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Programming Language Pragmatics is a very well-written textbook that captures the interest and
focus of the reader. Each of the topics is very well introduced, developed, illustrated, and inte-
grated with the preceding and following topics. The author employs up-to-date information and
illustrates each concept by using examples from various programming languages. The level of pre-
sentation is appropriate for students, and the pedagogical features help make the chapters very easy
to follow and refer back to.

—FKamal Dahbur, DePaul University

Programming Language Pragmatics strikes a good balance between depth and breadth in its
coverage on of both classic and updated languages.
—Jingke Li, Portland State University

Programming Language Pragmatics is the most comprehensive book to date on the theory and
implementation of programming languages. Prof. Scott writes well, conveying both unifying fun-
damental principles and the differing design choices found in today’s major languages. Several
improvements give this new second edition a more user-friendly format.

—William Calhoun, Bloomsburg University

Prof. Scott has met his goal of improving Programming Language Pragmatics by bringing the
text up-to-date and making the material more accessible for students. The addition of the chapter
on scripting languages and the use of XML to illustrate the use of scripting languages is unique in
programming languages texts and is an important addition.

—Eileen Head, Binghamton University

This new edition of Programming Language Pragmatics does an excellent job of balancing the
three critical qualities needed in a textbook: breadth, depth, and clarity. Prof. Scott manages to
cover the full gamut of programming languages, from the oldest to the newest with sufficient depth
to give students a good understanding of the important features of each, but without getting bogged
down in arcane and idiosyncratic details. The new chapter on scripting languages is a most valu-
able addition as this class of languages continues to emerge as a major mainstream technology.
This book is sure to become the gold standard of the field.

—Christopher Vickery, Queens College of CUNY

Programming Language Pragmatics not only explains language concepts and implementation
details with admirable clarity, but also shows how computer architecture and compilers influ-
ence language design and implementation. .. This book shows that programming languages are
the true center of computer science—the bridges spanning the chasm between programmer and
machine.

—From the Foreword by Jim Larus, Microsoft Research
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Foreword

Computer science excels at layering abstraction on abstraction. Our field’s facility
for hiding details behind a simplified interface is both a virtue and a necessity.
Operating systems, databases, and compilers are very complex programs shaped
by forty years of theory and development. For the most part, programmers need
little or no understanding of the internal logic or structure of a piece of software
to use it productively. Most of the time, ignorance is bliss.

Opaque abstraction, however, can become a brick wall, preventing forward
progress, instead of a sound foundation for new artifacts. Consider the subject
of this book, programs and programming languages. What happens when a pro-
gram runs too slowly, and profiling cannot identify any obvious bottleneck or the
bottleneck does not have an algorithmic explanation? Some potential problems
are the translation of language constructs into machine instructions or how the
generated code interacts with a processor’s architecture. Correcting these prob-
lems requires an understanding that bridges levels of abstraction.

Abstraction can also stand in the path of learning. Simple questions—how
programs written in a small, stilted subset of English can control machines that
speak binary or why programming languages, despite their ever growing variety
and quantity, all seem fairly similar—cannot be answered except by diving into
the details and understanding computers, compilers, and languages.

A computer science education, taken as a whole, can answer these questions.
Most undergraduate programs offer courses about computer architecture, oper-
ating systems, programming language design, and compilers. These are all fas-
cinating courses that are well worth taking—but difficult to fit into most study
plans along with the many other rich offerings of an undergraduate computer
science curriculum. Moreover, courses are often taught as self-contained subjects
and do not explain a subject’s connections to other disciplines.

This book also answers these questions, by looking beyond the abstractions
that divide these subjects. Michael Scott is a talented researcher who has made
major contributions in language implementation, run-time systems, and com-
puter architecture. He is exceptionally well qualified to draw on all of these fields



Foreword

to provide a coherent understanding of modern programming languages. This
book not only explains language concepts and implementation details with ad-
mirable clarity, but also shows how computer architecture and compilers influ-
ence language design and implementation. Moreover, it neatly illustrates how
different languages are actually used, with realistic examples to clearly show how
problem domains shape languages as well.

In interest of full disclosure, I must confess this book worried me when I first
read it. At the time, I thought Michael’s approach de-emphasized programming
languages and compilers in the curriculum and would leave students with a su-
perficial understanding of the field. But now, having reread the book, I have come
to realize that in fact the opposite is true. By presenting them in their proper con-
text, this book shows that programming languages are the true center of com-
puter science—the bridges spanning the chasm between programmer and ma-
chine.

James Larus, Microsoft Research
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Preface

A course in computer programming provides the typical student’s first ex-
posure to the field of computer science. Most students in such a course will have
used computers all their lives, for e-mail, games, web browsing, word processing,
instant messaging, and a host of other tasks, but it is not until they write their
first programs that they begin to appreciate how applications work. After gaining
a certain level of facility as programmers (presumably with the help of a good
course in data structures and algorithms), the natural next step is to wonder how
programming languages work. This book provides an explanation. It aims, quite
simply, to be the most comprehensive and accurate languages text available, in
a style that is engaging and accessible to the typical undergraduate. This aim re-
flects my conviction that students will understand more, and enjoy the material
more, if we explain what is really going on.

In the conventional “systems” curriculum, the material beyond data struc-
tures (and possibly computer organization) tends to be compartmentalized into
a host of separate subjects, including programming languages, compiler con-
struction, computer architecture, operating systems, networks, parallel and dis-
tributed computing, database management systems, and possibly software engi-
neering, object-oriented design, graphics, or user interface systems. One problem
with this compartmentalization is that the list of subjects keeps growing, but the
number of semesters in a bachelor’s program does not. More important, perhaps,
many of the most interesting discoveries in computer science occur at the bound-
aries between subjects. The RISC revolution, for example, forged an alliance be-
tween computer architecture and compiler construction that has endured for 20
years. More recently, renewed interest in virtual machines has blurred the bound-
ary between the operating system kernel and the language run-time system. The
spread of Java and .NET has similarly blurred the boundary between the compiler
and the run-time system. Programs are now routinely embedded in web pages,
spreadsheets, and user interfaces.

Increasingly, both educators and practitioners are recognizing the need to em-
phasize these sorts of interactions. Within higher education in particular there is

xxiii



XXiv

Preface

a growing trend toward integration in the core curriculum. Rather than give the
typical student an in-depth look at two or three narrow subjects, leaving holes in
all the others, many schools have revised the programming languages and oper-
ating systems courses to cover a wider range of topics, with follow-on electives
in various specializations. This trend is very much in keeping with the findings
of the ACM/IEEE-CS Computing Curricula 2001 task force, which emphasize the
growth of the field, the increasing need for breadth, the importance of flexibility
in curricular design, and the overriding goal of graduating students who “have
a system-level perspective, appreciate the interplay between theory and practice,
are familiar with common themes, and can adapt over time as the field evolves”
[CRO1, Sec. 11.1, adapted].

The first edition of Programming Language Pragmatics (PLP-le) had the
good fortune of riding this curricular trend. The second edition continues and
strengthens the emphasis on integrated learning while retaining a central focus
on programming language design.

At its core, PLP is a book about how programming languages work. Rather than
enumerate the details of many different languages, it focuses on concepts that
underlie all the languages the student is likely to encounter, illustrating those
concepts with a variety of concrete examples, and exploring the tradeoffs that
explain why different languages were designed in different ways. Similarly, rather
than explain how to build a compiler or interpreter (a task few programmers will
undertake in its entirety), PLP focuses on what a compiler does to an input pro-
gram, and why. Language design and implementation are thus explored together,
with an emphasis on the ways in which they interact.

Changes in the Second Edition

There were four main goals for the second edition:

I. Introduce new material, most notably scripting languages.

2. Bring the book up to date with respect to everything else that has happened
in the last six years.

3. Resist the pressure toward rising textbook prices.

4. Strengthen the book from a pedagogical point of view, to make it more useful
and accessible.

Item (1) is the most significant change in content. With the explosion of the
World Wide Web, languages like Perl, PHP, Tcl/Tk, Python, Ruby, JavaScript, and
XSLT have seen an enormous upsurge not only in commercial significance, but
also in design innovation. Many of today’s graduates will spend more of their
time working with scripting languages than with C++, Java, or C#. The new chap-
ter on scripting languages (Chapter 13) is organized first by application domain
(shell languages, text processing and report generation, mathematics and statis-
tics, “glue” languages and general purpose scripting, extension languages, script-
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ing the World Wide Web) and then by innovative features (names and scopes,
string and pattern manipulation, high level data types, object orientation). Refer-
ences to scripting languages have also been added wherever appropriate through-
out the rest of the text.

Item (2) reflects such key developments as the finalized C99 standard and the
appearance of Java 5 and C# (version 2.0). Chapter 6 (Control Flow) now cov-
ers boxing, unboxing, and the latest iterator constructs. Chapter 8 (Subroutines)
covers Java and C# generics. Chapter 12 (Concurrency) covers the Java 5 con-
currency library (JSR 166). References to C# have been added where appropriate
throughout. In keeping with changes in the microprocessor market, the ubiq-
uitous Intel/AMD x86 has replaced the Motorola 68000 in the case studies of
Chapters 5 (Architecture) and 8 (Subroutines). The MIPS case study in Chap-
ter 8 has been updated to 64-bit mode. References to technological constants and
trends have also been updated. In several places I have rewritten examples to use
languages with which students are more likely to be familiar; this process will
undoubtedly continue in future editions.

Many sections have been heavily rewritten to make them clearer or more ac-
curate. These include coverage of finite automaton creation (2.2.1); declaration
order (3.3.3); modules (3.3.4); aliases and overloading (3.6.1 and 3.6.2); poly-
morphism and generics (3.6.3, 7.1.2, 8.4, and 9.4.4); separate compilation (3.7);
continuations, exceptions, and multilevel returns (6.2.1, 6.2.2, and 8.5); calling
sequences (8.2); and most of Chapter 5.

Item (3) reflects Morgan Kaufmann’s commitment to making definitive texts
available at student-friendly prices. PLP-1e was larger and more comprehensive
than competing texts, but sold for less. This second edition keeps a handle on
price (and also reduces bulk) with high-quality paperback construction.

Finally, item (4) encompasses a large number of presentational changes. Some
of these are relatively small. There are more frequent section headings, for exam-
ple, and more historical anecdotes. More significantly, the book has been orga-
nized into four major parts:

PartI covers foundational material: (1) Introduction to Language Design and
Implementation; (2) Programming Language Syntax; (3) Names, Scopes, and
Bindings; (4) Semantic Analysis; and (5) Target Machine Architecture. The
second and fifth of these have a fairly heavy focus on implementation issues.
The first and fourth are mixed. The third introduces core issues in language
design.

PartII  continues the coverage of core issues: (6) Control Flow; (7) Data Types;
(8) Subroutines and Control Abstraction; and (9) Data Abstraction and Ob-
ject Orientation. The last of these has moved forward from its position in PLP-
le, reflecting the centrality of object-oriented programming to much of mod-
ern computing.

Part III  turns to alternative programming models: (10) Functional Languages;
(11) Logic Languages; (12) Concurrency; and (13) Scripting Languages. Func-
tional and logic languages shared a single chapter in PLP-1e.
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Part IV returns to language implementation: (14) Building a Runnable Pro-
gram (code generation, assembly, and linking); and (15) Code Improvement
(optimization).

The PLP CD

To minimize the physical size of the text, make way for new material, and allow
students to focus on the fundamentals when browsing, approximately 250 pages
of more advanced or peripheral material has been moved to a companion CD.
For the most part (though not exclusively), this material comprises the sections
that were identified as advanced or optional in PLP-1e.

The most significant single move is the entire chapter on code improvement
(15). The rest of the moved material consists of scattered, shorter sections. Each
such section is represented in the text by a brief introduction to the subject and
an “In More Depth” paragraph that summarizes the elided material.

Note that the placement of material on the CD does not constitute a judgment
about its technical importance. It simply reflects the fact that there is more mate-
rial worth covering than will fit in a single volume or a single course. My intent is
to retain in the printed text the material that is likely to be covered in the largest
number of courses.

Design & Implementation Sidebars

PLP-1e placed a heavy emphasis on the ways in which language design constrains
implementation options, and the ways in which anticipated implementations
have influenced language design. PLP-2e uses more than 120 sidebars to make
these connections more explicit. A more detailed introduction to these sidebars
appears on page 7 (Chapter 1). A numbered list appears in Appendix B.

Numbered and Titled Examples

Examples in PLP-2e are intimately woven into the flow of the presentation. To
make it easier to find specific examples, to remember their content, and to refer
to them in other contexts, a number and a title for each is now displayed in a
marginal note. There are nearly 900 such examples across the main text and the
CD. A detailed list appears in Appendix C.

Exercise Plan

PLP-1e contained a total of 385 review questions and 312 exercises, located at the
ends of chapters. Review questions in the second edition have been moved to the
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ends of sections, closer to the material they cover, to make it easier to tell when
one has grasped the central concepts. The total number of such questions has
nearly doubled.

The problems remaining at the ends of chapters have now been divided
into Exercises and Explorations. The former are intended to be more or less
straightforward, though more challenging than the per-section review ques-
tions; they should be suitable for homework or brief projects. The exploration
questions are more open-ended, requiring web or library research, substantial
time commitment, or the development of subjective opinion. The total num-
ber of questions has increased from a little over 300 in PLP-le to over 500
in the current edition. Solutions to the exercises (but not the explorations)
are available to registered instructors from a password-protected web site: visit
www.mkp.com/companions/0126339511/.

How to Use the Book

Programming Language Pragmatics covers almost all of the material in the PL
“knowledge units” of the Computing Curricula 2001 report [CRO1]. The book is
an ideal fit for the CS 341 model course (Programming Language Design), and
can also be used for CS 340 (Compiler Construction) or CS 343 (Programming
Paradigms). It contains a significant fraction of the content of CS 344 (Functional
Programming) and CS 346 (Scripting Languages). Figure 1 illustrates several pos-
sible paths through the text.

For self-study, or for a full-year course (track F in Figure 1), I recommend
working through the book from start to finish, turning to the PLP CD as each “In
More Depth” section is encountered. The one-semester course at the University
of Rochester (track R), for which the text was originally developed, also covers
most of the book but leaves out most of the CD sections, as well as bottom-up
parsing (2.3.3), message passing (12.4), web scripting (13.3), and most of Chap-
ter 14 (Building a Runnable Program).

Some chapters (2, 4, 5, 14, 15) have a heavier emphasis than others on imple-
mentation issues. These can be reordered to a certain extent with respect to the
more design-oriented chapters, but it is important that Chapter 5 or its equiva-
lent be covered before Chapters 6 through 9. Many students will already be famil-
iar with some of the material in Chapter 5, most likely from a course on computer
organization. In this case the chapter may simply be skimmed for review. Some
students may also be familiar with some of the material in Chapter 2, perhaps
from a course on automata theory. Much of this chapter can then be read quickly
as well, pausing perhaps to dwell on such practical issues as recovery from syntax
errors, or the ways in which a scanner differs from a classical finite automaton.

A traditional programming languages course (track P in Figure 1) might leave
out all of scanning and parsing, plus all of Chapters 4 and 5. It would also
deemphasize the more implementation-oriented material throughout. In place
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F: The full-year/self-study plan
R: The one-semester Rochester plan [ Supplemental (CD) section
P: The traditional Programming Languages plan; To be skimmed by students in need of review

would also de-emphasize implementation material
throughout the chapters shown
C: The compiler plan; would also de-emphasize design material
throughout the chapters shown
Q: The 142 quarter plan: an overview quarter and two independent, optional
follow-on quarters, one language-oriented, the other compiler-oriented

Figure | Paths through the text. Darker shaded regions indicate supplemental “In More Depth” sections on the PLP CD.
Section numbers are shown for breaks that do not correspond to supplemental material.

of these it could add such design-oriented CD sections as the ML type sys-
tem (7.2.4), multiple inheritance (9.5), Smalltalk (9.6.1), lambda calculus (10.6),
and predicate calculus (11.3).

PLP has also been used at some schools for an introductory compiler course
(track C in Figure 1). The typical syllabus leaves out most of Part III (Chapters 10
through 13), and deemphasizes the more design-oriented material throughout.
In place of these it includes all of scanning and parsing, Chapters 14 and 15, and
a slightly different mix of other CD sections.

For a school on the quarter system, an appealing option is to offer an intro-
ductory one-quarter course and two optional follow-on courses (track Q in Fig-
ure 1). The introductory quarter might cover the main (non-CD) sections of
Chapters 1, 3, 6, and 7, plus the first halves of Chapters 2 and 8. A language-
oriented follow-on quarter might cover the rest of Chapter 8, all of Part III, CD
sections from Chapters 6 through 8, and possibly supplemental material on for-
mal semantics, type systems, or other related topics. A compiler-oriented follow-
on quarter might cover the rest of Chapter 2; Chapters 4-5 and 14-15, CD sec-
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tions from Chapters 3 and 8-9, and possibly supplemental material on automatic
code generation, aggressive code improvement, programming tools, and so on.

Whatever the path through the text, I assume that the typical reader has al-
ready acquired significant experience with at least one imperative language. Ex-
actly which language it is shouldn’t matter. Examples are drawn from a wide
variety of languages, but always with enough comments and other discussion
that readers without prior experience should be able to understand easily. Single-
paragraph introductions to some 50 different languages appear in Appendix A.
Algorithms, when needed, are presented in an informal pseudocode that should
be self-explanatory. Real programming language code is set in "typewriter"
font. Pseudocode is set in a sans-serif font.

Supplemental Materials

In addition to supplemental sections of the text, the PLP CD contains a variety
of other resources:

Links to language reference manuals and tutorials on the Web

Links to Open Source compilers and interpreters

Complete source code for all nontrivial examples in the book (more than 300
source files)

Search engine for both the main text and the CD-only content

Additional resources are available at www.mkp.com/companions/0126339511/
(you may wish to check back from time to time). For instructors who have
adopted the text, a password-protected page provides access to

Editable PDF source for all the figures in the book
Editable PowerPoint slides

Solutions to most of the exercises

Suggestions for larger projects

Acknowledgments for the Second Edition

In preparing the second edition I have been blessed with the generous assistance
of a very large number of people. Many provided errata or other feedback on
the first edition, among them Manuel E. Bermudez, John Boyland, Brian Cum-
ming, Stephen A. Edward, Michael J. Eulenstein, Tayssir John Gabbour, Tom-
maso Galleri, Fileen Head, David Hoffman, Paul Ilardi, Lucian Ilie, Rahul Jain,
Eric Joanis, Alan Kaplan, Les Lander, Jim Larus, Hui Li, Jingke Li, Evangelos Mil-
ios, Eduardo Pinheiro, Barbara Ryder, Nick Stuifbergen, Raymond Toal, Andrew
Tolmach, Jens Troeger, and Robbert van Renesse. Zongyan Qiu prepared the Chi-
nese translation, and found several bugs in the process. Simon Fillat maintained
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the Morgan Kaufmann web site. I also remain indebted to the many other peo-
ple, acknowledged in the first edition, who helped in that earlier endeavor, and to
the reviewers, adopters, and readers who made it a success. Their contributions
continue to be reflected in the current edition.

Work on the second edition began in earnest with a “focus group” at
SIGCSE’02; my thanks to Denise Penrose, Emilia Thiuri, and the rest of the
team at Morgan Kaufmann for organizing that event, to the approximately two
dozen attendees who shared their thoughts on content and pedagogy, and to the
many other individuals who reviewed two subsequent revision plans.

A draft of the second edition was class tested in the fall of 2004 at eight dif-
ferent universities. I am grateful to Gerald Baumgartner (Louisiana State Univer-
sity), William Calhoun (Bloomsburg University), Betty Cheng (Michigan State
University), Jingke Li (Portland State University), Beverly Sanders (University of
Florida), Darko Stefanovic (University of New Mexico), Raymond Toal (Loyola
Marymount University), Robert van Engelen (Florida State University), and all
their students for a mountain of suggestions, reactions, bug fixes, and other feed-
back. Professor van Engelen provided several excellent end-of-chapter exercises.

External reviewers for the second edition also provided a wealth of use-
ful suggestions. My thanks to Richard ]. Botting (California State University,
San Bernardino), Kamal Dahbur (DePaul University), Stephen A. Edwards
(Columbia University), Eileen Head (Binghamton University), Li Liao (Univer-
sity of Delaware), Christopher Vickery (Queens College, City University of New
York), Garrett Wollman (MIT), Neng-Fa Zhou (Brooklyn College, City Univer-
sity of New York), and Cynthia Brown Zickos (University of Mississippi). Gar-
rett Wollman’s technical review of Chapter 13 was particularly helpful, as were
his earlier comments on a variety of topics in the first edition. Sadly, time has
not permitted me to do justice to everyone’s suggestions. I have incorporated
as much as I could, and have carefully saved the rest for guidance on the third
edition. Problems that remain in the current edition are entirely my own.

PLP-2e was also class tested at the University of Rochester in the fall of 2004.
I am grateful to all my students, and to John Heidkamp, David Lu, and Dan Mul-
lowney in particular, for their enthusiasm and suggestions. Mike Spear provided
several helpful pointers on web technology for Chapter 13. Over the previous
several years, my colleagues Chen Ding and Sandhya Dwarkadas taught from the
first edition several times and had many helpful suggestions. Chen’s feedback on
Chapter 15 (assisted by Yutao Zhong) was particularly valuable. My thanks as
well to the rest of my colleagues, to department chair Mitsunori Ogihara, and
to the department’s administrative, secretarial, and technical staff for providing
such a supportive and productive work environment.

As they were on the first edition, the staff at Morgan Kaufmann have been a
genuine pleasure to work with, on both a professional and a personal level. My
thanks in particular to Denise Penrose, publisher; Nate McFadden, editor; Carl
Soares, production editor; Peter Ashenden, CD designer; Brian Grimm, market-
ing manager; and Valerie Witte, editorial assistant.



Preface xXxxi

Most important, I am indebted to my wife, Kelly, and our daughters, Erin and
Shannon, for their patience and support through endless months of writing and
revising. Computing is a fine profession, but family is what really matters.

Michael L. Scott
Rochester, NY
April 2005
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Foundations

A central premise of Programming Language Pragmatics is that language design and implementation
are intimately connected; it’s hard to study one without the other.

The bulk of the text—Parts IT and III—is organized around topics in language design, but with
detailed coverage throughout of the many ways in which design decisions have been shaped by
implementation concerns.

The first five chapters—Part I—set the stage by covering foundational material in both design
and implementation. Chapter 1 motivates the study of programming languages, introduces the ma-
jor language families, and provides an overview of the compilation process. Chapter 3 covers the
high-level structure of programs, with an emphasis on names, the binding of names to objects, and
the scope rules that govern which bindings are active at any given time. In the process it touches on
storage management; subroutines, modules, and classes; polymorphism; and separate compilation.

Chapters 2, 4, and 5 are more implementation-oriented. They provide the background needed to
understand the implementation issues mentioned in Parts II and III. Chapter 2 discusses the syntax,
or textual structure, of programs. It introduces regular expressions and context-free grammars, which
designers use to describe program syntax, together with the scanning and parsing algorithms that a
compiler or interpreter uses to recognize that syntax. Given an understanding of syntax, Chapter 4
explains how a compiler (or interpreter) determines the sermantics, or meaning of a program. The
discussion is organized around the notion of attribute grammars, which serve to map a program
onto something else that has meaning, like mathematics or some other existing language. Finally,
Chapter 5 provides an overview of assembly-level computer architecture, focusing on the features of
modern microprocessors most relevant to compilers. Programmers who understand these features
have a better chance not only of understanding why the languages they use were designed the way

they were, but also of using those languages as fully and effectively as possible.







EXAMPLE I.I

GCD program in MIPS
machine language

EXAMPLE I.Z

GCD program in MIPS
assembler

Introduction

The first electronic computers were monstrous contraptions, filling
several rooms, consuming as much electricity as a good-size factory, and costing
millions of 1940s dollars (but with the computing power of a modern hand-held
calculator). The programmers who used these machines believed that the com-
puter’s time was more valuable than theirs. They programmed in machine lan-
guage. Machine language is the sequence of bits that directly controls a processor,
causing it to add, compare, move data from one place to another, and so forth at
appropriate times. Specifying programs at this level of detail is an enormously te-
dious task. The following program calculates the greatest common divisor (GCD)
of two integers, using Euclid’s algorithm. It is written in machine language, ex-
pressed here as hexadecimal (base 16) numbers, for the MIPS R4000 processor.

27bdf£fd0 afbf0014 0c1002a8 00000000 0c1002a8 afa2001c 8fa4001c
00401825 10820008 0064082a 10200003 00000000 10000002 00832023
00641823 1483fffa 0064082a 0c1002b2 00000000 8fbf0014 27bd0020
0300008 00001025

As people began to write larger programs, it quickly became apparent that
a less error-prone notation was required. Assembly languages were invented to
allow operations to be expressed with mnemonic abbreviations. Our GCD pro-
gram looks like this in MIPS assembly language:

addiu sp,sp,-32

sw ra,20(sp) b C

jal getint subu a0,a0,v1

nop B: subu vi,vl,a0

jal getint C: bne a0,v1,A

sw v0,28(sp) slt at,vl,a0

1w a0,28(sp) D: jal putint

move v1,v0 nop

beq a0,v0,D 1w ra,20(sp)

slt at,vl,a0 addiu sp,sp,32
A: beq at,zero,B jr ra

nop move v0,zero
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Assembly languages were originally designed with a one-to-one correspon-
dence between mnemonics and machine language instructions, as shown in this
example.! Translating from mnemonics to machine language became the job
of a systems program known as an assembler. Assemblers were eventually aug-
mented with elaborate “macro expansion” facilities to permit programmers to
define parameterized abbreviations for common sequences of instructions. The
correspondence between assembly language and machine language remained ob-
vious and explicit, however. Programming continued to be a machine-centered
enterprise: each different kind of computer had to be programmed in its own as-
sembly language, and programmers thought in terms of the instructions that the
machine would actually execute.

As computers evolved, and as competing designs developed, it became in-
creasingly frustrating to have to rewrite programs for every new machine. It also
became increasingly difficult for human beings to keep track of the wealth of
detail in large assembly language programs. People began to wish for a machine-
independent language, particularly one in which numerical computations (the
most common type of program in those days) could be expressed in something
more closely resembling mathematical formulae. These wishes led in the mid-
1950s to the development of the original dialect of Fortran, the first arguably
high-level programming language. Other high-level languages soon followed,
notably Lisp and Algol.

Translating from a high-level language to assembly or machine language is the
job of a systems program known as a compiler. Compilers are substantially more
complicated than assemblers because the one-to-one correspondence between
source and target operations no longer exists when the source is a high-level
language. Fortran was slow to catch on at first, because human programmers,
with some effort, could almost always write assembly language programs that
would run faster than what a compiler could produce. Over time, however, the
performance gap has narrowed and eventually reversed. Increases in hardware
complexity (due to pipelining, multiple functional units, etc.) and continuing
improvements in compiler technology have led to a situation in which a state-of-
the-art compiler will usually generate better code than a human being will. Even
in cases in which human beings can do better, increases in computer speed and
program size have made it increasingly important to economize on program-
mer effort, not only in the original construction of programs, but in subsequent
program maintenance—enhancement and correction. Labor costs now heavily
outweigh the cost of computing hardware.

I Each of the 23 lines of assembly code in the example is encoded in the corresponding 32 bits of
the machine language. Note for example that the two sw (store word) instructions begin with
the same 11 bits (afa or afb). Those bits encode the operation (sw) and the base register (sp).
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The Art of Language Design

Today there are thousands of high-level programming languages, and new ones
continue to emerge. Human beings use assembly language only for special pur-
pose applications. In a typical undergraduate class, it is not uncommon to find
users of scores of different languages. Why are there so many? There are several
possible answers:

Evolution. Computer science is a young discipline; we’re constantly finding bet-
ter ways to do things. The late 1960s and early 1970s saw a revolution in “struc-
tured programming,” in which the go to-based control flow of languages like
Fortran, Cobol, and Basic? gave way to while loops, case statements, and
similar higher-level constructs. In the late 1980s the nested block structure of
languages like Algol, Pascal, and Ada began to give way to the object-oriented
structure of Smalltalk, C++, Eiffel, and the like.

Special Purposes. Many languages were designed for a specific problem domain.
The various Lisp dialects are good for manipulating symbolic data and com-
plex data structures. Snobol and Icon are good for manipulating character
strings. C is good for low-level systems programming. Prolog is good for rea-
soning about logical relationships among data. Each of these languages can be
used successfully for a wider range of tasks, but the emphasis is clearly on the
specialty.

Personal Preference.  Different people like different things. Much of the parochi-
alism of programming is simply a matter of taste. Some people love the terse-
ness of C; some hate it. Some people find it natural to think recursively; others
prefer iteration. Some people like to work with pointers; others prefer the im-
plicit dereferencing of Lisp, Clu, Java, and ML. The strength and variety of
personal preference make it unlikely that anyone will ever develop a univer-
sally acceptable programming language.

Of course, some languages are more successful than others. Of the many that
have been designed, only a few dozen are widely used. What makes a language
successful? Again there are several answers:

Expressive Power. One commonly hears arguments that one language is more
“powerful” than another, though in a formal mathematical sense they are all
Turing equivalent—each can be used, if awkwardly, to implement arbitrary al-
gorithms. Still, language features clearly have a huge impact on the program-
mer’s ability to write clear, concise, and maintainable code, especially for very

2 The name of each of these languages is sometimes written entirely in uppercase letters and some-
times in mixed case. For consistency’s sake, I adopt the convention in this book of using mixed
case for languages whose names are pronounced as words (e.g., Fortran, Cobol, Basic) and up-
percase for those pronounced as a series of letters (e.g., APL, PL/I, ML).
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large systems. There is no comparison, for example, between early versions of
Basic on the one hand and Common Lisp or Ada on the other. The factors
that contribute to expressive power—abstraction facilities in particular—are a
major focus of this book.

Ease of Use for the Novice. While it is easy to pick on Basic, one cannot deny its
success. Part of that success is due to its very low “learning curve.” Logo is pop-
ular among elementary-level educators for a similar reason: even a 5-year-old
can learn it. Pascal was taught for many years in introductory programming
language courses because, at least in comparison to other “serious” languages,
it is compact and easy to learn. In recent years Java has come to play a similar
role. Though substantially more complex than Pascal, it is much simpler than,
say, C++.

Ease of Implementation. In addition to its low learning curve, Basic is success-
ful because it could be implemented easily on tiny machines, with limited
resources. Forth has a small but dedicated following for similar reasons. Ar-
guably the single most important factor in the success of Pascal was that its
designer, Niklaus Wirth, developed a simple, portable implementation of the
language, and shipped it free to universities all over the world (see Exam-
ple 1.12).° The Java designers have taken similar steps to make their language
available for free to almost anyone who wants it.

Open Source. Most programming languages today have at least one open source
compiler or interpreter, but some languages—C in particular—are much
more closely associated than others with freely distributed, peer reviewed,
community supported computing. C was originally developed in the early
1970s by Dennis Ritchie and Ken Thompson at Bell Labs,* in conjunction
with the design of the original Unix operating system. Over the years Unix
evolved into the world’s most portable operating system—the OS of choice
for academic computer science—and C was closely associated with it. With
the standardization of C, the language has become available on an enormous
variety of additional platforms. Linux, the leading open source operating sys-
tem, is written in C. As of March 2005, C and its descendants account for 60%
of the projects hosted at sourceforge.net.

Excellent Compilers.  Fortran owes much of its success to extremely good com-
pilers. In part this is a matter of historical accident. Fortran has been around
longer than anything else, and companies have invested huge amounts of time

3 Niklaus Wirth (1934-), Professor Emeritus of Informatics at ETH in Ziirich, Switzerland, is
responsible for a long line of influential languages, including Euler, Algol-W, Pascal, Modula,
Modula-2, and Oberon. Among other things, his languages introduced the notions of enumera-
tion, subrange, and set types, and unified the concepts of records (structs) and variants (unions).
He received the annual ACM Turing Award, computing’s highest honor, in 1984.

4 Ken Thompson (1943-) led the team that developed Unix. He also designed the B program-
ming language, a child of BCPL and the parent of C. Dennis Ritchie (1941-) was the principal
force behind the development of C itself. Thompson and Ritchie together formed the core of an
incredibly productive and influential group. They shared the ACM Turing Award in 1983.
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and money in making compilers that generate very fast code. It is also a matter
of language design, however: Fortran dialects prior to Fortran 90 lack recur-
sion and pointers, features that greatly complicate the task of generating fast
code (at least for programs that can be written in a reasonable fashion without
them!). In a similar vein, some languages (e.g., Common Lisp) are successful
in part because they have compilers and supporting tools that do an unusually
good job of helping the programmer manage very large projects.

Economics, Patronage, and Inertia.  Finally, there are factors other than technical
merit that greatly influence success. The backing of a powerful sponsor is one.
Cobol and PL/I, at least to first approximation, owe their life to IBM. Ada
owes its life to the United States Department of Defense: it contains a wealth
of excellent features and ideas, but the sheer complexity of implementation
would likely have killed it if not for the DoD backing. Similarly, C#, despite its
technical merits, would probably not have received the attention it has without
the backing of Microsoft. At the other end of the life cycle, some languages
remain widely used long after “better” alternatives are available because of a
huge base of installed software and programmer expertise, which would cost
too much to replace.

DESIGN & IMPLEMENTATION

Introduction

Throughout the book, sidebars like this one will highlight the interplay of lan-
guage design and language implementation. Among other things, we will con-
sider the following.

Cases (such as those mentioned in this section) in which ease or difficulty
of implementation significantly affected the success of a language

Language features that many designers now believe were mistakes, at least
in part because of implementation difficulties

Potentially useful features omitted from some languages because of concern
that they might be too difficult or slow to implement

Language limitations adopted at least in part out of concern for implemen-
tation complexity or cost

Language features introduced at least in part to facilitate efficient or elegant
implementations

Cases in which a machine architecture makes reasonable features unreason-
ably expensive

Various other tradeoffs in which implementation plays a significant role

A complete list of sidebars appears in Appendix B.
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EXAMPLE |3

Classification of
programming languages

Clearly no one factor determines whether a language is “good.” As we study
programming languages, we shall need to consider issues from several points of
view. In particular, we shall need to consider the viewpoints of both the pro-
grammer and the language implementor. Sometimes these points of view will be
in harmony, as in the desire for execution speed. Often, however, there will be
conflicts and tradeoffs, as the conceptual appeal of a feature is balanced against
the cost of its implementation. The tradeoff becomes particularly thorny when
the implementation imposes costs not only on programs that use the feature, but
also on programs that do not.

In the early days of computing the implementor’s viewpoint was predominant.
Programming languages evolved as a means of telling a computer what to do. For
programmers, however, a language is more aptly defined as a means of express-
ing algorithms. Just as natural languages constrain exposition and discourse, so
programming languages constrain what can and cannot be expressed, and have
both profound and subtle influence over what the programmer can think. Donald
Knuth has suggested that programming be regarded as the art of telling another
human being what one wants the computer to do [Knu84].> This definition per-
haps strikes the best sort of compromise. It acknowledges that both conceptual
clarity and implementation efficiency are fundamental concerns. This book at-
tempts to capture this spirit of compromise by simultaneously considering the
conceptual and implementation aspects of each of the topics it covers.

The Programming Language Spectrum

The many existing languages can be classified into families based on their model
of computation. Figure 1.1 shows a common set of families. The top-level di-
vision distinguishes between the declarative languages, in which the focus is on
what the computer is to do, and the imperative languages, in which the focus is
on how the computer should do it.

Declarative languages are in some sense “higher level”; they are more in tune
with the programmer’s point of view, and less with the implementor’s point of
view. Imperative languages predominate, however, mainly for performance rea-
sons. There is a tension in the design of declarative languages between the desire
to get away from “irrelevant” implementation details and the need to remain
close enough to the details to at least control the outline of an algorithm. The de-
sign of efficient algorithms, after all, is what much of computer science is about.

5 Donald E. Knuth (1938-), Professor Emeritus at Stanford University and one of the foremost
figures in the design and analysis of algorithms, is also widely known as the inventor of the
TEX typesetting system (with which this book was produced) and of the literate programming
methodology with which TEX was constructed. His multivolume The Art of Computer Program-
ming has an honored place on the shelf of most professional computer scientists. He received the
ACM Turing Award in 1974.
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declarative
functional Lisp/Scheme, ML, Haskell
dataflow 1d, Val
logic, constraint-based  Prolog, spreadsheets
template-based XSLT
imperative
von Neumann C, Ada, Fortran, ...
scripting Perl, Python, PHP, ...
object-oriented Smalltalk, Eiffel, C++, Java, ...
Figure I.I' Classification of programming languages. Note that the categories are fuzzy and

open to debate. In particular, it is possible for a functional language to be object-oriented, and
many authors do not consider functional programming to be declarative.

It is not yet clear to what extent, and in what problem domains, we can expect
compilers to discover good algorithms for problems stated at a very high level. In
any domain in which the compiler cannot find a good algorithm, the program-
mer needs to be able to specify one explicitly.

Within the declarative and imperative families, there are several important
subclasses.

Functional languages employ a computational model based on the recursive
definition of functions. They take their inspiration from the lambda calculus,
a formal computational model developed by Alonzo Church in the 1930s. In
essence, a program is considered a function from inputs to outputs, defined
in terms of simpler functions through a process of refinement. Languages in
this category include Lisp, ML, and Haskell.

Dataflow languages model computation as the flow of information (tokens)
among primitive functional nodes. They provide an inherently parallel model:
nodes are triggered by the arrival of input tokens, and can operate concur-
rently. Id and Val are examples of dataflow languages. Sisal, a descendant of
Val, is more often described as a functional language.

Logic or constraint-based languages take their inspiration from predicate logic.
They model computation as an attempt to find values that satisfy certain spec-
ified relationships, using a goal-directed a search through a list of logical rules.
Prolog is the best-known logic language. The term can also be applied to the
programmable aspects of spreadsheet systems such as Excel, VisiCalc, or Lo-
tus 1-2-3.

The von Neumann languages are the most familiar and successful. They in-
clude Fortran, Ada 83, C, and all of the others in which the basic means of
computation is the modification of variables.® Whereas functional languages

6 John von Neumann (1903-1957) was a mathematician and computer pioneer who helped to
develop the concept of stored program computing, which underlies most computer hardware. In
a stored program computer, both programs and data are represented as bits in memory, which
the processor repeatedly fetches, interprets, and updates.
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are based on expressions that have values, von Neumann languages are based
on statements (assignments in particular) that influence subsequent compu-
tation via the side effect of changing the value of memory.

Scripting languages are a subset of the von Neumann languages. They are dis-
tinguished by their emphasis on “gluing together” components that were orig-
inally developed as independent programs. Several scripting languages were
originally developed for specific purposes: csh and bash, for example, are
the input languages of job control (shell) programs; Awk was intended for
text manipulation; PHP and JavaScript are primarily intended for the gener-
ation of web pages with dynamic content (with execution on the server and
the client, respectively). Other languages, including Perl, Python, Ruby, and
Tcl, are more deliberately general purpose. Most place an emphasis on rapid
prototyping, with a bias toward ease of expression over speed of execution.

Object-oriented languages are comparatively recent, though their roots can be
traced to Simula 67. Most are closely related to the von Neumann languages
but have a much more structured and distributed model of both memory and
computation. Rather than picture computation as the operation of a mono-
lithic processor on a monolithic memory, object-oriented languages picture
it as interactions among semi-independent objects, each of which has both its
own internal state and subroutines to manage that state. Smalltalk is the purest
of the object-oriented languages; C++ and Java are the most widely used. It is
also possible to devise object-oriented functional languages (the best known
of these is the CLOS [Kee89] extension to Common Lisp), but they tend to
have a strong imperative flavor.

One might suspect that concurrent languages also form a separate class (and
indeed this book devotes a chapter to the subject), but the distinction between
concurrent and sequential execution is mostly orthogonal to the classifications
above. Most concurrent programs are currently written using special library
packages or compilers in conjunction with a sequential language such as For-
tran or C. A few widely used languages, including Java, C#, Ada, and Modula-3,
have explicitly concurrent features. Researchers are investigating concurrency in
each of the language classes mentioned here.

It should be emphasized that the distinctions among language classes are
not clear-cut. The division between the von Neumann and object-oriented lan-
guages, for example, is often very fuzzy, and most of the functional and logic lan-
guages include some imperative features. The preceding descriptions are meant
to capture the general flavor of the classes, without providing formal defini-
tions.

Imperative languages—von Neumann and object-oriented—receive the bulk
of the attention in this book. Many issues cut across family lines, however, and
the interested reader will discover much that is applicable to alternative com-
putational models in most of the chapters of the book. Chapters 10 through 13
contain additional material on functional, logic, concurrent, and scripting lan-
guages.
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Why Study Programming Languages?

Programming languages are central to computer science and to the typical com-
puter science curriculum. Like most car owners, students who have become fa-
miliar with one or more high-level languages are generally curious to learn about
other languages, and to know what is going on “under the hood.” Learning about
languages is interesting. It’s also practical.

For one thing, a good understanding of language design and implementation
can help one choose the most appropriate language for any given task. Most
languages are better for some things than for others. No one would be likely
to use APL for symbolic computing or string processing, but other choices are
not nearly so clear-cut. Should one choose C, C++, or Modula-3 for systems
programming? Fortran or Ada for scientific computations? Ada or Modula-2 for
embedded systems? Visual Basic or Java for a graphical user interface? This book
should help equip you to make such decisions.

Similarly, this book should make it easier to learn new languages. Many lan-
guages are closely related. Java and C# are easier to learn if you already know C++.
Common Lisp is easier to learn if you already know Scheme. More important,
there are basic concepts that underlie all programming languages. Most of these
concepts are the subject of chapters in this book: types, control (iteration, selec-
tion, recursion, nondeterminacy, concurrency), abstraction, and naming. Think-
ing in terms of these concepts makes it easier to assimilate the syntax (form)
and semantics (meaning) of new languages, compared to picking them up in
a vacuum. The situation is analogous to what happens in natural languages: a
good knowledge of grammatical forms makes it easier to learn a foreign lan-
guage.

Whatever language you learn, understanding the decisions that went into its
design and implementation will help you use it better. This book should help you

Understand obscure features. The typical C++ programmer rarely uses unions,
multiple inheritance, variable numbers of arguments, or the .* operator. (If
you don’t know what these are, don’t worry!) Just as it simplifies the assim-
ilation of new languages, an understanding of basic concepts makes it eas-
ier to understand these features when you look up the details in the man-
ual.

Choose among alternative ways to express things, based on a knowledge of im-
plementation costs. In C++, for example, programmers may need to avoid un-
necessary temporary variables, and use copy constructors whenever possible,
to minimize the cost of initialization. In Java they may wish to use Executor
objects rather than explicit thread creation. With certain (poor) compilers,
they may need to adopt special programming idioms to get the fastest code:
pointers for array traversal in C; with statements to factor out common ad-
dress calculations in Pascal or Modula-3; x*x instead of x**2 in Basic. In any
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language, they need to be able to evaluate the tradeoffs among alternative im-
plementations of abstractions—for example between computation and table
lookup for functions like bit set cardinality, which can be implemented either
way.

Make good use of debuggers, assemblers, linkers, and related tools. In general, the

high-level language programmer should not need to bother with implementa-
tion details. There are times, however, when an understanding of those details
proves extremely useful. The tenacious bug or unusual system-building prob-
lem is sometimes a lot easier to handle if one is willing to peek at the bits.

Simulate useful features in languages that lack them. Certain very useful features

are missing in older languages but can be emulated by following a deliberate
(if unenforced) programming style. In older dialects of Fortran, for exam-
ple, programmers familiar with modern control constructs can use comments
and self-discipline to write well-structured code. Similarly, in languages with
poor abstraction facilities, comments and naming conventions can help imi-
tate modular structure, and the extremely useful iterators of Clu, Icon, and C#
(which we will study in Section 6.5.3) can be imitated with subroutines and
static variables. In Fortran 77 and other languages that lack recursion, an iter-
ative program can be derived via mechanical hand transformations, starting
with recursive pseudocode. In languages without named constants or enumer-
ation types, variables that are initialized once and never changed thereafter can
make code much more readable and easy to maintain.

Make better use of language technology wherever it appears. Most programmers

will never design or implement a conventional programming language, but
most will need language technology for other programming tasks. The typical
personal computer contains files in dozens of structured formats, encompass-
ing web content, word processing, spreadsheets, presentations, raster and vec-
tor graphics, music, video, databases, and a wide variety of other application
domains. Each of these structured formats has formal syntax and semantics,
which tools must understand. Code to parse, analyze, generate, optimize, and
otherwise manipulate structured data can thus be found in almost any sophis-
ticated program, and all of this code is based on language technology. Pro-
grammers with a strong grasp of this technology will be in a better position to
write well-structured, maintainable tools.

In a similar vein, most tools themselves can be customized, via start-up
configuration files, command-line arguments, input commands, or built-in
extension languages (considered in more detail in Chapter 13). My home di-
rectory holds more than 250 separate configuration (“preference”) files. My
personal configuration files for the emacs text editor comprise more than
1200 lines of Lisp code. The user of almost any sophisticated program today
will need to make good use of configuration or extension languages. The de-
signers of such a program will need either to adopt (and adapt) some existing
extension language, or to invent new notation of their own. Programmers with
a strong grasp of language theory will be in a better position to design elegant,
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well-structured notation that meets the needs of current users and facilitates
future development.

Finally, this book should help prepare you for further study in language de-
sign or implementation, should you be so inclined. It will also equip you to un-
derstand the interactions of languages with operating systems and architectures,
should those areas draw your interest.

/CHECK YOUR UNDERSTANDING

I.  What is the difference between machine language and assembly language?

). In what way(s) are high-level languages an improvement on assembly lan-
guage? In what circumstances does it still make sense to program in assem-

bler?
3. Why are there so many programming languages?
4. 'What makes a programming language successful?

5. Name three languages in each of the following categories: von Neumann,
functional, object-oriented. Name two logic languages. Name two widely
used concurrent languages.

What distinguishes declarative languages from imperative languages?
What organization spearheaded the development of Ada?

What is generally considered the first high-level programming language?

What was the first functional language?

Compilation and Interpretation

At the highest level of abstraction, the compilation and execution of a program
in a high-level language look something like this:

Source program

Input —»( Target program :v—> Output
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EXAMPLE IS

Pure interpretation

EXAMPLE |6

Mixing compilation and
interpretation

The compiler translates the high-level source program into an equivalent target
program (typically in machine language) and then goes away. At some arbitrary
later time, the user tells the operating system to run the target program. The com-
piler is the locus of control during compilation; the target program is the locus of
control during its own execution. The compiler is itself a machine language pro-
gram, presumably created by compiling some other high-level program. When
written to a file in a format understood by the operating system, machine lan-
guage is commonly known as object code.

An alternative style of implementation for high-level languages is known as
interpretation.

Source program —

- Interpreter > —> Output
Input

Unlike a compiler, an interpreter stays around for the execution of the appli-
cation. In fact, the interpreter is the locus of control during that execution. In
effect, the interpreter implements a virtual machine whose “machine language”
is the high-level programming language. The interpreter reads statements in that
language more or less one at a time, executing them as it goes along.

In general, interpretation leads to greater flexibility and better diagnostics (er-
ror messages) than does compilation. Because the source code is being executed
directly, the interpreter can include an excellent source-level debugger. It can also
cope with languages in which fundamental characteristics of the program, such
as the sizes and types of variables, or even which names refer to which variables,
can depend on the input data. Some language features are almost impossible to
implement without interpretation: in Lisp and Prolog, for example, a program
can write new pieces of itself and execute them on the fly. (Several scripting lan-
guages, including Perl, Tcl, Python, and Ruby, also provide this capability.) De-
laying decisions about program implementation until run time is known as late
binding; we will discuss it at greater length in Section 3.1.

Compilation, by contrast, generally leads to better performance. In general, a
decision made at compile time is a decision that does not need to be made at run
time. For example, if the compiler can guarantee that variable x will always lie at
location 49378, it can generate machine language instructions that access this lo-
cation whenever the source program refers to x. By contrast, an interpreter may
need to look x up in a table every time it is accessed, in order to find its location.
Since the (final version of a) program is compiled only once, but generally exe-
cuted many times, the savings can be substantial, particularly if the interpreter is
doing unnecessary work in every iteration of a loop.

While the conceptual difference between compilation and interpretation is
clear, most language implementations include a mixture of both. They typically
look like this:
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Source program

l

C Translator >

Intermediate program —
Input —

C Virtual machine >—> Output

We generally say that a language is “interpreted” when the initial translator is
simple. If the translator is complicated, we say that the language is “compiled.”
The distinction can be confusing because “simple” and “complicated” are sub-
jective terms, and because it is possible for a compiler (complicated translator)
to produce code that is then executed by a complicated virtual machine (in-
terpreter); this is in fact precisely what happens by default in Java. We still say
that a language is compiled if the translator analyzes it thoroughly (rather than
effecting some “mechanical” transformation) and if the intermediate program
does not bear a strong resemblance to the source. These two characteristics—
thorough analysis and nontrivial transformation—are the hallmarks of compil-
ation.

In practice one sees a broad spectrum of implementation strategies. For ex-
ample:

Most interpreted languages employ an initial translator (a preprocessor) that
removes comments and white space, and groups characters together into to-
kens, such as keywords, identifiers, numbers, and symbols. The translator may
also expand abbreviations in the style of a macro assembler. Finally, it may
identify higher-level syntactic structures, such as loops and subroutines. The
goal is to produce an intermediate form that mirrors the structure of the
source but can be interpreted more efficiently.

DESIGN & IMPLEMENTATION

Compiled and interpreted languages

Certain languages (APL and Smalltalk, for example) are sometimes referred
to as “interpreted languages” because most of their semantic error checking
must be performed at run time. Certain other languages (Fortran and C, for
example) are sometimes referred to as “compiled languages” because almost
all of their semantic error checking can be performed statically. This termi-
nology isn’t strictly correct: interpreters for C and Fortran can be built easily,
and a compiler can generate code to perform even the most extensive dynamic
semantic checks. That said, language design has a profound effect on “compi-
lability.”
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EXAMPLE |8

Library routines and linking

EXAMPLE |9

Post-compilation assembly

In some very early implementations of Basic, the manual actually suggested
removing comments from a program in order to improve its performance.
These implementations were pure interpreters; they would reread (and then
ignore) the comments every time they executed a given part of the program.
They had no initial translator.

The typical Fortran implementation comes close to pure compilation. The
compiler translates Fortran source into machine language. Usually, however,
it counts on the existence of a library of subroutines that are not part of the
original program. Examples include mathematical functions (sin, cos, log,
etc.) and I/O. The compiler relies on a separate program, known as a linker, to
merge the appropriate library routines into the final program:

Fortran program

C Compiler >

Incomplete machine language ~ Library routines

( G )
l

Machine language program

In some sense, one may think of the library routines as extensions to the hard-
ware instruction set. The compiler can then be thought of as generating code
for a virtual machine that includes the capabilities of both the hardware and
the library.

In a more literal sense, one can find interpretation in the Fortran routines
for formatted output. Fortran permits the use of format statements that con-
trol the alignment of output in columns, the number of significant digits and
type of scientific notation for floating-point numbers, inclusion/suppression
of leading zeros, and so on. Programs can compute their own formats on the
fly. The output library routines include a format interpreter. A similar inter-
preter can be found in the printf routine of C and its descendants.

Many compilers generate assembly language instead of machine language.
This convention facilitates debugging, since assembly language is easier for
people to read, and isolates the compiler from changes in the format of ma-
chine language files that may be mandated by new releases of the operating
system (only the assembler must be changed, and it is shared by many com-
pilers).
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Source program

!
( compia )
l

Assembly language

( Assembler )

Machine language

Compilers for C (and for many other languages running under Unix) begin
with a preprocessor that removes comments and expands macros. The pre-
processor can also be instructed to delete portions of the code itself, providing
a conditional compilation facility that allows several versions of a program to
be built from the same source.

Source program

( Preprocessor >

Modified source program

l
(o)
|

Assembly language

C++ implementations based on the early AT&T compiler actually generated
an intermediate program in C, instead of in assembly language. This C++
compiler was indeed a true compiler: it performed a complete analysis of the
syntax and semantics of the C++ source program, and with very few excep-
tions generated all of the error messages that a programmer would see prior
to running the program. In fact, programmers were generally unaware that
the C compiler was being used behind the scenes. The C++ compiler did
not invoke the C compiler unless it had generated C code that would pass
through the second round of compilation without producing any error mes-
sages.
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Source program

( Preprocessor )

Modified source program

( C++ compiler )

C code

!
( C compiler )
!

Assembly language

Occasionally one would hear the C++ compiler referred to as a preprocessor,
presumably because it generated high-level output that was in turn compiled.
I consider this a misuse of the term: compilers attempt to “understand” their
source; preprocessors do not. Preprocessors perform transformations based
on simple pattern matching, and may well produce output that will generate
error messages when run through a subsequent stage of translation.

Many early Pascal compilers were built around a set of tools distributed by
Niklaus Wirth. These included the following.

— A Pascal compiler, written in Pascal, that would generate output in P-code,
a simple stack-based language

— The same compiler, already translated into P-code
— A P-code interpreter, written in Pascal

To get Pascal up and running on a local machine, the user of the tool set
needed only to translate the P-code interpreter (by hand) into some locally
available language. This translation was not a difficult task; the interpreter
was small. By running the P-code version of the compiler on top of the P-code
interpreter, one could then compile arbitrary Pascal programs into P-code,
which could in turn be run on the interpreter. To get a faster implementation,
one could modify the Pascal version of the Pascal compiler to generate a lo-
cally available variety of assembly or machine language, instead of generating
P-code (a somewhat more difficult task). This compiler could then be “run
through itself” in a process known as bootstrapping, a term derived from the
intentionally ridiculous notion of lifting oneself off the ground by pulling on
one’s bootstraps.
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Pascal to machine
language compiler,

in Pascal
Pascal to P-code H " Pascal to machine
. . —_ . [
compiler, in P-code i language compiler, !
'\\ in P-code )

Pascal to machine
language compiler,
in machine language

At this point, the P-code interpreter and the P-code version of the Pascal com-
piler could simply be thrown away. More often, however, programmers would
choose to keep these tools around. The P-code version of a program tends
to be significantly smaller than its machine language counterpart. On a circa
1970 machine, the savings in memory and disk requirements could really be
important. Moreover, as noted near the beginning of this section, an inter-
preter will often provide better run-time diagnostics than will the output of
a compiler. Finally, an interpreter allows a program to be rerun immediately
after modification, without waiting for recompilation—a feature that can be
particularly valuable during program development. Some of the best pro-
gramming environments for imperative languages include both a compiler
and an interpreter.

DESIGN & IMPLEMENTATION

The early success of Pascal

The P-code based implementation of Pascal is largely responsible for the lan-
guage’s remarkable success in academic circles in the 1970s. No single hard-
ware platform or operating system of that era dominated the computer land-
scape the way the x86, Linux, and Windows do today.” Wirth’s toolkit made
it possible to get an implementation of Pascal up and running on almost any
platform in a week or so. It was one of the first great successes in system porta-
bility.

7 Throughout this book we will use the term “x86” to refer to the instruction set architecture of the
Intel 8086 and its descendants, including the various Pentium processors. Intel calls this archi-
tecture the TA-32, but x86 is a more generic term that encompasses the offerings of competitors
such as AMD as well.
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EXAMPLE ||3

Compiling interpreted
languages

EXAMPLE ||4

Dynamic and just-in-time
compilation

EXAMPLE IIS

Microcode (firmware)

One will sometimes find compilers for languages (e.g., Lisp, Prolog, Smalltalk,
etc.) that permit a lot of late binding and are traditionally interpreted. These
compilers must be prepared, in the general case, to generate code that per-
forms much of the work of an interpreter, or that makes calls into a library
that does that work instead. In important special cases, however, the compiler
can generate code that makes reasonable assumptions about decisions that
won’t be finalized until run time. If these assumptions prove to be valid the
code will run very fast. If the assumptions are not correct, a dynamic check
will discover the inconsistency, and revert to the interpreter.

In some cases a programming system may deliberately delay compilation until
the last possible moment. One example occurs in implementations of Lisp or
Prolog that invoke the compiler on the fly, to translate newly created source
into machine language, or to optimize the code for a particular input set. An-
other example occurs in implementations of Java. The Java language defini-
tion defines a machine-independent intermediate form known as byte code.
Byte code is the standard format for distribution of Java programs; it allows
programs to be transferred easily over the Internet and then run on any plat-
form. The first Java implementations were based on byte-code interpreters,
but more recent (faster) implementations employ a just-in-time compiler that
translates byte code into machine language immediately before each execution
of the program. C#, similarly, is intended for just-in-time translation. The
main C# compiler produces .NET Common Intermediate Language (CIL),
which is then translated into machine code immediately prior to execution.
CIL is deliberately language independent, so it can be used for code produced
by a variety of front-end compilers.

On some machines (particularly those designed before the mid-1980s), the
assembly-level instruction set is not actually implemented in hardware but in
fact runs on an interpreter. The interpreter is written in low-level instructions
called microcode (or firmware), which is stored in read-only memory and ex-
ecuted by the hardware. Microcode and microprogramming are considered
further in Section 5.4.1.

As some of these examples make clear, a compiler does not necessarily trans-
late from a high-level language into machine language. It is not uncommon
for compilers, especially prototypes, to generate C as output. A little farther
afield, text formatters like TeX and troff are actually compilers, translating high-
level document descriptions into commands for a laser printer or phototypeset-
ter. (Many laser printers themselves incorporate interpreters for the Postscript
page-description language.) Query language processors for database systems are
also compilers, translating languages like SQL into primitive operations on files.
There are even compilers that translate logic-level circuit specifications into pho-
tographic masks for computer chips. Though the focus in this book is on im-
perative programming languages, the term “compilation” applies whenever we
translate automatically from one nontrivial language to another, with full analy-
sis of the meaning of the input.
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Programming Environments

Compilers and interpreters do not exist in isolation. Programmers are assisted
in their work by a host of other tools. Assemblers, debuggers, preprocessors, and
linkers were mentioned earlier. Editors are familiar to every programmer. They
may be assisted by cross-referencing facilities that allow the programmer to find
the point at which an object is defined, given a point at which it is used. Pretty
printers help enforce formatting conventions. Style checkers enforce syntactic or
semantic conventions that may be tighter than those enforced by the compiler
(see Exploration 1.11). Configuration management tools help keep track of de-
pendences among the (many versions of) separately compiled modules in a large
software system. Perusal tools exist not only for text but also for intermediate
languages that may be stored in binary. Profilers and other performance analysis
tools often work in conjunction with debuggers to help identify the pieces of a
program that consume the bulk of its computation time.

In older programming environments, tools may be executed individually, at
the explicit request of the user. If a running program terminates abnormally with
a “bus error” (invalid address) message, for example, the user may choose to
invoke a debugger to examine the “core” file dumped by the operating system.
He or she may then attempt to identify the program bug by setting breakpoints,
enabling tracing, and so on, and running the program again under the control of
the debugger. Once the bug is found, the user will invoke the editor to make
an appropriate change. He or she will then recompile the modified program,
possibly with the help of a configuration manager.

More recent programming environments provide much more integrated
tools. When an invalid address error occurs in an integrated environment, a new
window is likely to appear on the user’s screen, with the line of source code at
which the error occurred highlighted. Breakpoints and tracing can then be set in
this window without explicitly invoking a debugger. Changes to the source can
be made without explicitly invoking an editor. The editor may also incorporate
knowledge of the language syntax, providing templates for all the standard con-
trol structures, and checking syntax as it is typed in. If the user asks to rerun
the program after making changes, a new version may be built without explicitly
invoking the compiler or configuration manager.

DESIGN & IMPLEMENTATION

Powerful development environments

Sophisticated development environments can be a two-edged sword. The
quality of the Common Lisp environment has arguably contributed to its
widespread acceptance. On the other hand, the particularity of the graphical
environment for Smalltalk (with its insistence on specific fonts, window styles,
etc.) has made it difficult to port the language to systems accessed through a
textual interface, or to graphical systems with a different “look and feel.”
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EXAMPLE ||6

Phases of compilation

Integrated environments have been developed for a variety of languages and
systems. They are fundamental to Smalltalk—it is nearly impossible to separate
the language from its graphical environment—and are widely used with Com-
mon Lisp. They are common on personal computers; examples include the Vi-
sual Studio environment from Microsoft and the Project Builder environment
from Apple. Several similar commercial and open source environments are avail-
able for Unix, and much of the appearance of integration can be achieved within
sophisticated editors such as emacs.

/CHECK YOUR UNDERSTANDING

[0. Explain the distinction between interpretation and compilation. What are the
comparative advantages and disadvantages of the two approaches?

[1. Is Java compiled or interpreted (or both)? How do you know?
[2. What is the difference between a compiler and a preprocessor?

[3. What was the intermediate form employed by the original AT&T C++ com-
piler?

[4. What is P-code?
[5. What is bootstrapping?
[6. What is a just-in-time compiler?

[7. Name two languages in which a program can write new pieces of itself “on-
the-fly”

[8. Briefly describe three “unconventional” compilers—compilers whose pur-
pose is not to prepare a high-level program for execution on a microproces-
SOr.

[9. Describe six kinds of tools that commonly support the work of a compiler
within a larger programming environment.

An Overview of Compilation

Compilers are among the most well-studied types of computer programs. In a
typical compiler, compilation proceeds through a series of well-defined phases,
shown in Figure 1.2. Each phase discovers information of use to later phases,
or transforms the program into a form that is more useful to the subsequent
phase.

The first few phases (up through semantic analysis) serve to figure out the
meaning of the source program. They are sometimes called the front end of the
compiler. The last few phases serve to construct an equivalent target program.
They are sometimes called the back end of the compiler. Many compiler phases
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Character stream

\ Scanner (lexical analysis)
/ (

Token stream

\ Parser (syntax analysis)
— [

Parse tree

\ [ Semantic analysis and
—

Abstract syntax tree or intermediate code generation

other intermediate form \ Machine-independent
— code improvement (optional)

Modified intermediate form

\ Target code generation
/ (

Assembly or machine language,

h 1
or other target language \ Machine-specific
— code improvement (optional)

N N N7 N/ A N

Modified target language

—/

[ Symbol table

Figure I.2 Phases of compilation. Phases are listed on the right and the forms in which
information is passed between phases are listed on the left. The symbol table serves throughout
compilation as a repository for information about identifiers.

can be created automatically from a formal description of the source and/or tar-
get languages.

One will sometimes hear compilation described as a series of passes. A pass
is a phase or set of phases that is serialized with respect to the rest of compila-
tion: it does not start until previous phases have completed, and it finishes before
any subsequent phases start. If desired, a pass may be written as a separate pro-
gram, reading its input from a file and writing its output to a file. Compilers are
commonly divided into passes so that the front end may be shared by compilers
for more than one machine (target language), and so that the back end may be
shared by compilers for more than one source language. Prior to the dramatic in-
creases in memory sizes of the mid- to late 1980s, compilers were also sometimes
divided into passes to minimize memory usage: as each pass completed, the next
could reuse its code space.

[.6.] Lexical and Syntax Analysis

Consider the greatest common divisor (GCD) program introduced at the begin-
ning of this chapter. Written in Pascal, the program might look like this:®

8 We use Pascal for this example because its lexical and syntactic structure is significantly simpler
than that of most modern imperative languages.
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EXAMPLE ||8

GCD program tokens

EXAMPLE ||9

Context-free grammar and
parsing

program gcd(input, output);
var i, j : integer;

begin
read(i, j);
while i <> j do
if i > j then i :=1 - j
else j := j - 1i;
writeln(i)
end.

Scanning and parsing serve to recognize the structure of the program, without

3 C > C DD DD

regard to its meaning. The scanner reads characters (‘p}, ‘r), ‘o) ‘g, ‘) ‘@), m), * )

[ SIS RSP AN

g, ‘c) ‘d; etc.) and groups them into tokens, which are the smallest meaningful
units of the program. In our example, the tokens are

program gcd ( input s output ) ;

var i s j : integer ; begin
read ( i s j ) ; while
i <> ] do if i > i
then i := i - j else J

1= j - i ; writeln ( i

) end

Scanning is also known as lexical analysis. The principal purpose of the scan-
ner is to simplify the task of the parser by reducing the size of the input (there
are many more characters than tokens) and by removing extraneous characters.
The scanner also typically removes comments, produces a listing if desired, and
tags tokens with line and column numbers to make it easier to generate good di-
agnostics in later phases. One could design a parser to take characters instead of
tokens as input—dispensing with the scanner—but the result would be awkward
and slow.

Parsing organizes tokens into a parse tree that represents higher-level con-
structs in terms of their constituents. The ways in which these constituents com-
bine are defined by a set of potentially recursive rules known as a context-free
grammar. For example, we know that a Pascal program consists of the keyword
program, followed by an identifier (the program name), a parenthesized list of
files, a semicolon, a series of definitions, and the main begin ... end block, ter-
minated by a period:

program —> PROGRAM id ( id more_ids ) ; block .
where

block — labels constants types variables subroutines BEGIN stmt
more_stmts END

and

more_ids —> , id more_ids
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or
more_ids —> €

Here € represents the empty string; it indicates that more_ids can simply be
deleted. Many more grammar rules are needed, of course, to explain the full
structure of a program.

A context-free grammar is said to define the syntax of the language; parsing is
therefore known as syntactic analysis. There are many possible grammars for Pas-
cal (an infinite number, in fact); the fragment shown above is based loosely on the
“circles-and-arrows” syntax diagrams found in the original Pascal text [JW91]. A
full parse tree for our GCD program (based on a full grammar not shown here)
appears in Figure 1.3. Much of the complexity of this figure stems from (1) the
use of such artificial “constructs” as more_stmts and more_exprs to represent lists
of arbitrary length and (2) the use of the equally artificial term, factor, and so on,
to capture precedence and associativity in arithmetic expressions. Grammars and
parse trees will be covered in more detail in Chapter 2.

In the process of scanning and parsing, the compiler checks to see that all of the
program’s tokens are well formed and that the sequence of tokens conforms to the
syntax defined by the context-free grammar. Any malformed tokens (e.g., 123abc
or $@foo in Pascal) should cause the scanner to produce an error message. Any
syntactically invalid token sequence (e.g., & := B C D in Pascal) should lead to
an error message from the parser.

[.6.] Semantic Analysis and Intermediate Code Generation

Semantic analysis is the discovery of meaning in a program. The semantic analy-
sis phase of compilation recognizes when multiple occurrences of the same
identifier are meant to refer to the same program entity, and ensures that the
uses are consistent. In most languages the semantic analyzer tracks the types of
both identifiers and expressions, both to verify consistent usage and to guide the
generation of code in later phases.

To assist in its work, the semantic analyzer typically builds and maintains a
symbol table data structure that maps each identifier to the information known
about it. Among other things, this information includes the identifier’s type, in-
ternal structure (if any), and scope (the portion of the program in which it is
valid).

Using the symbol table, the semantic analyzer enforces a large variety of rules
that are not captured by the hierarchical structure of the context-free grammar
and the parse tree. For example, it checks to make sure that

Every identifier is declared before it is used.

No identifier is used in an inappropriate context (calling an integer as a sub-
routine, adding a string to an integer, referencing a field of the wrong type of
record, etc.).

Subroutine calls provide the correct number and types of arguments.
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program
PROGRAM id(GCD) ( id(INPUT) more_ids ) 5 Dblock
3 id(QUTPUT) more_ids
€
label ~ constants  types variables  subroutines BEGIN stmt more_stmts END
€ € € €
VAR id(I) more_ids : type ;  more_variables
5 1d(J) more_ids  simple_type € READ ( id(I) more_ids )
€ id (INTEGER) , 1d(J) more_ids
; stmt more_stmts
WHILE expr DO stmt H stmt more_stmts
simple_expr <> simple_expr WRITELN ( expr more_exprs ) €
term term simple_expr €

| | |
factor factor term

| | |
id(I) id(J) factor

|
id(D)

IF expr THEN stmt ELSE stmt
simple_expr >  simple_expr 1d(I) := expr id(J) = expr
term term term -  term term -  term
| | | |
factor factor factor factor factor factor
| | | |
id(D) id(D) id(D)

id(J) id(J) id(I)

grammar.

Figure 1.3 Parse tree for the GCD program. The symbol ¢ represents the empty string. The remarkable level of complexity
in this figure is an artifact of having to fit the (much simpler) source code into the hierarchical structure of a context-free



EXAMPLE |2|

GCD program abstract
syntax tree

1.6 An Overview of Compilation 27

Labels on the arms of a case statement are distinct constants.
Every function contains at least one statement that specifies a return value.

In many compilers, the work of the semantic analyzer takes the form of seman-
tic action routines, invoked by the parser when it realizes that it has reached a
particular point within a production.

