


Programming Language Pragmatics is a very well-written textbook that captures the interest and
focus of the reader. Each of the topics is very well introduced, developed, illustrated, and inte-
grated with the preceding and following topics. The author employs up-to-date information and
illustrates each concept by using examples from various programming languages. The level of pre-
sentation is appropriate for students, and the pedagogical features help make the chapters very easy
to follow and refer back to.

—Kamal Dahbur, DePaul University

Programming Language Pragmatics strikes a good balance between depth and breadth in its
coverage on of both classic and updated languages.

—Jingke Li, Portland State University

Programming Language Pragmatics is the most comprehensive book to date on the theory and
implementation of programming languages. Prof. Scott writes well, conveying both unifying fun-
damental principles and the differing design choices found in today’s major languages. Several
improvements give this new second edition a more user-friendly format.

—William Calhoun, Bloomsburg University

Prof. Scott has met his goal of improving Programming Language Pragmatics by bringing the
text up-to-date and making the material more accessible for students. The addition of the chapter
on scripting languages and the use of XML to illustrate the use of scripting languages is unique in
programming languages texts and is an important addition.

—Eileen Head, Binghamton University

This new edition of Programming Language Pragmatics does an excellent job of balancing the
three critical qualities needed in a textbook: breadth, depth, and clarity. Prof. Scott manages to
cover the full gamut of programming languages, from the oldest to the newest with sufficient depth
to give students a good understanding of the important features of each, but without getting bogged
down in arcane and idiosyncratic details. The new chapter on scripting languages is a most valu-
able addition as this class of languages continues to emerge as a major mainstream technology.
This book is sure to become the gold standard of the field.

—Christopher Vickery, Queens College of CUNY

Programming Language Pragmatics not only explains language concepts and implementation
details with admirable clarity, but also shows how computer architecture and compilers influ-
ence language design and implementation. . . This book shows that programming languages are
the true center of computer science—the bridges spanning the chasm between programmer and
machine.

—From the Foreword by Jim Larus, Microsoft Research
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To the roses now in full bloom.





Foreword

Computer science excels at layering abstraction on abstraction. Our field’s facility
for hiding details behind a simplified interface is both a virtue and a necessity.
Operating systems, databases, and compilers are very complex programs shaped
by forty years of theory and development. For the most part, programmers need
little or no understanding of the internal logic or structure of a piece of software
to use it productively. Most of the time, ignorance is bliss.

Opaque abstraction, however, can become a brick wall, preventing forward
progress, instead of a sound foundation for new artifacts. Consider the subject
of this book, programs and programming languages. What happens when a pro-
gram runs too slowly, and profiling cannot identify any obvious bottleneck or the
bottleneck does not have an algorithmic explanation? Some potential problems
are the translation of language constructs into machine instructions or how the
generated code interacts with a processor’s architecture. Correcting these prob-
lems requires an understanding that bridges levels of abstraction.

Abstraction can also stand in the path of learning. Simple questions—how
programs written in a small, stilted subset of English can control machines that
speak binary or why programming languages, despite their ever growing variety
and quantity, all seem fairly similar—cannot be answered except by diving into
the details and understanding computers, compilers, and languages.

A computer science education, taken as a whole, can answer these questions.
Most undergraduate programs offer courses about computer architecture, oper-
ating systems, programming language design, and compilers. These are all fas-
cinating courses that are well worth taking—but difficult to fit into most study
plans along with the many other rich offerings of an undergraduate computer
science curriculum. Moreover, courses are often taught as self-contained subjects
and do not explain a subject’s connections to other disciplines.

This book also answers these questions, by looking beyond the abstractions
that divide these subjects. Michael Scott is a talented researcher who has made
major contributions in language implementation, run-time systems, and com-
puter architecture. He is exceptionally well qualified to draw on all of these fields
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x Foreword

to provide a coherent understanding of modern programming languages. This
book not only explains language concepts and implementation details with ad-
mirable clarity, but also shows how computer architecture and compilers influ-
ence language design and implementation. Moreover, it neatly illustrates how
different languages are actually used, with realistic examples to clearly show how
problem domains shape languages as well.

In interest of full disclosure, I must confess this book worried me when I first
read it. At the time, I thought Michael’s approach de-emphasized programming
languages and compilers in the curriculum and would leave students with a su-
perficial understanding of the field. But now, having reread the book, I have come
to realize that in fact the opposite is true. By presenting them in their proper con-
text, this book shows that programming languages are the true center of com-
puter science—the bridges spanning the chasm between programmer and ma-
chine.

James Larus, Microsoft Research
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Preface

A course in computer programming provides the typical student’s first ex-
posure to the field of computer science. Most students in such a course will have
used computers all their lives, for e-mail, games, web browsing, word processing,
instant messaging, and a host of other tasks, but it is not until they write their
first programs that they begin to appreciate how applications work. After gaining
a certain level of facility as programmers (presumably with the help of a good
course in data structures and algorithms), the natural next step is to wonder how
programming languages work. This book provides an explanation. It aims, quite
simply, to be the most comprehensive and accurate languages text available, in
a style that is engaging and accessible to the typical undergraduate. This aim re-
flects my conviction that students will understand more, and enjoy the material
more, if we explain what is really going on.

In the conventional “systems” curriculum, the material beyond data struc-
tures (and possibly computer organization) tends to be compartmentalized into
a host of separate subjects, including programming languages, compiler con-
struction, computer architecture, operating systems, networks, parallel and dis-
tributed computing, database management systems, and possibly software engi-
neering, object-oriented design, graphics, or user interface systems. One problem
with this compartmentalization is that the list of subjects keeps growing, but the
number of semesters in a bachelor’s program does not. More important, perhaps,
many of the most interesting discoveries in computer science occur at the bound-
aries between subjects. The RISC revolution, for example, forged an alliance be-
tween computer architecture and compiler construction that has endured for 20
years. More recently, renewed interest in virtual machines has blurred the bound-
ary between the operating system kernel and the language run-time system. The
spread of Java and .NET has similarly blurred the boundary between the compiler
and the run-time system. Programs are now routinely embedded in web pages,
spreadsheets, and user interfaces.

Increasingly, both educators and practitioners are recognizing the need to em-
phasize these sorts of interactions. Within higher education in particular there is
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xxiv Preface

a growing trend toward integration in the core curriculum. Rather than give the
typical student an in-depth look at two or three narrow subjects, leaving holes in
all the others, many schools have revised the programming languages and oper-
ating systems courses to cover a wider range of topics, with follow-on electives
in various specializations. This trend is very much in keeping with the findings
of the ACM/IEEE-CS Computing Curricula 2001 task force, which emphasize the
growth of the field, the increasing need for breadth, the importance of flexibility
in curricular design, and the overriding goal of graduating students who “have
a system-level perspective, appreciate the interplay between theory and practice,
are familiar with common themes, and can adapt over time as the field evolves”
[CR01, Sec. 11.1, adapted].

The first edition of Programming Language Pragmatics (PLP-1e) had the
good fortune of riding this curricular trend. The second edition continues and
strengthens the emphasis on integrated learning while retaining a central focus
on programming language design.

At its core, PLP is a book about how programming languages work. Rather than
enumerate the details of many different languages, it focuses on concepts that
underlie all the languages the student is likely to encounter, illustrating those
concepts with a variety of concrete examples, and exploring the tradeoffs that
explain why different languages were designed in different ways. Similarly, rather
than explain how to build a compiler or interpreter (a task few programmers will
undertake in its entirety), PLP focuses on what a compiler does to an input pro-
gram, and why. Language design and implementation are thus explored together,
with an emphasis on the ways in which they interact.

Changes in the Second Edition

There were four main goals for the second edition:

1. Introduce new material, most notably scripting languages.

2. Bring the book up to date with respect to everything else that has happened
in the last six years.

3. Resist the pressure toward rising textbook prices.

4. Strengthen the book from a pedagogical point of view, to make it more useful
and accessible.

Item (1) is the most significant change in content. With the explosion of the
World Wide Web, languages like Perl, PHP, Tcl/Tk, Python, Ruby, JavaScript, and
XSLT have seen an enormous upsurge not only in commercial significance, but
also in design innovation. Many of today’s graduates will spend more of their
time working with scripting languages than with C++, Java, or C#. The new chap-
ter on scripting languages (Chapter 13) is organized first by application domain
(shell languages, text processing and report generation, mathematics and statis-
tics, “glue” languages and general purpose scripting, extension languages, script-



Preface xxv

ing the World Wide Web) and then by innovative features (names and scopes,
string and pattern manipulation, high level data types, object orientation). Refer-
ences to scripting languages have also been added wherever appropriate through-
out the rest of the text.

Item (2) reflects such key developments as the finalized C99 standard and the
appearance of Java 5 and C# (version 2.0). Chapter 6 (Control Flow) now cov-
ers boxing, unboxing, and the latest iterator constructs. Chapter 8 (Subroutines)
covers Java and C# generics. Chapter 12 (Concurrency) covers the Java 5 con-
currency library (JSR 166). References to C# have been added where appropriate
throughout. In keeping with changes in the microprocessor market, the ubiq-
uitous Intel/AMD x86 has replaced the Motorola 68000 in the case studies of
Chapters 5 (Architecture) and 8 (Subroutines). The MIPS case study in Chap-
ter 8 has been updated to 64-bit mode. References to technological constants and
trends have also been updated. In several places I have rewritten examples to use
languages with which students are more likely to be familiar; this process will
undoubtedly continue in future editions.

Many sections have been heavily rewritten to make them clearer or more ac-
curate. These include coverage of finite automaton creation (2.2.1); declaration
order (3.3.3); modules (3.3.4); aliases and overloading (3.6.1 and 3.6.2); poly-
morphism and generics (3.6.3, 7.1.2, 8.4, and 9.4.4); separate compilation (3.7);
continuations, exceptions, and multilevel returns (6.2.1, 6.2.2, and 8.5); calling
sequences (8.2); and most of Chapter 5.

Item (3) reflects Morgan Kaufmann’s commitment to making definitive texts
available at student-friendly prices. PLP-1e was larger and more comprehensive
than competing texts, but sold for less. This second edition keeps a handle on
price (and also reduces bulk) with high-quality paperback construction.

Finally, item (4) encompasses a large number of presentational changes. Some
of these are relatively small. There are more frequent section headings, for exam-
ple, and more historical anecdotes. More significantly, the book has been orga-
nized into four major parts:

Part I covers foundational material: (1) Introduction to Language Design and
Implementation; (2) Programming Language Syntax; (3) Names, Scopes, and
Bindings; (4) Semantic Analysis; and (5) Target Machine Architecture. The
second and fifth of these have a fairly heavy focus on implementation issues.
The first and fourth are mixed. The third introduces core issues in language
design.

Part II continues the coverage of core issues: (6) Control Flow; (7) Data Types;
(8) Subroutines and Control Abstraction; and (9) Data Abstraction and Ob-
ject Orientation. The last of these has moved forward from its position in PLP-
1e, reflecting the centrality of object-oriented programming to much of mod-
ern computing.

Part III turns to alternative programming models: (10) Functional Languages;
(11) Logic Languages; (12) Concurrency; and (13) Scripting Languages. Func-
tional and logic languages shared a single chapter in PLP-1e.
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Part IV returns to language implementation: (14) Building a Runnable Pro-
gram (code generation, assembly, and linking); and (15) Code Improvement
(optimization).

The PLP CD

To minimize the physical size of the text, make way for new material, and allow
students to focus on the fundamentals when browsing, approximately 250 pages
of more advanced or peripheral material has been moved to a companion CD.
For the most part (though not exclusively), this material comprises the sections
that were identified as advanced or optional in PLP-1e.

The most significant single move is the entire chapter on code improvement
(15). The rest of the moved material consists of scattered, shorter sections. Each
such section is represented in the text by a brief introduction to the subject and
an “In More Depth” paragraph that summarizes the elided material.

Note that the placement of material on the CD does not constitute a judgment
about its technical importance. It simply reflects the fact that there is more mate-
rial worth covering than will fit in a single volume or a single course. My intent is
to retain in the printed text the material that is likely to be covered in the largest
number of courses.

Design & Implementation Sidebars

PLP-1e placed a heavy emphasis on the ways in which language design constrains
implementation options, and the ways in which anticipated implementations
have influenced language design. PLP-2e uses more than 120 sidebars to make
these connections more explicit. A more detailed introduction to these sidebars
appears on page 7 (Chapter 1). A numbered list appears in Appendix B.

Numbered and Titled Examples

Examples in PLP-2e are intimately woven into the flow of the presentation. To
make it easier to find specific examples, to remember their content, and to refer
to them in other contexts, a number and a title for each is now displayed in a
marginal note. There are nearly 900 such examples across the main text and the
CD. A detailed list appears in Appendix C.

Exercise Plan

PLP-1e contained a total of 385 review questions and 312 exercises, located at the
ends of chapters. Review questions in the second edition have been moved to the
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ends of sections, closer to the material they cover, to make it easier to tell when
one has grasped the central concepts. The total number of such questions has
nearly doubled.

The problems remaining at the ends of chapters have now been divided
into Exercises and Explorations. The former are intended to be more or less
straightforward, though more challenging than the per-section review ques-
tions; they should be suitable for homework or brief projects. The exploration
questions are more open-ended, requiring web or library research, substantial
time commitment, or the development of subjective opinion. The total num-
ber of questions has increased from a little over 300 in PLP-1e to over 500
in the current edition. Solutions to the exercises (but not the explorations)
are available to registered instructors from a password-protected web site: visit
www.mkp.com/companions/0126339511/.

How to Use the Book

Programming Language Pragmatics covers almost all of the material in the PL
“knowledge units” of the Computing Curricula 2001 report [CR01]. The book is
an ideal fit for the CS 341 model course (Programming Language Design), and
can also be used for CS 340 (Compiler Construction) or CS 343 (Programming
Paradigms). It contains a significant fraction of the content of CS 344 (Functional
Programming) and CS 346 (Scripting Languages). Figure 1 illustrates several pos-
sible paths through the text.

For self-study, or for a full-year course (track F in Figure 1), I recommend
working through the book from start to finish, turning to the PLP CD as each “In
More Depth” section is encountered. The one-semester course at the University
of Rochester (track R), for which the text was originally developed, also covers
most of the book but leaves out most of the CD sections, as well as bottom-up
parsing (2.3.3), message passing (12.4), web scripting (13.3), and most of Chap-
ter 14 (Building a Runnable Program).

Some chapters (2, 4, 5, 14, 15) have a heavier emphasis than others on imple-
mentation issues. These can be reordered to a certain extent with respect to the
more design-oriented chapters, but it is important that Chapter 5 or its equiva-
lent be covered before Chapters 6 through 9. Many students will already be famil-
iar with some of the material in Chapter 5, most likely from a course on computer
organization. In this case the chapter may simply be skimmed for review. Some
students may also be familiar with some of the material in Chapter 2, perhaps
from a course on automata theory. Much of this chapter can then be read quickly
as well, pausing perhaps to dwell on such practical issues as recovery from syntax
errors, or the ways in which a scanner differs from a classical finite automaton.

A traditional programming languages course (track P in Figure 1) might leave
out all of scanning and parsing, plus all of Chapters 4 and 5. It would also
deemphasize the more implementation-oriented material throughout. In place
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Figure 1 Paths through the text. Darker shaded regions indicate supplemental “In More Depth” sections on the PLP CD.
Section numbers are shown for breaks that do not correspond to supplemental material.

of these it could add such design-oriented CD sections as the ML type sys-
tem (7.2.4), multiple inheritance (9.5), Smalltalk (9.6.1), lambda calculus (10.6),
and predicate calculus (11.3).

PLP has also been used at some schools for an introductory compiler course
(track C in Figure 1). The typical syllabus leaves out most of Part III (Chapters 10
through 13), and deemphasizes the more design-oriented material throughout.
In place of these it includes all of scanning and parsing, Chapters 14 and 15, and
a slightly different mix of other CD sections.

For a school on the quarter system, an appealing option is to offer an intro-
ductory one-quarter course and two optional follow-on courses (track Q in Fig-
ure 1). The introductory quarter might cover the main (non-CD) sections of
Chapters 1, 3, 6, and 7, plus the first halves of Chapters 2 and 8. A language-
oriented follow-on quarter might cover the rest of Chapter 8, all of Part III, CD
sections from Chapters 6 through 8, and possibly supplemental material on for-
mal semantics, type systems, or other related topics. A compiler-oriented follow-
on quarter might cover the rest of Chapter 2; Chapters 4–5 and 14–15, CD sec-
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tions from Chapters 3 and 8–9, and possibly supplemental material on automatic
code generation, aggressive code improvement, programming tools, and so on.

Whatever the path through the text, I assume that the typical reader has al-
ready acquired significant experience with at least one imperative language. Ex-
actly which language it is shouldn’t matter. Examples are drawn from a wide
variety of languages, but always with enough comments and other discussion
that readers without prior experience should be able to understand easily. Single-
paragraph introductions to some 50 different languages appear in Appendix A.
Algorithms, when needed, are presented in an informal pseudocode that should
be self-explanatory. Real programming language code is set in "typewriter"
font. Pseudocode is set in a sans-serif font.

Supplemental Materials

In addition to supplemental sections of the text, the PLP CD contains a variety
of other resources:

� Links to language reference manuals and tutorials on the Web

� Links to Open Source compilers and interpreters

� Complete source code for all nontrivial examples in the book (more than 300
source files)

� Search engine for both the main text and the CD-only content

Additional resources are available at www.mkp.com/companions/0126339511/
(you may wish to check back from time to time). For instructors who have
adopted the text, a password-protected page provides access to

� Editable PDF source for all the figures in the book

� Editable PowerPoint slides

� Solutions to most of the exercises

� Suggestions for larger projects

Acknowledgments for the Second Edition

In preparing the second edition I have been blessed with the generous assistance
of a very large number of people. Many provided errata or other feedback on
the first edition, among them Manuel E. Bermudez, John Boyland, Brian Cum-
ming, Stephen A. Edward, Michael J. Eulenstein, Tayssir John Gabbour, Tom-
maso Galleri, Eileen Head, David Hoffman, Paul Ilardi, Lucian Ilie, Rahul Jain,
Eric Joanis, Alan Kaplan, Les Lander, Jim Larus, Hui Li, Jingke Li, Evangelos Mil-
ios, Eduardo Pinheiro, Barbara Ryder, Nick Stuifbergen, Raymond Toal, Andrew
Tolmach, Jens Troeger, and Robbert van Renesse. Zongyan Qiu prepared the Chi-
nese translation, and found several bugs in the process. Simon Fillat maintained
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the Morgan Kaufmann web site. I also remain indebted to the many other peo-
ple, acknowledged in the first edition, who helped in that earlier endeavor, and to
the reviewers, adopters, and readers who made it a success. Their contributions
continue to be reflected in the current edition.

Work on the second edition began in earnest with a “focus group” at
SIGCSE ’02; my thanks to Denise Penrose, Emilia Thiuri, and the rest of the
team at Morgan Kaufmann for organizing that event, to the approximately two
dozen attendees who shared their thoughts on content and pedagogy, and to the
many other individuals who reviewed two subsequent revision plans.

A draft of the second edition was class tested in the fall of 2004 at eight dif-
ferent universities. I am grateful to Gerald Baumgartner (Louisiana State Univer-
sity), William Calhoun (Bloomsburg University), Betty Cheng (Michigan State
University), Jingke Li (Portland State University), Beverly Sanders (University of
Florida), Darko Stefanovic (University of New Mexico), Raymond Toal (Loyola
Marymount University), Robert van Engelen (Florida State University), and all
their students for a mountain of suggestions, reactions, bug fixes, and other feed-
back. Professor van Engelen provided several excellent end-of-chapter exercises.

External reviewers for the second edition also provided a wealth of use-
ful suggestions. My thanks to Richard J. Botting (California State University,
San Bernardino), Kamal Dahbur (DePaul University), Stephen A. Edwards
(Columbia University), Eileen Head (Binghamton University), Li Liao (Univer-
sity of Delaware), Christopher Vickery (Queens College, City University of New
York), Garrett Wollman (MIT), Neng-Fa Zhou (Brooklyn College, City Univer-
sity of New York), and Cynthia Brown Zickos (University of Mississippi). Gar-
rett Wollman’s technical review of Chapter 13 was particularly helpful, as were
his earlier comments on a variety of topics in the first edition. Sadly, time has
not permitted me to do justice to everyone’s suggestions. I have incorporated
as much as I could, and have carefully saved the rest for guidance on the third
edition. Problems that remain in the current edition are entirely my own.

PLP-2e was also class tested at the University of Rochester in the fall of 2004.
I am grateful to all my students, and to John Heidkamp, David Lu, and Dan Mul-
lowney in particular, for their enthusiasm and suggestions. Mike Spear provided
several helpful pointers on web technology for Chapter 13. Over the previous
several years, my colleagues Chen Ding and Sandhya Dwarkadas taught from the
first edition several times and had many helpful suggestions. Chen’s feedback on
Chapter 15 (assisted by Yutao Zhong) was particularly valuable. My thanks as
well to the rest of my colleagues, to department chair Mitsunori Ogihara, and
to the department’s administrative, secretarial, and technical staff for providing
such a supportive and productive work environment.

As they were on the first edition, the staff at Morgan Kaufmann have been a
genuine pleasure to work with, on both a professional and a personal level. My
thanks in particular to Denise Penrose, publisher; Nate McFadden, editor; Carl
Soares, production editor; Peter Ashenden, CD designer; Brian Grimm, market-
ing manager; and Valerie Witte, editorial assistant.
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IFoundations

A central premise of Programming Language Pragmatics is that language design and implementation

are intimately connected; it’s hard to study one without the other.

The bulk of the text—Parts II and III—is organized around topics in language design, but with

detailed coverage throughout of the many ways in which design decisions have been shaped by

implementation concerns.

The first five chapters—Part I—set the stage by covering foundational material in both design

and implementation. Chapter 1 motivates the study of programming languages, introduces the ma-

jor language families, and provides an overview of the compilation process. Chapter 3 covers the

high-level structure of programs, with an emphasis on names, the binding of names to objects, and

the scope rules that govern which bindings are active at any given time. In the process it touches on

storage management; subroutines, modules, and classes; polymorphism; and separate compilation.

Chapters 2, 4, and 5 are more implementation-oriented. They provide the background needed to

understand the implementation issues mentioned in Parts II and III. Chapter 2 discusses the syntax,

or textual structure, of programs. It introduces regular expressions and context-free grammars, which

designers use to describe program syntax, together with the scanning and parsing algorithms that a

compiler or interpreter uses to recognize that syntax. Given an understanding of syntax, Chapter 4

explains how a compiler (or interpreter) determines the semantics, or meaning of a program. The

discussion is organized around the notion of attribute grammars, which serve to map a program

onto something else that has meaning, like mathematics or some other existing language. Finally,

Chapter 5 provides an overview of assembly-level computer architecture, focusing on the features of

modern microprocessors most relevant to compilers. Programmers who understand these features

have a better chance not only of understanding why the languages they use were designed the way

they were, but also of using those languages as fully and effectively as possible.





1Introduction

The first electronic computers were monstrous contraptions, filling
several rooms, consuming as much electricity as a good-size factory, and costing
millions of 1940s dollars (but with the computing power of a modern hand-held
calculator). The programmers who used these machines believed that the com-
puter’s time was more valuable than theirs. They programmed in machine lan-
guage. Machine language is the sequence of bits that directly controls a processor,
causing it to add, compare, move data from one place to another, and so forth at
appropriate times. Specifying programs at this level of detail is an enormously te-
dious task. The following program calculates the greatest common divisor (GCD)EXAMPLE 1.1

GCD program in MIPS
machine language

of two integers, using Euclid’s algorithm. It is written in machine language, ex-
pressed here as hexadecimal (base 16) numbers, for the MIPS R4000 processor.

27bdffd0 afbf0014 0c1002a8 00000000 0c1002a8 afa2001c 8fa4001c

00401825 10820008 0064082a 10200003 00000000 10000002 00832023

00641823 1483fffa 0064082a 0c1002b2 00000000 8fbf0014 27bd0020

03e00008 00001025 �
As people began to write larger programs, it quickly became apparent that

a less error-prone notation was required. Assembly languages were invented to
allow operations to be expressed with mnemonic abbreviations. Our GCD pro-EXAMPLE 1.2

GCD program in MIPS
assembler

gram looks like this in MIPS assembly language:

addiu sp,sp,-32

sw ra,20(sp) b C

jal getint subu a0,a0,v1

nop B: subu v1,v1,a0

jal getint C: bne a0,v1,A

sw v0,28(sp) slt at,v1,a0

lw a0,28(sp) D: jal putint

move v1,v0 nop

beq a0,v0,D lw ra,20(sp)

slt at,v1,a0 addiu sp,sp,32

A: beq at,zero,B jr ra

nop move v0,zero �

3
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Assembly languages were originally designed with a one-to-one correspon-
dence between mnemonics and machine language instructions, as shown in this
example.1 Translating from mnemonics to machine language became the job
of a systems program known as an assembler. Assemblers were eventually aug-
mented with elaborate “macro expansion” facilities to permit programmers to
define parameterized abbreviations for common sequences of instructions. The
correspondence between assembly language and machine language remained ob-
vious and explicit, however. Programming continued to be a machine-centered
enterprise: each different kind of computer had to be programmed in its own as-
sembly language, and programmers thought in terms of the instructions that the
machine would actually execute.

As computers evolved, and as competing designs developed, it became in-
creasingly frustrating to have to rewrite programs for every new machine. It also
became increasingly difficult for human beings to keep track of the wealth of
detail in large assembly language programs. People began to wish for a machine-
independent language, particularly one in which numerical computations (the
most common type of program in those days) could be expressed in something
more closely resembling mathematical formulae. These wishes led in the mid-
1950s to the development of the original dialect of Fortran, the first arguably
high-level programming language. Other high-level languages soon followed,
notably Lisp and Algol.

Translating from a high-level language to assembly or machine language is the
job of a systems program known as a compiler. Compilers are substantially more
complicated than assemblers because the one-to-one correspondence between
source and target operations no longer exists when the source is a high-level
language. Fortran was slow to catch on at first, because human programmers,
with some effort, could almost always write assembly language programs that
would run faster than what a compiler could produce. Over time, however, the
performance gap has narrowed and eventually reversed. Increases in hardware
complexity (due to pipelining, multiple functional units, etc.) and continuing
improvements in compiler technology have led to a situation in which a state-of-
the-art compiler will usually generate better code than a human being will. Even
in cases in which human beings can do better, increases in computer speed and
program size have made it increasingly important to economize on program-
mer effort, not only in the original construction of programs, but in subsequent
program maintenance—enhancement and correction. Labor costs now heavily
outweigh the cost of computing hardware.

1 Each of the 23 lines of assembly code in the example is encoded in the corresponding 32 bits of
the machine language. Note for example that the two sw (store word) instructions begin with
the same 11 bits (afa or afb). Those bits encode the operation (sw) and the base register (sp).
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1.1 The Art of Language Design

Today there are thousands of high-level programming languages, and new ones
continue to emerge. Human beings use assembly language only for special pur-
pose applications. In a typical undergraduate class, it is not uncommon to find
users of scores of different languages. Why are there so many? There are several
possible answers:

Evolution. Computer science is a young discipline; we’re constantly finding bet-
ter ways to do things. The late 1960s and early 1970s saw a revolution in “struc-
tured programming,” in which the go to-based control flow of languages like
Fortran, Cobol, and Basic2 gave way to while loops, case statements, and
similar higher-level constructs. In the late 1980s the nested block structure of
languages like Algol, Pascal, and Ada began to give way to the object-oriented
structure of Smalltalk, C++, Eiffel, and the like.

Special Purposes. Many languages were designed for a specific problem domain.
The various Lisp dialects are good for manipulating symbolic data and com-
plex data structures. Snobol and Icon are good for manipulating character
strings. C is good for low-level systems programming. Prolog is good for rea-
soning about logical relationships among data. Each of these languages can be
used successfully for a wider range of tasks, but the emphasis is clearly on the
specialty.

Personal Preference. Different people like different things. Much of the parochi-
alism of programming is simply a matter of taste. Some people love the terse-
ness of C; some hate it. Some people find it natural to think recursively; others
prefer iteration. Some people like to work with pointers; others prefer the im-
plicit dereferencing of Lisp, Clu, Java, and ML. The strength and variety of
personal preference make it unlikely that anyone will ever develop a univer-
sally acceptable programming language.

Of course, some languages are more successful than others. Of the many that
have been designed, only a few dozen are widely used. What makes a language
successful? Again there are several answers:

Expressive Power. One commonly hears arguments that one language is more
“powerful” than another, though in a formal mathematical sense they are all
Turing equivalent—each can be used, if awkwardly, to implement arbitrary al-
gorithms. Still, language features clearly have a huge impact on the program-
mer’s ability to write clear, concise, and maintainable code, especially for very

2 The name of each of these languages is sometimes written entirely in uppercase letters and some-
times in mixed case. For consistency’s sake, I adopt the convention in this book of using mixed
case for languages whose names are pronounced as words (e.g., Fortran, Cobol, Basic) and up-
percase for those pronounced as a series of letters (e.g., APL, PL/I, ML).
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large systems. There is no comparison, for example, between early versions of
Basic on the one hand and Common Lisp or Ada on the other. The factors
that contribute to expressive power—abstraction facilities in particular—are a
major focus of this book.

Ease of Use for the Novice. While it is easy to pick on Basic, one cannot deny its
success. Part of that success is due to its very low “learning curve.” Logo is pop-
ular among elementary-level educators for a similar reason: even a 5-year-old
can learn it. Pascal was taught for many years in introductory programming
language courses because, at least in comparison to other “serious” languages,
it is compact and easy to learn. In recent years Java has come to play a similar
role. Though substantially more complex than Pascal, it is much simpler than,
say, C++.

Ease of Implementation. In addition to its low learning curve, Basic is success-
ful because it could be implemented easily on tiny machines, with limited
resources. Forth has a small but dedicated following for similar reasons. Ar-
guably the single most important factor in the success of Pascal was that its
designer, Niklaus Wirth, developed a simple, portable implementation of the
language, and shipped it free to universities all over the world (see Exam-
ple 1.12).3 The Java designers have taken similar steps to make their language
available for free to almost anyone who wants it.

Open Source. Most programming languages today have at least one open source
compiler or interpreter, but some languages—C in particular—are much
more closely associated than others with freely distributed, peer reviewed,
community supported computing. C was originally developed in the early
1970s by Dennis Ritchie and Ken Thompson at Bell Labs,4 in conjunction
with the design of the original Unix operating system. Over the years Unix
evolved into the world’s most portable operating system—the OS of choice
for academic computer science—and C was closely associated with it. With
the standardization of C, the language has become available on an enormous
variety of additional platforms. Linux, the leading open source operating sys-
tem, is written in C. As of March 2005, C and its descendants account for 60%
of the projects hosted at sourceforge.net.

Excellent Compilers. Fortran owes much of its success to extremely good com-
pilers. In part this is a matter of historical accident. Fortran has been around
longer than anything else, and companies have invested huge amounts of time

3 Niklaus Wirth (1934–), Professor Emeritus of Informatics at ETH in Zürich, Switzerland, is
responsible for a long line of influential languages, including Euler, Algol-W, Pascal, Modula,
Modula-2, and Oberon. Among other things, his languages introduced the notions of enumera-
tion, subrange, and set types, and unified the concepts of records (structs) and variants (unions).
He received the annual ACM Turing Award, computing’s highest honor, in 1984.

4 Ken Thompson (1943–) led the team that developed Unix. He also designed the B program-
ming language, a child of BCPL and the parent of C. Dennis Ritchie (1941–) was the principal
force behind the development of C itself. Thompson and Ritchie together formed the core of an
incredibly productive and influential group. They shared the ACM Turing Award in 1983.
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and money in making compilers that generate very fast code. It is also a matter
of language design, however: Fortran dialects prior to Fortran 90 lack recur-
sion and pointers, features that greatly complicate the task of generating fast
code (at least for programs that can be written in a reasonable fashion without
them!). In a similar vein, some languages (e.g., Common Lisp) are successful
in part because they have compilers and supporting tools that do an unusually
good job of helping the programmer manage very large projects.

Economics, Patronage, and Inertia. Finally, there are factors other than technical
merit that greatly influence success. The backing of a powerful sponsor is one.
Cobol and PL/I, at least to first approximation, owe their life to IBM. Ada
owes its life to the United States Department of Defense: it contains a wealth
of excellent features and ideas, but the sheer complexity of implementation
would likely have killed it if not for the DoD backing. Similarly, C#, despite its
technical merits, would probably not have received the attention it has without
the backing of Microsoft. At the other end of the life cycle, some languages
remain widely used long after “better” alternatives are available because of a
huge base of installed software and programmer expertise, which would cost
too much to replace.

DESIGN & IMPLEMENTATION

Introduction
Throughout the book, sidebars like this one will highlight the interplay of lan-
guage design and language implementation. Among other things, we will con-
sider the following.

� Cases (such as those mentioned in this section) in which ease or difficulty
of implementation significantly affected the success of a language

� Language features that many designers now believe were mistakes, at least
in part because of implementation difficulties

� Potentially useful features omitted from some languages because of concern
that they might be too difficult or slow to implement

� Language limitations adopted at least in part out of concern for implemen-
tation complexity or cost

� Language features introduced at least in part to facilitate efficient or elegant
implementations

� Cases in which a machine architecture makes reasonable features unreason-
ably expensive

� Various other tradeoffs in which implementation plays a significant role

A complete list of sidebars appears in Appendix B.
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Clearly no one factor determines whether a language is “good.” As we study
programming languages, we shall need to consider issues from several points of
view. In particular, we shall need to consider the viewpoints of both the pro-
grammer and the language implementor. Sometimes these points of view will be
in harmony, as in the desire for execution speed. Often, however, there will be
conflicts and tradeoffs, as the conceptual appeal of a feature is balanced against
the cost of its implementation. The tradeoff becomes particularly thorny when
the implementation imposes costs not only on programs that use the feature, but
also on programs that do not.

In the early days of computing the implementor’s viewpoint was predominant.
Programming languages evolved as a means of telling a computer what to do. For
programmers, however, a language is more aptly defined as a means of express-
ing algorithms. Just as natural languages constrain exposition and discourse, so
programming languages constrain what can and cannot be expressed, and have
both profound and subtle influence over what the programmer can think. Donald
Knuth has suggested that programming be regarded as the art of telling another
human being what one wants the computer to do [Knu84].5 This definition per-
haps strikes the best sort of compromise. It acknowledges that both conceptual
clarity and implementation efficiency are fundamental concerns. This book at-
tempts to capture this spirit of compromise by simultaneously considering the
conceptual and implementation aspects of each of the topics it covers.

1.2 The Programming Language Spectrum

The many existing languages can be classified into families based on their modelEXAMPLE 1.3
Classification of
programming languages

of computation. Figure 1.1 shows a common set of families. The top-level di-
vision distinguishes between the declarative languages, in which the focus is on
what the computer is to do, and the imperative languages, in which the focus is
on how the computer should do it. �

Declarative languages are in some sense “higher level”; they are more in tune
with the programmer’s point of view, and less with the implementor’s point of
view. Imperative languages predominate, however, mainly for performance rea-
sons. There is a tension in the design of declarative languages between the desire
to get away from “irrelevant” implementation details and the need to remain
close enough to the details to at least control the outline of an algorithm. The de-
sign of efficient algorithms, after all, is what much of computer science is about.

5 Donald E. Knuth (1938–), Professor Emeritus at Stanford University and one of the foremost
figures in the design and analysis of algorithms, is also widely known as the inventor of the
TEX typesetting system (with which this book was produced) and of the literate programming
methodology with which TEX was constructed. His multivolume The Art of Computer Program-
ming has an honored place on the shelf of most professional computer scientists. He received the
ACM Turing Award in 1974.
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declarative
functional Lisp/Scheme, ML, Haskell
dataflow Id, Val
logic, constraint-based Prolog, spreadsheets
template-based XSLT

imperative
von Neumann C, Ada, Fortran, . . .

scripting Perl, Python, PHP, . . .
object-oriented Smalltalk, Eiffel, C++, Java, . . .

Figure 1.1 Classification of programming languages. Note that the categories are fuzzy and
open to debate. In particular, it is possible for a functional language to be object-oriented, and
many authors do not consider functional programming to be declarative.

It is not yet clear to what extent, and in what problem domains, we can expect
compilers to discover good algorithms for problems stated at a very high level. In
any domain in which the compiler cannot find a good algorithm, the program-
mer needs to be able to specify one explicitly.

Within the declarative and imperative families, there are several important
subclasses.

� Functional languages employ a computational model based on the recursive
definition of functions. They take their inspiration from the lambda calculus,
a formal computational model developed by Alonzo Church in the 1930s. In
essence, a program is considered a function from inputs to outputs, defined
in terms of simpler functions through a process of refinement. Languages in
this category include Lisp, ML, and Haskell.

� Dataflow languages model computation as the flow of information (tokens)
among primitive functional nodes. They provide an inherently parallel model:
nodes are triggered by the arrival of input tokens, and can operate concur-
rently. Id and Val are examples of dataflow languages. Sisal, a descendant of
Val, is more often described as a functional language.

� Logic or constraint-based languages take their inspiration from predicate logic.
They model computation as an attempt to find values that satisfy certain spec-
ified relationships, using a goal-directed a search through a list of logical rules.
Prolog is the best-known logic language. The term can also be applied to the
programmable aspects of spreadsheet systems such as Excel, VisiCalc, or Lo-
tus 1-2-3.

� The von Neumann languages are the most familiar and successful. They in-
clude Fortran, Ada 83, C, and all of the others in which the basic means of
computation is the modification of variables.6 Whereas functional languages

6 John von Neumann (1903–1957) was a mathematician and computer pioneer who helped to
develop the concept of stored program computing, which underlies most computer hardware. In
a stored program computer, both programs and data are represented as bits in memory, which
the processor repeatedly fetches, interprets, and updates.
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are based on expressions that have values, von Neumann languages are based
on statements (assignments in particular) that influence subsequent compu-
tation via the side effect of changing the value of memory.

� Scripting languages are a subset of the von Neumann languages. They are dis-
tinguished by their emphasis on “gluing together” components that were orig-
inally developed as independent programs. Several scripting languages were
originally developed for specific purposes: csh and bash, for example, are
the input languages of job control (shell) programs; Awk was intended for
text manipulation; PHP and JavaScript are primarily intended for the gener-
ation of web pages with dynamic content (with execution on the server and
the client, respectively). Other languages, including Perl, Python, Ruby, and
Tcl, are more deliberately general purpose. Most place an emphasis on rapid
prototyping, with a bias toward ease of expression over speed of execution.

� Object-oriented languages are comparatively recent, though their roots can be
traced to Simula 67. Most are closely related to the von Neumann languages
but have a much more structured and distributed model of both memory and
computation. Rather than picture computation as the operation of a mono-
lithic processor on a monolithic memory, object-oriented languages picture
it as interactions among semi-independent objects, each of which has both its
own internal state and subroutines to manage that state. Smalltalk is the purest
of the object-oriented languages; C++ and Java are the most widely used. It is
also possible to devise object-oriented functional languages (the best known
of these is the CLOS [Kee89] extension to Common Lisp), but they tend to
have a strong imperative flavor.

One might suspect that concurrent languages also form a separate class (and
indeed this book devotes a chapter to the subject), but the distinction between
concurrent and sequential execution is mostly orthogonal to the classifications
above. Most concurrent programs are currently written using special library
packages or compilers in conjunction with a sequential language such as For-
tran or C. A few widely used languages, including Java, C#, Ada, and Modula-3,
have explicitly concurrent features. Researchers are investigating concurrency in
each of the language classes mentioned here.

It should be emphasized that the distinctions among language classes are
not clear-cut. The division between the von Neumann and object-oriented lan-
guages, for example, is often very fuzzy, and most of the functional and logic lan-
guages include some imperative features. The preceding descriptions are meant
to capture the general flavor of the classes, without providing formal defini-
tions.

Imperative languages—von Neumann and object-oriented—receive the bulk
of the attention in this book. Many issues cut across family lines, however, and
the interested reader will discover much that is applicable to alternative com-
putational models in most of the chapters of the book. Chapters 10 through 13
contain additional material on functional, logic, concurrent, and scripting lan-
guages.
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1.3 Why Study Programming Languages?

Programming languages are central to computer science and to the typical com-
puter science curriculum. Like most car owners, students who have become fa-
miliar with one or more high-level languages are generally curious to learn about
other languages, and to know what is going on “under the hood.” Learning about
languages is interesting. It’s also practical.

For one thing, a good understanding of language design and implementation
can help one choose the most appropriate language for any given task. Most
languages are better for some things than for others. No one would be likely
to use APL for symbolic computing or string processing, but other choices are
not nearly so clear-cut. Should one choose C, C++, or Modula-3 for systems
programming? Fortran or Ada for scientific computations? Ada or Modula-2 for
embedded systems? Visual Basic or Java for a graphical user interface? This book
should help equip you to make such decisions.

Similarly, this book should make it easier to learn new languages. Many lan-
guages are closely related. Java and C# are easier to learn if you already know C++.
Common Lisp is easier to learn if you already know Scheme. More important,
there are basic concepts that underlie all programming languages. Most of these
concepts are the subject of chapters in this book: types, control (iteration, selec-
tion, recursion, nondeterminacy, concurrency), abstraction, and naming. Think-
ing in terms of these concepts makes it easier to assimilate the syntax (form)
and semantics (meaning) of new languages, compared to picking them up in
a vacuum. The situation is analogous to what happens in natural languages: a
good knowledge of grammatical forms makes it easier to learn a foreign lan-
guage.

Whatever language you learn, understanding the decisions that went into its
design and implementation will help you use it better. This book should help you

Understand obscure features. The typical C++ programmer rarely uses unions,
multiple inheritance, variable numbers of arguments, or the .* operator. (If
you don’t know what these are, don’t worry!) Just as it simplifies the assim-
ilation of new languages, an understanding of basic concepts makes it eas-
ier to understand these features when you look up the details in the man-
ual.

Choose among alternative ways to express things, based on a knowledge of im-
plementation costs. In C++, for example, programmers may need to avoid un-
necessary temporary variables, and use copy constructors whenever possible,
to minimize the cost of initialization. In Java they may wish to use Executor
objects rather than explicit thread creation. With certain (poor) compilers,
they may need to adopt special programming idioms to get the fastest code:
pointers for array traversal in C; with statements to factor out common ad-
dress calculations in Pascal or Modula-3; x*x instead of x**2 in Basic. In any
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language, they need to be able to evaluate the tradeoffs among alternative im-
plementations of abstractions—for example between computation and table
lookup for functions like bit set cardinality, which can be implemented either
way.

Make good use of debuggers, assemblers, linkers, and related tools. In general, the
high-level language programmer should not need to bother with implementa-
tion details. There are times, however, when an understanding of those details
proves extremely useful. The tenacious bug or unusual system-building prob-
lem is sometimes a lot easier to handle if one is willing to peek at the bits.

Simulate useful features in languages that lack them. Certain very useful features
are missing in older languages but can be emulated by following a deliberate
(if unenforced) programming style. In older dialects of Fortran, for exam-
ple, programmers familiar with modern control constructs can use comments
and self-discipline to write well-structured code. Similarly, in languages with
poor abstraction facilities, comments and naming conventions can help imi-
tate modular structure, and the extremely useful iterators of Clu, Icon, and C#
(which we will study in Section 6.5.3) can be imitated with subroutines and
static variables. In Fortran 77 and other languages that lack recursion, an iter-
ative program can be derived via mechanical hand transformations, starting
with recursive pseudocode. In languages without named constants or enumer-
ation types, variables that are initialized once and never changed thereafter can
make code much more readable and easy to maintain.

Make better use of language technology wherever it appears. Most programmers
will never design or implement a conventional programming language, but
most will need language technology for other programming tasks. The typical
personal computer contains files in dozens of structured formats, encompass-
ing web content, word processing, spreadsheets, presentations, raster and vec-
tor graphics, music, video, databases, and a wide variety of other application
domains. Each of these structured formats has formal syntax and semantics,
which tools must understand. Code to parse, analyze, generate, optimize, and
otherwise manipulate structured data can thus be found in almost any sophis-
ticated program, and all of this code is based on language technology. Pro-
grammers with a strong grasp of this technology will be in a better position to
write well-structured, maintainable tools.

In a similar vein, most tools themselves can be customized, via start-up
configuration files, command-line arguments, input commands, or built-in
extension languages (considered in more detail in Chapter 13). My home di-
rectory holds more than 250 separate configuration (“preference”) files. My
personal configuration files for the emacs text editor comprise more than
1200 lines of Lisp code. The user of almost any sophisticated program today
will need to make good use of configuration or extension languages. The de-
signers of such a program will need either to adopt (and adapt) some existing
extension language, or to invent new notation of their own. Programmers with
a strong grasp of language theory will be in a better position to design elegant,
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well-structured notation that meets the needs of current users and facilitates
future development.

Finally, this book should help prepare you for further study in language de-
sign or implementation, should you be so inclined. It will also equip you to un-
derstand the interactions of languages with operating systems and architectures,
should those areas draw your interest.

CHECK YOUR UNDERSTANDING

1. What is the difference between machine language and assembly language?

2. In what way(s) are high-level languages an improvement on assembly lan-
guage? In what circumstances does it still make sense to program in assem-
bler?

3. Why are there so many programming languages?

4. What makes a programming language successful?

5. Name three languages in each of the following categories: von Neumann,
functional, object-oriented. Name two logic languages. Name two widely
used concurrent languages.

6. What distinguishes declarative languages from imperative languages?

7. What organization spearheaded the development of Ada?

8. What is generally considered the first high-level programming language?

9. What was the first functional language?

1.4 Compilation and Interpretation

At the highest level of abstraction, the compilation and execution of a programEXAMPLE 1.4
Pure compilation in a high-level language look something like this:



14 Chapter 1 Introduction

The compiler translates the high-level source program into an equivalent target
program (typically in machine language) and then goes away. At some arbitrary
later time, the user tells the operating system to run the target program. The com-
piler is the locus of control during compilation; the target program is the locus of
control during its own execution. The compiler is itself a machine language pro-
gram, presumably created by compiling some other high-level program. When
written to a file in a format understood by the operating system, machine lan-
guage is commonly known as object code. �

An alternative style of implementation for high-level languages is known asEXAMPLE 1.5
Pure interpretation interpretation.

Unlike a compiler, an interpreter stays around for the execution of the appli-
cation. In fact, the interpreter is the locus of control during that execution. In
effect, the interpreter implements a virtual machine whose “machine language”
is the high-level programming language. The interpreter reads statements in that
language more or less one at a time, executing them as it goes along. �

In general, interpretation leads to greater flexibility and better diagnostics (er-
ror messages) than does compilation. Because the source code is being executed
directly, the interpreter can include an excellent source-level debugger. It can also
cope with languages in which fundamental characteristics of the program, such
as the sizes and types of variables, or even which names refer to which variables,
can depend on the input data. Some language features are almost impossible to
implement without interpretation: in Lisp and Prolog, for example, a program
can write new pieces of itself and execute them on the fly. (Several scripting lan-
guages, including Perl, Tcl, Python, and Ruby, also provide this capability.) De-
laying decisions about program implementation until run time is known as late
binding; we will discuss it at greater length in Section 3.1.

Compilation, by contrast, generally leads to better performance. In general, a
decision made at compile time is a decision that does not need to be made at run
time. For example, if the compiler can guarantee that variable x will always lie at
location 49378, it can generate machine language instructions that access this lo-
cation whenever the source program refers to x. By contrast, an interpreter may
need to look x up in a table every time it is accessed, in order to find its location.
Since the (final version of a) program is compiled only once, but generally exe-
cuted many times, the savings can be substantial, particularly if the interpreter is
doing unnecessary work in every iteration of a loop.

While the conceptual difference between compilation and interpretation isEXAMPLE 1.6
Mixing compilation and
interpretation

clear, most language implementations include a mixture of both. They typically
look like this:
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We generally say that a language is “interpreted” when the initial translator is
simple. If the translator is complicated, we say that the language is “compiled.”
The distinction can be confusing because “simple” and “complicated” are sub-
jective terms, and because it is possible for a compiler (complicated translator)
to produce code that is then executed by a complicated virtual machine (in-
terpreter); this is in fact precisely what happens by default in Java. We still say
that a language is compiled if the translator analyzes it thoroughly (rather than
effecting some “mechanical” transformation) and if the intermediate program
does not bear a strong resemblance to the source. These two characteristics—
thorough analysis and nontrivial transformation—are the hallmarks of compil-
ation. �

In practice one sees a broad spectrum of implementation strategies. For ex-
ample:

� Most interpreted languages employ an initial translator (a preprocessor) thatEXAMPLE 1.7
Preprocessing removes comments and white space, and groups characters together into to-

kens, such as keywords, identifiers, numbers, and symbols. The translator may
also expand abbreviations in the style of a macro assembler. Finally, it may
identify higher-level syntactic structures, such as loops and subroutines. The
goal is to produce an intermediate form that mirrors the structure of the
source but can be interpreted more efficiently. �

DESIGN & IMPLEMENTATION

Compiled and interpreted languages
Certain languages (APL and Smalltalk, for example) are sometimes referred
to as “interpreted languages” because most of their semantic error checking
must be performed at run time. Certain other languages (Fortran and C, for
example) are sometimes referred to as “compiled languages” because almost
all of their semantic error checking can be performed statically. This termi-
nology isn’t strictly correct: interpreters for C and Fortran can be built easily,
and a compiler can generate code to perform even the most extensive dynamic
semantic checks. That said, language design has a profound effect on “compi-
lability.”
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In some very early implementations of Basic, the manual actually suggested
removing comments from a program in order to improve its performance.
These implementations were pure interpreters; they would reread (and then
ignore) the comments every time they executed a given part of the program.
They had no initial translator.

� The typical Fortran implementation comes close to pure compilation. TheEXAMPLE 1.8
Library routines and linking compiler translates Fortran source into machine language. Usually, however,

it counts on the existence of a library of subroutines that are not part of the
original program. Examples include mathematical functions (sin, cos, log,
etc.) and I/O. The compiler relies on a separate program, known as a linker, to
merge the appropriate library routines into the final program:

In some sense, one may think of the library routines as extensions to the hard-
ware instruction set. The compiler can then be thought of as generating code
for a virtual machine that includes the capabilities of both the hardware and
the library.

In a more literal sense, one can find interpretation in the Fortran routines
for formatted output. Fortran permits the use of format statements that con-
trol the alignment of output in columns, the number of significant digits and
type of scientific notation for floating-point numbers, inclusion/suppression
of leading zeros, and so on. Programs can compute their own formats on the
fly. The output library routines include a format interpreter. A similar inter-
preter can be found in the printf routine of C and its descendants. �

� Many compilers generate assembly language instead of machine language.EXAMPLE 1.9
Post-compilation assembly This convention facilitates debugging, since assembly language is easier for

people to read, and isolates the compiler from changes in the format of ma-
chine language files that may be mandated by new releases of the operating
system (only the assembler must be changed, and it is shared by many com-
pilers).
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�

� Compilers for C (and for many other languages running under Unix) beginEXAMPLE 1.10
The C preprocessor with a preprocessor that removes comments and expands macros. The pre-

processor can also be instructed to delete portions of the code itself, providing
a conditional compilation facility that allows several versions of a program to
be built from the same source.

�

� C++ implementations based on the early AT&T compiler actually generatedEXAMPLE 1.11
Source-to-source
translation (C++)

an intermediate program in C, instead of in assembly language. This C++
compiler was indeed a true compiler: it performed a complete analysis of the
syntax and semantics of the C++ source program, and with very few excep-
tions generated all of the error messages that a programmer would see prior
to running the program. In fact, programmers were generally unaware that
the C compiler was being used behind the scenes. The C++ compiler did
not invoke the C compiler unless it had generated C code that would pass
through the second round of compilation without producing any error mes-
sages.
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Occasionally one would hear the C++ compiler referred to as a preprocessor,
presumably because it generated high-level output that was in turn compiled.
I consider this a misuse of the term: compilers attempt to “understand” their
source; preprocessors do not. Preprocessors perform transformations based
on simple pattern matching, and may well produce output that will generate
error messages when run through a subsequent stage of translation. �

� Many early Pascal compilers were built around a set of tools distributed byEXAMPLE 1.12
Bootstrapping Niklaus Wirth. These included the following.

– A Pascal compiler, written in Pascal, that would generate output in P-code,
a simple stack-based language

– The same compiler, already translated into P-code

– A P-code interpreter, written in Pascal

To get Pascal up and running on a local machine, the user of the tool set
needed only to translate the P-code interpreter (by hand) into some locally
available language. This translation was not a difficult task; the interpreter
was small. By running the P-code version of the compiler on top of the P-code
interpreter, one could then compile arbitrary Pascal programs into P-code,
which could in turn be run on the interpreter. To get a faster implementation,
one could modify the Pascal version of the Pascal compiler to generate a lo-
cally available variety of assembly or machine language, instead of generating
P-code (a somewhat more difficult task). This compiler could then be “run
through itself” in a process known as bootstrapping, a term derived from the
intentionally ridiculous notion of lifting oneself off the ground by pulling on
one’s bootstraps.



1.4 Compilation and Interpretation 19

At this point, the P-code interpreter and the P-code version of the Pascal com-
piler could simply be thrown away. More often, however, programmers would
choose to keep these tools around. The P-code version of a program tends
to be significantly smaller than its machine language counterpart. On a circa
1970 machine, the savings in memory and disk requirements could really be
important. Moreover, as noted near the beginning of this section, an inter-
preter will often provide better run-time diagnostics than will the output of
a compiler. Finally, an interpreter allows a program to be rerun immediately
after modification, without waiting for recompilation—a feature that can be
particularly valuable during program development. Some of the best pro-
gramming environments for imperative languages include both a compiler
and an interpreter. �

DESIGN & IMPLEMENTATION

The early success of Pascal
The P-code based implementation of Pascal is largely responsible for the lan-
guage’s remarkable success in academic circles in the 1970s. No single hard-
ware platform or operating system of that era dominated the computer land-
scape the way the x86, Linux, and Windows do today.7 Wirth’s toolkit made
it possible to get an implementation of Pascal up and running on almost any
platform in a week or so. It was one of the first great successes in system porta-
bility.

7 Throughout this book we will use the term “x86” to refer to the instruction set architecture of the
Intel 8086 and its descendants, including the various Pentium processors. Intel calls this archi-
tecture the IA-32, but x86 is a more generic term that encompasses the offerings of competitors
such as AMD as well.
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� One will sometimes find compilers for languages (e.g., Lisp, Prolog, Smalltalk,EXAMPLE 1.13
Compiling interpreted
languages

etc.) that permit a lot of late binding and are traditionally interpreted. These
compilers must be prepared, in the general case, to generate code that per-
forms much of the work of an interpreter, or that makes calls into a library
that does that work instead. In important special cases, however, the compiler
can generate code that makes reasonable assumptions about decisions that
won’t be finalized until run time. If these assumptions prove to be valid the
code will run very fast. If the assumptions are not correct, a dynamic check
will discover the inconsistency, and revert to the interpreter. �

� In some cases a programming system may deliberately delay compilation untilEXAMPLE 1.14
Dynamic and just-in-time
compilation

the last possible moment. One example occurs in implementations of Lisp or
Prolog that invoke the compiler on the fly, to translate newly created source
into machine language, or to optimize the code for a particular input set. An-
other example occurs in implementations of Java. The Java language defini-
tion defines a machine-independent intermediate form known as byte code.
Byte code is the standard format for distribution of Java programs; it allows
programs to be transferred easily over the Internet and then run on any plat-
form. The first Java implementations were based on byte-code interpreters,
but more recent (faster) implementations employ a just-in-time compiler that
translates byte code into machine language immediately before each execution
of the program. C#, similarly, is intended for just-in-time translation. The
main C# compiler produces .NET Common Intermediate Language (CIL),
which is then translated into machine code immediately prior to execution.
CIL is deliberately language independent, so it can be used for code produced
by a variety of front-end compilers. �

� On some machines (particularly those designed before the mid-1980s), theEXAMPLE 1.15
Microcode (firmware) assembly-level instruction set is not actually implemented in hardware but in

fact runs on an interpreter. The interpreter is written in low-level instructions
called microcode (or firmware), which is stored in read-only memory and ex-
ecuted by the hardware. Microcode and microprogramming are considered
further in Section 5.4.1. �

As some of these examples make clear, a compiler does not necessarily trans-
late from a high-level language into machine language. It is not uncommon
for compilers, especially prototypes, to generate C as output. A little farther
afield, text formatters like TEX and troff are actually compilers, translating high-
level document descriptions into commands for a laser printer or phototypeset-
ter. (Many laser printers themselves incorporate interpreters for the Postscript
page-description language.) Query language processors for database systems are
also compilers, translating languages like SQL into primitive operations on files.
There are even compilers that translate logic-level circuit specifications into pho-
tographic masks for computer chips. Though the focus in this book is on im-
perative programming languages, the term “compilation” applies whenever we
translate automatically from one nontrivial language to another, with full analy-
sis of the meaning of the input.
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1.5 Programming Environments

Compilers and interpreters do not exist in isolation. Programmers are assisted
in their work by a host of other tools. Assemblers, debuggers, preprocessors, and
linkers were mentioned earlier. Editors are familiar to every programmer. They
may be assisted by cross-referencing facilities that allow the programmer to find
the point at which an object is defined, given a point at which it is used. Pretty
printers help enforce formatting conventions. Style checkers enforce syntactic or
semantic conventions that may be tighter than those enforced by the compiler
(see Exploration 1.11). Configuration management tools help keep track of de-
pendences among the (many versions of) separately compiled modules in a large
software system. Perusal tools exist not only for text but also for intermediate
languages that may be stored in binary. Profilers and other performance analysis
tools often work in conjunction with debuggers to help identify the pieces of a
program that consume the bulk of its computation time.

In older programming environments, tools may be executed individually, at
the explicit request of the user. If a running program terminates abnormally with
a “bus error” (invalid address) message, for example, the user may choose to
invoke a debugger to examine the “core” file dumped by the operating system.
He or she may then attempt to identify the program bug by setting breakpoints,
enabling tracing, and so on, and running the program again under the control of
the debugger. Once the bug is found, the user will invoke the editor to make
an appropriate change. He or she will then recompile the modified program,
possibly with the help of a configuration manager.

More recent programming environments provide much more integrated
tools. When an invalid address error occurs in an integrated environment, a new
window is likely to appear on the user’s screen, with the line of source code at
which the error occurred highlighted. Breakpoints and tracing can then be set in
this window without explicitly invoking a debugger. Changes to the source can
be made without explicitly invoking an editor. The editor may also incorporate
knowledge of the language syntax, providing templates for all the standard con-
trol structures, and checking syntax as it is typed in. If the user asks to rerun
the program after making changes, a new version may be built without explicitly
invoking the compiler or configuration manager.

DESIGN & IMPLEMENTATION

Powerful development environments
Sophisticated development environments can be a two-edged sword. The
quality of the Common Lisp environment has arguably contributed to its
widespread acceptance. On the other hand, the particularity of the graphical
environment for Smalltalk (with its insistence on specific fonts, window styles,
etc.) has made it difficult to port the language to systems accessed through a
textual interface, or to graphical systems with a different “look and feel.”
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Integrated environments have been developed for a variety of languages and
systems. They are fundamental to Smalltalk—it is nearly impossible to separate
the language from its graphical environment—and are widely used with Com-
mon Lisp. They are common on personal computers; examples include the Vi-
sual Studio environment from Microsoft and the Project Builder environment
from Apple. Several similar commercial and open source environments are avail-
able for Unix, and much of the appearance of integration can be achieved within
sophisticated editors such as emacs.

CHECK YOUR UNDERSTANDING

10. Explain the distinction between interpretation and compilation. What are the
comparative advantages and disadvantages of the two approaches?

11. Is Java compiled or interpreted (or both)? How do you know?

12. What is the difference between a compiler and a preprocessor?

13. What was the intermediate form employed by the original AT&T C++ com-
piler?

14. What is P-code?

15. What is bootstrapping?

16. What is a just-in-time compiler?

17. Name two languages in which a program can write new pieces of itself “on-
the-fly.”

18. Briefly describe three “unconventional” compilers—compilers whose pur-
pose is not to prepare a high-level program for execution on a microproces-
sor.

19. Describe six kinds of tools that commonly support the work of a compiler
within a larger programming environment.

1.6 An Overview of Compilation

Compilers are among the most well-studied types of computer programs. In aEXAMPLE 1.16
Phases of compilation typical compiler, compilation proceeds through a series of well-defined phases,

shown in Figure 1.2. Each phase discovers information of use to later phases,
or transforms the program into a form that is more useful to the subsequent
phase. �

The first few phases (up through semantic analysis) serve to figure out the
meaning of the source program. They are sometimes called the front end of the
compiler. The last few phases serve to construct an equivalent target program.
They are sometimes called the back end of the compiler. Many compiler phases
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Figure 1.2 Phases of compilation. Phases are listed on the right and the forms in which
information is passed between phases are listed on the left. The symbol table serves throughout
compilation as a repository for information about identifiers.

can be created automatically from a formal description of the source and/or tar-
get languages.

One will sometimes hear compilation described as a series of passes. A pass
is a phase or set of phases that is serialized with respect to the rest of compila-
tion: it does not start until previous phases have completed, and it finishes before
any subsequent phases start. If desired, a pass may be written as a separate pro-
gram, reading its input from a file and writing its output to a file. Compilers are
commonly divided into passes so that the front end may be shared by compilers
for more than one machine (target language), and so that the back end may be
shared by compilers for more than one source language. Prior to the dramatic in-
creases in memory sizes of the mid- to late 1980s, compilers were also sometimes
divided into passes to minimize memory usage: as each pass completed, the next
could reuse its code space.

1.6.1 Lexical and Syntax Analysis

Consider the greatest common divisor (GCD) program introduced at the begin-EXAMPLE 1.17
GCD program in Pascal ning of this chapter. Written in Pascal, the program might look like this:8

8 We use Pascal for this example because its lexical and syntactic structure is significantly simpler
than that of most modern imperative languages.
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program gcd(input, output);

var i, j : integer;

begin

read(i, j);

while i <> j do

if i > j then i := i - j

else j := j - i;

writeln(i)

end. �
Scanning and parsing serve to recognize the structure of the program, withoutEXAMPLE 1.18

GCD program tokens regard to its meaning. The scanner reads characters (‘p’, ‘r’, ‘o’, ‘g’, ‘r’, ‘a’, ‘m’, ‘ ’,
‘g’, ‘c’, ‘d’, etc.) and groups them into tokens, which are the smallest meaningful
units of the program. In our example, the tokens are

program gcd ( input , output ) ;

var i , j : integer ; begin

read ( i , j ) ; while

i <> j do if i > j

then i := i - j else j

:= j - i ; writeln ( i

) end . �
Scanning is also known as lexical analysis. The principal purpose of the scan-

ner is to simplify the task of the parser by reducing the size of the input (there
are many more characters than tokens) and by removing extraneous characters.
The scanner also typically removes comments, produces a listing if desired, and
tags tokens with line and column numbers to make it easier to generate good di-
agnostics in later phases. One could design a parser to take characters instead of
tokens as input—dispensing with the scanner—but the result would be awkward
and slow.

Parsing organizes tokens into a parse tree that represents higher-level con-EXAMPLE 1.19
Context-free grammar and
parsing

structs in terms of their constituents. The ways in which these constituents com-
bine are defined by a set of potentially recursive rules known as a context-free
grammar. For example, we know that a Pascal program consists of the keyword
program, followed by an identifier (the program name), a parenthesized list of
files, a semicolon, a series of definitions, and the main begin . . . end block, ter-
minated by a period:

program −→ PROGRAM id ( id more ids ) ; block .

where

block −→ labels constants types variables subroutines BEGIN stmt
more stmts END

and

more ids −→ , id more ids
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or

more ids −→ ε

Here ε represents the empty string; it indicates that more ids can simply be
deleted. Many more grammar rules are needed, of course, to explain the full
structure of a program. �

A context-free grammar is said to define the syntax of the language; parsing is
therefore known as syntactic analysis. There are many possible grammars for Pas-
cal (an infinite number, in fact); the fragment shown above is based loosely on the
“circles-and-arrows” syntax diagrams found in the original Pascal text [JW91]. AEXAMPLE 1.20

GCD program parse tree full parse tree for our GCD program (based on a full grammar not shown here)
appears in Figure 1.3. Much of the complexity of this figure stems from (1) the
use of such artificial “constructs” as more stmts and more exprs to represent lists
of arbitrary length and (2) the use of the equally artificial term, factor, and so on,
to capture precedence and associativity in arithmetic expressions. Grammars and
parse trees will be covered in more detail in Chapter 2. �

In the process of scanning and parsing, the compiler checks to see that all of the
program’s tokens are well formed and that the sequence of tokens conforms to the
syntax defined by the context-free grammar. Any malformed tokens (e.g., 123abc
or $@foo in Pascal) should cause the scanner to produce an error message. Any
syntactically invalid token sequence (e.g., A := B C D in Pascal) should lead to
an error message from the parser.

1.6.2 Semantic Analysis and Intermediate Code Generation

Semantic analysis is the discovery of meaning in a program. The semantic analy-
sis phase of compilation recognizes when multiple occurrences of the same
identifier are meant to refer to the same program entity, and ensures that the
uses are consistent. In most languages the semantic analyzer tracks the types of
both identifiers and expressions, both to verify consistent usage and to guide the
generation of code in later phases.

To assist in its work, the semantic analyzer typically builds and maintains a
symbol table data structure that maps each identifier to the information known
about it. Among other things, this information includes the identifier’s type, in-
ternal structure (if any), and scope (the portion of the program in which it is
valid).

Using the symbol table, the semantic analyzer enforces a large variety of rules
that are not captured by the hierarchical structure of the context-free grammar
and the parse tree. For example, it checks to make sure that

� Every identifier is declared before it is used.

� No identifier is used in an inappropriate context (calling an integer as a sub-
routine, adding a string to an integer, referencing a field of the wrong type of
record, etc.).

� Subroutine calls provide the correct number and types of arguments.
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Figure 1.3 Parse tree for the GCD program. The symbol ε represents the empty string. The remarkable level of complexity
in this figure is an artifact of having to fit the (much simpler) source code into the hierarchical structure of a context-free
grammar.
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� Labels on the arms of a case statement are distinct constants.

� Every function contains at least one statement that specifies a return value.

In many compilers, the work of the semantic analyzer takes the form of seman-
tic action routines, invoked by the parser when it realizes that it has reached a
particular point within a production.

Of course, not all semantic rules can be checked at compile time. Those that
can are referred to as the static semantics of the language. Those that must be
checked at run time are referred to as the dynamic semantics of the language.
Examples of rules that must often be checked at run time include

� Variables are never used in an expression unless they have been given a value.9

� Pointers are never dereferenced unless they refer to a valid object.

� Array subscript expressions lie within the bounds of the array.

� Arithmetic operations do not overflow.

When it cannot enforce rules statically, a compiler will often produce code
to perform appropriate checks at run time, aborting the program or generat-
ing an exception if one of the checks then fails. (Exceptions will be discussed in
Section 8.5.) Some rules, unfortunately, may be unacceptably expensive or im-
possible to enforce, and the language implementation may simply fail to check
them. In Ada, a program that breaks such a rule is said to be erroneous; in C its
behavior is said to be undefined.

A parse tree is sometimes known as a concrete syntax tree, because it demon-
strates, completely and concretely, how a particular sequence of tokens can be
derived under the rules of the context-free grammar. Once we know that a token
sequence is valid, however, much of the information in the parse tree is irrele-
vant to further phases of compilation. In the process of checking static semantic
rules, the semantic analyzer typically transforms the parse tree into an abstractEXAMPLE 1.21

GCD program abstract
syntax tree

syntax tree (otherwise known as an AST, or simply a syntax tree) by removing
most of the “artificial” nodes in the tree’s interior. The semantic analyzer also
annotates the remaining nodes with useful information, such as pointers from
identifiers to their symbol table entries. The annotations attached to a particular
node are known as its attributes. A syntax tree for our GCD program is shown in
Figure 1.4. �

In many compilers, the annotated syntax tree constitutes the intermediate
form that is passed from the front end to the back end. In other compilers, se-
mantic analysis ends with a traversal of the tree that generates some other in-
termediate form. Often this alternative form resembles assembly language for an
extremely simple idealized machine. In a suite of related compilers, the front ends

9 As we shall see in Section 6.1.3, Java and C# actually do enforce initialization at compile time, but
only by adopting a conservative set of rules for “definite assignment,” which outlaw programs for
which correctness is difficult or impossible to verify at compile time.
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Figure 1.4 Syntax tree and symbol table for the GCD program. Unlike Figure 1.3, the syntax
tree retains just the essential structure of the program, omitting detail that was needed only to
drive the parsing algorithm.

for several languages and the back ends for several machines would share a com-
mon intermediate form.

1.6.3 Target Code Generation

The code generation phase of a compiler translates the intermediate form into
the target language. Given the information contained in the syntax tree, gen-
erating correct code is usually not a difficult task (generating good code is
harder, as we shall see in Section 1.6.4). To generate assembly or machine lan-EXAMPLE 1.22

GCD program assembly
code

guage, the code generator traverses the symbol table to assign locations to vari-
ables, and then traverses the syntax tree, generating loads and stores for vari-
able references, interspersed with appropriate arithmetic operations, tests, and
branches. Naive code for our GCD example appears in Figure 1.5, in MIPS as-
sembly language. It was generated automatically by a simple pedagogical com-
piler.

The assembly language mnemonics may appear a bit cryptic, but the com-
ments on each line (not generated by the compiler!) should make the correspon-
dence between Figures 1.4 and 1.5 generally apparent. A few hints: sp, ra, at, a0,
v0, and t0–t9 are registers (special storage locations, limited in number, that can
be accessed very quickly). 28(sp) refers to the memory location 28 bytes beyond
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addiu sp,sp,-32 # reserve room for local variables

sw ra,20(sp) # save return address

jal getint # read

nop

sw v0,28(sp) # store i

jal getint # read

nop

sw v0,24(sp) # store j

lw t6,28(sp) # load i

lw t7,24(sp) # load j

nop

beq t6,t7,D # branch if i = j

nop

A: lw t8,28(sp) # load i

lw t9,24(sp) # load j

nop

slt at,t9,t8 # determine whether j < i

beq at,zero,B # branch if not

nop

lw t0,28(sp) # load i

lw t1,24(sp) # load j

nop

subu t2,t0,t1 # t2 := i - j

sw t2,28(sp) # store i

b C

nop

B: lw t3,24(sp) # load j

lw t4,28(sp) # load i

nop

subu t5,t3,t4 # t5 := j - i

sw t5,24(sp) # store j

C: lw t6,28(sp) # load i

lw t7,24(sp) # load j

nop

bne t6,t7,A # branch if i <> j

nop

D: lw a0,28(sp) # load i

jal putint # writeln

nop

move v0,zero # exit status for program

b E # branch to E

nop

b E # branch to E

nop

E: lw ra,20(sp) # retrieve return address

addiu sp,sp,32 # deallocate space for local variables

jr ra # return to operating system

nop

Figure 1.5 Naive MIPS assembly language for the GCD program.
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the location whose address is in register sp. Jal is a subroutine call (“jump and
link”); the first argument is passed in register a0, and the return value comes back
in register v0. Nop is a “no-op”; it does no useful work but delays the program
for one time cycle, allowing a two-cycle load or branch instruction to complete
(branch and load delays were a common feature in early RISC machines; we will
consider them in Section 5.5.1). Arithmetic operations generally operate on the
second and third arguments, and put their result in the first. �

Often a code generator will save the symbol table for later use by a symbolic
debugger—for example, by including it as comments or some other nonexe-
cutable part of the target code.

1.6.4 Code Improvement

Code improvement is often referred to as optimization, though it seldom makes
anything optimal in any absolute sense. It is an optional phase of compilation
whose goal is to transform a program into a new version that computes the same
result more efficiently—more quickly or using less memory, or both.

Some improvements are machine independent. These can be performed as
transformations on the intermediate form. Other improvements require an un-
derstanding of the target machine (or of whatever will execute the program in
the target language). These must be performed as transformations on the tar-
get program. Thus code improvement often appears as two additional phases
of compilation, one immediately after semantic analysis and intermediate code
generation, the other immediately after target code generation.

Applying a good code improver to the code in Figure 1.5 produces the codeEXAMPLE 1.23
GCD program
optimization

shown in Example 1.2 (page 3). Comparing the two programs, we can see that
the improved version is quite a lot shorter. Conspicuously absent are most of the
loads and stores. The machine-independent code improver is able to verify that i
and j can be kept in registers throughout the execution of the main loop (this
would not have been the case if, for example, the loop contained a call to a sub-
routine that might reuse those registers, or that might try to modify i or j). The
machine-specific code improver is then able to assign i and j to actual registers
of the target machine. In our example the machine-specific improver is also able
to schedule (reorder) instructions to eliminate several of the no-ops. Careful ex-
amination of the instructions following the loads and branches will reveal that
they can be executed safely even when the load or branch has not yet completed.
For modern microprocessor architectures, particularly those with so-called su-
perscalar RISC instruction sets (ones in which separate functional units can exe-
cute multiple instructions simultaneously), compilers can usually generate better
code than can human assembly language programmers. �
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CHECK YOUR UNDERSTANDING

20. List the principal phases of compilation, and describe the work performed by
each.

21. Describe the form in which a program is passed from the scanner to the
parser; from the parser to the semantic analyzer; from the semantic analyzer
to the intermediate code generator.

22. What distinguishes the front end of a compiler from the back end?

23. What is the difference between a phase and a pass of compilation? Under what
circumstances does it make sense for a compiler to have multiple passes?

24. What is the purpose of the compiler’s symbol table?

25. What is the difference between static and dynamic semantics?

26. On modern machines, do assembly language programmers still tend to write
better code than a good compiler can? Why or why not?

1.7 Summary and Concluding Remarks

In this chapter we introduced the study of programming language design and
implementation. We considered why there are so many languages, what makes
them successful or unsuccessful, how they may be categorized for study, and what
benefits the reader is likely to gain from that study. We noted that language design
and language implementation are intimately related to one another. Obviously an
implementation must conform to the rules of the language. At the same time, a
language designer must consider how easy or difficult it will be to implement
various features, and what sort of performance is likely to result for programs
that use those features.

Language implementations are commonly differentiated into those based on
interpretation and those based on compilation. We noted, however, that the dif-
ference between these approaches is fuzzy, and that most implementations in-
clude a bit of each. As a general rule, we say that a language is compiled if exe-
cution is preceded by a translation step that (1) fully analyzes both the structure
(syntax) and meaning (semantics) of the program and (2) produces an equiva-
lent program in a significantly different form. The bulk of the implementation
material in this book pertains to compilation.

Compilers are generally structured as a series of phases. The first few phases—
scanning, parsing, and semantic analysis—serve to analyze the source pro-
gram. Collectively these phases are known as the compiler’s front end. The
final few phases—intermediate code generation, code improvement, and tar-
get code generation—are known as the back end. They serve to build a tar-
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get program—preferably a fast one—whose semantics match those of the
source.

Chapters 3, 6, 7, 8, and 9 form the core of the rest of this book. They cover fun-
damental issues of language design, both from the point of view of the program-
mer and from the point of view of the language implementor. To support the
discussion of implementations, Chapters 2 and 4 describe compiler front ends
in more detail than has been possible in this introduction. Chapter 5 provides
an overview of assembly-level architecture. Chapters 14 and 15 discuss compiler
back ends, including assemblers and linkers. Additional language paradigms are
covered in Chapters 10 through 13. Appendix A lists the principal programming
languages mentioned in the text, together with a genealogical chart and biblio-
graphic references. Appendix B contains a list of “Design and Implementation”
sidebars. Appendix C contains a list of numbered examples.

1.8 Exercises

1.1 Errors in a computer program can be classified according to when they are
detected and, if they are detected at compile time, what part of the compiler
detects them. Using your favorite imperative language, give an example of
each of the following.
(a) A lexical error, detected by the scanner

(b) A syntax error, detected by the parser

(c) A static semantic error, detected by semantic analysis

(d) A dynamic semantic error, detected by code generated by the compiler

(e) An error that the compiler can neither catch nor easily generate code to
catch (this should be a violation of the language definition, not just a
program bug)

1.2 Algol family languages are typically compiled, while Lisp family languages, in
which many issues cannot be settled until run time, are typically interpreted.
Is interpretation simply what one “has to do” when compilation is infeasible,
or are there actually some advantages to interpreting a language, even when
a compiler is available?

1.3 The gcd program of Example 1.17 might also be written

program gcd(input, output);

var i, j : integer;

begin

read(i, j);

while i <> j do

if i > j then i := i mod j

else j := j mod i;

writeln(i)

end.
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Does this program compute the same result? If not, can you fix it? Under
what circumstances would you expect one or the other to be faster?

1.4 In your local implementation of C, what is the limit on the size of integers?
What happens in the event of arithmetic overflow? What are the implications
of size limits on the portability of programs from one machine/compiler to
another? How do the answers to these questions differ for Java? For Ada? For
Pascal? For Scheme? (You may need to find a manual.)

1.5 The Unix make utility allows the programmer to specify dependences among
the separately compiled pieces of a program. If file A depends on file B and
file B is modified, make deduces that A must be recompiled, in case any of
the changes to B would affect the code produced for A. How accurate is this
sort of dependence management? Under what circumstances will it lead to
unnecessary work? Under what circumstances will it fail to recompile some-
thing that needs to be recompiled?

1.6 Why is it difficult to tell whether a program is correct? How do you go about
finding bugs in your code? What kinds of bugs are revealed by testing? What
kinds of bugs are not? (For more formal notions of program correctness, see
the bibliographic notes at the end of Chapter 4.)

1.9 Explorations

1.7 (a) What was the first programming language you learned? If you chose it,
why did you do so? If it was chosen for you by others, why do you think
they chose it? What parts of the language did you find the most difficult
to learn?

(b) For the language with which you are most familiar (this may or may
not be the first one you learned), list three things you wish had been
differently designed. Why do you think they were designed the way they
were? How would you fix them if you had the chance to do it over? Would
there be any negative consequences—for example, in terms of compiler
complexity or program execution speed?

1.8 Get together with a classmate whose principal programming experience is
with a language in a different category of Figure 1.1. (If your experience is
mostly in C, for example, you might search out someone with experience in
Lisp.) Compare notes. What are the easiest and most difficult aspects of pro-
gramming, in each of your experiences? Pick some simple problem (e.g., sort-
ing, or identification of connected components in a graph) and solve it using
each of your favorite languages. Which solution is more elegant (do the two
of you agree)? Which is faster? Why?
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1.9 (a) If you have access to a Unix system, compile a simple program with
the -S command-line flag. Add comments to the resulting assembly
language file to explain the purpose of each instruction.

(b) Now use the -o command-line flag to generate a relocatable object file.
Using appropriate local tools (look in particular for nm, objdump, or
a symbolic debugger like gdb or dbx), identify the machine language
corresponding to each line of assembler.

(c) Using nm, objdump, or a similar tool, identify the undefined external
symbols in your object file. Now run the compiler to completion, to
produce an executable file. Finally, run nm or objdump again to see what
has happened to the symbols in part (b). Where did they come from,
and how did the linker resolve them?

(d) Run the compiler to completion one more time, using the -v com-
mand-line flag. You should see messages describing the various sub-
programs invoked during the compilation process (some compilers use
a different letter for this option; check the man page). The subprograms
may include a preprocessor, separate passes of the compiler itself (of-
ten two), probably an assembler, and the linker. If possible, run these
subprograms yourself, individually. Which of them produce the files
described in the previous subquestions? Explain the purpose of the var-
ious command-line flags with which the subprograms were invoked.

1.10 Write a program that commits a dynamic semantic error (e.g., division by
zero, access off the end of an array, dereference of a nil pointer). What
happens when you run this program? Does the compiler give you options
to control what happens? Devise an experiment to evaluate the cost of run-
time semantic checks. If possible, try this exercise with more than one lan-
guage or compiler.

1.11 C has a reputation for being a relatively “unsafe” high-level language. In
particular, it allows the programmer to mix operands of different sizes and
types in many more ways than do its “safer” cousins. The Unix lint utility
can be used to search for potentially unsafe constructs in C programs. In ef-
fect, many of the rules that are enforced by the compiler in other languages
are optional in C and are enforced (if desired) by a separate program. What
do you think of this approach? Is it a good idea? Why or why not?

1.12 Using an Internet search engine or magazine indexing service, read up on
the history of Java and C#, including the conflict between Sun and Mi-
crosoft over Java standardization. Some have claimed that C# is, at least
in part, Microsoft’s attempt to kill Java. Defend or refute this claim.
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1.10 Bibliographic Notes

The compiler-oriented chapters of this book attempt to convey a sense of what
the compiler does, rather than explaining how to build one. A much greater level
of detail can be found in other texts. Leading options include the work of Cooper
and Torczon [CT04], Grune et al. [GBJL01], and Appel [App97]. The older texts
by Aho, Sethi, and Ullman [ASU86] and Fischer and LeBlanc [FL88] were for
many years the standards in the field, but have grown somewhat dated. High-
quality texts on programming language design include those of Louden [Lou03],
Sebesta [Seb04], and Sethi [Set96].

Some of the best information on the history of programming languages can be
found in the proceedings of conferences sponsored by the Association for Com-
puting Machinery in 1978 and 1993 [Wex78, Ass93]. Another excellent reference
is Horowitz’s 1987 text [Hor87]. A broader range of historical material can be
found in the quarterly IEEE Annals of the History of Computing. Given the impor-
tance of personal taste in programming language design, it is inevitable that some
language comparisons should be marked by strongly worded opinions. Examples
include the writings of Dijkstra [Dij82], Hoare [Hoa81], Kernighan [Ker81], and
Wirth [Wir85a].

Most personal computer software development now takes place in integrated
programming environments. Influential precursors to these environments in-
clude the Genera Common Lisp environment from Symbolics Corp. [WMWM87]
and the Smalltalk [Gol84], Interlisp [TM81], and Cedar [SZBH86] environments
at the Xerox Palo Alto Research Center.





2Programming Language Syntax

Unlike natural languages such as English or Chinese, computer languages
must be precise. Both their form (syntax) and meaning (semantics) must be spec-
ified without ambiguity so that both programmers and computers can tell what a
program is supposed to do. To provide the needed degree of precision, language
designers and implementors use formal syntactic and semantic notation. To fa-
cilitate the discussion of language features in later chapters, we will cover this
notation first: syntax in the current chapter and semantics in Chapter 4.

As a motivating example, consider the Arabic numerals with which we repre-EXAMPLE 2.1
Syntax of Arabic numerals sent numbers. These numerals are composed of digits, which we can enumerate

as follows (‘ ’ means “or”):

digit −→ 0 1 2 3 4 5 6 7 8 9

Digits are the syntactic building blocks for numbers. In the usual notation, we say
that a natural number is represented by an arbitrary-length (nonempty) string of
digits, beginning with a nonzero digit:

non zero digit −→ 1 2 3 4 5 6 7 8 9

natural number −→ non zero digit digit *

Here the “Kleene1 star” metasymbol (*) is used to indicate zero or more repeti-
tions of the symbol to its left. �

Of course, digits are only symbols: ink blobs on paper or pixels on a screen.
They carry no meaning in and of themselves. We add semantics to digits when
we say that they represent the natural numbers from zero to nine, as defined
by mathematicians. Alternatively, we could say that they represent colors, or the
days of the week in a decimal calendar. These would constitute alternative seman-
tics for the same syntax. In a similar fashion, we define the semantics of natural
numbers by associating a base-10, place-value interpretation with each string of

1 Stephen Kleene (1909–1994), a mathematician at the University of Wisconsin, was responsible
for much of the early development of the theory of computation, including much of the material
in Section 2.4.

37
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digits. Similar syntax rules and semantic interpretations can be devised for ratio-
nal numbers, (limited-precision) real numbers, arithmetic, assignments, control
flow, declarations, and indeed all of programming languages.

Distinguishing between syntax and semantics is useful for at least two reasons.
First, different programming languages often provide features with very similar
semantics but very different syntax. It is generally much easier to learn a new
language if one is able to identify the common (and presumably familiar) ideas
beneath the unfamiliar syntax. Second, there are some very efficient and elegant
algorithms that a compiler or interpreter can use to discover the syntactic struc-
ture (but not the semantics!) of a computer program, and these algorithms can
be used to drive the rest of the compilation or interpretation process.

In the current chapter we focus on syntax: how we specify the structural rules
of a programming language, and how a compiler identifies the structure of a
given input program. These two tasks—specifying syntax rules and figuring out
how (and whether) a given program was built according to those rules—are dis-
tinct. The first is of interest mainly to programmers, who want to write valid
programs. The second is of interest mainly to compilers, which need to analyze
those programs. The first task relies on regular expressions and context-free gram-
mars, which specify how to generate valid programs. The second task relies on
scanners and parsers, which recognize program structure. We address the first of
these tasks in Section 2.1, the second in Sections 2.2 and 2.3.

In Section 2.4 (largely on the PLP CD) we take a deeper look at the formal the-
ory underlying scanning and parsing. In theoretical parlance, a scanner is a de-
terministic finite automaton (DFA) that recognizes the tokens of a programming
language. A parser is a deterministic push-down automaton (PDA) that recognizes
the language’s context-free syntax. It turns out that one can generate scanners and
parsers automatically from regular expressions and context-free grammars. This
task is performed by tools like Unix’s lex and yacc.2 Possibly nowhere else in
computer science is the connection between theory and practice so clear and so
compelling.

2.1 Specifying Syntax: Regular Expressions and
Context-Free Grammars

Formal specification of syntax requires a set of rules. How complicated (expres-
sive) the syntax can be depends on the kinds of rules we are allowed to use. It
turns out that what we intuitively think of as tokens can be constructed from

2 At many sites, lex and yacc have been superseded by the GNU flex and bison tools. These
independently developed, noncommercial alternatives are available without charge from the Free
Software Foundation at www.gnu.org/software. They provide a superset of the functionality of
lex and yacc.
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individual characters using just three kinds of formal rules: concatenation, alter-
nation (choice among a finite set of alternatives), and so-called “Kleene closure”
(repetition an arbitrary number of times). Specifying most of the rest of what
we intuitively think of as syntax requires one additional kind of rule: recursion
(creation of a construct from simpler instances of the same construct). Any set of
strings that can be defined in terms of the first three rules is called a regular set,
or sometimes a regular language. Regular sets are generated by regular expressions
and recognized by scanners. Any set of strings that can be defined if we add recur-
sion is called a context-free language (CFL). Context-free languages are generated
by context-free grammars (CFGs) and recognized by parsers. (Terminology can
be confusing here. The meaning of the word language varies greatly, depending
on whether we’re talking about “formal” languages [e.g., regular or context-free]
or programming languages. A formal language is just a set of strings, with no
accompanying semantics.)

2.1.1 Tokens and Regular Expressions

Tokens are the basic building blocks of programs. They include keywords, iden-
tifiers, numbers, and various kinds of symbols. Pascal, which is a fairly simple
language, has 64 kinds of tokens, including 21 symbols (+, -, ;, :=, .., etc.),
35 keywords (begin, end, div, record, while, etc.), integer literals (e.g., 137),
real (floating-point) literals (e.g., 6.022e23), quoted character/string literals
(e.g., ’snerk’), identifiers (MyVariable, YourType, maxint, readln, etc., 39
of which are predefined), and two different kinds of comments.

Upper- and lowercase letters in identifiers and keywords are considered dis-
tinct in some languages (e.g., Modula-2/3 and C and its descendants), and iden-
tical in others (e.g., Ada, Common Lisp, Fortran 90, and Pascal). Thus foo, Foo,
and FOO all represent the same identifier in Ada but different identifiers in C.
Modula-2 and Modula-3 require keywords and predefined (built-in) identifiers
to be written in uppercase; C and its descendants require them to be written in
lowercase. A few languages (notably Modula-3 and Standard Pascal) allow only
letters and digits in identifiers. Most (including many actual implementations of
Pascal) allow underscores. A few (notably Lisp) allow a variety of additional char-
acters. Some languages (e.g., Java, C#, and Modula-3) have standard conventions
on the use of upper- and lowercase letters in names.3

With the globalization of computing, non-Latin character sets have become
increasingly important. Many modern languages, including C99, C++, Ada 95,
Java, C#, and Fortran 2003, have explicit support for multibyte character sets,
generally based on the Unicode and ISO/IEC 10646 international standards. Most
modern programming languages allow non-Latin characters to appear with in

3 For the sake of consistency we do not always obey such conventions in this book. Most examples
follow the common practice of C programmers, in which underscores, rather than capital letters,
separate the “subwords” of names.
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comments and character strings; an increasing number allow them in identi-
fiers as well. Conventions for portability across character sets and for localization
to a given character set can be surprisingly complex, particularly when various
forms of backward compatibility are required (the C99 Rationale devotes five full
pages to this subject [Int99, pp. 19–23]); for the most part we ignore such issues
here.

Some language implementations impose limits on the maximum length of
identifiers, but most avoid such unnecessary restrictions. Most modern languages
are also more-or-less free format, meaning that a program is simply a sequence
of tokens: what matters is their order with respect to one another, not their phys-
ical position within a printed line or page. “White space” (blanks, tabs, carriage
returns, and line and page feed characters) between tokens is usually ignored, ex-
cept to the extent that it is needed to separate one token from the next. There are
a few exceptions to these rules. Some language implementations limit the max-
imum length of a line, to allow the compiler to store the current line in a fixed-
length buffer. Dialects of Fortran prior to Fortran 90 use a fixed format, with 72
characters per line (the width of a paper punch card, on which programs were
once stored) and with different columns within the line reserved for different
purposes. Line breaks serve to separate statements in several other languages, in-
cluding Haskell, Occam, SR, Tcl, and Python. Haskell, Occam, and Python also
give special significance to indentation. The body of a loop, for example, consists
of precisely those subsequent lines that are indented farther than the header of
the loop.

To specify tokens, we use the notation of regular expressions. A regular expres-
sion is one of the following.

1. A character

2. The empty string, denoted ε

3. Two regular expressions next to each other, meaning any string generated by
the first one followed by (concatenated with) any string generated by the sec-
ond one

4. Two regular expressions separated by a vertical bar ( ), meaning any string
generated by the first one or any string generated by the second one

DESIGN & IMPLEMENTATION

Formatting restrictions
Formatting limitations inspired by implementation concerns—as in the
punch-card-oriented rules of Fortran 77 and its predecessors—have a ten-
dency to become unwanted anachronisms as implementation techniques im-
prove. Given the tendency of certain word processors to “fill” or auto-format
text, the line break and indentation rules of languages like Haskell, Occam, and
Python are somewhat controversial.
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5. A regular expression followed by a Kleene star, meaning the concatenation of
zero or more strings generated by the expression in front of the star

Parentheses are used to avoid ambiguity about where the various subexpres-
sions start and end.4

Returning to the example of Pascal, numeric literals can be generated by theEXAMPLE 2.2
Syntax of numbers in
Pascal

following regular expressions.5

digit −→ 0 1 2 3 4 5 6 7 8 9

unsigned integer −→ digit digit *

unsigned number −→ unsigned integer ( ( . unsigned integer ) ε )
( ( ( e E ) ( + - ε ) unsigned integer ) ε )

To generate a valid string, we scan the regular expression from left to right,
choosing among alternatives at each vertical bar, and choosing a number of repe-
titions at each Kleene star. Within each repetition we may make different choices
at vertical bars, generating different substrings. Note that while we have allowed
later definitions to build on earlier ones, nothing is ever defined in terms of it-
self. Such recursive definitions are the distinguishing characteristic of context-
free grammars, described in Section 2.1.2. �

Many readers will be familiar with regular expressions from the grep family
of tools in Unix, the search facilities of various text editors (notably emacs), or
such scripting languages and tools as Perl, Python, Ruby, awk, and sed. Most
of these provide a rich set of extensions to the notation of regular expressions.
Some extensions, such as shorthand for “zero or one occurrences” or “anything
other than white space” do not change the power of the notation. Others, such
as the ability to require a second occurrence later in the input string of the same
character sequence that matched an earlier part of the expression, increase the
power of the notation, so it is no longer restricted to generating regular sets. Still
other extensions are designed not to increase the expressiveness of the notation
but rather to tie it to other language facilities. In many tools, for example, one
can bracket portions of a regular expression in such a way that when a string
is matched against it the contents of the corresponding substrings are assigned
into named local variables. We will return to these issues in Section 13.4.2, in the
context of scripting languages.

4 Some authors use λ to represent the empty string. Some use a period (.), rather than juxtaposi-
tion, to indicate concatenation. Some use a plus sign (+), rather than a vertical bar, to indicate
alternation.

5 Numeric literals in many languages are significantly more complex. Java, for example, supports
both 32 and 64-bit integer constants, in decimal, octal, and hexadecimal.
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2.1.2 Context-Free Grammars

Regular expressions work well for defining tokens. They are unable, however, to
specify nested constructs, which are central to programming languages. ConsiderEXAMPLE 2.3

Syntactic nesting in
expressions

for example the structure of an arithmetic expression:

expr −→ id number - expr ( expr )

expr op expr

op −→ + - * /

Here the ability to define a construct in terms of itself is crucial. Among other
things, it allows us to ensure that left and right parentheses are matched, some-
thing that cannot be accomplished with regular expressions (see Section 2.4.3
for more details). �

Each of the rules in a context-free grammar is known as a production. The
symbols on the left-hand sides of the productions are known as variables, or non-
terminals. There may be any number of productions with the same left-hand side.
Symbols that are to make up the strings derived from the grammar are known as
terminals (shown here in typewriter font). They cannot appear on the left-hand
side of any production. In a programming language, the terminals of the context-
free grammar are the language’s tokens. One of the nonterminals, usually the one
on the left-hand side of the first production, is called the start symbol. It names
the construct defined by the overall grammar.

The notation for context-free grammars is sometimes called Backus-Naur
Form (BNF), in honor of John Backus and Peter Naur, who devised it for the
definition of the Algol 60 programming language [NBB+63].6 Strictly speaking,
the Kleene star and meta-level parentheses of regular expressions are not allowed
in BNF, but they do not change the expressive power of the notation and are com-
monly included for convenience. Sometimes one sees a “Kleene plus” (+) as well;
it indicates one or more instances of the symbol or group of symbols in front
of it.7 When augmented with these extra operators, the notation is often called
extended BNF (EBNF). The constructEXAMPLE 2.4

Extended BNF (EBNF)
id list −→ id ( , id )*

is shorthand for

id list −→ id

id list −→ id list , id

6 John Backus (1924–), is also the inventor of Fortran. He spent most of his professional career at
IBM Corporation, and was named an IBM Fellow in 1987. He received the ACM Turing Award
in 1977.

7 Some authors use curly braces ({ }) to indicate zero or more instances of the symbols inside.
Some use square brackets ([ ]) to indicate zero or one instance of the symbols inside—that is, to
indicate that those symbols are optional.
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“Kleene plus” is analogous. The vertical bar is also in some sense superfluous,
though it was provided in the original BNF. The construct

op −→ + - * /

can be considered shorthand for

op −→ +

op −→ -

op −→ *

op −→ /

which is also sometimes written

op −→ +

−→ -

−→ *

−→ / �
Many tokens, such as id and number above, have many possible spellings (i.e.,

may be represented by many possible strings of characters). The parser is obliv-
ious to these; it does not distinguish one identifier from another. The semantic
analyzer does distinguish them, however, so the scanner must save the spelling of
each “interesting” token for later use.

2.1.3 Derivations and Parse Trees

A context-free grammar shows us how to generate a syntactically valid string
of terminals: begin with the start symbol. Choose a production with the start
symbol on the left-hand side; replace the start symbol with the right-hand side
of that production. Now choose a nonterminal A in the resulting string, choose a
production P with A on its left-hand side, and replace A with the right-hand side
of P. Repeat this process until no nonterminals remain.

As an example, we can use our grammar for expressions to generate the stringEXAMPLE 2.5
Derivation of slope * x

+ intercept

“slope * x + intercept”:

expr �⇒ expr op expr

�⇒ expr op id

�⇒ expr + id

�⇒ expr op expr + id

�⇒ expr op id + id

�⇒ expr * id + id

�⇒ id

(slope)
* id

(x)
+ id

(intercept)
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Figure 2.1 Parse tree for slope * x + intercept (grammar in Example 2.3).

Figure 2.2 Alternative (less desirable) parse tree for slope * x + intercept (grammar in
Example 2.3). The fact that more than one tree exists implies that our grammar is ambiguous.

The �⇒ metasymbol indicates that the right-hand side was obtained by using
a production to replace some nonterminal in the left-hand side. At each line we
have underlined the symbol A that is replaced in the following line. �

A series of replacement operations that shows how to derive a string of ter-
minals from the start symbol is called a derivation. Each string of symbols along
the way is called a sentential form. The final sentential form, consisting of only
terminals, is called the yield of the derivation. We sometimes elide the interme-
diate steps and write expr �⇒* slope * x + intercept , where the meta-
symbol �⇒* means “yields after zero or more replacements.” In this particular
derivation, we have chosen at each step to replace the right-most nonterminal
with the right-hand side of some production. This replacement strategy leads to
a right-most derivation, also called a canonical derivation. There are many other
possible derivations, including left-most and options in-between. Most parsers
are designed to find a particular derivation (usually the left-most or right-most).

We saw in Chapter 1 that we can represent a derivation graphically as a parse
tree. The root of the parse tree is the start symbol of the grammar. The leaves of
the tree are its yield. Each internal node, together with its children, represents the
use of a production.

A parse tree for our example expression appears in Figure 2.1. This tree is notEXAMPLE 2.6
Parse trees for slope * x

+ intercept

unique. At the second level of the tree, we could have chosen to turn the operator
into a * instead of a +, and to further expand the expression on the right, rather
than the one on the left (see Figure 2.2). The fact that some strings are the yield
of more than one parse tree tells us that our grammar is ambiguous. Ambiguity



2.1 Specifying Syntax 45

Figure 2.3 Parse tree for 3 + 4 * 5, with precedence (grammar in Example 2.7).

turns out to be a problem when trying to build a parser: it requires some extra
mechanism to drive a choice between equally acceptable alternatives. �

A moment’s reflection will reveal that there are infinitely many context-free
grammars for any given context-free language. Some of these grammars are much
more useful than others. In this text we will avoid the use of ambiguous grammars
(though most parser generators allow them, by means of disambiguating rules).
We will also avoid the use of so-called useless symbols: nonterminals that cannot
generate any string of terminals, or terminals that cannot appear in the yield of
any derivation.

When designing the grammar for a programming language, we generally try
to find one that reflects the internal structure of programs in a way that is useful
to the rest of the compiler. (We shall see in Section 2.3.2 that we also try to find
one that can be parsed efficiently, which can be a bit of a challenge.) One place
in which structure is particularly important is in arithmetic expressions, where
we can use productions to capture the associativity and precedence of the vari-
ous operators. Associativity tells us that the operators in most languages group
left-to-right, so 10 - 4 - 3 means (10 - 4) - 3 rather than 10 - (4 - 3)
. Precedence tells us that multiplication and division in most languages group
more tightly than addition and subtraction, so 3 + 4 * 5 means 3 + (4 * 5)
rather than (3 + 4) * 5. (These rules are not universal; we will consider them
again in Section 6.1.1.)

Here is a better version of our expression grammar.EXAMPLE 2.7
Expression grammar with
precedence and
associativity

1. expr −→ term expr add op term

2. term −→ factor term mult op factor

3. factor −→ id number - factor ( expr )

4. add op −→ + -

5. mult op −→ * /

This grammar is unambiguous. It captures precedence in the way factor, term,
and expr build on one another, with different operators appearing at each level. It
captures associativity in the second halves of lines 1 and 2, which build subexprs
and subterms to the left of the operator, rather than to the right. In Figure 2.3, we
can see how building the notion of precedence into the grammar makes it clear
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Figure 2.4 Parse tree for 10 - 4 - 3, with left associativity (grammar in Example 2.7).

that multiplication groups more tightly than addition in 3 + 4 * 5, even with-
out parentheses. In Figure 2.4, we can see that subtraction groups more tightly to
the left, so 10 - 4 - 3 would evaluate to 3 rather than to 9. �

CHECK YOUR UNDERSTANDING

1. What is the difference between syntax and semantics?

2. What are the three basic operations that can be used to build complex regular
expressions from simpler regular expressions?

3. What additional operation (beyond the three of regular expressions) is pro-
vided in context-free grammars?

4. What is Backus-Naur form? When and why was it devised?

5. Name a language in which indentation affects program syntax.

6. When discussing context-free languages, what is a derivation? What is a sen-
tential form?

7. What is the difference between a right-most derivation and a left-most deriva-
tion? Which one of them is also called canonical?

8. What does it mean for a context-free grammar to be ambiguous?

9. What are associativity and precedence? Why are they significant in parse trees?

2.2 Scanning

Together, the scanner and parser for a programming language are responsible
for discovering the syntactic structure of a program. This process of discovery,
or syntax analysis, is a necessary first step toward translating the program into
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an equivalent program in the target language. (It’s also the first step toward in-
terpreting the program directly. In general, we will focus on compilation, rather
than interpretation, for the remainder of the book. Most of what we shall dis-
cuss either has an obvious application to interpretation or is obviously irrelevant
to it.)

By grouping input characters into tokens, the scanner dramatically reduces the
number of individual items that must be inspected by the more computationally
intensive parser. In addition, the scanner typically removes comments (so the
parser doesn’t have to worry about them appearing throughout the context-free
grammar); saves the text of “interesting” tokens like identifiers, strings, and nu-
meric literals; and tags tokens with line and column numbers to make it easier to
generate high-quality error messages in later phases.

Suppose for a moment that we are writing a scanner for Pascal.8 We mightEXAMPLE 2.8
Outline of a scanner for
Pascal

sketch the process as shown in Figure 2.5. The structure of the code is en-
tirely up to the programmer, but it seems reasonable to check the simpler
and more common cases first, to peek ahead when we need to, and to em-
bed loops for comments and for long tokens such as identifiers, numbers, and
strings.

After announcing a token the scanner returns to the parser. When invoked
again it repeats the algorithm from the beginning, using the next available char-
acters of input (including any look-ahead that was peeked at but not consumed
the last time). �

As a rule, we accept the longest possible token in each invocation of the scan-
ner. Thus foobar is always foobar and never f or foo or foob. More to the
point, 3.14159 is a real number and never 3, ., and 14159. White space (blanks,

DESIGN & IMPLEMENTATION

Nested comments
Nested comments can be handy for the programmer (e.g., for temporarily
“commenting out” large blocks of code). Scanners normally deal only with
nonrecursive constructs, however, so nested comments require special treat-
ment. Some languages disallow them. Others require the language implemen-
tor to augment the scanner with special purpose comment-handling code.
C++ and C99 strike a compromise: /* ... */ style comments are not allowed
to nest, but /* ... */ and //... style comments can appear inside each other.
The programmer can thus use one style for “normal” comments and the other
for “commenting out.” (The C99 designers note, however, that conditional
compilation (#if) is preferable [Int03a, p. 58].)

8 As in Example 1.17, we use Pascal for this example because its lexical structure is significantly
simpler than that of most modern imperative languages.
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we skip any initial white space (spaces, tabs, and newlines)
we read the next character
if it is a ( we look at the next character

if that is a * we have a comment;
we skip forward through the terminating *)

otherwise we return a left parenthesis and reuse the look-ahead
if it is one of the one-character tokens ([ ] , ; = + - etc.)

we return that token
if it is a . we look at the next character

if that is a . we return ..
†

otherwise we return . and reuse the look-ahead
if it is a < we look at the next character

if that is a = we return <=

otherwise we return < and reuse the look-ahead
etc.
if it is a letter we keep reading letters and digits

and maybe underscores until we can’t anymore;
then we check to see if it is a keyword

if so we return the keyword
otherwise we return an identifier

in either case we reuse the character beyond the end of the token
if it is a digit we keep reading until we find a nondigit

if that is not a . we return an integer and reuse the nondigit
otherwise we keep looking for a real number

if the character after the . is not a digit we return an integer
and reuse the . and the look-ahead

etc.

Figure 2.5 Outline of an ad hoc Pascal scanner. Only a fraction of the code is shown.
†The double-dot .. token is used to specify ranges in Pascal (e.g., type day = 1..31).

tabs, carriage returns, comments) is generally ignored, except to the extent that
it separates tokens (e.g., foo bar is different from foobar).

