INSTRUCTIONS TO CANDIDATES

- 1. Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page and also in the space provided on the OMR Response Sheet. BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING BALL POINT PEN (BLUE/BLACK) ONLY ON THE OMR RESPONSE SHEET. DO NOT WRITE HALL TICKET NUMBER ANYWHERE ELSE.
- 2. Immediately on opening this Question Paper Booklet, check:
 - (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
 - (b) In case of any discrepancy immediately exchange the Question Paper Booklet of same code by bringing the error to the notice of invigilator.
- 3. Use of Calculators, Mathematical Tables and Log books is not permitted.
- 4. Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the Booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using Ball Point Pen (Blue/Black) only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- 6. Candidate shall shade one of the circles 1, 2, 3 or 4 for corresponding question on the OMR Response Sheet using Ball Point Pen (Blue/Black) only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using pencil or if more than one circle is shaded against any question.
- 7. One mark will be awarded for every correct answer. There are no negative marks.
 - The OMR Response Sheet will not be valued if the candidate:
 - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
 - Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- 11. Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return the OMR Response Sheet to the invigilator. Failure to return the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 24 pages including Cover page and the pages for Rough Work.

Set	Code	:	M2

Booklet Code : D

Note: (1) Answer all questions.

> Each question carries 1 mark. There are no negative marks. (2)

Answer to the questions must be entered only on OMR Response Sheet provided (3) separately by completely shading with Ball Point Pen (Blue/Black), only one of the circles 1, 2, 3 or 4 provided against each question and which is most appropriate to the question.

The OMR Response Sheet will be invalidated if the circle is shaded using pencil (4)or if more than one circle is shaded against each question.

MATHEMATICS

The rate of change of area of a circle with respect to radius when r = 5 cm is 1.

 $2\pi \ sq.cm/sec$

(2) $10\pi \ sg.cm/sec$

(3) $100\pi \ sq.cm/sec$

(4) $20\pi \ sq.cm/sec$

The function $\frac{\log x}{x}$ attains its maximum value at x =2.

(1)

(3)

(4)

If the increase in the side of a square is 2%, then the approximate percentage increase in 3. the area of the square is

(1)

(3) 6

If $u = \log\left(\frac{x^2}{y}\right)$ then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} =$

 $\csc^5 \theta \cot \theta d\theta =$ 5.

(1) $\frac{\cot^2 \theta}{2}$ (2) $\frac{-\csc^5 \theta}{5}$ (3) $\frac{\csc^6 \theta}{6}$ (4) $\frac{-\csc^6 \theta}{6}$

 $\int_{1}^{3} \frac{dx}{x^2 - x} =$

(1) $\log \frac{2}{3}$ (2) $\log \frac{4}{3}$

(3) $\log \frac{8}{3}$

The value of $\int_{0}^{2} \sin |x| dx =$ 7.

 $2\sin x$

(3)2 (4)

3-D

(MEC)

Automotive to	1 8
Booklet Code:	D

Set Code: M2

$$8. \qquad \int\limits_0^1 x \tan^{-1} x dx =$$

- (1) $\frac{\pi}{4} \frac{1}{2}$ (2) $\frac{\pi}{8} \frac{1}{2}$ (3) $\frac{\pi}{4} + \frac{1}{2}$ (4) $\frac{\pi}{8} + \frac{1}{2}$

9.
$$\lim_{n\to\infty} \sum_{r=0}^{n} \frac{n}{n^2 + r^2} =$$

- $(2) \quad \frac{\pi}{3} \qquad \qquad (3) \quad \frac{\pi}{4}$

10.
$$\int_{0}^{\pi/4} \sec^{6} x dx =$$

- (2) $\frac{28}{15}$
- (3)
- The area bounded by the y-axis and $x = 4 y^2$ is _____square units. 11.
- (2) $\frac{32}{3}$ (3) $\frac{33}{3}$
- 12. The volume of the solid generated by rotating one arch of the curve $y = \sin 3x$ about the x-axis is ----
 - (1)
- (2) $\frac{\pi^2}{2}$ (3) $\frac{\pi^2}{4}$
- The differential equations of the family of circles touching y-axis at the origin is 13.
 - (1) $y^2 x^2 2xyy' = 0$