Of course, not all semantic rules can be checked at compile time. Those that
can are referred to as the static semantics of the language. Those that must be
checked at run time are referred to as the dynamic semantics of the language.
Examples of rules that must often be checked at run time include

Variables are never used in an expression unless they have been given a value.’
Pointers are never dereferenced unless they refer to a valid object.

Array subscript expressions lie within the bounds of the array.

Arithmetic operations do not overflow.

When it cannot enforce rules statically, a compiler will often produce code
to perform appropriate checks at run time, aborting the program or generat-
ing an exception if one of the checks then fails. (Exceptions will be discussed in
Section 8.5.) Some rules, unfortunately, may be unacceptably expensive or im-
possible to enforce, and the language implementation may simply fail to check
them. In Ada, a program that breaks such a rule is said to be erroneous; in C its
behavior is said to be undefined.

A parse tree is sometimes known as a concrete syntax tree, because it demon-
strates, completely and concretely, how a particular sequence of tokens can be
derived under the rules of the context-free grammar. Once we know that a token
sequence is valid, however, much of the information in the parse tree is irrele-
vant to further phases of compilation. In the process of checking static semantic
rules, the semantic analyzer typically transforms the parse tree into an abstract
syntax tree (otherwise known as an AST, or simply a syntax tree) by removing
most of the “artificial” nodes in the tree’s interior. The semantic analyzer also
annotates the remaining nodes with useful information, such as pointers from
identifiers to their symbol table entries. The annotations attached to a particular
node are known as its attributes. A syntax tree for our GCD program is shown in
Figure 1.4.

In many compilers, the annotated syntax tree constitutes the intermediate
form that is passed from the front end to the back end. In other compilers, se-
mantic analysis ends with a traversal of the tree that generates some other in-
termediate form. Often this alternative form resembles assembly language for an
extremely simple idealized machine. In a suite of related compilers, the front ends

9 Aswe shall see in Section 6.1.3, Java and C# actually do enforce initialization at compile time, but
only by adopting a conservative set of rules for “definite assignment,” which outlaw programs for
which correctness is difficult or impossible to verify at compile time.
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EXAMPLE |22

GCD program assembly
code

program
(5) read
read
KA /v while |
3) (7) write
writeln
(4) (6) ‘
(4)

+ if
Index  Symbol Type /\ /R
) P © o > = =
INTEGER type
TEXTFILE  type /\ /\ /\
INPUT 2 (6) (7) (6) - (7)

OUTPUT 2
GCD program /\ /\

; ! (6) 7) 7) (6)
J 1

N O U W

Figure [.4 Syntax tree and symbol table for the GCD program. Unlike Figure 1.3, the syntax
tree retains just the essential structure of the program, omitting detail that was needed only to
drive the parsing algorithm.

for several languages and the back ends for several machines would share a com-
mon intermediate form.

[.6.3 Target Code Generation

The code generation phase of a compiler translates the intermediate form into
the target language. Given the information contained in the syntax tree, gen-
erating correct code is usually not a difficult task (generating good code is
harder, as we shall see in Section 1.6.4). To generate assembly or machine lan-
guage, the code generator traverses the symbol table to assign locations to vari-
ables, and then traverses the syntax tree, generating loads and stores for vari-
able references, interspersed with appropriate arithmetic operations, tests, and
branches. Naive code for our GCD example appears in Figure 1.5, in MIPS as-
sembly language. It was generated automatically by a simple pedagogical com-
piler.

The assembly language mnemonics may appear a bit cryptic, but the com-
ments on each line (not generated by the compiler!) should make the correspon-
dence between Figures 1.4 and 1.5 generally apparent. A few hints: sp, ra, at, a0,
v0, and t0—t9 are registers (special storage locations, limited in number, that can
be accessed very quickly). 28 (sp) refers to the memory location 28 bytes beyond



addiu
sw
jal
nop
sw
jal
nop
sw
1w
1w
nop
beq
nop

1w
nop
slt
beq
nop
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nop
subu
sw

nop

1w
nop
subu
swW

1w
nop
bne
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D: 1w
jal
nop
move
b
nop
b
nop
E: 1w
addiu
jr
nop

sp,sp,-32
ra,20(sp)
getint

v0,28(sp)
getint
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t8,28(sp)
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t4,28(sp)
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t5,24(sp)
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t6,t7,A

a0,28(sp)
putint

v0,zero
E

E
ra,20(sp)

sp,sp,32
ra
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reserve room for local variables
save return address
read

store i
read

store j
load i
load j

branch if i = j

load i
load j

determine whether j < i
branch if not

load i
load j

t2 =i -j
store i
load j

load i

tsh = j -1
store j
load i

load j

branch if i <> j

load i
writeln

exit status for program
branch to E

branch to E

retrieve return address

deallocate space for local variables

return to operating system

Figure I.5 Naive MIPS assembly language for the GCD program.
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the location whose address is in register sp. Jal is a subroutine call (“jump and
link”); the first argument is passed in register a0, and the return value comes back
in register v0. Nop is a “no-op”; it does no useful work but delays the program
for one time cycle, allowing a two-cycle load or branch instruction to complete
(branch and load delays were a common feature in early RISC machines; we will
consider them in Section 5.5.1). Arithmetic operations generally operate on the
second and third arguments, and put their result in the first.

Often a code generator will save the symbol table for later use by a symbolic
debugger—for example, by including it as comments or some other nonexe-
cutable part of the target code.

[.6.4 Code Improvement

Code improvement is often referred to as optimization, though it seldom makes
anything optimal in any absolute sense. It is an optional phase of compilation
whose goal is to transform a program into a new version that computes the same
result more efficiently—more quickly or using less memory, or both.

Some improvements are machine independent. These can be performed as
transformations on the intermediate form. Other improvements require an un-
derstanding of the target machine (or of whatever will execute the program in
the target language). These must be performed as transformations on the tar-
get program. Thus code improvement often appears as two additional phases
of compilation, one immediately after semantic analysis and intermediate code
generation, the other immediately after target code generation.

Applying a good code improver to the code in Figure 1.5 produces the code
shown in Example 1.2 (page 3). Comparing the two programs, we can see that
the improved version is quite a lot shorter. Conspicuously absent are most of the
loads and stores. The machine-independent code improver is able to verify that i
and j can be kept in registers throughout the execution of the main loop (this
would not have been the case if, for example, the loop contained a call to a sub-
routine that might reuse those registers, or that might try to modify i or j). The
machine-specific code improver is then able to assign i and j to actual registers
of the target machine. In our example the machine-specific improver is also able
to schedule (reorder) instructions to eliminate several of the no-ops. Careful ex-
amination of the instructions following the loads and branches will reveal that
they can be executed safely even when the load or branch has not yet completed.
For modern microprocessor architectures, particularly those with so-called su-
perscalar RISC instruction sets (ones in which separate functional units can exe-
cute multiple instructions simultaneously), compilers can usually generate better
code than can human assembly language programmers.
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/CHECK YOUR UNDERSTANDING

20. List the principal phases of compilation, and describe the work performed by
each.

21. Describe the form in which a program is passed from the scanner to the
parser; from the parser to the semantic analyzer; from the semantic analyzer
to the intermediate code generator.

12. What distinguishes the front end of a compiler from the back end?

13. What is the difference between a phase and a pass of compilation? Under what
circumstances does it make sense for a compiler to have multiple passes?

24. What is the purpose of the compiler’s symbol table?
15. What is the difference between static and dynamic semantics?

26. On modern machines, do assembly language programmers still tend to write
better code than a good compiler can? Why or why not?

Summary and Concluding Remarks

In this chapter we introduced the study of programming language design and
implementation. We considered why there are so many languages, what makes
them successful or unsuccessful, how they may be categorized for study, and what
benefits the reader is likely to gain from that study. We noted that language design
and language implementation are intimately related to one another. Obviously an
implementation must conform to the rules of the language. At the same time, a
language designer must consider how easy or difficult it will be to implement
various features, and what sort of performance is likely to result for programs
that use those features.

Language implementations are commonly differentiated into those based on
interpretation and those based on compilation. We noted, however, that the dif-
ference between these approaches is fuzzy, and that most implementations in-
clude a bit of each. As a general rule, we say that a language is compiled if exe-
cution is preceded by a translation step that (1) fully analyzes both the structure
(syntax) and meaning (semantics) of the program and (2) produces an equiva-
lent program in a significantly different form. The bulk of the implementation
material in this book pertains to compilation.

Compilers are generally structured as a series of phases. The first few phases—
scanning, parsing, and semantic analysis—serve to analyze the source pro-
gram. Collectively these phases are known as the compiler’s front end. The
final few phases—intermediate code generation, code improvement, and tar-
get code generation—are known as the back end. They serve to build a tar-
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get program—preferably a fast one—whose semantics match those of the
source.

Chapters 3, 6, 7, 8, and 9 form the core of the rest of this book. They cover fun-
damental issues of language design, both from the point of view of the program-
mer and from the point of view of the language implementor. To support the
discussion of implementations, Chapters 2 and 4 describe compiler front ends
in more detail than has been possible in this introduction. Chapter 5 provides
an overview of assembly-level architecture. Chapters 14 and 15 discuss compiler
back ends, including assemblers and linkers. Additional language paradigms are
covered in Chapters 10 through 13. Appendix A lists the principal programming
languages mentioned in the text, together with a genealogical chart and biblio-
graphic references. Appendix B contains a list of “Design and Implementation”
sidebars. Appendix C contains a list of numbered examples.

Exercises

[.I' Errors in a computer program can be classified according to when they are
detected and, if they are detected at compile time, what part of the compiler
detects them. Using your favorite imperative language, give an example of
each of the following.

a) A lexical error, detected by the scanner

b) A syntax error, detected by the parser

A dynamic semantic error, detected by code generated by the compiler

(
(
(C) A static semantic error, detected by semantic analysis
(
(e

d)
) An error that the compiler can neither catch nor easily generate code to

catch (this should be a violation of the language definition, not just a
program bug)

[.2 Algol family languages are typically compiled, while Lisp family languages, in
which many issues cannot be settled until run time, are typically interpreted.
Is interpretation simply what one “has to do” when compilation is infeasible,
or are there actually some advantages to interpreting a language, even when
a compiler is available?

[.3 The gcd program of Example 1.17 might also be written

program gcd(input, output);
var i, j : integer;
begin
read(i, j);
while i <> j do
if i > j then i := i mod j
else j := j mod i;
writeln(i)
end.
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Does this program compute the same result? If not, can you fix it? Under
what circumstances would you expect one or the other to be faster?

In your local implementation of C, what is the limit on the size of integers?
What happens in the event of arithmetic overflow? What are the implications
of size limits on the portability of programs from one machine/compiler to
another? How do the answers to these questions differ for Java? For Ada? For
Pascal? For Scheme? (You may need to find a manual.)

The Unix make utility allows the programmer to specify dependences among
the separately compiled pieces of a program. If file A depends on file B and
file B is modified, make deduces that A must be recompiled, in case any of
the changes to B would affect the code produced for A. How accurate is this
sort of dependence management? Under what circumstances will it lead to
unnecessary work? Under what circumstances will it fail to recompile some-
thing that needs to be recompiled?

Why is it difficult to tell whether a program is correct? How do you go about
finding bugs in your code? What kinds of bugs are revealed by testing? What
kinds of bugs are not? (For more formal notions of program correctness, see
the bibliographic notes at the end of Chapter 4.)

Explorations

(3 What was the first programming language you learned? If you chose it,
why did you do so? If it was chosen for you by others, why do you think
they chose it? What parts of the language did you find the most difficult
to learn?

(b) For the language with which you are most familiar (this may or may
not be the first one you learned), list three things you wish had been
differently designed. Why do you think they were designed the way they
were? How would you fix them if you had the chance to do it over? Would
there be any negative consequences—for example, in terms of compiler
complexity or program execution speed?

Get together with a classmate whose principal programming experience is
with a language in a different category of Figure 1.1. (If your experience is
mostly in C, for example, you might search out someone with experience in
Lisp.) Compare notes. What are the easiest and most difficult aspects of pro-
gramming, in each of your experiences? Pick some simple problem (e.g., sort-
ing, or identification of connected components in a graph) and solve it using
each of your favorite languages. Which solution is more elegant (do the two
of you agree)? Which is faster? Why?
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1.9

1.10

.12

() If you have access to a Unix system, compile a simple program with
the -8 command-line flag. Add comments to the resulting assembly
language file to explain the purpose of each instruction.

(b) Now use the —o command-line flag to generate a relocatable object file.
Using appropriate local tools (look in particular for nm, objdump, or
a symbolic debugger like gdb or dbx), identify the machine language
corresponding to each line of assembler.

() Using nm, objdump, or a similar tool, identify the undefined external
symbols in your object file. Now run the compiler to completion, to
produce an executable file. Finally, run nm or objdump again to see what
has happened to the symbols in part (b). Where did they come from,
and how did the linker resolve them?

(d) Run the compiler to completion one more time, using the -v com-
mand-line flag. You should see messages describing the various sub-
programs invoked during the compilation process (some compilers use
a different letter for this option; check the man page). The subprograms
may include a preprocessor, separate passes of the compiler itself (of-
ten two), probably an assembler, and the linker. If possible, run these
subprograms yourself, individually. Which of them produce the files
described in the previous subquestions? Explain the purpose of the var-
ious command-line flags with which the subprograms were invoked.

Write a program that commits a dynamic semantic error (e.g., division by
zero, access off the end of an array, dereference of a nil pointer). What
happens when you run this program? Does the compiler give you options
to control what happens? Devise an experiment to evaluate the cost of run-
time semantic checks. If possible, try this exercise with more than one lan-
guage or compiler.

C has a reputation for being a relatively “unsafe” high-level language. In
particular, it allows the programmer to mix operands of different sizes and
types in many more ways than do its “safer” cousins. The Unix 1lint utility
can be used to search for potentially unsafe constructs in C programs. In ef-
fect, many of the rules that are enforced by the compiler in other languages
are optional in C and are enforced (if desired) by a separate program. What
do you think of this approach? Is it a good idea? Why or why not?

Using an Internet search engine or magazine indexing service, read up on
the history of Java and C#, including the conflict between Sun and Mi-
crosoft over Java standardization. Some have claimed that C# is, at least
in part, Microsoft’s attempt to kill Java. Defend or refute this claim.
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Bibliographic Notes

The compiler-oriented chapters of this book attempt to convey a sense of what
the compiler does, rather than explaining how to build one. A much greater level
of detail can be found in other texts. Leading options include the work of Cooper
and Torczon [CT04], Grune et al. [GBJLO1], and Appel [App97]. The older texts
by Aho, Sethi, and Ullman [ASU86] and Fischer and LeBlanc [FL88] were for
many years the standards in the field, but have grown somewhat dated. High-
quality texts on programming language design include those of Louden [Lou03],
Sebesta [Seb04], and Sethi [Set96].

Some of the best information on the history of programming languages can be
found in the proceedings of conferences sponsored by the Association for Com-
puting Machinery in 1978 and 1993 [Wex78, Ass93]. Another excellent reference
is Horowitz’s 1987 text [Hor87]. A broader range of historical material can be
found in the quarterly IEEE Annals of the History of Computing. Given the impor-
tance of personal taste in programming language design, it is inevitable that some
language comparisons should be marked by strongly worded opinions. Examples
include the writings of Dijkstra [Dij82], Hoare [Hoa81], Kernighan [Ker81], and
Wirth [Wir85a].

Most personal computer software development now takes place in integrated
programming environments. Influential precursors to these environments in-
clude the Genera Common Lisp environment from Symbolics Corp. [WMWMZ387]
and the Smalltalk [Gol84], Interlisp [TM81], and Cedar [SZBH86] environments
at the Xerox Palo Alto Research Center.






EXAMPLE Z.I

Syntax of Arabic numerals

Programming Language Syntax

Unlike natural languages such as English or Chinese, computer languages
must be precise. Both their form (syntax) and meaning (semantics) must be spec-
ified without ambiguity so that both programmers and computers can tell what a
program is supposed to do. To provide the needed degree of precision, language
designers and implementors use formal syntactic and semantic notation. To fa-
cilitate the discussion of language features in later chapters, we will cover this
notation first: syntax in the current chapter and semantics in Chapter 4.

As a motivating example, consider the Arabic numerals with which we repre-
sent numbers. These numerals are composed of digits, which we can enumerate
as follows (¢ |’ means “or”):

digitt. — o |t |2 |3 |a|s5|6|7|8]9

Digits are the syntactic building blocks for numbers. In the usual notation, we say
that a natural number is represented by an arbitrary-length (nonempty) string of
digits, beginning with a nonzero digit:

non_zero_digit — 1 |2 |3 |4 |5 |6 |7 |8]9

natural_number —>  non_zero_digit digit*

Here the “Kleene! star” metasymbol (*) is used to indicate zero or more repeti-
tions of the symbol to its left.

Of course, digits are only symbols: ink blobs on paper or pixels on a screen.
They carry no meaning in and of themselves. We add semantics to digits when
we say that they represent the natural numbers from zero to nine, as defined
by mathematicians. Alternatively, we could say that they represent colors, or the
days of the week in a decimal calendar. These would constitute alternative seman-
tics for the same syntax. In a similar fashion, we define the semantics of natural
numbers by associating a base-10, place-value interpretation with each string of

I Stephen Kleene (1909-1994), a mathematician at the University of Wisconsin, was responsible
for much of the early development of the theory of computation, including much of the material
in Section @) 2.4.

37
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digits. Similar syntax rules and semantic interpretations can be devised for ratio-
nal numbers, (limited-precision) real numbers, arithmetic, assignments, control
flow, declarations, and indeed all of programming languages.

Distinguishing between syntax and semantics is useful for at least two reasons.
First, different programming languages often provide features with very similar
semantics but very different syntax. It is generally much easier to learn a new
language if one is able to identify the common (and presumably familiar) ideas
beneath the unfamiliar syntax. Second, there are some very efficient and elegant
algorithms that a compiler or interpreter can use to discover the syntactic struc-
ture (but not the semantics!) of a computer program, and these algorithms can
be used to drive the rest of the compilation or interpretation process.

In the current chapter we focus on syntax: how we specify the structural rules
of a programming language, and how a compiler identifies the structure of a
given input program. These two tasks—specifying syntax rules and figuring out
how (and whether) a given program was built according to those rules—are dis-
tinct. The first is of interest mainly to programmers, who want to write valid
programs. The second is of interest mainly to compilers, which need to analyze
those programs. The first task relies on regular expressions and context-free gram-
mars, which specify how to generate valid programs. The second task relies on
scanners and parsers, which recognize program structure. We address the first of
these tasks in Section 2.1, the second in Sections 2.2 and 2.3.

In Section 2.4 (largely on the PLP CD) we take a deeper look at the formal the-
ory underlying scanning and parsing. In theoretical parlance, a scanner is a de-
terministic finite automaton (DFA) that recognizes the tokens of a programming
language. A parser is a deterministic push-down automaton (PDA) that recognizes
the language’s context-free syntax. It turns out that one can generate scanners and
parsers automatically from regular expressions and context-free grammars. This
task is performed by tools like Unix’s lex and yacc.? Possibly nowhere else in
computer science is the connection between theory and practice so clear and so
compelling.

Specifying Syntax: Regular Expressions and
Context-Free Grammars

Formal specification of syntax requires a set of rules. How complicated (expres-
sive) the syntax can be depends on the kinds of rules we are allowed to use. It
turns out that what we intuitively think of as tokens can be constructed from

2 At many sites, lex and yacc have been superseded by the GNU flex and bison tools. These
independently developed, noncommercial alternatives are available without charge from the Free
Software Foundation at www.gnu.org/software. They provide a superset of the functionality of
lex and yacc.
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individual characters using just three kinds of formal rules: concatenation, alter-
nation (choice among a finite set of alternatives), and so-called “Kleene closure”
(repetition an arbitrary number of times). Specifying most of the rest of what
we intuitively think of as syntax requires one additional kind of rule: recursion
(creation of a construct from simpler instances of the same construct). Any set of
strings that can be defined in terms of the first three rules is called a regular set,
or sometimes a regular language. Regular sets are generated by regular expressions
and recognized by scanners. Any set of strings that can be defined if we add recur-
sion is called a context-free language (CFL). Context-free languages are generated
by context-free grammars (CFGs) and recognized by parsers. (Terminology can
be confusing here. The meaning of the word language varies greatly, depending
on whether we’re talking about “formal” languages [e.g., regular or context-free]
or programming languages. A formal language is just a set of strings, with no
accompanying semantics.)

1.1.] Tokens and Regular Expressions

Tokens are the basic building blocks of programs. They include keywords, iden-
tifiers, numbers, and various kinds of symbols. Pascal, which is a fairly simple
language, has 64 kinds of tokens, including 21 symbols (+, -, ;, :=, .., etc.),
35 keywords (begin, end, div, record, while, etc.), integer literals (e.g., 137),
real (floating-point) literals (e.g., 6.022e23), quoted character/string literals
(e.g., ’snerk’), identifiers (MyVariable, YourType, maxint, readln, etc., 39
of which are predefined), and two different kinds of comments.

Upper- and lowercase letters in identifiers and keywords are considered dis-
tinct in some languages (e.g., Modula-2/3 and C and its descendants), and iden-
tical in others (e.g., Ada, Common Lisp, Fortran 90, and Pascal). Thus foo, Foo,
and FOO all represent the same identifier in Ada but different identifiers in C.
Modula-2 and Modula-3 require keywords and predefined (built-in) identifiers
to be written in uppercase; C and its descendants require them to be written in
lowercase. A few languages (notably Modula-3 and Standard Pascal) allow only
letters and digits in identifiers. Most (including many actual implementations of
Pascal) allow underscores. A few (notably Lisp) allow a variety of additional char-
acters. Some languages (e.g., Java, C#, and Modula-3) have standard conventions
on the use of upper- and lowercase letters in names.>

With the globalization of computing, non-Latin character sets have become
increasingly important. Many modern languages, including C99, C++, Ada 95,
Java, C#, and Fortran 2003, have explicit support for multibyte character sets,
generally based on the Unicode and ISO/IEC 10646 international standards. Most
modern programming languages allow non-Latin characters to appear with in

3 For the sake of consistency we do not always obey such conventions in this book. Most examples
follow the common practice of C programmers, in which underscores, rather than capital letters,
separate the “subwords” of names.
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comments and character strings; an increasing number allow them in identi-
fiers as well. Conventions for portability across character sets and for localization
to a given character set can be surprisingly complex, particularly when various
forms of backward compatibility are required (the C99 Rationale devotes five full
pages to this subject [Int99, pp. 19-23]); for the most part we ignore such issues
here.

Some language implementations impose limits on the maximum length of
identifiers, but most avoid such unnecessary restrictions. Most modern languages
are also more-or-less free format, meaning that a program is simply a sequence
of tokens: what matters is their order with respect to one another, not their phys-
ical position within a printed line or page. “White space” (blanks, tabs, carriage
returns, and line and page feed characters) between tokens is usually ignored, ex-
cept to the extent that it is needed to separate one token from the next. There are
a few exceptions to these rules. Some language implementations limit the max-
imum length of a line, to allow the compiler to store the current line in a fixed-
length buffer. Dialects of Fortran prior to Fortran 90 use a fixed format, with 72
characters per line (the width of a paper punch card, on which programs were
once stored) and with different columns within the line reserved for different
purposes. Line breaks serve to separate statements in several other languages, in-
cluding Haskell, Occam, SR, Tcl, and Python. Haskell, Occam, and Python also
give special significance to indentation. The body of a loop, for example, consists
of precisely those subsequent lines that are indented farther than the header of
the loop.

To specify tokens, we use the notation of regular expressions. A regular expres-
sion is one of the following.

I. A character
2. The empty string, denoted €
3. Two regular expressions next to each other, meaning any string generated by

the first one followed by (concatenated with) any string generated by the sec-
ond one

4. Two regular expressions separated by a vertical bar ( | ), meaning any string
generated by the first one or any string generated by the second one

DESIGN & IMPLEMENTATION

Formatting restrictions

Formatting limitations inspired by implementation concerns—as in the
punch-card-oriented rules of Fortran 77 and its predecessors—have a ten-
dency to become unwanted anachronisms as implementation techniques im-
prove. Given the tendency of certain word processors to “fill” or auto-format
text, the line break and indentation rules of languages like Haskell, Occam, and
Python are somewhat controversial.



EXAMPLE 2.2

Syntax of numbers in
Pascal

2.1 Specifying Syntax 41

5. A regular expression followed by a Kleene star, meaning the concatenation of
zero or more strings generated by the expression in front of the star

Parentheses are used to avoid ambiguity about where the various subexpres-
sions start and end.*

Returning to the example of Pascal, numeric literals can be generated by the
following regular expressions.’

digit. — o |1 |23 |45 ]|6]|7]8]°9
unsigned_integer —  digit digit*

unsigned_number —>  unsigned_integer (( . unsigned_integer) | €)
(((e | E)(+ | - | €) unsigned_integer) | €)

To generate a valid string, we scan the regular expression from left to right,
choosing among alternatives at each vertical bar, and choosing a number of repe-
titions at each Kleene star. Within each repetition we may make different choices
at vertical bars, generating different substrings. Note that while we have allowed
later definitions to build on earlier ones, nothing is ever defined in terms of it-
self. Such recursive definitions are the distinguishing characteristic of context-
free grammars, described in Section 2.1.2.

Many readers will be familiar with regular expressions from the grep family
of tools in Unix, the search facilities of various text editors (notably emacs), or
such scripting languages and tools as Perl, Python, Ruby, awk, and sed. Most
of these provide a rich set of extensions to the notation of regular expressions.
Some extensions, such as shorthand for “zero or one occurrences” or “anything
other than white space” do not change the power of the notation. Others, such
as the ability to require a second occurrence later in the input string of the same
character sequence that matched an earlier part of the expression, increase the
power of the notation, so it is no longer restricted to generating regular sets. Still
other extensions are designed not to increase the expressiveness of the notation
but rather to tie it to other language facilities. In many tools, for example, one
can bracket portions of a regular expression in such a way that when a string
is matched against it the contents of the corresponding substrings are assigned
into named local variables. We will return to these issues in Section 13.4.2, in the
context of scripting languages.

4 Some authors use X to represent the empty string. Some use a period (.), rather than juxtaposi-
tion, to indicate concatenation. Some use a plus sign (+), rather than a vertical bar, to indicate
alternation.

5 Numeric literals in many languages are significantly more complex. Java, for example, supports
both 32 and 64-bit integer constants, in decimal, octal, and hexadecimal.
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EXAMPLE 2.3

Syntactic nesting in
expressions

EXAMPLE 24
Extended BNF (EBNF)

2.1.2 Context-Free Grammars

Regular expressions work well for defining tokens. They are unable, however, to
specify nested constructs, which are central to programming languages. Consider
for example the structure of an arithmetic expression:

expr —> id | number | - expr | ( expr )
| expr op expr

op — + |- ||/

Here the ability to define a construct in terms of itself is crucial. Among other
things, it allows us to ensure that left and right parentheses are matched, some-
thing that cannot be accomplished with regular expressions (see Section @) 2.4.3
for more details).

Each of the rules in a context-free grammar is known as a production. The
symbols on the left-hand sides of the productions are known as variables, or non-
terminals. There may be any number of productions with the same left-hand side.
Symbols that are to make up the strings derived from the grammar are known as
terminals (shown here in typewriter font). They cannot appear on the left-hand
side of any production. In a programming language, the terminals of the context-
free grammar are the language’s tokens. One of the nonterminals, usually the one
on the left-hand side of the first production, is called the start symbol. It names
the construct defined by the overall grammar.

The notation for context-free grammars is sometimes called Backus-Naur
Form (BNF), in honor of John Backus and Peter Naur, who devised it for the
definition of the Algol 60 programming language [NBB*63].° Strictly speaking,
the Kleene star and meta-level parentheses of regular expressions are not allowed
in BNF, but they do not change the expressive power of the notation and are com-
monly included for convenience. Sometimes one sees a “Kleene plus” () as well;
it indicates one or more instances of the symbol or group of symbols in front
of it.” When augmented with these extra operators, the notation is often called
extended BNF (EBNF). The construct

1d-ll$t —> id ( s id )*
is shorthand for

id_list — id

id_list — id.list , id

6 John Backus (1924-), is also the inventor of Fortran. He spent most of his professional career at
IBM Corporation, and was named an IBM Fellow in 1987. He received the ACM Turing Award
in 1977.

7 Some authors use curly braces ({ }) to indicate zero or more instances of the symbols inside.
Some use square brackets ([ ]) to indicate zero or one instance of the symbols inside—that is, to
indicate that those symbols are optional.
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“Kleene plus” is analogous. The vertical bar is also in some sense superfluous,
though it was provided in the original BNF. The construct

op — + |- | x|/
can be considered shorthand for

op — +
p — -
op —> *
op — /
which is also sometimes written

op — +

N
— %
-/

Many tokens, such as id and number above, have many possible spellings (i.e.,
may be represented by many possible strings of characters). The parser is obliv-
ious to these; it does not distinguish one identifier from another. The semantic
analyzer does distinguish them, however, so the scanner must save the spelling of
each “interesting” token for later use.

2.1.3 Derivations and Parse Trees

A context-free grammar shows us how to generate a syntactically valid string
of terminals: begin with the start symbol. Choose a production with the start
symbol on the left-hand side; replace the start symbol with the right-hand side
of that production. Now choose a nonterminal A in the resulting string, choose a
production P with A on its left-hand side, and replace A with the right-hand side
of P. Repeat this process until no nonterminals remain.

As an example, we can use our grammar for expressions to generate the string
“slope * x + intercept™

expr == expr op expr

expr op id

expr + id

expr op expr + id
expr op id + id

expr x id + id

Lrirlil

id * id + id

(slope) (%) (intercept)
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EXAMPLE 2.6

Parse trees for slope * x
+ intercept

expr
T
expr op expr
/l\
expr op expr J|r id(int(|ercept)
id(s:|l.ope) * id|(x)

Figure 1.l Parse tree for slope * x + intercept (grammar in Example 2.3).

expr
T
expr op expr
/l\
id(s]|.ope) J< expr op expr
id|(x) ~|I- id(intlrcept)

Figure 2.2 Alternative (less desirable) parse tree for slope * x + intercept (grammar in
Example 2.3). The fact that more than one tree exists implies that our grammar is ambiguous.

The = metasymbol indicates that the right-hand side was obtained by using
a production to replace some nonterminal in the left-hand side. At each line we
have underlined the symbol A that is replaced in the following line.

A series of replacement operations that shows how to derive a string of ter-
minals from the start symbol is called a derivation. Each string of symbols along
the way is called a sentential form. The final sentential form, consisting of only
terminals, is called the yield of the derivation. We sometimes elide the interme-
diate steps and write expr ==* slope * x + intercept, where the meta-
symbol ==* means “yields after zero or more replacements.” In this particular
derivation, we have chosen at each step to replace the right-most nonterminal
with the right-hand side of some production. This replacement strategy leads to
a right-most derivation, also called a canonical derivation. There are many other
possible derivations, including left-most and options in-between. Most parsers
are designed to find a particular derivation (usually the left-most or right-most).

We saw in Chapter 1 that we can represent a derivation graphically as a parse
tree. The root of the parse tree is the start symbol of the grammar. The leaves of
the tree are its yield. Each internal node, together with its children, represents the
use of a production.

A parse tree for our example expression appears in Figure 2.1. This tree is not
unique. At the second level of the tree, we could have chosen to turn the operator
into a * instead of a +, and to further expand the expression on the right, rather
than the one on the left (see Figure 2.2). The fact that some strings are the yield
of more than one parse tree tells us that our grammar is ambiguous. Ambiguity
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expr
expr add_op term
— T
telm -|+ term mult_op factor
facltor facltor l number (5)
numblr(3) nu.mblr(4)

Figure 2.3 Parse tree for 3 + 4 * 5, with precedence (grammar in Example 2.7).

turns out to be a problem when trying to build a parser: it requires some extra
mechanism to drive a choice between equally acceptable alternatives.

A moment’s reflection will reveal that there are infinitely many context-free
grammars for any given context-free language. Some of these grammars are much
more useful than others. In this text we will avoid the use of ambiguous grammars
(though most parser generators allow them, by means of disambiguating rules).
We will also avoid the use of so-called useless symbols: nonterminals that cannot
generate any string of terminals, or terminals that cannot appear in the yield of
any derivation.

When designing the grammar for a programming language, we generally try
to find one that reflects the internal structure of programs in a way that is useful
to the rest of the compiler. (We shall see in Section 2.3.2 that we also try to find
one that can be parsed efficiently, which can be a bit of a challenge.) One place
in which structure is particularly important is in arithmetic expressions, where
we can use productions to capture the associativity and precedence of the vari-
ous operators. Associativity tells us that the operators in most languages group
left-to-right, so 10 - 4 - 3 means (10 - 4) - 3 rather than 10 - (4 - 3)
. Precedence tells us that multiplication and division in most languages group
more tightly than addition and subtraction, so 3 + 4 * 5 means 3 + (4 * 5)
rather than (3 + 4) * 5. (These rules are not universal; we will consider them
again in Section 6.1.1.)

Here is a better version of our expression grammar.

expr —> term | expr add_op term
term —> factor | term mult_op factor

1
2
3. factor —> id | number | - factor | ( expr )
4. addop — + | -

5

multop — x| /

This grammar is unambiguous. It captures precedence in the way factor, term,
and expr build on one another, with different operators appearing at each level. It
captures associativity in the second halves of lines 1 and 2, which build subexprs
and subterms to the left of the operator, rather than to the right. In Figure 2.3, we
can see how building the notion of precedence into the grammar makes it clear



46

Chapter 2 Programming Language Syntax

expr
T/
expr add_op term
_— T
expr add_op term l facltor
telm l facltor number (3)
facltor numbcler (4)
number (10)

Figure 2.4 Parse tree for 10 - 4 - 3, with left associativity (grammar in Example 2.7).

that multiplication groups more tightly than addition in 3 + 4 * 5, even with-
out parentheses. In Figure 2.4, we can see that subtraction groups more tightly to
the left, so 10 - 4 - 3 would evaluate to 3 rather than to 9.

/CHECK YOUR UNDERSTANDING

l.
2.

What is the difference between syntax and semantics?

What are the three basic operations that can be used to build complex regular
expressions from simpler regular expressions?

What additional operation (beyond the three of regular expressions) is pro-
vided in context-free grammars?

What is Backus-Naur form? When and why was it devised?
Name a language in which indentation affects program syntax.

When discussing context-free languages, what is a derivation? What is a sen-
tential form?

What is the difference between a right-most derivation and a left-most deriva-
tion? Which one of them is also called canonical?

What does it mean for a context-free grammar to be ambiguous?

What are associativity and precedence? Why are they significant in parse trees?

Scanning

Together, the scanner and parser for a programming language are responsible
for discovering the syntactic structure of a program. This process of discovery,
or syntax analysis, is a necessary first step toward translating the program into
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an equivalent program in the target language. (It’s also the first step toward in-
terpreting the program directly. In general, we will focus on compilation, rather
than interpretation, for the remainder of the book. Most of what we shall dis-
cuss either has an obvious application to interpretation or is obviously irrelevant
to it.)

By grouping input characters into tokens, the scanner dramatically reduces the
number of individual items that must be inspected by the more computationally
intensive parser. In addition, the scanner typically removes comments (so the
parser doesn’t have to worry about them appearing throughout the context-free
grammar); saves the text of “interesting” tokens like identifiers, strings, and nu-
meric literals; and tags tokens with line and column numbers to make it easier to
generate high-quality error messages in later phases.

Suppose for a moment that we are writing a scanner for Pascal.> We might
sketch the process as shown in Figure 2.5. The structure of the code is en-
tirely up to the programmer, but it seems reasonable to check the simpler
and more common cases first, to peek ahead when we need to, and to em-
bed loops for comments and for long tokens such as identifiers, numbers, and
strings.

After announcing a token the scanner returns to the parser. When invoked
again it repeats the algorithm from the beginning, using the next available char-
acters of input (including any look-ahead that was peeked at but not consumed
the last time).

As a rule, we accept the longest possible token in each invocation of the scan-
ner. Thus foobar is always foobar and never £ or foo or foob. More to the
point, 3.14159 is a real number and never 3, ., and 14159. White space (blanks,

DESIGN & IMPLEMENTATION

Nested comments

Nested comments can be handy for the programmer (e.g., for temporarily
“commenting out” large blocks of code). Scanners normally deal only with
nonrecursive constructs, however, so nested comments require special treat-
ment. Some languages disallow them. Others require the language implemen-
tor to augment the scanner with special purpose comment-handling code.
C++ and C99 strike a compromise: /* . .. */ style comments are not allowed
tonest,but /* ... */and //. .. style comments can appear inside each other.
The programmer can thus use one style for “normal” comments and the other
for “commenting out.” (The C99 designers note, however, that conditional
compilation (#if) is preferable [Int03a, p. 58].)

8 As in Example 1.17, we use Pascal for this example because its lexical structure is significantly
simpler than that of most modern imperative languages.
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EXAMPLE 2.9

Finite automaton for part
of a Pascal scanner

we skip any initial white space (spaces, tabs, and newlines)
we read the next character
if itis a ( we look at the next character
if that is a * we have a comment;
we skip forward through the terminating *)
otherwise we return a left parenthesis and reuse the look-ahead
if it is one of the one-character tokens ([ ] , ; = + -etc.)
we return that token
if itis a . we look at the next character
if thatisa . we return .. |
otherwise we return . and reuse the look-ahead
if it is a < we look at the next character
if that is a = we return <=
otherwise we return < and reuse the look-ahead
etc.
if it is a letter we keep reading letters and digits
and maybe underscores until we can't anymore;
then we check to see if it is a keyword
if so we return the keyword
otherwise we return an identifier
in either case we reuse the character beyond the end of the token
if it is a digit we keep reading until we find a nondigit
if that is not a . we return an integer and reuse the nondigit
otherwise we keep looking for a real number
if the character after the . is not a digit we return an integer
and reuse the . and the look-ahead
etc.

Figure 1.5 Outline of an ad hoc Pascal scanner. Only a fraction of the code is shown.

TThe double-dot . . token is used to specify ranges in Pascal (e.g, type day = 1..31).

tabs, carriage returns, comments) is generally ignored, except to the extent that
it separates tokens (e.g., foo bar is different from foobar).

It is not difficult to flesh out Figure 2.5 by hand to produce code in some
programming language. This ad hoc style of scanner is often used in production
compilers; the code is fast and compact. In some cases, however, it makes sense
to build a scanner in a more structured way, as an explicit representation of a
finite automaton. An example of such an automaton, for part of a Pascal scanner,
appears in Figure 2.6. The automaton starts in a distinguished initial state. It then
moves from state to state based on the next available character of input. When it
reaches one of a designated set of final states it recognizes the token associated
with that state. The “longest possible token” rule means that the scanner returns
to the parser only when the next character cannot be used to continue the current
token.
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space, tab, newline, return

Start

non-)or *

letter letter, digit, _

digit identifier or key word

@ realconst

digit

Figure 2.6 Pictorial representation of (part of) a Pascal scanner as a finite automaton. Scan-
ning for each token begins in the state marked “Start” The final states, in which a token is
recognized, are indicated by double circles.

1.2.| Generating a Finite Automaton

While a finite automaton can in principle be written by hand, it is more com-
mon to build one automatically from a set of regular expressions, using a scanner
generator tool. Because regular expressions are significantly easier to write and
modify than an ad hoc scanner is, automatically generated scanners are often
used during language or compiler development, or when ease of implementa-
tion is more important than the last little bit of run-time performance. In effect,
regular expressions constitute a declarative programming language for a limited
problem domain: namely, that of scanning.

The example automaton of Figure 2.6 is deterministic: there is never any am-
biguity about what it ought to do, because in a given state with a given in-
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EXAMPLE 2. IO

Constructing an NFA for a
given regular expression

EXAMPLE ZII
NFA for (1*01%0 )*1*

put character there is never more than one possible outgoing transition (arrow)
labeled by that character. As it turns out, however, there is no obvious one-step
algorithm to convert a set of regular expressions into an equivalent deterministic
finite automaton (DFA). The typical scanner generator implements the conver-
sion as a series of three separate steps.

The first step converts the regular expressions into a nondeterministic finite
automaton (NFA). An NFA is like a DFA except that (a) there may be more than
one transition out of a given state labeled by a given character, and (b) there may
be so-called epsilon transitions: arrows labeled by the empty string symbol, €. The
NFA is said to accept an input string (token) if there exists a path from the start
state to a final state whose non-epsilon transitions are labeled, in order, by the
characters of the token.

To avoid the need to search all possible paths for one that “works,” the sec-
ond step of a scanner generator translates the NFA into an equivalent DFA: an
automaton that accepts the same language, but in which there are no epsilon
transitions and no states with more than one outgoing transition labeled by the
same character. The third step is a space optimization that generates a final DFA
with the minimum possible number of states.

From a Regular Expression to an NFA

A trivial regular expression consisting of a single character a is equivalent to
a simple two-state NFA (in fact, a DFA), illustrated in part (a) of Figure 2.7.
Similarly, the regular expression € is equivalent to a two-state NFA whose arc is
labeled by €. Starting with this base we can use three subconstructions, illustrated
in parts (b)—(d) of the same figure, to build larger NFAs to represent the concate-
nation, alternation, or Kleene closure of the regular expressions represented by
smaller NFAs. Each step preserves three invariants: there are no transitions into
the initial state, there is a single final state, and there are no transitions out of the
final state. These invariants allow smaller machines to be joined into larger ma-
chines without any ambiguity about where to create the connections, and with-
out creating any unexpected paths.

To make these constructions concrete, we consider a small but nontrivial ex-
ample. Suppose we wish to generate all strings of zeros and ones in which the
number of zeros is even. To generate exactly two zeros we could use the expres-
sion 00. We must allow these to be preceded, followed, or separated by an arbi-
trary number of ones: 1*01*01*. This whole construct can then be repeated
an arbitrary number of times: ( 1*¥01*01* )*. Finally, we observe that there is
no point in beginning and ending the parenthesized expression with 1 *. If we
move one of the occurrences outside the parentheses we get an arguably simpler
expression: (1*¥01*0)*1*.

Starting with this regular expression and using the constructions of Figure 2.7,
we illustrate the construction of an equivalent NFA in Figure 2.8. In this particu-
lar example alternation is not required.
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(a) base case %@

O =O—=0

(b) concatenation AB

(c) alternation

A
(d) Kleene closure A*

Figure 2.1 Construction of an NFA equivalent to a given regular expression. Part (a) shows
the base case: the automaton for the single letter a. Parts (b), (c), and (d), respectively, show
the constructions for concatenation, alternation, and Kleene closure. Each construction retains a
unique start state and a single final state. Internal detail is hidden in the diamond-shaped center
regions.

From an NFA to a DFA

With no way to “guess” the right transition to take from any given state, any prac-
tical implementation of an NFA would need to explore all possible transitions,
concurrently or via backtracking. To avoid such a complex and time-consuming
strategy, we can use a “set of subsets” construction to transform the NFA into
an equivalent DFA. The key idea is for the state of the DFA after reading a given
input to represent the set of states that the NFA might have reached on the same
input. We illustrate the construction in Figure 2.9 using the NFA from Figure 2.8.
Initially, before it consumes any input, the NFA may be in State 1, or it may make
epsilon transitions to States 2, 3, 5, 11, 12, or 14. We thus create an initial State
A for our DFA to represent this set. On an input of 1, our NFA may move from
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1*01*0

(1*01*0)*

Figure 2.8 Construction of an NFA equivalent to the regular expression (1*01%0)* 1%, In the top line are the primitive
automata for 1 and 0, and the Kleene closure construction for 1 *. In the second and third rows we have used the concatenation
construction to build 1*0 and 1* 01 *. The fourth row uses Kleene closure again to construct ( 1*01*0 )*; the final line uses
concatenation to complete the NFA. We have labeled the states in the final automaton for reference in subsequent figures.
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Start

qA[l,z, 3,5, 11, 12, 14]

qB[3, 4,5,12,13, 14]

qE[z, 3,5,10,11, 12, 14]

Figure 2.9 A DFA equivalent to the NFA at the bottom of Figure 2.8. Each state of the DFA
represents the set of states that the NFA could be in after seeing the same input.

State 3 to State 4, or from State 12 to State 13. It has no other transitions on this
input from any of the states in A. From States 4 and 13, however, the NFA may
make epsilon transitions to any of States 3, 5, 12, or 14. We therefore create DFA
State B as shown. On a 0, our NFA may move from State 5 to State 6, from which
it may reach States 7 and 9 by epsilon transitions. We therefore create DFA State C
as shown, with a transition from A to C on 0. Careful inspection reveals that a 1
will leave the DFA in State B, while a 0 will move it from B to C. Continuing in
this fashion, we end up creating three additional states. Each state that “contains”
the final state (State 14) of the NFA is marked as a final state of the DFA.

In our example, the DFA ends up being smaller than the NFA, but this is only
because our regular language is so simple. In theory, the number of states in the
DFA may be exponential in the number of states in the NFA, but this extreme
is also uncommon in practice. For a programming language scanner, the DFA
tends to be larger than the NFA, but not outlandishly so.

Minimizing the DFA

Starting from a regular expression we have now constructed an equivalent DFA.
Though this DFA has five states, a bit of thought suggests that it should be pos-
sible to build an automaton with only two states: one that will be reached after
consuming input containing an odd number of zeros and one that will be reached
after consuming input containing an even number of zeros. We can obtain this
machine by performing the following inductive construction. Initially we place
the states of the (not necessarily minimal) DFA into two equivalence classes: final
states and nonfinal states. We then repeatedly search for an equivalence class C
and an input symbol a such that when given a as input, the states in C make
transitions to states in k > 1 different equivalence classes. We then partition C
into k classes in such a way that all states in a given new class would move to a
member of the same old class on a. When we are unable to find a class to par-
tition in this fashion we are done. In our example, the original placement puts
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EXAMPLE 2 |4

Nested case statement
automaton

Start 0

Figure 2.10 Minimal DFA for the language consisting of all strings of zeros and ones in which
the number of zeros is even. State g, represents the merger of states g4, s, and gg in Figure 2.9;
state g, represents the merger of states q¢ and gp.

States A, B, and E in one class (final states) and C and D in another. In all cases,
a 1 leaves us in the current class, while a 0 takes us to the other class. Conse-
quently, no class requires partitioning, and we are left with the two-state DFA of
Figure 2.10.

2.).] Scanner Code

We can implement a scanner that explicitly captures the “circles-and-arrows”
structure of a DFA in either of two main ways. One embeds the automaton in the
control flow of the program using gotos or nested case (switch) statements; the
other, described in the following subsection, uses a table and a driver. As a gen-
eral rule, handwritten scanners tend to use nested case statements, while most
(but not all [BC93]) automatically generated scanners use tables. Tables are hard
to create by hand but easier than code to create from within a program. Unix’s
lex/flex tool produces C language output containing tables and a customized
driver. Some other scanner generators produce tables for use with a handwritten
driver, which can be written in any language.

The nested case statement style of automaton is illustrated in Figure 2.11.
The outer case statement covers the states of the finite automaton. The in-
ner case statements cover the transitions out of each state. Most of the inner
clauses simply set a new state. Some return from the scanner with the current
token.

Two aspects of the code do not strictly follow the form of a finite automaton.
One is the handling of keywords. The other is the need to peek ahead in order to
distinguish between the dot in the middle of a real number and a double dot that
follows an integer.

Keywords in most languages (including Pascal) look just like identifiers, but
they are reserved for a special purpose (some authors use the term reserved word
instead of keyword?). It is possible to write a finite automaton that distinguishes

9 Keywords (reserved words) are not the same as predefined identifiers. Predefined identifiers can
be redefined to have a different meaning; keywords cannot. The scanner does not distinguish be-
tween predefined and other identifiers. It does distinguish between identifiers and keywords.
In Pascal, keywords include begin, div, record, and while. Predefined identifiers include
integer, writeln, true, and ord.
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state := start
loop
case state of
start :

erase text of current token
case input_char of
“\t, AR, '\’ no_op
‘[' : state := got_lbrac
‘l' : state := got_rbrac
', : state := got_.comma

(" . state := saw_Iparen
‘.": state := saw_dot
‘<’ state := saw_Ithan

‘allz', Az
state := in_ident
‘0./9" : state := in_int

else error

saw_Iparen: case input_char of
'*' state := in_.comment
else return Iparen

in_.comment: case input_char of
'*': state := leaving_.comment
else no_op

leaving_.comment: case input_char of
‘)’ . state := start
else state := in.comment

saw_dot : case input_char of
'.": state := got_dotdot
else return dot

saw_Ithan : case input_char of
‘=" state := got_le
else return It

55

Figure 2.1l Outline of a Pascal scanner written as an explicit finite automaton, in the form

of nested case statements in a loop. (continued)
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in_ident : case input_char of
‘a.’z, 'A.lZ','0./9, " i no_op
else
look up accumulated token in keyword table
if found, return keyword
else return id

in_int : case input_char of
‘0.)9" : no_op

peek at character beyond input_char;
if ‘0"./9', state := saw_real_dot
else
unread peeked-at character
return intconst
‘alz',A.Z', " error
else return intconst

saw_real_dot : ...

got_lbrac : return lbrac
got.rbrac : return rbrac
got_.comma : return comma
got_dotdot : return dotdot
got_le : return le

append input_char to text of current token
read new input_char

Figure LIl (continued)

between keywords and identifiers, but it requires a lot of states. To begin with,
there must be a separate state, reachable from the initial state, for each letter that
might begin a keyword. For each of these, there must then be a state for each pos-
sible second character of a keyword (e.g., to distinguish between file, for, and
from). It is a nuisance (and a likely source of errors) to enumerate these states by
hand. Likewise, while it is easy to write a regular expression that represents a key-
word(begin|end|while]|...),itisnotatall easy to write an
expression that represents a (non-keyword) identifier (Exercise 2.3). Most scan-
ners, both handwritten and automatically generated, therefore treat keywords as
“exceptions” to the rule for identifiers. Before returning an identifier to the parser,
the scanner looks it up in a hash table or trie (a tree of branching paths) to make
sure it isn’t really a keyword. This convention is reflected in the in_ident arm of
Figure 2.11.

Whenever one legitimate token is a prefix of another, the “longest possible
token” rule says that we should continue scanning. If some of the intermediate
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strings are not valid tokens, however, we can’t tell whether a longer token is possi-
ble without looking more than one character ahead. This problem arises in Pascal
in only one case, sometimes known as the “dot-dot problem.” If the scanner has
seen a 3 and has a dot coming up in the input, it needs to peek at the character
beyond the dot in order to distinguish between 3. 14 (a single token designating a
real number), 3 .. 5 (three tokens designating a range), and 3 . foo (three to-
kens that the scanner should accept, even though the parser will object to seeing
them in that order).

In messier languages, a scanner may need to look an arbitrary distance ahead.
In Fortran IV, for example, DO 5 I = 1,25 is the header of a loop (it executes
the statements up to the one labeled 5 for values of I from 1 to 25), while DO 5
I = 1.25 is an assignment statement that places the value 1.25 into the vari-
able DOSI. Spaces are ignored in (pre-’90) Fortran input, even in the middle of
variable names. Moreover, variables need not be declared, and the terminator
for a DO loop is simply a label, which the parser can ignore. After seeing DO, the
scanner cannot tell whether the 5 is part of the current token until it reaches
the comma or dot. It has been widely (but apparently incorrectly) claimed that
NASA’s Mariner 1 space probe was lost due to accidental replacement of a comma
with a dot in a case similar to this one in flight control software.!® Dialects of
Fortran starting with Fortran 77 allow (in fact encourage) the use of alternative
syntax for loop headers, in which an extra comma makes misinterpretation less
likely: DO 5,1 = 1,25.

In Pascal, the dot-dot problem can be handled as a special case, as shown in
the in_int arm of Figure 2.11. In languages requiring larger amounts of look-
ahead, the scanner can take a more general approach. In any case of ambiguity, it
assumes that a longer token will be possible but remembers that a shorter token
could have been recognized at some point in the past. It also buffers all characters
read beyond the end of the shorter token. If the optimistic assumption leads the

DESIGN & IMPLEMENTATION

Longest possible tokens

A little care in syntax design—avoiding tokens that are nontrivial prefixes of
other tokens—can dramatically simplify scanning. In straightforward cases of
prefix ambiguity the scanner can enforce the “longest possible token” rule au-
tomatically. In Fortran, however, the rules are sufficiently complex that no
purely lexical solution suffices. Some of the problems, and a possible solution,
are discussed in an article by Dyadkin [Dya95].

10 In actuality, the faulty software for Mariner 1 appears to have stemmed from a missing “bar”
punctuation mark (indicating an average) in handwritten notes from which the software was
derived [Cer89, pp. 202—203]. The Fortran DO loop error does appear to have occurred in at least
one piece of NASA software, but no serious harm resulted [Web89].
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EXAMPLE 2. I 7

Table-driven scanning

scanner into an error state, it “unreads” the buffered characters so that they will
be seen again later, and returns the shorter token.

123 Table-Driven Scanning

Figure 2.11 uses control flow—a loop and nested case statements—to represent
a finite automaton. An alternative approach represents the automaton as a data
structure: a two-dimensional transition table. A driver program uses the current
state and input character to index into the table (Figure 2.12). Each entry in the
table specifies whether to move to a new state (and if so, which one), return a
token, or announce an error. A second table indicates, for each state, whether we
might be at the end of a token (and if so, which one). Separating this second table
from the first allows us to notice when we pass a state that might have been the
end of a token, so we can back up if we hit an error state.

Like a handwritten scanner, the table-driven code of Figure 2.12 looks tokens
up in a table of keywords immediately before returning. An outer loop serves to
filter out comments and “white space”—spaces, tabs, and newlines. These char-
acter sequences are not meaningful to the parser, and would in fact be very diffi-
cult to represent in a grammar (Exercise 2.15).

2.24 Lexical Errors

The code in Figure 2.12 explicitly recognizes the possibility of lexical errors. In
some cases the next character of input may be neither an acceptable continuation
of the current token nor the start of another token. In such cases the scanner must
print an error message and perform some sort of recovery so that compilation can
continue, if only to look for additional errors. Fortunately, lexical errors are rel-
atively rare—most character sequences do correspond to token sequences—and
relatively easy to handle. The most common approach is simply to (1) throw away
the current, invalid token, (2) skip forward until a character is found that can le-
gitimately begin a new token, (3) restart the scanning algorithm, and (4) count
on the error-recovery mechanism of the parser to cope with any cases in which
the resulting sequence of tokens is not syntactically valid. Of course the need for
error recovery is not unique to table-driven scanners; any scanner must cope with
errors. We did not show the code in Figures 2.5 and 2.11, but it would have to be
there in practice.

The code in Figure 2.12 also shows that the scanner must return both the
kind of token found and its character-string image (spelling); again this require-
ment applies to all types of scanners. For some tokens the character-string image
is redundant: all semicolons look the same, after all, as do all while keywords.
For other tokens, however (e.g., identifiers, character strings, and numeric con-
stants), the image is needed for semantic analysis. It is also useful for error mes-
sages: “undeclared identifier” is not as nice as “foo has not been declared.”



state = 0.. number_of_states
token = 0.. number_of_tokens
scan_tab : array [char, state] of record
action : (move, recognize, error)
new_state : state
token_tab : array [state] of token —— what to recognize
keyword_tab : set of record
k_image : string
k_token : token
—— these three tables are created by a scanner generator tool

tok : token
cur_char : char
remembered_chars : list of char
repeat
cur_state : state := start_state
image : string := null
remembered_state : state := 0 ——none
loop
read cur_char
case scan_tab[cur_char, cur_state].action
move:
if token_tab[cur_state] # 0
——this could be a final state
remembered_state := cur_state
remembered_chars := €
add cur_char to remembered_chars

2.2 Scanning

cur_state := scan_tab[cur_char, cur_state].new_state

recognize:
tok := token_tab[cur_state]

unread cur_char —— push back into input stream

exit inner loop
error:
if remembered_state # 0
tok := token_tab[remembered_state]
unread remembered_chars
exit inner loop

—— else print error message and recover; probably start over

append cur_char to image
——end inner loop
until tok ¢ {white_space, comment}

look image up in keyword_tab and replace tok with appropriate keyword if found

return (tok, image)

59

Figure 2.12 Driver for a table-driven scanner, with code to handle the ambiguous case in
which one valid token is a prefix of another, but some intermediate string is not.
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225 Pragmas

Some languages and language implementations allow a program to contain con-
structs called pragmas that provide directives or hints to the compiler. Pragmas
are sometimes called significant comments because, in most cases, they do not
affect the meaning (semantics) of the program—only the compilation process.
In many languages the name is also appropriate because, like comments, prag-
mas can appear anywhere in the source program. In this case they are usually
handled by the scanner: allowing them anywhere in the grammar would greatly
complicate the parser. In other languages (Ada, for example), pragmas are per-
mitted only at certain well-defined places in the grammar. In this case they are
best handled by the parser or semantic analyzer.

Examples of directives include the following.

Turn various kinds of run-time checks (e.g., pointer or subscript checking) on
or off.

Turn certain code improvements on or off (e.g., on in inner loops to improve
performance; off otherwise to improve compilation speed).

Turn performance profiling on or off.

Some directives “cross the line” and change program semantics. In Ada, for ex-
ample, the unchecked pragma can be used to disable type checking.

Hints provide the compiler with information about the source program that
may allow it to do a better job:

Variable x is very heavily used (it may be a good idea to keep it in a register).

Subroutine F is a pure function: its only effect on the rest of the program is
the value it returns.

Subroutine S is not (indirectly) recursive (its storage may be statically allo-
cated).

32 bits of precision (instead of 64) suffice for floating-point variable x.

The compiler may ignore these in the interest of simplicity, or in the face of con-
tradictory information.

/CHECK YOUR UNDERSTANDING
[0. List the tasks performed by the typical scanner.

[1. What are the advantages of an automatically generated scanner, in compari-
son to a handwritten one? Why do many commercial compilers use a hand-
written scanner anyway?

[2. Explain the difference between deterministic and nondeterministic finite au-
tomata. Why do we prefer the deterministic variety for scanning?
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[3. Outline the constructions used to turn a set of regular expressions into a min-
imal DFA.

[4. What is the “longest possible token” rule?

[5. Why must a scanner sometimes “peek” at upcoming characters?
[6. What is the difference between a keyword and an identifier?

I7. Why must a scanner save the text of tokens?

[8. How does a scanner identify lexical errors? How does it respond?

19. What is a pragma?

Parsing

The parser is the heart of a typical compiler. It calls the scanner to obtain the to-
kens of the input program, assembles the tokens together into a syntax tree, and
passes the tree (perhaps one subroutine at a time) to the later phases of the com-
piler, which perform semantic analysis and code generation and improvement.
In effect, the parser is “in charge” of the entire compilation process; this style of
compilation is sometimes referred to as syntax-directed translation.

As noted in the introduction to this chapter, a context-free grammar (CFG) is
a generator for a CF language. A parser is a language recognizer. It can be shown
that for any CFG we can create a parser that runs in O(n”) time, where 7 is the
length of the input program.!! There are two well-known parsing algorithms that
achieve this bound: Earley’s algorithm [Ear70] and the Cocke-Younger-Kasami
(CYK) algorithm [Kas65, You67]. Cubic time is much too slow for parsing sizable
programs, but fortunately not all grammars require such a general and slow pars-
ing algorithm. There are large classes of grammars for which we can build parsers
that run in linear time. The two most important of these classes are called LL
and LR.

LL stands for “Left-to-right, Left-most derivation.” LR stands for “Left-to-
right, Right-most derivation.” In both classes the input is read left-to-right. An
LL parser discovers a left-most derivation; an LR parser discovers a right-most
derivation. We will cover LL parsers first. They are generally considered to be
simpler and easier to understand. They can be written by hand or generated au-
tomatically from an appropriate grammar by a parser-generating tool. The class
of LR grammars is larger, and some people find the structure of the grammars
more intuitive, especially in the part of the grammar that deals with arithmetic

I'l In general, an algorithm is said to run in time O(f(n)), where # is the length of the input, if
its running time #(n) is proportional to f(n) in the worst case. More precisely, we say (1) =
O(f(n)) <= 3c,m [n>m—> t(n) <cf(n)].
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EXAMPLE 2 |8

Top-down and bottom-up
parsing

expressions. LR parsers are almost always constructed by a parser-generating tool.
Both classes of parsers are used in production compilers, though LR parsers are
more COMmMmon.

LL parsers are also called “top-down” or “predictive” parsers. They construct
a parse tree from the root down, predicting at each step which production will be
used to expand the current node, based on the next available token of input. LR
parsers are also called “bottom-up” parsers. They construct a parse tree from the
leaves up, recognizing when a collection of leaves or other nodes can be joined
together as the children of a single parent.

We can illustrate the difference between top-down and bottom-up parsing
by means of a simple example. Consider the following grammar for a comma-
separated list of identifiers, terminated by a semicolon.

id_list — id id_list_tail
id_list_taill — , id id_list_tail

id_list_taill —

These are the productions that would normally be used for an identifier list in
a top-down parser. They can also be parsed bottom-up (most top-down gram-
mars can be). In practice they would not be used in a bottom-up parser, for rea-
sons that will become clear in a moment, but the ability to handle them either
way makes them good for this example.

Progressive stages in the top-down and bottom-up construction of a parse
tree for the string A, B, C; appear in Figure 2.13. The top-down parser begins
by predicting that the root of the tree (id_list) will be replaced by id id_list_tail.
It then matches the id against a token obtained from the scanner. (If the scan-
ner produced something different, the parser would announce a syntax error.)
The parser then moves down into the first (in this case only) nonterminal child
and predicts that id_list_tail will be replaced by , id id_list_tail. To make this
prediction it needs to peek at the upcoming token (a comma), which allows it to
choose between the two possible expansions for id_list_tail. It then matches the
comma and the id and moves down into the next id_list_tail. In a similar, recur-
sive fashion, the top-down parser works down the tree, left-to-right, predicting
and expanding nodes and tracing out a left-most derivation of the fringe of the
tree.

The bottom-up parser, by contrast, begins by noting that the left-most leaf of
the tree is an id. The next leaf is a comma and the one after that is another id.
The parser continues in this fashion, shifting new leaves from the scanner into
a forest of partially completed parse tree fragments, until it realizes that some
of those fragments constitute a complete right-hand side. In this grammar, that
doesn’t occur until the parser has seen the semicolon—the right-hand side of
id_list_tail — ;. With this right-hand side in hand, the parser reduces the semi-
colon to an id_list_tail. It then reduces , id id_list_tail into another id_list_tail.
After doing this one more time it is able to reduce id id_list_tail into the root of
the parse tree, id_list.
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id_list id(A)

id list aw

N id(A) , id(B)

id(A)  id_list_tail
id(a) , id(B) ,
id_list

Py id(A) , id(B) , id(C)

id(A)  id_list_tail id(A) , id(B) , id(C) ;

/l\ id(A) , id(B) , id(C)  id_list_tail

, i1d(B) id_list_tail |
id_list :
s id(A) , id(B)  id_list_tail

id(A)  id_list_tail T~
/I\ , 1id(C) id_list_tail

, id(B) id_list_tail

/l\.. , id(A)  id_list_tail
, id(C) id_list_tail /l\

id_list , id(B) id_list_tail

)

id(A)  id_list_tail , 1d(C) id_list_tail

, id(B) id_list_tail ;
/l\ ld_llst

140 ’d—l’it—m" 1d(h)  id_list_tail

3

, id(B) id_list_tail

T~

id_list —> id id_list_tail , id(C) id_list_tail

id_list_tail —> , id id_list_tail |

id_list_taill —>

Figure 2.13 Top-down (left) and bottom-up parsing (right) of the input string A, B, C;.
Grammar appears at lower left.

At no point does the bottom-up parser predict what it will see next. Rather,
it shifts tokens into its forest until it recognizes a right-hand side, which it then
reduces to a left-hand side. Because of this behavior, bottom-up parsers are some-
times called shift-reduce parsers. Looking up the figure, from bottom to top, we
can see that the shift-reduce parser traces out a right-most (canonical) deriva-
tion, in reverse.
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Bounding space with a
bottom-up grammar

EXAMPLE 220

Top-down grammar for a
calculator language

There are several important subclasses of LR parsers, including SLR, LALR,
and “full LR” SLR and LALR are important for their ease of implementation,
full LR for its generality. LL parsers can also be grouped into SLL and “full LL”
subclasses. We will cover the differences among them only briefly here; for fur-
ther information see any of the standard compiler-construction or parsing theory
textbooks [App97, ASU86, AU72, CT04, FL88].

One commonly sees LL or LR (or whatever) written with a number in paren-
theses after it: LL(2) or LALR(1), for example. This number indicates how many
tokens of look-ahead are required in order to parse. Most real compilers use just
one token of look-ahead, though more can sometimes be helpful. Terrence Parr’s
open-source ANTLR tool, in particular, uses multi-token look-ahead to enlarge
the class of languages amenable to top-down parsing [PQ95]. In Section 2.3.1
we will look at LL(1) grammars and handwritten parsers in more detail. In Sec-
tions 2.3.2 and 2.3.3 we will consider automatically generated LL(1) and LR(1)
(actually SLR(1)) parsers.

The problem with our example grammar, for the purposes of bottom-up
parsing, is that it forces the compiler to shift all the tokens of an id_list into its
forest before it can reduce any of them. In a very large program we might run out
of space. Sometimes there is nothing that can be done to avoid a lot of shifting.
In this case, however, we can use an alternative grammar that allows the parser to
reduce prefixes of the id_list into nonterminals as it goes along:

id list —> id_list_prefix ;
id_list_prefix —> id list_prefix , id

—> id

This grammar cannot be parsed top-down, because when we see an id on the
input and we’re expecting an id_list_prefix, we have no way to tell which of the two
possible productions we should predict (more on this dilemma in Section 2.3.2).
As shown in Figure 2.14, however, the grammar works well bottom-up.

2.3.] Recursive Descent

To illustrate top-down (predictive) parsing, let us consider the grammar for a
simple “calculator” language, shown in Figure 2.15. The calculator allows values
to be read into (numeric) variables, which may then be used in expressions. Ex-
pressions in turn can be written to the output. Control flow is strictly linear (no
loops, if statements, or other jumps). The end-marker ($$) pseudo-token is
produced by the scanner at the end of the input. This token allows the parser to
terminate cleanly once it has seen the entire program. As in regular expressions,
we use the symbol € to denote the empty string. A production with € on the
right-hand side is sometimes called an epsilon production.

It may be helpful to compare the expr portion of Figure 2.15 to the expres-
sion grammar of Example 2.7 (page 45). Most people find that previous, LR
grammar to be significantly more intuitive. It suffers, however, from a problem
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id(A) id_list_prefix , id(C)
id_list_prefix id_list_prefix id(B)
id(8) id(a)
id_list_prefix id_list_prefix
id(A) id_list_prefix , id(C)
id_list_prefix id(B) id_list_prefix id(B)
id(4) id(a)
id_list_prefix id_list_prefix ;
id_list_m/eﬁx,\ id(B) id_list_m id(C)
id(a) id_list_prefix , id(B)
id_list_prefix idl(A)
id_list_pw/eﬁx,\ id(B) id_list
T
id(4) id_list_prefix ;
id_list_prefix id(C)
id_list —> id_list_prefix ; id_list_prefix 14(B)
id_list_prefix —> id_list_prefix , id
—> id id(4)

Figure 2.14 Bottom-up parse of A, B, C; using a grammar (lower left) that allows lists to be
collapsed incrementally.

similar to that of the id_list grammar of Example 2.19: if we see an id on the
input when expecting an expr, we have no way to tell which of the two pos-
sible productions to predict. The grammar of Figure 2.15 avoids this problem
by merging the common prefixes of right-hand sides into a single production,
and by using new symbols (term_tail and factor_tail) to generate additional op-
erators and operands as required. The transformation has the unfortunate side
effect of placing the operands of a given operator in separate right-hand sides.
In effect, we have sacrificed grammatical elegance in order to be able to parse
predictively.

So how do we parse a string with our calculator grammar? We saw the basic
idea in Figure 2.13. We start at the top of the tree and predict needed productions
on the basis of the current left-most nonterminal in the tree and the current in-
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EXAMPLE 2.2'

Recursive descent parser
for the calculator language

EXAMPLE 222

ecursive descent parse o
R d t f
a “sum and average”
program

program —>  stmt_list $$

stmt_list —>  stmt stmt_list | €

stmt —> id := expr | read id | write expr
expr —> term term_tail

term_tail —> add_op term term_tail | €

term —> factor factor_tail

factor_tail —>  mult_op factor factor_tail | €
factor —>  ( expr ) | id | number

addop — + | -

multop — x| /

Figure 2.15 LL(1) grammar for a simple calculator language.

put token. We can formalize this process in one of two ways. The first, described
in the remainder of this subsection, is to build a recursive descent parser whose
subroutines correspond, one-to-one, to the nonterminals of the grammar. Re-
cursive descent parsers are typically constructed by hand, though the ANTLR
parser generator constructs them automatically from an input grammar. The
second approach, described in Section 2.3.2, is to build an LL parse table, which
is then read by a driver program. Table-driven parsers are almost always con-
structed automatically by a parser generator. These two options—recursive de-
scent and table-driven—are reminiscent of the nested case statements and table-
driven approaches to building a scanner that we saw in Sections 2.2.2 and 2.2.3.
Handwritten recursive descent parsers are most often used when the language
to be parsed is relatively simple, or when a parser-generator tool is not avail-
able.