It is not difficult to flesh out Figure 2.5 by hand to produce code in some
programming language. This ad hoc style of scanner is often used in production
compilers; the code is fast and compact. In some cases, however, it makes sense
to build a scanner in a more structured way, as an explicit representation of a
finite automaton. An example of such an automaton, for part of a Pascal scanner,EXAMPLE 2.9

Finite automaton for part
of a Pascal scanner

appears in Figure 2.6. The automaton starts in a distinguished initial state. It then
moves from state to state based on the next available character of input. When it
reaches one of a designated set of final states it recognizes the token associated
with that state. The “longest possible token” rule means that the scanner returns
to the parser only when the next character cannot be used to continue the current
token. �
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Figure 2.6 Pictorial representation of (part of) a Pascal scanner as a finite automaton. Scan-
ning for each token begins in the state marked “Start.” The final states, in which a token is
recognized, are indicated by double circles.

2.2.1 Generating a Finite Automaton

While a finite automaton can in principle be written by hand, it is more com-
mon to build one automatically from a set of regular expressions, using a scanner
generator tool. Because regular expressions are significantly easier to write and
modify than an ad hoc scanner is, automatically generated scanners are often
used during language or compiler development, or when ease of implementa-
tion is more important than the last little bit of run-time performance. In effect,
regular expressions constitute a declarative programming language for a limited
problem domain: namely, that of scanning.

The example automaton of Figure 2.6 is deterministic: there is never any am-
biguity about what it ought to do, because in a given state with a given in-
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put character there is never more than one possible outgoing transition (arrow)
labeled by that character. As it turns out, however, there is no obvious one-step
algorithm to convert a set of regular expressions into an equivalent deterministic
finite automaton (DFA). The typical scanner generator implements the conver-
sion as a series of three separate steps.

The first step converts the regular expressions into a nondeterministic finite
automaton (NFA). An NFA is like a DFA except that (a) there may be more than
one transition out of a given state labeled by a given character, and (b) there may
be so-called epsilon transitions: arrows labeled by the empty string symbol, ε. The
NFA is said to accept an input string (token) if there exists a path from the start
state to a final state whose non-epsilon transitions are labeled, in order, by the
characters of the token.

To avoid the need to search all possible paths for one that “works,” the sec-
ond step of a scanner generator translates the NFA into an equivalent DFA: an
automaton that accepts the same language, but in which there are no epsilon
transitions and no states with more than one outgoing transition labeled by the
same character. The third step is a space optimization that generates a final DFA
with the minimum possible number of states.

From a Regular Expression to an NFA

A trivial regular expression consisting of a single character a is equivalent toEXAMPLE 2.10
Constructing an NFA for a
given regular expression

a simple two-state NFA (in fact, a DFA), illustrated in part (a) of Figure 2.7.
Similarly, the regular expression ε is equivalent to a two-state NFA whose arc is
labeled by ε. Starting with this base we can use three subconstructions, illustrated
in parts (b)–(d) of the same figure, to build larger NFAs to represent the concate-
nation, alternation, or Kleene closure of the regular expressions represented by
smaller NFAs. Each step preserves three invariants: there are no transitions into
the initial state, there is a single final state, and there are no transitions out of the
final state. These invariants allow smaller machines to be joined into larger ma-
chines without any ambiguity about where to create the connections, and with-
out creating any unexpected paths. �

To make these constructions concrete, we consider a small but nontrivial ex-
ample. Suppose we wish to generate all strings of zeros and ones in which theEXAMPLE 2.11

NFA for ( 1 *01 *0 )*1 * number of zeros is even. To generate exactly two zeros we could use the expres-
sion 00. We must allow these to be preceded, followed, or separated by an arbi-
trary number of ones: 1 * 01 * 01 *. This whole construct can then be repeated
an arbitrary number of times: ( 1 * 01 * 01 * ) *. Finally, we observe that there is
no point in beginning and ending the parenthesized expression with 1 *. If we
move one of the occurrences outside the parentheses we get an arguably simpler
expression: ( 1 * 01 * 0 ) * 1 *.

Starting with this regular expression and using the constructions of Figure 2.7,
we illustrate the construction of an equivalent NFA in Figure 2.8. In this particu-
lar example alternation is not required. �
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Figure 2.7 Construction of an NFA equivalent to a given regular expression. Part (a) shows
the base case: the automaton for the single letter a. Parts (b), (c), and (d), respectively, show
the constructions for concatenation, alternation, and Kleene closure. Each construction retains a
unique start state and a single final state. Internal detail is hidden in the diamond-shaped center
regions.

From an NFA to a DFA

With no way to “guess” the right transition to take from any given state, any prac-EXAMPLE 2.12
DFA for ( 1 *01 *0 )*1 * tical implementation of an NFA would need to explore all possible transitions,

concurrently or via backtracking. To avoid such a complex and time-consuming
strategy, we can use a “set of subsets” construction to transform the NFA into
an equivalent DFA. The key idea is for the state of the DFA after reading a given
input to represent the set of states that the NFA might have reached on the same
input. We illustrate the construction in Figure 2.9 using the NFA from Figure 2.8.
Initially, before it consumes any input, the NFA may be in State 1, or it may make
epsilon transitions to States 2, 3, 5, 11, 12, or 14. We thus create an initial State
A for our DFA to represent this set. On an input of 1, our NFA may move from
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Figure 2.8 Construction of an NFA equivalent to the regular expression ( 1 * 01 * 0 )* 1 *. In the top line are the primitive
automata for 1 and 0, and the Kleene closure construction for 1 *. In the second and third rows we have used the concatenation
construction to build 1 * 0 and 1 * 01 *. The fourth row uses Kleene closure again to construct ( 1 * 01 * 0 )* ; the final line uses
concatenation to complete the NFA. We have labeled the states in the final automaton for reference in subsequent figures.
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Figure 2.9 A DFA equivalent to the NFA at the bottom of Figure 2.8. Each state of the DFA
represents the set of states that the NFA could be in after seeing the same input.

State 3 to State 4, or from State 12 to State 13. It has no other transitions on this
input from any of the states in A. From States 4 and 13, however, the NFA may
make epsilon transitions to any of States 3, 5, 12, or 14. We therefore create DFA
State B as shown. On a 0, our NFA may move from State 5 to State 6, from which
it may reach States 7 and 9 by epsilon transitions. We therefore create DFA State C
as shown, with a transition from A to C on 0. Careful inspection reveals that a 1
will leave the DFA in State B, while a 0 will move it from B to C. Continuing in
this fashion, we end up creating three additional states. Each state that “contains”
the final state (State 14) of the NFA is marked as a final state of the DFA. �

In our example, the DFA ends up being smaller than the NFA, but this is only
because our regular language is so simple. In theory, the number of states in the
DFA may be exponential in the number of states in the NFA, but this extreme
is also uncommon in practice. For a programming language scanner, the DFA
tends to be larger than the NFA, but not outlandishly so.

Minimizing the DFA

Starting from a regular expression we have now constructed an equivalent DFA.
Though this DFA has five states, a bit of thought suggests that it should be pos-EXAMPLE 2.13

Minimal DFA for
( 1 *01 *0 )*1 *

sible to build an automaton with only two states: one that will be reached after
consuming input containing an odd number of zeros and one that will be reached
after consuming input containing an even number of zeros. We can obtain this
machine by performing the following inductive construction. Initially we place
the states of the (not necessarily minimal) DFA into two equivalence classes: final
states and nonfinal states. We then repeatedly search for an equivalence class C
and an input symbol a such that when given a as input, the states in C make
transitions to states in k > 1 different equivalence classes. We then partition C
into k classes in such a way that all states in a given new class would move to a
member of the same old class on a. When we are unable to find a class to par-
tition in this fashion we are done. In our example, the original placement puts
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Figure 2.10 Minimal DFA for the language consisting of all strings of zeros and ones in which
the number of zeros is even. State q1 represents the merger of states qA , qB , and qE in Figure 2.9;
state q2 represents the merger of states qC and qD .

States A, B, and E in one class (final states) and C and D in another. In all cases,
a 1 leaves us in the current class, while a 0 takes us to the other class. Conse-
quently, no class requires partitioning, and we are left with the two-state DFA of
Figure 2.10. �

2.2.2 Scanner Code

We can implement a scanner that explicitly captures the “circles-and-arrows”
structure of a DFA in either of two main ways. One embeds the automaton in the
control flow of the program using gotos or nested case (switch) statements; the
other, described in the following subsection, uses a table and a driver. As a gen-
eral rule, handwritten scanners tend to use nested case statements, while most
(but not all [BC93]) automatically generated scanners use tables. Tables are hard
to create by hand but easier than code to create from within a program. Unix’s
lex/flex tool produces C language output containing tables and a customized
driver. Some other scanner generators produce tables for use with a handwritten
driver, which can be written in any language.

The nested case statement style of automaton is illustrated in Figure 2.11.EXAMPLE 2.14
Nested case statement
automaton

The outer case statement covers the states of the finite automaton. The in-
ner case statements cover the transitions out of each state. Most of the inner
clauses simply set a new state. Some return from the scanner with the current
token. �

Two aspects of the code do not strictly follow the form of a finite automaton.
One is the handling of keywords. The other is the need to peek ahead in order to
distinguish between the dot in the middle of a real number and a double dot that
follows an integer.

Keywords in most languages (including Pascal) look just like identifiers, but
they are reserved for a special purpose (some authors use the term reserved word
instead of keyword9). It is possible to write a finite automaton that distinguishes

9 Keywords (reserved words) are not the same as predefined identifiers. Predefined identifiers can
be redefined to have a different meaning; keywords cannot. The scanner does not distinguish be-
tween predefined and other identifiers. It does distinguish between identifiers and keywords.
In Pascal, keywords include begin, div, record, and while. Predefined identifiers include
integer, writeln, true, and ord.
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state := start
loop

case state of
start :

erase text of current token
case input char of
‘ ’, ‘\t’, ‘\n’, ‘\r’ : no op
‘[’ : state := got lbrac
‘]’ : state := got rbrac
‘,’ : state := got comma
. . .
‘(’ : state := saw lparen
‘.’ : state := saw dot
‘<’ : state := saw lthan
. . .
‘a’..‘z’, ‘A’..‘Z’ :

state := in ident
‘0’..‘9’ : state := in int
. . .
else error

. . .
saw lparen: case input char of

‘*’ : state := in comment
else return lparen

in comment: case input char of
‘*’ : state := leaving comment
else no op

leaving comment: case input char of
‘)’ : state := start
else state := in comment

. . .
saw dot : case input char of

‘.’ : state := got dotdot
else return dot

. . .
saw lthan : case input char of

‘=’ : state := got le
else return lt

. . .

Figure 2.11 Outline of a Pascal scanner written as an explicit finite automaton, in the form
of nested case statements in a loop. (continued)
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in ident : case input char of
‘a’..‘z’, ‘A’..‘Z’, ‘0’..‘9’, ‘ ’ : no op
else

look up accumulated token in keyword table
if found, return keyword
else return id

. . .
in int : case input char of

‘0’..‘9’ : no op
‘.’ :

peek at character beyond input char;
if ‘0’..‘9’, state := saw real dot
else

unread peeked-at character
return intconst

‘a’..‘z’, ‘A’..‘Z’, ‘ ’ : error
else return intconst

. . .
saw real dot : . . .
. . .
got lbrac : return lbrac
got rbrac : return rbrac
got comma : return comma
got dotdot : return dotdot
got le : return le
. . .

append input char to text of current token
read new input char

Figure 2.11 (continued)

between keywords and identifiers, but it requires a lot of states. To begin with,
there must be a separate state, reachable from the initial state, for each letter that
might begin a keyword. For each of these, there must then be a state for each pos-
sible second character of a keyword (e.g., to distinguish between file, for, and
from). It is a nuisance (and a likely source of errors) to enumerate these states by
hand. Likewise, while it is easy to write a regular expression that represents a key-
word (b e g i n e n d w h i l e . . . ), it is not at all easy to write an
expression that represents a (non-keyword) identifier (Exercise 2.3). Most scan-
ners, both handwritten and automatically generated, therefore treat keywords as
“exceptions” to the rule for identifiers. Before returning an identifier to the parser,
the scanner looks it up in a hash table or trie (a tree of branching paths) to make
sure it isn’t really a keyword. This convention is reflected in the in ident arm of
Figure 2.11.

Whenever one legitimate token is a prefix of another, the “longest possible
token” rule says that we should continue scanning. If some of the intermediate
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strings are not valid tokens, however, we can’t tell whether a longer token is possi-
ble without looking more than one character ahead. This problem arises in PascalEXAMPLE 2.15

The “dot-dot problem” in
Pascal

in only one case, sometimes known as the “dot-dot problem.” If the scanner has
seen a 3 and has a dot coming up in the input, it needs to peek at the character
beyond the dot in order to distinguish between 3.14 (a single token designating a
real number), 3 .. 5 (three tokens designating a range), and 3 . foo (three to-
kens that the scanner should accept, even though the parser will object to seeing
them in that order). �

In messier languages, a scanner may need to look an arbitrary distance ahead.
In Fortran IV, for example, DO 5 I = 1,25 is the header of a loop (it executesEXAMPLE 2.16

Look-ahead in Fortran
scanning

the statements up to the one labeled 5 for values of I from 1 to 25), while DO 5
I = 1.25 is an assignment statement that places the value 1.25 into the vari-
able DO5I. Spaces are ignored in (pre-’90) Fortran input, even in the middle of
variable names. Moreover, variables need not be declared, and the terminator
for a DO loop is simply a label, which the parser can ignore. After seeing DO, the
scanner cannot tell whether the 5 is part of the current token until it reaches
the comma or dot. It has been widely (but apparently incorrectly) claimed that
NASA’s Mariner 1 space probe was lost due to accidental replacement of a comma
with a dot in a case similar to this one in flight control software.10 Dialects of
Fortran starting with Fortran 77 allow (in fact encourage) the use of alternative
syntax for loop headers, in which an extra comma makes misinterpretation less
likely: DO 5,I = 1,25. �

In Pascal, the dot-dot problem can be handled as a special case, as shown in
the in int arm of Figure 2.11. In languages requiring larger amounts of look-
ahead, the scanner can take a more general approach. In any case of ambiguity, it
assumes that a longer token will be possible but remembers that a shorter token
could have been recognized at some point in the past. It also buffers all characters
read beyond the end of the shorter token. If the optimistic assumption leads the

DESIGN & IMPLEMENTATION

Longest possible tokens
A little care in syntax design—avoiding tokens that are nontrivial prefixes of
other tokens—can dramatically simplify scanning. In straightforward cases of
prefix ambiguity the scanner can enforce the “longest possible token” rule au-
tomatically. In Fortran, however, the rules are sufficiently complex that no
purely lexical solution suffices. Some of the problems, and a possible solution,
are discussed in an article by Dyadkin [Dya95].

10 In actuality, the faulty software for Mariner 1 appears to have stemmed from a missing “bar”
punctuation mark (indicating an average) in handwritten notes from which the software was
derived [Cer89, pp. 202–203]. The Fortran DO loop error does appear to have occurred in at least
one piece of NASA software, but no serious harm resulted [Web89].
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scanner into an error state, it “unreads” the buffered characters so that they will
be seen again later, and returns the shorter token.

2.2.3 Table-Driven Scanning

Figure 2.11 uses control flow—a loop and nested case statements—to represent
a finite automaton. An alternative approach represents the automaton as a dataEXAMPLE 2.17

Table-driven scanning structure: a two-dimensional transition table. A driver program uses the current
state and input character to index into the table (Figure 2.12). Each entry in the
table specifies whether to move to a new state (and if so, which one), return a
token, or announce an error. A second table indicates, for each state, whether we
might be at the end of a token (and if so, which one). Separating this second table
from the first allows us to notice when we pass a state that might have been the
end of a token, so we can back up if we hit an error state.

Like a handwritten scanner, the table-driven code of Figure 2.12 looks tokens
up in a table of keywords immediately before returning. An outer loop serves to
filter out comments and “white space”—spaces, tabs, and newlines. These char-
acter sequences are not meaningful to the parser, and would in fact be very diffi-
cult to represent in a grammar (Exercise 2.15). �

2.2.4 Lexical Errors

The code in Figure 2.12 explicitly recognizes the possibility of lexical errors. In
some cases the next character of input may be neither an acceptable continuation
of the current token nor the start of another token. In such cases the scanner must
print an error message and perform some sort of recovery so that compilation can
continue, if only to look for additional errors. Fortunately, lexical errors are rel-
atively rare—most character sequences do correspond to token sequences—and
relatively easy to handle. The most common approach is simply to (1) throw away
the current, invalid token, (2) skip forward until a character is found that can le-
gitimately begin a new token, (3) restart the scanning algorithm, and (4) count
on the error-recovery mechanism of the parser to cope with any cases in which
the resulting sequence of tokens is not syntactically valid. Of course the need for
error recovery is not unique to table-driven scanners; any scanner must cope with
errors. We did not show the code in Figures 2.5 and 2.11, but it would have to be
there in practice.

The code in Figure 2.12 also shows that the scanner must return both the
kind of token found and its character-string image (spelling); again this require-
ment applies to all types of scanners. For some tokens the character-string image
is redundant: all semicolons look the same, after all, as do all while keywords.
For other tokens, however (e.g., identifiers, character strings, and numeric con-
stants), the image is needed for semantic analysis. It is also useful for error mes-
sages: “undeclared identifier” is not as nice as “foo has not been declared.”
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state = 0 . . number of states
token = 0 . . number of tokens
scan tab : array [char, state] of record

action : (move, recognize, error)
new state : state

token tab : array [state] of token –– what to recognize
keyword tab : set of record

k image : string
k token : token

–– these three tables are created by a scanner generator tool

tok : token
cur char : char
remembered chars : list of char
repeat

cur state : state := start state
image : string := null
remembered state : state := 0 –– none
loop

read cur char
case scan tab[cur char, cur state].action

move:
if token tab[cur state] �= 0

–– this could be a final state
remembered state := cur state
remembered chars := ε

add cur char to remembered chars
cur state := scan tab[cur char, cur state].new state

recognize:
tok := token tab[cur state]
unread cur char –– push back into input stream
exit inner loop

error:
if remembered state �= 0

tok := token tab[remembered state]
unread remembered chars
exit inner loop

–– else print error message and recover; probably start over
append cur char to image

–– end inner loop
until tok �∈ {white space, comment}
look image up in keyword tab and replace tok with appropriate keyword if found
return 〈tok, image〉

Figure 2.12 Driver for a table-driven scanner, with code to handle the ambiguous case in
which one valid token is a prefix of another, but some intermediate string is not.
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2.2.5 Pragmas

Some languages and language implementations allow a program to contain con-
structs called pragmas that provide directives or hints to the compiler. Pragmas
are sometimes called significant comments because, in most cases, they do not
affect the meaning (semantics) of the program—only the compilation process.
In many languages the name is also appropriate because, like comments, prag-
mas can appear anywhere in the source program. In this case they are usually
handled by the scanner: allowing them anywhere in the grammar would greatly
complicate the parser. In other languages (Ada, for example), pragmas are per-
mitted only at certain well-defined places in the grammar. In this case they are
best handled by the parser or semantic analyzer.

Examples of directives include the following.

� Turn various kinds of run-time checks (e.g., pointer or subscript checking) on
or off.

� Turn certain code improvements on or off (e.g., on in inner loops to improve
performance; off otherwise to improve compilation speed).

� Turn performance profiling on or off.

Some directives “cross the line” and change program semantics. In Ada, for ex-
ample, the unchecked pragma can be used to disable type checking.

Hints provide the compiler with information about the source program that
may allow it to do a better job:

� Variable x is very heavily used (it may be a good idea to keep it in a register).

� Subroutine F is a pure function: its only effect on the rest of the program is
the value it returns.

� Subroutine S is not (indirectly) recursive (its storage may be statically allo-
cated).

� 32 bits of precision (instead of 64) suffice for floating-point variable x.

The compiler may ignore these in the interest of simplicity, or in the face of con-
tradictory information.

CHECK YOUR UNDERSTANDING

10. List the tasks performed by the typical scanner.

11. What are the advantages of an automatically generated scanner, in compari-
son to a handwritten one? Why do many commercial compilers use a hand-
written scanner anyway?

12. Explain the difference between deterministic and nondeterministic finite au-
tomata. Why do we prefer the deterministic variety for scanning?
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13. Outline the constructions used to turn a set of regular expressions into a min-
imal DFA.

14. What is the “longest possible token” rule?

15. Why must a scanner sometimes “peek” at upcoming characters?

16. What is the difference between a keyword and an identifier?

17. Why must a scanner save the text of tokens?

18. How does a scanner identify lexical errors? How does it respond?

19. What is a pragma?

2.3 Parsing

The parser is the heart of a typical compiler. It calls the scanner to obtain the to-
kens of the input program, assembles the tokens together into a syntax tree, and
passes the tree (perhaps one subroutine at a time) to the later phases of the com-
piler, which perform semantic analysis and code generation and improvement.
In effect, the parser is “in charge” of the entire compilation process; this style of
compilation is sometimes referred to as syntax-directed translation.

As noted in the introduction to this chapter, a context-free grammar (CFG) is
a generator for a CF language. A parser is a language recognizer. It can be shown
that for any CFG we can create a parser that runs in O(n3) time, where n is the
length of the input program.11 There are two well-known parsing algorithms that
achieve this bound: Earley’s algorithm [Ear70] and the Cocke-Younger-Kasami
(CYK) algorithm [Kas65, You67]. Cubic time is much too slow for parsing sizable
programs, but fortunately not all grammars require such a general and slow pars-
ing algorithm. There are large classes of grammars for which we can build parsers
that run in linear time. The two most important of these classes are called LL
and LR.

LL stands for “Left-to-right, Left-most derivation.” LR stands for “Left-to-
right, Right-most derivation.” In both classes the input is read left-to-right. An
LL parser discovers a left-most derivation; an LR parser discovers a right-most
derivation. We will cover LL parsers first. They are generally considered to be
simpler and easier to understand. They can be written by hand or generated au-
tomatically from an appropriate grammar by a parser-generating tool. The class
of LR grammars is larger, and some people find the structure of the grammars
more intuitive, especially in the part of the grammar that deals with arithmetic

11 In general, an algorithm is said to run in time O( f (n)), where n is the length of the input, if
its running time t(n) is proportional to f (n) in the worst case. More precisely, we say t(n) =
O( f (n)) ⇐⇒ ∃ c,m [n > m −→ t(n) < c f (n)].



62 Chapter 2 Programming Language Syntax

expressions. LR parsers are almost always constructed by a parser-generating tool.
Both classes of parsers are used in production compilers, though LR parsers are
more common.

LL parsers are also called “top-down” or “predictive” parsers. They construct
a parse tree from the root down, predicting at each step which production will be
used to expand the current node, based on the next available token of input. LR
parsers are also called “bottom-up” parsers. They construct a parse tree from the
leaves up, recognizing when a collection of leaves or other nodes can be joined
together as the children of a single parent.

We can illustrate the difference between top-down and bottom-up parsingEXAMPLE 2.18
Top-down and bottom-up
parsing

by means of a simple example. Consider the following grammar for a comma-
separated list of identifiers, terminated by a semicolon.

id list −→ id id list tail

id list tail −→ , id id list tail

id list tail −→ ;

These are the productions that would normally be used for an identifier list in
a top-down parser. They can also be parsed bottom-up (most top-down gram-
mars can be). In practice they would not be used in a bottom-up parser, for rea-
sons that will become clear in a moment, but the ability to handle them either
way makes them good for this example.

Progressive stages in the top-down and bottom-up construction of a parse
tree for the string A, B, C; appear in Figure 2.13. The top-down parser begins
by predicting that the root of the tree (id list) will be replaced by id id list tail.
It then matches the id against a token obtained from the scanner. (If the scan-
ner produced something different, the parser would announce a syntax error.)
The parser then moves down into the first (in this case only) nonterminal child
and predicts that id list tail will be replaced by , id id list tail. To make this
prediction it needs to peek at the upcoming token (a comma), which allows it to
choose between the two possible expansions for id list tail. It then matches the
comma and the id and moves down into the next id list tail. In a similar, recur-
sive fashion, the top-down parser works down the tree, left-to-right, predicting
and expanding nodes and tracing out a left-most derivation of the fringe of the
tree.

The bottom-up parser, by contrast, begins by noting that the left-most leaf of
the tree is an id . The next leaf is a comma and the one after that is another id .
The parser continues in this fashion, shifting new leaves from the scanner into
a forest of partially completed parse tree fragments, until it realizes that some
of those fragments constitute a complete right-hand side. In this grammar, that
doesn’t occur until the parser has seen the semicolon—the right-hand side of
id list tail −→ ; . With this right-hand side in hand, the parser reduces the semi-
colon to an id list tail. It then reduces , id id list tail into another id list tail.
After doing this one more time it is able to reduce id id list tail into the root of
the parse tree, id list.
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Figure 2.13 Top-down (left) and bottom-up parsing (right) of the input string A, B, C;.
Grammar appears at lower left.

At no point does the bottom-up parser predict what it will see next. Rather,
it shifts tokens into its forest until it recognizes a right-hand side, which it then
reduces to a left-hand side. Because of this behavior, bottom-up parsers are some-
times called shift-reduce parsers. Looking up the figure, from bottom to top, we
can see that the shift-reduce parser traces out a right-most (canonical) deriva-
tion, in reverse. �
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There are several important subclasses of LR parsers, including SLR, LALR,
and “full LR.” SLR and LALR are important for their ease of implementation,
full LR for its generality. LL parsers can also be grouped into SLL and “full LL”
subclasses. We will cover the differences among them only briefly here; for fur-
ther information see any of the standard compiler-construction or parsing theory
textbooks [App97, ASU86, AU72, CT04, FL88].

One commonly sees LL or LR (or whatever) written with a number in paren-
theses after it: LL(2) or LALR(1), for example. This number indicates how many
tokens of look-ahead are required in order to parse. Most real compilers use just
one token of look-ahead, though more can sometimes be helpful. Terrence Parr’s
open-source ANTLR tool, in particular, uses multi-token look-ahead to enlarge
the class of languages amenable to top-down parsing [PQ95]. In Section 2.3.1
we will look at LL(1) grammars and handwritten parsers in more detail. In Sec-
tions 2.3.2 and 2.3.3 we will consider automatically generated LL(1) and LR(1)
(actually SLR(1)) parsers.

The problem with our example grammar, for the purposes of bottom-upEXAMPLE 2.19
Bounding space with a
bottom-up grammar

parsing, is that it forces the compiler to shift all the tokens of an id list into its
forest before it can reduce any of them. In a very large program we might run out
of space. Sometimes there is nothing that can be done to avoid a lot of shifting.
In this case, however, we can use an alternative grammar that allows the parser to
reduce prefixes of the id list into nonterminals as it goes along:

id list −→ id list prefix ;

id list prefix −→ id list prefix , id

−→ id

This grammar cannot be parsed top-down, because when we see an id on the
input and we’re expecting an id list prefix, we have no way to tell which of the two
possible productions we should predict (more on this dilemma in Section 2.3.2).
As shown in Figure 2.14, however, the grammar works well bottom-up. �

2.3.1 Recursive Descent

To illustrate top-down (predictive) parsing, let us consider the grammar for aEXAMPLE 2.20
Top-down grammar for a
calculator language

simple “calculator” language, shown in Figure 2.15. The calculator allows values
to be read into (numeric) variables, which may then be used in expressions. Ex-
pressions in turn can be written to the output. Control flow is strictly linear (no
loops, if statements, or other jumps). The end-marker ($$) pseudo-token is
produced by the scanner at the end of the input. This token allows the parser to
terminate cleanly once it has seen the entire program. As in regular expressions,
we use the symbol ε to denote the empty string. A production with ε on the
right-hand side is sometimes called an epsilon production.

It may be helpful to compare the expr portion of Figure 2.15 to the expres-
sion grammar of Example 2.7 (page 45). Most people find that previous, LR
grammar to be significantly more intuitive. It suffers, however, from a problem
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Figure 2.14 Bottom-up parse of A, B, C; using a grammar (lower left) that allows lists to be
collapsed incrementally.

similar to that of the id list grammar of Example 2.19: if we see an id on the
input when expecting an expr, we have no way to tell which of the two pos-
sible productions to predict. The grammar of Figure 2.15 avoids this problem
by merging the common prefixes of right-hand sides into a single production,
and by using new symbols (term tail and factor tail) to generate additional op-
erators and operands as required. The transformation has the unfortunate side
effect of placing the operands of a given operator in separate right-hand sides.
In effect, we have sacrificed grammatical elegance in order to be able to parse
predictively. �

So how do we parse a string with our calculator grammar? We saw the basic
idea in Figure 2.13. We start at the top of the tree and predict needed productions
on the basis of the current left-most nonterminal in the tree and the current in-
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program −→ stmt list $$

stmt list −→ stmt stmt list ε

stmt −→ id := expr read id write expr

expr −→ term term tail

term tail −→ add op term term tail ε

term −→ factor factor tail

factor tail −→ mult op factor factor tail ε

factor −→ ( expr ) id number

add op −→ + -

mult op −→ * /

Figure 2.15 LL(1) grammar for a simple calculator language.

put token. We can formalize this process in one of two ways. The first, described
in the remainder of this subsection, is to build a recursive descent parser whose
subroutines correspond, one-to-one, to the nonterminals of the grammar. Re-
cursive descent parsers are typically constructed by hand, though the ANTLR
parser generator constructs them automatically from an input grammar. The
second approach, described in Section 2.3.2, is to build an LL parse table, which
is then read by a driver program. Table-driven parsers are almost always con-
structed automatically by a parser generator. These two options—recursive de-
scent and table-driven—are reminiscent of the nested case statements and table-
driven approaches to building a scanner that we saw in Sections 2.2.2 and 2.2.3.
Handwritten recursive descent parsers are most often used when the language
to be parsed is relatively simple, or when a parser-generator tool is not avail-
able.

Pseudocode for a recursive descent parser for our calculator language appearsEXAMPLE 2.21
Recursive descent parser
for the calculator language

in Figure 2.16. It has a subroutine for every nonterminal in the grammar. It also
has a mechanism input token to inspect the next token available from the scanner
and a subroutine (match) to consume this token and in the process verify that it
is the one that was expected (as specified by an argument). If match or any of the
other subroutines sees an unexpected token, then a syntax error has occurred.
For the time being let us assume that the parse error subroutine simply prints
a message and terminates the parse. In Section 2.3.4 we will consider how to
recover from such errors and continue to parse the remainder of the input. �

Suppose now that we are to parse a simple program to read two numbers andEXAMPLE 2.22
Recursive descent parse of
a “sum and average”
program

print their sum and average:

read A

read B

sum := A + B

write sum

write sum / 2
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procedure match(expected)
if input token = expected

consume input token
else parse error

–– this is the start routine:
procedure program

case input token of
id, read, write, $$ :

stmt list
match($$)

otherwise parse error

procedure stmt list
case input token of

id, read, write : stmt; stmt list
$$ : skip –– epsilon production
otherwise parse error

procedure stmt
case input token of

id : match(id); match(:=); expr
read : match(read); match(id)
write : match(write); expr
otherwise parse error

procedure expr
case input token of

id, number, ( : term; term tail
otherwise parse error

procedure term tail
case input token of

+, - : add op; term; term tail
), id, read, write, $$ :

skip –– epsilon production
otherwise parse error

procedure term
case input token of

id, number, ( : factor; factor tail
otherwise parse error

Figure 2.16 Recursive descent parser for the calculator language. Execution begins in proce-
dure program. The recursive calls trace out a traversal of the parse tree. Not shown is code to
save this tree (or some similar structure) for use by later phases of the compiler. (continued)
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procedure factor tail
case input token of

*, / : mult op; factor; factor tail
+, -, ), id, read, write, $$ :

skip –– epsilon production
otherwise parse error

procedure factor
case input token of

id : match(id)
number : match(number)
( : match((); expr; match())
otherwise parse error

procedure add op
case input token of

+ : match(+)
- : match(-)
otherwise parse error

procedure mult op
case input token of

* : match(*)
/ : match(/)
otherwise parse error

Figure 2.16 (continued)

The parse tree for this program appears in Figure 2.17. The parser begins by
calling the subroutine program. After noting that the initial token is a read,
program calls stmt list and then attempts to match the end-of-file pseudo-token.
(In the parse tree, the root, program, has two children, stmt list and $$.) Pro-
cedure stmt list again notes that the upcoming token is a read. This obser-
vation allows it to determine that the current node (stmt list) generates stmt
stmt list (rather than ε). It therefore calls stmt and stmt list before returning.
Continuing in this fashion, the execution path of the parser traces out a left-
to-right depth-first traversal of the parse tree. This correspondence between the
dynamic execution trace and the structure of the parse tree is the distinguishing
characteristic of recursive descent parsing. Note that because the stmt list non-
terminal appears in the right-hand side of a stmt list production, the stmt list
subroutine must call itself. This recursion accounts for the name of the parsing
technique. �

Without additional code (not shown in Figure 2.16), the parser merely ver-
ifies that the program is syntactically correct (i.e., that none of the otherwise
parse error clauses in the case statements are executed and that match always
sees what it expects to see). To be of use to the rest of the compiler—which must
produce an equivalent target program in some other language—the parser must
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Figure 2.17 Parse tree for the sum-and-average program of Example 2.22, using the grammar of Figure 2.15.

save the parse tree or some other representation of program fragments as an ex-
plicit data structure. To save the parse tree itself, we can allocate and link together
records to represent the children of a node immediately before executing the re-
cursive subroutines and match invocations that represent those children. We shall
need to pass each recursive routine an argument that points to the record that is
to be expanded (i.e., whose children are to be discovered). Procedure match will
also need to save information about certain tokens (e.g., character-string repre-
sentations of identifiers and literals) in the leaves of the tree.

As we saw in Chapter 1, the parse tree contains a great deal of irrelevant detail
that need not be saved for the rest of the compiler. It is therefore rare for a parser
to construct a full parse tree explicitly. More often it produces an abstract syntax
tree or some other more terse representation. In a recursive descent compiler, a
syntax tree can be created by allocating and linking together records in only a
subset of the recursive calls.

Perhaps the trickiest part of writing a recursive descent parser is figuring out
which tokens should label the arms of the case statements. Each arm represents
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one production: one possible expansion of the symbol for which the subroutine
was named. The tokens that label a given arm are those that predict the pro-
duction. A token X may predict a production for either of two reasons: (1) the
right-hand side of the production, when recursively expanded, may yield a string
beginning with X, or (2) the right-hand side may yield nothing (i.e., it is ε, or a
string of nonterminals that may recursively yield ε), and X may begin the yield
of what comes next. In the following subsection we will formalize this notion of
prediction using sets called FIRST and FOLLOW, and show how to derive them
automatically from an LL(1) CFG.

CHECK YOUR UNDERSTANDING

20. What is the inherent “big-O” complexity of parsing? What is the complexity
of parsers used in real compilers?

21. Summarize the difference between LL and LR parsing. Which one of them is
also called “bottom-up”? “Top-down”? Which one is also called “predictive”?
“Shift-reduce”? What do “LL” and “LR” stand for?

22. What kind of parser (top-down or bottom-up) is most common in produc-
tion compilers?

23. What is the significance of the “1” in LR(1)?

24. Why might we want (or need) different grammars for different parsing algo-
rithms?

25. What is an epsilon production?

26. What are recursive descent parsers? Why are they used mostly for small lan-
guages?

27. How might a parser construct an explicit parse tree or syntax tree?

2.3.2 Table-Driven Top-Down Parsing

In a recursive descent parser, each arm of a case statement corresponds to aEXAMPLE 2.23
Driver and table for
top-down parsing

production, and contains parsing routine and match calls corresponding to the
symbols on the right-hand side of that production. At any given point in the
parse, if we consider the calls beyond the program counter (the ones that have
yet to occur) in the parsing routine invocations currently in the call stack, we
obtain a list of the symbols that the parser expects to see between here and the
end of the program. A table-driven top-down parser maintains an explicit stack
containing this same list of symbols.

Pseudocode for such a parser appears in Figure 2.18. The code is language
independent. It requires a language dependent parsing table, generally produced
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terminal = 1 . . number of terminals
non terminal = number of terminals + 1 . . number of symbols
symbol = 1 . . number of symbols
production = 1 . . number of productions

parse tab : array [non terminal, terminal] of
action : (predict, error)
prod : production

prod tab : array [production] of list of symbol
–– these two tables are created by a parser generator tool

parse stack : stack of symbol

parse stack.push(start symbol)
loop

expected sym : symbol := parse stack.pop
if expected sym ∈ terminal

match(expected sym) –– as in Figure 2.16
if expected sym = $$ return –– success!

else
if parse tab[expected sym, input token].action = error

parse error
else

prediction : production := parse tab[expected sym, input token].prod
foreach sym : symbol in reverse prod tab[prediction]

parse stack.push(sym)

Figure 2.18 Driver for a table-driven LL(1) parser.

by an automatic tool. For the calculator grammar of Figure 2.15, the table appears
as shown in Figure 2.19. �

To illustrate the algorithm, Figure 2.20 shows a trace of the stack and the in-EXAMPLE 2.24
Table-driven parse of the
“sum and average”
program

put over time for the sum-and-average program of Example 2.22. The parser
iterates around a loop in which it pops the top symbol off the stack and performs
the following actions. If the popped symbol is a terminal, the parser attempts
to match it against an incoming token from the scanner. If the match fails, the
parser announces a syntax error and initiates some sort of error recovery (see Sec-
tion 2.3.4). If the popped symbol is a nonterminal, the parser uses that nontermi-
nal together with the next available input token to index into a two-dimensional
table that tells it which production to predict (or whether to announce a syntax
error and initiate recovery).

Initially, the parse stack contains the start symbol of the grammar (in our case,
program). When it predicts a production, the parser pushes the right-hand-side
symbols onto the parse stack in reverse order, so the first of those symbols ends up
at top-of-stack. The parse completes successfully when we match the end token,
$$. Assuming that $$ appears only once in the grammar, at the end of the first
production, and that the scanner returns this token only at end-of-file, any syntax
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Top-of-stack Current input token
nonterminal id number read write := ( ) + - * / $$

program 1 – 1 1 – – – – – – – 1
stmt list 2 – 2 2 – – – – – – – 3

stmt 4 – 5 6 – – – – – – – –
expr 7 7 – – – 7 – – – – – –

term tail 9 – 9 9 – – 9 8 8 – – 9
term 10 10 – – – 10 – – – – – –

factor tail 12 – 12 12 – – 12 12 12 11 11 12
factor 14 15 – – – 13 – – – – – –

add op – – – – – – – 16 17 – – –
mult op – – – – – – – – – 18 19 –

Figure 2.19 LL(1) parse table for the calculator language. Table entries indicate the production to predict (as numbered in
Figure 2.22). A dash indicates an error. When the top-of-stack symbol is a terminal, the appropriate action is always to match
it against an incoming token from the scanner. An auxiliary table, not shown here, gives the right-hand side symbols for each
production.

error is guaranteed to manifest itself either as a failed match or as an error entry
in the table. �

Predict Sets

As we hinted at the end of Section 2.3.1, predict sets are defined in terms of sim-
pler sets called FIRST and FOLLOW, where FIRST(A) is the set of all tokens that
could be the start of an A, plus ε if A �⇒* ε , and FOLLOW(A) is the set of all
tokens that could come after an A in some valid program, plus ε if A can be the
final token in the program. If we extend the domain of FIRST in the obvious way
to include strings of symbols, we then say that the predict set of a production A
−→ β is FIRST(β) (except for ε), plus FOLLOW(A) if β �⇒* ε .12

We can illustrate the algorithm to construct these sets using our calculatorEXAMPLE 2.25
Predict sets for the
calculator language

grammar (Figure 2.15). We begin with “obvious” facts about the grammar and
build on them inductively. If we recast the grammar in plain BNF (no EBNF ‘ ’
constructs), then it has 19 productions. The “obvious” facts arise from adjacent
pairs of symbols in right-hand sides. In the first production, we can see that $$

12 Following conventional notation, we use uppercase Roman letters near the beginning of the
alphabet to represent nonterminals, uppercase Roman letters near the end of the alphabet to
represent arbitrary grammar symbols (terminals or nonterminals), lowercase Roman letters near
the beginning of the alphabet to represent terminals (tokens), lowercase Roman letters near the
end of the alphabet to represent token strings, and lowercase Greek letters to represent strings of
arbitrary symbols.
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Parse stack Input stream Comment

program read A read B . . . initial stack contents
stmt list $$ read A read B . . . predict program −→ stmt list $$

stmt stmt list $$ read A read B . . . predict stmt list −→ stmt stmt list
read id stmt list $$ read A read B . . . predict stmt −→ read id

id stmt list $$ A read B . . . match read

stmt list $$ read B sum := . . . match id

stmt stmt list $$ read B sum := . . . predict stmt list −→ stmt stmt list
read id stmt list $$ read B sum := . . . predict stmt −→ read id

id stmt list $$ B sum := . . . match read

stmt list $$ sum := A + B . . . match id

stmt stmt list $$ sum := A + B . . . predict stmt list −→ stmt stmt list
id := expr stmt list $$ sum := A + B . . . predict stmt −→ id := expr
:= expr stmt list $$ := A + B . . . match id

expr stmt list $$ A + B . . . match :=

term term tail stmt list $$ A + B . . . predict expr −→ term term tail
factor factor tail term tail stmt list $$ A + B . . . predict term −→ factor factor tail
id factor tail term tail stmt list $$ A + B . . . predict factor −→ id

factor tail term tail stmt list $$ + B write sum . . . match id

term tail stmt list $$ + B write sum . . . predict factor tail −→ ε

add op term term tail stmt list $$ + B write sum . . . predict term tail −→ add op term term tail
+ term term tail stmt list $$ + B write sum . . . predict add op −→ +

term term tail stmt list $$ B write sum . . . match +

factor factor tail term tail stmt list $$ B write sum . . . predict term −→ factor factor tail
id factor tail term tail stmt list $$ B write sum . . . predict factor −→ id

factor tail term tail stmt list $$ write sum . . . match id

term tail stmt list $$ write sum write . . . predict factor tail −→ ε

stmt list $$ write sum write . . . predict term tail −→ ε

stmt stmt list $$ write sum write . . . predict stmt list −→ stmt stmt list
write expr stmt list $$ write sum write . . . predict stmt −→ write expr
expr stmt list $$ sum write sum / 2 match write

term term tail stmt list $$ sum write sum / 2 predict expr −→ term term tail
factor factor tail term tail stmt list $$ sum write sum / 2 predict term −→ factor factor tail
id factor tail term tail stmt list $$ sum write sum / 2 predict factor −→ id

factor tail term tail stmt list $$ sum write sum / 2 match id

term tail stmt list $$ write sum / 2 predict factor tail −→ ε

stmt list $$ write sum / 2 predict term tail −→ ε

stmt stmt list $$ write sum / 2 predict stmt list −→ stmt stmt list
write expr stmt list $$ write sum / 2 predict stmt −→ write expr
expr stmt list $$ sum / 2 match write

term term tail stmt list $$ sum / 2 predict expr −→ term term tail
factor factor tail term tail stmt list $$ sum / 2 predict term −→ factor factor tail
id factor tail term tail stmt list $$ sum / 2 predict factor −→ id

factor tail term tail stmt list $$ / 2 match id

mult op factor factor tail term tail stmt list $$ / 2 predict factor tail −→ mult op factor factor tail
/ factor factor tail term tail stmt list $$ / 2 predict mult op −→ /

factor factor tail term tail stmt list $$ 2 match /

number factor tail term tail stmt list $$ 2 predict factor −→ number

factor tail term tail stmt list $$ match number

term tail stmt list $$ predict factor tail −→ ε

stmt list $$ predict term tail −→ ε

$$ predict stmt list −→ ε

Figure 2.20 Trace of a table-driven LL(1) parse of the sum-and-average program of Example 2.22.
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program −→ stmt list $$ $$ ∈ FOLLOW(stmt list),
ε ∈ FOLLOW($$), and ε ∈ FOLLOW(program)

stmt list −→ stmt stmt list
stmt list −→ ε ε ∈ FIRST(stmt list)
stmt −→ id := expr id ∈ FIRST(stmt) and := ∈ FOLLOW(id)
stmt −→ read id read ∈ FIRST(stmt) and id ∈ FOLLOW(read)
stmt −→ write expr write ∈ FIRST(stmt)
expr −→ term term tail
term tail −→ add op term term tail
term tail −→ ε ε ∈ FIRST(term tail)
term −→ factor factor tail
factor tail −→ mult op factor factor tail
factor tail −→ ε ε ∈ FIRST(factor tail)
factor −→ ( expr ) ( ∈ FIRST(factor) and ) ∈ FOLLOW(expr)
factor −→ id id ∈ FIRST(factor)
factor −→ number number ∈ FIRST(factor)
add op −→ + + ∈ FIRST(add op)
add op −→ - - ∈ FIRST(add op)
mult op −→ * * ∈ FIRST(mult op)
mult op −→ / / ∈ FIRST(mult op)

Figure 2.21 “Obvious” facts about the LL(1) calculator grammar.

∈ FOLLOW(stmt list). In the fourth (stmt −→ id := expr), id ∈ FIRST(stmt),
and := ∈ FOLLOW(id). In the fifth and sixth productions (stmt −→ read id

write expr), {read, write} ⊂ FIRST(stmt), and id ∈ FOLLOW(read). The
complete set of “obvious” facts appears in Figure 2.21.

From the “obvious” facts we can deduce a larger set of facts during a second
pass over the grammar. For example, in the second production (stmt list −→
stmt stmt list) we can deduce that {id, read, write} ⊂ FIRST(stmt list), be-
cause we already know that {id, read, write} ⊂ FIRST(stmt), and a stmt list
can begin with a stmt. Similarly, in the first production, we can deduce that $$ ∈
FIRST(program), because we already know that ε ∈ FIRST(stmt list).

In the eleventh production (factor tail −→ mult op factor factor tail), we
can deduce that {(, id, number} ⊂ FOLLOW(mult op), because we already know
that {(, id, number} ⊂ FIRST(factor), and factor follows mult op in the right-
hand side. In the seventh production (expr −→ term term tail), we can deduce
that ) ∈ FOLLOW(term tail), because we already know that ) ∈ FOLLOW(expr),
and a term tail can be the last part of an expr. In this same production, we can
also deduce that ) ∈ FOLLOW(term), because the term tail can generate ε (ε ∈
FIRST(term tail)), allowing a term to be the last part of an expr.

There is more that we can learn from our second pass through the grammar,
but these examples cover all the different kinds of cases. To complete our calcu-
lation, we continue with additional passes over the grammar until we don’t learn
any more (i.e., we don’t add anything to any of the FIRST and FOLLOW sets). We
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FIRST
program {id, read, write, $$}
stmt list {id, read, write, ε}
stmt {id, read, write}
expr {(, id, number}
term tail {+, -, ε}
term {(, id, number}
factor tail {*, /, ε}
factor {(, id, number}
add op {+, -}
mult op {*, /}

Also note that FIRST(a) = {a} ∀ tokens a.

FOLLOW
id {+, -, *, /, ), :=, id, read, write, $$}
number {+, -, *, /, ), id, read, write, $$}
read {id}
write {(, id, number}
( {(, id, number}
) {+, -, *, /, ), id, read, write, $$}
:= {(, id, number}
+ {(, id, number}
- {(, id, number}
* {(, id, number}
/ {(, id, number}
$$ {ε}
program {ε}
stmt list {$$}
stmt {id, read, write, $$}

expr {), id, read, write, $$}
term tail {), id, read, write, $$}
term {+, -, ), id, read, write, $$}
factor tail {+, -, ), id, read, write, $$}
factor {+, -, *, /, ), id, read, write, $$}
add op {(, id, number}
mult op {(, id, number}

PREDICT
1. program −→ stmt list $$ {id, read, write, $$}
2. stmt list −→ stmt stmt list {id, read, write}
3. stmt list −→ ε {$$}
4. stmt −→ id := expr {id}
5. stmt −→ read id {read}
6. stmt −→ write expr {write}
7. expr −→ term term tail {(, id, number}
8. term tail −→ add op term term tail {+, -}
9. term tail −→ ε {), id, read, write, $$}

10. term −→ factor factor tail {(, id, number}
11. factor tail −→ mult op factor factor tail {*, /}
12. factor tail −→ ε {+, -, ), id, read, write, $$}
13. factor −→ ( expr ) {(}
14. factor −→ id {id}
15. factor −→ number {number}
16. add op −→ + {+}
17. add op −→ - {-}
18. mult op −→ * {*}
19. mult op −→ / {/}

Figure 2.22 FIRST, FOLLOW, and PREDICT sets for the calculator language.

then construct the PREDICT sets. Final versions of all three sets appear in Fig-
ure 2.22. The parse table of Figure 2.19 follows directly from PREDICT. �

The algorithm to compute FIRST, FOLLOW, and PREDICT sets appears, a bit
more formally, in Figure 2.23. It relies on the following definitions.

FIRST(α) ≡ {a : α �⇒* a β } ∪ ( if α �⇒* ε then {ε} else ∅ )

FOLLOW(A) ≡ {a : S �⇒+ α A a β } ∪ ( if S �⇒* α A then {ε} else ∅ )

PREDICT(A −→ α) ≡ (FIRST(α)�{ε}) ∪ ( if α �⇒* ε then FOLLOW(A)
else ∅ )

Note that FIRST sets for strings of length greater than one are calculated on de-
mand; they are not stored explicitly. The algorithm is guaranteed to terminate
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First sets for all symbols:
for all terminals a, FIRST(a) := {a}
for all nonterminals X, FIRST(X) := ∅

for all productions X −→ ε , add ε to FIRST(X)
repeat

〈outer〉 for all productions X −→ Y1 Y2 . . . Yk ,
〈inner〉 for i in 1 . . k

add (FIRST(Yi) � {ε}) to FIRST(X)
if ε �∈ FIRST(Yi) (yet)

continue outer loop
add ε to FIRST(X)

until no further progress

First set subroutine for string X1 X2 . . . Xn , similar to inner loop above:
return value := ∅

for i in 1 . . n
add (FIRST(Xi) � {ε}) to return value
if ε �∈ FIRST(Xi)

return
add ε to return value

Follow sets for all symbols:
FOLLOW(S) := {ε}, where S is the start symbol
for all other symbols X, FOLLOW(X) := ∅

repeat
for all productions A −→ α B β ,

add (FIRST(β ) � {ε}) to FOLLOW(B)
for all productions A −→ α B

or A −→ α B β , where ε ∈ FIRST(β ),
add FOLLOW(A) to FOLLOW(B)

until no further progress

Predict sets for all productions:
for all productions A −→ α

PREDICT(A −→ α) := (FIRST(α) � {ε})
∪ (if ε ∈ FIRST(α) then FOLLOW(A) else ∅ )

Figure 2.23 Algorithm to calculate FIRST, FOLLOW, and PREDICT sets. The grammar is LL(1)
if and only if the PREDICT sets are disjoint.

(i.e., converge on a solution), because the sizes of the sets are bounded by the
number of terminals in the grammar.

If in the process of calculating PREDICT sets we find that some token belongs
to the PREDICT set of more than one production with the same left-hand side,
then the grammar is not LL(1), because we will not be able to choose which
of the productions to employ when the left-hand side is at the top of the parse
stack (or we are in the left-hand side’s subroutine in a recursive descent parser)
and we see the token coming up in the input. This sort of ambiguity is known
as a predict-predict conflict; it can arise either because the same token can begin
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more than one right-hand side, or because it can begin one right-hand side and
can also appear after the left-hand side in some valid program, and one possible
right-hand side can generate ε.

Writing an LL(1) Grammar

When working with a top-down parser generator, one has to acquire a certain
facility in writing and modifying LL(1) grammars. The two most common ob-
stacles to “LL(1)-ness” are left recursion and common prefixes.

Left recursion occurs when the first symbol on the right-hand side of a pro-EXAMPLE 2.26
Left recursion duction is the same as the symbol on the left-hand side. Here again is the gram-

mar from Example 2.19, which cannot be parsed top-down:

id list −→ id list prefix ;

id list prefix −→ id list prefix , id

−→ id

The problem is in the second and third productions; with id list prefix at top-
of-stack and an id on the input, a predictive parser cannot tell which of the
productions it should use. (Recall that left recursion is desirable in bottom-up
grammars, because it allows recursive constructs to be discovered incrementally,
as in Figure 2.14.) �

Common prefixes occur when two different productions with the same left-EXAMPLE 2.27
Common prefixes hand side begin with the same symbol or symbols. Here is an example that com-

monly appears in Algol-family languages:

stmt −→ id := expr

−→ id ( argument list ) –– procedure call

Clearly id is in the FIRST set of both right-hand sides, and therefore in the
PREDICT set of both productions. �

Both left recursion and common prefixes can be removed from a grammar
mechanically. The general case is a little tricky (Exercise 2.17), because the pre-
diction problem may be an indirect one (e.g., S −→ A α and A −→ S β , or
S −→ A α , S −→ B β , A �⇒* a γ , and B �⇒* a δ). We can see the
general idea in the examples above, however.

Our left-recursive definition of id list can be replaced by the right-recursiveEXAMPLE 2.28
Eliminating left recursion variant we saw in Example 2.18:

id list −→ id id list tail

id list tail −→ , id id list tail

id list tail −→ ; �
Our common-prefix definition of stmt can be made LL(1) by a technique calledEXAMPLE 2.29

Left factoring left factoring:

stmt −→ id stmt list tail

stmt list tail −→ := expr ( argument list ) �
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Of course, simply eliminating left recursion and common prefixes is not guar-
anteed to make a grammar LL(1). There are infinitely many non-LL languages—
languages for which no LL grammar exists—and the mechanical transformations
to eliminate left recursion and common prefixes work on their grammars just
fine. Fortunately, the few non-LL languages that arise in practice can generally be
handled by augmenting the parsing algorithm with one or two simple heuristics.

The best known example of a “not quite LL” construct arises in languagesEXAMPLE 2.30
Parsing a “dangling else” like Pascal, in which the else part of an if statement is optional. The natural

grammar fragment

stmt −→ if condition then clause else clause other stmt

then clause −→ then stmt

else clause −→ else stmt ε

is ambiguous (and thus neither LL nor LR); it allows the else in if C1 then if
C2 then S1 else S2 to be paired with either then. The less natural grammar
fragment

stmt −→ balanced stmt unbalanced stmt

balanced stmt −→ if condition then balanced stmt else balanced stmt
other stmt

unbalanced stmt −→ if condition then stmt
if condition then balanced stmt else unbalanced stmt

can be parsed bottom-up but not top-down (there is no pure top-down grammar
for Pascal else statements). A balanced stmt is one with the same number of
thens and elses. An unbalanced stmt has more thens. �

The usual approach, whether parsing top-down or bottom-up, is to use the
ambiguous grammar together with a “disambiguating rule,” which says that in
the case of a conflict between two possible productions, the one to use is the one
that occurs first, textually, in the grammar. In the ambiguous fragment above,
the fact that else clause −→ else stmt comes before else clause −→ ε ends up
pairing the else with the nearest then, as desired.

Better yet, a language designer can avoid this sort of problem by choosing
different syntax. The ambiguity of the dangling else problem in Pascal leads toEXAMPLE 2.31

“Dangling else” program
bug

problems not only in parsing but in writing and maintaining correct programs.
Most Pascal programmers have at one time or another written a program like this
one:

if P <> nil then

if P^.val = goal then

foundIt := true

else

endOfList := true

Indentation notwithstanding, the Pascal manual states that an else clause
matches the closest unmatched then—in this case the inner one—which is



2.3 Parsing 79

clearly not what the programmer intended. To get the desired effect, the Pascal
programmer must write

if P <> nil then begin

if P^.val = goal then

foundIt := true

end

else

endOfList := true �
Many other Algol-family languages (including Modula, Modula-2, and Oberon,
all more recent inventions of Pascal’s designer, Niklaus Wirth) require explicit endEXAMPLE 2.32

End markers for structured
statements

markers on all structured statements. The grammar fragment for if statements
in Modula-2 looks something like this:

stmt −→ IF condition then clause else clause END other stmt

then clause −→ THEN stmt list

else clause −→ ELSE stmt list ε

The addition of the END eliminates the ambiguity. �
Modula-2 uses END to terminate all its structured statements. Ada and For-

tran 77 end an if with end if (and a while with end while, etc.). Al-
gol 68 creates its terminators by spelling the initial keyword backward (if. . . fi,
case. . . esac, do. . . od, etc.).

One problem with end markers is that they tend to bunch up. In Pascal oneEXAMPLE 2.33
The need for elsif can write

if A = B then ...

else if A = C then ...

else if A = D then ...

else if A = E then ...

else ...

With end markers this becomes

if A = B then ...

else if A = C then ...

else if A = D then ...

else if A = E then ...

else ...

end end end end �

DESIGN & IMPLEMENTATION

The dangling else

A simple change in language syntax—eliminating the dangling else—not
only reduces the chance of programming errors but also significantly simpli-
fies parsing. For more on the dangling else problem, see Exercise 2.23 and
Section 6.4.
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To avoid this awkwardness, languages with end markers generally provide an
elsif keyword (sometimes spelled elif):

if A = B then ...

elsif A = C then ...

elsif A = D then ...

elsif A = E then ...

else ...

end

With elsif clauses added, the Modula-2 grammar fragment for if statements
looks like this:

stmt −→ IF condition then clause elsif clauses else clause END other stmt

then clause −→ THEN stmt list

elsif clauses −→ ELSIF condition then clause elsif clauses ε

else clause −→ ELSE stmt list ε �

CHECK YOUR UNDERSTANDING

28. Discuss the similarities and differences between recursive descent and table-
driven top-down parsing.

29. What are FIRST and FOLLOW sets? What are they used for?

30. Under what circumstances does a top-down parser predict the production
A −→ α?

31. What sorts of “obvious” facts form the basis of FIRST set and FOLLOW set
construction?

32. Outline the algorithm used to complete the construction of FIRST and
FOLLOW sets. How do we know when we are done?

33. How do we know when a grammar is not LL(1)?

34. Describe two common idioms in context-free grammars that cannot be
parsed top-down.

35. What is the “dangling else” problem? How is it avoided in modern lan-
guages?

2.3.3 Bottom-Up Parsing

Conceptually, as we saw at the beginning of Section 2.3, a bottom-up parser
works by maintaining a forest of partially completed subtrees of the parse tree,
which it joins together whenever it recognizes the symbols on the right-hand side
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of some production used in the right-most derivation of the input string. It cre-
ates a new internal node and makes the roots of the joined-together trees the
children of that node.

In practice, a bottom-up parser is almost always table-driven. It keeps the roots
of its partially completed subtrees on a stack. When it accepts a new token from
the scanner, it shifts the token into the stack. When it recognizes that the top
few symbols on the stack constitute a right-hand side, it reduces those symbols
to their left-hand side by popping them off the stack and pushing the left-hand
side in their place. The role of the stack is the first important difference between
top-down and bottom-up parsing: a top-down parser’s stack contains a list of
what the parser expects to see in the future; a bottom-up parser’s stack contains
a record of what the parser has already seen in the past.

Canonical Derivations

We also noted earlier that the actions of a bottom-up parser trace out a right-
most (canonical) derivation in reverse. The roots of the partial subtrees, left-
to-right, together with the remaining input, constitute a sentential form of the
right-most derivation. On the right-hand side of Figure 2.13, for example, weEXAMPLE 2.34

Derivation of an id list have the following series of steps.

stack contents (roots of partial trees) remaining input

ε A, B, C;

id (A) , B, C;

id (A) , B, C;

id (A) , id (B) , C;

id (A) , id (B) , C;

id (A) , id (B) , id (C) ;

id (A) , id (B) , id (C) ;

id (A) , id (B) , id (C) id list tail
id (A) , id (B) id list tail
id (A) id list tail
id list

The last four lines (the ones that don’t just shift tokens into the forest) correspond
to the right-most derivation:

id list �⇒ id id list tail

�⇒ id , id id list tail

�⇒ id , id , id id list tail

�⇒ id , id , id ;

The symbols that need to be joined together at each step of the parse to represent
the next step of the backward derivation are called the handle of the sentential
form. In the preceding parse trace, the handles are underlined. �

In our id list example, no handles were found until the entire input had beenEXAMPLE 2.35
Bottom-up grammar for
the calculator language

shifted onto the stack. In general this will not be the case. We can obtain a more
realistic example by examining an LR version of our calculator language, shown
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1. program −→ stmt list $$

2. stmt list −→ stmt list stmt

3. stmt list −→ stmt

4. stmt −→ id := expr

5. stmt −→ read id

6. stmt −→ write expr

7. expr −→ term

8. expr −→ expr add op term

9. term −→ factor

10. term −→ term mult op factor

11. factor −→ ( expr )

12. factor −→ id

13. factor −→ number

14. add op −→ +

15. add op −→ -

16. mult op −→ *

17. mult op −→ /

Figure 2.24 LR(1) grammar for the calculator language. Productions have been numbered for
reference in future figures.

in Figure 2.24. While the LL grammar of Figure 2.15 can be parsed bottom-
up, the version in Figure 2.24 is preferable for two reasons. First, it uses a left-
recursive production for stmt list. Left recursion allows the parser to collapse
long statement lists as it goes along, rather than waiting until the entire list is on
the stack and then collapsing it from the end. Second, it uses left-recursive pro-
ductions for expr and term. These productions capture left associativity while
still keeping an operator and its operands together in the same right-hand side,
something we were unable to do in a top-down grammar. �

Modeling a Parse with LR Items

Suppose we are to parse the sum-and-average program from Example 2.22:EXAMPLE 2.36
Bottom-up parse of the
“sum and average”
program

read A

read B

sum := A + B

write sum

write sum / 2

The key to success will be to figure out when we have reached the end of a right-
hand side—that is, when we have a handle at the top of the parse stack. The trick
is to keep track of the set of productions we might be “in the middle of” at any
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particular time, together with an indication of where in those productions we
might be.

When we begin execution, the parse stack is empty and we are at the begin-
ning of the production for program. (In general, we can assume that there is only
one production with the start symbol on the left-hand side; it is easy to mod-
ify any grammar to make this the case.) We can represent our location—more
specifically, the location represented by the top of the parse stack—with a . in
the right-hand side of the production:

program −→ . stmt list $$

When augmented with a ., a production is called an LR item. Since the . in this
item is immediately in front of a nonterminal—namely stmt list—we may be
about to see the yield of that nonterminal coming up on the input. This possibil-
ity implies that we may be at the beginning of some production with stmt list on
the left-hand side:

program −→ . stmt list $$

stmt list −→ . stmt list stmt

stmt list −→ . stmt

And, since stmt is a nonterminal, we may also be at the beginning of any produc-
tion whose left-hand side is stmt:

program −→ . stmt list $$ (State 0)

stmt list −→ . stmt list stmt

stmt list −→ . stmt

stmt −→ . id := expr

stmt −→ . read id

stmt −→ . write expr

Since all of these last productions begin with a terminal, no additional items need
to be added to our list. The original item (program −→ . stmt list $$) is called
the basis of the list. The additional items are its closure. The list represents the ini-
tial state of the parser. As we shift and reduce, the set of items will change, always
indicating which productions may be the right one to use next in the derivation
of the input string. If we reach a state in which some item has the . at the end
of the right-hand side, we can reduce by that production. Otherwise, as in the
current situation, we must shift. Note that if we need to shift, but the incoming
token cannot follow the . in any item of the current state, then a syntax error has
occurred. We will consider error recovery in more detail in Section 2.3.4.

Our upcoming token is a read. Once we shift it onto the stack, we know we
are in the following state:

stmt −→ read . id (State 1)

This state has a single basis item and an empty closure—the . precedes a termi-
nal. After shifting the A, we have
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stmt −→ read id . (State 1′)

We now know that read id is the handle, and we must reduce. The reduction
pops two symbols off the parse stack and pushes a stmt in their place, but what
should the new state be? We can see the answer if we imagine moving back in time
to the point at which we shifted the read—the first symbol of the right-hand
side. At that time we were in the state labeled “State 0” above, and the upcoming
tokens on the input (though we didn’t look at them at the time) were read id.
We have now consumed these tokens, and we know that they constituted a stmt.
By pushing a stmt onto the stack, we have in essence replaced read id with stmt
on the input stream, and have then “shifted” the nonterminal, rather than its
yield, into the stack. Since one of the items in State 0 was

stmt list −→ . stmt

we now have

stmt list −→ stmt . (State 0′)

Again we must reduce. We remove the stmt from the stack and push a stmt list in
its place. Again we can see this as “shifting” a stmt list when in State 0. Since two
of the items in State 0 have a stmt list after the ., we don’t know (without looking
ahead) which of the productions will be the next to be used in the derivation, but
we don’t have to know. The key advantage of bottom-up parsing over top-down
parsing is that we don’t need to predict ahead of time which production we shall
be expanding.

Our new state is as follows:

program −→ stmt list . $$ (State 2)

stmt list −→ stmt list . stmt

stmt −→ . id := expr

stmt −→ . read id

stmt −→ . write expr

The first two productions are the basis; the others are the closure. Since no item
has a . at the end, we shift the next token, which happens again to be a read,
taking us back to State 1. Shifting the B takes us to State 1′ again, at which point
we reduce. This time however, we go back to State 2 rather than State 0 before
shifting the left-hand side stmt. Why? Because we were in State 2 when we began
to read the right-hand side. �
The Characteristic Finite State Machine and LR Parsing Variants

An LR-family parser keeps track of the states it has traversed by pushing them into
the parse stack along with the grammar symbols. It is in fact the states (rather
than the symbols) that drive the parsing algorithm: they tell us what state we
were in at the beginning of a right-hand side. Specifically, when the combina-
tion of state and input tells us we need to reduce using production A −→ α , we
pop length(α) symbols off the stack, together with the record of states we moved
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through while shifting those symbols. These pops expose the state we were in im-
mediately prior to the shifts, allowing us to return to that state and proceed as if
we had seen A in the first place.

We can think of the shift rules of an LR-family parser as the transition function
of a finite automaton, much like the automata we used to model scanners. Each
state of the automaton corresponds to a list of items that indicate where the parser
might be at some specific point in the parse. The transition for input symbol X
(which may be either a terminal or a nonterminal) moves to a state whose basis
consists of items in which the . has been moved across an X in the right-hand
side, plus whatever items need to be added as closure. The lists are constructed by
a bottom-up parser generator in order to build the automaton but are not needed
during parsing.

It turns out that the simpler members of the LR family of parsers—LR(0),
SLR(1), and LALR(1)—all use the same automaton, called the characteristic
finite-state machine, or CFSM. Full LR parsers use a machine with (for most
grammars) a much larger number of states. The differences between the algo-
rithms lie in how they deal with states that contain a shift-reduce conflict—one
item with the . in the middle (suggesting the need for a shift) and another with
the . at the end (suggesting the need for a reduction). An LR(0) parser works
only when there are no such states. It can be proven that with the addition of an
end-marker (i.e., $$), any language that can be deterministically parsed bottom-
up has an LR(0) grammar. Unfortunately, the LR(0) grammars for real program-
ming languages tend to be prohibitively large and unintuitive.

SLR (simple LR) parsers peek at upcoming input and use FOLLOW sets to re-
solve conflicts. An SLR parser will call for a reduction via A −→ α only if the
upcoming token(s) are in FOLLOW(α). It will still see a conflict, however, if the
tokens are also in the FIRST set of any of the symbols that follow a . in other
items of the state. As it turns out, there are important cases in which a token may
follow a given nonterminal somewhere in a valid program, but never in a context
described by the current state. For these cases global FOLLOW sets are too crude.
LALR (look-ahead LR) parsers improve on SLR by using local (state-specific)
look-ahead instead.

Conflicts can still arise in an LALR parser when the same set of items can
occur on two different paths through the CFSM. Both paths will end up in the
same state, at which point state-specific look-ahead can no longer distinguish
between them. A full LR parser duplicates states in order to keep paths disjoint
when their local look-aheads are different.

LALR parsers are the most common bottom-up parsers in practice. They are
the same size and speed as SLR parsers, but are able to resolve more conflicts.
Full LR parsers for real programming languages tend to be very large. Several
researchers have developed techniques to reduce the size of full-LR tables, but
LALR works sufficiently well in practice that the extra complexity of full LR is
usually not required. Yacc/bison produces C code for an LALR parser.
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Bottom-Up Parsing Tables

Like a table-driven LL(1) parser, an SLR(1), LALR(1), or LR(1) parser executes
a loop in which it repeatedly inspects a two-dimensional table to find out what
action to take. However, instead of using the current input token and top-of-
stack nonterminal to index into the table, an LR-family parser uses the current
input token and the current parser state (which can be found at the top of the
stack). “Shift” table entries indicate the state that should be pushed. “Reduce”
table entries indicate the number of states that should be popped and the non-
terminal that should be pushed back onto the input stream, to be shifted by the
state uncovered by the pops. There is always one popped state for every symbol
on the right-hand side of the reducing production. The state to be pushed next
can be found by indexing into the table using the uncovered state and the newly
recognized nonterminal.

The CFSM for our bottom-up version of the calculator grammar appears inEXAMPLE 2.37
CFSM for the bottom-up
calculator grammar

Figure 2.25. States 6, 7, 9, and 13 contain potential shift-reduce conflicts, but all
of these can be resolved with global FOLLOW sets. SLR parsing therefore suffices.
In State 6, for example, FIRST(add op) ∩ FOLLOW(stmt) = ∅. In addition to shift
and reduce rules, we allow the parse table as an optimization to contain rules of
the form “shift and then reduce.” This optimization serves to eliminate trivial
states such as 1′ and 0′ in Example 2.36, which had only a single item, with the .
at the end.

A pictorial representation of the CFSM appears in Figure 2.26. A tabular
representation, suitable for use in a table-driven parser, appears in Figure 2.27.
Pseudocode for the (language independent) parser driver appears in Figure 2.28.
A trace of the parser’s actions on the sum-and-average program appears in Fig-
ure 2.29. �

Handling Epsilon Productions

The careful reader may have noticed that the grammar of Figure 2.24, in additionEXAMPLE 2.38
Epsilon productions in the
bottom-up calculator
grammar

to using left-recursive rules for stmt list, expr, and term, differs from the gram-
mar of Figure 2.15 in one other way: it defines a stmt list to be a sequence of one
or more stmts, rather than zero or more. (This means, of course, that it defines a
different language.) To capture the same language as Figure 2.15, the productions

program −→ stmt list $$

stmt list −→ stmt list stmt stmt

in Figure 2.24 would need to be replaced with

program −→ stmt list $$

stmt list −→ stmt list stmt ε �
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State Transitions

0. program −→. stmt list $$ on stmt list shift and goto 2

stmt list −→. stmt list stmt
stmt list −→. stmt on stmt shift and reduce (pop 1 state, push stmt list on input)
stmt −→. id := expr on id shift and goto 3
stmt −→. read id on read shift and goto 1
stmt −→. write expr on write shift and goto 4

1. stmt −→ read . id on id shift and reduce (pop 2 states, push stmt on input)

2. program −→ stmt list . $$ on $$ shift and reduce (pop 2 states, push program on input)
stmt list −→ stmt list . stmt on stmt shift and reduce (pop 2 states, push stmt list on input)

stmt −→. id := expr on id shift and goto 3
stmt −→. read id on read shift and goto 1
stmt −→. write expr on write shift and goto 4

3. stmt −→ id . := expr on := shift and goto 5

4. stmt −→ write . expr on expr shift and goto 6

expr −→. term on term shift and goto 7
expr −→. expr add op term
term −→. factor on factor shift and reduce (pop 1 state, push term on input)
term −→. term mult op factor
factor −→. ( expr ) on ( shift and goto 8
factor −→. id on id shift and reduce (pop 1 state, push factor on input)
factor −→. number on number shift and reduce (pop 1 state, push factor on input)

5. stmt −→ id := . expr on expr shift and goto 9

expr −→. term on term shift and goto 7
expr −→. expr add op term
term −→. factor on factor shift and reduce (pop 1 state, push term on input)
term −→. term mult op factor
factor −→. ( expr ) on ( shift and goto 8
factor −→. id on id shift and reduce (pop 1 state, push factor on input)
factor −→. number on number shift and reduce (pop 1 state, push factor on input)

6. stmt −→ write expr . on FOLLOW(stmt) = {id, read, write, $$} reduce
stmt −→ expr . add op term (pop 2 states, push stmt on input)

on add op shift and goto 10
add op −→. + on + shift and reduce (pop 1 state, push add op on input)
add op −→. - on - shift and reduce (pop 1 state, push add op on input)

Figure 2.25 CFSM for the calculator grammar (Figure 2.24). Basis and closure items in each
state are separated by a horizontal rule. Trivial reduce-only states have been eliminated by use
of “shift and reduce” transitions. (continued)
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State Transitions

7. expr −→ term . on FOLLOW(expr) = {id, read, write, $$, ), +, -} reduce
term −→ term . mult op factor (pop 1 state, push expr on input)

on mult op shift and goto 11
mult op −→. * on * shift and reduce (pop 1 state, push mult op on input)
mult op −→. / on / shift and reduce (pop 1 state, push mult op on input)

8. factor −→ ( . expr ) on expr shift and goto 12

expr −→. term on term shift and goto 7
expr −→. expr add op term
term −→. factor on factor shift and reduce (pop 1 state, push term on input)
term −→. term mult op factor
factor −→. ( expr ) on ( shift and goto 8
factor −→. id on id shift and reduce (pop 1 state, push factor on input)
factor −→. number on number shift and reduce (pop 1 state, push factor on input)

9. stmt −→ id := expr . on FOLLOW( stmt) = {id, read, write, $$} reduce
expr −→ expr . add op term (pop 3 states, push stmt on input)

on add op shift and goto 10
add op −→. + on + shift and reduce (pop 1 state, push add op on input)
add op −→. - on - shift and reduce (pop 1 state, push add op on input)

10. expr −→ expr add op . term on term shift and goto 13

term −→. factor on factor shift and reduce (pop 1 state, push term on input)
term −→. term mult op factor
factor −→. ( expr ) on ( shift and goto 8
factor −→. id on id shift and reduce (pop 1 state, push factor on input)
factor −→. number on number shift and reduce (pop 1 state, push factor on input)

11. term −→ term mult op . factor on factor shift and reduce (pop 3 states, push term on input)

factor −→. ( expr ) on ( shift and goto 8
factor −→. id on id shift and reduce (pop 1 state, push factor on input)
factor −→. number on number shift and reduce (pop 1 state, push factor on input)

12. factor −→ ( expr . ) on ) shift and reduce (pop 3 states, push factor on input)
expr −→ expr . add op term on add op shift and goto 10

add op −→. + on + shift and reduce (pop 1 state, push add op on input)
add op −→. - on - shift and reduce (pop 1 state, push add op on input)

13. expr −→ expr add op term . on FOLLOW(expr) = {id, read, write, $$, ), +, -} reduce
term −→ term . mult op factor (pop 3 states, push expr on input)

on mult op shift and goto 11
mult op −→. * on * shift and reduce (pop 1 state, push mult op on input)
mult op −→. / on / shift and reduce (pop 1 state, push mult op on input)

Figure 2.25 (continued)
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Figure 2.26 Pictorial representation of the CFSM of Figure 2.25. Symbol names have been abbreviated for clarity. Reduce
actions are not shown.

Top-of-stack Current input symbol
state sl s e t f ao mo id lit r w := ( ) + - * / $$

0 s2 b3 – – – – – s3 – s1 s4 – – – – – – – –
1 – – – – – – – b5 – – – – – – – – – – –
2 – b2 – – – – – s3 – s1 s4 – – – – – – – b1
3 – – – – – – – – – – – s5 – – – – – – –
4 – – s6 s7 b9 – – b12 b13 – – – s8 – – – – – –
5 – – s9 s7 b9 – – b12 b13 – – – s8 – – – – – –
6 – – – – – s10 – r6 – r6 r6 – – – b14 b15 – – r6
7 – – – – – – s11 r7 – r7 r7 – – r7 r7 r7 b16 b17 r7
8 – – s12 s7 b9 – – b12 b13 – – – s8 – – – – – –
9 – – – – – s10 – r4 – r4 r4 – – – b14 b15 – – r4

10 – – – s13 b9 – – b12 b13 – – – s8 – – – – – –
11 – – – – b10 – – b12 b13 – – – s8 – – – – – –
12 – – – – – s10 – – – – – – – b11 b14 b15 – – –
13 – – – – – – s11 r8 – r8 r8 – – r8 r8 r8 b16 b17 r8

Figure 2.27 SLR(1) parse table for the calculator language. Table entries indicate whether to shift (s), reduce (r), or shift and
then reduce (b). The accompanying number is the new state when shifting, or the production that has been recognized when
(shifting and) reducing. Production numbers are given in Figure 2.24. Symbol names have been abbreviated for the sake of
formatting. A dash indicates an error. An auxiliary table, not shown here, gives the left-hand side symbol and right-hand side
length for each production.

Note that it does in general make sense to have an empty statement list. In the
calculator language it simply permits an empty program, which is admittedly
silly. In real languages, however, it allows the body of a structured statement to
be empty, which can be very useful. One frequently wants one arm of a case or
multiway if. . . then . . . else statement to be empty, and an empty while loop
allows a parallel program (or the operating system) to wait for a signal from
another process or an I/O device.
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state = 1 . . number of states
symbol = 1 . . number of symbols
production = 1 . . number of productions
action rec = record

action : (shift, reduce, shift reduce, error)
new state : state
prod : production

parse tab : array [symbol, state] of action rec
prod tab : array [production] of record

lhs : symbol
rhs len : integer

–– these two tables are created by a parser generator tool

parse stack : stack of record
sym : symbol
st : state

parse stack.push(〈null, start state〉)
cur sym : symbol := scan –– get new token from scanner
loop

cur state : state := parse stack.top.st –– peek at state at top of stack
if cur state = start state

and cur sym = start symbol return –– success!
ar : action rec := parse tab[cur state, cur sym]
case ar.action

shift:
parse stack.push(〈cur sym, ar.new state〉)
cur sym := scan –– get new token from scanner

reduce:
cur sym := prod tab[ar.prod].lhs
parse stack.pop(prod tab[ar.prod].rhs len)

shift reduce:
cur sym := prod tab[ar.prod].lhs
parse stack.pop(prod tab[ar.prod].rhs len−1)

error:
parse error

Figure 2.28 Driver for a table-driven SLR(1) parser. We call the scanner directly, rather than
using the global input token of Figures 2.16 and 2.18, so that we can set cur sym to be an
arbitrary symbol.

If we look at the CFSM for the calculator language, we discover that State 0 isEXAMPLE 2.39
CFSM with epsilon
productions

the only state that needs to be changed in order to allow empty statement lists.
The item

stmt list −→ . stmt

becomes
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Parse stack Input stream Comment

0 read A read B . . .
0 read 1 A read B . . . shift read
0 stmt read B . . . shift id(A) & reduce by stmt −→ read id

0 stmt list read B . . . shift stmt & reduce by stmt list −→ stmt
0 stmt list 2 read B sum . . . shift stmt list
0 stmt list 2 read 1 B sum := . . . shift read
0 stmt list 2 stmt sum := . . . shift id(B) & reduce by stmt −→ read id

0 stmt list sum := . . . shift stmt & reduce by stmt list −→ stmt list stmt
0 stmt list 2 sum := A . . . shift stmt list
0 stmt list 2 id 3 := A + . . . shift id(sum)
0 stmt list 2 id 3 := 5 A + B . . . shift :=
0 stmt list 2 id 3 := 5 factor + B . . . shift id(A) & reduce by factor −→ id

0 stmt list 2 id 3 := 5 term + B . . . shift factor & reduce by term −→ factor
0 stmt list 2 id 3 := 5 term 7 + B write . . . shift term
0 stmt list 2 id 3 := 5 expr + B write . . . reduce by expr −→ term
0 stmt list 2 id 3 := 5 expr 9 + B write . . . shift expr
0 stmt list 2 id 3 := 5 expr 9 add op B write . . . shift + & reduce by add op −→ +

0 stmt list 2 id 3 := 5 expr 9 add op 10 B write sum . . . shift add op
0 stmt list 2 id 3 := 5 expr 9 add op 10 factor write sum . . . shift id(B) & reduce by factor −→ id

0 stmt list 2 id 3 := 5 expr 9 add op 10 term write sum . . . shift factor & reduce by term −→ factor
0 stmt list 2 id 3 := 5 expr 9 add op 10 term 13 write sum . . . shift term
0 stmt list 2 id 3 := 5 expr write sum . . . reduce by expr −→ expr add op term
0 stmt list 2 id 3 := 5 expr 9 write sum . . . shift expr
0 stmt list 2 stmt write sum . . . reduce by stmt −→ id := expr
0 stmt list write sum . . . shift stmt & reduce by stmt list −→ stmt
0 stmt list 2 write sum . . . shift stmt list
0 stmt list 2 write 4 sum write sum . . . shift write
0 stmt list 2 write 4 factor write sum . . . shift id(sum) & reduce by factor −→ id

0 stmt list 2 write 4 term write sum . . . shift factor & reduce by term −→ factor
0 stmt list 2 write 4 term 7 write sum . . . shift term
0 stmt list 2 write 4 expr write sum . . . reduce by expr −→ term
0 stmt list 2 write 4 expr 6 write sum . . . shift expr
0 stmt list 2 stmt write sum . . . reduce by stmt −→ write expr
0 stmt list write sum . . . shift stmt & reduce by stmt list −→ stmt list stmt
0 stmt list 2 write sum / . . . shift stmt list
0 stmt list 2 write 4 sum / 2 . . . shift write
0 stmt list 2 write 4 factor / 2 . . . shift id(sum) & reduce by factor −→ id

0 stmt list 2 write 4 term / 2 . . . shift factor & reduce by term −→ factor
0 stmt list 2 write 4 term 7 / 2 $$ shift term
0 stmt list 2 write 4 term 7 mult op 2 $$ shift / & reduce by mult op −→ /

0 stmt list 2 write 4 term 7 mult op 11 2 $$ shift mult op
0 stmt list 2 write 4 term 7 mult op 11 factor $$ shift number(2) & reduce by factor −→ number

0 stmt list 2 write 4 term $$ shift factor & reduce by term −→ term mult op factor
0 stmt list 2 write 4 term 7 $$ shift term
0 stmt list 2 write 4 expr $$ reduce by expr −→ term
0 stmt list 2 write 4 expr 6 $$ shift expr
0 stmt list 2 stmt $$ reduce by stmt −→ write expr
0 stmt list $$ shift stmt & reduce by stmt list −→ stmt list stmt
0 stmt list 2 $$ shift stmt list
0 program shift $$ & reduce by program −→ stmt list $$

[done]

Figure 2.29 Trace of a table-driven SLR(1) parse of the sum-and-average program. States in the parse stack are shown in
boldface type. Symbols in the parse stack are for clarity only; they are not needed by the parsing algorithm. Parsing begins with
the initial state of the CFSM (State 0) in the stack. It ends when we reduce by program −→ stmt list $$ , uncovering State 0
again and pushing program onto the input stream.
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stmt list −→ . ε

which is equivalent to

stmt list −→ ε .
or simply

stmt list −→ .
The entire state is then

program −→ . stmt list $$ on stmt list shift and goto 2

stmt list −→ . stmt list stmt
stmt list −→ . on $$ reduce (pop 0 states, push stmt list

on input)
stmt −→ . id := expr on id shift and goto 3
stmt −→ . read id on read shift and goto 1
stmt −→ . write expr on write shift and goto 4

The look-ahead for item

stmt list −→ .
is FOLLOW(stmt list), which is the end-marker, $$. Since $$ does not appear in
the look-aheads for any other item in this state, our grammar is still SLR(1). It is
worth noting that epsilon productions prevent a grammar from being LR(0),
since one can never tell whether to “recognize” ε without peeking ahead. An
LR(0) grammar never has epsilon productions. �

CHECK YOUR UNDERSTANDING

36. What is the handle of a right sentential form?

37. Explain the significance of the characteristic finite state machine in LR
parsing.

38. What is the significance of the dot (.) in an LR item?

39. What distinguishes the basis from the closure of an LR state?

40. What is a shift-reduce conflict? How is it resolved in the various kinds of LR-
family parsers?

41. Outline the steps performed by the driver of a bottom-up parser.

42. What kind of parser is produced by yacc/bison? By ANTLR?

43. Why are there never any epsilon productions in an LR(0) grammar?
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2.3.4 Syntax Errors

Suppose we are parsing a C program and see the following code fragment in aEXAMPLE 2.40
A syntax error in C context where a statement is expected.

A = B : C + D;

We will detect a syntax error immediately after the B, when the colon appears
from the scanner. At this point the simplest thing to do is just to print an error
message and halt. This naive approach is generally not acceptable, however: it
would mean that every run of the compiler reveals no more than one syntax
error. Since most programs, at least at first, contain numerous such errors, we
really need to find as many as possible now (we’d also like to continue looking
for semantic errors). To do so, we must modify the state of the parser and/or the
input stream so that the upcoming token(s) are acceptable. We shall probably
want to turn off code generation, disabling the back end of the compiler: since
the input is not a valid program, the code will not be of use, and there’s no point
in spending time creating it. �

In general, the term syntax error recovery is applied to any technique that
allows the compiler, in the face of a syntax error, to continue looking for other
errors later in the program. High-quality syntax error recovery is essential in any
production-quality compiler. The better the recovery technique, the more likely
the compiler will be to recognize additional errors (especially nearby errors) cor-
rectly, and the less likely it will be to become confused and announce spurious
cascading errors later in the program.

IN MORE DEPTH

There are many possible approaches to syntax error recovery. In panic mode, the
compiler writer defines a small set of “safe symbols” that delimit clean points in
the input. When an error occurs, the compiler deletes input tokens until it finds a
safe symbol, and then “backs the parser out” (e.g., returns from recursive descent
subroutines) until it finds a context in which that symbol might appear. Phrase-
level recovery improves on this technique by employing different sets of “safe”
symbols in different productions of the grammar. Context-sensitive look-ahead
obtains additional improvements by differentiating among the various contexts
in which a given production might appear in a syntax tree. To respond gracefully
to certain common programming errors, the compiler writer may augment the
grammar with error productions that capture language-specific idioms that are
incorrect but are often written by mistake.

Niklaus Wirth published an elegant implementation of phrase-level and
context-sensitive recovery for recursive descent parsers in 1976 [Wir76, Sec. 5.9].
Exceptions (to be discussed further in Section 8.5.3) provide a simpler alternative
if supported by the language in which the compiler is written. For table-driven
top-down parsers, Fischer, Milton, and Quiring published an algorithm in 1980
that automatically implements a well-defined notion of locally least-cost syntax
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repair. Locally least-cost repair is also possible in bottom-up parsers, but it is sig-
nificantly more difficult. Most bottom-up parsers rely on more straightforward
phrase-level recovery; a typical example can be found in yacc/bison.

2.4 Theoretical Foundations

Our understanding of the relative roles and computational power of scanners,
parsers, regular expressions, and context-free grammars is based on the for-
malisms of automata theory. In automata theory, a formal language is a set of
strings of symbols drawn from a finite alphabet. A formal language can be spec-
ified either by a set of rules (such as regular expressions or a context-free gram-
mar) that generate the language or by a formal machine that accepts (recognizes)
the language. A formal machine takes strings of symbols as input and outputs
either “yes” or “no.” A machine is said to accept a language if it says “yes” to all
and only those strings that are in the language. Alternatively, a language can be
defined as the set of strings for which a particular machine says “yes.”

Formal languages can be grouped into a series of successively larger classes
known as the Chomsky hierarchy.13 Most of the classes can be characterized in
two ways: by the types of rules that can be used to generate the set of strings or
by the type of formal machine that is capable of recognizing the language. As
we have seen, regular languages are defined by using concatenation, alternation,
and Kleene closure, and are recognized by a scanner. Context-free languages are
a proper superset of the regular languages. They are defined by using concatena-
tion, alternation, and recursion (which subsumes Kleene closure), and are recog-
nized by a parser. A scanner is a concrete realization of a finite automaton, a type
of formal machine. A parser is a concrete realization of a push-down automaton.
Just as context-free grammars add recursion to regular expressions, push-down
automata add a stack to the memory of a finite automaton. There are additional
levels in the Chomsky hierarchy, but they are less directly applicable to compiler
construction, and are not covered here.

It can be proven, constructively, that regular expressions and finite automata
are equivalent: one can construct a finite automaton that accepts the language
defined by a given regular expression, and vice versa. Similarly, it is possible to
construct a push-down automaton that accepts the language defined by a given
context-free grammar, and vice versa. The grammar-to-automaton constructions
are in fact performed by scanner and parser generators such as lex and yacc. Of
course, a real scanner does not accept just one token; it is called in a loop so that
it keeps accepting tokens repeatedly. This detail is accommodated by having the

13 Noam Chomsky (1928–), a linguist and social philosopher at the Massachusetts Institute of Tech-
nology, developed much of the early theory of formal languages.
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scanner accept the alternation of all the tokens in the language, and by having it
continue to consume characters until no longer token can be constructed.

IN MORE DEPTH

On the PLP CD we consider finite and pushdown automata in more detail. We
give an algorithm to convert a DFA into an equivalent regular expression. Com-
bined with the constructions in Section 2.2.1, this algorithm demonstrates the
equivalence of regular expressions and finite automata. We also consider the sets
of grammars and languages that can and cannot be parsed by the various linear-
time parsing algorithms.

2.5 Summary and Concluding Remarks

In this chapter we have introduced the formalisms of regular expressions and
context-free grammars, and the algorithms that underlie scanning and parsing
in practical compilers. We also mentioned syntax error recovery, and presented a
quick overview of relevant parts of automata theory. Regular expressions and
context-free grammars are language generators: they specify how to construct
valid strings of characters or tokens. Scanners and parsers are language recogniz-
ers: they indicate whether a given string is valid. The principal job of the scanner
is to reduce the quantity of information that must be processed by the parser, by
grouping characters together into tokens, and by removing comments and white
space. Scanner and parser generators automatically translate regular expressions
and context-free grammars into scanners and parsers.

Practical parsers for programming languages (parsers that run in linear time)
fall into two principal groups: top-down (also called LL or predictive) and
bottom-up (also called LR or shift-reduce). A top-down parser constructs a parse
tree starting from the root and proceeding in a left-to-right depth-first traversal.
A bottom-up parser constructs a parse tree starting from the leaves, again work-
ing left-to-right, and combining partial trees together when it recognizes the chil-
dren of an internal node. The stack of a top-down parser contains a prediction of
what will be seen in the future; the stack of a bottom-up parser contains a record
of what has been seen in the past.

Top-down parsers tend to be simple, both in the parsing of valid strings and in
the recovery from errors in invalid strings. Bottom-up parsers are more power-
ful, and in some cases lend themselves to more intuitively structured grammars,
though they suffer from the inability to embed action routines at arbitrary points
in a right-hand side (we discuss this point in more detail in Section 4.5.1).
Both varieties of parser are used in real compilers, though bottom-up parsers are
more common. Top-down parsers tend to be smaller in terms of code and data
size, but modern machines provide ample memory for either.
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Both scanners and parsers can be built by hand if an automatic tool is
not available. Hand-built scanners are simple enough to be relatively common.
Hand-built parsers are generally limited to top-down recursive descent, and are
generally used only for comparatively simple languages (e.g., Pascal but not
Ada). Automatic generation of the scanner and parser has the advantage of in-
creased reliability, reduced development time, and easy modification and en-
hancement.

Various features of language design can have a major impact on the complex-
ity of syntax analysis. In many cases, features that make it difficult for a compiler
to scan or parse also make it difficult for a human being to write correct, main-
tainable code. Examples include the lexical structure of Fortran and the if. . .
then . . . else statement of languages like Pascal. This interplay among language
design, implementation, and use will be a recurring theme throughout the re-
mainder of the book.

2.6 Exercises

2.1 Write regular expressions to capture

(a) Strings in C. These are delimited by double quotes ("), and may not
contain newline characters. They may contain double quote or backslash
characters if and only if those characters are “escaped” by a preceding
backslash. You may find it helpful to introduce shorthand notation to
represent any character that is not a member of a small specified set.

(b) Comments in Pascal. These are delimited by (* and *), as shown in
Figure 2.6, or by { and }.

(c) Floating-point constants in Ada. These are the same as in Pascal (see
the definition of unsigned number in Example 2.2 [page 41]), except that
(1) an underscore is permitted between digits, and (2) an alternative
numeric base may be specified by surrounding the non-exponent part
of the number with pound signs, preceded by a base in decimal (e.g.,
16#6.a7#e+2). In this latter case, the letters a . . f (both upper- and low-
ercase) are permitted as digits. Use of these letters in an inappropriate
(e.g., decimal) number is an error but need not be caught by the scan-
ner.

(d) Inexact constants in Scheme. Scheme allows real numbers to be explicitly
inexact (imprecise). A programmer who wants to express all constants
using the same number of characters can use sharp signs (#) in place
of any lower-significance digits whose values are not known. A base-ten
constant without exponent consists of one or more digits followed by
zero of more sharp signs. An optional decimal point can be placed at the
beginning, the end, or anywhere in between. (For the record, numbers
in Scheme are actually a good bit more complicated than this. For the
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purposes of this exercise, please ignore anything you may know about
sign, exponent, radix, exactness and length specifiers, and complex or
rational values.)

(e) Financial quantities in American notation. These have a leading dollar
sign ($), an optional string of asterisks (*—used on checks to discourage
fraud), a string of decimal digits, and an optional fractional part consist-
ing of a decimal point (.) and two decimal digits. The string of digits to
the left of the decimal point may consist of a single zero (0). Otherwise
it must not start with a zero. If there are more than three digits to the
left of the decimal point, groups of three (counting from the right) must
be separated by commas (,). Example: $**2,345.67. (Feel free to use
“productions” to define abbreviations, so long as the language remains
regular.)

2.2 Show (as “circles-and-arrows” diagrams) the finite automata for parts (a)
and (c) of Exercise 2.1.

2.3 Build a regular expression that captures all nonempty sequences of letters
other than file, for, and from. For notational convenience, you may
assume the existence of a not operator that takes a set of letters as argument
and matches any other letter. Comment on the practicality of constructing
a regular expression for all sequences of letters other than the keywords of
a large programming language.

2.4 (a) Show the NFA that results from applying the construction of Figure 2.8
to the regular expression letter ( letter digit )* .

(b) Apply the transformation illustrated by Example 2.12 to create an equiv-
alent DFA.

(c) Apply the transformation illustrated by Example 2.13 to minimize the
DFA.

2.5 Build an ad hoc scanner for the calculator language. As output, have it print
a list, in order, of the input tokens. For simplicity, feel free to simply halt in
the event of a lexical error.

2.6 Build a nested-case-statements finite automaton that converts all letters
in its input to lowercase, except within Pascal-style comments and strings.
A Pascal comment is delimited by { and }, or by (* and *). Com-
ments do not nest. A Pascal string is delimited by single quotes (’ . . . ’).
A quote character can be placed in a string by doubling it (’Madam, I’’m
Adam.’). This upper-to-lower mapping can be useful if feeding a program
written in standard Pascal (which ignores case) to a compiler that considers
upper- and lowercase letters to be distinct.

2.7 Give an example of a grammar that captures right associativity for an ex
ponentiation operator (e.g., ** in Fortran).

2.8 Prove that the following grammar is LL(1).
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decl −→ ID decl tail

decl tail −→ , decl

−→ : ID ;

(The final ID is meant to be a type name.)

2.9 Consider the following grammar.

G −→ S $$

S −→ A M

M −→ S ε

A −→ a E b A A

E −→ a B b A ε

B −→ b E a B B

(a) Describe in English the language that the grammar generates.

(b) Show a parse tree for the string a b a a.

(c) Is the grammar LL(1)? If so, show the parse table; if not, identify a pre-
diction conflict.

2.10 Consider the language consisting of all strings of properly balanced paren-
theses and brackets.

(a) Give LL(1) and SLR(1) grammars for this language.

(b) Give the corresponding LL(1) and SLR(1) parsing tables.

(c) For each grammar, show the parse tree for ([]([]))[](()).

(d) Give a trace of the actions of the parsers on this input.

2.11 Give an example of a grammar that captures all the levels of precedence
for arithmetic expressions in C. (Hint: This exercise is somewhat tedious.
You probably want to attack it with a text editor rather than a pencil, so
you can cut, paste, and replace. You can find a summary of C precedence
in Figure 6.1 [page 237]; you may want to consult a manual for further
details.)

2.12 Extend the grammar of Figure 2.24 to include if statements and while
loops, along the lines suggested by the following examples.

abs := n

if n < 0 then abs := 0 - abs fi

sum := 0

read count

while count > 0 do

read n

sum := sum + n

count := count - 1

od

write sum
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Your grammar should support the six standard comparison operations in
conditions, with arbitrary expressions as operands. It should allow an arbi-
trary number of statements in the body of an if or while statement.

2.13 Consider the following LL(1) grammar for a simplified subset of Lisp.

P −→ E $$

E −→ atom

−→ ’ E

−→ ( E Es )

Es −→ E Es

−→
(a) What is FIRST(Es)? FOLLOW(E)? PREDICT(Es −→ ε)?

(b) Give a parse tree for the string (cdr ’(a b c)) $$.

(c) Show the left-most derivation of (cdr ’(a b c)) $$.

(d) Show a trace, in the style of Figure 2.20, of a table-driven top-down
parse of this same input.

(e) Now consider a recursive descent parser running on the same input.
At the point where the quote token (’) is matched, which recursive
descent routines will be active (i.e., what routines will have a frame on
the parser’s run-time stack)?

2.14 Write top-down and bottom-up grammars for the language consisting of
all well-formed regular expressions. Arrange for all operators to be left-
associative. Give Kleene closure the highest precedence and alternation the
lowest precedence.

2.15 Suppose that the expression grammar in Example 2.7 were to be used in
conjunction with a scanner that did not remove comments from the input
but rather returned them as tokens. How would the grammar need to be
modified to allow comments to appear at arbitrary places in the input?

2.16 Build a complete recursive descent parser for the calculator language. As
output, have it print a trace of its matches and predictions.

2.17 Flesh out the details of an algorithm to eliminate left recursion and com-
mon prefixes in an arbitrary context-free grammar.

2.18 In some languages an assignment can appear in any context in which an
expression is expected: the value of the expression is the right-hand side
of the assignment, which is placed into the left-hand side as a side effect.
Consider the following grammar fragment for such a language. Explain why
it is not LL(1), and discuss what might be done to make it so.

expr −→ id := expr

expr −→ term term tail

term tail −→ + term term tail ε
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term −→ factor factor tail

factor tail −→ * factor factor tail ε

factor −→ ( expr ) id

2.19 Construct a trace over time of the forest of partial parse trees manipulated
by a bottom-up parser for the string A, B, C;, using the grammar in Ex-
ample 2.19 (the one that is able to collapse prefixes of the id list as it goes
along).

2.20 Construct the CFSM for the id list grammar in Example 2.18 (page 62) and
verify that it can be parsed bottom-up with zero tokens of look-ahead.

2.21 Modify the grammar in Exercise 2.20 to allow an id list to be empty. Is the
grammar still LR(0)?

2.22 Consider the following grammar for a declaration list.

decl list −→ decl list decl ; decl ;

decl −→ id : type

type −→ int real char

−→ array const .. const of type

−→ record decl list end

Construct the CFSM for this grammar. Use it to trace out a parse (as in
Figure 2.29) for the following input program.

foo : record

a : char;

b : array 1..2 of real;

end;

2.23 The dangling else problem of Pascal is not shared by Algol 60. To avoid
ambiguity regarding which then is matched by an else, Algol 60 prohibits
if statements immediately inside a then clause. The Pascal fragment

if C1 then if C2 then S1 else S2

must be written as either

if C1 then begin if C2 then S1 end else S2

or

if C1 then begin if C2 then S1 else S2 end

in Algol 60. Show how to write a grammar for conditional statements that
enforces this rule. (Hint: You will want to distinguish in your grammar be-
tween conditional statements and nonconditional statements; some con-
texts will accept either, some only the latter.)

2.24–2.28 In More Depth.
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2.7 Explorations

2.29 Some languages (e.g., C) distinguish between upper- and lowercase letters
in identifiers. Others (e.g., Ada) do not. Which convention do you prefer?
Why?

2.30 The syntax for type casts in C and its descendants introduces potential am-
biguity: is (x)-y a subtraction, or the unary negation of y, cast to type x?
Find out how C, C++, Java, and C# answer this question. Discuss how you
would implement the answer(s).

2.31 What do you think of Haskell, Occam, and Python’s use of indentation
to delimit control constructs (Section 2.1.1)? Would you expect this con-
vention to make program construction and maintenance easier or harder?
Why?

2.32 Skip ahead to Section 13.4.2 and learn about the “regular expressions” used
in scripting languages, editors, search tools, and so on. Are these really reg-
ular? What can they express that cannot be expressed in the notation intro-
duced in Section 2.1.1?

2.33 Rebuild the automaton of Exercise 2.6 using lex/flex.

2.34 Find a manual for yacc/bison, or consult a compiler textbook [ASU86]
to learn about operator precedence parsing. Explain how it could be used to
simplify the grammar of Exercise 2.11.

2.35 Use lex/flex and yacc/bison to construct a parser for the calculator lan-
guage. Have it output a trace of its shifts and reductions.

2.36 Repeat the previous exercise using ANTLR.

2.37–2.38 In More Depth.

2.8 Bibliographic Notes
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of the early 1960s employed recursive descent parsers. Lewis and Stearns [LS68]
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Fischer and LeBlanc’s text [FL88] contains an excellent survey of error recov-
ery and repair techniques, with references to other work. The phrase-level recov-
ery mechanism for recursive descent parsers described in Section 2.3.4 is due
to Wirth [Wir76, Sec. 5.9]. The locally least-cost recovery mechanism for table-
driven LL parsers described in Section 2.3.4 is due to Fischer, Milton, and
Quiring [FMQ80]. Dion published a locally least-cost bottom-up repair algo-
rithm in 1978 [Dio78]. It is quite complex, and requires very large precomputed
tables. More recently, McKenzie, Yeatman, and De Vere have shown how to effect
the same repairs without the precomputed tables, at a higher but still acceptable
cost in time [MYD95].

14 Dana Scott (1932–), Professor Emeritus at Carnegie Mellon University, is known principally
for inventing domain theory and launching the field of denotational semantics, which provides
a mathematically rigorous way to formalize the meaning of programming languages. Michael
Rabin (1931–), of Harvard University, has made seminal contributions to the concepts of non-
determinism and randomization in computer science. Scott and Rabin shared the ACM Turing
Award in 1976.
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“High-level” programming languages take their name from the rela-
tively high level, or degree of abstraction, of the features they provide, relative
to those of the assembly languages that they were originally designed to replace.
The adjective abstract, in this context, refers to the degree to which language fea-
tures are separated from the details of any particular computer architecture. The
early development of languages like Fortran, Algol, and Lisp was driven by a pair
of complementary goals: machine independence and ease of programming. By
abstracting the language away from the hardware, designers not only made it
possible to write programs that would run well on a wide variety of machines,
but also made the programs easier for human beings to understand.

Machine independence is a fairly simple concept. Basically it says that a pro-
gramming language should not rely on the features of any particular instruction
set for its efficient implementation. Machine dependences still become a problem
from time to time (standards committees for C, for example, have only recently
agreed on how to accommodate machines with 64-bit arithmetic), but with a few
noteworthy exceptions (Java comes to mind) it has probably been 30 years since
the desire for greater machine independence has really driven language design.
Ease of programming, on the other hand, is a much more elusive and compelling
goal. It affects every aspect of language design, and has historically been less a
matter of science than of aesthetics and trial and error.

This chapter is the first of five to address core issues in language design. (The
others are Chapters 6–9.) In Chapter 6 we will look at control-flow constructs,
which allow the programmer to specify the order in which operations are to oc-
cur. In contrast to the jump-based control flow of assembly languages, high-level
control flow relies heavily on the lexical nesting of constructs. In Chapter 7 we
will look at types, which allow the programmer to organize program data and
the operations on them. In Chapters 8 and 9 we will look at subroutines and
classes. In this current chapter we look at names.

