QUESTION PAPER - 2016 (A.P) ## COMPUTER SCIENCE & ENGINEERING | Q.1 | In time sharing operating system, when the time slot given to a completed, the process goes from RUNNING state to state | process is | |------------|--|--| | | (1) BLOCKED (2) SUSPENDED (3) TERMINATED (4) READY | | | Q.2 | | | | ۷ | (1) page with corrupted data | | | | (2) wrong page in the memory | | | | | | | | (3) page that is modified after being loaded into cache memory(4) page that is less frequently accessed | | | Q.3 | | | | Ų.J | (1) FOEC (0) O.E. (2) | nay occur | | Q.4 | (c) realization (1) priority | | | Ų.4 | /1\ 101: | ıld have | | 0.5 | (1) 13 bits (2) 14 bits (3) 15 bits (4) 16 bits | | | Q.5 | | | | | (1) reduces page I/O | | | | (2) decreases the degree of multiprogramming | | | | (3) implies excessive performance | | | | (4) improves the system performance | | | Q.6 | Windows 98 operating system is a | | | | (1) single user system (2) multi user system | | | | (3) single tasking system (4) multi tasking system | | | Q.7 | In semaphore when the order of processes they are waiting to be removed queue is first in first out (FIFO) then it is called semaphore | d from the | | | (1) weak (2) strong (3) binary (4) counted | The state of s | | Q.8 | Which of the following is a service not supported by the operating system | | | | (1) protection (2) memory protection (3) compilation (4) I/O operat | ion co | | Q.9 | The method of mapping the consecutive memory blocks to the consecutive ca | | | | is called mapping | | | der i su | (1) indirect (2) direct (3) associative (4) set associative | itive | | Q.10 | $oldsymbol{0}$ An attribute of one table matching the primary key of another table is called | l as | | | (1) foreign key (2) secondary key (3) candidate key (4) composite | | | Q.11 | 1 The maximum marks in a subject should not be greater than 100. This is | | | | (1) refrential constraint (2) feasible constraint | | | | (3) integrity constraint (4) over-defined constraint | | | | | | | Q.12 | The SQL statement SELECT SUBSTR ('123456789', INSTR('abcabcabc','b',4) FROM DUAL; | |---------|--| | | prints | | | (1) 6789 (2) 2345 (3) 1234 (4) 456789 | | | In SQL, 10/NULL will evaluate to | | Q.120 | (1) FALSE (2) –1 (3) NULL (4) 10 | | 0.14 | Which normal form is considered adequate for relational database design | | | (1) 4NF (2) BCNF (3) 2NF (4) 3NF | | Q.15 | The column of a table is referred to as the | | | (1) tuple (2) attribute (3) entity (4) degree | | Q.16 | The data flow model of an application mainly shows | | | (1) communication network structure | | | (2) the underlying data and the relationship among them | | | (3) processing requirements and the flow of data | | | (4) decision and control information | | Q.17 | Student and courses enrolled, is an example of | | 475 | (1) many - to - one relationship (2) one - to - one relationship | | | (3) one - to - many relationship (4) many - to - many relationship | | Q.18 | E-R modeling technique is a | | | (1) right - left approach (2) left - right approach | | | (3) bottom - up approach (4) top - down approach | | Q.19 | A trigger is | | | (1) a statement that enables to start any DBMS | | | (2) a statement that is executed automatically by the user as a side effect of a
modification to the database | | | (3) a statement that is executed automatically by the system as a side effect of a modification to the database | | | (4) a condition the system tests for the validity database user | | Q.20 | Reusability is a desirable feature of a language as it | | | (1) decreases the testing time (2) increases the testing time | | | (3) reduces the compilation time (4) reduces the execution time | | Q.21 | A constructor is called whenever | | - Abold | (1) an object is used | | | (3) a class is declared (4) a class is used | | Q.22 | Which of the following remarks about the differences between constructors and destructors | | | Q.10 An arrabute of one table matching the primary key of another table toerros era | | | (1) constructors can take arguments but destructors can not | | | (2) constructors and destructors can be used copy the information | | | (3) destructors can take arguments but constructors can not | | | (4) destructors can be overloaded but constructors can not be overloaded | | Ques | stion