Pseudocode for a recursive descent parser for our calculator language appears
in Figure 2.16. It has a subroutine for every nonterminal in the grammar. It also
has a mechanism input_token to inspect the next token available from the scanner
and a subroutine (match) to consume this token and in the process verify that it
is the one that was expected (as specified by an argument). If match or any of the
other subroutines sees an unexpected token, then a syntax error has occurred.
For the time being let us assume that the parse_error subroutine simply prints
a message and terminates the parse. In Section 2.3.4 we will consider how to
recover from such errors and continue to parse the remainder of the input.

Suppose now that we are to parse a simple program to read two numbers and
print their sum and average:

read A

read B

sum := A + B
write sum
write sum / 2
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procedure match(expected)
if input_token = expected
consume input_token
else parse_error

——this is the start routine:
procedure program
case input_token of
id, read, write, $$ :
stmt_list
match($$)
otherwise parse_error

procedure stmt_list
case input_token of
id, read, write : stmt; stmt_list
$$ : skip ——epsilon production
otherwise parse_error

procedure stmt
case input_token of
id : match(id); match(:=); expr
read : match(read); match(id)
write : match(write); expr
otherwise parse_error

procedure expr
case input_token of
id, number, ( :term; term_tail
otherwise parse_error

procedure term_tail
case input_token of
+, - add_op; term; term_tail
), id, read, write, $$ :
skip —— epsilon production
otherwise parse_error

procedure term
case input_token of
id, number, ( : factor; factor_tail
otherwise parse_error

Figure 2.16 Recursive descent parser for the calculator language. Execution begins in proce-
dure program. The recursive calls trace out a traversal of the parse tree. Not shown is code to
save this tree (or some similar structure) for use by later phases of the compiler: (continued)
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procedure factor_tail
case input_token of
*, / : mult_op; factor; factor_tail
+, -, ), id, read, write, $$ :
skip —— epsilon production
otherwise parse_error

procedure factor
case input_token of
id : match(id)
number : match(number)
( : match((); expr; match())
otherwise parse_error

procedure add_op
case input_token of
+ : match(+)
- : match(-)
otherwise parse_error

procedure mult_op
case input_token of
* : match(*)
/ : match(/)
otherwise parse_error

Figure 216 (continued)

The parse tree for this program appears in Figure 2.17. The parser begins by
calling the subroutine program. After noting that the initial token is a read,
program calls stmt_list and then attempts to match the end-of-file pseudo-token.
(In the parse tree, the root, program, has two children, stmt_list and $$.) Pro-
cedure stmt_list again notes that the upcoming token is a read. This obser-
vation allows it to determine that the current node (stmt_list) generates stmt
stmt_list (rather than €). It therefore calls stmt and stmt_list before returning.
Continuing in this fashion, the execution path of the parser traces out a left-
to-right depth-first traversal of the parse tree. This correspondence between the
dynamic execution trace and the structure of the parse tree is the distinguishing
characteristic of recursive descent parsing. Note that because the stmt_list non-
terminal appears in the right-hand side of a stmt_list production, the stmt_list
subroutine must call itself. This recursion accounts for the name of the parsing
technique.

Without additional code (not shown in Figure 2.16), the parser merely ver-
ifies that the program is syntactically correct (i.e., that none of the otherwise
parse_error clauses in the case statements are executed and that match always
sees what it expects to see). To be of use to the rest of the compiler—which must
produce an equivalent target program in some other language—the parser must



N

2.3 Parsing 69

program

stmt_list $3$

/\

stmt_list

/\

id(A)  stmt stmt_list

D

read id(B) stmt stmt_list
id(sum) := expr stmt stmnt_list
term term_tail write expr stmt stmt_list

N T PN /N

factor_tail  add_op term term_tail term term_tail ~ write expr €
€ + factor  factor_tail ¢ factor factor_tail ¢ term term_tail
id(B) € id (sum) € factor  factor_tail €

//l\

id(sum) mult_op factor  factor_tail

/ number (2) €

Figure 21T Parse tree for the sum-and-average program of Example 2.22, using the grammar of Figure 2.15.

save the parse tree or some other representation of program fragments as an ex-
plicit data structure. To save the parse tree itself, we can allocate and link together
records to represent the children of a node immediately before executing the re-
cursive subroutines and match invocations that represent those children. We shall
need to pass each recursive routine an argument that points to the record that is
to be expanded (i.e., whose children are to be discovered). Procedure match will
also need to save information about certain tokens (e.g., character-string repre-
sentations of identifiers and literals) in the leaves of the tree.

As we saw in Chapter 1, the parse tree contains a great deal of irrelevant detail
that need not be saved for the rest of the compiler. It is therefore rare for a parser
to construct a full parse tree explicitly. More often it produces an abstract syntax
tree or some other more terse representation. In a recursive descent compiler, a
syntax tree can be created by allocating and linking together records in only a
subset of the recursive calls.

Perhaps the trickiest part of writing a recursive descent parser is figuring out
which tokens should label the arms of the case statements. Each arm represents
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EXAMPLE 2.23

Driver and table for
top-down parsing

one production: one possible expansion of the symbol for which the subroutine
was named. The tokens that label a given arm are those that predict the pro-
duction. A token X may predict a production for either of two reasons: (1) the
right-hand side of the production, when recursively expanded, may yield a string
beginning with X, or (2) the right-hand side may yield nothing (i.e., it is €, or a
string of nonterminals that may recursively yield €), and X may begin the yield
of what comes next. In the following subsection we will formalize this notion of
prediction using sets called FIRST and FOLLOW, and show how to derive them
automatically from an LL(1) CFG.

/CHECK YOUR UNDERSTANDING

20. What is the inherent “big-O” complexity of parsing? What is the complexity
of parsers used in real compilers?

1. Summarize the difference between LL and LR parsing. Which one of them is
also called “bottom-up”? “Top-down”? Which one is also called “predictive”?
“Shift-reduce”? What do “LL” and “LR” stand for?

12. What kind of parser (top-down or bottom-up) is most common in produc-
tion compilers?

13. What is the significance of the “1” in LR(1)?

24. Why might we want (or need) different grammars for different parsing algo-
rithms?

15. What is an epsilon production?

26. What are recursive descent parsers? Why are they used mostly for small lan-
guages?

2]. How might a parser construct an explicit parse tree or syntax tree?

1.3.] Table-Driven Top-Down Parsing

In a recursive descent parser, each arm of a case statement corresponds to a
production, and contains parsing routine and match calls corresponding to the
symbols on the right-hand side of that production. At any given point in the
parse, if we consider the calls beyond the program counter (the ones that have
yet to occur) in the parsing routine invocations currently in the call stack, we
obtain a list of the symbols that the parser expects to see between here and the
end of the program. A table-driven top-down parser maintains an explicit stack
containing this same list of symbols.

Pseudocode for such a parser appears in Figure 2.18. The code is language
independent. It requires a language dependent parsing table, generally produced
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Table-driven parse of the
“sum and average”
program
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terminal = 1.. number_of_terminals

non_terminal = number_of_terminals + 1 .. number_of_symbols
symbol = 1.. number_of_symbols

production = 1.. number_of_productions

parse_tab : array [non_terminal, terminal] of
action : (predict, error)
prod : production
prod_tab : array [production] of list of symbol
—— these two tables are created by a parser generator tool

parse_stack : stack of symbol

parse_stack.push(start_symbol)
loop
expected_sym : symbol := parse_stack.pop
if expected_sym € terminal
match(expected_sym) ——as in Figure 2.16
if expected_sym = $$ return ——success!
else
if parse_tablexpected_sym, input_token].action = error
parse_error
else
prediction : production := parse_tablexpected_sym, input_token].prod
foreach sym : symbol in reverse prod_tab[prediction]
parse_stack.push(sym)

Figure 118 Driver for a table-driven LL(l) parser.

by an automatic tool. For the calculator grammar of Figure 2.15, the table appears
as shown in Figure 2.19.

To illustrate the algorithm, Figure 2.20 shows a trace of the stack and the in-
put over time for the sum-and-average program of Example 2.22. The parser
iterates around a loop in which it pops the top symbol off the stack and performs
the following actions. If the popped symbol is a terminal, the parser attempts
to match it against an incoming token from the scanner. If the match fails, the
parser announces a syntax error and initiates some sort of error recovery (see Sec-
tion 2.3.4). If the popped symbol is a nonterminal, the parser uses that nontermi-
nal together with the next available input token to index into a two-dimensional
table that tells it which production to predict (or whether to announce a syntax
error and initiate recovery).

Initially, the parse stack contains the start symbol of the grammar (in our case,
program). When it predicts a production, the parser pushes the right-hand-side
symbols onto the parse stack in reverse order, so the first of those symbols ends up
at top-of-stack. The parse completes successfully when we match the end token,
$$. Assuming that $$ appears only once in the grammar, at the end of the first
production, and that the scanner returns this token only at end-of-file, any syntax
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Top-of-stack
nonterminal

program
stmt_list
stmt

expr
term_tail
term
factor_tail
factor
add_op

mult_op

Current input token
number read write 1= ( ) + = * / $$
- 1 1 - - - - - - - 1
2 2 - - - - - - - 3
5 6 - - - - - - -
7 - - - 7 - - -
- 9 - - 9 8 8 - - 9
10 - - - 10 - - - - -
- 12 12 - - 12 12 12 11 11 12
15 - - - 13 - - - - - -

Figure 2.19 LL(1) parse table for the calculator language. Table entries indicate the production to predict (as numbered in
Figure 2.22). A dash indicates an error. When the top-of-stack symbol is a terminal, the appropriate action is always to match
it against an incoming token from the scanner: An auxiliary table, not shown here, gives the right-hand side symbols for each

production.

EXAMPLE 2.25

Predict sets for the
calculator language

error is guaranteed to manifest itself either as a failed match or as an error entry
in the table.

Predict Sets

As we hinted at the end of Section 2.3.1, predict sets are defined in terms of sim-
pler sets called FIRST and FOLLOW, where FIRST(A) is the set of all tokens that
could be the start of an A, plus € if A =—* ¢, and FOLLOW(A) is the set of all
tokens that could come after an A in some valid program, plus € if A can be the
final token in the program. If we extend the domain of FIRST in the obvious way
to include strings of symbols, we then say that the predict set of a production A
—> B is FIRST(B) (except for €), plus FOLLOW(A) if B ==* ¢€.!?

We can illustrate the algorithm to construct these sets using our calculator
grammar (Figure 2.15). We begin with “obvious” facts about the grammar and
build on them inductively. If we recast the grammar in plain BNF (no EBNF ‘|’
constructs), then it has 19 productions. The “obvious” facts arise from adjacent
pairs of symbols in right-hand sides. In the first production, we can see that $$

12 Following conventional notation, we use uppercase Roman letters near the beginning of the
alphabet to represent nonterminals, uppercase Roman letters near the end of the alphabet to
represent arbitrary grammar symbols (terminals or nonterminals), lowercase Roman letters near
the beginning of the alphabet to represent terminals (tokens), lowercase Roman letters near the
end of the alphabet to represent token strings, and lowercase Greek letters to represent strings of
arbitrary symbols.
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program

stmt_list $$

stmt stmt_list $$

read id stmt_list $$

id stmtlist $$

stmt_list $$

stmt stmt_list $$

read id stmt_list $$

id stmtlist $$

stmt_list $$

stmt stmt_list $$

id := expr stmt_list $$

:= expr stmt_list $$

expr stmt_list $$

term term_tail stmt_list $$

factor factor_tail term_tail stmt_list $$
id factor_tail term_tail stmt_list $$
factor_tail term_tail stmt_list $$
term_tail stmt_list $$

add_op term term_tail stmt_list $$
+ term term_tail stmt_list $$

term term_tail stmt_list $$

factor factor_tail term_tail stmt_list $$
id factor_tail term_tail stmt_list $$
factor_tail term_tail stmt_list $$
term_tail stmt_list $$

stmt_list $$

stmt stmt_list $$

write expr stmt_list $$

expr stmt_list $$

term term_tail stmt_list $$

factor factor_tail term_tail stmt_list $$
id factor_tail term_tail stmt_list $$
factor_tail term_tail stmt_list $$
term_tail stmt_list $$

stmt_list $$

stmt stmt_list $$

write expr stmt_list $$

expr stmt_list $$

term term_tail stmt_list $$

factor factor_tail term_tail stmt_list $$
id factor_tail term_tail stmt_list $$
factor_tail term_tail stmt_list $$

mult_op factor factor_tail term_tail stmt_list $$

/ factor factor_tail term_tail stmt_list $$
factor factor_tail term_tail stmt_list $$
number factor_tail term_tail stmt_list $$
factor_tail term_tail stmt_list $$
term_tail stmt_list $$

stmt_list $$

$$

Input stream

read A read

read A
read A
read A
A read
read B
read B
read B

B sum :

sum :=

sum :=

wr

+
+

+

+

B wr
B

B wr
B

wr

Wwww+ + + + ==

write
write
write
write
write
sum wr
sum wr
sum wr
sum wr
sum wr
write
write
write
write
sum /
sum /
sum /
sum /
/2
/2
2

NN N

W W W w

re
re
re

ad
ad
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:

ite
ite
ite
ite

+ B...
+ B...
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sum ...
sum ...
sum ...
sum ...
write sum...
write sum...
write sum...

sum ...

sum
sum
sum
sum
ite
ite
ite
ite
ite
sum
sum
sum
sum
2

2
2
2

write ...
write ...
write ...
write ...

sum
sum
sum
sum

NN N N N
N NN NN

sum

/2

/2
/2
/2

2.3

Comment

initial stack contents

predict program — stmt_list $$
predict stmt_list —> stmt stmt_list
predict stmt —> read id

match read

match id

predict stmt_list — stmt stmt_list
predict stmt —> read id

match read

match id

predict stmt_list —> stmt stmt_list
predict stmt —> id := expr
match id

match :=

predict expr —> term term_tail
predict term — factor factor_tail
predict factor — id

match id

predict factor_tail — €

predict term_tail —> add_op term
predict add_op — +

match +

predict term — factor factor_tail
predict factor — id

match id

predict factor_tail — €

predict term_tail — €

predict stmt_list —> stmt stmt_list
predict stmt —> write expr
match write

predict expr —> term term_tail
predict term — factor factor_tail
predict factor — id

match id

predict factor_tail — €

predict term_tail — €

predict stmt_list —> stmt stmt_list
predict stmt — write expr
match write

predict expr — term term_tail
predict term — factor factor_tail
predict factor — id

match id

predict factor_tail — mult_op factor factor_tail

predict mult_op — /
match /

predict factor —> number
match number

predict factor_tail — €
predict term_taill — €
predict stmt_list —> €

Figure 2.20 Trace of a table-driven LL(I) parse of the sum-and-average program of Example 2.22.

Parsing

term_tail

73
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program — stmt_list $$

stmt_list —> stmt stmt_list

stmt_list —> €

stmt —> id := expr

stmt —> read id

stmt —> write expr

expr —> term term_tail

term_tail —> add_op term term_tail
term_tail — €

term —> factor factor_tail
factor_tail — mult_op factor factor_tail
factor_tail — €

factor — ( expr )

factor — id

factor —> number

add_op — +

add_op — -

mult_op —> *

mult_op —> /

$$ € FOLLOW((stmt_list),
€ € FOLLOW($$), and € € FOLLOW(program)

€ € FIRST(stmt_list)

id € FIRST(stmt) and := € FOLLOW(id)
read € FIRST(stmt) and id € FOLLOW(read)
write € FIRST(stmt)

€ € FIRST(term_tail)

€ € FIRST(factor_tail)

( € FIRST(factor) and ) € FOLLOW (expr)
id € FIRST(factor)

number € FIRST (factor)

+ € FIRST(add_op)

- € FIRST(add_op)

* € FIRST(mult_op)

/ € FIRST(mult_op)

Figure 2.2] “Obvious” facts about the LL(1) calculator grammar.

€ FOLLOW(stmt_list). In the fourth (stmt — id := expr), id € FIRST(stmt),
and := € FOLLOW(id). In the fifth and sixth productions (stmt —> read id
| write expr), {read, write} C FIRST(stmt), and id € FOLLOW(read). The
complete set of “obvious” facts appears in Figure 2.21.

From the “obvious” facts we can deduce a larger set of facts during a second
pass over the grammar. For example, in the second production (stmt_list —
stmt stmt_list) we can deduce that {id, read, write} C FIRST(stmt_list), be-
cause we already know that {id, read, write} C FIRST(stmt), and a stmt_list
can begin with a stmt. Similarly, in the first production, we can deduce that $$
FIRST(program), because we already know that € € FIRST(stmt_list).

In the eleventh production (factor_tail — mult_op factor factor_tail), we
can deduce that { (, id, number} C FOLLOW(mult_op), because we already know
that {(, id, number} C FIRST(factor), and factor follows mult_op in the right-
hand side. In the seventh production (expr — term term_tail), we can deduce
that ) € FOLLOW(term_tail), because we already know that ) € FOLLOW (expr),
and a term_tail can be the last part of an expr. In this same production, we can
also deduce that ) € FOLLOW(term), because the term_tail can generate € (€ €
FIRST(term_tail)), allowing a ferm to be the last part of an expr.

There is more that we can learn from our second pass through the grammar,
but these examples cover all the different kinds of cases. To complete our calcu-
lation, we continue with additional passes over the grammar until we don’t learn
any more (i.e., we don’t add anything to any of the FIRST and FOLLOW sets). We



FIRST
program {id, read, write, $$}
stmt_list {id, read, write, €}
stmt {id, read, write}
expr {(, id, number}
term_tail {+, -, €}
term {(, id, number}
factor_tail {*, /, €}
factor {(, id, number}
add_op {+, -}
mult_op {*, /}
Also note that FIRST(a) = {a} V tokens a.

FOLLOW
id {+, -, *, /, ), :=, id, read, write, $$}
number {+, -, *, /, ), id, read, write, $$}
read {id}
write {(, id, number}
( {(, id, number}
) {+, - %, /,), id, read, write, $$}
:= {(, id, number}
+ {(, id, number}
- {(, id, number}
* {(, id, number}
/ {( id, number}
$$ {€}
program {e€}
stmt_list {$$}
stmt {id, read, write, $$}
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expr {), id, read, write, $$}

term_tail {), id, read, write, $$}

term {+, -, ), id, read, write, $$}
factor_tail {+, -, ), id, read, write, $$}
factor {+, =, *, /, ), id, read, write, $$}
add_op {(, id, number}

mult_op {(, id, number}

PREDICT
1.

® N U R W

11.
12.
13.
14.
15.
16.
17.
18.
19.

program — stmt_list $$ {id, read, write, $$}
stmt_list —> stmt stmt_list {id, read, write}
stmt_list —> € {$$}

stmt —> id := expr {id}

stmt —> read id {read}

stmt —> write expr {write}

expr —> term term_tail {(, id, number}
term_tail —> add_op term term_tail {+, -}
term_tail —> € {), id, read, write, $$}

term —> factor factor_tail { (, id, number}
factor_tail — mult_op factor factor_tail {*, /}
factor_tail — € {+, -, ), id, read, write, $$}
factor — ( expr ) {(}

factor — id {id}

factor —> number {number}

add_op — + {+}

add_op — - {-}

mult_op —> * {*}

mult_op — / {/}

Figure 112 FIRST, FOLLOW, and PREDICT sets for the calculator language.

then construct the PREDICT sets. Final versions of all three sets appear in Fig-
ure 2.22. The parse table of Figure 2.19 follows directly from PREDICT.

The algorithm to compute FIRST, FOLLOW, and PREDICT sets appears, a bit
more formally, in Figure 2.23. It relies on the following definitions.

FIRST(0) ={a:a =* a B} U (ifa =* ¢ then {¢} else &)
FOLLOW(A)={a:S =" a Aa B} U (ifS =* o A then {€} else @)
PREDICT(A —> ) = (FIRST()~{€}) U (ifa =>* € then FOLLOW(A)

else @)

Note that FIRST sets for strings of length greater than one are calculated on de-
mand; they are not stored explicitly. The algorithm is guaranteed to terminate
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First sets for all symbols:
for all terminals a, FIRST(a) := {a}
for all nonterminals X, FIRST(X) := &
for all productions X — €, add € to FIRST(X)
repeat
(outer) for all productions X — Y7 Y, ... Y,
(inner) foriin 1..k
add (FIRST(Y;) \ {€}) to FIRST(X)
if € & FIRST(Y;) (yet)
continue outer loop
add € to FIRST(X)
until no further progress

First set subroutine for string X; X, ...X,, similar to inner loop above:
return_value := &
foriin1..n
add (FIRST(X;) \. {€}) to return_value
if € & FIRST(X)
return
add € to return_value

Follow sets for all symbols:
FOLLOW(S) := {€}, where S is the start symbol
for all other symbols X, FOLLOW(X) := &
repeat
for all productions A — « B 8,
add (FIRST(B) . {e}) to FOLLOW(B)
for all productions A — o« B
orA — o B B, where € € FIRST(f),
add FOLLOW(A) to FOLLOW(B)
until no further progress

Predict sets for all productions:
for all productions A — «
PREDICT(A — «) := (FIRST(x) \ {€})
U (if € € FIRST(a) then FOLLOW(A) else &)

Figure 2.23 Algorithm to calculate FIRST, FOLLOW, and PREDICT sets. The grammar is LL(1)
if and only if the PREDICT sets are disjoint.

(i.e., converge on a solution), because the sizes of the sets are bounded by the
number of terminals in the grammar.

If in the process of calculating PREDICT sets we find that some token belongs
to the PREDICT set of more than one production with the same left-hand side,
then the grammar is not LL(1), because we will not be able to choose which
of the productions to employ when the left-hand side is at the top of the parse
stack (or we are in the left-hand side’s subroutine in a recursive descent parser)
and we see the token coming up in the input. This sort of ambiguity is known
as a predict-predict conflict; it can arise either because the same token can begin
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Left recursion

EXAMPLE 2.27

Common prefixes

EXAMPLE 2.28

Eliminating left recursion

exampLe 2.29
Left factoring
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more than one right-hand side, or because it can begin one right-hand side and
can also appear after the left-hand side in some valid program, and one possible
right-hand side can generate €.

Writing an LL(1) Grammar

When working with a top-down parser generator, one has to acquire a certain
facility in writing and modifying LL(1) grammars. The two most common ob-
stacles to “LL(1)-ness” are left recursion and common prefixes.

Left recursion occurs when the first symbol on the right-hand side of a pro-
duction is the same as the symbol on the left-hand side. Here again is the gram-
mar from Example 2.19, which cannot be parsed top-down:

id list —> id_list_prefix ;
id_list_prefix —> id_list_prefix , id

—> id

The problem is in the second and third productions; with id_list_prefix at top-
of-stack and an id on the input, a predictive parser cannot tell which of the
productions it should use. (Recall that left recursion is desirable in bottom-up
grammars, because it allows recursive constructs to be discovered incrementally,
as in Figure 2.14.)

Common prefixes occur when two different productions with the same left-
hand side begin with the same symbol or symbols. Here is an example that com-
monly appears in Algol-family languages:

stmt —> id := expr

—> id ( argument_list ) —— procedure call

Clearly id is in the FIRST set of both right-hand sides, and therefore in the
PREDICT set of both productions.

Both left recursion and common prefixes can be removed from a grammar
mechanically. The general case is a little tricky (Exercise 2.17), because the pre-
diction problem may be an indirect one (e.g, S — A ¢ and A — S B, or
S —Awa,S —BB,A —=* ay,and B =—=* a §). We can see the
general idea in the examples above, however.

Our left-recursive definition of id_list can be replaced by the right-recursive
variant we saw in Example 2.18:

id_list —  id id_list_tail
id_list_taill — , id id_list_tail

id_list_taill —

Our common-prefix definition of stmt can be made LL(1) by a technique called
left factoring:

stmt —> id stmt_list_tail

stmt_list_tail —>  := expr | ( argument_list )
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EXAMPLE 2.30

Parsing a “dangling else”

EXAMPLE 2.3 I

“Dangling else” program
bug

Of course, simply eliminating left recursion and common prefixes is not guar-
anteed to make a grammar LL(1). There are infinitely many non-LL languages—
languages for which no LL grammar exists—and the mechanical transformations
to eliminate left recursion and common prefixes work on their grammars just
fine. Fortunately, the few non-LL languages that arise in practice can generally be
handled by augmenting the parsing algorithm with one or two simple heuristics.

The best known example of a “not quite LL” construct arises in languages
like Pascal, in which the else part of an if statement is optional. The natural
grammar fragment

stmt —> if condition then_clause else_clause | other_stmt

then_clause —> +then stmt

else_clause —> else stmt | €

is ambiguous (and thus neither LL nor LR); it allows the else in if C; then if
C, then S; else S, to be paired with either then. The less natural grammar
fragment

stmt —>  balanced_stmt | unbalanced_stmt

if condition then balanced_stmt else balanced_stmt
| other_stmt

balanced_stmt —

if condition then stmt
| if condition then balanced_stmt else unbalanced_stmt

unbalanced_stmt —

can be parsed bottom-up but not top-down (there is no pure top-down grammar
for Pascal else statements). A balanced_stmt is one with the same number of
thens and elses. An unbalanced_stmt has more thens.

The usual approach, whether parsing top-down or bottom-up, is to use the
ambiguous grammar together with a “disambiguating rule,” which says that in
the case of a conflict between two possible productions, the one to use is the one
that occurs first, textually, in the grammar. In the ambiguous fragment above,
the fact that else_clause —> else stmt comes before else_clause —> € ends up
pairing the else with the nearest then, as desired.

Better yet, a language designer can avoid this sort of problem by choosing
different syntax. The ambiguity of the dangling else problem in Pascal leads to
problems not only in parsing but in writing and maintaining correct programs.
Most Pascal programmers have at one time or another written a program like this
one:

if P <> nil then
if P”.val = goal then
foundIt := true
else
end0fList := true

Indentation notwithstanding, the Pascal manual states that an else clause
matches the closest unmatched then—in this case the inner one—which is
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End markers for structured
statements

exampLe 2.33
The need for elsif
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clearly not what the programmer intended. To get the desired effect, the Pascal
programmer must write

if P <> nil then begin
if P".val = goal then
foundIt := true
end
else
end0fList := true

Many other Algol-family languages (including Modula, Modula-2, and Oberon,
all more recent inventions of Pascal’s designer, Niklaus Wirth) require explicit end
markers on all structured statements. The grammar fragment for if statements
in Modula-2 looks something like this:

stmt —> IF condition then_clause else_clause END | other _stmt
then_clause —> THEN stmt_list

else_clause —> ELSE stmtlist | €

The addition of the END eliminates the ambiguity.

Modula-2 uses END to terminate all its structured statements. Ada and For-
tran 77 end an if with end if (and a while with end while, etc.). Al-
gol 68 creates its terminators by spelling the initial keyword backward (if...fi,
case...esac, do...od, etc.).

One problem with end markers is that they tend to bunch up. In Pascal one
can write

if A = B then ...
else if A = C then ...
else if A = D then ...
else if A = E then ...
else ...

With end markers this becomes

if A = B then ...

else if A = C then ...
else if A = D then ...
else if A = E then ...
else ...

end end end end

DESIGN & IMPLEMENTATION

The dangling else

A simple change in language syntax—eliminating the dangling else—not
only reduces the chance of programming errors but also significantly simpli-
fies parsing. For more on the dangling else problem, see Exercise 2.23 and
Section 6.4.
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To avoid this awkwardness, languages with end markers generally provide an
elsif keyword (sometimes spelled elif):

if A = B then ...
elsif A = C then ...
elsif A = D then ...
elsif A = E then ...
else ...

end

With elsif clauses added, the Modula-2 grammar fragment for if statements
looks like this:

stmt —> IF condition then_clause elsif-clauses else_clause END | other_stmt
then_clause —> THEN stmt_list
elsif clauses —> ELSIF condition then_clause elsif-clauses | €

else_clause —> ELSE stmt_list | €

/CHECK YOUR UNDERSTANDING

28.

29.
30.

31.

32

33.
34.

35.

Discuss the similarities and differences between recursive descent and table-
driven top-down parsing.

What are FIRST and FOLLOW sets? What are they used for?

Under what circumstances does a top-down parser predict the production
A — a?

What sorts of “obvious” facts form the basis of FIRST set and FOLLOW set
construction?

Outline the algorithm used to complete the construction of FIRST and
FOLLOW sets. How do we know when we are done?

How do we know when a grammar is not LL(1)?

Describe two common idioms in context-free grammars that cannot be
parsed top-down.

What is the “dangling else” problem? How is it avoided in modern lan-
guages?

133 Bottom-Up Parsing

Conceptually, as we saw at the beginning of Section 2.3, a bottom-up parser
works by maintaining a forest of partially completed subtrees of the parse tree,
which it joins together whenever it recognizes the symbols on the right-hand side
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of some production used in the right-most derivation of the input string. It cre-
ates a new internal node and makes the roots of the joined-together trees the
children of that node.

In practice, a bottom-up parser is almost always table-driven. It keeps the roots
of its partially completed subtrees on a stack. When it accepts a new token from
the scanner, it shifts the token into the stack. When it recognizes that the top
few symbols on the stack constitute a right-hand side, it reduces those symbols
to their left-hand side by popping them off the stack and pushing the left-hand
side in their place. The role of the stack is the first important difference between
top-down and bottom-up parsing: a top-down parser’s stack contains a list of
what the parser expects to see in the future; a bottom-up parser’s stack contains
a record of what the parser has already seen in the past.

Canonical Derivations

We also noted earlier that the actions of a bottom-up parser trace out a right-
most (canonical) derivation in reverse. The roots of the partial subtrees, left-
to-right, together with the remaining input, constitute a sentential form of the
right-most derivation. On the right-hand side of Figure 2.13, for example, we
have the following series of steps.

stack contents (roots of partial trees) remaining input
€ A, B, C;

id (A) » B, C;

id (1) , B, C;

id (4) , id (B) » C;

id (4) , id (B) , C;

id (A) , id (B) , id (C) ;
id (A) , id (B) , id (C) ;

id (&) , id (B) , id (C) id_list_tail

id (A) , id (B) id_list _tail

id (A) id_list_tail

id_list

The last four lines (the ones that don’t just shift tokens into the forest) correspond
to the right-most derivation:

id_list —> id id_list_tail
— id , id id list_tail
— id , id , id id list_tail
= id , id , id ;

The symbols that need to be joined together at each step of the parse to represent
the next step of the backward derivation are called the handle of the sentential
form. In the preceding parse trace, the handles are underlined.

In our id_list example, no handles were found until the entire input had been
shifted onto the stack. In general this will not be the case. We can obtain a more
realistic example by examining an LR version of our calculator language, shown
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EXAMPLE 236

Bottom-up parse of the
“sum and average”
program

1. program —> stmt_list $$
2. stmtlist —>  stmt_list stmt
3. stmtlist —>  stmt

4. stmt —> id := expr

5. stmt —> read id

6. stmt —> write expr

7. expr —> term

8. expr —> expr add_op term
9. term —> factor

10. term —> term mult_op factor
11. factor — ( expr )

12. factor — id
13. factor —> number
14. addop —> +
15. add_op —> -
16. multop —> *
17. multop —> /

Figure 2.24 LR(I) grammar for the calculator language. Productions have been numbered for
reference in future figures.

in Figure 2.24. While the LL grammar of Figure 2.15 can be parsed bottom-
up, the version in Figure 2.24 is preferable for two reasons. First, it uses a left-
recursive production for stmt_list. Left recursion allows the parser to collapse
long statement lists as it goes along, rather than waiting until the entire list is on
the stack and then collapsing it from the end. Second, it uses left-recursive pro-
ductions for expr and term. These productions capture left associativity while
still keeping an operator and its operands together in the same right-hand side,
something we were unable to do in a top-down grammar.

Modeling a Parse with LR Items
Suppose we are to parse the sum-and-average program from Example 2.22:

read A

read B

sum := A + B
write sum
write sum / 2

The key to success will be to figure out when we have reached the end of a right-
hand side—that is, when we have a handle at the top of the parse stack. The trick
is to keep track of the set of productions we might be “in the middle of” at any
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particular time, together with an indication of where in those productions we
might be.

When we begin execution, the parse stack is empty and we are at the begin-
ning of the production for program. (In general, we can assume that there is only
one production with the start symbol on the left-hand side; it is easy to mod-
ify any grammar to make this the case.) We can represent our location—more
specifically, the location represented by the top of the parse stack—with a « in
the right-hand side of the production:

program —> o stmt_list $$

When augmented with a «, a production is called an LR ifemn. Since the o in this
item is immediately in front of a nonterminal—namely stmt_list—we may be
about to see the yield of that nonterminal coming up on the input. This possibil-

ity implies that we may be at the beginning of some production with stmt_list on
the left-hand side:

program —> o stmt_list $$

stmt_list —> o stmt_list stmt

stmt_list —> o stmt

And, since stmt is a nonterminal, we may also be at the beginning of any produc-
tion whose left-hand side is stmt:

program —> o stmt_list $$ (State 0)
stmt_list —> o stmt_list stmt

stmt_list —> o stmt

stmt —> o id := expr

stmt —> o read id

stmt —> o write expr

Since all of these last productions begin with a terminal, no additional items need
to be added to our list. The original item (program — o stmt_list $$) is called
the basis of the list. The additional items are its closure. The list represents the ini-
tial state of the parser. As we shift and reduce, the set of items will change, always
indicating which productions may be the right one to use next in the derivation
of the input string. If we reach a state in which some item has the « at the end
of the right-hand side, we can reduce by that production. Otherwise, as in the
current situation, we must shift. Note that if we need to shift, but the incoming
token cannot follow the « in any item of the current state, then a syntax error has
occurred. We will consider error recovery in more detail in Section @) 2.3.4.

Our upcoming token is a read. Once we shift it onto the stack, we know we
are in the following state:

stmt —> read e id (State 1)

This state has a single basis item and an empty closure—the o precedes a termi-
nal. After shifting the A, we have
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stmt —> read id e (State 1)

We now know that read id is the handle, and we must reduce. The reduction
pops two symbols off the parse stack and pushes a stmt in their place, but what
should the new state be? We can see the answer if we imagine moving back in time
to the point at which we shifted the read—the first symbol of the right-hand
side. At that time we were in the state labeled “State 0” above, and the upcoming
tokens on the input (though we didn’t look at them at the time) were read id.
We have now consumed these tokens, and we know that they constituted a stmt.
By pushing a stmt onto the stack, we have in essence replaced read id with stmt
on the input stream, and have then “shifted” the nonterminal, rather than its
yield, into the stack. Since one of the items in State 0 was

stmt_list —> o stmt
we now have

stmt_list —> stmt o (State 0")

Again we must reduce. We remove the stmt from the stack and push a stmt_list in
its place. Again we can see this as “shifting” a stmt_list when in State 0. Since two
of the items in State 0 have a stmt_list after the «, we don’t know (without looking
ahead) which of the productions will be the next to be used in the derivation, but
we don’t have to know. The key advantage of bottom-up parsing over top-down
parsing is that we don’t need to predict ahead of time which production we shall
be expanding.
Our new state is as follows:

program —>  stmt_list o $$ (State 2)
stmt_list —>  stmt_list o stmt

stmt —> o id := expr

stmt —> o read id

stmt —> o write expr

The first two productions are the basis; the others are the closure. Since no item
has a « at the end, we shift the next token, which happens again to be a read,
taking us back to State 1. Shifting the B takes us to State 1’ again, at which point
we reduce. This time however, we go back to State 2 rather than State 0 before
shifting the left-hand side stmt. Why? Because we were in State 2 when we began
to read the right-hand side.

The Characteristic Finite State Machine and LR Parsing Variants

An LR-family parser keeps track of the states it has traversed by pushing them into
the parse stack along with the grammar symbols. It is in fact the states (rather
than the symbols) that drive the parsing algorithm: they tell us what state we
were in at the beginning of a right-hand side. Specifically, when the combina-
tion of state and input tells us we need to reduce using production A — o, we
pop length(a) symbols off the stack, together with the record of states we moved
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through while shifting those symbols. These pops expose the state we were in im-
mediately prior to the shifts, allowing us to return to that state and proceed as if
we had seen A in the first place.

We can think of the shift rules of an LR-family parser as the transition function
of a finite automaton, much like the automata we used to model scanners. Each
state of the automaton corresponds to a list of items that indicate where the parser
might be at some specific point in the parse. The transition for input symbol X
(which may be either a terminal or a nonterminal) moves to a state whose basis
consists of items in which the « has been moved across an X in the right-hand
side, plus whatever items need to be added as closure. The lists are constructed by
a bottom-up parser generator in order to build the automaton but are not needed
during parsing.

It turns out that the simpler members of the LR family of parsers—LR(0),
SLR(1), and LALR(1)—all use the same automaton, called the characteristic
finite-state machine, or CFSM. Full LR parsers use a machine with (for most
grammars) a much larger number of states. The differences between the algo-
rithms lie in how they deal with states that contain a shift-reduce conflict—one
item with the « in the middle (suggesting the need for a shift) and another with
the o at the end (suggesting the need for a reduction). An LR(0) parser works
only when there are no such states. It can be proven that with the addition of an
end-marker (i.e., $$), any language that can be deterministically parsed bottom-
up has an LR(0) grammar. Unfortunately, the LR(0) grammars for real program-
ming languages tend to be prohibitively large and unintuitive.

SLR (simple LR) parsers peek at upcoming input and use FOLLOW sets to re-
solve conflicts. An SLR parser will call for a reduction via A — « only if the
upcoming token(s) are in FOLLOW (c). It will still see a conflict, however, if the
tokens are also in the FIRST set of any of the symbols that follow a « in other
items of the state. As it turns out, there are important cases in which a token may
follow a given nonterminal somewhere in a valid program, but never in a context
described by the current state. For these cases global FOLLOW sets are too crude.
LALR (look-ahead LR) parsers improve on SLR by using local (state-specific)
look-ahead instead.

Conflicts can still arise in an LALR parser when the same set of items can
occur on two different paths through the CFSM. Both paths will end up in the
same state, at which point state-specific look-ahead can no longer distinguish
between them. A full LR parser duplicates states in order to keep paths disjoint
when their local look-aheads are different.

LALR parsers are the most common bottom-up parsers in practice. They are
the same size and speed as SLR parsers, but are able to resolve more conflicts.
Full LR parsers for real programming languages tend to be very large. Several
researchers have developed techniques to reduce the size of full-LR tables, but
LALR works sufficiently well in practice that the extra complexity of full LR is
usually not required. Yacc/bison produces C code for an LALR parser.
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EXAMPLE 237

CFSM for the bottom-up
calculator grammar

EXAMPLE 238

Epsilon productions in the
bottom-up calculator
grammar

Bottom-Up Parsing Tables

Like a table-driven LL(1) parser, an SLR(1), LALR(1), or LR(1) parser executes
a loop in which it repeatedly inspects a two-dimensional table to find out what
action to take. However, instead of using the current input token and top-of-
stack nonterminal to index into the table, an LR-family parser uses the current
input token and the current parser state (which can be found at the top of the
stack). “Shift” table entries indicate the state that should be pushed. “Reduce”
table entries indicate the number of states that should be popped and the non-
terminal that should be pushed back onto the input stream, to be shifted by the
state uncovered by the pops. There is always one popped state for every symbol
on the right-hand side of the reducing production. The state to be pushed next
can be found by indexing into the table using the uncovered state and the newly
recognized nonterminal.

The CFSM for our bottom-up version of the calculator grammar appears in
Figure 2.25. States 6, 7, 9, and 13 contain potential shift-reduce conflicts, but all
of these can be resolved with global FOLLOW sets. SLR parsing therefore suffices.
In State 6, for example, FIRST(add_op) N FOLLOW(stmt) = &. In addition to shift
and reduce rules, we allow the parse table as an optimization to contain rules of
the form “shift and then reduce.” This optimization serves to eliminate trivial
states such as 1" and 0" in Example 2.36, which had only a single item, with the o
at the end.

A pictorial representation of the CFSM appears in Figure 2.26. A tabular
representation, suitable for use in a table-driven parser, appears in Figure 2.27.
Pseudocode for the (language independent) parser driver appears in Figure 2.28.
A trace of the parser’s actions on the sum-and-average program appears in Fig-
ure 2.29.

Handling Epsilon Productions

The careful reader may have noticed that the grammar of Figure 2.24, in addition
to using left-recursive rules for stmt_list, expr, and term, differs from the gram-
mar of Figure 2.15 in one other way: it defines a stmt_list to be a sequence of one
or more stmts, rather than zero or more. (This means, of course, that it defines a
different language.) To capture the same language as Figure 2.15, the productions

program —>  stmt_list $$
stmt_list —>  stmt_list stmt | stmt

in Figure 2.24 would need to be replaced with
program —>  stmt_list $$

stmt_list —>  stmt_list stmt | €



State

program —> e stmt_list $$

stmt_list —> o stmt_list stmt
stmt_list —> o stmt

stmt —> o id := expr
stmt —> o read id

stmt —> o write expr

stmt —> read e id

program —> stmt_list o $$
stmt_list —> stmt_list o stmt

stmt —> o id := expr
stmt —> o read id
stmt —> o write expr

stmt —> id e := expr

stmt —> write e expr

expr —> e term
expr —> o expr add_op term
term —> e factor

term —> o term mult_op factor

factor —> o ( expr )
factor —> o id
factor —> o number

stmt —> id := e expr

expr —> o term
expr —> o expr add_op term
term —> e factor

term —> o term mult_op factor

factor —> o ( expr )
factor —> o id
factor —> ¢ number

stmt —> write expr e
stmt —> expr e add_op term

add_op —> e +
add_op —> e -
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Transitions

on stmt_list shift and goto 2

on stmt shift and reduce (pop 1 state, push stmt_list on input)
on id shift and goto 3

on read shift and goto 1

on write shift and goto 4

on id shift and reduce (pop 2 states, push stmt on input)

on $$ shift and reduce (pop 2 states, push program on input)
on stmt shift and reduce (pop 2 states, push stmt_list on input)

on id shift and goto 3
on read shift and goto 1
on write shift and goto 4

on := shift and goto 5

on expr shift and goto 6

on term shift and goto 7
on factor shift and reduce (pop 1 state, push ferm on input)

on ( shift and goto 8
on id shift and reduce (pop 1 state, push factor on input)
on number shift and reduce (pop 1 state, push factor on input)

on expr shift and goto 9

on term shift and goto 7
on factor shift and reduce (pop 1 state, push term on input)

on ( shift and goto 8
on id shift and reduce (pop 1 state, push factor on input)
on number shift and reduce (pop 1 state, push factor on input)

on FOLLOW(stmt) = {id, read, write, $$} reduce
(pop 2 states, push stmt on input)

on add_op shift and goto 10

on + shift and reduce (pop 1 state, push add_op on input)

on - shift and reduce (pop 1 state, push add_op on input)

Figure 2.25 CFSM for the calculator grammar (Figure 2.24). Basis and closure items in each
state are separated by a horizontal rule. Trivial reduce-only states have been eliminated by use
of “shift and reduce” transitions. (continued)
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10.

11.

12.

13.

State

expr —> term e
term —> term o mult_op factor

mult_op — e *
mult_.op —> o /

factor — ( o expr )

expr —> o term

expr —> o expr add_op term
term —> e factor

term —> o term mult_op factor
factor —> o ( expr )

factor — o id

factor — o number

stmt —> id := expr e
expr —> expr e add_op term

add_op —> e +
add_op —> e -

expr —> expr add_op e term

term —> e factor

term —> o term mult_op factor
factor —> o ( expr )

factor —> o id

factor —> o number

term —> term mult_op e factor

factor —> o ( expr )
factor —> o id
factor —> o number

factor — ( expr o )
expr —> expr o add_op term

add_op —> e +
add_op —> e -

expr —> expr add_op term e
term —> term o mult_op factor

mult_op —> e *
mult_op —> o /

Figure 225 (continued)

Transitions

on FOLLOW (expr) = {id, read, write, $$, ), +, -} reduce
(pop 1 state, push expr on input)

on mult_op shift and goto 11

on * shift and reduce (pop 1 state, push mult_op on input)

on / shift and reduce (pop 1 state, push mult_op on input)

on expr shift and goto 12

on term shift and goto 7
on factor shift and reduce (pop 1 state, push term on input)

on ( shift and goto 8
on id shift and reduce (pop 1 state, push factor on input)
on number shift and reduce (pop 1 state, push factor on input)

on FOLLOW (stmt) ={id, read, write, $$} reduce
(pop 3 states, push stmt on input)

on add_op shift and goto 10

on + shift and reduce (pop 1 state, push add_op on input)

on - shift and reduce (pop 1 state, push add_op on input)

on term shift and goto 13

on factor shift and reduce (pop 1 state, push ferm on input)

on ( shift and goto 8
on id shift and reduce (pop 1 state, push factor on input)
on number shift and reduce (pop 1 state, push factor on input)

on factor shift and reduce (pop 3 states, push term on input)

on ( shift and goto 8
on id shift and reduce (pop 1 state, push factor on input)
on number shift and reduce (pop 1 state, push factor on input)

on ) shift and reduce (pop 3 states, push factor on input)
on add_op shift and goto 10

on + shift and reduce (pop 1 state, push add_op on input)
on - shift and reduce (pop 1 state, push add_op on input)

on FOLLOW (expr) = {id, read, write, $$, ), +, -} reduce
(pop 3 states, push expr on input)

on mult_op shift and goto 11

on * shift and reduce (pop 1 state, push mult_op on input)

on / shift and reduce (pop 1 state, push mult_op on input)
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Figure 2.26 Pictorial representation of the CFSM of Figure 2.25. Symbol names have been abbreviated for clarity. Reduce
actions are not shown.

Top-of-stack Current input symbol
state sl s e t f a0 mo id 1lit r w = ( ) + - * / $$
0 s2 b3 - - - - - $3 - sl s4 - - - - - - - -
1 - - - - - - - b5 - - - - - - - - - - -
2 - b2 - - - - - $3 - sl s4 - - - - - - - bl
3 - - - - - - - - - - - 5 - - - - - - -
4 - - s 7 b9 - - bI2 bI3 - - - & - - - - - -
50 - - &9 7 b9 - - bl2 b3 - - - 8 - - - -~
6 - - - - - s10 - 6 - 6 6 - - - bl4 bl5 - - 6
7 - - - - - - sl r7 - 7 17 - - r7 17 r7 bl6 bl7 7
8 - - s12 7 b9 - - bI2 b3 - - - & - - - - - —
9 - - - - - s10 - r4 - 4 r4 - - - bl4 bl5 - - r4
10 - - - s13 b9 - - bI2 b3 - - - & - - - - -
11 - - - — b0 - - b2 b3 - - - 8 - - -
12 - - - - - s10 - - - — — - — bll bl4 b5 - - -
13 - - - - - - sl1 18 - 8 8 - - r8 r8 r8 blé bl7 18

Figure 2.27 SLR(l) parse table for the calculator language. Table entries indicate whether to shift (s), reduce (r), or shift and
then reduce (b). The accompanying number is the new state when shifting, or the production that has been recognized when
(shifting and) reducing. Production numbers are given in Figure 2.24. Symbol names have been abbreviated for the sake of
formatting. A dash indicates an error. An auxiliary table, not shown here, gives the left-hand side symbol and right-hand side
length for each production.

Note that it does in general make sense to have an empty statement list. In the
calculator language it simply permits an empty program, which is admittedly
silly. In real languages, however, it allows the body of a structured statement to
be empty, which can be very useful. One frequently wants one arm of a case or
multiway if...then...else statement to be empty, and an empty while loop
allows a parallel program (or the operating system) to wait for a signal from
another process or an I/O device.
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state = 1.. number_of_states
symbol = 1.. number_of_symbols
production = 1. . number_of_productions
action_rec = record
action : (shift, reduce, shift_reduce, error)
new_state : state
prod : production

parse_tab : array [symbol, state] of action_rec
prod_tab : array [production] of record
lhs : symbol
rhs_len : integer
—— these two tables are created by a parser generator tool

parse_stack : stack of record
sym : symbol
st : state

parse_stack.push((null, start_state})

cur_sym : symbol := scan —— get new token from scanner
loop
cur_state : state := parse_stack.top.st ——peek at state at top of stack
if cur_state = start_state
and cur_sym = start_symbol return —- success!

ar : action_rec := parse_tab[cur_state, cur_sym]
case ar.action

shift:

parse_stack.push({cur_sym, ar.new_state}))

cur_sym := scan ——get new token from scanner
reduce:

cur_sym := prod_tab[ar.prod].lhs

parse_stack.pop(prod_tab[ar.prod].rhs_len)
shift_reduce:

cur_sym := prod_tab[ar.prod].lhs

parse_stack.pop(prod_tab[ar.prod].rhs_len—1)
error:

parse_error

Figure 2.28 Driver for a table-driven SLR(I) parser. We call the scanner directly, rather than
using the global input_token of Figures 2.16 and 2.18, so that we can set cur_sym to be an
arbitrary symbol.

exampLe 2.39 If we look at the CFSM for the calculator language, we discover that State 0 is
CFSM with epsilon the only state that needs to be changed in order to allow empty statement lists.
productions The item

stmt_list —> o stmt

becomes
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read 1

stmt_list 2
stmt_list 2

stmt_list 2

stmt_list 2 id
stmt_list 2 id
stmt_list 2 id
stmt_list 2 id
stmt_list 2 id
stmt_list 2 id
stmt_list 2 id
stmt_list 2 id
stmt_list 2 id
stmt_list 2 id
stmt_list 2 id
stmt_list 2 id
stmt_list 2 id
stmt_list 2 id
stmt_list 2

stmt_list 2

stmt_list 2 write
stmt_list 2 write
stmt_list 2 write
stmt_list 2 write
stmt_list 2 write
stmt_list 2 write
stmt_list 2

stmt_list 2

stmt_list 2 write
stmt_list 2 write
stmt_list 2 write
stmt_list 2 write
stmt_list 2 write
stmt_list 2 write
stmt_list 2 write
stmt_list 2 write
stmt_list 2 write
stmt_list 2 write
stmt_list 2 write
stmt_list 2

stmt_list 2
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done]

stmt_list 2 read 1
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AORCR R R R

AORCR R R R R R R R R

term 7

expr 9
expr 9
expr 9 add_op 10
expr 9 add_op 10
expr 9 add_op 10

Ut aoaaa

expr 9

term 7

expr 6

term 7
term 7
term 7 mult_op 11
term 7 mult_op 11

term 7

expr 6

expr 9 add_op 10 term 13

Input stream

read A read B...
A read B...

stmt read B...
stmt_list read B ...
read B sum...

B sum :=...

stmt sum :=...
stmt_list sum :=...
sum := A...

= A+,

A+ B...

factor + B ...
term + B ...

+ B write...
expr + B write...
+ B write...
add_op B write...
B write sum...

factor write sum...

term write sum...
write sum...
expr write sum...
write sum...
stmt write sum...

stmt_list write sum...

write sum...
sum write sum...

factor write sum...

term write sum...
write sum...
expr write sum...
write sum...
stmt write sum...

stmt_list write sum...

write sum /...
sum / 2...
factor / 2...
term / 2 ...

/ 2 $$

mult_op 2 $$

2 $$

factor $$

term $$

stmt $$
stmt_list $$
$$

program
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Comment

shift read

shift id(4) & reduce by stmt —> read id
shift stmt & reduce by stmt_list — stmt

shift stmt_list

shift read

shift id(B) & reduce by stmt — read id
shift stmt & reduce by stmt_list —> stmt_list stmt
shift stmt_list

shift 1d (sum)

shift :=

shift id(4) & reduce by factor — id

shift factor & reduce by term — factor

shift term

reduce by expr —> term

shift expr

shift + & reduce by add_op — +

shift add_op

shift id(B) & reduce by factor — id

shift factor & reduce by term — factor

shift term

reduce by expr — expr add_op term

shift expr

reduce by stmt — id := expr

shift stmt & reduce by stmt_list —> stmt

shift stmt_list

shift write

shift id (sum) & reduce by factor — id

shift factor & reduce by term — factor

shift term

reduce by expr — term

shift expr

reduce by stmt — write expr

shift stmt & reduce by stmt_list — stmt_list stmt
shift stmt_list

shift write

shift id(sum) & reduce by factor — id

shift factor & reduce by term — factor

shift term

shift / & reduce by mult_op — /

shift mult_op

shift number (2) & reduce by factor —> number
shift factor & reduce by term — term mult_op factor
shift term

reduce by expr — term

shift expr

reduce by stmt — write expr

shift stmt & reduce by stmt_list — stmt_list stmt
shift stmt_list

shift $$ & reduce by program — stmt_list $$

Figure 2.29 Trace of a table-driven SLR(I) parse of the sum-and-average program. States in the parse stack are shown in
boldface type. Symbols in the parse stack are for clarity only; they are not needed by the parsing algorithm. Parsing begins with
the initial state of the CFSM (State 0) in the stack. It ends when we reduce by program — stmt_list $$, uncovering State O

again and pushing program onto the input stream.
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stmt_list —> o €

which is equivalent to

stmt.lit —> € o

or simply

stmt_list —> o

The entire state is then

program —> o stmt_list $8  on stmt_list shift and goto 2

stmt_list —> o stmt_list stmt

stmt_list —> o on $$ reduce (pop O states, push stmt_list
on input)

stmt —> o id := expr on id shift and goto 3

stmt —> o read id on read shift and goto 1

stmt —> o write expr on write shift and goto 4

The look-ahead for item

stmt_list —> o

is FOLLOW(stmt_list), which is the end-marker, $$. Since $$ does not appear in
the look-aheads for any other item in this state, our grammar is still SLR(1). It is
worth noting that epsilon productions prevent a grammar from being LR(0),
since one can never tell whether to “recognize” € without peeking ahead. An
LR(0) grammar never has epsilon productions.

/CHECK YOUR UNDERSTANDING

36.
31.

38.
39.
40.

41.
42.
43.

What is the handle of a right sentential form?

Explain the significance of the characteristic finite state machine in LR
parsing.

What is the significance of the dot () in an LR item?
What distinguishes the basis from the closure of an LR state?

What is a shift-reduce conflict? How is it resolved in the various kinds of LR-
family parsers?

Outline the steps performed by the driver of a bottom-up parser.
What kind of parser is produced by yacc/bison? By ANTLR?

Why are there never any epsilon productions in an LR(0) grammar?
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A syntax error in C
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134 Syntax Errors

Suppose we are parsing a C program and see the following code fragment in a
context where a statement is expected.

A=B:C+D;

We will detect a syntax error immediately after the B, when the colon appears
from the scanner. At this point the simplest thing to do is just to print an error
message and halt. This naive approach is generally not acceptable, however: it
would mean that every run of the compiler reveals no more than one syntax
error. Since most programs, at least at first, contain numerous such errors, we
really need to find as many as possible now (we’d also like to continue looking
for semantic errors). To do so, we must modify the state of the parser and/or the
input stream so that the upcoming token(s) are acceptable. We shall probably
want to turn off code generation, disabling the back end of the compiler: since
the input is not a valid program, the code will not be of use, and there’s no point
in spending time creating it.

In general, the term syntax error recovery is applied to any technique that
allows the compiler, in the face of a syntax error, to continue looking for other
errors later in the program. High-quality syntax error recovery is essential in any
production-quality compiler. The better the recovery technique, the more likely
the compiler will be to recognize additional errors (especially nearby errors) cor-
rectly, and the less likely it will be to become confused and announce spurious
cascading errors later in the program.

@ IN MORE DEPTH

There are many possible approaches to syntax error recovery. In panic mode, the
compiler writer defines a small set of “safe symbols” that delimit clean points in
the input. When an error occurs, the compiler deletes input tokens until it finds a
safe symbol, and then “backs the parser out” (e.g., returns from recursive descent
subroutines) until it finds a context in which that symbol might appear. Phrase-
level recovery improves on this technique by employing different sets of “safe”
symbols in different productions of the grammar. Context-sensitive look-ahead
obtains additional improvements by differentiating among the various contexts
in which a given production might appear in a syntax tree. To respond gracefully
to certain common programming errors, the compiler writer may augment the
grammar with error productions that capture language-specific idioms that are
incorrect but are often written by mistake.

Niklaus Wirth published an elegant implementation of phrase-level and
context-sensitive recovery for recursive descent parsers in 1976 [Wir76, Sec. 5.9].
Exceptions (to be discussed further in Section 8.5.3) provide a simpler alternative
if supported by the language in which the compiler is written. For table-driven
top-down parsers, Fischer, Milton, and Quiring published an algorithm in 1980
that automatically implements a well-defined notion of locally least-cost syntax
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repair. Locally least-cost repair is also possible in bottom-up parsers, but it is sig-
nificantly more difficult. Most bottom-up parsers rely on more straightforward
phrase-level recovery; a typical example can be found in yacc/bison.

Theoretical Foundations

Our understanding of the relative roles and computational power of scanners,
parsers, regular expressions, and context-free grammars is based on the for-
malisms of automata theory. In automata theory, a formal language is a set of
strings of symbols drawn from a finite alphabet. A formal language can be spec-
ified either by a set of rules (such as regular expressions or a context-free gram-
mar) that generate the language or by a formal machine that accepts (recognizes)
the language. A formal machine takes strings of symbols as input and outputs
either “yes” or “no.” A machine is said to accept a language if it says “yes” to all
and only those strings that are in the language. Alternatively, a language can be
defined as the set of strings for which a particular machine says “yes.”

Formal languages can be grouped into a series of successively larger classes
known as the Chomsky hierarchy.'> Most of the classes can be characterized in
two ways: by the types of rules that can be used to generate the set of strings or
by the type of formal machine that is capable of recognizing the language. As
we have seen, regular languages are defined by using concatenation, alternation,
and Kleene closure, and are recognized by a scanner. Context-free languages are
a proper superset of the regular languages. They are defined by using concatena-
tion, alternation, and recursion (which subsumes Kleene closure), and are recog-
nized by a parser. A scanner is a concrete realization of a finite automaton, a type
of formal machine. A parser is a concrete realization of a push-down automaton.
Just as context-free grammars add recursion to regular expressions, push-down
automata add a stack to the memory of a finite automaton. There are additional
levels in the Chomsky hierarchy, but they are less directly applicable to compiler
construction, and are not covered here.

It can be proven, constructively, that regular expressions and finite automata
are equivalent: one can construct a finite automaton that accepts the language
defined by a given regular expression, and vice versa. Similarly, it is possible to
construct a push-down automaton that accepts the language defined by a given
context-free grammar, and vice versa. The grammar-to-automaton constructions
are in fact performed by scanner and parser generators such as lex and yacc. Of
course, a real scanner does not accept just one token; it is called in a loop so that
it keeps accepting tokens repeatedly. This detail is accommodated by having the

13 Noam Chomsky (1928-), a linguist and social philosopher at the Massachusetts Institute of Tech-
nology, developed much of the early theory of formal languages.
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scanner accept the alternation of all the tokens in the language, and by having it
continue to consume characters until no longer token can be constructed.

@ IN MORE DEPTH

On the PLP CD we consider finite and pushdown automata in more detail. We
give an algorithm to convert a DFA into an equivalent regular expression. Com-
bined with the constructions in Section 2.2.1, this algorithm demonstrates the
equivalence of regular expressions and finite automata. We also consider the sets
of grammars and languages that can and cannot be parsed by the various linear-
time parsing algorithms.

Summary and Concluding Remarks

In this chapter we have introduced the formalisms of regular expressions and
context-free grammars, and the algorithms that underlie scanning and parsing
in practical compilers. We also mentioned syntax error recovery, and presented a
quick overview of relevant parts of automata theory. Regular expressions and
context-free grammars are language generators: they specify how to construct
valid strings of characters or tokens. Scanners and parsers are language recogniz-
ers: they indicate whether a given string is valid. The principal job of the scanner
is to reduce the quantity of information that must be processed by the parser, by
grouping characters together into tokens, and by removing comments and white
space. Scanner and parser generators automatically translate regular expressions
and context-free grammars into scanners and parsers.

Practical parsers for programming languages (parsers that run in linear time)
fall into two principal groups: top-down (also called LL or predictive) and
bottom-up (also called LR or shift-reduce). A top-down parser constructs a parse
tree starting from the root and proceeding in a left-to-right depth-first traversal.
A bottom-up parser constructs a parse tree starting from the leaves, again work-
ing left-to-right, and combining partial trees together when it recognizes the chil-
dren of an internal node. The stack of a top-down parser contains a prediction of
what will be seen in the future; the stack of a bottom-up parser contains a record
of what has been seen in the past.

Top-down parsers tend to be simple, both in the parsing of valid strings and in
the recovery from errors in invalid strings. Bottom-up parsers are more power-
ful, and in some cases lend themselves to more intuitively structured grammars,
though they suffer from the inability to embed action routines at arbitrary points
in a right-hand side (we discuss this point in more detail in Section €) 4.5.1).
Both varieties of parser are used in real compilers, though bottom-up parsers are
more common. Top-down parsers tend to be smaller in terms of code and data
size, but modern machines provide ample memory for either.
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Both scanners and parsers can be built by hand if an automatic tool is
not available. Hand-built scanners are simple enough to be relatively common.
Hand-built parsers are generally limited to top-down recursive descent, and are
generally used only for comparatively simple languages (e.g., Pascal but not
Ada). Automatic generation of the scanner and parser has the advantage of in-
creased reliability, reduced development time, and easy modification and en-
hancement.

Various features of language design can have a major impact on the complex-
ity of syntax analysis. In many cases, features that make it difficult for a compiler
to scan or parse also make it difficult for a human being to write correct, main-
tainable code. Examples include the lexical structure of Fortran and the if...
then ... else statement of languages like Pascal. This interplay among language
design, implementation, and use will be a recurring theme throughout the re-
mainder of the book.

Exercises

2| Write regular expressions to capture

(a) Strings in C. These are delimited by double quotes ("), and may not
contain newline characters. They may contain double quote or backslash
characters if and only if those characters are “escaped” by a preceding
backslash. You may find it helpful to introduce shorthand notation to
represent any character that is nor a member of a small specified set.

(b) Comments in Pascal. These are delimited by (* and *), as shown in
Figure 2.6, or by { and }.

() Floating-point constants in Ada. These are the same as in Pascal (see
the definition of unsigned_number in Example 2.2 [page 41]), except that
(1) an underscore is permitted between digits, and (2) an alternative
numeric base may be specified by surrounding the non-exponent part
of the number with pound signs, preceded by a base in decimal (e.g.,
16#6.a7#e+2). In this latter case, the letters a .. £ (both upper- and low-
ercase) are permitted as digits. Use of these letters in an inappropriate
(e.g., decimal) number is an error but need not be caught by the scan-
ner.

(d) Inexact constantsin Scheme. Scheme allows real numbers to be explicitly
inexact (imprecise). A programmer who wants to express all constants
using the same number of characters can use sharp signs (#) in place
of any lower-significance digits whose values are not known. A base-ten
constant without exponent consists of one or more digits followed by
zero of more sharp signs. An optional decimal point can be placed at the
beginning, the end, or anywhere in between. (For the record, numbers
in Scheme are actually a good bit more complicated than this. For the
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purposes of this exercise, please ignore anything you may know about
sign, exponent, radix, exactness and length specifiers, and complex or
rational values.)

(e) Financial quantities in American notation. These have a leading dollar
sign ($), an optional string of asterisks (*—used on checks to discourage
fraud), a string of decimal digits, and an optional fractional part consist-
ing of a decimal point (. ) and two decimal digits. The string of digits to
the left of the decimal point may consist of a single zero (0). Otherwise
it must not start with a zero. If there are more than three digits to the
left of the decimal point, groups of three (counting from the right) must
be separated by commas (, ). Example: $x*2,345.67. (Feel free to use
“productions” to define abbreviations, so long as the language remains
regular.)

Show (as “circles-and-arrows” diagrams) the finite automata for parts (a)
and (c) of Exercise 2.1.

Build a regular expression that captures all nonempty sequences of letters
other than file, for, and from. For notational convenience, you may
assume the existence of a not operator that takes a set of letters as argument
and matches any other letter. Comment on the practicality of constructing
a regular expression for all sequences of letters other than the keywords of
a large programming language.

() Show the NFA that results from applying the construction of Figure 2.8
to the regular expression letter ( letter | digit)*.

(b) Apply the transformation illustrated by Example 2.12 to create an equiv-
alent DFA.

() Apply the transformation illustrated by Example 2.13 to minimize the
DFA.

Build an ad hoc scanner for the calculator language. As output, have it print
a list, in order, of the input tokens. For simplicity, feel free to simply halt in
the event of a lexical error.

Build a nested-case-statements finite automaton that converts all letters
in its input to lowercase, except within Pascal-style comments and strings.
A Pascal comment is delimited by { and }, or by (x and ). Com-
ments do not nest. A Pascal string is delimited by single quotes (> ... ).
A quote character can be placed in a string by doubling it (’Madam, I’’m
Adam. ). This upper-to-lower mapping can be useful if feeding a program
written in standard Pascal (which ignores case) to a compiler that considers
upper- and lowercase letters to be distinct.

Give an example of a grammar that captures right associativity for an ex
ponentiation operator (e.g., ** in Fortran).

Prove that the following grammar is LL(1).
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19

210

211

212

decl — ID decl_tail
decl_tail —> , decl

—> = ID ;
(The final ID is meant to be a type name.)

Consider the following grammar.

G — S $3

S — A M

M — S |e

A — aE|bAA

E— aB|bA]le
B — b E | a BB

(3) Describe in English the language that the grammar generates.

(b) Show a parse tree for the stringa b a a.

(c) Is the grammar LL(1)? If so, show the parse table; if not, identify a pre-
diction conflict.

Consider the language consisting of all strings of properly balanced paren-

theses and brackets.

(3 Give LL(1) and SLR(1) grammars for this language.

(b) Give the corresponding LL(1) and SLR(1) parsing tables.
(C) For each grammar, show the parse tree for ([1([1)) [1(O).

(d) Give a trace of the actions of the parsers on this input.

Give an example of a grammar that captures all the levels of precedence
for arithmetic expressions in C. (Hint: This exercise is somewhat tedious.
You probably want to attack it with a text editor rather than a pencil, so
you can cut, paste, and replace. You can find a summary of C precedence
in Figure 6.1 [page 237]; you may want to consult a manual for further
details.)

Extend the grammar of Figure 2.24 to include if statements and while
loops, along the lines suggested by the following examples.

abs :=n
if n < O then abs := 0 - abs fi

sum := 0
read count
while count > 0 do

read n
sum := sum + n
count := count - 1

od
write sum
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Your grammar should support the six standard comparison operations in
conditions, with arbitrary expressions as operands. It should allow an arbi-
trary number of statements in the body of an if or while statement.

Consider the following LL(1) grammar for a simplified subset of Lisp.

P — E $$

E — atom
—  E
— ( EEs)

Es — E Es
—

a) What is FIRST(Es)? FOLLOW(E)? PREDICT(Es —> €)?

(

(b) Give a parse tree for the string (cdr ’(a b c)) $$.
() Show the left-most derivation of (cdr ’(a b ¢)) $$.
(

d) Show a trace, in the style of Figure 2.20, of a table-driven top-down
parse of this same input.

() Now consider a recursive descent parser running on the same input.
At the point where the quote token () is matched, which recursive
descent routines will be active (i.e., what routines will have a frame on
the parser’s run-time stack)?

Write top-down and bottom-up grammars for the language consisting of
all well-formed regular expressions. Arrange for all operators to be left-
associative. Give Kleene closure the highest precedence and alternation the
lowest precedence.

Suppose that the expression grammar in Example 2.7 were to be used in
conjunction with a scanner that did not remove comments from the input
but rather returned them as tokens. How would the grammar need to be
modified to allow comments to appear at arbitrary places in the input?

Build a complete recursive descent parser for the calculator language. As
output, have it print a trace of its matches and predictions.

Flesh out the details of an algorithm to eliminate left recursion and com-
mon prefixes in an arbitrary context-free grammar.

In some languages an assignment can appear in any context in which an
expression is expected: the value of the expression is the right-hand side
of the assignment, which is placed into the left-hand side as a side effect.
Consider the following grammar fragment for such a language. Explain why
itis not LL(1), and discuss what might be done to make it so.

expr —> id := expr
expr —> term term_tail

term_tail —> + term term_tail | €
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219

220

221

122

113

term —> factor factor_tail
factor_tail —> % factor factor_tail | €

factor —  Cexpr ) | id

Construct a trace over time of the forest of partial parse trees manipulated
by a bottom-up parser for the string A, B, C;, using the grammar in Ex-
ample 2.19 (the one that is able to collapse prefixes of the id_list as it goes
along).