(2) $(x^2 - y^2)y' - 2xy = 0$

(3) $yy' + y^2 = x^2$

- $(4) 2yy' y^2 = x^2$
- The solution of the differential equation ydx-2xdy=0 represents a family of 14.
 - straight lines (2) parabolas (3)
- circles
- (4)catenaries
- If y = x is a solution of $x^2y'' + xy' y = 0$ then the second linearly independent solution 15. of the equation is
 - (1)
- (2) $\frac{1}{r}$ (3) $\frac{1}{r^2}$
- Which of the following is an integrating factor of $\frac{dy}{dx}(x+y+1)=1$? 16.
 - e^{x} (1)
- **(2)**
- (3) e^{-x}
- The differential equation whose solution is $Ax^2 + By^2$, where A, B are arbitrary constants 17. is of
 - 1st order and 1st degree 2nd order and 2nd degree
- (2) 2nd order and 1st degree
 (4) 1st order and 2nd degree

(MEC)

4-D

The general solution of the differential equation $\frac{d^2x}{dt^2} - 4\frac{dx}{dt} + 5x = 0$ is 18.

- $x = (c_1 \cos t + c_2 \sin t)e^{2t}$ (1)
- (2) $t = (c_1 \cos x + c_2 \sin x)e^{2x}$
- (3) $x = (c_1 \cos 2t + c_2 \sin 2t)e^t$ (4) $t = (c_1 \cos 2x + c_2 \sin 2x)e^x$

The particular integral of $\frac{d^2y}{dx^2} - y = \cosh x$ is 19.

- (1) $\frac{x \sinh x}{4}$ (2) $\frac{x \sinh x}{2}$ (3) $\frac{x(xe^x e^{-x})}{4}$ (4) $\frac{x \cosh x}{4}$

If $x \neq 0$ and $\begin{vmatrix} 1 & x & 2x \\ 1 & 3x & 5x \\ 1 & 3 & 4 \end{vmatrix} = 0$, then x = 020.

- (1)
- (3) 2

If $A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$ is an involutory matrix then $x = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$ 21.

- (1) 0
- (2) 2
- 2

The equations x+2y+3z=1, 2x+y+3z=2, 4x+5y+9z=4 have 22.

a unique solution (1)

- no solution (2)
- infinite number of solutions (3)
- two solutions . (4)

If A is a 2×2 matrix and det(2A) = k det(A) then k =23.

- (1)
- (3)
- (4) 8

If A, B are two matrices and AB=B, BA=A then $A^2+B^2=$ (1) A+B (2) A-B (3) AB (4) 0 24.

- $(1) \quad A+B$
- (2) A-B

If $\frac{(x+1)^2}{x^3+x} = \frac{A}{x} + \frac{Bx+C}{x^2+1}$ then $\sin^{-1}\left(\frac{A}{C}\right) =$ 25.

- (1) $\frac{\pi}{6}$ (2) $\frac{\pi}{4}$ (3) $\frac{\pi}{3}$
- $(4) \frac{\pi}{2}$

If $\frac{x^2+5}{(x^2+2)^2} = \frac{1}{x^2+2} + \frac{K}{(x^2+2)^2}$ then K =26.

- (3) 3

5-D

(4)

The value of $\cos 105^{\circ} =$ 27.

- (1) $\frac{1-\sqrt{3}}{2\sqrt{2}}$ (2) $\frac{\sqrt{3}+1}{2\sqrt{2}}$ (3) $\frac{\sqrt{3}+1}{2}$ (4) $2+\sqrt{3}$

(MEC)

If $a \sin^2 \theta + b \cos^2 \theta = c$ then $\tan^2 \theta =$ 28.

- $(1) \quad \frac{b-c}{a-c} \qquad (2) \quad \frac{a-c}{b-c}$
- (3) $\frac{c-b}{a-c}$
- $(4) \quad \frac{a-c}{c-b}$

The value of $6\sin 20^{\circ} - 8\sin^3 20^{\circ} =$ 29.

- (1)
- (2) $\frac{1}{\sqrt{2}}$
- (3) $\sqrt{3}$
- $(4) \frac{1}{2\sqrt{3}}$

If $\sin \theta + \csc \theta = 2$ then the value of $\sin^6 \theta + \csc^6 \theta =$ 30.

- (1) 0
- (2)50
- (3)
- (4)

31. The sine function with period 3 is

- (1)
- $(2) \quad \sin\frac{\pi x}{3} \qquad (3) \quad \sin 3\pi x$

The maximum value of $3\sin^2 x + 5\cos^2 x$ is 32.