Paper-2016 | 81 | |----------------|--|---| | Q.23 | /1) Å | | | 0.04 | | 6 23 (4) && 5 2 mi (1) | | Q.24 | Choose the best answer: | (3) constructors | | | A function that does the same operation on difference | ent data types is to be implemented by | | | | (2) tring | | | (1) macros (2) famatica to 1 to (2) o | verloading | | 0.05 | (3) function template (4) d | efault arguments | | Q.25 | In C++, dynamic memory allocations is accoplis | shed with the operator | | 0.96 | | nalloc() (4) calloc() | | Q.20 | The break statement causes an exit | ampières au moderne (C) | | | | nly from the innermost switch only | | 0.07 | | or inner most loop or switch | | Q.Z1 | The process of building new classes from existing | | | 0.00 | | heritance (4) cascading | | Ų.28 | In C++ runtime polymorphism is achieved by | | | 0.00 | | nline function (4) function overloading | | Q.29 | (1) | | | 0.00 | | (1) hyper tim(4) instation pro(| | Q.30 | Consider the following code | (3) high text type performance | | | string state = new string("andhra"); | Q.41 Which of the following is platf | | | system.out.print1n(state.length()); | (1) JAVA (2) COBO | | | What is printed | O.42 Mechanism to protect private | | O 01 | Diff. [Tax Affice [1]] In the second for the contract of | Q.42 Mechanism to protect private and (4) andhra (1) diqual | | Q.31 | What is the difference between java applet and ja | ava application | | | (1) an application can in general be trusted when | | | | (2) an applet must be executed in a browser envi | ironment | | | (3) an applet is not able to access the files of the | e computer it runs on | | 0.20 | (4) all the above | IUCAA AP.JJ | | Q.32 | What is byte code in the context of java | | | | (1) the type of code generated by a java complie | | | | (2) the type of code generated by a java virtual n | nachine in aphicannas for graphicanican | | | (3) it is another name for java a source file | (4) both 1 and 2 | | ~ ~ ~ ~ | (4) it is the code written within the instance meth | ods of a class | | Q.33 | You read the following statement in a java progra | m that compiles and executes | | | submarine.dive(depth); | (3) interior development envir | | | (1) depin must be an int | Q.46 UEU stands for | | | (2) dive must be a method | | | | (3) dive must be the name of an instance field | rois sol somes michael (2) | | | (4) submarine must be the name of a class | | | 82 | | CET (Computer Science and Engineering) | |------|--|--| | Q.34 | Which of the following may be part of a | class definition | | | (1) instance variables | (2) instance methods | | | (3) constructors | (4) all the above a second AS O | | Q.35 | Which of the following is not a primative | data-type | | | (1) boolean (2) tring | (3) byte (4) double | | Q.36 | The statement system.out.print1n (double | e)7/4);prints | | | (1) 1.75 (2) 1 | (3) 1.0 (4) 2.0 | | Q.37 | Exception that are expected to possibly o | occur are called: | | | (1) checked exceptions | (2) unchecked exceptions | | | (3) runtime exceptions | (4) errors | | Q.38 | Garbage collector frees the programmer f | | | | (1) memory leaks | (2) dangling references | | | (3) creating new objects | (4) recursion | | Q.39 | Elements of the array have the same | Q.28 Int ' - tuntimie polymorphism is achi | | | (1) index (2) scope | (3) datatype (4) bound | | Q.40 | HTTP stands for | Q.29 The operator that cumot be overload | | | (1) hyper text translation procedure | (2) hyper text translation procedure | | | (3) high text type performance | (4) hyper text transfer protocal | | Q.41 | Which of the following is platform free la | nguage | | | (1) JAVA (2) COBOL | (3) C (4) FORTRAN | | Q.42 | Mechanism to protect private networks fr | rom outside at track is | | | (1) anti virus (2) digital signature | (3) firewall (4) formatting | | Q.43 | The internet is | | | | (1) network of networks | (2) web site | | | (3) host | (4) server | | Q.44 | A GUI: | evoda entilla (4) | | | (1) uses buttons, menus and icons | Q.32 What is byte code in the context of jav | | | (2) should be easy for a user to manipul | ate ud boimenes ebro lu em il edi illi | | | (3) stands for graphic use interaction | (4) the tripe ode generated by a ra | | | (4) both 1 and 2 | difficies amulher manne for jaya a source | | Q.45 | What does IDE stands