Construct the CFSM for the id_list grammar in Example 2.18 (page 62) and
verify that it can be parsed bottom-up with zero tokens of look-ahead.

Modify the grammar in Exercise 2.20 to allow an id_list to be empty. Is the
grammar still LR(0)?

Consider the following grammar for a declaration list.

decl_list —  decl_list decl ; | decl ;
decl — id : type
type —> int | real | char
—> array const .. const of type

—> record decl_list end

Construct the CFSM for this grammar. Use it to trace out a parse (as in
Figure 2.29) for the following input program.

foo : record
a : char;
b : array 1..2 of real;
end;

The dangling else problem of Pascal is not shared by Algol 60. To avoid
ambiguity regarding which then is matched by an else, Algol 60 prohibits
if statements immediately inside a then clause. The Pascal fragment

if C1 then if C2 then S1 else S2

must be written as either

if C1 then begin if C2 then S1 end else S2
or

if C1 then begin if C2 then S1 else S2 end

in Algol 60. Show how to write a grammar for conditional statements that
enforces this rule. (Hint: You will want to distinguish in your grammar be-
tween conditional statements and nonconditional statements; some con-
texts will accept either, some only the latter.)

© 2.24-12.28 In More Depth.
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Explorations

229 Some languages (e.g., C) distinguish between upper- and lowercase letters
in identifiers. Others (e.g., Ada) do not. Which convention do you prefer?
Why?

230 The syntax for type casts in C and its descendants introduces potential am-
biguity: is (x)-y a subtraction, or the unary negation of y, cast to type x?
Find out how C, C++, Java, and C# answer this question. Discuss how you
would implement the answer(s).

231 What do you think of Haskell, Occam, and Python’s use of indentation
to delimit control constructs (Section 2.1.1)? Would you expect this con-

vention to make program construction and maintenance easier or harder?
Why?

132 Skip ahead to Section 13.4.2 and learn about the “regular expressions” used
in scripting languages, editors, search tools, and so on. Are these really reg-
ular? What can they express that cannot be expressed in the notation intro-
duced in Section 2.1.1?

133 Rebuild the automaton of Exercise 2.6 using lex/flex.

2.34 Find a manual for yacc/bison, or consult a compiler textbook [ASU86]
to learn about operator precedence parsing. Explain how it could be used to
simplify the grammar of Exercise 2.11.

1.35 Use lex/flex and yacc/bison to construct a parser for the calculator lan-
guage. Have it output a trace of its shifts and reductions.

136 Repeat the previous exercise using ANTLR.
© 2.37-2.38 In More Depth.
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the equivalence of context-free grammars and push-down automata.

Fischer and LeBlanc’s text [FL88] contains an excellent survey of error recov-
ery and repair techniques, with references to other work. The phrase-level recov-
ery mechanism for recursive descent parsers described in Section @) 2.3.4 is due
to Wirth [Wir76, Sec. 5.9]. The locally least-cost recovery mechanism for table-
driven LL parsers described in Section @) 2.3.4 is due to Fischer, Milton, and
Quiring [FMQ80]. Dion published a locally least-cost bottom-up repair algo-
rithm in 1978 [Dio78]. It is quite complex, and requires very large precomputed
tables. More recently, McKenzie, Yeatman, and De Vere have shown how to effect
the same repairs without the precomputed tables, at a higher but still acceptable
cost in time [MYD95].

14 Dana Scott (1932-), Professor Emeritus at Carnegie Mellon University, is known principally
for inventing domain theory and launching the field of denotational semantics, which provides
a mathematically rigorous way to formalize the meaning of programming languages. Michael
Rabin (1931-), of Harvard University, has made seminal contributions to the concepts of non-
determinism and randomization in computer science. Scott and Rabin shared the ACM Turing
Award in 1976.
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“High-level” programming languages take their name from the rela-
tively high level, or degree of abstraction, of the features they provide, relative
to those of the assembly languages that they were originally designed to replace.
The adjective abstract, in this context, refers to the degree to which language fea-
tures are separated from the details of any particular computer architecture. The
early development of languages like Fortran, Algol, and Lisp was driven by a pair
of complementary goals: machine independence and ease of programming. By
abstracting the language away from the hardware, designers not only made it
possible to write programs that would run well on a wide variety of machines,
but also made the programs easier for human beings to understand.

Machine independence is a fairly simple concept. Basically it says that a pro-
gramming language should not rely on the features of any particular instruction
set for its efficient implementation. Machine dependences still become a problem
from time to time (standards committees for C, for example, have only recently
agreed on how to accommodate machines with 64-bit arithmetic), but with a few
noteworthy exceptions (Java comes to mind) it has probably been 30 years since
the desire for greater machine independence has really driven language design.
Ease of programming, on the other hand, is a much more elusive and compelling
goal. It affects every aspect of language design, and has historically been less a
matter of science than of aesthetics and trial and error.

This chapter is the first of five to address core issues in language design. (The
others are Chapters 6-9.) In Chapter 6 we will look at control-flow constructs,
which allow the programmer to specify the order in which operations are to oc-
cur. In contrast to the jump-based control flow of assembly languages, high-level
control flow relies heavily on the lexical nesting of constructs. In Chapter 7 we
will look at types, which allow the programmer to organize program data and
the operations on them. In Chapters 8 and 9 we will look at subroutines and
classes. In this current chapter we look at names.
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A name is a mnemonic character string used to represent something else.
Names in most languages are identifiers (alpha-numeric tokens), though certain
other symbols, such as + or : =, can also be names. Names allow us to refer to vari-
ables, constants, operations, types, and so on using symbolic identifiers rather
than low-level concepts like addresses. Names are also essential in the context of
a second meaning of the word abstraction. In this second meaning, abstraction is
a process by which the programmer associates a name with a potentially compli-
cated program fragment, which can then be thought of in terms of its purpose or
function, rather than in terms of how that function is achieved. By hiding irrel-
evant details, abstraction reduces conceptual complexity, making it possible for
the programmer to focus on a manageable subset of the program text at any par-
ticular time. Subroutines are control abstractions: they allow the programmer to
hide arbitrarily complicated code behind a simple interface. Classes are data ab-
stractions: they allow the programmer to hide data representation details behind
a (comparatively) simple set of operations.

We will look at several major issues related to names. Section 3.1 introduces
the notion of binding time, which refers not only to the binding of a name to
the thing it represents, but also in general to the notion of resolving any design
decision in a language implementation. Section 3.2 outlines the various mecha-
nisms used to allocate and deallocate storage space for objects, and distinguishes
between the lifetime of an object and the lifetime of a binding of a name to that
object.! Most name-to-object bindings are usable only within a limited region of
a given high-level program. Section 3.3 explores the scope rules that define this
region; Section 3.4 (mostly on the PLP CD) considers their implementation.

The complete set of bindings in effect at a given point in a program is known as
the current referencing environment. Section 3.5 expands on the notion of scope
rules by considering the ways in which a referencing environment may be bound
to a subroutine that is passed as a parameter, returned from a function, or stored
in a variable. Section 3.6 discusses aliasing, in which more than one name may
refer to a given object in a given scope; overloading, in which a name may refer to
more than one object in a given scope, depending on the context of the reference;
and polymorphism, in which a single object may have more than one type, de-
pending on context or execution history. Finally, Section 3.7 (mostly on the PLP
CD) discusses separate compilation.

The Notion of Binding Time

A binding is an association between two things, such as a name and the thing it
names. Binding time is the time at which a binding is created or, more generally,

I For want of a better term, we will use the term object throughout Chapters 3-8 to refer to any-
thing that might have a name: variables, constants, types, subroutines, modules, and others. In
many modern languages object has a more formal meaning, which we will consider in Chapter 9.
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the time at which any implementation decision is made (we can think of this
as binding an answer to a question). There are many different times at which
decisions may be bound:

Language design time: In most languages, the control flow constructs, the set of
fundamental (primitive) types, the available constructors for creating complex
types, and many other aspects of language semantics are chosen when the lan-
guage is designed.

Language implementation time: Most language manuals leave a variety of issues
to the discretion of the language implementor. Typical (though by no means
universal) examples include the precision (number of bits) of the fundamental
types, the coupling of I/O to the operating system’s notion of files, the orga-
nization and maximum sizes of stack and heap, and the handling of run-time
exceptions such as arithmetic overflow.

Program writing time:  Programmers, of course, choose algorithms, data struc-
tures, and names.

Compile time: Compilers choose the mapping of high-level constructs to ma-
chine code, including the layout of statically defined data in memory.

Link time: ~ Since most compilers support separate compilation—compiling dif-
ferent modules of a program at different times—and depend on the availabil-
ity of a library of standard subroutines, a program is usually not complete
until the various modules are joined together by a linker. The linker chooses
the overall layout of the modules with respect to one another. It also resolves
intermodule references. When a name in one module refers to an object in an-
other module, the binding between the two was not finalized until link time.

Load time: Load time refers to the point at which the operating system loads the
program into memory so that it can run. In primitive operating systems, the
choice of machine addresses for objects within the program was not finalized
until load time. Most modern operating systems distinguish between virtual
and physical addresses. Virtual addresses are chosen at link time; physical ad-
dresses can actually change at run time. The processor’s memory management
hardware translates virtual addresses into physical addresses during each indi-
vidual instruction at run time.

DESIGN & IMPLEMENTATION

Binding time

It is difficult to overemphasize the importance of binding times in the de-
sign and implementation of programming languages. In general, early bind-
ing times are associated with greater efficiency, while later binding times are
associated with greater flexibility. The tension between the goals provides a
recurring theme for later chapters of this book.
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Run time: Run time is actually a very broad term that covers the entire span
from the beginning to the end of execution. Bindings of values to variables
occur at run time, as do a host of other decisions that vary from language
to language. Run time subsumes program start-up time, module entry time,
elaboration time (the point at which a declaration is first “seen”), subroutine
call time, block entry time, and statement execution time.

The terms static and dynamic are generally used to refer to things bound before
run time and at run time, respectively. Clearly static is a coarse term. So is dy-
namic.

Compiler-based language implementations tend to be more efficient than
interpreter-based implementations because they make earlier decisions. For ex-
ample, a compiler analyzes the syntax and semantics of global variable decla-
rations once, before the program ever runs. It decides on a layout for those
variables in memory, and generates efficient code to access them wherever they
appear in the program. A pure interpreter, by contrast, must analyze the declara-
tions every time the program begins execution. In the worst case, an interpreter
may reanalyze the local declarations within a subroutine each time that subrou-
tine is called. If a call appears in a deeply nested loop, the savings achieved by a
compiler that is able to analyze the declarations only once may be very large. As
we shall see in the following section, a compiler will not usually be able to pre-
dict the address of a local variable at compile time, since space for the variable
will be allocated dynamically on a stack, but it can arrange for the variable to
appear at a fixed offset from the location pointed to by a certain register at run
time.

Some languages are difficult to compile because their definitions require cer-
tain fundamental decisions to be postponed until run time, generally in order to
increase the flexibility or expressiveness of the language. Smalltalk, for example,
delays all type checking until run time. All operations in Smalltalk are cast in the
form of “messages” to “objects.” A message is acceptable if and only if the object
provides a handler for it. References to objects of arbitrary types (classes) can
then be assigned into arbitrary named variables, as long as the program never
ends up sending a message to an object that is not prepared to handle it. This
form of polymorphism—allowing a variable name to refer to objects of multi-
ple types—allows the Smalltalk programmer to write very general purpose code,
which will correctly manipulate objects whose types had yet to be fully defined
at the time the code was written. We will mention polymorphism again in Sec-
tion 3.6.3, and discuss it further in Chapters 7 and 9.

Object Lifetime and Storage Management

In any discussion of names and bindings, it is important to distinguish between
names and the objects to which they refer, and to identify several key events:
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The creation of objects

The creation of bindings

References to variables, subroutines, types, and so on, all of which use bind-
ings

The deactivation and reactivation of bindings that may be temporarily unus-
able

The destruction of bindings
The destruction of objects

The period of time between the creation and the destruction of a name-to-
object binding is called the binding’s lifetime. Similarly, the time between the
creation and destruction of an object is the object’s lifetime. These lifetimes need
not necessarily coincide. In particular, an object may retain its value and the po-
tential to be accessed even when a given name can no longer be used to access it.
When a variable is passed to a subroutine by reference, for example (as it typically
is in Fortran or with var parameters in Pascal or “&” parameters in C++), the
binding between the parameter name and the variable that was passed has a life-
time shorter than that of the variable itself. It is also possible, though generally a
sign of a program bug, for a name-to-object binding to have a lifetime longer than
that of the object. This can happen, for example, if an object created via the C++
new operator is passed as a & parameter and then deallocated (delete-ed) be-
fore the subroutine returns. A binding to an object that is no longer live is called
a dangling reference. Dangling references will be discussed further in Sections 3.5
and 7.7.2.

Object lifetimes generally correspond to one of three principal storage alloca-
tion mechanisms, used to manage the object’s space:

I. Static objects are given an absolute address that is retained throughout the
program’s execution.

2. Stack objects are allocated and deallocated in last-in, first-out order, usually
in conjunction with subroutine calls and returns.

3. Heap objects may be allocated and deallocated at arbitrary times. They require
a more general (and expensive) storage management algorithm.

3.2.] Static Allocation

Global variables are the obvious example of static objects, but not the only one.
The instructions that constitute a program’s machine-language translation can
also be thought of as statically allocated objects. In addition, we shall see exam-
ples in Section 3.3.1 of variables that are local to a single subroutine but retain
their values from one invocation to the next; their space is statically allocated.
Numeric and string-valued constant literals are also statically allocated, for state-
ments such as A = B/14.7 or printf("hello, world\n"). (Small constants
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Figure 3.1 Static allocation of space for subroutines in a language or program without recur-
sion.

are often stored within the instruction itself; larger ones are assigned a separate
location.) Finally, most compilers produce a variety of tables that are used by run-
time support routines for debugging, dynamic type checking, garbage collection,
exception handling, and other purposes; these are also statically allocated. Stati-
cally allocated objects whose value should not change during program execution
(e.g., instructions, constants, and certain run-time tables) are often allocated in
protected, read-only memory so that any inadvertent attempt to write to them
will cause a processor interrupt, allowing the operating system to announce a
run-time error.

Logically speaking, local variables are created when their subroutine is called
and destroyed when it returns. If the subroutine is called repeatedly, each invo-
cation is said to create and destroy a separate instance of each local variable. It is
not always the case, however, that a language implementation must perform work
at run time corresponding to these create and destroy operations. Recursion was
not originally supported in Fortran (it was added in Fortran 90). As a result, there
can never be more than one invocation of a subroutine active at any given time,
and a compiler may choose to use static allocation for local variables, effectively
arranging for the variables of different invocations to share the same locations,
and thereby avoiding any run-time overhead for creation and destruction (Fig-
ure 3.1).
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In many languages a constant is required to have a value that can be deter-
mined at compile time. Usually the expression that specifies the constant’s value
is permitted to include only literal (manifest) constants and built-in functions
and arithmetic operators. These sorts of compile-time constants can always be
allocated statically, even if they are local to a recursive subroutine: multiple in-
stances can share the same location. In other languages (e.g., C and Ada), con-
stants are simply variables that cannot be changed after elaboration time. Their
values, though unchanging, can depend on other values that are not known until
run time. These elaboration-time constants, when local to a recursive subroutine,
must be allocated on the stack. C# provides both options, explicitly, with the
const and readonly keywords.

Along with local variables and elaboration-time constants, the compiler typi-
cally stores a variety of other information associated with the subroutine, includ-
ing the following.

Arguments and return values. Modern compilers tend to keep these in registers
when possible, but sometimes space in memory is needed.

Temporaries. These are usually intermediate values produced in complex calcu-
lations. Again, a good compiler will keep them in registers whenever possible.

Bookkeeping information. This may include the subroutine’s return address, a
reference to the stack frame of the caller (also called the dynamic link), addi-
tional saved registers, debugging information, and various other values that
we will study later.

3.2.] Stack-Based Allocation

If a language permits recursion, static allocation of local variables is no longer an
option, since the number of instances of a variable that may need to exist at the
same time is conceptually unbounded. Fortunately, the natural nesting of sub-
routine calls makes it easy to allocate space for locals on a stack. A simplified
picture of a typical stack appears in Figure 3.2. Each instance of a subroutine at
run time has its own frame (also called an activation record) on the stack, contain-
ing arguments and return values, local variables, temporaries, and bookkeeping

DESIGN & IMPLEMENTATION

Recursion in Fortran

The lack of recursion in (pre-Fortran 90) Fortran is generally attributed to the
expense of stack manipulation on the IBM 704, on which the language was
first implemented. Many (perhaps most) Fortran implementations choose to
use a stack for local variables, but because the language definition permits the
use of static allocation instead, Fortran programmers were denied the benefits
of language-supported recursion for over 30 years.



110

Chapter 3 Names, Scopes, and Bindings

sp—>
7 Arguments
Subroutine D /,’ to called
fp—> R routines
Temporaries
N
Subroutine C Local
variables
Direction of Miscell
stack growth .. b lsclikane'ous
(usually lower Subroutine B N Ookkeeping -
addresses) L <« fp(w en
*<_| Return address subroutine C
Subroutine A is running)
(called from
main program)

Figure 3.2 Stack-based allocation of space for subroutines. We assume here that subroutine A
has been called by the main program and that it then calls subroutine B. Subroutine B subse-
quently calls C, which in turn calls D. At any given time, the stack pointer (sp) register points
to the first unused location on the stack (or the last used location on some machines), and the
frame pointer (£p) register points to a known location within the frame (activation record) of
the current subroutine. The relative order of fields within a frame may vary from machine to
machine and compiler to compiler.

information. Arguments to be passed to subsequent routines lie at the top of the
frame, where the callee can easily find them. The organization of the remain-
ing information is implementation-dependent: it varies from one language and
compiler to another.

Maintenance of the stack is the responsibility of the subroutine calling se-
quence—the code executed by the caller immediately before and after the call—
and of the prologue (code executed at the beginning) and epilogue (code executed
at the end) of the subroutine itself. Sometimes the term “calling sequence” is used
to refer to the combined operations of the caller, the prologue, and the epilogue.
We will study calling sequences in more detail in Section 8.2.

While the location of a stack frame cannot be predicted at compile time (the
compiler cannot in general tell what other frames may already be on the stack),
the offsets of objects within a frame usually can be statically determined. More-
over, the compiler can arrange (in the calling sequence or prologue) for a par-
ticular register, known as the frame pointer, to always point to a known location
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within the frame of the current subroutine. Code that needs to access a local vari-
able within the current frame, or an argument near the top of the calling frame,
can do so by adding a predetermined offset to the value in the frame pointer. As
we shall see in Section 5.3.1, almost every processor provides an addressing mode
that allows this addition to be specified implicitly as part of an ordinary load
or store instruction. The stack grows “downward” toward lower addresses in
most language implementations. Some machines provide special push and pop
instructions that assume this direction of growth. Arguments and returns typ-
ically have positive offsets from the frame pointer; local variables, temporaries,
and bookkeeping information typically have negative offsets.

Even in a language without recursion, it can be advantageous to use a stack for
local variables, rather than allocating them statically. In most programs the pat-
tern of potential calls among subroutines does not permit all of those subroutines
to be active at the same time. As a result, the total space needed for local variables
of currently active subroutines is seldom as large as the total space across all sub-
routines, active or not. A stack may therefore require substantially less memory
at run time than would be required for static allocation.

3.2.3 Heap-Based Allocation

A heap is a region of storage in which subblocks can be allocated and deallocated
at arbitrary times.?> Heaps are required for the dynamically allocated pieces of
linked data structures and for dynamically resized objects, such as fully general
character strings, lists, and sets, whose size may change as a result of an assign-
ment statement or other update operation.

There are many possible strategies to manage space in a heap. We review the
major alternatives here; details can be found in any data-structures textbook. The
principal concerns are speed and space, and as usual there are tradeoffs between
them. Space concerns can be further subdivided into issues of internal and exter-
nal fragmentation. Internal fragmentation occurs when a storage-management
algorithm allocates a block that is larger than required to hold a given object; the
extra space is then unused. External fragmentation occurs when the blocks that
have been assigned to active objects are scattered through the heap in such a way
that the remaining, unused space is composed of multiple blocks: there may be
quite a lot of free space, but no one piece of it may be large enough to satisfy some
future request (see Figure 3.3).

Many storage-management algorithms maintain a single linked list—the free
list—of heap blocks not currently in use. Initially the list consists of a single block
comprising the entire heap. At each allocation request the algorithm searches
the list for a block of appropriate size. With a first fit algorithm we select the

2 Unfortunately, the term heap is also used for a common tree-based implementation of a priority
queue. These two uses of the term have nothing to do with one another.
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Heap

Allocation request

Figure 3.3 External fragmentation. The shaded blocks are in use; the clear blocks are free.
While there is more than enough total free space remaining to satisfy an allocation request of
the illustrated size, no single remaining block is large enough.

first block on the list that is large enough to satisfy the request. With a best fit
algorithm we search the entire list to find the smallest block that is large enough
to satisfy the request. In either case, if the chosen block is significantly larger than
required, then we divide it in two and return the unneeded portion to the free list
as a smaller block. (If the unneeded portion is below some minimum threshold
in size, we may leave it in the allocated block as internal fragmentation.) When a
block is deallocated and returned to the free list, we check to see whether either
or both of the physically adjacent blocks are free; if so, we coalesce them.

Intuitively, one would expect a best fit algorithm to do a better job of reserving
large blocks for large requests. At the same time, it has a higher allocation cost
than a first fit algorithm, because it must always search the entire list, and it tends
to result in a larger number of very small “leftover” blocks. Which approach—
first fit or best fit—results in lower external fragmentation depends on the distri-
bution of size requests.

In any algorithm that maintains a single free list, the cost of allocation is lin-
ear in the number of free blocks. To reduce this cost to a constant, some storage
management algorithms maintain separate free lists for blocks of different sizes.
Each request is rounded up to the next standard size (at the cost of internal frag-
mentation) and allocated from the appropriate list. In effect, the heap is divided
into “pools,” one for each standard size. The division may be static or dynamic.
Two common mechanisms for dynamic pool adjustment are known as the buddy
system and the Fibonacci heap. In the buddy system, the standard block sizes are
powers of two. If a block of size 2k is needed, but none is available, a block of
size 2K is split in two. One of the halves is used to satisfy the request; the other
is placed on the kth free list. When a block is deallocated, it is coalesced with
its “buddy”—the other half of the split that created it—if that buddy is free. Fi-
bonacci heaps are similar, but they use Fibonacci numbers for the standard sizes,
instead of powers of two. The algorithm is slightly more complex but leads to
slightly lower internal fragmentation because the Fibonacci sequence grows more
slowly than 2%,

The problem with external fragmentation is that the ability of the heap to sat-
isfy requests may degrade over time. Multiple free lists may help, by clustering
small blocks in relatively close physical proximity, but they do not eliminate the
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problem. It is always possible to devise a sequence of requests that cannot be sat-
isfied, even though the total space required is less than the size of the heap. If size
pools are statically allocated, one need only exceed the maximum number of re-
quests of a given size. If pools are dynamically readjusted, one can “checkerboard”
the heap by allocating a large number of small blocks and then deallocating every
other one, in order of physical address, leaving an alternating pattern of small free
and allocated blocks. To eliminate external fragmentation, we must be prepared
to compact the heap, by moving already-allocated blocks. This task is complicated
by the need to find and update all outstanding references to a block that is being
moved. We will discuss compaction further in Sections 7.7.2 and 7.7.3.

3.24 Garbage Collection

Allocation of heap-based objects is always triggered by some specific operation
in a program: instantiating an object, appending to the end of a list, assigning a
long value into a previously short string, and so on. Deallocation is also explicit in
some languages (e.g., C, C++, and Pascal.) As we shall see in Section 7.7, however,
many languages specify that objects are to be deallocated implicitly when it is no
longer possible to reach them from any program variable. The run-time library
for such a language must then provide a garbage collection mechanism to identify
and reclaim unreachable objects. Most functional languages require garbage col-
lection, as do many more recent imperative languages, including Modula-3, Java,
C#, and all the major scripting languages.

The traditional arguments in favor of explicit deallocation are implementa-
tion simplicity and execution speed. Even naive implementations of automatic
garbage collection add significant complexity to the implementation of a lan-
guage with a rich type system, and even the most sophisticated garbage collector
can consume nontrivial amounts of time in certain programs. If the programmer
can correctly identify the end of an object’s lifetime, without too much run-time
bookkeeping, the result is likely to be faster execution.

The argument in favor of automatic garbage collection, however, is com-
pelling: manual deallocation errors are among the most common and costly
bugs in real-world programs. If an object is deallocated too soon, the program
may follow a dangling reference, accessing memory now used by another object.
If an object is not deallocated at the end of its lifetime, then the program may
“leak memory,” eventually running out of heap space. Deallocation errors are
notoriously difficult to identify and fix. Over time, both language designers and
programmers have increasingly come to consider automatic garbage collection
an essential language feature. Garbage-collection algorithms have improved, re-
ducing their run-time overhead; language implementations have become more
complex in general, reducing the marginal complexity of automatic collection;
and leading-edge applications have become larger and more complex, making
the benefits of automatic collection ever more appealing.



114

Chapter 3 Names, Scopes, and Bindings

/CHECK YOUR UNDERSTANDING
|. What is binding time?

). Explain the distinction between decisions that are bound statically and those
that are bound dynamically.

3. What is the advantage of binding things as early as possible? What is the ad-
vantage of delaying bindings?

4. Explain the distinction between the lifetime of a name-to-object binding and
its visibility.

5. What determines whether an object is allocated statically, on the stack, or in

the heap?

List the objects and information commonly found in a stack frame.

What is a frame pointer? What is it used for?

What is a calling sequence?

What are internal and external fragmentation?
[0. What is garbage collection?
[1. What is a dangling reference?

Scope Rules

The textual region of the program in which a binding is active is its scope. In
most modern languages, the scope of a binding is determined statically—that
is, at compile time. In C, for example, we introduce a new scope upon entry
to a subroutine. We create bindings for local objects and deactivate bindings for
global objects that are “hidden” by local objects of the same name. On subroutine
exit, we destroy bindings for local variables and reactivate bindings for any global
objects that were hidden. These manipulations of bindings may at first glance ap-
pear to be run-time operations, but they do not require the execution of any code:
the portions of the program in which a binding is active are completely deter-
mined at compile time. We can look at a C program and know which names refer
to which objects at which points in the program based on purely textual rules. For
this reason, C is said to be statically scoped (some authors say lexically scoped?).

3 Lexical scope is actually a better term than static scope, because scope rules based on nesting can
be enforced at run time instead of compile time if desired. In fact, in Common Lisp and Scheme
it is possible to pass the unevaluated text of a subroutine declaration into some other subroutine
as a parameter, and then use the text to create a lexically nested declaration at run time.
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Other languages, including APL, Snobol, and early dialects of Lisp, are dynami-
cally scoped: their bindings depend on the flow of execution at run time. We will
examine static and dynamic scope in more detail in Sections 3.3.1 and 3.3.6.

In addition to talking about the “scope of a binding,” we sometimes use the
word scope as a noun all by itself, without a specific binding in mind. Informally,
a scope is a program region of maximal size in which no bindings change (or
at least none are destroyed—more on this in Section 3.3.3). Typically, a scope
is the body of a module, class, subroutine, or structured control flow statement,
sometimes called a block. In C family languages it would be delimited with {. ..}
braces.

Algol 68 and Ada use the term elaboration to refer to the process by which
declarations become active when control first enters a scope. Elaboration entails
the creation of bindings. In many languages, it also entails the allocation of stack
space for local objects, and possibly the assignment of initial values. In Ada it
can entail a host of other things, including the execution of error-checking or
heap-space-allocating code, the propagation of exceptions, and the creation of
concurrently executing tasks (to be discussed in Chapter 12).

At any given point in a program’s execution, the set of active bindings is called
the current referencing environment. The set is principally determined by static
or dynamic scope rules. We shall see that a referencing environment generally
corresponds to a sequence of scopes that can be examined (in order) to find the
current binding for a given name.

In some cases, referencing environments also depend on what are (in a con-
fusing use of terminology) called binding rules. Specifically, when a reference to a
subroutine S is stored in a variable, passed as a parameter to another subroutine,
or returned as a function value, one needs to determine when the referencing
environment for S is chosen—that is, when the binding between the reference to
S and the referencing environment of S is made. The two principal options are
deep binding, in which the choice is made when the reference is first created, and
shallow binding, in which the choice is made when the reference is finally used.
We will examine these options in more detail in Section 3.5.

3.3.] Static Scope

In a language with static (lexical) scoping, the bindings between names and ob-
jects can be determined at compile time by examining the text of the program,
without consideration of the flow of control at run time. Typically, the “current”
binding for a given name is found in the matching declaration whose block most
closely surrounds a given point in the program, though as we shall see there are
many variants on this basic theme.

The simplest static scope rule is probably that of early versions of Basic, in
which there was only a single, global scope. In fact, there were only a few hundred
possible names, each of which consisted of a letter optionally followed by a digit.
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There were no explicit declarations; variables were declared implicitly by virtue
of being used.

Scope rules are somewhat more complex in Fortran, though not much more.*
Fortran distinguishes between global and local variables. The scope of a local
variable is limited to the subroutine in which it appears; it is not visible elsewhere.
Variable declarations are optional. If a variable is not declared, it is assumed to be
local to the current subroutine and to be of type integer if its name begins with
the letters I-N, or real otherwise. (Different conventions for implicit declara-
tions can be specified by the programmer. In Fortran 90, the programmer can
also turn off implicit declarations, so that use of an undeclared variable becomes
a compile-time error.)

Global variables in Fortran may be partitioned into common blocks, which are
then “imported” by subroutines. Common blocks are designed to support separate
compilation: they allow a subroutine to import only a subset of the global envi-
ronment. Unfortunately, Fortran requires each subroutine to declare the names
and types of the variables in each of the common blocks it uses, and there is
no standard mechanism to ensure that the declarations in different subroutines
are the same. In fact, Fortran explicitly allows the declarations to be different.
A programmer who knows the data layout rules employed by the compiler can
use a completely different set of names and types in one subroutine to refer to
the data defined in another subroutine. The underlying bits will be shared, but
the effect of this sharing is highly implementation-dependent. A similar effect
can be achieved through the (mis)use of equivalence statements, which al-
low the programmer to specify that a set of variables share the same location(s).
Equivalence statements are a precursor of the variant records and unions of
languages like Pascal and C. Their intended purpose is to save space in programs
in which only one of the equivalence-ed variables is in use at any one time.

Semantically, the lifetime of a local Fortran variable (both the object itself
and the name-to-object binding) encompasses a single execution of the variable’s
subroutine. Programmers can override this rule by using an explicit save state-
ment. A save-ed variable has a lifetime that encompasses the entire execution
of the program. Instead of a logically separate object for every invocation of the
subroutine, the save statement creates a single object that retains its value from
one invocation of the subroutine to the next. (The name-to-variable binding, of
course, is inactive when the subroutine is not executing, because the name is out
of scope.)

In early implementations of Fortran, it was common for all local variables to
behave as if they were save-ed, because language implementations employed the
static allocation strategy described in Section 3.2. It is a dangerous practice to

4 Fortran and C have evolved considerably over the years. Unless otherwise noted, comments
in this text apply to the Fortran 77 dialect [Ame78a] (still more widely used than the newer
Fortran 90). Comments on C refer to all versions of the language (including the C99 stan-
dard [Int99]) unless otherwise noted. Comments on Ada, likewise, refer to both Ada 83 [Ame83]
and Ada 95 [Int95b] unless otherwise noted.
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depend on this implementation artifact, however, because it is not guaranteed
by the language definition. In a Fortran compiler that uses a stack to save space,
or that exploits knowledge of the patterns of calls among subroutines to overlap
statically allocated space (Exercise 3.10), non-save-ed variables may not retain
their values from one invocation to the next.

3.3.2 Nested Subroutines

The ability to nest subroutines inside each other, introduced in Algol 60, is a fea-
ture of many modern languages, including Pascal, Ada, ML, Scheme, and Com-
mon Lisp. Other languages, including C and its descendants, allow classes or
other scopes to nest. Just as the local variables of a Fortran subroutine are not
visible to other subroutines, any constants, types, variables, or subroutines de-
clared within a block are not visible outside that block in Algol-family languages.
More formally, Algol-style nesting gives rise to the closest nested scope rule for
resolving bindings from names to objects: a name that is introduced in a decla-
ration is known in the scope in which it is declared, and in each internally nested
scope, unless it is hidden by another declaration of the same name in one or more
nested scopes. To find the object referenced by a given use of a name, we look for
a declaration with that name in the current, innermost scope. If there is one, it
defines the active binding for the name. Otherwise, we look for a declaration in
the immediately surrounding scope. We continue outward, examining succes-
sively surrounding scopes, until we reach the outer nesting level of the program,
where global objects are declared. If no declaration is found at any level, then the
program is in error.

Many languages provide a collection of built-in, or predefined, objects, such as
I/O routines, trigonometric functions, and in some cases types such as integer
and char. It is common to consider these to be declared in an extra, invisible,
outermost scope, which surrounds the scope in which global objects are declared.
The search for bindings described in the previous paragraph terminates at this ex-
tra, outermost scope, if it exists, rather than at the scope in which global objects
are declared. This outermost scope convention makes it possible for a program-
mer to define a global object whose name is the same as that of some predefined
object (whose “declaration” is thereby hidden, making it unusable).

An example of nested scopes appears in Figure 3.4.° In this example, procedure
P2 is called only by P1, and need not be visible outside. It is therefore declared
inside P1, limiting its scope (its region of visibility) to the portion of the program
shown here. In a similar fashion, P4 is visible only within P1, P3 is visible only
within P2, and F1 is visible only within P4. Under the standard rules for nested
scopes, F1 could call P2, and P4 could call F1, but P2 could not call F1.

5 This code is not contrived; it was extracted from an implementation of the FMQ error repair
algorithm described in Section ©) 2.3.4.
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procedure P1(A1 : T1);
var X : real;

procedure P2(A2 : T2);
procedure P3(A3 : T3);
begin
(* body of P3 %)
end;
begin
(* body of P2 *)
end;

procedure P4(A4 : T4);

function F1(A5 : T5) : T6;
var X : integer;

begin

(* body of F1 *)
end;
begin
(* body of P4 *)
end;
begin
(* body of P1 x)
end

Figure 3.4 Example of nested subroutines in Pascal.

Though they are hidden from the rest of the program, nested subroutines are
able to access the parameters and local variables (and other local objects) of the
surrounding scope(s). In our example, P3 can name (and modify) A1, X, and A2,
in addition to A3. Because P1 and F1 both declare local variables named X, the
inner declaration hides the outer one within a portion of its scope. Uses of X in
F1 refer to the inner X; uses of X in other regions of the code shown here refer to
the outer X.

A name-to-object binding that is hidden by a nested declaration of the same
name is said to have a hole in its scope. In most languages the object whose name
is hidden is inaccessible in the nested scope (unless it has more than one name).
Some languages allow the programmer to access the outer meaning of a name by
applying a qualifier or scope resolution operator. In Ada, for example, a name may
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be prefixed by the name of the scope in which it is declared, using syntax that
resembles the specification of fields in a record. My_proc.X, for example, refers
to the declaration of X in subroutine My_proc, regardless of whether some other
X has been declared in a lexically closer scope. In C++, which does not allow
subroutines to nest, : : X refers to a global declaration of X, regardless of whether
the current subroutine also has an X.°

Access to Nonlocal Objects

We have already seen that the compiler can arrange for a frame pointer register to
point to the frame of the currently executing subroutine at run time. Target code
can use this register to access local objects, as well as any objects in surrounding
scopes that are still within the same subroutine. But what about objects in lex-
ically surrounding subroutines? To find these we need a way to find the frames
corresponding to those scopes at run time. Since a deeply nested subroutine may
call a routine in an outer scope, it is not the case that the lexically surrounding
scope corresponds to the caller’s scope at run time. At the same time, we can be
sure that there is some frame for the surrounding scope somewhere below in the
stack, since the current subroutine could not have been called unless it was vis-
ible, and it could not have been visible unless the surrounding scope was active.
(It is actually possible in some languages to save a reference to a nested subrou-
tine and then call it when the surrounding scope is no longer active. We defer this
possibility to Section 3.5.2.)

The simplest way in which to find the frames of surrounding scopes is to main-
tain a static link in each frame that points to the “parent” frame: the frame of the
most recent invocation of the lexically surrounding subroutine. If a subroutine is
declared at the outermost nesting level of the program, then its frame will have a
null static link at run time. If a subroutine is nested k levels deep, then its frame’s
static link, and those of its parent, grandparent, and so on, will form a static chain
of length k at run time. To find a variable or parameter declared j subroutine
scopes outward, target code at run time can dereference the static chain j times,
and then add the appropriate offset. Static chains are illustrated in Figure 3.5. We
will discuss the code required to maintain them in Section 8.2.

3.3.3 Declaration Order

In our discussion so far we have glossed over an important subtlety: suppose
an object x is declared somewhere within block B. Does the scope of x include
the portion of B before the declaration, and if so, can x actually be used in that
portion of the code? Put another way, can an expression E refer to any name

6 The C++ :: operator is also used to name members (fields or methods) of a base class that are
hidden by members of a derived class; we will consider this use in Section 9.2.2.
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Figure 3.5 Static chains. Subroutines A, B, C, D, and E are nested as shown on the left. If the
sequence of nested calls at run time is A, E, B, D, and C, then the static links in the stack will
look as shown on the right. The code for subroutine C can find local objects at known offsets
from the frame pointer. It can find local objects of the surrounding scope, B, by dereferencing its
static chain once and then applying an offset. It can find local objects in B's surrounding scope,
A, by dereferencing its static chain twice and then applying an offset.

declared in the current scope, or only to names that are declared before E in the
scope?

Several early languages, including Algol 60 and Lisp, required that all declara-
tions appear at the beginning of their scope. One might at first think that this rule
would avoid the questions in the preceding paragraph, but it does not, because
declarations may refer to one another.”

DESIGN & IMPLEMENTATION

Mutual recursion

Some Algol 60 compilers were known to process the declarations of a scope in
program order. This strategy had the unfortunate effect of implicitly outlawing
mutually recursive subroutines and types, something the language designers
clearly did not intend [Atk73].

7 We saw an example of mutually recursive subroutines in the recursive descent parsing of Sec-
tion 2.3.1. Mutually recursive types frequently arise in linked data structures, where nodes of
two types may need to point to each other.
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In an apparent attempt at simplification, Pascal modified the requirement to
say that names must be declared before they are used (with special-case mecha-
nisms to accommodate recursive types and subroutines). At the same time, how-
ever, Pascal retained the notion that the scope of a declaration is the entire sur-
rounding block. These two rules can interact in surprising ways:

1. comst N = 10;
2

3. procedure foo;
4. const

5 M = N; (* static semantic error! *)
6

7

= .
|

= 20; (* additional constant declaration; hides the outer N *)

Pascal says that the second declaration of N covers all of foo, so the semantic
analyzer should complain on line 5 that N is being used before its declaration.
The error has the potential to be highly confusing, particularly if the programmer
meant to use the outer N:

const N = 10;

procedure foo;
const

M = N; (* static semantic error! *)
var

A : array [1..M] of integer;

N : real; (* hiding declaration *)

Here the pair of messages “N used before declaration” and “N is not a constant”
are almost certainly not helpful.

In order to determine the validity of any declaration that appears to use a
name from a surrounding scope, a Pascal compiler must scan the remainder of
the scope’s declarations to see if the name is hidden. To avoid this complication,
most Pascal successors (and some dialects of Pascal itself) specify that the scope
of an identifier is not the entire block in which it is declared (excluding holes), but
rather the portion of that block from the declaration to the end (again excluding
holes). If our program fragment had been written in Ada, for example, or in C,
C++, or Java, no semantic errors would be reported. The declaration of M would
refer to the first (outer) declaration of N.

C++ and Java further relax the rules by dispensing with the define-before-use
requirement in many cases. In both languages, members of a class (including
those that are not defined until later in the program text) are visible inside all
of the class’s methods. In Java, classes themselves can be declared in any order.
Interestingly, while C# echos Java in requiring declaration before use for local
variables (but not for classes and members), it returns to the Pascal notion of
whole-block scope. Thus the following is invalid in C#.
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EXAMPLE 38

“Local if written” in Python

EXAMPLE 39

Declaration order in
Scheme

EXAMPLE 3 IO

Declarations v. definitions
inC

class A {
const int N = 10;
void foo() {
const int M = N; // uses inner N before it is declared
const int N = 20;

Perhaps the simplest approach to declaration order, from a conceptual point
of view, is that of Modula-3, which says that the scope of a declaration is the
entire block in which it appears (minus any holes created by nested declarations)
and that the order of declarations doesn’t matter. The principal objection to this
approach is that programmers may find it counterintuitive to use a local variable
before it is declared. Python takes the “whole block” scope rule one step further
by dispensing with variable declarations altogether. In their place it adopts the
unusual convention that the local variables of subroutine S are precisely those
variables that are written by some statement in the (static) body of S. If S is
nested inside of T, and the name x appears on the left-hand side of assignment
statements in both S and T, then the x’s are distinct: there is one in S and one
in T. Nonlocal variables are read-only unless explicitly imported (using Python’s
global statement).

In the interest of flexibility, modern Lisp dialects tend to provide several op-
tions for declaration order. In Scheme, for example, the letrec and let* con-
structs define scopes with, respectively, whole-block and declaration-to-end-of-
block semantics. The most frequently used construct, let, provides yet another
option:

(let ((A 1)) ; outer scope, with A defined to be 1
(let ((A 2) ; inner scope, with A defined to be 2
(B A)) ; and B defined to be A

B)) ; return the value of B

Here the nested declarations of A and B don’t take effect until after the end of
the declaration list. Thus B is defined to be the outer A, and the code as a whole
returns 1.

Declarations and Definitions

Given the requirement that names be declared before they can be used, languages
like Pascal, C, and C++ require special mechanisms for recursive types and sub-
routines. Pascal handles the former by making pointers an exception to the rules
and the latter by introducing so-called forward declarations. C and C++ handle
both cases uniformly, by distinguishing between the declaration of an object and
its definition. Informally, a declaration introduces a name and indicates its scope.
A definition describes the thing to which the name is bound. If a declaration is
not complete enough to be a definition, then a separate definition must appear
elsewhere in the scope. In C we can write
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struct manager; /* declaration only */
struct employee {

struct manager *boss;

struct employee *next_employee;

};
struct manager { /* definition */
struct employee *first_employee;
}
and
void list_tail(follow_set fs); /* declaration only */
void list(follow_set fs)
{
switch (input_token) {
case id : match(id); list_tail(fs);
}
void list_tail(follow_set fs) /* definition */
{
switch (input_token) {
case comma : match(comma); list(fs);
}
Nested Blocks

In many languages, including Algol 60, C89, and Ada, local variables can be de-
clared not only at the beginning of any subroutine, but also at the top of any

DESIGN & IMPLEMENTATION

Redeclarations

Some languages, particularly those that are intended for interactive use, per-
mit the programmer to redeclare an object: to create a new binding for a given
name in a given scope. Interactive programmers commonly use redeclarations
to fix bugs. In most interactive languages, the new meaning of the name re-
places the old in all contexts. In ML, however, the old meaning of the name
may remain accessible to functions that were elaborated before the name was
redeclared. This design choice in ML can sometimes be counterintuitive. It
probably reflects the fact that ML is usually compiled, bit by bit on the fly,
rather than interpreted. A language like Scheme, which is lexically scoped but
usually interpreted, stores the binding for a name in a known location. A pro-
gram accesses the meaning of the name indirectly through that location: if the
meaning of the name changes, all accesses to the name will use the new mean-
ing. In ML, previously elaborated functions have already been compiled into a
form (often machine code) that accesses the meaning of the name directly.
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EXAMPLE 3.' I

Inner declarations in C

begin...end ({...2}) block. Others languages, including Algol 68, C99, and all
of C’s descendants, are even more flexible, allowing declarations wherever a state-
ment may appear. In most languages a nested declaration hides any outer decla-
ration with the same name (Java and C# make it a static semantic error if the
outer declaration is local to the current subroutine).

Variables declared in nested blocks can be very useful, as for example in the
following C code.

{
int temp = a;
a = b;
b = temp;

}

Keeping the declaration of temp lexically adjacent to the code that uses it makes
the program easier to read, and eliminates any possibility that this code will in-
terfere with another variable named temp.

No run-time work is needed to allocate or deallocate space for variables de-
clared in nested blocks; their space can be included in the total space for local
variables allocated in the subroutine prologue and deallocated in the epilogue.
Exercise 3.9 considers how to minimize the total space required.

/CHECK YOUR UNDERSTANDING

[2. What do we mean by the scope of a name-to-object binding?
[3. Describe the difference between static and dynamic scope.
[4. What is elaboration?

I5. What is a referencing environment?

[6. Explain the closest nested scope rule.

[7. What is the purpose of a scope resolution operator?

[8. What is a static chain? What is it used for?

[9. What are forward references? Why are they prohibited or restricted in many
programming languages?

20. Explain the difference between a declaration and a definition. Why is the dis-
tinction important?

3.3.4 Modules

A major challenge in the construction of any large body of software is how to
divide the effort among programmers in such a way that work can proceed on
multiple fronts simultaneously. This modularization of effort depends critically
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/*
Place into *s a new name beginning with the letter 1 and
continuing with the ascii representation of an integer guaranteed
to be distinct in each separate call. s is assumed to point to
space large enough to hold any such name; for the short ints used
here, seven characters suffice. 1 is assumed to be an upper or
lower-case letter. sprintf ’prints’ formatted output to a string.
*/
void gen_new_name(char *s, char 1) {
static short int name_nums[52];
/* C guarantees that static local variables without explicit
initial values are initialized as if explicitly set to zero. */
int index = (1 >= ’a’ & 1 <= ’z’) 7 1-’a’ : 26 + 1-’A’;
name_nums [index]++;
sprintf(s, "%c%d\0", 1, name_nums[index]);

Figure 3.6 C code to illustrate the use of static variables.

on the notion of information hiding, which makes objects and algorithms invisi-
ble, whenever possible, to portions of the system that do not need them. Properly
modularized code reduces the “cognitive load” on the programmer by minimiz-
ing the amount of information required to understand any given portion of the
system. In a well-designed program the interfaces between modules are as “nar-
row” (i.e., simple) as possible, and any design decision that is likely to change
is hidden inside a single module. This latter point is crucial, since maintenance
(bug fixes and enhancement) consumes many more programmer years than does
initial construction for most commercial software.

In addition to reducing cognitive load, information hiding has several more
pedestrian benefits. First, it reduces the risk of name conflicts: with fewer visible
names, there is less chance that a newly introduced name will be the same as
one already in use. Second, it safeguards the integrity of data abstractions: any
attempt to access objects outside of the subroutine(s) to which they belong will
cause the compiler to issue an “undefined symbol” error message. Third, it helps
to compartmentalize run-time errors: if a variable takes on an unexpected value,
we can generally be sure that the code that modified it is in the variable’s scope.

Unfortunately, the information hiding provided by nested subroutines is lim-
ited to objects whose lifetime is the same as that of the subroutine in which they
are hidden. When control returns from a subroutine, its local variables will no
longer be live: their values will be discarded. We have seen a partial solution to
this problem in the form of the save statement in Fortran. A similar directive
exists in several other languages: the own variables of Algol and the static vari-
ables of C, for example, retain their values from one invocation of a subroutine
to the next.

As an example of the use of static variables, consider the code in Figure 3.6.
The subroutine gen_new_name can be used to generate a series of distinct
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exampLe 3.13
Stack module in Modula-2

character-string names. A compiler could use these in its assembly language out-
put. Labels, for example, might be named L1, L2, L3, and so on; subroutines
could be named S1, 82, 83, and so on.

Static variables allow a subroutine like gen_new_name to have “memory”—
to retain information from one invocation to the next—while protecting that
memory from accidental access or modification by other parts of the program.
Put another way, static variables allow programmers to build single-subroutine
abstractions. Unfortunately, they do not allow the construction of abstractions
whose interface needs to consist of more than one subroutine. Suppose, for ex-
ample, that we wish to construct a stack abstraction. We should like to hide the
representation of the stack—its internal structure—from the rest of the program,
so that it can be accessed only through its push and pop routines. We can achieve
this goal in many languages through use of a module construct.

A module allows a collection of objects—subroutines, variables, types, and
so on—to be encapsulated in such a way that (1) objects inside are visible to
each other, but (2) objects on the inside are not visible on the outside unless
explicitly exported, and (3) (in many languages) objects outside are not visible on
the inside unless explicitly imported. Modules can be found in Clu (which calls
them clusters), Modula (1, 2, and 3), Turing, Ada (which calls them packages),
C++ (which calls them namespaces), and many other modern languages. They
can also be emulated to some degree through use of the separate compilation
facilities of C; we discuss this possibility in Section @) 3.7.

As an example of the use of modules, consider the stack abstraction shown
in Figure 3.7. This stack can be embedded anywhere a subroutine might appear
in a Modula-2 program. Bindings to variables declared in a module are inactive
outside the module, not destroyed. In our stack example, s and top have the
same lifetime they would have had if not enclosed in the module. If stack is
declared at the program’s outermost nesting level, then s and top retain their
values throughout the execution of the program, though they are visible only to
the code inside push and pop. If stack is declared inside some subroutine sub,
then s and top have the same lifetime as the local variables of sub. If stack is
declared inside some other module mod, then s and top have the same lifetime as
they would have had if not enclosed in either module. Type stack_index, which
is also declared inside stack, is likewise visible only inside push and pop. The
issue of lifetime is not relevant for types or constants, since they have no mutable
state.

Our stack abstraction has two imports: the type (element) and maximum
number (stack_size) of elements to be placed in the stack. Element and
stack_size must be declared in a surrounding scope; the compiler will com-
plain if they are not. With one exception, element and stack_size are the
only names from surrounding scopes that will be visible inside stack. The ex-
ception is that predefined (pervasive) names, such as integer and arctan, are
visible without being imported. Our stack also has two exports: push and pop.
These are the only names inside of stack that will be visible in the surrounding
scope.
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CONST stack_size = ...
TYPE element = ...

MODULE stack;
IMPORT element, stack_size;
EXPORT push, pop;
TYPE
stack_index = [1..stack_size];
VAR
s : ARRAY stack_index OF element;
top : stack_index; (* first unused slot *)

PROCEDURE error;

PROCEDURE push(elem : element);
BEGIN
IF top = stack_size THEN
error;
ELSE
s[top] := elem;
top := top + 1;
END;
END push;

PROCEDURE pop() : element; (* A Modula-2 function is just a *)
BEGIN (* procedure with a return type. *)
IF top = 1 THEN
error;

ELSE
top := top - 1;
RETURN s[top];
END; VAR x, y : element;
END pop; .
push(x) ;
BEGIN -
top := 1; y = pop;
END stack;

Figure 3.7 Stack abstraction in Modula-2.

Most module-based languages allow the programmer to specify that certain
exported names are usable only in restricted ways. Variables may be exported
read-only, for example, or types may be exported opaquely, meaning that vari-
ables of that type may be declared, passed as arguments to the module’s subrou-
tines, and possibly compared or assigned to one another, but not manipulated in
any other way. To facilitate separate compilation, many module-based languages
(Modula-2 among them) also allow a module to be divided into a declaration
part (or header) and an implementation part (or body). Code that uses the ex-
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EXAMPLE 3 |4

Module as “manager” for
a type

ports of a given module can then be compiled as soon as the header exists; it is
not dependent on the body.

Modules into which names must be explicitly imported are said to be closed
scopes. Modules are closed in Modula (1, 2, and 3). By extension, modules that
do not require imports are said to be open scopes. An increasingly common op-
tion, found in the modules of Ada, Java, C#, and Python, among others, might
be called selectively open scopes. In these languages a name foo exported from
module A is automatically visible in peer module B as A.foo. It becomes visible
as merely foo if B explicitly imports it.

Nested subroutines are open scopes in most Algol family languages. Important
exceptions are Euclid, in which both module and subroutine scopes are closed,
Turing, Modula (1), and Perl, in which subroutines are optionally closed, and
Clu, which outlaws the use of nonlocal variables entirely. A subroutine in Euclid
must explicitly import any nonpervasive name that it uses from a surrounding
scope. A subroutine in Turing or Modula can also import names explicitly; if it
does so then no other nonlocal names are visible. Import lists serve to document
the program: the use of names from surrounding scopes is really part of the inter-
face between a subroutine and the rest of the program. Requiring explicit imports
forces the programmer to document this interface more precisely than is required
in other languages. Outlawing nonlocal variables serves a similar purpose in Clu,
though nonlocal constants and subroutines can still be named, without explicit
import.

In addition to making programs easier to understand and maintain, import
lists help a Euclid or Turing compiler to enforce language rules that prohibit the
creation of aliases—multiple names that refer to the same object in a given scope.
Modula has no similar prohibition; its import lists are simply for documentation
and information hiding. We will return to the subject of aliases in Section 3.6.1.

3.3.5 Module Types and Classes

Modules facilitate the construction of abstractions by allowing data to be made
private to the subroutines that use them. As defined in Modula-2, Turing, or
Ada 83, however, modules are most naturally suited to creating only a single in-
stance of a given abstraction. The code in Figure 3.7, for example, does not lend
itself to applications that require several stacks. For such an application, the pro-
grammer must either replicate the code (giving the new copy another name) or
adopt an alternative organization in which the module becomes a “manager” for
instances of a stack type, which is then exported (see Figure 3.8). This latter orga-
nization requires additional subroutines to create/initialize and possibly destroy
stack instances, and it requires that every subroutine (push, pop, create) take
an extra parameter, to specify the stack in question. Clu addresses this problem
by automatically making every module (“cluster”) the manager for a type. In fact,
the only variables that may appear in a cluster (other than static variables in sub-
routines) are the representation of that type.
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Module types in Euclid

CONST stack_size = ...
TYPE element = ...

MODULE stack_manager;
IMPORT element, stack_size;
EXPORT stack, init_stack, push, pop;
TYPE
stack_index = [1..stack_size];
STACK = RECORD
s : ARRAY stack_index OF element;
top : stack_index;
END;

PROCEDURE init_stack(VAR stk :
BEGIN

stk.top := 1;
END init_stack;

stack) ;

PROCEDURE push(VAR stk : stack; elem : element);
BEGIN
IF stk.top = stack_size THEN
error;
ELSE
stk.s[stk.top] := elem;
stk.top := stk.top + 1;
END;
END push;
PROCEDURE pop(VAR stk : stack) : element;
BEGIN
IF stk.top = 1 THEN
error;
ELSE
stk.top := stk.top - 1;
return stk.s[stk.top];
END;
END pop;

END stack_manager;

Figure 3.8 Manager module for stacks in Modula-2.
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(x first unused slot x)

var A, B : stack;

var x, y : element;

init_stack(A);
init_stack(B);

push(4, x);

y = pop(B);

An alternative solution to the multiple instance problem can be found in Sim-
ula, Euclid, and (in a slightly different sense) ML, which treat modules as types,
rather than simple encapsulation constructs. Given a module type, the program-
mer can declare an arbitrary number of similar module objects. The skeleton
of a Euclid stack appears in Figure 3.9. As in the (single) Modula-2 stack of
Figure 3.7, Euclid allows the programmer to provide initialization code that is
executed whenever a new stack is created. Euclid also allows the programmer to
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const stack_size := ...
type element :

type stack = module
imports (element, stack_size)
exports (push, pop)

type
stack_index = 1..stack_size

var
s . array stack_index of element
top : stack_index

procedure push(elem : element) = ... var A, B : stack

function pop returns element = ... var x, y : element

A.push(x)

initially
top =1
end stack y := B.pop

Figure 3.9 Module type for stacks in Euclid. Unlike the code in Figure 3.7, the code here can
be used to create an arbitrary number of stacks.

specify finalization code that will be executed at the end of a module’s lifetime.
This feature is not needed for an array-based stack, but it would be useful if ele-
ments were allocated from a heap and needed to be reclaimed.

The difference between the module-as-manager and module-as-type ap-
proaches to abstraction is reflected in the lower right of Figures 3.8 and 3.9. With
module types, the programmer can think of the module’s subroutines as “be-
longing” to the stack in question (A.push(x) ), rather than as outside entities
to which the stack can be passed as an argument (push(4, x)). Conceptually,
there is a separate pair of push and pop operations for every stack. In practice,
of course, it would be highly wasteful to create multiple copies of the code. As we
shall see in Chapter 9, all stacks share a single pair of push and pop operations,
and the compiler arranges for a pointer to the relevant stack to be passed to the
operation as an extra, hidden parameter. The implementation turns out to be
very similar to the implementation of Figure 3.8, but the programmer need not
think of it that way.?

As an extension of the module-as-type approach to data abstraction, many
languages now provide a class construct for object-oriented programming. To first
approximation, classes can be thought of as module types that have been aug-
mented with an inheritance mechanism. Inheritance allows new classes to be de-
fined as extensions or refinements of existing classes. Inheritance facilitates a pro-

8 It is interesting to note that Turing, which was derived from Euclid, reverts to Modula-2 style
modules, in order to avoid implementation complexity [HMRC88, p. 9].
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N-ary methods in C++

3.3 Scope Rules 131

gramming style in which all or most operations are thought of as belonging to
objects, and in which new objects can inherit most of their operations from exist-
ing objects, without the need to rewrite code. Classes have their roots in Simula-
67, and are the central innovation of object-oriented languages such as Smalltalk,
Eiffel, C++, Java, and C#. Inheritance mechanisms can also be found in several
languages that are not usually considered object-oriented, including Modula-3,
Ada 95, and Oberon. We will examine inheritance and its impact on scope rules
in Chapter 9.

Module types and classes (ignoring issues related to inheritance) require only
simple changes to the scope rules defined for modules in the previous subsection.
Every instance A of a module type or class (e.g., every stack) has a separate copy
of the module or class’s variables. These variables are then visible when execut-
ing one of A’s operations. They may also be indirectly visible to the operations
of some other instance B if A is passed as a parameter to one of those opera-
tions. This rule makes it possible in most object-oriented languages to construct
binary (or more-ary) operations that can manipulate the variables of more than
one instance of a class. In C++, for example, we could create an operation that
determines which of two stacks contains a larger number of elements:

class stack {

bool deeper(stack other) { // function declaration
return (top > other.top);
}

};
if (A.deeper(B)) ...

Within the deeper operation of stack A, top refers to A.top. Because deeper
is an operation of class stack, however, it is able to refer not only to the vari-
ables of A (which it can access directly by name), but also to the variables of any
other stack that is passed to it as an argument. Because these variables belong
to a different stack, deeper must name that stack explicitly—for example, as in
other.top. In a module-as-manager style program, of course, module subrou-
tines would access all instance variables via parameters.

3.3.6 Dynamic Scope

In a language with dynamic scoping, the bindings between names and objects
depend on the flow of control at run time and, in particular, on the order in which
subroutines are called. In comparison to the static scope rules discussed in the
previous section, dynamic scope rules are generally quite simple: the “current”
binding for a given name is the one encountered most recently during execution,
and not yet destroyed by returning from its scope.
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EXAMPLE 3 |7

Static v. dynamic scope

1. a:integer —— global declaration

2. procedure first
3. a:=1

4. procedure second

5. a :integer ——local declaration
6. first()

7. a:=2

8. ifread.integer() > 0

9. second()
10. else
11. first()

12. write_integer(a)

Figure 3.10 Static versus dynamic scope. Program output depends on both scope rules and,
in the case of dynamic scope, a value read at run time.

Languages with dynamic scoping include APL [Ive62], Snobol [GPP71], and
early dialects of Lisp [MAE*65, Moo78, TM81] and Perl.? Because the flow of
control cannot in general be predicted in advance, the bindings between names
and objects in a language with dynamic scope cannot in general be determined
by a compiler. As a result, many semantic rules in a language with dynamic scope
become a matter of dynamic semantics rather than static semantics. Type check-
ing in expressions and argument checking in subroutine calls, for example, must
in general be deferred until run time. To accommodate all these checks, languages
with dynamic scoping tend to be interpreted rather than compiled.

As an example of dynamic scope, consider the program in Figure 3.10. If static
scoping is in effect, this program prints a 1. If dynamic scoping is in effect, the
program prints either a 1 or a 2, depending on the value read at line 8 at run time.
Why the difference? At issue is whether the assignment to the variable a at line 3
refers to the global variable declared at line 1 or to the local variable declared at
line 5. Static scope rules require that the reference resolve to the closest lexically
enclosing declaration—namely the global a. Procedure first changes a to 1, and
line 12 prints this value.

Dynamic scope rules, on the other hand, require that we choose the most re-
cent, active binding for a at run time. We create a binding for a when we enter
the main program. We create another when and if we enter procedure second.
When we execute the assignment statement at line 3, the a to which we are re-
ferring will depend on whether we entered first through second or directly from

9 Scheme and Common Lisp are statically scoped, though the latter allows the programmer to
specify dynamic scoping for individual variables. Static scoping was added to Perl in version 5.
The programmer now chooses static or dynamic scoping explicitly in each variable declaration.
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max_score : integer —— maximum possible score

function scaled_score(raw_score : integer) : real
return raw_score / max_score * 100

procedure foo
max_score : real := 0 —— highest percentage seen so far

foreach student in class
student.percent := scaled_score(student.points)
if student.percent > max_score
max._score := student.percent

Figure 3.1l The problem with dynamic scoping. Procedure scaled_score probably does not
do what the programmer intended when dynamic scope rules allow procedure foo to change
the meaning of max_score.

the main program. If we entered through second, we will assign the value 1 to
second’s local a. If we entered from the main program, we will assign the value 1
to the global a. In either case, the write at line 12 will refer to the global a, since
second’s local a will be destroyed, along with its binding, when control returns
to the main program.

With dynamic scoping in effect, no program fragment that makes use of non-
local names is guaranteed a predictable referencing environment. In Figure 3.11,
for example, the declaration of a local variable in procedure foo accidentally
redefines a global variable used by function scaled_score, which is then called
from foo. Since the global max_score is an integer, while the local max_score
is a floating-point number, dynamic semantic checks in at least some languages
will result in a type clash message at run time. If the local max_score had been
an integer, no error would have been detected, but the program would almost
certainly have produced incorrect results. This sort of error can be very hard to

find.

DESIGN & IMPLEMENTATION

Dynamic scoping

It is not entirely clear whether the use of dynamic scoping in Lisp and other
early interpreted languages was deliberate or accidental. One reason to think
that it may have been deliberate is that it makes it very easy for an interpreter to
look up the meaning of a name: all that is required is a stack of declarations (we
examine this stack more closely in Section @) 3.4.2). Unfortunately, this simple
implementation has a very high run-time cost, and experience indicates that
dynamic scoping makes programs harder to understand. The modern consen-
sus seems to be that dynamic scoping is usually a bad idea (see Exercise 3.15
and Exploration 3.29 for two exceptions).
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EXAMPLE 3 |8

Customization via dynamic
scope

EXAMPLE 3 I 9

Multiple interface
alternative

EXAMPLE 320

Static variable alternative

The principal argument in favor of dynamic scoping is that it facilitates the
customization of subroutines. Suppose, for example, that we have a library rou-
tine print_integer that is capable of printing its argument in any of several bases
(decimal, binary, hexadecimal, etc.). Suppose further that we want the routine to
use decimal notation most of the time, and to use other bases only in a few special
cases; we do not want to have to specify a base explicitly on each individual call.
We can achieve this result with dynamic scoping by having print_integer obtain
its base from a nonlocal variable print_base. We can establish the default behavior
by declaring a variable print_base and setting its value to 10 in a scope encoun-
tered early in execution. Then, any time we want to change the base temporarily,
we can write

begin ——nested block
print_base : integer := 16 —— use hexadecimal
print_integer(n)

The problem with this argument is that there are usually other ways to achieve
the same effect, without dynamic scoping. One option would be to have print_
integer use decimal notation in all cases, and create another routine, print_
integer_with_base, that takes a second argument. In a language like Ada or C++,
one could make the base an optional (default) parameter of a single print_integer
routine, or use overloading to give the same name to both routines. (We will
consider default parameters in Section 8.3.3; overloading is discussed in Sec-
tion 3.6.2.)

Unfortunately, using two different routines for printing (or one routine with
two calling sequences) requires that the caller know what is going on. In our
example, alternative routines work fine if the calls are all made in the scope in
which the local print_base variable would have been declared. If that scope calls
subroutines that in turn call print_integer, however, we cannot in general arrange

for the called routines to use the alternative interface. A second alternative to
dynamic scoping solves this problem: we can create a static variable, either global
or encapsulated with print.integer inside an appropriate module, that controls
the base. To change the print base temporarily, we can then write

begin ——nested block
print_base_save : integer := print_base
print_base := 16 —— use hexadecimal

print_integer(n)
print_base := print_base_save

The possibility that we may forget to restore the original value, of course, is a
potential source of bugs. With dynamic scoping the value is restored automati-
cally.
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Implementing Scope

To keep track of the names in a statically scoped program, a compiler relies on a
data abstraction called a symbol table. In essence, the symbol table is a dictionary:
it maps names to the information the compiler knows about them. The most ba-
sic operations serve to place a new mapping (a name-to-object binding) into the
table and to retrieve (nondestructively) the information held in the mapping for
a given name. Static scope rules in most languages impose additional complexity
by requiring that the referencing environment be different in different parts of
the program.

In a language with dynamic scoping, an interpreter (or the output of a com-
piler) must perform operations at run time that correspond to the insert, lookup,
enter_scope, and leave_scope symbol table operations in the implementation of
a statically scoped language. In principle, any organization used for a symbol
table in a compiler could be used to track name-to-object bindings in an inter-
preter, and vice versa. In practice, implementations of dynamic scoping tend to
adopt one of two specific organizations: an association list or a central reference
table.

@ IN MORE DEPTH

Most variations on static scoping can be handled by augmenting a basic
dictionary-style symbol table with enter_scope and leave_scope operations to
keep track of visibility. Nothing is ever deleted from the table; the entire structure
is retained throughout compilation, and then saved for the debugger. A symbol
table with visibility support can be implemented in several different ways. One
appealing approach, due to LeBlanc and Cook [CL83], is described on the PLP
CD.

An association list (or A-list for short) is simply a list of name/value pairs.
When used to implement dynamic scope it functions as a stack: new declara-
tions are pushed as they are encountered, and popped at the end of the scope
in which they appeared. Bindings are found by searching down the list from the
top. A central reference table avoids the need for linear-time search by maintain-
ing an explicit mapping from names to their current meanings. Lookup is faster,
but scope entry and exit are somewhat more complex, and it becomes substan-
tially more difficult to save a referencing environment for future use (we discuss
this issue further in Section 3.5.1).

/CHECK YOUR UNDERSTANDING

11. Explain the importance of information hiding.

1. What is an opaque export?
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EXAMPLE 3.2'

Deep and shallow binding

13. Why might it be useful to distinguish between the header and the body of a
module?

24. What does it mean for a scope to be closed?

15. Explain the distinction between “modules as managers” and “modules as
types.”

26. How do classes differ from modules?

2]. Why does the use of dynamic scoping imply the need for run-time type
checking?

18. Give an argument in favor of dynamic scoping. Describe how similar benefits
can be achieved in a language without dynamic scoping.

19. Explain the purpose of a compiler’s symbol table.

The Binding of Referencing Environments

We have seen in the previous section how scope rules determine the referencing
environment of a given statement in a program. Static scope rules specify that
the referencing environment depends on the lexical nesting of program blocks
in which names are declared. Dynamic scope rules specify that the referencing
environment depends on the order in which declarations are encountered at run
time. An additional issue that we have not yet considered arises in languages that
allow one to create a reference to a subroutine—for example, by passing it as
a parameter. When should scope rules be applied to such a subroutine: when
the reference is first created, or when the routine is finally called? The answer is
particularly important for languages with dynamic scoping, though we shall see
that it matters even in languages with static scoping. As an example of the former,
consider the program fragment shown in Figure 3.12. (As in Figure 3.10, we use
an Algol-like syntax, even though Algol-family languages are usually statically
scoped.)

