encoding of data. So we use some codes to represent characters in terms of 0'sand 1's.

The most widely used codes are as follows:

- 1. Binary coded Decimal (BCD).
- 2. American Standard code for Information Interchange (ASCII).
- 3. Extended Binary Coded Decimal Interchange Code (EBCDIC).

1. Binary Coded Decimal (BCD): The BCD is the simplest binary code to represent a decimal number.

In BCD code each decimal digit is represented by four binary bits.

	BCD Equivalent
Decimal Digit	8421
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

3.6 Explain the ASCII coding Scheme

The ASCII (American Standard Code for Information Interchange) is pronounced as "ask-ee".

- It was developed by American National Standards Institute (ANSI).
- It is very widely used code in <u>small computers</u>. The first ASCII code was 7-bit code but was later modified to an 8-bit code. It is a standard code to represent **alphanumeric data**.
 - **ASCII-7** is a 7-bit standard allows 2⁷ combinations.128 unique symbols are represented using ASCII-7. ASCII-7 has been modified by IBM to ASCII-8.
 - **ASCII-8** is an extended version of ASCII-7. ASCII-8 is an 8-bit standard allows 2⁸ combinations. 256 unique symbols are represented using ASCII-8

			AS	CII Prir	nting	Chara	acters Ch	art				
Decimal		Oct	Character	Decimal		Oct	Character		cimal	Hex	Oct	Character
32	20	040	space	64	40	100	@	96		60	140	
33	21	041	1	65	41	101	Α	97		61	141	a
34	22	042	••	66	42	102	B	98		62	142	b
35	23	043	#	67	43	103	C	99		63	143	С
36	24	044	\$	68	44	104	D	100)	64	144	d
37	25	045	%	69	45	105	E	101		65	145	e
38	26	046	&	70	46	106	F	102	2	66	146	f
39	27	047	•	71	47	107	G	103	3	67	147	g
40	28	050	(72	48	110	Н	104	1	68	150	ĥ
41	29	051)	73	49	111	I	105	5	69	151	i
42	2A	052	*	74	4A	112	J	106	;	6A	152	j
43	2B	053	+	75	4B	113	ĸ	107		6B	153	k
44	2C	054	,	76	4C	114	L	108	3	6C	154	I
45	2D	055	-	77	4D	115	M	109		6D	155	m
46	2E	056	-	78	4E	116	N	110)	6E	156	n
47	2F	057	1	79	4F	117	0	111		6F	157	0
48	30	060	0	80	50	120	P	112	2	70	160	p
49	31	061	1	81	51	121	Q	113	3	71	161	q
50	32	062	2	82	52	122	R	114	ŀ	72	162	r
51	33	063	3	83	53	123	S	115	5	73	163	s
52	34	064	4	84	54	124	Т	116	5	74	164	t
53	35	065	5	85	55	125	U	117	, ,	75	165	u
54	36	066	6	86	56	126	V	118	3	76	166	v
55	37	067	7	87	57	127	vv	119	•	77	167	w
56	38	070	8	88	58	130	X	120)	78	170	×
57	39	071	9	89	59	131	Y	121		79	171	У
58	3A	072	:	90	5A	132	Z	122	2	7A	172	z
59	3B	073	;	91	5B	133	[123	3	7B	173	{
60	3C	074	<	92	5C	134	Ñ	124	-	7C	174	1
61	3D	075	-	93	5D	135	1	125	5	7D	175	}
62	3E	076	>	94	5E	136	^	126	5	7E	176	~
63	3F	077	?	95	5F	137	_	127		7F	177	DEL

We can check the value of any ASCII code by just holding down the ALT key and typing the ASCII code **Example:** when we hold down the ALT key and type 66 from the keyboard, then the character B appears On the screen.

3.7 Explain the EBCDIC coding Scheme

EBCDIC is pronounced as "ebb-seedick".

- It is extended form of BCD code which is 8 bit. It is used extensively in large computers. Extended Binary Coded Decimal Interchange Code (EBCDIC) uses 8 bits to represent a symbol in the data.
- It is an 8 bit code developed by IBM in 1964. It supports 256 characters. EBCDIC uses more or less the same characters as ASCII, but different code points. It has non-sequence letter format.
- > EBCDIC codes are mainly used in the mainframe computers
- > EBCDIC allows $2^8 = 256$ combinations of bits.
- > It represents alphabets, decimal digits.