- (1) 8

- 34 (4)

The smallest value of θ satisfying $\sqrt{3}(\tan \theta + \cot \theta) = 4$ is 33.

- $(2) \quad \frac{\pi}{3} \qquad (3) \quad \frac{\pi}{6}$

The value of $\cos \left[\sin^{-1} \left(\frac{3}{5} \right) + \sin^{-1} \left(\frac{5}{13} \right) \right] =$ 34.

- $\frac{33}{25}$ (2) $\frac{33}{65}$
- (3) $\frac{25}{33}$ (4) $\frac{56}{65}$

The value of $\sin \theta + \sin(\theta + 120^{\circ}) - \sin(120^{\circ} - \theta) =$ 35.

- (1)
- $\sin \theta$ (2)
- (3) 1
- $-\sin\theta$ (4)

The principal solution of $3\csc A = 4\sin A$ is 36.

- (1)
- (2) $\pm \frac{\pi}{3}$ (3) $\pm \frac{\pi}{6}$
 - $\pm 2\pi$

The complex number z satisfying the equation $z^2 + \overline{z}^2 = 2$ forms 37.

- a straight line (2) a circle (3) a parabola (1)
- (4) a hyperbola

The value of $(1-i)^8$ is 38.

- (1) 4
- (2) 8
- (3) 16
- (4) 256

The intercept on x-axis made by the circle $3x^2 + 3y^2 - 6x + 13y + 5 = 0$ is 39.

- (1)
- (2)
- (3)

(MEC)

6-D

40. The equation of the parabola with vertex (-2, 3) and focus (1, 3) is

(1)
$$y^2 + 6y + 12x - 15 = 0$$

(2)
$$y^2 - 6y - 12x - 15 = 0$$

(3)
$$x^2 - 6x - 12x - 15 = 0$$

$$(4) \quad y^2 - 6y - 3x + 15 = 0$$

The latus rectum of the ellipse $x^2 + 2y^2 = 3$ is 41.

$$(1)$$
 2

(2)
$$\sqrt{3}$$

(3)
$$2\sqrt{6}$$

(4)
$$2\sqrt{3}$$

The eccentricity of the hyperbola $4x^2 - 9y^2 = 2ax + b^2$ is 42.

(1)
$$\frac{a}{b}$$

(2)
$$\frac{\sqrt{b}}{a}$$

(3)
$$\frac{\sqrt{13}}{2}$$

(4)
$$\frac{13}{\sqrt{3}}$$

The length of the diameter of the circle $x^2 + y^2 - 6x - 8y = 0$ is 43.

$$(1)$$
 10

If the line 2y = 5x + k touches the parabola $y^2 = 6x$, then k = 144.

(1)
$$\frac{2}{3}$$

(2)
$$\frac{4}{3}$$

(3)
$$\frac{3}{5}$$

(4)
$$\frac{6}{5}$$

 $\lim_{x \to 1} \frac{x^2 - 1}{|x - 1|} = \dots$ 45.

 $\lim_{x \to 0} \frac{\log(x+2)}{2^x - 1} =$ 46.

(1) log₃ 4

(2) $\log_2 e$

(3) log_e 2 (4) $\log_{4} e$

If $x = t^2$, $y = t^3$ then $\frac{d^2y}{dx^2} =$ 47.

(1)
$$\frac{3}{2}$$
 (2) $\frac{3t}{4}$ (3) $\frac{3}{4t}$

(4) $\frac{3}{2t}$

If $x^3 + y^3 = 3axy$ then $\frac{dy}{dx} =$

$$(1) \quad \frac{x^2 - ay}{ax - y^2}$$

(1) $\frac{x^2 - ay}{ax - y^2}$ (2) $\frac{x^2 + ay}{ay - x^2}$ (3) $\frac{y^2 - ax}{x^2 - ay^2}$ (4) $\frac{x^2 + ay}{ax + y^2}$

If $y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ then $\frac{dy}{dx} =$ 49.