Procedure print_selected_records in our example is assumed to be a general
purpose routine that knows how to traverse the records in a database, regardless
of whether they represent people, sprockets, or salads. It takes as parameters a
database, a predicate to make print/don’t print decisions, and a subroutine that
knows how to format the data in the records of this particular database. In Sec-
tion 3.3.6 we hypothesized a print.integer library routine that would print in
any of several bases, depending on the value of a nonlocal variable print_base.
Here we have hypothesized in a similar fashion that print_person uses the value
of nonlocal variable line_length to calculate the number and width of columns
in its output. In a language with dynamic scope, it is natural for procedure print.
selected_records to declare and initialize this variable locally, knowing that code
inside print_routine will pick it up if needed. For this coding technique to work,
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type person = record
age : integer

threshold : integer
people : database

function older_than(p : person) : boolean
return p.age > threshold

procedure print_person(p : person)
—— Call appropriate I/O routines to print record on standard output.
—— Make use of nonlocal variable line_length to format data in columns.

procedure print_selected_records(db : database;
predicate, print_routine : procedure)
line_length : integer

if device_type(stdout) = terminal
line_length := 80
else —— Standard output is a file or printer.
line_length := 132
foreach record rin db
—— |terating over these may actually be
—— a lot more complicated than a ‘“for’ loop.
if predicate(r)
print_routine(r)

—— main program

threshold := 35
print_selected_records(people, older_than, print_person)

Figure 3.12 Program to illustrate the importance of binding rules. One might argue that deep
binding is appropriate for the environment of function older_than (for access to threshold),
while shallow binding is appropriate for the environment of procedure print_person (for access
to line_length).

the referencing environment of print_routine must not be created until the rou-
tine is actually called by print_selected_records. This late binding of the ref-
erencing environment of a subroutine that has been passed as a parameter is
known as shallow binding. It is usually the default in languages with dynamic
scoping.

For function older_than, by contrast, shallow binding may not work well. If,
for example, procedure print_selected_records happens to have a local variable
named threshold, then the variable set by the main program to influence the be-
havior of older_than will not be visible when the function is finally called, and
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the predicate will be unlikely to work correctly. In such a situation, the code that
originally passes the function as a parameter has a particular referencing envi-
ronment (the current one) in mind; it does not want the routine to be called in
any other environment. It therefore makes sense to bind the environment at the
time the routine is first passed as a parameter, and then restore that environment
when the routine is finally called. This early binding of the referencing environ-
ment is known as deep binding. The need for deep binding is sometimes referred
to as the funarg problem in Lisp.

3.5.] Subroutine Closures

Deep binding is implemented by creating an explicit representation of a refer-
encing environment (generally the one in which the subroutine would execute if
called at the present time) and bundling it together with a reference to the sub-
routine. The bundle as a whole is referred to as a closure. Usually the subroutine
itself can be represented in the closure by a pointer to its code. If an association
list is used to represent the referencing environment of a program with dynamic
scoping, then the referencing environment in a closure can be represented by a
top-of-stack (beginning of A-list) pointer. When a subroutine is called through
a closure, the main pointer to the referencing environment A-list is temporarily
replaced by the saved pointer, making any bindings created since the closure was
created temporarily invisible. New bindings created within the subroutine are
pushed using the temporary pointer. Because the A-list is represented by point-
ers (rather than an array), the effect is to have two lists—one representing the
temporary referencing environment resulting from use of the closure and the
other the main referencing environment that will be restored when the subrou-
tine returns—that share their older entries.

If a central reference table is used to represent the referencing environment of
a program with dynamic scoping, then the creation of a closure is more com-
plicated. In the general case, it may be necessary to copy the entire main array
of the central table and the first entry on each of its lists. Space and time over-
head may be reduced if the compiler or interpreter is able to determine that only
some of the program’s names will be used by the subroutine in the closure (or by
things that the subroutine may call). In this case, the environment can be saved
by copying the first entries of the lists for only the “interesting” names. When the
subroutine is called through the closure, these entries can then be pushed onto
the beginnings of the appropriate lists in the central reference table.

Deep binding is often available as an option in languages with dynamic scope.
In early dialects of Lisp, for example, the built-in primitive function takes a
function as its argument and returns a closure whose referencing environment is
the one in which the function would execute if called at the present time. This
closure can then be passed as a parameter to another function. If and when it is
eventually called, it will execute in the saved environment. (Closures work slightly
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Binding rules with static
scoping
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program binding_example(input, output);
procedure A(I : integer; procedure P);

procedure B;
begin

writeln(I);
end;

begin (* A x)
if T > 1 then
P
else
A(2, B);
end;

procedure C; begin end;

begin (* main *)
ACL, ©);
end.

Figure 3.13 Deep binding in Pascal. When B is called via formal parameter P, two instances
of I exist. Because the closure for P was created in the initial invocation of A, it uses that
invocation’s instance of I, and prints a 1.

differently from “bare” functions in most Lisp dialects: they must be called by
passing them to the built-in primitives funcall or apply.)

Deep binding is generally the default in languages with static (lexical) scoping.
At first glance, one might be tempted to think that the binding time of referenc-
ing environments would not matter in languages with static scoping. After all,
the meaning of a statically scoped name depends on its lexical nesting, not on
the flow of execution, and this nesting is the same whether it is captured at the
time a subroutine is passed as a parameter or at the time the subroutine is called.
The catch is that a running program may have more than one instance of an ob-
ject that is declared within a recursive subroutine. A closure in a language with
static scoping captures the current instance of every object, at the time the clo-
sure is created. When the closure’s subroutine is called, it will find these captured
instances, even if newer instances have subsequently been created by recursive
calls.

One could imagine combining static scoping with shallow binding [VF82],
but the combination does not seem to make much sense, and it does not appear
to have been adopted in any language. Figure 3.13 contains a Pascal program
that illustrates the impact of binding rules in the presence of static scoping. This
program prints a 1. With shallow binding it would print a 2.
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EXAMPLE 3.23

Returning a first-class
subroutine in Scheme

It should be noted that binding rules matter with static scoping only when
accessing objects that are neither local nor global. If an object is local to the cur-
rently executing subroutine, then it does not matter whether the subroutine was
called directly or through a closure; in either case local objects will have been cre-
ated when the subroutine started running. If an object is global, there will never
be more than one instance, since the main body of the program is not recursive.
Binding rules are therefore irrelevant in languages like C, which has no nested
subroutines, or Modula-2, which allows only outermost subroutines to be passed
as parameters. (They are also irrelevant in languages like PL/I and Ada 83, which
do not permit subroutines to be passed as parameters at all.)

Suppose then that we have a language with static scoping in which nested sub-
routines can be passed as parameters, with deep binding. To represent a closure
for subroutine S, we can simply save a pointer to S’s code together with the sta-
tic link that S would use if it were called right now, in the current environment.
When S is finally called, we temporarily restore the saved static link, rather than
creating a new one. When S follows its static chain to access a nonlocal object,
it will find the object instance that was current at the time the closure was cre-
ated.

3.5.2 First- and Second-Class Subroutines

In general, a value in a programming language is said to have first-class status
if it can be passed as a parameter, returned from a subroutine, or assigned into
a variable. Simple types such as integers and characters are first-class values in
most programming languages. By contrast, a “second-class” value can be passed
as a parameter, but not returned from a subroutine or assigned into a variable,
and a “third-class” value cannot even be passed as a parameter. As we shall see
in Section 8.3.2, labels are third-class values in most programming languages but
second-class values in Algol. Subroutines are second-class values in most imper-
ative languages but third-class values in Ada 83. They are first-class values in all
functional programming languages, in C#, Perl, and Python, and, with certain
restrictions, in several other imperative languages, including Fortran, Modula-2
and -3, Ada 95, C, and C++.19

So far in this subsection we have considered the ramifications of second-class
subroutines. First-class subroutines in a language with nested scopes introduce
an additional level of complexity: they raise the possibility that a reference to
a subroutine may outlive the execution of the scope in which that routine was
declared. Consider the following example in Scheme.

10 Some authors would say that first-class status requires the ability to create new functions at run
time. C#, Perl, Python, and all functional languages meet this requirement, but most imperative
languages do not.
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(define plus_x (lambda (x)
(lambda (y) (+ x y))))

1
2
3. ...
4. (let ((f (plus_x 2)))

5 (f 3)) ; returns 5

Here the 1let construct on line 4 declares a new function, f, which is the result
of calling plus_x with argument 2. (Like all Lisp dialects, Scheme puts the func-
tion name inside the parentheses, right in front of the arguments. The lambda
keyword introduces the parameter list and body of a function.) When £ is called
at line 5, it must use the 2 that was passed to plus_x, despite the fact that plus_x
has already returned.

If local objects were destroyed (and their space reclaimed) at the end of each
scope’s execution, then the referencing environment captured in a long-lived clo-
sure might become full of dangling references. To avoid this problem, most func-
tional languages specify that local objects have unlimited extent: their lifetimes
continue indefinitely. Their space can be reclaimed only when the garbage col-
lection system is able to prove that they will never be used again. Local objects
(other than own/static variables) in Algol-family languages generally have lim-
ited extent: they are destroyed at the end of their scope’s execution. Space for local
objects with limited extent can be allocated on a stack. Space for local objects with
unlimited extent must generally be allocated on a heap.

Given the desire to maintain stack-based allocation for the local variables
of subroutines, imperative languages with first-class subroutines must generally
adopt alternative mechanisms to avoid the dangling reference problem for clo-
sures. C, C++, and Fortran, of course, do not have nested subroutines. Modula-2
allows references to be created only to outermost subroutines (outermost rou-
tines are first-class values; nested routines are third-class values). Modula-3 al-
lows nested subroutines to be passed as parameters, but only outermost routines
to be returned or stored in variables (outermost routines are first-class values;
nested routines are second-class values). Ada 95 allows a nested routine to be re-
turned, but only if the scope in which it was declared is at least as wide as that
of the declared return type. This containment rule, while more conservative than
strictly necessary (it forbids the Ada equivalent of Figure 3.13), makes it impossi-

DESIGN & IMPLEMENTATION

Binding rules and extent

Binding mechanisms and the notion of extent are closely tied to implemen-
tation issues. A-lists make it easy to build closures, but so do the non-nested
subroutines of C and the rule against passing non-global subroutines as pa-
rameters in Modula-2. In a similar vein, the lack of first-class subroutines in
most imperative languages reflects in large part the desire to avoid heap allo-
cation, which would be needed for local variables with unlimited extent.



142 Chapter 3 Names, Scopes, and Bindings

EXAMPLE 324

Aliasing with parameters

EXAMPLE 3.25

Aliases and code
improvement

ble to propagate a subroutine reference to a portion of the program in which the
routine’s referencing environment is not active.

Binding Within a Scope

So far in our discussion of naming and scopes we have assumed that every name
must refer to a distinct object in every scope. This is not necessarily the case.
Two or more names that refer to a single object in a given scope are said to be
aliases. A name that can refer to more than one object in a given scope is said to
be overloaded.

3.0.1 Aliases

Simple examples of aliases occur in the common blocks and equivalence state-
ments of Fortran (Section 3.3.1) and in the variant records and unions of lan-
guages like Pascal and C#. They also arise naturally in programs that make use of
pointer-based data structures. A more subtle way to create aliases in many lan-
guages is to pass a variable by reference to a subroutine that also accesses that vari-
able directly (consider variable sum in Figure 3.14). As we noted in Section 3.3.4,
Euclid and Turing use explicit and implicit subroutine import lists to catch and
prohibit precisely this case.

As a general rule, aliases tend to make programs more confusing than they
otherwise would be. They also make it much more difficult for a compiler to
perform certain important code improvements. Consider the following C code.

DESIGN & IMPLEMENTATION

Pointers in C and Fortran

The tendency of pointers to introduce aliases is one of the reasons why Fortran
compilers have tended, historically, to produce faster code than C compilers:
pointers are heavily used in C but missing from Fortran 77 and its predeces-
sors. It is only in recent years that sophisticated alias analysis algorithms have
allowed C compilers to rival their Fortran counterparts in speed of generated
code. Pointer analysis is sufficiently important that the designers of the C99
standard decided to add a new keyword to the language. The restrict qual-
ifier, when attached to a pointer declaration, is an assertion on the part of the
programmer that the object to which the pointer refers has no alias in the cur-
rent scope. It is the programmer’s responsibility to ensure that the assertion is
correct; the compiler need not attempt to check it.
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Overloaded enumeration
constants in Ada

EXAMPLE 3.27

Resolving ambiguous
overloads
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double sum, sum_of_squares;
void accumulate(double& x) // x passed by reference
{

sum += Xx;

sum_of _squares += X * X;

accumulate (sum) ;

Figure 3.14 Example of a potentially problematic alias in C++. Procedure accumulate prob-
ably does not do what the programmer intended when sum is passed as a parameter.

int a, b, *p, *q;

a = *p; /* read from the variable referred to by p */

*q = 3; /* assign to the variable referred to by q */
b = *p; /* read from the variable referred to by p */

The initial assignment to a will, on most machines, require that *p be loaded into
a register. Since accessing memory is expensive, the compiler will want to hang
onto the loaded value and reuse it in the assignment to b. It will be unable to
do so, however, unless it can verify that p and q cannot refer to the same object.
While verification of this sort is possible in many common cases, in general it’s
uncomputable.

3.6.] Overloading

Most programming languages provide at least a limited form of overloading. In
C, for example, the plus sign (+) is used to name two different functions: integer
and floating-point addition. Most programmers don’t worry about the distinc-
tion between these two functions—both are based on the same mathematical
concept, after all—but they take arguments of different types and perform very
different operations on the underlying bits. A slightly more sophisticated form
of overloading appears in the enumeration constants of Ada. In Figure 3.15, the
constants oct and dec refer either to months or to numeric bases, depending on
the context in which they appear.

Within the symbol table of a compiler, overloading must be handled by ar-
ranging for the lookup routine to return a list of possible meanings for the re-
quested name. The semantic analyzer must then choose from among the ele-
ments of the list based on context. When the context is not sufficient to decide,
as in the call to print in Figure 3.15, then the semantic analyzer must announce
an error. Most languages that allow overloaded enumeration constants allow the
programmer to provide appropriate context explicitly. In Ada, for example, one
can say
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EXAMPLE 328

Overloading in Ada and
C++

EXAMPLE 3.29

Overloading built-in
operators

declare
type month is (jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec);
type print_base is (dec, bin, oct, hex);
mo : month;
pb : print_base;

begin
mo := dec; —-- the month dec
pb := oct; -- the print_base oct
print(oct); -- error! insufficient context to decide

Figure 3.15 Overloading of enumeration constants in Ada.

print (month’ (oct));

In Modula-3, and C#, every use of an enumeration constant must be prefixed
with a type name, even when there is no chance of ambiguity:

mo := month.dec;
pb := print_base.oct;

In C, C++, and standard Pascal, one cannot overload enumeration constants at
all; every constant visible in a given scope must be distinct.

Both Ada and C++ have elaborate facilities for overloading subroutine names.
(Most of the C++ facilities carry over to Java and C#.) A given name may refer
to an arbitrary number of subroutines in the same scope, so long as the subrou-
tines differ in the number or types of their arguments. C++ examples appear in
Figure 3.16.'!

Ada, C++, C#, and Fortran 90 also allow the built-in arithmetic operators (+,
-, %, etc.) to be overloaded with user-defined functions. Ada, C++, and C# do
this by defining alternative prefix forms of each operator, and defining the usual
infix forms to be abbreviations (or “syntactic sugar”) for the prefix forms. In
Ada, A + B is short for "+" (A, B).If "+" is overloaded, it must be possible to
determine the intended meaning from the types of A and B. In C++ and C#, A +
B is short for A.operator+(B), where A is an instance of a class (module type)
that defines an operator+ function. The class-based style of abbreviation in C++
and C# resembles a similar facility in Clu. Since the abbreviation expands to an
unambiguous name (i.e., A’s operator+; not any other), one might be tempted
to say that no “real” overloading is involved, and this is in fact the case in Clu. In
C++ and C#, however, there may be more than one definition of A.operator+,
allowing the second argument to be of several types. Fortran 90 provides a special
interface construct that can be used to associate an operator with some named
binary function.

I'l C++ actually provides more elegant ways to handle both I/O and user-defined types such as
complex. We examine these in Section (¢) 7.9 and Chapter 9.
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struct complex {
double real, imaginary;
};

enum base {dec, bin, oct, hex};

int i;
complex X;

void print_num(int n)
void print_num(int n, base b)
void print_num(complex c)

print_num(i); // uses the first function above
print_num(i, hex); // uses the second function above
print_num(x); // uses the third function above

Figure 3.16 Simple example of overloading in C++. In each case the compiler can tell which
function is intended by the number and types of arguments.

3.6.3 Polymorphism and Related Concepts

In the case of subroutine names, it is worth distinguishing overloading from the
closely related concepts of coercion and polymorphism. All three can be used, in
certain circumstances, to pass arguments of multiple types to (or return values
of multiple types from) a given named routine. The syntactic similarity, however,
hides significant differences in semantics and pragmatics.

Suppose, for example, that we wish to be able to compute the minimum of
two values of either integer or floating-point type. In Ada we might obtain this
capability using overloaded functions:

function min(a, b : integer) return integer is ...
function min(x, y : real) return real is ...

In Fortran, however, we could get by with a single function:

real function min(x, y)
real x, y

If the Fortran function is called in a context that expects an integer (e.g.,
i = min(j, k)), the compiler will automatically convert the integer arguments
(j and k) to floating-point numbers, call min, and then convert the result back
to an integer (via truncation). So long as real variables have at least as many sig-
nificant bits as integers (which they do in the case of 32-bit integers and 64-bit
double-precision floating-point), the result will be numerically correct.

Coercion is the process by which a compiler automatically converts a value of
one type into a value of another type when that second type is required by the
surrounding context. As we shall see in Section 7.2.2, coercion is somewhat con-
troversial. Pascal provides a limited number of coercions. Fortran and C provide
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more. C++ provides an extremely rich set, and allows the programmer to de-
fine more. Ada as a matter of principle coerces nothing but explicit constants,
subranges, and in certain cases arrays with the same type of elements.

In our example, overloading allows the Ada compiler to choose between two
different versions of min, depending on the types of the arguments. Coercion
allows the Fortran compiler to modify the arguments to fit a single subroutine.
Polymorphism provides yet another option: it allows a single subroutine to accept
unconverted arguments of multiple types.

The term polymorphic is from the Greek, meaning “having multiple forms.”
It is applied to code—both data structures and subroutines—that can work with
values of multiple types. For this concept to make sense, the types must gen-
erally have certain characteristics in common, and the code must not depend
on any other characteristics. The commonality is usually captured in one of two
main ways. In parametric polymorphism the code takes a type (or set of types) as
a parameter, either explicitly or implicitly. In subtype polymorphism the code is
designed to work with values of some specific type T, but the programmer can
define additional types to be extensions or refinements of T, and the polymorphic
code will work with these subtypes as well.

Explicit parametric polymorphism is also known as genericity. Generic facil-
ities appear in Ada, C++, Clu, Eiffel, Modula-3, and recent versions of Java and
C#, among others. Readers familiar with C++ will know them by the name of
templates. We will consider them further in Sections 8.4 and 9.4.4. Implicit para-
metric polymorphism appears in the Lisp and ML families of languages, and
in various scripting languages; we will consider it further in Sections @) 7.2.4
and 10.3. Subtype polymorphism is fundamental to object-oriented languages,
in which subtypes (classes) are said to inherit the methods of their parent types.
We will consider inheritance further in Section 9.4.

Generics (explicit parametric polymorphism) are usually, though not always,
implemented by creating multiple copies of the polymorphic code, one special-
ized for each needed concrete type. Inheritance (subtype polymorphism) is al-
most always implemented by creating a single copy of the code, and by insert-
ing sufficient “metadata” in the representation of objects that the code can tell
when to treat them differently. Implicit parametric polymorphism can be imple-

DESIGN & IMPLEMENTATION

Coercion and overloading

In addition to their semantic differences, coercion and overloading can have
very different costs. Calling an integer-specific version of min would be much
more efficient than calling the floating-point version with integer arguments:
it would use integer arithmetic for the comparison (which is cheaper in and
of itself) and would avoid four conversion operations. One of the arguments
against supporting coercion in a language is that it tends to impose hidden
costs.
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generic

type T is private;

with function "<"(x, y : T) return Boolean;
function min(x, y : T) return T;

function min(x, y : T) return T is
begin

if x < y then return x;

else return y;

end if;
end min;

function string_min is new min(string, "<");
function date_min is new min(date, date_precedes);

Figure 3.1T Use of a generic subroutine in Ada.

mented either way. Most Lisp implementations use a single copy of the code, and
delay all semantic checks until run time. ML and its descendants perform all type
checking at compile time. They typically generate a single copy of the code where
possible (e.g., when all the types in question are records that share a similar repre-
sentation) and generate multiple copies when necessary (e.g., when polymorphic
arithmetic must operate on both integer and floating-point numbers). Object-
oriented languages that perform type checking at compile time, including C++,
Eiffel, Java, and C#, generally provide both generics and inheritance. Smalltalk
(Section @) 9.6.1), Objective-C, Python, and Ruby use a single mechanism (with
run-time checking) to provide both parametric and subtype polymorphism.

As a concrete example of generics, consider the overloaded min functions of
Example 3.30. The code for the integer and floating-point versions is likely to be
very similar. We can exploit this similarity to define a single version that works
not only for integers and reals, but for any type whose values are totally ordered.
This code appears in Figure 3.17. The initial (bodyless) declaration of min is pre-
ceded by a generic clause specifying that two things are required in order to
create a concrete instance of a minimum function: a type, T, and a correspond-

DESIGN & IMPLEMENTATION

Generics as macros

In some sense, the local stack module of Figure 3.7 (page 127) is a primitive
sort of generic module. Because it imports the element type and stack_size
constant, it can be inserted (with a text editor) into any context in which these
names are declared, and will produce a “customized” stack for that context
when compiled. Early versions of C++ formalized this mechanism by using
macros to implement templates. Later versions of C++ have made templates
(generics) a fully supported language feature.
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EXAMPLE 332

Implicit polymorphism in
Scheme

EXAMPLE 333

Implicit polymorphism in
Haskell

ing comparison routine. This declaration is followed by the actual code for min.
Given appropriate declarations of string and date types (not shown), we can
create functions to return the lesser of pairs of objects of these types as shown in
the last two lines. (The "<" operation mentioned in the definition of string_min
is presumably overloaded; the compiler resolves the overloading by finding the
version of "<" that takes arguments of type T, where T is already known to be
string.)

With the implicit parametric polymorphism of Lisp, ML, and their descen-
dants, the programmer need not specify a type parameter. The Scheme definition
of min looks like this:

(define min (lambda (a b) (if (< a b) a b)))

It makes no mention of types. The typical Scheme implementation employs an

interpreter that examines the arguments to min and determines, at run time,

whether they support a < operator. Given the preceding definition, the expres-

sion (min 123 456) evaluates to 123; (min 3.14159 2.71828) evaluates to

2.71828. The expression (min "abc" "def") produces a run-time error when

evaluated, because the string comparison operator is named string<?, not <.
The Haskell version of min is even simpler and more general:

min a b = if a < b then a else b

This version works for values of any totally ordered type, including strings. It is
type-checked at compile time, using a sophisticated system of type inference (to
be described in Section @) 7.2.4).

So what exactly is the difference between the overloaded min functions of Ex-
ample 3.30 and the generic version of Figure 3.17? The answer lies in the gener-
ality of the code. With overloading the programmer must write a separate copy
of the code, by hand, for every type with a min operation. Generics allow the
compiler (in the typical implementation) to create a copy automatically for every
needed type. The similarity of the calling syntax and of the generated code has
led some authors to refer to overloading as ad hoc (special case) polymorphism.
There is no particular reason, however, for the programmer to think of generics
in terms of multiple copies: from a semantic (conceptual) point of view, over-
loaded subroutines use a single name for more than one thing; a polymorphic
subroutine is a single thing.

/CHECK YOUR UNDERSTANDING

30. Describe the difference between deep and shallow binding of referencing en-
vironments.

31. Why are binding rules particularly important for languages with dynamic
scoping?

32. What is a closure? What is it used for? How is it implemented?

33. What are first-class subroutines? What languages support them?



3.7 Separate Compilation 149

34. Explain the distinction between limited and unlimited extent of objects in a
local scope.

35. What are aliases? Why are they considered a problem in language design and
implementation?

36. Explain the value of the restrict qualifier in C99.
31. Explain the differences between overloading, coercion, and polymorphism.

38. Define parametric and subtype polymorphism. Explain the distinction be-
tween explicit and implicit parametric polymorphism. Which is also known
as genericity?

39. Why is overloading sometimes referred to as ad hoc polymorphism?

Separate Compilation

Since most large programs are constructed and tested incrementally, and since
the compilation of a very large program can be a multihour operation, any lan-
guage designed to support large programs must provide a separate compilation
facility.

@ IN MORE DEPTH

Because they are designed for encapsulation and provide a narrow interface,
modules are the natural choice for the “compilation units” of many program-
ming languages. The separate module headers and bodies of Modula-3 and Ada,
for example, are explicitly intended for separate compilation, and reflect expe-
rience gained with more primitive facilities in other languages. C and C++, by
contrast, must maintain backward compatibility with mechanisms designed in
the early 1970s. C++ includes a namespace mechanism that provides module-
like data hiding, but names must still be declared before they are used in every
compilation unit, and the mechanisms used to accommodate this rule are purely
a matter of convention. Java and C# break with the C tradition by requiring the
compiler to infer header information automatically from separately compiled
class definitions; no header files are required.

Summary and Concluding Remarks

This chapter has addressed the subject of names, and the binding of names to
objects (in a broad sense of the word). We began with a general discussion of the
notion of binding time: the time at which a name is associated with a particular
object or, more generally, the time at which an answer is associated with any open
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question in language or program design or implementation. We defined the no-
tion of lifetime for both objects and name-to-object bindings, and noted that they
need not be the same. We then introduced the three principal storage allocation
mechanisms—static, stack, and heap—used to manage space for objects.

In Section 3.3 we described how the binding of names to objects is governed by
scope rules. In some languages, scope rules are dynamic: the meaning of a name is
found in the most recently entered scope that contains a declaration and that has
not yet been exited. In most modern languages, however, scope rules are static, or
lexical: the meaning of a name is found in the closest lexically surrounding scope
that contains a declaration. We found that lexical scope rules vary in important
but sometimes subtle ways from one language to another. We considered what
sorts of scopes are allowed to nest, whether scopes are open or closed, whether the
scope of a name encompasses the entire block in which it is declared, and whether
a name must be declared before it is used. We explored the implementation of
scope rules in Section 3.4. In Section 3.5 we considered the question of when to
bind a referencing environment to a subroutine that is passed as a parameter,
returned from a function, or stored in a variable.

Some of the more complicated aspects of lexical scoping illustrate the evolu-
tion of language support for data abstraction, a subject to which we will return
in Chapter 9. We began by describing the own or static variables of languages
like Fortran, Algol 60, and C, which allow a variable that is local to a subroutine
to retain its value from one invocation to the next. We then noted that simple
modules can be seen as a way to make long-lived objects local to a group of sub-
routines, in such a way that they are not visible to other parts of the program.
At the next level of complexity, we noted that some languages treat modules as
types, allowing the programmer to create an arbitrary number of instances of the
abstraction defined by a module. We contrasted this module-as-abstraction style
of programming with the module-as-manager approach. Finally, we noted that
object-oriented languages extend the module-as-abstraction approach by pro-
viding an inheritance mechanism that allows new abstractions (classes) to be de-
fined as extensions or refinements of existing classes.

In Section 3.6 we examined several ways in which bindings relate to one an-
other. Aliases arise when two or more names in a given scope are bound to the
same object. Overloading arises when one name is bound to multiple objects.
Polymorphism allows a single body of code to operate on objects of more than
one type, depending on context or execution history. We noted that while similar
effects can sometimes be achieved through overloading, coercion, and polymor-
phism, the underlying mechanisms are really very different. In Section 3.7 we
considered rules for separate compilation.

Among the topics considered in this chapter, we saw several examples of use-
ful features (recursion, static scoping, forward references, first-class subroutines,
unlimited extent) that have been omitted from certain languages because of
concern for their implementation complexity or run-time cost. We also saw an
example of a feature (the private part of a module specification) introduced ex-
pressly to facilitate a language’s implementation, and another (separate compila-
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tion in C) whose design was clearly intended to mirror a particular implementa-
tion. In several additional aspects of language design (late versus early binding,
static versus dynamic scope, support for coercions and conversions, toleration of
pointers and other aliases), we saw that implementation issues play a major role.

In a similar vein, apparently simple language rules can have surprising im-
plications. In Section 3.3.3, for example, we considered the interaction of whole-
block scope with the requirement that names be declared before they can be used.
Like the do loop syntax and white space rules of Fortran (Section 2.2.2) or the
if...then...else syntax of Pascal (Section 2.3.2), poorly chosen scoping rules
can make program analysis difficult not only for the compiler, but for human
beings as well. In future chapters we shall see several additional examples of fea-
tures that are both confusing and hard to compile. Of course, semantic utility and
ease of implementation do not always go together. Many easy-to-compile features
(goto statements, for example) are of questionable value at best. We will also
see several examples of highly useful and (conceptually) simple features, such as
garbage collection (Section 7.7.3) and unification (Sections @) 7.2.4 and 11.2.1),
whose implementations are quite complex.

Exercises

3.1 Indicate the binding time (e.g., when the language is designed, when the
program is linked, when the program begins execution, etc.) for each of the
following decisions in your favorite programming language and implemen-
tation. Explain any answers you think are open to interpretation.

The number of built-in functions (math, type queries, etc.)

The variable declaration that corresponds to a particular variable refer-
ence (use)

The maximum length allowed for a constant (literal) character string

The referencing environment for a subroutine that is passed as a param-
eter

The address of a particular library routine
The total amount of space occupied by program code and data

3.2 InPortran 77, local variables are typically allocated statically. In Algol and its
descendants (e.g., Pascal and Ada), they are typically allocated in the stack.
In Lisp they are typically allocated at least partially in the heap. What ac-
counts for these differences? Give an example of a program in Pascal or Ada
that would not work correctly if local variables were allocated statically. Give
an example of a program in Scheme or Common Lisp that would not work
correctly if local variables were allocated on the stack.
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33

34

35

3.6

Give two examples in which it might make sense to delay the binding of an
implementation decision, even though sufficient information exists to bind
it early.

Give three concrete examples drawn from programming languages with
which you are familiar in which a variable is live but not in scope.

Consider the following pseudocode, assuming nested subroutines and static
scope.

procedure main
g : integer

procedure B(a : integer)
X : integer

procedure A(n : integer)
g:=n
procedure R(m : integer)
write_integer(x)
X [:= 2 —— integer division
if x> 1
R(m + 1)
else
A(m)

—— body of B
X:=axa
R(1)

—— body of main
B(3)
write_integer(g)

a) What does this program print?
prog p

(b) Show the frames on the stack when A has just been called. For each
frame, show the static and dynamic links.

() Explain how A finds g.

As part of the development team at MumbleTech.com, Janet has written a
list manipulation library for C that contains, among other things, the code
in Figure 3.18.

(a) Accustomed to Java, new team member Brad includes the following
code in the main loop of his program.

list_node *L = 0;
while (more_widgets()) {
insert (next_widget(), L);

}
L = reverse(L);
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typedef struct list_node {
void *data;
struct list_node *next;
} list_node;

list_node *insert(void *d, list_node *L) {
list_node *t = (list_node *) malloc(sizeof (list_node));
t->data = d;
t->next = L;
return t;

list_node *reverse(list_node *L) {
list_node *rtn = 0;
while (L) {
rtn = insert(L->data, rtn);
L = L->next;
¥

return rtn;

void delete_list(list_node *L) {
while (L) {
list_node *t = L;
L = L->next;
free(t->data);
free(t);

Figure 3.18 List management routines for Exercise 3.6.
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Sadly, after running for a while, Brad’s program always runs out of

memory and crashes. Explain what’s going wrong.

(b) After Janet patiently explains the problem to him, Brad gives it another

try:

list_node *L = 0;

while (more_widgets()) {
insert (next_widget(), L);

}

list_node *T = reverse(L);

delete_list(L);

L=T,;

This seems to solve the insufficient memory problem, but where the
program used to produce correct results (before running out of mem-
ory), now its output is strangely corrupted, and Brad goes back to Janet
for advice. What will she tell him this time?
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3.1 Rewrite Figures 3.7 and 3.8 in C.

3.8 Modula-2 provides no way to divide the header of a module into a public
part and a private part: everything in the header is visible to the users of
the module. Is this a major shortcoming? Are there disadvantages to the
public/private division (e.g., as in Ada)? (For hints, see Section 9.2.)

3.9 Consider the following fragment of code in C.

{ int a, b, c;
{ int d, e;
{ int f;

}

{ int g, h, i;

3

Assume that each integer variable occupies four bytes. How much total space
is required for the variables in this code? Describe an algorithm that a com-
piler could use to assign stack frame offsets to the variables of arbitrary
nested blocks, in a way that minimizes the total space required.

3.10 Consider the design of a Fortran 77 compiler that uses static allocation for
the local variables of subroutines. Expanding on the solution to the previ-
ous question, describe an algorithm to minimize the total space required
for these variables. You may find it helpful to construct a call graph data
structure in which each node represents a subroutine and each directed arc
indicates that the subroutine at the tail may sometimes call the subroutine
at the head.

3.1 Consider the following pseudocode.

procedure P(A, B : real)
X real

procedure Q(B, C : real)
Y : real

procedure R(A, C : real)
Z : real
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Assuming static scope, what is the referencing environment at the location
marked by (*)?

Write a simple program in Scheme that displays three different behaviors,
depending on whether we use let, let*, or letrec to declare a given set
of names. (Hint: To make good use of letrec, you will probably want your
names to be functions [lambda expressions].)

Consider the following pseudocode.

X : integer —— global

procedure set_x(n : integer)
X:=n

procedure print_x
write_integer(x)

procedure first
setx(1)
print_x

procedure second
X : integer
setx(2)
print_x

set_x(0)
first()
print_x
second()
print_x

What does this program print if the language uses static scoping? What does
it print with dynamic scoping? Why?

Consider the programming idiom illustrated in Example 3.20. One of the
reviewers for this book suggests that we think of this idiom as a way to im-
plement a central reference table for dynamic scope. Explain what is meant
by this suggestion.

If you are familiar with structured exception-handling, as provided in Ada,
Modula-3, C++, Java, C#, ML, Python, or Ruby, consider how this mecha-
nism relates to the issue of scoping. Conventionally, a raise or throw state-
ment is thought of as referring to an exception, which it passes as a parame-
ter to a handler-finding library routine. In each of the languages mentioned,
the exception itself must be declared in some surrounding scope, and is sub-
ject to the usual static scope rules. Describe an alternative point of view, in
which the raise or throw is actually a reference to a handler, to which it
transfers control directly. Assuming this point of view, what are the scope
rules for handlers? Are these rules consistent with the rest of the language?
Explain. (For further information on exceptions, see Section 8.5.)
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3.16

3.7

Consider the following pseudocode.

X : integer —— global

procedure set_x(n : integer)
X:i=n

procedure print_x
write_integer(x)

procedure foo(S, P : function; n : integer)
X :integer :=5
ifnin {1, 3}
setx(n)
else
S(n)
ifnin {1, 2}
print_x
else
P

print_x
print_x
print_x
p

set_x(0); foo(set_x, print_x, 1);
; print_x

(0); )
set_x(0); foo(set.x, printx, 2);
set_x(0); foo(setx, printx, 3);
set_x(0); foo(set_x, print_x, 4);
Assume that the language uses dynamic scoping. What does the program
print if the language uses shallow binding? What does it print with deep
binding? Why?

Consider the following pseudocode.

X :integer ;=1
y :integer := 2

procedure add
Xi=X+Yy

procedure second(P : procedure)
X :integer := 2
P()

procedure first
y :integer ;=3
second(add)

first()
write_integer(x)

(3) What does this program print if the language uses static scoping?
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(b) What does it print if the language uses dynamic scoping with deep bind-
ing?

() What does it print if the language uses dynamic scoping with shallow
binding?

In Section 3.6.3 we noted that while a single min function in Fortran would

work for both integer and floating-point numbers, overloading would be

more efficient because it would avoid the cost of type conversions. Give an

example in which overloading does not seem advantageous—one in which it

makes more sense to have a single function with floating-point parameters,

and perform coercion when integers are supplied.

() Write a polymorphic sorting routine in Scheme.

(b) Write a generic sorting routine in C++, Java, or C#. (For hints, see Sec-
tion 8.4.)

() Write a nongeneric sorting routine using subtype polymorphism in
your favorite object-oriented language. Assume that the elements to be
sorted are members of some class derived from class ordered, which
has a method precedes such that a.precedes(b) is true if and only
if a comes before b in some canonical total order. (For hints, see Sec-
tion 9.4.)

© 3.20-3.25 In More Depth.

3.26

3.21

3.28

Explorations

Experiment with naming rules in your favorite programming language.
Read the manual, and write and compile some test programs. Does the
language use lexical or dynamic scope? Can scopes nest? Are they open or
closed? Does the scope of a name encompass the entire block in which it is
declared, or only the portion after the declaration? How does one declare
mutually recursive types or subroutines? Can subroutines be passed as pa-
rameters, returned from functions, or stored in variables? If so, when are
referencing environments bound?

List the keywords (reserved words) of one or more programming languages.
List the predefined identifiers. (Recall that every keyword is a separate to-
ken. An identifier cannot have the same spelling as a keyword.) What cri-
teria do you think were used to decide which names should be keywords
and which should be predefined identifiers? Do you agree with the choices?
Why or why not?

If you have experience with a language like C, C++, or Pascal, in which dy-
namically allocated space must be manually reclaimed, describe your expe-
rience with dangling references or memory leaks. How often do these bugs



158

Chapter 3 Names, Scopes, and Bindings

arise? How do you find them? How much effort does it take? Learn about
open source or commercial tools for finding storage bugs (IBM’s Purify
is a popular example). Do such tools weaken the argument for automatic
garbage collection?

3.29 We learned in Section 3.3.6 that modern languages have generally aban-
doned dynamic scoping. One place it can still be found is in the so-called
environment variables of the Unix programming environment. If you are
not familiar with these, read the manual page for your favorite shell (com-
mand interpreter—csh/tcsh, ksh/bash, etc.) to learn how these behave.
Explain why the usual alternatives to dynamic scoping (default parameters
and static variables) are not appropriate in this case.

3.30 Compare the mechanisms for overloading of enumeration names in Ada
and Modula-3 (Section 3.6.2). One might argue that the (historically more
recent) Modula-3 approach moves responsibility from the compiler to the
programmer: it requires even an unambiguous use of an enumeration con-
stant to be annotated with its type. Why do you think this approach was
chosen by the language designers? Do you agree with the choice? Why or
why not?

3.31 Write a program in C++ or Ada that creates at least two concrete types or
subroutines from the same template/generic. Compile your code to assem-
bly language and look at the result. Describe the mapping from source to
target code.

3.32 Do you think coercion is a good idea? Why or why not?

3.33 Give three examples of features that are not provided in some language with
which you are familiar, but that are common in other languages. Why do
you think these features are missing? Would they complicate the implemen-
tation of the language? If so, would the complication (in your judgment) be
justified?

© 3.34-3.38 In More Depth.

Bibliographic Notes

This chapter has traced the evolution of naming and scoping mechanisms
through many different languages, including Fortran (several versions), Basic,
Algol 60 and 68, Pascal, Simula, C and C++, Euclid, Turing, Modula (1, 2, and 3),
Ada (83 and 95), Oberon, Eiffel, Java, and C#. Bibliographic references for all of
these can be found in Appendix A.

Both modules and objects trace their roots to Simula, which was developed
by Dahl, Nygaard, Myhrhaug, and others at the Norwegian Computing Centre
in the mid-1960s. (Simula I was implemented in 1964; descriptions in this book
pertain to Simula 67.) The encapsulation mechanisms of Simula were refined in
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the 1970s by the developers of Clu, Modula, Euclid, and related languages. Other
Simula innovations—inheritance and dynamic method binding in particular—
provided the inspiration for Smalltalk, the original and arguably purest of the
object-oriented languages. Modern object-oriented languages, including Eiffel,
C++, Java, and C#, represent to a large extent a reintegration of the evolutionary
lines of encapsulation on the one hand and inheritance and dynamic method
binding on the other.

The notion of information hiding originates in Parnas’s classic paper “On the
Criteria to Be Used in Decomposing Systems into Modules” [Par72]. Compara-
tive discussions of naming, scoping, and abstraction mechanisms can be found,
among other places, in Liskov et al.s discussion of Clu [LSAS77], Liskov and Gut-
tag’s text [LG86, Chap. 4], the Ada Rationale [IBFW91, Chaps. 9-12], Harbison’s
text on Modula-3 [Har92, Chaps. 8-9], Wirth’s early work on modules [Wir80],
and his later discussion of Modula and Oberon [Wir88a]. Further information
on object-oriented languages can be found in Chapter 9.

For a detailed discussion of overloading and polymorphism, see the survey by
Cardelli and Wegner [CW85]. Cailliau [Cai82] provides a lighthearted discus-
sion of many of the scoping pitfalls noted in Section 3.3.3. Abelson and Suss-
man [AS96, p. 11n] attribute the term “syntactic sugar” to Peter Landin.






Semantic Analysis

In Chapter 2 we considered the topic of programming language syntax.
In the current chapter we turn to the topic of semantics. Informally, syntax con-
cerns the form of a valid program, while semantics concerns its meaning. Meaning
is important for at least two reasons: it allows us to enforce rules (e.g., type con-
sistency) that go beyond mere form, and it provides the information we need in
order to generate an equivalent output program.

It is conventional to say that the syntax of a language is precisely that portion
of the language definition that can be described conveniently by a context-free
grammar, while the semantics is that portion of the definition that cannot. This
convention is useful in practice, though it does not always agree with intuition.
When we require, for example, that the number of arguments contained in a call
to a subroutine match the number of formal parameters in the subroutine def-
inition, it is tempting to say that this requirement is a matter of syntax. After
all, we can count arguments without knowing what they mean. Unfortunately,
we cannot count them with context-free rules. Similarly, while it is possible to
write a context-free grammar in which every function must contain at least one
return statement, the required complexity makes this strategy very unattractive.
In general, any rule that requires the compiler to compare things that are sepa-
rated by long distances, or to count things that are not properly nested, ends up
being a matter of semantics.

Semantic rules are further divided into static and dynamic semantics, though
again the line between the two is somewhat fuzzy. The compiler enforces static
semantic rules at compile time. It generates code to enforce dynamic semantic
rules at run time (or to call library routines that do so). Certain errors, such as
division by zero, or attempting to index into an array with an out-of-bounds
subscript, cannot in general be caught at compile time, since they may occur
only for certain input values, or certain behaviors of arbitrarily complex code.
In special cases, a compiler may be able to tell that a certain error will always
or never occur, regardless of run-time input. In these cases, the compiler can
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generate an error message at compile time, or refrain from generating code to
perform the check at run time, as appropriate. Basic results from computability
theory, however, tell us that no algorithm can make these predictions correctly for
arbitrary programs. There will inevitably be cases in which an error will always
occur, but the compiler cannot tell, and must delay the error message until run
time. There will also be cases in which an error can never occur, but the compiler
cannot tell, and must incur the cost of unnecessary run-time checks.

Both semantic analysis and intermediate code generation can be described in
terms of annotation, or decoration, of a parse tree or syntax tree. The annotations
themselves are known as attributes. Numerous examples of static and dynamic
semantic rules will appear in subsequent chapters. In this current chapter we
focus primarily on the mechanisms a compiler uses to enforce the static rules.
We will consider intermediate code generation in Chapter 14.

In Section 4.1 we consider the role of the semantic analyzer in more detail,
considering both the rules it needs to enforce and its relationship to other phases
of compilation. Most of the rest of the chapter is then devoted to the subject
of attribute grammars. Attribute grammars provide a formal framework for the
decoration of a tree. This framework is a useful conceptual tool even in compilers
that do not build a parse tree or syntax tree as an explicit data structure. We
introduce the notion of an attribute grammar in Section 4.2. We then consider
various ways in which such grammars can be applied in practice. Section 4.3
discusses the issue of attribute flow, which constrains the order(s) in which nodes
of a tree can be decorated. In practice, most compilers require decoration of the
parse tree (or the evaluation of attributes that would reside in a parse tree if there
were one) to occur in the process of an LL or LR parse. Section 4.4 presents action
routines as an ad hoc mechanism for such on-the-fly evaluation. In Section 4.5
(mostly on the PLP CD) we consider the management of space for parse tree
attributes.

One particularly common compiler organization uses action routines during
parsing solely for the purpose of constructing a syntax tree. The syntax tree is
then decorated during a separate traversal, which can be formalized, if desired,
with a separate attribute grammar. We consider the decoration of syntax trees in
Section 4.6.

The Role of the Semantic Analyzer

Programming languages vary dramatically in their choice of semantic rules. In
Section 3.6.3, for example, we saw a range of approaches to coercion, from lan-
guages like Fortran and C, which allow operands of many types to be intermixed
in expressions, to languages like Ada, which do not. Languages also vary in the
extent to which they require their implementations to perform dynamic checks.
At one extreme, C requires no checks at all, beyond those that come “free” with
the hardware (e.g., division by zero or attempted access to memory outside the
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bounds of the program). At the other extreme, Java takes great pains to check as
many rules as possible, in part to ensure that an untrusted program cannot do
anything to damage the memory or files of the machine on which it runs.

In the typical compiler, the interface between semantic analysis and intermedi-
ate code generation defines the boundary between the front end and the back end.
The exact division of labor varies a bit from compiler to compiler: it can be hard
to say exactly where analysis (figuring out what the program means) ends and
synthesis (expressing that meaning in some new form) begins. Many compilers
actually carry a program through more than one intermediate form. In one com-
mon organization, described in more detail in Chapter 14, the semantic analyzer
creates an annotated syntax tree, which the intermediate code generator then
translates into a linear form reminiscent of the assembly language for some ide-
alized machine. After machine-independent code improvement, this linear form
is then translated into yet another form, patterned more closely on the assembly
language of the target machine. That form may then undergo machine-specific
code improvement.

Compilers also vary in the extent to which semantic analysis and intermedi-
ate code generation are interleaved with parsing. With fully separated phases, the
parser passes a full parse tree on to the semantic analyzer, which converts it to a
syntax tree, fills in the symbol table, performs semantic checks, and passes it on to
the code generator. With fully interleaved phases, there may be no need to build
either the parse tree or the syntax tree in its entirety: the parser can call seman-
tic check and code generation routines “on-the-fly” as it parses each expression,
statement, or subroutine of the source. We will focus on an organization in which
construction of the syntax tree is interleaved with parsing (and the parse tree is
not built), but semantic analysis occurs during a separate traversal of the syntax
tree.

Many compilers that implement dynamic checks provide the option of dis-
abling them if desired. It is customary in some organizations to enable dynamic
checks during program development and testing, and then disable them for pro-
duction use, to increase execution speed. The wisdom of this practice is ques-
tionable: Tony Hoare, one of the key figures in programming language design,'
has likened the programmer who disables semantic checks to a sailing enthu-
siast who wears a life jacket when training on dry land but removes it when
going to sea [Hoa89, p. 198]. Errors may be less likely in production use than
they are in testing, but the consequences of an undetected error are significantly
worse. Moreover, with the increasing use of multi-issue, superscalar processors
(described in Section 5.4.3), it is often possible for dynamic checks to execute in
instruction slots that would otherwise go unused, making them virtually free. On

I Among other things, C. A. R. Hoare (1934-) invented the quicksort algorithm and the case
statement, contributed to the design of Algol W, and was one of the leaders in the development
of axiomatic semantics. In the area of concurrent programming, he refined and formalized the
monitor construct (to be described in Section 12.3.4), and designed the CSP programming model
and notation. He received the ACM Turing Award in 1980.
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EXAMPLE 4.|

Assertions in Euclid

EXAMPLE 42

Assertions in C

the other hand, some dynamic checks (e.g., for use of uninitialized variables) are
sufficiently expensive that they are rarely implemented.

Assertions

A few programming languages (e.g., Euclid and Eiffel) allow the programmer to
specify logical assertions, invariants, preconditions, and postconditions that must
be verified by dynamic semantic checks. An assertion is a statement that a spec-
ified condition is expected to be true when execution reaches a certain point in
the code. In Euclid one can write

assert denominator not= 0

An invariant is a condition that is expected to be true at all “clean points” of a
given body of code. In Fiffel the programmer can specify an invariant on the data
inside a class: the invariant is expected to be true at the beginning and end of all
of the class’s methods (subroutines). Similar invariants for loops are expected to
be true before and after every iteration. Pre- and postconditions are expected to
be true at the beginning and end of subroutines, respectively.

Invariants, preconditions, and postconditions are essentially structured asser-
tions. A postcondition, specified once in the header of a Euclid subroutine, will
be checked not only at the end of the subroutine’s text, but at every return state-
ment as well, automatically.

Many languages support assertions via standard library routines or macros. In
C, for example, one can write

assert(denominator !'= 0);
If the assertion fails, the program will terminate abruptly with the message
myprog.c:42: failed assertion ‘denominator != 0’

The C manual requires assert to be implemented as a macro (or built into the
compiler) so that it has access to the textual representation of its argument, and
to the file name and line number on which the call appears.

DESIGN & IMPLEMENTATION

Dynamic semantic checks

In the past, language theorists and researchers in programming methodology
and software engineering tended to argue for more extensive semantic checks,
while “real world” programmers “voted with their feet” for languages like C
and Fortran, which omitted those checks in the interest of execution speed.
As computers have become more powerful, and as companies have come to
appreciate the enormous costs of software maintenance, the “real world” camp
has become much more sympathetic to checking. Languages like Ada and Java
have been designed from the outset with safety in mind, and languages like
C and C++ have evolved (to the extent possible) toward increasingly strict
definitions.
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Assertions, of course, could be used to cover the other three sorts of checks,
but not as clearly or succinctly. Invariants, preconditions, and postconditions are
a prominent part of the header of the code to which they apply, and can cover
a potentially large number of places where an assertion would otherwise be re-
quired. Euclid and Eiffel implementations allow the programmer to disable as-
sertions and related constructs when desired, to eliminate their run-time cost.

Static Analysis

In general, compile-time algorithms that predict run-time behavior are known
as static analysis. Such analysis is said to be precise if it allows the compiler to de-
termine whether a given program will always follow the rules. Type checking, for
example, is static and precise in languages like Ada, C, and ML: the compiler en-
sures that no variable will ever be used at run time in a way that is inappropriate
for its type. By contrast, languages like Lisp and Smalltalk obtain greater flexibil-
ity, while remaining completely type-safe, by accepting the run-time overhead of
dynamic type checks. (We will cover type checking in more detail in Chapter 7.)

Static analysis can also be useful when it isn’t precise. Compilers will often
check what they can at compile time and then generate code to check the rest
dynamically. In Java, for example, type checking is mostly static, but dynamically
loaded classes and type casts may require run-time checks. In a similar vein, many
compilers perform extensive static analysis in an attempt to eliminate the need for
dynamic checks on array subscripts, variant record tags, or potentially dangling
pointers (again, to be discussed in Chapter 7).

If we think of the omission of unnecessary dynamic checks as a performance
optimization, it is natural to look for other ways in which static analysis may
enable code improvement. We will consider this topic in more detail in Chap-
ter 15. Examples include alias analysis, which determines when values can be
safely cached in registers, computed “out of order,” or accessed by concurrent
threads; escape analysis, which determines when all references to a value will be
confined to a given context, allowing it to be allocated on the stack instead of
the heap, or to be accessed without locks; and subtype analysis, which determines
when a variable in an object-oriented language is guaranteed to have a certain
subtype, so that its methods can be called without dynamic dispatch.

An optimization is said to be unsafe if it may lead to incorrect code in certain
programs. It is said to be speculative if it usually improves performance but may
degrade it in certain cases. A compiler is said to be conservative if it applies op-
timizations only when it can guarantee that they will be both safe and effective.
By contrast, an optimistic compiler may make liberal use of speculative optimiza-
tions. It may also pursue unsafe optimizations by generating two versions of the
code, with a dynamic check that chooses between them based on information not
available at compile time. Examples of speculative optimization include nonbind-
ing prefetches, which try to bring data into the cache before they are needed, and
trace scheduling, which rearranges code in hopes of improving the performance
of the processor pipeline and the instruction cache.
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EXAMPLE 43

Bottom-up CFG for
constant expressions

EXAMPLE 44

Bottom-up AG for
constant expressions

To eliminate dynamic checks, language designers may choose to tighten se-
mantic rules, banning programs for which conservative analysis fails. The ML
type system (Section @) 7.2.4), for example, avoids the dynamic type checks of
Lisp but disallows certain useful programming idioms that Lisp supports. Simi-
larly, the definite assignment rules of Java and C# (Section 6.1.3) allow the com-
piler to ensure that a variable is always given a value before it is used in an ex-
pression, but disallow certain programs that are legal (and correct) in C.

Attribute Grammars

In Chapter 2 we learned how to use a context-free grammar to specify the syntax
of a programming language. Here, for example, is an LR (bottom-up) grammar
for arithmetic expressions composed of constants, with precedence and associa-
tivity:

1

Ll

E+ T
E-T
T

T x F
T/ F
F

- F
(E)

const

R T T R S

This grammar will generate all properly formed constant expressions over the
basic arithmetic operators, but it says nothing about their meaning. To tie these
expressions to mathematical concepts (as opposed to, say, floor tile patterns or
dance steps), we need additional notation. The most common is based on at-
tributes. In our expression grammar, we can associate a val attribute with each E,
T, F, and const in the grammar. The intent is that for any symbol S, S.val will
be the meaning, as an arithmetic value, of the token string derived from S. We
assume that the val of a const is provided to us by the scanner. We must then in-
vent a set of rules for each production to specify how the vals of different symbols
are related. The resulting attribute grammar is shown in Figure 4.1.

In this simple grammar, every production has a single rule. We shall see more
complicated grammars later in which productions can have several rules. The
rules come in two forms. Those in productions 3, 6, 8, and 9 are known as copy
rules; they specify that one attribute should be a copy of another. The other rules
invoke semantic functions (sum, quotient, additive_inverse, etc.). In this example,
the semantic functions are all familiar arithmetic operations. In general, they can
be arbitrarily complex functions specified by the language designer. Each seman-
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1. £y, — E, + T
> Ejp.val := sum(E,.val, T.val)
2. EfE —E, - T
> E,.val := difference(E,.val, T.val)
3. E—T
> E.val ;= Tval
4, T, — T, * F
> Ty.val := product(T,.val, Fval)
5. T, — T, / F
> T,.val := quotient(T,.val, Fval)
6. T —F
> Tval := Fval
7. F, — - F,
> Fy.val := additive_inverse(F,.val)

8. F — (E)
> Fval := E.val

9. F —> const
> Fval := const.val

Figure 4.1 A simple attribute grammar for constant expressions, using the standard arith-
metic operations.

tic function takes an arbitrary number of arguments (each of which must be an
attribute of a symbol in the current production: no constants, global variables,
etc.), and each computes a single result, which must likewise be assigned into an
attribute of a symbol in the current production. When more than one symbol of
a production has the same name, subscripts are used to distinguish them. These
subscripts are solely for the benefit of the semantic functions; they are not part
of the context-free grammar itself.

In a strict definition of attribute grammars, copy rules and semantic function
calls are the only two kinds of permissible rules. In practice, it is common to
allow rules to consist of small fragments of code in some well-defined notation
(e.g., the language in which a compiler is being written) so that simple semantic
functions can be written out “in-line.” These code fragments are not allowed to
refer to any variables or attributes outside the current production (we will relax
this restriction when we discuss action routines in Section 4.4). In our examples
we use a > symbol to introduce each code fragment corresponding to a single
semantic function.

Semantic functions must be written in some already-existing notation, be-
cause attribute grammars do not really specify the meaning of a program; rather,
they provide a way to associate a program with something else that presumably
has meaning. Neither the notation for semantic functions nor the types of the
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EXAMPLE 4.5

Decoration of a parse tree

attributes themselves (i.e., the domain of values passed to and returned from se-
mantic functions) is intrinsic to the attribute grammar notion. In the preced-
ing example, we have used an attribute grammar to associate numeric values
with the symbols in our grammar, using semantic functions drawn from ordi-
nary arithmetic. In the code generation phase of a compiler, we might associate
fragments of target machine code with our symbols, using semantic functions
written in some existing programming language. If we were interested in defin-
ing the meaning of a programming language in a machine-independent way, our
attributes might be domain theory denotations (these are the basis of denotational
semantics). If we were interested in proving theorems about the behavior of pro-
grams in our language, our attributes might be logical formulas (this is the basis
of axiomatic semantics).> These more formal concepts are beyond the scope of
this text (but see the Bibliographic Notes at the end of the chapter). We will use
attribute grammars primarily as a framework for building a syntax tree, checking
semantic rules, and (in Chapter 14) generating code.

Evaluating Attributes

The process of evaluating attributes is called annotation or decoration of the parse
tree. Figure 4.2 shows how to decorate the parse tree for the expression (1 + 3)
* 2, using the attribute grammar of Figure 4.1. Once decoration is complete, the
value of the overall expression can be found in the val attribute of the root of the
tree.

Synthesized Attributes

The attribute grammar of Figure 4.1 is very simple. Each symbol has at most one
attribute (the punctuation marks have none). Moreover, they are all so-called
synthesized attributes: their values are calculated (synthesized) only in produc-
tions in which their symbol appears on the left-hand side. For annotated parse
trees like the one in Figure 4.2, this means that the attribute flow—the pattern in
which information moves from node to node—is entirely bottom-up.

An attribute grammar in which all attributes are synthesized is said to be
S-attributed. The arguments to semantic functions in an S-attributed grammar
are always attributes of symbols on the right-hand side of the current produc-
tion, and the return value is always placed into an attribute of the left-hand
side of the production. Tokens (terminals) often have intrinsic properties (e.g.,
the character-string representation of an identifier or the value of a numeric

2 It’s actually stretching things a bit to discuss axiomatic semantics in the context of attribute
grammars. Axiomatic semantics is intended not so much to define the meaning of programs as
to permit one to prove that a given program satisfies some desired property (e.g., computes some
desired function).
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Top-down CFG and parse
tree for subtraction
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Figure 4. Decoration of a parse tree for (1 + 3) * 2. The val attributes of symbols are
shown in boxes. Curved arrows represent the attribute flow, which is strictly upward in this
case.
constant); in a compiler these are synthesized attributes initialized by the scan-
ner.

Inherited Attributes

In general, we can imagine (and will in fact have need of) attributes whose values
are calculated when their symbol is on the right-hand side of the current pro-
duction. Such attributes are said to be inherited. They allow contextual informa-
tion to flow into a symbol from above or from the side, so that the rules of that
production can be enforced in different ways (or generate different values) de-
pending on surrounding context. Symbol table information is commonly passed
from symbol to symbol by means of inherited attributes. Inherited attributes of
the root of the parse tree can also be used to represent the external environment
(characteristics of the target machine, command-line arguments to the compiler,
etc.).

As a simple example of inherited attributes, consider the following simplified
fragment of an LL(1) expression grammar (here covering only subtraction):

expr —> const expr_tail

expr_tail —> - const expr_tail | e.
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EXAMPLE 4.7

Decoration with
left-to-right attribute flow

For the expression 9 - 4 - 3, we obtain the following parse tree:

expr
9/ ;w_tail
VAN
- 4 expr_tail
AN
- 3 expr_tail

€

If we want to create an attribute grammar that accumulates the value of the over-
all expression into the root of the tree, we have a problem: because subtraction is
left-associative, we cannot summarize the right subtree of the root with a single
numeric value. If we want to decorate the tree bottom-up, with an S-attributed
grammar, we must be prepared to describe an arbitrary number of right operands
in the attributes of the top-most expr_tail node (see Exercise 4.4). This is indeed
possible, but it defeats the purpose of the formalism: in effect, it requires us to
embed the entire tree into the attributes of a single node, and do all the real work
inside a single semantic function.

If, however, we are allowed to pass attribute values not only bottom-up but
also left-to-right in the tree, then we can pass the 9 into the top-most expr_tail
node, where it can be combined (in proper left-associative fashion) with the 4.
The resulting 5 can then be passed into the middle expr_tail node, combined with
the 3 to make 2, and then passed upward to the root:

/ex

const Izl expr_tail

/

- const expr_tail

_ const expr_tail

€
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Top-down AG for
subtraction

EXAMPLE 4.9

Top-down AG for constant
expressions
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1. E—TTT
> TTst:= Tval > E.val := TT.val

2. TT, — + T TT,
> TT,.st:=TT,.st 4 Tval > TT,.val := TT,.val

3. TT, — - T TT,
> TT,.st:=TT,.st — Tval > TT,.val := TT,.val

4, TT — €
> TTval := TTst

5. T — F FT

> FTst:= Fval > Tval := FT.val
6. FT, — % F FT,

> FT,.st:=FT;.st x Fval > FT;.val := FT,.val
7. FT, — / F FT,

> FT,.st:=FT;.st = Fval > FT,.val := FT,.val
8. FT — ¢

> FTval := FTst
9. F1 —> - Fz
> Fj.val := — F,.val

10. F — ( E)
> Fval := E.val

11. F —> const
> Fval := const.val

Figure 4.3 An attribute grammar for constant expressions based on an LL(1) CFG.

To effect this style of decoration, we need the following attribute rules:

expr —> const expr_tail
> expr_tail.st := const.val
> expr.val := expr_tail.val
expr_taily, —> - const expr_tail,
> expr_tail,.st := expr_tail;.st — const.val
> expr_tail;.val := expr_tail,.val

expr_tail — €
> expr_tail.val := expr_tail.st

In each of the first two productions, the first rule serves to copy the left context
(value of the expression so far) into a “subtotal” (st) attribute; the second rule
copies the final value from the right-most leaf back up to the root.

We can flesh out the grammar fragment of Example 4.6 to produce a more
complete expression grammar, as shown in Figure 4.3. The underlying CFG for
this grammar accepts the same language as the one in Figure 4.1, but where that
one was SLR(1), this one is LL(1). Attribute flow for a parse of (1 + 3) * 2,
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const € F FT €

const €

Figure 4.4 Decoration of a top-down parse tree for (1 + 3) * 2, using the attribute grammar of Figure 4.3. Curved
arrows again represent attribute flow, which is no longer bottom-up, but is still left-to-right.

using the LL(1) grammar, appears in Figure 4.4. As in the grammar fragment of
Example 4.6, the value of the left operand of each operator is carried into the
TT and FT productions by the st (subtotal) attribute. The relative complexity of
the attribute flow arises from the fact that operators are left associative, but the
grammar cannot be left recursive: the left and right operands of a given operator
are thus found in separate productions. Grammars to perform semantic analysis
for practical languages generally require some non-S-attributed flow.

Attribute Flow

Just as a context-free grammar does not specify how it should be parsed, an at-
tribute grammar does not specify the order in which attribute rules should be
invoked. Put another way, both notations are declarative: they define a set of valid
trees, but they don’t say how to build or decorate them. Among other things, this
means that the order in which attribute rules are listed for a given production is
immaterial; attribute flow may require them to execute in any order. If in Fig-
ure 4.3 we were to reverse the order in which the rules appear in productions
1, 2, 3,5, 6, and/or 7 (listing the rule for symbol.val first), it would be a purely
cosmetic change; the grammar would not be altered.
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We say an attribute grammar is well defined if its rules determine a unique set
of values for the attributes of every possible parse tree. An attribute grammar is
noncircular if it never leads to a parse tree in which there are cycles in the attribute
flow graph—that is, if no attribute, in any parse tree, ever depends (transitively)
on itself. (A grammar can be circular and still be well defined if attributes are
guaranteed to converge to a unique value.) As a general rule, practical attribute
grammars tend to be noncircular.

An algorithm that decorates parse trees by invoking the rules of an attribute
grammar in an order that respects the tree’s attribute flow is called a translation
scheme. Perhaps the simplest scheme is one that makes repeated passes over a
tree, invoking any semantic function whose arguments have all been defined, and
stopping when it completes a pass in which no values change. Such a scheme is
said to be oblivious, in the sense that it exploits no special knowledge of either the
parse tree or the grammar. It will halt only if the grammar is well defined. Better
performance, at least for noncircular grammars, may be achieved by a dynamic
scheme that tailors the evaluation order to the structure of a given parse tree—for
example, by constructing a topological sort of the attribute flow graph and then
invoking rules in an order consistent with the sort.

The fastest translation schemes, however, tend to be static—based on an analy-
sis of the structure of the attribute grammar itself, and then applied mechanically
to any tree arising from the grammar. Like LL and LR parsers, linear-time static
translation schemes can be devised only for certain restricted classes of gram-
mars. S-attributed grammars, such as the one in Figure 4.1, form the simplest
such class. Because attribute flow in an S-attributed grammar is strictly bottom-
up, attributes can be evaluated by visiting the nodes of the parse tree in exactly the
same order that those nodes were generated by the parser. In fact, the attributes
can be evaluated on-the-fly during a bottom-up parse, thereby interleaving pars-
ing and semantic analysis (attribute evaluation).

The attribute grammar of Figure 4.3 is a good bit messier than that of Fig-
ure 4.1, but it is still L-attributed: its attributes can be evaluated by visiting the
nodes of the parse tree in a single left-to-right, depth-first traversal (the same or-
der in which they are visited during a top-down parse). If we say that an attribute
A's depends on an attribute B.t if B.t is ever passed to a semantic function that
returns a value for A.s, then we can define L-attributed grammars more formally
with the following two rules: (1) each synthesized attribute of a left-hand side
symbol depends only on that symbol’s own inherited attributes or on attributes
(synthesized or inherited) of the production’s right-hand side symbols; and (2)
each inherited attribute of a right-hand side symbol depends only on inherited
attributes of the left-hand side symbol or on attributes (synthesized or inherited)
of symbols to its left in the right-hand side.

S-attributed grammars are the most general class of attribute grammars
for which evaluation can be implemented on-the-fly during an LR parse.
L-attributed grammars are a proper superset of S-attributed grammars. They
are the most general class of attribute grammars for which evaluation can be im-
plemented on-the-fly during an LL parse. If we interleave semantic analysis (and
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possibly intermediate code generation) with parsing, then a bottom-up parser
must in general be paired with an S-attributed translation scheme; a top-down
parser must be paired with an L-attributed translation scheme. (Depending on
the structure of the grammar, it is often possible for a bottom-up parser to ac-
commodate some non-S-attributed attribute flow; we consider this possibility
in Section @) 4.5.1.) If we choose to separate parsing and semantic analysis into
separate passes, then the code that builds the parse tree or syntax tree must still
use an S-attributed or L-attributed translation scheme (as appropriate), but the
semantic analyzer can use a more powerful scheme if desired. There are certain
tasks, such as the generation of code for “short-circuit” Boolean expressions (to
be discussed in Sections 6.1.5 and 6.4.1), that are easiest to accomplish with a
non-L-attributed scheme.

One-Pass Compilers

A compiler that interleaves semantic analysis and code generation with parsing
is said to be a one-pass compiler.® It is unclear whether interleaving semantic
analysis with parsing makes a compiler simpler or more complex; it’s mainly a
matter of taste. If intermediate code generation is interleaved with parsing, one
need not build a syntax tree at all (unless of course the syntax tree is the in-
termediate code). Moreover, it is often possible to write the intermediate code
to an output file on-the-fly, rather than accumulating it in the attributes of the
root of the parse tree. The resulting space savings were important for previ-
ous generations of computers, which had very small main memories. On the
other hand, semantic analysis is easier to perform during a separate traversal of

DESIGN & IMPLEMENTATION

Forward references

In Sections 3.3.3 and @) 3.4.1 we noted that the scope rules of many languages
require names to be declared before they are used, and provide special mech-
anisms to introduce the forward references needed for recursive definitions.
While these rules may help promote the creation of clear, maintainable code,
an equally important motivation, at least historically, was to facilitate the con-
struction of one-pass compilers. With increases in memory size, processing
speed, and programmer expectations regarding the quality of code improve-
ment, multipass compilers have become ubiquitous, and language designers
have felt free (as, for example, in the class declarations of C++, Java, and C#)
to abandon the requirement that declarations precede uses.

3 Most authors use the term one-pass only for compilers that translate all the way from source to
target code in a single pass. Some authors insist only that intermediate code be generated in a
single pass, and permit additional pass(es) to translate intermediate code to target code.
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E, —E, + T

> E;.ptr:= make_bin_op("+7 E,.ptr, T.ptr)
E, —E - T

> E;.ptr := make_bin_op("-" E,.ptr, Tptr)
E —T

> E.ptr:= Tptr
T, — T, * F

> Ty.ptr ;= make_bin_op("“x" T,.ptr, Fptr)

T, — T, / F

> T,.ptr := make_bin_op("+" T,.ptr, Fptr)
T — F

> Tptr:=Fptr

F, —-F,

> F,.ptr := make_un_op("*/_" F,.ptr)
F — (E)

> Fptr:= E.ptr
F —> const

> FEptr := make_leaf(const.val)

Figure 4.5 Bottom-up attribute grammar to construct a syntax tree. The symbol */_ is used
(as it is on calculators) to indicate change of sign.

a syntax tree, because that tree reflects the program’s semantic structure better
than the parse tree does, especially with a top-down parser, and because one
has the option of traversing the tree in an order other than that chosen by the
parser.