103
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A name is a mnemonic character string used to represent something else.
Names in most languages are identifiers (alpha-numeric tokens), though certain
other symbols, such as + or :=, can also be names. Names allow us to refer to vari-
ables, constants, operations, types, and so on using symbolic identifiers rather
than low-level concepts like addresses. Names are also essential in the context of
a second meaning of the word abstraction. In this second meaning, abstraction is
a process by which the programmer associates a name with a potentially compli-
cated program fragment, which can then be thought of in terms of its purpose or
function, rather than in terms of how that function is achieved. By hiding irrel-
evant details, abstraction reduces conceptual complexity, making it possible for
the programmer to focus on a manageable subset of the program text at any par-
ticular time. Subroutines are control abstractions: they allow the programmer to
hide arbitrarily complicated code behind a simple interface. Classes are data ab-
stractions: they allow the programmer to hide data representation details behind
a (comparatively) simple set of operations.

We will look at several major issues related to names. Section 3.1 introduces
the notion of binding time, which refers not only to the binding of a name to
the thing it represents, but also in general to the notion of resolving any design
decision in a language implementation. Section 3.2 outlines the various mecha-
nisms used to allocate and deallocate storage space for objects, and distinguishes
between the lifetime of an object and the lifetime of a binding of a name to that
object.1 Most name-to-object bindings are usable only within a limited region of
a given high-level program. Section 3.3 explores the scope rules that define this
region; Section 3.4 (mostly on the PLP CD) considers their implementation.

The complete set of bindings in effect at a given point in a program is known as
the current referencing environment. Section 3.5 expands on the notion of scope
rules by considering the ways in which a referencing environment may be bound
to a subroutine that is passed as a parameter, returned from a function, or stored
in a variable. Section 3.6 discusses aliasing, in which more than one name may
refer to a given object in a given scope; overloading, in which a name may refer to
more than one object in a given scope, depending on the context of the reference;
and polymorphism, in which a single object may have more than one type, de-
pending on context or execution history. Finally, Section 3.7 (mostly on the PLP
CD) discusses separate compilation.

3.1 The Notion of Binding Time

A binding is an association between two things, such as a name and the thing it
names. Binding time is the time at which a binding is created or, more generally,

1 For want of a better term, we will use the term object throughout Chapters 3–8 to refer to any-
thing that might have a name: variables, constants, types, subroutines, modules, and others. In
many modern languages object has a more formal meaning, which we will consider in Chapter 9.
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the time at which any implementation decision is made (we can think of this
as binding an answer to a question). There are many different times at which
decisions may be bound:

Language design time: In most languages, the control flow constructs, the set of
fundamental (primitive) types, the available constructors for creating complex
types, and many other aspects of language semantics are chosen when the lan-
guage is designed.

Language implementation time: Most language manuals leave a variety of issues
to the discretion of the language implementor. Typical (though by no means
universal) examples include the precision (number of bits) of the fundamental
types, the coupling of I/O to the operating system’s notion of files, the orga-
nization and maximum sizes of stack and heap, and the handling of run-time
exceptions such as arithmetic overflow.

Program writing time: Programmers, of course, choose algorithms, data struc-
tures, and names.

Compile time: Compilers choose the mapping of high-level constructs to ma-
chine code, including the layout of statically defined data in memory.

Link time: Since most compilers support separate compilation—compiling dif-
ferent modules of a program at different times—and depend on the availabil-
ity of a library of standard subroutines, a program is usually not complete
until the various modules are joined together by a linker. The linker chooses
the overall layout of the modules with respect to one another. It also resolves
intermodule references. When a name in one module refers to an object in an-
other module, the binding between the two was not finalized until link time.

Load time: Load time refers to the point at which the operating system loads the
program into memory so that it can run. In primitive operating systems, the
choice of machine addresses for objects within the program was not finalized
until load time. Most modern operating systems distinguish between virtual
and physical addresses. Virtual addresses are chosen at link time; physical ad-
dresses can actually change at run time. The processor’s memory management
hardware translates virtual addresses into physical addresses during each indi-
vidual instruction at run time.

DESIGN & IMPLEMENTATION

Binding time
It is difficult to overemphasize the importance of binding times in the de-
sign and implementation of programming languages. In general, early bind-
ing times are associated with greater efficiency, while later binding times are
associated with greater flexibility. The tension between the goals provides a
recurring theme for later chapters of this book.
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Run time: Run time is actually a very broad term that covers the entire span
from the beginning to the end of execution. Bindings of values to variables
occur at run time, as do a host of other decisions that vary from language
to language. Run time subsumes program start-up time, module entry time,
elaboration time (the point at which a declaration is first “seen”), subroutine
call time, block entry time, and statement execution time.

The terms static and dynamic are generally used to refer to things bound before
run time and at run time, respectively. Clearly static is a coarse term. So is dy-
namic.

Compiler-based language implementations tend to be more efficient than
interpreter-based implementations because they make earlier decisions. For ex-
ample, a compiler analyzes the syntax and semantics of global variable decla-
rations once, before the program ever runs. It decides on a layout for those
variables in memory, and generates efficient code to access them wherever they
appear in the program. A pure interpreter, by contrast, must analyze the declara-
tions every time the program begins execution. In the worst case, an interpreter
may reanalyze the local declarations within a subroutine each time that subrou-
tine is called. If a call appears in a deeply nested loop, the savings achieved by a
compiler that is able to analyze the declarations only once may be very large. As
we shall see in the following section, a compiler will not usually be able to pre-
dict the address of a local variable at compile time, since space for the variable
will be allocated dynamically on a stack, but it can arrange for the variable to
appear at a fixed offset from the location pointed to by a certain register at run
time.

Some languages are difficult to compile because their definitions require cer-
tain fundamental decisions to be postponed until run time, generally in order to
increase the flexibility or expressiveness of the language. Smalltalk, for example,
delays all type checking until run time. All operations in Smalltalk are cast in the
form of “messages” to “objects.” A message is acceptable if and only if the object
provides a handler for it. References to objects of arbitrary types (classes) can
then be assigned into arbitrary named variables, as long as the program never
ends up sending a message to an object that is not prepared to handle it. This
form of polymorphism—allowing a variable name to refer to objects of multi-
ple types—allows the Smalltalk programmer to write very general purpose code,
which will correctly manipulate objects whose types had yet to be fully defined
at the time the code was written. We will mention polymorphism again in Sec-
tion 3.6.3, and discuss it further in Chapters 7 and 9.

3.2 Object Lifetime and Storage Management

In any discussion of names and bindings, it is important to distinguish between
names and the objects to which they refer, and to identify several key events:
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� The creation of objects

� The creation of bindings

� References to variables, subroutines, types, and so on, all of which use bind-
ings

� The deactivation and reactivation of bindings that may be temporarily unus-
able

� The destruction of bindings

� The destruction of objects

The period of time between the creation and the destruction of a name-to-
object binding is called the binding’s lifetime. Similarly, the time between the
creation and destruction of an object is the object’s lifetime. These lifetimes need
not necessarily coincide. In particular, an object may retain its value and the po-
tential to be accessed even when a given name can no longer be used to access it.
When a variable is passed to a subroutine by reference, for example (as it typically
is in Fortran or with var parameters in Pascal or “&” parameters in C++), the
binding between the parameter name and the variable that was passed has a life-
time shorter than that of the variable itself. It is also possible, though generally a
sign of a program bug, for a name-to-object binding to have a lifetime longer than
that of the object. This can happen, for example, if an object created via the C++
new operator is passed as a & parameter and then deallocated (delete-ed) be-
fore the subroutine returns. A binding to an object that is no longer live is called
a dangling reference. Dangling references will be discussed further in Sections 3.5
and 7.7.2.

Object lifetimes generally correspond to one of three principal storage alloca-
tion mechanisms, used to manage the object’s space:

1. Static objects are given an absolute address that is retained throughout the
program’s execution.

2. Stack objects are allocated and deallocated in last-in, first-out order, usually
in conjunction with subroutine calls and returns.

3. Heap objects may be allocated and deallocated at arbitrary times. They require
a more general (and expensive) storage management algorithm.

3.2.1 Static Allocation

Global variables are the obvious example of static objects, but not the only one.
The instructions that constitute a program’s machine-language translation can
also be thought of as statically allocated objects. In addition, we shall see exam-
ples in Section 3.3.1 of variables that are local to a single subroutine but retain
their values from one invocation to the next; their space is statically allocated.
Numeric and string-valued constant literals are also statically allocated, for state-
ments such as A = B/14.7 or printf("hello, world\n"). (Small constants
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Figure 3.1 Static allocation of space for subroutines in a language or program without recur-
sion.

are often stored within the instruction itself; larger ones are assigned a separate
location.) Finally, most compilers produce a variety of tables that are used by run-
time support routines for debugging, dynamic type checking, garbage collection,
exception handling, and other purposes; these are also statically allocated. Stati-
cally allocated objects whose value should not change during program execution
(e.g., instructions, constants, and certain run-time tables) are often allocated in
protected, read-only memory so that any inadvertent attempt to write to them
will cause a processor interrupt, allowing the operating system to announce a
run-time error.

Logically speaking, local variables are created when their subroutine is called
and destroyed when it returns. If the subroutine is called repeatedly, each invo-
cation is said to create and destroy a separate instance of each local variable. It is
not always the case, however, that a language implementation must perform work
at run time corresponding to these create and destroy operations. Recursion wasEXAMPLE 3.1

Static allocation of local
variables

not originally supported in Fortran (it was added in Fortran 90). As a result, there
can never be more than one invocation of a subroutine active at any given time,
and a compiler may choose to use static allocation for local variables, effectively
arranging for the variables of different invocations to share the same locations,
and thereby avoiding any run-time overhead for creation and destruction (Fig-
ure 3.1). �
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In many languages a constant is required to have a value that can be deter-
mined at compile time. Usually the expression that specifies the constant’s value
is permitted to include only literal (manifest) constants and built-in functions
and arithmetic operators. These sorts of compile-time constants can always be
allocated statically, even if they are local to a recursive subroutine: multiple in-
stances can share the same location. In other languages (e.g., C and Ada), con-
stants are simply variables that cannot be changed after elaboration time. Their
values, though unchanging, can depend on other values that are not known until
run time. These elaboration-time constants, when local to a recursive subroutine,
must be allocated on the stack. C# provides both options, explicitly, with the
const and readonly keywords.

Along with local variables and elaboration-time constants, the compiler typi-
cally stores a variety of other information associated with the subroutine, includ-
ing the following.

Arguments and return values. Modern compilers tend to keep these in registers
when possible, but sometimes space in memory is needed.

Temporaries. These are usually intermediate values produced in complex calcu-
lations. Again, a good compiler will keep them in registers whenever possible.

Bookkeeping information. This may include the subroutine’s return address, a
reference to the stack frame of the caller (also called the dynamic link), addi-
tional saved registers, debugging information, and various other values that
we will study later.

3.2.2 Stack-Based Allocation

If a language permits recursion, static allocation of local variables is no longer an
option, since the number of instances of a variable that may need to exist at the
same time is conceptually unbounded. Fortunately, the natural nesting of sub-
routine calls makes it easy to allocate space for locals on a stack. A simplifiedEXAMPLE 3.2

Layout of the run-time
stack

picture of a typical stack appears in Figure 3.2. Each instance of a subroutine at
run time has its own frame (also called an activation record) on the stack, contain-
ing arguments and return values, local variables, temporaries, and bookkeeping

DESIGN & IMPLEMENTATION

Recursion in Fortran
The lack of recursion in (pre-Fortran 90) Fortran is generally attributed to the
expense of stack manipulation on the IBM 704, on which the language was
first implemented. Many (perhaps most) Fortran implementations choose to
use a stack for local variables, but because the language definition permits the
use of static allocation instead, Fortran programmers were denied the benefits
of language-supported recursion for over 30 years.
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Figure 3.2 Stack-based allocation of space for subroutines. We assume here that subroutine A
has been called by the main program and that it then calls subroutine B. Subroutine B subse-
quently calls C, which in turn calls D. At any given time, the stack pointer (sp) register points
to the first unused location on the stack (or the last used location on some machines), and the
frame pointer (fp) register points to a known location within the frame (activation record) of
the current subroutine. The relative order of fields within a frame may vary from machine to
machine and compiler to compiler.

information. Arguments to be passed to subsequent routines lie at the top of the
frame, where the callee can easily find them. The organization of the remain-
ing information is implementation-dependent: it varies from one language and
compiler to another. �

Maintenance of the stack is the responsibility of the subroutine calling se-
quence—the code executed by the caller immediately before and after the call—
and of the prologue (code executed at the beginning) and epilogue (code executed
at the end) of the subroutine itself. Sometimes the term “calling sequence” is used
to refer to the combined operations of the caller, the prologue, and the epilogue.
We will study calling sequences in more detail in Section 8.2.

While the location of a stack frame cannot be predicted at compile time (the
compiler cannot in general tell what other frames may already be on the stack),
the offsets of objects within a frame usually can be statically determined. More-
over, the compiler can arrange (in the calling sequence or prologue) for a par-
ticular register, known as the frame pointer, to always point to a known location
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within the frame of the current subroutine. Code that needs to access a local vari-
able within the current frame, or an argument near the top of the calling frame,
can do so by adding a predetermined offset to the value in the frame pointer. As
we shall see in Section 5.3.1, almost every processor provides an addressing mode
that allows this addition to be specified implicitly as part of an ordinary load
or store instruction. The stack grows “downward” toward lower addresses in
most language implementations. Some machines provide special push and pop
instructions that assume this direction of growth. Arguments and returns typ-
ically have positive offsets from the frame pointer; local variables, temporaries,
and bookkeeping information typically have negative offsets.

Even in a language without recursion, it can be advantageous to use a stack for
local variables, rather than allocating them statically. In most programs the pat-
tern of potential calls among subroutines does not permit all of those subroutines
to be active at the same time. As a result, the total space needed for local variables
of currently active subroutines is seldom as large as the total space across all sub-
routines, active or not. A stack may therefore require substantially less memory
at run time than would be required for static allocation.

3.2.3 Heap-Based Allocation

A heap is a region of storage in which subblocks can be allocated and deallocated
at arbitrary times.2 Heaps are required for the dynamically allocated pieces of
linked data structures and for dynamically resized objects, such as fully general
character strings, lists, and sets, whose size may change as a result of an assign-
ment statement or other update operation.

There are many possible strategies to manage space in a heap. We review the
major alternatives here; details can be found in any data-structures textbook. The
principal concerns are speed and space, and as usual there are tradeoffs between
them. Space concerns can be further subdivided into issues of internal and exter-
nal fragmentation. Internal fragmentation occurs when a storage-management
algorithm allocates a block that is larger than required to hold a given object; the
extra space is then unused. External fragmentation occurs when the blocks thatEXAMPLE 3.3

External fragmentation in
the heap

have been assigned to active objects are scattered through the heap in such a way
that the remaining, unused space is composed of multiple blocks: there may be
quite a lot of free space, but no one piece of it may be large enough to satisfy some
future request (see Figure 3.3). �

Many storage-management algorithms maintain a single linked list—the free
list—of heap blocks not currently in use. Initially the list consists of a single block
comprising the entire heap. At each allocation request the algorithm searches
the list for a block of appropriate size. With a first fit algorithm we select the

2 Unfortunately, the term heap is also used for a common tree-based implementation of a priority
queue. These two uses of the term have nothing to do with one another.
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Figure 3.3 External fragmentation. The shaded blocks are in use; the clear blocks are free.
While there is more than enough total free space remaining to satisfy an allocation request of
the illustrated size, no single remaining block is large enough.

first block on the list that is large enough to satisfy the request. With a best fit
algorithm we search the entire list to find the smallest block that is large enough
to satisfy the request. In either case, if the chosen block is significantly larger than
required, then we divide it in two and return the unneeded portion to the free list
as a smaller block. (If the unneeded portion is below some minimum threshold
in size, we may leave it in the allocated block as internal fragmentation.) When a
block is deallocated and returned to the free list, we check to see whether either
or both of the physically adjacent blocks are free; if so, we coalesce them.

Intuitively, one would expect a best fit algorithm to do a better job of reserving
large blocks for large requests. At the same time, it has a higher allocation cost
than a first fit algorithm, because it must always search the entire list, and it tends
to result in a larger number of very small “leftover” blocks. Which approach—
first fit or best fit—results in lower external fragmentation depends on the distri-
bution of size requests.

In any algorithm that maintains a single free list, the cost of allocation is lin-
ear in the number of free blocks. To reduce this cost to a constant, some storage
management algorithms maintain separate free lists for blocks of different sizes.
Each request is rounded up to the next standard size (at the cost of internal frag-
mentation) and allocated from the appropriate list. In effect, the heap is divided
into “pools,” one for each standard size. The division may be static or dynamic.
Two common mechanisms for dynamic pool adjustment are known as the buddy
system and the Fibonacci heap. In the buddy system, the standard block sizes are
powers of two. If a block of size 2k is needed, but none is available, a block of
size 2k+1 is split in two. One of the halves is used to satisfy the request; the other
is placed on the kth free list. When a block is deallocated, it is coalesced with
its “buddy”—the other half of the split that created it—if that buddy is free. Fi-
bonacci heaps are similar, but they use Fibonacci numbers for the standard sizes,
instead of powers of two. The algorithm is slightly more complex but leads to
slightly lower internal fragmentation because the Fibonacci sequence grows more
slowly than 2k.

The problem with external fragmentation is that the ability of the heap to sat-
isfy requests may degrade over time. Multiple free lists may help, by clustering
small blocks in relatively close physical proximity, but they do not eliminate the
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problem. It is always possible to devise a sequence of requests that cannot be sat-
isfied, even though the total space required is less than the size of the heap. If size
pools are statically allocated, one need only exceed the maximum number of re-
quests of a given size. If pools are dynamically readjusted, one can “checkerboard”
the heap by allocating a large number of small blocks and then deallocating every
other one, in order of physical address, leaving an alternating pattern of small free
and allocated blocks. To eliminate external fragmentation, we must be prepared
to compact the heap, by moving already-allocated blocks. This task is complicated
by the need to find and update all outstanding references to a block that is being
moved. We will discuss compaction further in Sections 7.7.2 and 7.7.3.

3.2.4 Garbage Collection

Allocation of heap-based objects is always triggered by some specific operation
in a program: instantiating an object, appending to the end of a list, assigning a
long value into a previously short string, and so on. Deallocation is also explicit in
some languages (e.g., C, C++, and Pascal.) As we shall see in Section 7.7, however,
many languages specify that objects are to be deallocated implicitly when it is no
longer possible to reach them from any program variable. The run-time library
for such a language must then provide a garbage collection mechanism to identify
and reclaim unreachable objects. Most functional languages require garbage col-
lection, as do many more recent imperative languages, including Modula-3, Java,
C#, and all the major scripting languages.

The traditional arguments in favor of explicit deallocation are implementa-
tion simplicity and execution speed. Even naive implementations of automatic
garbage collection add significant complexity to the implementation of a lan-
guage with a rich type system, and even the most sophisticated garbage collector
can consume nontrivial amounts of time in certain programs. If the programmer
can correctly identify the end of an object’s lifetime, without too much run-time
bookkeeping, the result is likely to be faster execution.

The argument in favor of automatic garbage collection, however, is com-
pelling: manual deallocation errors are among the most common and costly
bugs in real-world programs. If an object is deallocated too soon, the program
may follow a dangling reference, accessing memory now used by another object.
If an object is not deallocated at the end of its lifetime, then the program may
“leak memory,” eventually running out of heap space. Deallocation errors are
notoriously difficult to identify and fix. Over time, both language designers and
programmers have increasingly come to consider automatic garbage collection
an essential language feature. Garbage-collection algorithms have improved, re-
ducing their run-time overhead; language implementations have become more
complex in general, reducing the marginal complexity of automatic collection;
and leading-edge applications have become larger and more complex, making
the benefits of automatic collection ever more appealing.
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CHECK YOUR UNDERSTANDING

1. What is binding time?

2. Explain the distinction between decisions that are bound statically and those
that are bound dynamically.

3. What is the advantage of binding things as early as possible? What is the ad-
vantage of delaying bindings?

4. Explain the distinction between the lifetime of a name-to-object binding and
its visibility.

5. What determines whether an object is allocated statically, on the stack, or in
the heap?

6. List the objects and information commonly found in a stack frame.

7. What is a frame pointer? What is it used for?

8. What is a calling sequence?

9. What are internal and external fragmentation?

10. What is garbage collection?

11. What is a dangling reference?

3.3 Scope Rules

The textual region of the program in which a binding is active is its scope. In
most modern languages, the scope of a binding is determined statically—that
is, at compile time. In C, for example, we introduce a new scope upon entry
to a subroutine. We create bindings for local objects and deactivate bindings for
global objects that are “hidden” by local objects of the same name. On subroutine
exit, we destroy bindings for local variables and reactivate bindings for any global
objects that were hidden. These manipulations of bindings may at first glance ap-
pear to be run-time operations, but they do not require the execution of any code:
the portions of the program in which a binding is active are completely deter-
mined at compile time. We can look at a C program and know which names refer
to which objects at which points in the program based on purely textual rules. For
this reason, C is said to be statically scoped (some authors say lexically scoped 3).

3 Lexical scope is actually a better term than static scope, because scope rules based on nesting can
be enforced at run time instead of compile time if desired. In fact, in Common Lisp and Scheme
it is possible to pass the unevaluated text of a subroutine declaration into some other subroutine
as a parameter, and then use the text to create a lexically nested declaration at run time.
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Other languages, including APL, Snobol, and early dialects of Lisp, are dynami-
cally scoped: their bindings depend on the flow of execution at run time. We will
examine static and dynamic scope in more detail in Sections 3.3.1 and 3.3.6.

In addition to talking about the “scope of a binding,” we sometimes use the
word scope as a noun all by itself, without a specific binding in mind. Informally,
a scope is a program region of maximal size in which no bindings change (or
at least none are destroyed—more on this in Section 3.3.3). Typically, a scope
is the body of a module, class, subroutine, or structured control flow statement,
sometimes called a block. In C family languages it would be delimited with {...}
braces.

Algol 68 and Ada use the term elaboration to refer to the process by which
declarations become active when control first enters a scope. Elaboration entails
the creation of bindings. In many languages, it also entails the allocation of stack
space for local objects, and possibly the assignment of initial values. In Ada it
can entail a host of other things, including the execution of error-checking or
heap-space-allocating code, the propagation of exceptions, and the creation of
concurrently executing tasks (to be discussed in Chapter 12).

At any given point in a program’s execution, the set of active bindings is called
the current referencing environment. The set is principally determined by static
or dynamic scope rules. We shall see that a referencing environment generally
corresponds to a sequence of scopes that can be examined (in order) to find the
current binding for a given name.

In some cases, referencing environments also depend on what are (in a con-
fusing use of terminology) called binding rules. Specifically, when a reference to a
subroutine S is stored in a variable, passed as a parameter to another subroutine,
or returned as a function value, one needs to determine when the referencing
environment for S is chosen—that is, when the binding between the reference to
S and the referencing environment of S is made. The two principal options are
deep binding, in which the choice is made when the reference is first created, and
shallow binding, in which the choice is made when the reference is finally used.
We will examine these options in more detail in Section 3.5.

3.3.1 Static Scope

In a language with static (lexical) scoping, the bindings between names and ob-
jects can be determined at compile time by examining the text of the program,
without consideration of the flow of control at run time. Typically, the “current”
binding for a given name is found in the matching declaration whose block most
closely surrounds a given point in the program, though as we shall see there are
many variants on this basic theme.

The simplest static scope rule is probably that of early versions of Basic, in
which there was only a single, global scope. In fact, there were only a few hundred
possible names, each of which consisted of a letter optionally followed by a digit.
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There were no explicit declarations; variables were declared implicitly by virtue
of being used.

Scope rules are somewhat more complex in Fortran, though not much more.4

Fortran distinguishes between global and local variables. The scope of a local
variable is limited to the subroutine in which it appears; it is not visible elsewhere.
Variable declarations are optional. If a variable is not declared, it is assumed to be
local to the current subroutine and to be of type integer if its name begins with
the letters I–N, or real otherwise. (Different conventions for implicit declara-
tions can be specified by the programmer. In Fortran 90, the programmer can
also turn off implicit declarations, so that use of an undeclared variable becomes
a compile-time error.)

Global variables in Fortran may be partitioned into common blocks, which are
then “imported” by subroutines. Common blocks are designed to support separate
compilation: they allow a subroutine to import only a subset of the global envi-
ronment. Unfortunately, Fortran requires each subroutine to declare the names
and types of the variables in each of the common blocks it uses, and there is
no standard mechanism to ensure that the declarations in different subroutines
are the same. In fact, Fortran explicitly allows the declarations to be different.
A programmer who knows the data layout rules employed by the compiler can
use a completely different set of names and types in one subroutine to refer to
the data defined in another subroutine. The underlying bits will be shared, but
the effect of this sharing is highly implementation-dependent. A similar effect
can be achieved through the (mis)use of equivalence statements, which al-
low the programmer to specify that a set of variables share the same location(s).
Equivalence statements are a precursor of the variant records and unions of
languages like Pascal and C. Their intended purpose is to save space in programs
in which only one of the equivalence-ed variables is in use at any one time.

Semantically, the lifetime of a local Fortran variable (both the object itself
and the name-to-object binding) encompasses a single execution of the variable’s
subroutine. Programmers can override this rule by using an explicit save state-
ment. A save-ed variable has a lifetime that encompasses the entire execution
of the program. Instead of a logically separate object for every invocation of the
subroutine, the save statement creates a single object that retains its value from
one invocation of the subroutine to the next. (The name-to-variable binding, of
course, is inactive when the subroutine is not executing, because the name is out
of scope.)

In early implementations of Fortran, it was common for all local variables to
behave as if they were save-ed, because language implementations employed the
static allocation strategy described in Section 3.2. It is a dangerous practice to

4 Fortran and C have evolved considerably over the years. Unless otherwise noted, comments
in this text apply to the Fortran 77 dialect [Ame78a] (still more widely used than the newer
Fortran 90). Comments on C refer to all versions of the language (including the C99 stan-
dard [Int99]) unless otherwise noted. Comments on Ada, likewise, refer to both Ada 83 [Ame83]
and Ada 95 [Int95b] unless otherwise noted.
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depend on this implementation artifact, however, because it is not guaranteed
by the language definition. In a Fortran compiler that uses a stack to save space,
or that exploits knowledge of the patterns of calls among subroutines to overlap
statically allocated space (Exercise 3.10), non-save-ed variables may not retain
their values from one invocation to the next.

3.3.2 Nested Subroutines

The ability to nest subroutines inside each other, introduced in Algol 60, is a fea-
ture of many modern languages, including Pascal, Ada, ML, Scheme, and Com-
mon Lisp. Other languages, including C and its descendants, allow classes or
other scopes to nest. Just as the local variables of a Fortran subroutine are not
visible to other subroutines, any constants, types, variables, or subroutines de-
clared within a block are not visible outside that block in Algol-family languages.
More formally, Algol-style nesting gives rise to the closest nested scope rule for
resolving bindings from names to objects: a name that is introduced in a decla-
ration is known in the scope in which it is declared, and in each internally nested
scope, unless it is hidden by another declaration of the same name in one or more
nested scopes. To find the object referenced by a given use of a name, we look for
a declaration with that name in the current, innermost scope. If there is one, it
defines the active binding for the name. Otherwise, we look for a declaration in
the immediately surrounding scope. We continue outward, examining succes-
sively surrounding scopes, until we reach the outer nesting level of the program,
where global objects are declared. If no declaration is found at any level, then the
program is in error.

Many languages provide a collection of built-in, or predefined, objects, such as
I/O routines, trigonometric functions, and in some cases types such as integer
and char. It is common to consider these to be declared in an extra, invisible,
outermost scope, which surrounds the scope in which global objects are declared.
The search for bindings described in the previous paragraph terminates at this ex-
tra, outermost scope, if it exists, rather than at the scope in which global objects
are declared. This outermost scope convention makes it possible for a program-
mer to define a global object whose name is the same as that of some predefined
object (whose “declaration” is thereby hidden, making it unusable).

An example of nested scopes appears in Figure 3.4.5 In this example, procedureEXAMPLE 3.4
Nested scopes P2 is called only by P1, and need not be visible outside. It is therefore declared

inside P1, limiting its scope (its region of visibility) to the portion of the program
shown here. In a similar fashion, P4 is visible only within P1, P3 is visible only
within P2, and F1 is visible only within P4. Under the standard rules for nested
scopes, F1 could call P2, and P4 could call F1, but P2 could not call F1.

5 This code is not contrived; it was extracted from an implementation of the FMQ error repair
algorithm described in Section 2.3.4.
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procedure P1(A1 : T1);

var X : real;

...

procedure P2(A2 : T2);

...

procedure P3(A3 : T3);

...

begin

... (* body of P3 *)

end;

...

begin

... (* body of P2 *)

end;

...

procedure P4(A4 : T4);

...

function F1(A5 : T5) : T6;

var X : integer;

...

begin

... (* body of F1 *)

end;

...

begin

... (* body of P4 *)

end;

...

begin

... (* body of P1 *)

end

Figure 3.4 Example of nested subroutines in Pascal.

Though they are hidden from the rest of the program, nested subroutines are
able to access the parameters and local variables (and other local objects) of the
surrounding scope(s). In our example, P3 can name (and modify) A1, X, and A2,
in addition to A3. Because P1 and F1 both declare local variables named X, the
inner declaration hides the outer one within a portion of its scope. Uses of X in
F1 refer to the inner X; uses of X in other regions of the code shown here refer to
the outer X. �

A name-to-object binding that is hidden by a nested declaration of the same
name is said to have a hole in its scope. In most languages the object whose name
is hidden is inaccessible in the nested scope (unless it has more than one name).
Some languages allow the programmer to access the outer meaning of a name by
applying a qualifier or scope resolution operator. In Ada, for example, a name may
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be prefixed by the name of the scope in which it is declared, using syntax that
resembles the specification of fields in a record. My_proc.X, for example, refers
to the declaration of X in subroutine My_proc, regardless of whether some other
X has been declared in a lexically closer scope. In C++, which does not allow
subroutines to nest, ::X refers to a global declaration of X, regardless of whether
the current subroutine also has an X.6

Access to Nonlocal Objects

We have already seen that the compiler can arrange for a frame pointer register to
point to the frame of the currently executing subroutine at run time. Target code
can use this register to access local objects, as well as any objects in surrounding
scopes that are still within the same subroutine. But what about objects in lex-
ically surrounding subroutines? To find these we need a way to find the frames
corresponding to those scopes at run time. Since a deeply nested subroutine may
call a routine in an outer scope, it is not the case that the lexically surrounding
scope corresponds to the caller’s scope at run time. At the same time, we can be
sure that there is some frame for the surrounding scope somewhere below in the
stack, since the current subroutine could not have been called unless it was vis-
ible, and it could not have been visible unless the surrounding scope was active.
(It is actually possible in some languages to save a reference to a nested subrou-
tine and then call it when the surrounding scope is no longer active. We defer this
possibility to Section 3.5.2.)

The simplest way in which to find the frames of surrounding scopes is to main-
tain a static link in each frame that points to the “parent” frame: the frame of the
most recent invocation of the lexically surrounding subroutine. If a subroutine is
declared at the outermost nesting level of the program, then its frame will have a
null static link at run time. If a subroutine is nested k levels deep, then its frame’s
static link, and those of its parent, grandparent, and so on, will form a static chain
of length k at run time. To find a variable or parameter declared j subroutine
scopes outward, target code at run time can dereference the static chain j times,EXAMPLE 3.5

Static chains and then add the appropriate offset. Static chains are illustrated in Figure 3.5. We
will discuss the code required to maintain them in Section 8.2. �

3.3.3 Declaration Order

In our discussion so far we have glossed over an important subtlety: suppose
an object x is declared somewhere within block B. Does the scope of x include
the portion of B before the declaration, and if so, can x actually be used in that
portion of the code? Put another way, can an expression E refer to any name

6 The C++ :: operator is also used to name members (fields or methods) of a base class that are
hidden by members of a derived class; we will consider this use in Section 9.2.2.
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Figure 3.5 Static chains. Subroutines A, B, C, D, and E are nested as shown on the left. If the
sequence of nested calls at run time is A, E, B, D, and C, then the static links in the stack will
look as shown on the right. The code for subroutine C can find local objects at known offsets
from the frame pointer. It can find local objects of the surrounding scope, B, by dereferencing its
static chain once and then applying an offset. It can find local objects in B’s surrounding scope,
A, by dereferencing its static chain twice and then applying an offset.

declared in the current scope, or only to names that are declared before E in the
scope?

Several early languages, including Algol 60 and Lisp, required that all declara-
tions appear at the beginning of their scope. One might at first think that this rule
would avoid the questions in the preceding paragraph, but it does not, because
declarations may refer to one another.7

DESIGN & IMPLEMENTATION

Mutual recursion
Some Algol 60 compilers were known to process the declarations of a scope in
program order. This strategy had the unfortunate effect of implicitly outlawing
mutually recursive subroutines and types, something the language designers
clearly did not intend [Atk73].

7 We saw an example of mutually recursive subroutines in the recursive descent parsing of Sec-
tion 2.3.1. Mutually recursive types frequently arise in linked data structures, where nodes of
two types may need to point to each other.
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In an apparent attempt at simplification, Pascal modified the requirement toEXAMPLE 3.6
A “gotcha” in
declare-before-use

say that names must be declared before they are used (with special-case mecha-
nisms to accommodate recursive types and subroutines). At the same time, how-
ever, Pascal retained the notion that the scope of a declaration is the entire sur-
rounding block. These two rules can interact in surprising ways:

1. const N = 10;

2. ...

3. procedure foo;

4. const

5. M = N; (* static semantic error! *)

6. ...

7. N = 20; (* additional constant declaration; hides the outer N *)

Pascal says that the second declaration of N covers all of foo, so the semantic
analyzer should complain on line 5 that N is being used before its declaration.
The error has the potential to be highly confusing, particularly if the programmer
meant to use the outer N:

const N = 10;

...

procedure foo;

const

M = N; (* static semantic error! *)

var

A : array [1..M] of integer;

N : real; (* hiding declaration *)

Here the pair of messages “N used before declaration” and “N is not a constant”
are almost certainly not helpful.

In order to determine the validity of any declaration that appears to use a
name from a surrounding scope, a Pascal compiler must scan the remainder of
the scope’s declarations to see if the name is hidden. To avoid this complication,
most Pascal successors (and some dialects of Pascal itself) specify that the scope
of an identifier is not the entire block in which it is declared (excluding holes), but
rather the portion of that block from the declaration to the end (again excluding
holes). If our program fragment had been written in Ada, for example, or in C,
C++, or Java, no semantic errors would be reported. The declaration of M would
refer to the first (outer) declaration of N. �

C++ and Java further relax the rules by dispensing with the define-before-use
requirement in many cases. In both languages, members of a class (including
those that are not defined until later in the program text) are visible inside all
of the class’s methods. In Java, classes themselves can be declared in any order.
Interestingly, while C# echos Java in requiring declaration before use for localEXAMPLE 3.7

Whole-block scope in C# variables (but not for classes and members), it returns to the Pascal notion of
whole-block scope. Thus the following is invalid in C#.
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class A {

const int N = 10;

void foo() {

const int M = N; // uses inner N before it is declared

const int N = 20; �
Perhaps the simplest approach to declaration order, from a conceptual point

of view, is that of Modula-3, which says that the scope of a declaration is the
entire block in which it appears (minus any holes created by nested declarations)
and that the order of declarations doesn’t matter. The principal objection to this
approach is that programmers may find it counterintuitive to use a local variable
before it is declared. Python takes the “whole block” scope rule one step furtherEXAMPLE 3.8

“Local if written” in Python by dispensing with variable declarations altogether. In their place it adopts the
unusual convention that the local variables of subroutine S are precisely those
variables that are written by some statement in the (static) body of S. If S is
nested inside of T, and the name x appears on the left-hand side of assignment
statements in both S and T, then the x’s are distinct: there is one in S and one
in T. Nonlocal variables are read-only unless explicitly imported (using Python’s
global statement). �

In the interest of flexibility, modern Lisp dialects tend to provide several op-EXAMPLE 3.9
Declaration order in
Scheme

tions for declaration order. In Scheme, for example, the letrec and let* con-
structs define scopes with, respectively, whole-block and declaration-to-end-of-
block semantics. The most frequently used construct, let, provides yet another
option:

(let ((A 1)) ; outer scope, with A defined to be 1

(let ((A 2) ; inner scope, with A defined to be 2

(B A)) ; and B defined to be A

B)) ; return the value of B

Here the nested declarations of A and B don’t take effect until after the end of
the declaration list. Thus B is defined to be the outer A, and the code as a whole
returns 1. �

Declarations and Definitions

Given the requirement that names be declared before they can be used, languages
like Pascal, C, and C++ require special mechanisms for recursive types and sub-
routines. Pascal handles the former by making pointers an exception to the rules
and the latter by introducing so-called forward declarations. C and C++ handle
both cases uniformly, by distinguishing between the declaration of an object and
its definition. Informally, a declaration introduces a name and indicates its scope.
A definition describes the thing to which the name is bound. If a declaration is
not complete enough to be a definition, then a separate definition must appearEXAMPLE 3.10

Declarations v. definitions
in C

elsewhere in the scope. In C we can write
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struct manager; /* declaration only */

struct employee {

struct manager *boss;

struct employee *next_employee;

...

};

struct manager { /* definition */

struct employee *first_employee;

...

};

and

void list_tail(follow_set fs); /* declaration only */

void list(follow_set fs)

{

switch (input_token) {

case id : match(id); list_tail(fs);

...

}

void list_tail(follow_set fs) /* definition */

{

switch (input_token) {

case comma : match(comma); list(fs);

...

} �
Nested Blocks
In many languages, including Algol 60, C89, and Ada, local variables can be de-
clared not only at the beginning of any subroutine, but also at the top of any

DESIGN & IMPLEMENTATION

Redeclarations
Some languages, particularly those that are intended for interactive use, per-
mit the programmer to redeclare an object: to create a new binding for a given
name in a given scope. Interactive programmers commonly use redeclarations
to fix bugs. In most interactive languages, the new meaning of the name re-
places the old in all contexts. In ML, however, the old meaning of the name
may remain accessible to functions that were elaborated before the name was
redeclared. This design choice in ML can sometimes be counterintuitive. It
probably reflects the fact that ML is usually compiled, bit by bit on the fly,
rather than interpreted. A language like Scheme, which is lexically scoped but
usually interpreted, stores the binding for a name in a known location. A pro-
gram accesses the meaning of the name indirectly through that location: if the
meaning of the name changes, all accesses to the name will use the new mean-
ing. In ML, previously elaborated functions have already been compiled into a
form (often machine code) that accesses the meaning of the name directly.
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begin. . . end ({...}) block. Others languages, including Algol 68, C99, and all
of C’s descendants, are even more flexible, allowing declarations wherever a state-
ment may appear. In most languages a nested declaration hides any outer decla-
ration with the same name (Java and C# make it a static semantic error if the
outer declaration is local to the current subroutine).

Variables declared in nested blocks can be very useful, as for example in theEXAMPLE 3.11
Inner declarations in C following C code.

{

int temp = a;

a = b;

b = temp;

}

Keeping the declaration of temp lexically adjacent to the code that uses it makes
the program easier to read, and eliminates any possibility that this code will in-
terfere with another variable named temp. �

No run-time work is needed to allocate or deallocate space for variables de-
clared in nested blocks; their space can be included in the total space for local
variables allocated in the subroutine prologue and deallocated in the epilogue.
Exercise 3.9 considers how to minimize the total space required.

CHECK YOUR UNDERSTANDING

12. What do we mean by the scope of a name-to-object binding?

13. Describe the difference between static and dynamic scope.

14. What is elaboration?

15. What is a referencing environment?

16. Explain the closest nested scope rule.

17. What is the purpose of a scope resolution operator?

18. What is a static chain? What is it used for?

19. What are forward references? Why are they prohibited or restricted in many
programming languages?

20. Explain the difference between a declaration and a definition. Why is the dis-
tinction important?

3.3.4 Modules

A major challenge in the construction of any large body of software is how to
divide the effort among programmers in such a way that work can proceed on
multiple fronts simultaneously. This modularization of effort depends critically
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/*

Place into *s a new name beginning with the letter l and

continuing with the ascii representation of an integer guaranteed

to be distinct in each separate call. s is assumed to point to

space large enough to hold any such name; for the short ints used

here, seven characters suffice. l is assumed to be an upper or

lower-case letter. sprintf ’prints’ formatted output to a string.

*/

void gen_new_name(char *s, char l) {

static short int name_nums[52];

/* C guarantees that static local variables without explicit

initial values are initialized as if explicitly set to zero. */

int index = (l >= ’a’ && l <= ’z’) ? l-’a’ : 26 + l-’A’;

name_nums[index]++;

sprintf(s, "%c%d\0", 1, name_nums[index]);

}

Figure 3.6 C code to illustrate the use of static variables.

on the notion of information hiding, which makes objects and algorithms invisi-
ble, whenever possible, to portions of the system that do not need them. Properly
modularized code reduces the “cognitive load” on the programmer by minimiz-
ing the amount of information required to understand any given portion of the
system. In a well-designed program the interfaces between modules are as “nar-
row” (i.e., simple) as possible, and any design decision that is likely to change
is hidden inside a single module. This latter point is crucial, since maintenance
(bug fixes and enhancement) consumes many more programmer years than does
initial construction for most commercial software.

In addition to reducing cognitive load, information hiding has several more
pedestrian benefits. First, it reduces the risk of name conflicts: with fewer visible
names, there is less chance that a newly introduced name will be the same as
one already in use. Second, it safeguards the integrity of data abstractions: any
attempt to access objects outside of the subroutine(s) to which they belong will
cause the compiler to issue an “undefined symbol” error message. Third, it helps
to compartmentalize run-time errors: if a variable takes on an unexpected value,
we can generally be sure that the code that modified it is in the variable’s scope.

Unfortunately, the information hiding provided by nested subroutines is lim-
ited to objects whose lifetime is the same as that of the subroutine in which they
are hidden. When control returns from a subroutine, its local variables will no
longer be live: their values will be discarded. We have seen a partial solution to
this problem in the form of the save statement in Fortran. A similar directive
exists in several other languages: the own variables of Algol and the static vari-
ables of C, for example, retain their values from one invocation of a subroutine
to the next.

As an example of the use of static variables, consider the code in Figure 3.6.EXAMPLE 3.12
Static variables in C The subroutine gen_new_name can be used to generate a series of distinct
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character-string names. A compiler could use these in its assembly language out-
put. Labels, for example, might be named L1, L2, L3, and so on; subroutines
could be named S1, S2, S3, and so on. �

Static variables allow a subroutine like gen_new_name to have “memory”—
to retain information from one invocation to the next—while protecting that
memory from accidental access or modification by other parts of the program.
Put another way, static variables allow programmers to build single-subroutine
abstractions. Unfortunately, they do not allow the construction of abstractions
whose interface needs to consist of more than one subroutine. Suppose, for ex-
ample, that we wish to construct a stack abstraction. We should like to hide the
representation of the stack—its internal structure—from the rest of the program,
so that it can be accessed only through its push and pop routines. We can achieve
this goal in many languages through use of a module construct.

A module allows a collection of objects—subroutines, variables, types, and
so on—to be encapsulated in such a way that (1) objects inside are visible to
each other, but (2) objects on the inside are not visible on the outside unless
explicitly exported, and (3) (in many languages) objects outside are not visible on
the inside unless explicitly imported. Modules can be found in Clu (which calls
them clusters), Modula (1, 2, and 3), Turing, Ada (which calls them packages),
C++ (which calls them namespaces), and many other modern languages. They
can also be emulated to some degree through use of the separate compilation
facilities of C; we discuss this possibility in Section 3.7.

As an example of the use of modules, consider the stack abstraction shownEXAMPLE 3.13
Stack module in Modula-2 in Figure 3.7. This stack can be embedded anywhere a subroutine might appear

in a Modula-2 program. Bindings to variables declared in a module are inactive
outside the module, not destroyed. In our stack example, s and top have the
same lifetime they would have had if not enclosed in the module. If stack is
declared at the program’s outermost nesting level, then s and top retain their
values throughout the execution of the program, though they are visible only to
the code inside push and pop. If stack is declared inside some subroutine sub,
then s and top have the same lifetime as the local variables of sub. If stack is
declared inside some other module mod, then s and top have the same lifetime as
they would have had if not enclosed in either module. Type stack_index, which
is also declared inside stack, is likewise visible only inside push and pop. The
issue of lifetime is not relevant for types or constants, since they have no mutable
state.

Our stack abstraction has two imports: the type (element) and maximum
number (stack_size) of elements to be placed in the stack. Element and
stack_size must be declared in a surrounding scope; the compiler will com-
plain if they are not. With one exception, element and stack_size are the
only names from surrounding scopes that will be visible inside stack. The ex-
ception is that predefined (pervasive) names, such as integer and arctan, are
visible without being imported. Our stack also has two exports: push and pop.
These are the only names inside of stack that will be visible in the surrounding
scope. �
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CONST stack_size = ...

TYPE element = ...

...

MODULE stack;

IMPORT element, stack_size;

EXPORT push, pop;

TYPE

stack_index = [1..stack_size];

VAR

s : ARRAY stack_index OF element;

top : stack_index; (* first unused slot *)

PROCEDURE error; ...

PROCEDURE push(elem : element);

BEGIN

IF top = stack_size THEN

error;

ELSE

s[top] := elem;

top := top + 1;

END;

END push;

PROCEDURE pop() : element; (* A Modula-2 function is just a *)

BEGIN (* procedure with a return type. *)

IF top = 1 THEN

error;

ELSE

top := top - 1;

RETURN s[top];

END;

END pop;

BEGIN

top := 1;

END stack;

VAR x, y : element;

...

push(x);

...

y := pop;

Figure 3.7 Stack abstraction in Modula-2.

Most module-based languages allow the programmer to specify that certain
exported names are usable only in restricted ways. Variables may be exported
read-only, for example, or types may be exported opaquely, meaning that vari-
ables of that type may be declared, passed as arguments to the module’s subrou-
tines, and possibly compared or assigned to one another, but not manipulated in
any other way. To facilitate separate compilation, many module-based languages
(Modula-2 among them) also allow a module to be divided into a declaration
part (or header) and an implementation part (or body). Code that uses the ex-
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ports of a given module can then be compiled as soon as the header exists; it is
not dependent on the body.

Modules into which names must be explicitly imported are said to be closed
scopes. Modules are closed in Modula (1, 2, and 3). By extension, modules that
do not require imports are said to be open scopes. An increasingly common op-
tion, found in the modules of Ada, Java, C#, and Python, among others, might
be called selectively open scopes. In these languages a name foo exported from
module A is automatically visible in peer module B as A.foo. It becomes visible
as merely foo if B explicitly imports it.

Nested subroutines are open scopes in most Algol family languages. Important
exceptions are Euclid, in which both module and subroutine scopes are closed,
Turing, Modula (1), and Perl, in which subroutines are optionally closed, and
Clu, which outlaws the use of nonlocal variables entirely. A subroutine in Euclid
must explicitly import any nonpervasive name that it uses from a surrounding
scope. A subroutine in Turing or Modula can also import names explicitly; if it
does so then no other nonlocal names are visible. Import lists serve to document
the program: the use of names from surrounding scopes is really part of the inter-
face between a subroutine and the rest of the program. Requiring explicit imports
forces the programmer to document this interface more precisely than is required
in other languages. Outlawing nonlocal variables serves a similar purpose in Clu,
though nonlocal constants and subroutines can still be named, without explicit
import.

In addition to making programs easier to understand and maintain, import
lists help a Euclid or Turing compiler to enforce language rules that prohibit the
creation of aliases—multiple names that refer to the same object in a given scope.
Modula has no similar prohibition; its import lists are simply for documentation
and information hiding. We will return to the subject of aliases in Section 3.6.1.

3.3.5 Module Types and Classes

Modules facilitate the construction of abstractions by allowing data to be made
private to the subroutines that use them. As defined in Modula-2, Turing, or
Ada 83, however, modules are most naturally suited to creating only a single in-
stance of a given abstraction. The code in Figure 3.7, for example, does not lend
itself to applications that require several stacks. For such an application, the pro-
grammer must either replicate the code (giving the new copy another name) or
adopt an alternative organization in which the module becomes a “manager” forEXAMPLE 3.14

Module as “manager” for
a type

instances of a stack type, which is then exported (see Figure 3.8). This latter orga-
nization requires additional subroutines to create/initialize and possibly destroy
stack instances, and it requires that every subroutine (push, pop, create) take
an extra parameter, to specify the stack in question. Clu addresses this problem
by automatically making every module (“cluster”) the manager for a type. In fact,
the only variables that may appear in a cluster (other than static variables in sub-
routines) are the representation of that type. �



3.3 Scope Rules 129

CONST stack_size = ...

TYPE element = ...

...

MODULE stack_manager;

IMPORT element, stack_size;

EXPORT stack, init_stack, push, pop;

TYPE

stack_index = [1..stack_size];

STACK = RECORD

s : ARRAY stack_index OF element;

top : stack_index; (* first unused slot *)

END;

PROCEDURE init_stack(VAR stk : stack);

BEGIN

stk.top := 1;

END init_stack;

PROCEDURE push(VAR stk : stack; elem : element);

BEGIN

IF stk.top = stack_size THEN

error;

ELSE

stk.s[stk.top] := elem;

stk.top := stk.top + 1;

END;

END push;

PROCEDURE pop(VAR stk : stack) : element;

BEGIN

IF stk.top = 1 THEN

error;

ELSE

stk.top := stk.top - 1;

return stk.s[stk.top];

END;

END pop;

END stack_manager;

var A, B : stack;

var x, y : element;

...

init_stack(A);

init_stack(B);

...

push(A, x);

...

y := pop(B);

Figure 3.8 Manager module for stacks in Modula-2.

An alternative solution to the multiple instance problem can be found in Sim-
ula, Euclid, and (in a slightly different sense) ML, which treat modules as types,
rather than simple encapsulation constructs. Given a module type, the program-
mer can declare an arbitrary number of similar module objects. The skeleton
of a Euclid stack appears in Figure 3.9. As in the (single) Modula-2 stack ofEXAMPLE 3.15

Module types in Euclid Figure 3.7, Euclid allows the programmer to provide initialization code that is
executed whenever a new stack is created. Euclid also allows the programmer to
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const stack_size := ...

type element : ...

...

type stack = module

imports (element, stack_size)

exports (push, pop)

type

stack_index = 1..stack_size

var

s : array stack_index of element

top : stack_index

procedure push(elem : element) = ...

function pop returns element = ...

...

initially

top := 1

end stack

var A, B : stack

var x, y : element

...

A.push(x)

...

y := B.pop

Figure 3.9 Module type for stacks in Euclid. Unlike the code in Figure 3.7, the code here can
be used to create an arbitrary number of stacks.

specify finalization code that will be executed at the end of a module’s lifetime.
This feature is not needed for an array-based stack, but it would be useful if ele-
ments were allocated from a heap and needed to be reclaimed. �

The difference between the module-as-manager and module-as-type ap-
proaches to abstraction is reflected in the lower right of Figures 3.8 and 3.9. With
module types, the programmer can think of the module’s subroutines as “be-
longing” to the stack in question (A.push(x)), rather than as outside entities
to which the stack can be passed as an argument (push(A, x)). Conceptually,
there is a separate pair of push and pop operations for every stack. In practice,
of course, it would be highly wasteful to create multiple copies of the code. As we
shall see in Chapter 9, all stacks share a single pair of push and pop operations,
and the compiler arranges for a pointer to the relevant stack to be passed to the
operation as an extra, hidden parameter. The implementation turns out to be
very similar to the implementation of Figure 3.8, but the programmer need not
think of it that way.8

As an extension of the module-as-type approach to data abstraction, many
languages now provide a class construct for object-oriented programming. To first
approximation, classes can be thought of as module types that have been aug-
mented with an inheritance mechanism. Inheritance allows new classes to be de-
fined as extensions or refinements of existing classes. Inheritance facilitates a pro-

8 It is interesting to note that Turing, which was derived from Euclid, reverts to Modula-2 style
modules, in order to avoid implementation complexity [HMRC88, p. 9].
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gramming style in which all or most operations are thought of as belonging to
objects, and in which new objects can inherit most of their operations from exist-
ing objects, without the need to rewrite code. Classes have their roots in Simula-
67, and are the central innovation of object-oriented languages such as Smalltalk,
Eiffel, C++, Java, and C#. Inheritance mechanisms can also be found in several
languages that are not usually considered object-oriented, including Modula-3,
Ada 95, and Oberon. We will examine inheritance and its impact on scope rules
in Chapter 9.

Module types and classes (ignoring issues related to inheritance) require only
simple changes to the scope rules defined for modules in the previous subsection.
Every instance A of a module type or class (e.g., every stack) has a separate copy
of the module or class’s variables. These variables are then visible when execut-
ing one of A’s operations. They may also be indirectly visible to the operations
of some other instance B if A is passed as a parameter to one of those opera-
tions. This rule makes it possible in most object-oriented languages to construct
binary (or more-ary) operations that can manipulate the variables of more thanEXAMPLE 3.16

N-ary methods in C++ one instance of a class. In C++, for example, we could create an operation that
determines which of two stacks contains a larger number of elements:

class stack {

...

bool deeper(stack other) { // function declaration

return (top > other.top);

}

...

};

...

if (A.deeper(B)) ...

Within the deeper operation of stack A, top refers to A.top. Because deeper
is an operation of class stack, however, it is able to refer not only to the vari-
ables of A (which it can access directly by name), but also to the variables of any
other stack that is passed to it as an argument. Because these variables belong
to a different stack, deeper must name that stack explicitly—for example, as in
other.top. In a module-as-manager style program, of course, module subrou-
tines would access all instance variables via parameters. �

3.3.6 Dynamic Scope

In a language with dynamic scoping, the bindings between names and objects
depend on the flow of control at run time and, in particular, on the order in which
subroutines are called. In comparison to the static scope rules discussed in the
previous section, dynamic scope rules are generally quite simple: the “current”
binding for a given name is the one encountered most recently during execution,
and not yet destroyed by returning from its scope.
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1. a : integer –– global declaration

2. procedure first
3. a := 1

4. procedure second
5. a : integer –– local declaration
6. first()

7. a := 2
8. if read integer() > 0
9. second()

10. else
11. first()
12. write integer(a)

Figure 3.10 Static versus dynamic scope. Program output depends on both scope rules and,
in the case of dynamic scope, a value read at run time.

Languages with dynamic scoping include APL [Ive62], Snobol [GPP71], and
early dialects of Lisp [MAE+65, Moo78, TM81] and Perl.9 Because the flow of
control cannot in general be predicted in advance, the bindings between names
and objects in a language with dynamic scope cannot in general be determined
by a compiler. As a result, many semantic rules in a language with dynamic scope
become a matter of dynamic semantics rather than static semantics. Type check-
ing in expressions and argument checking in subroutine calls, for example, must
in general be deferred until run time. To accommodate all these checks, languages
with dynamic scoping tend to be interpreted rather than compiled.

As an example of dynamic scope, consider the program in Figure 3.10. If staticEXAMPLE 3.17
Static v. dynamic scope scoping is in effect, this program prints a 1. If dynamic scoping is in effect, the

program prints either a 1 or a 2, depending on the value read at line 8 at run time.
Why the difference? At issue is whether the assignment to the variable a at line 3
refers to the global variable declared at line 1 or to the local variable declared at
line 5. Static scope rules require that the reference resolve to the closest lexically
enclosing declaration—namely the global a. Procedure first changes a to 1, and
line 12 prints this value.

Dynamic scope rules, on the other hand, require that we choose the most re-
cent, active binding for a at run time. We create a binding for a when we enter
the main program. We create another when and if we enter procedure second.
When we execute the assignment statement at line 3, the a to which we are re-
ferring will depend on whether we entered first through second or directly from

9 Scheme and Common Lisp are statically scoped, though the latter allows the programmer to
specify dynamic scoping for individual variables. Static scoping was added to Perl in version 5.
The programmer now chooses static or dynamic scoping explicitly in each variable declaration.
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max score : integer –– maximum possible score

function scaled score(raw score : integer) : real
return raw score / max score * 100

. . .
procedure foo

max score : real := 0 –– highest percentage seen so far
. . .
foreach student in class

student.percent := scaled score(student.points)
if student.percent > max score

max score := student.percent

Figure 3.11 The problem with dynamic scoping. Procedure scaled score probably does not
do what the programmer intended when dynamic scope rules allow procedure foo to change
the meaning of max score.

the main program. If we entered through second, we will assign the value 1 to
second’s local a. If we entered from the main program, we will assign the value 1
to the global a. In either case, the write at line 12 will refer to the global a, since
second’s local a will be destroyed, along with its binding, when control returns
to the main program.

With dynamic scoping in effect, no program fragment that makes use of non-
local names is guaranteed a predictable referencing environment. In Figure 3.11,
for example, the declaration of a local variable in procedure foo accidentally
redefines a global variable used by function scaled score, which is then called
from foo. Since the global max score is an integer, while the local max score
is a floating-point number, dynamic semantic checks in at least some languages
will result in a type clash message at run time. If the local max score had been
an integer, no error would have been detected, but the program would almost
certainly have produced incorrect results. This sort of error can be very hard to
find. �

DESIGN & IMPLEMENTATION

Dynamic scoping
It is not entirely clear whether the use of dynamic scoping in Lisp and other
early interpreted languages was deliberate or accidental. One reason to think
that it may have been deliberate is that it makes it very easy for an interpreter to
look up the meaning of a name: all that is required is a stack of declarations (we
examine this stack more closely in Section 3.4.2). Unfortunately, this simple
implementation has a very high run-time cost, and experience indicates that
dynamic scoping makes programs harder to understand. The modern consen-
sus seems to be that dynamic scoping is usually a bad idea (see Exercise 3.15
and Exploration 3.29 for two exceptions).
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The principal argument in favor of dynamic scoping is that it facilitates theEXAMPLE 3.18
Customization via dynamic
scope

customization of subroutines. Suppose, for example, that we have a library rou-
tine print integer that is capable of printing its argument in any of several bases
(decimal, binary, hexadecimal, etc.). Suppose further that we want the routine to
use decimal notation most of the time, and to use other bases only in a few special
cases; we do not want to have to specify a base explicitly on each individual call.
We can achieve this result with dynamic scoping by having print integer obtain
its base from a nonlocal variable print base. We can establish the default behavior
by declaring a variable print base and setting its value to 10 in a scope encoun-
tered early in execution. Then, any time we want to change the base temporarily,
we can write

begin –– nested block
print base : integer := 16 –– use hexadecimal
print integer(n) �

The problem with this argument is that there are usually other ways to achieveEXAMPLE 3.19
Multiple interface
alternative

the same effect, without dynamic scoping. One option would be to have print
integer use decimal notation in all cases, and create another routine, print
integer with base, that takes a second argument. In a language like Ada or C++,
one could make the base an optional (default) parameter of a single print integer
routine, or use overloading to give the same name to both routines. (We will
consider default parameters in Section 8.3.3; overloading is discussed in Sec-
tion 3.6.2.) �

Unfortunately, using two different routines for printing (or one routine with
two calling sequences) requires that the caller know what is going on. In our
example, alternative routines work fine if the calls are all made in the scope in
which the local print base variable would have been declared. If that scope calls
subroutines that in turn call print integer, however, we cannot in general arrange
for the called routines to use the alternative interface. A second alternative toEXAMPLE 3.20

Static variable alternative dynamic scoping solves this problem: we can create a static variable, either global
or encapsulated with print integer inside an appropriate module, that controls
the base. To change the print base temporarily, we can then write

begin –– nested block
print base save : integer := print base
print base := 16 –– use hexadecimal
print integer(n)
print base := print base save

The possibility that we may forget to restore the original value, of course, is a
potential source of bugs. With dynamic scoping the value is restored automati-
cally. �
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3.4 Implementing Scope

To keep track of the names in a statically scoped program, a compiler relies on a
data abstraction called a symbol table. In essence, the symbol table is a dictionary:
it maps names to the information the compiler knows about them. The most ba-
sic operations serve to place a new mapping (a name-to-object binding) into the
table and to retrieve (nondestructively) the information held in the mapping for
a given name. Static scope rules in most languages impose additional complexity
by requiring that the referencing environment be different in different parts of
the program.

In a language with dynamic scoping, an interpreter (or the output of a com-
piler) must perform operations at run time that correspond to the insert, lookup,
enter scope, and leave scope symbol table operations in the implementation of
a statically scoped language. In principle, any organization used for a symbol
table in a compiler could be used to track name-to-object bindings in an inter-
preter, and vice versa. In practice, implementations of dynamic scoping tend to
adopt one of two specific organizations: an association list or a central reference
table.

IN MORE DEPTH

Most variations on static scoping can be handled by augmenting a basic
dictionary-style symbol table with enter scope and leave scope operations to
keep track of visibility. Nothing is ever deleted from the table; the entire structure
is retained throughout compilation, and then saved for the debugger. A symbol
table with visibility support can be implemented in several different ways. One
appealing approach, due to LeBlanc and Cook [CL83], is described on the PLP
CD.

An association list (or A-list for short) is simply a list of name/value pairs.
When used to implement dynamic scope it functions as a stack: new declara-
tions are pushed as they are encountered, and popped at the end of the scope
in which they appeared. Bindings are found by searching down the list from the
top. A central reference table avoids the need for linear-time search by maintain-
ing an explicit mapping from names to their current meanings. Lookup is faster,
but scope entry and exit are somewhat more complex, and it becomes substan-
tially more difficult to save a referencing environment for future use (we discuss
this issue further in Section 3.5.1).

CHECK YOUR UNDERSTANDING

21. Explain the importance of information hiding.

22. What is an opaque export?
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23. Why might it be useful to distinguish between the header and the body of a
module?

24. What does it mean for a scope to be closed?

25. Explain the distinction between “modules as managers” and “modules as
types.”

26. How do classes differ from modules?

27. Why does the use of dynamic scoping imply the need for run-time type
checking?

28. Give an argument in favor of dynamic scoping. Describe how similar benefits
can be achieved in a language without dynamic scoping.

29. Explain the purpose of a compiler’s symbol table.

3.5 The Binding of Referencing Environments

We have seen in the previous section how scope rules determine the referencing
environment of a given statement in a program. Static scope rules specify that
the referencing environment depends on the lexical nesting of program blocks
in which names are declared. Dynamic scope rules specify that the referencing
environment depends on the order in which declarations are encountered at run
time. An additional issue that we have not yet considered arises in languages that
allow one to create a reference to a subroutine—for example, by passing it as
a parameter. When should scope rules be applied to such a subroutine: when
the reference is first created, or when the routine is finally called? The answer is
particularly important for languages with dynamic scoping, though we shall see
that it matters even in languages with static scoping. As an example of the former,EXAMPLE 3.21

Deep and shallow binding consider the program fragment shown in Figure 3.12. (As in Figure 3.10, we use
an Algol-like syntax, even though Algol-family languages are usually statically
scoped.)

Procedure print selected records in our example is assumed to be a general
purpose routine that knows how to traverse the records in a database, regardless
of whether they represent people, sprockets, or salads. It takes as parameters a
database, a predicate to make print/don’t print decisions, and a subroutine that
knows how to format the data in the records of this particular database. In Sec-
tion 3.3.6 we hypothesized a print integer library routine that would print in
any of several bases, depending on the value of a nonlocal variable print base.
Here we have hypothesized in a similar fashion that print person uses the value
of nonlocal variable line length to calculate the number and width of columns
in its output. In a language with dynamic scope, it is natural for procedure print
selected records to declare and initialize this variable locally, knowing that code
inside print routine will pick it up if needed. For this coding technique to work,
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type person = record
. . .
age : integer
. . .

threshold : integer
people : database

function older than(p : person) : boolean
return p.age ≥ threshold

procedure print person(p : person)
–– Call appropriate I/O routines to print record on standard output.
–– Make use of nonlocal variable line length to format data in columns.
. . .

procedure print selected records(db : database;
predicate, print routine : procedure)

line length : integer

if device type(stdout) = terminal
line length := 80

else –– Standard output is a file or printer.
line length := 132

foreach record r in db
–– Iterating over these may actually be
–– a lot more complicated than a ‘for’ loop.
if predicate(r)

print routine(r)

–– main program
. . .
threshold := 35
print selected records(people, older than, print person)

Figure 3.12 Program to illustrate the importance of binding rules. One might argue that deep
binding is appropriate for the environment of function older than (for access to threshold),
while shallow binding is appropriate for the environment of procedure print person (for access
to line length).

the referencing environment of print routine must not be created until the rou-
tine is actually called by print selected records. This late binding of the ref-
erencing environment of a subroutine that has been passed as a parameter is
known as shallow binding. It is usually the default in languages with dynamic
scoping.

For function older than, by contrast, shallow binding may not work well. If,
for example, procedure print selected records happens to have a local variable
named threshold, then the variable set by the main program to influence the be-
havior of older than will not be visible when the function is finally called, and
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the predicate will be unlikely to work correctly. In such a situation, the code that
originally passes the function as a parameter has a particular referencing envi-
ronment (the current one) in mind; it does not want the routine to be called in
any other environment. It therefore makes sense to bind the environment at the
time the routine is first passed as a parameter, and then restore that environment
when the routine is finally called. This early binding of the referencing environ-
ment is known as deep binding. The need for deep binding is sometimes referred
to as the funarg problem in Lisp. �

3.5.1 Subroutine Closures

Deep binding is implemented by creating an explicit representation of a refer-
encing environment (generally the one in which the subroutine would execute if
called at the present time) and bundling it together with a reference to the sub-
routine. The bundle as a whole is referred to as a closure. Usually the subroutine
itself can be represented in the closure by a pointer to its code. If an association
list is used to represent the referencing environment of a program with dynamic
scoping, then the referencing environment in a closure can be represented by a
top-of-stack (beginning of A-list) pointer. When a subroutine is called through
a closure, the main pointer to the referencing environment A-list is temporarily
replaced by the saved pointer, making any bindings created since the closure was
created temporarily invisible. New bindings created within the subroutine are
pushed using the temporary pointer. Because the A-list is represented by point-
ers (rather than an array), the effect is to have two lists—one representing the
temporary referencing environment resulting from use of the closure and the
other the main referencing environment that will be restored when the subrou-
tine returns—that share their older entries.

If a central reference table is used to represent the referencing environment of
a program with dynamic scoping, then the creation of a closure is more com-
plicated. In the general case, it may be necessary to copy the entire main array
of the central table and the first entry on each of its lists. Space and time over-
head may be reduced if the compiler or interpreter is able to determine that only
some of the program’s names will be used by the subroutine in the closure (or by
things that the subroutine may call). In this case, the environment can be saved
by copying the first entries of the lists for only the “interesting” names. When the
subroutine is called through the closure, these entries can then be pushed onto
the beginnings of the appropriate lists in the central reference table.

Deep binding is often available as an option in languages with dynamic scope.
In early dialects of Lisp, for example, the built-in primitive function takes a
function as its argument and returns a closure whose referencing environment is
the one in which the function would execute if called at the present time. This
closure can then be passed as a parameter to another function. If and when it is
eventually called, it will execute in the saved environment. (Closures work slightly
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program binding_example(input, output);

procedure A(I : integer; procedure P);

procedure B;

begin

writeln(I);

end;

begin (* A *)

if I > 1 then

P

else

A(2, B);

end;

procedure C; begin end;

begin (* main *)

A(1, C);

end.

Figure 3.13 Deep binding in Pascal. When B is called via formal parameter P, two instances
of I exist. Because the closure for P was created in the initial invocation of A, it uses that
invocation’s instance of I, and prints a 1.

differently from “bare” functions in most Lisp dialects: they must be called by
passing them to the built-in primitives funcall or apply.)

Deep binding is generally the default in languages with static (lexical) scoping.
At first glance, one might be tempted to think that the binding time of referenc-
ing environments would not matter in languages with static scoping. After all,
the meaning of a statically scoped name depends on its lexical nesting, not on
the flow of execution, and this nesting is the same whether it is captured at the
time a subroutine is passed as a parameter or at the time the subroutine is called.
The catch is that a running program may have more than one instance of an ob-
ject that is declared within a recursive subroutine. A closure in a language with
static scoping captures the current instance of every object, at the time the clo-
sure is created. When the closure’s subroutine is called, it will find these captured
instances, even if newer instances have subsequently been created by recursive
calls.

One could imagine combining static scoping with shallow binding [VF82],
but the combination does not seem to make much sense, and it does not appear
to have been adopted in any language. Figure 3.13 contains a Pascal programEXAMPLE 3.22

Binding rules with static
scoping

that illustrates the impact of binding rules in the presence of static scoping. This
program prints a 1. With shallow binding it would print a 2. �
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It should be noted that binding rules matter with static scoping only when
accessing objects that are neither local nor global. If an object is local to the cur-
rently executing subroutine, then it does not matter whether the subroutine was
called directly or through a closure; in either case local objects will have been cre-
ated when the subroutine started running. If an object is global, there will never
be more than one instance, since the main body of the program is not recursive.
Binding rules are therefore irrelevant in languages like C, which has no nested
subroutines, or Modula-2, which allows only outermost subroutines to be passed
as parameters. (They are also irrelevant in languages like PL/I and Ada 83, which
do not permit subroutines to be passed as parameters at all.)

Suppose then that we have a language with static scoping in which nested sub-
routines can be passed as parameters, with deep binding. To represent a closure
for subroutine S, we can simply save a pointer to S’s code together with the sta-
tic link that S would use if it were called right now, in the current environment.
When S is finally called, we temporarily restore the saved static link, rather than
creating a new one. When S follows its static chain to access a nonlocal object,
it will find the object instance that was current at the time the closure was cre-
ated.

3.5.2 First- and Second-Class Subroutines

In general, a value in a programming language is said to have first-class status
if it can be passed as a parameter, returned from a subroutine, or assigned into
a variable. Simple types such as integers and characters are first-class values in
most programming languages. By contrast, a “second-class” value can be passed
as a parameter, but not returned from a subroutine or assigned into a variable,
and a “third-class” value cannot even be passed as a parameter. As we shall see
in Section 8.3.2, labels are third-class values in most programming languages but
second-class values in Algol. Subroutines are second-class values in most imper-
ative languages but third-class values in Ada 83. They are first-class values in all
functional programming languages, in C#, Perl, and Python, and, with certain
restrictions, in several other imperative languages, including Fortran, Modula-2
and -3, Ada 95, C, and C++.10

So far in this subsection we have considered the ramifications of second-class
subroutines. First-class subroutines in a language with nested scopes introduce
an additional level of complexity: they raise the possibility that a reference to
a subroutine may outlive the execution of the scope in which that routine was
declared. Consider the following example in Scheme.EXAMPLE 3.23

Returning a first-class
subroutine in Scheme

10 Some authors would say that first-class status requires the ability to create new functions at run
time. C#, Perl, Python, and all functional languages meet this requirement, but most imperative
languages do not.
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1. (define plus_x (lambda (x)

2. (lambda (y) (+ x y))))

3. ...

4. (let ((f (plus_x 2)))

5. (f 3)) ; returns 5

Here the let construct on line 4 declares a new function, f, which is the result
of calling plus_x with argument 2. (Like all Lisp dialects, Scheme puts the func-
tion name inside the parentheses, right in front of the arguments. The lambda
keyword introduces the parameter list and body of a function.) When f is called
at line 5, it must use the 2 that was passed to plus_x, despite the fact that plus_x
has already returned. �

If local objects were destroyed (and their space reclaimed) at the end of each
scope’s execution, then the referencing environment captured in a long-lived clo-
sure might become full of dangling references. To avoid this problem, most func-
tional languages specify that local objects have unlimited extent: their lifetimes
continue indefinitely. Their space can be reclaimed only when the garbage col-
lection system is able to prove that they will never be used again. Local objects
(other than own/static variables) in Algol-family languages generally have lim-
ited extent: they are destroyed at the end of their scope’s execution. Space for local
objects with limited extent can be allocated on a stack. Space for local objects with
unlimited extent must generally be allocated on a heap.

Given the desire to maintain stack-based allocation for the local variables
of subroutines, imperative languages with first-class subroutines must generally
adopt alternative mechanisms to avoid the dangling reference problem for clo-
sures. C, C++, and Fortran, of course, do not have nested subroutines. Modula-2
allows references to be created only to outermost subroutines (outermost rou-
tines are first-class values; nested routines are third-class values). Modula-3 al-
lows nested subroutines to be passed as parameters, but only outermost routines
to be returned or stored in variables (outermost routines are first-class values;
nested routines are second-class values). Ada 95 allows a nested routine to be re-
turned, but only if the scope in which it was declared is at least as wide as that
of the declared return type. This containment rule, while more conservative than
strictly necessary (it forbids the Ada equivalent of Figure 3.13), makes it impossi-

DESIGN & IMPLEMENTATION

Binding rules and extent
Binding mechanisms and the notion of extent are closely tied to implemen-
tation issues. A-lists make it easy to build closures, but so do the non-nested
subroutines of C and the rule against passing non-global subroutines as pa-
rameters in Modula-2. In a similar vein, the lack of first-class subroutines in
most imperative languages reflects in large part the desire to avoid heap allo-
cation, which would be needed for local variables with unlimited extent.
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ble to propagate a subroutine reference to a portion of the program in which the
routine’s referencing environment is not active.

3.6 Binding Within a Scope

So far in our discussion of naming and scopes we have assumed that every name
must refer to a distinct object in every scope. This is not necessarily the case.
Two or more names that refer to a single object in a given scope are said to be
aliases. A name that can refer to more than one object in a given scope is said to
be overloaded.

3.6.1 Aliases

Simple examples of aliases occur in the common blocks and equivalence state-EXAMPLE 3.24
Aliasing with parameters ments of Fortran (Section 3.3.1) and in the variant records and unions of lan-

guages like Pascal and C#. They also arise naturally in programs that make use of
pointer-based data structures. A more subtle way to create aliases in many lan-
guages is to pass a variable by reference to a subroutine that also accesses that vari-
able directly (consider variable sum in Figure 3.14). As we noted in Section 3.3.4,
Euclid and Turing use explicit and implicit subroutine import lists to catch and
prohibit precisely this case. �

As a general rule, aliases tend to make programs more confusing than they
otherwise would be. They also make it much more difficult for a compiler to
perform certain important code improvements. Consider the following C code.EXAMPLE 3.25

Aliases and code
improvement

DESIGN & IMPLEMENTATION

Pointers in C and Fortran
The tendency of pointers to introduce aliases is one of the reasons why Fortran
compilers have tended, historically, to produce faster code than C compilers:
pointers are heavily used in C but missing from Fortran 77 and its predeces-
sors. It is only in recent years that sophisticated alias analysis algorithms have
allowed C compilers to rival their Fortran counterparts in speed of generated
code. Pointer analysis is sufficiently important that the designers of the C99
standard decided to add a new keyword to the language. The restrict qual-
ifier, when attached to a pointer declaration, is an assertion on the part of the
programmer that the object to which the pointer refers has no alias in the cur-
rent scope. It is the programmer’s responsibility to ensure that the assertion is
correct; the compiler need not attempt to check it.
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double sum, sum_of_squares;

...

void accumulate(double& x) // x passed by reference

{

sum += x;

sum_of_squares += x * x;

}

...

accumulate(sum);

Figure 3.14 Example of a potentially problematic alias in C++. Procedure accumulate prob-
ably does not do what the programmer intended when sum is passed as a parameter.

int a, b, *p, *q;

...

a = *p; /* read from the variable referred to by p */

*q = 3; /* assign to the variable referred to by q */

b = *p; /* read from the variable referred to by p */

The initial assignment to a will, on most machines, require that *p be loaded into
a register. Since accessing memory is expensive, the compiler will want to hang
onto the loaded value and reuse it in the assignment to b. It will be unable to
do so, however, unless it can verify that p and q cannot refer to the same object.
While verification of this sort is possible in many common cases, in general it’s
uncomputable. �

3.6.2 Overloading

Most programming languages provide at least a limited form of overloading. In
C, for example, the plus sign (+) is used to name two different functions: integer
and floating-point addition. Most programmers don’t worry about the distinc-
tion between these two functions—both are based on the same mathematical
concept, after all—but they take arguments of different types and perform very
different operations on the underlying bits. A slightly more sophisticated formEXAMPLE 3.26

Overloaded enumeration
constants in Ada

of overloading appears in the enumeration constants of Ada. In Figure 3.15, the
constants oct and dec refer either to months or to numeric bases, depending on
the context in which they appear. �

Within the symbol table of a compiler, overloading must be handled by ar-
ranging for the lookup routine to return a list of possible meanings for the re-
quested name. The semantic analyzer must then choose from among the ele-
ments of the list based on context. When the context is not sufficient to decide,
as in the call to print in Figure 3.15, then the semantic analyzer must announce
an error. Most languages that allow overloaded enumeration constants allow theEXAMPLE 3.27

Resolving ambiguous
overloads

programmer to provide appropriate context explicitly. In Ada, for example, one
can say
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declare

type month is (jan, feb, mar, apr, may, jun,

jul, aug, sep, oct, nov, dec);

type print_base is (dec, bin, oct, hex);

mo : month;

pb : print_base;

begin

mo := dec; -- the month dec

pb := oct; -- the print_base oct

print(oct); -- error! insufficient context to decide

Figure 3.15 Overloading of enumeration constants in Ada.

print(month’(oct)); �
In Modula-3, and C#, every use of an enumeration constant must be prefixed
with a type name, even when there is no chance of ambiguity:

mo := month.dec;

pb := print_base.oct;

In C, C++, and standard Pascal, one cannot overload enumeration constants at
all; every constant visible in a given scope must be distinct.

Both Ada and C++ have elaborate facilities for overloading subroutine names.EXAMPLE 3.28
Overloading in Ada and
C++

(Most of the C++ facilities carry over to Java and C#.) A given name may refer
to an arbitrary number of subroutines in the same scope, so long as the subrou-
tines differ in the number or types of their arguments. C++ examples appear in
Figure 3.16.11 �

Ada, C++, C#, and Fortran 90 also allow the built-in arithmetic operators (+,EXAMPLE 3.29
Overloading built-in
operators

-, *, etc.) to be overloaded with user-defined functions. Ada, C++, and C# do
this by defining alternative prefix forms of each operator, and defining the usual
infix forms to be abbreviations (or “syntactic sugar”) for the prefix forms. In
Ada, A + B is short for "+"(A, B). If "+" is overloaded, it must be possible to
determine the intended meaning from the types of A and B. In C++ and C#, A +
B is short for A.operator+(B), where A is an instance of a class (module type)
that defines an operator+ function. The class-based style of abbreviation in C++
and C# resembles a similar facility in Clu. Since the abbreviation expands to an
unambiguous name (i.e., A’s operator+; not any other), one might be tempted
to say that no “real” overloading is involved, and this is in fact the case in Clu. In
C++ and C#, however, there may be more than one definition of A.operator+,
allowing the second argument to be of several types. Fortran 90 provides a special
interface construct that can be used to associate an operator with some named
binary function. �

11 C++ actually provides more elegant ways to handle both I/O and user-defined types such as
complex. We examine these in Section 7.9 and Chapter 9.
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struct complex {

double real, imaginary;

};

enum base {dec, bin, oct, hex};

int i;

complex x;

void print_num(int n) ...

void print_num(int n, base b) ...

void print_num(complex c) ...

print_num(i); // uses the first function above

print_num(i, hex); // uses the second function above

print_num(x); // uses the third function above

Figure 3.16 Simple example of overloading in C++. In each case the compiler can tell which
function is intended by the number and types of arguments.

3.6.3 Polymorphism and Related Concepts

In the case of subroutine names, it is worth distinguishing overloading from the
closely related concepts of coercion and polymorphism. All three can be used, in
certain circumstances, to pass arguments of multiple types to (or return values
of multiple types from) a given named routine. The syntactic similarity, however,
hides significant differences in semantics and pragmatics.

Suppose, for example, that we wish to be able to compute the minimum ofEXAMPLE 3.30
Overloading v. coercion two values of either integer or floating-point type. In Ada we might obtain this

capability using overloaded functions:

function min(a, b : integer) return integer is ...

function min(x, y : real) return real is ...

In Fortran, however, we could get by with a single function:

real function min(x, y)

real x, y

...

If the Fortran function is called in a context that expects an integer (e.g.,
i = min(j, k)), the compiler will automatically convert the integer arguments
(j and k) to floating-point numbers, call min, and then convert the result back
to an integer (via truncation). So long as real variables have at least as many sig-
nificant bits as integers (which they do in the case of 32-bit integers and 64-bit
double-precision floating-point), the result will be numerically correct. �

Coercion is the process by which a compiler automatically converts a value of
one type into a value of another type when that second type is required by the
surrounding context. As we shall see in Section 7.2.2, coercion is somewhat con-
troversial. Pascal provides a limited number of coercions. Fortran and C provide
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more. C++ provides an extremely rich set, and allows the programmer to de-
fine more. Ada as a matter of principle coerces nothing but explicit constants,
subranges, and in certain cases arrays with the same type of elements.

In our example, overloading allows the Ada compiler to choose between two
different versions of min, depending on the types of the arguments. Coercion
allows the Fortran compiler to modify the arguments to fit a single subroutine.
Polymorphism provides yet another option: it allows a single subroutine to accept
unconverted arguments of multiple types.

The term polymorphic is from the Greek, meaning “having multiple forms.”
It is applied to code—both data structures and subroutines—that can work with
values of multiple types. For this concept to make sense, the types must gen-
erally have certain characteristics in common, and the code must not depend
on any other characteristics. The commonality is usually captured in one of two
main ways. In parametric polymorphism the code takes a type (or set of types) as
a parameter, either explicitly or implicitly. In subtype polymorphism the code is
designed to work with values of some specific type T, but the programmer can
define additional types to be extensions or refinements of T, and the polymorphic
code will work with these subtypes as well.

Explicit parametric polymorphism is also known as genericity. Generic facil-
ities appear in Ada, C++, Clu, Eiffel, Modula-3, and recent versions of Java and
C#, among others. Readers familiar with C++ will know them by the name of
templates. We will consider them further in Sections 8.4 and 9.4.4. Implicit para-
metric polymorphism appears in the Lisp and ML families of languages, and
in various scripting languages; we will consider it further in Sections 7.2.4
and 10.3. Subtype polymorphism is fundamental to object-oriented languages,
in which subtypes (classes) are said to inherit the methods of their parent types.
We will consider inheritance further in Section 9.4.

Generics (explicit parametric polymorphism) are usually, though not always,
implemented by creating multiple copies of the polymorphic code, one special-
ized for each needed concrete type. Inheritance (subtype polymorphism) is al-
most always implemented by creating a single copy of the code, and by insert-
ing sufficient “metadata” in the representation of objects that the code can tell
when to treat them differently. Implicit parametric polymorphism can be imple-

DESIGN & IMPLEMENTATION

Coercion and overloading
In addition to their semantic differences, coercion and overloading can have
very different costs. Calling an integer-specific version of min would be much
more efficient than calling the floating-point version with integer arguments:
it would use integer arithmetic for the comparison (which is cheaper in and
of itself) and would avoid four conversion operations. One of the arguments
against supporting coercion in a language is that it tends to impose hidden
costs.
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generic

type T is private;

with function "<"(x, y : T) return Boolean;

function min(x, y : T) return T;

function min(x, y : T) return T is

begin

if x < y then return x;

else return y;

end if;

end min;

function string_min is new min(string, "<");

function date_min is new min(date, date_precedes);

Figure 3.17 Use of a generic subroutine in Ada.

mented either way. Most Lisp implementations use a single copy of the code, and
delay all semantic checks until run time. ML and its descendants perform all type
checking at compile time. They typically generate a single copy of the code where
possible (e.g., when all the types in question are records that share a similar repre-
sentation) and generate multiple copies when necessary (e.g., when polymorphic
arithmetic must operate on both integer and floating-point numbers). Object-
oriented languages that perform type checking at compile time, including C++,
Eiffel, Java, and C#, generally provide both generics and inheritance. Smalltalk
(Section 9.6.1), Objective-C, Python, and Ruby use a single mechanism (with
run-time checking) to provide both parametric and subtype polymorphism.

As a concrete example of generics, consider the overloaded min functions ofEXAMPLE 3.31
Generic min function in
Ada

Example 3.30. The code for the integer and floating-point versions is likely to be
very similar. We can exploit this similarity to define a single version that works
not only for integers and reals, but for any type whose values are totally ordered.
This code appears in Figure 3.17. The initial (bodyless) declaration of min is pre-
ceded by a generic clause specifying that two things are required in order to
create a concrete instance of a minimum function: a type, T, and a correspond-

DESIGN & IMPLEMENTATION

Generics as macros
In some sense, the local stack module of Figure 3.7 (page 127) is a primitive
sort of generic module. Because it imports the element type and stack_size
constant, it can be inserted (with a text editor) into any context in which these
names are declared, and will produce a “customized” stack for that context
when compiled. Early versions of C++ formalized this mechanism by using
macros to implement templates. Later versions of C++ have made templates
(generics) a fully supported language feature.
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ing comparison routine. This declaration is followed by the actual code for min.
Given appropriate declarations of string and date types (not shown), we can
create functions to return the lesser of pairs of objects of these types as shown in
the last two lines. (The "<" operation mentioned in the definition of string_min
is presumably overloaded; the compiler resolves the overloading by finding the
version of "<" that takes arguments of type T, where T is already known to be
string.) �

With the implicit parametric polymorphism of Lisp, ML, and their descen-EXAMPLE 3.32
Implicit polymorphism in
Scheme

dants, the programmer need not specify a type parameter. The Scheme definition
of min looks like this:

(define min (lambda (a b) (if (< a b) a b)))

It makes no mention of types. The typical Scheme implementation employs an
interpreter that examines the arguments to min and determines, at run time,
whether they support a < operator. Given the preceding definition, the expres-
sion (min 123 456) evaluates to 123; (min 3.14159 2.71828) evaluates to
2.71828. The expression (min "abc" "def") produces a run-time error when
evaluated, because the string comparison operator is named string<?, not <.�

The Haskell version of min is even simpler and more general:EXAMPLE 3.33
Implicit polymorphism in
Haskell min a b = if a < b then a else b

This version works for values of any totally ordered type, including strings. It is
type-checked at compile time, using a sophisticated system of type inference (to
be described in Section 7.2.4). �

So what exactly is the difference between the overloaded min functions of Ex-
ample 3.30 and the generic version of Figure 3.17? The answer lies in the gener-
ality of the code. With overloading the programmer must write a separate copy
of the code, by hand, for every type with a min operation. Generics allow the
compiler (in the typical implementation) to create a copy automatically for every
needed type. The similarity of the calling syntax and of the generated code has
led some authors to refer to overloading as ad hoc (special case) polymorphism.
There is no particular reason, however, for the programmer to think of generics
in terms of multiple copies: from a semantic (conceptual) point of view, over-
loaded subroutines use a single name for more than one thing; a polymorphic
subroutine is a single thing.

CHECK YOUR UNDERSTANDING

30. Describe the difference between deep and shallow binding of referencing en-
vironments.

31. Why are binding rules particularly important for languages with dynamic
scoping?

32. What is a closure? What is it used for? How is it implemented?

33. What are first-class subroutines? What languages support them?



3.7 Separate Compilation 149

34. Explain the distinction between limited and unlimited extent of objects in a
local scope.

35. What are aliases? Why are they considered a problem in language design and
implementation?

36. Explain the value of the restrict qualifier in C99.

37. Explain the differences between overloading, coercion, and polymorphism.

38. Define parametric and subtype polymorphism. Explain the distinction be-
tween explicit and implicit parametric polymorphism. Which is also known
as genericity?

39. Why is overloading sometimes referred to as ad hoc polymorphism?

3.7 Separate Compilation

Since most large programs are constructed and tested incrementally, and since
the compilation of a very large program can be a multihour operation, any lan-
guage designed to support large programs must provide a separate compilation
facility.

IN MORE DEPTH

Because they are designed for encapsulation and provide a narrow interface,
modules are the natural choice for the “compilation units” of many program-
ming languages. The separate module headers and bodies of Modula-3 and Ada,
for example, are explicitly intended for separate compilation, and reflect expe-
rience gained with more primitive facilities in other languages. C and C++, by
contrast, must maintain backward compatibility with mechanisms designed in
the early 1970s. C++ includes a namespace mechanism that provides module-
like data hiding, but names must still be declared before they are used in every
compilation unit, and the mechanisms used to accommodate this rule are purely
a matter of convention. Java and C# break with the C tradition by requiring the
compiler to infer header information automatically from separately compiled
class definitions; no header files are required.

3.8 Summary and Concluding Remarks

This chapter has addressed the subject of names, and the binding of names to
objects (in a broad sense of the word). We began with a general discussion of the
notion of binding time: the time at which a name is associated with a particular
object or, more generally, the time at which an answer is associated with any open
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question in language or program design or implementation. We defined the no-
tion of lifetime for both objects and name-to-object bindings, and noted that they
need not be the same. We then introduced the three principal storage allocation
mechanisms—static, stack, and heap—used to manage space for objects.

In Section 3.3 we described how the binding of names to objects is governed by
scope rules. In some languages, scope rules are dynamic: the meaning of a name is
found in the most recently entered scope that contains a declaration and that has
not yet been exited. In most modern languages, however, scope rules are static, or
lexical: the meaning of a name is found in the closest lexically surrounding scope
that contains a declaration. We found that lexical scope rules vary in important
but sometimes subtle ways from one language to another. We considered what
sorts of scopes are allowed to nest, whether scopes are open or closed, whether the
scope of a name encompasses the entire block in which it is declared, and whether
a name must be declared before it is used. We explored the implementation of
scope rules in Section 3.4. In Section 3.5 we considered the question of when to
bind a referencing environment to a subroutine that is passed as a parameter,
returned from a function, or stored in a variable.

Some of the more complicated aspects of lexical scoping illustrate the evolu-
tion of language support for data abstraction, a subject to which we will return
in Chapter 9. We began by describing the own or static variables of languages
like Fortran, Algol 60, and C, which allow a variable that is local to a subroutine
to retain its value from one invocation to the next. We then noted that simple
modules can be seen as a way to make long-lived objects local to a group of sub-
routines, in such a way that they are not visible to other parts of the program.
At the next level of complexity, we noted that some languages treat modules as
types, allowing the programmer to create an arbitrary number of instances of the
abstraction defined by a module. We contrasted this module-as-abstraction style
of programming with the module-as-manager approach. Finally, we noted that
object-oriented languages extend the module-as-abstraction approach by pro-
viding an inheritance mechanism that allows new abstractions (classes) to be de-
fined as extensions or refinements of existing classes.

In Section 3.6 we examined several ways in which bindings relate to one an-
other. Aliases arise when two or more names in a given scope are bound to the
same object. Overloading arises when one name is bound to multiple objects.
Polymorphism allows a single body of code to operate on objects of more than
one type, depending on context or execution history. We noted that while similar
effects can sometimes be achieved through overloading, coercion, and polymor-
phism, the underlying mechanisms are really very different. In Section 3.7 we
considered rules for separate compilation.

Among the topics considered in this chapter, we saw several examples of use-
ful features (recursion, static scoping, forward references, first-class subroutines,
unlimited extent) that have been omitted from certain languages because of
concern for their implementation complexity or run-time cost. We also saw an
example of a feature (the private part of a module specification) introduced ex-
pressly to facilitate a language’s implementation, and another (separate compila-
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tion in C) whose design was clearly intended to mirror a particular implementa-
tion. In several additional aspects of language design (late versus early binding,
static versus dynamic scope, support for coercions and conversions, toleration of
pointers and other aliases), we saw that implementation issues play a major role.

In a similar vein, apparently simple language rules can have surprising im-
plications. In Section 3.3.3, for example, we considered the interaction of whole-
block scope with the requirement that names be declared before they can be used.
Like the do loop syntax and white space rules of Fortran (Section 2.2.2) or the
if. . . then . . . else syntax of Pascal (Section 2.3.2), poorly chosen scoping rules
can make program analysis difficult not only for the compiler, but for human
beings as well. In future chapters we shall see several additional examples of fea-
tures that are both confusing and hard to compile. Of course, semantic utility and
ease of implementation do not always go together. Many easy-to-compile features
(goto statements, for example) are of questionable value at best. We will also
see several examples of highly useful and (conceptually) simple features, such as
garbage collection (Section 7.7.3) and unification (Sections 7.2.4 and 11.2.1),
whose implementations are quite complex.

3.9 Exercises

3.1 Indicate the binding time (e.g., when the language is designed, when the
program is linked, when the program begins execution, etc.) for each of the
following decisions in your favorite programming language and implemen-
tation. Explain any answers you think are open to interpretation.

� The number of built-in functions (math, type queries, etc.)

� The variable declaration that corresponds to a particular variable refer-
ence (use)

� The maximum length allowed for a constant (literal) character string

� The referencing environment for a subroutine that is passed as a param-
eter

� The address of a particular library routine

� The total amount of space occupied by program code and data

3.2 In Fortran 77, local variables are typically allocated statically. In Algol and its
descendants (e.g., Pascal and Ada), they are typically allocated in the stack.
In Lisp they are typically allocated at least partially in the heap. What ac-
counts for these differences? Give an example of a program in Pascal or Ada
that would not work correctly if local variables were allocated statically. Give
an example of a program in Scheme or Common Lisp that would not work
correctly if local variables were allocated on the stack.
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3.3 Give two examples in which it might make sense to delay the binding of an
implementation decision, even though sufficient information exists to bind
it early.

3.4 Give three concrete examples drawn from programming languages with
which you are familiar in which a variable is live but not in scope.

3.5 Consider the following pseudocode, assuming nested subroutines and static
scope.

procedure main
g : integer

procedure B(a : integer)
x : integer

procedure A(n : integer)
g := n

procedure R(m : integer)
write integer(x)
x /:= 2 –– integer division
if x > 1

R(m + 1)
else

A(m)

–– body of B
x := a × a
R(1)

–– body of main
B(3)
write integer(g)

(a) What does this program print?

(b) Show the frames on the stack when A has just been called. For each
frame, show the static and dynamic links.

(c) Explain how A finds g.

3.6 As part of the development team at MumbleTech.com, Janet has written a
list manipulation library for C that contains, among other things, the code
in Figure 3.18.

(a) Accustomed to Java, new team member Brad includes the following
code in the main loop of his program.

list_node *L = 0;

while (more_widgets()) {

insert(next_widget(), L);

}

L = reverse(L);
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typedef struct list_node {

void *data;

struct list_node *next;

} list_node;

list_node *insert(void *d, list_node *L) {

list_node *t = (list_node *) malloc(sizeof(list_node));

t->data = d;

t->next = L;

return t;

}

list_node *reverse(list_node *L) {

list_node *rtn = 0;

while (L) {

rtn = insert(L->data, rtn);

L = L->next;

}

return rtn;

}

void delete_list(list_node *L) {

while (L) {

list_node *t = L;

L = L->next;

free(t->data);

free(t);

}

}

Figure 3.18 List management routines for Exercise 3.6.

Sadly, after running for a while, Brad’s program always runs out of
memory and crashes. Explain what’s going wrong.

(b) After Janet patiently explains the problem to him, Brad gives it another
try:

list_node *L = 0;

while (more_widgets()) {

insert(next_widget(), L);

}

list_node *T = reverse(L);

delete_list(L);

L = T;

This seems to solve the insufficient memory problem, but where the
program used to produce correct results (before running out of mem-
ory), now its output is strangely corrupted, and Brad goes back to Janet
for advice. What will she tell him this time?
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3.7 Rewrite Figures 3.7 and 3.8 in C.

3.8 Modula-2 provides no way to divide the header of a module into a public
part and a private part: everything in the header is visible to the users of
the module. Is this a major shortcoming? Are there disadvantages to the
public/private division (e.g., as in Ada)? (For hints, see Section 9.2.)

3.9 Consider the following fragment of code in C.

{ int a, b, c;

...

{ int d, e;

...

{ int f;

...

}

...

}

...

{ int g, h, i;

...

}

...

}

Assume that each integer variable occupies four bytes. How much total space
is required for the variables in this code? Describe an algorithm that a com-
piler could use to assign stack frame offsets to the variables of arbitrary
nested blocks, in a way that minimizes the total space required.

3.10 Consider the design of a Fortran 77 compiler that uses static allocation for
the local variables of subroutines. Expanding on the solution to the previ-
ous question, describe an algorithm to minimize the total space required
for these variables. You may find it helpful to construct a call graph data
structure in which each node represents a subroutine and each directed arc
indicates that the subroutine at the tail may sometimes call the subroutine
at the head.

3.11 Consider the following pseudocode.

procedure P(A, B : real)
X : real

procedure Q(B, C : real)
Y : real
. . .

procedure R(A, C : real)
Z : real
. . . –– (*)

. . .
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Assuming static scope, what is the referencing environment at the location
marked by (*)?

3.12 Write a simple program in Scheme that displays three different behaviors,
depending on whether we use let, let*, or letrec to declare a given set
of names. (Hint: To make good use of letrec, you will probably want your
names to be functions [lambda expressions].)

3.13 Consider the following pseudocode.

x : integer –– global

procedure set x(n : integer)
x := n

procedure print x
write integer(x)

procedure first
set x(1)
print x

procedure second
x : integer
set x(2)
print x

set x(0)
first()
print x
second()
print x

What does this program print if the language uses static scoping? What does
it print with dynamic scoping? Why?

3.14 Consider the programming idiom illustrated in Example 3.20. One of the
reviewers for this book suggests that we think of this idiom as a way to im-
plement a central reference table for dynamic scope. Explain what is meant
by this suggestion.

3.15 If you are familiar with structured exception-handling, as provided in Ada,
Modula-3, C++, Java, C#, ML, Python, or Ruby, consider how this mecha-
nism relates to the issue of scoping. Conventionally, a raise or throw state-
ment is thought of as referring to an exception, which it passes as a parame-
ter to a handler-finding library routine. In each of the languages mentioned,
the exception itself must be declared in some surrounding scope, and is sub-
ject to the usual static scope rules. Describe an alternative point of view, in
which the raise or throw is actually a reference to a handler, to which it
transfers control directly. Assuming this point of view, what are the scope
rules for handlers? Are these rules consistent with the rest of the language?
Explain. (For further information on exceptions, see Section 8.5.)
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3.16 Consider the following pseudocode.

x : integer –– global

procedure set x(n : integer)
x := n

procedure print x
write integer(x)

procedure foo(S, P : function; n : integer)
x : integer := 5
if n in {1, 3}

set x(n)
else

S(n)
if n in {1, 2}

print x
else

P

set x(0); foo(set x, print x, 1); print x
set x(0); foo(set x, print x, 2); print x
set x(0); foo(set x, print x, 3); print x
set x(0); foo(set x, print x, 4); print x

Assume that the language uses dynamic scoping. What does the program
print if the language uses shallow binding? What does it print with deep
binding? Why?

3.17 Consider the following pseudocode.

x : integer := 1
y : integer := 2

procedure add
x := x + y

procedure second(P : procedure)
x : integer := 2
P()

procedure first
y : integer := 3
second(add)

first()
write integer(x)

(a) What does this program print if the language uses static scoping?
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(b) What does it print if the language uses dynamic scoping with deep bind-
ing?

(c) What does it print if the language uses dynamic scoping with shallow
binding?

3.18 In Section 3.6.3 we noted that while a single min function in Fortran would
work for both integer and floating-point numbers, overloading would be
more efficient because it would avoid the cost of type conversions. Give an
example in which overloading does not seem advantageous—one in which it
makes more sense to have a single function with floating-point parameters,
and perform coercion when integers are supplied.

3.19 (a) Write a polymorphic sorting routine in Scheme.

(b) Write a generic sorting routine in C++, Java, or C#. (For hints, see Sec-
tion 8.4.)

(c) Write a nongeneric sorting routine using subtype polymorphism in
your favorite object-oriented language. Assume that the elements to be
sorted are members of some class derived from class ordered, which
has a method precedes such that a.precedes(b) is true if and only
if a comes before b in some canonical total order. (For hints, see Sec-
tion 9.4.)

3.20–3.25 In More Depth.

3.10 Explorations

3.26 Experiment with naming rules in your favorite programming language.
Read the manual, and write and compile some test programs. Does the
language use lexical or dynamic scope? Can scopes nest? Are they open or
closed? Does the scope of a name encompass the entire block in which it is
declared, or only the portion after the declaration? How does one declare
mutually recursive types or subroutines? Can subroutines be passed as pa-
rameters, returned from functions, or stored in variables? If so, when are
referencing environments bound?

3.27 List the keywords (reserved words) of one or more programming languages.
List the predefined identifiers. (Recall that every keyword is a separate to-
ken. An identifier cannot have the same spelling as a keyword.) What cri-
teria do you think were used to decide which names should be keywords
and which should be predefined identifiers? Do you agree with the choices?
Why or why not?

3.28 If you have experience with a language like C, C++, or Pascal, in which dy-
namically allocated space must be manually reclaimed, describe your expe-
rience with dangling references or memory leaks. How often do these bugs
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arise? How do you find them? How much effort does it take? Learn about
open source or commercial tools for finding storage bugs (IBM’s Purify
is a popular example). Do such tools weaken the argument for automatic
garbage collection?

3.29 We learned in Section 3.3.6 that modern languages have generally aban-
doned dynamic scoping. One place it can still be found is in the so-called
environment variables of the Unix programming environment. If you are
not familiar with these, read the manual page for your favorite shell (com-
mand interpreter—csh/tcsh, ksh/bash, etc.) to learn how these behave.
Explain why the usual alternatives to dynamic scoping (default parameters
and static variables) are not appropriate in this case.

3.30 Compare the mechanisms for overloading of enumeration names in Ada
and Modula-3 (Section 3.6.2). One might argue that the (historically more
recent) Modula-3 approach moves responsibility from the compiler to the
programmer: it requires even an unambiguous use of an enumeration con-
stant to be annotated with its type. Why do you think this approach was
chosen by the language designers? Do you agree with the choice? Why or
why not?

3.31 Write a program in C++ or Ada that creates at least two concrete types or
subroutines from the same template/generic. Compile your code to assem-
bly language and look at the result. Describe the mapping from source to
target code.

3.32 Do you think coercion is a good idea? Why or why not?

3.33 Give three examples of features that are not provided in some language with
which you are familiar, but that are common in other languages. Why do
you think these features are missing? Would they complicate the implemen-
tation of the language? If so, would the complication (in your judgment) be
justified?

3.34–3.38 In More Depth.

3.11 Bibliographic Notes

This chapter has traced the evolution of naming and scoping mechanisms
through many different languages, including Fortran (several versions), Basic,
Algol 60 and 68, Pascal, Simula, C and C++, Euclid, Turing, Modula (1, 2, and 3),
Ada (83 and 95), Oberon, Eiffel, Java, and C#. Bibliographic references for all of
these can be found in Appendix A.

Both modules and objects trace their roots to Simula, which was developed
by Dahl, Nygaard, Myhrhaug, and others at the Norwegian Computing Centre
in the mid-1960s. (Simula I was implemented in 1964; descriptions in this book
pertain to Simula 67.) The encapsulation mechanisms of Simula were refined in
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the 1970s by the developers of Clu, Modula, Euclid, and related languages. Other
Simula innovations—inheritance and dynamic method binding in particular—
provided the inspiration for Smalltalk, the original and arguably purest of the
object-oriented languages. Modern object-oriented languages, including Eiffel,
C++, Java, and C#, represent to a large extent a reintegration of the evolutionary
lines of encapsulation on the one hand and inheritance and dynamic method
binding on the other.

The notion of information hiding originates in Parnas’s classic paper “On the
Criteria to Be Used in Decomposing Systems into Modules” [Par72]. Compara-
tive discussions of naming, scoping, and abstraction mechanisms can be found,
among other places, in Liskov et al.’s discussion of Clu [LSAS77], Liskov and Gut-
tag’s text [LG86, Chap. 4], the Ada Rationale [IBFW91, Chaps. 9–12], Harbison’s
text on Modula-3 [Har92, Chaps. 8–9], Wirth’s early work on modules [Wir80],
and his later discussion of Modula and Oberon [Wir88a]. Further information
on object-oriented languages can be found in Chapter 9.

For a detailed discussion of overloading and polymorphism, see the survey by
Cardelli and Wegner [CW85]. Cailliau [Cai82] provides a lighthearted discus-
sion of many of the scoping pitfalls noted in Section 3.3.3. Abelson and Suss-
man [AS96, p. 11n] attribute the term “syntactic sugar” to Peter Landin.