for | ent oft nithiw nother above attential the | | | (1) integrated design environment | (2) integrated development environment | | | (3) interior development environment | (4) interior design environment | | Q.46 | URL stands for | | | | (1) uniform reservation locator | (2) uniform resource logic | | | (3) uniform resource locator | (4) both 1 and 2 | | | | | | Quest | estion Paper-2016 | 85 | |--------------|--|--| | Q.47 | 7 ASP.NET separates the HTML output from program logic | using a feature named as | | | (1) exception (2) code - behind (3) code - fro | • | | Q.48 | 18 Find the odd one from the following tag of HTML | (1) Carry flag | | | (1) table (2) tr (3) td | (4) form | | Q.49 | 19 The first page of website is called | (1) 4 194.304 locati | | | (1) design page (2) home page (3) first page | (4) main page | | Q.50 | Which of the following logic families has the shortest prop | ogation delay | | | (1) CMOS (2) BiCMOS (3) ECL | (4) 74SXX | | Q.51 | 1 Which is the range of invalid TTL output voltage | (3) CMP (compare) | | | (1) 0.0-0.4V (2) 0.4-2.4V (3) 2.4-5.0V | (4) 0.0-5.0V | | Q.52 | 2 The logic gate that will have a LOW output when any on | e of its inputs is HIGH is the | | | (1) NAND gate (2) AND gate (3) OR gate | (4) NOR gate | | Q.53 | 3 When reading a boolean expression, what does the word | "NOT' indicate | | | (1) inversion (2) high (3) low | (4) the same as | | Q.54 | 4 What is the binary equivalent of the decimal number 368 | (2) property of localit | | | (1) 101110000 (2) 110110000 (3) 11101000 | 0 (4) 111100000 | | Q.55 | 55 How many flip-flops are required for mod-16 counter | (4) seeklime | | sa nw | (2) 6 m of the (3) 3 and (4) | Indi(4) (4) of georg A Po.C | | Q.56 | 16 The boolean expression $\overline{A} \cdot B + A \cdot \overline{B} + AB$ is equivalent to | (I)mamumon_code(2 | | | (1) $\overline{A} \cdot B$ (2) $\overline{A + B}$ (3) $A \cdot B$ | (4) A + B | | Q.57 | | | | • | | ional circuits | | | | 2.71 BSA instruction arstra | | Q.58 | | | | | | -anute bas dama (1) | | Q.59 | (1) stack (2) accumulator (3) flags | | | _ | | (4) counter | | • | | (4) counter
ta transfer | | Ingnar | Which method by passess the CPU for certain types of da
(1) DMA (2) polled I/O | (4) counter ta transfer | | Q.60 | Which method by passess the CPU for certain types of da
(1) DMA (2) polled I/O
(3) interrupt driven I/O (4) software i | ta transfer | | Q.60 | Which method by passess the CPU for certain types of da
(1) DMA (2) polled I/O
(3) interrupt driven I/O (4) software i | ta transfer | | Q.60
Q.61 | Which method by passess the CPU for certain types of da
(1) DMA (2) polled I/O
(3) interrupt driven I/O (4) software i
A 20-bit address bus allows access to a memory of capaci
(1) 2 MB (2) 1 MB (3) 8 MB | (4) counter (4) ta transfer (5) (6) (7) (7) (7) (8) (7) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8 | | | Which method by passess the CPU for certain types of day (1) DMA (2) polled I/O (3) interrupt driven I/O (4) software in the following is not an 8086 general purpose regard (1) stack segment (2) data segment | ta transfer nterrupts ity (4) 4 MB gister nent | | | Which method by passess the CPU for certain types of day (1) DMA (2) polled I/O (3) interrupt driven I/O (4) software in the following is not an 8086 general purpose regard (1) stack segment (2) data segment | ta transfer nterrupts ity (4) 4 MB gister nent | | Q.61 | Which method by passess the CPU for certain types of day (1) DMA (2) polled I/O (3) interrupt driven I/O (4) software in the color of the following is not an 8086 general purpose results of the foll | (4) counter (4) ta transfer (5) (6) the results (6) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9 | | Q.61 | Which method by passess the CPU for certain types of day (1) DMA (2) polled I/O (3) interrupt driven I/O (4) software in the following is not an 8086 general purpose regard (1) stack segment (2) data segment | nta transfer nterrupts ity (4) 4 MB gister nent | | Q.61 | Which method by passess the CPU for certain types of day (1) DMA (2) polled I/O (3) interrupt driven I/O (4) software in the s | ta transfer nterrupts ity (4) 4 MB gister nent hent (4) ROM (5) (6) | | 84 = | EC | ET (Computer Science and Engineering) | |--------------|--|---| | Q.64 | | ne specified