Building a Syntax Tree

If we choose not to interleave parsing and semantic analysis, we still need to add
attribute rules to the context-free grammar, but they serve only to create the syn-
tax tree—not to enforce semantic rules or generate code. Figures 4.5 and 4.6 con-
tain bottom-up and top-down attribute grammars, respectively, to build a syntax
tree for constant expressions. The attributes in these grammars hold neither nu-
meric values nor target code fragments; instead they point to nodes of the syn-
tax tree. Function make_leaf returns a pointer to a newly allocated syntax tree
node containing the value of a constant. Functions make_un_op and make_bin_
op return pointers to newly allocated syntax tree nodes containing a unary or bi-
nary operator, respectively, and pointers to the supplied operand(s). Figures 4.7
and 4.8 show stages in the decoration of parse trees for (1 + 3) * 2, using the
grammars of Figures 4.5 and 4.6, respectively.
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E—TTT
> TTst:=Tptr
> E.ptr:=TTptr

T, — + T TT,
> TT,.st := make_bin_op("“+" TT,.st, T.ptr)
> TT.ptr:=TT,.ptr

T, — - T TT,
> TT,.st := make_bin_op("-" TT;.st, T.ptr)
> TT.ptr:=TT,.ptr

TT — €

> TTptr:=TTst
T — F FT

> FTst:= FEptr

> Tptr:=FTptr

FT, — *x F FT,
> FT,.st:= make_bin_op(“x" FT,.st, Eptr)
> FTy.ptr:=FT,.ptr

FT, — / F FT,
> FT,.st:= make_bin_op("“+" FT,.st, Eptr)
> FTy.ptr:=FT,.ptr

FT — ¢
> FTptr:=FTst

F, — - F,
> F,.ptr:= make_un_op("1/_" F,.ptr)

F — (E)
> Fptr:= E.ptr

F —> const
> FEptr := make_leaf(const.val)

Figure 4.6 Top-down attribute grammar to construct a syntax tree. Here the st attribute, like
the ptr attribute (and unlike the st attribute of Figure 4.3), is a pointer to a syntax tree node.

/CHECK YOUR UNDERSTANDING

[. What determines whether a language rule is a matter of syntax or of static
semantics?

). Why is it impossible to detect certain program errors at compile time, even
though they can be detected at run time?

3. What is an attribute grammar?
4. What are programming assertions? What is their purpose?

5. What is the difference between synthesized and inherited attributes?
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(d)
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F const
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Figure 4.7 Construction of a syntax tree via decoration of a bottom-up parse tree, using the
grammar of Figure 4.5. In diagram (a), the values of the constants 1 and 3 have been placed
in new syntax tree leaves. Pointers to these leaves propagate up into the attributes of E and
T. In (b), the pointers to these leaves become child pointers of a new internal + node. In (c)
the pointer to this node propagates up into the attributes of T, and a new leaf is created for 2.
Finally, in (d), the pointers from T and F become child pointers of a new internal x node, and
a pointer to this node propagates up into the attributes of E.
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const

Figure 4.8 Construction of a syntax tree via decoration of a top-down parse tree, using the grammar of Figure 4.6. In the
top diagram, (a), the value of the constant 1 has been placed in a new syntax tree leaf. A pointer to this leaf then propagates to
the st attribute of TT. In (b), a second leaf has been created to hold the constant 3. Pointers to the two leaves then become
child pointers of a new internal + node, a pointer to which propagates from the st attribute of the bottom-most TT, where
it was created, all the way up and over to the st attribute of the top-most FT. In (c), a third leaf has been created for the
constant 2. Pointers to this leaf and to the + node then become the children of a new x node, a pointer to which propagates
from the st of the lower FT, where it was created, all the way to the root of the tree.
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6. Give two examples of information that is typically passed through inherited
attributes.

1. What is attribute flow?
8. What is a one-pass compiler?

9. What does it mean for an attribute grammar to be S-attributed? L-attributed?
Noncircular? What is the significance of these grammar classes?

Action Routines

Just as there are automatic tools that will construct a parser for a given context-
free grammar, there are automatic tools that will construct a semantic analyzer
(attribute evaluator) for a given attribute grammar. Attribute evaluator gen-
erators are heavily used in syntax-based editors [RT88], incremental compil-
ers [SDB84], and programming language research. Most production compilers,
however, use an ad hoc, handwritten translation scheme, interleaving parsing
with at least the initial construction of a syntax tree, and possibly all of semantic
analysis and intermediate code generation. Because they are able to evaluate the
attributes of each production as it is parsed, they do not need to build the full
parse tree.

An ad hoc translation scheme that is interleaved with parsing takes the form
of a set of action routines. An action routine is a semantic function that the pro-
grammer (grammar writer) instructs the compiler to execute at a particular point
in the parse. Most parser generators allow the programmer to specify action rou-
tines. In an LL parser generator, an action routine can appear anywhere within
a right-hand side. A routine at the beginning of a right-hand side will be called
as soon as the parser predicts the production. A routine embedded in the mid-
dle of a right-hand side will be called as soon as the parser has matched (the
yield of) the symbol to the left. The implementation mechanism is simple: when

DESIGN & IMPLEMENTATION

Attribute evaluators

Automatic evaluators based on formal attribute grammars are popular in lan-
guage research projects because they save developer time when the language
definition changes. They are popular in syntax-based editors and incremental
compilers because they save execution time: when a small change is made to
a program, the evaluator may be able to “patch up” tree decorations signifi-
cantly faster than it could rebuild them from scratch. For the typical compiler,
however, semantic analysis based on a formal attribute grammar is overkill: it
has higher overhead than action routines, and doesn’t really save the compiler
writer that much work.
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EXAMPLE 4| I

Top-down action routines
to build a syntax tree

E— T { TTst := Tptr } TT { E.ptr := TTptr }

TT, — + T { TT,.st := make_bin_op(“+", TT;.st, Tptr) } TT, { TT,.ptr := TT,.ptr }
TT) — - T { TT,.st := make_bin_op(“-", TTy.st, Tptr) } TT, { TT,.ptr := TT,.ptr }
TT — € { TTptr := TTst }

T — F { FTst := Eptr } FT { Tptr := FTptr }

FT) — * F { FT,.st := make_bin_op(“x", FTy.st, Eptr) } FT, { FT,.ptr := FT,.ptr }
FT, — / F { FT,.st := make_bin_op("+", FT;.st, Eptr) } FT, { FT,.ptr := FT,.ptr }
FT — € { FTptr := FTst }

F, — - F, { Fi.ptr := make_un_op("*/_" F,.ptr) }

F— (E) { Fptr := Eptr }

F — const { Fptr := make_leaf(const.ptr) }

Figure 4.9 LL(1) grammar with action routines to build a syntax tree.

it predicts a production, the parser pushes all of the right-hand side onto the
stack—terminals (to be matched), nonterminals (to drive future predictions),
and pointers to action routines. When it finds a pointer to an action routine at
the top of the parse stack, the parser simply calls it.

To make this process more concrete, consider again our LL(1) grammar for
constant expressions. Action routines to build a syntax tree while parsing this
grammar appear in Figure 4.9. The only difference between this grammar and
the one in Figure 4.6 is that the action routines (delimited here with curly braces)
are embedded among the symbols of the right-hand sides; the work performed
is the same. The ease with which the attribute grammar can be transformed into
the grammar with action routines is due to the fact that the attribute grammar is
L-attributed. If it required more complicated flow, we would not be able to cast
it in the form of action routines.

Bottom-Up Evaluation

In an LR parser generator, one cannot in general embed action routines at arbi-
trary places in a right-hand side, since the parser does not in general know what
production it is in until it has seen all or most of the yield. LR parser generators
therefore permit action routines only after the point at which the production be-
ing parsed can be identified unambiguously (this is known as the trailing part of
the right-hand side; the ambiguous part is the left corner). If the attribute flow
of the action routines is strictly bottom-up (as it is in an S-attributed attribute
grammar), then execution at the end of right-hand sides is all that is needed.
The attribute grammars of Figures 4.1 and 4.5, in fact, are essentially identical
to the action routine versions. If the action routines are responsible for a signifi-
cant part of semantic analysis, however (as opposed to simply building a syntax
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tree), then they will often need contextual information in order to do their job.
To obtain and use this information in an LR parse, they will need some (neces-
sarily limited) access to inherited attributes or to information outside the current
production. We consider this issue further in Section @) 4.5.1.

Space Management for Attributes

Any attribute evaluation method requires space to hold the attributes of the
grammar symbols. If we are building an explicit parse tree, then the obvious ap-
proach is to store attributes in the nodes of the tree themselves. If we are not
building a parse tree, then we need to find a way to keep track of the attributes
for the symbols we have seen (or predicted) but not yet finished parsing. The
details differ in bottom-up and top-down parsers.

For a bottom-up parser with an S-attributed grammar, the obvious approach
is to maintain an attribute stack that directly mirrors the parse stack: next to
every state number on the parse stack is an attribute record for the symbol we
shifted when we entered that state. Entries in the attribute stack are pushed and
popped automatically by the parser driver; space management is not an issue for
the writer of action routines. Complications arise if we try to achieve the effect of
inherited attributes, but these can be accommodated within the basic attribute-
stack framework.

For a top-down parser with an L-attributed grammar, we have two principal
options. The first option is automatic, but more complex than for bottom-up
grammars. It still uses an attribute stack, but one that does not mirror the parse
stack. The second option has lower space overhead, and saves time by “short-
cutting” copy rules, but requires action routines to allocate and deallocate space
for attributes explicitly.

In both families of parsers, it is common for some of the contextual infor-
mation for action routines to be kept in global variables. The symbol table in
particular is usually global. We can be sure that the table will always represent
the current referencing environment because we control the order in which ac-
tion routines (including those that modify the environment at the beginnings
and ends of scopes) are executed. In a pure attribute grammar we should need
to pass symbol table information into and out of productions through inherited
and synthesized attributes.

@ IN MORE DEPTH

We consider attribute space management in more detail on the PLP CD. Us-
ing bottom-up and top-down grammars for arithmetic expressions, we illustrate
automatic management for both bottom-up and top-down parsers, as well as the
ad hoc option for top-down parsers.
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EXAMPLE 4 IZ

Bottom-up CFG for
calculator language with

types

EXAMPLE 4 |3

Syntax tree to average an
integer and a real

EXAMPLE 4. |4

Tree grammar for the
calculator language with

types

program —> stmt_list $$

stmt_list —> stmt_list decl | stmt_list stmt | €

decl —> int id | real id

stmt —> id := expr | read id | write expr

expr —> term | expr add_op term

term —> factor | term mult_op factor

factor — ( expr ) | id | int_const | real_const
float ( expr ) | trunc ( expr )

add_op — + | -

mult.op — * | /

Figure 4.10 Context-free grammar for a calculator language with types and declarations.
The intent is that every identifier be declared before use, and that types not be mixed in
computations.

Decorating a Syntax Tree

In our discussion so far we have used attribute grammars solely to decorate parse
trees. As we mentioned in the chapter introduction, attribute grammars can also
be used to decorate syntax trees. If our compiler uses action routines simply to
build a syntax tree, then the bulk of semantic analysis and intermediate code
generation will use the syntax tree as base.

Figure 4.10 contains a bottom-up CFG for a calculator language with types
and declarations. The grammar differs from that of Example 2.35 (page 81) in
three ways: (1) we allow declarations to be intermixed with statements, (2) we
differentiate between integer and real constants (presumably the latter contain a
decimal point), and (3) we require explicit conversions between integer and real
operands. The intended semantics of our language requires that every identifier
be declared before it is used, and that types not be mixed in computations.

Extrapolating from the example in Figure 4.5, it is easy to add semantic func-
tions or action routines to the grammar of Figure 4.10 to construct a syntax tree
for the calculator language (Exercise 4.19). The obvious structure for such a tree
would represent expressions as we did in Figure 4.7, and would represent a pro-
gram as a linked list of declarations and statements. As a concrete example, Fig-
ure 4.11 contains the syntax tree for a simple program to print the average of an
integer and a real.

Much as a context-free grammar describes the possible structure of parse trees
for a given programming language, we can use a tree grammar to represent the
possible structure of syntax trees. As in a CFG, each production of a tree grammar
represents a possible relationship between a parent and its children in the tree.
The parent is the symbol on the left-hand side of the production; the children are
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program

int_decl

,\ read
a ,\ real_decl
a ,\ read

int a b ,\ null

read a N
real b '
read b / \
write (float (a) + b) / 2.0 + 2.0
float b
a

Figure 4.11 Syntax tree for a simple calculator program.

the symbols on the right-hand side. The productions used in Figure 4.11 might
look something like this:

program — item

int_decl : item —> id item
read : item —> id item
real_decl : item —> id item
write : item —> expr item

null : item —> €

<.

=7 1 expr —> expr expr

T

+’ : expr —> expr expr
float : expr —> expr
id : expr — €

real_const : expr —> €

The notation A : B on the left-hand side of a production means that A is one
kind of B, and may appear anywhere a B is expected on a right-hand side.

Tree grammars and context-free grammars differ in important ways. A context-
free grammar is meant to define (generate) a language composed of strings of to-
kens, where each string is the fringe (yield) of a parse tree. Parsing is the process
of finding a tree that has a given yield. A tree grammar, as we use it here, is meant
to define (or generate) the trees themselves. We have no need for a notion of
parsing: we can easily inspect a tree and determine whether (and how) it can
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EXAMPLE 4 I 5

Tree AG for the calculator
language with types

be generated by the grammar. Our purpose in introducing tree grammars is to
provide a framework for the decoration of syntax trees. Semantic rules attached
to the productions of a tree grammar can be used to define the attribute flow of
a syntax tree in exactly the same way that semantic rules attached to the produc-
tions of a context-free grammar are used to define the attribute flow of a parse
tree. We will use a tree grammar in the remainder of this section to perform sta-
tic semantic checking. In Chapter 14 we will show how additional semantic rules
can be used to generate intermediate code.

Figure 4.12 contains a complete tree attribute grammar for our calculator lan-
guage with types. Once decorated, the program node at the root of the syntax
tree will contain a list, in a synthesized attribute, of all static semantic errors in
the program. (The list will be empty if the program is free of such errors.) Each
item or expr node has an inherited attribute symtab that contains a list, with
types, of all identifiers declared to the left in the tree. Each itern node also has
an inherited attribute errors_in that lists all static semantic errors found to its left
in the tree, and a synthesized attribute errors_out to propagate the final error list
back to the root. Each expr node has one synthesized attribute that indicates its
type and another that contains a list of any static semantic errors found inside.

Our handling of semantic errors illustrates a common technique. In order to
continue looking for other errors we must provide values for any attributes that
would have been set in the absence of an error. To avoid cascading error messages,
we choose values for those attributes that will pass quietly through subsequent
checks. In our specific example we employ a pseudo-type called error, which we
associate with any symbol table entry or expression for which we have already
generated a message.

In our example grammar we accumulate error messages into a synthesized
attribute of the root of the syntax tree. In an ad hoc attribute evaluator we might
be tempted to print these messages on the fly as the errors are discovered. In
practice, however, particularly in a multipass compiler, it makes sense to buffer
the messages so they can be interleaved with messages produced by other phases
of the compiler and printed in program order at the end of compilation.

Though it takes a bit of checking to verify the fact, our attribute grammar is
noncircular and well defined. No attribute is ever assigned a value more than
once. (The helper routines in Figure 4.12 should be thought of as macros rather
than semantic functions. For the sake of brevity we have passed them entire tree
nodes as arguments. Each macro calculates the values of two different attributes.
Under a strict formulation of attribute grammars each macro would be replaced
by two separate semantic functions, one per calculated attribute.)

One could convert our attribute grammar into executable code using an au-
tomatic attribute evaluator generator. Alternatively, one could create an ad hoc
evaluator in the form of mutually recursive subroutines (Exercise 4.18). In the
latter case attribute flow would be explicit in the calling sequence of the routines.
We could then choose if desired to keep the symbol table in global variables,
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program — item
> item.symtab := nil
I> program.errors ;= item.errors_out
> item.errors_in := nil

int_decl : item; —> id item,
> declare_namelid, itemy, item,, int)
> item;.errors_out := item,.errors_out

real_decl : item;, —> id item,
> declare_namelid, itemy, item,, real)
> item;.errors_out := item,.errors_out

read : item;, —> id item,
> item,.symtab := item;.symtab
> if (id.name, ?) € item;.symtab
item,.errors_in := item;.errors_in
else
item,.errors_in := item;.errors_in + [id.name “undefined at” id.location]
> item;.errors_out := item,.errors_out

write : item; —> expr item,

expr.symtab := item;.symtab

item,.symtab := item;.symtab

item,.errors_in := item;j.errors_in + expr.errors
item;.errors_out := item,.errors_out

\YARVARVARY)

=" ¢ item; —> id expr item,
> expr.symtab := item;.symtab
> item,.symtab := item;.symtab
> if (id.name, A) € item;.symtab —— for some type A
if A # error and expr.type # error and A # expr.type
item,.errors_in := item;.errors_in + [“type clash at” item;.location]
else
item,.errors_in := item;.errors_in
else
item,.errors_in := item;.errors_in + [id.name "undefined at" id.location]
> item;.errors_out := item,.errors_out

null : item — €
> item.errors_out := item.errors_in

Figure 4.12 Attribute grammar to decorate an abstract syntax tree for the calculator lan-
guage with types. We use square brackets to delimit error messages and pointed brackets to
delimit symbol table entries. Juxtaposition indicates concatenation within error messages; the
‘+' and ‘-’ operators indicate insertion and removal in lists. We assume that every node has
been initialized by the scanner or by action routines in the parser to contain an indication of
the location (line and column) at which the corresponding construct appears in the source (see
Exercise 4.20). The ‘?' symbol is used as a “wild card”; it matches any type. (continued)
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id : expr — €

> if (id.name, A) € expr.symtab —— for some type A
expr.errors := nil
expr.type := A
else

expr.errors ;= [id.name “undefined at” id.location]
expr.type := error

int_const : expr —> €
> expr.type :=int

real_const : expr —> €
> expr.type :=real

“+ :expry —> expr, exprs
> expr,.symtab := expr;.symtab
> exprs.symtab := expr;.symtab
> check_types(expr;, expr,, exprs)

= :expr; —> expry exprs
> expr,.symtab := expr;.symtab
> exprs.symtab := expr;.symtab
> check_types(expry, expr,, exprs)
X’ 1 expry —> expr, exprs
> expr,.symtab := expr;.symtab
> exprs.symtab := expr;.symtab
> check_types(expr;, expr,, exprs)
= expry —> expr, exprs
> expr,.symtab := expr;.symtab
> exprs.symtab := expr;.symtab
> check_types(expry, expr,, exprs)
float : expry —> expr,
> expry.symtab := expr;.symtab
> convert_type(expr,, expry, int, real, “float of non-int"”)
trunc : expr; — expr,
> expr,.symtab := expr;.symtab
> convert_type(expr,, expry, real, int, “trunc of non-real”)

Figure 4.12 (continued on next page)

rather than passing it from node to node through attributes. Most compilers em-
ploy the ad hoc approach.

/CHECK YOUR UNDERSTANDING
10. What is the difference between a semantic function and an action routine?

[1. Why can’t action routines be placed at arbitrary locations within the right-
hand side of productions in an LR CFG?

[2. What patterns of attribute flow can be captured easily with action routines?
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macro declare_namel(id, cur_item, next_item : syntax_tree_node; t : type)
if (id.name, ?) € cur_item.symtab
next_item.errors_in := cur_item.errors_in + [“redefinition of” id.name “at” cur_item.location]
next_item.symtab := cur_item.symtab — (id.name, ?) + (id.name, error)

else

next_item.errors_in := cur_item.errors_in
next_item.symtab := cur_item.symtab + (id.name, t)

macro check_types(result, operand1, operand2)
if operand1.type = error or operand2.type = error

result.type := error

result.errors := operandl.errors + operand2.errors
else if operandi.type # operand2.type

result.type := error

result.errors := operandl.errors + operand2.errors + [“type clash at” result.location]

else

result.type := operandl.type
result.errors := operandl.errors + operand2.errors

macro convert_type(old_expr, new_expr : syntax_tree_node; from_t, to_t : type; msg : string)
if old_expr.type = from_t or old_expr.type = error
new_expr.errors := old_expr.errors
new_expr.type = to_t

else

new_expr.errors := old_expr.errors + [msg “at” old_expr.location]
new_expr.type := error

Figure 4.12 (continued)

[3. Some compilers perform all semantic checks and intermediate code genera-
tion in action routines. Others use action routines to build a syntax tree and
then perform semantic checks and intermediate code generation in separate
traversals of the syntax tree. Discuss the tradeoffs between these two strate-
gies.

[4. What sort of information do action routines typically keep in global variables,
rather than in attributes?

I5. Describe the similarities and differences between context-free grammars and
tree grammars.

[6. How can a semantic analyzer avoid the generation of cascading error mes-
sages?

Summary and Concluding Remarks

This chapter has discussed the task of semantic analysis. We reviewed the sorts of
language rules that can be classified as syntax, static semantics, and dynamic se-
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mantics, and discussed the issue of whether to generate code to perform dynamic
semantic checks. We also considered the role that the semantic analyzer plays in
a typical compiler. We noted that both the enforcement of static semantic rules
and the generation of intermediate code can be cast in terms of annotation, or
decoration, of a parse tree or syntax tree. We then presented attribute grammars
as a formal framework for this decoration process.

An attribute grammar associates attributes with each symbol in a context-free
grammar or tree grammar, and attribute rules with each production. Synthesized
attributes are calculated only in productions in which their symbol appears on
the left-hand side. The synthesized attributes of tokens are initialized by the scan-
ner. Inherited attributes are calculated in productions in which their symbol ap-
pears within the right-hand side; they allow calculations internal to a symbol
to depend on the context in which the symbol appears. Inherited attributes of
the start symbol (goal) can represent the external environment of the compiler.
Strictly speaking, attribute grammars allow only copy rules (assignments of one
attribute to another) and simple calls to semantic functions, but we usually relax
this restriction to allow more or less arbitrary code fragments in some existing
programming language.

Just as context-free grammars can be categorized according to the parsing al-
gorithm(s) that can use them, attribute grammars can be categorized according
to the complexity of their pattern of attribute flow. S-attributed grammars, in
which all attributes are synthesized, can naturally be evaluated in a single bottom-
up pass over a parse tree, in precisely the order the tree is discovered by an LR-
family parser. L-attributed grammars, in which all attribute flow is depth-first
left-to-right, can be evaluated in precisely the order that the parse tree is predicted
and matched by an LL-family parser. Attribute grammars with more complex
patterns of attribute flow are not commonly used in production compilers but
are valuable for syntax-based editors, incremental compilers, and various other
tools.

While it is possible to construct automatic tools to analyze attribute flow and
decorate parse trees, most compilers rely on action routines, which the compiler
writer embeds in the right-hand sides of productions to evaluate attribute rules at
specific points in a parse. In an LL-family parser, action routines can be embed-
ded at arbitrary points in a production’s right-hand side. In an LR-family parser,
action routines must follow the production’s left corner. Space for attributes in a
bottom-up compiler is naturally allocated in parallel with the parse stack. Inher-
ited attributes must be “faked” by accessing the synthesized attributes of symbols
known to lie below the current production in the stack. Space for attributes in
a top-down compiler can be allocated automatically, or managed explicitly by
the writer of action routines. The automatic approach has the advantage of reg-
ularity, and is easier to maintain; the ad hoc approach is slightly faster and more
flexible.

In a one-pass compiler, which interleaves scanning, parsing, semantic analysis,
and code generation in a single traversal of its input, semantic functions or action
routines are responsible for all of semantic analysis and code generation. More
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commonly, action routines simply build a syntax tree, which is then decorated
during separate traversal(s) in subsequent pass(es).

In subsequent chapters (6-9 in particular) we will consider a wide variety

of programming language constructs. Rather than present the actual attribute
grammars required to implement these constructs, we will describe their seman-
tics informally, and give examples of the target code. We will return to attribute
grammars in Chapter 14, when we consider the generation of intermediate code
in more detail.

4.1

4.1

43

44

4.5

Exercises

Basic results from automata theory tell us that the language L = a”"b"c"
= €, abc, aabbcc, aaabbbcecc, ... is not context free. It can be captured,
however, using an attribute grammar. Give an underlying CFG and a set of
attribute rules that associate a Boolean attribute ok with the root R of each
parse tree, such that R.ok = true if and only if the string corresponding to
the fringe of the tree is in L.

Modify the grammar of Figure 2.24 so that it accepts only programs that
contain at least one write statement. Make the same change in the solution
to Exercise 2.12. Based on your experience, what do you think of the idea of
using the CFG to enforce the rule that every function in C must contain at
least one return statement?

Give two examples of reasonable semantic rules that cannot be checked at
reasonable cost, either statically or by compiler-generated code at run time.

Write an S-attributed attribute grammar, based on the CFG of Example 4.6,
that accumulates the value of the overall expression into the root of the
tree. You will need to use dynamic memory allocation so that individual
attributes can hold an arbitrary amount of information.

As we shall learn in Chapter 10, Lisp programs take the form of parenthe-
sized lists. The natural syntax tree for a Lisp program is thus a tree of binary
cells (known in Lisp as cons cells), where the first child represents the first
element of the list and the second child represents the rest of the list. The
syntax tree for (cdr ’(a b c)) appears in Figure 4.13. (The notation ’L is
syntactic sugar for (quote L).)

Extend the CFG of Exercise 2.13 to create an attribute grammar that will
build such trees. When a parse tree has been fully decorated, the root should
have an attribute v that refers to the syntax tree. You may assume that each
atom has a synthesized attribute v that refers to a syntax tree node that holds
information from the scanner. In your semantic functions, you may assume
the availability of a cons function that takes two references as arguments
and returns a reference to a new cons cell containing those references.
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Figure 4.13 Natural syntax tree for the Lisp expression (cdr ’(a b c)).

4.6

4.1
43

Suppose that we want to translate constant expressions into the postfix or
“reverse Polish” notation of logician Jan Lukasiewicz. Postfix notation does
not require parentheses. It appears in stack-based languages such as Post-
script, Forth, and the P-code and Java byte code intermediate forms men-
tioned in Section 1.4. It also serves as the input language of certain Hewlett-
Packard (HP) brand calculators. When given a number, an HP calculator
pushes it onto an internal stack. When given an operator, it pops the top
two numbers, applies the operator, and pushes the result. The display shows
the value at the top of the stack. To compute 2 x (5 — 3)/4 one would enter
253-%4/.

Using the underlying CFG of Figure 4.1, write an attribute grammar that
will associate with the root of the parse tree a sequence of calculator button
pushes, seq, that will compute the arithmetic value of the tokens derived
from that symbol. You may assume the existence of a function buttons (c)
that returns a sequence of button pushes (ending with ENTER on an HP
calculator) for the constant c. You may also assume the existence of a con-
catenation function for sequences of button pushes.

Repeat the previous exercise using the underlying CFG of Figure 4.3.
Consider the following grammar for reverse Polish arithmetic expressions:

E— EEop | id

op—+ |- | x|/

Assuming that each id has a synthesized attribute name of type string, and
that each E and op has an attribute val of type string, write an attribute
grammar that arranges for the val attribute of the root of the parse tree to
contain a translation of the expression into conventional infix notation. For
example, if the leaves of the tree, left to right, were “A A B - * C /”, then
the val field of the root would be “C ( A *x (A -B) ) / C)” Asan
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extra challenge, write a version of your attribute grammar that exploits the
usual arithmetic precedence and associativity rules to use as few parentheses
as possible.

To reduce the likelihood of typographic errors, the digits comprising most
credit card numbers are designed to satisfy the so-called Luhn formula, stan-
dardized by ANSI in the 1960s and named for IBM mathematician Hans
Peter Luhn. Starting at the right, we double every other digit (the second-
to-last, fourth-to-last, etc.). If the doubled value is 10 or more, we add the
resulting digits. We then sum together all the digits. In any valid number the
result will be a multiple of 10. For example, 1234 5678 9012 3456 becomes
2264 1658 9022 6416, which sums to 64, so this is not a valid number. If the
last digit had been 2, however, the sum would have been 60, so the number
would potentially be valid.

Give an attribute grammar for strings of digits that accumulates into the
root of the parse tree a Boolean value indicating whether the string is valid
according to Luhn’s formula. Your grammar should accommodate strings of
arbitrary length.

Consider the following CFG for floating-point constants, without exponen-
tial notation. (Note that this exercise is somewhat artificial: the language in
question is regular, and would be handled by the scanner of a typical com-
piler.)

C — digits . digits

digits —> digit more_digits

more_digits — digits | €

digit— 0 |1 |2 |3 |4]|5]|6]|7]|8]9

Augment this grammar with attribute rules that will accumulate the value
of the constant into a val attribute of the root of the parse tree. Your answer
should be S-attributed.

One potential criticism of the obvious solution to the previous problem is
that the values in internal nodes of the parse tree do not reflect the value,
in context, of the fringe below them. Create an alternative solution that
addresses this criticism. More specifically, create your grammar in such a
way that the val of an internal node is the sum of the vals of its chil-
dren. Illustrate your solution by drawing the parse tree and attribute flow
for 12.34. (Hint: You will probably want a different underlying CFG, and
non-L-attributed flow.)

Consider the following attribute grammar for type declarations, based on
the CFG of Exercise 2.8.

decl — ID decl_tail
> decl.t ;= decl_tail.t
> decl_tail.in_tab := insert (decl.in_tab, ID.n, decl_tail.t)
> decl.out_tab := decl_tail.out_tab
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decl_tail — , decl

> decl_tail.t := decl.t

> decl.in_tab := decl_tail.in_tab

> decl_tail.out_tab := decl.out_tab
decl_tail — : ID ;

> decl_tail.t := ID.n

> decl_tail.out_tab := decl_tail.in_tab

Show a parse tree for the string A, B : C;. Then, using arrows and textual
description, specify the attribute flow required to fully decorate the tree.
(Hint: Note that the grammar is not L-attributed.)

4.13 A CFG-based attribute evaluator capable of handling non-L-attributed at-
tribute flow needs to take a parse tree as input. Explain how to build a parse
tree automatically during a top-down or bottom-up parse (i.e., without ex-
plicit action routines).

4.14 Write an LL(1) grammar with action routines and automatic attribute space
management that generates the reverse Polish translation described in Exer-
cise 4.6.

4.15 (a) Write a context-free grammar for polynomials in x. Add semantic func-
tions to produce an attribute grammar that will accumulate the polyno-
mial’s derivative (as a string) in a synthesized attribute of the root of the
parse tree.

(b) Replace your semantic functions with action routines that can be eval-
uated during parsing.

4.16 (a) Write a context-free grammar for case or switch statements in the
style of Pascal or C. Add semantic functions to ensure that the same
label does not appear on two different arms of the construct.

(b) Replace your semantic functions with action routines that can be eval-
uated during parsing.

4.1T Write an algorithm to determine whether the rules of an arbitrary attribute
grammar are noncircular. (Your algorithm will require exponential time in
the worst case [JOR75].)

4.18 Rewrite the attribute grammar of Figure 4.12 in the form of an ad hoc tree
traversal consisting of mutually recursive subroutines in your favorite pro-
gramming language. Keep the symbol table in a global variable, rather than
passing it through arguments.

4.19 Write an attribute grammar based on the CFG of Figure 4.10 that will build
a syntax tree with the structure described in Figure 4.12.

420 Augment the attribute grammar of Figure 4.5, Figure 4.6, or Exercise 4.19 to
initialize a synthesized attribute in every syntax tree node that indicates the
location (line and column) at which the corresponding construct appears in
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the source program. You may assume that the scanner initializes the location
of every token.

Modify the CFG and attribute grammar of Figures 4.10 and 4.12 to permit
mixed integer and real expressions, without the need for float and trunc.
You will want to add an annotation to any node that must be coerced to the
opposite type, so that the code generator will know to generate code to do
so. Be sure to think carefully about your coercion rules. In the expression
my_int + my_real, for example, how will you know whether to coerce the
integer to be a real or to coerce the real to be an integer?

Explain the need for the A : B notation on the left-hand sides of produc-
tions in a tree grammar. Why isn’t similar notation required for context-free
grammars?

© 423427 In More Depth.

4.28

4.19

430

431

Explorations

One of the most influential applications of attribute grammars was the
Cornell Synthesizer Generator [Rep84, RT88], now available commercially
from grammatech.com.

Learn how the Generator uses attribute grammars not only for incre-
mental update of semantic information in a program under edit, but also
for automatic creation of language based editors from formal language
specifications. How general is this technique? What applications might it
have beyond syntax-directed editing of computer programs?

The attribute grammars used in this chapter are all quite simple. Most are
S- or L-attributed. All are noncircular. Are there any practical uses for more
complex attribute grammars? How about automatic attribute evaluators?
Using the Bibliographic Notes as a starting point, conduct a survey of at-
tribute evaluation techniques. Where is the line between practical tech-
niques and intellectual curiosities?

The first validated Ada implementation was the Ada/Ed interpreter from
New York University [DGAFS*80]. The interpreter was written in the set-
based language SETL [SDDS86] using a denotational semantics definition
of Ada. Learn about the Ada/Ed project, SETL, and denotational semantics.
Discuss how the use of a formal definition aided the development process.
Also discuss the limitations of Ada/Ed, and expand on the potential role of
formal semantics in language design, development, and prototype imple-
mentation.

The Scheme language manual [ADH"98] includes a formal definition of
Scheme in denotational semantics. How long is this definition compared
to the more conventional definition in English? How readable is it? What
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do the length and the level of readability say about Scheme? About deno-
tational semantics? (For more on denotational semantics, see the texts of
Stoy [Sto77] or Gordon [Gor79].)

© 4.32-4.33 In More Depth.

Bibliographic Notes

Much of the early theory of attribute grammars was developed by Knuth [Knu68].
Lewis, Rosenkrantz, and Stearns [LRS74] introduced the notion of an
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Target Machine Architecture

As described in Chapter |, a compiler is simply a translator. It translates
programs written in one language into programs written in another language.
This second language can be almost anything—some other high-level language,
phototypesetting commands, VLSI (chip) layouts—but most of the time it’s the
machine language for some available computer.

Just as there are many different programming languages, there are many differ-
ent machine languages, though the latter tend to display considerably less diver-
sity than the former. Each machine language corresponds to a different processor
architecture. Formally, an architecture is the interface between the hardware and
the software: the language generated by a compiler, or by a programmer writ-
ing for the bare machine. The implementation of the processor is a concrete re-
alization of the architecture, generally in hardware. This chapter provides a brief
overview of those aspects of processor architecture and implementation of partic-
ular importance to compiler writers, and may be worth reviewing even by readers
who have seen the material before.

To generate correct code, it suffices for a compiler writer to understand the
target architecture. To generate fast code, it is generally necessary to understand
the implementation as well, because it is the implementation that determines the
relative speeds of alternative translations of a given language construct.

Processor implementations change over time, as people invent better ways of
doing things, and as technological advances (e.g., increases in the number of
transistors that will fit on one chip) make things feasible that were not feasi-
ble before. Processor architectures also change, for at least two reasons. Some
technological advances can be exploited only by changing the hardware/software
interface—for example, by increasing the number of bits that can be added or
multiplied in a single instruction. In addition, experience with compilers and
applications often suggests that certain new instructions would make programs
simpler or faster. Occasionally, technological and intellectual trends converge to
produce a revolutionary change in both architecture and implementation. We

195
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EXAMPLE 5.'

Memory hierarchy stats

will discuss three such changes in Section 5.4: the development of microprogram-
ming in the early 1960s, the development of the microprocessor in the early to
mid-1970s, and the development of RISC machines in the early 1980s. As this
book goes to press it appears we may be on the cusp of a fourth revolution, as
vendors turn to multithreaded and multiprocessor chips in an attempt to increase
computational power per watt of heat output.

Most of the discussion in this chapter, and indeed in the rest of the book,
will assume that we are compiling for a modern RISC (reduced instruction set
computer) architecture. Roughly speaking, a RISC machine is one that sacrifices
richness in the instruction set in order to increase the number of instructions that
can be executed per second. Where appropriate, we will devote a limited amount
of attention to earlier, CISC (complex instruction set computer) architectures.
The most popular desktop processor in the world—the x86 —is a legacy CISC
design, but RISC dominates among newer designs. Modern implementations of
the x86 generally run fastest if compilers restrict themselves to a relatively sim-
ple subset of the instruction set. Within the processor, a hardware “front end”
translates these instructions, on the fly, into a RISC-like internal format.

In the first three sections that follow, we consider the hierarchical organization
of memory, the types (formats) of data found in memory, and the instructions
used to manipulate those data. The coverage is necessarily somewhat cursory and
high-level; much more detail can be found in books on computer architecture
(e.g., in Chapter 2 of Hennessy and Patterson’s outstanding text [HP03]).

We consider the interplay between architecture and implementation in Sec-
tion 5.4. In a supplemental subsection on the PLP CD, we illustrate the differ-
ences between CISC and RISC machines using the x86 and MIPS instruction sets
as examples. Finally, in Section 5.5, we consider some of the issues that make
compiling for modern processors a challenging task.

The Memory Hierarchy

Memory on most machines consists of a numbered sequence of eight-bit bytes.
It is not uncommon for modern workstations to contain several gigabytes of
memory—much too much to fit on the same chip as the processor. Because
memory is off-chip (typically on the other side of a bus), getting at it is much
slower than getting at things on-chip. Most computers therefore employ a mem-
ory hierarchy, in which things that are used more often are kept close at hand.
A typical memory hierarchy, with access times and capacities, is shown in Fig-
ure 5.1.

Only three of the levels of the memory hierarchy—registers, memory, and
devices—are a visible part of the hardware/software interface. Compilers manage
registers explicitly, loading them from memory when needed and storing them
back to memory when done, or when the registers are needed for something else.
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typical access time typical capacity
registers 0.2-0.5ns 256-1024 bytes
primary (L1) cache 0.4-1ns 32K-256K bytes
secondary (L2) cache 4-10ns 512K-2M bytes
tertiary (off-chip, L3) cache 10-50ns 4-64M bytes
main memory 50-500ns 256M-16G bytes
disk 5-15ms 80G bytes and up
tape 1-50s effectively unlimited

Figure 5.1 The memory hierarchy of a workstation-class computer. Access times and capaci-
ties are approximate, based on 2005 technology. Registers must be accessed within a single clock
cycle. Primary cache typically responds in -2 cycles; off-chip cache in more like 20 cycles. Main
memory on a supercomputer can be as fast as off-chip cache; on a workstation it is typically
much slower. Disk and tape times are constrained by the movement of physical parts.

Caches are managed by the hardware. Devices are generally accessed only by the
operating system.

Registers hold small amounts of data that can be accessed very quickly. A typ-
ical RISC machine has two sets of registers, to hold integer and floating-point
operands. It also has several special purpose registers, including the program
counter (PC) and the processor status register. The program counter holds the
address of the next instruction to be executed. It is incremented automatically
when fetching most instructions; branches work by changing it explicitly. The
processor status register contains a variety of bits of importance to the operating
system (privilege level, interrupt priority level, trap enable bits) and, on some
machines, a few bits of importance to the compiler writer. Principal among these
are condition codes, which indicate whether the most recent arithmetic or logical
operation resulted in a zero, a negative value, and/or arithmetic overflow. (We
will consider condition codes in more detail in Section 5.3.2.)

Because registers can be accessed every cycle, whereas memory, generally, can-
not, good compilers expend a great deal of effort trying to make sure that the
data they need most often are in registers, and trying to minimize the amount of
time spent moving data back and forth between registers and memory. We will
consider algorithms for register management in Section 5.5.2.

Caches are generally smaller but faster than main memory. They are designed
to exploit locality: the tendency of most computer programs to access the same
or nearby locations in memory repeatedly. By automatically moving the contents
of these locations into cache, a hierarchical memory system can dramatically im-
prove performance. The idea makes intuitive sense: loops tend to access the same
local variables in every iteration, and to walk sequentially through arrays. In-
structions, likewise, tend to be loaded from consecutive locations, and code that
accesses one element of a structure (or member of a class) is likely to access an-
other.

Primary caches, also known as level-1 (L1) caches, are typically located on the
same chip as the processor, and usually come in pairs—one for instructions (the
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L1 I-cache) and another for data (the L1 D-cache), both of which can be ac-
cessed every cycle. Secondary caches are larger and slower, but still faster than
main memory. In a modern desktop or laptop system they are typically also
on the same chip as the processor. High-end desktop or server-class machines
may have an off-chip tertiary (L3) cache as well. Small embedded processors may
have a single level of on-chip cache, with or without any off-chip cache. Caches
are managed entirely in hardware on most machines, but compilers can increase
their effectiveness by generating code with a high degree of locality.

A memory access that finds its data in the cache is said to be a cache hit. An
access that does not find its data in the cache is said to be a cache miss. On a
miss, the hardware automatically loads a line of the cache with a contiguous block
of data containing the requested location, obtained from the next lower level of
cache or main memory. (Cache lines vary from as few as 8 to as many as 512 bytes
in length.) Assuming that the cache was already full, the load will displace some
other line, which is written back to memory if it has been modified.

A final characteristic of memory that is important to the compiler is known as
data alignment. Most machines are able to manipulate operands of several sizes,
typically one, two, four, and eight bytes. Most modern instruction sets refer to
these as byte, half-word, word, and double-word operands, respectively; on the
x86 they are byte, word, double-word, and quad-word operands. Most recent ar-
chitectures require n-byte operands to appear in memory at addresses that are
evenly divisible by n. Integers, for example, which typically occupy four bytes,
must appear at a location whose address is evenly divisible by four. This restric-
tion occurs for two reasons. First, buses are designed in such a way that data are
delivered to the processor over bit-parallel, aligned communication paths. Load-
ing an integer from an odd address would require that the bits be shifted, adding
logic (and time) to the load path. The x86, which for reasons of backward com-
patibility allows operands to appear at arbitrary addresses, runs faster if those
operands are properly aligned. Second, on RISC machines, there are generally
not enough bits in an instruction to specify both an operation (e.g., load) and a
full address. As we shall see in Section 5.3.1, it is typical to specify an address in
terms of an offset from some base location specified by a register. Requiring that
integers be word-aligned allows the offset to be specified in words, rather than

DESIGN & IMPLEMENTATION

The processor/memory gap

Historically processor speed has increased much faster than memory speed,
so the number of processor cycles required to access memory has continued
to grow. As a result of this trend, caches have become increasingly critical
to performance. To improve the effectiveness of caching, programmers need
to choose algorithms whose data access patterns have a high degree of local-
ity. High-quality compilers, likewise, need to consider locality of access when
choosing among the many possible translations of a given program.
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in bytes, quadrupling the amount of memory that can be accessed using offsets
from a given base register.

Data Representation

Data in the memory of most computers are untyped: bits are simply bits. Opera-
tions are typed, in the sense that different operations interpret the bits in memory
in different ways. Typical data formats include instructions, addresses, binary in-
tegers of various lengths, floating-point (real) numbers of various lengths, and
characters.

Integers typically come in half-word, word, and (recently) double-word
lengths. Floating-point numbers typically come in word and double-word
lengths, commonly referred to as single and double precision. Some machines
store the least-significant byte of a multi-word datum at the address of the da-
tum itself, with bytes of increasing numeric significance at higher-numbered ad-
dresses. Other machines store the bytes in the opposite order. The first option
is called little-endian; the second is called big-endian. In either case, an n-byte
datum stored at address ¢t occupies bytes ¢ through ¢t + n — 1. The advantage
of a little-endian organization is that it is tolerant of variations in operand size.
If the value 37 is stored as a word and then a byte is read from the same loca-
tion, the value 37 will be returned. On a big-endian machine, the value 0 will be
returned (the upper eight bits of the number 37, when stored in 32 bits). The
problem with the little-endian approach is that it seems to scramble the bytes of
integers, when read from left to right (see Figure 5.2a). Little-endian-ness makes
a bit more sense if one thinks of memory as a (byte-addressable) array of words
(Figure 5.2b). Among CISC machines, the x86 is little-endian, as was the Digi-
tal VAX. The IBM 360/370 and the Motorola 680x0 are big-endian. Most of the
first-generation RISC machines were also big-endian; most of the current RISC
machines can run in either mode.

Support for characters varies widely. Most CISC machines will perform arbi-
trary arithmetic and logical operations on one-byte quantities. Many CISC ma-
chines also provide instructions that perform operations on strings of characters,
such as copying, comparing, or searching. Most RISC machines will load and
store bytes from or to memory, but operate only on longer quantities in regis-
ters.

5.2.I Computer Arithmetic

Binary integers are almost universally represented in two related formats:
straightforward binary place-value for unsigned numbers, and two’s comple-
ment for signed numbers. An n-bit unsigned integer has a value in the range
0..2"—1, inclusive. An n-bit two’s complement integer has a value in the range
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Big-endian
432 436
|00|00|00|37|12|34|56|78|

Little-endian Increasing addresses o
432 436 .
|37|00|00|00|78|56|34|12|

Big-endian Little-endian

432 00| 00 00 [ 37 |435 435( 00 [ 00| 00 | 37 (432

436 12| 34| 56 | 78 439 439 12| 34| 56 | 78 |436

(b)

Increasing addresses Increasing addresses

Figure 5.2 Big-endian and little-endian byte orderings. (a) Two four-byte quantities, the num-
bers 37,6 and 1234 56 78,6, stored at addresses 432 and 436, respectively. (b) The same situation
with memory visualized as a byte-addressable array of words.

—2m=1, 2"=1 1, inclusive. Most instruction sets provide two forms of most of
the arithmetic operators: one for unsigned numbers and one for signed num-
bers. Even for languages in which integers are always signed, unsigned arithmetic
is important for the manipulation of addresses (e.g., pointers).

Floating-point numbers are the computer equivalent of scientific notation:
they consist of a mantissa or significand, sig, an exponent, exp, and (usually) a
sign bit, s. The value of a floating-point number is then —1° x sig x 2¢?. Prior
to the mid-1980s, floating-point formats and semantics tended to vary greatly
across brands and even models of computers. Different manufacturers made dif-
ferent choices regarding the number of bits in each field, their order, and their
internal representation. They also made different choices regarding the behavior
of arithmetic operators with respect to rounding, underflow, overflow, invalid
operations, and the representation of extremely small quantities. With the com-
pletion in 1985 of IEEE standard number 754, however, the situation changed
dramatically. Most processors developed in subsequent years conform to the for-
mats and semantics of this standard.

@ IN MORE DEPTH

We consider two’s complement and IEEE floating-point arithmetic in more detail
on the PLP CD.
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Instruction Set Architecture

On a RISC machine, computational instructions operate on values held in reg-
isters: a load instruction must be used to bring a value from memory into
a register before it can be used as an operand. CISC machines usually allow
all or most computational instructions to access operands directly in mem-
ory. RISC machines are therefore said to provide a load-store or register-register
architecture; CISC machines are said to provide a register-memory architec-
ture.

For binary operations, instructions on RISC machines generally specify three
registers: two sources and a destination. Some CISC machines (e.g., the VAX) also
provide three-address instructions. Others (e.g., the x86 and the 680x0) provide
only two-address instructions; one of the operands is always overwritten by the
result. Two-address instructions are more compact, but three-address instruc-
tions allow both operands to be reused in subsequent operations. This reuse is
crucial on RISC machines: it minimizes the number of artificial restrictions on
the ordering of instructions, affording the compiler considerably more freedom
in choosing an order that performs well.

5.3.1 Addressing Modes

One can imagine many different ways in which a computational instruction
might specify the location of its operands. A given operand might be in a reg-
ister, in memory, or, in the case of read-only constants, in the instruction itself.
If the operand is in memory, its address might be found in a register, in memory,
or in the instruction, or it might be derived from some combination of values
in various locations. Instruction sets differ greatly in the addressing modes they
provide to capture these various options.

As noted above, most RISC machines require that the operands of computa-
tional instructions reside in registers or the instruction. For load and store in-
structions, which are allowed to access memory, they typically support the dis-
placement addressing mode, in which the operand’s address is found by adding
some small constant (the displacement) to the value found in a specified regis-
ter (the base). The displacement is contained in the instruction. Displacement
addressing with respect to the frame pointer provides an easy way to access lo-
cal variables. Displacement addressing with a displacement of zero is sometimes
called register indirect addressing.

Some RISC machines, including the PowerPC and Sparc, also allow load and
store instructions to use an indexed addressing mode, in which the operand’s ad-
dress is found by adding the values in two registers. Indexed addressing is useful
for arrays: one register (the base) contains the address of the array; the second
(the index) contains the offset of the desired element.
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EXAMPLE 5.3

An if statement in x86
assembler

EXAMPLE 54

Compare and test
instructions

CISC machines typically provide a richer set of addressing modes, and allow
them to be used in computational instructions, as well as in loads and stores.
On the x86, for example, the address of an operand can be calculated by mul-
tiplying the value in one register by a small constant, adding the value found
in a second register, and then adding another small constant, all in one instruc-
tion.

5.3.1 Conditions and Branches

All instruction sets provide a branching mechanism to update the program
counter under program control. Branches allow compilers to implement con-
ditional statements, subroutines, and loops. Conditional branches are generally
controlled in one of two ways. On most CISC machines they use condition codes.
As mentioned in Section 5.1, condition codes are usually implemented as a set
of bits in a special processor status register. All or most of the arithmetic, logical,
and data-movement instructions update the condition codes as a side effect. The
exact number of bits varies from machine to machine, but three and four are
common: one bit each to indicate whether the instruction produced a zero value,
a negative value, and/or an overflow or carry. To implement the following test,
for example,

A=B+C
if A =0 then
body

a compiler for the x86! might generate

movl C, %eax ; move longword C into register eax

addl B, %eax ; add

movl heax, A ; and store

jne L1 ; branch (jump) if result not equal to zero

body
L1:

For cases in which the outcome of a branch depends on a value that has not
just been computed or moved, most machines provide compare and test in-
structions. Again on the x86:

I Readers familiar with the x86 should be warned that this example uses the assembler syntax of
the Gnu gcc compiler and its assembler, gas. This syntax differs in several ways from Microsoft
and Intel assembler. Most notably, it specifies operands in the opposite order. The instruction
addl B, %eax, for example, adds the value in B to the value in register %eax and leaves the
result in %ebx: in Gnu assembler the destination operand is listed second. In Intel and Microsoft
assembler it’s the other way around: add1l B, Y%eax would add the value in register %ebx to the
value in B and leave the result in B.
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if A < B then movl A, Yeax ; move long-word A into register eax
;ody cmpl B, Jeax ; compare to B
jg L1 ; branch (jump) if greater
body
L1:
if A > 0then testl Jeax, %eax ; compare jeax (A) to O
body jle L2 ; branch if less than or equal
body
L2:

The x86 cmpl instruction subtracts its source operand from its destination
operand and sets the condition codes according to the result, but it does not
overwrite the destination operand. The testl instruction ands its two operands
together and compares the result to zero. Most often, as shown here, the two
operands are the same. When they are different, one is typically a mask value that
allows the programmer or compiler to test individual bits or bits fields in the
other operand.

Unfortunately, traditional condition codes make it difficult to implement
some important performance enhancements. In particular, the fact that they are
set by almost every instruction tends to preclude implementations in which log-
ically unrelated instructions might be executed in between (or in parallel with)
the instruction that tests a condition and the branch that relies on the outcome
of the test. There are several possible ways to address this problem; the handling
of conditional branches is one of the areas in which extant RISC machines vary
most from one another. The ARM and Sparc architectures make setting of the
condition codes optional on an instruction-by-instruction basis. The PowerPC
provides eight separate sets of condition codes; compare and branch instructions
can specify the set to use. The MIPS has no condition codes (at least not for inte-
ger operations); it uses Boolean values in registers instead.

More precisely, where the x86 has 16 different branch instructions based on
arithmetic comparisons, the MIPS has only six. Four of these branch if the value
in a register is <, <, >, or > zero. The other two branch if the values in two reg-
isters are = or #. In a convention shared by most RISC machines, register zero is
defined to always contain the value zero, so the latter two instructions cover both
the remaining comparisons to zero and direct comparisons of registers for equal-
ity. More general register-register comparisons (signed and unsigned) require a
separate instruction to place a Boolean value in a register that is then named by
the branch instruction. Repeating the preceding examples on the MIPS, we get

if A < B then 1w $3, A ; load word: register 3 := A
body 1w $2, B ; register 2 := B
slt $2, $2, $3 ; register 2 := (B < A)
bne $2, $0, L1 ; branch if Boolean true (#0)
body

L1:
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if A > 0then blez $3, L2 ; branch if A <0

body body
L2:

By convention, destination registers are listed first in MIPS assembler (as they
are in assignment statements). The s1t instruction stands for “set less than”;
bne and blez stand for “branch if not equal” and “branch if less than or equal
to zero,” respectively. Note that the compiler has used bne to compare register 2
to the constant register 0.

/CHECK YOUR UNDERSTANDING

I. What is the world’s most popular instruction set architecture (for desktop
machines)?

What is the difference between big-endian and little-endian addressing?
What is the purpose of a cache?

Why do many machines have more than one level of cache?

How many processor cycles does it typically take to access primary (on-chip)
cache? How many cycles does it typically take to access main memory?

What is data alignment? Why do many processors insist upon it?
List four common formats (interpretations) for bits in memory.

What is IEEE standard number 754? Why is it important?

What are the tradeoffs between two-address and three-address instruction
formats?

[0. Describe at least five different addressing modes. Which of these are com-
monly supported on RISC machines?

[1. What are condition codes? Why do some architectures not provide them?
What do they provide instead?

Architecture and Implementation

The typical processor implementation consists of a collection of functional units,
one (or more) for each logically separable facet of processor activity: instruction
fetch, instruction decode, operand fetch from registers, arithmetic computation,
memory access, write-back of results to registers, and so on. One could imag-
ine an implementation in which all of the work for a particular instruction is
completed before work on the next instruction begins, and in fact this is how
many computers used to be constructed. The problem with this organization is
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that most of the functional units are idle most of the time. Using ideas originally
developed for supercomputers of the 1960s, processor implementations have in-
creasingly moved toward a pipelined organization, in which the functional units
work like the stations on an assembly line, with different instructions passing
through different pipeline stages concurrently. Pipelining is used in even the most
inexpensive personal computers today, and in all but the simplest processors for
the embedded market. A simple processor may have five or six pipeline stages.
The IBM PowerPC G5 has 21; the Intel Pentium 4E has 31.

By allowing (parts of) multiple instructions to execute in parallel, pipelining
can dramatically increase the number of instructions that can be completed per
second, but it is not a panacea. In particular, a pipeline will stall if the same func-
tional unit is needed in two different instructions simultaneously, or if an earlier
instruction has not yet produced a result by the time it is needed in a later in-
struction, or if the outcome of a conditional branch is not known (or guessed)
by the time the next instruction needs to be fetched.

We shall see in Section 5.5 that many stalls can be avoided by adding a little ex-
tra hardware and then choosing carefully among the various ways of translating
a given construct into target code. An important example occurs in the case of
floating-point arithmetic, which is typically much slower than integer arithmetic.
Rather than stall the entire pipeline while executing a floating-point instruction,
we can build a separate functional unit for floating-point math, and arrange for
it to operate on a separate set of floating-point registers. In effect, this strategy
leads to a pair of pipelines—one for integers and one for floating-point—that
share their first few stages. The integer branch of the pipeline can continue to ex-
ecute while the floating-point unit is busy, as long as subsequent instructions do
not require the floating-point result. The need to reorder, or schedule, instruc-
tions so that those that conflict with or depend on one another are separated
in time is one of the principal reasons why compiling for modern processors is
hard.

54.] Microprogramming

As technology advances, there are occasionally times when it becomes feasible to
design machines in a very different way. During the 1950s and the early 1960s, the
instruction set of a typical computer was implemented by soldering together large
numbers of discrete components (transistors, capacitors, etc.) that performed
the required operations. To build a faster computer, one generally designed new,
more powerful instructions, which required extra hardware. This strategy had
the unfortunate effect of requiring assembly language programmers (or compiler
writers, though there weren’t many of them back then) to learn a new language
every time a new and better computer came along.

A fundamental breakthrough occurred in the early 1960s, when IBM hit
upon the idea of microprogramming. Microprogramming allowed a company
to provide the same instruction set across a whole line of computers, from
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inexpensive slow machines to expensive fast machines. The basic idea was to
build a “microengine” in hardware that executed an interpreter program in
“firmware.” The interpreter in turn implemented the “machine language” of
the computer—in this case, the IBM 360 instruction set. More expensive ma-
chines had fancier microengines, with more direct support for the instructions
seen by the assembly-level programmer. The top-of-the-line machines had every-
thing in hardware. In effect, the architecture of the machine became an ab-
stract interface behind which hardware designers could hide implementation
details, much as the interfaces of modules in modern programming languages
allow software designers to limit the information available to users of an abstrac-
tion.

In addition to allowing the introduction of computer families, micropro-
gramming made it comparatively easy for architects to extend the instruction
set. Numerous studies were published in which researchers identified some
sequence of instructions that commonly occurred together (e.g., the instruc-
tions that jump to a subroutine and update bookkeeping information in the
stack) and then introduced a new instruction to perform the same function as
the sequence. The new instruction was usually faster than the sequence it re-
placed, and almost always shorter (and code size was more important then than
now).

54.1 Microprocessors

A second architectural breakthrough occurred in the mid-1970s, when very large-
scale integration (VLSI) chip technology reached the point at which a simple
microprogrammed processor could be implemented entirely on one inexpen-
sive chip. The chip boundary is important because it takes much more time and
power to drive signals across macroscopic output pins than it does across intra-
chip connections, and because the number of pins on a chip is limited by pack-
aging issues. With an entire processor on one chip, it became feasible to build
a commercially viable personal computer. Processor architectures of this era in-
clude the MOS Technology 6502, used in the Apple II and the Commodore 64,
and the Intel 8080 and Zilog Z80, used in the Radio Shack TRS-80 and various
CP/M machines. Continued improvements in VLSI technology led, by the mid-
1980s, to 32-bit microprogrammed microprocessors such as the Motorola 68000,
used in the original Apple Macintosh, and the Intel 80386, used in the first 32-bit
IBM PCs.

From an architectural standpoint, the principal impact of the microprocessor
revolution was to constrain, temporarily, the number of registers and the size of
operands. Where the IBM 360 (not a single-chip processor) operated on 32-bit
data, with 16 general purpose 32-bit registers, the Intel 8080 operated on 8-bit
data, with only seven 8-bit registers and a 16-bit stack pointer. Over time, as
VLSI density increased, registers and instruction sets expanded as well. Intel’s
32-bit 80386 was introduced in 1985.
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54.3 RISC

By the early 1980s, several factors converged to make possible a third architectural
breakthrough. First, VLSI technology reached the point at which a pipelined 32-
bit processor with a sufficiently simple instruction set could be implemented on
a single chip, without microprogramming. Second, improvements in processor
speed were beginning to outstrip improvements in memory speed, increasing
the relative penalty for accessing memory, and thereby increasing the pressure to
keep things in registers. Third, compiler technology had advanced to the point at
which compilers could often match (and sometimes exceed) the quality of code
produced by the best assembly language programmers. Taken together, these fac-
tors suggested a reduced instruction set computer (RISC) architecture with a fast,
all-hardware implementation, a comparatively low-level instruction set, a large
number of registers, and an optimizing compiler.

The advent of RISC machines ran counter to the ever-more-powerful-
instructions trend in processor design but was to a large extent consistent with
established trends for supercomputers. Supercomputer instruction sets had al-
ways been relatively simple and low-level, in order to facilitate pipelining. Among
other things, effective pipelining depends on having most instructions take the
same, constant number of cycles to execute, and on minimizing dependences
that would prevent a later instruction from starting execution before its prede-
cessors have finished. A major problem with the trend toward more complex
instruction sets was that it made it difficult to design high-performance imple-
mentations. Instructions on the VAX, for example, could vary in length from
one to more than 50 bytes, and in execution time from one to thousands of
cycles. Both of these factors tend to lead to pipeline stalls. Variable-length in-
structions make it difficult to even find the next instruction until the current one
has been studied extensively. Variable execution time makes it difficult to keep all
the pipeline stages busy. The original VAX (the 11/780) was shipped in 1978, but
it wasn’t until 1985 that Digital was able to ship a successfully pipelined version,
the 8600.%

The most basic rule of processor performance holds that total execution time
on any machine equals the number of instructions executed times the average
number of cycles per instruction times the length in time of a cycle. What we
might call the “CISC design philosophy” is to minimize execution time by re-
ducing the number of instructions, letting each instruction do more work. The
“RISC philosophy,” by contrast, is to minimize execution time by reducing the
length of the cycle and the number of (nonoverlapped) cycles per instruction
(CPI).

Recent RISC machines (and RISC-like implementations of the x86) attempt
to minimize CPI by executing as many instructions as possible in parallel. The

2 An alternative approach—to maintain microprogramming but pipeline the microengine—was
adopted by the 8800 and, more recently, by Intel’s Pentium Pro and its successors.
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PowerPC G5, for example, can have over 200 instructions simultaneously “in
flight” Some processors have very deep pipelines, allowing the work of an in-
struction to be divided into very short cycles. Many are superscalar: they have
multiple parallel pipelines, and start more than one instruction each cycle. (This
requires, of course, that the compiler and/or hardware identify instructions that
do not depend on one another, so that parallel execution is semantically indis-
tinguishable from sequential execution.) To minimize artificial dependences be-
tween instructions (as, for instance, when one instruction must finish using a
register as an operand before another instruction overwrites that register with
a new value), many machines perform register renaming, dynamically assigning
logically independent uses of the same architectural register to different loca-
tions in a larger set of physical (implementation) registers. High performance
processor implementations may actually execute mutually independent instruc-
tions out of order when they can increase instruction-level parallelism by doing
so0. These techniques dramatically increase implementation complexity but not
architectural complexity; in fact, it is architectural simplicity that makes them
possible.

54.4 Two Example Architectures: The x86 and MIPS

We can illustrate the differences between CISC and RISC machines by examin-
ing a representative pair of architectures. The x86 is the most widely used CISC
design—in fact, the most widely used processor architecture of any kind (outside
the embedded market). The original model, the 8086, was announced in 1978.
Major changes were introduced by the 8087, 80286, 80386, Pentium Pro, Pen-
tium/MMZX, Pentium III, and Pentium 4. While technically backward compati-
ble, these changes were often out of keeping with the philosophy of the earlier
generations. The result is a machine with an enormous number of stylistic in-
consistencies and special cases. AMD’s 64-bit extension to the x86, saddled as it
was with the need for backward compatibility, is even more complex. Early gen-
erations of the x86 were extensively microprogrammed. More recent generations
still use microprogramming for the more complex portions of the instruction set,
but simpler instructions are translated directly (in hardware) into between one
and four microinstructions that are in turn fed to a heavily pipelined, RISC-like
computational core.

The MIPS architecture, begun as a commercial spin-off of research at Stan-
ford University, is arguably the simplest of the commercial RISC machines. It
too has evolved, through five generations as of 2005, but with one exception—
a jump to 64-bit integer operands and addresses in 1991—the changes have been
relatively minor. MIPS processors were used by Digital Equipment Corp. for a
few years prior to the development of the (now defunct) Alpha architecture, and
by Silicon Graphics, Inc. throughout the 1990s. They are now used primarily in
embedded applications. MIPS-based tools are also widely used in academia. All
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f1:=0
goto L2
L1: 2 :=*r —— load
f1:=11+f2
r:=r1+8 —— floating-point numbers are 8 bytes long
r2:=r2-1

L2: ifr2 > 0 goto L1

Figure 5.3 Example of pseudo-assembly notation. The code shown sums the elements of a
floating-point vector of length n. At the beginning, integer register r1 is assumed to point to the
vector and register r2 is assumed to contain n. At the end, floating-point register f1 contains
the sum.

models of the MIPS are implemented entirely in hardware; they are not micro-
programmed.

® IN MORE DEPTH

Among the most significant differences between the x86 and MIPS are their
memory access mechanisms, their register sets, and the variety of instructions
they provide. Like all RISC machines, the MIPS allows only load and store in-
structions to access memory; all computation is done with values in registers.
Like most CISC machines, the x86 allows computational instructions to operate
on values in either registers or memory. It also provides a richer set of address-
ing modes. Like most RISC machines, the MIPS has 32 integer registers and 32
floating-point registers. The x86, by contrast, has only 8 of each, and most of the
floating-point instructions treat the floating-point registers as a tiny stack, rather
than naming them directly. The MIPS provides many fewer distinct instructions
than does the x86, and its instruction set is much more internally consistent; the
x86 has a huge number of special cases. All MIPS instructions are exactly 4 bytes
long. Instructions on the x86 vary from 1 to 17 bytes.

54.5 Pseudo-Assembly Notation

At various times throughout the remainder of this book, we will need to consider
sequences of machine instructions corresponding to some high-level language
construct. Rather than present these sequences in the assembly language of some
particular processor architecture, we will (in most cases) rely on a simple nota-
tion designed to represent a generic RISC machine. A brief example appears in
Figure 5.3.

The notation should in most cases be self-explanatory. It uses “assignment
statements” and operators reminiscent of high-level languages, but each line of
code corresponds to a single machine instruction, and registers are named ex-
plicitly. Control flow is based entirely on gotos and subroutine calls. Conditional
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tests assume that the hardware can perform a comparison and branch in a single
instruction, where the comparison tests the contents of a register against a small
constant or the contents of another register.

/CHECK YOUR UNDERSTANDING

[2. What is microprogramming? What breakthroughs did its invention make
possible?

[3. What technological threshold was crossed in the mid-1970s, enabling the in-
troduction of microprocessors? What subsequent threshold, crossed in the
early 1980s, made RISC machines possible?

[4. What is pipelining?

[5. Summarize the difference between the CISC and RISC philosophies in in-
struction set design.

[6. Why do RISC machines allow only load and store instructions to access mem-
ory?

[7. Name three CISC architectures. Name three RISC architectures. (If you're
stumped, see the Summary and Concluding Remarks [Section 5.6].)

[8. What three research groups share the credit for inventing RISC? (For this
you'll probably need to peek at the Bibliographic Notes [Section 5.9].)

[9. How can the designer of a pipelined machine cope with instructions (e.g.,
floating-point arithmetic) that take much longer than others to compute?

Compiling for Modern Processors

Programming a RISC machine by hand, in assembly language, is a tedious un-
dertaking. Only loads and stores can access memory, and then only with limited
addressing modes. Moreover the limited space available in fixed-size instructions
means that a nonintuitive two-instruction sequence is required to load a 32-bit
constant or to jump to an absolute address. In some sense, complexity that used
to be hidden in the microcode of CISC machines has been exported to the com-
piler.

Fortunately, most of the code for modern processors is generated by compil-
ers, which don’t get bored or make careless mistakes, and can easily deal with
comparatively primitive instructions. In fact, when compiling for recent imple-
mentations of the x86, compilers generally limit themselves to a small, RISC-like
subset of the instruction set, which the processor can pipeline effectively. Old
programs that make use of more complex instructions still run, but not as fast;
they don’t take full advantage of the hardware.
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The real difficulty in compiling for modern processors lies not in the need to
use primitive instructions, but in the need to keep the pipeline full and to make
effective use of registers. A user who trades in a Pentium IIT PC for one with
a Pentium 4 will typically find that while old programs run faster on the new
machine, the speed improvement is nowhere near as dramatic as the difference
in clock rates would lead one to expect. Improvements will generally be better
if one is able to obtain new program versions that have been compiled with the
newer processor in mind.

5.5.] Keeping the Pipeline Full

Four main problems may cause a pipelined processor to stall:

Cache misses. A load instruction or an instruction fetch may miss in the cache.

Resource hazards. 'Two concurrently executing instructions may need to use the
same functional unit at the same time.

Data hazards. An instruction may need an operand that has not yet been pro-
duced by an earlier but still executing instruction.

Control hazards. Until the outcome (and target) of a branch instruction is de-
termined, the processor does not know the location from which to fetch sub-
sequent instructions.

All of these problems are amenable, at least in part, to both hardware and
software solutions. On the hardware side, misses can generally be reduced by
building larger or more highly associative caches.’ Resource hazards, likewise, can
be addressed by building multiple copies of the various functional units (though
most processors don’t provide enough to avoid all possible conflicts). Misses,
resource hazards, and data hazards can all be addressed by out-of-order execution,
which allows a processor (at the cost of significant design complexity, chip area,
and power consumption) to consider a lengthy “window” of instructions, and
make progress on any of them for which operands and hardware resources are
available.