4Semantic Analysis

In Chapter 2 we considered the topic of programming language syntax.
In the current chapter we turn to the topic of semantics. Informally, syntax con-
cerns the form of a valid program, while semantics concerns its meaning. Meaning
is important for at least two reasons: it allows us to enforce rules (e.g., type con-
sistency) that go beyond mere form, and it provides the information we need in
order to generate an equivalent output program.

It is conventional to say that the syntax of a language is precisely that portion
of the language definition that can be described conveniently by a context-free
grammar, while the semantics is that portion of the definition that cannot. This
convention is useful in practice, though it does not always agree with intuition.
When we require, for example, that the number of arguments contained in a call
to a subroutine match the number of formal parameters in the subroutine def-
inition, it is tempting to say that this requirement is a matter of syntax. After
all, we can count arguments without knowing what they mean. Unfortunately,
we cannot count them with context-free rules. Similarly, while it is possible to
write a context-free grammar in which every function must contain at least one
return statement, the required complexity makes this strategy very unattractive.
In general, any rule that requires the compiler to compare things that are sepa-
rated by long distances, or to count things that are not properly nested, ends up
being a matter of semantics.

Semantic rules are further divided into static and dynamic semantics, though
again the line between the two is somewhat fuzzy. The compiler enforces static
semantic rules at compile time. It generates code to enforce dynamic semantic
rules at run time (or to call library routines that do so). Certain errors, such as
division by zero, or attempting to index into an array with an out-of-bounds
subscript, cannot in general be caught at compile time, since they may occur
only for certain input values, or certain behaviors of arbitrarily complex code.
In special cases, a compiler may be able to tell that a certain error will always
or never occur, regardless of run-time input. In these cases, the compiler can
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generate an error message at compile time, or refrain from generating code to
perform the check at run time, as appropriate. Basic results from computability
theory, however, tell us that no algorithm can make these predictions correctly for
arbitrary programs. There will inevitably be cases in which an error will always
occur, but the compiler cannot tell, and must delay the error message until run
time. There will also be cases in which an error can never occur, but the compiler
cannot tell, and must incur the cost of unnecessary run-time checks.

Both semantic analysis and intermediate code generation can be described in
terms of annotation, or decoration, of a parse tree or syntax tree. The annotations
themselves are known as attributes. Numerous examples of static and dynamic
semantic rules will appear in subsequent chapters. In this current chapter we
focus primarily on the mechanisms a compiler uses to enforce the static rules.
We will consider intermediate code generation in Chapter 14.

In Section 4.1 we consider the role of the semantic analyzer in more detail,
considering both the rules it needs to enforce and its relationship to other phases
of compilation. Most of the rest of the chapter is then devoted to the subject
of attribute grammars. Attribute grammars provide a formal framework for the
decoration of a tree. This framework is a useful conceptual tool even in compilers
that do not build a parse tree or syntax tree as an explicit data structure. We
introduce the notion of an attribute grammar in Section 4.2. We then consider
various ways in which such grammars can be applied in practice. Section 4.3
discusses the issue of attribute flow, which constrains the order(s) in which nodes
of a tree can be decorated. In practice, most compilers require decoration of the
parse tree (or the evaluation of attributes that would reside in a parse tree if there
were one) to occur in the process of an LL or LR parse. Section 4.4 presents action
routines as an ad hoc mechanism for such on-the-fly evaluation. In Section 4.5
(mostly on the PLP CD) we consider the management of space for parse tree
attributes.

One particularly common compiler organization uses action routines during
parsing solely for the purpose of constructing a syntax tree. The syntax tree is
then decorated during a separate traversal, which can be formalized, if desired,
with a separate attribute grammar. We consider the decoration of syntax trees in
Section 4.6.

4.1 The Role of the Semantic Analyzer

Programming languages vary dramatically in their choice of semantic rules. In
Section 3.6.3, for example, we saw a range of approaches to coercion, from lan-
guages like Fortran and C, which allow operands of many types to be intermixed
in expressions, to languages like Ada, which do not. Languages also vary in the
extent to which they require their implementations to perform dynamic checks.
At one extreme, C requires no checks at all, beyond those that come “free” with
the hardware (e.g., division by zero or attempted access to memory outside the
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bounds of the program). At the other extreme, Java takes great pains to check as
many rules as possible, in part to ensure that an untrusted program cannot do
anything to damage the memory or files of the machine on which it runs.

In the typical compiler, the interface between semantic analysis and intermedi-
ate code generation defines the boundary between the front end and the back end.
The exact division of labor varies a bit from compiler to compiler: it can be hard
to say exactly where analysis (figuring out what the program means) ends and
synthesis (expressing that meaning in some new form) begins. Many compilers
actually carry a program through more than one intermediate form. In one com-
mon organization, described in more detail in Chapter 14, the semantic analyzer
creates an annotated syntax tree, which the intermediate code generator then
translates into a linear form reminiscent of the assembly language for some ide-
alized machine. After machine-independent code improvement, this linear form
is then translated into yet another form, patterned more closely on the assembly
language of the target machine. That form may then undergo machine-specific
code improvement.

Compilers also vary in the extent to which semantic analysis and intermedi-
ate code generation are interleaved with parsing. With fully separated phases, the
parser passes a full parse tree on to the semantic analyzer, which converts it to a
syntax tree, fills in the symbol table, performs semantic checks, and passes it on to
the code generator. With fully interleaved phases, there may be no need to build
either the parse tree or the syntax tree in its entirety: the parser can call seman-
tic check and code generation routines “on-the-fly” as it parses each expression,
statement, or subroutine of the source. We will focus on an organization in which
construction of the syntax tree is interleaved with parsing (and the parse tree is
not built), but semantic analysis occurs during a separate traversal of the syntax
tree.

Many compilers that implement dynamic checks provide the option of dis-
abling them if desired. It is customary in some organizations to enable dynamic
checks during program development and testing, and then disable them for pro-
duction use, to increase execution speed. The wisdom of this practice is ques-
tionable: Tony Hoare, one of the key figures in programming language design,1

has likened the programmer who disables semantic checks to a sailing enthu-
siast who wears a life jacket when training on dry land but removes it when
going to sea [Hoa89, p. 198]. Errors may be less likely in production use than
they are in testing, but the consequences of an undetected error are significantly
worse. Moreover, with the increasing use of multi-issue, superscalar processors
(described in Section 5.4.3), it is often possible for dynamic checks to execute in
instruction slots that would otherwise go unused, making them virtually free. On

1 Among other things, C. A. R. Hoare (1934–) invented the quicksort algorithm and the case

statement, contributed to the design of Algol W, and was one of the leaders in the development
of axiomatic semantics. In the area of concurrent programming, he refined and formalized the
monitor construct (to be described in Section 12.3.4), and designed the CSP programming model
and notation. He received the ACM Turing Award in 1980.
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the other hand, some dynamic checks (e.g., for use of uninitialized variables) are
sufficiently expensive that they are rarely implemented.

Assertions

A few programming languages (e.g., Euclid and Eiffel) allow the programmer to
specify logical assertions, invariants, preconditions, and postconditions that must
be verified by dynamic semantic checks. An assertion is a statement that a spec-EXAMPLE 4.1

Assertions in Euclid ified condition is expected to be true when execution reaches a certain point in
the code. In Euclid one can write

assert denominator not= 0 �
An invariant is a condition that is expected to be true at all “clean points” of a
given body of code. In Eiffel the programmer can specify an invariant on the data
inside a class: the invariant is expected to be true at the beginning and end of all
of the class’s methods (subroutines). Similar invariants for loops are expected to
be true before and after every iteration. Pre- and postconditions are expected to
be true at the beginning and end of subroutines, respectively.

Invariants, preconditions, and postconditions are essentially structured asser-
tions. A postcondition, specified once in the header of a Euclid subroutine, will
be checked not only at the end of the subroutine’s text, but at every return state-
ment as well, automatically.

Many languages support assertions via standard library routines or macros. InEXAMPLE 4.2
Assertions in C C, for example, one can write

assert(denominator != 0);

If the assertion fails, the program will terminate abruptly with the message

myprog.c:42: failed assertion ‘denominator != 0’

The C manual requires assert to be implemented as a macro (or built into the
compiler) so that it has access to the textual representation of its argument, and
to the file name and line number on which the call appears. �

DESIGN & IMPLEMENTATION

Dynamic semantic checks
In the past, language theorists and researchers in programming methodology
and software engineering tended to argue for more extensive semantic checks,
while “real world” programmers “voted with their feet” for languages like C
and Fortran, which omitted those checks in the interest of execution speed.
As computers have become more powerful, and as companies have come to
appreciate the enormous costs of software maintenance, the “real world” camp
has become much more sympathetic to checking. Languages like Ada and Java
have been designed from the outset with safety in mind, and languages like
C and C++ have evolved (to the extent possible) toward increasingly strict
definitions.
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Assertions, of course, could be used to cover the other three sorts of checks,
but not as clearly or succinctly. Invariants, preconditions, and postconditions are
a prominent part of the header of the code to which they apply, and can cover
a potentially large number of places where an assertion would otherwise be re-
quired. Euclid and Eiffel implementations allow the programmer to disable as-
sertions and related constructs when desired, to eliminate their run-time cost.

Static Analysis

In general, compile-time algorithms that predict run-time behavior are known
as static analysis. Such analysis is said to be precise if it allows the compiler to de-
termine whether a given program will always follow the rules. Type checking, for
example, is static and precise in languages like Ada, C, and ML: the compiler en-
sures that no variable will ever be used at run time in a way that is inappropriate
for its type. By contrast, languages like Lisp and Smalltalk obtain greater flexibil-
ity, while remaining completely type-safe, by accepting the run-time overhead of
dynamic type checks. (We will cover type checking in more detail in Chapter 7.)

Static analysis can also be useful when it isn’t precise. Compilers will often
check what they can at compile time and then generate code to check the rest
dynamically. In Java, for example, type checking is mostly static, but dynamically
loaded classes and type casts may require run-time checks. In a similar vein, many
compilers perform extensive static analysis in an attempt to eliminate the need for
dynamic checks on array subscripts, variant record tags, or potentially dangling
pointers (again, to be discussed in Chapter 7).

If we think of the omission of unnecessary dynamic checks as a performance
optimization, it is natural to look for other ways in which static analysis may
enable code improvement. We will consider this topic in more detail in Chap-
ter 15. Examples include alias analysis, which determines when values can be
safely cached in registers, computed “out of order,” or accessed by concurrent
threads; escape analysis, which determines when all references to a value will be
confined to a given context, allowing it to be allocated on the stack instead of
the heap, or to be accessed without locks; and subtype analysis, which determines
when a variable in an object-oriented language is guaranteed to have a certain
subtype, so that its methods can be called without dynamic dispatch.

An optimization is said to be unsafe if it may lead to incorrect code in certain
programs. It is said to be speculative if it usually improves performance but may
degrade it in certain cases. A compiler is said to be conservative if it applies op-
timizations only when it can guarantee that they will be both safe and effective.
By contrast, an optimistic compiler may make liberal use of speculative optimiza-
tions. It may also pursue unsafe optimizations by generating two versions of the
code, with a dynamic check that chooses between them based on information not
available at compile time. Examples of speculative optimization include nonbind-
ing prefetches, which try to bring data into the cache before they are needed, and
trace scheduling, which rearranges code in hopes of improving the performance
of the processor pipeline and the instruction cache.
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To eliminate dynamic checks, language designers may choose to tighten se-
mantic rules, banning programs for which conservative analysis fails. The ML
type system (Section 7.2.4), for example, avoids the dynamic type checks of
Lisp but disallows certain useful programming idioms that Lisp supports. Simi-
larly, the definite assignment rules of Java and C# (Section 6.1.3) allow the com-
piler to ensure that a variable is always given a value before it is used in an ex-
pression, but disallow certain programs that are legal (and correct) in C.

4.2 Attribute Grammars

In Chapter 2 we learned how to use a context-free grammar to specify the syntax
of a programming language. Here, for example, is an LR (bottom-up) grammarEXAMPLE 4.3

Bottom-up CFG for
constant expressions

for arithmetic expressions composed of constants, with precedence and associa-
tivity:

E −→ E + T

E −→ E - T

E −→ T

T −→ T * F

T −→ T / F

T −→ F

F −→ - F

F −→ ( E )

F −→ const �
This grammar will generate all properly formed constant expressions over the

basic arithmetic operators, but it says nothing about their meaning. To tie these
expressions to mathematical concepts (as opposed to, say, floor tile patterns or
dance steps), we need additional notation. The most common is based on at-
tributes. In our expression grammar, we can associate a val attribute with each E,EXAMPLE 4.4

Bottom-up AG for
constant expressions

T, F, and const in the grammar. The intent is that for any symbol S, S.val will
be the meaning, as an arithmetic value, of the token string derived from S. We
assume that the val of a const is provided to us by the scanner. We must then in-
vent a set of rules for each production to specify how the vals of different symbols
are related. The resulting attribute grammar is shown in Figure 4.1.

In this simple grammar, every production has a single rule. We shall see more
complicated grammars later in which productions can have several rules. The
rules come in two forms. Those in productions 3, 6, 8, and 9 are known as copy
rules; they specify that one attribute should be a copy of another. The other rules
invoke semantic functions (sum, quotient, additive inverse, etc.). In this example,
the semantic functions are all familiar arithmetic operations. In general, they can
be arbitrarily complex functions specified by the language designer. Each seman-
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1. E1 −→ E2 + T
� E1.val := sum(E2.val, T.val)

2. E1 −→ E2 - T
� E1.val := difference(E2.val, T.val)

3. E −→ T
� E.val := T.val

4. T1 −→ T2 * F
� T1.val := product(T2.val, F.val)

5. T1 −→ T2 / F
� T1.val := quotient(T2.val, F.val)

6. T −→ F
� T.val := F.val

7. F1 −→ - F2

� F1.val := additive inverse(F2.val)

8. F −→ ( E )

� F.val := E.val

9. F −→ const

� F.val := const.val

Figure 4.1 A simple attribute grammar for constant expressions, using the standard arith-
metic operations.

tic function takes an arbitrary number of arguments (each of which must be an
attribute of a symbol in the current production: no constants, global variables,
etc.), and each computes a single result, which must likewise be assigned into an
attribute of a symbol in the current production. When more than one symbol of
a production has the same name, subscripts are used to distinguish them. These
subscripts are solely for the benefit of the semantic functions; they are not part
of the context-free grammar itself. �

In a strict definition of attribute grammars, copy rules and semantic function
calls are the only two kinds of permissible rules. In practice, it is common to
allow rules to consist of small fragments of code in some well-defined notation
(e.g., the language in which a compiler is being written) so that simple semantic
functions can be written out “in-line.” These code fragments are not allowed to
refer to any variables or attributes outside the current production (we will relax
this restriction when we discuss action routines in Section 4.4). In our examples
we use a � symbol to introduce each code fragment corresponding to a single
semantic function.

Semantic functions must be written in some already-existing notation, be-
cause attribute grammars do not really specify the meaning of a program; rather,
they provide a way to associate a program with something else that presumably
has meaning. Neither the notation for semantic functions nor the types of the
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attributes themselves (i.e., the domain of values passed to and returned from se-
mantic functions) is intrinsic to the attribute grammar notion. In the preced-
ing example, we have used an attribute grammar to associate numeric values
with the symbols in our grammar, using semantic functions drawn from ordi-
nary arithmetic. In the code generation phase of a compiler, we might associate
fragments of target machine code with our symbols, using semantic functions
written in some existing programming language. If we were interested in defin-
ing the meaning of a programming language in a machine-independent way, our
attributes might be domain theory denotations (these are the basis of denotational
semantics). If we were interested in proving theorems about the behavior of pro-
grams in our language, our attributes might be logical formulas (this is the basis
of axiomatic semantics).2 These more formal concepts are beyond the scope of
this text (but see the Bibliographic Notes at the end of the chapter). We will use
attribute grammars primarily as a framework for building a syntax tree, checking
semantic rules, and (in Chapter 14) generating code.

4.3 Evaluating Attributes

The process of evaluating attributes is called annotation or decoration of the parse
tree. Figure 4.2 shows how to decorate the parse tree for the expression (1 + 3)EXAMPLE 4.5

Decoration of a parse tree * 2, using the attribute grammar of Figure 4.1. Once decoration is complete, the
value of the overall expression can be found in the val attribute of the root of the
tree. �

Synthesized Attributes

The attribute grammar of Figure 4.1 is very simple. Each symbol has at most one
attribute (the punctuation marks have none). Moreover, they are all so-called
synthesized attributes: their values are calculated (synthesized) only in produc-
tions in which their symbol appears on the left-hand side. For annotated parse
trees like the one in Figure 4.2, this means that the attribute flow—the pattern in
which information moves from node to node—is entirely bottom-up.

An attribute grammar in which all attributes are synthesized is said to be
S-attributed. The arguments to semantic functions in an S-attributed grammar
are always attributes of symbols on the right-hand side of the current produc-
tion, and the return value is always placed into an attribute of the left-hand
side of the production. Tokens (terminals) often have intrinsic properties (e.g.,
the character-string representation of an identifier or the value of a numeric

2 It’s actually stretching things a bit to discuss axiomatic semantics in the context of attribute
grammars. Axiomatic semantics is intended not so much to define the meaning of programs as
to permit one to prove that a given program satisfies some desired property (e.g., computes some
desired function).
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Figure 4.2 Decoration of a parse tree for (1 + 3) * 2. The val attributes of symbols are
shown in boxes. Curved arrows represent the attribute flow, which is strictly upward in this
case.

constant); in a compiler these are synthesized attributes initialized by the scan-
ner.

Inherited Attributes

In general, we can imagine (and will in fact have need of) attributes whose values
are calculated when their symbol is on the right-hand side of the current pro-
duction. Such attributes are said to be inherited. They allow contextual informa-
tion to flow into a symbol from above or from the side, so that the rules of that
production can be enforced in different ways (or generate different values) de-
pending on surrounding context. Symbol table information is commonly passed
from symbol to symbol by means of inherited attributes. Inherited attributes of
the root of the parse tree can also be used to represent the external environment
(characteristics of the target machine, command-line arguments to the compiler,
etc.).

As a simple example of inherited attributes, consider the following simplifiedEXAMPLE 4.6
Top-down CFG and parse
tree for subtraction

fragment of an LL(1) expression grammar (here covering only subtraction):

expr −→ const expr tail

expr tail −→ - const expr tail ε.
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For the expression 9 - 4 - 3, we obtain the following parse tree:

�

If we want to create an attribute grammar that accumulates the value of the over-
all expression into the root of the tree, we have a problem: because subtraction is
left-associative, we cannot summarize the right subtree of the root with a single
numeric value. If we want to decorate the tree bottom-up, with an S-attributed
grammar, we must be prepared to describe an arbitrary number of right operands
in the attributes of the top-most expr tail node (see Exercise 4.4). This is indeed
possible, but it defeats the purpose of the formalism: in effect, it requires us to
embed the entire tree into the attributes of a single node, and do all the real work
inside a single semantic function.

If, however, we are allowed to pass attribute values not only bottom-up butEXAMPLE 4.7
Decoration with
left-to-right attribute flow

also left-to-right in the tree, then we can pass the 9 into the top-most expr tail
node, where it can be combined (in proper left-associative fashion) with the 4.
The resulting 5 can then be passed into the middle expr tail node, combined with
the 3 to make 2, and then passed upward to the root:

�
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1. E −→ T TT
� TT.st := T.val � E.val := TT.val

2. TT1 −→ + T TT2

� TT2.st := TT1.st + T.val � TT1.val := TT2.val

3. TT1 −→ - T TT2

� TT2.st := TT1.st − T.val � TT1.val := TT2.val

4. TT −→ ε

� TT.val := TT.st

5. T −→ F FT
� FT.st := F.val � T.val := FT.val

6. FT1 −→ * F FT2

� FT2.st := FT1.st × F.val � FT1.val := FT2.val

7. FT1 −→ / F FT2

� FT2.st := FT1.st ÷ F.val � FT1.val := FT2.val

8. FT −→ ε

� FT.val := FT.st

9. F1 −→ - F2

� F1.val := − F2.val

10. F −→ ( E )

� F.val := E.val

11. F −→ const

� F.val := const.val

Figure 4.3 An attribute grammar for constant expressions based on an LL(1) CFG.

To effect this style of decoration, we need the following attribute rules:EXAMPLE 4.8
Top-down AG for
subtraction expr −→ const expr tail

� expr tail.st := const.val
� expr.val := expr tail.val

expr tail1 −→ - const expr tail2

� expr tail2.st := expr tail1.st − const.val
� expr tail1.val := expr tail2.val

expr tail −→ ε

� expr tail.val := expr tail.st

In each of the first two productions, the first rule serves to copy the left context
(value of the expression so far) into a “subtotal” (st) attribute; the second rule
copies the final value from the right-most leaf back up to the root. �

We can flesh out the grammar fragment of Example 4.6 to produce a moreEXAMPLE 4.9
Top-down AG for constant
expressions

complete expression grammar, as shown in Figure 4.3. The underlying CFG for
this grammar accepts the same language as the one in Figure 4.1, but where that
one was SLR(1), this one is LL(1). Attribute flow for a parse of (1 + 3) * 2,
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Figure 4.4 Decoration of a top-down parse tree for (1 + 3) * 2, using the attribute grammar of Figure 4.3. Curved
arrows again represent attribute flow, which is no longer bottom-up, but is still left-to-right.

using the LL(1) grammar, appears in Figure 4.4. As in the grammar fragment of
Example 4.6, the value of the left operand of each operator is carried into the
TT and FT productions by the st (subtotal) attribute. The relative complexity of
the attribute flow arises from the fact that operators are left associative, but the
grammar cannot be left recursive: the left and right operands of a given operator
are thus found in separate productions. Grammars to perform semantic analysis
for practical languages generally require some non-S-attributed flow. �

Attribute Flow

Just as a context-free grammar does not specify how it should be parsed, an at-
tribute grammar does not specify the order in which attribute rules should be
invoked. Put another way, both notations are declarative: they define a set of valid
trees, but they don’t say how to build or decorate them. Among other things, this
means that the order in which attribute rules are listed for a given production is
immaterial; attribute flow may require them to execute in any order. If in Fig-
ure 4.3 we were to reverse the order in which the rules appear in productions
1, 2, 3, 5, 6, and/or 7 (listing the rule for symbol.val first), it would be a purely
cosmetic change; the grammar would not be altered.
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We say an attribute grammar is well defined if its rules determine a unique set
of values for the attributes of every possible parse tree. An attribute grammar is
noncircular if it never leads to a parse tree in which there are cycles in the attribute
flow graph—that is, if no attribute, in any parse tree, ever depends (transitively)
on itself. (A grammar can be circular and still be well defined if attributes are
guaranteed to converge to a unique value.) As a general rule, practical attribute
grammars tend to be noncircular.

An algorithm that decorates parse trees by invoking the rules of an attribute
grammar in an order that respects the tree’s attribute flow is called a translation
scheme. Perhaps the simplest scheme is one that makes repeated passes over a
tree, invoking any semantic function whose arguments have all been defined, and
stopping when it completes a pass in which no values change. Such a scheme is
said to be oblivious, in the sense that it exploits no special knowledge of either the
parse tree or the grammar. It will halt only if the grammar is well defined. Better
performance, at least for noncircular grammars, may be achieved by a dynamic
scheme that tailors the evaluation order to the structure of a given parse tree—for
example, by constructing a topological sort of the attribute flow graph and then
invoking rules in an order consistent with the sort.

The fastest translation schemes, however, tend to be static—based on an analy-
sis of the structure of the attribute grammar itself, and then applied mechanically
to any tree arising from the grammar. Like LL and LR parsers, linear-time static
translation schemes can be devised only for certain restricted classes of gram-
mars. S-attributed grammars, such as the one in Figure 4.1, form the simplest
such class. Because attribute flow in an S-attributed grammar is strictly bottom-
up, attributes can be evaluated by visiting the nodes of the parse tree in exactly the
same order that those nodes were generated by the parser. In fact, the attributes
can be evaluated on-the-fly during a bottom-up parse, thereby interleaving pars-
ing and semantic analysis (attribute evaluation).

The attribute grammar of Figure 4.3 is a good bit messier than that of Fig-
ure 4.1, but it is still L-attributed: its attributes can be evaluated by visiting the
nodes of the parse tree in a single left-to-right, depth-first traversal (the same or-
der in which they are visited during a top-down parse). If we say that an attribute
A.s depends on an attribute B.t if B.t is ever passed to a semantic function that
returns a value for A.s, then we can define L-attributed grammars more formally
with the following two rules: (1) each synthesized attribute of a left-hand side
symbol depends only on that symbol’s own inherited attributes or on attributes
(synthesized or inherited) of the production’s right-hand side symbols; and (2)
each inherited attribute of a right-hand side symbol depends only on inherited
attributes of the left-hand side symbol or on attributes (synthesized or inherited)
of symbols to its left in the right-hand side.

S-attributed grammars are the most general class of attribute grammars
for which evaluation can be implemented on-the-fly during an LR parse.
L-attributed grammars are a proper superset of S-attributed grammars. They
are the most general class of attribute grammars for which evaluation can be im-
plemented on-the-fly during an LL parse. If we interleave semantic analysis (and
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possibly intermediate code generation) with parsing, then a bottom-up parser
must in general be paired with an S-attributed translation scheme; a top-down
parser must be paired with an L-attributed translation scheme. (Depending on
the structure of the grammar, it is often possible for a bottom-up parser to ac-
commodate some non-S-attributed attribute flow; we consider this possibility
in Section 4.5.1.) If we choose to separate parsing and semantic analysis into
separate passes, then the code that builds the parse tree or syntax tree must still
use an S-attributed or L-attributed translation scheme (as appropriate), but the
semantic analyzer can use a more powerful scheme if desired. There are certain
tasks, such as the generation of code for “short-circuit” Boolean expressions (to
be discussed in Sections 6.1.5 and 6.4.1), that are easiest to accomplish with a
non-L-attributed scheme.

One-Pass Compilers

A compiler that interleaves semantic analysis and code generation with parsing
is said to be a one-pass compiler.3 It is unclear whether interleaving semantic
analysis with parsing makes a compiler simpler or more complex; it’s mainly a
matter of taste. If intermediate code generation is interleaved with parsing, one
need not build a syntax tree at all (unless of course the syntax tree is the in-
termediate code). Moreover, it is often possible to write the intermediate code
to an output file on-the-fly, rather than accumulating it in the attributes of the
root of the parse tree. The resulting space savings were important for previ-
ous generations of computers, which had very small main memories. On the
other hand, semantic analysis is easier to perform during a separate traversal of

DESIGN & IMPLEMENTATION

Forward references
In Sections 3.3.3 and 3.4.1 we noted that the scope rules of many languages
require names to be declared before they are used, and provide special mech-
anisms to introduce the forward references needed for recursive definitions.
While these rules may help promote the creation of clear, maintainable code,
an equally important motivation, at least historically, was to facilitate the con-
struction of one-pass compilers. With increases in memory size, processing
speed, and programmer expectations regarding the quality of code improve-
ment, multipass compilers have become ubiquitous, and language designers
have felt free (as, for example, in the class declarations of C++, Java, and C#)
to abandon the requirement that declarations precede uses.

3 Most authors use the term one-pass only for compilers that translate all the way from source to
target code in a single pass. Some authors insist only that intermediate code be generated in a
single pass, and permit additional pass(es) to translate intermediate code to target code.
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E1 −→ E2 + T

� E1.ptr := make bin op(“+”, E2.ptr, T.ptr)

E1 −→ E2 - T

� E1.ptr := make bin op(“−”, E2.ptr, T.ptr)

E −→ T

� E.ptr := T.ptr

T1 −→ T2 * F

� T1.ptr := make bin op(“×”, T2.ptr, F.ptr)

T1 −→ T2 / F

� T1.ptr := make bin op(“÷”, T2.ptr, F.ptr)

T −→ F

� T.ptr := F.ptr

F1 −→ - F2
� F1.ptr := make un op(“+/−”, F2.ptr)

F −→ ( E )

� F.ptr := E.ptr

F −→ const

� F.ptr := make leaf(const.val)

Figure 4.5 Bottom-up attribute grammar to construct a syntax tree. The symbol +/− is used
(as it is on calculators) to indicate change of sign.

a syntax tree, because that tree reflects the program’s semantic structure better
than the parse tree does, especially with a top-down parser, and because one
has the option of traversing the tree in an order other than that chosen by the
parser.

Building a Syntax Tree

If we choose not to interleave parsing and semantic analysis, we still need to add
attribute rules to the context-free grammar, but they serve only to create the syn-
tax tree—not to enforce semantic rules or generate code. Figures 4.5 and 4.6 con-EXAMPLE 4.10

Bottom-up and top-down
AGs to build a syntax tree

tain bottom-up and top-down attribute grammars, respectively, to build a syntax
tree for constant expressions. The attributes in these grammars hold neither nu-
meric values nor target code fragments; instead they point to nodes of the syn-
tax tree. Function make leaf returns a pointer to a newly allocated syntax tree
node containing the value of a constant. Functions make un op and make bin
op return pointers to newly allocated syntax tree nodes containing a unary or bi-
nary operator, respectively, and pointers to the supplied operand(s). Figures 4.7
and 4.8 show stages in the decoration of parse trees for (1 + 3) * 2, using the
grammars of Figures 4.5 and 4.6, respectively. �
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E −→ T TT
� TT.st := T.ptr
� E.ptr := TT.ptr

TT1 −→ + T TT2

� TT2.st := make bin op(“+”, TT1.st, T.ptr)
� TT1.ptr := TT2.ptr

TT1 −→ - T TT2

� TT2.st := make bin op(“−”, TT1.st, T.ptr)
� TT1.ptr := TT2.ptr

TT −→ ε

� TT.ptr := TT.st

T −→ F FT
� FT.st := F.ptr
� T.ptr := FT.ptr

FT1 −→ * F FT2

� FT2.st := make bin op(“×”, FT1.st, F.ptr)
� FT1.ptr := FT2.ptr

FT1 −→ / F FT2

� FT2.st := make bin op(“÷”, FT1.st, F.ptr)
� FT1.ptr := FT2.ptr

FT −→ ε

� FT.ptr := FT.st

F1 −→ - F2

� F1.ptr := make un op(“+/−”, F2.ptr)

F −→ ( E )

� F.ptr := E.ptr

F −→ const

� F.ptr := make leaf(const.val)

Figure 4.6 Top-down attribute grammar to construct a syntax tree. Here the st attribute, like
the ptr attribute (and unlike the st attribute of Figure 4.3), is a pointer to a syntax tree node.

CHECK YOUR UNDERSTANDING

1. What determines whether a language rule is a matter of syntax or of static
semantics?

2. Why is it impossible to detect certain program errors at compile time, even
though they can be detected at run time?

3. What is an attribute grammar?

4. What are programming assertions? What is their purpose?

5. What is the difference between synthesized and inherited attributes?
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Figure 4.7 Construction of a syntax tree via decoration of a bottom-up parse tree, using the
grammar of Figure 4.5. In diagram (a), the values of the constants 1 and 3 have been placed
in new syntax tree leaves. Pointers to these leaves propagate up into the attributes of E and
T. In (b), the pointers to these leaves become child pointers of a new internal + node. In (c)
the pointer to this node propagates up into the attributes of T, and a new leaf is created for 2.
Finally, in (d), the pointers from T and F become child pointers of a new internal × node, and
a pointer to this node propagates up into the attributes of E.
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Figure 4.8 Construction of a syntax tree via decoration of a top-down parse tree, using the grammar of Figure 4.6. In the
top diagram, (a), the value of the constant 1 has been placed in a new syntax tree leaf. A pointer to this leaf then propagates to
the st attribute of TT. In (b), a second leaf has been created to hold the constant 3. Pointers to the two leaves then become
child pointers of a new internal + node, a pointer to which propagates from the st attribute of the bottom-most TT, where
it was created, all the way up and over to the st attribute of the top-most FT. In (c), a third leaf has been created for the
constant 2. Pointers to this leaf and to the + node then become the children of a new × node, a pointer to which propagates
from the st of the lower FT, where it was created, all the way to the root of the tree.
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6. Give two examples of information that is typically passed through inherited
attributes.

7. What is attribute flow?

8. What is a one-pass compiler?

9. What does it mean for an attribute grammar to be S-attributed? L-attributed?
Noncircular? What is the significance of these grammar classes?

4.4 Action Routines

Just as there are automatic tools that will construct a parser for a given context-
free grammar, there are automatic tools that will construct a semantic analyzer
(attribute evaluator) for a given attribute grammar. Attribute evaluator gen-
erators are heavily used in syntax-based editors [RT88], incremental compil-
ers [SDB84], and programming language research. Most production compilers,
however, use an ad hoc, handwritten translation scheme, interleaving parsing
with at least the initial construction of a syntax tree, and possibly all of semantic
analysis and intermediate code generation. Because they are able to evaluate the
attributes of each production as it is parsed, they do not need to build the full
parse tree.

An ad hoc translation scheme that is interleaved with parsing takes the form
of a set of action routines. An action routine is a semantic function that the pro-
grammer (grammar writer) instructs the compiler to execute at a particular point
in the parse. Most parser generators allow the programmer to specify action rou-
tines. In an LL parser generator, an action routine can appear anywhere within
a right-hand side. A routine at the beginning of a right-hand side will be called
as soon as the parser predicts the production. A routine embedded in the mid-
dle of a right-hand side will be called as soon as the parser has matched (the
yield of) the symbol to the left. The implementation mechanism is simple: when

DESIGN & IMPLEMENTATION

Attribute evaluators
Automatic evaluators based on formal attribute grammars are popular in lan-
guage research projects because they save developer time when the language
definition changes. They are popular in syntax-based editors and incremental
compilers because they save execution time: when a small change is made to
a program, the evaluator may be able to “patch up” tree decorations signifi-
cantly faster than it could rebuild them from scratch. For the typical compiler,
however, semantic analysis based on a formal attribute grammar is overkill: it
has higher overhead than action routines, and doesn’t really save the compiler
writer that much work.
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E −→ T { TT.st := T.ptr } TT { E.ptr := TT.ptr }
TT1 −→ + T { TT2.st := make bin op(“+”, TT1.st, T.ptr) } TT2 { TT1.ptr := TT2.ptr }
TT1 −→ - T { TT2.st := make bin op(“−”, TT1.st, T.ptr) } TT2 { TT1.ptr := TT2.ptr }
TT −→ ε { TT.ptr := TT.st }
T −→ F { FT.st := F.ptr } FT { T.ptr := FT.ptr }
FT1 −→ * F { FT2.st := make bin op(“×”, FT1.st, F.ptr) } FT2 { FT1.ptr := FT2.ptr }
FT1 −→ / F { FT2.st := make bin op(“÷”, FT1.st, F.ptr) } FT2 { FT1.ptr := FT2.ptr }
FT −→ ε { FT.ptr := FT.st }
F1 −→ - F2 { F1.ptr := make un op(“+/−”, F2.ptr) }
F −→ ( E ) { F.ptr := E.ptr }
F −→ const { F.ptr := make leaf(const.ptr) }

Figure 4.9 LL(1) grammar with action routines to build a syntax tree.

it predicts a production, the parser pushes all of the right-hand side onto the
stack—terminals (to be matched), nonterminals (to drive future predictions),
and pointers to action routines. When it finds a pointer to an action routine at
the top of the parse stack, the parser simply calls it.

To make this process more concrete, consider again our LL(1) grammar forEXAMPLE 4.11
Top-down action routines
to build a syntax tree

constant expressions. Action routines to build a syntax tree while parsing this
grammar appear in Figure 4.9. The only difference between this grammar and
the one in Figure 4.6 is that the action routines (delimited here with curly braces)
are embedded among the symbols of the right-hand sides; the work performed
is the same. The ease with which the attribute grammar can be transformed into
the grammar with action routines is due to the fact that the attribute grammar is
L-attributed. If it required more complicated flow, we would not be able to cast
it in the form of action routines. �

Bottom-Up Evaluation

In an LR parser generator, one cannot in general embed action routines at arbi-
trary places in a right-hand side, since the parser does not in general know what
production it is in until it has seen all or most of the yield. LR parser generators
therefore permit action routines only after the point at which the production be-
ing parsed can be identified unambiguously (this is known as the trailing part of
the right-hand side; the ambiguous part is the left corner). If the attribute flow
of the action routines is strictly bottom-up (as it is in an S-attributed attribute
grammar), then execution at the end of right-hand sides is all that is needed.
The attribute grammars of Figures 4.1 and 4.5, in fact, are essentially identical
to the action routine versions. If the action routines are responsible for a signifi-
cant part of semantic analysis, however (as opposed to simply building a syntax
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tree), then they will often need contextual information in order to do their job.
To obtain and use this information in an LR parse, they will need some (neces-
sarily limited) access to inherited attributes or to information outside the current
production. We consider this issue further in Section 4.5.1.

4.5 Space Management for Attributes

Any attribute evaluation method requires space to hold the attributes of the
grammar symbols. If we are building an explicit parse tree, then the obvious ap-
proach is to store attributes in the nodes of the tree themselves. If we are not
building a parse tree, then we need to find a way to keep track of the attributes
for the symbols we have seen (or predicted) but not yet finished parsing. The
details differ in bottom-up and top-down parsers.

For a bottom-up parser with an S-attributed grammar, the obvious approach
is to maintain an attribute stack that directly mirrors the parse stack: next to
every state number on the parse stack is an attribute record for the symbol we
shifted when we entered that state. Entries in the attribute stack are pushed and
popped automatically by the parser driver; space management is not an issue for
the writer of action routines. Complications arise if we try to achieve the effect of
inherited attributes, but these can be accommodated within the basic attribute-
stack framework.

For a top-down parser with an L-attributed grammar, we have two principal
options. The first option is automatic, but more complex than for bottom-up
grammars. It still uses an attribute stack, but one that does not mirror the parse
stack. The second option has lower space overhead, and saves time by “short-
cutting” copy rules, but requires action routines to allocate and deallocate space
for attributes explicitly.

In both families of parsers, it is common for some of the contextual infor-
mation for action routines to be kept in global variables. The symbol table in
particular is usually global. We can be sure that the table will always represent
the current referencing environment because we control the order in which ac-
tion routines (including those that modify the environment at the beginnings
and ends of scopes) are executed. In a pure attribute grammar we should need
to pass symbol table information into and out of productions through inherited
and synthesized attributes.

IN MORE DEPTH

We consider attribute space management in more detail on the PLP CD. Us-
ing bottom-up and top-down grammars for arithmetic expressions, we illustrate
automatic management for both bottom-up and top-down parsers, as well as the
ad hoc option for top-down parsers.
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program −→ stmt list $$

stmt list −→ stmt list decl stmt list stmt ε

decl −→ int id real id

stmt −→ id := expr read id write expr

expr −→ term expr add op term

term −→ factor term mult op factor

factor −→ ( expr ) id int_const real_const

float ( expr ) trunc ( expr )

add op −→ + -

mult op −→ * /

Figure 4.10 Context-free grammar for a calculator language with types and declarations.
The intent is that every identifier be declared before use, and that types not be mixed in
computations.

4.6 Decorating a Syntax Tree

In our discussion so far we have used attribute grammars solely to decorate parse
trees. As we mentioned in the chapter introduction, attribute grammars can also
be used to decorate syntax trees. If our compiler uses action routines simply to
build a syntax tree, then the bulk of semantic analysis and intermediate code
generation will use the syntax tree as base.

Figure 4.10 contains a bottom-up CFG for a calculator language with typesEXAMPLE 4.12
Bottom-up CFG for
calculator language with
types

and declarations. The grammar differs from that of Example 2.35 (page 81) in
three ways: (1) we allow declarations to be intermixed with statements, (2) we
differentiate between integer and real constants (presumably the latter contain a
decimal point), and (3) we require explicit conversions between integer and real
operands. The intended semantics of our language requires that every identifier
be declared before it is used, and that types not be mixed in computations. �

Extrapolating from the example in Figure 4.5, it is easy to add semantic func-EXAMPLE 4.13
Syntax tree to average an
integer and a real

tions or action routines to the grammar of Figure 4.10 to construct a syntax tree
for the calculator language (Exercise 4.19). The obvious structure for such a tree
would represent expressions as we did in Figure 4.7, and would represent a pro-
gram as a linked list of declarations and statements. As a concrete example, Fig-
ure 4.11 contains the syntax tree for a simple program to print the average of an
integer and a real. �

Much as a context-free grammar describes the possible structure of parse treesEXAMPLE 4.14
Tree grammar for the
calculator language with
types

for a given programming language, we can use a tree grammar to represent the
possible structure of syntax trees. As in a CFG, each production of a tree grammar
represents a possible relationship between a parent and its children in the tree.
The parent is the symbol on the left-hand side of the production; the children are
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Figure 4.11 Syntax tree for a simple calculator program.

the symbols on the right-hand side. The productions used in Figure 4.11 might
look something like this:

program −→ item

int decl : item −→ id item

read : item −→ id item

real decl : item −→ id item

write : item −→ expr item

null : item −→ ε

‘÷’ : expr −→ expr expr

‘+’ : expr −→ expr expr

float : expr −→ expr

id : expr −→ ε

real const : expr −→ ε

The notation A : B on the left-hand side of a production means that A is one
kind of B, and may appear anywhere a B is expected on a right-hand side. �

Tree grammars and context-free grammars differ in important ways. A context-
free grammar is meant to define (generate) a language composed of strings of to-
kens, where each string is the fringe (yield) of a parse tree. Parsing is the process
of finding a tree that has a given yield. A tree grammar, as we use it here, is meant
to define (or generate) the trees themselves. We have no need for a notion of
parsing: we can easily inspect a tree and determine whether (and how) it can
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be generated by the grammar. Our purpose in introducing tree grammars is to
provide a framework for the decoration of syntax trees. Semantic rules attached
to the productions of a tree grammar can be used to define the attribute flow of
a syntax tree in exactly the same way that semantic rules attached to the produc-
tions of a context-free grammar are used to define the attribute flow of a parse
tree. We will use a tree grammar in the remainder of this section to perform sta-
tic semantic checking. In Chapter 14 we will show how additional semantic rules
can be used to generate intermediate code.

Figure 4.12 contains a complete tree attribute grammar for our calculator lan-EXAMPLE 4.15
Tree AG for the calculator
language with types

guage with types. Once decorated, the program node at the root of the syntax
tree will contain a list, in a synthesized attribute, of all static semantic errors in
the program. (The list will be empty if the program is free of such errors.) Each
item or expr node has an inherited attribute symtab that contains a list, with
types, of all identifiers declared to the left in the tree. Each item node also has
an inherited attribute errors in that lists all static semantic errors found to its left
in the tree, and a synthesized attribute errors out to propagate the final error list
back to the root. Each expr node has one synthesized attribute that indicates its
type and another that contains a list of any static semantic errors found inside.

Our handling of semantic errors illustrates a common technique. In order to
continue looking for other errors we must provide values for any attributes that
would have been set in the absence of an error. To avoid cascading error messages,
we choose values for those attributes that will pass quietly through subsequent
checks. In our specific example we employ a pseudo-type called error, which we
associate with any symbol table entry or expression for which we have already
generated a message.

In our example grammar we accumulate error messages into a synthesized
attribute of the root of the syntax tree. In an ad hoc attribute evaluator we might
be tempted to print these messages on the fly as the errors are discovered. In
practice, however, particularly in a multipass compiler, it makes sense to buffer
the messages so they can be interleaved with messages produced by other phases
of the compiler and printed in program order at the end of compilation.

Though it takes a bit of checking to verify the fact, our attribute grammar is
noncircular and well defined. No attribute is ever assigned a value more than
once. (The helper routines in Figure 4.12 should be thought of as macros rather
than semantic functions. For the sake of brevity we have passed them entire tree
nodes as arguments. Each macro calculates the values of two different attributes.
Under a strict formulation of attribute grammars each macro would be replaced
by two separate semantic functions, one per calculated attribute.) �

One could convert our attribute grammar into executable code using an au-
tomatic attribute evaluator generator. Alternatively, one could create an ad hoc
evaluator in the form of mutually recursive subroutines (Exercise 4.18). In the
latter case attribute flow would be explicit in the calling sequence of the routines.
We could then choose if desired to keep the symbol table in global variables,
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program −→ item
� item.symtab := nil
� program.errors := item.errors out
� item.errors in := nil

int decl : item1 −→ id item2

� declare name(id, item1, item2, int)
� item1.errors out := item2.errors out

real decl : item1 −→ id item2

� declare name(id, item1, item2, real)
� item1.errors out := item2.errors out

read : item1 −→ id item2

� item2.symtab := item1.symtab
� if 〈id.name, ?〉 ∈ item1.symtab

item2.errors in := item1.errors in
else

item2.errors in := item1.errors in + [id.name “undefined at” id.location]
� item1.errors out := item2.errors out

write : item1 −→ expr item2

� expr.symtab := item1.symtab
� item2.symtab := item1.symtab
� item2.errors in := item1.errors in + expr.errors
� item1.errors out := item2.errors out

‘:=’ : item1 −→ id expr item2

� expr.symtab := item1.symtab
� item2.symtab := item1.symtab
� if 〈id.name, A〉 ∈ item1.symtab –– for some type A

if A �= error and expr.type �= error and A �= expr.type
item2.errors in := item1.errors in + [“type clash at” item1.location]

else
item2.errors in := item1.errors in

else
item2.errors in := item1.errors in + [id.name “undefined at” id.location]

� item1.errors out := item2.errors out

null : item −→ ε

� item.errors out := item.errors in

Figure 4.12 Attribute grammar to decorate an abstract syntax tree for the calculator lan-
guage with types. We use square brackets to delimit error messages and pointed brackets to
delimit symbol table entries. Juxtaposition indicates concatenation within error messages; the
‘+’ and ‘−’ operators indicate insertion and removal in lists. We assume that every node has
been initialized by the scanner or by action routines in the parser to contain an indication of
the location (line and column) at which the corresponding construct appears in the source (see
Exercise 4.20). The ‘?’ symbol is used as a “wild card”; it matches any type. (continued)
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id : expr −→ ε

� if 〈id.name, A〉 ∈ expr.symtab –– for some type A
expr.errors := nil
expr.type := A

else
expr.errors := [id.name “undefined at” id.location]
expr.type := error

int const : expr −→ ε

� expr.type := int

real const : expr −→ ε

� expr.type := real

‘+’ : expr1 −→ expr2 expr3

� expr2.symtab := expr1.symtab
� expr3.symtab := expr1.symtab
� check types(expr1, expr2, expr3)

‘−’ : expr1 −→ expr2 expr3

� expr2.symtab := expr1.symtab
� expr3.symtab := expr1.symtab
� check types(expr1, expr2, expr3)

‘×’ : expr1 −→ expr2 expr3

� expr2.symtab := expr1.symtab
� expr3.symtab := expr1.symtab
� check types(expr1, expr2, expr3)

‘÷’ : expr1 −→ expr2 expr3

� expr2.symtab := expr1.symtab
� expr3.symtab := expr1.symtab
� check types(expr1, expr2, expr3)

float : expr1 −→ expr2

� expr2.symtab := expr1.symtab
� convert type(expr2, expr1, int, real, “float of non-int”)

trunc : expr1 −→ expr2

� expr2.symtab := expr1.symtab
� convert type(expr2, expr1, real, int, “trunc of non-real”)

Figure 4.12 (continued on next page)

rather than passing it from node to node through attributes. Most compilers em-
ploy the ad hoc approach.

CHECK YOUR UNDERSTANDING

10. What is the difference between a semantic function and an action routine?

11. Why can’t action routines be placed at arbitrary locations within the right-
hand side of productions in an LR CFG?

12. What patterns of attribute flow can be captured easily with action routines?
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macro declare name(id, cur item, next item : syntax tree node; t : type)
if 〈id.name, ?〉 ∈ cur item.symtab

next item.errors in := cur item.errors in + [“redefinition of” id.name “at” cur item.location]
next item.symtab := cur item.symtab − 〈id.name, ?〉 + 〈id.name, error〉

else
next item.errors in := cur item.errors in
next item.symtab := cur item.symtab + 〈id.name, t〉

macro check types(result, operand1, operand2)
if operand1.type = error or operand2.type = error

result.type := error
result.errors := operand1.errors + operand2.errors

else if operand1.type �= operand2.type
result.type := error
result.errors := operand1.errors + operand2.errors + [“type clash at” result.location]

else
result.type := operand1.type
result.errors := operand1.errors + operand2.errors

macro convert type(old expr, new expr : syntax tree node; from t, to t : type; msg : string)
if old expr.type = from t or old expr.type = error

new expr.errors := old expr.errors
new expr.type := to t

else
new expr.errors := old expr.errors + [msg “at” old expr.location]
new expr.type := error

Figure 4.12 (continued)

13. Some compilers perform all semantic checks and intermediate code genera-
tion in action routines. Others use action routines to build a syntax tree and
then perform semantic checks and intermediate code generation in separate
traversals of the syntax tree. Discuss the tradeoffs between these two strate-
gies.

14. What sort of information do action routines typically keep in global variables,
rather than in attributes?

15. Describe the similarities and differences between context-free grammars and
tree grammars.

16. How can a semantic analyzer avoid the generation of cascading error mes-
sages?

4.7 Summary and Concluding Remarks

This chapter has discussed the task of semantic analysis. We reviewed the sorts of
language rules that can be classified as syntax, static semantics, and dynamic se-
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mantics, and discussed the issue of whether to generate code to perform dynamic
semantic checks. We also considered the role that the semantic analyzer plays in
a typical compiler. We noted that both the enforcement of static semantic rules
and the generation of intermediate code can be cast in terms of annotation, or
decoration, of a parse tree or syntax tree. We then presented attribute grammars
as a formal framework for this decoration process.

An attribute grammar associates attributes with each symbol in a context-free
grammar or tree grammar, and attribute rules with each production. Synthesized
attributes are calculated only in productions in which their symbol appears on
the left-hand side. The synthesized attributes of tokens are initialized by the scan-
ner. Inherited attributes are calculated in productions in which their symbol ap-
pears within the right-hand side; they allow calculations internal to a symbol
to depend on the context in which the symbol appears. Inherited attributes of
the start symbol (goal) can represent the external environment of the compiler.
Strictly speaking, attribute grammars allow only copy rules (assignments of one
attribute to another) and simple calls to semantic functions, but we usually relax
this restriction to allow more or less arbitrary code fragments in some existing
programming language.

Just as context-free grammars can be categorized according to the parsing al-
gorithm(s) that can use them, attribute grammars can be categorized according
to the complexity of their pattern of attribute flow. S-attributed grammars, in
which all attributes are synthesized, can naturally be evaluated in a single bottom-
up pass over a parse tree, in precisely the order the tree is discovered by an LR-
family parser. L-attributed grammars, in which all attribute flow is depth-first
left-to-right, can be evaluated in precisely the order that the parse tree is predicted
and matched by an LL-family parser. Attribute grammars with more complex
patterns of attribute flow are not commonly used in production compilers but
are valuable for syntax-based editors, incremental compilers, and various other
tools.

While it is possible to construct automatic tools to analyze attribute flow and
decorate parse trees, most compilers rely on action routines, which the compiler
writer embeds in the right-hand sides of productions to evaluate attribute rules at
specific points in a parse. In an LL-family parser, action routines can be embed-
ded at arbitrary points in a production’s right-hand side. In an LR-family parser,
action routines must follow the production’s left corner. Space for attributes in a
bottom-up compiler is naturally allocated in parallel with the parse stack. Inher-
ited attributes must be “faked” by accessing the synthesized attributes of symbols
known to lie below the current production in the stack. Space for attributes in
a top-down compiler can be allocated automatically, or managed explicitly by
the writer of action routines. The automatic approach has the advantage of reg-
ularity, and is easier to maintain; the ad hoc approach is slightly faster and more
flexible.

In a one-pass compiler, which interleaves scanning, parsing, semantic analysis,
and code generation in a single traversal of its input, semantic functions or action
routines are responsible for all of semantic analysis and code generation. More
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commonly, action routines simply build a syntax tree, which is then decorated
during separate traversal(s) in subsequent pass(es).

In subsequent chapters (6–9 in particular) we will consider a wide variety
of programming language constructs. Rather than present the actual attribute
grammars required to implement these constructs, we will describe their seman-
tics informally, and give examples of the target code. We will return to attribute
grammars in Chapter 14, when we consider the generation of intermediate code
in more detail.

4.8 Exercises

4.1 Basic results from automata theory tell us that the language L = anbncn

= ε, abc, aabbcc, aaabbbccc, . . . is not context free. It can be captured,
however, using an attribute grammar. Give an underlying CFG and a set of
attribute rules that associate a Boolean attribute ok with the root R of each
parse tree, such that R.ok = true if and only if the string corresponding to
the fringe of the tree is in L.

4.2 Modify the grammar of Figure 2.24 so that it accepts only programs that
contain at least one write statement. Make the same change in the solution
to Exercise 2.12. Based on your experience, what do you think of the idea of
using the CFG to enforce the rule that every function in C must contain at
least one return statement?

4.3 Give two examples of reasonable semantic rules that cannot be checked at
reasonable cost, either statically or by compiler-generated code at run time.

4.4 Write an S-attributed attribute grammar, based on the CFG of Example 4.6,
that accumulates the value of the overall expression into the root of the
tree. You will need to use dynamic memory allocation so that individual
attributes can hold an arbitrary amount of information.

4.5 As we shall learn in Chapter 10, Lisp programs take the form of parenthe-
sized lists. The natural syntax tree for a Lisp program is thus a tree of binary
cells (known in Lisp as cons cells), where the first child represents the first
element of the list and the second child represents the rest of the list. The
syntax tree for (cdr ’(a b c)) appears in Figure 4.13. (The notation ’L is
syntactic sugar for (quote L).)

Extend the CFG of Exercise 2.13 to create an attribute grammar that will
build such trees. When a parse tree has been fully decorated, the root should
have an attribute v that refers to the syntax tree. You may assume that each
atom has a synthesized attribute v that refers to a syntax tree node that holds
information from the scanner. In your semantic functions, you may assume
the availability of a cons function that takes two references as arguments
and returns a reference to a new cons cell containing those references.
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Figure 4.13 Natural syntax tree for the Lisp expression (cdr ’(a b c)).

4.6 Suppose that we want to translate constant expressions into the postfix or
“reverse Polish” notation of logician Jan Łukasiewicz. Postfix notation does
not require parentheses. It appears in stack-based languages such as Post-
script, Forth, and the P-code and Java byte code intermediate forms men-
tioned in Section 1.4. It also serves as the input language of certain Hewlett-
Packard (HP) brand calculators. When given a number, an HP calculator
pushes it onto an internal stack. When given an operator, it pops the top
two numbers, applies the operator, and pushes the result. The display shows
the value at the top of the stack. To compute 2 × (5 − 3)/4 one would enter
2 5 3 - * 4 /.

Using the underlying CFG of Figure 4.1, write an attribute grammar that
will associate with the root of the parse tree a sequence of calculator button
pushes, seq, that will compute the arithmetic value of the tokens derived
from that symbol. You may assume the existence of a function buttons (c)
that returns a sequence of button pushes (ending with ENTER on an HP
calculator) for the constant c. You may also assume the existence of a con-
catenation function for sequences of button pushes.

4.7 Repeat the previous exercise using the underlying CFG of Figure 4.3.

4.8 Consider the following grammar for reverse Polish arithmetic expressions:

E −→ E E op id

op −→ + - * /

Assuming that each id has a synthesized attribute name of type string, and
that each E and op has an attribute val of type string, write an attribute
grammar that arranges for the val attribute of the root of the parse tree to
contain a translation of the expression into conventional infix notation. For
example, if the leaves of the tree, left to right, were “A A B - * C /”, then
the val field of the root would be “( ( A * ( A - B ) ) / C )”. As an
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extra challenge, write a version of your attribute grammar that exploits the
usual arithmetic precedence and associativity rules to use as few parentheses
as possible.

4.9 To reduce the likelihood of typographic errors, the digits comprising most
credit card numbers are designed to satisfy the so-called Luhn formula, stan-
dardized by ANSI in the 1960s and named for IBM mathematician Hans
Peter Luhn. Starting at the right, we double every other digit (the second-
to-last, fourth-to-last, etc.). If the doubled value is 10 or more, we add the
resulting digits. We then sum together all the digits. In any valid number the
result will be a multiple of 10. For example, 1234 5678 9012 3456 becomes
2264 1658 9022 6416, which sums to 64, so this is not a valid number. If the
last digit had been 2, however, the sum would have been 60, so the number
would potentially be valid.

Give an attribute grammar for strings of digits that accumulates into the
root of the parse tree a Boolean value indicating whether the string is valid
according to Luhn’s formula. Your grammar should accommodate strings of
arbitrary length.

4.10 Consider the following CFG for floating-point constants, without exponen-
tial notation. (Note that this exercise is somewhat artificial: the language in
question is regular, and would be handled by the scanner of a typical com-
piler.)

C −→ digits . digits

digits −→ digit more digits

more digits −→ digits ε

digit −→ 0 1 2 3 4 5 6 7 8 9

Augment this grammar with attribute rules that will accumulate the value
of the constant into a val attribute of the root of the parse tree. Your answer
should be S-attributed.

4.11 One potential criticism of the obvious solution to the previous problem is
that the values in internal nodes of the parse tree do not reflect the value,
in context, of the fringe below them. Create an alternative solution that
addresses this criticism. More specifically, create your grammar in such a
way that the val of an internal node is the sum of the vals of its chil-
dren. Illustrate your solution by drawing the parse tree and attribute flow
for 12.34. (Hint: You will probably want a different underlying CFG, and
non-L-attributed flow.)

4.12 Consider the following attribute grammar for type declarations, based on
the CFG of Exercise 2.8.

decl −→ ID decl tail
� decl.t := decl tail.t
� decl tail.in tab := insert (decl.in tab, ID.n, decl tail.t)
� decl.out tab := decl tail.out tab
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decl tail −→ , decl
� decl tail.t := decl.t
� decl.in tab := decl tail.in tab
� decl tail.out tab := decl.out tab

decl tail −→ : ID ;

� decl tail.t := ID.n
� decl tail.out tab := decl tail.in tab

Show a parse tree for the string A, B : C;. Then, using arrows and textual
description, specify the attribute flow required to fully decorate the tree.
(Hint: Note that the grammar is not L-attributed.)

4.13 A CFG-based attribute evaluator capable of handling non-L-attributed at-
tribute flow needs to take a parse tree as input. Explain how to build a parse
tree automatically during a top-down or bottom-up parse (i.e., without ex-
plicit action routines).

4.14 Write an LL(1) grammar with action routines and automatic attribute space
management that generates the reverse Polish translation described in Exer-
cise 4.6.

4.15 (a) Write a context-free grammar for polynomials in x. Add semantic func-
tions to produce an attribute grammar that will accumulate the polyno-
mial’s derivative (as a string) in a synthesized attribute of the root of the
parse tree.

(b) Replace your semantic functions with action routines that can be eval-
uated during parsing.

4.16 (a) Write a context-free grammar for case or switch statements in the
style of Pascal or C. Add semantic functions to ensure that the same
label does not appear on two different arms of the construct.

(b) Replace your semantic functions with action routines that can be eval-
uated during parsing.

4.17 Write an algorithm to determine whether the rules of an arbitrary attribute
grammar are noncircular. (Your algorithm will require exponential time in
the worst case [JOR75].)

4.18 Rewrite the attribute grammar of Figure 4.12 in the form of an ad hoc tree
traversal consisting of mutually recursive subroutines in your favorite pro-
gramming language. Keep the symbol table in a global variable, rather than
passing it through arguments.

4.19 Write an attribute grammar based on the CFG of Figure 4.10 that will build
a syntax tree with the structure described in Figure 4.12.

4.20 Augment the attribute grammar of Figure 4.5, Figure 4.6, or Exercise 4.19 to
initialize a synthesized attribute in every syntax tree node that indicates the
location (line and column) at which the corresponding construct appears in
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the source program. You may assume that the scanner initializes the location
of every token.

4.21 Modify the CFG and attribute grammar of Figures 4.10 and 4.12 to permit
mixed integer and real expressions, without the need for float and trunc.
You will want to add an annotation to any node that must be coerced to the
opposite type, so that the code generator will know to generate code to do
so. Be sure to think carefully about your coercion rules. In the expression
my_int + my_real, for example, how will you know whether to coerce the
integer to be a real or to coerce the real to be an integer?

4.22 Explain the need for the A : B notation on the left-hand sides of produc-
tions in a tree grammar. Why isn’t similar notation required for context-free
grammars?

4.23–4.27 In More Depth.

4.9 Explorations

4.28 One of the most influential applications of attribute grammars was the
Cornell Synthesizer Generator [Rep84, RT88], now available commercially
from grammatech.com.

Learn how the Generator uses attribute grammars not only for incre-
mental update of semantic information in a program under edit, but also
for automatic creation of language based editors from formal language
specifications. How general is this technique? What applications might it
have beyond syntax-directed editing of computer programs?

4.29 The attribute grammars used in this chapter are all quite simple. Most are
S- or L-attributed. All are noncircular. Are there any practical uses for more
complex attribute grammars? How about automatic attribute evaluators?
Using the Bibliographic Notes as a starting point, conduct a survey of at-
tribute evaluation techniques. Where is the line between practical tech-
niques and intellectual curiosities?

4.30 The first validated Ada implementation was the Ada/Ed interpreter from
New York University [DGAFS+80]. The interpreter was written in the set-
based language SETL [SDDS86] using a denotational semantics definition
of Ada. Learn about the Ada/Ed project, SETL, and denotational semantics.
Discuss how the use of a formal definition aided the development process.
Also discuss the limitations of Ada/Ed, and expand on the potential role of
formal semantics in language design, development, and prototype imple-
mentation.

4.31 The Scheme language manual [ADH+98] includes a formal definition of
Scheme in denotational semantics. How long is this definition compared
to the more conventional definition in English? How readable is it? What
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do the length and the level of readability say about Scheme? About deno-
tational semantics? (For more on denotational semantics, see the texts of
Stoy [Sto77] or Gordon [Gor79].)

4.32–4.33 In More Depth.

4.10 Bibliographic Notes

Much of the early theory of attribute grammars was developed by Knuth [Knu68].
Lewis, Rosenkrantz, and Stearns [LRS74] introduced the notion of an
L-attributed grammar. Watt [Wat77] showed how to use marker symbols to em-
ulate inherited attributes in a bottom-up parser. Jazayeri, Ogden, and Rounds
[JOR75] showed that exponential time may be required in the worst case to dec-
orate a parse tree with arbitrary attribute flow. Articles by Courcelle [Cou84] and
Engelfriet [Eng84] survey the theory and practice of attribute evaluation. The
best-known attribute grammar system for language-based editing is the Synthe-
sizer Generator [RT88] (a follow-on to the language-specific Cornell Program
Synthesizer [TR81]) of Reps and Teitelbaum. Magpie [SDB84] is an incremental
compiler. Action routines to implement many language features can be found
in the texts of Fischer and LeBlanc [FL88] or Appel [App97]. Further notes on
attribute grammars can be found in the texts of Cooper and Torczon [CT04,
pp. 171–188] or Aho, Sethi, and Ullman [ASU86, pp. 340–342].

Marcotty, Ledgard, and Bochmann [MLB76] provide a survey of formal no-
tations for programming language semantics. The seminal paper on axiomatic
semantics is by Hoare [Hoa69]. An excellent book on the subject is Gries’s The
Science of Programming [Gri81]. The seminal paper on denotational semantics is
by Scott and Strachey [SS71]. Texts on the subject include those of Stoy [Sto77]
and Gordon [Gor79].
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As described in Chapter 1, a compiler is simply a translator. It translates
programs written in one language into programs written in another language.
This second language can be almost anything—some other high-level language,
phototypesetting commands, VLSI (chip) layouts—but most of the time it’s the
machine language for some available computer.

Just as there are many different programming languages, there are many differ-
ent machine languages, though the latter tend to display considerably less diver-
sity than the former. Each machine language corresponds to a different processor
architecture. Formally, an architecture is the interface between the hardware and
the software: the language generated by a compiler, or by a programmer writ-
ing for the bare machine. The implementation of the processor is a concrete re-
alization of the architecture, generally in hardware. This chapter provides a brief
overview of those aspects of processor architecture and implementation of partic-
ular importance to compiler writers, and may be worth reviewing even by readers
who have seen the material before.

To generate correct code, it suffices for a compiler writer to understand the
target architecture. To generate fast code, it is generally necessary to understand
the implementation as well, because it is the implementation that determines the
relative speeds of alternative translations of a given language construct.

Processor implementations change over time, as people invent better ways of
doing things, and as technological advances (e.g., increases in the number of
transistors that will fit on one chip) make things feasible that were not feasi-
ble before. Processor architectures also change, for at least two reasons. Some
technological advances can be exploited only by changing the hardware/software
interface—for example, by increasing the number of bits that can be added or
multiplied in a single instruction. In addition, experience with compilers and
applications often suggests that certain new instructions would make programs
simpler or faster. Occasionally, technological and intellectual trends converge to
produce a revolutionary change in both architecture and implementation. We
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will discuss three such changes in Section 5.4: the development of microprogram-
ming in the early 1960s, the development of the microprocessor in the early to
mid-1970s, and the development of RISC machines in the early 1980s. As this
book goes to press it appears we may be on the cusp of a fourth revolution, as
vendors turn to multithreaded and multiprocessor chips in an attempt to increase
computational power per watt of heat output.

Most of the discussion in this chapter, and indeed in the rest of the book,
will assume that we are compiling for a modern RISC (reduced instruction set
computer) architecture. Roughly speaking, a RISC machine is one that sacrifices
richness in the instruction set in order to increase the number of instructions that
can be executed per second. Where appropriate, we will devote a limited amount
of attention to earlier, CISC (complex instruction set computer) architectures.
The most popular desktop processor in the world—the x86 —is a legacy CISC
design, but RISC dominates among newer designs. Modern implementations of
the x86 generally run fastest if compilers restrict themselves to a relatively sim-
ple subset of the instruction set. Within the processor, a hardware “front end”
translates these instructions, on the fly, into a RISC-like internal format.

In the first three sections that follow, we consider the hierarchical organization
of memory, the types (formats) of data found in memory, and the instructions
used to manipulate those data. The coverage is necessarily somewhat cursory and
high-level; much more detail can be found in books on computer architecture
(e.g., in Chapter 2 of Hennessy and Patterson’s outstanding text [HP03]).

We consider the interplay between architecture and implementation in Sec-
tion 5.4. In a supplemental subsection on the PLP CD, we illustrate the differ-
ences between CISC and RISC machines using the x86 and MIPS instruction sets
as examples. Finally, in Section 5.5, we consider some of the issues that make
compiling for modern processors a challenging task.

5.1 The Memory Hierarchy

Memory on most machines consists of a numbered sequence of eight-bit bytes.
It is not uncommon for modern workstations to contain several gigabytes of
memory—much too much to fit on the same chip as the processor. Because
memory is off-chip (typically on the other side of a bus), getting at it is much
slower than getting at things on-chip. Most computers therefore employ a mem-
ory hierarchy, in which things that are used more often are kept close at hand.
A typical memory hierarchy, with access times and capacities, is shown in Fig-EXAMPLE 5.1

Memory hierarchy stats ure 5.1. �
Only three of the levels of the memory hierarchy—registers, memory, and

devices—are a visible part of the hardware/software interface. Compilers manage
registers explicitly, loading them from memory when needed and storing them
back to memory when done, or when the registers are needed for something else.
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typical access time typical capacity

registers 0.2–0.5ns 256–1024 bytes
primary (L1) cache 0.4–1ns 32K–256K bytes
secondary (L2) cache 4–10ns 512K–2M bytes
tertiary (off-chip, L3) cache 10–50ns 4–64M bytes
main memory 50–500ns 256M–16G bytes
disk 5–15ms 80G bytes and up
tape 1–50s effectively unlimited

Figure 5.1 The memory hierarchy of a workstation-class computer. Access times and capaci-
ties are approximate, based on 2005 technology. Registers must be accessed within a single clock
cycle. Primary cache typically responds in 1–2 cycles; off-chip cache in more like 20 cycles. Main
memory on a supercomputer can be as fast as off-chip cache; on a workstation it is typically
much slower. Disk and tape times are constrained by the movement of physical parts.

Caches are managed by the hardware. Devices are generally accessed only by the
operating system.

Registers hold small amounts of data that can be accessed very quickly. A typ-
ical RISC machine has two sets of registers, to hold integer and floating-point
operands. It also has several special purpose registers, including the program
counter (PC) and the processor status register. The program counter holds the
address of the next instruction to be executed. It is incremented automatically
when fetching most instructions; branches work by changing it explicitly. The
processor status register contains a variety of bits of importance to the operating
system (privilege level, interrupt priority level, trap enable bits) and, on some
machines, a few bits of importance to the compiler writer. Principal among these
are condition codes, which indicate whether the most recent arithmetic or logical
operation resulted in a zero, a negative value, and/or arithmetic overflow. (We
will consider condition codes in more detail in Section 5.3.2.)

Because registers can be accessed every cycle, whereas memory, generally, can-
not, good compilers expend a great deal of effort trying to make sure that the
data they need most often are in registers, and trying to minimize the amount of
time spent moving data back and forth between registers and memory. We will
consider algorithms for register management in Section 5.5.2.

Caches are generally smaller but faster than main memory. They are designed
to exploit locality: the tendency of most computer programs to access the same
or nearby locations in memory repeatedly. By automatically moving the contents
of these locations into cache, a hierarchical memory system can dramatically im-
prove performance. The idea makes intuitive sense: loops tend to access the same
local variables in every iteration, and to walk sequentially through arrays. In-
structions, likewise, tend to be loaded from consecutive locations, and code that
accesses one element of a structure (or member of a class) is likely to access an-
other.

Primary caches, also known as level-1 (L1) caches, are typically located on the
same chip as the processor, and usually come in pairs—one for instructions (the
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L1 I-cache) and another for data (the L1 D-cache), both of which can be ac-
cessed every cycle. Secondary caches are larger and slower, but still faster than
main memory. In a modern desktop or laptop system they are typically also
on the same chip as the processor. High-end desktop or server-class machines
may have an off-chip tertiary (L3) cache as well. Small embedded processors may
have a single level of on-chip cache, with or without any off-chip cache. Caches
are managed entirely in hardware on most machines, but compilers can increase
their effectiveness by generating code with a high degree of locality.

A memory access that finds its data in the cache is said to be a cache hit. An
access that does not find its data in the cache is said to be a cache miss. On a
miss, the hardware automatically loads a line of the cache with a contiguous block
of data containing the requested location, obtained from the next lower level of
cache or main memory. (Cache lines vary from as few as 8 to as many as 512 bytes
in length.) Assuming that the cache was already full, the load will displace some
other line, which is written back to memory if it has been modified.

A final characteristic of memory that is important to the compiler is known as
data alignment. Most machines are able to manipulate operands of several sizes,
typically one, two, four, and eight bytes. Most modern instruction sets refer to
these as byte, half-word, word, and double-word operands, respectively; on the
x86 they are byte, word, double-word, and quad-word operands. Most recent ar-
chitectures require n-byte operands to appear in memory at addresses that are
evenly divisible by n. Integers, for example, which typically occupy four bytes,
must appear at a location whose address is evenly divisible by four. This restric-
tion occurs for two reasons. First, buses are designed in such a way that data are
delivered to the processor over bit-parallel, aligned communication paths. Load-
ing an integer from an odd address would require that the bits be shifted, adding
logic (and time) to the load path. The x86, which for reasons of backward com-
patibility allows operands to appear at arbitrary addresses, runs faster if those
operands are properly aligned. Second, on RISC machines, there are generally
not enough bits in an instruction to specify both an operation (e.g., load) and a
full address. As we shall see in Section 5.3.1, it is typical to specify an address in
terms of an offset from some base location specified by a register. Requiring that
integers be word-aligned allows the offset to be specified in words, rather than

DESIGN & IMPLEMENTATION

The processor/memory gap
Historically processor speed has increased much faster than memory speed,
so the number of processor cycles required to access memory has continued
to grow. As a result of this trend, caches have become increasingly critical
to performance. To improve the effectiveness of caching, programmers need
to choose algorithms whose data access patterns have a high degree of local-
ity. High-quality compilers, likewise, need to consider locality of access when
choosing among the many possible translations of a given program.
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in bytes, quadrupling the amount of memory that can be accessed using offsets
from a given base register.

5.2 Data Representation

Data in the memory of most computers are untyped: bits are simply bits. Opera-
tions are typed, in the sense that different operations interpret the bits in memory
in different ways. Typical data formats include instructions, addresses, binary in-
tegers of various lengths, floating-point (real) numbers of various lengths, and
characters.

Integers typically come in half-word, word, and (recently) double-word
lengths. Floating-point numbers typically come in word and double-word
lengths, commonly referred to as single and double precision. Some machinesEXAMPLE 5.2

Big- and little-endian store the least-significant byte of a multi-word datum at the address of the da-
tum itself, with bytes of increasing numeric significance at higher-numbered ad-
dresses. Other machines store the bytes in the opposite order. The first option
is called little-endian; the second is called big-endian. In either case, an n-byte
datum stored at address t occupies bytes t through t + n − 1. The advantage
of a little-endian organization is that it is tolerant of variations in operand size.
If the value 37 is stored as a word and then a byte is read from the same loca-
tion, the value 37 will be returned. On a big-endian machine, the value 0 will be
returned (the upper eight bits of the number 37, when stored in 32 bits). The
problem with the little-endian approach is that it seems to scramble the bytes of
integers, when read from left to right (see Figure 5.2a). Little-endian-ness makes
a bit more sense if one thinks of memory as a (byte-addressable) array of words
(Figure 5.2b). Among CISC machines, the x86 is little-endian, as was the Digi-
tal VAX. The IBM 360/370 and the Motorola 680x0 are big-endian. Most of the
first-generation RISC machines were also big-endian; most of the current RISC
machines can run in either mode. �

Support for characters varies widely. Most CISC machines will perform arbi-
trary arithmetic and logical operations on one-byte quantities. Many CISC ma-
chines also provide instructions that perform operations on strings of characters,
such as copying, comparing, or searching. Most RISC machines will load and
store bytes from or to memory, but operate only on longer quantities in regis-
ters.

5.2.1 Computer Arithmetic

Binary integers are almost universally represented in two related formats:
straightforward binary place-value for unsigned numbers, and two’s comple-
ment for signed numbers. An n-bit unsigned integer has a value in the range
0 . .2n−1, inclusive. An n-bit two’s complement integer has a value in the range
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Figure 5.2 Big-endian and little-endian byte orderings. (a) Two four-byte quantities, the num-
bers 3716 and 12 34 56 7816 , stored at addresses 432 and 436, respectively. (b) The same situation
with memory visualized as a byte-addressable array of words.

−2n−1. .2n−1−1, inclusive. Most instruction sets provide two forms of most of
the arithmetic operators: one for unsigned numbers and one for signed num-
bers. Even for languages in which integers are always signed, unsigned arithmetic
is important for the manipulation of addresses (e.g., pointers).

Floating-point numbers are the computer equivalent of scientific notation:
they consist of a mantissa or significand, sig, an exponent, exp, and (usually) a
sign bit, s. The value of a floating-point number is then −1s × sig × 2exp. Prior
to the mid-1980s, floating-point formats and semantics tended to vary greatly
across brands and even models of computers. Different manufacturers made dif-
ferent choices regarding the number of bits in each field, their order, and their
internal representation. They also made different choices regarding the behavior
of arithmetic operators with respect to rounding, underflow, overflow, invalid
operations, and the representation of extremely small quantities. With the com-
pletion in 1985 of IEEE standard number 754, however, the situation changed
dramatically. Most processors developed in subsequent years conform to the for-
mats and semantics of this standard.

IN MORE DEPTH

We consider two’s complement and IEEE floating-point arithmetic in more detail
on the PLP CD.
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5.3 Instruction Set Architecture

On a RISC machine, computational instructions operate on values held in reg-
isters: a load instruction must be used to bring a value from memory into
a register before it can be used as an operand. CISC machines usually allow
all or most computational instructions to access operands directly in mem-
ory. RISC machines are therefore said to provide a load-store or register-register
architecture; CISC machines are said to provide a register-memory architec-
ture.

For binary operations, instructions on RISC machines generally specify three
registers: two sources and a destination. Some CISC machines (e.g., the VAX) also
provide three-address instructions. Others (e.g., the x86 and the 680x0) provide
only two-address instructions; one of the operands is always overwritten by the
result. Two-address instructions are more compact, but three-address instruc-
tions allow both operands to be reused in subsequent operations. This reuse is
crucial on RISC machines: it minimizes the number of artificial restrictions on
the ordering of instructions, affording the compiler considerably more freedom
in choosing an order that performs well.

5.3.1 Addressing Modes

One can imagine many different ways in which a computational instruction
might specify the location of its operands. A given operand might be in a reg-
ister, in memory, or, in the case of read-only constants, in the instruction itself.
If the operand is in memory, its address might be found in a register, in memory,
or in the instruction, or it might be derived from some combination of values
in various locations. Instruction sets differ greatly in the addressing modes they
provide to capture these various options.

As noted above, most RISC machines require that the operands of computa-
tional instructions reside in registers or the instruction. For load and store in-
structions, which are allowed to access memory, they typically support the dis-
placement addressing mode, in which the operand’s address is found by adding
some small constant (the displacement) to the value found in a specified regis-
ter (the base). The displacement is contained in the instruction. Displacement
addressing with respect to the frame pointer provides an easy way to access lo-
cal variables. Displacement addressing with a displacement of zero is sometimes
called register indirect addressing.

Some RISC machines, including the PowerPC and Sparc, also allow load and
store instructions to use an indexed addressing mode, in which the operand’s ad-
dress is found by adding the values in two registers. Indexed addressing is useful
for arrays: one register (the base) contains the address of the array; the second
(the index) contains the offset of the desired element.
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CISC machines typically provide a richer set of addressing modes, and allow
them to be used in computational instructions, as well as in loads and stores.
On the x86, for example, the address of an operand can be calculated by mul-
tiplying the value in one register by a small constant, adding the value found
in a second register, and then adding another small constant, all in one instruc-
tion.

5.3.2 Conditions and Branches

All instruction sets provide a branching mechanism to update the program
counter under program control. Branches allow compilers to implement con-
ditional statements, subroutines, and loops. Conditional branches are generally
controlled in one of two ways. On most CISC machines they use condition codes.
As mentioned in Section 5.1, condition codes are usually implemented as a set
of bits in a special processor status register. All or most of the arithmetic, logical,
and data-movement instructions update the condition codes as a side effect. The
exact number of bits varies from machine to machine, but three and four are
common: one bit each to indicate whether the instruction produced a zero value,
a negative value, and/or an overflow or carry. To implement the following test,EXAMPLE 5.3

An if statement in x86
assembler

for example,

A := B + C
if A = 0 then

body

a compiler for the x861 might generate

movl C, %eax ; move longword C into register eax

addl B, %eax ; add

movl %eax, A ; and store

jne L1 ; branch (jump) if result not equal to zero

body
L1: �
For cases in which the outcome of a branch depends on a value that has notEXAMPLE 5.4

Compare and test
instructions

just been computed or moved, most machines provide compare and test in-
structions. Again on the x86:

1 Readers familiar with the x86 should be warned that this example uses the assembler syntax of
the Gnu gcc compiler and its assembler, gas. This syntax differs in several ways from Microsoft
and Intel assembler. Most notably, it specifies operands in the opposite order. The instruction
addl B, %eax, for example, adds the value in B to the value in register %eax and leaves the
result in %ebx: in Gnu assembler the destination operand is listed second. In Intel and Microsoft
assembler it’s the other way around: addl B, %eax would add the value in register %ebx to the
value in B and leave the result in B.
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if A ≤ B then
body

if A > 0 then
body

movl A, %eax ; move long-word A into register eax

cmpl B, %eax ; compare to B

jg L1 ; branch (jump) if greater

body
L1:

testl %eax, %eax ; compare %eax (A) to 0

jle L2 ; branch if less than or equal

body
L2:

The x86 cmpl instruction subtracts its source operand from its destination
operand and sets the condition codes according to the result, but it does not
overwrite the destination operand. The testl instruction ands its two operands
together and compares the result to zero. Most often, as shown here, the two
operands are the same. When they are different, one is typically a mask value that
allows the programmer or compiler to test individual bits or bits fields in the
other operand. �

Unfortunately, traditional condition codes make it difficult to implement
some important performance enhancements. In particular, the fact that they are
set by almost every instruction tends to preclude implementations in which log-
ically unrelated instructions might be executed in between (or in parallel with)
the instruction that tests a condition and the branch that relies on the outcome
of the test. There are several possible ways to address this problem; the handling
of conditional branches is one of the areas in which extant RISC machines vary
most from one another. The ARM and Sparc architectures make setting of the
condition codes optional on an instruction-by-instruction basis. The PowerPC
provides eight separate sets of condition codes; compare and branch instructions
can specify the set to use. The MIPS has no condition codes (at least not for inte-
ger operations); it uses Boolean values in registers instead.

More precisely, where the x86 has 16 different branch instructions based onEXAMPLE 5.5
Conditional branches on
the MIPS

arithmetic comparisons, the MIPS has only six. Four of these branch if the value
in a register is <, ≤, >, or ≥ zero. The other two branch if the values in two reg-
isters are = or �=. In a convention shared by most RISC machines, register zero is
defined to always contain the value zero, so the latter two instructions cover both
the remaining comparisons to zero and direct comparisons of registers for equal-
ity. More general register-register comparisons (signed and unsigned) require a
separate instruction to place a Boolean value in a register that is then named by
the branch instruction. Repeating the preceding examples on the MIPS, we get

if A ≤ B then
body

lw $3, A ; load word: register 3 := A

lw $2, B ; register 2 := B

slt $2, $2, $3 ; register 2 := (B < A)

bne $2, $0, L1 ; branch if Boolean true ( �= 0)
body

L1:



204 Chapter 5 Target Machine Architecture

if A > 0 then
body

blez $3, L2 ; branch if A ≤ 0
body

L2:

By convention, destination registers are listed first in MIPS assembler (as they
are in assignment statements). The slt instruction stands for “set less than”;
bne and blez stand for “branch if not equal” and “branch if less than or equal
to zero,” respectively. Note that the compiler has used bne to compare register 2
to the constant register 0. �

CHECK YOUR UNDERSTANDING

1. What is the world’s most popular instruction set architecture (for desktop
machines)?

2. What is the difference between big-endian and little-endian addressing?

3. What is the purpose of a cache?

4. Why do many machines have more than one level of cache?

5. How many processor cycles does it typically take to access primary (on-chip)
cache? How many cycles does it typically take to access main memory?

6. What is data alignment? Why do many processors insist upon it?

7. List four common formats (interpretations) for bits in memory.

8. What is IEEE standard number 754? Why is it important?

9. What are the tradeoffs between two-address and three-address instruction
formats?

10. Describe at least five different addressing modes. Which of these are com-
monly supported on RISC machines?

11. What are condition codes? Why do some architectures not provide them?
What do they provide instead?

5.4 Architecture and Implementation

The typical processor implementation consists of a collection of functional units,
one (or more) for each logically separable facet of processor activity: instruction
fetch, instruction decode, operand fetch from registers, arithmetic computation,
memory access, write-back of results to registers, and so on. One could imag-
ine an implementation in which all of the work for a particular instruction is
completed before work on the next instruction begins, and in fact this is how
many computers used to be constructed. The problem with this organization is
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that most of the functional units are idle most of the time. Using ideas originally
developed for supercomputers of the 1960s, processor implementations have in-
creasingly moved toward a pipelined organization, in which the functional units
work like the stations on an assembly line, with different instructions passing
through different pipeline stages concurrently. Pipelining is used in even the most
inexpensive personal computers today, and in all but the simplest processors for
the embedded market. A simple processor may have five or six pipeline stages.
The IBM PowerPC G5 has 21; the Intel Pentium 4E has 31.

By allowing (parts of) multiple instructions to execute in parallel, pipelining
can dramatically increase the number of instructions that can be completed per
second, but it is not a panacea. In particular, a pipeline will stall if the same func-
tional unit is needed in two different instructions simultaneously, or if an earlier
instruction has not yet produced a result by the time it is needed in a later in-
struction, or if the outcome of a conditional branch is not known (or guessed)
by the time the next instruction needs to be fetched.

We shall see in Section 5.5 that many stalls can be avoided by adding a little ex-
tra hardware and then choosing carefully among the various ways of translating
a given construct into target code. An important example occurs in the case of
floating-point arithmetic, which is typically much slower than integer arithmetic.
Rather than stall the entire pipeline while executing a floating-point instruction,
we can build a separate functional unit for floating-point math, and arrange for
it to operate on a separate set of floating-point registers. In effect, this strategy
leads to a pair of pipelines—one for integers and one for floating-point—that
share their first few stages. The integer branch of the pipeline can continue to ex-
ecute while the floating-point unit is busy, as long as subsequent instructions do
not require the floating-point result. The need to reorder, or schedule, instruc-
tions so that those that conflict with or depend on one another are separated
in time is one of the principal reasons why compiling for modern processors is
hard.

5.4.1 Microprogramming

As technology advances, there are occasionally times when it becomes feasible to
design machines in a very different way. During the 1950s and the early 1960s, the
instruction set of a typical computer was implemented by soldering together large
numbers of discrete components (transistors, capacitors, etc.) that performed
the required operations. To build a faster computer, one generally designed new,
more powerful instructions, which required extra hardware. This strategy had
the unfortunate effect of requiring assembly language programmers (or compiler
writers, though there weren’t many of them back then) to learn a new language
every time a new and better computer came along.

A fundamental breakthrough occurred in the early 1960s, when IBM hit
upon the idea of microprogramming. Microprogramming allowed a company
to provide the same instruction set across a whole line of computers, from
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inexpensive slow machines to expensive fast machines. The basic idea was to
build a “microengine” in hardware that executed an interpreter program in
“firmware.” The interpreter in turn implemented the “machine language” of
the computer—in this case, the IBM 360 instruction set. More expensive ma-
chines had fancier microengines, with more direct support for the instructions
seen by the assembly-level programmer. The top-of-the-line machines had every-
thing in hardware. In effect, the architecture of the machine became an ab-
stract interface behind which hardware designers could hide implementation
details, much as the interfaces of modules in modern programming languages
allow software designers to limit the information available to users of an abstrac-
tion.

In addition to allowing the introduction of computer families, micropro-
gramming made it comparatively easy for architects to extend the instruction
set. Numerous studies were published in which researchers identified some
sequence of instructions that commonly occurred together (e.g., the instruc-
tions that jump to a subroutine and update bookkeeping information in the
stack) and then introduced a new instruction to perform the same function as
the sequence. The new instruction was usually faster than the sequence it re-
placed, and almost always shorter (and code size was more important then than
now).

5.4.2 Microprocessors

A second architectural breakthrough occurred in the mid-1970s, when very large-
scale integration (VLSI) chip technology reached the point at which a simple
microprogrammed processor could be implemented entirely on one inexpen-
sive chip. The chip boundary is important because it takes much more time and
power to drive signals across macroscopic output pins than it does across intra-
chip connections, and because the number of pins on a chip is limited by pack-
aging issues. With an entire processor on one chip, it became feasible to build
a commercially viable personal computer. Processor architectures of this era in-
clude the MOS Technology 6502, used in the Apple II and the Commodore 64,
and the Intel 8080 and Zilog Z80, used in the Radio Shack TRS-80 and various
CP/M machines. Continued improvements in VLSI technology led, by the mid-
1980s, to 32-bit microprogrammed microprocessors such as the Motorola 68000,
used in the original Apple Macintosh, and the Intel 80386, used in the first 32-bit
IBM PCs.

From an architectural standpoint, the principal impact of the microprocessor
revolution was to constrain, temporarily, the number of registers and the size of
operands. Where the IBM 360 (not a single-chip processor) operated on 32-bit
data, with 16 general purpose 32-bit registers, the Intel 8080 operated on 8-bit
data, with only seven 8-bit registers and a 16-bit stack pointer. Over time, as
VLSI density increased, registers and instruction sets expanded as well. Intel’s
32-bit 80386 was introduced in 1985.
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5.4.3 RISC

By the early 1980s, several factors converged to make possible a third architectural
breakthrough. First, VLSI technology reached the point at which a pipelined 32-
bit processor with a sufficiently simple instruction set could be implemented on
a single chip, without microprogramming. Second, improvements in processor
speed were beginning to outstrip improvements in memory speed, increasing
the relative penalty for accessing memory, and thereby increasing the pressure to
keep things in registers. Third, compiler technology had advanced to the point at
which compilers could often match (and sometimes exceed) the quality of code
produced by the best assembly language programmers. Taken together, these fac-
tors suggested a reduced instruction set computer (RISC) architecture with a fast,
all-hardware implementation, a comparatively low-level instruction set, a large
number of registers, and an optimizing compiler.

The advent of RISC machines ran counter to the ever-more-powerful-
instructions trend in processor design but was to a large extent consistent with
established trends for supercomputers. Supercomputer instruction sets had al-
ways been relatively simple and low-level, in order to facilitate pipelining. Among
other things, effective pipelining depends on having most instructions take the
same, constant number of cycles to execute, and on minimizing dependences
that would prevent a later instruction from starting execution before its prede-
cessors have finished. A major problem with the trend toward more complex
instruction sets was that it made it difficult to design high-performance imple-
mentations. Instructions on the VAX, for example, could vary in length from
one to more than 50 bytes, and in execution time from one to thousands of
cycles. Both of these factors tend to lead to pipeline stalls. Variable-length in-
structions make it difficult to even find the next instruction until the current one
has been studied extensively. Variable execution time makes it difficult to keep all
the pipeline stages busy. The original VAX (the 11/780) was shipped in 1978, but
it wasn’t until 1985 that Digital was able to ship a successfully pipelined version,
the 8600.2

The most basic rule of processor performance holds that total execution time
on any machine equals the number of instructions executed times the average
number of cycles per instruction times the length in time of a cycle. What we
might call the “CISC design philosophy” is to minimize execution time by re-
ducing the number of instructions, letting each instruction do more work. The
“RISC philosophy,” by contrast, is to minimize execution time by reducing the
length of the cycle and the number of (nonoverlapped) cycles per instruction
(CPI).

Recent RISC machines (and RISC-like implementations of the x86) attempt
to minimize CPI by executing as many instructions as possible in parallel. The

2 An alternative approach—to maintain microprogramming but pipeline the microengine—was
adopted by the 8800 and, more recently, by Intel’s Pentium Pro and its successors.
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PowerPC G5, for example, can have over 200 instructions simultaneously “in
flight.” Some processors have very deep pipelines, allowing the work of an in-
struction to be divided into very short cycles. Many are superscalar: they have
multiple parallel pipelines, and start more than one instruction each cycle. (This
requires, of course, that the compiler and/or hardware identify instructions that
do not depend on one another, so that parallel execution is semantically indis-
tinguishable from sequential execution.) To minimize artificial dependences be-
tween instructions (as, for instance, when one instruction must finish using a
register as an operand before another instruction overwrites that register with
a new value), many machines perform register renaming, dynamically assigning
logically independent uses of the same architectural register to different loca-
tions in a larger set of physical (implementation) registers. High performance
processor implementations may actually execute mutually independent instruc-
tions out of order when they can increase instruction-level parallelism by doing
so. These techniques dramatically increase implementation complexity but not
architectural complexity; in fact, it is architectural simplicity that makes them
possible.

5.4.4 Two Example Architectures: The x86 and MIPS

We can illustrate the differences between CISC and RISC machines by examin-
ing a representative pair of architectures. The x86 is the most widely used CISCEXAMPLE 5.6

The x86 ISA design—in fact, the most widely used processor architecture of any kind (outside
the embedded market). The original model, the 8086, was announced in 1978.
Major changes were introduced by the 8087, 80286, 80386, Pentium Pro, Pen-
tium/MMX, Pentium III, and Pentium 4. While technically backward compati-
ble, these changes were often out of keeping with the philosophy of the earlier
generations. The result is a machine with an enormous number of stylistic in-
consistencies and special cases. AMD’s 64-bit extension to the x86, saddled as it
was with the need for backward compatibility, is even more complex. Early gen-
erations of the x86 were extensively microprogrammed. More recent generations
still use microprogramming for the more complex portions of the instruction set,
but simpler instructions are translated directly (in hardware) into between one
and four microinstructions that are in turn fed to a heavily pipelined, RISC-like
computational core. �

The MIPS architecture, begun as a commercial spin-off of research at Stan-EXAMPLE 5.7
The MIPS ISA ford University, is arguably the simplest of the commercial RISC machines. It

too has evolved, through five generations as of 2005, but with one exception—
a jump to 64-bit integer operands and addresses in 1991—the changes have been
relatively minor. MIPS processors were used by Digital Equipment Corp. for a
few years prior to the development of the (now defunct) Alpha architecture, and
by Silicon Graphics, Inc. throughout the 1990s. They are now used primarily in
embedded applications. MIPS-based tools are also widely used in academia. All
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f1 := 0
goto L2

L1: f2 := *r1 –– load
f1 := f1 + f2
r1 := r1 + 8 –– floating-point numbers are 8 bytes long
r2 := r2 − 1

L2: if r2 > 0 goto L1

Figure 5.3 Example of pseudo-assembly notation. The code shown sums the elements of a
floating-point vector of length n. At the beginning, integer register r1 is assumed to point to the
vector and register r2 is assumed to contain n. At the end, floating-point register f1 contains
the sum.

models of the MIPS are implemented entirely in hardware; they are not micro-
programmed. �

IN MORE DEPTH

Among the most significant differences between the x86 and MIPS are their
memory access mechanisms, their register sets, and the variety of instructions
they provide. Like all RISC machines, the MIPS allows only load and store in-
structions to access memory; all computation is done with values in registers.
Like most CISC machines, the x86 allows computational instructions to operate
on values in either registers or memory. It also provides a richer set of address-
ing modes. Like most RISC machines, the MIPS has 32 integer registers and 32
floating-point registers. The x86, by contrast, has only 8 of each, and most of the
floating-point instructions treat the floating-point registers as a tiny stack, rather
than naming them directly. The MIPS provides many fewer distinct instructions
than does the x86, and its instruction set is much more internally consistent; the
x86 has a huge number of special cases. All MIPS instructions are exactly 4 bytes
long. Instructions on the x86 vary from 1 to 17 bytes.

5.4.5 Pseudo-Assembly Notation

At various times throughout the remainder of this book, we will need to considerEXAMPLE 5.8
Pseudo-assembler sequences of machine instructions corresponding to some high-level language

construct. Rather than present these sequences in the assembly language of some
particular processor architecture, we will (in most cases) rely on a simple nota-
tion designed to represent a generic RISC machine. A brief example appears in
Figure 5.3.

The notation should in most cases be self-explanatory. It uses “assignment
statements” and operators reminiscent of high-level languages, but each line of
code corresponds to a single machine instruction, and registers are named ex-
plicitly. Control flow is based entirely on gotos and subroutine calls. Conditional
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tests assume that the hardware can perform a comparison and branch in a single
instruction, where the comparison tests the contents of a register against a small
constant or the contents of another register. �

CHECK YOUR UNDERSTANDING

12. What is microprogramming? What breakthroughs did its invention make
possible?

13. What technological threshold was crossed in the mid-1970s, enabling the in-
troduction of microprocessors? What subsequent threshold, crossed in the
early 1980s, made RISC machines possible?

14. What is pipelining?

15. Summarize the difference between the CISC and RISC philosophies in in-
struction set design.

16. Why do RISC machines allow only load and store instructions to access mem-
ory?

17. Name three CISC architectures. Name three RISC architectures. (If you’re
stumped, see the Summary and Concluding Remarks [Section 5.6].)

18. What three research groups share the credit for inventing RISC? (For this
you’ll probably need to peek at the Bibliographic Notes [Section 5.9].)

19. How can the designer of a pipelined machine cope with instructions (e.g.,
floating-point arithmetic) that take much longer than others to compute?

5.5 Compiling for Modern Processors

Programming a RISC machine by hand, in assembly language, is a tedious un-
dertaking. Only loads and stores can access memory, and then only with limited
addressing modes. Moreover the limited space available in fixed-size instructions
means that a nonintuitive two-instruction sequence is required to load a 32-bit
constant or to jump to an absolute address. In some sense, complexity that used
to be hidden in the microcode of CISC machines has been exported to the com-
piler.

Fortunately, most of the code for modern processors is generated by compil-
ers, which don’t get bored or make careless mistakes, and can easily deal with
comparatively primitive instructions. In fact, when compiling for recent imple-
mentations of the x86, compilers generally limit themselves to a small, RISC-like
subset of the instruction set, which the processor can pipeline effectively. Old
programs that make use of more complex instructions still run, but not as fast;
they don’t take full advantage of the hardware.
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The real difficulty in compiling for modern processors lies not in the need to
use primitive instructions, but in the need to keep the pipeline full and to make
effective use of registers. A user who trades in a Pentium III PC for one withEXAMPLE 5.9

Performance �= clock rate a Pentium 4 will typically find that while old programs run faster on the new
machine, the speed improvement is nowhere near as dramatic as the difference
in clock rates would lead one to expect. Improvements will generally be better
if one is able to obtain new program versions that have been compiled with the
newer processor in mind. �

5.5.1 Keeping the Pipeline Full

Four main problems may cause a pipelined processor to stall:

Cache misses. A load instruction or an instruction fetch may miss in the cache.

Resource hazards. Two concurrently executing instructions may need to use the
same functional unit at the same time.

Data hazards. An instruction may need an operand that has not yet been pro-
duced by an earlier but still executing instruction.

Control hazards. Until the outcome (and target) of a branch instruction is de-
termined, the processor does not know the location from which to fetch sub-
sequent instructions.

All of these problems are amenable, at least in part, to both hardware and
software solutions. On the hardware side, misses can generally be reduced by
building larger or more highly associative caches.3 Resource hazards, likewise, can
be addressed by building multiple copies of the various functional units (though
most processors don’t provide enough to avoid all possible conflicts). Misses,
resource hazards, and data hazards can all be addressed by out-of-order execution,
which allows a processor (at the cost of significant design complexity, chip area,
and power consumption) to consider a lengthy “window” of instructions, and
make progress on any of them for which operands and hardware resources are
available.

Of course, even out-of-order execution works only if the processor is able to
fetch instructions, and thus it is control hazards that have the largest potential
negative impact on performance. Branches constitute something like 10% of all
instructions in typical programs,4 so even a one-cycle stall on every branch could

3 The degree of associativity of a cache is the number of distinct lines in the cache in which the
contents of a given memory location might be found. In a one-way associative (direct-mapped)
cache, each memory location maps to only one possible line in the cache. If the program uses two
locations that map to the same line, the contents of these two locations will keep evicting each
other, and many misses will result. More highly associative caches are slower but suffer fewer
such conflicts.

4 This is a very rough number. For the SPEC2000 benchmarks, Hennessy and Patterson report
percentages varying from 1 to 25 [HP03, pp. 138–139].



212 Chapter 5 Target Machine Architecture

be expected to slow down execution by 9% on average. On a deeply pipelined
machine one might naively expect to stall for more like five or even ten cycles
while waiting for a new program counter to be computed. To avoid such intol-
erable delays, most workstation-class processors incorporate hardware to predict
the outcome of each branch, based on past behavior, and to execute speculatively
down the predicted path. Assuming that it takes care to avoid any irreversible
operations, the processor will suffer stalls only in the case of an incorrect predic-
tion.

On the software side, the compiler has a major role to play in keeping the
pipeline full. For any given source program, there is an unbounded number
of possible translations into machine code. In general we should prefer shorter
translations over longer ones, but we must also consider the extent to which var-
ious translations will utilize the pipeline. On an in-order processor (one that
always executes instructions in the order they appear in the machine language
program), a stall will inevitably occur whenever a load is followed immedi-
ately by an instruction that needs the loaded value, because even a first-level
cache requires at least one extra cycle to respond. A stall may also occur when
the result of a slow-to-complete floating-point operation is needed too soon
by another instruction, when two concurrently executing instructions need the
same functional unit in the same cycle, or, on a superscalar processor, when
an instruction that uses a value is executed concurrently with the instruction
that produces it. In all these cases performance may improve significantly if the
compiler chooses a translation in which instructions appear in a different or-
der.

The general technique of reordering instructions at compile time so as to
maximize processor performance is known as instruction scheduling. On an in-
order processor the goal is to identify a valid order that will minimize pipeline
stalls at run time. To achieve this goal the compiler requires a detailed model
of the pipeline. On an out-of-order processor the goal is simply to maximize
instruction-level parallelism (ILP): the degree to which unrelated instructions lie
near one another in the instruction stream (and thus are likely to fall within the
processor’s instruction window). A compiler for such an out-of-order machine
may be able to make do with a less detailed processor model. At the same time, it
may need to ensure a higher degree of ILP, since out-of-order execution tends to
be found on machines with several pipelines.

Instruction scheduling can have a major impact on resource and data haz-
ards. On machines with so-called delayed branches it can also help with control
hazards. We will consider the topic of instruction scheduling in some detail in
Section 15.6. In the remainder of the current subsection we focus on the two
cases—loads and branches—where issues of instruction scheduling may actually
be embedded in the processor’s instruction set. Software techniques to reduce
the incidence of cache misses typically require large-scale restructuring of con-
trol flow or data layout. Though the better commercial compilers may reorganize
loops for better cache locality in scientific programs (a topic we will consider in
Section 15.7.2), most simply assume that every memory access will hit in the
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primary cache. The assumption is generally a good one: most programs on most
machines achieve a cache hit rate of well over 90% (often over 99%). The im-
portant goal is to make sure that the pipeline can continue to operate during the
time that it takes the cache to respond.

Loads

Consider a load instruction that hits in the primary cache. The number of cycles
that must elapse before a subsequent instruction can use the result is known as
the load delay. Most current machines have a one-cycle load delay. If the instruc-
tion immediately after a load attempts to use the loaded value, a one-cycle load
penalty (a pipeline stall) will occur. Longer pipelines can have load delays of two
or even three cycles.

To avoid load penalties (in the absence of out-of-order execution), the com-
piler may schedule one or more unrelated instructions into the delay slot(s) be-
tween a load and a subsequent use. In the following code, for example, a simpleEXAMPLE 5.10

Filling a load delay slot in-order pipeline will incur a one-cycle penalty between the second and third
instructions.

r2 := r1 + r2
r3 := A –– load
r3 := r3 + r2

If we swap the first two instructions, the penalty goes away:

r3 := A –– load
r2 := r1 + r2
r3 := r3 + r2

The second instruction gives the first instruction time enough to retrieve A be-
fore it is needed in the third instruction. �

To maintain program correctness, an instruction-scheduling algorithm must
respect all dependences among instructions. These dependences come in three
varieties:

Flow dependence (also called true or read-after-write dependence): a later in-
struction uses a value produced by an earlier instruction.

Antidependence (also called write-after-read dependence): a later instruction
overwrites a value read by an earlier instruction.

Output dependence (also called write-after-write dependence): a later instruc-
tion overwrites a value written by a previous instruction.

A compiler can often eliminate anti- and output dependences by renaming
registers. In the following, for example, antidependences prevent us from mov-EXAMPLE 5.11

Renaming registers for
scheduling

ing either the instruction before the load or the one after the add into the delay
slot of the load.
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r3 := r1 + 3 –– immovable×↓
r1 := A –– load
r2 := r1 + r2
r1 := 3 –– immovable×↑

If we use a different register as the target of the load, however, then either instruc-
tion can be moved:

r3 := r1 + 3 –– movable↓
r5 := A –– load
r2 := r5 + r2
r1 := 3 –– movable↑ �

The need to rename registers in order to move instructions can increase the num-
ber of registers needed by a given stretch of code. To maximize opportunities
for concurrent execution, out-of-order processor implementations may perform
register renaming dynamically in hardware, as noted in Section 5.4.3. These im-
plementations possess more physical registers than are visible in the instruction
set. As instructions are considered for execution, any that use the same archi-
tectural register for independent purposes are given separate physical copies on
which to do their work. If a processor does not perform hardware register re-
naming, then the compiler must balance the desire to eliminate pipeline stalls
against the desire to minimize the demand for registers (so that they can be
used to hold loop indices, local variables, and other comparatively long-lived
values).