condition exists or not by testing | | | the I dod (1) most - about (5) | anulad - abob (2) code - belum | | | (1) carry flag (2) common flag | (3) sign flag (4) conditional flag | | Q.65 | A 20-bit address bus can locate | rt (S) tr | | | (1) 4, 194,304 locations | (2) 1, 048,576 locations | | | (3) 2, 097,152 locations | (4) 8, 388, 608 locations | | Q.66 | Which one is not an arithmetic instruction | Q.50 Which of the following logic families | | | (1) ROL (rotate left) | (2) DEC (decrement) | | | (3) CMP (compare) | (4) INC (increment) | | Q.67 | The instruction MOV AL, 65 is to store | (1) 0.0-0.4V (2) 0.4-2.4V | | is the: | (1) store 0100 0010 in AL | (2) store 40H in AL | | | (3) store 0100 001 in AL | (4) store 42H in AL | | Q.68 | The idea of soll and the second secon | Q.53 When reading a boolean expression. | | | (1) houristic 90 10 mile | (1) inversion (2) high | | | | Q.54 What is the binary equivalent of the | | | (3) the fact that references generally tend | to cluster | | | (1) | | | Q.69 | 131111/02 J T - DOUT | perform a specific operation is known as | | | | periorii a specific operation is known as | | | (1) instruction code(2) accumulator | (3) register (4) micro-operation | | Q.70 | BSA instruction is a | | | | (1) branch and store accumulator | (2) branch and shift address | | | (3) branch and save return address | (4) branch and show accumulator | | Q.71 | BSA instruction is a | | | | (1) branch and store accumulator | (3) Shift registers | | | (3) branch and save return address | (2) branch and shift address | | Q.72 | | (4) branch and show accumulator | | Q.711 | | f data will be called as | | O 73 | The state of s | | | Q.73 | storage | emory makes it not possible for permanent | | | Kancata in Annual Pu | Q.60 A 20 hr address bus allows access t | | 0.74 | | (3) unreliable (4) it is a volatile | | W.7 T | The expression $A*B + C*D$ can be represe | nted in reverse polish notation as | | 0.75 | (1) A*BCD*+ (2) AB*CD*+ | (3) $A*B*CD+$ (4) $AB*CD+*$ | | Q.75 | In implict addressing mode, the operands | are stored in | | | (1) registers | (2) accumulators | | 0 = 1 | (3) push down stack | (4) cache | | Q.76 | | Q.63 pin is used to select direct of | | | (1) MIMD (2) SIMD | (3) SISD (4) MISD (4) | | | | | results in (1) printing of garbage number (2) an execution error (3) printing of starting address of the function main (4) an infinite loop Consider the following program: main() { cost int i = 10; int j = 10; i = i + j;(%d",i); } Results in | 00 | | EC | ET (| Computer Sci | ience and Engine | ering) | | | |-------------|---|--|------------------------|-------------------|---|----------|--|--| | | (1) printing of 20 | | (2) | returns compil | ation error | 0.77 | | | | | (3) returns execution | n error | (4) | prints garbage | value | | | | | Q.85 | By default the data | members of a structure | | | (3) magnetic mer | | | | | ni ser | (1) public and to as | (2) private | (3) | private-public | (4) protected | 97.0 | | | | | The format identifie | er "%i" is also used for | | data type | ascending order | | | | | | (1) char | (2) int | (3) | float | (4) double | 050 | | | | Q.87 | Which operators ret | turns the number of byt | es o | ccupied by par | ticular data type | 61.30 | | | | • | (1) arithmetic opera | tor greddy a th | (2) | relational oper | rator | | | | | | | implementing the quick | | | | 08.0 | | | | Q.88 | | nce between 001111 ar | | | tea (I) | | | | | .qoq | (1) 3 09 (2) deug (1) | (2).4q.qoq.(2)dsug.(| (3) | 12 anollarego | (4) 1 sugue ont 1 | 18.0 | | | | Q.89 | Bit stuffing refers to | ck, the sequence of por | | performed on a | push(2), pop are | | | | | | (1) inserting a '0' ir | n user data stream to di | iffer | entiate it with a | a flag | 00 A | | | | | (2) appending a nil | oble to the flag sequenc | ce | | consider the follow | J.C.J. | | | | | (3) inserting a '0' in flag stream to avoid ambiguity | | | | | | | | | | (4) appending a nil | bble to the user data st | rean | n | results in | | | | | Q.90 | | gy which supports bi | J. O.H | directional lin | ks between each po | ossible | | | | | nod is | /O\ -4 | (0) | | The following pro | 0.83 | | | | 0.01 | (1) ring | (2) star | | tree | (4) mesh | | | | | Q.91 | | ing uses UDP as the tra | 7 | . - | (A) I ITTT | | | | | O 02 | (1) SMTP | (2) DNS | 50 .550 | telnet | , | •1 | | | | Q.92 | | ing transport layer prot | | | | .11 | | | | O 03 | (1) IP | (2) SMTP | ` , | TCP | (4) UDPri siluser | 1 | | | | Q.93 | (1) 2^{14} | ng format, the number (2) 2 ⁷ | | | (4) 2 ²⁴ | iress is | | | | 0.04 | | ectivity is provided from | ` ' | | , , | | | | | Q.74 | (1) the network laye | | (2) | the transport l | ool stiming (4)