Of course, even out-of-order execution works only if the processor is able to
fetch instructions, and thus it is control hazards that have the largest potential
negative impact on performance. Branches constitute something like 10% of all
instructions in typical programs,* so even a one-cycle stall on every branch could

3 The degree of associativity of a cache is the number of distinct lines in the cache in which the
contents of a given memory location might be found. In a one-way associative (direct-mapped)
cache, each memory location maps to only one possible line in the cache. If the program uses two
locations that map to the same line, the contents of these two locations will keep evicting each
other, and many misses will result. More highly associative caches are slower but suffer fewer
such conflicts.

4 This is a very rough number. For the SPEC2000 benchmarks, Hennessy and Patterson report
percentages varying from 1 to 25 [HP03, pp. 138-139].
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be expected to slow down execution by 9% on average. On a deeply pipelined
machine one might naively expect to stall for more like five or even ten cycles
while waiting for a new program counter to be computed. To avoid such intol-
erable delays, most workstation-class processors incorporate hardware to predict
the outcome of each branch, based on past behavior, and to execute speculatively
down the predicted path. Assuming that it takes care to avoid any irreversible
operations, the processor will suffer stalls only in the case of an incorrect predic-
tion.

On the software side, the compiler has a major role to play in keeping the
pipeline full. For any given source program, there is an unbounded number
of possible translations into machine code. In general we should prefer shorter
translations over longer ones, but we must also consider the extent to which var-
ious translations will utilize the pipeline. On an in-order processor (one that
always executes instructions in the order they appear in the machine language
program), a stall will inevitably occur whenever a load is followed immedi-
ately by an instruction that needs the loaded value, because even a first-level
cache requires at least one extra cycle to respond. A stall may also occur when
the result of a slow-to-complete floating-point operation is needed too soon
by another instruction, when two concurrently executing instructions need the
same functional unit in the same cycle, or, on a superscalar processor, when
an instruction that uses a value is executed concurrently with the instruction
that produces it. In all these cases performance may improve significantly if the
compiler chooses a translation in which instructions appear in a different or-
der.

The general technique of reordering instructions at compile time so as to
maximize processor performance is known as instruction scheduling. On an in-
order processor the goal is to identify a valid order that will minimize pipeline
stalls at run time. To achieve this goal the compiler requires a detailed model
of the pipeline. On an out-of-order processor the goal is simply to maximize
instruction-level parallelism (ILP): the degree to which unrelated instructions lie
near one another in the instruction stream (and thus are likely to fall within the
processor’s instruction window). A compiler for such an out-of-order machine
may be able to make do with a less detailed processor model. At the same time, it
may need to ensure a higher degree of ILP, since out-of-order execution tends to
be found on machines with several pipelines.

Instruction scheduling can have a major impact on resource and data haz-
ards. On machines with so-called delayed branches it can also help with control
hazards. We will consider the topic of instruction scheduling in some detail in
Section ) 15.6. In the remainder of the current subsection we focus on the two
cases—loads and branches—where issues of instruction scheduling may actually
be embedded in the processor’s instruction set. Software techniques to reduce
the incidence of cache misses typically require large-scale restructuring of con-
trol flow or data layout. Though the better commercial compilers may reorganize
loops for better cache locality in scientific programs (a topic we will consider in
Section @) 15.7.2), most simply assume that every memory access will hit in the
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primary cache. The assumption is generally a good one: most programs on most
machines achieve a cache hit rate of well over 90% (often over 99%). The im-
portant goal is to make sure that the pipeline can continue to operate during the
time that it takes the cache to respond.

Loads

Consider a load instruction that hits in the primary cache. The number of cycles
that must elapse before a subsequent instruction can use the result is known as
the load delay. Most current machines have a one-cycle load delay. If the instruc-
tion immediately after a load attempts to use the loaded value, a one-cycle load
penalty (a pipeline stall) will occur. Longer pipelines can have load delays of two
or even three cycles.

To avoid load penalties (in the absence of out-of-order execution), the com-
piler may schedule one or more unrelated instructions into the delay slot(s) be-
tween a load and a subsequent use. In the following code, for example, a simple
in-order pipeline will incur a one-cycle penalty between the second and third
instructions.

r2:=r1 +r2
r3:=A ——load
r3:=r3+r2

If we swap the first two instructions, the penalty goes away:

r3:=A ——load
r2:=rl1 +r2
r3:=r3+r2

The second instruction gives the first instruction time enough to retrieve A be-
fore it is needed in the third instruction.

To maintain program correctness, an instruction-scheduling algorithm must
respect all dependences among instructions. These dependences come in three
varieties:

Flow dependence (also called true or read-after-write dependence): a later in-
struction uses a value produced by an earlier instruction.

Antidependence (also called write-after-read dependence): a later instruction
overwrites a value read by an earlier instruction.

Output dependence (also called write-after-write dependence): a later instruc-
tion overwrites a value written by a previous instruction.

A compiler can often eliminate anti- and output dependences by renaming
registers. In the following, for example, antidependences prevent us from mov-
ing either the instruction before the load or the one after the add into the delay
slot of the load.
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r3:=r1+3 -—immovable ¥
r=A ——load
r2:=r1+r2

r1:=3 - immovable?

If we use a different register as the target of the load, however, then either instruc-
tion can be moved:

3:=r1+3 —_— movabIeJ/
5:=A —— load
r2:=r5+r2

r1:=3 — movabIeT

The need to rename registers in order to move instructions can increase the num-
ber of registers needed by a given stretch of code. To maximize opportunities
for concurrent execution, out-of-order processor implementations may perform
register renaming dynamically in hardware, as noted in Section 5.4.3. These im-
plementations possess more physical registers than are visible in the instruction
set. As instructions are considered for execution, any that use the same archi-
tectural register for independent purposes are given separate physical copies on
which to do their work. If a processor does not perform hardware register re-
naming, then the compiler must balance the desire to eliminate pipeline stalls
against the desire to minimize the demand for registers (so that they can be
used to hold loop indices, local variables, and other comparatively long-lived
values).

In order to enforce the flow dependence between a load of a register and its
subsequent use, a processor must include so-called interlock hardware. To mini-
mize chip area, several of the very early RISC processors provided this hardware
only in the case of cache misses. The result was an architecturally visible delayed
load instruction, in which the value of the loaded register was undefined in the
immediately subsequent instruction slot. Filling the delay slot of a delayed load
with an unrelated instruction was a matter of correctness, not just of perfor-
mance. If a compiler was unable to find a suitable “real” instruction, it had to fill
the delay slot with a no-op (nop)—an instruction that has no effect. More recent
RISC machines have abandoned delayed loads; their implementations are fully
interlocked. Within processor families old binaries continue to work correctly;
the (nop) instructions are simply redundant.

Branches

Successful pipelining depends on knowing the address of the next instruction
before the current instruction has completed or has even been fully decoded.
With fixed-size instructions a processor can infer this address for straight-line
code but not for the code that follows a branch.’ In an attempt to minimize the

5 In this context, branches include not only the control flow for conditionals and loops, but also
subroutine calls and returns.
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impact of branch delays, several early RISC machines defined delayed branch
instructions similar to the delayed loads just described. In these machines the
instruction immediately after the branch is executed regardless of the outcome
of the branch. If the branch is not taken, all occurs as one would normally ex-
pect. If the branch is taken, however, the order of instructions is the branch itself,
the instruction after the branch, and then the instruction at the target of the
branch.

Because control may go either of two directions at a branch, finding an in-
struction to fill a delayed branch slot is slightly trickier than finding one to fill
a delayed load slot. The few instructions immediately before the branch are the
most obvious candidates to move, provided that they do not contribute to the
calculation that controls the branch, and that we don’t have to move them past
the target of some other branch:

B:=r2 ——movable \L
r:=r2 xr3 —_ immovable$
if r1 > 0 goto L1

nop

(This code sequence assumes that branches are delayed. Unless otherwise
noted, we will assume throughout the remainder of the book that they are
not.)

To address the problem of unfillable branch delay slots, some more recent
RISC machines provide nullifying conditional branch instructions. A nullifying
branch includes a bit that indicates the direction that the compiler “expects” the
branch to go. The hardware executes the instruction in the delay slot only if the
branch goes the expected direction. While the branch instruction is making its
way down the pipeline, the hardware begins to execute the next instruction. Ide-
ally, by the time it must begin the instruction after that, it will know the outcome
of the branch. If the outcome matches the prediction, then the pipeline will pro-
ceed without stalling. If the outcome does not match the prediction, then the
(not yet completed) instruction in the delay slot will be abandoned, along with
any instructions fetched from the target of the branch.

Unfortunately, as architects have moved to more aggressive, deeply pipelined
processor implementations, multicycle branch delays have become the norm, and
architecturally visible delay slots no longer suffice to hide them. A few processors
have been designed with an architecturally visible branch delay of more than one
cycle, but this is not generally considered a viable strategy: it is simply too dif-
ficult for the compiler to find enough instructions to schedule into the slots.
Several processors retain one-slot delayed branches (sometimes with optional
nullification) for the sake of backward compatibility and as a means of reduc-
ing, but not eliminating, the number of pipeline stalls (the penalty) associated
with a branch. With or without delayed branches, many processors also employ
elaborate hardware mechanisms to predict the outcome and targets of branches
early, so that the pipeline can continue anyway. When a prediction turns out to
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be incorrect, of course, the hardware must ensure that none of the incorrectly
fetched instructions have visible effects. Even when hardware is able to predict
the outcome of branches, it can be useful for the compiler to do so also, in order
to schedule instructions to minimize load delays in the most likely cross-branch
code paths.

5.5.2 Register Allocation

The load/store architecture of RISC machines explicitly acknowledges that mov-
ing data between registers and memory is expensive. A store instruction costs a
minimum of one cycle—more if several stores are executed in succession and the
memory system can’t keep up. A load instruction costs a minimum of one or two
cycles (depending on whether the delay slot can be filled) and can cost scores or
even hundreds of cycles in the event of a cache miss. These same costs are present
on CISC machines as well, even if they don’t stand out as prominently in a ca-
sual perusal of assembly code. In order to minimize the use of loads and stores,
a good compiler must keep things in registers whenever possible. We saw an ex-
ample in Chapter 1: the most striking difference between the “optimized” code
of Example 1.2 (page 3) and the naive code of Figure 1.5 (page 29) is the absence
in the former of most of the loads and stores. As improvements in processor
speed continue to outstrip improvements in memory speed, the cost in cycles
of a cache miss continues to increase, making good register usage increasingly
important.

Register allocation is typically a two-stage process. In the first stage the com-
piler identifies the portions of the abstract syntax tree that represent basic blocks:
straight-line sequences of code with no branches in or out. Within each basic
block it assigns a “virtual register” to each loaded or computed value. In effect,
this assignment amounts to generating code under the assumption that the tar-
get machine has an unbounded number of registers. In the second stage, the
compiler maps the virtual registers of an entire subroutine onto the architec-
tural (hardware) registers of the machine, using the same architectural register
when possible to hold different virtual registers at different times, and spilling
virtual registers to memory when there aren’t enough architectural registers to
go around.

We will examine this two-stage process in more detail in Section @) 15.8. For
now, we illustrate the ideas with a simple example. Suppose we are compiling a
function that computes the variance 0% of the contents of an n-element vector.
Mathematically,

o’ = %Z(xi—%)z = (%szz) -x

where xp ... x,_ are the elements of the vector,and X = 1/n ) _, x; is their average.
In pseudocode,
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1. vl = &A —— pointer to A[1]
2. v2:=n —— count of elements yet to go
3. w1 :=0.0 ——sum
4. w2 :=0.0 —— squares
5. goto L2
6. L1: w3:=*Vv1 —— Ali] (floating-point)
7. wl:=w1l + w3 ——accumulate sum
8. w4 = w3 x w3
9. w2 = w2 + w4 ——accumulate squares
10. vii=vl+38 —— 8 bytes per double-word
11. v2:i=v2 -1 —— decrement count
12. L2: ifv2 > 0goto L1
13. wb:=w1l/n —— average
14. w6 :=w2/n —— average of squares
15. w7 = wb x wh —— square of average
16. w8 1= wb — w7
17. ——return value in w8

Figure 5.4 RISC assembly code for a vector variance computation.

double sum :=0
double squares := 0
forintiin0..n—1
sum +:= Alil
squares +:= Ali] x Alil
double average := sum/n
return (squares / n) — (average X average)

After some simple code improvements and the assignment of virtual registers,
the assembly language for this function on a RISC machine is likely to look some-
thing like Figure 5.4. This code uses two integer virtual registers (v1 and v2) and
eight floating-point virtual registers (w1-w8). For each of these we can compute
the range over which the value in the register is useful, or live. This range extends
from the point at which the value is defined to the last point at which the value is
used. For register w4, for example, the range is only one instruction long, from
the assignment at line 8 to the use at line 9. For register v1, the range is the union
of two subranges, one that extends from the assignment at line 1 to the use (and
redefinition) at line 10 and another that extends from this redefinition around
the loop to the same spot again.

Once we have calculated live ranges for all virtual registers, we can create a
mapping onto the architectural registers of the machine. We can use a single ar-
chitectural register for two virtual registers only if their live ranges do not overlap.
If the number of architectural registers required is larger than the number avail-
able on the machine (after reserving a few for such special values as the stack
pointer), then at various points in the code we shall have to write (spill) some of
the virtual registers to memory in order to make room for the others.
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1. r1:=&A

2. r2:=n

3. f1:=0.0

4. f2:=0.0

5. goto L2

6. L1: f3:=*r1 ——no delay

7. f1:=f1 + 13 ——1-cycle wait for f3
8. f3:=f3 x 3 ——no delay

9. f2 =12 + 3 —— 4-cycle wait for 3
10. r:=r1+8 ——no delay
11. r2:=r2-1 ——no delay
12. L2: ifr2 > 0 goto L1 ——no delay
13. f1:=f1/n
14. f2:=f2/n
15. f1:=11 x f1
16. f1:=f2 -f1
17. S ——return value in f1

Figure 5.5 The vector variance example with physical registers assigned. Also shown in the
body of the loop are the number of stalled cycles that can be expected on a simple in-order
pipelined machine, assuming a one-cycle penalty for loads, a two-cycle penalty for floating-point
adds, and a four-cycle penalty for floating-point muittiplies.

In our example program, the live ranges for the two integer registers over-
lap, so they will have to be assigned to separate physical registers. Among the
floating-point registers, w1 overlaps with w2—w4, w2 overlaps with w3-w5,
wb overlaps with w6, and w6 overlaps with w7. There are several possible
mappings onto three physical floating-point registers, one of which is shown in
Figure 5.5.

Interaction with Instruction Scheduling

From the point of view of execution speed, the code in Figure 5.5 has at least
two problems. First, of the seven instructions in the loop, nearly half are devoted
to bookkeeping: updating the pointer, decrementing the loop count, and testing
the terminating condition. Second, when run on a pipelined machine, the code
is likely to experience a very high number of stalls. Exercise 5.15 explores a first
step toward addressing the bookkeeping overhead. We consider the stalls below,
and will return to both problems in more detail in Chapter 15.

We noted in Section 5.5.1 that floating-point instructions commonly employ a
separate, longer pipeline. Because they take more cycles to complete, there can be
a significant delay before their results are available for use in other instructions.
Suppose that floating-point add and multiply instructions must be followed by
two and four cycles, respectively, of unrelated computation (these are modest
figures; real machines often have longer delays). Also suppose that the result of
a load is not available for the usual one-cycle delay. In the context of our vector
variance example, these delays imply a total of five stalled cycles in every iteration
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1. r1 = &A

2. r2:=n

3. f1:=0.0

4. f2:=0.0

5. goto L2

6. L1: f3:=*r

7. rt:=r1+8 ——no delay

8. f4 =3 x 3 ——no delay

9. f1:=11 + 3 ——no delay
10. r2:=r2-1 ——no delay
11. f2:=12 +f4 —— 1-cycle wait for f4
12. L2: ifr2 > 0 goto L1 ——no delay
13. f1:=f1/n
14. f2:=12/n
15. f1:=1 x f1
16. f1:=f2-f1
17. . ——return value in 1

Figure 5.6 The vector variance example after instruction scheduling. All but one cycle of
delay has been eliminated. Because we have hoisted the multiply above the first floating-point
add, however, we need an extra physical floating-point register:

of the loop, even if the hardware successfully predicts the outcome and target
of the branch at the bottom. Added to the seven instructions themselves, this
implies a total of 12 cycles per loop iteration (i.e., per vector element).

By rescheduling the instructions in the loop (Figure 5.6) we can eliminate all
but one cycle of stall. This brings the total number of cycles per iteration down
to only eight, a reduction of 33%. The savings comes at a cost, however: we now
execute the multiply instruction before the first floating-point add, and we must
use an extra physical register to hold onto the add’s second argument. This effect
is not unusual: instruction scheduling has a tendency to overlap the live ranges
of virtual registers whose ranges were previously disjoint, leading to an increase
in the number of architectural registers required.

The Impact of Subroutine Calls

The register allocation scheme outlined above depends implicitly on the compiler
being able to see all of the code that will be executed over a given span of time
(e.g., an invocation of a subroutine). But what if that code includes calls to other
subroutines? If a subroutine were called from only one place in the program,
we could allocate registers (and schedule instructions) across both the caller and
the callee, effectively treating them as a single unit. Most of the time, however,
a subroutine is called from many different places in a program, and the code
improvements that we should like to make in the context of one caller will be
different from the ones that we should like to make in the context of a different
caller. For small, simple subroutines, the compiler may actually choose to expand
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a copy of the code at each call site, despite the resulting increase in code size.
This inlining of subroutines can be an important form of code improvement,
particularly for object-oriented languages, which tend to have very large numbers
of very small subroutines.

When inlining is not an option, most compilers treat each subroutine as an
independent unit. When a body of code for which we are attempting to perform
register allocation makes a call to a subroutine, there are several issues to con-
sider:

Parameters must generally be passed. Ideally, we should like to pass them in
registers.

Any registers that the callee will use internally but that contain useful values in
the caller must be spilled to memory and then reread when the callee returns.

Any variables that the callee might load from memory but that have been kept
in a register in the caller must be written back to memory before the call, so
that the callee will see the current value.

Any variables to which the callee might store a value in memory but that have
been kept in a register in the caller must be reread from memory when the
callee returns, so that the caller will see the current value.

If the caller does not know exactly what the callee might do (this is often
the case—the callee might not have been compiled yet), then the compiler must
make conservative assumptions. In particular, it must assume that the callee reads
and writes every variable visible in its scope. The caller must write any such vari-
able back to memory prior to the call if its current value is (only) in a register.
If it needs the value of such a variable after the call, it must reread it from mem-
ory.

With perfect knowledge of both the caller and the callee, the compiler could
arrange across subroutine calls to save and restore precisely those registers that
are both in use in the caller and needed (for internal purposes) in the callee.
Without this knowledge, we can choose either for the caller to save and restore
the registers it is using, before and after the call, or for the callee to save and
restore the registers it needs internally, at the top and bottom of the subroutine.
In practice it is conventional to choose the latter alternative for at least some static

DESIGN & IMPLEMENTATION

In-line subroutines

Subroutine inlining presents, to a large extent, a classic time-space tradeoff. In-
lining one instance of a subroutine replaces a relatively short calling sequence
with a subroutine body that is typically significantly longer. In return, it avoids
the execution overhead of the calling sequence, enables the compiler to per-
form code improvement across the call without performing interprocedural
analysis, and typically improves locality, especially in the L1 instruction cache.
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subset of the register set, for two reasons. First, while a subroutine may be called
from many locations, there is only one copy of the subroutine itself. Saving and
restoring registers in the callee, rather than the caller, can save substantially on
code size. Second, because many subroutines (particularly those that are called
most frequently) are very small and simple, the set of registers used in the callee
tends, on average, to be smaller than the set in use in the caller. We will look at
subroutine calling sequences in more detail in Chapter 8.

/ CHECK YOUR UNDERSTANDING

20. What is a delayed load instruction?

1. What is a nullifying branch instruction?

1). List the four principal causes of pipeline stalls.

13. What is a pipeline interlock?

24. What is instruction scheduling? Why is it important on modern machines?
15. What is branch prediction? Why is it important?

26. Describe the interaction between instruction scheduling and register alloca-
tion.

2]1. What is the live range of a register?

18. What is subroutine inlining? What benefits does it provide? When is it possi-
ble? What is its cost?

19. Summarize the impact of subroutine calls on register allocation.

Summary and Concluding Remarks

Computer architecture has a major impact on the sort of code that a compiler
must generate and the sorts of code improvements it must effect in order to ob-
tain acceptable performance. Since the early 1980s, the trend in processor design
has been to equip the compiler with more and more knowledge of the low-level
details of processor implementation, so that the generated code can use the im-
plementation to its fullest. This trend has blurred the traditional dividing line be-
tween processor architecture and implementation: while a compiler can generate
correct code based on an understanding of the architecture alone, it cannot gen-
erate fast code unless it understands the implementation as well. In effect, timing
issues that were once hidden in the microcode of microprogrammed processors
(and that made microprogramming an extremely difficult and arcane craft) have
been exported into the compiler.

In the first several sections of this chapter we surveyed the organization of
memory and the representation of data (including integer and floating-point
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arithmetic), the variety of typical assembly language instructions, and the evo-
lution of modern RISC machines. As examples we compared the x86 and the
MIPS. We also introduced a simple notation to be used for assembly language
examples in later chapters. In the final section we discussed why compiling for
modern machines is hard. The principal tasks include instruction scheduling, for
load and branch delays and for multiple functional units, and register allocation,
to minimize memory traffic. We noted that there is often a tension between these
tasks, and that both are made more difficult by frequent subroutine calls.

As of 2005 there are four principal commercial RISC architectures: ARM
(Intel, Texas Instruments, Motorola, and dozens of others), MIPS (SGI, NEC),
Power/PowerPC (IBM, Motorola, Apple), and Sparc (Sun, Texas Instruments,
Fujitsu). ARM is the property of ARM Holdings, PLC, an intellectual property
firm that relies on licensees for actual fabrication. Though ARM processors are
not generally employed in desktop or laptop computers, they power roughly
three-quarters of the world’s embedded systems, in everything from cell phones
and PDAs to remote controls and the dozens of devices in a modern automo-
bile. MIPS processors, likewise, are now principally employed in the embedded
market, though they were once common in desktop and high-end machines.

Despite the handicap of a CISC instruction set and the need for backward
compatibility, the x86 overwhelmingly dominates the desktop and laptop mar-
ket, largely due to the marketing prowess of IBM, Intel, and Microsoft, and to the
success of Intel and AMD in decoupling the architecture from the implementa-
tion. Modern implementations of the x86 incorporate a hardware front-end that
translates x86 code, on the fly, into a RISC-like internal format amenable to heav-
ily pipelined execution. Recent processors from Intel and AMD are competitive
with the fastest RISC alternatives.

With growing demand for a 64-bit address space, however, a major battle
ensued in the x86 world. Intel’s IA-64/Itanium processors provide an x86 com-
patibility mode, but it is implemented in a separate portion of the processor—
essentially a Pentium subprocessor embedded in the corner of the chip. Appli-
cation writers who want speed and address space enhancements were expected
to migrate to the (very different) IA-64 instruction set. AMD, by contrast, de-
veloped a backward-compatible 64-bit extension to the x86 instruction set; its
Opteron processors provide a much smoother upward migration path. In re-
sponse to market demand, Intel has licensed the Opteron architecture (which it
calls EM64T) for use in its 64-bit Pentium processors.

As processor and compiler technology continue to evolve, it is likely that
processor implementations will continue to become more complex, and that
compilers will take on additional tasks in order to harness that complexity. What
is not clear at this point is the form that processor complexity will take. While
traditional CISC machines remain popular almost entirely due to the need for
backward compatibility, both the CISC and RISC “design philosophies” are still
very much alive [SW94]. The “CISC-ish” philosophy says that newly available re-
sources (e.g., increases in chip area) should be used to implement functions that
must currently be performed in software, such as vector or graphics operations,
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decimal arithmetic, or new addressing modes; the “RISC-ish” philosophy says
that resources should be used to improve the speed of existing functions—for
example, by increasing cache size, employing faster but larger functional units,
or deepening the pipeline and decreasing the cycle time.

Where the first-generation RISC machines from different vendors differed
from one another only in minor details, the more recent generations are begin-
ning to diverge, with the ARM and MIPS taking the more RISC-ish approach,
the Power/PowerPC family taking the more CISC-ish approach, and the Sparc
somewhere in the middle. It is not yet clear which approach will ultimately prove
most effective, nor is it even clear that this is the interesting question anymore.
Communication latency and heat dissipation are increasingly the limiting fac-
tors on both clock speed and the exploitation of instruction-level parallelism.
To address these concerns, vendors are increasingly turning to chip-level multi-
processors and other novel architectures, which will almost certainly require new
compiler techniques. At perhaps no time in the past 20 years has the future of
microarchitecture been in so much flux. However it all turns out, it is clear that
processor and compiler technology will continue to evolve together.

Exercises

5.1 Modern compilers often find they don’t have enough registers to hold all the
things they’d like to hold. At the same time, VLSI technology has reached the
point at which there is room on a chip to hold many more registers than are
found in the typical ISA. Why are we still using instruction sets with only 32
integer registers? Why don’t we make, say, 64 or 128 of them visible to the
programmer?

5.2 Some early RISC machines (e.g., the SPARC) provided a “multiply step” in-
struction that performed one iteration of the standard shift-and-add algo-
rithm for binary integer multiplication. Speculate as to the rationale for this
instruction.

5.3 Consider sending a message containing a string of integers over the Inter-
net. What problems may occur if the sending and receiving machines have
different “endian-ness”? How might you solve these problems?

54 Why do you think RISC machines standardized on 32-bit instructions? Why
not some smaller or larger length? Why not variable lengths?

5.5 Consider a machine with three condition codes, N, Z, and O. N indicates
whether the most recent arithmetic operation produced a negative result. Z
indicates whether it produced a zero result. O indicates whether it produced
a result that cannot be represented in the available precision for the num-
bers being manipulated (i.e., outside the range 0..2" for unsigned arith-
metic, —2""1..2""1—1 for signed arithmetic). Suppose we wish to branch
on condition A op B, where A and B are unsigned binary numbers, for
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5.6

5.1

5.8

5.9

5.10

op € {<, <,=,#, >, >}. Suppose we subtract B from A, using two’s com-
plement arithmetic. For each of the six conditions, indicate the logical com-
bination of condition-code bits that should be used to trigger the branch.
Repeat the exercise on the assumption that A and B are signed, two’s com-
plement numbers.

We implied in Section 5.4.1 that if one adds a new instruction to a non-
pipelined, microcoded machine, the time required to execute that instruc-
tion is (to first approximation) independent of the time required to execute
all other instructions. Why is it not strictly independent? What factors could
cause overall execution to become slower when a new instruction is intro-

duced?

Suppose that loads constitute 25% of the typical instruction mix on a cer-
tain machine. Suppose further that 15% of these loads miss in the on-chip
(primary) cache, with a penalty of 40 cycles to reach main memory. What
is the contribution of cache misses to the average number of cycles per in-
struction? You may assume that instruction fetches always hit in the cache.
Now suppose that we add an off-chip (secondary) cache that can satisfy 90%
of the misses from the primary cache, at a penalty of only 10 cycles. What is
the effect on cycles per instruction?

Many recent processors provide a conditional move instruction that copies
one register into another if and only if the value in a third register is (or is
not) equal to zero. Give an example in which the use of conditional moves
leads to a shorter program.

The 64-bit AMD Opteron architecture is backward compatible with the x86
instruction set, just as the x86 is backward compatible with the 16-bit 8086
instruction set. Less transparently, the IA-64 Itanium is capable of running
legacy x86 applications in “compatibility mode.” But recent members of the
ARM and MIPS processor families support new 16-bit instructions as an
extension to the architecture. Why might designers have chosen to introduce
these new, less powerful modes of execution?

Consider the following code fragment in pseudo-assembler notation.

1. r1:=K

2. rd = &A

3. 16 := &B

4. 2:=r1x4

5. 3:=r14 +12

6. r3:=*r3 ——load (register indirect)
7. r5:=*r3 +12) —-load (displacement)
8. r3:=16+r12

9. r3:=*r3 ——load (register indirect)
10. r7:=*(r3 4+ 12) ——load (displacement)
11. 3:=r15+r7

12. S:=r13 —— store
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() Give a plausible explanation for this code (what might the correspond-
ing source code be doing?).

(b) Identify all flow, anti-, and output dependences.

() Schedule the code to minimize load delays on a single-pipeline, in-order
processor.

(d) Can you do better if you rename registers?

With the development of deeper, more complex pipelines, delayed loads and
branches have become significantly less appealing as features of a RISC in-
struction set. Why is it that designers have been able to eliminate delayed
loads in more recent machines, but have had to retain delayed branches?

Some processors, including the PowerPC and recent members of the
x86 family, require one or more cycles to elapse between a condition-
determining instruction and a branch instruction that uses that condition.
What options does a scheduler have for filling such delays?

Branch prediction can be performed statically (in the compiler) or dynam-
ically (in hardware). In the static approach, the compiler guesses which way
the branch will usually go, encodes this guess in the instruction, and sched-
ules instructions for the expected path. In the dynamic approach, the hard-
ware keeps track of the outcome of recent branches, notices branches or
patterns of branches that recur, and predicts that the patterns will continue
in the future. Discuss the tradeoffs between these two approaches. What are
their comparative advantages and disadvantages?

Consider a machine with a three-cycle penalty for incorrectly predicted
branches and a zero-cycle penalty for correctly predicted branches. Sup-
pose that in a typical program 20% of the instructions are conditional
branches, which the compiler or hardware manages to predict correctly 75%
of the time. What is the impact of incorrect predictions on the average
number of cycles per instruction? Suppose the accuracy of branch predic-
tion can be increased to 90%. What is the impact on cycles per instruc-
tion?

Suppose that the number of cycles per instruction would be 1.5 with
perfect branch prediction. What is the percentage slowdown caused by mis-
predicted branches? Now suppose that we have a superscalar processor on
which the number of cycles per instruction would be 0.6 with perfect branch
prediction. Now what is the percentage slowdown caused by mispredicted
branches? What do your answers tell you about the importance of branch
prediction on superscalar machines?

Consider the code in Figure 5.6. In an attempt to eliminate the remaining
delay and reduce the overhead of the bookkeeping (loop control) instruc-
tions, one might consider unrolling the loop—that is, creating a new loop in
which each iteration performs the work of k iterations of the original loop.
Show the code for k = 2. You may assume that # is even and that your target
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machine supports displacement addressing. Schedule instructions as tightly
as you can. How many cycles does your loop consume per vector element?

© 5.16-5.23 In More Depth.

5.24

5.25

5.26

5.21

5.28

5.29

5.30

Explorations

Skip ahead to the sidebar on decimal types on page 314. Write algorithms
to convert BCD numbers to binary, and vice versa. Try writing the routines
in assembly language for your favorite machine (if your machine has special
instructions for this purpose, pretend you're not allowed to use them). How
many cycles are required for the conversion?

Is microprogramming an idea that has outlived its usefulness, or are there
application domains for which it still makes sense to build a micropro-
grammed machine? Defend your answer.

If you have access to both CISC and RISC machines, compile a few pro-
grams for both machines and compare the size of the target code. Can you
generalize about the “space penalty” of RISC code?

Several computers have provided more general versions of the conditional
move instructions described in Exercise 5.8. Examples include the c. 1965
IBM ACS, the Cray 1, the HP PA-RISC, the ARM, and the Intel IA-64 (Ita-
nium). General purpose conditional execution is sometimes known as pred-
ication.

Learn how predication works in ARM or IA-64. Explain how it can
sometimes improve performance even when it causes the processor to exe-
cute more instructions.

If you have access to computers of more than one type, compile a few pro-
grams on each machine and time their execution. (If possible, use the same
compiler [e.g., gcc] and options on each machine.) Discuss the factors that
may contribute to different run times. How closely do the ratios of run
times mirror the ratios of clock rates? Why don’t they mirror them exactly?

Branch prediction can be characterized as control speculation: it makes a
guess about the future control flow of the program that saves enough time
when it’s right to outweigh the cost of cleanup when it’s wrong. Some re-
searchers have proposed the complementary notion of value speculation, in
which the processor would predict the value to be returned by a cache miss,
and proceed on the basis of that guess. What do you think of this idea? How
might you evaluate its potential?

Can speculation be useful in software? How might you (or a compiler or
other tool) be able to improve performance by making guesses that are
subject to future verification, with (software) rollback when wrong? (Hint:
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Think about operations that require communication over slow Internet
links.)

531 Translate the high-level pseudocode for vector variance (Example 5.13) into
your favorite programming language, and run it through your favorite com-
piler. Examine the resulting assembly language. Experiment with different
levels of optimization (code improvement). Discuss the quality of the code
produced.

531 Try to write a code fragment in your favorite programming language that
requires so many registers that your favorite compiler is forced to spill some
registers to memory (compile with a high level of optimization). How com-
plex does your code have to be?

5.33 If you have access to a compiler that generates code for a machine with ar-
chitecturally visible load delays, run some programs through it and evaluate
the degree of success it has in filling delay slots (an unfilled slot will contain
a nop instruction). What percentage of slots is filled? Suppose the machine
had interlocked loads. How much space could be saved in typical executable
programs if the nops were eliminated?

5.34 Experiment with small subroutines in C++ to see how much time can be
saved by expanding them inline.

© 5.35-5.37 In More Depth.
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group at IBM’s T. J. Watson Research Center, led by John Cocke. IBM’s Power
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“RISC”) was led by David Patterson [PD80, Pat85] at UC Berkeley. The commer-
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of Cooper and Torczon [CT04] are excellent sources of information on instruc-
tion scheduling, register allocation, subroutine optimization, and other aspects
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Core Issues in Language Design

Having laid the foundation in Part I, we now turn to issues that lie at the core of most programming
languages: control flow, data types, and abstractions of both control and data.

Chapter 6 considers control flow, including expression evaluation, sequencing, selection, iter-
ation, and recursion. In many cases we will see design decisions that reflect the sometimes com-
plementary but often competing goals of conceptual clarity and efficient implementation. Several
issues, including the distinction between references and values and between applicative (eager) and
lazy evaluation will recur in later chapters.

Chapter 7, the longest in the book, considers the subject of types. It begins with type systems
and type checking, including the notions of equivalence, compatibility, and inference of types. It
then presents a survey of high-level type constructors, including records and variants, arrays, strings,
sets, pointers, lists, and files. The section on pointers includes an introduction to garbage collection
techniques.

Both control and data are amenable to abstraction, the process whereby complexity is hidden be-
hind a simple and well-defined interface. Control abstraction is the subject of Chapter 8. Subroutines
are the most common control abstraction, but we also consider exceptions and coroutines, and re-
turn briefly to the subjects of continuations and iterators, introduced in Chapter 6. The coverage of
subroutines includes calling sequences, parameter passing mechanisms, and generics, which support
parameterization over types.

Chapter 9 returns to the subject of data abstraction, introduced in Chapter 3. In many mod-

ern languages this subject takes the form of object orientation, characterized by an encapsulation

mechanism, inheritance, and dynamic method dispatch (subtype polymorphism). Our coverage of

object-oriented languages will also touch on constructors, access control, polymorphism, closures,

and multiple and mix-in inheritance.







Control Flow

Having considered the mechanisms that a compiler uses to enforce se-
mantic rules (Chapter 4) and the characteristics of the target machines for which
compilers must generate code (Chapter 5), we now return to core issues in lan-
guage design. Specifically, we turn in this chapter to the issue of control flow or
ordering in program execution. Ordering is fundamental to most (though not all)
models of computing. It determines what should be done first, what second, and
so forth, to accomplish some desired task. We can organize the language mecha-
nisms used to specify ordering into seven principal categories.

g

[,

&

sequencing: Statements are to be executed (or expressions evaluated) in a cer-
tain specified order—usually the order in which they appear in the program
text.

selection: Depending on some run-time condition, a choice is to be made
among two or more statements or expressions. The most common selection
constructs are if and case (switch) statements. Selection is also sometimes
referred to as alternation.

. iteration: A given fragment of code is to be executed repeatedly, either a cer-

tain number of times or until a certain run-time condition is true. Iteration
constructs include while, do, and repeat loops.

. procedural abstraction: A potentially complex collection of control constructs

(a subroutine) is encapsulated in a way that allows it to be treated as a single
unit, often subject to parameterization.

recursion: An expression is defined in terms of (simpler versions of) itself, ei-
ther directly or indirectly; the computational model requires a stack on which
to save information about partially evaluated instances of the expression. Re-
cursion is usually defined by means of self-referential subroutines.

concurrency: Two or more program fragments are to be executed/evaluated
“at the same time,” either in parallel on separate processors or interleaved on
a single processor in a way that achieves the same effect.

233
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EXAMPLE 6.'

A typical function call

7. nondeterminacy: The ordering or choice among statements or expressions is
deliberately left unspecified, implying that any alternative will lead to correct
results. Some languages require the choice to be random, or fair, in some for-
mal sense of the word.

Though the syntactic and semantic details vary from language to language, these
seven principal categories cover all of the control-flow constructs and mecha-
nisms found in most programming languages. A programmer who thinks in
terms of these categories, rather than the syntax of some particular language,
will find it easy to learn new languages, evaluate the tradeoffs among languages,
and design and reason about algorithms in a language-independent way.

Subroutines are the subject of Chapter 8. Concurrency is the subject of Chap-
ter 12. The bulk of this chapter (Sections 6.3 through 6.7) is devoted to a study
of the five remaining categories. We begin in Section 6.1 by examining expres-
sion evaluation. We consider the syntactic form of expressions, the precedence
and associativity of operators, the order of evaluation of operands, and the se-
mantics of the assighment statement. We focus in particular on the distinction
between variables that hold a value and variables that hold a reference to a value;
this distinction will play an important role many times in future chapters. In Sec-
tion 6.2 we consider the difference between structured and unstructured (goto-
based) control flow.

The relative importance of different categories of control flow varies signif-
icantly among the different classes of programming languages. Sequencing, for
example, is central to imperative (von Neumann and object-oriented) languages,
but plays a relatively minor role in functional languages, which emphasize the
evaluation of expressions, deemphasizing or eliminating statements (e.g., assign-
ments) that affect program output in any way other than through the return
of a value. Similarly, functional languages make heavy use of recursion, whereas
imperative languages tend to emphasize iteration. Logic languages tend to deem-
phasize or hide the issue of control flow entirely: the programmer simply specifies
a set of inference rules; the language implementation must find an order in which
to apply those rules that will allow it to deduce values that satisfy some desired

property.

Expression Evaluation

An expression generally consists of either a simple object (e.g., a literal constant,
or a named variable or constant) or an operator or function applied to a collection
of operands or arguments, each of which in turn is an expression. It is conven-
tional to use the term operator for built-in functions that use special, simple syn-
tax, and to use the term operand for the argument of an operator. In Algol-family
languages, function calls consist of a function name followed by a parenthesized,
comma-separated list of arguments, as in
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my_func(A, B, C)

Algol-family operators are simpler: they typically take only one or two argu-
ments, and dispense with the parentheses and commas:

a+b

- C

As we saw in Section 3.6.2, some languages define the operators as syntactic sugar
for more “normal”-looking functions. In Ada, for example, a + b is short for
"+"(a, b);in C++, a + b is short for a.operator+(b).

In general, a language may specify that function calls (operator invocations)
employ prefix, infix, or postfix notation. These terms indicate, respectively,
whether the function name appears before, among, or after its several arguments.
Most imperative languages use infix notation for binary operators and prefix no-
tation for unary operators and other functions (with parentheses around the ar-
guments). Lisp uses prefix notation for all functions but places the function name
inside the parentheses, in what is known as Cambridge Polish! notation:

(x (+13)2) ; that would be (1 + 3) * 2 in infix
(append a b ¢ my_list)

A few languages, notably the R scripting language, allow the user to create
new infix operators. Smalltalk uses infix notation for all functions (which it calls
messages), both built-in and user-defined. The following Smalltalk statement
sends a “displayOn: at:” message to graphical object myBox, with arguments
myScreen and 100050 (a pixel location). It corresponds to what other languages
would call the invocation of the “displayOn: at:” function with arguments
myBox, myScreen, and 100@50.

myBox displayOn: myScreen at: 100050

This sort of multiword infix notation occurs occasionally in Algol-family lan-
guages as well.? In Algol one can say

a := if b <> 0 then a/b else 0;

Here “if...then...else” is a three-operand infix operator. The equivalent op-

»,

erator in Cis written “... 7 ... : ...”™:
a=b!=07?a/b: 0;

Postfix notation is used for most functions in Postscript, Forth, the input lan-
guage of certain hand-held calculators, and the intermediate code of some com-

I Prefix notation was popularized by Polish logicians of the early 20th century; Lisp-like parenthe-
sized syntax was first employed (for noncomputational purposes) by philosopher W. V. Quine
of Harvard University (Cambridge, MA).

2 Most authors use the term “infix” only for binary operators. Multiword operators may be called
“mixfix” or left unnamed.
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A complicated Fortran
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EXAMPLE 67

Precedence in four
influential languages

EXAMPLE 6.8

A “gotcha” in Pascal
precedence

pilers. Postfix appears in a few places in other languages as well. Examples in-
clude the pointer dereferencing operator () of Pascal and the post-increment
and -decrement operators (++ and --) of C and its descendants.

6.1.] Precedence and Associativity

Most languages provide a rich set of built-in arithmetic and logical operators.
When written in infix notation, without parentheses, these operators lead to am-
biguity as to what is an operand of what. In Fortran, for example, which uses
*x for exponentiation, how should we parse a + b * c**dx*e/f? Should this
group as

((((a + b) * c)**xd)*xe)/f
or

a + (((b * c)xxd)**x(e/f))
or

a + ((b * (cx*x(d**xe)))/f)

or yet some other option? (In Fortran, the answer is the last of the options
shown.)

In any given language, the choice among alternative evaluation orders depends
on the precedence and associativity of operators, concepts we introduced in Sec-
tion 2.1.3. Issues of precedence and associativity do not arise in prefix or postfix
notation.

Precedence rules specify that certain operators, in the absence of parentheses,
group “more tightly” than other operators. Associativity rules specify that se-
quences of operators of equal precedence group to the right or to the left. In most
languages multiplication and division group more tightly than addition and sub-
traction. Other levels of precedence vary widely from one language to another.
Figure 6.1 shows the levels of precedence for several well-known languages.

The precedence structure of C (and, with minor variations, of its descendants,
C++, Java, and C#) is substantially richer than that of most other languages. It
is, in fact, richer than shown in Figure 6.1, because several additional constructs,
including type casts, function calls, array subscripting, and record field selection,
are classified as operators in C. It is probably fair to say that most C programmers
do not remember all of their language’s precedence levels. The intent of the lan-
guage designers was presumably to ensure that “the right thing” will usually hap-
pen when parentheses are not used to force a particular evaluation order. Rather
than count on this, however, the wise programmer will consult the manual or
add parentheses.

It is also probably fair to say that the relatively flat precedence hierarchy of
Pascal is a mistake. In particular, novice Pascal programmers frequently write
conditions like



6.1 Expression Evaluation 237

Fortran Pascal C Ada
++, -= (post-inc., dec.)
*k not ++, -= (pre-inc., dec.), abs (absolute value),
+, = (unary), not, **
&, * (address, contents of),
I, ~ (logical, bit-wise not)
*, / *, /, * (binary), /, *, /, mod, rem

div, mod, and

% (modulo division)

+, = (unary +, = (unary and +, - (binary) +, = (unary)
and binary) binary), or
<<, >> +, - (binary),
(left and right bit shift) & (concatenation)
.eq., .ne., .1t., <, <=, >, >=, <, <=, >, >= =, /=,<,<=,>,>=
.le., .gt., .ge. =, <>, IN (inequality tests)
(comparisons)
.not. ==, 1= (equality tests)
& (bit-wise and)
~ (bit-wise exclusive or)
| (bit-wise inclusive or)
.and && (logical and) and, or, xor
(logical operators)
.or. I'l (logical or)

.eqv., .neqv.
(logical comparisons)

7: (if...then...else)

=, =, -5, %=, /=) %=)
>>=, <<=, &=, "=, |=
(assignment)

, (sequencing)

Figure 6.1 Operator precedence levels in Fortran, Pascal, C, and Ada. The operators at the top of the figure group most

tightly.

if A < B and C < D then (* ouch *)

Unless A, B, C, and D are all of type Boolean, which is unlikely, this code will
result in a static semantic error, since the rules of precedence cause it to group
as A < (B and C) < D. (And even if all four operands are of type Boolean, the
result is almost sure to be something other than what the programmer intended.)
Most languages avoid this problem by giving arithmetic operators higher prece-
dence than relational (comparison) operators, which in turn have higher prece-
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dence than the logical operators. Notable exceptions include APL and Smalltalk,
in which all operators are of equal precedence; parentheses must be used to spec-
ify grouping.

Associativity rules are somewhat more uniform across languages, but still dis-
play some variety. The basic arithmetic operators almost always associate left-to-
right, so 9 - 3 - 2 is 4 and not 8. In Fortran, as noted above, the exponen-
tiation operator (**) follows standard mathematical convention and associates
right-to-left, so 4**3**2 is 262144 and not 4096. In Ada, exponentiation does
not associate: one must write either (4**3)**2 or 4** (3%*2); the language syn-
tax does not allow the unparenthesized form. In languages that allow assignments
inside expressions (an option we will consider more in Section 6.1.2), assignment
associates right-to-left. ThusinC,a = b = a + cassignsa + c into b and then
assigns the same value into a.

Because the rules for precedence and associativity vary so much from one lan-
guage to another, a programmer who works in several languages is wise to make
liberal use of parentheses.

6.1.2 Assignments

In a purely functional language, expressions are the building blocks of programs,
and computation consists entirely of expression evaluation. The effect of any in-
dividual expression on the overall computation is limited to the value that ex-
pression provides to its surrounding context. Complex computations employ re-
cursion to generate a potentially unbounded number of values, expressions, and
contexts.

In an imperative language, by contrast, computation typically consists of an
ordered series of changes to the values of variables in memory. Assignments pro-
vide the principal means by which to make the changes. Each assignment takes
a pair of arguments: a value and a reference to a variable into which the value
should be placed.

In general, a programming language construct is said to have a side effect if
it influences subsequent computation (and ultimately program output) in any
way other than by returning a value for use in the surrounding context. Purely
functional languages have no side effects. As a result, the value of an expression
in such a language depends only on the referencing environment in which the
expression is evaluated, not on the time at which the evaluation occurs. If an
expression yields a certain value at one point in time, it is guaranteed to yield
the same value at any point in time. In fancier terms, expressions in a purely
functional language are said to be referentially transparent.

By contrast, imperative programming is sometimes described as “computing
by means of side effects.” While the evaluation of an assignment may sometimes
yield a value, what we really care about is the fact that it changes the value of a
variable, thereby affecting the result of any later computation in which the vari-
able appears.
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Many (though not all) imperative languages distinguish between expressions,
which always produce a value, and may or may not have side effects, and state-
ments, which are executed solely for their side effects, and return no useful value.

References and Values

On the surface, assignment appears to be a very straightforward operation. Be-
low the surface, however, there are some subtle but important differences in the
semantics of assignment in different imperative languages. These differences are
often invisible, because they do not affect the behavior of simple programs. They
have a major impact, however, on programs that use pointers, and will be ex-
plored in further detail in Section 7.7. We provide an introduction to the issues
here.
Consider the following assignments in C:

d = a;
a=>b+ c;

In the first statement, the right-hand side of the assignment refers to the value of
a, which we wish to place into d. In the second statement, the left-hand side
refers to the location of a, where we want to put the sum of b and c. Both
interpretations—value and location—are possible because a variable in C (and
in Pascal, Ada, and many other languages) is a named container for a value. We
sometimes say that languages like C use a value model of variables. Because of
their use on the left-hand side of assignment statements, expressions that denote
locations are referred to as I-values. Expressions that denote values (possibly the
value stored in a location) are referred to as r-values. Under a value model of vari-
ables, a given expression can be either an l-value or an r-value, depending on the
context in which it appears.

Of course, not all expressions can be 1-values, because not all values have a
location, and not all names are variables. In most languages it makes no sense
tosay 2 + 3 = a,or even a = 2 + 3, if a is the name of a constant. By the
same token, not all I-values are simple names; both 1-values and r-values can be
complicated expressions. In C one may write

(£(a)+3)->blc] = 2;

In this expression f (a) returns a pointer to some element of an array of struc-
tures (records). The assignment places the value 2 into the c-th element of field
b of the third structure after the one to which £’s return value points.

In C++ it is even possible for a function to return a “reference” to a structure,
rather than a pointer to it, allowing one to write

g(a) .blcl = 2;

We will consider references further in Section 8.3.1.
Several languages make the distinction between l-values and r-values more ex-
plicit by employing a reference model of variables. In Clu, for example, a variable
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references
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Figure 6.2 The value (left) and reference (right) models of variables. Under the reference
model, it becomes important to distinguish between variables that refer to the same object and
variables that refer to different objects whose values happen (at the moment) to be equal.

is not a named container for a value; rather, it is a named reference to a value. The
following fragment of code is syntactically valid in both Pascal and Clu.

= 2
c := b;
b + c;

A Pascal programmer might describe this code by saying: “We put the value 2
in b and then copy it into c. We then read these values, add them together, and
place the resulting 4 in a.” The Clu programmer would say: “We let b refer to 2
and then let ¢ refer to it also. We then pass these references to the + operator, and
let a refer to the result, namely 4.”

These two ways of thinking are illustrated in Figure 6.2. With a value model
of variables, as in Pascal, any integer variable can contain the value 2. With a
reference model of variables, as in Clu, there is (at least conceptually) only one
2—a sort of Platonic Ideal—to which any variable can refer. The practical effect
is the same in this example, because integers are immutable: the value of 2 never
changes, so we can’t tell the difference between two copies of the number 2 and
two references to “the” number 2.

In a language that uses the reference model, every variable is an 1-value. When
it appears in a context that expects an r-value, it must be dereferenced to obtain
the value to which it refers. In most languages with a reference model (including
Clu), the dereference is implicit and automatic. In ML, the programmer must

DESIGN & IMPLEMENTATION

Implementing the reference model

It is tempting to assume that the reference model of variables is inherently
more expensive than the value model, since a naive implementation would
require a level of indirection on every access. As we shall see in Section 7.7.1,
however, most compilers for languages with a reference model use multiple
copies of immutable objects for the sake of efficiency, achieving exactly the
same performance for simple types that they would with a value model.
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use an explicit dereference operator, denoted with a prefix exclamation point. We
will revisit ML pointers in Section 7.7.1.

The difference between the value and reference models of variables becomes
particularly important (specifically, it can affect program output and behavior) if
the values to which variables refer can change “in place,” as they do in many pro-
grams with linked data structures, or if it is possible for variables to refer to dif-
ferent objects that happen to have the “same” value. In this latter case it becomes
important to distinguish between variables that refer to the same object and vari-
ables that refer to different objects whose values happen (at the moment) to be
equal. (Lisp, as we shall see in Sections 7.10 and 10.3.3, provides more than one
notion of equality, to accommodate this distinction.) We will discuss the value
and reference models of variables further in Section 7.7. Languages that employ
(some variant of) the reference model include Algol 68, Clu, Lisp/Scheme, ML,
Haskell, and Smalltalk.

Java uses a value model for built-in types and a reference model for user-
defined types (classes). C# and Eiffel allow the programmer to choose between
the value and reference models for each individual user-defined type. A C# class
is a reference type; a struct is a value type.

Boxing

A drawback of using a value model for built-in types is that they can’t be passed
uniformly to methods that expect class typed parameters. Early versions of Java,
for example, required the programmer to “wrap” objects of built-in types inside
corresponding predefined class types in order to insert them in standard con-
tainer (collection) classes:

import java.util.Hashtable;
Hashtable ht = new Hashtable();

Integer N = new Integer(13); // Integer is a "wrapper" class
ht.put (N, new Integer(31));

Integer M = (Integer) ht.get(N);

int m = M.intValue();

More recent versions of Java perform automatic boxing and unboxing opera-
tions that avoid the need for wrappers in many cases:

ht.put (13, 31);
int m = (Integer) ht.get(13);

Here the compiler creates hidden Integer objects to hold the values 13 and 31,
so they may be passed to put as references. The Integer cast on the return value
is still needed, to make sure that the hash table entry for 13 is really an integer
and not, say, a floating-point number or string.

C# “boxes” not only the arguments, but the cast as well, eliminating the need
for the Integer class entirely. C# also provides so-called indexers (Section 9.1,
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page 474), which can be used to overload the subscripting ([ 1) operator, giving
the hash table array-like syntax:

ht[13] = 31;
int m = (int) ht[13];

Orthogonality

One of the principal design goals of Algol 68 was to make the various features
of the language as orthogonal as possible. Orthogonality means that features can
be used in any combination, the combinations all make sense, and the meaning
of a given feature is consistent, regardless of the other features with which it is
combined. The name is meant to draw an explicit analogy to orthogonal vectors
in linear algebra: none of the vectors in an orthogonal set depends on (or can
be expressed in terms of) the others, and all are needed in order to describe the
vector space as a whole.

Algol 68 was one of the first languages to make orthogonality a principal de-
sign goal, and in fact few languages since have given the goal such weight. Among
other things, Algol 68 is said to be expression-oriented: it has no separate notion
of statement. Arbitrary expressions can appear in contexts that would call for
a statement in a language like Pascal, and constructs that are considered to be
statements in other languages can appear within expressions. The following, for
example, is valid in Algol 68:

begin
a := if b < ¢ then d else e;
a := begin f(b); g(c) end;
g(d);
2+ 3

end

Here the value of the if...then...else construct is either the value of its then
part or the value of its else part, depending on the value of the condition. The
value of the “statement list” on the right-hand side of the second assignment
is the value of its final “statement,” namely the return value of g(c). There is
no need to distinguish between procedures and functions, because every sub-
routine call returns a value. The value returned by g(d) is discarded in this
example. Finally, the value of the code fragment as a whole is 5, the sum of 2
and 3.

C takes an approach intermediate between Pascal and Algol 68. It distinguishes
between statements and expressions, but one of the classes of statement is an “ex-
pression statement,” which computes the value of an expression and then throws
it away. In effect, this allows an expression to appear in any context that would
require a statement in most other languages. C also provides special expression
forms for selection and sequencing. Algol 60 defines if...then...else as both
a statement and an expression.

Both Algol 68 and C allow assignments within expressions. The value of an
assignment is simply the value of its right-hand side. Unfortunately, where most
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of the descendants of Algol 60 use the : = token to represent assignment, C follows
Fortran in simply using =. It uses == to represent a test for equality (Fortran uses
.eq. ). Moreover, C lacks a separate Boolean type. (C99 has a new _Bool type,
but it’s really just a one-bit integer.) In any context that would require a Boolean
value in other languages, C accepts an integer (or anything that can be coerced to
be an integer). It interprets zero as false; any other value is true. As a result, both
of the following constructs are valid—common—in C.

if (a ==Db) {
/* do the following if a equals b */

if (a = b) {
/* assign b into a and then do
the following if the result is nonzero */

Programmers who are accustomed to Ada or some other language in which = is
the equality test frequently write the second form above when the first is what is
intended. This sort of bug can be very hard to find.

Though it provides a true Boolean type (bool), C++ shares the problem of C,
because it provides automatic coercions from numeric, pointer, and enumeration
types. Java and C# eliminate the problem by disallowing integers in Boolean con-
texts. The assignment operator is still =, and the equality test is still ==, but the
statement if (a = b) ... will generate a compile-time type clash error unless
a and b are both boolean (Java) or bool (C#), which is generally unlikely.

Combination Assignment Operators

Because they rely so heavily on side effects, imperative programs must frequently
update a variable. It is thus common in many languages to see statements like

a=a+1;
or worse,
b.c[3].d = b.c[3].d * e;

Such statements are not only cumbersome to write and to read (we must examine
both sides of the assignment carefully to see if they really are the same), they also
result in redundant address calculations (or at least extra work to eliminate the
redundancy in the code improvement phase of compilation).

If the address calculation has a side effect, then we may need to write a pair of
statements instead. Consider the following code in C:

void update(int A[], int index_fn(int n)) {
int i, j;
/* calculate i */

j = index_fn(i);
A[j1 = A[]1 + 1;
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Here we cannot safely write
Alindex_fn(i)] = A[index_fn(i)] + 1;

We have to introduce the temporary variable j because we don’t know whether
index_fn has a side effect or not. If it is being used, for example, to keep a log of
elements that have been updated, then we shall want to make sure that update
calls it only once.

To eliminate the clutter and compile- or run-time cost of redundant address
calculations, and to avoid the issue of repeated side effects, many languages, be-
ginning with Algol 68 and including C and its descendants, provide so-called
assignment operators to update a variable. Using assignment operators, the state-
ments in Example 6.19 can be written as follows.

a += 1;
b.c[3].d *= e;

Similarly, the two assignments in the update function can be replaced with
Alindex_fn(i)] += 1;

In addition to being aesthetically cleaner, the assignment operator form guaran-
tees that the address calculation is performed only once.

As shown in Figure 6.1, C provides 10 different assignment operators, one for
each of its binary arithmetic and bit-wise operators. C also provides prefix and
postfix increment and decrement operations. These allow even simpler code in
update:

Alindex_fn(i)]++;
or
++A[index_fn(i)];

More significantly, increment and decrement operators provide elegant syntax
for code that uses an index or a pointer to traverse an array:

A[--i] = b;
*ptt+ = xqtt;

When prefixed to an expression, the ++ or -- operator increments or decrements
its operand before providing a value to the surrounding context. In the postfix
form, ++ or -- updates its operand after providing a value. If i is 3 and p and q
point to the initial elements of a pair of arrays, then b will be assigned into A[2]
(not A[3]), and the second assignment will copy the initial elements of the arrays
(not the second elements).

The prefix forms of ++ and -- are syntactic sugar for += and -=. We could
have written

Ali -= 1] = b;

above. The postfix forms are not syntactic sugar. To obtain an effect similar to
the second statement above we would need an auxiliary variable and a lot of
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extra notation:
*(t =p, p+=1, t) = *x(t =q, q += 1, t);

Both the assignment operators (+=, -=) and the increment and decrement
operators (++, --) do “the right thing” when applied to pointers in C. If p points
to an object that occupies n bytes in memory (including any bytes required for
alignment, as discussed in Section 5.1), then p += 3 points 3n bytes higher in
memory.

Multiway Assignment

We have already seen that the right associativity of assignment (in languages that
allow assignment in expressions) allows one to write things like a = b = ¢. In
several languages, including Clu, ML, Perl, Python, and Ruby, it is also possible
to write

a, b :=c¢c, d;

Here the comma in the right-hand side is not the sequencing operator of C.
Rather, it serves to define an expression, or fuple, consisting of multiple r-values.
The comma operator on the left-hand side produces a tuple of 1-values. The effect
of the assignment is to copy c into a and d into b.’

While we could just as easily have written

a :=c; b :=d;
the multiway (tuple) assignment allows us to write things like
a, b :=Db, a;

which would otherwise require auxiliary variables. Moreover, multiway assign-
ment allows functions to return tuples, as well as single values:

a, b, ¢ := foo(d, e, f);

This notation eliminates the asymmetry (nonorthogonality) of functions in most
programming languages, which allow an arbitrary number of arguments but only
a single return.

ML generalizes the idea of multiway assignment into a powerful pattern-
matching mechanism; we will examine this mechanism in more detail in Sec-
tion ©) 7.2.4.

/CHECK YOUR UNDERSTANDING
I. Name seven major categories of control-flow mechanisms.

1. What distinguishes operators from other sorts of functions?

3 The syntax shown here is for Clu. Perl, Python, and Ruby follow C in using = for assignment.
ML requires parentheses around each tuple.
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3. Explain the difference between prefix, infix, and postfix notation. What is
Cambridge Polish notation? Name two programming languages that use post-
fix notation.

4. Why don’t issues of associativity and precedence arise in Postscript or Forth?
5. What does it mean for an expression to be referentially transparent?

6. What is the difference between a value model of variables and a reference
model of variables? Why is the distinction important?

1. What is an l-value? An r-value?

8. Why is the distinction between mutable and immutable values important in
the implementation of a language with a reference model of variables?

9. Define orthogonality in the context of programming language design.
[0. What does it mean for a language to be expression-oriented?

[1. What are the advantages of updating a variable with an assignment operator,
rather than with a regular assignment in which the variable appears on both
the left- and right-hand sides?

6.1.3 Initialization

Because they already provide a construct (the assignment statement) to set the
value of a variable, imperative languages do not always provide a means of spec-
ifying an initial value for a variable in its declaration. There are at least two rea-
sons, however, why such initial values may be useful:

I. In the case of statically allocated variables (as discussed in Section 3.2), an
initial value that is specified in the context of the declaration can be placed into
memory by the compiler. If the initial value is set by an assignment statement
instead, it will generally incur execution cost at run time.

2. One of the most common programming errors is to use a variable in an ex-
pression before giving it a value. One of the easiest ways to prevent such errors
(or at least ensure that erroneous behavior is repeatable) is to give every vari-
able a value when it is first declared.

Some languages (e.g., Pascal) have no initialization facility at all; all variables
must be given values by explicit assignment statements. To avoid the expense of
run-time initialization of statically allocated variables, many Pascal implemen-
tations provide initialization as a language extension, generally in the form of a
:= expr immediately after the name in the declaration. Unfortunately, the ex-
tension is usually nonorthogonal, in the sense that it only works for variables of
simple, built-in types. A more complete and orthogonal approach to initializa-
tion requires a notation for aggregates: built-up structured values of user-defined
composite types. Aggregates can be found in several languages, including C, Ada,
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Fortran 90, and ML; we will discuss them further in Section 7.1.5. It should be
emphasized that initialization saves time only for variables that are statically al-
located. Variables allocated in the stack or heap at run time must be initialized at
run time.* It is also worth noting that the problem of using an uninitialized vari-
able occurs not only after elaboration, but also as a result of any operation that
destroys a variable’s value without providing a new one. Two of the most com-
mon such operations are explicit deallocation of an object referenced through a
pointer and modification of the tag of a variant record. We will consider these
operations further in Sections 7.7 and 7.3.4, respectively.

If a variable is not given an initial value explicitly in its declaration, the lan-
guage may specify a default value. In C, for example, statically allocated variables
for which the programmer does not provide an initial value are guaranteed to
be represented in memory as if they had been initialized to zero. For most types
on most machines, this is a string of zero bits, allowing the language implemen-
tation to exploit the fact that most operating systems (for security reasons) fill
newly allocated memory with zeros. Zero-initialization applies recursively to the
subcomponents of variables of user-defined composite types. The designers of
C chose not to incur the run-time cost of automatically zero-filling uninitialized
variables that are allocated in the stack or heap. The programmer can specify an
initial value if desired; the effect is the same as if an assignment had been placed
at the beginning of the code for the variable’s scope.

Constructors

Many object-oriented languages allow the programmer to define types for which
initialization of dynamically allocated variables occurs automatically, even when
no initial value is specified in the declaration. C++ also distinguishes carefully
between initialization and assignment. Initialization is interpreted as a call to
a constructor function for the variable’s type, with the initial value as an argu-
ment. In the absence of coercion, assignment is interpreted as a call to the type’s
assignment operator or, if none has been defined, as a simple bit-wise copy of
the value on the assignment’s right-hand side. The distinction between initial-
ization and assignment is particularly important for user-defined abstract data
types that perform their own storage management. A typical example occurs in
variable-length character strings. An assignment to such a string must generally
deallocate the space consumed by the old value of the string before allocating
space for the new value. An initialization of the string must simply allocate space.
Initialization with a nontrivial value is generally cheaper than default initializa-
tion followed by assignment because it avoids deallocation of the space allocated
for the default value. We will return to this issue in Section 9.3.2.

4 For variables that are accessed indirectly (e.g., in languages that employ a reference model of
variables), a compiler can often reduce the cost of initializing a stack or heap variable by placing
the initial value in static memory, and only creating the pointer to it at elaboration time.
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Neither Java nor C# distinguishes between initialization and assignment, or
between declaration and definition. Java uses a reference model for all variables
of user-defined object types, and provides for automatic storage reclamation, so
assignment never copies values. C# allows the programmer to specify a value
model when desired (in which case assignment does copy values), but otherwise
it mirrors Java. We will return to these issues again in Chapter 9 when we consider
object-oriented features in more detail.

Definite Assignment

Java and C# require that a value be “definitely assigned” to a variable before that
variable is used in any expression. Both languages provide a precise definition of
“definitely assigned,” based on the control flow of the program. Roughly speak-
ing, every possible control path to an expression must assign a value to every
variable in that expression. This is a conservative rule; it can sometimes prohibit
programs that would never actually use an uninitialized variable. In Java:

int i;

final static int j = 3;

if (3 > 0) {
i=2;
}

if (G >0 {
System.out.println(i);
// error: "i might not have been initialized"

DESIGN & IMPLEMENTATION

Safety v. performance

A recurring theme in any comparison between C++ and Java is the latter’s
willingness to accept additional run-time cost in order to obtain cleaner se-
mantics or increased reliability. Definite assignment is one example: it may
force the programmer to perform “unnecessary” initializations on certain code
paths, but in so doing it avoids the many subtle errors that can arise from miss-
ing initialization in other languages. Similarly, the Java specification mandates
automatic garbage collection, and its reference model of user-defined types
forces most objects to be allocated in the heap. As we shall see in Chapters 7
and 9, Java also requires both dynamic binding of all method invocations and
run-time checks for out-of-bounds array references, type clashes, and other
dynamic semantic errors. Clever compilers can reduce or eliminate the cost of
these requirements in certain common cases, but for the most part the Java
design reflects an evolutionary shift away from performance as the overriding
design goal.
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While a human being might reason that i will only be used when it has previously
been given a value, it is uncomputable to make such determinations in the general
case, and the compiler does not attempt it.

Dynamic Checks

Instead of giving every uninitialized variable a default value, a language or imple-
mentation can choose to define the use of an uninitialized variable as a dynamic
semantic error, and can catch these errors at run time. The advantage of the se-
mantic checks is that they will often identify a program bug that is masked or
made more subtle by the presence of a default value. With appropriate hardware
support, uninitialized variable checks can even be as cheap as default values, at
least for certain types. In particular, a compiler that relies on the IEEE standard
for floating-point arithmetic can fill uninitialized floating-point numbers with a
signaling NaN value, as discussed in Section @) 5.2.1. Any attempt to use such
a value in a computation will result in a hardware interrupt, which the language
implementation may catch (with a little help from the operating system), and use
to trigger a semantic error message.

For most types on most machines, unfortunately, the costs of catching all uses
of an uninitialized variable at run time are considerably higher. If every possible
bit pattern of the variable’s representation in memory designates some legitimate
value (and this is often the case), then extra space must be allocated somewhere
to hold an initialized/uninitialized flag. This flag must be set to “uninitialized” at
elaboration time and to “initialized” at assignment time. It must also be checked
(by extra code) at every use—or at least at every use that the code improver is un-
able to prove is redundant. Dynamic semantic checks for uninitialized variables
are common in interpreted languages, which already incur significant overhead
on every variable access. Because of their cost, however, the checks are usually
not performed in languages that are compiled.

6.1.4 Ordering Within Expressions

While precedence and associativity rules define the order in which binary infix
operators are applied within an expression, they do not specify the order in which
the operands of a given operator are evaluated. For example, in the expression

a-f(b) - c*xd

we know from associativity that £ (b) will be subtracted from a before perform-
ing the second subtraction, and we know from precedence that the right operand
of that second subtraction will be the result of ¢ * d, rather than merely c, but
without additional information we do not know whether a - £ (b) will be eval-
uated before or after ¢ * d. Similarly, in a subroutine call with multiple argu-
ments

f(a, gb), )

we do not know the order in which the arguments will be evaluated.
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There are two main reasons why the order can be important:

I. Side effects: If £(b) may modify d, then the value of a - £(b) - ¢ * d
will depend on whether the first subtraction or the multiplication is per-
formed first. Similarly, if g(b) may modify a and/or c, then the values passed
to f(a, g(®), c) will depend on the order in which the arguments are
evaluated.

2. Code improvement: The order of evaluation of subexpressions has an impact
on both register allocation and instruction scheduling. In the expression a *
b + f£(c), it is probably desirable to call £ before evaluating a * b, because
the product, if calculated first, would need to be saved during the call to £,
and £ might want to use all the registers in which it might easily be saved. In
a similar vein, consider the sequence

a := B[i];
a *x 2 +d x 3;

(e}
1]

Here it is probably desirable to evaluate d * 3 before evaluating a * 2, be-
cause the previous statement, a := B[i], will need to load a value from
memory. Because loads are slow, if the processor attempts to use the value of a
in the next instruction (or even the next few instructions on many machines),
it will have to wait. If it does something unrelated instead (i.e., evaluate d *
3), then the load can proceed in parallel with other computation.

Because of the importance of code improvement, most language manuals say
that the order of evaluation of operands and arguments is undefined. (Java and
C# are unusual in this regard: they require left-to-right evaluation.) In the ab-
sence of an enforced order, the compiler can choose whatever order results in
faster code.