BELOW IS A ASCII TABLE

Dec H	Hx Oct	Char		Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html Ch	nr
0	0 000	NUL	(null)				⊛# 32;		64	40	100	@	0				«#96;	2
1 .	1 001	SOH	(start of heading)				 ∉33;					A					 #97;	а
			(start of text)				&# 34;					B						b
			(end of text)				 <i>«</i> #35;					C					~~~ ~ *	¢ .
			(end of transmission)				«#36;					D					d	
			(enquiry)				%					€#69;					e	
			(acknowledge)				 <i>₄</i> #38;		1 · -			F				_	«#102;	
			(bell)				≪# 39;					G					<i>«#</i> 103;	
	8 010		(backspace)				«#40;					«#72;			_		«#104;	
	9 011		(horizontal tab))					«#73;					i	
	A 012		(NL line feed, new line)				«#42;					«#74;					«#106;	
	B 013		(vertical tab)				«#43;					«#75;					k	
	C 014		(NP form feed, new page)				«#44;					«#76;					l	
	D 015		(carriage return)				«#45;					«#77;					m	
	E 016		(shift out)				«#46;					∉ #78;					n	
	F 017		(shift in)				«#47;					«#79;					o	
	0 020		(data link escape)				«#48;					«#80;					p	
			(device control 1)				«#49;					Q					q	
			(device control 2)				«#50;					«#82;					r 	
			(device control 3)				«#51;					«#83;					s	
			(device control 4)				4 .#52;					«#84;					t	
			(negative acknowledge)				5 .«E4:					«#85;					u	
			(synchronous idle)				«#54;					V					v <#110;	
			(end of trans. block)				∝#55; ∝#56;					W X					w x	
			(cancel)				«#30; «#57;					«#00; «#89;					x y	
	9 031		(end of medium)				% :					 Z					y z	
	A 032 B 033		(substitute)				≪#30; ≪#59;					Z [z {	
			(escape) (file concreter)				≪#39; ≪#60;					«#91; «#92;			. –		{ 	
	C 034 D 035		(file separator)				≪#60; ≪#61;					«#94; «#93;					 }	
	D 035 E 036		(group separator) (record separator)				«#01; «#62;					«#93; «#94;					«#125; «#126;	
	E 036 F 037						∝#63;					«#94; «#95;					«#120; «#127;	
51 1.	r 05/	05	(unit separator)	03	JL	011	«#UJ;	4	93	лс	10/	∝#⊃J;	-	121	11	111	≪#12/;	PEI