In order to enforce the flow dependence between a load of a register and its
subsequent use, a processor must include so-called interlock hardware. To mini-
mize chip area, several of the very early RISC processors provided this hardware
only in the case of cache misses. The result was an architecturally visible delayed
load instruction, in which the value of the loaded register was undefined in the
immediately subsequent instruction slot. Filling the delay slot of a delayed load
with an unrelated instruction was a matter of correctness, not just of perfor-
mance. If a compiler was unable to find a suitable “real” instruction, it had to fill
the delay slot with a no-op (nop)—an instruction that has no effect. More recent
RISC machines have abandoned delayed loads; their implementations are fully
interlocked. Within processor families old binaries continue to work correctly;
the (nop) instructions are simply redundant.

Branches

Successful pipelining depends on knowing the address of the next instruction
before the current instruction has completed or has even been fully decoded.
With fixed-size instructions a processor can infer this address for straight-line
code but not for the code that follows a branch.5 In an attempt to minimize the

5 In this context, branches include not only the control flow for conditionals and loops, but also
subroutine calls and returns.
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impact of branch delays, several early RISC machines defined delayed branch
instructions similar to the delayed loads just described. In these machines the
instruction immediately after the branch is executed regardless of the outcome
of the branch. If the branch is not taken, all occurs as one would normally ex-
pect. If the branch is taken, however, the order of instructions is the branch itself,
the instruction after the branch, and then the instruction at the target of the
branch.

Because control may go either of two directions at a branch, finding an in-
struction to fill a delayed branch slot is slightly trickier than finding one to fill
a delayed load slot. The few instructions immediately before the branch are theEXAMPLE 5.12

Filling a branch delay slot most obvious candidates to move, provided that they do not contribute to the
calculation that controls the branch, and that we don’t have to move them past
the target of some other branch:

B := r2 –– movable↓
r1 := r2 × r3 –– immovable×↓
if r1 > 0 goto L1
nop

(This code sequence assumes that branches are delayed. Unless otherwise
noted, we will assume throughout the remainder of the book that they are
not.) �

To address the problem of unfillable branch delay slots, some more recent
RISC machines provide nullifying conditional branch instructions. A nullifying
branch includes a bit that indicates the direction that the compiler “expects” the
branch to go. The hardware executes the instruction in the delay slot only if the
branch goes the expected direction. While the branch instruction is making its
way down the pipeline, the hardware begins to execute the next instruction. Ide-
ally, by the time it must begin the instruction after that, it will know the outcome
of the branch. If the outcome matches the prediction, then the pipeline will pro-
ceed without stalling. If the outcome does not match the prediction, then the
(not yet completed) instruction in the delay slot will be abandoned, along with
any instructions fetched from the target of the branch.

Unfortunately, as architects have moved to more aggressive, deeply pipelined
processor implementations, multicycle branch delays have become the norm, and
architecturally visible delay slots no longer suffice to hide them. A few processors
have been designed with an architecturally visible branch delay of more than one
cycle, but this is not generally considered a viable strategy: it is simply too dif-
ficult for the compiler to find enough instructions to schedule into the slots.
Several processors retain one-slot delayed branches (sometimes with optional
nullification) for the sake of backward compatibility and as a means of reduc-
ing, but not eliminating, the number of pipeline stalls (the penalty) associated
with a branch. With or without delayed branches, many processors also employ
elaborate hardware mechanisms to predict the outcome and targets of branches
early, so that the pipeline can continue anyway. When a prediction turns out to
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be incorrect, of course, the hardware must ensure that none of the incorrectly
fetched instructions have visible effects. Even when hardware is able to predict
the outcome of branches, it can be useful for the compiler to do so also, in order
to schedule instructions to minimize load delays in the most likely cross-branch
code paths.

5.5.2 Register Allocation

The load/store architecture of RISC machines explicitly acknowledges that mov-
ing data between registers and memory is expensive. A store instruction costs a
minimum of one cycle—more if several stores are executed in succession and the
memory system can’t keep up. A load instruction costs a minimum of one or two
cycles (depending on whether the delay slot can be filled) and can cost scores or
even hundreds of cycles in the event of a cache miss. These same costs are present
on CISC machines as well, even if they don’t stand out as prominently in a ca-
sual perusal of assembly code. In order to minimize the use of loads and stores,
a good compiler must keep things in registers whenever possible. We saw an ex-
ample in Chapter 1: the most striking difference between the “optimized” code
of Example 1.2 (page 3) and the naive code of Figure 1.5 (page 29) is the absence
in the former of most of the loads and stores. As improvements in processor
speed continue to outstrip improvements in memory speed, the cost in cycles
of a cache miss continues to increase, making good register usage increasingly
important.

Register allocation is typically a two-stage process. In the first stage the com-
piler identifies the portions of the abstract syntax tree that represent basic blocks:
straight-line sequences of code with no branches in or out. Within each basic
block it assigns a “virtual register” to each loaded or computed value. In effect,
this assignment amounts to generating code under the assumption that the tar-
get machine has an unbounded number of registers. In the second stage, the
compiler maps the virtual registers of an entire subroutine onto the architec-
tural (hardware) registers of the machine, using the same architectural register
when possible to hold different virtual registers at different times, and spilling
virtual registers to memory when there aren’t enough architectural registers to
go around.

We will examine this two-stage process in more detail in Section 15.8. For
now, we illustrate the ideas with a simple example. Suppose we are compiling aEXAMPLE 5.13

Register allocation for a
simple loop

function that computes the variance σ 2 of the contents of an n-element vector.
Mathematically,

σ 2 = 1

n

∑
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(xi − x)2 =
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n
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x2
i

)
− x2

where x0 . . . xn−1 are the elements of the vector, and x = 1/n
∑

i xi is their average.
In pseudocode,
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1. v1 := &A –– pointer to A[1]
2. v2 := n –– count of elements yet to go
3. w1 := 0.0 –– sum
4. w2 := 0.0 –– squares
5. goto L2
6. L1: w3 := *v1 –– A[i] (floating-point)
7. w1 := w1 + w3 –– accumulate sum
8. w4 := w3 × w3
9. w2 := w2 + w4 –– accumulate squares

10. v1 := v1 + 8 –– 8 bytes per double-word
11. v2 := v2 − 1 –– decrement count
12. L2: if v2 > 0 goto L1
13. w5 := w1 / n –– average
14. w6 := w2 / n –– average of squares
15. w7 := w5 × w5 –– square of average
16. w8 := w6 − w7
17. . . . –– return value in w8

Figure 5.4 RISC assembly code for a vector variance computation.

double sum := 0
double squares := 0
for int i in 0 . . n−1

sum +:= A[i]
squares +:= A[i] × A[i]

double average := sum / n
return (squares / n) − (average × average)

After some simple code improvements and the assignment of virtual registers,
the assembly language for this function on a RISC machine is likely to look some-
thing like Figure 5.4. This code uses two integer virtual registers (v1 and v2) and
eight floating-point virtual registers (w1–w8). For each of these we can compute
the range over which the value in the register is useful, or live. This range extends
from the point at which the value is defined to the last point at which the value is
used. For register w4, for example, the range is only one instruction long, from
the assignment at line 8 to the use at line 9. For register v1, the range is the union
of two subranges, one that extends from the assignment at line 1 to the use (and
redefinition) at line 10 and another that extends from this redefinition around
the loop to the same spot again.

Once we have calculated live ranges for all virtual registers, we can create a
mapping onto the architectural registers of the machine. We can use a single ar-
chitectural register for two virtual registers only if their live ranges do not overlap.
If the number of architectural registers required is larger than the number avail-
able on the machine (after reserving a few for such special values as the stack
pointer), then at various points in the code we shall have to write (spill) some of
the virtual registers to memory in order to make room for the others.
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1. r1 := &A
2. r2 := n
3. f1 := 0.0
4. f2 := 0.0
5. goto L2
6. L1: f3 := *r1 –– no delay
7. f1 := f1 + f3 –– 1-cycle wait for f3
8. f3 := f3 × f3 –– no delay
9. f2 := f2 + f3 –– 4-cycle wait for f3

10. r1 := r1 + 8 –– no delay
11. r2 := r2 − 1 –– no delay
12. L2: if r2 > 0 goto L1 –– no delay
13. f1 := f1 / n
14. f2 := f2 / n
15. f1 := f1 × f1
16. f1 := f2 − f1
17. . . . –– return value in f1

Figure 5.5 The vector variance example with physical registers assigned. Also shown in the
body of the loop are the number of stalled cycles that can be expected on a simple in-order
pipelined machine, assuming a one-cycle penalty for loads, a two-cycle penalty for floating-point
adds, and a four-cycle penalty for floating-point multiplies.

In our example program, the live ranges for the two integer registers over-
lap, so they will have to be assigned to separate physical registers. Among the
floating-point registers, w1 overlaps with w2–w4, w2 overlaps with w3–w5,
w5 overlaps with w6, and w6 overlaps with w7. There are several possible
mappings onto three physical floating-point registers, one of which is shown in
Figure 5.5. �

Interaction with Instruction Scheduling

From the point of view of execution speed, the code in Figure 5.5 has at least
two problems. First, of the seven instructions in the loop, nearly half are devoted
to bookkeeping: updating the pointer, decrementing the loop count, and testing
the terminating condition. Second, when run on a pipelined machine, the code
is likely to experience a very high number of stalls. Exercise 5.15 explores a first
step toward addressing the bookkeeping overhead. We consider the stalls below,
and will return to both problems in more detail in Chapter 15.

We noted in Section 5.5.1 that floating-point instructions commonly employ aEXAMPLE 5.14
Register allocation and
instruction scheduling

separate, longer pipeline. Because they take more cycles to complete, there can be
a significant delay before their results are available for use in other instructions.
Suppose that floating-point add and multiply instructions must be followed by
two and four cycles, respectively, of unrelated computation (these are modest
figures; real machines often have longer delays). Also suppose that the result of
a load is not available for the usual one-cycle delay. In the context of our vector
variance example, these delays imply a total of five stalled cycles in every iteration
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1. r1 := &A
2. r2 := n
3. f1 := 0.0
4. f2 := 0.0
5. goto L2
6. L1: f3 := *r1
7. r1 := r1 + 8 –– no delay
8. f4 := f3 × f3 –– no delay
9. f1 := f1 + f3 –– no delay

10. r2 := r2 − 1 –– no delay
11. f2 := f2 + f4 –– 1-cycle wait for f4
12. L2: if r2 > 0 goto L1 –– no delay
13. f1 := f1 / n
14. f2 := f2 / n
15. f1 := f1 × f1
16. f1 := f2 − f1
17. . . . –– return value in f1

Figure 5.6 The vector variance example after instruction scheduling. All but one cycle of
delay has been eliminated. Because we have hoisted the multiply above the first floating-point
add, however, we need an extra physical floating-point register.

of the loop, even if the hardware successfully predicts the outcome and target
of the branch at the bottom. Added to the seven instructions themselves, this
implies a total of 12 cycles per loop iteration (i.e., per vector element).

By rescheduling the instructions in the loop (Figure 5.6) we can eliminate all
but one cycle of stall. This brings the total number of cycles per iteration down
to only eight, a reduction of 33%. The savings comes at a cost, however: we now
execute the multiply instruction before the first floating-point add, and we must
use an extra physical register to hold onto the add’s second argument. This effect
is not unusual: instruction scheduling has a tendency to overlap the live ranges
of virtual registers whose ranges were previously disjoint, leading to an increase
in the number of architectural registers required. �

The Impact of Subroutine Calls

The register allocation scheme outlined above depends implicitly on the compiler
being able to see all of the code that will be executed over a given span of time
(e.g., an invocation of a subroutine). But what if that code includes calls to other
subroutines? If a subroutine were called from only one place in the program,
we could allocate registers (and schedule instructions) across both the caller and
the callee, effectively treating them as a single unit. Most of the time, however,
a subroutine is called from many different places in a program, and the code
improvements that we should like to make in the context of one caller will be
different from the ones that we should like to make in the context of a different
caller. For small, simple subroutines, the compiler may actually choose to expand
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a copy of the code at each call site, despite the resulting increase in code size.
This inlining of subroutines can be an important form of code improvement,
particularly for object-oriented languages, which tend to have very large numbers
of very small subroutines.

When inlining is not an option, most compilers treat each subroutine as an
independent unit. When a body of code for which we are attempting to perform
register allocation makes a call to a subroutine, there are several issues to con-
sider:

� Parameters must generally be passed. Ideally, we should like to pass them in
registers.

� Any registers that the callee will use internally but that contain useful values in
the caller must be spilled to memory and then reread when the callee returns.

� Any variables that the callee might load from memory but that have been kept
in a register in the caller must be written back to memory before the call, so
that the callee will see the current value.

� Any variables to which the callee might store a value in memory but that have
been kept in a register in the caller must be reread from memory when the
callee returns, so that the caller will see the current value.

If the caller does not know exactly what the callee might do (this is often
the case—the callee might not have been compiled yet), then the compiler must
make conservative assumptions. In particular, it must assume that the callee reads
and writes every variable visible in its scope. The caller must write any such vari-
able back to memory prior to the call if its current value is (only) in a register.
If it needs the value of such a variable after the call, it must reread it from mem-
ory.

With perfect knowledge of both the caller and the callee, the compiler could
arrange across subroutine calls to save and restore precisely those registers that
are both in use in the caller and needed (for internal purposes) in the callee.
Without this knowledge, we can choose either for the caller to save and restore
the registers it is using, before and after the call, or for the callee to save and
restore the registers it needs internally, at the top and bottom of the subroutine.
In practice it is conventional to choose the latter alternative for at least some static

DESIGN & IMPLEMENTATION

In-line subroutines
Subroutine inlining presents, to a large extent, a classic time-space tradeoff. In-
lining one instance of a subroutine replaces a relatively short calling sequence
with a subroutine body that is typically significantly longer. In return, it avoids
the execution overhead of the calling sequence, enables the compiler to per-
form code improvement across the call without performing interprocedural
analysis, and typically improves locality, especially in the L1 instruction cache.
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subset of the register set, for two reasons. First, while a subroutine may be called
from many locations, there is only one copy of the subroutine itself. Saving and
restoring registers in the callee, rather than the caller, can save substantially on
code size. Second, because many subroutines (particularly those that are called
most frequently) are very small and simple, the set of registers used in the callee
tends, on average, to be smaller than the set in use in the caller. We will look at
subroutine calling sequences in more detail in Chapter 8.

CHECK YOUR UNDERSTANDING

20. What is a delayed load instruction?

21. What is a nullifying branch instruction?

22. List the four principal causes of pipeline stalls.

23. What is a pipeline interlock?

24. What is instruction scheduling? Why is it important on modern machines?

25. What is branch prediction? Why is it important?

26. Describe the interaction between instruction scheduling and register alloca-
tion.

27. What is the live range of a register?

28. What is subroutine inlining? What benefits does it provide? When is it possi-
ble? What is its cost?

29. Summarize the impact of subroutine calls on register allocation.

5.6 Summary and Concluding Remarks

Computer architecture has a major impact on the sort of code that a compiler
must generate and the sorts of code improvements it must effect in order to ob-
tain acceptable performance. Since the early 1980s, the trend in processor design
has been to equip the compiler with more and more knowledge of the low-level
details of processor implementation, so that the generated code can use the im-
plementation to its fullest. This trend has blurred the traditional dividing line be-
tween processor architecture and implementation: while a compiler can generate
correct code based on an understanding of the architecture alone, it cannot gen-
erate fast code unless it understands the implementation as well. In effect, timing
issues that were once hidden in the microcode of microprogrammed processors
(and that made microprogramming an extremely difficult and arcane craft) have
been exported into the compiler.

In the first several sections of this chapter we surveyed the organization of
memory and the representation of data (including integer and floating-point
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arithmetic), the variety of typical assembly language instructions, and the evo-
lution of modern RISC machines. As examples we compared the x86 and the
MIPS. We also introduced a simple notation to be used for assembly language
examples in later chapters. In the final section we discussed why compiling for
modern machines is hard. The principal tasks include instruction scheduling, for
load and branch delays and for multiple functional units, and register allocation,
to minimize memory traffic. We noted that there is often a tension between these
tasks, and that both are made more difficult by frequent subroutine calls.

As of 2005 there are four principal commercial RISC architectures: ARM
(Intel, Texas Instruments, Motorola, and dozens of others), MIPS (SGI, NEC),
Power/PowerPC (IBM, Motorola, Apple), and Sparc (Sun, Texas Instruments,
Fujitsu). ARM is the property of ARM Holdings, PLC, an intellectual property
firm that relies on licensees for actual fabrication. Though ARM processors are
not generally employed in desktop or laptop computers, they power roughly
three-quarters of the world’s embedded systems, in everything from cell phones
and PDAs to remote controls and the dozens of devices in a modern automo-
bile. MIPS processors, likewise, are now principally employed in the embedded
market, though they were once common in desktop and high-end machines.

Despite the handicap of a CISC instruction set and the need for backward
compatibility, the x86 overwhelmingly dominates the desktop and laptop mar-
ket, largely due to the marketing prowess of IBM, Intel, and Microsoft, and to the
success of Intel and AMD in decoupling the architecture from the implementa-
tion. Modern implementations of the x86 incorporate a hardware front-end that
translates x86 code, on the fly, into a RISC-like internal format amenable to heav-
ily pipelined execution. Recent processors from Intel and AMD are competitive
with the fastest RISC alternatives.

With growing demand for a 64-bit address space, however, a major battle
ensued in the x86 world. Intel’s IA-64/Itanium processors provide an x86 com-
patibility mode, but it is implemented in a separate portion of the processor—
essentially a Pentium subprocessor embedded in the corner of the chip. Appli-
cation writers who want speed and address space enhancements were expected
to migrate to the (very different) IA-64 instruction set. AMD, by contrast, de-
veloped a backward-compatible 64-bit extension to the x86 instruction set; its
Opteron processors provide a much smoother upward migration path. In re-
sponse to market demand, Intel has licensed the Opteron architecture (which it
calls EM64T) for use in its 64-bit Pentium processors.

As processor and compiler technology continue to evolve, it is likely that
processor implementations will continue to become more complex, and that
compilers will take on additional tasks in order to harness that complexity. What
is not clear at this point is the form that processor complexity will take. While
traditional CISC machines remain popular almost entirely due to the need for
backward compatibility, both the CISC and RISC “design philosophies” are still
very much alive [SW94]. The “CISC-ish” philosophy says that newly available re-
sources (e.g., increases in chip area) should be used to implement functions that
must currently be performed in software, such as vector or graphics operations,
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decimal arithmetic, or new addressing modes; the “RISC-ish” philosophy says
that resources should be used to improve the speed of existing functions—for
example, by increasing cache size, employing faster but larger functional units,
or deepening the pipeline and decreasing the cycle time.

Where the first-generation RISC machines from different vendors differed
from one another only in minor details, the more recent generations are begin-
ning to diverge, with the ARM and MIPS taking the more RISC-ish approach,
the Power/PowerPC family taking the more CISC-ish approach, and the Sparc
somewhere in the middle. It is not yet clear which approach will ultimately prove
most effective, nor is it even clear that this is the interesting question anymore.
Communication latency and heat dissipation are increasingly the limiting fac-
tors on both clock speed and the exploitation of instruction-level parallelism.
To address these concerns, vendors are increasingly turning to chip-level multi-
processors and other novel architectures, which will almost certainly require new
compiler techniques. At perhaps no time in the past 20 years has the future of
microarchitecture been in so much flux. However it all turns out, it is clear that
processor and compiler technology will continue to evolve together.

5.7 Exercises

5.1 Modern compilers often find they don’t have enough registers to hold all the
things they’d like to hold. At the same time, VLSI technology has reached the
point at which there is room on a chip to hold many more registers than are
found in the typical ISA. Why are we still using instruction sets with only 32
integer registers? Why don’t we make, say, 64 or 128 of them visible to the
programmer?

5.2 Some early RISC machines (e.g., the SPARC) provided a “multiply step” in-
struction that performed one iteration of the standard shift-and-add algo-
rithm for binary integer multiplication. Speculate as to the rationale for this
instruction.

5.3 Consider sending a message containing a string of integers over the Inter-
net. What problems may occur if the sending and receiving machines have
different “endian-ness”? How might you solve these problems?

5.4 Why do you think RISC machines standardized on 32-bit instructions? Why
not some smaller or larger length? Why not variable lengths?

5.5 Consider a machine with three condition codes, N, Z, and O. N indicates
whether the most recent arithmetic operation produced a negative result. Z
indicates whether it produced a zero result. O indicates whether it produced
a result that cannot be represented in the available precision for the num-
bers being manipulated (i.e., outside the range 0 . .2n for unsigned arith-
metic, −2n−1 . .2n−1−1 for signed arithmetic). Suppose we wish to branch
on condition A op B, where A and B are unsigned binary numbers, for
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op ∈ {<,≤,=, �=,>,≥}. Suppose we subtract B from A, using two’s com-
plement arithmetic. For each of the six conditions, indicate the logical com-
bination of condition-code bits that should be used to trigger the branch.
Repeat the exercise on the assumption that A and B are signed, two’s com-
plement numbers.

5.6 We implied in Section 5.4.1 that if one adds a new instruction to a non-
pipelined, microcoded machine, the time required to execute that instruc-
tion is (to first approximation) independent of the time required to execute
all other instructions. Why is it not strictly independent? What factors could
cause overall execution to become slower when a new instruction is intro-
duced?

5.7 Suppose that loads constitute 25% of the typical instruction mix on a cer-
tain machine. Suppose further that 15% of these loads miss in the on-chip
(primary) cache, with a penalty of 40 cycles to reach main memory. What
is the contribution of cache misses to the average number of cycles per in-
struction? You may assume that instruction fetches always hit in the cache.
Now suppose that we add an off-chip (secondary) cache that can satisfy 90%
of the misses from the primary cache, at a penalty of only 10 cycles. What is
the effect on cycles per instruction?

5.8 Many recent processors provide a conditional move instruction that copies
one register into another if and only if the value in a third register is (or is
not) equal to zero. Give an example in which the use of conditional moves
leads to a shorter program.

5.9 The 64-bit AMD Opteron architecture is backward compatible with the x86
instruction set, just as the x86 is backward compatible with the 16-bit 8086
instruction set. Less transparently, the IA-64 Itanium is capable of running
legacy x86 applications in “compatibility mode.” But recent members of the
ARM and MIPS processor families support new 16-bit instructions as an
extension to the architecture. Why might designers have chosen to introduce
these new, less powerful modes of execution?

5.10 Consider the following code fragment in pseudo-assembler notation.

1. r1 := K
2. r4 := &A
3. r6 := &B
4. r2 := r1 × 4
5. r3 := r4 + r2
6. r3 := *r3 –– load (register indirect)
7. r5 := *(r3 + 12) –– load (displacement)
8. r3 := r6 + r2
9. r3 := *r3 –– load (register indirect)

10. r7 := *(r3 + 12) –– load (displacement)
11. r3 := r5 + r7
12. S := r3 –– store
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(a) Give a plausible explanation for this code (what might the correspond-
ing source code be doing?).

(b) Identify all flow, anti-, and output dependences.

(c) Schedule the code to minimize load delays on a single-pipeline, in-order
processor.

(d) Can you do better if you rename registers?

5.11 With the development of deeper, more complex pipelines, delayed loads and
branches have become significantly less appealing as features of a RISC in-
struction set. Why is it that designers have been able to eliminate delayed
loads in more recent machines, but have had to retain delayed branches?

5.12 Some processors, including the PowerPC and recent members of the
x86 family, require one or more cycles to elapse between a condition-
determining instruction and a branch instruction that uses that condition.
What options does a scheduler have for filling such delays?

5.13 Branch prediction can be performed statically (in the compiler) or dynam-
ically (in hardware). In the static approach, the compiler guesses which way
the branch will usually go, encodes this guess in the instruction, and sched-
ules instructions for the expected path. In the dynamic approach, the hard-
ware keeps track of the outcome of recent branches, notices branches or
patterns of branches that recur, and predicts that the patterns will continue
in the future. Discuss the tradeoffs between these two approaches. What are
their comparative advantages and disadvantages?

5.14 Consider a machine with a three-cycle penalty for incorrectly predicted
branches and a zero-cycle penalty for correctly predicted branches. Sup-
pose that in a typical program 20% of the instructions are conditional
branches, which the compiler or hardware manages to predict correctly 75%
of the time. What is the impact of incorrect predictions on the average
number of cycles per instruction? Suppose the accuracy of branch predic-
tion can be increased to 90%. What is the impact on cycles per instruc-
tion?

Suppose that the number of cycles per instruction would be 1.5 with
perfect branch prediction. What is the percentage slowdown caused by mis-
predicted branches? Now suppose that we have a superscalar processor on
which the number of cycles per instruction would be 0.6 with perfect branch
prediction. Now what is the percentage slowdown caused by mispredicted
branches? What do your answers tell you about the importance of branch
prediction on superscalar machines?

5.15 Consider the code in Figure 5.6. In an attempt to eliminate the remaining
delay and reduce the overhead of the bookkeeping (loop control) instruc-
tions, one might consider unrolling the loop—that is, creating a new loop in
which each iteration performs the work of k iterations of the original loop.
Show the code for k = 2. You may assume that n is even and that your target
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machine supports displacement addressing. Schedule instructions as tightly
as you can. How many cycles does your loop consume per vector element?

5.16–5.23 In More Depth.

5.8 Explorations

5.24 Skip ahead to the sidebar on decimal types on page 314. Write algorithms
to convert BCD numbers to binary, and vice versa. Try writing the routines
in assembly language for your favorite machine (if your machine has special
instructions for this purpose, pretend you’re not allowed to use them). How
many cycles are required for the conversion?

5.25 Is microprogramming an idea that has outlived its usefulness, or are there
application domains for which it still makes sense to build a micropro-
grammed machine? Defend your answer.

5.26 If you have access to both CISC and RISC machines, compile a few pro-
grams for both machines and compare the size of the target code. Can you
generalize about the “space penalty” of RISC code?

5.27 Several computers have provided more general versions of the conditional
move instructions described in Exercise 5.8. Examples include the c. 1965
IBM ACS, the Cray 1, the HP PA-RISC, the ARM, and the Intel IA-64 (Ita-
nium). General purpose conditional execution is sometimes known as pred-
ication.

Learn how predication works in ARM or IA-64. Explain how it can
sometimes improve performance even when it causes the processor to exe-
cute more instructions.

5.28 If you have access to computers of more than one type, compile a few pro-
grams on each machine and time their execution. (If possible, use the same
compiler [e.g., gcc] and options on each machine.) Discuss the factors that
may contribute to different run times. How closely do the ratios of run
times mirror the ratios of clock rates? Why don’t they mirror them exactly?

5.29 Branch prediction can be characterized as control speculation: it makes a
guess about the future control flow of the program that saves enough time
when it’s right to outweigh the cost of cleanup when it’s wrong. Some re-
searchers have proposed the complementary notion of value speculation, in
which the processor would predict the value to be returned by a cache miss,
and proceed on the basis of that guess. What do you think of this idea? How
might you evaluate its potential?

5.30 Can speculation be useful in software? How might you (or a compiler or
other tool) be able to improve performance by making guesses that are
subject to future verification, with (software) rollback when wrong? (Hint:
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Think about operations that require communication over slow Internet
links.)

5.31 Translate the high-level pseudocode for vector variance (Example 5.13) into
your favorite programming language, and run it through your favorite com-
piler. Examine the resulting assembly language. Experiment with different
levels of optimization (code improvement). Discuss the quality of the code
produced.

5.32 Try to write a code fragment in your favorite programming language that
requires so many registers that your favorite compiler is forced to spill some
registers to memory (compile with a high level of optimization). How com-
plex does your code have to be?

5.33 If you have access to a compiler that generates code for a machine with ar-
chitecturally visible load delays, run some programs through it and evaluate
the degree of success it has in filling delay slots (an unfilled slot will contain
a nop instruction). What percentage of slots is filled? Suppose the machine
had interlocked loads. How much space could be saved in typical executable
programs if the nops were eliminated?

5.34 Experiment with small subroutines in C++ to see how much time can be
saved by expanding them inline.

5.35–5.37 In More Depth.

5.9 Bibliographic Notes

The standard reference in computer architecture is the graduate-level text by Pat-
terson and Hennessy [HP03]. More introductory material can be found in the
undergraduate computer organization text by the same authors [PH05]. Students
without previous assembly language experience may be particularly interested in
the text of Bryant and O’Hallaron [BO03], which surveys computer organization
from the point of view of the systems programmer, focusing in particular on the
correspondence between source-level programs in C and their equivalents in x86
assembler.

The “RISC revolution” of the early 1980s was spearheaded by three separate
research groups. The first to start (though last to publish [Rad82]) was the 801
group at IBM’s T. J. Watson Research Center, led by John Cocke. IBM’s Power
and PowerPC architectures, though not direct descendants of the 801, take sig-
nificant inspiration from it. The second group (and the one that coined the term
“RISC”) was led by David Patterson [PD80, Pat85] at UC Berkeley. The commer-
cial Sparc architecture is a direct descendant of the Berkeley RISC II design. The
third group was led by John Hennessy at Stanford [HJBG81]. The commercial
MIPS architecture is a direct descendant of the Stanford design.

Much of the history of pre-1980 processor design can be found in the text
by Siewiorek, Bell, and Newell [SBN82]. This classic work contains verbatim
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reprints of many important original papers. In the context of RISC processor
design, Smith and Weiss [SW94] contrast the more “RISCy” and “CISCy” design
philosophies in their comparison of implementations of the PowerPC and Alpha
architectures. Appendix C of Hennessy and Patterson’s architecture text (avail-
able online at www.mkp.com/CA3/) summarizes the similarities and differences
among nine different RISC instruction sets. Appendix D describes the x86. Cur-
rent manuals for all the popular commercial processors are available from their
manufacturers.

An excellent treatment of computer arithmetic can be found in Goldberg’s
appendix to the Hennessy and Patterson architecture text [Gol03] (available on-
line at www.mkp.com/CA3/). The IEEE 754 floating-point standard was printed
in ACM SIGPLAN Notices in 1985 [IEE87]. The texts of Muchnick [Muc97] and
of Cooper and Torczon [CT04] are excellent sources of information on instruc-
tion scheduling, register allocation, subroutine optimization, and other aspects
of compiling for modern machines.







IICore Issues in Language Design

Having laid the foundation in Part I, we now turn to issues that lie at the core of most programming

languages: control flow, data types, and abstractions of both control and data.

Chapter 6 considers control flow, including expression evaluation, sequencing, selection, iter-

ation, and recursion. In many cases we will see design decisions that reflect the sometimes com-

plementary but often competing goals of conceptual clarity and efficient implementation. Several

issues, including the distinction between references and values and between applicative (eager) and

lazy evaluation will recur in later chapters.

Chapter 7, the longest in the book, considers the subject of types. It begins with type systems

and type checking, including the notions of equivalence, compatibility, and inference of types. It

then presents a survey of high-level type constructors, including records and variants, arrays, strings,

sets, pointers, lists, and files. The section on pointers includes an introduction to garbage collection

techniques.

Both control and data are amenable to abstraction, the process whereby complexity is hidden be-

hind a simple and well-defined interface. Control abstraction is the subject of Chapter 8. Subroutines

are the most common control abstraction, but we also consider exceptions and coroutines, and re-

turn briefly to the subjects of continuations and iterators, introduced in Chapter 6. The coverage of

subroutines includes calling sequences, parameter passing mechanisms, and generics, which support

parameterization over types.

Chapter 9 returns to the subject of data abstraction, introduced in Chapter 3. In many mod-

ern languages this subject takes the form of object orientation, characterized by an encapsulation

mechanism, inheritance, and dynamic method dispatch (subtype polymorphism). Our coverage of

object-oriented languages will also touch on constructors, access control, polymorphism, closures,

and multiple and mix-in inheritance.





6Control Flow

Having considered the mechanisms that a compiler uses to enforce se-
mantic rules (Chapter 4) and the characteristics of the target machines for which
compilers must generate code (Chapter 5), we now return to core issues in lan-
guage design. Specifically, we turn in this chapter to the issue of control flow or
ordering in program execution. Ordering is fundamental to most (though not all)
models of computing. It determines what should be done first, what second, and
so forth, to accomplish some desired task. We can organize the language mecha-
nisms used to specify ordering into seven principal categories.

1. sequencing: Statements are to be executed (or expressions evaluated) in a cer-
tain specified order—usually the order in which they appear in the program
text.

2. selection: Depending on some run-time condition, a choice is to be made
among two or more statements or expressions. The most common selection
constructs are if and case (switch) statements. Selection is also sometimes
referred to as alternation.

3. iteration: A given fragment of code is to be executed repeatedly, either a cer-
tain number of times or until a certain run-time condition is true. Iteration
constructs include while, do, and repeat loops.

4. procedural abstraction: A potentially complex collection of control constructs
(a subroutine) is encapsulated in a way that allows it to be treated as a single
unit, often subject to parameterization.

5. recursion: An expression is defined in terms of (simpler versions of) itself, ei-
ther directly or indirectly; the computational model requires a stack on which
to save information about partially evaluated instances of the expression. Re-
cursion is usually defined by means of self-referential subroutines.

6. concurrency: Two or more program fragments are to be executed/evaluated
“at the same time,” either in parallel on separate processors or interleaved on
a single processor in a way that achieves the same effect.

233
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7. nondeterminacy: The ordering or choice among statements or expressions is
deliberately left unspecified, implying that any alternative will lead to correct
results. Some languages require the choice to be random, or fair, in some for-
mal sense of the word.

Though the syntactic and semantic details vary from language to language, these
seven principal categories cover all of the control-flow constructs and mecha-
nisms found in most programming languages. A programmer who thinks in
terms of these categories, rather than the syntax of some particular language,
will find it easy to learn new languages, evaluate the tradeoffs among languages,
and design and reason about algorithms in a language-independent way.

Subroutines are the subject of Chapter 8. Concurrency is the subject of Chap-
ter 12. The bulk of this chapter (Sections 6.3 through 6.7) is devoted to a study
of the five remaining categories. We begin in Section 6.1 by examining expres-
sion evaluation. We consider the syntactic form of expressions, the precedence
and associativity of operators, the order of evaluation of operands, and the se-
mantics of the assignment statement. We focus in particular on the distinction
between variables that hold a value and variables that hold a reference to a value;
this distinction will play an important role many times in future chapters. In Sec-
tion 6.2 we consider the difference between structured and unstructured (goto-
based) control flow.

The relative importance of different categories of control flow varies signif-
icantly among the different classes of programming languages. Sequencing, for
example, is central to imperative (von Neumann and object-oriented) languages,
but plays a relatively minor role in functional languages, which emphasize the
evaluation of expressions, deemphasizing or eliminating statements (e.g., assign-
ments) that affect program output in any way other than through the return
of a value. Similarly, functional languages make heavy use of recursion, whereas
imperative languages tend to emphasize iteration. Logic languages tend to deem-
phasize or hide the issue of control flow entirely: the programmer simply specifies
a set of inference rules; the language implementation must find an order in which
to apply those rules that will allow it to deduce values that satisfy some desired
property.

6.1 Expression Evaluation

An expression generally consists of either a simple object (e.g., a literal constant,
or a named variable or constant) or an operator or function applied to a collection
of operands or arguments, each of which in turn is an expression. It is conven-
tional to use the term operator for built-in functions that use special, simple syn-
tax, and to use the term operand for the argument of an operator. In Algol-familyEXAMPLE 6.1

A typical function call languages, function calls consist of a function name followed by a parenthesized,
comma-separated list of arguments, as in
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my_func(A, B, C) �
Algol-family operators are simpler: they typically take only one or two argu-EXAMPLE 6.2

Typical operators ments, and dispense with the parentheses and commas:

a + b

- c

As we saw in Section 3.6.2, some languages define the operators as syntactic sugar
for more “normal”-looking functions. In Ada, for example, a + b is short for
"+"(a, b); in C++, a + b is short for a.operator+(b). �

In general, a language may specify that function calls (operator invocations)
employ prefix, infix, or postfix notation. These terms indicate, respectively,
whether the function name appears before, among, or after its several arguments.
Most imperative languages use infix notation for binary operators and prefix no-
tation for unary operators and other functions (with parentheses around the ar-
guments). Lisp uses prefix notation for all functions but places the function nameEXAMPLE 6.3

Cambridge Polish (prefix)
notation

inside the parentheses, in what is known as Cambridge Polish1 notation:

(* (+ 1 3) 2) ; that would be (1 + 3) * 2 in infix

(append a b c my_list) �
A few languages, notably the R scripting language, allow the user to create

new infix operators. Smalltalk uses infix notation for all functions (which it calls
messages), both built-in and user-defined. The following Smalltalk statementEXAMPLE 6.4

Mixfix notation in Smalltalk sends a “displayOn: at:” message to graphical object myBox, with arguments
myScreen and 100@50 (a pixel location). It corresponds to what other languages
would call the invocation of the “displayOn: at:” function with arguments
myBox, myScreen, and 100@50.

myBox displayOn: myScreen at: 100@50 �
This sort of multiword infix notation occurs occasionally in Algol-family lan-EXAMPLE 6.5

Conditional expressions guages as well.2 In Algol one can say

a := if b <> 0 then a/b else 0;

Here “if. . . then . . . else” is a three-operand infix operator. The equivalent op-
erator in C is written “. . . ? . . . : . . . ”:

a = b != 0 ? a/b : 0; �
Postfix notation is used for most functions in Postscript, Forth, the input lan-
guage of certain hand-held calculators, and the intermediate code of some com-

1 Prefix notation was popularized by Polish logicians of the early 20th century; Lisp-like parenthe-
sized syntax was first employed (for noncomputational purposes) by philosopher W. V. Quine
of Harvard University (Cambridge, MA).

2 Most authors use the term “infix” only for binary operators. Multiword operators may be called
“mixfix” or left unnamed.
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pilers. Postfix appears in a few places in other languages as well. Examples in-
clude the pointer dereferencing operator (^) of Pascal and the post-increment
and -decrement operators (++ and --) of C and its descendants.

6.1.1 Precedence and Associativity

Most languages provide a rich set of built-in arithmetic and logical operators.
When written in infix notation, without parentheses, these operators lead to am-
biguity as to what is an operand of what. In Fortran, for example, which usesEXAMPLE 6.6

A complicated Fortran
expression

** for exponentiation, how should we parse a + b * c**d**e/f? Should this
group as

((((a + b) * c)**d)**e)/f

or

a + (((b * c)**d)**(e/f))

or

a + ((b * (c**(d**e)))/f)

or yet some other option? (In Fortran, the answer is the last of the options
shown.) �

In any given language, the choice among alternative evaluation orders depends
on the precedence and associativity of operators, concepts we introduced in Sec-
tion 2.1.3. Issues of precedence and associativity do not arise in prefix or postfix
notation.

Precedence rules specify that certain operators, in the absence of parentheses,
group “more tightly” than other operators. Associativity rules specify that se-
quences of operators of equal precedence group to the right or to the left. In mostEXAMPLE 6.7

Precedence in four
influential languages

languages multiplication and division group more tightly than addition and sub-
traction. Other levels of precedence vary widely from one language to another.
Figure 6.1 shows the levels of precedence for several well-known languages. �

The precedence structure of C (and, with minor variations, of its descendants,
C++, Java, and C#) is substantially richer than that of most other languages. It
is, in fact, richer than shown in Figure 6.1, because several additional constructs,
including type casts, function calls, array subscripting, and record field selection,
are classified as operators in C. It is probably fair to say that most C programmers
do not remember all of their language’s precedence levels. The intent of the lan-
guage designers was presumably to ensure that “the right thing” will usually hap-
pen when parentheses are not used to force a particular evaluation order. Rather
than count on this, however, the wise programmer will consult the manual or
add parentheses.

It is also probably fair to say that the relatively flat precedence hierarchy ofEXAMPLE 6.8
A “gotcha” in Pascal
precedence

Pascal is a mistake. In particular, novice Pascal programmers frequently write
conditions like
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Fortran Pascal C Ada

++, -- (post-inc., dec.)

** not ++, -- (pre-inc., dec.),
+, - (unary),
&, * (address, contents of),
!, ~ (logical, bit-wise not)

abs (absolute value),
not, **

*, / *, /,
div, mod, and

* (binary), /,
% (modulo division)

*, /, mod, rem

+, - (unary
and binary)

+, - (unary and
binary), or

+, - (binary) +, - (unary)

<<, >>
(left and right bit shift)

+, - (binary),
& (concatenation)

.eq., .ne., .lt.,

.le., .gt., .ge.
(comparisons)

<, <=, >, >=,
=, <>, IN

<, <=, >, >=
(inequality tests)

=, /= , <, <=, >, >=

.not. ==, != (equality tests)

& (bit-wise and)

^ (bit-wise exclusive or)

| (bit-wise inclusive or)

.and. && (logical and) and, or, xor
(logical operators)

.or. || (logical or)

.eqv., .neqv.
(logical comparisons)

?: (if . . . then . . . else)

=, +=, -=, *=, /=, %=,
>>=, <<=, &=, ^=, |=
(assignment)

, (sequencing)

Figure 6.1 Operator precedence levels in Fortran, Pascal, C, and Ada. The operators at the top of the figure group most
tightly.

if A < B and C < D then (* ouch *)

Unless A, B, C, and D are all of type Boolean, which is unlikely, this code will
result in a static semantic error, since the rules of precedence cause it to group
as A < (B and C) < D. (And even if all four operands are of type Boolean, the
result is almost sure to be something other than what the programmer intended.)
Most languages avoid this problem by giving arithmetic operators higher prece-
dence than relational (comparison) operators, which in turn have higher prece-
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dence than the logical operators. Notable exceptions include APL and Smalltalk,
in which all operators are of equal precedence; parentheses must be used to spec-
ify grouping. �

Associativity rules are somewhat more uniform across languages, but still dis-EXAMPLE 6.9
Common rules for
associativity

play some variety. The basic arithmetic operators almost always associate left-to-
right, so 9 - 3 - 2 is 4 and not 8. In Fortran, as noted above, the exponen-
tiation operator (**) follows standard mathematical convention and associates
right-to-left, so 4**3**2 is 262144 and not 4096. In Ada, exponentiation does
not associate: one must write either (4**3)**2 or 4**(3**2); the language syn-
tax does not allow the unparenthesized form. In languages that allow assignments
inside expressions (an option we will consider more in Section 6.1.2), assignment
associates right-to-left. Thus in C, a = b = a + c assigns a + c into b and then
assigns the same value into a. �

Because the rules for precedence and associativity vary so much from one lan-
guage to another, a programmer who works in several languages is wise to make
liberal use of parentheses.

6.1.2 Assignments

In a purely functional language, expressions are the building blocks of programs,
and computation consists entirely of expression evaluation. The effect of any in-
dividual expression on the overall computation is limited to the value that ex-
pression provides to its surrounding context. Complex computations employ re-
cursion to generate a potentially unbounded number of values, expressions, and
contexts.

In an imperative language, by contrast, computation typically consists of an
ordered series of changes to the values of variables in memory. Assignments pro-
vide the principal means by which to make the changes. Each assignment takes
a pair of arguments: a value and a reference to a variable into which the value
should be placed.

In general, a programming language construct is said to have a side effect if
it influences subsequent computation (and ultimately program output) in any
way other than by returning a value for use in the surrounding context. Purely
functional languages have no side effects. As a result, the value of an expression
in such a language depends only on the referencing environment in which the
expression is evaluated, not on the time at which the evaluation occurs. If an
expression yields a certain value at one point in time, it is guaranteed to yield
the same value at any point in time. In fancier terms, expressions in a purely
functional language are said to be referentially transparent.

By contrast, imperative programming is sometimes described as “computing
by means of side effects.” While the evaluation of an assignment may sometimes
yield a value, what we really care about is the fact that it changes the value of a
variable, thereby affecting the result of any later computation in which the vari-
able appears.
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Many (though not all) imperative languages distinguish between expressions,
which always produce a value, and may or may not have side effects, and state-
ments, which are executed solely for their side effects, and return no useful value.

References and Values

On the surface, assignment appears to be a very straightforward operation. Be-
low the surface, however, there are some subtle but important differences in the
semantics of assignment in different imperative languages. These differences are
often invisible, because they do not affect the behavior of simple programs. They
have a major impact, however, on programs that use pointers, and will be ex-
plored in further detail in Section 7.7. We provide an introduction to the issues
here.

Consider the following assignments in C:EXAMPLE 6.10
L-values and r-values

d = a;

a = b + c;

In the first statement, the right-hand side of the assignment refers to the value of
a, which we wish to place into d. In the second statement, the left-hand side
refers to the location of a, where we want to put the sum of b and c. Both
interpretations—value and location—are possible because a variable in C (and
in Pascal, Ada, and many other languages) is a named container for a value. We
sometimes say that languages like C use a value model of variables. Because of
their use on the left-hand side of assignment statements, expressions that denote
locations are referred to as l-values. Expressions that denote values (possibly the
value stored in a location) are referred to as r-values. Under a value model of vari-
ables, a given expression can be either an l-value or an r-value, depending on the
context in which it appears. �

Of course, not all expressions can be l-values, because not all values have a
location, and not all names are variables. In most languages it makes no senseEXAMPLE 6.11

L-values in C to say 2 + 3 = a, or even a = 2 + 3, if a is the name of a constant. By the
same token, not all l-values are simple names; both l-values and r-values can be
complicated expressions. In C one may write

(f(a)+3)->b[c] = 2;

In this expression f(a) returns a pointer to some element of an array of struc-
tures (records). The assignment places the value 2 into the c-th element of field
b of the third structure after the one to which f’s return value points. �

In C++ it is even possible for a function to return a “reference” to a structure,EXAMPLE 6.12
L-values in C++ rather than a pointer to it, allowing one to write

g(a).b[c] = 2; �
We will consider references further in Section 8.3.1.

Several languages make the distinction between l-values and r-values more ex-
plicit by employing a reference model of variables. In Clu, for example, a variable
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Figure 6.2 The value (left) and reference (right) models of variables. Under the reference
model, it becomes important to distinguish between variables that refer to the same object and
variables that refer to different objects whose values happen (at the moment) to be equal.

is not a named container for a value; rather, it is a named reference to a value. TheEXAMPLE 6.13
Variables as values and
references

following fragment of code is syntactically valid in both Pascal and Clu.

b := 2;

c := b;

a := b + c;

A Pascal programmer might describe this code by saying: “We put the value 2
in b and then copy it into c. We then read these values, add them together, and
place the resulting 4 in a.” The Clu programmer would say: “We let b refer to 2
and then let c refer to it also. We then pass these references to the + operator, and
let a refer to the result, namely 4.”

These two ways of thinking are illustrated in Figure 6.2. With a value model
of variables, as in Pascal, any integer variable can contain the value 2. With a
reference model of variables, as in Clu, there is (at least conceptually) only one
2—a sort of Platonic Ideal—to which any variable can refer. The practical effect
is the same in this example, because integers are immutable: the value of 2 never
changes, so we can’t tell the difference between two copies of the number 2 and
two references to “the” number 2. �

In a language that uses the reference model, every variable is an l-value. When
it appears in a context that expects an r-value, it must be dereferenced to obtain
the value to which it refers. In most languages with a reference model (including
Clu), the dereference is implicit and automatic. In ML, the programmer must

DESIGN & IMPLEMENTATION

Implementing the reference model
It is tempting to assume that the reference model of variables is inherently
more expensive than the value model, since a naive implementation would
require a level of indirection on every access. As we shall see in Section 7.7.1,
however, most compilers for languages with a reference model use multiple
copies of immutable objects for the sake of efficiency, achieving exactly the
same performance for simple types that they would with a value model.
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use an explicit dereference operator, denoted with a prefix exclamation point. We
will revisit ML pointers in Section 7.7.1.

The difference between the value and reference models of variables becomes
particularly important (specifically, it can affect program output and behavior) if
the values to which variables refer can change “in place,” as they do in many pro-
grams with linked data structures, or if it is possible for variables to refer to dif-
ferent objects that happen to have the “same” value. In this latter case it becomes
important to distinguish between variables that refer to the same object and vari-
ables that refer to different objects whose values happen (at the moment) to be
equal. (Lisp, as we shall see in Sections 7.10 and 10.3.3, provides more than one
notion of equality, to accommodate this distinction.) We will discuss the value
and reference models of variables further in Section 7.7. Languages that employ
(some variant of) the reference model include Algol 68, Clu, Lisp/Scheme, ML,
Haskell, and Smalltalk.

Java uses a value model for built-in types and a reference model for user-
defined types (classes). C# and Eiffel allow the programmer to choose between
the value and reference models for each individual user-defined type. A C# class
is a reference type; a struct is a value type.

Boxing

A drawback of using a value model for built-in types is that they can’t be passed
uniformly to methods that expect class typed parameters. Early versions of Java,EXAMPLE 6.14

Wrapper objects in Java 2 for example, required the programmer to “wrap” objects of built-in types inside
corresponding predefined class types in order to insert them in standard con-
tainer (collection) classes:

import java.util.Hashtable;

...

Hashtable ht = new Hashtable();

...

Integer N = new Integer(13); // Integer is a "wrapper" class

ht.put(N, new Integer(31));

Integer M = (Integer) ht.get(N);

int m = M.intValue(); �
More recent versions of Java perform automatic boxing and unboxing opera-EXAMPLE 6.15

Boxing in Java 5 tions that avoid the need for wrappers in many cases:

ht.put(13, 31);

int m = (Integer) ht.get(13);

Here the compiler creates hidden Integer objects to hold the values 13 and 31,
so they may be passed to put as references. The Integer cast on the return value
is still needed, to make sure that the hash table entry for 13 is really an integer
and not, say, a floating-point number or string. �

C# “boxes” not only the arguments, but the cast as well, eliminating the needEXAMPLE 6.16
Boxing in C# for the Integer class entirely. C# also provides so-called indexers (Section 9.1,
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page 474), which can be used to overload the subscripting ([ ]) operator, giving
the hash table array-like syntax:

ht[13] = 31;

int m = (int) ht[13]; �

Orthogonality

One of the principal design goals of Algol 68 was to make the various features
of the language as orthogonal as possible. Orthogonality means that features can
be used in any combination, the combinations all make sense, and the meaning
of a given feature is consistent, regardless of the other features with which it is
combined. The name is meant to draw an explicit analogy to orthogonal vectors
in linear algebra: none of the vectors in an orthogonal set depends on (or can
be expressed in terms of) the others, and all are needed in order to describe the
vector space as a whole.

Algol 68 was one of the first languages to make orthogonality a principal de-
sign goal, and in fact few languages since have given the goal such weight. Among
other things, Algol 68 is said to be expression-oriented: it has no separate notion
of statement. Arbitrary expressions can appear in contexts that would call for
a statement in a language like Pascal, and constructs that are considered to be
statements in other languages can appear within expressions. The following, forEXAMPLE 6.17

Expression orientation in
Algol 68

example, is valid in Algol 68:

begin

a := if b < c then d else e;

a := begin f(b); g(c) end;

g(d);

2 + 3

end

Here the value of the if. . . then . . . else construct is either the value of its then
part or the value of its else part, depending on the value of the condition. The
value of the “statement list” on the right-hand side of the second assignment
is the value of its final “statement,” namely the return value of g(c). There is
no need to distinguish between procedures and functions, because every sub-
routine call returns a value. The value returned by g(d) is discarded in this
example. Finally, the value of the code fragment as a whole is 5, the sum of 2
and 3. �

C takes an approach intermediate between Pascal and Algol 68. It distinguishes
between statements and expressions, but one of the classes of statement is an “ex-
pression statement,” which computes the value of an expression and then throws
it away. In effect, this allows an expression to appear in any context that would
require a statement in most other languages. C also provides special expression
forms for selection and sequencing. Algol 60 defines if. . . then . . . else as both
a statement and an expression.

Both Algol 68 and C allow assignments within expressions. The value of an
assignment is simply the value of its right-hand side. Unfortunately, where most
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of the descendants of Algol 60 use the := token to represent assignment, C follows
Fortran in simply using =. It uses == to represent a test for equality (Fortran uses
.eq.). Moreover, C lacks a separate Boolean type. (C99 has a new _Bool type,
but it’s really just a one-bit integer.) In any context that would require a BooleanEXAMPLE 6.18

A “gotcha” in C conditions value in other languages, C accepts an integer (or anything that can be coerced to
be an integer). It interprets zero as false; any other value is true. As a result, both
of the following constructs are valid—common—in C.

if (a == b) {

/* do the following if a equals b */

if (a = b) {

/* assign b into a and then do

the following if the result is nonzero */

Programmers who are accustomed to Ada or some other language in which = is
the equality test frequently write the second form above when the first is what is
intended. This sort of bug can be very hard to find. �

Though it provides a true Boolean type (bool), C++ shares the problem of C,
because it provides automatic coercions from numeric, pointer, and enumeration
types. Java and C# eliminate the problem by disallowing integers in Boolean con-
texts. The assignment operator is still =, and the equality test is still ==, but the
statement if (a = b) ... will generate a compile-time type clash error unless
a and b are both boolean (Java) or bool (C#), which is generally unlikely.

Combination Assignment Operators

Because they rely so heavily on side effects, imperative programs must frequently
update a variable. It is thus common in many languages to see statements likeEXAMPLE 6.19

Updating assignments
a = a + 1;

or worse,

b.c[3].d = b.c[3].d * e;

Such statements are not only cumbersome to write and to read (we must examine
both sides of the assignment carefully to see if they really are the same), they also
result in redundant address calculations (or at least extra work to eliminate the
redundancy in the code improvement phase of compilation). �

If the address calculation has a side effect, then we may need to write a pair ofEXAMPLE 6.20
Side effects and updates statements instead. Consider the following code in C:

void update(int A[], int index_fn(int n)) {

int i, j;

/* calculate i */

...

j = index_fn(i);

A[j] = A[j] + 1;

}
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Here we cannot safely write

A[index_fn(i)] = A[index_fn(i)] + 1;

We have to introduce the temporary variable j because we don’t know whether
index_fn has a side effect or not. If it is being used, for example, to keep a log of
elements that have been updated, then we shall want to make sure that update
calls it only once. �

To eliminate the clutter and compile- or run-time cost of redundant address
calculations, and to avoid the issue of repeated side effects, many languages, be-
ginning with Algol 68 and including C and its descendants, provide so-called
assignment operators to update a variable. Using assignment operators, the state-EXAMPLE 6.21

Assignment operators ments in Example 6.19 can be written as follows.

a += 1;

b.c[3].d *= e;

Similarly, the two assignments in the update function can be replaced with

A[index_fn(i)] += 1;

In addition to being aesthetically cleaner, the assignment operator form guaran-
tees that the address calculation is performed only once. �

As shown in Figure 6.1, C provides 10 different assignment operators, one for
each of its binary arithmetic and bit-wise operators. C also provides prefix andEXAMPLE 6.22

Prefix and postfix inc/dec postfix increment and decrement operations. These allow even simpler code in
update:

A[index_fn(i)]++;

or

++A[index_fn(i)];

More significantly, increment and decrement operators provide elegant syntax
for code that uses an index or a pointer to traverse an array:

A[--i] = b;

*p++ = *q++;

When prefixed to an expression, the ++ or -- operator increments or decrements
its operand before providing a value to the surrounding context. In the postfix
form, ++ or -- updates its operand after providing a value. If i is 3 and p and q
point to the initial elements of a pair of arrays, then b will be assigned into A[2]
(not A[3]), and the second assignment will copy the initial elements of the arrays
(not the second elements). �

The prefix forms of ++ and -- are syntactic sugar for += and -=. We couldEXAMPLE 6.23
Advantages of postfix
inc/dec

have written

A[i -= 1] = b;

above. The postfix forms are not syntactic sugar. To obtain an effect similar to
the second statement above we would need an auxiliary variable and a lot of
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extra notation:

*(t = p, p += 1, t) = *(t = q, q += 1, t); �
Both the assignment operators (+=, -=) and the increment and decrement

operators (++, --) do “the right thing” when applied to pointers in C. If p points
to an object that occupies n bytes in memory (including any bytes required for
alignment, as discussed in Section 5.1), then p += 3 points 3n bytes higher in
memory.

Multiway Assignment

We have already seen that the right associativity of assignment (in languages that
allow assignment in expressions) allows one to write things like a = b = c. InEXAMPLE 6.24

Simple multiway
assignment

several languages, including Clu, ML, Perl, Python, and Ruby, it is also possible
to write

a, b := c, d;

Here the comma in the right-hand side is not the sequencing operator of C.
Rather, it serves to define an expression, or tuple, consisting of multiple r-values.
The comma operator on the left-hand side produces a tuple of l-values. The effect
of the assignment is to copy c into a and d into b.3 �

While we could just as easily have writtenEXAMPLE 6.25
Advantages of multiway
assignment a := c; b := d;

the multiway (tuple) assignment allows us to write things like

a, b := b, a;

which would otherwise require auxiliary variables. Moreover, multiway assign-
ment allows functions to return tuples, as well as single values:

a, b, c := foo(d, e, f);

This notation eliminates the asymmetry (nonorthogonality) of functions in most
programming languages, which allow an arbitrary number of arguments but only
a single return. �

ML generalizes the idea of multiway assignment into a powerful pattern-
matching mechanism; we will examine this mechanism in more detail in Sec-
tion 7.2.4.

CHECK YOUR UNDERSTANDING

1. Name seven major categories of control-flow mechanisms.

2. What distinguishes operators from other sorts of functions?

3 The syntax shown here is for Clu. Perl, Python, and Ruby follow C in using = for assignment.
ML requires parentheses around each tuple.
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3. Explain the difference between prefix, infix, and postfix notation. What is
Cambridge Polish notation? Name two programming languages that use post-
fix notation.

4. Why don’t issues of associativity and precedence arise in Postscript or Forth?

5. What does it mean for an expression to be referentially transparent?

6. What is the difference between a value model of variables and a reference
model of variables? Why is the distinction important?

7. What is an l-value? An r-value?

8. Why is the distinction between mutable and immutable values important in
the implementation of a language with a reference model of variables?

9. Define orthogonality in the context of programming language design.

10. What does it mean for a language to be expression-oriented?

11. What are the advantages of updating a variable with an assignment operator,
rather than with a regular assignment in which the variable appears on both
the left- and right-hand sides?

6.1.3 Initialization

Because they already provide a construct (the assignment statement) to set the
value of a variable, imperative languages do not always provide a means of spec-
ifying an initial value for a variable in its declaration. There are at least two rea-
sons, however, why such initial values may be useful:

1. In the case of statically allocated variables (as discussed in Section 3.2), an
initial value that is specified in the context of the declaration can be placed into
memory by the compiler. If the initial value is set by an assignment statement
instead, it will generally incur execution cost at run time.

2. One of the most common programming errors is to use a variable in an ex-
pression before giving it a value. One of the easiest ways to prevent such errors
(or at least ensure that erroneous behavior is repeatable) is to give every vari-
able a value when it is first declared.

Some languages (e.g., Pascal) have no initialization facility at all; all variables
must be given values by explicit assignment statements. To avoid the expense of
run-time initialization of statically allocated variables, many Pascal implemen-
tations provide initialization as a language extension, generally in the form of a
:= expr immediately after the name in the declaration. Unfortunately, the ex-
tension is usually nonorthogonal, in the sense that it only works for variables of
simple, built-in types. A more complete and orthogonal approach to initializa-
tion requires a notation for aggregates: built-up structured values of user-defined
composite types. Aggregates can be found in several languages, including C, Ada,
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Fortran 90, and ML; we will discuss them further in Section 7.1.5. It should be
emphasized that initialization saves time only for variables that are statically al-
located. Variables allocated in the stack or heap at run time must be initialized at
run time.4 It is also worth noting that the problem of using an uninitialized vari-
able occurs not only after elaboration, but also as a result of any operation that
destroys a variable’s value without providing a new one. Two of the most com-
mon such operations are explicit deallocation of an object referenced through a
pointer and modification of the tag of a variant record. We will consider these
operations further in Sections 7.7 and 7.3.4, respectively.

If a variable is not given an initial value explicitly in its declaration, the lan-
guage may specify a default value. In C, for example, statically allocated variables
for which the programmer does not provide an initial value are guaranteed to
be represented in memory as if they had been initialized to zero. For most types
on most machines, this is a string of zero bits, allowing the language implemen-
tation to exploit the fact that most operating systems (for security reasons) fill
newly allocated memory with zeros. Zero-initialization applies recursively to the
subcomponents of variables of user-defined composite types. The designers of
C chose not to incur the run-time cost of automatically zero-filling uninitialized
variables that are allocated in the stack or heap. The programmer can specify an
initial value if desired; the effect is the same as if an assignment had been placed
at the beginning of the code for the variable’s scope.

Constructors

Many object-oriented languages allow the programmer to define types for which
initialization of dynamically allocated variables occurs automatically, even when
no initial value is specified in the declaration. C++ also distinguishes carefully
between initialization and assignment. Initialization is interpreted as a call to
a constructor function for the variable’s type, with the initial value as an argu-
ment. In the absence of coercion, assignment is interpreted as a call to the type’s
assignment operator or, if none has been defined, as a simple bit-wise copy of
the value on the assignment’s right-hand side. The distinction between initial-
ization and assignment is particularly important for user-defined abstract data
types that perform their own storage management. A typical example occurs in
variable-length character strings. An assignment to such a string must generally
deallocate the space consumed by the old value of the string before allocating
space for the new value. An initialization of the string must simply allocate space.
Initialization with a nontrivial value is generally cheaper than default initializa-
tion followed by assignment because it avoids deallocation of the space allocated
for the default value. We will return to this issue in Section 9.3.2.

4 For variables that are accessed indirectly (e.g., in languages that employ a reference model of
variables), a compiler can often reduce the cost of initializing a stack or heap variable by placing
the initial value in static memory, and only creating the pointer to it at elaboration time.
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Neither Java nor C# distinguishes between initialization and assignment, or
between declaration and definition. Java uses a reference model for all variables
of user-defined object types, and provides for automatic storage reclamation, so
assignment never copies values. C# allows the programmer to specify a value
model when desired (in which case assignment does copy values), but otherwise
it mirrors Java. We will return to these issues again in Chapter 9 when we consider
object-oriented features in more detail.

Definite Assignment

Java and C# require that a value be “definitely assigned” to a variable before that
variable is used in any expression. Both languages provide a precise definition of
“definitely assigned,” based on the control flow of the program. Roughly speak-EXAMPLE 6.26

Programs outlawed by
definite assignment

ing, every possible control path to an expression must assign a value to every
variable in that expression. This is a conservative rule; it can sometimes prohibit
programs that would never actually use an uninitialized variable. In Java:

int i;

final static int j = 3;

...

if (j > 0) {

i = 2;

}

...

if (j > 0) {

System.out.println(i);

// error: "i might not have been initialized"

}

DESIGN & IMPLEMENTATION

Safety v. performance
A recurring theme in any comparison between C++ and Java is the latter’s
willingness to accept additional run-time cost in order to obtain cleaner se-
mantics or increased reliability. Definite assignment is one example: it may
force the programmer to perform “unnecessary” initializations on certain code
paths, but in so doing it avoids the many subtle errors that can arise from miss-
ing initialization in other languages. Similarly, the Java specification mandates
automatic garbage collection, and its reference model of user-defined types
forces most objects to be allocated in the heap. As we shall see in Chapters 7
and 9, Java also requires both dynamic binding of all method invocations and
run-time checks for out-of-bounds array references, type clashes, and other
dynamic semantic errors. Clever compilers can reduce or eliminate the cost of
these requirements in certain common cases, but for the most part the Java
design reflects an evolutionary shift away from performance as the overriding
design goal.
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While a human being might reason that i will only be used when it has previously
been given a value, it is uncomputable to make such determinations in the general
case, and the compiler does not attempt it. �
Dynamic Checks

Instead of giving every uninitialized variable a default value, a language or imple-
mentation can choose to define the use of an uninitialized variable as a dynamic
semantic error, and can catch these errors at run time. The advantage of the se-
mantic checks is that they will often identify a program bug that is masked or
made more subtle by the presence of a default value. With appropriate hardware
support, uninitialized variable checks can even be as cheap as default values, at
least for certain types. In particular, a compiler that relies on the IEEE standard
for floating-point arithmetic can fill uninitialized floating-point numbers with a
signaling NaN value, as discussed in Section 5.2.1. Any attempt to use such
a value in a computation will result in a hardware interrupt, which the language
implementation may catch (with a little help from the operating system), and use
to trigger a semantic error message.

For most types on most machines, unfortunately, the costs of catching all uses
of an uninitialized variable at run time are considerably higher. If every possible
bit pattern of the variable’s representation in memory designates some legitimate
value (and this is often the case), then extra space must be allocated somewhere
to hold an initialized/uninitialized flag. This flag must be set to “uninitialized” at
elaboration time and to “initialized” at assignment time. It must also be checked
(by extra code) at every use—or at least at every use that the code improver is un-
able to prove is redundant. Dynamic semantic checks for uninitialized variables
are common in interpreted languages, which already incur significant overhead
on every variable access. Because of their cost, however, the checks are usually
not performed in languages that are compiled.

6.1.4 Ordering Within Expressions

While precedence and associativity rules define the order in which binary infix
operators are applied within an expression, they do not specify the order in which
the operands of a given operator are evaluated. For example, in the expressionEXAMPLE 6.27

Indeterminate ordering
a - f(b) - c * d

we know from associativity that f(b) will be subtracted from a before perform-
ing the second subtraction, and we know from precedence that the right operand
of that second subtraction will be the result of c * d, rather than merely c, but
without additional information we do not know whether a - f(b) will be eval-
uated before or after c * d. Similarly, in a subroutine call with multiple argu-
ments

f(a, g(b), c)

we do not know the order in which the arguments will be evaluated. �
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There are two main reasons why the order can be important:

1. Side effects: If f(b) may modify d, then the value of a - f(b) - c * dEXAMPLE 6.28
A value that depends on
ordering

will depend on whether the first subtraction or the multiplication is per-
formed first. Similarly, if g(b) may modify a and/or c, then the values passed
to f(a, g(b), c) will depend on the order in which the arguments are
evaluated. �

2. Code improvement: The order of evaluation of subexpressions has an impact
on both register allocation and instruction scheduling. In the expression a *EXAMPLE 6.29

An optimization that
depends on ordering

b + f(c), it is probably desirable to call f before evaluating a * b, because
the product, if calculated first, would need to be saved during the call to f,
and f might want to use all the registers in which it might easily be saved. In
a similar vein, consider the sequence

a := B[i];

c := a * 2 + d * 3;

Here it is probably desirable to evaluate d * 3 before evaluating a * 2, be-
cause the previous statement, a := B[i], will need to load a value from
memory. Because loads are slow, if the processor attempts to use the value of a
in the next instruction (or even the next few instructions on many machines),
it will have to wait. If it does something unrelated instead (i.e., evaluate d *
3), then the load can proceed in parallel with other computation. �

Because of the importance of code improvement, most language manuals say
that the order of evaluation of operands and arguments is undefined. (Java and
C# are unusual in this regard: they require left-to-right evaluation.) In the ab-
sence of an enforced order, the compiler can choose whatever order results in
faster code.

Applying Mathematical Identities

Some language implementations (e.g., for dialects of Fortran) allow the compiler
to rearrange expressions involving operators whose mathematical abstractions
are commutative, associative, and/or distributive, in order to generate faster code.
Consider the following Fortran fragment.EXAMPLE 6.30

Optimization and
mathematical “laws” a = b + c

d = c + e + b

Some compilers will rearrange this as

a = b + c

d = b + c + e

They can then recognize the common subexpression in the first and second state-
ments, and generate code equivalent to
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a = b + c

d = a + e

Similarly,

a = b/c/d

e = f/d/c

may be rearranged as

t = c * d

a = b/t

e = f/t �
Unfortunately, while mathematical arithmetic obeys a variety of commuta-

tive, associative, and distributive laws, computer arithmetic is not as orderly. The
problem is that numbers in a computer are of limited precision. With 32-bit
arithmetic, the expression b - c + d can be evaluated safely left to right if a, b,
and c are all integers between two billion and three billion (232 is a little less than
4.3 billion). If the compiler attempts to reorganize this expression as b + d - c,
however (e.g., in order to delay its use of c), then arithmetic overflow will occur.

Many languages, including Pascal and most of its descendants, provide dy-
namic semantic checks to detect arithmetic overflow. In some implementations
these checks can be disabled to eliminate their run-time overhead. In C and C++,
the effect of arithmetic overflow is implementation-dependent. In Java, it is well
defined: the language definition specifies the size of all numeric types, and re-
quires two’s complement integer and IEEE floating-point arithmetic. In C#, the
programmer can explicitly request the presence or absence of checks by tagging
an expression or statement with the checked or unchecked keyword. In a com-
pletely different vein, Scheme, Common Lisp, and several scripting languages
place no a priori limit on the size of numbers; space is allocated to hold extra-
large values on demand.

Even in the absence of overflow, the limited precision of floating-point arith-
metic can cause different arrangements of the “same” expression to produce sig-

DESIGN & IMPLEMENTATION

Evaluation order
Expression evaluation represents a difficult tradeoff between semantics and
implementation. To limit surprises, most language definitions require the
compiler, if it ever reorders expressions, to respect any ordering imposed by
parentheses. The programmer can therefore use parentheses to prevent the
application of arithmetic “identities” when desired. No similar guarantee ex-
ists with respect to the order of evaluation of operands and arguments. It is
therefore unwise to write expressions in which a side effect of evaluating one
operand or argument can affect the value of another. As we shall see in Sec-
tion 6.3, some languages, notably Euclid and Turing, outlaw such side effects.
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nificantly different results, invisibly. Single-precision IEEE floating-point num-EXAMPLE 6.31
Reordering and numerical
stability

bers devote 1 bit to the sign, 8 bits to the exponent (power of 2), and 23 bits to
the mantissa. Under this representation, a + b is guaranteed to result in a loss of
information if | log2(a/b)| > 23. Thus if b = -c, then a + b + c may appear to
be zero, instead of a, if the magnitude of a is small, while the magnitude of b and
c is large. In a similar vein, a number like 0.1 cannot be represented precisely,
because its binary representation is a “repeating decimal”: 0.0001001001. . . . For
certain values of x, (0.1 + x) * 10.0 and 1.0 + (x * 10.0) can differ by as
much as 25%, even when 0.1 and x are of the same magnitude. �

6.1.5 Short-Circuit Evaluation

Boolean expressions provide a special and important opportunity for code im-
provement and increased readability. Consider the expression (a < b) andEXAMPLE 6.32

Short-circuited
expressions

(b < c). If a is greater than b, there is really no point in checking to see whether
b is less than c; we know the overall expression must be false. Similarly, in the ex-
pression (a > b) or (b > c), if a is indeed greater than b there is no point in
checking to see whether b is greater than c; we know the overall expression must
be true. A compiler that performs short-circuit evaluation of Boolean expressions
will generate code that skips the second half of both of these computations when
the overall value can be determined from the first half. �

Short-circuit evaluation can save significant amounts of time in certain situa-EXAMPLE 6.33
Saving time with
short-circuiting

tions:

if (very_unlikely_condition && very_expensive_function()) ... �
But time is not the only consideration, or even the most important one. Short-EXAMPLE 6.34

Short-circuit pointer
chasing

circuiting changes the semantics of Boolean expressions. In C, for example, one
can use the following code to search for an element in a list.

p = my_list;

while (p && p->key != val)

p = p->next;

C short-circuits its && and || operators, and uses zero for both nil and false, so
p->key will be accessed if and only if p is non-nil. The syntactically similar code
in Pascal does not work, because Pascal does not short-circuit and and or:

p := my_list;

while (p <> nil) and (p^.key <> val) do (* ouch! *)

p := p^.next;

Here both of the <> relations will be evaluated before and-ing their results to-
gether. At the end of an unsuccessful search, p will be nil, and the attempt to
access p^.key will be a run-time (dynamic semantic) error, which the compiler
may or may not have generated code to catch. To avoid this situation, the Pascal
programmer must introduce an auxiliary Boolean variable and an extra level of
nesting:
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1. function tally(word : string) : integer;

2. (* Look up word in hash table. If found, increment tally; If not

3. found, enter with a tally of 1. In either case, return tally. *)

...

4. function misspelled(word : string) : Boolean;

5. (* Check to see if word is mis-spelled and return appropriate

6. indication. If yes, increment global count of mis-spellings. *)

...

7. while not eof(doc_file) do begin

8. w := get_word(doc_file);

9. if (tally(w) = 10) and misspelled(w) then

10. writeln(w)

11. end;

12. writeln(total_misspellings);

Figure 6.3 Pascal code that counts on the evaluation of Boolean operands.

p := my_list;

still_searching := true;

while still_searching do

if p = nil then

still_searching := false

else if p^.key = val then

still_searching := false

else

p := p^.next; �
Short-circuit evaluation can also be used to avoid out-of-bound subscripts:EXAMPLE 6.35

Short-circuiting and other
errors const MAX = 10;

int A[MAX]; /* indices from 0 to 9 */

...

if (i >= 0 && i < MAX && A[i] > foo) ...

division by zero:

if (d <> 0 && n/d > threshold) ...

and various other errors. �
Short-circuiting is not necessarily as attractive for situations in which a

Boolean subexpression can cause a side effect. Suppose we wish to count occur-EXAMPLE 6.36
When not to use
short-circuiting

rences of words in a document, and print a list of all misspelled words that appear
ten or more times, together with a count of the total number of misspellings. Pas-
cal code for this task appears in Figure 6.3. Here the if statement at line 9 tests
the conjunction of two subexpressions, both of which have important side effects.
If short-circuit evaluation is used, the program will not compute the right result.
The code can be rewritten to eliminate the need for non-short-circuit evaluation,
but one might argue that the result is more awkward than the version shown. �
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So now we have seen situations in which short-circuiting is highly desirable,
and others in which at least some programmers would find it undesirable. A few
languages, among them Clu, Ada, and C, provide both regular and short-circuit
Boolean operators. (Similar flexibility can be achieved with if. . . then . . . else
in an expression-oriented language such as Algol 68; see Exercise 6.10.) In Clu,EXAMPLE 6.37

Optional short-circuiting the regular Boolean operators are and and or; the short-circuit operators are
cand and cor (for conditional and and or):

if d ~= 0 cand n/d > threshold then ...

In Ada, the regular operators are also and and or; the short-circuit operators are
the two-word operators and then and or else:

found_it := p /= null and then p.key = val;

(Clu and Ada use ~= and /=, respectively, for “not equal.”) C’s logical && and ||
operators short-circuit; the bit-wise & and | operators can be used as non-short-
circuiting alternatives when their arguments are logical (zero or one) values. �

When used to determine the flow of control in a selection or iteration con-
struct, short-circuit Boolean expressions do not really have to calculate a Boolean
value; they simply have to ensure that control takes the proper path in any given
situation. We will look more closely at the generation of code for short-circuit
expressions in Section 6.4.1.

CHECK YOUR UNDERSTANDING

12. Given the ability to assign a value into a variable, why is it useful to be able to
specify an initial value?

13. What are aggregates? Why are they useful?

14. Explain the notion of definite assignment in Java and C#.

15. Why is it generally expensive to catch all uses of uninitialized variables at run
time?

16. Why is it impossible to catch all uses of uninitialized variables at compile
time?

17. Why do most languages leave unspecified the order in which the arguments
of an operator or function are evaluated?

18. What is short-circuit Boolean evaluation? Why is it useful?

6.2 Structured and Unstructured Flow

Control flow in assembly languages is achieved by means of conditional and un-
conditional jumps (branches). Early versions of Fortran mimicked the low-levelEXAMPLE 6.38

Control flow with gotos
in Fortran
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approach by relying heavily on goto statements for most nonprocedural control
flow:

if A .lt. B goto 10 ! ".lt." means "<"

...

10

The 10 on the bottom line is a statement label. �
Goto statements also feature prominently in other early imperative languages.

In Cobol and PL/I they provide the only means of writing logically controlled
(while-style) loops. Algol 60 and its successors provide a wealth of non-goto-
based constructs, but until recently most Algol-family languages still provided
goto as an option.

Throughout the late 1960s and much of the 1970s, language designers debated
hotly the merits and evils of gotos. It seems fair to say the detractors won. Ada
and C# allow gotos only in limited contexts. Modula (1, 2, and 3), Clu, Eiffel,
and Java do not allow them at all. Fortran 90 and C++ allow them primarily for
compatibility with their predecessor languages. (Java reserves the token goto as
a keyword, to make it easier for a Java compiler to produce good error messages
when a programmer uses a C++ goto by mistake.)

The abandonment of gotos was part of a larger “revolution” in software en-
gineering known as structured programming. Structured programming was the
“hot trend” of the 1970s, in much the same way that object-oriented program-
ming was the trend of the 1990s. Structured programming emphasizes top-down
design (i.e., progressive refinement), modularization of code, structured types
(records, sets, pointers, multidimensional arrays), descriptive variable and con-
stant names, and extensive commenting conventions. The developers of struc-
tured programming were able to demonstrate that within a subroutine, almost
any well-designed imperative algorithm can be elegantly expressed with only se-
quencing, selection, and iteration. Instead of labels, structured languages rely on
the boundaries of lexically nested constructs as the targets of branching control.

Many of the structured control-flow constructs familiar to modern program-
mers were pioneered by Algol 60. These include the if. . . then . . . else construct
and both enumeration (for) and logically (while) controlled loops. The case
statement was introduced by Wirth and Hoare in Algol W [WH66] as an alterna-
tive to the more unstructured computed goto and switch constructs of Fortran
and Algol 60, respectively. Case statements were adopted in limited form by Al-
gol 68, and more completely by Pascal, Modula, C, Ada, and a host of modern
languages.

6.2.1 Structured Alternatives to goto

Once the principal structured constructs had been defined, most of the contro-
versy surrounding gotos revolved around a small number of special cases, each
of which was eventually addressed in structured ways.
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Mid-loop exit and continue: A common use of gotos in Pascal was to break outEXAMPLE 6.39
Leaving the middle of a
loop

of the middle of a loop:

while not eof do begin

readln(line);

if all_blanks(line) then goto 100;

consume_line(line)

end;

100: �

Less commonly, one would also see a label inside the end of a loop, to serve
as the target of a goto that would terminate a given iteration early. As we
shall see in Section 6.5.5, mid-loop exits are supported by special “one-and-a
half” loop constructs in languages like Modula, C, and Ada. Some languages
also provide a statement to skip the remainder of the current loop iteration:
continue in C; cycle in Fortran 90; next in Perl.

Early returns from subroutines: Gotos were used fairly often in Pascal to termi-EXAMPLE 6.40
Returning from the middle
of a subroutine

nate the current subroutine:

procedure consume_line(var line: string);

...

begin

...

if line[i] = ’%’ then goto 100;

(* rest of line is a comment *)

...

100:

end;

At a minimum, this goto statement avoids putting the remainder of the pro-
cedure in an else clause. If the terminating condition is discovered within a
deeply nested if. . . then . . . else, it may avoid introducing an auxiliary vari-
able that must be tested repeatedly in the remainder of the procedure (if not
comment_line then ...). �

The obvious alternative to this use of goto is an explicit return statement.
Algol 60 does not have one, and neither does Pascal, but Fortran always has,
and most modern Algol descendants have adopted it.

Multilevel returns: Returns and (local) gotos allow control to return from the
current subroutine. On occasion it may make sense to return from a surround-
ing routine. Imagine, for example, that we are searching for an item matchingEXAMPLE 6.41

Escaping a nested
subroutine

some desired pattern with a collection of files. The search routine might in-
voke several nested routines, or a single routine multiple times, once for each
place in which to search. In such a situation certain historic languages, includ-
ing Algol 60, PL/I, and Pascal, permit a goto to branch to a lexically visible
label outside the current subroutine:
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function search(key : string) : string;

var rtn : string;

...

procedure search_file(fname : string);

...

begin

...

for ... (* iterate over lines *)

...

if found(key, line) then begin

rtn := line;

goto 100;

end;

...

end;

...

begin (* search *)

...

for ... (* iterate over files *)

...

search_file(fname);

...

100: return rtn;

end; �
In the event of a nonlocal goto, the language implementation must guar-

antee to repair the run-time stack of subroutine call information. This repair
operation is known as unwinding. It requires not only that the implementation
deallocate the stack frames of any subroutines from which we have escaped,
but also that it perform any bookkeeping operations, such as restoration of
register contents, that would have been performed when returning from those
routines.

As a more structured alternative to the nonlocal goto, Common Lisp pro-
vides a return-from statement that names the lexically surrounding function
or block from which to return, and also supplies a return value (eliminating
the need for the artificial rtn variable in Example 6.41).

But what if search_file were not nested inside of search? We might, for
example, wish to call it from routines that search files in different orders. In
this case the goto of Pascal does not suffice. Algol 60 and PL/I allow labels
to be passed as parameters, so a dynamically nested subroutine can perform a
goto to a caller-defined location. PL/I also allows labels to be stored in vari-
ables. If a nested routine needs to return a value it can assign it to some vari-
able in a scope that surrounds all calls. Alternatively, we can pass a reference
parameter into every call, into which the result should be written.

Common Lisp again provides a more structured alternative, also availableEXAMPLE 6.42
Structured nonlocal
transfers

in Ruby. In either language an expression can be surrounded with a catch
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block, whose value can be provided by any dynamically nested routine that
executes a matching throw. In Ruby we might write

def searchFile(fname, pattern)

file = File.open(fname)

file.each {|line|

throw :found, line if line =~ /#{pattern}/

}

end

match = catch :found do

searchFile("f1", key)

searchFile("f2", key)

searchFile("f3", key)

"not found\n" # default value for catch,

end # if control gets this far

print match

Here the throw expression specifies a tag, which must appear in a matching
catch, together with a value (line) to be returned as the value of the catch.
(The if clause attached to the throw performs a regular-expression pattern
match, looking for pattern within line. We will consider pattern matching
in more detail in Section 13.4.2.) �

Errors and other exceptions: The notion of a multilevel return assumes that the
callee knows what the caller expects, and can return an appropriate value. In
a related and arguably more common situation, a deeply nested block or sub-
routine may discover that it is unable to proceed with its usual function and,
moreover, lacks the contextual information it would need to recover in any
graceful way. The only recourse in such a situation is to “back out” of the
nested context to some point in the program that is able to recover. Condi-
tions that require a program to “back out” are usually called exceptions. We
saw an example in Section 2.3.4, where we considered phrase-level recov-
ery from syntax errors in a recursive-descent parser.

The most straightforward but generally least satisfactory way to cope withEXAMPLE 6.43
Error-checking with status
codes

exceptions is to use auxiliary Boolean variables within a subroutine (if
still_ok then ...) and to return status codes from calls:

status := my_proc(args);

if status = ok then ... �

The auxiliary Booleans can be eliminated by using a nonlocal goto or multi-
level return, but the caller to which we return must still inspect status codes
explicitly. As a structured alternative, many modern languages provide an ex-
ception handling mechanism for convenient, nonlocal recovery from excep-
tions. We will discuss exception handling in more detail in Section 8.5. Typ-
ically the programmer appends a block of code called a handler to any com-
putation in which an exception may arise. The job of the handler is to take
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whatever remedial action is required to recover from the exception. If the pro-
tected computation completes in the normal fashion, execution of the handler
is skipped.

Multilevel returns and structured exceptions have strong similarities. Both
involve a control transfer from some inner, nested context back to an outer
context, unwinding the stack on the way. The distinction lies in where the
computing occurs. In a multilevel return the inner context has all the infor-
mation it needs. It completes its computation, generating a return value if
appropriate, and transfers to the outer context in a way that requires no post-
processing. At an exception, by contrast, the inner context cannot complete its
work. It performs an “abnormal” return, triggering execution of the handler.

Common Lisp and Ruby provide mechanisms for both multilevel returns
and exceptions, but this dual support is relatively rare. Most languages support
only exceptions; programmers implement multilevel returns by writing a triv-
ial handler. In an unfortunate overloading of terminology, the names catch
and throw, which Common Lisp and Ruby use for multilevel returns, are used
for exceptions in several other languages.

6.2.2 Continuations

The notion of nonlocal gotos that unwind the stack can be generalized by defin-
ing what are known as continuations. In low-level terms, a continuation consists
of a code address and a referencing environment to be restored when jumping to
that address. In higher-level terms, a continuation is an abstraction that captures
a context in which execution might continue. Continuations are fundamental to
denotational semantics. They also appear as first-class values in certain languages
(notably Scheme and Ruby), allowing the programmer to define new control-
flow constructs.

Continuation support in Scheme takes the form of a general purpose function
called call-with-current-continuation, sometimes abbreviated call/cc.

DESIGN & IMPLEMENTATION

Cleaning up continuations
The implementation of continuations in Scheme and Ruby is surprisingly
straightforward. Because local variables have unlimited extent in both lan-
guages, activation records must in general be allocated on the heap. As a re-
sult, explicit deallocation is neither required nor appropriate when jumping
through a continuation; frames that are no longer accessible will eventually
be reclaimed by a general purpose garbage collector (to be discussed in Sec-
tion 7.7.3). Restoration of state (e.g., saved registers) from escaped routines
is not required either: the continuation closure holds everything required to
resume the captured context.
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This function takes a single argument, f , which is itself a function. It calls f ,
passing as argument a continuation c that captures the current program counter
and referencing environment. The continuation is represented by a closure, in-
distinguishable from the closures used to represent subroutines passed as para-
meters. At any point in the future, f can call c to reestablish the captured context.
If nested calls have been made, control pops out of them, as it does with excep-
tions. More generally, however, c can be saved in variables, returned explicitly by
subroutines, or called repeatedly, even after control has returned from f (recall
that closures in Scheme have unlimited extent; see Section 3.5). Call/cc suffices
to build a wide variety of control abstractions, including gotos, mid-loop exits,
multilevel returns, exceptions, iterators (Section 6.5.3), call-by-name parameters
(Section 8.3.1), and coroutines (Section 8.6). It even subsumes the notion of re-
turning from a subroutine, though it seldom replaces it in practice.

First-class continuations are an extremely powerful facility. They can be very
useful if applied in well-structured ways (i.e., to define new control-flow con-
structs). Unfortunately, they also allow the undisciplined programmer to con-
struct completely inscrutable programs.

6.3 Sequencing

Like assignment, sequencing is central to imperative programming. It is the prin-
cipal means of controlling the order in which side effects (e.g., assignments) oc-
cur: when one statement follows another in the program text, the first statement
executes before the second. In most imperative languages, lists of statements can
be enclosed with begin. . . end or {. . . } delimiters and then used in any context
in which a single statement is expected. Such a delimited list is usually called a
compound statement. A compound statement preceded by a set of declarations is
sometimes called a block.

In languages like Algol 68 and C, which blur or eliminate the distinction be-
tween statements and expressions, the value of a statement (expression) list is the
value of its final element. In Common Lisp, the programmer can choose to return
the value of the first element, the second, or the last. Of course, sequencing is a
useless operation unless the subexpressions that do not play a part in the return
value have side effects. The various sequencing constructs in Lisp are used only
in program fragments that do not conform to a purely functional programming
model.

Even in imperative languages, there is debate as to the value of certain kinds of
side effects. In Euclid and Turing, for example, functions (that is, subroutines that
return values, and that therefore can appear within expressions) are not permit-
ted to have side effects. Among other things, side-effect freedom ensures that a
Euclid or Turing function, like its counterpart in mathematics, is always idempo-
tent: if called repeatedly with the same set of arguments, it will always return the
same value, and the number of consecutive calls (after the first) will not affect
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the results of subsequent execution. In addition, side-effect freedom for func-
tions means that the value of a subexpression will never depend on whether that
subexpression is evaluated before or after calling a function in some other subex-
pression. These properties make it easier for a programmer or theorem-proving
system to reason about program behavior. They also simplify code improvement,
for example by permitting the safe rearrangement of expressions.

Unfortunately, there are some situations in which side effects in functions areEXAMPLE 6.44
Side effects in a random
number generator

highly desirable. We saw one example in the gen new name function of Fig-
ure 3.6 (page 125). Another arises in the typical interface to a pseudo-random
number generator.

procedure srand(seed : integer)
–– Initialize internal tables.
–– The pseudo-random generator will return a different
–– sequence of values for each different value of seed.

function rand() : integer
–– No arguments; returns a new “random” number.

Obviously rand needs to have a side effect, so that it will return a different value
each time it is called. One could always recast it as a procedure with a reference
parameter:

procedure rand(var n : integer)

but most programmers would find this less appealing. Ada strikes a compromise:
it allows side effects in functions in the form of changes to static or global vari-
ables, but does not allow a function to modify its parameters. �

6.4 Selection

Selection statements in most imperative languages employ some variant of theEXAMPLE 6.45
Selection in Algol 60 if. . . then . . . else notation introduced in Algol 60:

if condition then statement
else if condition then statement
else if condition then statement
...

else statement �
As we saw in Section 2.3.2, languages differ in the details of the syntax. In Algol
60 and Pascal both the then clause and the else clause are defined to contain
a single statement (this can of course be a begin. . . end compound statement).
To avoid grammatical ambiguity, Algol 60 requires that the statement after the
then begin with something other than if (begin is fine). Pascal eliminates this
restriction in favor of a “disambiguating rule” that associates an else with the
closest unmatched then. Algol 68, Fortran 77, and more modern languages avoid
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the ambiguity by allowing a statement list to follow either then or else, with a
terminating keyword at the end of the construct.

To keep terminators from piling up at the end of nested if statements,EXAMPLE 6.46
Elsif/elif most languages with terminators provide a special elsif or elif keyword. In

Modula-2, one writes

IF a = b THEN ...

ELSIF a = c THEN ...

ELSIF a = d THEN ...

ELSE ...

END �
In Lisp, the equivalent construct isEXAMPLE 6.47

Cond in Lisp
(cond

((= A B)

(...))

((= A C)

(...))

((= A D)

(...))

(T

(...)))

Here cond takes as arguments a sequence of pairs. In each pair the first element
is a condition; the second is an expression to be returned as the value of the
overall construct if the condition evaluates to T (T means “true” in most Lisp
dialects). �

6.4.1 Short-Circuited Conditions

While the condition in an if. . . then . . . else statement is a Boolean expression,
there is usually no need for evaluation of that expression to result in a Boolean
value in a register. Most machines provide conditional branch instructions that
capture simple comparisons. Put another way, the purpose of the Boolean expres-
sion in a selection statement is not to compute a value to be stored, but to cause
control to branch to various locations. This observation allows us to generate
particularly efficient code (called jump code) for expressions that are amenable to
the short-circuit evaluation of Section 6.1.5. Jump code is applicable not only to
selection statements such as if. . . then . . . else, but to logically controlled loops
as well; we will consider the latter in Section 6.5.5.

In the usual process of code generation, either via an attribute grammar or via
ad hoc syntax tree decoration, a synthesized attribute of the root of an expression
subtree acquires the name of a register into which the value of the expression will
be computed at run time. The surrounding context then uses this register name
when generating code that uses the expression. In jump code, inherited attributes
of the root inform it of the addresses to which control should branch if the ex-
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pression is true or false respectively. Jump code can be generated quite elegantly
by an attribute grammar, particularly one that is not L-attributed (Exercise 6.9).

Suppose, for example, that we are generating code for the following source.EXAMPLE 6.48
Code generation for a
Boolean condition if ((A > B) and (C > D)) or (E �= F) then

then clause
else

else clause

In Pascal, which does not use short-circuit evaluation, the output code would
look something like this.

r1 := A –– load
r2 := B
r1 := r1 > r2
r2 := C
r3 := D
r2 := r2 > r3
r1 := r1 & r2
r2 := E
r3 := F
r2 := r2 �= r3
r1 := r1 | r2
if r1 = 0 goto L2

L1: then clause –– (label not actually used)
goto L3

L2: else clause
L3:

The root of the subtree for ((A > B) and (C > D)) or (E �= F) would name r1 as the
register containing the expression value. �

In jump code, by contrast, the inherited attributes of the condition’s rootEXAMPLE 6.49
Code generation for
short-circuiting

would indicate that control should “fall through” to L1 if the condition is true,
or branch to L2 if the condition is false. Output code would then look something
like this:

r1 := A
r2 := B
if r1 <= r2 goto L4
r1 := C
r2 := D
if r1 > r2 goto L1

L4: r1 := E
r2 := F
if r1 = r2 goto L2

L1: then clause
goto L3

L2: else clause
L3:
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Here the value of the Boolean condition is never explicitly placed into a register.
Rather it is implicit in the flow of control. Moreover for most values of A, B, C, D,
and E, the execution path through the jump code is shorter and therefore faster
(assuming good branch prediction) than the straight-line code that calculates the
value of every subexpression. �

If the value of a short-circuited expression is needed explicitly, it can of courseEXAMPLE 6.50
Short-circuit creation of a
Boolean value

be generated, while still using jump code for efficiency. The Ada fragment

found_it := p /= null and then p.key = val;

is equivalent to

if p /= null and then p.key = val then

found_it := true;

else

found_it := false;

end if;

and can be translated as

r1 := p
if r1 = 0 goto L1
r2 := r1→key
if r2 �= val goto L1
r1 := 1
goto L2

L1: r1 := 0
L2: found it := r1

The astute reader will notice that the first goto L1 can be replaced by goto L2,
since r1 already contains a zero in this case. The code improvement phase of the
compiler will notice this also, and make the change. It is easier to fix this sort of
thing in the code improver than it is to generate the better version of the code in
the first place. The code improver has to be able to recognize jumps to redundant
instructions for other reasons anyway; there is no point in building special cases
into the short-circuit evaluation routines. �

DESIGN & IMPLEMENTATION

Short-circuit evaluation
Short-circuit evaluation is one of those happy cases in programming language
design where a clever language feature yields both more useful semantics and a
faster implementation than existing alternatives. Other at least arguable exam-
ples include case statements, local scopes for for loop indices (Section 6.5.1),
with statements in Pascal (Section 7.3.3), and parameter modes in Ada (Sec-
tion 8.3.1).
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6.4.2 Case/Switch Statements

The case statements of Algol W and its descendants provide alternative syntaxEXAMPLE 6.51
Case statements and
nested ifs

for a special case of nested if. . . then . . . else. When each condition compares
the same integer expression to a different compile-time constant, then the fol-
lowing code (written here in Modula-2)

i := ... (* potentially complicated expression *)

IF i = 1 THEN

clause A
ELSIF i IN 2, 7 THEN

clause B
ELSIF i IN 3..5 THEN

clause C
ELSIF (i = 10) THEN

clause D
ELSE

clause E
END

can be rewritten as

CASE ... (* potentially complicated expression *) OF

1: clause A
| 2, 7: clause B
| 3..5: clause C
| 10: clause D

ELSE clause E
END

The elided code fragments (clause A, clause B, etc.) after the colons and the ELSE
are called the arms of the CASE statement. The lists of constants in front of the
colons are CASE statement labels. The constants in the label lists must be disjoint,
and must be of a type compatible with the tested expression. Most languages al-
low this type to be anything whose values are discrete: integers, characters, enu-
merations, and subranges of the same. C# allows strings as well. �

The CASE statement version of the code above is certainly less verbose than the
IF. . . THEN . . . ELSE version, but syntactic elegance is not the principal motivation
for providing a CASE statement in a programming language. The principal mo-
tivation is to facilitate the generation of efficient target code. The IF. . . THEN . . .EXAMPLE 6.52

Translation of nested ifs ELSE statement is most naturally translated as follows.

r1 := . . . –– calculate tested expression
if r1 �= 1 goto L1
clause A
goto L6

L1: if r1 = 2 goto L2
if r1 �= 7 goto L3

L2: clause B
goto L6
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goto L6 –– jump to code to compute address
L1: clause A

goto L7
L2: clause B

goto L7
L3: clause C

goto L7
. . .

L4: clause D
goto L7

L5: clause E
goto L7

L6: r1 := . . . –– computed target of branch
goto *r1

L7:

Figure 6.4 General form of target code generated for a five-arm case statement. One could
eliminate the initial goto L6 and the final goto L7 by computing the target of the branch at
the top of the generated code, but it may be cumbersome to do so, particularly in a one-pass
compiler. The form shown adds only a single jump to the control flow in most cases, and allows
the code for all of the arms of the case statement to be generated as encountered, before the
code to determine the target of the branch can be deduced.

L3: if r1 < 3 goto L4
if r1 > 5 goto L4
clause C
goto L6

L4: if r1 �= 10 goto L5
clause D
goto L6

L5: clause E
L6: �
Rather than test its expression sequentially against a series of possible values,

the case statement is meant to compute an address to which it jumps in a single
instruction. The general form of the target code generated from a case statementEXAMPLE 6.53

Jump tables appears in Figure 6.4. The code at label L6 can take any of several forms. The most
common of these simply indexes into an array:

T: &L1 –– tested expression = 1
&L2
&L3
&L3
&L3
&L5
&L2
&L5
&L5
&L4 –– tested expression = 10
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L6: r1 := . . . –– calculate tested expression
if r1 < 1 goto L5
if r1 > 10 goto L5 –– L5 is the “else” arm
r1 −:= 1 –– subtract off lower bound
r2 := T[r1]
goto *r2

L7:

Here the “code” at label T is actually a table of addresses, known as a jump table.
It contains one entry for each integer between the lowest and highest values, in-
clusive, found among the case statement labels. The code at L6 checks to make
sure that the tested expression is within the bounds of the array (if not, we should
execute the else arm of the case statement). It then fetches the corresponding
entry from the table and branches to it. �
Alternative Implementations

A linear jump table is fast. It is also space-efficient when the overall set of case
statement labels is dense and does not contain large ranges. It can consume an
extraordinarily large amount of space, however, if the set of labels is nondense or
includes large value ranges. Alternative methods to compute the address to which
to branch include sequential testing, hashing, and binary search. Sequential test-
ing (as in an if. . . then . . . else statement) is the method of choice if the total
number of case statement labels is small. It runs in time O(n), where n is the
number of labels. A hash table is attractive if the range of label values is large but
has many missing values and no large ranges. With an appropriate hash function
it will run in time O(1). Unfortunately, a hash table requires a separate entry for
each possible value of the tested expression, making it unsuitable for statements
with large value ranges. Binary search can accommodate ranges easily. It runs in
time O(log n), with a relatively low constant factor.

To generate good code for all possible case statements, a compiler needs to be
prepared to use a variety of strategies. During compilation it can generate code
for the various arms of the case statement as it finds them, while simultaneously
building up an internal data structure to describe the label set. Once it has seen
all the arms, it can decide which form of target code to generate. For the sake of
simplicity, most compilers employ only some of the possible implementations.
Many use binary search in lieu of hashing. Some generate only indexed jump ta-
bles; others only that plus sequential testing. Users of less sophisticated compilers
may need to restructure their case statements if the generated code turns out to
be unexpectedly large or slow.

Syntax and Label Semantics

As with if. . . then . . . else statements, the syntactic details of case statements
vary from language to language. In keeping with the style of its other structured
statements, Pascal defines each arm of a case statement to contain a single state-
ment; begin. . . end delimiters are required to bracket statement lists. Modula,
Ada, Fortran 90, and many other languages expect arms to contain statement
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lists by default. Modula uses | to separate an arm from the following label. Ada
brackets labels with when and =>.

Standard Pascal does not include a default clause: all values on which to take
action must appear explicitly in label lists. It is a dynamic semantic error for the
expression to evaluate to a value that does not appear. Most Pascal compilers per-
mit the programmer to add a default clause, labeled either else or otherwise,
as a language extension. Modula allows an optional else clause. If one does not
appear in a given case statement, then it is a dynamic semantic error for the
tested expression to evaluate to a missing value. Ada requires arm labels to cover
all possible values in the domain of the type of the tested expression. If the type
of tested expression has a very large number of values, then this coverage must
be accomplished using ranges or an others clause. In some languages, notably
C and Fortran 90, it is not an error for the tested expression to evaluate to a
missing value. Rather, the entire construct has no effect when the value is miss-
ing.

The C switch Statement

C’s syntax for case (switch) statements (retained by C++ and Java) is unusual
in other respects.

switch (... /* tested expression */) {

case 1: clause A
break;

case 2:

case 7: clause B
break;

case 3:

case 4:

case 5: clause C
break;

case 10: clause D
break;

default: clause E
break;

}

DESIGN & IMPLEMENTATION

Case statements
Case statements are one of the clearest examples of language design driven by
implementation. Their primary reason for existence is to facilitate the gener-
ation of jump tables. Ranges in label lists (not permitted in Pascal or C) may
reduce efficiency slightly, but binary search is still dramatically faster than the
equivalent series of ifs.



6.4 Selection 269

Here each possible value for the tested expression must have its own label
within the switch; ranges are not allowed. In fact, lists of labels are not allowed,
but the effect of lists can be achieved by allowing a label (such as 2, 3, and 4
above) to have an empty arm that simply “falls through” into the code for the
subsequent label. Because of the provision for fall-through, an explicit break
statement must be used to get out of the switch at the end of an arm, rather
than falling through into the next. There are rare circumstances in which theEXAMPLE 6.54

Fall-through in C switch

statements
ability to fall through is convenient:

letter_case = lower;

switch (c) {

...

case ’A’ :

letter_case = upper;

/* FALL THROUGH! */

case ’a’ :

...

break;

...

} �
Most of the time, however, the need to insert a break at the end of each arm—
and the compiler’s willingness to accept arms without breaks, silently—is a recipe
for unexpected and difficult-to-diagnose bugs. C# retains the familiar C syntax,
including multiple consecutive labels, but requires every nonempty arm to end
with a break, goto, continue, or return.

Historical Origins

Modern case statements are a descendant of the computed goto statement of
Fortran and the switch construct of Algol 60. In early versions of Fortran, oneEXAMPLE 6.55

Fortran computed goto could specify multiway branching based on an integer value as follows.

goto (15, 100, 150, 200), I

If I is one, control jumps to the statement labeled 15. If I is two, control jumps
to the statement labeled 100. If I is outside the range 1. . . 4, the statement has
no effect. Any integer-valued expression could be used in place of I. Computed
gotos are still allowed in Fortran 90 but are identified by the language manual as
a deprecated feature, retained to facilitate compilation of old programs. �

In Algol 60, a switch is essentially an array of labels:EXAMPLE 6.56
Algol 60 switch

switch S := L15, L100, L150, L200;

...

goto S[I];

Algol 68 eliminates the gotos by, in essence, indexing into an array of statements,
but the syntax is rather cumbersome. �
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CHECK YOUR UNDERSTANDING

19. List the principal uses of goto, and the structured alternatives to each.

20. Explain the distinction between exceptions and multilevel returns.

21. What are continuations? What other language features do they subsume?

22. Why is sequencing a comparatively unimportant form of control flow in Lisp?

23. Explain why it may sometimes be useful for a function to have side effects.

24. Describe the jump code implementation of short-circuit Boolean evaluation.

25. Why do imperative languages commonly provide a case statement in addi-
tion to if. . . then . . . else?

26. Describe three different search strategies that might be employed in the im-
plementation of a case statement, and the circumstances in which each
would be desirable.

6.5 Iteration

Iteration and recursion are the two mechanisms that allow a computer to perform
similar operations repeatedly. Without at least one of these mechanisms, the run-
ning time of a program (and hence the amount of work it can do and the amount
of space it can use) is a linear function of the size of the program text, and the
computational power of the language is no greater than that of a finite automa-
ton. In a very real sense, it is iteration and recursion that make computers useful.
In this section we focus on iteration. Recursion is the subject of Section 6.6.

Programmers in imperative languages tend to use iteration more than they
use recursion (recursion is more common in functional languages). In most lan-
guages, iteration takes the form of loops. Like the statements in a sequence, the it-
erations of a loop are generally executed for their side effects: their modifications
of variables. Loops come in two principal varieties; these differ in the mechanisms
used to determine how many times they iterate. An enumeration-controlled loop
is executed once for every value in a given finite set. The number of iterations
is therefore known before the first iteration begins. A logically controlled loop is
executed until some Boolean condition (which must necessarily depend on val-
ues altered in the loop) changes value. The two forms of loops share a single
construct in Algol 60. They are distinct in most later languages, with the notable
exception of Common Lisp, whose loop macro provides an astonishing array of
options for initialization, index modification, termination detection, conditional
execution, and value accumulation.
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6.5.1 Enumeration-Controlled Loops

Enumeration-controlled loops are as old as Fortran. The Fortran syntax and se-
mantics have evolved considerably over time. In Fortran I, II, and IV a loop looksEXAMPLE 6.57

Early Fortran do loop something like this:

do 10 i = 1, 10, 2

...