(1)
$$-\frac{2}{1+x^2}$$
 (2) $\frac{2}{1+x^2}$ (3) $\frac{1}{1+x^2}$

The slope of the normal to the curve $xy^2 = 4$ at (1, -2) is 50:

(1)

(2) -1 (3) $-\frac{1}{2}$

(4)

PHYSICS

The molecular kinetic energy of 1 gram of Helium at 127 °C is 51. (Assume Molecular weight of Helium = 4, $R = 8.31 \text{ J.mol}^{-1}.K^{-1}$)

- 130 J (1)
- (2) 1247 J
- (3)2471 J
- 2147 1 (4)

52. 1 gm of steam is sent into 1 gm of ice. The resultant temperature of the mixture is

- 270°C (1)
- (2) 230 °C
- (3)100°C
- 50 °C (4)

Heat energy of 2100 J is given to a gas at a constant pressure 1.05×10^5 Pa, changing its 53. volume to 5×10^{-3} m³. The increase in its internal energy is

- 157 J (1)
- (2) 175 J
- (3)1575 J
- 575 J (4)

54. The unit of water equivalent is

- calorie (1)
- (2)dyne
- (3) gram
- (4) erg

The potential difference that should be applied to stop the fastest photoelectrons emitted 55. by nickel surface under the action of 20 nm uv radiations is

 $(h = 6.63 \times 10^{-34} \text{ J.s.}; c = 3 \times 10^8 \text{ ms}^{-1}; \text{ work function of Nickel is 5.01 eV})$

- 5.714 eV (1)
- (2) 571.4 eV
- 0.5714 eV (3)
- (4) 57.14 V

The critical current which can flow through a long thin superconducting wire of diameter 56. 10^{-3} m is

 $(H_c = 7.9 \times 10^3 \text{ A.m}^{-1})$

- (1) 24.81 A (2)
- 2.481 A (3) 2.481 mA (4) 24.81 mA

The SI unit of energy is $J = kgm^2.s^{-2}$, that of speed 'v' is m.s⁻¹ and of accelaration 'a' is 57. m.s⁻². If 'm' represents the mass of the body, which of the following tells the correct answer for kinetic energy with respect to dimensional formula

- (1) $K = m^2 v^2$ (2) K = ma

- (3) $K = \frac{1}{2} \text{ mv}^2$ (4) $K = \frac{1}{2} \text{ m}^2 \text{ v}^4$

With respect to the suitable conversion units, the values of the following blanks 58. respectively are

 $1 \text{ kg.m}^2.\text{s}^{-2} = \underline{\qquad} \text{g.cm}^2.\text{s}^{-2}; 3.0 \text{ m.s}^{-2} = \underline{\qquad} \text{km.h}^{-2}$

(1) 10^7 : 3.88×10^4

(2) 10^5 ; 3.88×10^5 .

(3) 10^4 ; 3.88×10^7

(4) 10^5 ; 3.88×10^7

(MEC)

8-D

Set	Code	M2
		-

Booklet Code : D

The position of an object moving along x – axis is given by $x = a + bt^2$. Here a = 8.5 m, 59. $b = 2.5 \text{ ms}^{-2}$. Then the average velocity between t = 2.0 s and t = 4.0 s is

- (1) 150 m.s⁻¹
- (2) 100 m.s⁻¹
- (3) 15 m.s⁻¹

If $A = 4\hat{i} + 3\hat{k} - 5\hat{j}$, $B = 2\hat{i} - 10\hat{j} - 7\hat{k}$ and $C = 5\hat{i} + 7\hat{j} - 4\hat{k}$, the value of $(A \times B) \times C$ is 60.

- (1) $7\hat{i} + 10\hat{j} + 25\hat{k}$ (2) $4\hat{i} + 11\hat{j} + 28\hat{k}$
- (3) $74\hat{i} + 10\hat{i} + 28\hat{k}$ (4) $74\hat{i} + 110\hat{j} + 285\hat{k}$

A body moving with uniform accelaration covers a distance of 19 m in its third second 61. and 43 m in its seventh second of its motion. The initial velocity and accelaration of the body respectively are

(1) 4 m.s⁻¹:6 m.s⁻²

(2) 6 m.s⁻¹; 4 m.s⁻²

(3) 8 m.s⁻¹: 6 m.s⁻²

(4) 4 m.s⁻¹: 12 m.s⁻²

A body is at rest on the tip of a smooth inclined plane of length 15 m and angle of 62. inclination 60° with the horizontal. Neglecting the frictional forces, the time taken for the body to reach the bottom of the inclined plane is (Assume $g = 9.8 \text{ m.s}^{-2}$)