Below is a EBCDIC TABLE

Dec Hx Oct Char	Dec Hx Oct Char Dec Hx Oct Char Dec Hx Oct Char
0 0 000 nul (Null)	65 41 101 130 82 202 b 195 c3 303 C
1 1 001 soh (Start of Heading)	66 42 102 131 83 203 c 196 c4 304 D
2 2 002 stx (Start of Text)	67 43 103 132 84 204 d 197 c5 305 E
3 3 003 etx (End of Text)	68 44 104 133 85 205 e 198 c6 306 F
4 4 004 pf (Punch Off)	69 45 105 134 86 206 f 199 c7 307 G
5 5 005 ht (Horizontal Tab)	70 46 106 135 87 207 g 200 c8 310 H
6 6 006 lc (Lower Case)	71 47 107 136 88 210 h 201 c9 311 1
7 7 007 del (Delete)	72 48 110 137 89 211 i 202 ca 312
8 8 010 ge	73 49 111 138 8a 212 203 cb 313
9 9 011 rlf	74 4a 112 🖕 139 8b 213 204 cc 314
10 a 012 smm (Start of Manual Message)	75 4b 113 140 8c 214 205 cd 315
11 b 013 vt (Vertical Tab)	76 4c 114 > 141 8d 215 206 ce 316
12 c 014 ff (Form Feed)	77 4d 115 (142 8e 216 207 cf 317
13 d 015 cr (Carriage Return)	78 4e 116 + 143 8f 217 208 d0 320 }
14 e 016 so (Shift Out)	79 4f 117 144 90 220 209 d1 321 J
15 f017 <mark>si</mark> (Shiftin)	80 50 120 & 145 91 221 j 210 d2 322 K
16 10 020 dle (Data Link Escape)	81 51 121 146 92 222 k 211 d3 323 L
17 11 021 dc1 (Device Control 1)	82 52 122 147 93 223 I 212 d4 324 M
18 12 022 dc2 dc2 (Device Control 2)	83 53 123 148 94 224 m 213 d5 325 N
19 13 023 tm (Tape Mark)	84 54 124 149 95 225 n 214 d6 326 O
20 14 024 res (Restore)	85 55 125 150 96 226 o 215 d7 327 P
21 15 025 nl (New Line)	86 56 126 151 97 227 p 216 d8 330 Q
22 16 026 <mark>bs</mark> (Backspace)	87 57 127 152 98 230 q 217 d9 331 R
23 17 027 il (Idle)	88 58 130 153 99 231 r 218 da 332
24 18 030 <mark>can</mark> (Cancel)	89 59 131 154 9a 232 219 db 333
25 19 031 em (End of Medium)	90 5a 132 ! 155 9b 233 220 dc 334
26 1a 032 cc (Cursor Control)	91 5b 133 💲 156 9c 234 221 dd 335
27 1b 033 cu1 (Customer Use 1)	92 5c 134 * 157 9d 235 222 de 336
28 1c 034 ifs (Interchange File Separator)	
29 1d 035 igs (Interchange Group Separa	
30 1e 036 irs (Interchange Record	95 5f 137 160 a0 240 225 e1 341
31 1f 037 ius (Interchange Unit Separator	
32 20 040 ds (Digit Select)	97 61 141 / 162 a2 242 s 227 e3 343 T
33 21 041 sos (Start of Significance)	98 62 142 163 a3 243 t 228 e4 344 U
34 22 042 fs (Field Separator)	99 63 143 164 a4 244 u 229 e5 345 V
35 23 043	100 64 144 165 a5 245 v 230 e6 346 W
36 24 044 byp (Bypass)	101 65 145 166 a6 246 w 231 e7 347 X
37 25 045 If (Line Feed)	102 66 146 167 a7 247 x 232 e8 350 Y
38 26 046 etb (End of Transmission Block)	
39 27 047 esc (Escape)	104 68 150 169 a9 251 z 234 ea 352
40 28 050	105 69 151 170 aa 252 235 eb 353
41 29 051 42 29 052 am (Sat Mada)	106 6a 152 171 ab 253 236 ec 354 107 6b 153 . 172 ac 254 237 ed 355
42 2a 052 sm (Set Mode) 42 2b 052 su2 (Customer Lee 2)	
43 2b 053 cu2 (Customer Use 2) 44 2c 054	108 6c 154 % 173 ad 255 238 ee 356 109 6d 155 174 ae 256 239 eF 357
	110 6e 156 < 174 ae 250 258 er 557
45 2d 055 enq (Enquiry) 46 2e 056 ack (Acknowledge)	111 6f 157 ? 176 b0 260 241 f1 361 1
47 2f 057 bel (Bell)	112 70 160 177 b1 261 242 f2 362 2
48 30 060	113 71 161 178 b2 262 243 f3 363 3
49 31 061	114 72 162 179 b3 263 244 f4 364 4
50 32 062 syn (Synchronous Idle)	115 73 163 180 b4 264 245 f5 365 5
51 33 063	116 74 164 181 b5 265 246 f6 366 6
52 34 064 pn (Punch On)	117 75 165 182 b6 266 247 f7 367 7
53 35 065 rs (Reader Stop)	118 76 166 183 b7 267 248 f8 370 8
54 36 066 uc (Upper Case)	119 77 167 184 b8 270 249 f9 371 9
55 37 067 eot (End of Transmission)	120 78 170 185 b9 271 250 fa 372
56 38 070	121 79 171 186 ba 272 251 fb 373
57 39 071	122 7a 172 : 187 bb 273 252 fc 374
58 3a 072	123 7b 173 # 188 bc 274 253 fd 375
59 3b 073 cu3 (Customer Use 3)	124 7c 174 @ 189 bd 275 254 fe 376
60 3c 074 dc4 (Device Control 4)	125 7d 175 190 be 276 255 ff 377 eo
61 3d 075 nak (Negative Acknowledge)	126 7e 176 = 191 bf 277
62 3e 076	127 7f 177 " 192 c0 300 {
63 3f 077 <mark>sub</mark> (Substitute)	128 80 200 193 c1 301 À
64 40 100 Sp (Space)	129 81 201 a 194 c2 302 B

Source: www.pubblinet.com

Other Systems

CONVERT OCTAL NUMBER INTO BINARY NUMBER:

Method-1: First we convert octal number into decimal and then decimal into binary.