ayer | | | | | | (3) the session laye | | | | | 48.0 | | | | O 05 | | re serial communication | (4) the physical layer | | | | | | | Q.93 | (1) synchronization | | | | | | | | | | | | | error detection | | • | | | | O 06 | (3) error correction Manchester code us | | ('1) | | the communication | 1 | | | | Q.70 | | | (2) | | | | | | | | (1) bipolar encodin | • | | polar encoding | | | | | | | (3) return to zero er | icoung | (4) | unipolar codin | 3 | | | | | Q.97 | Baud means | S | | | | | | | |-------------|--|--|--|---------------------------|----------------------|--------------------------------|-------|--| | | (1) the rate | at which the | data is transfer | red | | | | | | | (2) the num | nber of bits tra | ansmitted per u | nit time | | | | | | | (3) the num | ber of bytes t | ransmitted per | unit time | | <i>f</i> | 5 | (8) | | | (4) the rate | at which the | signal changes | 2 | | • | 1 | 10) | | .98 | Page fault o | ccurs due to t | he following | | (14) | | j. | (81) | | | (1) the page | is in main me | emory | | (81) | | \$ | (FII) | | | (2) the page | is not in mair | nmemory | ì | (22) | | 2 | | | | (3) one tries | to divide a nu | ımber by 0 | D. | (26) | | | 185 | | | (4) the page | is corrupted b | y application s | oftware | MIFE | | | | | | | ess time for th | ne memory | | | | - 0 | 112 | | | (1) 21 ns | (2) 23 | ns | (3) 30 | ns | (4) 35 n | is 🔪 | (13-) | | .100 | 0 An operating | g system conta | ns
ins 3 user proc
ired units of R | esses each | requirir | ng 2 units of | reso | | | .100 | 0 An operating | g system conta | ins 3 user proc | esses each | requirir | ng 2 units of | reso | | | | O An operating minimum nu | system containmber of required (2) 3 | ins 3 user proceired units of R | esses each
such that r | requirir
no deadl | ng 2 units of
lock will eve | reso | ur is | | | O An operating minimum nu (1) 4 | system containmber of requirements (2) 3 | ins 3 user proceired units of R | esses each
such that r | requirir
no deadl | ng 2 units of
lock will eve | reso | ur is | | | O An operating minimum number (1) 4 | system containmber of requirements (2) 3 | ins 3 user proceired units of R | esses each
such that r | requirir
no deadl | ng 2 units of
lock will eve | reso | ur is | | | O An operating minimum number (1) 4 | system containmber of requirements (2) 3 | ins 3 user proceired units of R | esses each
such that r | requirir
no deadl | ng 2 units of
lock will eve | resor | (6d) | | | O An operating minimum number (1) 4 | system containmer of require (2) 3 | ins 3 user proceired units of R | esses each
such that r | requirir
no deadl | ng 2 units of
lock will eve | resor | (68)
(68)
(68) | | | O An operating minimum number of the control | system containmer of require (2) 3 | ins 3 user proceired units of R | esses each
such that r | requirir
no deadl | ng 2 units of
lock will eve | resor | (63)
(63)
(63) | | | O An operating minimum number (1) 4 (40) (40) (80) (80) (80) | system containmer of requirements (2) 3 | ins 3 user proceired units of R | esses each such that r | requirir
no deadl | ng 2 units of
lock will eve | resor | (65)
(63)
(63)
(63)
(73) | | | O An operating minimum number (1) 4 (4-6) (8-6) (8-6) (8-7) | system containmer of require (2) 3 | ins 3 user proceired units of R | esses each such that r | requirir
no deadl | ng 2 units of
lock will eve | resor | (65)
(73)
(73)
(73) | | | O An operating minimum number (1), 4 (4-6) (8-6) (8-7) (08) | system containmer of require (2) 3 | ins 3 user processived units of R | esses each such that r | requirir no dead! | ng 2 units of
lock will eve | resor | (53)
(65)
(66)
(73)
(73)
(73)
(73) | | | O An operating minimum number (1), 4 (20) (40) (40) (80) (80) (80) (80) (80) | system containmer of require (2) 3 | ins 3 user proceired units of R | esses each such that r | requirir no dead! | ng 2 units of
lock will eve | resor | (88)
(88)
(88)
(88)
(88) | •