- (1) 18.8 s
- (2) 1.88 s
- (3) 0.18 s
- (4) 0.018 s

A body is projected upwards with a velocity of 14.7 ms⁻¹ from ground. The time taken 63. for the body to reach the ground is (Assume $g = 9.8 \text{ ms}^{-2}$)

- (1) 5s
- (2) 2s
- (4) 4 s

A ball projected upwards with an initial velocity of 40 m.s⁻¹, reaches a maximum height 64. of 25 m. The horizontal distance covered by the ball when it touches the ground is (Assume $g = 9.8 \text{ m.s}^{-2}$)

- (1) 100m
- (2) 50m
- (3) 150.5m
- (4) 15.5m

An aeroplane is flying horizontally at an altitude of 49 m with a velocity of 200 m.s⁻¹. 65. When it is just above the target a bomb is dropped. The bomb touches the ground missing the target at a horizontal distance of (Assume $g = 9.8 \text{ m.s}^{-2}$)

- (1) 632.4 m
- (2) 63.24 m
- (3) 6.324 m (4) 0.6324 m

66. A force of 100N is acted on a body of mass 20.0 kg placed on a rough horizontal surface. If the direction of the force is parallel to the surface and the coefficient of friction is 0.4, the accelaration produced is

- (1) 10.8 ms^{-2} (2) 0.108 ms^{-2} (3) 1.08 ms^{-2} (4) 108 ms^{-2}

A man carries a load of 50 kg through a height of 40 m in 25s. If the power of the man is 67. 1568W, his mass is (Assume $g = 9.8 \text{ m.s}^{-2}$)

9-D

- (1) 150 kg
- (2) 75 kg
- (3)
- 100 kg

50 kg (4)

Bo	oklet Code : D				Set C	ode: M2	•
68.	A 5 kg mass is dropped from a height. second of its travel is (Assume $g = 9.8$ m		netic energy of th	ne n	nass at the	end of third	i
	(1) 2161 J (2) 21.61 J	(3)	2.161 J (4	4)	0.2161 J		
69.	Which of the following law is called the	law c	of inertia?				
	(1) Newton's second law	(2)	Newton's first la	aw			
	(3) Newton's third law	(4)	Conservation la	w	14 95		
70.	The frequency of a body executing sim 0.2 m. The maximum velocity and accel	ple ha	armonic motion in of the body are	s 6	Hz, with a pectively g	n amplitud	е
	(1) 7.54 ms^{-1} ; 284.2 ms ⁻²	(2)	284.2 ms ⁻¹ ; 7.5	4 n	$1s^{-2}$		
	(3) 75.4 ms^{-1} ; 284.2 ms^{-2}	(4)	7.54 ms ⁻¹ ; 28.4	2 n	ns ⁻²		,
71.	A pendulum of length 80 cm has the tirbe 1.6s at the same place, the length of t			lac	e. If the per	riod were t	.0
	(1) 63.2 m (2) 0.632 m	(3)	0.0632 m	4)	6.32 m		
72.	If the length of a second's pendulum is l	alved	, its period of osc	illa	itions will b	e	
1 1	(1) 14 s (2) 0.14 s	(3)	1.414 s	4)	14.14 s		
						d ne	
73.	A pipe of 30 cm long is open at both en a 1.1 kHz source is (Speed of sound in a		The state of the s	e of	the pipe th	at resonate	es
	(1) First Harmonic	(2)	Third Harmonic		4.08116		
	(3) Second Harmonic	(4)	Fourth Harmoni	ic			
74.	A train standing at the outer signal of a Hz in still air. The frequency of the w train approaches him at a speed of 10 ms	histle					
	(1) 412 Hz (2) 41.2 Hz	(3)	4.12 Hz (4)	400 Hz		
75.	Two thermally insulated vessels of volu	mes \	V_1 and V_2 are join	ned	with a val	ve and fille	ed
	with air at temperatures T ₁ and T ₂ at				· ·		
	joining the two vessels are opened, the to						
	(1) $\frac{(P_1V_1 + P_2V_2) T_1T_2}{(P_1V_1T_2 + P_2V_2T_1)}$	(2)	$\frac{P_1V_1 + F_2}{(T_1T_2)(P_1V_1T_1)}$	2V +]	$\frac{2}{P_2V_2T_2}$		-
	All the late of th	1	$\frac{P_1 V_1}{P_2 V_2} \left(\frac{T_1}{T_2} \right)$		i seji may Yang dalam Mara		