10 continue

The number after the do is a label that must appear on some statement later in
the current subroutine; the statement it labels is the last one in the body of the
loop: the code that is to be executed multiple times. Continue is a “no-op”: a
statement that has no effect. Using a continue for the final statement of the loop
makes it easier to modify code later: additional “real” statements can be added to
the bottom of the loop without moving the label.5 �

The variable name after the label is the index of the loop. The comma-
separated values after the equals sign indicate the initial value of the index, the
maximum value it is permitted to take, and the amount by which it is to increase
in each iteration (this is called the step size). A bit more precisely, the loop aboveEXAMPLE 6.58

Meaning of a do loop is equivalent to

i = 1

10 ...

i = i + 2

if i <= 10 goto 10

Index variable i in this example will take on the values 1, 3, 5, 7, and 9 in succes-
sive loop iterations. Compilers can translate this loop into very simple, fast code
for most machines. �

In practice, unfortunately, this early form of loop proved to have several prob-
lems. Some of these problems were comparatively minor. The loop bounds and
step size (1, 10, and 2 in our example) were required to be positive integer con-
stants or variables: no expressions were allowed. Fortran 77 removed this restric-
tion, allowing arbitrary positive and negative integer and real expressions. Also,
as we saw in Section 2.16 (page 57), trivial lexical errors can cause a Fortran IV
compiler to misinterpret the code as an ordinary sequence of statements begin-
ning with an assignment. Fortran 77 makes such misinterpretation less likely by
allowing an extra comma after the label in the do loop header. Fortran 90 takes
back (makes “obsolescent”) the ability to use real numbers for loop bounds and
step sizes. The problem with reals is that limited precision can cause compar-
isons (e.g., between the index and the upper bound) to produce unexpected or
even implementation-dependent results when the values are close to one another.

5 The continue statement of C probably takes its name from this typical use of the no-op in
Fortran, but its semantics are very different: the C continue starts the next iteration of the loop
even when the current one has not finished.
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The more serious problems with the Fortran IV do loop are a bit more subtle:

� If statements in the body of the loop (or in subroutines called from the body of
the loop) change the value of i, then the loop may execute a different number
of times than one would assume based on the bounds in its header. If the effect
is accidental, the bug is hard to find. If the effect is intentional, the code is hard
to read.

� Goto statements may jump into or out of the loop. Code that jumps out and
(optionally) back in again is expressly allowed (if difficult to understand). On
the other hand, code that simply jumps in, without properly initializing i,
almost certainly represents a programming error, but will not be caught by
the compiler.

� If control leaves a do loop via a goto, the value of i is the one most re-
cently assigned. If the loop terminates normally, however, the value of i is
implementation-dependent. Based on Example 6.58, one might expect the fi-
nal value to be the first one outside the loop bounds: L+(�(U −L)/S�+1)×S,
where L, U , and S are the lower and upper bounds of the loop and the step
size, respectively. Unfortunately, if the upper bound is close to the largest value
that can be represented given the precision of integers on the target machine,
then the increment at the bottom of the final iteration of the loop may cause
arithmetic overflow. On most machines this overflow will result in an appar-
ently negative value, which will prevent the loop from terminating correctly.
On some it will cause a run-time exception that requires the intervention of
the operating system in order to continue execution. To ensure correct termi-
nation and/or avoid the cost of an exception, a compiler must generate more
complex (and slower) code when it is unable to rule out overflow at compile
time. In this event, the index may contain its final value (not the “next” value)
after normal termination of the loop.

� Because the test against the upper bound appears at the bottom of the loop,
the body will always be executed at least once, even if the “low” bound is larger
than the “high” bound.

DESIGN & IMPLEMENTATION

Numerical imprecision
The writers of numerical software know that the results of arithmetic compu-
tations are often approximations. A comparison between values that are ap-
proximately equal “may go either way.” The Fortran 90 designers appear to
have decided that such comparisons should be explicit. Fortran 90 do loops,
like the for loops of most other languages, reflect the precision of discrete
types. The programmer who wants to control iteration with floating-point
values must use an explicit comparison in a pre-test or post-test loop (Sec-
tion 6.5.5).
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These problems arise in a larger context than merely Fortran IV. They must
be addressed in the design of enumeration-controlled loops in any language.
Consider the arguably more friendly syntax of Modula-2:EXAMPLE 6.59

Modula-2 for loop
FOR i := first TO last BY step DO

...

END

where first, last, and step can be arbitrarily complex expressions of an in-
teger, enumeration, or subrange type. Based on the preceding discussion, one
might ask several questions.

1. Can i, first, and/or last be modified in the loop? If so, what is the effect
on control?

2. What happens if first is larger than last (or smaller, in the case of a nega-
tive step)?

3. What is the value of i when the loop is finished?

4. Can control jump into the loop from outside?

We address these questions in the paragraphs below. �

Changes to Loop Indices or Bounds

Most languages, including Algol 68, Pascal, Ada, Fortran 77 and 90, and
Modula-3, prohibit changes to the loop index within the body of an enumera-
tion-controlled loop. They also guarantee to evaluate the bounds of the loop
exactly once, before the first iteration, so any changes to variables on which those
bounds depend will not have any effect on the number of iterations executed.
Modula-2 is vague; the manual says that the index “should not be changed” by
the body of the loop [Wir85b, Sec. 9.8]. ISO Pascal goes to considerable lengths to
prohibit modification. Paraphrasing slightly, it says [Int90, Sec. 6.8.3.9] that the
index variable must be declared in the closest enclosing block, and that neither
the body of the for statement itself nor any statement contained in a subrou-
tine local to the block can “threaten” the index variable. A statement is said to
threaten a variable if it

� Assigns to it

� Passes it to a subroutine by reference

� Reads it from a file

� Is a structured statement containing a simpler statement that threatens it

The prohibition against threats in local subroutines is made because a local vari-
able will be accessible to those subroutines, and one of them, if called from within
the loop, might change the value of the variable even if it is not passed to it by
reference.
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Empty Bounds

Modern languages refrain from executing an enumeration-controlled loop if the
bounds are empty. In other words, they test the terminating condition before the
first iteration. The initial test requires a few extra instructions but leads to much
more intuitive behavior. The loopEXAMPLE 6.60

Obvious translation of a
for loop FOR i := first TO last BY step DO

...

END

can be translated as

r1 := first
r2 := step
r3 := last

L1: if r1 > r3 goto L2
. . . –– loop body; use r1 for i
r1 := r1 + r2
goto L1

L2: �
A slightly better if less straightforward translation isEXAMPLE 6.61

For loop translation with
test at the bottom r1 := first

r2 := step
r3 := last
goto L2

L1: . . . –– loop body; use r1 for i
r1 := r1 + r2

L2: if r1 ≤ r3 goto L1

The advantage of this second version is that each iteration of the loop contains
a single conditional branch, rather than a conditional branch at the top and an
unconditional branch at the bottom. (We will consider yet another version in
Exercise 15.4.) �

The translations shown above work only if first + (�(last − first)/step�
+ 1) × step does not exceed the largest representable integer. If the compiler
cannot verify this property at compile time, then it will have to generate more
cautious code (to be discussed in Example 6.63).

Loop Direction The astute reader may also have noticed that the code shown
here implicitly assumes that step is positive. If step is negative, the test for ter-
mination must “go the other direction.” If step is not a compile-time constant,
then the compiler cannot tell which form of test to use. Some languages, includ-EXAMPLE 6.62

Reverse direction for loop ing Pascal and Ada, require the programmer to predict the sign of the step. In
Pascal, one must say

for i := 10 downto 1 do ...

In Ada, one must say
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for i in reverse 1..10 do ...

Modula-2 and Modula-3 do not require special syntax for “backward” loops, but
insist that step be a compile-time constant so the compiler can tell the difference
(Modula (1) has no for loop). �

In Fortran 77 and Fortran 90, which have neither a special “backward” syn-EXAMPLE 6.63
For loop translation with
iteration count

tax nor a requirement for compile-time constant steps, the compiler can use an
“iteration count” variable to control the loop:

r1 := first
r2 := step
r3 := max(�(last − first + step)/step�,0) –– iteration count

–– NB: this calculation may require several instructions.
–– It is guaranteed to result in a value within the precision

of the machine,
–– but we have to be careful to avoid overflow during its calculation.

if r3 ≤ 0 goto L2
L1: . . . –– loop body; use r1 for i

r1 := r1 + r2
r3 := r3 − 1
if r3 > 0 goto L1
i := r1

L2:

The use of the iteration count avoids the need to test the sign of step within the
loop. It also avoids problems with overflow when testing the terminating con-
dition (assuming that we have been suitably careful in calculating the iteration
count). Some processors, including the PowerPC, PA-RISC, and most CISC ma-
chines, can decrement the iteration count, test it against zero, and conditionally
branch, all in a single instruction. In simple cases, the code improvement phase
of the compiler may be able to use a technique known as induction variable elim-
ination to eliminate the need to maintain both r1 and r3. �

Access to the Index Outside the Loop

Several languages, including Fortran IV and Pascal, leave the value of the loop
index undefined after termination of the loop. Others, such as Fortran 77 and
Algol 60, guarantee that the value is the one “most recently assigned.” For “nor-
mal” termination of the loop, this is the first value that exceeds the upper bound.
It is not clear what happens if this value exceeds the largest value representable on
the machine (or the smallest value in the case of a negative step size). A similarEXAMPLE 6.64

Index value after loop question arises in Pascal, in which the type of an index can be a subrange or enu-
meration. In this case the first value “after” the upper bound can often be invalid.

var c : ’a’..’z’;

...

for c := ’a’ to ’z’ do begin

...

end;

(* what comes after ’z’? *) �
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Examples like this illustrate the rationale for leaving the final value of the index
undefined in Pascal. The alternative—defining the value to be the last one thatEXAMPLE 6.65

Preserving the final index
value

was valid—would force the compiler to generate slower code for every loop, with
two branches in each iteration instead of one:

r1 := ’a’
r2 := ’z’
if r1 > r2 goto L3 –– Code improver may remove this test,

–– since ’a’ and ’z’ are constants.
L1: . . . –– loop body; use r1 for i

if r1 = r2 goto L2
r1 := r1 + 1
–– NB: Pascal step size is always 1 (or −1 if downto)
goto L1

L2: i := r1
L3:

Note that the compiler must generate this sort of code in any event (or use an
iteration count) if arithmetic overflow may interfere with testing the terminating
condition. �

Several languages, including Algol W, Algol 68, Ada, Modula-3, and C++,
avoid the issue of the value held by the index outside the loop by making the
index a local variable of the loop. The header of the loop is considered to contain
a declaration of the index. Its type is inferred from the bounds of the loop, and
its scope is the loop’s body. Because the index is not visible outside the loop, its
value is not an issue. Since it is not visible even to local subroutines, much of
the concept of “threatening” in Pascal becomes unnecessary. Finally, there is no
chance that a value held in the index variable before the loop, and needed after,
will inadvertently be destroyed. (Of course, the programmer must not give the
index the same name as any variable that must be accessed within the loop, but
this is a strictly local issue: it has no ramifications outside the loop.)

DESIGN & IMPLEMENTATION

For loops
Modern for loops reflect the impact of both semantic and implementation
challenges. As suggested by the subheadings of Section 6.5.1, the semantic
challenges include changes to loop indices or bounds from within the loop,
the scope of the index variable (and its value, if any, outside the loop), and
gotos that enter or leave the loop. Implementation challenges include the im-
precision of floating-point values (discussed in the sidebar on page 272), the
direction of the bottom-of-loop test, and overflow at the end of the iteration
range. The “combination loops” of C (to be discussed in Section 6.5.2) move
responsibility for these challenges out of the compiler and into the application
program.



6.5 Iteration 277

Jumps

Algol 60, Fortran 77, and most of their successors place restrictions on the use of
the goto statement that prevent it from entering a loop from outside. Gotos can
be used to exit a loop prematurely, but this is a comparatively clean operation;
questions of uninitialized indices and bounds do not arise. As we shall see in
Section 6.5.5, many languages provide an exit statement as a semistructured
alternative to a loop-escaping goto.

6.5.2 Combination Loops

Algol 60, as mentioned above, provides a single loop construct that subsumesEXAMPLE 6.66
Algol 60 for loop the properties of more modern enumeration- and logically controlled loops. The

general form is given by

for stmt −→ for id := for list do stmt

for list −→ enumerator ( , enumerator )*

enumerator −→ expr

−→ expr step expr until expr

−→ expr while condition

Here the index variable takes on values specified by a sequence of enumerators,
each of which can be a single value, a range of values similar to that of modern
enumeration-controlled loops, or an expression with a terminating condition.
Each expression in the current enumerator is reevaluated at the top of the loop.
This reevaluation is what makes the while form of enumerator useful: its con-
dition typically depends on the current value of the index variable. All of the
following are equivalent.

for i := 1, 3, 5, 7, 9 do ...

for i := 1 step 2 until 10 do ...

for i := 1, i + 2 while i < 10 do ... �
In practice the generality of the Algol 60 for loop turns out to be overkill.

The repeated reevaluation of bounds, in particular, can lead to loops that are
very hard to understand. Some of the power of the Algol 60 loop is retained in
a cleaner form in the for loop of C. A substantially more powerful version (not
described here) is found in Common Lisp.

C’s for loop is, strictly speaking, logically controlled. Any enumeration-
controlled loop, however, can be rewritten in a logically controlled form (this is
of course what the compiler does when it translates into assembler), and C’s for
loop is deliberately designed to facilitate writing the logically controlled equiva-
lent of a Pascal or Algol-style for loop. Our Modula-2 exampleEXAMPLE 6.67

Combination (for) loop
in C FOR i := first TO last BY step DO

...

END
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would usually be written in C as

for (i = first; i <= last; i += step) {

...

}

C defines this to be roughly equivalent to

i = first;

while (i <= last) {

...

i += step;

} �
This definition means that it is the programmer’s responsibility to worry about
the effect of overflow on testing of the terminating condition. It also means that
both the index and any variables contained in the terminating condition can be
modified by the body of the loop, or by subroutines it calls, and these changes
will affect the loop control. This, too, is the programmer’s responsibility.

Any of the three substatements in the for loop header can be null (the condi-
tion is considered true if missing). Alternatively, a substatement can consist of a
sequence of comma-separated expressions. The advantage of the C for loop over
its while loop equivalent is compactness and clarity. In particular, all of the code
affecting the flow of control is localized within the header. In the while loop, one
must read both the top and the bottom of the loop to know what is going on.

6.5.3 Iterators

In all of the examples we have seen so far (with the possible exception of the
combination loops of Algol 60, Common Lisp, or C), a for loop iterates over the
elements of an arithmetic sequence. In general, however, we may wish to iterate
over the elements of any well-defined set (what are often called containers or col-
lections in object-oriented code). Clu introduced an elegant iterator mechanism
(also found in Python, Ruby, and C#) to do precisely that. Euclid and several
more recent languages, notably C++ and Java, define a standard interface for it-
erator objects (sometimes called enumerators) that are equally easy to use but not
as easy to write. Icon, conversely, provides a generalization of iterators, known as
generators, that combines enumeration with backtracking search.6

True Iterators

Clu, Python, Ruby, and C# allow any container abstraction to provide an iterator
that enumerates its items. The iterator resembles a subroutine that is permitted to

6 Unfortunately, terminology is not consistent across languages. Euclid uses the term “generator”
for what are called “iterator objects” here. Python uses it for what are called “true iterators” here.
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contain yield statements, each of which produces a loop index value. For loops
are then designed to incorporate a call to an iterator. The Modula-2 fragmentEXAMPLE 6.68

Simple iterator in Clu
FOR i := first TO last BY step DO

...

END

would be written as follows in Clu.

for i in int$from_to_by(first, last, step) do

...

end

Here from_to_by is a built-in iterator that yields the integers from first to
first + �(last − first)/step� × step in increments of step. �

When called, the iterator calculates the first index value of the loop, which it
returns to the main program by executing a yield statement. The yield be-
haves like return, except that when control transfers back to the iterator after
completion of the first iteration of the loop, the iterator continues where it last
left off—not at the beginning of its code. When the iterator has no more elements
to yield it simply returns (without a value), thereby terminating the loop.

In effect, an iterator is a separate thread of control, with its own program
counter, whose execution is interleaved with that of the for loop to which it sup-
plies index values.7 The iteration mechanism serves to “decouple” the algorithm
required to enumerate elements from the code that uses those elements.

As an illustrative example, consider the pre-order enumeration of nodes fromEXAMPLE 6.69
Clu iterator for tree
enumeration

a binary tree. A Clu iterator for this task appears in Figure 6.5. Invoked from the
header of a for loop, it takes the root of a tree as argument. It yields the root
node for the first iteration and then calls itself recursively, twice, to enumerate
the nodes of the left and right subtrees. �

Iterator Objects

As realized in most imperative languages, iteration involves both a special form of
for loop and a mechanism to enumerate values for the loop. These concepts can
be separated. Euclid, C++, and Java all provide enumeration-controlled loops
reminiscent of those of Clu. They have no yield statement, however, and no
separate thread-like context to enumerate values; rather, an iterator is an ordi-
nary object (in the object-oriented sense of the word) that provides methods for
initialization, generation of the next index value, and testing for completion. Be-
tween calls, the state of the iterator must be kept in the object’s data members.

Figure 6.6 contains the Java equivalent of the code in Figure 6.5. The for loopEXAMPLE 6.70
Java iterator for tree
enumeration

at the bottom is syntactic sugar for

7 Because iterators are interleaved with loops in a very regular way, they can be implemented more
easily (and cheaply) than fully general threads. We will consider implementation options further
in Section 8.6.3.
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bin_tree = cluster is ..., pre_order, ... % export list

node = record [left, right: bin_tree, val: int]

rep = variant [some: node, empty: null]

...

pre_order = iter(t: cvt) yields(bin_tree)

tagcase t

tag empty: return

tag some(n: node):

yield(n.val)

for i: int in pre_order(n.left) do

yield(i)

end

for i: int in pre_order(n.right) do

yield(i)

end

end

end pre_order

...

end bin_tree

...

for i: int in bin_tree$pre_order(e) do

stream$putl(output, int$unparse(i))

end

Figure 6.5 Clu iterator for pre-order enumeration of the nodes of a binary tree. In this
(simplistic) example we have assumed that the datum in a tree node is simply an int. Within
the bin_tree cluster, the rep (representation) declaration indicates that a binary tree is either
a node or empty. The cvt (convert) in the header of pre_order indicates that parameter t is
a bin_tree whose internal structure (rep) should be visible to the code of pre_order itself
but not to the caller. In the for loop at the bottom, int$unparse produces the character string
equivalent of a given int, and stream$putl prints a line to the specified stream.

for (Iterator<Integer> it = myTree.iterator(); it.hasNext();) {

Integer i = it.next();

System.out.println(i);

}

DESIGN & IMPLEMENTATION

“True” iterators and iterator objects
While the iterator library mechanisms of C++ and Java are highly useful,
it is worth emphasizing that they are not the functional equivalents of “true”
iterators, as found in Clu, Python, Ruby, and C#. Their key limitation is the
need to maintain all intermediate state in the form of explicit data structures,
rather than in the program counter and local variables of a resumable execu-
tion context.
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class TreeNode<T> implements Iterable<T> {

TreeNode<T> left;

TreeNode<T> right;

T val;

...

public Iterator<T> iterator() {

return new TreeIterator(this);

}

private class TreeIterator implements Iterator<T> {

private Stack<TreeNode<T>> s = new Stack<TreeNode<T>>();

TreeIterator(TreeNode<T> n) {

s.push(n);

}

public boolean hasNext() {

return !s.empty();

}

public T next() {

if (!hasNext()) {

throw new NoSuchElementException();

}

TreeNode<T> n = s.pop();

if (n.right != null) {

s.push(n.right);

}

if (n.left != null) {

s.push(n.left);

}

return n.val;

}

public void remove() {

throw new UnsupportedOperationException();

}

}

...

}

...

TreeNode<Integer> myTree = ...

...

for (Integer i : myTree) {

System.out.println(i);

}

Figure 6.6 Java code for pre-order enumeration of the nodes of a binary tree. The nested
TreeIterator class uses an explicit Stack object (borrowed from the standard library) to
keep track of subtrees whose nodes have yet to be enumerated. Java generics, specified as
<T> type arguments for TreeNode, Stack, Iterator, and Iterable, allow next to return an
object of the appropriate type (here Integer), rather than the undifferentiated Object. The
remove method is part of the Iterator interface and must therefore be provided, if only as a
placeholder.
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The expression following the colon in the concise version of the loop header
must support the standard Iterable interface, which includes an iterator()
method that returns an Iterator object. �

C++ takes a different tack. Rather than propose a special version of the forEXAMPLE 6.71
Iterator objects in C++ loop that would interface with iterator objects, the designers of the C++ standard

library used the language’s unusually flexible overloading and reference mecha-
nisms (Sections 3.6.2 and 8.3.1) to redefine comparison (!=), increment (++),
dereference (*), and so on, in a way that makes iterating over the elements of
a set look very much like using pointer arithmetic (Section 7.7.1) to traverse a
conventional array:

tree_node<int> *my_tree = ...

...

for (tree_node<int>::iterator n = my_tree->begin();

n != my_tree->end(); ++n) {

cout << *n << "\n";

}

C++ encourages programmers to think of iterators as if they were pointers. It-
erator n in this example encapsulates all the state encapsulated by iterator it
in the (no syntactic sugar) Java code of Example 6.70. To obtain the next ele-
ment of the set, however, the C++ programmer “dereferences” n, using the *
or -> operators. To advance to the following element, the programmer uses the
increment (++) operator. The end method returns a reference to a special itera-
tor that “points beyond the end” of the set. The increment (++) operator must
return a reference that tests equal to this special iterator when the set has been
exhausted. �

We leave the code of the C++ tree iterator to Exercise 6.15. The details are
somewhat messier than Figure 6.6, due to operator overloading, the value model
of variables (which requires explicit references and pointers), and the lack of
garbage collection. Also, because C++ lacks a common Object base class, its
container classes are always type-specific. Where generics can minimize the need
for type casts in Java and C#, they serve a more fundamental role in C++: without
them one cannot write safe, general purpose container code.

Iterating with First-Class Functions

In functional languages, the ability to specify a function “inline” facilitates a pro-
gramming idiom in which the body of a loop is written as a function, with the
loop index as an argument. This function is then passed as the final argument to
an iterator. In Scheme we might writeEXAMPLE 6.72

Passing the “loop body” to
an iterator in Scheme (define uptoby

(lambda (low high step f)

(if (<= low high)

(begin

(f low)

(uptoby (+ low step) high step f))

’())))
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We could then sum the first 50 odd numbers as follows.

(let ((sum 0))

(uptoby 1 100 2

(lambda (i)

(set! sum (+ sum i))))

sum) �⇒ 2500

Here the body of the loop, (set! sum (+ sum i)), is an assignment. The �⇒
symbol (not a part of Scheme) is used here to mean “evaluates to.” �

Smalltalk, which we consider in Section 9.6.1, provides mechanisms thatEXAMPLE 6.73
Iteration with blocks in
Smalltalk

support a similar idiom:

sum <- 0.

1 to: 100 by: 2 do:

[:i | sum <- sum + i]

Like a lambda expression in Scheme, a square-bracketed block in Smalltalk cre-
ates a first-class function, which we then pass as argument to the to: by: do:
iterator. The iterator calls the function repeatedly, passing successive values of
the index variable i as argument. Iterators in Ruby employ a similar but some-
what less general mechanism: where a Smalltalk method can take an arbitrary
number of blocks as argument, a Ruby method can take only one. Continuations
(Section 6.2.2) and lazy evaluation (Section 6.6.2) also allow the Scheme/Lisp
programmer to create iterator objects and more traditional style true iterators;
we consider these options in Exercises 6.30 and 6.31. �

Iterating without Iterators

In a language with neither true iterators nor iterator objects, one can still decou-EXAMPLE 6.74
Imitating iterators in C ple set enumeration from element use through programming conventions. In C,

for example, one might define a tree_iter type and associated functions that
could be used in a loop as follows.

tree_node *my_tree;

tree_iter ti;

...

for (ti_create(my_tree, &ti); !ti_done(ti); ti_next(&ti)) {

tree_node *n = ti_val(ti);

...

}

ti_delete(&ti);

There are two principal differences between this code and the more structured
alternatives: (1) the syntax of the loop is a good bit less elegant (and arguably
more prone to accidental errors), and (2) the code for the iterator is simply a
type and some associated functions; C provides no abstraction mechanism to
group them together as a module or a class. By providing a standard interface
for iterator abstractions, object-oriented languages like C++, Python, Ruby, Java,
and C# facilitate the design of higher-order mechanisms that manipulate whole
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containers: sorting them, merging them, finding their intersection or difference,
and so on. We leave the C code for tree_iter and the various ti_ functions to
Exercise 6.16. �

6.5.4 Generators in Icon

Icon generalizes the concept of iterators, providing a generator mechanism that
causes any expression in which it is embedded to enumerate multiple values on
demand.

IN MORE DEPTH

Icon’s enumeration-controlled loop, the every loop, can contain not only a gen-
erator, but any expression that contains a generator. Generators can also be used
in constructs like if statements, which will execute their nested code if any gen-
erated value makes the condition true, automatically searching through all the
possibilities. When generators are nested, Icon explores all possible combinations
of generated values, and will even backtrack where necessary to undo unsuccess-
ful control-flow branches or assignments.

6.5.5 Logically Controlled Loops

In comparison to enumeration-controlled loops, logically controlled loops have
many fewer semantic subtleties. The only real question to be answered is where
within the body of the loop the terminating condition is tested. By far the most
common approach is to test the condition before each iteration. The familiarEXAMPLE 6.75

While loop in Pascal while loop syntax to do this was introduced in Algol-W and retained in Pascal:

while condition do statement

As with selection statements, most Pascal successors use an explicit terminating
keyword, so that the body of the loop can be a statement list. �

Neither (pre-90) Fortran nor Algol 60 really provides a while loop construct;
their loops were designed to be controlled by enumeration. To obtain the effectEXAMPLE 6.76

Imitating while loops in
Fortran 77

of a while loop in Fortran 77, one must resort to gotos:

10 if negated condition goto 20

...

goto 10

20 �
Post-test Loops

Occasionally it is handy to be able to test the terminating condition at the bottom
of a loop. Pascal introduced special syntax for this case, which was retained in
Modula but dropped in Ada. A post-test loop allows us, for example, to writeEXAMPLE 6.77

Post-test loop in Pascal
and Modula
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repeat

readln(line)

until line[1] = ’$’;

instead of

readln(line);

while line[1] <> ’$’ do

readln(line);

The difference between these constructs is particularly important when the body
of the loop is longer. Note that the body of a post-test loop is always executed at
least once. �

C provides a post-test loop whose condition works “the other direction” (i.e.,EXAMPLE 6.78
Post-test loop in C “while” instead of “until”):

do {

line = read_line(stdin);

} while line[0] != ’$’; �

Midtest Loops

Finally, as we saw in Section 6.2, it is sometimes appropriate to test the termi-
nating condition in the middle of a loop. This “midtest” can be accomplished
with an if and a goto in most languages, but a more structured alternative is
preferable. Modula (1) introduced a midtest, or one-and-a-half loop that allows aEXAMPLE 6.79

Midtest loop in Modula terminating condition to be tested as many times as desired within the loop:

loop

statement list
when condition exit

statement list
when condition exit

...

end

Using this notation, the Pascal construct

while true do begin

readln(line);

if all_blanks(line) then goto 100;

consume_line(line)

end;

100:

can be written as follows in Modula (1).

loop

line := ReadLine;

when AllBlanks(line) exit;

ConsumeLine(line)

end;
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The when clause here is syntactically part of the loop construct. The syntax en-
sures that an exit can occur only within a loop, but it has the unfortunate side
effect of preventing an exit from within a nested construct. �

Modula-2 abandoned the when clause in favor of a simpler EXIT statement,EXAMPLE 6.80
Exit as a separate
statement

which is typically placed inside an IF statement:

LOOP

line := ReadLine;

IF AllBlanks(line) THEN EXIT END;

ConsumeLine(line)

END;

Because EXIT is no longer part of the LOOP construct syntax, the semantic analy-
sis phase of compilation must ensure that EXITs appear only inside LOOPs. There
may still be an arbitrary number of them inside a given LOOP. Modula-3 allows
an EXIT to leave a WHILE, REPEAT, or FOR loop, as well as a plain LOOP. �

The C break statement, which we have already seen in the context of switchEXAMPLE 6.81
Break statement in C statements, can be used in a similar manner:

for (;;) {

line = read_line(stdin);

if (all_blanks(line)) break;

consume_line(line);

}

Here the missing condition in the for loop header is assumed to always be true;
for some reason, C programmers have traditionally considered this syntax to be
stylistically preferable to the equivalent while (1). �

In Ada an exit statement takes an optional loop-name argument that allowsEXAMPLE 6.82
Exiting a nested loop control to escape a nested loop:

outer: loop

get_line(line, length);

for i in 1..length loop

exit outer when line(i) = ’$’;

consume_char(line(i));

end loop;

end loop outer;

Java extends the C/C++ break statement in a similar fashion: Java loops can
be labeled as in Ada, and the break statement takes an optional loop name as
parameter. �

CHECK YOUR UNDERSTANDING

27. Describe three subtleties in the implementation of enumeration-controlled
loops.

28. Why do most languages not allow the bounds or increment of an enumera-
tion-controlled loop to be floating-point numbers?
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29. Why do many languages require the step size of an enumeration-controlled
loop to be a compile-time constant?

30. Describe the “iteration count” loop implementation. What problem(s) does
it solve?

31. What are the advantages of making an index variable local to the loop it con-
trols?

32. What is a container (a collection)?

33. Explain the difference between true iterators and iterator objects.

34. Cite two advantages of iterator objects over the use of programming conven-
tions in a language like C.

35. Describe the approach to iteration typically employed in languages with first-
class functions.

36. Give an example in which a midtest loop results in more elegant code than
does a pretest or post-test loop.

37. Does C have enumeration-controlled loops? Explain.

6.6 Recursion

Unlike the control-flow mechanisms discussed so far, recursion requires no spe-
cial syntax. In any language that provides subroutines (particularly functions), all
that is required is to permit functions to call themselves, or to call other functions
that then call them back in turn. Most programmers learn in a data structures
class that recursion and (logically controlled) iteration provide equally powerful
means of computing functions: any iterative algorithm can be rewritten, auto-
matically, as a recursive algorithm, and vice versa. We will compare iteration and
recursion in more detail in the first subsection below. In the subsection after that
we will consider the possibility of passing unevaluated expressions into a func-
tion. While usually inadvisable, due to implementation cost, this technique will
sometimes allow us to write elegant code for functions that are only defined on a
subset of the possible inputs, or that explore logically infinite data structures.

6.6.1 Iteration and Recursion

As we noted in Section 3.2, Fortran 77 and certain other languages do not permit
recursion. A few functional languages do not permit iteration. Most modern lan-
guages, however, provide both mechanisms. Iteration is in some sense the more
“natural” of the two in imperative languages, because it is based on the repeated
modification of variables. Recursion is the more natural of the two in functional
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languages, because it does not change variables. In the final analysis, which to use
in which circumstance is mainly a matter of taste. To compute a sum,EXAMPLE 6.83

A “naturally iterative”
problem

∑

1≤i≤10

f (i)

it seems natural to use iteration. In C one would say

typedef int (*int_func) (int);

int summation(int_func f, int low, int high) {

/* assume low <= high */

int total = 0;

int i;

for (i = low; i <= high; i++) {

total += f(i);

}

return total;

} �
To compute a value defined by a recurrence,EXAMPLE 6.84

A “naturally recursive”
problem

gcd(a,b)
(positive integers a,b)

≡





a if a = b
gcd(a − b,b) if a > b
gcd(a,b − a) if b > a

recursion may seem more natural:

int gcd(int a, int b) {

/* assume a, b > 0 */

if (a == b) return a;

else if (a > b) return gcd(a-b, b);

else return gcd(a, b-a);

} �
In both these cases, the choice could go the other way:EXAMPLE 6.85

Implementing problems
“the other way” typedef int (*int_func) (int);

int summation(int_func f, int low, int high) {

/* assume low <= high */

if (low == high) return f(low);

else return f(low) + summation(f, low+1, high);

}

int gcd(int a, int b) {

/* assume a, b > 0 */

while (a != b) {

if (a > b) a = a-b;

else b = b-a;

}

return a;

} �
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Tail Recursion

It is often argued that iteration is more efficient than recursion. It is more accu-
rate to say that naive implementation of iteration is usually more efficient than
naive implementation of recursion. In the preceding examples, the iterative im-
plementations of summation and greatest divisors will be more efficient than
the recursive implementations if the latter make real subroutine calls that allo-
cate space on a run-time stack for local variables and bookkeeping information.
An “optimizing” compiler, however, particularly one designed for a functional
language, will often be able to generate excellent code for recursive functions.
It is particularly likely to do so for tail-recursive functions such as gcd above.
A tail-recursive function is one in which additional computation never follows a
recursive call: the return value is simply whatever the recursive call returns. For
such functions, dynamically allocated stack space is unnecessary: the compiler
can reuse the space belonging to the current iteration when it makes the recursive
call. In effect, a good compiler will recast our recursive gcd function asEXAMPLE 6.86

Implementation of tail
recursion int gcd(int a, int b) {

/* assume a, b > 0 */

start:

if (a == b) return a;

else if (a > b) {

a = a-b; goto start;

} else {

b = b-a; goto start;

}

} �
Even for functions that are not tail-recursive, automatic, often simple trans-

formations can produce tail-recursive code. The general case of the transforma-
tion employs conversion to what is known as continuation-passing style [FWH01,
Chaps. 7–8]. In effect, a recursive function can always avoid doing any work after
returning from a recursive call by passing that work into the recursive call, in the
form of a continuation.

Some specific transformations (not based on continuation-passing) are often
employed by skilled users of functional languages. Consider, for example, theEXAMPLE 6.87

By-hand creation of
tail-recursive code

recursive summation function of Example 6.85, written here in Scheme:

(define summation (lambda (f low high)

(if (= low high)

(f low) ; then part

(+ (f low) (summation f (+ low 1) high))))) ; else part

Recall that Scheme, like all Lisp dialects, uses Cambridge Polish notation for ex-
pressions. The lambda keyword is used to introduce a function. As recursive calls
return, our code calculates the sum from “right to left”: from high down to low.
If the programmer (or compiler) recognizes that addition is associative, we can
rewrite the code in a tail-recursive form:
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(define summation (lambda (f low high subtotal)

(if (= low high)

(+ subtotal (f low))

(summation f (+ low 1) high (+ subtotal (f low))))))

Here the subtotal parameter accumulates the sum from left to right, passing it
into the recursive calls. Because it is tail-recursive, this function can be translated
into machine code that does not allocate stack space for recursive calls. Of course,
the programmer won’t want to pass an explicit subtotal parameter to the initial
call, so we hide it (the parameter) in an auxiliary, “helper” function:

(define summation (lambda (f low high)

(letrec ((sum-helper (lambda (low subtotal)

(let ((new_subtotal (+ subtotal (f low))))

(if (= low high)

new_subtotal

(sum-helper (+ low 1) new_subtotal))))))

(sum-helper low 0))))

The let construct in Scheme serves to introduce a nested scope in which local
names (e.g., new_subtotal) can be defined. The letrec construct permits the
definition of recursive functions (e.g., sum-helper). �
Thinking Recursively
Detractors of functional programming sometimes argue, incorrectly, that recur-
sion leads to algorithmically inferior programs. Fibonacci numbers, for example,EXAMPLE 6.88

Naive recursive Fibonacci
function

are defined by the mathematical recurrence

Fn

(nonnegative integer n)

≡
{

1 if n = 0 or n = 1
Fn−1 + Fn−2 otherwise

The naive way to implement this recurrence in Scheme is

(define fib (lambda (n)

(cond ((= n 0) 1)

((= n 1) 1)

(#t (+ (fib (- n 1)) (fib (- n 2)))))))

; #t means ’true’ in Scheme �
Unfortunately, this algorithm takes exponential time, when linear time is possi-
ble. In C, one might writeEXAMPLE 6.89

Efficient iterative Fibonacci
function int fib(int n) {

int f1 = 1; int f2 = 1;

int i;

for (i = 2; i <= n; i++) {

int temp = f1 + f2;

f1 = f2; f2 = temp;

}

return f2;

} �
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One can write this iterative algorithm in Scheme: Scheme includes (nonfunc-
tional) iterative features. It is probably better, however, to draw inspiration fromEXAMPLE 6.90

Efficient tail-recursive
Fibonacci function

the tail-recursive summation function of Example 6.87 and write the following
O(n) recursive function.

(define fib (lambda (n)

(letrec ((fib-helper (lambda (f1 f2 i)

(if (= i n)

f2

(fib-helper f2 (+ f1 f2) (+ i 1))))))

(fib-helper 0 1 0))))

For a programmer accustomed to writing in a functional style, this code is per-
fectly natural. One might argue that it isn’t “really” recursive; it simply casts an
iterative algorithm in a tail-recursive form, and this argument has some merit.
Despite the algorithmic similarity, however, there is an important difference be-
tween the iterative algorithm in C and the tail-recursive algorithm in Scheme:
the latter has no side effects. Each recursive call of the fib-helper function cre-
ates a new scope, containing new variables. The language implementation may
be able to reuse the space occupied by previous instances of the same scope, but
it guarantees that this optimization will never introduce bugs. �

We have already noted that many primarily functional languages, including
Common Lisp, Scheme, and ML, provide certain nonfunctional features, includ-
ing iterative constructs that are executed for their side effects. It is also possible to
define an iterative construct as syntactic sugar for tail recursion, by arranging for
successive iterations of a loop to introduce new scopes. The only tricky part is to
make values from a previous iteration available in the next, when all local names
have been reused for different variables. The dataflow language Val [McG82] and
its successor, Sisal, provide this capability through a special keyword, old. The
newer pH language, a parallel dialect of Haskell, provides the inverse keyword,
next. Figure 6.7 contains side-effect-free iterative code for our Fibonacci func-EXAMPLE 6.91

Tail-recursive Fibonacci
function in Sisal

tion in Sisal. We will mention Sisal and pH again in Sections 10.7 and 12.3.6. �

6.6.2 Applicative- and Normal-Order Evaluation

Throughout the discussion so far we have assumed implicitly that arguments are
evaluated before passing them to a subroutine. This need not be the case. It is
possible to pass a representation of the unevaluated arguments to the subroutine
instead, and to evaluate them only when (if) the value is actually needed. The for-
mer option (evaluating before the call) is known as applicative-order evaluation;
the latter (evaluating only when the value is actually needed) is known as normal-
order evaluation. Normal-order evaluation is what naturally occurs in macros. It
also occurs in short-circuit Boolean evaluation, call-by-name parameters (to be
discussed in Section 8.3.1), and certain functional languages (to be discussed in
Section 10.4).
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function fib(n : integer returns integer)

for initial

f1 := 0;

f2 := 1;

i := 0;

while i < n repeat

i := old i + 1;

f1 := old f2;

f2 := old f1 + old f2;

returns value of f2

end for

end function

Figure 6.7 Fibonacci function in Sisal. Each iteration of the while loop defines a new scope,
with new variables named i, f1, and f2. The previous instances of these variables are available
in each iteration as old i, old f1, and old f2. The entire for construct is an expression; it
can appear in any context in which a value is expected.

Historically, C has relied heavily on macros for small, nonrecursive “func-
tions” that need to execute quickly. To determine whether one integer dividesEXAMPLE 6.92

Divisibility macro in C another evenly, the C programmer might write

#define DIVIDES(a,n) (!((n) % (a)))

/* true iff n has zero remainder modulo a */

In every location in which the programmer uses DIVIDES, the compiler (actually
a preprocessor that runs before the compiler) will substitute the right-hand side
of the macro definition, textually, with parameters substituted as appropriate:
DIVIDES(y + z, x) becomes (!((x) % (y+z))). �

DESIGN & IMPLEMENTATION

Inline as a hint
Formally, the inline keyword is a hint in C++ and C99, rather than a directive:
it suggests but does not require that the compiler actually expand the subrou-
tine inline. The compiler is free to use a conventional implementation when
inline has been specified, or to use an in-line implementation when inline
has not specified, if it has reason to believe that this will result in better code.
In effect, the inclusion of the inline keyword in the language is an acknowl-
edgment on the part of the language designers that compiler technology is not
(yet) at the point where it can always make a better decision with respect to in-
lining than can an expert programmer. The choice to make inline a hint is an
acknowledgment that compilers sometimes are able to make a better decision,
and that their ability to do so is likely to improve over time.
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Macros suffer from several limitations. In the code above, for example, theEXAMPLE 6.93
“Gotchas” in C macros parentheses around a and n in the right-hand side of the definition are essential.

Without them, DIVIDES(y + z, x) would be replaced by (!(x % y + z)),
which is the same as (!((x % y) + z)), according to the rules of precedence.
More importantly, in a definition like

#define MAX(a,b) ((a) > (b) ? (a) : (b))

the expression MAX(x++, y++) may behave unexpectedly, since the increment
side effects will happen more than once. In general, normal-order evaluation
is safe only if arguments cause no side effects when evaluated. Finally, because
macros are purely textual abbreviations, they cannot be incorporated naturally
into high-level naming and scope rules. Given the following definition, for ex-
ample,

#define SWAP(a,b) {int t = (a); (a) = (b); (b) = t;}

problems will arise if the programmer writes SWAP(x, t). In C, a macro that
“returns” a value must be an expression. Since C is not a completely expression-
oriented language like Algol 68, many constructs (e.g., loops) cannot occur
within an expression (see Exercise 6.28). �

All of these problems can be avoided in C by using real functions instead of
macros. In most C implementations, however, the macros are much more effi-
cient. They avoid the overhead of the subroutine call mechanism (including reg-
ister saves and restores), and the code they generate can be integrated into any
code improvements that the compiler is able to effect in the code surrounding
the call. In C++ and C99, the programmer can obtain the best of both worlds by
prefacing a function definition with a special inline keyword. This keyword in-
structs the compiler to expand the definition of the function at the point of call,
if possible. The resulting code is then generally as efficient as a macro, but has the
semantics of a function call.

Algol 60 uses normal-order evaluation by default (applicative order is also
available). This choice was presumably made to mimic the behavior of macros.
Most programmers in 1960 wrote mainly in assembler, and were accustomed
to macro facilities. Because the parameter-passing mechanisms of Algol 60 are
part of the language, rather than textual abbreviations, problems like misinter-
preted precedence or naming conflicts do not arise. Side effects, however, are still
very much an issue. We will discuss Algol 60 parameters in more detail in Sec-
tion 8.3.1.

Lazy Evaluation

From the points of view of clarity and efficiency, applicative-order evaluation
is generally preferable to normal-order evaluation. It is therefore natural for it
to be employed in most languages. In some circumstances, however, normal-
order evaluation can actually lead to faster code, or to code that works when
applicative-order evaluation would lead to a run-time error. In both cases, what
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matters is that normal-order evaluation will sometimes not evaluate an ar-
gument at all, if its value is never actually needed. Scheme provides for op-
tional normal-order evaluation in the form of built-in functions called delay

and force.8 These functions provide an implementation of lazy evaluation. In
the absence of side effects, lazy evaluation has the same semantics as normal-
order evaluation, but the implementation keeps track of which expressions
have already been evaluated, so it can reuse their values if they are needed
more than once in a given referencing environment. A delayed expression
is sometimes called a promise. The mechanism used to keep track of which
promises have already been evaluated is sometimes called memoization.9 Because
applicative-order evaluation is the default in Scheme, the programmer must use
special syntax not only to pass an unevaluated argument, but also to use it.
In Algol 60, subroutine headers indicate which arguments are to be passed which
way; the point of call and the uses of parameters within subroutines look the
same in either case.

A common use of lazy evaluation is to create so-called infinite or lazy data
structures that are “fleshed out” on demand. The following example, adaptedEXAMPLE 6.94

Lazy evaluation of an
infinite data structure

from the Scheme manual [ADH+98, p. 28], creates a “list” of all the natural num-
bers.

(define naturals

(letrec ((next (lambda (n) (cons n (delay (next (+ n 1)))))))

(next 1)))

(define head car)

(define tail (lambda (stream) (force (cdr stream))))

DESIGN & IMPLEMENTATION

Normal-order evaluation
Normal-order evaluation is one of many examples we have seen where ar-
guably desirable semantics have been dismissed by language designers because
of fear of implementation cost. Other examples in this chapter include side-
effect freedom (which allows normal order to be implemented via lazy evalu-
ation), iterators (Section 6.5.3), sidebar and nondeterminacy (Section 6.7). As
noted in the sidebar on page 248, however, there has been a tendency over time
to trade a bit of speed for cleaner semantics and increased reliability. Within
the functional programming community, Miranda and its successor Haskell
are entirely side-effect free, and use normal-order (lazy) evaluation for all pa-
rameters.

8 More precisely, delay is a special form, rather than a function. Its argument is passed to it un-
evaluated.

9 Within the functional programming community, the term lazy evaluation is often used for any
implementation that declines to evaluate unneeded function parameters; this includes both naive
implementations of normal-order evaluation and the memoizing mechanism described here.
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Here cons can be thought of, roughly, as a concatenation operator. Car returns
the head of a list; cdr returns everything but the head. Given these definitions,
we can access as many natural numbers as we want:

(head naturals) �⇒ 1

(head (tail naturals)) �⇒ 2

(head (tail (tail naturals))) �⇒ 3

The list will occupy only as much space as we have actually explored. More elab-
orate lazy data structures (e.g., trees) can be valuable in combinatorial search
problems, in which a clever algorithm may explore only the “interesting” parts of
a potentially enormous search space. �

6.7 Nondeterminacy

Our final category of control flow is nondeterminacy. A nondeterministic con-
struct is one in which the choice between alternatives (i.e., between control paths)
is deliberately unspecified. We have already seen examples of nondeterminacy
in the evaluation of expressions (Section 6.1.4): in most languages, operator or
subroutine arguments may be evaluated in any order. Some languages, notably
Algol 68 and various concurrent languages, provide more extensive nondeter-
ministic mechanisms, which cover statements as well.

IN MORE DEPTH

Absent a nondeterministic construct, the author of a code fragment in which or-
der does not matter must choose some arbitrary (artificial) order. Such a choice
can make it more difficult to construct a formal correctness proof. Some lan-
guage designers have also argued that it is inelegant. The most compelling uses
for nondeterminacy arise in concurrent programs, where imposing an arbitrary
choice on the order in which a thread interacts with its peers may cause the sys-
tem as a whole to deadlock. For such programs one may need to ensure that the
choice among nondeterministic alternatives is fair in some formal sense.

CHECK YOUR UNDERSTANDING

38. What is a tail-recursive function? Why is tail recursion important?

39. Explain the difference between applicative and normal-order evaluation of ex-
pressions. Under what circumstances is each desirable?

40. Describe three common pitfalls associated with the use of macros.

41. What is lazy evaluation? What are promises? What is memoization?

42. Give two reasons why lazy evaluation may be desirable.
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43. Name a language in which parameters are always evaluated lazily.

44. Give two reasons why a programmer might sometimes want control flow to
be nondeterministic.

6.8 Summary and Concluding Remarks

In this chapter we introduced the principal forms of control flow found in pro-
gramming languages: sequencing, selection, iteration, procedural abstraction, re-
cursion, concurrency, and nondeterminacy. Sequencing specifies that certain op-
erations are to occur in order, one after the other. Selection expresses a choice
among two or more control-flow alternatives. Iteration and recursion are the two
ways to execute operations repeatedly. Recursion defines an operation in terms of
simpler instances of itself; it depends on procedural abstraction. Iteration repeats
an operation for its side effect(s). Sequencing and iteration are fundamental to
imperative (especially von Neumann) programming. Recursion is fundamental
to functional programming. Nondeterminacy allows the programmer to leave
certain aspects of control flow deliberately unspecified. We touched on concur-
rency only briefly; it will be the subject of Chapter 12. Procedural abstractions
(subroutines) are the subject of Chapter 8.

Our survey of control-flow mechanisms was preceded by a discussion of ex-
pression evaluation. We considered the distinction between l-values and r-values,
and between the value model of variables, in which a variable is a named con-
tainer for data, and the reference model of variables, in which a variable is a
reference to a data object. We considered issues of precedence, associativity, and
ordering within expressions. We examined short-circuit Boolean evaluation and
its implementation via jump code, both as a semantic issue that affects the cor-
rectness of expressions whose subparts are not always well defined, and as an
implementation issue that affects the time required to evaluate complex Boolean
expressions.

In our survey we encountered many examples of control-flow constructs
whose syntax and semantics have evolved considerably over time. Particularly
noteworthy has been the phasing out of goto-based control flow and the emer-
gence of a consensus on structured alternatives. While convenience and read-
ability are difficult to quantify, most programmers would agree that the control-
flow constructs of a language like Ada are a dramatic improvement over those
of, say, Fortran IV. Examples of features in Ada that are specifically designed to
rectify control-flow problems in earlier languages include explicit terminators
(end if, end loop, etc.) for structured constructs; elsif clauses; label ranges
and others clauses in case statements; implicit declaration of for loop indices
as read-only local variables; explicit return statements; multi-level loop exit
statements; and exceptions.
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The evolution of constructs has been driven by many goals, including ease
of programming, semantic elegance, ease of implementation, and run-time ef-
ficiency. In some cases these goals have proven complementary. We have seen
for example that short-circuit evaluation leads both to faster code and (in many
cases) to cleaner semantics. In a similar vein, the introduction of a new local
scope for the index variable of an enumeration-controlled loop avoids both the
semantic problem of the value of the index after the loop and (to some extent)
the implementation problem of potential overflow.

In other cases improvements in language semantics have been considered
worth a small cost in run-time efficiency. We saw this in the addition of a pretest
to the Fortran do loop and in the introduction of midtest loops (which almost al-
ways require at least two branch instructions). Iterators provide another example:
like many forms of abstraction, they add a modest amount of run-time cost in
many cases (e.g., in comparison to explicitly embedding the implementation of
the enumerated set in the control flow of the loop), but with a large pay-back in
modularity, clarity, and opportunities for code reuse. Sisal’s developers would ar-
gue that even if Fortran does enjoy a performance edge in some cases, functional
programming provides a more important benefit: facilitating the construction of
correct, maintainable code. The developers of Java would argue that for many
applications the portability and safety provided by extensive semantic checking,
standard-format numeric types, and so on are far more important than speed.

The ability of Sisal to compete with Fortran (it does very well with numeric
code) is due to advances in compiler technology, and to advances in automatic
code improvement in particular. We have seen several other examples of cases in
which advances in compiler technology or in the simple willingness of design-
ers to build more complex compilers have made it possible to incorporate fea-
tures once considered too expensive. Label ranges in Ada case statements require
that the compiler be prepared to generate code employing binary search. In-line
functions in C++ eliminate the need to choose between the inefficiency of tiny
functions and the messy semantics of macros. Exceptions (as we shall see in Sec-
tion 8.5.4) can be implemented in such a way that they incur no cost in the com-
mon case (when they do not occur), but the implementation is quite tricky. Iter-
ators, boxing, generics (Section 8.4), and first-class functions are likewise rather
tricky, but are increasingly found in mainstream imperative languages.

Some implementation techniques (e.g., rearranging expressions to uncover
common subexpressions, or avoiding the evaluation of guards in a nondeter-
ministic construct once an acceptable choice has been found) are sufficiently
important to justify a modest burden on the programmer (e.g., adding paren-
theses where necessary to avoid overflow or ensure numeric stability, or ensuring
that expressions in guards are side-effect-free). Other semantically useful mecha-
nisms (e.g., lazy evaluation, continuations, or truly random nondeterminacy) are
usually considered complex or expensive enough to be worthwhile only in special
circumstances (if at all).

In comparatively primitive languages, we can often obtain some of the ben-
efits of missing features through programming conventions. In early dialects of
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Fortran, for example, we can limit the use of gotos to patterns that mimic the
control flow of more modern languages. In languages without short-circuit eval-
uation, we can write nested selection statements. In languages without iterators,
we can write sets of subroutines that provide equivalent functionality.

6.9 Exercises

6.1 We noted in Section 6.1.1 that most binary arithmetic operators are left-
associative in most programming languages. In Section 6.1.4, however, we
also noted that most compilers are free to evaluate the operands of a binary
operator in either order. Are these statements contradictory? Why or why
not?

6.2 As noted in Figure 6.1, Fortran and Pascal give unary and binary minus the
same level of precedence. Is this likely to lead to nonintuitive evaluations of
certain expressions? Why or why not?

6.3 Translate the following expression into postfix and prefix notation:

[−b + sqrt(b × b − 4 × a × c)]/(2 × a)

Do you need a special symbol for unary negation?

6.4 In Lisp, most of the arithmetic operators are defined to take two or more ar-
guments, rather than strictly two. Thus (* 2 3 4 5) evaluates to 120, and
(- 16 9 4) evaluates to 3. Show that parentheses are necessary to disam-
biguate arithmetic expressions in Lisp (in other words, give an example of
an expression whose meaning is unclear when parentheses are removed).

In Section 6.1.1 we claimed that issues of precedence and associativity do
not arise with prefix or postfix notation. Reword this claim to make explicit
the hidden assumption.

6.5 Example 6.31 claims that “For certain values of x, (0.1 + x) * 10.0 and
1.0 + (x * 10.0) can differ by as much as 25%, even when 0.1 and x are
of the same magnitude.” Verify this claim. (Warning: If you’re using an x86
processor, be aware that floating-point calculations [even on single preci-
sion variables] are performed internally with 80 bits of precision. Roundoff
errors will appear only when intermediate results are stored out to memory
[with limited precision] and read back in again.)

6.6 Languages that employ a reference model of variables also tend to employ
automatic garbage collection. Is this more than a coincidence? Explain.

6.7 In Section 6.1.2 we noted that C uses = for assignment and == for equality
testing. The language designers state “Since assignment is about twice as
frequent as equality testing in typical C programs, it’s appropriate that the
operator be half as long” [KR88, p. 17]. What do you think of this rationale?
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6.8 Consider a language implementation in which we wish to catch every use of
an uninitialized variable. In Section 6.1.3 we noted that for types in which
every possible bit pattern represents a valid value, extra space must be used
to hold an initialized/uninitialized flag. Dynamic checks in such a system
can be expensive, largely because of the address calculations needed to access
the flags. We can reduce the cost in the common case by having the compiler
generate code to automatically initialize every variable with a distinguished
sentinel value. If at some point we find that a variable’s value is different
from the sentinel, then that variable must have been initialized. If its value is
the sentinel, we must double-check the flag. Describe a plausible allocation
strategy for initialization flags, and show the assembly language sequences
that would be required for dynamic checks, with and without the use of
sentinels.

6.9 Write an attribute grammar, based on the following context-free grammar,
that accumulates jump code for Boolean expressions (with short-circuiting)
into a synthesized attribute of condition, and then uses this attribute to gen-
erate code for if statements.

stmt −→ if condition then stmt else stmt

−→ other stmt

condition −→ c term condition or c term

c term −→ relation c term and relation

relation −→ c fact c fact comparator c fact

c fact −→ identifier not c fact ( condition )

comparator −→ < <= = <> > >=

(Hint: Your task will be easier if you do not attempt to make the gram-
mar L-attributed. For further details see Fischer and LeBlanc’s compiler
book [FL88, Sec. 14.1.4].)

6.10 Neither Algol 60 nor Algol 68 employs short-circuit evaluation for Boolean
expressions. In both languages, however, an if. . . then . . . else construct
can be used as an expression. Show how to use if. . . then . . . else to achieve
the effect of short-circuit evaluation.

6.11 Consider the following expression in C: a/b > 0 && b/a > 0. What will
be the result of evaluating this expression when a is zero? What will be the
result when b is zero? Would it make sense to try to design a language in
which this expression is guaranteed to evaluate to false when either a or b
(but not both) is zero? Explain your answer.

6.12 As noted in Section 6.4.2, languages vary in how they handle the situation
in which the tested expression in a case statement does not appear among
the labels on the arms. C and Fortran 90 say the statement has no effect.
Pascal and Modula say it results in a dynamic semantic error. Ada says that
the labels must cover all possible values for the type of the expression, so
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the question of a missing value can never arise at run time. What are the
tradeoffs among these alternatives? Which do you prefer? Why?

6.13 Write the equivalent of Figure 6.5 in C# 2.0, Python, or Ruby. Write a second
version that performs an in-order enumeration rather than pre-order.

6.14 Revise the algorithm of Figure 6.6 so that it performs an in-order enumera-
tion, rather than pre-order.

6.15 Write a C++ pre-order iterator to supply tree nodes to the loop in Exam-
ple 6.71. You will need to know (or learn) how to use pointers, references,
inner classes, and operator overloading in C++. For the sake of (relative)
simplicity, you may assume that the datum in a tree node is always an int;
this will save you the need to use generics. You may want to use the stack
abstraction from the C++ standard library.

6.16 Write code for the tree_iter type (struct) and the ti_create, ti_done,
ti_next, ti_val, and ti_delete functions employed in Example 6.74.

6.17 Write, in C#, Python, or Ruby, an iterator that yields

(a) all permutations of the integers 1 . .n

(b) all combinations of k integers from the range 1 . .n (0 ≤ k ≤ n).

You may represent your permutations and combinations using either a list
or an array.

6.18 Use iterators to construct a program that outputs (in some order) all struc-
turally distinct binary trees of n nodes. Two trees are considered structurally
distinct if they have different numbers of nodes or if their left or right sub-
trees are structurally distinct. There are, for example, 5 structurally distinct
trees of 3 nodes:

These are most easily output in “dotted parenthesized form”:

(((.).).)

((.(.)).)

((.).(.))

(.((.).))

(.(.(.)))

(Hint: Think recursively! If you need help, see Section 2.2 of the text by
Finkel [Fin96].)

6.19 Build true iterators in Java using threads. (This requires knowledge of ma-
terial in Chapter 12.) Make your solution as clean and as general as possible.
In particular, you should provide the standard Iterator or IEnumerable
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interface for use with extended for or foreach loops, but the program-
mer should not have to write these. Instead, he or she should write a class
with an Iterate method, which should in turn be able to call a Yield
method, which you should also provide. Evaluate the cost of your solution.
How much more expensive is it than standard Java iterator objects?

6.20 In an expression-oriented language such as Algol 68 or Lisp, a while loop
(a do loop in Lisp) has a value as an expression. How do you think this
value should be determined? (How is it determined in Algol 68 and Lisp?) Is
the value a useless artifact of expression orientation, or are there reasonable
programs in which it might actually be used? What do you think should
happen if the condition on the loop is such that the body is never executed?

6.21 Recall the “blank line” loop of Example 6.80, here written in Modula-2.

LOOP

line := ReadLine;

IF AllBlanks(line) THEN EXIT END;

ConsumeLine(line)

END;

Show how you might accomplish the same task using a while or repeat
loop, if midtest loops were not available. (Hint: One alternative duplicates
part of the code; another introduces a Boolean flag variable.) How do these
alternatives compare to the midtest version?

6.22 Rubin [Rub87] used the following example (rewritten here in C) to argue in
favor of a goto statement.

int first_zero_row = -1; /* none */

int i, j;

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {

if (A[i][j]) goto next;

}

first_zero_row = i;

break;

next: ;

}

The intent of the code is to find the first all-zero row, if any, of an n × n
matrix. Do you find the example convincing? Is there a good structured al-
ternative in C? In any language?

6.23 Bentley [Ben86, Chap. 4] provides the following informal description of bi-
nary search.

We are to determine whether the sorted array X[1..N] contains the ele-
ment T. . . . Binary search solves the problem by keeping track of a range
within the array in which T must be if it is anywhere in the array. Initially,
the range is the entire array. The range is shrunk by comparing its middle



302 Chapter 6 Control Flow

element to T and discarding half the range. The process continues until T
is discovered in the array or until the range in which it must lie is known to
be empty.

Write code for binary search in your favorite imperative programming lan-
guage. What loop construct(s) did you find to be most useful? (NB: When
he asked more than a hundred professional programmers to solve this prob-
lem, Bentley found that only about 10% got it right the first time, without
testing.)

6.24 A loop invariant is a condition that is guaranteed to be true at a given point
within the body of a loop on every iteration. Loop invariants play a major
role in axiomatic semantics, a formal reasoning system used to prove prop-
erties of programs. In a less formal way, programmers who identify (and
write down!) the invariants for their loops are more likely to write correct
code. Show the loop invariant(s) for your solution to the preceding exercise.
(Hint: You will find the distinction between < and ≤ [or between > and ≥]
to be crucial.)

6.25 If you have taken a course in automata theory or recursive function theory,
explain why while loops are strictly more powerful than for loops. (If you
haven’t had such a course, skip this question!) Note that we’re referring here
to Pascal-style for loops, not C-style.

6.26 Show how to calculate the number of iterations of a general Fortran 90-
style do loop. Your code should be written in an assembler-like notation,
and should be guaranteed to work for all valid bounds and step sizes. Be
careful of overflow! (Hint: While the bounds and step size of the loop can
be either positive or negative, you can safely use an unsigned integer for the
iteration count.)

6.27 Write a tail-recursive function in Scheme or ML to compute n factorial
(n! = ∏

1≤i≤n i = 1 × 2 × · · · × n). (Hint: You will probably want to define

a “helper” function, as discussed in Section 6.6.1.)

6.28 Can you write a macro in standard C that “returns” the greatest common
divisor of a pair of arguments, without calling a subroutine? Why or why
not?

6.29 Give an example in C in which an in-line subroutine may be signifi-
cantly faster than a functionally equivalent macro. Give another example in
which the macro is likely to be faster. (Hint: Think about applicative versus
normal-order evaluation of arguments.)

6.30 Use lazy evaluation (delay and force) to implement iterator objects in
Scheme. More specifically, let an iterator be either the null list or a pair con-
sisting of an element and a promise that when forced will return an iterator.
Give code for an uptoby function that returns an iterator, and a for-iter
function that accepts as arguments a one-argument function and an iterator.
These should allow you to evaluate such expressions as
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(for-iter (lambda (e) (display e) (newline)) (uptoby 10 50 3))

Note that unlike the standard Scheme for-each, for-iter should not re-
quire the existence of a list containing the elements over which to iterate;
the intrinsic space required for (for-iter f (uptoby 1 n 1)) should be
only O(1), rather than O(n).

6.31 (Difficult) Use call-with-current-continuation (call/cc) to imple-
ment the following structured nonlocal control transfers in Scheme. (This
requires knowledge of material in Chapter 10.) You will probably want to
consult a Scheme manual for documentation not only on call/cc, but on
define-syntax and dynamic-wind as well.

(a) Multilevel returns. Model your syntax after the catch and throw of
Common Lisp.

(b) True iterators. In a style reminiscent of Exercise 6.30, let an iterator be a
function which when call/cc-ed will return either a null list or a pair
consisting of an element and an iterator. As in that previous exercise,
your implementation should support expressions like

(for-iter (lambda (e) (display e) (newline)) (uptoby 10 50 3))

Where the implementation of uptoby in Exercise 6.30 required the use
of delay and force, however, you should provide an iterator macro
(a Scheme special form) and a yield function that allows uptoby to
look like an ordinary tail-recursive function with an embedded yield:

(define uptoby

(iterator (low high step)

(letrec ((helper

(lambda (next)

(if (> next high) ’()

(begin ; else clause

(yield next)

(helper (+ next step)))))))

(helper low))))

6.32 Explain why the following guarded commands in SR are not equivalent.

if a < b -> c := a if a < b -> c := a

[] b < c -> c := b [] b < c -> c := b

[] else -> c := d [] true -> c := d

fi fi

6.33–6.35 In More Depth.
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6.10 Explorations

6.36 Consider again the idea of loop unrolling, introduced in Exercise 5.15. Loop
unrolling is traditionally implemented by the code improvement phase of a
compiler. It can be implemented at source level, however, if we are faced
with the prospect of “hand optimizing” time-critical code on a system
whose compiler is not up to the task. Unfortunately, if we replicate the body
of a loop k times, we must deal with the possibility that the original number
of loop iterations, n, may not be a multiple of k. Writing in C, and letting
k = 4, we might transform the main loop of Exercise 5.15 from

i = 0;

do {

sum += A[i]; squares += A[i] * A[i]; i++;

} while (i < N);

to

i = 0; j = N/4;

do {

sum += A[i]; squares += A[i] * A[i]; i++;

sum += A[i]; squares += A[i] * A[i]; i++;

sum += A[i]; squares += A[i] * A[i]; i++;

sum += A[i]; squares += A[i] * A[i]; i++;

} while (--j > 0);

do {

sum += A[i]; squares += A[i] * A[i]; i++;

} while (i < N);

In 1983, Tom Duff of Lucasfilm realized that code of this sort can be
“simplified” in C by interleaving a switch statement and a loop. The result
is rather startling, but perfectly valid C. It’s known in programming folklore
as “Duff ’s device.”

i = 0; j = (N+3)/4;

switch (N%4)

case 0: do{ sum += A[i]; squares += A[i] * A[i]; i++;

case 3: sum += A[i]; squares += A[i] * A[i]; i++;

case 2: sum += A[i]; squares += A[i] * A[i]; i++;

case 1: sum += A[i]; squares += A[i] * A[i]; i++;

} while (--j > 0);

}

Duff announced his discovery with “a combination of pride and revulsion.”
He noted that “Many people . . . have said that the worst feature of C is
that switches don’t break automatically before each case label. This code
forms some sort of argument in that debate, but I’m not sure whether it’s
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for or against.” What do you think? Is it reasonable to interleave a loop
and a switch in this way? Should a programming language permit it? Is
automatic fall-through ever a good idea?

6.37 Using your favorite language and compiler, investigate the order of evalu-
ation of subroutine parameters. Are they usually evaluated left to right or
right to left? Are they ever evaluated in the other order? (Can you be sure?)
Write a program in which the order makes a difference in the results of the
computation.

6.38 Consider the different approaches to arithmetic overflow adopted by Pascal,
C, Java, C#, and Common Lisp, as described in Section 6.1.4. Speculate
as to the differences in language design goals that might have caused the
designers to adopt the approaches they did.

6.39 Learn more about container classes and the design patterns (structured pro-
gramming idioms) they support. Explore the similarities and differences
among the standard container libraries of C++, Java, and C#. Which of
these libraries do you find the most appealing? Why?

6.40–6.43 In More Depth.

6.11 Bibliographic Notes

Many of the issues discussed in this chapter feature prominently in papers on
the history of programming languages. Pointers to several such papers can be
found in the Bibliographic Notes for Chapter 1. Fifteen papers comparing Ada,
C, and Pascal can be found in the collection edited by Feuer and Gehani [FG84].
References for individual languages can be found in Appendix A.

Niklaus Wirth has been responsible for a series of influential languages over a
30-year period, including Pascal [Wir71], its predecessor Algol W [WH66], and
the successors Modula [Wir77b], Modula-2 [Wir85b], and Oberon [Wir88b].
The case statement of Algol W is due to Hoare [Hoa81]. Bernstein [Ber85]
considers a variety of alternative implementations for case, including multilevel
versions appropriate for label sets consisting of several dense “clusters” of val-
ues. Guarded commands are due to Dijkstra [Dij75]. Duff ’s device was originally
posted to netnews, the predecessor of Usenet news, in May 1984. The original
posting appears to have been lost, but Duff ’s commentary on it can be found at
many Internet sites, including www.lysator.liu.se/c/duffs-device.html.

Debate over the supposed merits or evils of the goto statement dates from
at least the early 1960s, but became a good bit more heated in the wake of a
1968 article by Dijkstra (“Go To Statement Considered Harmful” [Dij68b]). The
structured programming movement of the 1970s took its name from the text
of Dahl, Dijkstra, and Hoare [DDH72]. A dissenting letter by Rubin in 1987
(“ ‘GOTO Considered Harmful’ Considered Harmful” [Rub87]; Exercise 6.22)
elicited a flurry of responses.
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What has been called the “reference model of variables” in this chapter is called
the “object model” in Clu; Liskov and Guttag describe it in Sections 2.3 and 2.4.2
of their text on abstraction and specification [LG86]. Clu iterators are described
in an article by Liskov et al. [LSAS77] and in Chapter 6 of the Liskov and Guttag
text. Icon generators are discussed in Chapters 11 and 14 of the text by Gris-
wold and Griswold [GG96]. The tree-enumeration algorithm of Exercise 6.18
was originally presented (without iterators) by Solomon and Finkel [SF80].

Several texts discuss the use of invariants (Exercise 6.24) as a tool for writing
correct programs. Particularly noteworthy are the works of Dijkstra [Dij76] and
Gries [Gri81]. Kernighan and Plauger provide a more informal discussion of the
art of writing good programs [KP78].

The Blizzard [SFL+94] and Shasta [SG96] systems for software distributed
shared memory (S-DSM) make use of sentinels (Exercise 6.8). We will discuss
S-DSM in Section 12.2.1.

Michaelson [Mic89, Chap. 8] provides an accessible formal treatment of
applicative-order, normal-order, and lazy evaluation. Friedman, Wand, and
Haynes provide an excellent discussion of continuation-passing style [FWH01,
Chaps. 7–8].
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Most programming languages include a notion of type for expressions
and/or objects.1 Types serve two principal purposes:

1. Types provide implicit context for many operations, so the programmer does
not have to specify that context explicitly. In Pascal, for instance, the expres-EXAMPLE 7.1

Operations that leverage
type information

sion a + b will use integer addition if a and b are of integer type; it will use
floating-point addition if a and b are of real type. Similarly, the operation
new p, where p is a pointer, will allocate a block of storage from the heap that
is the right size to hold an object of the type pointed to by p; the program-
mer does not have to specify (or even know) this size. In C++, Java, and C#,
the operation new my_type() not only allocates (and returns a pointer to) a
block of storage sized for an object of type my_type, it also automatically calls
any user-defined initialization (constructor) function that has been associated
with that type. �

2. Types limit the set of operations that may be performed in a semanticallyEXAMPLE 7.2
Errors captured by type
information

valid program. They prevent the programmer from adding a character and a
record, for example, or from taking the arctangent of a set, or passing a file
as a parameter to a subroutine that expects an integer. While no type system
can promise to catch every nonsensical operation that a programmer might
put into a program by mistake, good type systems catch enough mistakes to
be highly valuable in practice. �
Section 7.1 looks more closely at the meaning and purpose of types, and

presents some basic definitions. Section 7.2 addresses questions of type equiva-
lence and type compatibility: when can we say that two types are the same, and
when can we use a value of a given type in a given context? Sections 7.3–7.9 con-

1 Recall that unless otherwise noted we are using the term object informally to refer to anything
that might have a name. Object-oriented languages, which we will study in Chapter 9, assign a
different, more formal meaning to the term.

307
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sider syntactic, semantic, and pragmatic issues for some of the most important
composite types: records, arrays, strings, sets, pointers, lists, and files. The section
on pointers includes a more detailed discussion of the value and reference mod-
els of variables introduced in Section 6.1.2, and of the heap management issues
introduced in Section 3.2. The section on files (mostly on the PLP CD) includes a
discussion of input and output. Section 7.10 considers what it means to compare
two complex objects for equality, or to assign one into the other.

7.1 Type Systems

In Section 5.2 we noted that computer hardware is capable of interpreting bits
in memory in several different ways. The various functional units of a proces-
sor may interpret bits as, among other things, instructions, addresses, characters,
and integer and floating-point numbers of various lengths. The bits themselves,
however, are untyped; the hardware on most machines makes no attempt to keep
track of which interpretations correspond to which locations in memory. Assem-
bly languages reflect this lack of typing: operations of any kind can be applied to
values in arbitrary locations. High-level languages, on the other hand, almost
always associate types with values, to provide the contextual information and
error-checking just mentioned.

Informally, a type system consists of (1) a mechanism to define types and asso-
ciate them with certain language constructs and (2) a set of rules for type equiva-
lence, type compatibility, and type inference. The constructs that must have types
are precisely those that have values, or that can refer to objects that have val-
ues. These constructs include named constants, variables, record fields, parame-
ters, and sometimes subroutines; explicit (manifest) constants (e.g., 17, 3.14,
"foo"); and more complicated expressions containing these. Type equivalence
rules determine when the types of two values are the same. Type compatibility
rules determine when a value of a given type can be used in a given context.
Type inference rules define the type of an expression based on the types of its
constituent parts or (sometimes) the surrounding context.

The distinction between the type of an expression (e.g., a name) and the type
of the object to which it refers is important in a language with polymorphic vari-
ables or parameters, since a given name may refer to objects of different types
at different times. In a language without polymorphism, the distinction doesn’t
matter.

Subroutines are considered to have types in some languages, but not in oth-
ers. Subroutines need to have types if they are first- or second-class values (i.e., if
they can be passed as parameters, returned by functions, or stored in variables).
In each of these cases there is a construct in the language whose value is a dynami-
cally determined subroutine; type information allows the language to limit the set
of acceptable values to those that provide a particular subroutine interface (i.e.,
particular numbers and types of parameters). In a statically scoped language that
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never creates references to subroutines dynamically (one in which subroutines
are always third-class values), the compiler can always identify the subroutine to
which a name refers, and can ensure that the routine is called correctly without
necessarily employing a formal notion of subroutine types.

7.1.1 Type Checking

Type checking is the process of ensuring that a program obeys the language’s type
compatibility rules. A violation of the rules is known as a type clash. A language is
said to be strongly typed if it prohibits, in a way that the language implementation
can enforce, the application of any operation to any object that is not intended
to support that operation. A language is said to be statically typed if it is strongly
typed and type checking can be performed at compile time. In the strictest sense
of the term, few languages are statically typed. In practice, the term is often ap-
plied to languages in which most type checking can be performed at compile
time, and the rest can be performed at run time.

A few examples: Ada is strongly typed and, for the most part, statically typed
(certain type constraints must be checked at run time). A Pascal implementation
can also do most of its type checking at compile time, though the language is not
quite strongly typed: untagged variant records (to be discussed in Section 7.3)
are its only loophole. C89 is significantly more strongly typed than its predeces-
sor dialects, but still significantly less strongly typed than Pascal. Its loopholes
include unions, subroutines with variable numbers of parameters, and the inter-
operability of pointers and arrays (to be discussed in Section 7.7.1). Implemen-
tations of C rarely check anything at run time. A few high-level languages (e.g.,
Bliss [WRH71]) are completely untyped, like assembly languages.

Dynamic (run-time) type checking is a form of late binding and tends to be
found in languages that delay other issues until run time as well. Lisp, Smalltalk,
and most scripting languages are dynamically (though strongly) typed. Lan-
guages with dynamic scoping are generally dynamically typed (or not typed at
all): if the compiler can’t identify the object to which a name refers, it usually
can’t determine the type of the object either.

7.1.2 Polymorphism

Polymorphism (Section 3.6.3) allows a single body of code to work with objects
of multiple types. It may or may not imply the need for run-time type checking.
As implemented in Lisp, Smalltalk, and the various scripting languages, fully dy-
namic typing allows the programmer to apply arbitrary operations to arbitrary
objects. Only at run time does the language implementation check to see that the
objects actually implement the requested operations. Because the types of objects
can be thought of as implied (unspecified) parameters, dynamic typing is said to
support implicit parametric polymorphism.
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Unfortunately, while powerful and straightforward, dynamic typing incurs
significant run-time cost. It also delays the reporting of errors. ML and its de-
scendants employ a sophisticated system of type inference to support implicit
parametric polymorphism in conjunction with static typing. The ML compiler
infers for every object and expression a (possibly unique) type that captures pre-
cisely those properties that the object or expression must have to be used in the
context(s) in which it appears. With rare exceptions, the programmer need not
specify the types of objects explicitly. The task of the compiler is to determine
whether there exists a consistent assignment of types to expressions that guaran-
tees, statically, that no operation will ever be applied to a value of an inappropri-
ate type at run time. This job can be formalized as the problem of unification; we
discuss it further in Section 7.2.4.

In object-oriented languages, subtype polymorphism allows a variable X of type
T to refer to an object of any type derived from T. Since derived types are required
to support all of the operations of the base type, the compiler can be sure that
any operation acceptable for an object of type T will be acceptable for any object
referred to by X. Given a straightforward model of inheritance, type checking
for subtype polymorphism can be implemented entirely at compile time. Most
languages that envision such an implementation, including C++, Eiffel, Java, and
C#, also provide explicit parametric polymorphism (generics), which allow the pro-
grammer to define classes with type parameters. Generics are particularly useful
for container (collection) classes: “list of T” (List<T>), “stack of T” (Stack<T>),
and so on, where T is left unspecified. Like subtype polymorphism, generics can
usually be type-checked at compile time, though Java sometimes performs re-
dundant checks at run time for the sake of interoperability with preexisting non-
generic code. Smalltalk, Objective-C, Python, and Ruby use a single mechanism

DESIGN & IMPLEMENTATION

Dynamic typing
The growing popularity of scripting languages has led a number of promi-
nent software developers to publicly question the value of static typing. They
ask: given that we can’t check everything at compile time, how much pain is it
worth to check the things we can? As a general rule, it is easier to write type-
correct code than to prove that we have done so, and static typing requires
such proofs. As type systems become more complex (due to object orienta-
tion, generics, etc.), the complexity of static typing increases correspondingly.
Anyone who has written extensively in Ada or C++ on the one hand, and in
Python or Scheme on the other, cannot help but be struck at how much easier
it is to write code without complex type declarations. Dynamic checking in-
curs some run-time cost, of course, and delays the reporting of errors, but this
is increasingly seen as insignificant in comparison to the potential increase in
human productivity. The choice between static and dynamic typing promises
to provide one of the most interesting language debates of the coming decade.
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for both parametric and subtype polymorphism, with checking delayed until run
time. We will consider generics further in Section 8.4, and derived types in Chap-
ter 9.

7.1.3 The Definition of Types

Some early high-level languages (e.g., Fortran 77, Algol 60, and Basic) provide a
small, built-in, and nonextensible set of types. As we saw in Section 3.3.1, For-
tran does not require variables to be declared; it incorporates default rules to
determine the type of undefined variables based on the spelling of their names
(Basic has similar rules). As noted in the previous subsection, a few languages
(e.g., Bliss) dispense with types, while others keep track of them automatically at
compile time (as in ML, Miranda, or Haskell) or at run time (as in Lisp/Scheme
or Smalltalk). In most languages, however, users must explicitly declare the type
of every object, together with the characteristics of every type that is not built-
in.

There are at least three ways to think about types, which we may call the deno-
tational, constructive, and abstraction-based points of view. From the denotational
point of view, a type is simply a set of values. A value has a given type if it belongs
to the set; an object has a given type if its value is guaranteed to be in the set. From
the constructive point of view, a type is either one of a small collection of built-
in types (integer, character, Boolean, real, etc.; also called primitive or predefined
types) or a composite type created by applying a type constructor (record, array,
set, etc.) to one or more simpler types. (This use of the term constructor is un-
related to the initialization functions of object-oriented languages. It also differs
in a more subtle way from the use of the term in ML.) From the abstraction-
based point of view, a type is an interface consisting of a set of operations with
well-defined and mutually consistent semantics. For most programmers (and
language designers), types usually reflect a mixture of these viewpoints.

In denotational semantics (one of the leading ways to formalize the mean-
ing of programs), a set of values is known as a domain. Types are domains. The
meaning of an expression in denotational semantics is a value from the domain
that represents the expression’s type. (Domains are in some sense a generaliza-
tion of types. The meaning of any language construct is a value from a domain.
The meaning of an assignment statement, for example, is a value from a do-
main whose elements are functions. Each function maps a store—a mapping
from names to values that represents the current contents of memory—to an-
other store, which represents the contents of memory after the assignment.) One
of the nice things about the denotational view of types is that it allows us in many
cases to describe user-defined composite types (records, arrays, etc.) in terms of
mathematical operations on sets. We will allude to these operations again in Sec-
tion 7.1.4.

Because it is based on mathematical objects, the denotational view of types
usually ignores such implementation issues as limited precision and word length.
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This limitation is less serious than it might at first appear: checks for such errors
as arithmetic overflow are usually implemented outside of the type system of a
language anyway: they result in a run-time error, but this error is not called a
type clash.

When a programmer defines an enumerated type (e.g., enum hue {red,
green, blue} in C), he or she certainly thinks of this type as a set of values. For
most other varieties of user-defined type, however, one typically does not think
in terms of sets of values. Rather, one usually thinks in terms of the way the type
is built from simpler types, or in terms of its meaning or purpose. These ways
of thinking reflect the constructive and abstraction-based points of view. The
constructive point of view was pioneered by Algol W and Algol 68, and is char-
acteristic of most languages designed in the 1970s and 1980s. The abstraction-
based point of view was pioneered by Simula-67 and Smalltalk, and is charac-
teristic of modern object-oriented languages. It can also be adopted as a matter
of programming discipline in non-object-oriented languages. We will discuss the
abstraction-based point of view in more detail in Chapter 9. The remainder of
this chapter focuses on the constructive point of view.

7.1.4 The Classification of Types

The terminology for types varies some from one language to another. This sub-
section presents definitions for the most common terms. Most languages provide
built-in types similar to those supported in hardware by most processors: inte-
gers, characters, Booleans, and real (floating-point) numbers.

Booleans (sometimes called logicals) are typically implemented as one-byte
quantities, with 1 representing true and 0 representing false. As noted in Sec-
tion 6.1.2, C is unusual in its lack of a Boolean type: where most languages would
expect a Boolean value, C expects an integer; zero means false, and anything
else means true. As noted in Section 6.5.4, Icon replaces Booleans with a
more general notion of success and failure.

Characters have traditionally been implemented as one-byte quantities as well,
typically (but not always) using the ASCII encoding. More recent languages (e.g.,
Java and C#) use a two-byte representation designed to accommodate the Uni-
code character set. Unicode is an international standard designed to capture the
characters of a wide variety of languages (see sidebar on page 313). The first 128
characters of Unicode (\u0000 through \u007f) are identical to ASCII. C++
provides both regular and “wide” characters, though for wide characters both
the encoding and the actual width are implementation-dependent. Fortran 2003
supports four-byte Unicode characters.

Numeric Types

A few languages (e.g., C and Fortran) distinguish between different lengths of
integers and real numbers; most do not, and leave the choice of precision to the
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implementation. Unfortunately, differences in precision across language imple-
mentations lead to a lack of portability: programs that run correctly on one sys-
tem may produce run-time errors or erroneous results on another. Java and C#
are unusual in providing several lengths of numeric types, with a specified preci-
sion for each.

A few languages, including C, C++, C#, and Modula-2, provide both signed
and unsigned integers (Modula-2 calls unsigned integers cardinals). A few
languages (e.g., Fortran, C99, Common Lisp, and Scheme) provide a built-in
complex type, usually implemented as a pair of floating-point numbers that rep-
resent the real and imaginary Cartesian coordinates. Other languages (e.g., C++)

DESIGN & IMPLEMENTATION

Multilingual character sets
The ISO 10646 international standard defines a Universal Character Set (UCS)
intended to include all characters of all known human languages. (It also sets
aside a “private use area” for such artificial [constructed] languages as Klingon,
Tengwar, and Cirth [Tolkein Elvish]. Allocation of this private space is coordi-
nated by a volunteer organization known as the ConScript Unicode Registry.)
All natural languages currently employ codes in the 16-bit Basic Multilingual
Plane (BMP): 0x0000 through 0xfffd.

Unicode is an expanded version of ISO 10646, maintained by an interna-
tional consortium of software manufacturers. In addition to mapping tables,
it covers such topics as rendering algorithms, directionality of text, and sorting
and comparison conventions.

While recent languages have moved toward 16- or 32-bit internal char-
acter representations, these cannot be used for external storage—text files—
without causing severe problems with backward compatibility. To accommo-
date Unicode without breaking existing tools, Ken Thompson in 1992 pro-
posed a multibyte “expanding” code known as UTF-8 (UCS/Unicode Trans-
formation Format, 8-bit) and codified as a formal annex (appendix) to ISO
10646. UTF-8 characters occupy a maximum of 6 bytes—3 if they lie in the
BMP, and only 1 if they are ordinary ASCII. The trick is to observe that ASCII
is a 7-bit code; in any legacy text file the most significant bit of every byte is 0.
In UTF-8 a most significant bit of 1 indicates a multibyte character. Two-byte
codes begin with the bits 110. Three-byte codes begin with 1110. Second and
subsequent bytes of multibyte characters always begin with 10.

On some systems one also finds files encoded in one of ten variants of the
older 8-bit ISO 8859 standard, but these are inconsistently rendered across
platforms. On the web, non-ASCII characters are typically encoded with nu-
meric character references, which bracket a Unicode value, written in decimal
or hex, with an ampersand and a semicolon. The copyright symbol (©), for
example, is &169#;. Many characters also have symbolic entity names, (e.g.,
&copy;) but not all browsers support these.
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support complex numbers in a standard library. A few languages (e.g., Scheme
and Common Lisp) provide a built-in rational type, usually implemented as a
pair of integers that represents the numerator and denominator. Common Lisp
and most dialects of Scheme support integers (and rationals) of arbitrary preci-
sion; the implementation uses multiple words of memory where appropriate.

Ada supports fixed-point types, which are represented internally by integers
but have an implied decimal point at a programmer-specified position among
the digits. Fixed-point numbers provide a compact representation of noninte-
gral values (e.g., dollars and cents) within a restricted range. For example, 32-bit
hardware integers can represent fixed-point numbers with two (decimal) digits to
the right of the decimal point in the range of roughly negative 20 million to pos-
itive 20 million. Double-precision (64-bit) numbers would be required to cap-
ture the same range in floating-point, since single-precision IEEE floating-point
numbers have ony 23 bits of significand (Section 5.2.1). Addition and subtrac-
tion of fixed-point numbers (with the same number of decimal places) can use
ordinary integer operations. Multiplication and division are slightly more com-
plicated, as are operations on values with different numbers of digits to the right
of the decimal point (Exercise 7.4).

Integers, Booleans, and characters are all examples of discrete types (also called
ordinal types): the domains to which they correspond are countable, and have a
well-defined notion of predecessor and successor for each element other than the
first and the last. (In most implementations the number of possible integers is
finite, but this is usually not reflected in the type system.) Two varieties of user-

DESIGN & IMPLEMENTATION

Decimal types
A few languages, notably Cobol and PL/I, provide a decimal type for fixed-
point representation of integers in binary-coded decimal (BCD) format. BCD
devotes one nibble (four bits—half a byte) to each decimal digit. Machines that
support BCD in hardware can perform arithmetic directly on the BCD repre-
sentation of a number, without converting it to and from binary form. This
capability is particularly useful in business and financial applications, which
treat their data as both numbers and character strings: converting a string of
ASCII digits to or from BCD is significantly cheaper than converting it to or
from binary. BCD format can be found on many (though by no means all)
CISC machines, and on at least one RISC machine: the HP PA-RISC.

C# also provides a decimal type, but its representation is closer to that of
Ada’s fixed point types than to the decimal types of Cobol and PL/I. Specifi-
cally, a C# decimal variable is a 128-bit datum that includes 96 binary bits of
precision, a sign, and a decimal scaling factor that can vary between 10−28 and
1028. Values of decimal type have greater precision but smaller range than
double-precision floating-point values. Within their range they are ideal for
financial calculations, because they represent decimal fractions precisely.
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defined types, enumerations and subranges, are also discrete. Discrete, rational,
real, and complex types together constitute the scalar types. Scalar types are also
sometimes called simple types.

Enumeration Types

Enumerations were introduced by Wirth in the design of Pascal. They facilitate
the creation of readable programs, and allow the compiler to catch certain kinds
of programming errors. An enumeration type consists of a set of named ele-
ments. In Pascal, one can writeEXAMPLE 7.3

Enumerations in Pascal
type weekday = (sun, mon, tue, wed, thu, fri, sat);

The values of an enumeration type are ordered, so comparisons are gener-
ally valid (mon < tue), and there is usually a mechanism to determine the
predecessor or successor of an enumeration value (in Pascal, tomorrow :=
succ(today)). The ordered nature of enumerations facilitates the writing of
enumeration-controlled loops:

for today := mon to fri do begin ...

It also allows enumerations to be used to index arrays:

var daily_attendance : array [weekday] of integer; �
An alternative to enumerations, of course, is simply to declare a collection ofEXAMPLE 7.4

Enumerations as constants constants:

const sun = 0; mon = 1; tue = 2; wed = 3; thu = 4; fri = 5; sat = 6;

In C, the difference between the two approaches is purely syntactic. The declara-
tion

enum weekday {sun, mon, tue, wed, thu, fri, sat};

is essentially equivalent to

typedef int weekday;

const weekday sun = 0, mon = 1, tue = 2,

wed = 3, thu = 4, fri = 5, sat = 6; �
In Pascal and most of its descendants, however, the difference between an enu-
meration and a set of integer constants is much more significant: the enumer-
ation is a full-fledged type, incompatible with integers. Using an integer or an
enumeration value in a context expecting the other will result in a type clash
error at compile time.

Values of an enumeration type are typically represented by small integers, usu-
ally a consecutive range of small integers starting at zero. In many languages these
ordinal values are semantically significant, because built-in functions can be used
to convert an enumeration value to its ordinal value, and sometimes vice versa.
In Pascal, the built-in function ord takes an argument of any enumeration typeEXAMPLE 7.5

Converting to and from
enumeration type

(including char and Boolean, which are considered built-in enumerations) and
returns the argument’s ordinal value. The built-in function chr takes an argu-
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ment i of type integer and returns the character whose ordinal value is i (or gen-
erates a run-time error if there is no such character). In Ada, weekday’pos(mon)
= 1 and weekday’val(1) = mon. �

Several languages allow the programmer to specify the ordinal values of enu-
meration types if the default assignment is undesirable. In C, C++, and C#, oneEXAMPLE 7.6

Distinguished values for
enums

could write

enum mips_special_regs {gp = 28, fp = 30, sp = 29, ra = 31};

(The intuition behind these values is explained in Section 5.4.4.)
In Ada this declaration would be written

type mips_special_regs is (gp, sp, fp, ra); -- must be sorted

for mips_special_regs use (gp => 28, sp => 29, fp => 30, ra => 31); �
In recent versions of Java one can obtain a similar effect by giving values anEXAMPLE 7.7

Emulating distinguished
enum values in Java 5

extra field (here named register):

enum mips_special_regs { gp(28), fp(30), sp(29), ra(31);

private final int register;

mips_special_regs(int r) register = r;

public int reg() return register;

}

...

int n = mips_special_regs.fp.reg(); �
As noted in Section 3.6.2, Pascal and C do not allow the same element name

to be used in more than one enumeration type in the same scope. Java and
C# do, but the programmer must identify elements using fully qualified names:
mips_special_regs.fp. Ada relaxes this requirement by saying that element
names are overloaded; the type prefix can be omitted whenever the compiler can
infer it from context.

Subrange Types

Like enumerations, subranges were first introduced in Pascal, and are found in
many subsequent Algol-family languages. A subrange is a type whose values com-
pose a contiguous subset of the values of some discrete base type (also called the
parent type). In Pascal and most of its descendants, one can declare subranges
of integers, characters, enumerations, and even other subranges. In Pascal, sub-EXAMPLE 7.8

Subranges in Pascal ranges look like this:

type test_score = 0..100;

workday = mon..fri; �
In Ada one would writeEXAMPLE 7.9

Subranges in Ada
type test_score is new integer range 0..100;

subtype workday is weekday range mon..fri;

The range... portion of the definition in Ada is called a type constraint. In this
example test_score is a derived type, incompatible with integers. The workday



7.1 Type Systems 317

type, on the other hand, is a constrained subtype; workdays and weekdays can be
more or less freely intermixed. The distinction between derived types and sub-
types is a valuable feature of Ada; we will discuss it further in Section 7.2.1. �

One could of course use integers to represent test scores, or a weekday to rep-
resent a workday. Using an explicit subrange has several advantages. For one
thing, it helps to document the program. A comment could also serve as docu-
mentation, but comments have a bad habit of growing out of date as programs
change, or of being omitted in the first place. Because the compiler analyzes a
subrange declaration, it knows the expected range of subrange values, and can
generate code to perform dynamic semantic checks to ensure that no subrange
variable is ever assigned an invalid value. These checks can be valuable debugging
tools. In addition, since the compiler knows the number of values in the sub-
range, it can sometimes use fewer bits to represent subrange values than it would
need to use to represent arbitrary integers. In the example above, test_score
values can be stored in a single byte.

Most implementations employ the same bit patterns for integers and sub-EXAMPLE 7.10
Space requirements of
subrange type

ranges, so subranges whose values are large require large storage locations, even
if the number of distinct values is small. The following type, for example,

type water_temperature = 273..373; (* degrees Kelvin *)

would be stored in at least two bytes. While there are only 101 distinct values in
the type, the largest (373) is too large to fit in a single byte in its natural encoding.
(An unsigned byte can hold values in the range 0 . . 255; a signed byte can hold
values in the range −128 . . 127.) �

Composite Types

Nonscalar types are usually called composite, or constructed types. They are gen-
erally created by applying a type constructor to one or more simpler types. Com-
mon composite types include records (structures), variant records (unions), ar-

DESIGN & IMPLEMENTATION

Multiple sizes of integers
The space savings possible with (small-valued) subrange types in Pascal and
Ada is achieved in several other languages by providing more than one size of
built-in integer type. C and C++, for example, support integer arithmetic on
signed and unsigned variants of char, short, int, long, and (in C99) long

long types, with monotonically nondecreasing sizes.2

2 More specifically, the C99 standard requires ranges for these types corresponding to lengths of
at least 1, 2, 2, 4, and 8 bytes, respectively. In practice, one finds implementations in which plain
ints are 2, 4, or 8 bytes long, including some in which they are the same size as shorts but
shorter than longs, and some in which they are the same size as longs, but longer than shorts.
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rays, sets, pointers, lists, and files. All but pointers and lists are easily described in
terms of mathematical set operations (pointers and lists can be described math-
ematically as well, but the description is less intuitive).

Records were introduced by Cobol, and have been supported by most languages
since the 1960s. A record consists of a collection of fields, each of which belongs
to a (potentially different) simpler type. Records are akin to mathematical tu-
ples; a record type corresponds to the Cartesian product of the types of the
fields.

Variant records differ from “normal” records in that only one of a variant
record’s fields (or collections of fields) is valid at any given time. A variant
record type is the union of its field types, rather than their Cartesian product.

Arrays are the most commonly used composite types. An array can be thought
of as a function that maps members of an index type to members of a com-
ponent type. Arrays of characters are often referred to as strings, and are often
supported by special purpose operations not available for other arrays.

Sets, like enumerations and subranges, were introduced by Pascal. A set type is
the mathematical powerset of its base type, which must usually be discrete. A
variable of a set type contains a collection of distinct elements of the base type.

Pointers are l-values. A pointer value is a reference to an object of the pointer’s
base type. Pointers are often but not always implemented as addresses. They
are most often used to implement recursive data types. A type T is recursive
if an object of type T may contain one or more references to other objects of
type T.

Lists, like arrays, contain a sequence of elements, but there is no notion of map-
ping or indexing. Rather, a list is defined recursively as either an empty list
or a pair consisting of a head element and a reference to a sublist. While the
length of an array must be specified at elaboration time in most (though not
all) languages, lists are always of variable length. To find a given element of a
list, a program must examine all previous elements, recursively or iteratively,
starting at the head. Because of their recursive definition, lists are fundamental
to programming in most functional languages.

Files are intended to represent data on mass storage devices, outside the memory
in which other program objects reside. Like arrays, most files can be concep-
tualized as a function that maps members of an index type (generally integer)
to members of a component type. Unlike arrays, files usually have a notion of
current position, which allows the index to be implied implicitly in consecu-
tive operations. Files often display idiosyncrasies inherited from physical in-
put/output devices. In particular, the elements of some files must be accessed
in sequential order.

We will examine composite types in more detail in Sections 7.3 through 7.9.
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7.1.5 Orthogonality

In Section 6.1.2 we discussed the importance of orthogonality in the design of
expressions, statements, and control-flow constructs. Orthogonality is equally
important in the design of type systems. Languages vary greatly in the degree
of orthogonality they display. A language with a high degree of orthogonality
tends to be easier to understand, to use, and to reason about in a formal way. We
have noted that languages like Algol 68 and C enhance orthogonality by elimi-
nating (or at least blurring) the distinction between statements and expressions.
To characterize a statement that is executed for its side effect(s) and has no useful
value, some languages provide an “empty” type. In C and Algol, for example, aEXAMPLE 7.11

Void (empty) type subroutine that is meant to be used as a procedure is generally declared with a
“return” type of void. In ML, the empty type is called unit. If the programmer
wishes to call a subroutine that does return a value, but the value is not needed
in this particular case (all that matters is the side effect[s]), then the return value
in C can be cast to void (casts will be discussed in Section 7.2.1):

foo_index = insert_in_symbol_table(foo);

...

(void) insert_in_symbol_table(bar); /* don’t care where it went */

/* cast is optional; implied if omitted */ �
In a language (e.g., Pascal) without an empty type, the latter of these two callsEXAMPLE 7.12

Making do without void would need to use a dummy variable:

var dummy : symbol_table_index;

...

dummy := insert_in_symbol_table(bar); �
The type system of Pascal is more orthogonal than that of (pre-Fortran 90)

Fortran. Among other things, it allows arrays to be constructed from any discrete
index type and any component type; pre-Fortran 90 arrays are always indexed
by integers and have scalar components. At the same time, Pascal displays several
nonorthogonal wrinkles. As we shall see in Section 7.3, it requires that variant
fields of a record follow all other fields. It limits function return values to scalar
and pointer types. It requires the bounds of each array to be specified at compile
time except when the array is a formal parameter of a subroutine. Perhaps most
important, while it allows subroutines to be passed as parameters, it does not
give them first-class status: a subroutine cannot be returned by a function or
stored in a variable. By contrast, the type system of ML, which we examine in
Section 7.2.4, is almost completely orthogonal.

One particularly useful aspect of type orthogonality is the ability to specify lit-
eral values of arbitrary composite types. Several languages provide this capability,
but many others do not. Pascal and Modula provide notation for literal charac-
ter strings and sets, but not for arrays, records, or recursive data structures. The
lack of notation for most user-defined composite types means that many Pascal
and Modula programs must devote time in every program run to initializing data
structures full of compile-time constants.
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Composite values in Ada are specified using aggregates:EXAMPLE 7.13
Aggregates in Ada

type person is record

name : string (1..10);

age : integer;

end record;

p, q : person;

A, B : array (1..10) of integer;

...

p := ("Jane Doe ", 37);

q := (age => 36, name => "John Doe ");

A := (1, 0, 3, 0, 3, 0, 3, 0, 0, 0);

B := (1 => 1, 3 | 5 | 7 => 3, others => 0);

Here the aggregates assigned into p and A are positional; the aggregates assigned
into q and B name their elements explicitly. The aggregate for B uses a short-
hand notation to assign the same value (3) into array elements 3, 5, and 7,
and to assign a 0 into all unnamed fields. Several languages, including C, For-
tran 90, and Lisp, provide similar capabilities. ML provides a very general facility
for composite expressions, based on the use of constructors (discussed in Sec-
tion 7.2.4). �

CHECK YOUR UNDERSTANDING

1. What purpose(s) do types serve in a programming language?

2. What does it mean for a language to be strongly typed? Statically typed? What
prevents, say, C from being strongly typed?

3. Name two important programming languages that are strongly but dynami-
cally typed.

4. What is a type clash?

5. Discuss the differences between the denotational, constructive, and abstrac-
tion-based views of types.

6. What is the difference between discrete and scalar types?

7. Give two examples of languages that lack a Boolean type. What do they use
instead?

8. In what ways may an enumeration type be preferable to a collection of named
constants? In what ways may a subrange type be preferable to its base type? It
what ways may a string be preferable to an array of characters?

9. What does it mean for a set of language features (e.g., a type system) to be
orthogonal?

10. What are aggregates?
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7.2 Type Checking

In most statically typed languages, every definition of an object (constant, vari-
able, subroutine, etc.) must specify the object’s type. Moreover, many of the con-
texts in which an object might appear are also typed, in the sense that the rules of
the language constrain the types that an object in that context may validly pos-
sess. In the following subsections we will consider the topics of type equivalence,
type compatibility, and type inference. Of the three, type compatibility is the one
of most concern to programmers. It determines when an object of a certain type
can be used in a certain context. At a minimum, the object can be used if its type
and the type expected by the context are equivalent (i.e., the same). In many lan-
guages, however, compatibility is a looser relationship than equivalence: objects
and contexts are often compatible even when their types are different. Our dis-
cussion of type compatibility will touch on the subjects of type conversion (also
called casting), which changes a value of one type into a value of another; type
coercion, which performs a conversion automatically in certain contexts; and non-
converting type casts, which are sometimes used in systems programming to in-
terpret the bits of a value of one type as if they represented a value of some other
type.

Whenever an expression is constructed from simpler subexpressions, the ques-
tion arises: given the types of the subexpressions (and possibly the type expected
by the surrounding context), what is the type of the expression as a whole? This
question is answered by type inference. Type inference is often trivial: the sum of
two integers is still an integer, for example. In other cases (e.g., when dealing with
sets) it is a good bit trickier. Type inference plays a particularly important role in
ML, Miranda, and Haskell, in which all type information is inferred.

7.2.1 Type Equivalence

In a language in which the user can define new types, there are two principal
ways of defining type equivalence. Structural equivalence is based on the content
of type definitions: roughly speaking, two types are the same if they consist of the
same components, put together in the same way. Name equivalence is based on
the lexical occurrence of type definitions: roughly speaking, each definition intro-
duces a new type. Structural equivalence is used in Algol-68, Modula-3, and (with
various wrinkles) C and ML. It was also used in many early implementations of
Pascal. Name equivalence is the more popular approach in recent languages. It is
used in Java, C#, standard Pascal, and most Pascal descendants, including Ada.

The exact definition of structural equivalence varies from one language to an-
other. It requires that one decide which potential differences between types are
important, and which may be considered unimportant. Most people would prob-EXAMPLE 7.14

Trivial differences in type ably agree that the format of a declaration should not matter: in a Pascal-like
language with structural equivalence,
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type foo = record a, b : integer end;

should be considered the same as

type foo = record

a, b : integer

end;

These definitions should probably also be considered the same as

type foo = record

a : integer;

b : integer

end;

But what about

type foo = record

b : integer;

a : integer

end;

Should the reversal of the order of the fields change the type? Here the answer is
not as clear: ML says no; most languages say yes. �

In a similar vein, the definition of structural equivalence should probably “fac-EXAMPLE 7.15
Other minor differences in
type

tor out” different representations of constants: again in a Pascal-like notation,

type str = array [1..10] of char;

should be considered the same as

type str = array [1..2*5] of char;

On the other hand, these should probably be considered different from

type str = array [0..9] of char;

Here the length of the array has not changed, but the index values are dif-
ferent. �

To determine if two types are structurally equivalent, a compiler can expand
their definitions by replacing any embedded type names with their respective
definitions, recursively, until nothing is left but a long string of type construc-
tors, field names, and built-in types. If these expanded strings are the same, then
the types are equivalent, and conversely. Recursive and pointer-based types com-
plicate matters, since their expansion does not terminate, but the problem is not
insurmountable; we consider a solution in Exercise 7.23.

Structural equivalence is a straightforward but somewhat low-level, imple-EXAMPLE 7.16
The problem with
structural equivalence

mentation-oriented way to think about types. Its principal problem is an inability
to distinguish between types that the programmer may think of as distinct, but
which happen by coincidence to have the same internal structure:
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1. type student = record
2. name, address : string
3. age : integer

4. type school = record
5. name, address : string
6. age : integer

7. x : student;
8. y : school;
9. . . .

10. x := y; –– is this an error?

Most programmers would probably want to be informed if they accidentally as-
signed a value of type school into a variable of type student, but a compiler
whose type checking is based on structural equivalence will blithely accept such
an assignment.

Name equivalence is based on the assumption that if the programmer takes the
effort to write two type definitions, then those definitions are probably meant to
represent different types. In our example code, variables x and y will be consid-
ered to have different types under name equivalence: x uses the type declared at
line 1; y uses the type declared at line 4. �
Variants of Name Equivalence

One subtlety in the use of name equivalence arises with an alias type, whose de-
finition simply specifies the name of some other type. In Modula-2 we mightEXAMPLE 7.17

Semantically equivalent
alias types

say

TYPE new_type = old_type;

Should new_type and old_type be considered the same or different? The answer
may depend on how the types are used. One possible use is the following.

TYPE stack_element = INTEGER; (* or whatever type the user prefers *)

MODULE stack;

IMPORT stack_element;

EXPORT push, pop;

...