Method-2: convert each digit of the given octal number into its 3-bit binary equivalent

Example: Convert the octal number 562 to equivalent binary number **Answer:**

Method-1

First convert the given octal number into decimal and then convert it into the Binary number.

FIRST octal to decimal: $(562)_8 = (?)_{10}$

It is an integer part so we can multiply each binary digit with its position weight and sum of all bits gives the decimal number.

POSITION	2	1	0
VALUE(WEIGHTS)	8 ²	8 ¹	8 ⁰
DIGITS	5	6	2

 $(2AB)_8 = (5x8^2) + (6x8^1) + (2x8^0)$ = (5x64) + (6x8) + (2x1) = (320) + (48) + (2) = 370 (2AB)_8 = (370)_{10}

> Finally decimal to binary: $(370)_{10} = (?)_2$

It is integer part then Divide the given decimal number repeated by 2 and writing down the Remainder after each Division

Div	ision	Remainder
2	370	
2	185	>0
2	92	> 1
2	46	> 0
2	23	>0
2	11	
2	5	>1
2	2	>-
2	1	> 0
	0	≻ 1

It is an integer part the remainder is taken from bottom to top is 101110010 $(370)_{10} = (101110010)_2$

FINAL ANSWER: $(562)_8 = (370)_{10} = (101110010)_2$

METHOD-2

Convert each digit of the given octal number into its 3-bit binary equivalent

 $(5)_8 = (5)_{10} = (101)_2$ $(6)_8 = (6)_{10} = (110)_2$ $(2)_8 = (2)_{10} = (010)_2$ $(562)_8 = (101110010)_2$

CONVERT BINARY NUMBER INTO OCTAL NUMBER:

Method-1: To convert into octal number we need to

Convert binary into decimal and then convert decimal to octal number.

Method-2: FOR INTEGER PART:

STEP-1: Divide the binary digits into groups (from RIGHT TO LEFT) **STEP-2**: Convert each group of 3 binary digits to its octal equivalent If any group does not have 3 bits it can be extended by adding 0's For integer part 0's can be added on left side of group

FOR FRACTIONAL PART:

STEP-1: Divide the binary digits into groups (from LEFT TO RIGHT) **STEP-2:** Convert each group of 3 binary digits to its octal equivalent If any group does not have 3 bits it can be extended by adding 0's For fractional part 0's can be added on right side of group

EXAMPLE 1: Convert the binary number 1001110.0 to octal number

Answer:

Method-1

For converting a binary number to its octal form first we convert binary number to decimal number and then Convert decimal number to octal number.

It consists of integer part (i.e.) 1001110 & fractional part (i.e.) 0.0

> For integer part (i.e.) 1001110

Binary to decimal: $(1001110)_2 = (?)_{10}$

It is an integer part so we can multiply each binary digit with its position weight and sum of all bits gives the decimal number.

POSITION	6	5	4	3	2	1	0
VALUE(WEIGHTS)	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
DIGITS	1	0	0	1	1	1	0

 $(1001110)_2 = (1x2^6) + (0x2^5) + (0x2^4) + (1x2^3) + (1x2^2) + (1x2^1) + (0x2^0)$

= (1x64) + (0x32) + (0x16) + (1x8) + (1x4) + (1x2) + (0x1)= 64 + 0 + 0 + 8 + 4 + 2 + 0 = 78 (1001110)₂ = (78)₁₀

Finally Decimal to octal number $(78)_{10} = (?)_8$

It is integer part then Divide the given decimal number repeated by 8 and writing down the remainder after each division.

Division

Remainder

It is an integer part the remainder is taken from bottom to top is 116

$$(78)_{10} = (116)_8$$

Final answer for integer part $(1001110)_2 = (78)_{10} = (116)_8$

For fractional part (i.e.) 0.0

Binary to decimal: $(0.0)_2 = (?)_{10}$

It is a fractional part it can be done in two steps.