Applying Mathematical Identities

Some language implementations (e.g., for dialects of Fortran) allow the compiler
to rearrange expressions involving operators whose mathematical abstractions
are commutative, associative, and/or distributive, in order to generate faster code.
Consider the following Fortran fragment.

a=b+c
d=c+e+b

Some compilers will rearrange this as

a=b+c
d b+c+e

They can then recognize the common subexpression in the first and second state-
ments, and generate code equivalent to
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a=b+c

d=a+e
Similarly,

= b/c/d

e = f/d/c

may be rearranged as

t

c xd
b/t
f/t

e

Unfortunately, while mathematical arithmetic obeys a variety of commuta-
tive, associative, and distributive laws, computer arithmetic is not as orderly. The
problem is that numbers in a computer are of limited precision. With 32-bit
arithmetic, the expression b - ¢ + d can be evaluated safely left to right if a, b,
and c are all integers between two billion and three billion (232 is a little less than
4.3 billion). If the compiler attempts to reorganize this expressionasb + d - «c,
however (e.g., in order to delay its use of c), then arithmetic overflow will occur.

Many languages, including Pascal and most of its descendants, provide dy-
namic semantic checks to detect arithmetic overflow. In some implementations
these checks can be disabled to eliminate their run-time overhead. In C and C++,
the effect of arithmetic overflow is implementation-dependent. In Java, it is well
defined: the language definition specifies the size of all numeric types, and re-
quires two’s complement integer and IEEE floating-point arithmetic. In C#, the
programmer can explicitly request the presence or absence of checks by tagging
an expression or statement with the checked or unchecked keyword. In a com-
pletely different vein, Scheme, Common Lisp, and several scripting languages
place no a priori limit on the size of numbers; space is allocated to hold extra-
large values on demand.

Even in the absence of overflow, the limited precision of floating-point arith-
metic can cause different arrangements of the “same” expression to produce sig-

DESIGN & IMPLEMENTATION

Evaluation order

Expression evaluation represents a difficult tradeoff between semantics and
implementation. To limit surprises, most language definitions require the
compiler, if it ever reorders expressions, to respect any ordering imposed by
parentheses. The programmer can therefore use parentheses to prevent the
application of arithmetic “identities” when desired. No similar guarantee ex-
ists with respect to the order of evaluation of operands and arguments. It is
therefore unwise to write expressions in which a side effect of evaluating one
operand or argument can affect the value of another. As we shall see in Sec-
tion 6.3, some languages, notably Euclid and Turing, outlaw such side effects.
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nificantly different results, invisibly. Single-precision IEEE floating-point num-
bers devote 1 bit to the sign, 8 bits to the exponent (power of 2), and 23 bits to
the mantissa. Under this representation, a + b is guaranteed to result in a loss of
information if [log,(a/b)| > 23. Thusif b = -c,thena + b + c may appear to
be zero, instead of a, if the magnitude of a is small, while the magnitude of b and
c is large. In a similar vein, a number like 0.1 cannot be represented precisely,
because its binary representation is a “repeating decimal”: 0.0001001001.... For
certain values of x, (0.1 + x) * 10.0and 1.0 + (x * 10.0) can differ by as
much as 25%, even when 0.1 and x are of the same magnitude.

60.1.5 Short-Circuit Evaluation

Boolean expressions provide a special and important opportunity for code im-
provement and increased readability. Consider the expression (a < b) and
(b < c).If ais greater than b, there is really no point in checking to see whether
b is less than ¢; we know the overall expression must be false. Similarly, in the ex-
pression (a > b) or (b > c),if a is indeed greater than b there is no point in
checking to see whether b is greater than c; we know the overall expression must
be true. A compiler that performs short-circuit evaluation of Boolean expressions
will generate code that skips the second half of both of these computations when
the overall value can be determined from the first half.

Short-circuit evaluation can save significant amounts of time in certain situa-
tions:

if (very_unlikely_condition && very_expensive_function()) ...

But time is not the only consideration, or even the most important one. Short-
circuiting changes the semantics of Boolean expressions. In C, for example, one
can use the following code to search for an element in a list.

p = my_list;
while (p && p->key != val)
P = p—>next;

C short-circuits its && and | | operators, and uses zero for both nil and false, so
p—>key will be accessed if and only if p is non-nil. The syntactically similar code
in Pascal does not work, because Pascal does not short-circuit and and or:

p := my_list;
while (p <> nil) and (p~.key <> val) do (* ouch! %)
P := p~.next;

Here both of the <> relations will be evaluated before and-ing their results to-
gether. At the end of an unsuccessful search, p will be nil, and the attempt to
access p~ .key will be a run-time (dynamic semantic) error, which the compiler
may or may not have generated code to catch. To avoid this situation, the Pascal
programmer must introduce an auxiliary Boolean variable and an extra level of
nesting:
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1. function tally(word : string) : integer;
(* Look up word in hash table. If found, increment tally; If not
3. found, enter with a tally of 1. In either case, return tally. *)

4. function misspelled(word : string) : Boolean;
5. (* Check to see if word is mis-spelled and return appropriate

6. indication. If yes, increment global count of mis-spellings. *)

7. while not eof(doc_file) do begin

8. w := get_word(doc_file);

9. if (tally(w) = 10) and misspelled(w) then
10. writeln(w)

11. end;

12. writeln(total_misspellings);

Figure 6.3 Pascal code that counts on the evaluation of Boolean operands.

p := my_list;

still_searching := true;

while still_searching do
if p = nil then

still_searching := false
else if p~.key = val then

still_searching := false
else

P := p .next;

exampLe 6.35 Short-circuit evaluation can also be used to avoid out-of-bound subscripts:

Short-circuiting and other

errors const MAX = 10;

int A[MAX]; /* indices from O to 9 */

if (i >= 0 && i < MAX && A[i] > foo)
division by zero:
if (d <> 0 && n/d > threshold)

and various other errors.
Short-circuiting is not necessarily as attractive for situations in which a

exameLe 6.36 Boolean subexpression can cause a side effect. Suppose we wish to count occur-
When not to use rences of words in a document, and print a list of all misspelled words that appear
short-circuiting ten or more times, together with a count of the total number of misspellings. Pas-

cal code for this task appears in Figure 6.3. Here the if statement at line 9 tests
the conjunction of two subexpressions, both of which have important side effects.
If short-circuit evaluation is used, the program will not compute the right result.
The code can be rewritten to eliminate the need for non-short-circuit evaluation,
but one might argue that the result is more awkward than the version shown.
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Optional short-circuiting

EXAMPLE 6.38

Control flow with gotos
in Fortran

So now we have seen situations in which short-circuiting is highly desirable,
and others in which at least some programmers would find it undesirable. A few
languages, among them Clu, Ada, and C, provide both regular and short-circuit
Boolean operators. (Similar flexibility can be achieved with if...then...else
in an expression-oriented language such as Algol 68; see Exercise 6.10.) In Clu,
the regular Boolean operators are and and or; the short-circuit operators are
cand and cor (for conditional and and or):

if d "= 0 cand n/d > threshold then ...

In Ada, the regular operators are also and and or; the short-circuit operators are
the two-word operators and then and or else:

found_it := p /= null and then p.key = val;

(Clu and Ada use ~= and /=, respectively, for “not equal.”) C’s logical && and | |
operators short-circuit; the bit-wise & and | operators can be used as non-short-
circuiting alternatives when their arguments are logical (zero or one) values.

When used to determine the flow of control in a selection or iteration con-
struct, short-circuit Boolean expressions do not really have to calculate a Boolean
value; they simply have to ensure that control takes the proper path in any given
situation. We will look more closely at the generation of code for short-circuit
expressions in Section 6.4.1.

/CHECK YOUR UNDERSTANDING

[2. Given the ability to assign a value into a variable, why is it useful to be able to
specify an initial value?

[3. What are aggregates? Why are they useful?
[4. Explain the notion of definite assignment in Java and C#.

[5. Why is it generally expensive to catch all uses of uninitialized variables at run
time?

[6. Why is it impossible to catch all uses of uninitialized variables at compile
time?

[7. Why do most languages leave unspecified the order in which the arguments
of an operator or function are evaluated?

[8. What is short-circuit Boolean evaluation? Why is it useful?

Structured and Unstructured Flow

Control flow in assembly languages is achieved by means of conditional and un-
conditional jumps (branches). Early versions of Fortran mimicked the low-level
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approach by relying heavily on goto statements for most nonprocedural control
flow:

if A .1t. B goto 10 ! ".1t." means "<"

10

The 10 on the bottom line is a staterment label.

Goto statements also feature prominently in other early imperative languages.
In Cobol and PL/T they provide the only means of writing logically controlled
(while-style) loops. Algol 60 and its successors provide a wealth of non-goto-
based constructs, but until recently most Algol-family languages still provided
goto as an option.

Throughout the late 1960s and much of the 1970s, language designers debated
hotly the merits and evils of gotos. It seems fair to say the detractors won. Ada
and C# allow gotos only in limited contexts. Modula (1, 2, and 3), Clu, Eiffel,
and Java do not allow them at all. Fortran 90 and C++ allow them primarily for
compatibility with their predecessor languages. (Java reserves the token goto as
a keyword, to make it easier for a Java compiler to produce good error messages
when a programmer uses a C++ goto by mistake.)

The abandonment of gotos was part of a larger “revolution” in software en-
gineering known as structured programming. Structured programming was the
“hot trend” of the 1970s, in much the same way that object-oriented program-
ming was the trend of the 1990s. Structured programming emphasizes top-down
design (i.e., progressive refinement), modularization of code, structured types
(records, sets, pointers, multidimensional arrays), descriptive variable and con-
stant names, and extensive commenting conventions. The developers of struc-
tured programming were able to demonstrate that within a subroutine, almost
any well-designed imperative algorithm can be elegantly expressed with only se-
quencing, selection, and iteration. Instead of labels, structured languages rely on
the boundaries of lexically nested constructs as the targets of branching control.

Many of the structured control-flow constructs familiar to modern program-
mers were pioneered by Algol 60. These include the if... then... else construct
and both enumeration (for) and logically (while) controlled loops. The case
statement was introduced by Wirth and Hoare in Algol W [WH66] as an alterna-
tive to the more unstructured computed goto and switch constructs of Fortran
and Algol 60, respectively. Case statements were adopted in limited form by Al-
gol 68, and more completely by Pascal, Modula, C, Ada, and a host of modern
languages.

6.2.] Structured Alternatives to goto

Once the principal structured constructs had been defined, most of the contro-
versy surrounding gotos revolved around a small number of special cases, each
of which was eventually addressed in structured ways.
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EXAMPLE 639

Leaving the middle of a
loop

EXAMPLE 6.40

Returning from the middle
of a subroutine

EXAMPLE 64'

Escaping a nested
subroutine

Control Flow

Mid-loop exit and continue: A common use of gotos in Pascal was to break out

of the middle of a loop:

while not eof do begin
readln(line);
if all_blanks(line) then goto 100;
consume_line(line)
end;
100:

Less commonly, one would also see a label inside the end of a loop, to serve
as the target of a goto that would terminate a given iteration early. As we
shall see in Section 6.5.5, mid-loop exits are supported by special “one-and-a
half” loop constructs in languages like Modula, C, and Ada. Some languages
also provide a statement to skip the remainder of the current loop iteration:
continue in C; cycle in Fortran 90; next in Perl.

Early returns from subroutines: Gotos were used fairly often in Pascal to termi-

nate the current subroutine:

procedure consume_line(var line: string);
begin
if line[i] = ’%’ then goto 100;
(* rest of line is a comment *)

100:
end;

At a minimum, this goto statement avoids putting the remainder of the pro-
cedure in an else clause. If the terminating condition is discovered within a
deeply nested if...then...else, it may avoid introducing an auxiliary vari-
able that must be tested repeatedly in the remainder of the procedure (if not
comment_line then ...).

The obvious alternative to this use of goto is an explicit return statement.
Algol 60 does not have one, and neither does Pascal, but Fortran always has,
and most modern Algol descendants have adopted it.

Multilevel returns:  Returns and (local) gotos allow control to return from the

current subroutine. On occasion it may make sense to return from a surround-
ing routine. Imagine, for example, that we are searching for an item matching
some desired pattern with a collection of files. The search routine might in-
voke several nested routines, or a single routine multiple times, once for each
place in which to search. In such a situation certain historic languages, includ-
ing Algol 60, PL/I, and Pascal, permit a goto to branch to a lexically visible
label outside the current subroutine:
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function search(key : string) : string;
var rtn : string;

procedure search_file(fname : string);

begin

for ... (% iterate over lines x)
if found(key, line) then begin
rtn := line;
goto 100;
end;
end;

begin (* search *)
for ... (x iterate over files %)
search_file(fname) ;

100: return rtn;
end;

In the event of a nonlocal goto, the language implementation must guar-
antee to repair the run-time stack of subroutine call information. This repair
operation is known as unwinding. It requires not only that the implementation
deallocate the stack frames of any subroutines from which we have escaped,
but also that it perform any bookkeeping operations, such as restoration of
register contents, that would have been performed when returning from those
routines.

As a more structured alternative to the nonlocal goto, Common Lisp pro-
vides a return-from statement that names the lexically surrounding function
or block from which to return, and also supplies a return value (eliminating
the need for the artificial rtn variable in Example 6.41).

But what if search_file were not nested inside of search? We might, for
example, wish to call it from routines that search files in different orders. In
this case the goto of Pascal does not suffice. Algol 60 and PL/I allow labels
to be passed as parameters, so a dynamically nested subroutine can perform a
goto to a caller-defined location. PL/I also allows labels to be stored in vari-
ables. If a nested routine needs to return a value it can assign it to some vari-
able in a scope that surrounds all calls. Alternatively, we can pass a reference
parameter into every call, into which the result should be written.

Common Lisp again provides a more structured alternative, also available
in Ruby. In either language an expression can be surrounded with a catch
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EXAMPLE 6.43

Error-checking with status
codes

block, whose value can be provided by any dynamically nested routine that
executes a matching throw. In Ruby we might write

def searchFile(fname, pattern)
file = File.open(fname)
file.each {llinel|
throw :found, line if line ="~ /#{pattern}/

end

match = catch :found do

searchFile("f1", key)

searchFile("f2", key)

searchFile("£3", key)

"not found\n" # default value for catch,
end # if control gets this far
print match

Here the throw expression specifies a tag, which must appear in a matching
catch, together with a value (1ine) to be returned as the value of the catch.
(The if clause attached to the throw performs a regular-expression pattern
match, looking for pattern within 1ine. We will consider pattern matching
in more detail in Section 13.4.2.)

Errors and other exceptions: The notion of a multilevel return assumes that the

callee knows what the caller expects, and can return an appropriate value. In
a related and arguably more common situation, a deeply nested block or sub-
routine may discover that it is unable to proceed with its usual function and,
moreover, lacks the contextual information it would need to recover in any
graceful way. The only recourse in such a situation is to “back out” of the
nested context to some point in the program that is able to recover. Condi-
tions that require a program to “back out” are usually called exceptions. We
saw an example in Section @) 2.3.4, where we considered phrase-level recov-
ery from syntax errors in a recursive-descent parser.

The most straightforward but generally least satisfactory way to cope with
exceptions is to use auxiliary Boolean variables within a subroutine (if
still_ok then ...)and to return status codes from calls:

status := my_proc(args);
if status = ok then ...

The auxiliary Booleans can be eliminated by using a nonlocal goto or multi-
level return, but the caller to which we return must still inspect status codes
explicitly. As a structured alternative, many modern languages provide an ex-
ception handling mechanism for convenient, nonlocal recovery from excep-
tions. We will discuss exception handling in more detail in Section 8.5. Typ-
ically the programmer appends a block of code called a handler to any com-
putation in which an exception may arise. The job of the handler is to take
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whatever remedial action is required to recover from the exception. If the pro-
tected computation completes in the normal fashion, execution of the handler
is skipped.

Multilevel returns and structured exceptions have strong similarities. Both
involve a control transfer from some inner, nested context back to an outer
context, unwinding the stack on the way. The distinction lies in where the
computing occurs. In a multilevel return the inner context has all the infor-
mation it needs. It completes its computation, generating a return value if
appropriate, and transfers to the outer context in a way that requires no post-
processing. At an exception, by contrast, the inner context cannot complete its
work. It performs an “abnormal” return, triggering execution of the handler.

Common Lisp and Ruby provide mechanisms for both multilevel returns
and exceptions, but this dual support is relatively rare. Most languages support
only exceptions; programmers implement multilevel returns by writing a triv-
ial handler. In an unfortunate overloading of terminology, the names catch
and throw, which Common Lisp and Ruby use for multilevel returns, are used
for exceptions in several other languages.

0.2.2 Continuations

The notion of nonlocal gotos that unwind the stack can be generalized by defin-
ing what are known as continuations. In low-level terms, a continuation consists
of a code address and a referencing environment to be restored when jumping to
that address. In higher-level terms, a continuation is an abstraction that captures
a context in which execution might continue. Continuations are fundamental to
denotational semantics. They also appear as first-class values in certain languages
(notably Scheme and Ruby), allowing the programmer to define new control-
flow constructs.

Continuation support in Scheme takes the form of a general purpose function
called call-with-current-continuation, sometimes abbreviated call/cc.

DESIGN & IMPLEMENTATION

Cleaning up continuations

The implementation of continuations in Scheme and Ruby is surprisingly
straightforward. Because local variables have unlimited extent in both lan-
guages, activation records must in general be allocated on the heap. As a re-
sult, explicit deallocation is neither required nor appropriate when jumping
through a continuation; frames that are no longer accessible will eventually
be reclaimed by a general purpose garbage collector (to be discussed in Sec-
tion 7.7.3). Restoration of state (e.g., saved registers) from escaped routines
is not required either: the continuation closure holds everything required to
resume the captured context.
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This function takes a single argument, f, which is itself a function. It calls f,
passing as argument a continuation ¢ that captures the current program counter
and referencing environment. The continuation is represented by a closure, in-
distinguishable from the closures used to represent subroutines passed as para-
meters. At any point in the future, f can call ¢ to reestablish the captured context.
If nested calls have been made, control pops out of them, as it does with excep-
tions. More generally, however, ¢ can be saved in variables, returned explicitly by
subroutines, or called repeatedly, even after control has returned from f (recall
that closures in Scheme have unlimited extent; see Section 3.5). Call/cc suffices
to build a wide variety of control abstractions, including gotos, mid-loop exits,
multilevel returns, exceptions, iterators (Section 6.5.3), call-by-name parameters
(Section 8.3.1), and coroutines (Section 8.6). It even subsumes the notion of re-
turning from a subroutine, though it seldom replaces it in practice.

First-class continuations are an extremely powerful facility. They can be very
useful if applied in well-structured ways (i.e., to define new control-flow con-
structs). Unfortunately, they also allow the undisciplined programmer to con-
struct completely inscrutable programs.

Sequencing

Like assignment, sequencing is central to imperative programming. It is the prin-
cipal means of controlling the order in which side effects (e.g., assignments) oc-
cur: when one statement follows another in the program text, the first statement
executes before the second. In most imperative languages, lists of statements can
be enclosed with begin...end or {...} delimiters and then used in any context
in which a single statement is expected. Such a delimited list is usually called a
compound statement. A compound statement preceded by a set of declarations is
sometimes called a block.

In languages like Algol 68 and C, which blur or eliminate the distinction be-
tween statements and expressions, the value of a statement (expression) list is the
value of its final element. In Common Lisp, the programmer can choose to return
the value of the first element, the second, or the last. Of course, sequencing is a
useless operation unless the subexpressions that do not play a part in the return
value have side effects. The various sequencing constructs in Lisp are used only
in program fragments that do not conform to a purely functional programming
model.

Even in imperative languages, there is debate as to the value of certain kinds of
side effects. In Euclid and Turing, for example, functions (that is, subroutines that
return values, and that therefore can appear within expressions) are not permit-
ted to have side effects. Among other things, side-effect freedom ensures that a
Euclid or Turing function, like its counterpart in mathematics, is always idempo-
tent: if called repeatedly with the same set of arguments, it will always return the
same value, and the number of consecutive calls (after the first) will not affect
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the results of subsequent execution. In addition, side-effect freedom for func-
tions means that the value of a subexpression will never depend on whether that
subexpression is evaluated before or after calling a function in some other subex-
pression. These properties make it easier for a programmer or theorem-proving
system to reason about program behavior. They also simplify code improvement,
for example by permitting the safe rearrangement of expressions.

Unfortunately, there are some situations in which side effects in functions are
highly desirable. We saw one example in the gen_new_name function of Fig-
ure 3.6 (page 125). Another arises in the typical interface to a pseudo-random
number generator.

procedure srand(seed : integer)
—— Initialize internal tables.
—— The pseudo-random generator will return a different
——sequence of values for each different value of seed.

function rand() : integer
—— No arguments; returns a new “random” number.

Obviously rand needs to have a side effect, so that it will return a different value
each time it is called. One could always recast it as a procedure with a reference
parameter:

procedure rand(var n : integer)

but most programmers would find this less appealing. Ada strikes a compromise:
it allows side effects in functions in the form of changes to static or global vari-
ables, but does not allow a function to modify its parameters.

Selection

Selection statements in most imperative languages employ some variant of the
if...then... else notation introduced in Algol 60:

if condition then statement
else if condition then statement
else if condition then statement

else statement

As we saw in Section 2.3.2, languages differ in the details of the syntax. In Algol
60 and Pascal both the then clause and the else clause are defined to contain
a single statement (this can of course be a begin...end compound statement).
To avoid grammatical ambiguity, Algol 60 requires that the statement after the
then begin with something other than if (begin is fine). Pascal eliminates this
restriction in favor of a “disambiguating rule” that associates an else with the
closest unmatched then. Algol 68, Fortran 77, and more modern languages avoid
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the ambiguity by allowing a statement list to follow either then or else, with a
terminating keyword at the end of the construct.

To keep terminators from piling up at the end of nested if statements,
most languages with terminators provide a special elsif or elif keyword. In
Modula-2, one writes

IF a = b THEN ...
ELSIF a = ¢ THEN ...
ELSIF a = d THEN ...
ELSE ...

END

In Lisp, the equivalent construct is

(cond
((= A B)
C...))
((= A0
C...))
((= A D)
...))
(T
C..ON

Here cond takes as arguments a sequence of pairs. In each pair the first element
is a condition; the second is an expression to be returned as the value of the
overall construct if the condition evaluates to T (T means “true” in most Lisp
dialects).

60.4.] Short-Circuited Conditions

While the condition in an if... then... else statement is a Boolean expression,
there is usually no need for evaluation of that expression to result in a Boolean
value in a register. Most machines provide conditional branch instructions that
capture simple comparisons. Put another way, the purpose of the Boolean expres-
sion in a selection statement is not to compute a value to be stored, but to cause
control to branch to various locations. This observation allows us to generate
particularly efficient code (called jump code) for expressions that are amenable to
the short-circuit evaluation of Section 6.1.5. Jump code is applicable not only to
selection statements such as if... then... else, but to logically controlled loops
as well; we will consider the latter in Section 6.5.5.

In the usual process of code generation, either via an attribute grammar or via
ad hoc syntax tree decoration, a synthesized attribute of the root of an expression
subtree acquires the name of a register into which the value of the expression will
be computed at run time. The surrounding context then uses this register name
when generating code that uses the expression. In jump code, inherited attributes
of the root inform it of the addresses to which control should branch if the ex-
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pression is true or false respectively. Jump code can be generated quite elegantly
by an attribute grammar, particularly one that is not L-attributed (Exercise 6.9).
Suppose, for example, that we are generating code for the following source.

if (A > B) and (C > D)) or (E # F) then
then_clause

else
else_clause

In Pascal, which does not use short-circuit evaluation, the output code would
look something like this.

r:=A —— load
r2:=B

r:=rl>r2

2:=C

r3:=D

r2:=r2>r3
Mi=r1&r2

r2:=E

r3:=F

r2:=r2+#r3

r:=r1]r2
if r1 =0 goto L2

L1: then_clause —— (label not actually used)
goto L3

L2: else_clause

L3:

The root of the subtree for ((A > B) and (C > D)) or (E # F) would name r1 as the
register containing the expression value.

In jump code, by contrast, the inherited attributes of the condition’s root
would indicate that control should “fall through” to L1 if the condition is true,

or branch to L2 if the condition is false. Output code would then look something
like this:

rt=A

r2:=B

if r1 <=r2 goto L4

rm:=C

r2:=D

if r1 > r2 goto L1
L4: r1:=E

r2:.=F

if r1 =r2 goto L2
L1: then_clause

goto L3
L2: else_clause
L3:
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Here the value of the Boolean condition is never explicitly placed into a register.
Rather it is implicit in the flow of control. Moreover for most values of A, B, C, D,
and E, the execution path through the jump code is shorter and therefore faster
(assuming good branch prediction) than the straight-line code that calculates the
value of every subexpression.

If the value of a short-circuited expression is needed explicitly, it can of course
be generated, while still using jump code for efficiency. The Ada fragment

found_it := p /= null and then p.key = val;
is equivalent to

if p /= null and then p.key = val then

found_it := true;
else

found_it := false;
end if;

and can be translated as

r:=p
if r1 =0 goto L1
r2 :=rl—key

if r2 # val goto L1
r1:=1
goto L2

L1: r1:=0

L2: found.it:=r1

The astute reader will notice that the first goto L1 can be replaced by goto L2,
since r1 already contains a zero in this case. The code improvement phase of the
compiler will notice this also, and make the change. It is easier to fix this sort of
thing in the code improver than it is to generate the better version of the code in
the first place. The code improver has to be able to recognize jumps to redundant
instructions for other reasons anyway; there is no point in building special cases
into the short-circuit evaluation routines.

DESIGN & IMPLEMENTATION

Short-circuit evaluation

Short-circuit evaluation is one of those happy cases in programming language
design where a clever language feature yields both more useful semantics and a
faster implementation than existing alternatives. Other at least arguable exam-
ples include case statements, local scopes for for loop indices (Section 6.5.1),
with statements in Pascal (Section 7.3.3), and parameter modes in Ada (Sec-
tion 8.3.1).
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0.4.2 Ccaselswitch Statements

The case statements of Algol W and its descendants provide alternative syntax
for a special case of nested if...then...else. When each condition compares
the same integer expression to a different compile-time constant, then the fol-
lowing code (written here in Modula-2)

i := ... (* potentially complicated expression *)

IF i = 1 THEN
clause_A

ELSIF i IN 2, 7 THEN
clause_B

ELSIF i IN 3..5 THEN
clause_C

ELSIF (i = 10) THEN
clause_D

ELSE
clause_E

END

can be rewritten as

CASE ... (* potentially complicated expression *) OF
1: clause_A

| 2, 7: clause_B

| 3..5: clause_C

| 10: clause_D
ELSE clause_E

END

The elided code fragments (clause_A, clause_B, etc.) after the colons and the ELSE
are called the arms of the CASE statement. The lists of constants in front of the
colons are CASE statement labels. The constants in the label lists must be disjoint,
and must be of a type compatible with the tested expression. Most languages al-
low this type to be anything whose values are discrete: integers, characters, enu-
merations, and subranges of the same. C# allows strings as well.

The CASE statement version of the code above is certainly less verbose than the
IF... THEN ... ELSE version, but syntactic elegance is not the principal motivation
for providing a CASE statement in a programming language. The principal mo-
tivation is to facilitate the generation of efficient target code. The IF...THEN...
ELSE statement is most naturally translated as follows.

r=... —— calculate tested expression
ifr1 £ 1 goto L1
clause_A
goto L6
L1: ifr1 =2 goto L2
if r1 # 7 goto L3
L2: clause_B
goto L6
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goto L6 —— jump to code to compute address
L1: clause_A

goto L7
L2: clause_B

goto L7
L3: clause_C

goto L7

L4: clause_D
goto L7
L5: clause_E
goto L7

L6: r1:=... —— computed target of branch
goto *r1
L7:

Figure 6.4 General form of target code generated for a five-arm case statement. One could
eliminate the initial goto L6 and the final goto L7 by computing the target of the branch at
the top of the generated code, but it may be cumbersome to do so, particularly in a one-pass
compiler: The form shown adds only a single jump to the control flow in most cases, and allows
the code for all of the arms of the case statement to be generated as encountered, before the
code to determine the target of the branch can be deduced.

L3: ifr1 <3 goto L4
if r1 > 5 goto L4
clause_C
goto L6

L4: if r1 £ 10 goto L5
clause_D
goto L6

L5: clause_E

L6:

Rather than test its expression sequentially against a series of possible values,
the case statement is meant to compute an address to which it jumps in a single
instruction. The general form of the target code generated from a case statement
appears in Figure 6.4. The code at label L6 can take any of several forms. The most
common of these simply indexes into an array:

T &L1 —— tested expression = 1
&L2
&L3
&L3
&L3
&L5
&L2
&L5
&L5
&lL4 —— tested expression = 10
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L6: r1:=... —— calculate tested expression
if r1 <1 goto L5
if r1 > 10 goto Lb —— L5 is the “else” arm
rt—:=1 —— subtract off lower bound
r2 .= TIr1]
goto *r2

L7:

Here the “code” at label T is actually a table of addresses, known as a jump table.
It contains one entry for each integer between the lowest and highest values, in-
clusive, found among the case statement labels. The code at L6 checks to make
sure that the tested expression is within the bounds of the array (if not, we should
execute the else arm of the case statement). It then fetches the corresponding
entry from the table and branches to it.

Alternative Implementations

A linear jump table is fast. It is also space-efficient when the overall set of case
statement labels is dense and does not contain large ranges. It can consume an
extraordinarily large amount of space, however, if the set of labels is nondense or
includes large value ranges. Alternative methods to compute the address to which
to branch include sequential testing, hashing, and binary search. Sequential test-
ing (as in an if...then...else statement) is the method of choice if the total
number of case statement labels is small. It runs in time O(n), where # is the
number of labels. A hash table is attractive if the range of label values is large but
has many missing values and no large ranges. With an appropriate hash function
it will run in time O(1). Unfortunately, a hash table requires a separate entry for
each possible value of the tested expression, making it unsuitable for statements
with large value ranges. Binary search can accommodate ranges easily. It runs in
time O(logn), with a relatively low constant factor.

To generate good code for all possible case statements, a compiler needs to be
prepared to use a variety of strategies. During compilation it can generate code
for the various arms of the case statement as it finds them, while simultaneously
building up an internal data structure to describe the label set. Once it has seen
all the arms, it can decide which form of target code to generate. For the sake of
simplicity, most compilers employ only some of the possible implementations.
Many use binary search in lieu of hashing. Some generate only indexed jump ta-
bles; others only that plus sequential testing. Users of less sophisticated compilers
may need to restructure their case statements if the generated code turns out to
be unexpectedly large or slow.

Syntax and Label Semantics

As with if...then...else statements, the syntactic details of case statements
vary from language to language. In keeping with the style of its other structured
statements, Pascal defines each arm of a case statement to contain a single state-
ment; begin...end delimiters are required to bracket statement lists. Modula,
Ada, Fortran 90, and many other languages expect arms to contain statement
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lists by default. Modula uses | to separate an arm from the following label. Ada
brackets labels with when and =>.

Standard Pascal does not include a default clause: all values on which to take
action must appear explicitly in label lists. It is a dynamic semantic error for the
expression to evaluate to a value that does not appear. Most Pascal compilers per-
mit the programmer to add a default clause, labeled either else or otherwise,
as a language extension. Modula allows an optional else clause. If one does not
appear in a given case statement, then it is a dynamic semantic error for the
tested expression to evaluate to a missing value. Ada requires arm labels to cover
all possible values in the domain of the type of the tested expression. If the type
of tested expression has a very large number of values, then this coverage must
be accomplished using ranges or an others clause. In some languages, notably
C and Fortran 90, it is not an error for the tested expression to evaluate to a
missing value. Rather, the entire construct has no effect when the value is miss-
ing.

The C switch Statement

C’s syntax for case (switch) statements (retained by C++ and Java) is unusual
in other respects.

switch (... /* tested expression */) {
case 1: clause_A
break;
case 2:
case 7: clause_B
break;
case 3:
case 4:
case 5: clause_.C
break;
case 10: clause_D
break;
default: clause_E
break;
}

DESIGN & IMPLEMENTATION

Case statements

Case statements are one of the clearest examples of language design driven by
implementation. Their primary reason for existence is to facilitate the gener-
ation of jump tables. Ranges in label lists (not permitted in Pascal or C) may
reduce efficiency slightly, but binary search is still dramatically faster than the
equivalent series of ifs.
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Here each possible value for the tested expression must have its own label
within the switch; ranges are not allowed. In fact, lists of labels are not allowed,
but the effect of lists can be achieved by allowing a label (such as 2, 3, and 4
above) to have an empty arm that simply “falls through” into the code for the
subsequent label. Because of the provision for fall-through, an explicit break
statement must be used to get out of the switch at the end of an arm, rather
than falling through into the next. There are rare circumstances in which the
ability to fall through is convenient:

letter_case = lower;
switch (c) {

case ’A’
letter_case = upper;
/* FALL THROUGH! */
case ’a’ :

break;
¥

Most of the time, however, the need to insert a break at the end of each arm—
and the compiler’s willingness to accept arms without breaks, silently—is a recipe
for unexpected and difficult-to-diagnose bugs. C# retains the familiar C syntax,
including multiple consecutive labels, but requires every nonempty arm to end
with a break, goto, continue, or return.

Historical Origins

Modern case statements are a descendant of the computed goto statement of
Fortran and the switch construct of Algol 60. In early versions of Fortran, one
could specify multiway branching based on an integer value as follows.

goto (15, 100, 150, 200), I

If T is one, control jumps to the statement labeled 15. If I is two, control jumps
to the statement labeled 100. If I is outside the range 1...4, the statement has
no effect. Any integer-valued expression could be used in place of I. Computed
gotos are still allowed in Fortran 90 but are identified by the language manual as
a deprecated feature, retained to facilitate compilation of old programs.

In Algol 60, a switch is essentially an array of labels:

switch S := L15, L100, L150, L200;

goto S[I];
Algol 68 eliminates the gotos by, in essence, indexing into an array of statements,
but the syntax is rather cuambersome.
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/CHECK YOUR UNDERSTANDING

[9. List the principal uses of goto, and the structured alternatives to each.

20. Explain the distinction between exceptions and multilevel returns.

1. What are continuations? What other language features do they subsume?

1). Why is sequencing a comparatively unimportant form of control flow in Lisp?
13. Explain why it may sometimes be useful for a function to have side effects.
24. Describe the jump code implementation of short-circuit Boolean evaluation.

15. Why do imperative languages commonly provide a case statement in addi-
tionto if...then...else?

26. Describe three different search strategies that might be employed in the im-
plementation of a case statement, and the circumstances in which each
would be desirable.

Iteration

Iteration and recursion are the two mechanisms that allow a computer to perform
similar operations repeatedly. Without at least one of these mechanisms, the run-
ning time of a program (and hence the amount of work it can do and the amount
of space it can use) is a linear function of the size of the program text, and the
computational power of the language is no greater than that of a finite automa-
ton. In a very real sense, it is iteration and recursion that make computers useful.
In this section we focus on iteration. Recursion is the subject of Section 6.6.

Programmers in imperative languages tend to use iteration more than they
use recursion (recursion is more common in functional languages). In most lan-
guages, iteration takes the form of loops. Like the statements in a sequence, the it-
erations of a loop are generally executed for their side effects: their modifications
of variables. Loops come in two principal varieties; these differ in the mechanisms
used to determine how many times they iterate. An enumeration-controlled loop
is executed once for every value in a given finite set. The number of iterations
is therefore known before the first iteration begins. A logically controlled loop is
executed until some Boolean condition (which must necessarily depend on val-
ues altered in the loop) changes value. The two forms of loops share a single
construct in Algol 60. They are distinct in most later languages, with the notable
exception of Common Lisp, whose Loop macro provides an astonishing array of
options for initialization, index modification, termination detection, conditional
execution, and value accumulation.
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6.5.] Enumeration-Controlled Loops

Enumeration-controlled loops are as old as Fortran. The Fortran syntax and se-
mantics have evolved considerably over time. In Fortran I, I, and IV a loop looks
something like this:

do 10 i = 1, 10, 2
10 continue

The number after the do is a label that must appear on some statement later in
the current subroutine; the statement it labels is the last one in the body of the
loop: the code that is to be executed multiple times. Continue is a “no-op™: a
statement that has no effect. Using a continue for the final statement of the loop
makes it easier to modify code later: additional “real” statements can be added to
the bottom of the loop without moving the label.”

The variable name after the label is the index of the loop. The comma-
separated values after the equals sign indicate the initial value of the index, the
maximum value it is permitted to take, and the amount by which it is to increase

in each iteration (this is called the step size). A bit more precisely, the loop above
is equivalent to

i=1

10
i=1i+2
if i <= 10 goto 10

Index variable i in this example will take on the values 1, 3, 5, 7, and 9 in succes-
sive loop iterations. Compilers can translate this loop into very simple, fast code
for most machines.

In practice, unfortunately, this early form of loop proved to have several prob-
lems. Some of these problems were comparatively minor. The loop bounds and
step size (1, 10, and 2 in our example) were required to be positive integer con-
stants or variables: no expressions were allowed. Fortran 77 removed this restric-
tion, allowing arbitrary positive and negative integer and real expressions. Also,
as we saw in Section 2.16 (page 57), trivial lexical errors can cause a Fortran IV
compiler to misinterpret the code as an ordinary sequence of statements begin-
ning with an assignment. Fortran 77 makes such misinterpretation less likely by
allowing an extra comma after the label in the do loop header. Fortran 90 takes
back (makes “obsolescent”) the ability to use real numbers for loop bounds and
step sizes. The problem with reals is that limited precision can cause compar-
isons (e.g., between the index and the upper bound) to produce unexpected or
even implementation-dependent results when the values are close to one another.

5 The continue statement of C probably takes its name from this typical use of the no-op in
Fortran, but its semantics are very different: the C continue starts the next iteration of the loop
even when the current one has not finished.
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The more serious problems with the Fortran IV do loop are a bit more subtle:

If statements in the body of the loop (or in subroutines called from the body of
the loop) change the value of i, then the loop may execute a different number
of times than one would assume based on the bounds in its header. If the effect
is accidental, the bug is hard to find. If the effect is intentional, the code is hard
to read.

Goto statements may jump into or out of the loop. Code that jumps out and
(optionally) back in again is expressly allowed (if difficult to understand). On
the other hand, code that simply jumps in, without properly initializing i,
almost certainly represents a programming error, but will not be caught by
the compiler.

If control leaves a do loop via a goto, the value of i is the one most re-
cently assigned. If the loop terminates normally, however, the value of i is
implementation-dependent. Based on Example 6.58, one might expect the fi-
nal value to be the first one outside the loop bounds: L+ ([(U—L)/S|+1) xS,
where L, U, and S are the lower and upper bounds of the loop and the step
size, respectively. Unfortunately, if the upper bound is close to the largest value
that can be represented given the precision of integers on the target machine,
then the increment at the bottom of the final iteration of the loop may cause
arithmetic overflow. On most machines this overflow will result in an appar-
ently negative value, which will prevent the loop from terminating correctly.
On some it will cause a run-time exception that requires the intervention of
the operating system in order to continue execution. To ensure correct termi-
nation and/or avoid the cost of an exception, a compiler must generate more
complex (and slower) code when it is unable to rule out overflow at compile
time. In this event, the index may contain its final value (not the “next” value)
after normal termination of the loop.

Because the test against the upper bound appears at the bottom of the loop,
the body will always be executed at least once, even if the “low” bound is larger
than the “high” bound.

DESIGN & IMPLEMENTATION

Numerical imprecision

The writers of numerical software know that the results of arithmetic compu-
tations are often approximations. A comparison between values that are ap-
proximately equal “may go either way.” The Fortran 90 designers appear to
have decided that such comparisons should be explicit. Fortran 90 do loops,
like the for loops of most other languages, reflect the precision of discrete
types. The programmer who wants to control iteration with floating-point
values must use an explicit comparison in a pre-test or post-test loop (Sec-
tion 6.5.5).
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These problems arise in a larger context than merely Fortran IV. They must
be addressed in the design of enumeration-controlled loops in any language.
Consider the arguably more friendly syntax of Modula-2:

FOR i := first TO last BY step DO

END

where first, last, and step can be arbitrarily complex expressions of an in-
teger, enumeration, or subrange type. Based on the preceding discussion, one
might ask several questions.

I. Can i, first, and/or last be modified in the loop? If so, what is the effect
on control?

2. What happens if first is larger than last (or smaller, in the case of a nega-
tive step)?

3. What is the value of i when the loop is finished?
4. Can control jump into the loop from outside?

We address these questions in the paragraphs below.

Changes to Loop Indices or Bounds

Most languages, including Algol 68, Pascal, Ada, Fortran 77 and 90, and
Modula-3, prohibit changes to the loop index within the body of an enumera-
tion-controlled loop. They also guarantee to evaluate the bounds of the loop
exactly once, before the first iteration, so any changes to variables on which those
bounds depend will not have any effect on the number of iterations executed.
Modula-2 is vague; the manual says that the index “should not be changed” by
the body of the loop [Wir85b, Sec. 9.8]. ISO Pascal goes to considerable lengths to
prohibit modification. Paraphrasing slightly, it says [Int90, Sec. 6.8.3.9] that the
index variable must be declared in the closest enclosing block, and that neither
the body of the for statement itself nor any statement contained in a subrou-
tine local to the block can “threaten” the index variable. A statement is said to
threaten a variable if it

Assigns to it

Passes it to a subroutine by reference

Reads it from a file

Is a structured statement containing a simpler statement that threatens it

The prohibition against threats in local subroutines is made because a local vari-
able will be accessible to those subroutines, and one of them, if called from within
the loop, might change the value of the variable even if it is not passed to it by
reference.
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Empty Bounds

Modern languages refrain from executing an enumeration-controlled loop if the
bounds are empty. In other words, they test the terminating condition before the
first iteration. The initial test requires a few extra instructions but leads to much
more intuitive behavior. The loop

FOR i := first TO last BY step DO

END
can be translated as

r1 = first
r2 .= step
r3 := last

L1: ifr1 > r3 goto L2

.. —— loop body; use r1 for i
r:=rl+r2
goto L1

L2:

A slightly better if less straightforward translation is

r1 = first
r2 .= step
r3 :=last
goto L2
L1 ... —— loop body; use r1 for i
r:=r1+r2

L2: if r1 <r3 goto L1

The advantage of this second version is that each iteration of the loop contains
a single conditional branch, rather than a conditional branch at the top and an
unconditional branch at the bottom. (We will consider yet another version in
Exercise @) 15.4.)

The translations shown above work only if first + (| (last — first)/step]
+ 1) x step does not exceed the largest representable integer. If the compiler
cannot verify this property at compile time, then it will have to generate more
cautious code (to be discussed in Example 6.63).

Loop Direction The astute reader may also have noticed that the code shown
here implicitly assumes that step is positive. If step is negative, the test for ter-
mination must “go the other direction.” If step is not a compile-time constant,
then the compiler cannot tell which form of test to use. Some languages, includ-
ing Pascal and Ada, require the programmer to predict the sign of the step. In
Pascal, one must say

for i := 10 downto 1 do ...

In Ada, one must say
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for i in reverse 1..10 do ...

Modula-2 and Modula-3 do not require special syntax for “backward” loops, but
insist that step be a compile-time constant so the compiler can tell the difference
(Modula (1) has no for loop).

In Fortran 77 and Fortran 90, which have neither a special “backward” syn-
tax nor a requirement for compile-time constant steps, the compiler can use an
“iteration count” variable to control the loop:

r1 = first
r2 .= step
r3 := max(|(last — first 4 step)/step], 0) —— iteration count

——NB: this calculation may require several instructions.
—— It is guaranteed to result in a value within the precision
of the machine,
——but we have to be careful to avoid overflow during its calculation.
if r3 <0 goto L2
L1: ... ——loop body; use r1 for i
M=r1+r2
r3:=r3 -1
if r3 > 0 goto L1
i=rl
L2:
The use of the iteration count avoids the need to test the sign of step within the
loop. It also avoids problems with overflow when testing the terminating con-
dition (assuming that we have been suitably careful in calculating the iteration
count). Some processors, including the PowerPC, PA-RISC, and most CISC ma-
chines, can decrement the iteration count, test it against zero, and conditionally
branch, all in a single instruction. In simple cases, the code improvement phase
of the compiler may be able to use a technique known as induction variable elim-
ination to eliminate the need to maintain both r1 and r3.

Access to the Index Outside the Loop

Several languages, including Fortran IV and Pascal, leave the value of the loop
index undefined after termination of the loop. Others, such as Fortran 77 and
Algol 60, guarantee that the value is the one “most recently assigned.” For “nor-
mal” termination of the loop, this is the first value that exceeds the upper bound.
It is not clear what happens if this value exceeds the largest value representable on
the machine (or the smallest value in the case of a negative step size). A similar
question arises in Pascal, in which the type of an index can be a subrange or enu-
meration. In this case the first value “after” the upper bound can often be invalid.

var ¢ : ’a’..’z’;
for ¢ := ’a’ to ’z’ do begin
end;

(* what comes after ’z’7 *)
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EXAMPLE 665

Preserving the final index
value

Examples like this illustrate the rationale for leaving the final value of the index
undefined in Pascal. The alternative—defining the value to be the last one that
was valid—would force the compiler to generate slower code for every loop, with
two branches in each iteration instead of one:

r1:="a’

r2:='z
if r1 > r2 goto L3 —— Code improver may remove this test,
——since 'a’ and 'z’ are constants.
L1: —— loop body; use r1 for i

if r1 =r2 goto L2
rM=rl+1
—— NB: Pascal step size is always 1 (or —1 if downto)
goto L1
L2: i:=r1
L3:

Note that the compiler must generate this sort of code in any event (or use an
iteration count) if arithmetic overflow may interfere with testing the terminating
condition.

Several languages, including Algol W, Algol 68, Ada, Modula-3, and C++,
avoid the issue of the value held by the index outside the loop by making the
index a local variable of the loop. The header of the loop is considered to contain
a declaration of the index. Its type is inferred from the bounds of the loop, and
its scope is the loop’s body. Because the index is not visible outside the loop, its
value is not an issue. Since it is not visible even to local subroutines, much of
the concept of “threatening” in Pascal becomes unnecessary. Finally, there is no
chance that a value held in the index variable before the loop, and needed after,
will inadvertently be destroyed. (Of course, the programmer must not give the
index the same name as any variable that must be accessed within the loop, but
this is a strictly local issue: it has no ramifications outside the loop.)

DESIGN & IMPLEMENTATION

For loops

Modern for loops reflect the impact of both semantic and implementation
challenges. As suggested by the subheadings of Section 6.5.1, the semantic
challenges include changes to loop indices or bounds from within the loop,
the scope of the index variable (and its value, if any, outside the loop), and
gotos that enter or leave the loop. Implementation challenges include the im-
precision of floating-point values (discussed in the sidebar on page 272), the
direction of the bottom-of-loop test, and overflow at the end of the iteration
range. The “combination loops” of C (to be discussed in Section 6.5.2) move
responsibility for these challenges out of the compiler and into the application
program.



EXAMPLE 6.66

Algol 60 for loop

EXAMPLE 6.67

Combination (for) loop
in C

6.5 Iteration 277

Jumps

Algol 60, Fortran 77, and most of their successors place restrictions on the use of
the goto statement that prevent it from entering a loop from outside. Gotos can
be used to exit a loop prematurely, but this is a comparatively clean operation;
questions of uninitialized indices and bounds do not arise. As we shall see in
Section 6.5.5, many languages provide an exit statement as a semistructured
alternative to a loop-escaping goto.

6.5.2 Combination Loops

Algol 60, as mentioned above, provides a single loop construct that subsumes
the properties of more modern enumeration- and logically controlled loops. The
general form is given by

for_stmt — for id := forlist do stmt
for_list —>  enumerator (, enumerator)*
enumerator —>  expr

—> expr step expr until expr

—> expr while condition

Here the index variable takes on values specified by a sequence of enumerators,
each of which can be a single value, a range of values similar to that of modern
enumeration-controlled loops, or an expression with a terminating condition.
Each expression in the current enumerator is reevaluated at the top of the loop.
This reevaluation is what makes the while form of enumerator useful: its con-
dition typically depends on the current value of the index variable. All of the
following are equivalent.

for i :=1, 3, 5, 7, 9 do ...
for i := 1 step 2 until 10 do ...
for i :=1, i + 2 while i < 10 do ...

In practice the generality of the Algol 60 for loop turns out to be overkill.
The repeated reevaluation of bounds, in particular, can lead to loops that are
very hard to understand. Some of the power of the Algol 60 loop is retained in
a cleaner form in the for loop of C. A substantially more powerful version (not
described here) is found in Common Lisp.

C’s for loop is, strictly speaking, logically controlled. Any enumeration-
controlled loop, however, can be rewritten in a logically controlled form (this is
of course what the compiler does when it translates into assembler), and C’s for
loop is deliberately designed to facilitate writing the logically controlled equiva-
lent of a Pascal or Algol-style for loop. Our Modula-2 example

FOR i := first TO last BY step DO

END
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would usually be written in C as

for (i = first; i <= last; i += step) {

}
C defines this to be roughly equivalent to

i = first;
while (i <= last) {

i += step;

}

This definition means that it is the programmer’s responsibility to worry about
the effect of overflow on testing of the terminating condition. It also means that
both the index and any variables contained in the terminating condition can be
modified by the body of the loop, or by subroutines it calls, and these changes
will affect the loop control. This, too, is the programmer’s responsibility.

Any of the three substatements in the for loop header can be null (the condi-
tion is considered true if missing). Alternatively, a substatement can consist of a
sequence of comma-separated expressions. The advantage of the C for loop over
its while loop equivalent is compactness and clarity. In particular, all of the code
affecting the flow of control is localized within the header. In the while loop, one
must read both the top and the bottom of the loop to know what is going on.

6.5.3 Iterators

In all of the examples we have seen so far (with the possible exception of the
combination loops of Algol 60, Common Lisp, or C), a for loop iterates over the
elements of an arithmetic sequence. In general, however, we may wish to iterate
over the elements of any well-defined set (what are often called containers or col-
lections in object-oriented code). Clu introduced an elegant iterator mechanism
(also found in Python, Ruby, and C#) to do precisely that. Euclid and several
more recent languages, notably C++ and Java, define a standard interface for it-
erator objects (sometimes called enumerators) that are equally easy to use but not
as easy to write. Icon, conversely, provides a generalization of iterators, known as
generators, that combines enumeration with backtracking search.®

True Iterators

Clu, Python, Ruby, and C# allow any container abstraction to provide an iterator
that enumerates its items. The iterator resembles a subroutine that is permitted to

6 Unfortunately, terminology is not consistent across languages. Euclid uses the term “generator”
for what are called “iterator objects” here. Python uses it for what are called “true iterators” here.
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contain yield statements, each of which produces a loop index value. For loops
are then designed to incorporate a call to an iterator. The Modula-2 fragment

FOR i := first TO last BY step DO

. ..
would be written as follows in Clu.

for i in int$from_to_by(first, last, step) do

end

Here from_to_by is a built-in iterator that yields the integers from first to
first + |(last — first)/step| X step in increments of step.

When called, the iterator calculates the first index value of the loop, which it
returns to the main program by executing a yield statement. The yield be-
haves like return, except that when control transfers back to the iterator after
completion of the first iteration of the loop, the iterator continues where it last
left off—not at the beginning of its code. When the iterator has no more elements
to yield it simply returns (without a value), thereby terminating the loop.

In effect, an iterator is a separate thread of control, with its own program
counter, whose execution is interleaved with that of the for loop to which it sup-
plies index values.” The iteration mechanism serves to “decouple” the algorithm
required to enumerate elements from the code that uses those elements.

As an illustrative example, consider the pre-order enumeration of nodes from
a binary tree. A Clu iterator for this task appears in Figure 6.5. Invoked from the
header of a for loop, it takes the root of a tree as argument. It yields the root
node for the first iteration and then calls itself recursively, twice, to enumerate
the nodes of the left and right subtrees.

Iterator Objects

As realized in most imperative languages, iteration involves both a special form of
for loop and a mechanism to enumerate values for the loop. These concepts can
be separated. Euclid, C++, and Java all provide enumeration-controlled loops
reminiscent of those of Clu. They have no yield statement, however, and no
separate thread-like context to enumerate values; rather, an iterator is an ordi-
nary object (in the object-oriented sense of the word) that provides methods for
initialization, generation of the next index value, and testing for completion. Be-
tween calls, the state of the iterator must be kept in the object’s data members.

Figure 6.6 contains the Java equivalent of the code in Figure 6.5. The for loop
at the bottom is syntactic sugar for

7 Because iterators are interleaved with loops in a very regular way, they can be implemented more
easily (and cheaply) than fully general threads. We will consider implementation options further
in Section () 8.6.3.
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bin_

end

tree = cluster is ..., pre_order,
node = record [left, right: bin_tree, val: int]

rep = variant [some: node, empty: null]

pre_order =
tagcase
tag

tag

end

iter(t: cvt) yields(bin_tree)

t

empty: return

some(n: node):

yield(n.val)

for i: int in pre_order(n.left) do
yield(i)

end

for i: int in pre_order(n.right) do
yield (i)

end

end pre_order

bin_tree

for i: int in bin_tree$pre_order(e) do
stream$putl (output, int$unparse(i))

end

Figure 6.5 Clu iterator for pre-order enumeration of the nodes of a binary tree. In this
(simplistic) example we have assumed that the datum in a tree node is simply an int. Within
the bin_tree cluster, the rep (representation) declaration indicates that a binary tree is either
a node or empty. The cvt (convert) in the header of pre_order indicates that parameter t is
a bin_tree whose internal structure (rep) should be visible to the code of pre_order itself
but not to the caller: In the for loop at the bottom, int$unparse produces the character string

% export list

equivalent of a given int, and stream$putl prints a line to the specified stream.

for (Iterator<Integer> it = myTree.iterator(); it.hasNext();) {

Integer i

= it.next();

System.out.println(i);

DESIGN & IMPLEMENTATION

“True” iterators and iterator objects

While the iterator library mechanisms of C++ and Java are highly useful,
it is worth emphasizing that they are not the functional equivalents of “true”
iterators, as found in Clu, Python, Ruby, and C#. Their key limitation is the
need to maintain all intermediate state in the form of explicit data structures,
rather than in the program counter and local variables of a resumable execu-

tion context.
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class TreeNode<T> implements Iterable<T> {
TreeNode<T> left;
TreeNode<T> right;
T val;

public Iterator<T> iterator() {
return new Treelterator(this);
}

private class Treelterator implements Iterator<T> {

private Stack<TreeNode<T>> s = new Stack<TreeNode<T>>();

Treelterator(TreeNode<T> n) {
s.push(n) ;
}
public boolean hasNext() {
return !s.empty();
¥
public T next() {
if ('hasNext()) {
throw new NoSuchElementException();
}
TreeNode<T> n = s.pop();
if (n.right != null) {
s.push(n.right);
}
if (n.left !'= null) {
s.push(n.left);
}
return n.val;
}
public void remove() {
throw new UnsupportedOperationException();

}
}
TreeNode<Integer> myTree = ...
for (Integer i : myTree) {

System.out.println(i);

}
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Figure 6.6 Java code for pre-order enumeration of the nodes of a binary tree. The nested
Treelterator class uses an explicit Stack object (borrowed from the standard library) to
keep track of subtrees whose nodes have yet to be enumerated. Java generics, specified as
<T> type arguments for TreeNode, Stack, Iterator, and Iterable, allow next to return an
object of the appropriate type (here Integer), rather than the undifferentiated Object. The
remove method is part of the Iterator interface and must therefore be provided, if only as a

placeholder.
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EXAMPLE 67'

Iterator objects in C++

EXAMPLE 672

Passing the “loop body” to
an iterator in Scheme

The expression following the colon in the concise version of the loop header
must support the standard Iterable interface, which includes an iterator ()
method that returns an Iterator object.

C++ takes a different tack. Rather than propose a special version of the for
loop that would interface with iterator objects, the designers of the C++ standard
library used the language’s unusually flexible overloading and reference mecha-
nisms (Sections 3.6.2 and 8.3.1) to redefine comparison (!=), increment (++),
dereference (*), and so on, in a way that makes iterating over the elements of
a set look very much like using pointer arithmetic (Section 7.7.1) to traverse a
conventional array:

tree_node<int> *my_tree = ...

for (tree_node<int>::iterator n = my_tree->begin();
n !'= my_tree->end(); ++n) {
cout << *n << "\n";

}

C++ encourages programmers to think of iterators as if they were pointers. It-
erator n in this example encapsulates all the state encapsulated by iterator it
in the (no syntactic sugar) Java code of Example 6.70. To obtain the next ele-
ment of the set, however, the C++ programmer “dereferences” n, using the *
or —> operators. To advance to the following element, the programmer uses the
increment (++) operator. The end method returns a reference to a special itera-
tor that “points beyond the end” of the set. The increment (++) operator must
return a reference that tests equal to this special iterator when the set has been
exhausted.

We leave the code of the C++ tree iterator to Exercise 6.15. The details are
somewhat messier than Figure 6.6, due to operator overloading, the value model
of variables (which requires explicit references and pointers), and the lack of
garbage collection. Also, because C++ lacks a common Object base class, its
container classes are always type-specific. Where generics can minimize the need
for type casts in Java and C#, they serve a more fundamental role in C++: without
them one cannot write safe, general purpose container code.

Iterating with First-Class Functions

In functional languages, the ability to specify a function “inline” facilitates a pro-
gramming idiom in which the body of a loop is written as a function, with the
loop index as an argument. This function is then passed as the final argument to
an iterator. In Scheme we might write

(define uptoby
(lambda (low high step f)
(if (<= low high)
(begin
(f low)
(uptoby (+ low step) high step £f))
OPD))



EXAMPLE 6.73

Iteration with blocks in
Smalltalk

EXAMPLE 6.74

Imitating iterators in C
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We could then sum the first 50 odd numbers as follows.

(let ((sum 0))
(uptoby 1 100 2
(lambda (i)
(set! sum (+ sum 1i))))
sum) — 2500

Here the body of the loop, (set! sum (+ sum 1)), is an assignment. The —>
symbol (not a part of Scheme) is used here to mean “evaluates to.”

Smalltalk, which we consider in Section @) 9.6.1, provides mechanisms that
support a similar idiom:

sum <- 0.
1 to: 100 by: 2 do:
[:i | sum <~ sum + il

Like a lambda expression in Scheme, a square-bracketed block in Smalltalk cre-
ates a first-class function, which we then pass as argument to the to: by: do:
iterator. The iterator calls the function repeatedly, passing successive values of
the index variable i as argument. Iterators in Ruby employ a similar but some-
what less general mechanism: where a Smalltalk method can take an arbitrary
number of blocks as argument, a Ruby method can take only one. Continuations
(Section 6.2.2) and lazy evaluation (Section 6.6.2) also allow the Scheme/Lisp
programmer to create iterator objects and more traditional style true iterators;
we consider these options in Exercises 6.30 and 6.31.

Iterating without Iterators

In a language with neither true iterators nor iterator objects, one can still decou-
ple set enumeration from element use through programming conventions. In C,
for example, one might define a tree_iter type and associated functions that
could be used in a loop as follows.

tree_node *my_tree;
tree_iter ti;

for (ti_create(my_tree, &ti); !ti_done(ti); ti_next(&ti)) {
tree_node *n = ti_val(ti);

}
ti_delete(&ti);

There are two principal differences between this code and the more structured
alternatives: (1) the syntax of the loop is a good bit less elegant (and arguably
more prone to accidental errors), and (2) the code for the iterator is simply a
type and some associated functions; C provides no abstraction mechanism to
group them together as a module or a class. By providing a standard interface
for iterator abstractions, object-oriented languages like C++, Python, Ruby, Java,
and C# facilitate the design of higher-order mechanisms that manipulate whole
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EXAMPLE 675

While loop in Pascal

EXAMPLE 676

Imitating while loops in
Fortran 77

EXAMPLE 677

Post-test loop in Pascal
and Modula

containers: sorting them, merging them, finding their intersection or difference,
and so on. We leave the C code for tree_iter and the various ti_ functions to
Exercise 6.16.

6.5.4 Generators in Icon

Icon generalizes the concept of iterators, providing a generator mechanism that
causes any expression in which it is embedded to enumerate multiple values on
demand.

@ IN MORE DEPTH

Icon’s enumeration-controlled loop, the every loop, can contain not only a gen-
erator, but any expression that contains a generator. Generators can also be used
in constructs like if statements, which will execute their nested code if any gen-
erated value makes the condition true, automatically searching through all the
possibilities. When generators are nested, Icon explores all possible combinations
of generated values, and will even backtrack where necessary to undo unsuccess-
ful control-flow branches or assignments.

6.5.5 Logically Controlled Loops

In comparison to enumeration-controlled loops, logically controlled loops have
many fewer semantic subtleties. The only real question to be answered is where
within the body of the loop the terminating condition is tested. By far the most
common approach is to test the condition before each iteration. The familiar
while loop syntax to do this was introduced in Algol-W and retained in Pascal:

while condition do statement

As with selection statements, most Pascal successors use an explicit terminating
keyword, so that the body of the loop can be a statement list.

Neither (pre-90) Fortran nor Algol 60 really provides a while loop construct;
their loops were designed to be controlled by enumeration. To obtain the effect
of a while loop in Fortran 77, one must resort to gotos:

10 if negated_condition goto 20
goto 10
20
Post-test Loops

Occasionally it is handy to be able to test the terminating condition at the bottom
of a loop. Pascal introduced special syntax for this case, which was retained in
Modula but dropped in Ada. A post-test loop allows us, for example, to write



exampLe 6.78
Post-test loop in C

exampLe 6.79
Midtest loop in Modula
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repeat
readln(line)
until line[1] = ’$’;

instead of

readln(line);
while line[1] <> ’$’ do
readln(line);

The difference between these constructs is particularly important when the body
of the loop is longer. Note that the body of a post-test loop is always executed at
least once.

C provides a post-test loop whose condition works “the other direction” (i.e.,
“while” instead of “until”):

do {
line = read_line(stdin);
} while line[0] !'= ’$’;
Midtest Loops

Finally, as we saw in Section 6.2, it is sometimes appropriate to test the termi-
nating condition in the middle of a loop. This “midtest” can be accomplished
with an if and a goto in most languages, but a more structured alternative is
preferable. Modula (1) introduced a midtest, or one-and-a-half loop that allows a
terminating condition to be tested as many times as desired within the loop:

loop
statement_list
when condition exit
statement_list
when condition exit

end
Using this notation, the Pascal construct

while true do begin
readln(line);
if all_blanks(line) then goto 100;
consume_line(line)
end;
100:

can be written as follows in Modula (1).

loop
line := ReadLine;

when AllBlanks(line) exit;
ConsumeLine(line)

end;
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EXAMPLE 680

Exit as a separate
statement

EXAMPLE 68'

Break statement in C

EXAMPLE 6.82

Exiting a nested loop

The when clause here is syntactically part of the 1oop construct. The syntax en-
sures that an exit can occur only within a loop, but it has the unfortunate side
effect of preventing an exit from within a nested construct.

Modula-2 abandoned the when clause in favor of a simpler EXIT statement,
which is typically placed inside an IF statement:

LOOP
line := ReadLine;
IF AllBlanks(line) THEN EXIT END;
ConsumeLine (line)

END;

Because EXIT is no longer part of the LOOP construct syntax, the semantic analy-
sis phase of compilation must ensure that EXITs appear only inside LOOPs. There
may still be an arbitrary number of them inside a given LOOP. Modula-3 allows
an EXIT to leave a WHILE, REPEAT, or FOR loop, as well as a plain LOOP.

The C break statement, which we have already seen in the context of switch
statements, can be used in a similar manner:

for (;;) {
line = read_line(stdin);
if (all_blanks(line)) break;
consume_line(line);

}

Here the missing condition in the for loop header is assumed to always be true;
for some reason, C programmers have traditionally considered this syntax to be
stylistically preferable to the equivalent while (1).

In Ada an exit statement takes an optional loop-name argument that allows
control to escape a nested loop:

outer: loop
get_line(line, length);
for i in 1..length loop
exit outer when line(i) = ’$’;
consume_char (line(i));
end loop;
end loop outer;

Java extends the C/C++ break statement in a similar fashion: Java loops can
be labeled as in Ada, and the break statement takes an optional loop name as
parameter.

/CHECK YOUR UNDERSTANDING

21. Describe three subtleties in the implementation of enumeration-controlled
loops.

28. Why do most languages not allow the bounds or increment of an enumera-
tion-controlled loop to be floating-point numbers?



6.6 Recursion 287

19. Why do many languages require the step size of an enumeration-controlled
loop to be a compile-time constant?

30. Describe the “iteration count” loop implementation. What problem(s) does
it solve?

31. What are the advantages of making an index variable local to the loop it con-
trols?

32. What is a container (a collection)?
33. Explain the difference between true iterators and iterator objects.

34. Cite two advantages of iterator objects over the use of programming conven-
tions in a language like C.

35. Describe the approach to iteration typically employed in languages with first-
class functions.

36. Give an example in which a midtest loop results in more elegant code than
does a pretest or post-test loop.

31. Does C have enumeration-controlled loops? Explain.

Recursion

Unlike the control-flow mechanisms discussed so far, recursion requires no spe-
cial syntax. In any language that provides subroutines (particularly functions), all
that is required is to permit functions to call themselves, or to call other functions
that then call them back in turn. Most programmers learn in a data structures
class that recursion and (logically controlled) iteration provide equally powerful
means of computing functions: any iterative algorithm can be rewritten, auto-
matically, as a recursive algorithm, and vice versa. We will compare iteration and
recursion in more detail in the first subsection below. In the subsection after that
we will consider the possibility of passing unevaluated expressions into a func-
tion. While usually inadvisable, due to implementation cost, this technique will
sometimes allow us to write elegant code for functions that are only defined on a
subset of the possible inputs, or that explore logically infinite data structures.

0.6.] Iteration and Recursion

As we noted in Section 3.2, Fortran 77 and certain other languages do not permit
recursion. A few functional languages do not permit iteration. Most modern lan-
guages, however, provide both mechanisms. Iteration is in some sense the more
“natural” of the two in imperative languages, because it is based on the repeated
modification of variables. Recursion is the more natural of the two in functional
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languages, because it does not change variables. In the final analysis, which to use

exampLe 6.83 in which circumstance is mainly a matter of taste. To compute a sum,
A “naturally iterative”
problem Z 1)

1<i<10

it seems natural to use iteration. In C one would say

typedef int (*int_func) (int);
int summation(int_func f, int low, int high) {
/* assume low <= high */
int total = 0;
int i;
for (i = low; i <= high; i++) {
total += f(i);

}
return total;
}
exampLe 6.84 To compute a value defined by a recurrence,
A “naturally recursive”
problem a ifa=b
ged(a, b) ={ gcd(a—b,b) ifa>b
(positive integers a, b) ged(a,b—a) ifb>a
recursion may seem more natural:
int gcd(int a, int b) {
/* assume a, b > 0 */
if (a == b) return a;
else if (a > b) return gcd(a-b, b);
else return gcd(a, b-a);
}
exampLe 6.85 In both these cases, the choice could go the other way:

Implementing problems

“the other way” typedef int (*int_func) (int);

int summation(int_func f, int low, int high) {
/* assume low <= high */
if (low == high) return f(low);
else return f(low) + summation(f, low+l, high);

int gcd(int a, int b) {
/* assume a, b > 0 */
while (a !'= b) {
if (a > b) a = a-b;
else b = b-a;
}

return a;
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Implementation of tail
recursion

EXAMPLE 6.87

By-hand creation of
tail-recursive code
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Tail Recursion

It is often argued that iteration is more efficient than recursion. It is more accu-
rate to say that naive implementation of iteration is usually more efficient than
naive implementation of recursion. In the preceding examples, the iterative im-
plementations of summation and greatest divisors will be more efficient than
the recursive implementations if the latter make real subroutine calls that allo-
cate space on a run-time stack for local variables and bookkeeping information.
An “optimizing” compiler, however, particularly one designed for a functional
language, will often be able to generate excellent code for recursive functions.
It is particularly likely to do so for tail-recursive functions such as gcd above.
A tail-recursive function is one in which additional computation never follows a
recursive call: the return value is simply whatever the recursive call returns. For
such functions, dynamically allocated stack space is unnecessary: the compiler
can reuse the space belonging to the current iteration when it makes the recursive
call. In effect, a good compiler will recast our recursive gcd function as

int gcd(int a, int b) {
/* assume a, b > 0 */
start:
if (a == b) return a;
else if (a > b) {
a = a-b; goto start;
} else {
b = b-a; goto start;

}

Even for functions that are not tail-recursive, automatic, often simple trans-
formations can produce tail-recursive code. The general case of the transforma-
tion empl