PROCEDURE push(elem : stack_element);

...

PROCEDURE pop() : stack_element;

...

Here the stack module is meant to serve as an abstraction that allows the pro-
grammer, via textual inclusion, to create a stack of any desired type (in this case
integer). If aliased types are not considered equivalent, then the stack is no longer
reusable; it cannot be used for objects whose type has a name of the program-
mer’s choosing. �

Unfortunately, there are other times, even in Modula-2, when aliased typesEXAMPLE 7.18
Semantically distinct alias
types

should probably not be the same.
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TYPE celsius_temp = REAL;

fahrenheit_temp = REAL;

VAR c : celsius_temp;

f : fahrenheit_temp;

...

f := c; (* this should probably be an error *) �
A language in which aliased types are considered distinct is said to have strict

name equivalence. A language in which aliased types are considered equivalent
is said to have loose name equivalence. Most Pascal-family languages (including
Modula-2) use loose name equivalence. Ada achieves the best of both worlds byEXAMPLE 7.19

Derived types and
subtypes in Ada

allowing the programmer to indicate whether an alias represents a derived type
or a subtype. A subtype is compatible with its base (parent) type; a derived type
is incompatible. (Subtypes of the same base type are also compatible with each
other.) The types of Examples 7.17 and 7.18 would be written as follows.

subtype stack_element is integer;

...

type celsius_temp is new integer;

type fahrenheit_temp is new integer; �
Modula-3, which relies on structural type equivalence, achieves some of the

effect of derived types through use of a branding mechanism. A BRANDED type
is distinct from all other types, regardless of structure. Branding is permitted
only for pointers and abstract objects (in the object-oriented sense of the word).
Its principal purpose is not to distinguish among types like celsius_temp and
fahrenheit_temp above, but rather to prevent the programmer from using
structural equivalence, deliberately or accidentally, to look inside an abstraction
that is supposed to be opaque.

One way to think about the difference between strict and loose name equiva-
lence is to remember the distinction between declarations and definitions (Sec-
tion 3.3.3). Under strict name equivalence, a declaration type A = B is con-
sidered a definition. Under loose name equivalence it is merely a declaration;
A shares the definition of B.

Consider the following example.EXAMPLE 7.20
Name v. structural
equivalence 1. type cell = . . . –– whatever

2. type alink = pointer to cell
3. type blink = alink
4. p, q : pointer to cell
5. r : alink
6. s : blink
7. t : pointer to cell
8. u : alink

Here the declaration at line 3 is an alias; it defines blink to be “the same as” alink.
Under strict name equivalence, line 3 is both a declaration and a definition, and
blink is a new type, distinct from alink. Under loose name equivalence, line 3 is
just a declaration; it uses the definition at line 2.



7.2 Type Checking 325

Under strict name equivalence, p and q have the same type, because they both
use the anonymous (unnamed) type definition on the right-hand side of line 4,
and r and u have the same type, because they both use the definition at line 2.
Under loose name equivalence, r, s, and u all have the same type, as do p and q.
Under structural equivalence, all six of the variables shown have the same type,
namely pointer to whatever cell is. �

Both structural and name equivalence can be tricky to implement in the pres-
ence of separate compilation. We will return to this issue in Section 14.6.

Type Conversion and Casts

In a language with static typing, there are many contexts in which values of a
specific type are expected. In the statementEXAMPLE 7.21

Contexts that expect a
given type a := expression

we expect the right-hand side to have the same type as a. In the expression

a + b

the overloaded + symbol designates either integer or floating-point addition; we
therefore expect either that a and b will both be integers or that they will both be
reals. In a call to a subroutine,

foo(arg1, arg2, . . . , argN)

we expect the types of the arguments to match those of the formal parameters, as
declared in the subroutine’s header. �

Suppose for the moment that we require in each of these cases that the types
(expected and provided) be exactly the same. Then if the programmer wishes to
use a value of one type in a context that expects another, he or she will need to
specify an explicit type conversion (also sometimes called a type cast). Depending
on the types involved, the conversion may or may not require code to be executed
at run time. There are three principal cases:

1. The types would be considered structurally equivalent, but the language uses
name equivalence. In this case the types employ the same low-level represen-
tation, and have the same set of values. The conversion is therefore a purely
conceptual operation; no code will need to be executed at run time.

2. The types have different sets of values, but the intersecting values are repre-
sented in the same way. One type may be a subrange of the other, for example,
or one may consist of two’s complement signed integers, while the other is
unsigned. If the provided type has some values that the expected type does
not, then code must be executed at run time to ensure that the current value
is among those that are valid in the expected type. If the check fails, then a dy-
namic semantic error results. If the check succeeds, then the underlying rep-
resentation of the value can be used, unchanged. Some language implemen-
tations may allow the check to be disabled, resulting in faster but potentially
unsafe code.
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3. The types have different low-level representations, but we can nonetheless
define some sort of correspondence among their values. A 32-bit integer, for
example, can be converted to a double-precision IEEE floating-point number
with no loss of precision. Most processors provide a machine instruction to
effect this conversion. A floating-point number can be converted to an integer
by rounding or truncating, but fractional digits will be lost, and the conver-
sion will overflow for many exponent values. Again, most processors provide
a machine instruction to effect this conversion. Conversions between different
lengths of integers can be effected by discarding or sign-extending high-order
bytes.

We can illustrate these options with the following examples of type conversionsEXAMPLE 7.22
Type conversions in Ada in Ada.

n : integer; -- assume 32 bits

r : real; -- assume IEEE double-precision

t : test_score; -- as in Example 7.9

c : celsius_temp; -- as in Example 7.19

...

t := test_score(n); -- run-time semantic check required

n := integer(t); -- no check req.; every test_score is an int

r := real(n); -- requires run-time conversion

n := integer(r); -- requires run-time conversion and check

n := integer(c); -- no run-time code required

c := celsius_temp(n); -- no run-time code required

In each of these last six lines, the name of a type is used as a pseudo-function
that performs a type conversion. The first conversion requires a run-time check
to ensure that the value of n is within the bounds of a test_score. The sec-
ond conversion requires no code, since every possible value of t is acceptable
for n. The third and fourth conversions require code to change the low-level rep-
resentation of values. The fourth conversion also requires a semantic check. It is
generally understood that converting from a floating-point value to an integer
results in the loss of fractional digits; this loss is not an error. If the conversion
results in integer overflow, however, an error needs to result. The final two con-
versions require no run-time code; the integer and celsius_temp types (at
least as we have defined them) have the same sets of values and the same under-
lying representation. A purist might say that celsius_temp should be defined as
new integer range -273..integer’last, in which case a run-time semantic
check would be required on the final conversion. �

Nonconverting Type Casts Occasionally, particularly in systems programs,
one needs to change the type of a value without changing the underlying
implementation—in other words, to interpret the bits of a value of one type as if
they were another type. One common example occurs in memory allocation al-
gorithms, which use a large array of characters or integers to represent a heap, but
then reinterpret portions of that array as pointers and integers (for bookkeeping
purposes), or as various user-allocated data structures. Another common exam-
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ple occurs in high-performance numeric software, which may need to reinterpret
a floating-point number as an integer or a record in order to extract the expo-
nent, significand, and sign fields. These fields can be used to implement special
purpose algorithms for square root, trigonometric functions, and so on.

A change of type that does not alter the underlying bits is called a nonconvert-
ing type cast. It should not be confused with use of the term cast for conversions
in languages like C. In Ada, nonconverting casts can be effected using instancesEXAMPLE 7.23

Unchecked conversions in
Ada

of a built-in generic subroutine called unchecked_conversion:

-- assume ’float’ has been declared to match IEEE single-precision

function cast_float_to_int is

new unchecked_conversion(float, integer);

function cast_int_to_float is

new unchecked_conversion(integer, float);

...

f := cast_int_to_float(n);

n := cast_float_to_int(f); �
A type conversion in C (i.e., what C calls a type cast) is specified by using theEXAMPLE 7.24

Type conversions in C name of the desired type, in parentheses, as a prefix operator:

r = (float) n; /* generates code for run-time conversion */

n = (int) r; /* also run-time conversion, with no overflow check */

C and its descendants do not by default perform run-time checks for arith-
metic overflow on any operation, though such checks can be enabled if desired
in C#. �

C++ inherits the casting mechanism of C but also provides a family of seman-
tically cleaner alternatives. Specifically, static_cast performs a type conver-
sion, reinterpret_cast performs a nonconverting type cast, and dynamic_cast
allows programs that manipulate pointers of polymorphic types to perform as-
signments whose validity cannot be guaranteed statically, but can be checked
at run time (more on this in Chapter 9). There is also a const_cast that can
be used to add or remove read-only qualification. C-style type casts in C++ are
defined in terms of const_cast, static_cast, and reinterpret_cast; the
precise behavior depends on the source and target types.

Any nonconverting type cast constitutes a dangerous subversion of the lan-
guage’s type system. In a language with a weak type system such subversions can
be difficult to find. In a language with a strong type system, the use of explicit
nonconverting type casts at least labels the dangerous points in the code, facili-
tating debugging if problems arise.

7.2.2 Type Compatibility

Most languages do not require equivalence of types in every context. Instead,
they merely say that a value’s type must be compatible with that of the context
in which it appears. In an assignment statement, the type of the right-hand side



328 Chapter 7 Data Types

must be compatible with that of the left-hand side. The types of the operands
of + must either both be compatible with the built-in integer type, or both be
compatible with the built-in floating-point type. In a subroutine call, the types
of any arguments passed into the subroutine must be compatible with the types
of the corresponding formal parameters, and the types of any formal parameters
passed back to the caller must be compatible with the types of the corresponding
arguments.

The definition of type compatibility varies greatly from language to language.
Ada takes a relatively restrictive approach: an Ada type S is compatible with an
expected type T if and only if (1) S and T are equivalent, (2) one is a subtype of
the other (or both are subtypes of the same base type), or (3) both are arrays, with
the same numbers and types of elements in each dimension. Pascal is only slightly
more lenient: in addition to allowing the intermixing of base and subrange types,
it allows an integer to be used in a context where a real is expected.

Coercion

Whenever a language allows a value of one type to be used in a context that ex-
pects another, the language implementation must perform an automatic, implicit

DESIGN & IMPLEMENTATION

Nonconverting casts
C programmers sometimes attempt a nonconverting type cast by taking the
address of an object, converting the type of the resulting pointer, and then
dereferencing:

r = *((float *) &n);

This arcane bit of hackery usually works, because most (but not all!) imple-
mentations use the same representation for pointers to integers and point-
ers to floating-point values—namely, an address. The ampersand operator (&)
means “address of,” or “pointer to.” The parenthesized (float *) is the type
name for “pointer to float” (float is a built-in floating-point type). The prefix
* operator is a pointer dereference. The cast produces no run-time code; it
merely causes the compiler to interpret the bits of n as if it were a float. The
reinterpretation will fail if n is not an l-value (has no address), or if ints and
floats have different sizes (again, this second condition is often but not al-
ways true in C). If n does not have an address then the compiler will announce
a static semantic error. If int and float do not occupy the same number of
bytes, then the effect of the cast may depend on a variety of factors, including
the relative size of the objects, the alignment and “endian-ness” of memory
(Section 5.2), and the choices the compiler has made regarding what to place
in adjacent locations in memory. Safer and more portable nonconverting casts
can be achieved in C by means of unions (variant records); we consider this
option in Exercise 7.9.
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conversion to the expected type. This conversion is called a type coercion. Like anEXAMPLE 7.25
Coercion in Ada explicit conversion, a coercion may require run-time code to perform a dynamic

semantic check or to convert between low level representations. Ada coercions
sometimes need the former, though never the latter:

d : weekday; -- as in Example 7.3

k : workday; -- as in Example 7.9

type calendar_column is new weekday;

c : calendar_column;

...

k := d; -- run-time check required

d := k; -- no check required; every workday is a weekday

c := d; -- static semantic error;

-- weekdays and calendar_columns are not compatible

To perform this third assignment in Ada we would have to use an explicit
conversion:

c := calendar_column(d); �
Coercions are a controversial subject in language design. Because they allow

types to be mixed without an explicit indication of intent on the part of the pro-
grammer, they represent a significant weakening of type security. Fortran and C,EXAMPLE 7.26

Coercion in C which have relatively weak type systems, perform quite a bit of coercion. They al-
low values of most numeric types to be intermixed in expressions, and will coerce
types back and forth “as necessary.” Here are some examples in C.

short int s;

unsigned long int l;

char c; /* may be signed or unsigned -- implementation-dependent */

float f; /* usually IEEE single-precision */

double d; /* usually IEEE double-precision */

...

s = l; /* l’s low-order bits are interpreted as a signed number. */

l = s; /* s is sign-extended to the longer length, then

its bits are interpreted as an unsigned number. */

s = c; /* c is either sign-extended or zero-extended to s’s length;

the result is then interpreted as a signed number. */

f = l; /* l is converted to floating-point. Since f has fewer

significant bits, some precision may be lost. */

d = f; /* f is converted to the longer format; no precision lost. */

f = d; /* d is converted to the shorter format; precision may be lost.

If d’s value cannot be represented in single-precision, the

result is undefined, but NOT a dynamic semantic error. */

�
Fortran 90 allows arrays and records to be intermixed if their types have the

same shape. Two arrays have the same shape if they have the same number of
dimensions, each dimension has the same size, and the individual elements have
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the same shape. These rules are roughly equivalent to the compatibility rules for
arrays in Ada, but Fortran 90 allows arrays to be used in many more contexts. In
particular, it allows its full set of arithmetic operations to be applied, element-by-
element, to array-valued operands.

Two Fortran 90 records have the same shape if they have the same number of
fields, and corresponding fields, in order, have the same shape. Field names do
not matter, nor do the actual high and low bounds of array dimensions. C does
not allow records (structures) to be intermixed unless they are structurally equiv-
alent, with identical field names. C provides no operations that take an entire ar-
ray as an operand. C does, however, allow arrays and pointers to be intermixed
in many cases; we will discuss this unusual form of type compatibility further in
Section 7.7.1.

Most modern languages reflect a trend toward static typing and away from
type coercion. Some language designers have argued, however, that coercions
are a natural way in which to support abstraction and program extensibility, by
making it easier to use new types in conjunction with existing ones. C++ in par-
ticular provides an extremely rich, programmer-extensible set of coercion rules.
When defining a new type (a class in C++), the programmer can define coercion
operations to convert values of the new type to and from existing types. These
rules interact in complicated ways with the rules for resolving overloading (Sec-
tion 3.6.2); they add significant flexibility to the language, but are one of the most
difficult C++ features to understand and use correctly.

Overloading and Coercion

We have noted (in Section 3.6.3) that overloading and coercion (as well as vari-
ous forms of polymorphism) can sometimes be used to similar effect. It is worth
repeating some of the distinctions here. An overloaded name can refer to more
than one object; the ambiguity must be resolved by context. In the expression
a + b, for example, + may refer to either the integer or the floating-point ad-
dition operation. In a language without coercion, a and b must either both be
integer or both be real; the compiler chooses the appropriate interpretation of +
depending on their type. In a language with coercion, + refers to the floating-
point addition operation if either a or b is real; otherwise it refers to the integer
addition operation. If only one of a and b is real, the other is coerced to match.
One could imagine a language in which + was not overloaded, but rather referred
to floating-point addition in all cases. Coercion could still allow + to take integer
arguments, but they would always be converted to real. The problem with this
approach is that conversions from integer to floating-point format take a non-
negligible amount of time, especially on machines without hardware conversion
instructions, and floating-point addition is significantly more expensive than in-
teger addition.

In most languages literal (manifest) constants (e.g., numbers, character
strings, the empty set [[ ]] or the null pointer [nil]) can be intermixed in
expressions with values of many types. One might say that constants are over-
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loaded: nil for example might be thought of as referring to the null pointer
value for whatever type is needed in the surrounding context. More commonly,
however, constants are simply treated as a special case in the language’s type-
checking rules. Internally, the compiler considers a constant to have one of a
small number of built-in “constant types” (int const, real const, string, nil),
which it then coerces to some more appropriate type as necessary, even if co-
ercions are not supported elsewhere in the language. Ada formalizes this notion
of “constant type” for numeric quantities: an integer constant (one without a
decimal point) is said to have type universal_integer; a floating-point con-
stant (one with an embedded decimal point and/or an exponent) is said to have
type universal_real. The universal_integer type is compatible with any
type derived from integer; universal_real is compatible with any type de-
rived from real.

Generic Reference Types

For systems programming, or to facilitate the writing of general purpose con-
tainer (collection) objects (lists, stacks, queues, sets, etc.) that hold references to
other objects, several languages provide a “generic reference” type. In C and C++,
this type is called void *. In Clu it is called any; in Modula-2, address; in
Modula-3, refany; in Java, Object; in C#, object. Arbitrary l-values can be
assigned into an object of generic reference type, with no concern about type
safety: because the type of the object referred to by a generic reference is un-
known, the compiler will not allow any operations to be performed on that ob-
ject. Assignments back into objects of a particular reference type (e.g., a pointer
to a programmer-specified record type) are a bit trickier, if type safety is to be
maintained. We would not want a generic reference to a floating-point number,
for example, to be assigned into a variable that is supposed to hold a reference to
an integer, because subsequent operations on the “integer” would interpret the
bits of the object incorrectly. In object-oriented languages, the question of how to
ensure the validity of a generic to specific assignment generalizes to the question
of how to ensure the validity of any assignment in which the type of the object
on left-hand side supports operations that the object on the right-hand side may
not.

One way to ensure the safety of generic to specific assignments (or, in general,
less specific to more specific assignments) is to make objects self-descriptive—
that is, to include in the representation of each object an indication of its type.
This approach is common in object-oriented languages: it is taken in Java, C#,
Eiffel, Modula-3, and C++. (Smalltalk objects are self-descriptive, but Smalltalk
variables are not typed.) Type tags in objects can consume a nontrivial amount
of space, but allow the implementation to prevent the assignment of an object
of one type into a variable of another. In Java and C#, a generic to specific as-
signment requires a type cast, but will generate an exception if the generic ref-
erence does not refer to an object of the casted type. In Eiffel, the equivalent
operation uses a special assignment operator (?= instead of :=); in C++ it uses a
dynamic_cast operation.
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Java and C# programmers frequently create container classes that hold objectsEXAMPLE 7.27
Java container of Object of the generic reference class (Object or object, respectively). When an object

is removed from a container, it must be assigned (with a type cast) into a variable
of an appropriate class before anything interesting can be done with it:3

import java.util.*; // library containing Stack container class

...

Stack myStack = new Stack();

String s = "Hi, Mom";

Foo f = new Foo(); // f is of user-defined class type Foo

...

myStack.push(s);

myStack.push(f); // we can push any kind of object on a stack

...

s = (String) myStack.pop();

// type cast is required, and will generate an exception at run

// time if element at top-of-stack is not a string �
In a language without type tags, the assignment of a generic reference into

an object of a specific reference type cannot be checked, because objects are not
self-descriptive: there is no way to identify their type at run time. The program-
mer must therefore resort to an (unchecked) type conversion. C++ minimizes
the overhead of type tags by permitting dynamic_cast operations only on ob-
jects of polymorphic types. A thorough explanation of this restriction requires
an understanding of virtual methods and their implementation, something we
defer to Sections 9.4.1 and 9.4.2.

7.2.3 Type Inference

We have seen how type checking ensures that the components of an expression
(e.g., the arguments of a binary operator) have appropriate types. But what de-
termines the type of the overall expression? In most cases, the answer is easy. The
result of an arithmetic operator usually has the same type as the operands. The
result of a comparison is usually Boolean. The result of a function call has the
type declared in the function’s header. The result of an assignment (in languages
in which assignments are expressions) has the same type as the left-hand side.
In a few cases, however, the answer is not obvious. In particular, operations on
subranges and on composite objects do not necessarily preserve the types of the
operands. We examine these cases in the remainder of this subsection. We then
consider (on the PLP CD) a more elaborate form of type inference found in ML,
Miranda, and Haskell.

3 If the programmer knows that a container will be used to hold objects of only one type, then
it may be possible to eliminate the type cast and, ideally, its run-time cost by using generics
(Section 8.4).
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Subranges

For simple arithmetic operators, the principal type system subtlety arises when
one or more operands have subrange types (what Ada calls subtypes with range
constraints). Given the following Pascal definitions, for example,EXAMPLE 7.28

Inference of subrange types
type Atype = 0..20;

Btype = 10..20;

var a : Atype;

b : Btype;

what is the type of a + b? Certainly it is neither Atype nor Btype, since the pos-
sible values range from 10 to 40. One could imagine it being a new anonymous
subrange type with 10 and 40 as bounds. The usual answer in Pascal and its de-
scendants is to say that the result of any arithmetic operation on a subrange has
the subrange’s base type, in this case integer. �

In Ada, the type of an arithmetic expression assumes special significance in the
header of a for loop (Section 6.5.1) because it determines the type of the index
variable. For the sake of uniformity, Ada says that the index of a for loop always
has the base type of the loop bounds, whether they are built-up expressions or
simple variables or constants.

If the result of an arithmetic operation is assigned into a variable of a sub-
range type, then a dynamic semantic check may be required. To avoid the ex-
pense of some unnecessary checks, a compiler may keep track at compile time of
the largest and smallest possible values of each expression, in essence computing
the anonymous 10. . . 40 type. Appropriate bounds for the result of an arithmetic
operator can always be calculated from the values for the operands. In addition,EXAMPLE 7.29

Using inference to avoid
run-time checks

for example,

result.min := operand1.min + operand2.min
result.max := operand1.max + operand2.max

For subtraction,

result.min := operand1.min − operand2.max
result.max := operand1.max − operand2.min

The rules for other operators are analogous. �
When an expression is assigned to a subrange variable or passed as a subrange

parameter, the compiler can decide on the need for checks based on the bounds
of the expected type and on the minimum and maximum values maintained for
the expression. If the minimum possible value of the expression is smaller than
the lower bound of the expected type, or if the maximum possible value of the
expression is larger than the upper bound of the expected type, a run-time check
is required. At the same time, if the minimum possible value of the expression
is larger than the upper bound of the expected type, or the maximum possible
value of the expression is smaller than the lower bound of the expected type, then
the compiler can issue a semantic error message at compile time.
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It should be noted that this bounds-tracking technique will not eliminate all
unnecessary checks. In the following Ada code, for example, a compiler thatEXAMPLE 7.30

Heuristic nature of
subrange inference

aimed to do a perfect job of predicting the need for dynamic semantic checks
would need to predict the possible return values of a programmer-specified func-
tion.

a : integer range 0..20;

b : integer range 10..20;

function foo(i : integer) return integer is ...

...

a := b - foo(10); -- does this require a dynamic semantic check?

If foo(10) is guaranteed to lie between 0 and 10, then no dynamic check is re-
quired; the assignment is sure to be ok. If foo(10) is guaranteed to be greater
than 20 or less than −10, then again no check is required; an error can be an-
nounced at compile time. Unfortunately, the value of foo may depend on values
read at run time. Even if it does not, basic results in complexity theory imply that
no compiler will be able to predict the behavior of all user-specified functions.
Because of these limitations, the compiler must inevitably generate some unnec-
essary run-time checks; straightforward tracking of the minimum and maximum
values for expressions is only a heuristic that allows us to eliminate some unnec-
essary checks in practice. More sophisticated techniques can be used to eliminate
many checks in loops; we will consider these in Section 15.5.2. �

Composite Types

Most built-in operators in most languages take operands of built-in types. Some
operators, however, can be applied to values of composite types, including aggre-
gates. Type inference becomes an issue when an operation on composites yields
a result of a different type than the operands.

Character strings provide a simple example. In Pascal, the literal string ’abc’EXAMPLE 7.31
Type inference on string
operations

has type array [1..3] of char. In Ada, the analogous string (denoted "abc")
is considered to have an incompletely specified type that is compatible with
any three-element array of characters. In the Ada expression "abc" & "defg",
"abc" is a three-character array, "defg" is a four-character array, and the re-
sult is a seven-character array formed by concatenating the two. For all three, the
size of the array is known, but the bounds and the index type are not; they must
be inferred from context. The seven-character result of the concatenation could
be assigned into an array of type array (1..7) of character or into an ar-
ray of type array (weekday) of character, or into any other seven-element
character array. �

Operations on composite values also occur when manipulating sets in Pascal
and Modula. As with string concatenation, operations on sets do not necessarily
produce a result of the same type as the operands. Consider the following exam-EXAMPLE 7.32

Type inference for sets ple in Pascal.
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var A : set of 1..10;

B : set of 10..20;

C : set of 1..15;

i : 1..30;

...

C := A + B * [1..5, i];

Pascal provides three operations on sets: union (+), intersection (*), and differ-
ence (-). Set operands are said to have compatible types if their elements have
the same base type T. The result of a set operation is then of type set of T. In
the example above, A, B, and the constructed set [1..5, i] all have the same
base type—namely integer. The type of the right-hand side of the assignment is
therefore set of integer. When an expression is assigned to a set variable or
passed as a set parameter, a dynamic semantic check may be required. In the ex-
ample, the assignment will require a check to ensure that none of the possible
values between 16 and 20 actually occur in the set. �

As with subranges, a compiler can avoid the need for checks in certain cases
by keeping track of the minimum and maximum possible members of the set
expression. Because a set may have many members, some of which may be known
at compile time, it can be useful to track not only the largest and smallest values
that may be in a set, but also the values that are known to be in the set (see
Exercise 7.7).

In Section 7.2.2 we noted that Fortran 90 allows all of its built-in arithmetic
operations to be applied to arrays. The result of an array operation has the same
shape as the operands. Each of its elements is the result of applying the operation
to the corresponding elements of the operand arrays. Since shape is preserved,
type inference is not an issue.

7.2.4 The ML Type System

The most sophisticated form of type inference occurs in certain functional
languages—notably ML, Miranda, and Haskell. Programmers have the option
of declaring the types of objects in these languages, in which case the compiler
behaves much like that of a more traditional statically typed language. As we
noted near the beginning of Section 7.1, however, programmers may also choose
not to declare certain types, in which case the compiler will infer them, based on
the known types of manifest constants, the explicitly declared types of any ob-
jects that have them, and the syntactic structure of the program. ML-style type
inference is the invention of the language’s creator, Robin Milner.4

4 Robin Milner (1934–), of Cambridge University’s Computer Laboratory, is responsible not only
for the development of ML and its type system, but for the Logic of Computable Functions,
which provides a formal basis for machine-assisted proof construction, and the Calculus of
Communicating Systems, which provides a general theory of concurrency. He received the ACM
Turing Award in 1991.
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IN MORE DEPTH

The key to type inference in ML and its descendants is to unify the (partial)
type information available for two expressions whenever the rules of the type
system say that their types must be the same. Information known about each is
then known about the other as well. Any discovered inconsistencies are identified
as static semantic errors. Any expression whose type remains incompletely spec-
ified after inference is automatically polymorphic; this is the implicit parametric
polymorphism referred to in Section 3.6.3. ML family languages also incorporate
a powerful run-time pattern-matching facility and several unconventional struc-
tured types, including ordered tuples, (unordered) records, lists, and a datatype
mechanism that subsumes unions and recursive types.

CHECK YOUR UNDERSTANDING

11. What is the difference between type equivalence and type compatibility?

12. Discuss the comparative advantages of structural and name equivalence for
types. Name three languages that use each approach.

13. Explain the difference between strict and loose name equivalence.

14. Explain the distinction between derived types and subtypes in Ada.

15. Explain the difference between type conversion, type coercion, and nonconvert-
ing type casts.

16. Summarize the arguments for and against coercion.

17. Under what circumstances does a type conversion require a run-time check?

18. What purpose is served by “generic reference” types?

19. What is type inference? Describe three contexts in which it occurs.

7.3 Records (Structures) and Variants (Unions)

As we have seen, record types allow related data of heterogeneous types to be
stored and manipulated together. Some languages (notably Algol 68, C, C++, and
Common Lisp) use the term structure (declared with the keyword struct) in-
stead of record. Fortran 90 simply calls its records “types”: they are the only form
of programmer-defined type other than arrays, which have their own special syn-
tax. Structures in C++ are defined as a special form of class (one in which mem-
bers are globally visible by default). Java has no distinguished notion of struct;
its programmers use classes in all cases. C# uses a reference model for variables
of class types, and a value model for variables of struct types. C# structs do
not support inheritance.
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7.3.1 Syntax and Operations

In Pascal, a simple record might be defined as follows.EXAMPLE 7.33
A Pascal record type two_chars = packed array [1..2] of char;

(* Packed arrays will be explained in Example 7.39.

Packed arrays of char are compatible with quoted strings. *)

type element = record

name : two_chars;

atomic_number : integer;

atomic_weight : real;

metallic : Boolean

end; �
In C, the corresponding declaration would beEXAMPLE 7.34

A C struct struct element {

char name[2];

int atomic_number;

double atomic_weight;

_Bool metallic;

}; �
Each of the record components is known as a field. To refer to a given field of

a record, most languages use “dot” notation. In Pascal:EXAMPLE 7.35
Accessing record fields var copper : element;

const AN = 6.022e23; (* Avogadro’s number *)

...

copper.name := ’Cu’;

atoms := mass / copper.atomic_weight * AN; �
The C notation is similar to that of Pascal; in Fortran 90 one would say
copper%name and copper%atomic_weight. Cobol and Algol 68 reverse the or-
der of the field and record names: name of copper and atomic_weight of
copper. ML’s notation is also “reversed,” but uses a prefix #: #name copper
and #atomic_weight copper. (Fields of an ML record can also be extracted
using patterns.) In Common Lisp, one would say (element-name copper) and
(element-atomic_weight copper).

Most languages allow record definitions to be nested. Again in Pascal:EXAMPLE 7.36
Nested records type short_string = packed array [1..30] of char;

type ore = record

name : short_string;

element_yielded : record

name : two_chars;

atomic_number : integer;

atomic_weight : real;

metallic : Boolean

end

end;

Alternatively, one could say



338 Chapter 7 Data Types

Figure 7.1 Likely layout in memory for objects of type element on a 32-bit machine. Align-
ment restrictions lead to the shaded “holes.”

type ore = record

name : short_string;

element_yielded : element

end;

In Fortran 90 and Common Lisp, only the second alternative is permitted:
record fields can have record types, but the declarations cannot be lexically
nested. Naming for nested records is straightforward: malachite.element_
yielded.atomic_number in Pascal or C; atomic_number of element_yielded
of malachite in Cobol; #atomic_number #element_yielded malachite
in ML; (element-atomic_number (ore-element_yielded malachite)) in
Common Lisp. �

As noted in Example 7.14, ML differs from most languages in specifying thatEXAMPLE 7.37
ML records and tuples the order of record fields is insignificant. The ML record value {name = "Cu",

atomic_number = 29, atomic_weight = 63.546, metallic = true} is the
same as the value {atomic_number = 29, name = "Cu", atomic_weight =
63.546, metallic = true} (they will test true for equality). ML tuples are
defined as abbreviations for records whose field names are small integers. The
values ("Cu", 29), {1 = "Cu", 2 = 29}, and {2 = 29, 1 = "Cu"} will all
test true for equality. �

7.3.2 Memory Layout and Its Impact

The fields of a record are usually stored in adjacent locations in memory. In its
symbol table, the compiler keeps track of the offset of each field within each
record type. When it needs to access a field, the compiler typically generates a
load or store instruction with displacement addressing. For a local object, the
base register is the frame pointer; for a global object, the base register is the glob-
als pointer. In either case, the displacement is the sum of the record’s offset from
the register and the field’s offset within the record.

A likely layout for our element type on a 32-bit machine appears in Fig-EXAMPLE 7.38
Memory layout for a
record type

ure 7.1. Because the name field is only two characters long, it occupies two bytes
in memory. Since atomic_number is an integer, and must (on most machines) be
longword-aligned, there is a two-byte “hole” between the end of name and the be-
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Figure 7.2 Likely memory layout for packed element records. The atomic_number and
atomic_weight fields are nonaligned, and can only be read or written (on most machines) via
multi-instruction sequences.

ginning of atomic_number. Similarly, since Boolean variables (in most language
implementations) occupy a single byte, there are three bytes of empty space be-
tween the end of the metallic field and the next aligned location. In an array of
elements, most compilers would devote 20 bytes to every member of the array.�

Pascal allows the programmer to specify that a record type (or an array, set, orEXAMPLE 7.39
Layout of packed types file type) should be packed:

type element = packed record

name : two_chars;

atomic_number : integer;

atomic_weight : real;

metallic : Boolean

end;

The keyword packed indicates that the compiler should optimize for space in-
stead of speed. In most implementations a compiler will implement a packed
record without holes, by simply “pushing the fields together.” To access a non-
aligned field, however, it will have to issue a multi-instruction sequence that
retrieves the pieces of the field from memory and then reassembles them in a
register. A likely packed layout for our element type (again for a 32-bit ma-
chine) appears in Figure 7.2. It is 15 bytes in length. An array of packed element
records would probably devote 16 bytes to each member of the array—that is,
it would align each element. A packed array of packed records would proba-
bly devote only 15 bytes to each; only every fourth element would be aligned.
Ada, Modula-3, and C provide more elaborate packing mechanisms, which al-
low the programmer to specify precisely how many bits are to be devoted to each
field. �

Most languages allow a value to be assigned to an entire record in a singleEXAMPLE 7.40
Assignment and
comparison of records

operation:

my_element := copper;

Ada also allows records to be compared for equality (if my_element = copper
then ...), but most other languages (including Pascal, Modula, C, and C++) do
not, though C++ allows the programmer to define equality tests for individual
record types. �
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Figure 7.3 Rearranging record fields to minimize holes. By sorting fields according to the size
of their alignment constraint, a compiler can minimize the space devoted to holes, while keeping
the fields aligned.

For small records, both copies and comparisons can be performed in-line on
a field-by-field basis. For longer records, we can save significantly on code space
by deferring to a library routine. A block_copy routine can take source address,
destination address, and length as arguments, but the analogous block_compare
routine would fail on records with different (garbage) data in the holes. One so-
lution is to arrange for all holes to contain some predictable value (e.g., zero),
but this requires code at every elaboration point. Another is to have the compiler
generate a customized field-by-field comparison routine for every record type.
Different routines would be called to compare records of different types. Lan-
guages like Pascal and C avoid the whole issue by simply outlawing full-record
comparisons.

In addition to complicating comparisons, holes in records waste space. Pack-EXAMPLE 7.41
Minimizing holes by sorting
fields

ing eliminates holes, but at potentially heavy cost in access time. A compromise,
adopted by some compilers, is to sort a record’s fields according to the size of their
alignment constraints. All byte-aligned fields come first, followed by any half-
word aligned fields, word-aligned fields, and (if the hardware requires) double-
word-aligned fields. For our element type, the resulting rearrangement is shown
in Figure 7.3. �

In most cases, reordering of fields is purely an implementation issue: the pro-
grammer need not be aware of it, as long as all instances of a record type are
reordered in the same way. The exception occurs in systems programs, which
sometimes “look inside” the implementation of a data type with the expectation

DESIGN & IMPLEMENTATION

The order of record fields
Issues of record field order are intimately tied to implementation tradeoffs:
Holes in records waste space, but alignment makes for faster access. If holes
contain garbage, we can’t can’t compare records by looping over words or
bytes, but zero-ing out the holes would incur costs in time and code space.
Predictable layout is important for mirroring hardware structures in “systems”
languages, but reorganization may be advantageous in large records if we can
group frequently accessed fields together, so they lie in the same cache line.
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that it will be mapped to memory in a particular way. A kernel programmer, for
example, may count on a particular layout strategy in order to define a record
that mimics the organization of memory-mapped control registers for a partic-
ular Ethernet device. C and C++, which are designed in large part for systems
programs, guarantee that the fields of a struct will be allocated in the order de-
clared. The first field is guaranteed to have the coarsest alignment required by the
hardware for any type (generally a four- or eight-byte boundary). Subsequent
fields have the natural alignment for their type. To accommodate systems pro-
grams, Ada and C++ allow the programmer to specify nonstandard alignment
for the fields of specific record types.

7.3.3 With Statements

In programs with complicated data structures, manipulating the fields of a deeplyEXAMPLE 7.42
Pascal with statement nested record can be awkward:

ruby.chemical_composition.elements[1].name := ’Al’;

ruby.chemical_composition.elements[1].atomic_number := 13;

ruby.chemical_composition.elements[1].atomic_weight := 26.98154;

ruby.chemical_composition.elements[1].metallic := true;

Pascal provides a with statement to simplify such constructions:

with ruby.chemical_composition.elements[1] do begin

name := ’Al’;

atomic_number := 13;

atomic_weight := 26.98154;

metallic := true

end; �

IN MORE DEPTH

Pascal with statements are generally considered an improvement on the earlier
elliptical references of Cobol and PL/I. They still suffer from several limitations,
however, most of which are addressed in Modula-3. Similar functionality can be
achieved with nested scopes in languages like Lisp and ML, which use a reference
model of variables, and in languages like C and C++, which allow the program-
mer to create pointers or references to arbitrary objects.

7.3.4 Variant Records

A variant record provides two or more alternative fields or collections of fields,
only one of which is valid at any given time. In Pascal, we might augment ourEXAMPLE 7.43

Variant record in Pascal element type as follows.



342 Chapter 7 Data Types

type long_string = packed array [1..200] of char;

type string_ptr = ^long_string;

type element = record

name : two_chars;

atomic_number : integer;

atomic_weight : real;

metallic : Boolean;

case naturally_occurring : Boolean of

true : (

source : string_ptr;

(* textual description of principal commercial source *)

prevalence : real;

(* fraction, by weight, of Earth’s crust *)

);

false : (

lifetime : real;

(* half-life in seconds of the most stable known isotope *)

)

end;

Here the naturally_occurring field of the record is known as its tag, or
discriminant. A true tag indicates that the element has at least one naturally
occurring stable isotope; in this case the record contains two additional fields—
source and prevalence—that describe how the element may be obtained and
how commonly it occurs. A false tag indicates that the element results only
from atomic collisions or the decay of heavier elements; in this case, the record
contains an additional field—lifetime—that indicates how long atoms so
created tend to survive before undergoing radioactive decay. Each of the paren-
thesized field lists (one containing source and prevalence, the other con-
taining lifetime) is known as a variant. Either the first or the second variant
may be useful, but never both at once. From an implementation point of view,
these nonoverlapping uses mean that the variants may share space (see Fig-
ure 7.4). �

Variant records have their roots in the equivalence statement of Fortran I
and in the union types of Algol 68. The Fortran syntax looks like this:EXAMPLE 7.44

Fortran equivalence

statement integer i

real r

logical b

equivalence (i, r, b)

The equivalence statement informs the compiler that i, r, and b will never be
used at the same time, and should share the same space in memory. �

Pascal’s principal contribution to union types (retained by Modula and Ada)
was to integrate them with records. This was an important contribution, because
the need for alternative types seldom arises anywhere else. In our running ex-EXAMPLE 7.45

Mixing structs and
unions in C

ample, we use the same field-name syntax to access both the atomic_weight
and lifetime fields of an element, despite the fact that the former is present
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Figure 7.4 Likely memory layouts for element variants. The value of the
naturally_occurring field (shown here with a double border) determines which of the
interpretations of the remaining space is valid. Type string_ptr is assumed to be represented
by a (four-byte) pointer to dynamically allocated storage.

in every element, while the latter is present only in those that are not naturally
occurring. Without the integration of records and unions, the notation is less
convenient. Here’s what it looks like in C:

struct element {

char name[2];

int atomic_number;

double atomic_weight;

_Bool metallic;

_Bool naturally_occurring;

union {

struct {

char *source;

double prevalence;

} natural_info;

double lifetime;

} extra_fields;

} copper;

Because the union is not a part of the struct, we have to introduce two extra
levels of naming. The third field is still copper.atomic_weight, but the source
field must be accessed as copper.extra_fields.natural_info.source. A sim-
ilar situation occurs in ML, in which datatypes can be used for unions, but the
notation is not integrated with records (Exercise 7.33). �

Safety

One of the principal problems with equivalence statements is that they provideEXAMPLE 7.46
Breaking type safety with
equivalence

no built-in means of determining which of the equivalence-ed objects is cur-
rently valid: the program must keep track. Mistakes in which the programmer
writes to one object and then reads from the other are relatively common:
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r = 3.0

...

print ’(I10)’, i

Here the print statement, which attempts to output i as a 10-digit integer, will
(in most implementations) take its bits from the floating-point representation
of 3.0. This is almost certainly a mistake, but one that the language implementa-
tion will not catch. �

Fortran equivalence statements introduce an extreme case of aliases: not
only are there two names for the “same thing” (in this case the same block of
storage), but the types associated with those names are different. To address thisEXAMPLE 7.47

Union conformity in
Algol 68

potential source of bugs, the Algol 68 designers required that the language imple-
mentation track union-ed types at run time:

union (int, real, bool) uirb

# uirb can be an integer, a floating-point number, or a Boolean #

...

uirb := 1 # uirb is now an integer #

...

uirb := 3.14 # uirb is now a floating-point number #

To use the value stored inside a union, the programmer must employ a special
form of case statement (called a conformity clause in Algol 68) that determines
which type is currently valid:

case uirb in

(int i) : print(i),

(real r) : print(r),

(bool b) : print(b)

esac

The labels on the arms of the case statement provide names for the “deunified”
values. A similar tagcase construct can be found in Clu. �

To enforce correct usage of union types in Algol 68, the language implementa-
tion must maintain a hidden variable for every union object that indicates which
type is currently valid. When an object of a union type is assigned a value, the
hidden variable is also set, to indicate the type of the value just assigned. When
execution encounters a conformity clause, the hidden field is inspected to deter-
mine which arm to execute.

In effect, the tag field of a Pascal variant record is an explicit representa-
tion of the hidden variable required in an Algol 68 union. Our integer/floating-EXAMPLE 7.48

Tagged variant record in
Pascal

point/Boolean example could be written as follows in Pascal.

type tag = (is_int, is_real, is_bool);

var uirb : record

case which : tag of

is_int : (i : integer);

is_real : (r : real);

is_bool : (b : Boolean)

end; �
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Unfortunately, while the hidden tag of an Algol 68 union can only be changedEXAMPLE 7.49
Breaking type safety with
variant records

implicitly, by assigning a value of a different type to the union as a whole, the tag
of a Pascal variant record can be changed by an ordinary assignment statement.
The compiler can generate code to verify that a field in variant v is never accessed
unless the value of the tag indicates that v is currently valid, but this is not enough
to guarantee type safety. It can catch errors of the form

uirb.which := is_real;

uirb.r := 3.0;

...

writeln(uirb.i); (* dynamic semantic error *)

but it cannot catch the following.

uirb.which := is_real;

uirb.r := 3.0;

uirb.which := is_int;

... (* no intervening assignment to i *)

writeln(uirb.i); (* ouch! *)

Any Pascal implementation will accept this code, but the output is likely to be
erroneous, just as it was in Fortran. �

Semantically speaking, changing the tag of a Pascal variant record should make
the remaining fields of the variant uninitialized. It is possible, by adding hidden
fields, to flag them as such and generate a semantic error message on any sub-
sequent access, but the code to do so is expensive [FL80], and outlaws programs
that, while arguably erroneous, are permitted by the language definition (Exer-
cise 7.12).

The situation in Pascal is actually worse than our example so far might imply.EXAMPLE 7.50
Untagged variants in Pascal Additional insecurity stems from the fact that Pascal’s tag fields are optional. We

could eliminate the which field of our uirb record:

var uirb : record

case tag of

is_int : (i : integer);

is_real : (r : real);

is_bool : (b : Boolean)

end;

...

uirb.r := 3.0;

... (* no intervening assignment to i *)

writeln(uirb.i); (* ouch! *)

Now the language implementation is not required to devote any space to either
an explicit or hidden tag, but even the limited form of checking (make sure the
tag has an appropriate value when a field of a variant is accessed) is no longer
possible (but see Exercise 7.13). Variant records with tags (explicit or hidden)
are known as discriminated unions. Variant records without tags are known as
nondiscriminated unions. �
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The degree of type safety provided is arguably the most important dimension
of variation among the variant records and union types of modern languages.
Though designed after Algol 68 (and borrowing its union terminology), the
union types of C are semantically closer to Fortran’s equivalence statements.
Their fields share space, but nothing prevents the programmer from using them
in inappropriate ways. By contrast, the variant records of Ada are syntactically
similar to those of Pascal, but are as type-safe as the unions of Algol 68. Con-
cerned at the lack of type safety in Pascal and Modula-2, and reluctant to intro-
duce the complexity of Ada’s rules, the designers of Modula-3 chose to eliminate
variant records from the language entirely. They note [Har92, p. 110] that much
of the same effect can be obtained via object types and subtypes. The designers
of Java and C#, likewise, dropped the unions of C and C++.

Variants in Ada

Ada variant records must always have a tag (called the discriminant in Ada).EXAMPLE 7.51
Ada variants and tags
(discriminants)

Moreover, the tag can never be changed without simultaneously assigning values
to all of the fields of the corresponding variant. The assignment can occur either
via whole-record assignment (e.g., A := B, where A and B are variant records) or
via assignment of an aggregate (e.g., A := {which => is_real, r => pi};).
In addition to appearing as a field within the record, the discriminant of a variant
record in Ada must also appear in the header of the record’s declaration:

type element (naturally_occurring : Boolean := true) is record

name : string (1..2);

atomic_number : integer;

atomic_weight : real;

metallic : Boolean;

case naturally_occurring is

when true =>

source : string_ptr;

prevalence : real;

when false =>

lifetime : real;

end case;

end record;

Here we have not only declared the discriminant of the record in its header,
we have also specified a default value for it. A declaration of a variable of type
element has the option of accepting this default value:

copper : element;

or overriding it:

plutonium : element (false);

neptunium : element (naturally_occurring => false);

-- alternative syntax

If the type declaration for element did not specify a default value for
naturally_occurring, then all variables of type element would have to pro-
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vide a value. These rules guarantee that the tag field of a variant record is never
uninitialized. �

An Ada record variable whose declaration specifies a value for the discrimi-
nant is said to be constrained. Its tag field can never be changed by a subsequent
assignment. This immutability means that the compiler can allocate just enough
space to hold the specified variant; this space may in some cases be significantly
smaller than would be required for other variants. A variable whose declaration
does not provide an initial value for the discriminant is said to be unconstrained.
Its tag will be initialized to the value in the type declaration, but may be changed
by later (whole-record) assignments, so the space that the record occupies must
be large enough to hold any possible variant.

An Ada subtype definition can also constrain the discriminant(s) of its parentEXAMPLE 7.52
A discriminated subtype in
Ada

type:

subtype natural_element is element (true);

Variables of type natural_element will all be constrained; their naturally_
occurring field cannot be changed. Because natural_element is a subtype,
rather than a derived type, values of type element and natural_element are
compatible with each other, though a run-time semantic check will usually be
required to assign the former into the latter. �

Ada uses record discriminants not only for variant tags, but in general for any
value that affects the size of a record. Here is an example that uses a discriminantEXAMPLE 7.53

Discriminated array in Ada to specify the length of an array:

DESIGN & IMPLEMENTATION

The placement of variant fields
To facilitate space-saving in constrained variant records, Ada requires that all
variant parts of a record appear at the end. This rule ensures that every field
has a constant offset from the beginning of the record, with no holes (in any
variant) other than those required for alignment. When a constrained vari-
ant record is elaborated, the Ada run-time system need only allocate sufficient
space to hold the specified variant, which is never allowed to change. Pascal has
a similar rule, designed for a similar purpose. When a variant record is allo-
cated from the heap in Pascal (via the built-in new operator), the programmer
has the option of specifying case labels for the variant portions of the record.
A record so allocated is never allowed to change to a different variant, so the
implementation can allocate precisely the right amount of space.

Modula-2, which does not provide new as a built-in operation, eliminates
the ordering restriction on variants. All variables of a variant record type must
be large enough to hold any variant. The usual implementation assigns a fixed
offset to every field, with holes following small internal variants as necessary
(see Figure 7.5 and Exercise 7.14).
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TYPE element = RECORD

name : ARRAY [1..2] OF CHAR;

metallic : BOOLEAN;

CASE naturally_occurring : BOOLEAN OF

TRUE :

source : string_ptr;

prevalence : REAL;

| FALSE :

lifetime : REAL;

END;

atomic_number : INTEGER;

atomic_weight : REAL;

END;

Figure 7.5 Likely memory layout for a variant record in Modula-2. Here the variant portion
of the record is not required to lie at the end. Every field has a fixed offset from the beginning
of the record, with internal holes as necessary following small-size variants.

type element_array is array (integer range <>) of element;

type alloy (num_components : integer) is record

name : string (1..30);

components : element_array (1..num_components);

tensile_strength : real;

end record;

The <> notation in the initial definition of element_array indicates that the
bounds are not statically known. We will have more to say about dynamic arrays
in Section 7.4.2. As with discriminants used for variant tags, the programmer
must either specify a default value for the discriminant in the type declaration
(we did not do so above) or else every declaration of a variable of the type must
specify a value for the discriminant (in which case the variable is constrained,
and the discriminant cannot be changed). �

CHECK YOUR UNDERSTANDING

20. Discuss the significance of “holes” in records. Why do they arise? What prob-
lems do they cause?
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21. What is packing? What are its advantages and disadvantages?

22. Why might a compiler reorder the fields of a record? What problems might
this cause?

23. Why is it useful to integrate variants (unions) with records (structs)? Why
not leave them as separate mechanisms, as they are in Algol 68 and C?

24. Discuss the type safety problems that arise with variant records. How can
these problems be addressed?

25. What is a tag (discriminant)? How does it differ from an ordinary field?

26. Summarize the rules that prevent access to inappropriate fields of a variant
record in Ada.

27. Why might one wish to constrain a variable, so that it can hold only one
variant of a type?

7.4 Arrays

Arrays are the most common and important composite data types. They have
been a fundamental part of almost every high-level language, beginning with
Fortran I. Unlike records, which group related fields of disparate types, arrays are
usually homogeneous. Semantically, they can be thought of as a mapping from an
index type to a component or element type. Some languages (e.g., Fortran) require
that the index type be integer; many languages allow it to be any discrete type.
Some languages (e.g., Fortran 77) require that the element type of an array be
scalar. Most (including Fortran 90) allow any element type.

Some languages (notably scripting languages) allow nondiscrete index types.
The resulting associative arrays must generally be implemented with hash tables,
rather than with the more efficient contiguous allocation to be described in Sec-
tion 7.4.3. Associative arrays in C++ are known as maps; they are supported by a
standard library template. Java and C# have similar library classes. For the pur-
poses of this chapter, we will assume that array indices are discrete (but see Sec-
tion 13.4.3).

7.4.1 Syntax and Operations

Most languages refer to an element of an array by appending a subscript—
delimited by parentheses or square brackets—to the name of the array. In For-
tran and Ada, one says A(3); in Pascal and C, one says A[3]. Since parentheses
are generally used to delimit the arguments to a subroutine call, square bracket
subscript notation has the advantage of distinguishing between the two. The dif-
ference in notation makes a program easier to compile and, arguably, easier to
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read. Fortran’s use of parentheses for arrays stems from the absence of square
bracket characters on IBM keypunch machines, which at one time were widely
used to enter Fortran programs. Ada’s use of parentheses represents a deliberate
decision on the part of the language designers to embrace notational ambiguity
for functions and arrays. If we think of an array as a mapping from the index
type to the element type, it makes perfectly good sense to use the same nota-
tion used for functions. In some cases, a programmer may even choose to change
from an array to a function-based implementation of a mapping, or vice versa
(Exercise 7.15).

Declarations

In some languages one declares an array by appending subscript notation to theEXAMPLE 7.54
Array declarations syntax that would be used to declare a scalar. In C:

char upper[26];

In Fortran:

character, dimension (1:26) :: upper

character (26) upper ! shorthand notation

In C, the lower bound of an index range is always zero: the indices of an n-element
array are 0 . . n − 1. In Fortran, the lower bound of the index range is one by
default. Fortran 90 allows a different lower bound to be specified if desired, using
the notation shown in the first of the two declarations above.

In other languages, arrays are declared with an array constructor. In Pascal:

var upper : array [’a’..’z’] of char;

In Ada:

upper : array (character range ’a’..’z’) of character; �
Most languages make it easy to declare multidimensional arrays:EXAMPLE 7.55

Multidimensional arrays
matrix : array (1..10, 1..10) of real; -- Ada

real, dimension (10,10) :: matrix ! Fortran �
In some languages (e.g., Pascal, Ada, and Modula-3), one can also declare a mul-
tidimensional array by using the array constructor more than once in the same
declaration. In Modula-3,

VAR matrix : ARRAY [1..10], [1..10] OF REAL;

is syntactic sugar for

VAR matrix : ARRAY [1..10] OF ARRAY [1..10] OF REAL;

and matrix[3, 4] is syntactic sugar for matrix[3][4]. Similar equivalences
hold in Pascal.
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In Ada, by contrast,EXAMPLE 7.56
Multidimensional v. built-up
arrays matrix : array (1..10, 1..10) of real;

is not the same as

matrix : array (1..10) of array (1..10) of real;

The former is a two-dimensional array, while the latter is an array of one-
dimensional arrays. With the former declaration, we can access individual real
numbers as matrix(3, 4); with the latter we must say matrix(3)(4). The
two-dimensional array is arguably more elegant, but the array of arrays sup-
ports additional operations: it allows us to name the rows of matrix individually

DESIGN & IMPLEMENTATION

Is [ ] an operator?
The definition of associative arrays in C++ leverages the ability to overload
square brackets ([ ]), which C++ treats as an operator. C#, like C++, provides
extensive facilities for operator overloading, but it does not use these facilities
to support associative arrays. Instead, the language provides a special indexer
mechanism, with its own unique syntax:

class directory {

Hashtable table; // from standard library

...

public directory() { // constructor

table = new Hashtable();

}

...

public string this[string name] { // indexer method

get {

return (string) table.get_Item(name);

}

set {

table.Add(name, value); // value is implicitly

} // a parameter of set

}

}

...

directory d = new directory();

...

d["Jane Doe"] = "234-5678";

Console.WriteLine(d["Jane Doe"]);

Why the difference? In C++, operator[] can return a reference (an explicit
lvalue—see Section 8.3.1), which can be used on either side of an assignment.
C# has no comparable notion of reference, so it needs separate methods to get
and set the value of d["Jane Doe"].
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Figure 7.6 Array slices (sections) in Fortran 90. Much like the values in the header of an
enumeration-controlled loop (Section 6.5.1), a : b : c in a subscript indicates positions a, a + c,
a + 2c, . . . through b. If a or b is omitted, the corresponding bound of the array is assumed.
If c is omitted, 1 is assumed. It is even possible to use negative values of c in order to select
positions in reverse order. The slashes in the second subscript of the lower-right example delimit
an explicit list of positions.

(matrix(3) is a 10-element, single-dimensional array), and it allows us to take
slices, as discussed below. �

In C, one must also declare an array of arrays, and use two-subscript notation,EXAMPLE 7.57
Arrays of arrays in C but C’s integration of pointers and arrays (to be discussed in Section 7.7.1) means

that slices are not supported.

double matrix[10][10];

Given this definition, matrix[3][4] denotes an individual element of the array,
but matrix[3] denotes a reference, either to the third row of the array or to the
first element of that row, depending on context. �

Slices and Array Operations

A slice or section is a rectangular portion of an array. Fortran 90 provides extensiveEXAMPLE 7.58
Array slice operations facilities for slicing, as do many scripting languages, including Perl, Python, Ruby,

and R. Figure 7.6 illustrates some of the possibilities in Fortran 90, using the
declaration of matrix shown above. Ada provides more limited support: a slice
is simply a contiguous range of elements in a one-dimensional array. �

In most languages, the only operations permitted on an array are selection
of an element (which can then be used for whatever operations are valid on its
type), and assignment. A few languages (e.g., Ada and Fortran 90) allow arrays
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to be compared for equality. Ada allows one-dimensional arrays whose elements
are discrete to be compared for lexicographic ordering: A < B if the first element
of A that is not equal to the corresponding element of B is less than that corre-
sponding element. Ada also allows the built-in logical operators (or, and, xor)
to be applied to Boolean arrays.

Fortran 90 has a very rich set of array operations: built-in operations that take
entire arrays as arguments. Because Fortran uses structural type equivalence, the
operands of an array operator need only have the same element type and shape.
In particular, slices of the same shape can be intermixed in array operations, even
if the arrays from which they were sliced have very different shapes. Any of the
built-in arithmetic operators will take arrays as operands; the result is an array,
of the same shape as the operands, whose elements are the result of applying
the operator to corresponding elements. As a simple example, A + B is an array
each of whose elements is the sum of the corresponding elements of A and B.
Fortran 90 also provides a huge collection of intrinsic, or built-in functions. More
than 60 of these (including logic and bit manipulation, trigonometry, logs and
exponents, type conversion, and string manipulation) are defined on scalars but
will also perform their operation element-wise if passed arrays as arguments. The
function tan(A), for example, returns an array consisting of the tangents of the
elements of A. Many additional intrinsic functions are defined solely on arrays.
These include searching and summarization, transposition, and reshaping and
subscript permutation.

An equally rich set of array operations can be found in APL, an array manipu-
lation language developed by Iverson and others in the early to mid-1960s.5 APL
was designed primarily as a terse mathematical notation for array manipulations.
It employs an enormous character set that makes it difficult to use with conven-
tional keyboards. Its variables are all arrays, and many of the special characters
denote array operations. APL implementations are designed for interpreted, in-
teractive use. They are best suited to “quick and dirty” solutions of mathematical
problems. The combination of very powerful operators with very terse notation
makes APL programs notoriously difficult to read and understand. The J nota-
tion, a successor to APL, uses a conventional character set.

7.4.2 Dimensions, Bounds, and Allocation

In all of the examples in the previous subsection, the number of dimensions and
bounds of each array (what Fortran calls its shape) were specified in the declara-
tion. This need not be the case. And even when the shape of an array is specified,
it may depend in some languages on values that are not known at compile time.

5 Kenneth Iverson (1920–2004), a Canadian mathematician, joined the faculty at Harvard Uni-
versity in 1954, where he conceived APL as a notation for describing mathematical algorithms.
He moved to IBM in 1960, where he helped develop the notation into a practical programming
language. He was named an IBM Fellow in 1970, and received the ACM Turing Award in 1979.
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Figure 7.7 Allocation in Ada of local arrays whose shape is bound at elaboration time. Here
M is a square two-dimensional array whose width is determined by a parameter passed to foo

at run time. The compiler arranges for a pointer to M to reside at a static offset from the
frame pointer. M cannot be placed among the other local variables because it would prevent
those higher in the frame from having static offsets. Additional variable-size arrays are easily
accommodated. The purpose of the dope vector field is explained in Section 7.4.3.

The time at which the shape of an array is bound has a major impact on how
storage for the array is managed. At least five cases arise.

global lifetime, static shape: If the shape of an array is known at compile time,
and if the array can exist throughout the execution of the program, then the
compiler can allocate space for the array in static global memory.

local lifetime, static shape: If the shape of the array is known at compile time,
but the array should not exist throughout the execution of the program (gen-
erally because it is a local variable of a potentially recursive subroutine), then
space can be allocated in the subroutine’s stack frame at run time.

local lifetime, shape bound at elaboration time: In some languages (e.g., Ada andEXAMPLE 7.59
Stack allocation of
elaborated arrays

C99), the shape of an array may not be known until elaboration time. In this
case it is still possible to place the space for the array in the stack frame of its
subroutine, but an extra level of indirection is required (see Figure 7.7).
In order to ensure that every local object can be found using a known offset
from the frame pointer, we divide the stack frame into a fixed-size part and a
variable-size part. An object whose size is statically known goes in the fixed-
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size part. An object whose size is not known until elaboration time goes in the
variable-size part, and a pointer to it goes in the fixed-size part. (We shall see
in Section 7.4.3 that the pointer must be augmented with a descriptor, or dope
vector, that specifies any bounds that were not known at compile time.) If the
elaboration of the array is buried in a nested block, the compiler delays allo-
cating space (i.e., changing the stack pointer) until the block is entered. It still
allocates space for the pointer among the local variables when the subroutine
itself is entered. �

arbitrary lifetime, shape bound at elaboration time: In Java and C#, every arrayEXAMPLE 7.60
Stack allocation of new
arrays

variable is a reference to an object in the object-oriented sense of the word.
The declaration int[ ] A does not allocate space; it simply creates a refer-
ence. To make the reference refer to something, the programmer must either
explicitly allocate a new object from the heap (A = new int[size]) or assign
a reference from another array (A = B), which already holds a reference to an
object in the heap. In either case, the size of an array, once allocated, never
changes. �

arbitrary lifetime, dynamic shape: If the size of an array can change as the result
of executable statements, then allocation in the stack frame will not suffice,
because the space at both ends of an array might be in use for something else
when the array needs to grow. To allow the size to change, an array must gen-
erally be allocated from the heap. (A pointer to the array still resides in the
fixed-size portion of the stack frame.) In most cases, increasing the size will
require that we allocate a larger block, copy any data that is to be retained
from the old block to the new, and then deallocate the old.

Arrays of static shape are heavily used by many kinds of programs. Arrays
whose shape is not known until elaboration time are also very common, particu-
larly in numerical software. Many scientific programs rely on numerical libraries
for linear algebra and the manipulation of systems of equations. Since different
programs use arrays of different shapes, the subroutines in these libraries need to
be able to take arguments whose size is not known at compile time.

Conformant Arrays

Early versions of Pascal required the shape of all arrays to be specified statically.EXAMPLE 7.61
Conformant array
parameters

Standard Pascal relaxes this requirement by allowing array parameters to have
bounds that are symbolic names rather than constants. It calls these parameters
conformant arrays:

function DotProduct(A, B : array [lower..upper : integer] of real)

: real;

var i : integer;

rtn : real;

begin

rtn := 0;

for i := lower to upper do rtn := rtn + A[i] * B[i];

DotProduct := rtn

end;
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Here lower and upper are initialized at the time of call, providing DotProduct
with the information it needs to understand the shape of A and B. In effect,
lower and upper are extra parameters of DotProduct. Conformant arrays can
be passed either by value or by reference. C also supports dynamic-size array
parameters, as a natural consequence of its merger of arrays and pointers (to be
discussed in Section 7.7.1). C arrays are always passed by reference. �

Pascal does not allow a local variable to be an array of dynamic shape. Ada
and C99 do. Among other things, local arrays can be declared to match the shapeEXAMPLE 7.62

Local arrays of dynamic
shape

of dynamic-size array parameters, facilitating the implementation of algorithms
that require “scratch space.” Figure 7.8 contains an Ada example. The program
shown plays Conway’s game of Life [Gar70]. (Life is a cellular automaton meant to
model biological populations. The patterns it produces can be amazingly com-
plex and beautiful. Type “Conway Game of Life” into any search engine for a
wealth of online examples.) The main routine allocates a local array the same size
as the game board, which it uses to calculate successive generations. Note that
much more efficient algorithms exist; we present this one because it is brief and
clear.

The <> notation in the definition of lifeboard indicates that the bounds of
the array are not statically known. Ada actually defines an array type to have no
bounds. The type of any array with bounds is a constrained subtype of an ar-
ray type with the same number of dimensions but unknown bounds. Bounds
of a dynamic array can be obtained at run-time through use of the array at-
tributes ’first and ’last. A’first(1) is the low bound of A’s first dimension;
A’last(2) is the upper bound of its second dimension. The expression A’range
is short for A’first..A’last. �

Dynamic Arrays

Several languages, including Snobol, Icon, and Perl, allow strings—arrays of
characters—to change size after elaboration time. Java and C# provide a simi-EXAMPLE 7.63

Dynamic strings in Java and
C#

lar capability (with a similar implementation), but describe the semantics differ-
ently: string variables in Java and C# are references to immutable string objects:

String s = "short";

...

s = s + " but sweet"; // + is the concatenation operator

Here the declaration String s introduces a string variable, which we initialize
with a reference to the constant string "short". In the subsequent assignment, +
creates a new string containing the concatenation of the old s and the constant
" but sweet"; s is then set to refer to this new string, rather than the old. Java
and C# strings, by the way, are not the same as arrays of characters: strings are
immutable, but elements of an array can be changed in place. �

Dynamically resizable arrays (other than strings) appear in APL, Perl, and
Common Lisp. They are also supported by the vector, Vector, and ArrayList
classes of the C++, Java, and C# libraries, respectively. Fortran 90 allows specifi-EXAMPLE 7.64

Elaborated arrays in
Fortran 90
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type presence is integer range 0..1;

type lifeboard is array (integer range <>, integer range <>) of presence;

-- cell is 1 if occupied; 0 otherwise

-- border row around the edge is permanently empty

unexpected : exception;

procedure life(B : in out lifeboard;

generations : in integer) is

T : lifeboard(B’range(1), B’range(2));

-- mimic the bounds of B

begin

for i in 1..generations loop

T := B; -- copy board, including empty borders

for i in B’first(1)+1..B’last(1)-1 loop

for j in B’first(2)+1..B’last(2)-1 loop

case T(i-1, j-1) + T(i-1, j) + T(i-1, j+1)

+ T(i, j-1) + T(i, j+1)

+ T(i+1, j-1) + T(i+1, j) + T(i+1, j+1) is

when 0 | 1 => B(i, j) := 0;

-- die of loneliness

when 2 => B(i, j) := T(i, j);

-- no-op; survive if present

when 3 => B(i, j) := 1;

-- reproduce

when 4..8 => B(i, j) := 0;

-- die of overcrowding

when others =>

raise unexpected;

end case;

end loop;

end loop;

end loop;

end life;

Figure 7.8 Dynamic local arrays in Ada.

cation of the bounds of an array to be delayed until after elaboration, but it does
not allow those bounds to change once they have been defined:

real, dimension (:,:), allocatable :: mat

! mat is two-dimensional, but with unspecified bounds

...

allocate (mat (a:b, 0:m-1))

! first dimension has bounds a..b; second has bounds 0..m-1

...

deallocate (mat)

! implementation is now free to reclaim mat’s space

A similar effect can be obtained in some languages through the use of pointers
(see Exercise 7.18). �
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7.4.3 Memory Layout

Arrays in most language implementations are stored in contiguous locations in
memory. In a one-dimensional array, the second element of the array is stored
immediately after the first (subject to alignment constraints); the third is stored
immediately after the second, and so forth. For arrays of records, it is common
for each subsequent element to be aligned at an address appropriate for any type;
small holes between consecutive records may result. On some machines, an im-
plementation may even place holes between elements of built-in types. Some lan-
guages (e.g., Pascal) allow the programmer to specify that an array be packed.
A packed array generally has no holes between elements, but access to its ele-
ments may be slow. A packed array of records may have holes within the records,
unless they too are packed.

For multidimensional arrays, it still makes sense to put the first element of the
array in the array’s first memory location. But which element comes next? There
are two reasonable answers, called row-major and column-major order. In row-EXAMPLE 7.65

Row-major v.
column-major array layout

major order, consecutive locations in memory hold elements that differ by one
in the final subscript (except at the ends of rows). A[2, 4], for example, is fol-
lowed by A[2, 5]. In column-major order, consecutive locations hold elements
that differ by one in the initial subscript: A[2, 4] is followed by A[3, 4]. These
options are illustrated for two-dimensional arrays in Figure 7.9. The layouts for
three or more dimensions are analogous. Fortran uses column-major order; most
other languages use row-major order.6 The advantage of row-major order is that
it makes it easy to define a multidimensional array as an array of subarrays, as de-
scribed in Section 7.4.1. With column-major order, the elements of the subarray
would not be contiguous in memory. �

The difference between row- and column-major layout can be important for
programs that use nested loops to access all the elements of a large, multidi-
mensional array. On modern machines the speed of such loops is often lim-
ited by memory system performance, which depends heavily on the effective-
ness of caching (Section 5.1). Figure 7.9 shows the orientation of cache lines forEXAMPLE 7.66

Array layout and cache
performance

row- and column-major layout of arrays. If a small array is accessed frequently,
all or most of its elements are likely to remain in the cache, and the orientation
of cache lines will not matter. For a large array, however, many of the accesses
that occur during a full-array traversal are likely to result in cache misses, be-
cause the corresponding lines have been evicted from the cache (to make room
for other things) since the last traversal. If array elements are accessed in order
of consecutive addresses, then each miss will bring into the cache not only the
desired element, but the next several elements as well. If elements are accessed
across cache lines instead (i.e., along the rows of a Fortran array, or the columns

6 Correspondence with Frances Allen, an IBM Fellow and Fortran pioneer, suggests that column-
major order was originally adopted in order to accommodate idiosyncrasies of the console de-
bugger and instruction set of the IBM model 704 computer, on which the language was first
implemented.
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Figure 7.9 Row- and column-major memory layout for two-dimensional arrays. In row-major
order, the elements of a row are contiguous in memory; in column-major order, the elements
of a column are contiguous. The second cache line of each array is shaded, on the assumption
that each element is an eight-byte floating-point number, that cache lines are 32 bytes long (a
common size), and that the array begins at a cache line boundary. If the array is indexed from
A[0,0] to A[9,9], then in the row-major case elements A[0,4] through A[0,7] share a cache line;
in the column-major case elements A[4,0] through A[7,0] share a cache line.

of an array in most other languages), then there is a good chance that almost
every access will result in a cache miss, dramatically reducing the performance of
the code. �

Row-Pointer Layout

Some languages employ an alternative to contiguous allocation for some arrays.
Rather than require the rows of an array to be adjacent, they allow them to lie
anywhere in memory, and create an auxiliary array of pointers to the rows. If the
array has more than two dimensions, it may be allocated as an array of point-
ers to arrays of pointers to. . . . This row-pointer memory layout requires more
space in most cases but has three potential advantages. First, it sometimes al-
lows individual elements of the array to be accessed more quickly, especially on
CISC machines with slow multiplication instructions (see the discussion of ad-
dress calculations below). Second, it allows the rows to have different lengths,
without devoting space to holes at the ends of the rows; the lack of holes may
sometimes offset the increased space for pointers. Third, it allows a program to
construct an array from preexisting rows (possibly scattered throughout mem-
ory) without copying. C, C++, and C# provide both contiguous and row-pointer
organizations for multidimensional arrays. Technically speaking, the contiguous
layout is a true multidimensional array, while the row-pointer layout is an array
of pointers to arrays. Java uses the row-pointer layout for all arrays.
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char days[][10] = {

"Sunday", "Monday", "Tuesday",

"Wednesday", "Thursday",

"Friday", "Saturday"

};

...

days[2][3] == ’s’; /* in Tuesday */

char *days[] = {

"Sunday", "Monday", "Tuesday",

"Wednesday", "Thursday",

"Friday", "Saturday"

};

...

days[2][3] == ’s’; /* in Tuesday */

Figure 7.10 Contiguous array allocation v. row pointers in C. The declaration on the left is a true two-dimensional array.
The slashed boxes are NUL bytes; the shaded areas are holes. The declaration on the right is an array of pointers to arrays
of characters. In both cases, we have omitted bounds in the declaration that can be deduced from the size of the initializer
(aggregate). Both data structures permit individual characters to be accessed using double subscripts, but the memory layout
(and corresponding address arithmetic) is quite different.

By far the most common use of the row-pointer layout in C is to represent ar-EXAMPLE 7.67
Contiguous v. row-pointer
array layout

rays of strings. A typical example appears in Figure 7.10. In this example (repre-
senting the days of the week), the row-pointer memory layout consumes 57 bytes
for the characters themselves (including a NUL byte at the end of each string),
plus 28 bytes for pointers (assuming a 32-bit architecture), for a total of 85 bytes.
The contiguous layout alternative devotes ten bytes to each day (room enough for
Wednesday and its NUL byte), for a total of 70 bytes. The additional space required

DESIGN & IMPLEMENTATION

Array layout
The layout of arrays in memory, like the ordering of record fields, is intimately
tied to tradeoffs in design and implementation. While column-major layout
appears to offer no advantages on modern machines, its continued use in For-
tran means that programmers must be aware of the underlying implemen-
tation in order to achieve good locality in nested loops. Row-pointer layout,
likewise, has no performance advantage on modern machines (and a likely
performance penalty, at least for numeric code), but it is a more natural fit for
the “reference to object” data organization of languages like Java. Its impacts
on space consumption and locality may be positive or negative, depending on
the details of individual applications.
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for the row-pointer organization comes to 21%. In other cases, row pointers may
actually save space. A Java compiler written in C, for example, would probably
use row pointers to store the character-string representations of the 51 Java key-
words and wordlike literals. This data structure would use 51 × 4 = 204 bytes for
the pointers, plus 343 bytes for the keywords, for a total of 547 bytes (548 when
aligned). Since the longest keyword (synchronized) requires 13 bytes (includ-
ing space for the terminating NUL), a contiguous two-dimensional array would
consume 51 × 13 = 663 bytes (664 when aligned). In this case, row pointers save
a little over 21%. �

Address Calculations

For the usual contiguous layout of arrays, calculating the address of a particular
element is somewhat complicated, but straightforward. Suppose a compiler isEXAMPLE 7.68

Indexing a contiguous array given the following declaration for a three-dimensional array.

A : array [L1 . . U1] of array [L2 . . U2] of array [L3 . . U3] of elem type;

Let us define constants for the sizes of the three dimensions:

S3 = size of elem type

S2 = (U3 − L3 + 1) × S3

S1 = (U2 − L2 + 1) × S2

Here the size of a row (S2) is the size of an individual element (S3) times the
number of elements in a row (assuming row-major layout). The size of a plane
(S1) is the size of a row (S2) times the number of rows in a plane. The address of
A[i, j, k] is then

address of A

+ (i − L1) × S1

+ (j − L2) × S2

+ (k − L3) × S3

As written, this computation involves three multiplications and six additions/
subtractions. We could compute the entire expression at run time, but in most
cases a little rearrangement reveals that much of the computation can be per-
formed at compile time. In particular, if the bounds of the array are known at
compile time, then S1, S2, and S3 are compile-time constants, and the subtrac-
tions of lower bounds can be distributed out of the parentheses:

(i × S1) + (j × S2) + (k × S3) + address of A

−[(L1 × S1) + (L2 × S2) + (L3 × S3)]

The bracketed expression in this formula is a compile-time constant (assuming
the bounds of A are statically known). If A is a global variable, then the address of
A is statically known as well, and can be incorporated in the bracketed expression.
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Figure 7.11 Virtual location of an array with nonzero lower bounds. By computing the con-
stant portions of an array index at compile time, we effectively index into an array whose starting
address is offset in memory but whose lower bounds are all zero.

If A is a local variable of a subroutine (with static shape), then the address of A
can be decomposed into a static offset (included in the bracketed expression) plus
the contents of the frame pointer at run time. We can think of the address of A
plus the bracketed expression as calculating the location of an imaginary array
whose [i, j, k]th element coincides with that of A, but whose lower bound in each
dimension is zero. This imaginary array is illustrated in Figure 7.11. �

If A’s elements are integers, and are allocated contiguously in memory, thenEXAMPLE 7.69
Pseudo-assembler for
contiguous array indexing

the instruction sequence to load A[i, j, k] into a register looks something like this:

–– assume i is in r1, j is in r2, and k is in r3
1. r4 := r1 × S1

2. r5 := r2 × S2

3. r6 := &A − L1 × S1 − L2 × S2 − L3 × 4 –– one or two instructions
4. r6 := r6 + r4
5. r6 := r6 + r5
6. r7 := *r6[r3] –– load

We have assumed that the hardware provides an indexed addressing mode, and
that it scales its indexing by the size of the quantity loaded (in this case a four-byte
integer). �

If i, j, and/or k is known at compile time, then additional portions of theEXAMPLE 7.70
Static and dynamic
portions of an array index

calculation of the address of A[i, j, k] will move from the dynamic to the static
part of the formula shown above. If all of the subscripts are known, then the
entire address can be calculated statically. Conversely, if any of the bounds of
the array are not known at compile time, then portions of the calculation will
move from the static to the dynamic part of the formula. For example, if L1 is
not known until run time, but k is known to be 3 at compile time, then the
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calculation becomes

(i × S1) + (j × S2) − (L1 × S1) + address of A − [(L2 × S2) + (L3 × S3) − (3 × S3)]

Again, the bracketed part can be computed at compile time. If lower bounds are
always restricted to zero, as they are in C, then they never contribute to run-time
cost. �

In all our examples, we have ignored the issue of dynamic semantic checks
for out-of-bound subscripts. We explore the code for these in Exercise 7.22. In
Section 15.5.2 we will consider code improvement techniques that can be used
to eliminate many checks statically, particularly in enumeration-controlled loops.

The notion of “static part” and “dynamic part” of an address computationEXAMPLE 7.71
Indexing complex
structures

generalizes to more than just arrays. Suppose, for example, that V is a messy
local array of records containing a nested, two-dimensional array in field M. The
address of V[i].M[3, j] could be calculated as

i × SV
1

− LV
1 × SV

1

+ M’s offset as a field

+ (3 − LV
1 ) × SV

1

+ j × SV
2

− LV
2 × SV

2

+ fp
+ offset of V in frame

DESIGN & IMPLEMENTATION

Lower bounds on array indices
In C, the lower bound of every array dimension is always zero. It is often as-
sumed that the language designers adopted this convention in order to avoid
subtracting lower bounds from indices at run time, thereby avoiding a poten-
tial source of inefficiency. As our discussion has shown, however, the compiler
can avoid any run-time cost by translating to a virtual starting location. (The
one exception to this statement occurs when the lower bound has a very large
absolute value: if any index (scaled by element size) exceeds the maximum off-
set available with displacement mode addressing [typically 215 bytes on RISC
machines], then subtraction may still be required at run time.)

A more likely explanation lies in the interoperability of arrays and pointers
in C (Section 7.7.1): C’s conventions allow the compiler to generate code for an
index operation on a pointer without worrying about the lower bound of the
array into which the pointer points. Interestingly, Fortran array dimensions
have a default lower bound of 1; unless the programmer explicitly specifies
a lower bound of 0, the compiler must always translate to a virtual starting
location.
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Here the calculations on the left must be performed at run time; the calculations
on the right can be performed at compile time. (The notation for bounds and size
places the name of the variable in a superscript and the dimension in a subscript:
LM

2 is the lower bound of the second dimension of M.) �
Address calculation for arrays that use row pointers is comparativelyEXAMPLE 7.72

Pseudo-assembler for
row-pointer array indexing

straightforward. Using our three-dimensional array A as an example, the ex-
pression A[ i, j, k ] is equivalent to (*(*A[ i ]) [ j ]) [k ] or, in more Pascal-like nota-
tion, A[ i ]^[ j ]^[k]. The instruction sequence to load A[ i, j, k ] into a register looks
something like this:

–– assume i is in r1, j is in r2, and k is in r3
1. r4 := &A –– one or two instructions
2. r4 := *r4 [ r1 ]
3. r4 := *r4 [ r2 ]
4. r7 := r4 [ r3 ]

Assuming that the loads at lines 2 and 3 hit in the cache, this code will be compa-
rable in cost to the instruction sequence for contiguous allocation shown above
(given load delays). If the intermediate loads miss in the cache, it will be slower.
On a 1970s CISC machine, the balance would probably tip in favor of the row-
pointer code: multiplies would be slower, and memory accesses would be faster.
In any event (contiguous or row-pointer allocation, old or new machine), im-
portant code improvements will often be possible when several array references
use the same subscript expression, or when array references are embedded in
loops. �

Dope Vectors

For every array, a compiler maintains dimension, bounds, and size information
in the symbol table. For every record, it maintains the offset of every field. When
the bounds and size of array dimensions are statically known, the compiler can
look them up in the symbol table in order to compute the address of elements
of the array. When the bounds and size are not statically known, the compiler
must arrange for them to be available when the compiled program needs to
compute an address at run time. The usual mechanism employs a run-time de-
scriptor, or dope vector for the array.7 Typically, a dope vector for an array of
dynamic shape will contain the lower bound of each dimension and the size of

7 The name “dope vector” presumably derives from the notion of “having the dope on (some-
thing),” a colloquial expression that originated in horse racing: advance knowledge that a horse
has been drugged (“doped”) is of significant, if unethical, use in placing bets.
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every dimension except the last (which will always be statically known). If the
language implementation performs dynamic semantic checks for out-of-bounds
subscripts in array references, then the dope vector will need to contain upper
bounds as well. Given upper and lower bounds, the size information is redun-
dant, but it is usually included anyway, to avoid computing it repeatedly at run
time.

If some of the dimension bounds or sizes for an array are known at compile
time, then they may be omitted from the dope vector. One might imagine, then,
that the size of a dope vector would depend on the number of statically unknown
quantities. More commonly, it depends only on the number of dimensions: the
modest loss in space is offset by the comparative simplicity of always being able
to find a given bound or size at the same offset within the dope vector for any
array of the appropriate number of dimensions.

The dope vector for an array of dynamic shape is generally placed next to the
pointer to the array in the fixed-size part of the stack frame. The contents of the
dope vector are initialized at elaboration time, or whenever the array changes
shape. If one fully dynamic array is assigned into a second and the two are of
different shapes and sizes, then run-time code will not only need to deallocate
the old heap space of the target array, allocate new space, and copy the data into
it, but it will also need to copy information from the dope vector of the source
array into the dope vector of the target.

In some languages a record may contain an array of dynamic shape. In order
to arrange for every field to have a static offset from the beginning of the record, a
compiler can treat the record much like the fixed-size portion of the stack frame,
with a pointer to the array at a fixed offset in the record, and the data in the
variable-size part of the current stack frame. The problem with this approach is
that it abandons contiguous allocation for records. Among other things, a block
copy routine can no longer be used to assign one record into another. An arguably
preferable approach is to abandon fixed field offsets and create dope vectors for
dynamic-size records, just as we do for dynamic-size arrays. The dope vector for
a record lists the offsets of the record’s fields. All of the actual data then go in the
variable-size part of the stack frame or the heap (depending on whether sizes are
known at elaboration time).

CHECK YOUR UNDERSTANDING

28. What is an array slice? For what purposes are slices useful?

29. Is there any significant difference between a two-dimensional array and an
array of one-dimensional arrays?

30. What is the shape of an array?

31. Under what circumstances can an array declared within a subroutine be al-
located in the stack? Under what circumstances must it be allocated in the
heap?
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32. What is a conformant array?

33. Discuss the comparative advantages of contiguous and row-pointer layout for
arrays.

34. Explain the difference between row-major and column-major layout for con-
tiguously allocated arrays. Why does a programmer need to know which lay-
out the compiler uses? Why do most language designers consider row-major
layout to be better?

35. How much of the work of computing the address of an element of an array
can be performed at compile time? How much must be performed at run
time?

36. What is a dope vector? What purpose does it serve?

7.5 Strings

In many languages, a string is simply an array of characters. In other languages,
strings have special status, with operations that are not available for arrays of
other sorts. Particularly powerful string facilities are found in Snobol, Icon, and
the various scripting languages.

As we saw in Section 6.5.3, mechanisms to search for patterns within strings
are a key part of Icon’s distinctive generator-based control flow. Icon has dozens
of built-in string operators, functions, and generators, including sophisticated
pattern-matching facilities based on regular expressions. Perl, Python, Ruby, and
other scripting languages provide similar functionality, though none includes the
full power of Icon’s backtracking search. We will consider the string and pattern-
matching facilities of scripting languages in more detail in Section 13.4.2. In the
remainder of this section we focus on the role of strings in more traditional lan-
guages.

Almost all programming languages allow literal strings to be specified as a se-
quence of characters, usually enclosed in single or double quote marks. Many
languages, including C and its descendants, distinguish between literal charac-
ters (usually delimited with single quotes) and literal strings (usually delim-
ited with double quotes). Other languages (e.g., Pascal) make no distinction: a
character is just a string of length one. Most languages also provide escape se-
quences that allow nonprinting characters and quote marks to appear inside of
strings. In Pascal, for example, a quote mark is included in a string by dou-
bling it: ’ab’’cde’ is a six-character string whose third character is a quote
mark.

C99 and C++ provide a very rich set of escape sequences. An arbitrary char-EXAMPLE 7.73
Character escapes in C
and C++

acter can be represented by a backslash followed by (a) 1–3 octal (base 8) digits,
(b) an x and one or more hexadecimal (base 16) digits, (c) a u and exactly four



7.6 Sets 367

hexadecimal digits, or (d) a U and exactly eight hexadecimal digits. The \u no-
tation is meant to capture the two-byte (16-bit) Unicode character set. The \U
notation is for 32-bit “extended” characters. Many of the most common control
characters also have single-character escape sequences, many of which have been
adopted by other languages as well. For example, \n is a line feed; \t is a tab; \r
is a carriage return; \\ is a backslash. C# omits the octal sequences of C99 and
C++; Java also omits the 32-bit extended sequences. �

The set of operations provided for strings is strongly tied to the implementa-
tion envisioned by the language designer(s). Several languages that do not in gen-
eral allow arrays to change size dynamically do provide this flexibility for strings.
The rationale is twofold. First, manipulation of variable-length strings is funda-
mental to a huge number of computer applications, and in some sense “deserves”
special treatment. Second, the fact that strings are one-dimensional, have one-
byte elements, and never contain references to anything else makes dynamic-size
strings easier to implement than general dynamic arrays.

Some languages require that the length of a string-valued variable be bound
no later than elaboration time, allowing the variable to be implemented as a con-
tiguous array of characters in the current stack frame. Languages in this category
include C, Pascal, and Ada. Pascal and Ada support a few string operations, in-
cluding assignment and comparison for lexicographic ordering. C, on the otherEXAMPLE 7.74

Char* assignment in C hand, provides only the ability to create a pointer to a string literal. Because of
C’s unification of arrays and pointers, even assignment is not supported. Given
the declaration char *s, the statement s = "abc" makes s point to the con-
stant "abc" in static storage. If s is declared as an array, rather than a pointer
(char s[4]), then the statement will trigger an error message from the com-
piler. To assign one array into another in C, the program must copy the elements
individually. �

Other languages allow the length of a string-valued variable to change over its
lifetime, requiring that the variable be implemented as a block or chain of blocks
in the heap. Languages in this category include Lisp, Icon, ML, Java, and C#.
ML and Lisp provide strings as a built-in type. C++, Java, and C# provide them
as predefined classes of object, in the formal, object-oriented sense. In all these
languages a string variable is a reference to a string. Assigning a new value to such
a variable makes it refer to a different object. Concatenation and other string
operators implicitly create new objects. The space used by objects that are no
longer reachable from any variable is reclaimed automatically.

7.6 Sets

A programming language set is an unordered collection of an arbitrary num-
ber of distinct values of a common type. Sets were introduced by Pascal, and are
found in many more recent languages as well. They are a useful form of com-
posite type for many applications. Pascal supports sets of any discrete type, andEXAMPLE 7.75

Set types provides union, intersection, and difference operations:
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var A, B, C : set of char;

D, E : set of weekday;

...

A := B + C; (* union; A := {x | x is in B or x is in C} *)

A := B * C; (* intersection; A := {x | x is in B and x is in C} *)

A := B - C; (* difference; A := {x | x is in B and x is not in C} *)

The type from which elements of a set are drawn is known as the base or universe
type. Icon supports sets of characters (called csets) but not sets of any other base
type. As illustrated in Section 6.5.4, csets play an important role in Icon’s
search facilities. Ada does not provide a set constructor for types, but its generic
facility can be used to define a set package (module) with functionality compa-
rable to the sets of Pascal [IBFW91, pp. 242–244]. �

There are many ways to implement sets, including arrays, hash tables, and
various forms of trees. The most common implementation employs a bit vector
whose length (in bits) is the number of distinct values of the base type. A set of
characters, for example (in a language that uses ASCII) would be 128 bits—16
bytes—in length. A one in the kth position in the bit vector indicates that the kth
element of the base type is a member of the set; a zero indicates that it is not.
Operations on bit-vector sets can make use of fast logical instructions on most
machines. Union is bit-wise or; intersection is bit-wise and; difference is bit-wise
not, followed by bit-wise and.

DESIGN & IMPLEMENTATION

Representing sets
Unfortunately, bit vectors do not work well for large base types: a set of in-
tegers, represented as a bit vector, would consume some 500 megabytes on a
32-bit machine. With 64-bit integers, a bit-vector set would consume more
memory than is currently contained on all the computers in the world. Be-
cause of this problem, many languages (including early versions of Pascal, but
not the ISO standard) limit sets to base types of fewer than some fixed num-
ber of members. Both 128 and 256 are common limits; they suffice to cover
ASCII characters. A few languages (e.g., early versions of Modula-2) limit base
types to the number of elements that can be represented by a one-word bit
vector, but there is really no excuse for such a severe restriction. A language
that permits sets with very large base types must employ an alternative imple-
mentation (e.g., a hash table). It will still be expensive to represent sets with
enormous numbers of elements, but reasonably easy to represent sets with a
modest number of elements drawn from a very large universe.
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7.7 Pointers and Recursive Types

A recursive type is one whose objects may contain one or more references to other
objects of the type. Most recursive types are records, since they need to contain
something in addition to the reference, implying the existence of heterogeneous
fields. Recursive types are used to build a wide variety of “linked” data structures,
including lists and trees.

In languages like Lisp, ML, Clu, or Java, which use a reference model of vari-
ables, it is easy for a record of type foo to include a reference to another record
of type foo: every variable (and hence every record field) is a reference anyway.
In languages like C, Pascal, or Ada, which use a value model of variables, recur-
sive types require the notion of a pointer: a variable (or field) whose value is a
reference to some object. Pointers were first introduced in PL/I.

In some languages (e.g., Pascal, Ada 83, and Modula-3), pointers are restricted
to point only to objects in the heap. The only way to create a new pointer value
(without using variant records or casts to bypass the type system) is to call a
built-in function that allocates a new object in the heap and returns a pointer to
it. In other languages (e.g., PL/I, Algol 68, C, C++, and Ada 95), one can create a
pointer to a nonheap object by using an “address of” operator. We will examine
pointer operations and the ramifications of the reference and value models in
more detail in the following subsection.

In any language that permits new objects to be allocated from the heap, the
question arises: how and when is storage reclaimed for objects that are no longer
needed? In short-lived programs it may be acceptable simply to leave the storage
unused, but in most cases unused space must be reclaimed, to make room for
other things. A program that fails to reclaim the space for objects that are no
longer needed is said to “leak memory.” If such a program runs for an extended
period of time, it may run out of space and crash.

Many languages, including C, C++, Pascal, and Modula-2, require the pro-
grammer to reclaim space explicitly. Other languages, including Modula-3, Java,
C#, and all the functional and scripting languages, require the language imple-

DESIGN & IMPLEMENTATION

Implementation of pointers
It is common for programmers (and even textbook writers) to equate pointers
with addresses, but this is a mistake. A pointer is a high level concept: a ref-
erence to an object. An address is a low-level concept: the location of a word
in memory. Pointers are often implemented as addresses, but not always. On
a machine with a segmented memory architecture, a pointer may consist of a
segment id and an offset within the segment. In a language that attempts to
catch uses of dangling references, a pointer may contain both an address and
an access key.
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mentation to reclaim unused objects automatically. Explicit storage reclamation
simplifies the language implementation, but raises the possibility that the pro-
grammer will forget to reclaim objects that are no longer live (thereby leaking
memory) or will accidentally reclaim objects that are still in use (thereby creating
dangling references). Automatic storage reclamation (otherwise known as garbage
collection) dramatically simplifies the programmer’s task, but raises the question
of how the language implementation is to distinguish garbage from active ob-
jects. We will discuss these issues further in Sections 7.7.2 and 7.7.3.

7.7.1 Syntax and Operations

Operations on pointers include allocation and deallocation of objects in the heap,
dereferencing of pointers to access the objects to which they point, and assign-
ment of one pointer into another. The behavior of these operations depends
heavily on whether the language is functional or imperative, and on whether it
employs a reference or value model for variables/names.

Functional languages generally employ a reference model for names (a purely
functional language has no variables or assignments). Objects in a functional lan-
guage tend to be allocated automatically as needed, with a structure determined
by the language implementation. Most implementations of Lisp, for example,
build lists out of two-pointer blocks called cons cells. Lisp’s imperative features
allow the programmer to modify cons cells explicitly, but this ability must be
used with care: because of the reference model, a cons cell is commonly part of
the object to which more than one variable refers; a change made through one
variable will often change other variables as well.

Variables in an imperative language may use either a value or a reference
model, or some combination of the two. In C, Pascal, or Ada, which employ a
value model, the assignment A := B puts the value of B into A. If we want B to
refer to an object, and we want A := B to make A refer to the object to which
B refers, then A and B must be pointers. In Clu and Smalltalk, which employ a
reference model, the assignment A := B always makes A refer to the same object
to which B refers. A straightforward implementation would represent every vari-
able as an address, but this would lead to very inefficient code for built-in types.
A better and more common approach is to use addresses for variables that refer
to mutable objects such as tree nodes, whose value can change, but to use actual
values for variables that refer to immutable objects such as integers, real numbers,
and characters. In other words, while every variable is semantically a reference,
it does not matter whether a reference to the number 3 is implemented as the
address of a 3 in memory or as the value 3 itself: since the value of “the 3” never
changes, the two are indistinguishable.

Java charts an intermediate course, in which the usual implementation of the
reference model is made explicit in the language semantics. Variables of built-in
Java types (integers, floating-point numbers, characters, and Booleans) employ a
value model; variables of user-defined types (strings, arrays, and other objects in
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Figure 7.12 Implementation of a tree in ML. The abstract (conceptual) tree is shown at the
lower left.

the object-oriented sense of the word) employ a reference model. The assignment
A := B in Java places the value of B into A if A and B are of built-in type; it
makes A refer to the object to which B refers if A and B are of user-defined type.
C# mirrors Java by default, but additional language features, explicitly labeled
“unsafe,” allow systems programmers to use pointers when desired.

Reference Model

Section 7.2.4 explains how ML datatypes can be used to declare recursiveEXAMPLE 7.76
Tree type in ML types:

datatype chr_tree = empty | node of char * chr_tree * chr_tree;

The node constructor of a chr_tree builds tuples containing a reference to a
character and two references to chr_trees.

It is natural in ML to include a chr_tree within a chr_tree because every
variable is a reference. The tree node (#"R", node (#"X", empty, empty), node
(#"Y", node (#"Z", empty, empty), node (#"W", empty, empty))) would
most likely be represented in memory as shown in Figure 7.12. Each individual
rectangle in the right-hand portion of this figure represents a block of storage al-
located from the heap. In effect, the tree is a tuple (record) tagged to indicate that
it is a node. This tuple in turn refers to two other tuples that are also tagged as
nodes. At the fringe of the tree are tuples that are tagged as empty; these contain
no further references. Because all empty tuples are the same, the implementation
is free to use just one, and to have every reference point to it. �

In Lisp, which uses a reference model of variables but is not statically typed,EXAMPLE 7.77
Tree type in Lisp our tree could be specified textually as ’(#\R (#\X ()()) (#\Y (#\Z ()())

(#\W ()()))), and would be represented in memory as shown in Figure 7.13.
The parentheses denote a list, which in Lisp consists of two references: one to
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Figure 7.13 Implementation of a tree in Lisp. A diagonal slash through a box indicates a nil pointer. The C and A tags serve
to distinguish the two kinds of memory blocks: cons cells and blocks containing atoms.

the head of the list and one to the remainder of the list (which is itself a list).
The prefix #\ notation serves the same purpose as surrounding quotes in other
languages. As we noted in Section 7.7.1, a Lisp list is almost always represented in
memory by a cons cell containing two pointers. A binary tree can be represented
as a three-element (three cons cell) list. The first cell represents the root; the
second and third cells represent the left and right subtrees. Each heap block is
tagged to indicate whether it is a cons cell or an atom. An atom is anything other
than a cons cell—that is, an object of a built-in type (integer, real, character,
string, etc.), or a user-defined structure (record) or array. The uniformity of Lisp
lists (everything is a cons cell or an atom) makes it easy to write polymorphic
functions, though without the static type checking of ML. �

If one programs in a purely functional style in ML or in Lisp, the data struc-
tures created with recursive types turn out to be acyclic. New objects refer to
old ones, but old ones never change, and thus never point to new ones. Circular
structures can be defined only by using the imperative features of the languages.
In ML, these features include an explicit notion of pointer, discussed briefly un-
der “Value Model” below.

Even when writing in a functional style, one often finds a need for types that
are mutually recursive. In a compiler, for example, it is likely that symbol tableEXAMPLE 7.78

Mutually recursive types in
ML

records and syntax tree nodes will need to refer to each other. A syntax tree node
that represents a subroutine call will need to refer to the symbol table record that
represents the subroutine. The symbol table record, for its part, will need to refer
to the syntax tree node at the root of the subtree that represents the subroutine’s
code. If types are declared one at a time, and if names must be declared before
they can be used, then whichever mutually recursive type is declared first will be
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unable to refer to the other. ML addresses this problem by allowing types to be
declared together in a group:

datatype sym_tab_rec = variable of ...

| type of ...

| ...

| subroutine of {code : syn_tree_node, ...}

and syn_tree_node = expression of ...

| loop of ...

| ...

| subr_call of {subr : sym_tab_rec, ...};

Mutually recursive types of this sort are trivial in Lisp, since it is dynamically
typed. (Common Lisp includes a notion of structures, but field types are not
declared. In simpler Lisp dialects programmers use nested lists in which fields
are merely positional conventions.) �

Value Model

In Pascal, our tree data type would be declared as follows.EXAMPLE 7.79
Tree types in Pascal, Ada,
and C

type chr_tree_ptr = ^chr_tree;

chr_tree = record

left, right : chr_tree_ptr;

val : char

end;

The Ada declaration is similar:

type chr_tree;

type chr_tree_ptr is access chr_tree;

type chr_tree is record

left, right : chr_tree_ptr;

val : character;

end record;

In C, the equivalent declaration8 is as follows.

struct chr_tree {

struct chr_tree *left, *right;

char val;

};

As mentioned in Section 3.3.3, Pascal permits forward references in the declara-
tion of pointer types, to support recursive types. Ada and C use incomplete type
declarations instead. �

8 One of the peculiarities of the C type system is that struct tags are not exactly type names.
In this example, the name of the type is the two-word phrase struct chr_tree. To obtain a
one-word name, one can say typedef struct chr_tree chr_tree_type, or even typedef

struct chr_tree chr_tree: struct tags and typedef names have separate name spaces, so
the same name can be used in each.
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Figure 7.14 Typical implementation of a tree in a language with explicit pointers. As in Fig-
ure 7.13, a diagonal slash through a box indicates a nil pointer.

No aggregate syntax is available for linked data structures in Pascal, Ada, or C;
a tree must be constructed node by node. To allocate a new node from the heap,EXAMPLE 7.80

Allocating heap nodes the programmer calls a built-in function. In Pascal:

new(my_ptr);

In Ada:

my_ptr := new chr_tree;

In C:

my_ptr = (struct chr_tree *) malloc(sizeof(struct chr_tree)); �
C’s malloc is defined as a library function, not a built-in part of the language

(though some compilers recognize and optimize it as a special case); hence the
need to specify the size of the allocated object, and to cast the return value to the
appropriate type. C++, Java, and C# replace malloc with a built-in new:EXAMPLE 7.81

Object-oriented allocation
of heap nodes my_ptr = new chr_tree( arg list );

In addition to “knowing” the size of the requested type, the C++/Java/C# new will
automatically call any user-specified constructor (initialization) function, passing
the specified argument list. In a similar but less flexible vein, Ada’s new may spec-
ify an initial value for the allocated object:

my_ptr := new chr_tree’(null, null, ’X’); �
After we have allocated and linked together appropriate nodes in C, Pascal, orEXAMPLE 7.82

Pointer-based tree Ada, our tree example is likely to be implemented as shown in Figure 7.14. As in
Lisp, a leaf is distinguished from an internal node simply by the fact that its two
pointer fields are nil. �

To access the object referred to by a pointer, most languages use an explicitEXAMPLE 7.83
Pointer dereferencing dereferencing operator. In Pascal and Modula this operator takes the form of a

postfix “up-arrow”:

my_ptr^.val := ’X’;

In C it is a prefix star:

(*my_ptr).val = ’X’;
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Because pointers so often refer to records (structs), for which the prefix nota-
tion is awkward, C also provides a postfix “right-arrow” operator that plays the
role of the “up-arrow dot” combination in Pascal:

my_ptr->val = ’X’; �
On the assumption that pointers almost always refer to records, Ada dispensesEXAMPLE 7.84

Implicit dereferencing in
Ada

with dereferencing altogether. The same dot-based syntax can be used to access
either a field of the record foo or a field of the record pointed to by foo, depend-
ing on the type of foo:

T : chr_tree;

P : chr_tree_ptr;

...

T.val := ’X’;

P.val := ’Y’;

In those cases in which one actually wants to name the entire object referred to
by a pointer, Ada provides a special “pseudofield” called all:

T := P.all;

In essence, pointers in Ada are automatically dereferenced when needed. A more
ambitious (and unfortunately rather confusing) form of automatic dereferencing
can be found in Algol 68. �

The imperative features of ML include an assignment statement, but this state-EXAMPLE 7.85
Pointer dereferencing in
ML

ment requires that the left-hand side be a pointer: its effect is to make the pointer
refer to the object on the right-hand side. To access the object referred to by a
pointer, one uses an exclamation point as a prefix dereferencing operator:

val p = ref 2; (* p is a pointer to 2 *)

...

p := 3; (* p now points to 3 *)

...

let val n = !p in ...

(* n is simply 3 *)

ML thus makes the distinction between l-values and r-values very explicit. Most
Algol-family languages blur the distinction by implicitly dereferencing vari-
ables on the right-hand side of every assignment statement. Algol 68 and Ada
blur the distinction further by dereferencing pointers automatically in certain
circumstances. �

The imperative features of Lisp do not include a dereferencing operator. Since
every object has a self-evident type, and assignment is performed using a small
set of built-in operators, there is never any ambiguity as to what is intended.
Assignment in Common Lisp employs the setf operator (Scheme uses set!),EXAMPLE 7.86

Assignment in Lisp rather than the more common :=. For example, if foo refers to a list, then (cdr
foo) is the right-hand (“rest of list”) pointer of foo’s cons cell, and the assign-
ment (setf (cdr foo) foo) makes this pointer refer back to foo, creating a
one-cons-cell circular list. �



376 Chapter 7 Data Types

Pointers and Arrays in C

Pointers and arrays are closely linked in C. Consider the following declarations.EXAMPLE 7.87
Array names and pointers
in C int n;

int *a; /* pointer to integer */

int b[10]; /* array of 10 integers */

Now all of the following are valid.

1. a = b; /* make a point to the initial element of b */

2. n = a[3];

3. n = *(a+3); /* equivalent to previous line */

4. n = b[3];

5. n = *(b+3); /* equivalent to previous line */

In most contexts, an unsubscripted array name in C is automatically converted
to a pointer to the array’s first element (the one with index zero), as shown here
in line 1. (Line 5 embodies the same conversion.) Lines 3 and 5 illustrate pointer
arithmetic: given a pointer to an element of an array, the addition of an integer
k produces a pointer to the element k positions later in the array (earlier if k is
negative). The prefix * is a pointer dereference operator. Pointer arithmetic is
valid only within the bounds of a single array, but C compilers are not required
to check this.