Step-1: Multiplying the digits which lie after the decimal point by 2⁻¹, 2⁻², 2⁻³.... **Step-2:** Simplifying the resulting fractions and adding them to get decimal number.

$$(0.0)_2 = (0x2^{-1})$$

= 0
 $(0.0)_2 = (0.0)_{10}$

FINALLY DECIMAL TO OCTAL:

It is a Fractional part then multiplies the given decimal number repeatedly by 8 each time recording carry.

Multiplication product carry $0.0 \times 8 = 0.0 - 0$

It is a fractional part the carry is taken from top to bottom is 0 Thus $(0.0)_{10} = (0.0)_8$ Final answer for fractional part $(0.0)_2 = (0.0)_{10} = (0.0)_8$

THE FINAL ANSWER IS $(1001110.0)_2 = (78.0)_{10} = (116.0)_8$

METHOD-2

 $\begin{array}{l} (1001110.0) \ = \ (1) \ (001) \ (110). \ (0) \\ \ = \ (001) \ (001) \ (110). \ (000) \\ \ = \ (1) \ (1) \ (6) \ . \ (0) \\ (1001110.0)_2 \ = \ (116.0)_8 \end{array}$

CONVERT HEXADECIMAL INTO OCTAL NUMBER:

EXAMPLE 1: What is the result of the conversion 56.34(16)=?(8)

ANSWER: first we have to convert the hexadecimal into decimal number & then decimal number into octal It consists of integer part (i.e.) 56 & fractional part (i.e.) 0.34

> For integer part (i.e.) 56

```
FIRST HEXADECIMAL to decimal: (56)_{16} = (?)_{10}
```

It is an integer part so we can multiply each binary digit with its position weight and sum of all bits gives the decimal number.

gives the c	aecimai numbe	er.			
POS	ITION		1	0	
VALU	JE(WEIGHTS)	16 ¹	16 ⁰	
DIGI	TS		5	6	
(56) ₁₆ =	$(5x16^{1}) + (6)$	x16 ⁰)			-
	= (5x16) +				
:	= 80 + 6				
	= 86				
(56) ₁₆ =					
-	DECIMAL to				
	• •		de the give	en decimal r	number repeated by 8 and writing down the remainder
aft	er each Divisi	on	T -0		
	Divi	sion	18		Remainder
	8	86			
	8	10			>6
	8	1		-1.	>2
		0			→1
It is an in	teger part the	remaind	er is taken	from bottor	n to top is 126
	$(86)_{10} = (12)_{10}$				
	SWER FOR I			$(56)_{16} = (86)$	$_{10} = (126)_8$
	RACTIONAL F				
	KA DECIMAL				$(34)_{16} = (?)_{10}$
	nal part it can				
					l point by 16 ⁻¹ , 16 ⁻² , 16 ⁻³
			ractions ar	nd adding th	em to get decimal number.
$(0.34)_{16} = (3)_{16}$	3x16 ⁻¹) + (4x16	6⁻́)			

= 3/16 + 4/256= 3X16 + 4 256 = 48 + 4 52 = 52/256 = 0.203125 (0.34)_{16} = (0.203125)_{10}

FINALLY DECIMAL TO OCTAL: $(0.203125)_{10} = (?)_8$

It is a Fractional part then multiplies the given decimal number repeatedly by 8 each time recording carry. Multiplication product carry

It is an fractional part the carry is taken from top to bottom is 15 Thus $(0.203125)_{10} = (0.15)_8$ FINAL ANSWER FOR fractional part: $(0.34)_{16} = (0.203125)_{10} = (0.15)_8$

FINAL ANSWER: $(56.34)_{16} = (86.203125)_{10} = (126.15)_8$

Concept of a byte and word

Bit: It is the smallest unit of information used in a computer system. It can have either the value 0 or1
Nibble: It is a combination of 4 bits. Example: 0101
Byte: Byte is a group of 8 bits, Derived from words "by eight". Example: 11001100, 00011100
Word: combination of 16 bits (or) Group of 2 bytes. Example: 1111111100000000
Double Word: 32 bits.
KB (KILO BYTE): Used to represent 1024 bytes of information.
MB (MEGA BYTE): Used to represent 1024 KILO bytes of information.
Likewise GB, TB, PB, EB, ZB, YB