(MEC)

		- 5	
Set	Code	:	M2

				_
-			~	1
HA	017	0	Code	
DU	UK		Cou	

CHEMISTRY

				CIIDI	TARD A	**************************************		
76.	The is	type of polymo	erizatio	on reaction wh	ile for	ming polyviny	lchlori	de from vinyl chloride
	(1) (3)	Addition poly Ionisation	ymeriz	ation	(2) (4)	Condensation Decomposition	-	nerization
77.	Whi	ch among the l Bakelite		is an example Polyethelene		mosetting poly Teflon	mer ? (4)	polyvinyl chloride
78.	The (1)	chemical used Salt	in vul (2)	canization pro Chloride	cess to	make rubber l Sulphur	ard is	Ethyl acetate
79.	Biog (1) (3)	gas is generated Esterification Anaerobic de	1		(2) (4)	nd is subjected Aerobic deco Distillation	to mposi	tion
			1			a haran		A Property
80.		effect of using	chlore	ofluorocarbons	s on en (2)	vironment is Ozone deplet	ion	
	(1)	Acid rain BOD		2	(4)	Sound polluti		
			1			d'in	E 9 0	
81.	(1)	olved oxygen kg			(3)	ppm	(4)	L
82.	The	maximum nur	nber o	f electrons wh	ich car	occupy 2s orb		The state of the s
	(1)	1	(2)	2	(3)	3	(4)	4
83.	The	electronic con	figurat	ion of carbon	is			W
	(1)	$ls^22s^22p^1$		$1s^22s^22p^2$	(3)	$1s^22s^22p^3$	(4)	$1s^22s^22p^4$
84.		shape of s orb Dumb-bells		Triangle	(3)	Spherical	(4)	Double dumbbell
	(1)	11.4		15				
85.	The (1) (3)	type of Chemi Covalent bor Polar bond		nd present in s	(2) (4)	Polar Covale Ionic bond	ent bor	nd
86.	Whi	ch of the follo	wing c	ompound has	covale	ent bond?		4 14 - 5
00.	(1)	NaCl	(2)	HC/	(3)		(4)	H ₂
87.	Whi	ch solvent is a Ethyl acetate			solven (3)	Water	(4)	Dichloromethane
88.	One (1)	molar solution 4g/L	of so (2)	dium hydroxid 0.4g/L	de is p (3)		(4)	40g/L
89.	A so	lution is a mix	ture o	f				Be Mules
	(1)	Two solutes Single Solve	nt		(2) (4)	Two solids Solute & So	lvent	

ocanneu by Camocannei

Boo	oklet Code : D		Set Code: M2
90.	The pH of neutral solution is (1) 2.0 (2) 7.0	(3)	3.0 (4) 5.0
91.	According to Lewis theory, acid species (1) Donate electrons (3) Accept proton	(2) (4)	Accept electrons Donate proton
92.	Which of the following is a good condu (1) De-ionized water (3) Teflon	(2) (4)	Copper Bakelite
93.	In galvanic cell chemical energy is conv (1) Electrical energy (3) Sound energy	(2) (4)	to Thermal energy Water
94.	According to Faraday's first law, the electrode is directly proportional to (1) Quantity of Electricity passed (3) Electrode potential	(2) (4)	of any substance deposited or liberated at Temperature of Electrode Solution concentration
95.	In a given galvanic cell the standard rethat of Copper electrode is -0.40 V. Th (1) 0.36V (2) 1.16V		n potential of Zinc electrode is -0.76 V and of the galvanic cell is -0.40V (4) -0.76V
96.	Hard water contains (1) Small stones (2) Oil (3) Dissolved calcium & magnesium (4) Bacteria	salts	
97.	The unit used to express Hardness of w (1) Siemens (2) Volts	ater is (3)	mg/L (4) Moles
98.	Ion exchange process is done in water to (1) Solid particles (3) smell	(2) (4)	ove Colour Dissolved salts
99.	Wet corrosion is best explained by (1) Bohr's theory (3) Bronsted-Lowry theory	(2) (4)	Electrochemical theory Arrhenius theory
100.	making it work as (1) Salt bridge of electrochemical cel (2) Anode of electrochemical cell		e corrosion of metal surface is avoided by
	(3) Cathode of electrochemical cell(4) Insulator		
(MEC		12-D	200일 : 그는 생각 수 있는 것이 없는 것이 없다.