Remarkably, the subscript operator [ ] in C is actually defined in terms of
pointer arithmetic: lines 2 and 4 are syntactic sugar for lines 3 and 5, respec-
tively. More precisely, E1[E2], for any expressions E1 and E2, is defined to be
(*((E1)+(E2))), which is of course the same as (*((E2)+(E1))). (Extra paren-
theses have been used in this definition to avoid any questions of precedence if E1
and E2 are complicated expressions.) Correctness requires only that one operand
of [ ] have an array type and the other have an integral type. Thus A[3] is equiv-
alent to 3[A], something that comes as a surprise to most programmers. �

In addition to allowing an integer to be added to a pointer, C allows pointers
to be subtracted from one another or compared for ordering, provided that they
refer to elements of the same array. The comparison p < q, for example, tests toEXAMPLE 7.88

Pointer comparison and
subtraction in C

see if p refers to an element closer to the beginning of the array than the one re-
ferred to by q. The expression p - q returns the number of array positions that
separate the elements to which p and q refer. All arithmetic operations on point-
ers “scale” their results as appropriate, based on the size of the referenced objects.
For multidimensional arrays with row-pointer layout, a[i][j] is equivalent to
(*(a+i))[j] or *(a[i]+j) or *(*(a+i)+j). �

Despite the interoperability of pointers and arrays in C, programmers need
to be aware that the two are not the same, particularly in the context of variable
declarations, which need to allocate space when elaborated. The declaration ofEXAMPLE 7.89

Pointer and array
declarations in C

a pointer variable allocates space to hold a pointer, while the declaration of an
array variable allocates space to hold the whole array. In the case of an array the
declaration must specify a size for each dimension. Thus int *a[n], when elab-
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orated, will allocate space for n row pointers; int a[n][m] will allocate space for
a two-dimensional array with contiguous layout.9 �

When an array is included in the argument list of a function call, C passes aEXAMPLE 7.90
Arrays as parameters in C pointer to the first element of the array, not the array itself. For a one-dimensional

array of integers, the corresponding formal parameter may be declared as int
a[ ] or int *a. For a two-dimensional array of integers with row-pointer lay-
out, the formal parameter may be declared as int *a[ ] or int **a. For a two-
dimensional array with contiguous layout, the formal parameter may be declared
as int a[ ][m] or int (*a)[m]. The size of the first dimension is irrelevant; all
that is passed is a pointer, and C performs no dynamic checks to ensure that
references are within the bounds of the array. �

In all cases, a declaration must allow the compiler (or human reader) to de-
termine the size of the elements of an array or, equivalently, the size of the objects
referred to by a pointer. Thus neither int a[ ][ ] nor int (*a)[ ] is a valid
declaration: neither provides the compiler with the size information it needs to
generate code for a + i or a[i]. (An exception: a variable declaration that in-
cludes initialization to an aggregate can omit size information if that information
can be inferred from the contents of the aggregate.)

The built-in sizeof operator returns the size in bytes of an object or type.EXAMPLE 7.91
Sizeof in C When given an array as argument it returns the size of the entire array. When

given a pointer as argument it returns the size of the pointer itself. If a is an

DESIGN & IMPLEMENTATION

Pointers and arrays
Many C programs use pointers instead of subscripts to iterate over the el-
ements of arrays. Before the development of modern optimizing compilers,
pointer-based array traversal often served to eliminate redundant address cal-
culations, thereby leading to faster code. With modern compilers, however,
the opposite may be true: redundant address calculations can be identified as
common subexpressions, and certain other code improvements are easier for
indices than they are for pointers. In particular, as we shall see in Chapter 15,
pointers make it significantly more difficult for the code improver to deter-
mine when two l-values may be aliases for one another.

Today the use of pointer arithmetic is mainly a matter of personal taste:
some C programmers consider pointer-based algorithms to be more elegant
than their array-based counterparts. Certainly the fact that arrays are passed
as pointers makes it natural to write subroutines in the pointer style.

9 To read declarations in C, it is helpful to follow the following rule: start at the name of the
variable and work right as far as possible, subject to parentheses; then work left as far as possible;
then jump out a level of parentheses and repeat. Thus int *a[n] means that a is an n-element
array of pointers to integers, while int (*a)[n] means that a is a pointer to an n-element array
of integers.
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array, sizeof(a) / sizeof(a[0]) returns the number of elements in the array.
Similarly, if pointers occupy 4 bytes and double-precision floating point numbers
occupy 8 bytes, then given

double *a; /* pointer to double */

double (*b)[10]; /* pointer to array of 10 doubles */

we have sizeof(a) = sizeof(b) = 4, sizeof(*a) = sizeof(*b[0]) = 8, and
sizeof(*b) = 80. In most cases, sizeof can be evaluated at compile time; the
principal exception occurs for variable-length arrays, whose shape is not known
until elaboration time. �

Variable-length arrays are particularly useful in numeric code, where weEXAMPLE 7.92
Multidimensional array
parameters in C

can write general purpose library routines that manipulate arrays of arbitrary
size:

double determinant(int rows, int cols, double M[rows][cols]) {

...

val = M[i][j]; /* normal syntax */

It is possible but awkward to write functionally equivalent code in earlier versions
of C:

double determinant(int rows, int cols, double *M) {

...

val = *(M + (i * cols) + j); /* M[i][j] */ �

CHECK YOUR UNDERSTANDING

37. Name three languages that provide particularly extensive support for charac-
ter strings.

38. Why might a language permit operations on strings that it does not provide
for arrays?

39. What are the strengths and weaknesses of the bit-vector representation for
sets? How else might sets be implemented?

40. Discuss the tradeoffs between pointers and the recursive types that arise nat-
urally in a language with a reference model of variables.

41. Summarize the ways in which one dereferences a pointer in various program-
ming languages.

42. What is the difference between a pointer and an address?

43. Discuss the advantages and disadvantages of the interoperability of pointers
and arrays in C.

44. Under what circumstances must the bounds of a C array be specified in its
declaration?
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7.7.2 Dangling References

In Section 3.2 we described three storage classes for objects: static, stack, and heap.
Static objects remain live for the duration of the program. Stack objects are live
for the duration of the subroutine in which they are declared. Heap objects have
a less well-defined lifetime.

When an object is no longer live, a long-running program needs to reclaim the
object’s space. Stack objects are reclaimed automatically as part of the subroutine
calling sequence. How are heap objects reclaimed? There are two alternatives.
Languages like Pascal, C, and C++ require the programmer to reclaim an objectEXAMPLE 7.93

Explicit storage
reclamation

explicitly. In Pascal:

dispose(my_ptr);

In C:

free(my_ptr);

In C++:

delete my_ptr;

C++ provides additional functionality: prior to reclaiming the space, it automat-
ically calls any user-provided destructor function for the object. A destructor can
reclaim space for subsidiary objects, remove the object from indices or tables,
print messages, or perform any other operation appropriate at the end of the
object’s lifetime. �

A dangling reference is a live pointer that no longer points to a valid object.
In languages like Algol 68 or C, which allow the programmer to create pointers
to stack objects, a dangling reference may be created when a subroutine returns
while some pointer in a wider scope still refers to a local object of that subroutine.
In a language with explicit reclamation of heap objects, a dangling reference is
created whenever the programmer reclaims an object to which pointers still refer.
(Note that while the dispose and delete operators of Pascal and C++ change
their pointer argument to nil, this does not solve the problem, because other
pointers may still refer to the same object.) Because a language implementation
may reuse the space of reclaimed stack and heap objects, a program that uses a
dangling reference may read or write bits in memory that are now part of some
other object. It may even modify bits that are now part of the implementation’s
bookkeeping information, corrupting the structure of the stack or heap.

Algol 68 addresses the problem of dangling references to stack objects by for-
bidding a pointer from pointing to any object whose lifetime is briefer than
that of the pointer itself. Unfortunately, this rule is difficult to enforce. Among
other things, since both pointers and objects to which pointers might refer can
be passed as arguments to subroutines, dynamic semantic checks are possible
only if reference parameters are accompanied by a hidden indication of lifetime.
Ada 95 has a more restrictive rule that is easier to enforce: it forbids a pointer
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Figure 7.15 Tombstones. A valid pointer refers to a tombstone that in turn refers to an object.
A dangling reference refers to an “expired” tombstone.

from pointing to any object whose lifetime is briefer than that of the pointer’s
type.

Tombstones

Tombstones [Lom75, Lom85] are a mechanism by which a language implemen-
tation can catch all dangling references, to objects in both the stack and the heap.
The idea is simple: rather than have a pointer refer to an object directly, we in-EXAMPLE 7.94

Dangling reference
detection with tombstones

troduce an extra level of indirection (Figure 7.15). When an object is allocated
in the heap (or when a pointer is created to an object in the stack), the language
run-time system allocates a tombstone. The pointer contains the address of the
tombstone; the tombstone contains the address of the object. When the object is
reclaimed, the tombstone is modified to contain a value (typically zero) that can-
not be a valid address. To avoid special cases in the generated code, tombstones
are also created for pointers to static objects. �

For heap objects, it is easy to invalidate a tombstone when the program calls
the deallocation operation. For stack objects, the language implementation must
be able to find all tombstones associated with objects in the current stack frame
when returning from a subroutine. One possible solution is to link all stack-
object tombstones together in a list, sorted by the address of the stack frame in
which the object lies. When a pointer is created to a local object, the tombstone
can simply be added to the beginning of the list. When a pointer is created to a
parameter, the run-time system must scan down the list and insert in the middle,
to keep it sorted. When a subroutine returns, the epilogue portion of the calling
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sequence invalidates the tombstones at the head of the list, and removes them
from the list.

Tombstones may be allocated from the heap itself or, more commonly, from
a separate pool. The latter option avoids fragmentation problems, and makes
allocation relatively fast, since the first tombstone on the free list is always the
right size.

Tombstones can be expensive, both in time and in space. The time overhead
includes (1) creation of tombstones when allocating heap objects or using a
“pointer to” operator, (2) checking for validity on every access, and (3) double-
indirection. Fortunately, checking for validity can be made essentially free on
most machines by arranging for the address in an “invalid” tombstone to lie out-
side the program’s address space. Any attempt to use such an address will result
in a hardware interrupt, which the operating system can reflect up into the lan-
guage run-time system. We can also use our invalid address, in the pointer itself,
to represent the constant nil. If the compiler arranges to set every pointer to
nil at elaboration time, then the hardware will catch any use of an uninitialized
pointer. (This technique works without tombstones, as well.)

The space overhead for tombstones can be significant. The simplest approach
is never to reclaim them. Since a tombstone is usually significantly smaller than
the object to which it refers, a program will waste less space by leaving a tomb-
stone around forever than it would waste by never reclaiming the associated ob-
ject. Even so, any long-running program that continually creates and reclaims ob-
jects will eventually run out of space for tombstones. A potential solution, which
we will consider in Section 7.7.3, is to augment every tombstone with a reference
count, and reclaim tombstones themselves when the reference count goes to zero.

Tombstones have a valuable side effect. Because of double-indirection, it is
easy to change the location of an object in the heap. The run-time system need
not locate every pointer that refers to the object; all that is required is to change
the address in the tombstone. The principal reason to change heap locations is
for storage compaction, in which all dynamically allocated blocks are “scooted
together” at one end of the heap in order to eliminate external fragmentation.
Tombstones are not widely used in language implementations, but the Macintosh
operating system (versions 9 and below) uses them internally, for references to
system objects such as file and window descriptors.

Locks and Keys

Locks and keys [FL80] are an alternative to tombstones. Their disadvantages are
that they work only for objects in the heap, and they provide only probabilistic
protection from dangling pointers. Their advantage is that they avoid the need to
keep tombstones around forever (or to figure out when to reclaim them). AgainEXAMPLE 7.95

Dangling reference
detection with locks and
keys

the idea is simple: Every pointer is a tuple consisting of an address and a key.
Every object in the heap begins with a lock. A pointer to an object in the heap is
valid only if the key in the pointer matches the lock in the object (Figure 7.16).
When the run-time system allocates a new heap object, it generates a new key
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Figure 7.16 Locks and Keys. A valid pointer contains a key that matches the lock on an object
in the heap. A dangling reference is unlikely to match.

value. These can be as simple as serial numbers, but should avoid “common”
values such as zero and one. When an object is reclaimed, its lock is changed to
some arbitrary value (e.g., zero) so that the keys in any remaining pointers will
not match. If the block is subsequently reused for another purpose, we expect it
to be very unlikely that the location that used to contain the lock will be restored
to its former value by coincidence. �

Like tombstones, locks and keys incur significant overhead. They add an extra
word of storage to every pointer and to every block in the heap. They increase the
cost of copying one pointer into another. Most significantly, they incur the cost
of comparing locks and keys on every access (or every provably nonredundant
access). It is unclear whether the lock and key check is cheaper or more expensive
than the tombstone check. A tombstone check may result in two cache misses
(one for the tombstone and one for the object); a lock and key check is unlikely
to cause more than one. On the other hand, the lock and key check requires a
significantly longer instruction sequence on most machines.

To minimize time and space overhead, most compilers do not by default gen-
erate code to check for dangling references. Most Pascal compilers allow the pro-
grammer to request dynamic checks, which are usually implemented with locks
and keys. In most implementations of C, even optional checks are unavailable.
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7.7.3 Garbage Collection

Explicit reclamation of heap objects is a serious burden on the programmer and a
major source of bugs (memory leaks and dangling references). The code required
to keep track of object lifetimes makes programs more difficult to design, imple-
ment, and maintain. An attractive alternative is to have the language implemen-
tation notice when objects are no longer useful and reclaim them automatically.
Automatic reclamation (otherwise known as garbage collection) is more or less
essential for functional languages: delete is a very imperative sort of operation,
and the ability to construct and return arbitrary objects from functions means
that many objects that would be allocated on the stack in an imperative language
must be allocated from the heap in a functional language, to give them unlimited
extent.

Over time, automatic garbage collection has become popular for imperative
languages as well. It can be found in, among others, Clu, Cedar, Modula-3, Java,
C#, and all the major scripting languages. Automatic collection is difficult to im-
plement, but the difficulty pales in comparison to the convenience enjoyed by
programmers once the implementation exists. Automatic collection also tends to
be slower than manual reclamation, though it eliminates any need to check for
dangling references.

DESIGN & IMPLEMENTATION

Garbage collection
Garbage collection presents a classic tradeoff between convenience and safety
on the one hand and performance on the other. Manual storage reclamation,
implemented correctly by the application program, is almost invariably faster
than any automatic garbage collector. It is also more predictable: automatic
collection is notorious for its tendency to introduce intermittent “hiccups” in
the execution of real-time or interactive programs.

Ada takes the unusual position of refusing to take a stand: the language
design makes automatic garbage collection possible, but implementations are
not required to provide it (most don’t), and programmers can request man-
ual reclamation with a built-in routine called Unchecked_Deallocation. The
Ada 95 version of the language provides extensive facilities whereby program-
mers can implement their own storage managers (garbage collected or not),
with different types of pointers corresponding to different storage “pools.”

In a similar vein, the Real Time Specification for Java allows the program-
mer to create so-called scoped memory areas that are accessible to only a sub-
set of the currently running threads. When all threads with access to a given
area terminate, the area is reclaimed in its entirety. Objects allocated in a
scoped memory area are never examined by the garbage collector; perfor-
mance anomalies due to garbage collection can therefore be avoided by pro-
viding scoped memory to every real-time thread.
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Reference Counts

When is an object no longer useful? One possible answer is: when no pointers to it
exist.10 The simplest garbage collection technique simply places a counter in each
object that keeps track of the number of pointers that refer to the object. When
the object is created, this reference count is set to one, to represent the pointer re-
turned by the new operation. When one pointer is assigned into another, the run-
time system decrements the reference count of the object formerly referred to by
the assignment’s left-hand side and increments the count of the object referred to
by the right-hand side. On subroutine return, the calling sequence epilogue must
decrement the reference count of any object referred to by a local pointer that
is about to be destroyed. When a reference count reaches zero, its object can be
reclaimed. Recursively, the run-time system must decrement counts for any ob-
jects referred to by pointers within the object being reclaimed, and reclaim those
objects if their counts reach zero. To prevent the collector from following garbage
addresses, each pointer must be set to nil at elaboration time.

In order for reference counts to work, the language implementation must be
able to identify the location of every pointer. When a subroutine returns, it must
be able to tell which words in the stack frame represent pointers; when an object
in the heap is reclaimed, it must be able to tell which words within the object rep-
resent pointers. The standard technique to track this information relies on type
descriptors generated by the compiler. There is one descriptor for every distinct
type in the program, plus one for the stack frame of each subroutine and one for
the set of global variables. Most descriptors are simply a table that lists the offsets
within the type at which pointers can be found, together with the addresses of
descriptors for the types of the objects referred to by those pointers. For a tagged
variant record (discriminated union) type, the descriptor is a bit more compli-
cated: it must contain a list of values (or ranges) for the tag, together with a table
for the corresponding variant. For untagged variant records, there is no accept-
able solution: reference counts work only if the language is strongly typed (but
see the discussion of “Conservative Collection” on page 389).

The most important problem with reference counts stems from their defini-EXAMPLE 7.96
Reference counts and
circular structures

tion of a “useful object.” While it is definitely true that an object is useless if no
references to it exist, it may also be useless when references do exist. As shown
in Figure 7.17, reference counts may fail to collect circular structures. They work
well only for structures that are guaranteed to be noncircular. Many language
implementations use reference counts for variable-length strings; strings never
contain references to anything else. Perl uses reference counts for all dynamically
allocated data; the manual warns the programmer to break cycles manually when
data aren’t needed anymore. Some purely functional languages may also be able
to use reference counts safely in all cases, if the lack of an assignment statement

10 Throughout the following discussion we will use the pointer-based terminology of languages
with a value model of variables. The techniques apply equally well, however, to languages with a
reference model of variables.
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Figure 7.17 Reference counts and circular lists. The list shown here cannot be found via any
program variable, but because the list is circular, every cell contains a nonzero count.

prevents them from introducing circularity. Finally, reference counts can be used
to reclaim tombstones. While it is certainly possible to create a circular structure
with tombstones, the fact that the programmer is responsible for explicit deal-
location of heap objects implies that reference counts will fail to reclaim tomb-
stones only when the programmer has failed to reclaim the objects to which they
refer. �

Tracing Collection

A better definition of a “useful” object is one that can be reached by following a
chain of valid pointers starting from something that has a name (i.e., something
outside the heap). According to this definition, the blocks in the bottom half of
Figure 7.17 are useless, even though their reference counts are nonzero. Tracing
collectors work by recursively exploring the heap, starting from external pointers,
to determine what is useful.

Mark-and-Sweep The classic mechanism to identify useless blocks, under this
more accurate definition, is known as mark-and-sweep. It proceeds in three main
steps, executed by the garbage collector when the amount of free space remaining
in the heap falls below some minimum threshold.

1. The collector walks through the heap, tentatively marking every block as “use-
less.”

2. Beginning with all pointers outside the heap, the collector recursively ex-
plores all linked data structures in the program, marking each newly discov-
ered block as “useful.” (When it encounters a block that is already marked as
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“useful,” the collector knows it has reached the block over some previous path,
and returns without recursing.)

3. The collector again walks through the heap, moving every block that is still
marked “useless” to the free list.

Several potential problems with this algorithm are immediately apparent.
First, both the initial and final walks through the heap require that the collec-
tor be able to tell where every “in-use” block begins and ends. In a language with
variable-size heap blocks, every block must begin with an indication of its size,
and of whether it is currently free. Second, the collector must be able in Step 2 to
find the pointers contained within each block. The standard solution is to place
a pointer to a type descriptor near the beginning of each block.

The space overhead for bookkeeping information in heap blocks is not as large
as it might at first appear. If every type descriptor contains an indication of size,
then a heap block that includes the address of its type descriptor need not include
its size as a separate field (though the extra indirection required to find the size in
the descriptor makes walking the heap more expensive). Moreover, since a type
descriptor must be word-aligned on most machines, the two low-order bits of its
address are guaranteed to be zero. If we are willing to mask these bits out before
using the address, we can use them to store the “free” and “useful” flags.

Pointer Reversal The exploration step (Step 2) of mark-and-sweep collection
is naturally recursive. The obvious implementation needs a stack whose maxi-
mum depth is proportional to the longest chain through the heap. In practice,
the space for this stack may not be available: after all, we run garbage collection
when we’re about to run out of space!11 An alternative implementation of theEXAMPLE 7.97

Heap tracing with pointer
reversal

exploration step uses a technique first suggested by Schorr and Waite [SW67]
to embed the equivalent of the stack in already-existing fields in heap blocks.
More specifically, as the collector explores the path to a given block, it reverses
the pointers it follows, so that each points back to the previous block instead of
forward to the next. This pointer-reversal technique is illustrated in Figure 7.18.
As it explores, the collector keeps track of the current block and the block from
whence it came (the two gray arrows in the figure).

When it returns from block W to block Y, the collector uses the reversed
pointer in Y to restore its notion of previous block (R in our example). It then
flips the reversed pointer back to W and updates its notion of current block to
Y. If the block to which it has returned contains additional pointers, the collector
proceeds forward again; otherwise it returns across the previous reversed pointer
and tries again. At most one pointer in every block will be reversed at any given
time. This pointer must be marked, probably by means of another bookkeeping

11 In many language implementations, the stack and heap grow toward each other from opposite
ends of memory; if the heap is full, the stack can’t grow. In a system with virtual memory the
distance between the two may theoretically be enormous, but the space that backs them up on
disk is still limited, and shared between them.
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Figure 7.18 Heap exploration via pointer reversal. The block currently under examination is
indicated by the large gray arrow. The previous block is indicated by the small gray arrow. As the
garbage collector moves from one block to the next, it changes the pointer it follows to refer
back to the previous block. When it returns to a block it restores the pointer. Each reversed
pointer must be marked, to distinguish it from other, forward pointers in the same block. We
assume in this figure that the root node R is outside the heap, so none of its pointers are
reversed.

field at the beginning of each block. (We could mark the pointer by setting one of
its low-order bits, but the cost in time would probably be prohibitive: we’d have
to search the block on every visit.) �

Stop-and-Copy In a language with variable-size heap blocks, the garbage col-
lector can reduce external fragmentation by performing storage compaction, as
noted in the preceding discussion of tombstones. Compaction with tombstones
is easier because there is only a single pointer to each object. Many garbage col-
lectors employ a technique known as stop-and-copy that achieves compaction
while simultaneously eliminating Steps 1 and 3 in the standard mark and sweep
algorithm. Specifically, they divide the heap into two regions of equal size. All
allocation happens in the first half. When this half is (nearly) full, the collector
begins its exploration of reachable data structures. Each reachable block is copied
into the second half of the heap, with no external fragmentation. The old version
of the block, in the first half of the heap, is overwritten with a “useful” flag and a
pointer to the new location. Any other pointer that refers to the same block (and
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is found later in the exploration) is set to point to the new location. When the
collector finishes its exploration, all useful objects have been moved (and com-
pacted) into the second half of the heap, and nothing in the first half is needed
anymore. The collector can therefore swap its notion of first and second halves,
and the program can continue. Obviously, this algorithm suffers from the fact
that only half of the heap can be used at any given time, but in a system with vir-
tual memory it is only the virtual space that is underutilized; each “half” of the
heap can occupy most of physical memory as needed. Moreover, by eliminating
Steps 1 and 3 of standard mark and sweep, stop and copy incurs overhead pro-
portional to the number of nongarbage blocks, rather than the total number of
blocks.

Generational Collection To further reduce the cost of collection, some
garbage collectors employ a “generational” technique, exploiting the observation
that most dynamically allocated objects are short lived. The heap is divided into
multiple regions (often two). When space runs low the collector first examines
the youngest region (the “nursery”), which it assumes is likely to have the high-
est proportion of garbage. Only if it is unable to reclaim sufficient space in this
region does the collector examine the next-older region. Any object that survives
some small number of collections (often one) in its current region is promoted
(moved) to the next older region, in a manner reminiscent of stop-and-copy.
Promotion requires, of course, that pointers from old objects to new objects be

DESIGN & IMPLEMENTATION

Reference counts v. tracing
Reference counts require a counter field in every heap object. For small ob-
jects such as cons cells, this space overhead may be significant. The ongoing
expense of updating reference counts when pointers are changed can also be
significant in a program with large amounts of pointer manipulation. Other
garbage collection techniques, however, have similar overheads. Tracing gener-
ally requires a reversed pointer indicator in every heap block, which reference
counting does not, and generational collectors must generally incur overhead
on every pointer assignment in order to keep track of pointers into the newest
section of the heap.

The two principal tradeoffs between reference counting and tracing are the
inability of the former to handle cycles and the tendency of the latter to “stop
the world” periodically in order to reclaim space. On the whole, implementors
tend to favor reference counting for applications in which circularity is not an
issue, and tracing collectors in the general case. The “stop the world” prob-
lem can be addressed with incremental or parallel collectors, which execute
concurrently with the rest of the program, but these tend to have higher total
overhead. Efficient, effective garbage collection techniques remain an active
area of research.
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updated to reflect the new locations. While such old-to-new pointers tend to be
rare, a generational collector must track them in an explicit data structure (up-
dated at pointer assignment time) in order to avoid scanning the older portions
of the heap in order to find them. A collector for a long-running system, which
cannot afford to leak storage, must be able in the general case to examine the
entire heap, but in most cases the overhead of collection will be proportional to
the size of the youngest region only.

Conservative Collection Language implementors have traditionally assumed
that automatic storage reclamation is possible only in languages that are strongly
typed: both reference counts and tracing collection require that we be able to
find the pointers within an object. If we are willing to admit the possibility that
some garbage will go unreclaimed, it turns out that we can implement mark-
and-sweep collection without being able to find pointers [BW88]. The key is to
observe that the number of blocks in the heap is much smaller than the number
of possible bit patterns in an address. The probability that a word in memory that
is not a pointer into the heap will happen to contain a bit pattern that looks like
such a pointer is relatively small. If we assume, conservatively, that everything
that seems to point to a heap block is in fact a valid pointer, then we can proceed
with mark-and-sweep collection. When space runs low, the collector (as usual)
tentatively marks all blocks in the heap as useless. It then scans all word-aligned
quantities in the stack and in global storage. If any of these “pointers” contains
the address of a block in the heap, the collector marks that block as useful. Recur-
sively, the collector then scans all word-aligned quantities in the block and marks
as useful any other blocks whose addresses are found therein. Finally (as usual),
the collector reclaims any blocks that are still marked useless. The algorithm is
completely safe (in the sense that it never reclaims useful blocks) as long as the
programmer never “hides” a pointer. In C, for example, the collector is unlikely
to function correctly if the programmer casts a pointer to int and then xors it
with a constant, with the expectation of restoring and using the pointer at a later
time. In addition to sometimes leaving garbage unreclaimed, conservative collec-
tion suffers from the inability to perform compaction: the collector can never be
sure which “pointers” should be changed.

7.8 Lists

A list is defined recursively as either the empty list or a pair consisting of an
object (which may be either a list or an atom) and another (shorter) list. Lists
are ideally suited to programming in functional and logic languages, which do
most of their work via recursion and higher-order functions (to be described in
Section 10.5). In Lisp, in fact, a program is a list, and can extend itself at run time
by constructing a list and executing it (this capability will be examined further in
Section 10.3.5; it depends heavily on the fact that Lisp delays almost all semantic
checking until run time).
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Lists can also be used in imperative programs. Clu provides a built-in type
constructor for lists, and a list class is easy to write in most object-oriented lan-
guages. Several scripting languages, notably Perl and Python, provide extensive
list support. In any language with records and pointers, the programmer can
build lists by hand. Since many of the standard list operations tend to generate
garbage, lists work best in a language with automatic garbage collection.

We have already discussed certain aspects of lists in ML (Section 7.2.4) and
Lisp (Section 7.7.1). As we noted in those sections, lists in ML are homogeneous:
every element of the list must have the same type. Lisp lists, by contrast, are het-
erogeneous: any object may be placed in a list, as long as it is never used in an
inconsistent fashion.12 The different approaches to type in ML and in Lisp lead toEXAMPLE 7.98

Lists in ML and Lisp different implementations. An ML list is usually a chain of blocks, each of which
contains an element and a pointer to the next block. A Lisp list is a chain of cons
cells, each of which contains two pointers, one to the element and one to the next
cons cell (see Figures 7.12 and 7.13, pages 371 and 372). For historical reasons,
the two pointers in a cons cell are known as the car and the cdr; they represent
the head of the list and the remaining elements, respectively. In both semantics
(homogeneity versus heterogeneity) and implementation (chained blocks versus
cons cells), Clu resembles ML, while Python and Prolog (to be discussed in Sec-
tion 11.2) resemble Lisp. �

Both ML and Lisp provide convenient notation for lists. An ML list is en-EXAMPLE 7.99
List notation closed in square brackets, with elements separated by commas: [a, b, c, d].

A Lisp list is enclosed in parentheses, with elements separated by white space:
(a b c d). In both cases, the notation represents a proper list: one whose inner-
most pair consists of the final element and the empty list. In Lisp, it is also possi-
ble to construct an improper list, whose final pair contains two elements. (Strictly
speaking, such a list does not conform to the standard recursive definition.) Lisp
systems provide a more general but cumbersome dotted list notation that cap-
tures both proper and improper lists. A dotted list is either an atom (possibly
nil) or a pair consisting of two dotted lists separated by a period and enclosed
in parentheses. The dotted list (a . (b . (c . (d . nil)))) is the same as (a b c
d). The list (a . (b . (c . d))) is improper; its final cons cell contains a pointer
to d in the second position, where a pointer to a list is normally required. �

Both ML and Lisp provide a wealth of built-in polymorphic functions to ma-
nipulate arbitrary lists. Because programs are lists in Lisp, Lisp must distinguish
between lists that are to be evaluated and lists that are to be left “as is” as struc-
tures. To prevent a literal list from being evaluated, the Lisp programmer may
quote it: (quote (a b c d)), abbreviated ’(a b c d). To evaluate an internal
list (e.g., one returned by a function), the programmer may pass it to the built-in
function eval. In ML, programs are not lists, so a literal list is always a structural
aggregate.

12 Recall that objects are self-descriptive in Lisp. The only type checking occurs when a function
“deliberately” inspects an argument to see whether it is a list or an atom of some particular type.
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The most fundamental operations on lists are those that construct them fromEXAMPLE 7.100
Basic list operations in Lisp their components or extract their components from them. In Lisp:

(cons ’a ’(b)) �⇒ (a b)

(car ’(a b)) �⇒ a

(car nil) �⇒ ??
(cdr ’(a b c)) �⇒ (b c)

(cdr ’(a)) �⇒ nil

(cdr nil) �⇒ ??
(append ’(a b) ’(c d)) �⇒ (a b c d)

As in Chapter 6, we have used �⇒ to mean “evaluates to.” The car and cdr
of the empty list (nil) are defined to be nil in Common Lisp; in Scheme they
result in a dynamic semantic error. �

In ML the equivalent operations are written as follows.EXAMPLE 7.101
Basic list operations in ML

a :: [b] �⇒ [a, b]

hd [a, b] �⇒ a

hd [ ] �⇒ run-time exception
tl [a, b, c] �⇒ [b, c]

tl [a] �⇒ nil

tl [ ] �⇒ run-time exception
[a, b] @ [c, d] �⇒ [a, b, c, d]

Run-time exceptions may be caught by the program if desired; further details will
appear in Section 8.5. �

Both ML and Lisp provide many additional list functions, including ones that
test a list to see if it is empty; return the length of a list; return the nth element
of a list, or a list consisting of all but the first n elements; reverse the order of the

DESIGN & IMPLEMENTATION

Car and cdr

The names of the functions car and cdr are historical accidents: they de-
rive from the original (1959) implementation of Lisp on the IBM 704 at MIT.
The machine architecture included 15-bit “address” and “decrement” fields in
some of the (36-bit) loop-control instructions, together with additional in-
structions to load an index register from, or store it to, one of these fields
within a 36-bit memory word. The designers of the Lisp interpreter decided
to make cons cells mimic the internal format of instructions, so they could
exploit these special instructions. In now archaic usage, memory words were
also known as “registers.” What might appropriately have been called “first”
and “rest” pointers thus came to be known as the CAR (contents of address
of register) and CDR (contents of decrement of register). The 704, inciden-
tally, was also the machine on which Fortran was first developed, and the first
commercial machine to include hardware floating point and magnetic core
memory.
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elements of a list; search a list for elements matching some predicate; or apply a
function to every element of a list, returning the results as a list.

Miranda, Haskell, and Python provide lists that resemble those of ML, but
with an important additional mechanism, known as list comprehensions. A com-
mon form of list comprehension comprises an expression, an enumerator, and
one or more filters. In Miranda and Haskell, the following denotes a list of theEXAMPLE 7.102

List comprehensions squares of all odd numbers less than 100.

[i*i | i <- [1..100], i ‘mod‘ 2 == 1]

Here the vertical bar means “such that”; the left arrow is roughly equivalent to
“is a member of.” (Python syntax is slightly different.) We could of course write
an equivalent expression with a collection of appropriate functions. The brevity
of the list comprehension syntax, however, can sometimes lead to remarkably
elegant programs (see, for example, Exercise 7.32). �

7.9 Files and Input/Output

Input/output (I/O) facilities allow a program to communicate with the outside
world. In discussing this communication, it is customary to distinguish between
interactive I/O and I/O with files. Interactive I/O generally implies communica-
tion with human users or physical devices, which work in parallel with the run-
ning program, and whose input to the program may depend on earlier output
from the program (e.g., prompts). Files generally correspond to storage outside
the program’s address space, implemented by the operating system. Files may be
further categorized into those that are temporary and those that are persistent.
Temporary files exist for the duration of a single program run; their purpose is to
store information that is too large to fit in the memory available to the program.
Persistent files allow a program to read data that existed before the program be-
gan running, and to write data that will continue to exist after the program has
ended.

I/O is one of the most difficult aspects of a language to design, and one that
displays the least commonality from one language to the next. Some languages
provide built-in file data types and special syntactic constructs for I/O. Oth-

DESIGN & IMPLEMENTATION

I/O
Regardless of the level of language integration, the design of I/O facilities is
complicated by the tension between “power” and portability: designers gener-
ally want to take advantage of (and provide access to) all the features supported
by the underlying operating system. At the same time, they want to minimize
the amount of work required to move a program from one system to another.



7.10 Equality Testing and Assignment 393

ers relegate I/O entirely to library packages, which export a (usually opaque)
file type and a variety of input and output subroutines. The principal advan-
tage of language integration is the ability to employ non-subroutine-call syntax
and to perform operations (e.g., type checking on subroutine calls with varying
numbers of parameters) that may not otherwise be available to library routines.
A purely library-based approach to I/O, on the other hand, may keep a substan-
tial amount of “clutter” out of the language definition.

IN MORE DEPTH

After a brief introduction to interactive and file-based I/O, we focus mainly on the
common case of text files. The data in a text file are stored in character form but
may be converted to and from internal types during read and write operations.
As examples, we consider the text I/O facilities of Fortran, Ada, C, and C++.

7.10 Equality Testing and Assignment

For simple, primitive data types such as integers, floating-point numbers, or
characters, equality testing and assignment are relatively straightforward oper-
ations, with obvious semantics and obvious implementations (bit-wise compari-
son or copy). For more complicated or abstract data types, however, both seman-
tic and implementation subtleties arise.

Consider for example the problem of comparing two character strings. Should
the expression s = t determine whether s and t

� are aliases for one another?

� occupy storage that is bit-wise identical over its full length?

� contain the same sequence of characters?

� would appear the same if printed?

The second of these tests is probably too low level to be of interest in most pro-
grams; it suggests the possibility that a comparison might fail because of garbage
in currently unused portions of the space reserved for a string. The other three
alternatives may all be of interest in certain circumstances, and may generate dif-
ferent results.

In many cases the definition of equality boils down to the distinction between
l-values and r-values: in the presence of references, should expressions be con-
sidered equal only if they refer to the same object, or also if the objects to which
they refer are in some sense equal? The first option (refer to the same object) is
known as a shallow comparison. The second (refer to equal objects) is called a
deep comparison. For complicated data structures (e.g., lists or graphs) a deep
comparison may require recursive traversal.
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In imperative programming languages assignment operations may also be
deep or shallow. Under a reference model of variables, a shallow assignment
a := b will make a refer to the object to which b refers. A deep assignment
will create a copy of the object to which b refers, and make a refer to the copy.
Under a value model of variables, a shallow assignment will copy the value of b
into a, but if that value is a pointer (or a record containing pointers), then the
objects to which the pointer(s) refer will not be copied.

Most programming languages employ both shallow comparisons and shallow
assignment. A few (notably Python and the various dialects of Lisp) provide moreEXAMPLE 7.103

Equality testing in Scheme than one option for comparison. Scheme, for example, has three equality-testing
functions:

(eq? a b) ; do a and b refer to the same object?

(eqv? a b) ; are a and b provably semantically equivalent?

(equal? a b) ; do a and b have the same recursive structure?

The intent behind the eq? predicate is to make the implementation as fast
as possible while still producing useful results for many types of operands. The
intent behind eqv? is to provide as intuitively appealing a result as possible for
as wide a range of types as possible.

The eq? predicate behaves as one would expect for Booleans, symbols
(names), and pairs (things built by cons), but can have implementation-defined
behavior on numbers, characters, and strings.

(eq? #t #t) �⇒ #t (true)
(eq? ’foo ’foo) �⇒ #t

(eq? ’(a b) ’(a b)) �⇒ #f (false); created by separate cons-es
(let ((p ’(a b)))

(eq? p p)) �⇒ #t; created by the same cons
(eq? 2 2) �⇒ unspecified
(eq? "foo" "foo") �⇒ unspecified

In any particular implementation, numeric, character, and string tests will always
work the same way; if (eq? 2 2) returns true, then (eq? 37 37) will return
true also. Implementations are free to choose whichever behavior results in the
fastest code.

The exact rules that govern the situations in which eqv? is guaranteed to re-
turn true or false are quite involved. Among other things, they specify that
eqv? should behave as one might expect for numbers, characters, and nonempty
strings, and that two objects will never test true for eqv? if there are any cir-
cumstances under which they would behave differently. (Conversely, however,
eqv? is allowed to return false for certain objects—functions, for example—
that would behave identically in all circumstances.) The eqv? predicate is “less
discriminating” than eq?, in the sense that eqv? will never return false when
eq? returns true.

For structures (lists), eqv? returns false if its arguments refer to different
root cons cells. In many programs this is not the desired behavior. The equal?
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predicate recursively traverses two lists to see if their internal structure is the same
and their leaves are eqv?. The equal? predicate may lead to an infinite loop if
the programmer has used the imperative features of Scheme to create a circular
list. �

Deep assignments are relatively rare. They are used primarily in distributed
computing, and in particular for parameter passing in remote procedure call
(RPC) systems. These will be discussed in Section 12.4.4.

For user-defined abstractions, no single language-specified mechanism for
equality testing or assignment is likely to produce the desired results in all cases.
Languages with sophisticated data abstraction mechanisms usually allow the pro-
grammer to define the comparison and assignment operators for each new data
type—or to specify that equality testing and/or assignment is not allowed.

CHECK YOUR UNDERSTANDING

45. What are dangling references? How are they created, and why are they a prob-
lem? Discuss the comparative advantages of tombstones and locks and keys as
a means of solving the problem.

46. What is garbage? How is it created, and why is it a problem? Discuss the com-
parative advantages of reference counts and tracing collection as a means of
solving the problem.

47. Summarize the differences among mark-and-sweep, stop-and-copy, and gen-
erational garbage collection.

48. What is pointer reversal? What problem does it address?

49. What is “conservative” garbage collection? How does it work?

50. Do dangling references and garbage ever arise in the same programming lan-
guage? Why or why not?

51. Why was automatic garbage collection so slow to be adopted by imperative
programming languages?

52. What are the advantages and disadvantages of allowing pointers to refer to
objects that do not lie in the heap?

53. Why are lists so heavily used in functional programming languages?

54. Why is equality testing more subtle than it first appears?

7.11 Summary and Concluding Remarks

This section concludes the third of our five core chapters on language design
(names [from Part I], control flow, types, subroutines, and classes). In the first
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two sections we looked at the general issues of type systems and type checking.
In the remaining sections we examined the most important composite types:
records and variants, arrays and strings, sets, pointers and recursive types, lists,
and files. We noted that types serve two principal purposes: they provide implicit
context for many operations, freeing the programmer from the need to specify
that context explicitly, and they allow the compiler to catch a wide variety of
common programming errors. A type system consists of a set of built-in types;
a mechanism to define new types; and rules for type equivalence, type compatibil-
ity, and type inference. Type equivalence determines when two names or values
have the same type. Type compatibility determines when a value of one type may
be used in a context that “expects” another type. Type inference determines the
type of an expression based on the types of its components or (sometimes) the
surrounding context. A language is said to be strongly typed if it never allows an
operation to be applied to an object that does not support it; a language is said to
be statically typed if it enforces strong typing at compile time.

In our general discussion of types we distinguished between the denotational,
constructive, and abstraction-based points of view, which regard types, respec-
tively, in terms of their values, their substructure, and the operations they sup-
port. We introduced terminology for the common built-in types and for enu-
merations, subranges, and the common type constructors. We discussed several
different approaches to type equivalence, compatibility, and inference, includ-
ing (on the PLP CD) a detailed examination of the inference rules of ML. We
also examined type conversion, coercion, and nonconverting casts. In the area of
type equivalence, we contrasted the structural and name-based approaches, not-
ing that while name equivalence appears to have gained in popularity, structural
equivalence retains its advocates.

In our survey of composite types, we spent the most time on records, arrays,
and recursive types. Key issues for records include the syntax and semantics of
variant records, whole-record operations, type safety, and the interaction of each
of these with memory layout. Memory layout is also important for arrays, in
which it interacts with binding time for shape; static, stack, and heap-based al-
location strategies; efficient array traversal in numeric applications; the interop-
erability of pointers and arrays in C; and the available set of whole-array and
slice-based operations.

For recursive data types, much depends on the choice between the value and
reference models of variables/names. Recursive types are a natural fall-out of the
reference model; with the value model they require the notion of a pointer: a vari-
able whose value is a reference. The distinction between values and references is
important from an implementation point of view: it would be wasteful to imple-
ment built-in types as references, so languages with a reference model generally
implement built-in and user-defined types differently. Java reflects this distinc-
tion in the language semantics, calling for a value model of built-in types and a
reference model for objects of user-defined type classes.

Recursive types are generally used to create linked data structures. In most
cases these structures must be allocated from a heap. In some languages, the pro-
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grammer is responsible for deallocating heap objects that are no longer needed.
In other languages, the language run-time system identifies and reclaims such
garbage automatically. Explicit deallocation is a burden on the programmer,
and leads to the problems of memory leaks and dangling references. While lan-
guage implementations almost never attempt to catch memory leaks (see Explo-
ration 3.28 and Exercise 7.30, however, for some ideas on this subject) tombstones
or locks and keys are sometimes used to catch dangling references. Automatic
garbage collection can be expensive but has proven increasingly popular. Most
garbage-collection techniques rely either on reference counts or on some form of
recursive exploration (tracing) of currently accessible structures. Techniques in
this latter category include mark-and-sweep, stop-and-copy, and generational col-
lection.

Few areas of language design display as much variation as I/O. Our discussion
(largely on the PLP CD) distinguished between interactive I/O, which tends to be
very platform specific, and file-based I/O, which subdivides into temporary files,
used for voluminous data within a single program run, and persistent files, used
for off-line storage. Files also subdivide into those that represent their informa-
tion in a binary form that mimics layout in memory and those that convert to
and from character-based text. In comparison to binary files, text files generally
incur both time and space overhead, but they have the important advantages of
portability and human readability.

In our examination of types, we saw many examples of language innovations
that have served to improve the clarity and maintainability of programs, often
with little or no performance overhead. Examples include the original idea of
user-defined types (Algol 68), enumeration and subrange types (Pascal), the in-
tegration of records and variants (Pascal), and the distinction between subtypes
and derived types in Ada. In Chapter 9 we will examine what many consider the
most important innovation of the past thirty years, namely object orientation.

In some cases, the distinctions between languages are less a matter of evolu-
tion than of fundamental differences in philosophy. We have already mentioned
the choice between the value and reference models of variables/names. In a sim-
ilar vein, most languages have adopted static typing, but Smalltalk, Lisp, and the
many scripting languages work well with dynamic types. Most statically typed
languages have adopted name equivalence, but ML and Modula-3 work well with
structural equivalence. Most languages have moved away from type coercions,
but C++ embraces them: together with operator overloading, they make it pos-
sible to define terse, type-safe I/O routines outside the language proper.

As in the previous chapter, we saw several cases in which a language’s conve-
nience, orthogonality, or type safety appears to have been compromised in order
to simplify the compiler, or to make compiled programs smaller or faster. Ex-
amples include the lack of an equality test for records in most languages, the
requirement in Pascal and Ada that the variant portion of a record lie at the end,
the limitations in many languages on the maximum size of sets, the lack of type
checking for I/O in C, and the general lack of dynamic semantic checks in many
language implementations. We also saw several examples of language features in-
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troduced at least in part for the sake of efficient implementation. These include
packed types, multilength numeric types, with statements, decimal arithmetic,
and C-style pointer arithmetic.

At the same time, one can identify a growing willingness on the part of lan-
guage designers and users to tolerate complexity and cost in language implemen-
tation in order to improve semantics. Examples here include the type-safe variant
records of Ada; the standard-length numeric types of Java and C#; the variable-
length strings and string operators of Icon, Java, and C#; the late binding of array
bounds in Ada; and the wealth of whole-array and slice-based array operations in
Fortran 90. One might also include the polymorphic type inference of ML. Cer-
tainly one should include the trend toward automatic garbage collection. Once
considered too expensive for production-quality imperative languages, garbage
collection is now standard not only in such experimental languages as Clu and
Cedar, but in Ada, Modula-3, Java, and C# as well. Many of these features, includ-
ing variable-length strings, slices, and garbage collection, have been embraced by
scripting languages.

7.12 Exercises

7.1 Most modern Algol-family languages use some form of name equivalence
for types. Is structural equivalence a bad idea? Why or why not?

7.2 In the following code, which of the variables will a compiler consider to have
compatible types under structural equivalence? Under strict name equiva-
lence? Under loose name equivalence?

type T = array [1..10] of integer
S = T

A : T
B : T
C : S
D : array [1..10] of integer

7.3 Consider the following declarations.

1. type cell –– a forward declaration
2. type cell ptr = pointer to cell
3. x : cell
4. type cell = record
5. val : integer
6. next : cell ptr
7. y : cell

Should the declaration at line 4 be said to introduce an alias type? Under
strict name equivalence, should x and y have the same type? Explain.
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7.4 Suppose you are implementing an Ada compiler, and must support arith-
metic on 32-bit fixed-point binary numbers with a programmer-specified
number of fractional bits. Describe the code you would need to generate to
add, subtract, multiply, or divide two fixed-point numbers. You should as-
sume that the hardware provides arithmetic instructions only for integers
and IEEE floating point. You may assume that the integer instructions pre-
serve full precision; in particular, integer multiplication produces a 64-bit
result. Your description should be general enough to deal with operands
and results that have different numbers of fractional bits.

7.5 When Sun Microsystems ported Berkeley Unix from the Digital VAX to the
Motorola 680x0 in the early 1980s, many C programs stopped working and
had to be repaired. In effect, the 680x0 revealed certain classes of program
bugs that one could “get away with” on the VAX. One of these classes of bugs
occurred in programs that use more than one size of integer (e.g., short
and long) and arose from the fact that the VAX is a little-endian machine,
while the 680x0 is big-endian (Section 5.2). Another class of bugs occurred
in programs that manipulate both null and empty strings. It arose from the
fact that location zero in a process’s address space on the VAX always con-
tained a zero, while the same location on the 680x0 is not in the address
space, and will generate a protection error if used. For both of these classes
of bugs, give examples of program fragments that would work on a VAX but
not on a 680x0.

7.6 Ada provides two “remainder” operators, rem and mod for integer types,
defined as follows [Ame83, Sec. 4.5.5]:

Integer division and remainder are defined by the relation A = (A/B)*B +

(A rem B), where (A rem B) has the sign of A and an absolute value less
than the absolute value of B. Integer division satisfies the identity (-A)/B

= -(A/B) = A/(-B).
The result of the modulus operation is such that (A mod B) has the sign

of B and an absolute value less than the absolute value of B; in addition,
for some integer value N, this result must satisfy the relation A = B*N +

(A mod B).

Give values of A and B for which A rem B and A mod B differ. For what
purposes would one operation be more useful than the other? Does it make
sense to provide both, or is it overkill?

Consider also the % operator of C and the mod operator of Pascal. The
designers of these languages could have picked semantics resembling those
of either Ada’s rem or its mod. Which did they pick? Do you think they made
the right choice?

7.7 Consider the problem of performing range checks on set expressions in Pas-
cal. Given that a set may contain many elements, some of which may be
known at compile time, describe the information that a compiler might
maintain in order to track both the elements known to belong to the set
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and the possible range of unknown elements. Then explain how to update
this information for the following set operations: union, intersection, and
difference. The goal is to determine (1) when subrange checks can be elimi-
nated at run time and (2) when subrange errors can be reported at compile
time. Bear in mind that the compiler cannot do a perfect job: some unnec-
essary run-time checks will inevitably be performed, and some operations
that must always result in errors will not be caught at compile time. The goal
is to do as good a job as possible at reasonable cost.

7.8 Suppose we are compiling for a machine with 1-byte characters, 2-byte
shorts, 4-byte integers, and 8-byte reals, and with alignment rules that re-
quire the address of every primitive data element to be an even multiple
of the element’s size. Suppose further that the compiler is not permitted to
reorder fields. How much space will be consumed by the following array?

A : array [0 . . 9] of record
s : short
c : char
t : short
d : char
r : real
i : integer

7.9 Show how variant records in Pascal or unions in C can be used to interpret
the bits of a value of one type as if they represented a value of some other
type. Explain why the same technique does not work in Ada. If you have
access to an Ada manual, describe how an unchecked pragma can be used
to get around the Ada rules.

7.10 Are variant records a form of polymorphism? Why or why not?

7.11 Pascal does not permit the tag field of a variant record to be passed to a
subroutine by reference (i.e., as a var parameter). Why not?

7.12 Explain how to implement dynamic semantic checks to catch references to
uninitialized fields of a tagged variant record in Pascal. Changing the value
of the tag field should cause all fields of the variant part of the record to
become uninitialized. Suppose you want to avoid adding flag fields within
the record itself (e.g., to avoid changing the offsets of fields in a systems
program). How much harder is your task?

7.13 Explain how to implement dynamic semantic checks to catch references to
uninitialized fields of an untagged variant record in Pascal. Any assignment
to a field of a variant should cause all fields of other variants to become
uninitialized. Any assignment that changes the record from one variant to
another should also cause all other fields of the new variant to be unini-
tialized. Again, suppose you want to avoid adding flag fields within the un-
tagged record itself. How much harder is your task?
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7.14 We noted in Section 7.3.4 that Pascal and Ada require the variant portions
of a record to occur at the end, to save space when a particular record is
constrained to have a comparatively small variant part. Could a compiler
rearrange fields to achieve the same effect, without the restriction on the
declaration order of fields? Why or why not?

7.15 Give Ada code to map from lowercase to uppercase letters, using

(a) an array

(b) a function

Note the similarity of syntax: in both cases upper(’a’) is ’A’.

7.16 In Section 7.4 we discussed how to differentiate between the constant and
variable portions of an array reference, in order to efficiently access the sub-
parts of array and record objects. An alternative approach is to generate
naive code and count on the compiler’s code improver to find the constant
portions, group them together, and calculate them at compile time. Discuss
the advantages and disadvantages of each approach.

7.17 Explain how to extend Figure 7.7 to accommodate subroutine arguments
that are passed by value, but whose shape is not known until the subroutine
is called at run time.

7.18 Explain how to obtain the effect of Fortran 90’s allocate statement for
one-dimensional arrays using pointers in C. You will probably find that your
solution does not generalize to multidimensional arrays. Why not? If you are
familiar with C++, show how to use its class facilities to solve the problem.

7.19 Consider the following C declaration, compiled on a 32-bit Pentium ma-
chine.

struct {

int n;

char c;

} A[10][10];

If the address of A[0][0] is 1000 (decimal), what is the address of A[3][7]?

7.20 Consider the following Pascal variable declarations.

var A : array [1..10, 10..100] of real;

i : integer;

x : real;

Assume that a real number occupies eight bytes and that A, i, and x are
global variables. In something resembling assembly language for a RISC ma-
chine, show the code that a reasonable compiler would generate for the fol-
lowing assignment: x := A[3,i]. Explain how you arrived at your answer.
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7.21 Suppose A is a 10 × 10 array of (4-byte) integers, indexed from [0][0]
through [9][9]. Suppose further that the address of A is currently in reg-
ister r1, the value of integer i is currently in register r2, and the value of
integer j is currently in register r3.

Give pseudo-assembly language for a code sequence that will load the
value of A[i][j] into register r1 (a) assuming that A is implemented us-
ing (row-major) contiguous allocation; (b) assuming that A is implemented
using row pointers. Each line of your pseudocode should correspond to a
single instruction on a typical modern machine. You may use as many reg-
isters as you need. You need not preserve the values in r1, r2, and r3. You
may assume that i and j are in bounds, and that addresses are 4 bytes long.

Which code sequence is likely to be faster? Why?

7.22 In Examples 7.69 and 7.70, show the code that would be required to access
A[i, j, k] if subscript bounds checking were required.

7.23 Pointers and recursive type definitions complicate the algorithm for deter-
mining structural equivalence of types. Consider, for example, the following
definitions.

type A = record
x : pointer to B
y : real

type B = record
x : pointer to A
y : real

The simple definition of structural equivalence given in Section 7.2.1 (ex-
pand the subparts recursively until all you have is a string of built-in types
and type constructors; then compare them) does not work: we get an infi-
nite expansion (type A = record x : pointer to record x : pointer to record x :
pointer to record . . . ). The obvious reinterpretation is to say two types A and
B are equivalent if any sequence of field selections, array subscripts, pointer
dereferences, and other operations that takes one down into the structure
of A, and that ends at a built-in type, always ends at the same built-in type
when used to dive into the structure of B (and encounters the same field
names along the way). Under this reinterpretation, A and B above have the
same type. Give an algorithm based on this reinterpretation that could be
used in a compiler to determine structural equivalence. (Hint: The fastest
approach is due to J. Král [Krá73]. It is based on the algorithm used to find
the smallest deterministic finite automaton that accepts a given regular lan-
guage. This algorithm was outlined in Example 2.13 [page 53]; details can
be found in any automata theory textbook [e.g., [HMU01]].)

7.24 Explain the meaning of the following C declarations.

double *a[n];

double (*b)[n];
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double (*c[n])();

double (*d())[n];

7.25 In Ada 83, as in Pascal, pointers (access variables) can point only to objects
in the heap. Ada 95 allows a new kind of pointer, the access all type, to
point to other objects as well, provided that those objects have been declared
to be aliased:

type int_ptr is access all Integer;

foo : aliased Integer;

ip : int_ptr;

...

ip := foo’Access;

The ’Access attribute is roughly equivalent to C’s “address of” (&) oper-
ator. How would you implement access all types and aliased objects?
How would your implementation interact with automatic garbage collec-
tion (assuming it exists) for objects in the heap?

7.26 As noted in Section 7.7.2, Ada 95 forbids an access all pointer from re-
ferring to any object whose lifetime is briefer than that of the pointer’s type.
Can this rule be enforced completely at compile time? Why or why not?

7.27 In the discussion of pointers in Section 7.7, we assumed implicitly that every
pointer into the heap points to the beginning of a dynamically allocated
block of storage. In some languages, including Algol 68 and C, pointers may
also point to data inside a block in the heap. If you were trying to implement
dynamic semantic checks for dangling references or, alternatively, automatic
garbage collection, how would your task be complicated by the existence of
such “internal pointers”?

7.28 (a) A tracing garbage collector in a typesafe language can find and re-
claim all unreachable objects. It will not necessarily reclaim all useless
objects—those that will never be used again. Explain.

(b) With future technology, might it be possible to design a garbage collec-
tor that will reclaim all useless objects? Again, explain.

7.29 (a) Occasionally one encounters the suggestion that a garbage-collected
language should provide a delete operation as an optimization: by ex-
plicitly delete-ing objects that will never be used again, the program-
mer might save the garbage collector the trouble of finding and reclaim-
ing those objects automatically, thereby improving performance. What
do you think of this suggestion? Explain.

(b) Alternatively, one might allow the programmer to “tenure” an object,
so that it will never be a candidate for reclamation. Is this a good idea?

7.30 In Example 7.96 we noted that reference counts can be used to reclaim
tombstones, failing only when the programmer neglects to manually delete
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the object to which a tombstone refers. Explain how to leverage this obser-
vation to catch memory leaks at run time. Does your solution work in all
cases? Explain.

7.31 In Example 7.96 we also noted that functional languages can safely use ref-
erence counts if the lack of an assignment statement prevents them from in-
troducing circularity. This isn’t strictly true: constructs like the Lisp letrec
can also be used to make cycles. How might you address this problem?

7.32 Here is a skeleton for the standard quicksort algorithm in Haskell:

quicksort [] = []

quicksort (a : l) = quicksort [...] ++ [a] ++ quicksort [...]

The ++ operator denotes list concatenation (similar to @ in ML). The : op-
erator is equivalent to ML’s :: or Lisp’s cons. Show how to express the two
elided expressions as list comprehensions.

7.33–7.37 In More Depth.

7.13 Explorations

7.38 Some language definitions specify a particular representation for data types
in memory, while others specify only the semantic behavior of those types.
For languages in the latter class, some implementations guarantee a partic-
ular representation, while others reserve the right to choose different repre-
sentations in different circumstances. Which approach do you prefer? Why?

7.39 If you have access to a compiler that provides optional dynamic semantic
checks for out-of-bounds array subscripts, use of an inappropriate record
variant, and/or dangling or uninitialized pointers, experiment with the cost
of these checks. How much do they add to the execution time of programs
that make a significant number of checked accesses? Experiment with dif-
ferent levels of optimization (code improvement) to see what effect it has
on the overhead of checks.

7.40 Investigate the typestate mechanism employed by Strom et al. in the Hermes
programming language [SBG+91]. Discuss its relationship to the notion of
definite assignment in Java and C# (Section 6.1.3).

7.41 Investigate the notion of type conformance, employed by Black et al. in the
Emerald programming language [BHJ+87]. Discuss how conformance re-
lates to the type inference of ML and to the class-based typing of object-
oriented languages.

7.42 Write a library package that might be used by a language implementation to
manage sets of elements drawn from a very large base type (e.g., integer).
You should support membership tests, union, intersection, and difference.
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Does your package allocate memory from the heap? If so, what would a
compiler that assumed the use of your package need to do to make sure
that space was reclaimed when no longer needed?

7.43 Learn about SETL [SDDS86], a programming language based on sets, de-
signed by Jack Schwartz of New York University. List the mechanisms pro-
vided as built-in set operations. Compare this list with the set facilities of
other programming languages. What data structure(s) might a SETL im-
plementation use to represent sets in a program?

7.44 Implement your favorite garbage collection algorithm in Ada 95. Alter-
natively, implement a special pointer class in C++ for which storage is
garbage-collected. You’ll want to use templates (generics) so that your class
can be instantiated for arbitrary pointed-to types.

7.45 Experiment with the cost of garbage collection in your favorite language
implementation. What kind of collector does it use? Can you create artificial
programs for which it performs particularly well or poorly? (Hint: Check
to see if your machine and operating system allow user-level programs to
access a low-cost, high-resolution clock register.)

7.46–7.48 In More Depth.

7.14 Bibliographic Notes

References to general information on the various programming languages men-
tioned in this chapter can be found in Appendix A, and in the Bibliographic
Notes for Chapters 1 and 6. Welsh, Sneeringer, and Hoare [WSH77] provide a
critique of the original Pascal definition, with a particular emphasis on its type
system. Tanenbaum’s comparison of Pascal and Algol 68 also focuses largely on
types [Tan78]. Cleaveland [Cle86] provides a book-length study of many of the
issues in this chapter. Pierce [Pie02] provides a formal and detailed modern cov-
erage of the subject. The ACM Special Interest Group on Programming Lan-
guages launched a biennial workshop on Types in Language Design and Imple-
mentation in 2003.

What we have referred to as the denotational model of types originates with
Hoare [DDH72]. Denotational formulations of the overall semantics of pro-
gramming languages are discussed in the Bibliographic Notes for Chapter 4.
A related but distinct body of work uses algebraic techniques to formalize data
abstraction; key references include Guttag [Gut77] and Goguen et al. [GTW78].
Milner’s original paper [Mil78] is the seminal reference on type inference in ML.
Mairson [Mai90] proves that the cost of unifying ML types is O(2n), where n is
the length of the program. Fortunately, the cost is linear in the size of the pro-
gram’s type expressions, so the worst case arises only in programs whose seman-
tics are too complex for a human being to understand anyway.
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Hoare [Hoa75] discusses the definition of recursive types under a reference
model of variables. Cardelli and Wegner survey issues related to polymorphism,
overloading, and abstraction [CW85]. The new Character Model standard for
the World Wide Web provides a remarkably readable introduction to the sub-
tleties and complexities of international character sets [Wor05]. Conway’s game
of Life, which appeared in Figure 7.8, was first described by Martin Gardner in
his “Mathematical Games” column in Scientific American [Gar70].

Tombstones are due to Lomet [Lom75, Lom85]. Locks and keys are due to
Fischer and LeBlanc [FL80]. The latter also discuss how to check for various
other dynamic semantic errors in Pascal, including those that arise with vari-
ant records. Constant-space (pointer-reversing) mark-and-sweep garbage collec-
tion is due to Schorr and Waite [SW67]. Stop-and-copy collection was developed
by Fenichel and Yochelson [FY69], based on ideas due to Minsky. Deutsch and
Bobrow [DB76] describe an incremental garbage collector that avoids the “stop-
the-world” phenomenon. Wilson and Johnstone [WJ93] describe a more recent
incremental collector. The conservative collector described at the end of Sec-
tion 7.7.3 is due to Boehm and Weiser [BW88]. Cohen [Coh81] surveys garbage-
collection techniques as of 1981; Wilson [Wil92b] and Jones and Lins [JL96]
provide more recent views.



8Subroutines and Control Abstraction

In the introduction to Chapter 3, we defined abstraction as a process by
which the programmer can associate a name with a potentially complicated pro-
gram fragment, which can then be thought of in terms of its purpose or func-
tion, rather than in terms of its implementation. We sometimes distinguish be-
tween control abstraction, in which the principal purpose of the abstraction is to
perform a well-defined operation, and data abstraction, in which the principal
purpose of the abstraction is to represent information.1 We will consider data
abstraction in more detail in Chapter 9.

Subroutines are the principal mechanism for control abstraction in most pro-
gramming languages. A subroutine performs its operation on behalf of a caller,
who waits for the subroutine to finish before continuing execution. Most subrou-
tines are parameterized: the caller passes arguments that influence the subrou-
tine’s behavior, or provide it with data on which to operate. Arguments are also
called actual parameters. They are mapped to the subroutine’s formal parameters
at the time a call occurs. A subroutine that returns a value is usually called a func-
tion. A subroutine that does not return a value is usually called a procedure. Most
languages require subroutines to be declared before they are used, though a few
(including Fortran, C, and Lisp) do not. Declarations allow the compiler to verify
that every call to a subroutine is consistent with the declaration—that is, that it
passes the right number and types of arguments.

As noted in Section 3.2.2, the storage consumed by parameters and local vari-
ables can in most languages be allocated on a stack. We therefore begin this chap-
ter, in Section 8.1, by reviewing the layout of the stack. We then turn in Section 8.2
to the calling sequences that serve to maintain this layout. In the process, we revisit
the use of static chains to access nonlocal variables in nested subroutines and con-
sider (on the PLP CD) an alternative mechanism, known as a display, that serves

1 The distinction between control and data abstraction is somewhat fuzzy, because the latter usu-
ally encapsulates not only information, but also the operations that access and modify that in-
formation. Put another way, most data abstractions include control abstraction.

407
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a similar purpose. We also consider subroutine inlining and the representation
of closures. To illustrate some of the possible implementation alternatives, we
present (again on the PLP CD) a pair of case studies: the SGI MIPSpro C com-
piler for the MIPS instruction set, and the GNU gpc Pascal compiler for the x86
instruction set, as well as the register window mechanism of the Sparc instruction
set.

In Section 8.3 we look more closely at subroutine parameters. We consider
parameter-passing modes, which determine the operations that a subroutine can
apply to its formal parameters and the effects of those operations on the cor-
responding actual parameters. We also consider conformant arrays, named and
default parameters, variable numbers of arguments, and function return mecha-
nisms. In Section 8.4 we turn to generic subroutines and modules (classes), which
support explicit parametric polymorphism, as defined in Section 3.6.3. Where
conventional parameters allow a subroutine to operate on many different values,
generic parameters allow it to operate on data of many different types.

In Section 8.5, we consider the handling of exceptional conditions. While ex-
ceptions can sometimes be confined to the current subroutine, in the general case
they require a mechanism to “pop out of” a nested context without returning, so
that recovery can occur in the calling context. Finally, in Section 8.6, we consider
coroutines, which allow a program to maintain two or more execution contexts,
and to switch back and forth among them. Coroutines can be used to implement
iterators (Section 6.5.3), but they have other uses as well, particularly in simu-
lation and in server programs. In Chapter 12 we will use them as the basis for
concurrent (“quasiparallel”) threads.

8.1 Review of Stack Layout

In Section 3.2.2 we discussed the allocation of space on a subroutine call stackEXAMPLE 8.1
Layout of run-time stack
(reprise)

(Figure 3.2, page 110). Each routine, as it is called, is given a new stack frame,
or activation record, at the top of the stack. This frame may contain arguments
and/or return values, bookkeeping information (including the return address
and saved registers), local variables, and/or temporaries. When a subroutine re-
turns, its frame is popped from the stack. �

At any given time, the stack pointer register contains the address of either the
last used location at the top of the stack or the first unused location, depending
on convention. The frame pointer register contains an address within the frame.
Objects in the frame are accessed via displacement addressing with respect to the
frame pointer. If the size of an object (e.g., a local array) is not known at compileEXAMPLE 8.2

Offsets from frame pointer time, then the object is placed in a variable-size area at the top of the frame; its
address and dope vector are stored in the fixed-size portion of the frame, at a
statically known offset from the frame pointer (Figure 7.7, page 354). If there
are no variable-size objects, then every object within the frame has a statically
known offset from the stack pointer, and the implementation may dispense with
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Figure 8.1 Example of subroutine nesting, taken from Figure 3.5. Within B, C, and D, all five
routines are visible. Within A and E, routines A, B, and E are visible, but C and D are not.
Given the calling sequence A, E, B, D, C, in that order, frames will be allocated on the stack as
shown at right, with the indicated static and dynamic links.

the frame pointer, freeing up a register for other use. If the size of an argument is
not known at compile time, then the argument may be placed in a variable-size
portion of the frame below the other arguments, with its address and dope vector
at known offsets from the frame pointer. Alternatively, the caller may simply pass
a temporary address and dope vector, counting on the called routine to copy the
argument into the variable-size area at the top of the frame. �

In a language with nested subroutines and static scoping (e.g., Pascal, Ada,EXAMPLE 8.3
Static and dynamic links ML, Common Lisp, or Scheme), objects that lie in surrounding subroutines and

are thus neither local nor global can be found by maintaining a static chain (Fig-
ure 8.1). Each stack frame contains a reference to the frame of the lexically sur-
rounding subroutine. This reference is called the static link. By analogy, the saved
value of the frame pointer, which will be restored on subroutine return, is called
the dynamic link. The static and dynamic links may or may not be the same, de-
pending on whether the current routine was called by its lexically surrounding
routine, or by some other routine nested in that surrounding routine. �

Whether or not a subroutine is called directly by the lexically surrounding
routine, we can be sure that the surrounding routine is active; there is no other
way that the current routine could have been visible, allowing it to be called.
Consider for example, the subroutine nesting shown in Figure 8.1. If subroutineEXAMPLE 8.4

Visibility of nested routines D is called directly from B, then clearly B’s frame will already be on the stack.
How else could D be called? It is not visible in A or E, because it is nested inside of
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B. A moment’s thought makes clear that it is only when control enters B (placing
B’s frame on the stack) that D comes into view. It can therefore be called by C,
or by any other routine (not shown) that is nested inside of C or D, but only
because these are also within B. �

8.2 Calling Sequences

In Section 3.2.2 we also mentioned that maintenance of the subroutine call stack
is the responsibility of the calling sequence—the code executed by the caller im-
mediately before and after a subroutine call—and of the prologue (code executed
at the beginning) and epilogue (code executed at the end) of the subroutine itself.
Sometimes the term “calling sequence” is used to refer to the combined opera-
tions of the caller, the prologue, and the epilogue.

Tasks that must be accomplished on the way into a subroutine include passing
parameters, saving the return address, changing the program counter, changing
the stack pointer to allocate space, saving registers (including the frame pointer)
that contain important values and that may be overwritten by the callee, changing
the frame pointer to refer to the new frame, and executing initialization code for
any objects in the new frame that require it. Tasks that must be accomplished
on the way out include passing return parameters or function values, executing
finalization code for any local objects that require it, deallocating the stack frame
(restoring the stack pointer), restoring other saved registers (including the frame
pointer), and restoring the program counter. Some of these tasks (e.g., passing
parameters) must be performed by the caller, because they differ from call to
call. Most of the tasks, however, can be performed either by the caller or the
callee. In general, we will save space if the callee does as much work as possible:
tasks performed in the callee appear only once in the target program, but tasks
performed in the caller appear at every call site, and the typical subroutine is
called in more than one place.

Saving and Restoring Registers

Perhaps the trickiest division-of-labor issue pertains to saving registers. As we
noted in Section 5.5.2, the ideal approach is to save precisely those registers that
are both in use in the caller and needed for other purposes in the callee. Because
of separate compilation, however, it is difficult (though not impossible) to deter-
mine this intersecting set. A simpler solution is for the caller to save all registers
that are in use, or for the callee to save all registers that it will overwrite.

Calling sequence conventions for many processors, including the MIPS and
x86 described in the case studies of Section 8.2.2, strike something of a com-
promise: registers not reserved for special purposes are divided into two sets of
approximately equal size. One set is the caller’s responsibility, the other is the
callee’s responsibility. A callee can assume that there is nothing of value in any of
the registers in the caller-saves set; a caller can assume that no callee will destroy
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the contents of any registers in the callee-saves set. In the interests of code size,
the compiler uses the callee-saves registers for local variables and other long-lived
values whenever possible. It uses the caller-saves set for transient values, which
are less likely to be needed across calls. The result of these conventions is that
the caller-saves registers are seldom saved by either party: the callee knows that
they are the caller’s responsibility, and the caller knows that they don’t contain
anything important.

Maintaining the Static Chain

In languages with nested subroutines, at least part of the work required to main-
tain the static chain must be performed by the caller, rather than the callee, be-
cause this work depends on the lexical nesting depth of the caller. The standard
approach is for the caller to compute the callee’s static link and to pass it as an
extra, hidden parameter. The following subcases arise.

1. The callee is nested (directly) inside the caller. In this case, the callee’s static
link should refer to the caller’s frame. The caller therefore passes its own frame
pointer as the callee’s static link.

2. The callee is k ≥ 0 scopes “outward”—closer to the outer level of lexical nest-
ing. In this case, all scopes that surround the callee also surround the caller
(otherwise the callee would not be visible). The caller dereferences its own
static link k times and passes the result as the callee’s static link.

A Typical Calling Sequence

Figure 8.2 shows one plausible layout for a stack frame, consistent with Figure 3.2.EXAMPLE 8.5
A typical calling sequence The stack pointer (sp) points to the first unused location on the stack (or the last

used location, depending on the compiler and machine). The frame pointer (fp)
points to a location near the bottom of the frame. Space for all arguments is
reserved in the stack, even if the compiler passes some of them in registers (the
callee will need a place to save them if it calls a nested routine).

To maintain this stack layout, the calling sequence might operate as follows.
The caller

1. saves any caller-saves registers whose values will be needed after the call.

2. computes the values of arguments and moves them into the stack or registers.

3. computes the static link (if this is a language with nested subroutines) and
passes it as an extra, hidden argument.

4. uses a special subroutine call instruction (sometimes called “branch and
link”) to jump to the subroutine, simultaneously passing the return address
on the stack or in a register.

In its prologue, the callee

1. allocates a frame by subtracting an appropriate constant from the sp.
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Figure 8.2 A typical stack frame. Though we draw it growing upward on the page, the stack
actually grows downward toward lower addresses on most machines. Arguments are accessed
at positive offsets from the fp. Local variables and temporaries are accessed at negative offsets
from the fp. Arguments to be passed to called routines are assembled at the top of the frame,
using positive offsets from the sp.

2. saves the old frame pointer into the stack, and assigns it an appropriate new
value.

3. saves any callee-saves registers that may be overwritten by the current routine
(including the static link and return address, if they were passed in registers).

After the subroutine has completed, the epilogue

1. moves the return value (if any) into a register or a reserved location in the
stack.

2. restores callee-saves registers if needed.

3. restores the fp and the sp.

4. jumps back to the return address.

Finally, the caller

1. moves the return value to wherever it is needed.

2. restores caller-saves registers if needed. �
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Special Case Optimizations

Many parts of the calling sequence, prologue, and epilogue can be omitted in
common cases. If the hardware passes the return address in a register, then a
leaf routine (a subroutine that makes no additional calls before returning)2 can
simply leave it there; it does not need to save it in the stack. Likewise it need not
save the static link or any caller-saves registers.

A subroutine with no local variables and nothing to save or restore may not
even need a stack frame on a RISC machine. The simplest subroutines (e.g., li-
brary routines to compute the standard mathematical functions) may not touch
memory at all, except to fetch instructions: they may take their arguments in
registers, compute entirely in (caller-saves) registers, call no other routines, and
return their results in registers. As a result they may be extremely fast.

8.2.1 Displays

One disadvantage of static chains is that access to an object in a scope k levels
out requires that the static chain be dereferenced k times. If a local object can be
loaded into a register with a single (displacement mode) memory access, an ob-
ject k levels out will require k + 1 memory accesses. This number can be reduced
to a constant by use of a display.

IN MORE DEPTH

A display is a small array that replaces the static chain. The jth element of the
display contains a reference to the frame of the most recently active subroutine
at lexical nesting level j. If the currently active routine is nested i > 3 levels deep,
then elements i − 1, i − 2, and i − 3 of the display contain the values that would
have been the first three links of the static chain. An object k levels out can be
found at a statically known offset from the address stored in element j = i − k of
the display.

For most programs the cost of maintaining a display in the subroutine calling
sequence tends to be slightly higher than that of maintaining a static chain. At the
same time, the cost of dereferencing the static chain has been reduced by modern
compilers, which tend to do a good job of caching the links in registers when ap-
propriate. These observations, combined with the trend toward languages (those
descended from C in particular) in which subroutines do not nest, have made
displays less common today than they were in the 1970s.

2 A leaf routine is so named because it is a leaf of the subroutine call graph, a data structure men-
tioned in Exercise 3.10.
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8.2.2 Case Studies: C on the MIPS; Pascal on the x86

Calling sequences differ significantly from machine to machine and even com-
piler to compiler (though typically a hardware manufacturer publishes a sug-
gested set of conventions for a given architecture, to promote interoperability
among program components produced by different compilers). Some of the
most significant differences can be found in a comparison of CISC and RISC
conventions.

� Compilers for CISC machines tend to pass arguments on the stack; compilers
for RISC machines tend to pass arguments in registers.

� Compilers for CISC machines usually dedicate a register to the frame pointer;
compilers for RISC machines often do not.

� Compilers for CISC machines often rely on special purpose instructions to
implement parts of the calling sequence; available instructions on a RISC ma-
chine are typically much simpler.

The use of the stack to pass arguments reflects the technology of the 1970s,
when register sets were significantly smaller and memory access was significantly
faster (in comparison to processor speed) than is the case today. Most CISC in-
struction sets include push and pop instructions that combine a store or load
with automatic update of the stack pointer. The push instruction, in particu-
lar, was traditionally used to pass arguments to subroutines, effectively allocating
stack space on demand. The resulting instability in the value of the sp made it
difficult (though not impossible) to use that register as the base for access to lo-
cal variables. A separate frame pointer made code generation easier and, perhaps
more important, made it practical to locate local variables from within a simple
symbolic debugger.

IN MORE DEPTH

On the PLP CD we look in some detail at the stack layout conventions and calling
sequences of a representative pair of compilers: the SGI MIPSpro C compiler for
the 64-bit MIPS architecture, and the GNU Pascal compiler (gpc) for the 32-bit
x86. The former illustrates the heavy use of registers on modern RISC machines.
The latter, while adjusted somewhat to reflect modern implementations of the
x86, still retains vestiges of its CISC ancestry, with heavier use of the stack. It also
illustrates the use of the static chain to accommodate nested subroutines, and the
creation of closures when such routines are passed as parameters.

8.2.3 Register Windows

As an alternative to saving and restoring registers on subroutine calls and re-
turns, the original Berkeley RISC machines [PD80, Pat85] introduced a hardware
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mechanism known as register windows. The basic idea is to map the ISA’s limited
set of register names onto some subset (window) of a much larger collection of
physical registers, and to change the mapping when making subroutine calls. Old
and new mappings overlap a bit, allowing arguments to be passed (and function
results returned) in the intersection.

IN MORE DEPTH

We consider register windows in more detail on the PLP CD. They have appeared
in several commercial processors, most notably the Sun Sparc and the Intel IA-64
(Itanium).

8.2.4 In-Line Expansion

As an alternative to stack-based calling conventions, many language implementa-
tions allow certain subroutines to be expanded in-line at the point of call. In-line
expansion avoids a variety of overheads, including space allocation, branch delays
from the call and return, maintaining the static chain or display, and (often) sav-
ing and restoring registers. It also allows the compiler to perform code improve-
ments such as global register allocation and common subexpression elimination
across the boundaries between subroutines, something that most compilers can’t
do otherwise.

In many implementations the compiler chooses which subroutines to expand
in-line and which to compile conventionally. In some languages, the programmer
can suggest that particular routines be in-lined. In C++ and C99, the keywordEXAMPLE 8.6

Requesting an inline

subroutine
inline can be prefixed to a function declaration:

inline int max(int a, int b) {return a > b ? a : b;}

In Ada, the programmer can request in-line expansion with a significant com-
ment, or pragma:

DESIGN & IMPLEMENTATION

Hints and directives
As noted in the sidebar on page 292, the decision to make inline a semanti-
cally neutral hint in C (and the similar treatment of most pragmas in Ada) ac-
knowledges that while programmer suggestions may sometimes improve the
quality of generated code, advances in compiler technology may change the
balance in the future. By contrast, the use of pointer arithmetic in place of
array subscripts, as discussed in the sidebar on page 377, is more of a direc-
tive than a hint, and may complicate the generation of high-quality code from
legacy programs.
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function max(a, b : integer) return integer is

begin

if a > b then return a; else return b; end if;

end max;

pragma inline(max);

Ada provides a large variety of pragmas. As a rule, they do not affect the semantics
of the program; they simply offer suggestions (“hints”) to the compiler. In some
cases (e.g., the elaborate pragma, which controls the order in which headers for
library packages are examined), the compiler is required to follow the suggestion.
In other cases (including inline), it is not. The inline keyword in C++ and
C99 is likewise a suggestion; the compiler can ignore it. �

In Section 6.6.2 we noted the similarity between in-line expansion and macros,
but argued that the former is semantically preferable. In fact, in-line expansion
is semantically neutral: it is purely an implementation technique, with no ef-
fect on the meaning of the program. In comparison to real subroutine calls,
in-line expansion has the obvious disadvantage of increasing code size, since
the entire body of the subroutine appears at every call site. In-line expansion
is also not an option in the general case for recursive subroutines. For the oc-EXAMPLE 8.7

In-lining and recursion casional case in which a recursive call is possible but unlikely, it may be desir-
able to generate a true recursive subroutine, but to expand one instance of it
in-line at each call site. Consider the following C routine for use in hash-table
lookup.

range_t bucket_contents(bucket *b, domain_t x)

{

if (b->key == x)

return b->val;

else if (b->next == 0)

return ERROR;

else

return bucket_contents(b->next, x);

}

We can expand this code in-line if we make the nested invocation a true subrou-
tine call. Since most hash chains are only one bucket long, the nested call will
usually not occur. The in-line expansion will be faster than a true subroutine call,
and smaller than in-line code that handles the general case. �

DESIGN & IMPLEMENTATION

Inline and modularity
Probably the most important argument for in-line expansion is that it allows
programmers to adopt a very modular programming style, with lots of tiny
subroutines, without sacrificing performance. This modular programming
style is essential for object-oriented languages, as we shall see in Chapter 9.
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CHECK YOUR UNDERSTANDING

1. What is a subroutine calling sequence? What does it do? What is meant by the
subroutine prologue and epilogue?

2. How do calling sequences typically differ in CISC and RISC compilers?

3. Describe how to maintain the static chain during a subroutine call.

4. What is a display? How does it differ from a static chain?

5. What are the purposes of the stack pointer and frame pointer registers? Why
does a subroutine often need both?

6. Why do RISC machines typically pass subroutine parameters in registers
rather than on the stack?

7. Why do subroutine calling conventions often give the caller responsibility
for saving half the registers and the callee responsibility for saving the other
half?

8. If work can be done in either the caller or the callee, why do we typically
prefer to do it in the callee?

9. Why do compilers typically allocate space for arguments in the stack, even
when they pass them in registers?

10. List the optimizations that can be made to the subroutine calling sequence in
important special cases (e.g., leaf routines).

11. How does an in-line subroutine differ from a macro?

12. Under what circumstances is it desirable to expand a subroutine in-line?

8.3 Parameter Passing

Most subroutines are parameterized: they take arguments that control certain
aspects of their behavior, or specify the data on which they are to operate. Pa-
rameter names that appear in the declaration of a subroutine are known as for-
mal parameters. Variables and expressions that are passed to a subroutine in a
particular call are known as actual parameters. We have been referring to ac-
tual parameters as arguments. In the following two subsections, we discuss the
most common parameter-passing modes, most of which are implemented by
passing values, references, or closures. In Section 8.3.3 we will look at addi-
tional mechanisms, including conformant array parameters, missing and de-
fault parameters, named parameters, and variable-length argument lists. Finally
in Section 8.3.4 we will consider mechanisms for returning values from func-
tions.
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As we noted in Section 6.1, most languages use a prefix notation for calls
to user-defined subroutines, with the subroutine name followed by a parenthe-
sized argument list. Lisp places the function name inside the parentheses, as in
(max a b). ML allows the programmer to specify that certain names representEXAMPLE 8.8

Infix operators infix operators, which appear between a pair of arguments:

infixr 8 tothe; (* exponentiation *)

fun x tothe 0 = 1.0

| x tothe n = x * (x tothe(n-1)); (* assume n >= 0 *)

The infixr declaration indicates that tothe will be a right-associative binary
infix operator, at precedence level 8 (multiplication and division are at level 7,
addition and subtraction at level 6). Fortran 90 also allows the programmer to
define new infix operators, but it requires their names to be bracketed with pe-
riods (e.g., A .cross. B), and it gives them all the same precedence. Smalltalk
uses infix (or “mixfix”) notation (without precedence) for all its operations. �

The uniformity of Lisp and Smalltalk syntax makes control abstraction par-EXAMPLE 8.9
Control abstraction in Lisp
and Smalltalk

ticularly effective: user-defined subroutines (functions in Lisp, “messages” in
Smalltalk) use the same style of syntax as built-in operations. As an example,
consider if. . . then . . . else:

if a > b then max := a else max := b; (* Pascal *)

(if (> a b) (setf max a) (setf max b)) ; Lisp

(a > b) ifTrue: [max <- a] ifFalse: [max <- b]. "Smalltalk"

In Pascal or C it is clear that if. . . then . . . else is a built-in language construct: it
does not look like a subroutine call. In Lisp and Smalltalk, on the other hand, the
analogous conditional constructs are syntactically indistinguishable from user-
defined operations. They are in fact defined in terms of simpler concepts, rather
than being built-in, though they require a special mechanism to evaluate their
arguments in normal, rather than applicative, order (Section 6.6.2). �

8.3.1 Parameter Modes

In our discussion of subroutines so far, we have glossed over the semantic rules
that govern parameter passing, and that determine the relationship between ac-
tual and formal parameters. Some languages, including C, Fortran, ML, and Lisp,
define a single set of rules, which apply to all parameters. Other languages, in-
cluding Pascal, Modula, and Ada, provide two or more sets of rules, correspond-
ing to different parameter-passing modes. As in many aspects of language design,
the semantic details are heavily influenced by implementation issues.

Suppose for the moment that x is a global variable in a language with a valueEXAMPLE 8.10
Passing a subroutine
argument

model of variables, and that we wish to pass x as a parameter to subroutine p:

p(x);
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From an implementation point of view, we have two principal alternatives: we
may provide p with a copy of x’s value, or we may provide it with x’s address.
The two most common parameter-passing modes, called call by value and call by
reference, are designed to reflect these implementations. �

With value parameters, each actual parameter is assigned into the correspond-
ing formal parameter when a subroutine is called; from then on, the two are in-
dependent. With reference parameters, each formal parameter introduces, within
the body of the subroutine, a new name for the corresponding actual parameter.
If the actual parameter is also visible within the subroutine under its original
name (as will generally be the case if it is declared in a surrounding scope), then
the two names are aliases for the same object, and changes made through one will
be visible through the other. In most languages (Fortran is an exception, as we
shall see) an actual parameter that is to be passed by reference must be an l-value;
it cannot be the result of an arithmetic operation, or any other value without an
address.

As a simple example, consider the following pseudocode.EXAMPLE 8.11
Value and reference
parameters x : integer –– global

procedure foo(y : integer)
y := 3
print x

. . .
x := 2
foo(x)
print x

If y is passed to foo by value, then the assignment inside foo has no visible
effect—y is private to the subroutine—and the program prints 2 twice. If y is
passed to foo by reference, then the assignment inside foo changes x—y is just a
local name for x—and the program prints 3 twice. �

Variations on Value and Reference Parameters

In Pascal, parameters are passed by value by default; they are passed by reference if
preceded by the keyword var in their subroutine header’s formal parameter list.
Parameters in C are always passed by value, though the effect for arrays is un-

DESIGN & IMPLEMENTATION

Parameter modes
While it may seem odd to introduce parameter modes (a semantic issue) in
terms of implementation, the distinction between value and reference pa-
rameters is fundamentally an implementation issue. Most languages with
more than one mode (Ada is the principal exception) might fairly be char-
acterized as an attempt to paste acceptable semantics onto the desired imple-
mentation, rather than to find an acceptable implementation of the desired
semantics.



420 Chapter 8 Subroutines and Control Abstraction

usual: because of the interoperability of arrays and pointers in C (Section 7.7.1),
what is passed by value is a pointer; changes to array elements accessed through
this pointer are visible to the caller. To allow a called routine to modify a variableEXAMPLE 8.12

Emulating call-by-reference
in C

other than an array in the caller’s scope, the C programmer must pass the address
of the variable explicitly:

void swap(int *a, int *b) { int t = *a; *a = *b; *b = t; }

...

swap(&v1, &v2); �
Fortran passes all parameters by reference, but it does not require that every

actual parameter be an l-value. If a built-up expression appears in an argument
list, the compiler creates a temporary variable to hold the value, and passes this
variable by reference. A Fortran subroutine that needs to modify the values of its
formal parameters without modifying its actual parameters must copy the values
into local variables and modify those instead.

Call by Sharing In languages like Smalltalk, Lisp, ML, and Clu, which use a
reference model of variables, an actual parameter is already a reference to an ob-
ject. Instead of passing the value of the actual parameter or a reference to the
actual parameter (neither of which makes sense), these languages provide a sin-
gle parameter-passing mode in which the actual and formal parameters refer to
the same object. Clu calls this mode call by sharing. For variables that are im-
plemented as addresses, call by sharing is usually implemented by passing the
address. For variables that refer to immutable objects (numbers, characters, etc.)
and that are implemented as values, call by sharing is usually implemented by
passing the value.

In Java, parameters of primitive types are passed by value; object parameters
are passed by sharing. A similar approach is the default in C#, but because the
language allows users to create both value (struct) and reference (class) types,
both cases are considered call by value. When desired, parameters can be passed
by reference instead, by labeling both formal and actual parameters with the ref
or out keyword. Both of these modes are implemented by passing an address;
they differ in that a ref argument must be definitely assigned prior to the call,
as described in Section 6.1.3; an out argument need not. If a variable of class
(reference) type is passed as a ref or out parameter, it may end up referring to a
different value as a result of subroutine execution.

The Ambiguity of Call by Reference In a language that provides both value
and reference parameters (e.g., Pascal or Modula), there are two principal reasons
why the programmer might choose one over the other. First, if the called routine
is supposed to change the value of an actual parameter, then the programmer
must pass the parameter by reference. Conversely, to ensure that the called rou-
tine cannot modify the parameter, the programmer can pass the parameter by
value. Second, the implementation of value parameters requires copying actuals
to formals, a potentially time-consuming operation when arguments are large.
Reference parameters can be implemented simply by passing an address. (Of
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course, accessing a parameter that is passed by reference requires an extra level
of indirection. If the parameter is used often enough, the cost of this indirection
may outweigh the cost of copying the actual parameter.)

The potential inefficiency of large value parameters sometimes prompts pro-
grammers to pass an argument by reference when passing by value would be se-
mantically more appropriate. Pascal programmers, for example, were commonly
taught to use var (reference) parameters both for arguments that need to be
modified and for arguments that are very large. Unfortunately, the latter jus-
tification often leads to buggy code, in which a subroutine modifies an actual
parameter that the caller meant to leave unchanged.

Read-Only Parameters To combine the efficiency of reference parameters and
the safety of value parameters, Modula-3 provides a READONLY parameter mode.
Any formal parameter whose declaration is preceded by READONLY cannot be
changed by the called routine: the compiler prevents the programmer from using
that formal parameter on the left-hand side of any assignment statement, reading
it from a file, or passing it by reference to any other subroutine. Small READONLY
parameters are generally implemented by passing a value; larger READONLY pa-
rameters are implemented by passing an address. As in Fortran, a Modula-3 com-
piler will create a temporary variable to hold the value of any built-up expression
passed as a large READONLY parameter.

The equivalent of READONLY parameters is also available in C, which allows any
variable or parameter declaration to be preceded by the keyword const. Const
variables are “elaboration-time constants,” as described in Section 3.2. Const pa-EXAMPLE 8.13

Const parameters in C rameters are particularly useful when passing addresses:

void append_to_log(const huge_record *r) { ...

...

append_to_log(&my_record);

Here the keyword const applies to the record to which r points;3 the caller must
pass the address of its record explicitly, but can be assured that the callee will not
change the record’s contents. �

One traditional problem with parameter modes—and with the READONLY
mode in particular—is that they tend to confuse the key pragmatic issue (does
the implementation pass a value or a reference?) with two semantic issues: is the
callee allowed to change the formal parameter and, if so, will the changes be re-
flected in the actual parameter? C keeps the pragmatic issue separate, by forcing
the programmer to pass references explicitly with pointers. Still, its const mode

3 Following the usual rules for parsing C declarations (page 377) r is a pointer to a huge_record

whose value is constant. If we wanted r to be a constant that points to a huge_record, we should
need to say huge_record * const r.
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serves double duty: is the intent of const foo *p to protect the actual parame-
ter from change, or to document the fact that the subroutine thinks of the formal
parameter as a constant rather than a variable, or both?

Parameter Modes in Ada

Ada provides three parameter-passing modes, called in, out, and in out. In
parameters pass information from the caller to the callee; they can be read by
the callee but not written. Out parameters pass information from the callee to
the caller. In Ada 83 they can be written by the callee but not read; in Ada 95
they can be both read and written, but they begin their life uninitialized. In out
parameters pass information in both directions; they can be both read and writ-
ten. Changes to out or in out parameters always change the actual parame-
ter.

For parameters of scalar and access (pointer) types, Ada specifies that all three
modes are to be implemented by copying values. For these parameters, then, in
is call by value, out is what some authors call call by result (the value of the formal
parameter is copied into the actual parameter when the subroutine returns), and
in out is call by value/result, a mode first introduced in Algol-W. For parame-
ters of most constructed types, however, Ada specifically permits an implemen-
tation to pass either values or addresses. In most languages, these two different
mechanisms would lead to different semantics: changes made to an in out pa-
rameter that is passed as an address will affect the actual parameter immediately;
changes made to an in out parameter that is passed as a value will not affect the
actual parameter until the subroutine returns. Return for a moment to Exam-EXAMPLE 8.14

Reference and value/result
parameters

ple 8.11:

x : integer –– global
procedure foo(y : integer)

y := 3
print x

. . .
x := 2
foo(x)
print x

We already noted that if y is passed by reference the program will print 3 twice.
If y is passed by value/result, it will print 2 and then 3. �

One possible way to hide the distinction between reference and value/result
would be to outlaw the creation of aliases, as Euclid does. Ada takes a simpler
tack: a program that can tell the difference between value and address-based im-
plementations of (nonscalar, nonpointer) in out parameters is said to be “erro-
neous”—incorrect, but in a way that the language implementation is not required
to catch.

Ada’s semantics for parameter passing allow a single set of modes to be used
not only for subroutine parameters, but also for communication among concur-
rently executing tasks (to be discussed in Chapter 12). When tasks are executing
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on separate machines, with no memory in common, passing the address of an
actual parameter is not a practical option. Most Ada compilers pass large argu-
ments to subroutines as addresses; they pass them to the entry points of tasks by
copying.

References in C++

Programmers who switch to C after some experience with Pascal, Modula, or
Ada (or with call by sharing in Java or Lisp) are often frustrated by C’s lack
of reference parameters. As noted above, one can always arrange to modify an
object by passing its address, but then the formal parameter is a pointer, and
must be explicitly dereferenced whenever it is used. C++ addresses this prob-EXAMPLE 8.15

Reference parameters in
C++

lem by introducing an explicit notion of a reference. Reference parameters are
specified by preceding their name with an ampersand in the header of the func-
tion:

void swap(int &a, int &b) { int t = a; a = b; b = t; }

In the code of this swap routine, a and b are ints, not pointers to ints; no
dereferencing is required. Moreover, the caller passes as arguments the variables
whose values are to be swapped, rather than passing their addresses. �

As in C, a C++ parameter can be declared to be const to ensure that it is not
modified. For large types, const reference parameters in C++ provide the same
combination of speed and safety found in the READONLY parameters of Modula-3:
they can be passed by address, but cannot be changed by the called routine.

References in C++ see their principal use as parameters, but they can appear
in other contexts as well. Any variable can be declared to be a reference:EXAMPLE 8.16

References as aliases in
C++ int i;

int &j = i;

...

i = 2;

j = 3;

cout << i; // prints 3

Here j is a reference to (an alias for) i. The initializer in the declaration is re-
quired; it identifies the object for which j is an alias. Moreover it is not possible
later to change the object to which j refers; it will always refer to i.

Any change to i or j can be seen by reading the other. Most C++ compilers
implement references with addresses. In this example, i will be assigned a loca-
tion that contains an integer, while j will be assigned a location that contains
the address of i. Despite their different implementation, however, there is no se-
mantic difference between i and j; the exact same operations can be applied to
either, with precisely the same results. �

While there is seldom any reason to create aliases on purpose in straight-line
code, references in C++ are highly useful for at least one purpose other than
parameters: namely function returns. Some objects—file buffers, for example—
do not support a copy operation, and therefore cannot be passed or returned by
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value. One can always return a pointer, but just as with subroutine parameters,
the subsequent dereferencing operations can be cumbersome.

Section 7.9 explains how references are used for I/O in C++. The over-EXAMPLE 8.17
Returning a reference from
a function

loaded << and >> operators return a reference to their first argument, which can
in turn be passed to subsequent << or >> operations. The syntax

cout << a << b << c;

is short for

((cout.operator<<(a)).operator<<(b)).operator<<(c);

Without references, << and >> would have to return a pointer to their stream:

((cout.operator<<(a))->operator<<(b))->operator<<(c);

or

*(*(cout.operator<<(a)).operator<<(b)).operator<<(c);

This change would spoil the cascading syntax of the operator form:

*(*(cout << a) << b) << c; �
It should be noted that the ability to return references from functions is not

new in C++: Algol 68 provides the same capability. The object-oriented features
of C++, and its operator overloading, make reference returns particularly useful.

Closures as Parameters

A closure (a reference to a subroutine, together with its referencing environment)
may be passed as a parameter for any of several reasons. The most obvious of
these arises when the parameter is declared to be a subroutine (sometimes called
a formal subroutine). In Standard Pascal one might write the following.EXAMPLE 8.18

Subroutines as parameters
in Pascal procedure apply_to_A(function f(n : integer) : integer;

var A : array [low..high : integer] of integer);

var i : integer;

begin

for i := low to high do A[i] := f(A[i]);

end;

Early versions of Pascal did not include the full header of the subroutine pa-
rameter (e.g., f) in the header of the routine (e.g., apply_to_A) to which it was
being passed. This omission made it difficult or impossible to check at compile
time to make sure that the actual and formal parameters expected the same num-
ber and types of arguments. The situation in Fortran is similar: Fortran 77 allows
a subroutine to be passed as a parameter but cannot check statically for consis-
tent use. Fortran 90 allows (but does not require) the programmer to specify the
parameter’s interface. �

Several languages provide first-class subroutine types, supporting not only
subroutine parameters, but also subroutine variables. In Modula-2 we couldEXAMPLE 8.19

Subroutine types in
Modula-2

write the following.
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TYPE int_to_int = PROCEDURE(INTEGER) : INTEGER;

PROCEDURE apply_to_A(f : int_to_int; A : ARRAY OF INTEGER);

VAR i : CARDINAL; (* unsigned integer *)

BEGIN

FOR i := 0 TO HIGH(A) DO A[i] := f(A[i]); END;

END apply_to_A; �
C and C++ support pointers to subroutines, both as parameters and as variables:EXAMPLE 8.20

Subroutine pointers in C
and C++ void apply_to_A(int (*f)(int), int A[], int A_size)

{

int i;

for (i = 0; i < A_size; i++) A[i] = f(A[i]);

}

The syntax f(n) is used not only when f is the name of a function, but also when
f is a pointer to a function; the pointer need not be dereferenced explicitly. �

Ada 83 does not permit subroutines to be passed as parameters. Some of the
same effect can be obtained through generic subroutines (to be discussed in
Section 8.4), but not enough; Ada 95 provides first-class pointer-to-subroutine
types.

Subroutines are routinely passed as parameters (and returned as results) in
functional languages. A list-based version of apply_to_A would look somethingEXAMPLE 8.21

First-class subroutines in
Scheme

like this in Scheme (for the meanings of car, cdr, and cons, see Section 7.8):

(define apply-to-L (lambda (f l)

(if (null? l) ’()

(cons (f (car l)) (apply-to-L f (cdr l))))))

Because Scheme (like Lisp) is not statically typed, there is no need to specify the
type of f. At run time, a Scheme implementation will announce a dynamic se-

DESIGN & IMPLEMENTATION

Anonymous delegates in C# 2.0
C#, which calls its first-class subroutines delegates, is a rarity among statically
typed imperative languages: though it does not permit subroutines (methods)
to nest in the general case, it does allow anonymous delegates (comparable to
the lambda expressions of Lisp or Scheme) to appear inside other methods.
If a delegate refers to objects declared in the surrounding method, then those
objects have unlimited extent. When a program assigns an anonymous dele-
gate into a variable, or returns it from a method, the run-time system creates
a closure object, into which it copies (references to) any objects referenced by
the delegate that may need to outlive the scope in which they are declared.
This implementation incurs the cost of dynamic (heap-based) allocation only
when it is needed, allowing local variables to remain in the stack in the com-
mon case. Python also provides for local variables with unlimited extent, but
like Lisp and Scheme it performs type checking at run time.
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mantic error in (f (car l)) if f is not a function, and in (null? l), (car l),
or (cdr l) if l is not a list. �

The code in ML is similar, but the implementation uses inference (Sec-EXAMPLE 8.22
First-class subroutines in
ML

tion 7.2.4) to determine the types of f and l at compile time:

fun apply_to_L(f, l) =

case l of

nil => nil

| h :: t => f(h) :: apply_to_L(f, t);

The type of apply_to_L is (’a -> ’b) * ’a list -> ’b list. �
As described in Section 3.5, referencing environments are required in closures

only for nested subroutines. C and C++ get by with simple subroutine point-
ers because they have no nested subroutines. Similarly, Modula-2 can pass sim-
ple addresses because it allows only outermost routines to appear as arguments.
Modula-3 is a bit more general: it allows inner subroutines to be passed as para-
meters (and uses closures to represent them), but though it also allows subrou-
tines to be returned from functions or assigned into variables, it limits these cases
to outermost routines, thereby avoiding the need for objects of unlimited extent
(again, see Section 3.5).

8.3.2 Call by Name

Explicit subroutine parameters are not the only language feature that requires a
closure to be passed as a parameter. In general, a language implementation must
pass a closure whenever the eventual use of the parameter requires the restoration
of a previous referencing environment. Interesting examples occur in the call by
name parameters of Algol 60 and Simula, the label parameters of Algol 60 and
Algol 68, and the call by need parameters of Miranda, Haskell, and R.

IN MORE DEPTH

When Algol 60 was defined, most programmers programmed in assembly lan-
guage (Fortran was only a few years old, and Lisp was even newer). The assembly
languages of the day made heavy use of macros, and it was natural for the Algol
designers to propose a parameter-passing mechanism that mimicked the behav-
ior of macros, namely normal-order argument evaluation (Section 6.6.2). It was
also natural, given common practice in assembly language, to allow a goto to
jump to a label that was passed as a parameter. Call-by-name parameters have
some interesting and powerful applications, but they are more difficult to imple-
ment (and more expensive to use) than one might at first expect: they require
the passing of closures. Label parameters are typically implemented by closures
as well. Both call-by-name and label parameters tend to lead to inscrutable code;
modern languages encourage programmers to use explicit formal subroutines
(Section 8.3.1) and structured exceptions (Section 8.5) instead.
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implementation permissible change to
mechanism operations actual? alias?

value value read, write no no
in, const value or reference read only no maybe
out (Ada) value or reference write only yes maybe

value/result value read, write yes no
var, ref reference read, write yes yes

sharing value or reference read, write yes yes
in out (Ada) value or reference read, write yes maybe

name (Algol 60) closure (thunk) read, write yes yes

Figure 8.3 Parameter passing modes. Column 1 indicates common names for modes. Col-
umn 2 indicates implementation via passing of values, references, or closures. Column 3 indicates
whether the callee can read or write the formal parameter. Column 4 indicates whether changes
to the formal parameter affect the actual parameter. Column 5 indicates whether changes to
the formal or actual parameter, during the execution of the subroutine, may be visible through
the other.

8.3.3 Special Purpose Parameters

Figure 8.3 contains a summary of the common parameter-passing modes. In this
subsection we examine other aspects of parameter passing.

Conformant Arrays

As we saw in Section 7.4.2, the binding time for array dimensions and bounds
varies greatly from language to language, ranging from compile time (Basic and
Pascal) to elaboration time (Ada and Fortran 90) to arbitrary times during execu-
tion (APL, Perl, and Common Lisp). In several languages, the rules for parame-
ters are looser than they are for variables. A formal array parameter whose shape
is finalized at run time (in a language that usually determines shape at compile
time) is called a conformant, or open, array parameter. Example 7.61 (page 355) il-
lustrates the use of conformant arrays in Pascal, as does Example 8.18 (page 424).
Modula-2 and C equivalents of the latter can be found in Examples 8.19 and 8.20,
respectively. Because it passes arrays as pointers, C allows actual parameters of
different shapes to be passed through the same parameter, but without any run-
time checks to ensure that references by the called routine are within the bounds
of the actual array.

Default (Optional) Parameters

In Section 3.3.6 we noted that the principal use of dynamic scope is to change
the default behavior of a subroutine. We also noted that the same effect can be
achieved with default parameters. A default parameter is one that need not nec-
essarily be provided by the caller; if it is missing, then a preestablished default
value will be used instead.
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One common use of default parameters is in I/O library routines (described
in Section 7.9.3). In Ada, for example, the put routine for integers has theEXAMPLE 8.23

Default parameters in Ada following declaration in the text_IO library package.

type field is integer range 0..integer’last;

type number_base is integer range 2..16;

default_width : field := integer’width;

default_base : number_base := 10;

procedure put(item : in integer;

width : in field := default_width;

base : in number_base := default_base);

Here the declaration of default_width uses the built-in type attribute width
to determine the maximum number of columns required to print an integer in
decimal on the current machine (e.g., a 32-bit integer requires no more than 11
columns, including the optional minus sign).

Any formal parameter that is “assigned” a value in its subroutine heading is
optional in Ada. In our text_IO example, the programmer can call put with
one, two, or three arguments. No matter how many are provided in a particular
call, the code for put can always assume it has all three parameters. The imple-
mentation is straightforward: in any call in which actual parameters are missing,
the compiler pretends as if the defaults had been provided; it generates a calling
sequence that loads those defaults into registers or pushes them onto the stack,
as appropriate. On a 32-bit machine, put(37) will print the string “37” in an
11-column field (with nine leading blanks) in base 10 notation. Put(37, 4) will
print “37” in a four-column field (two leading blanks), and put(37, 4, 8) will
print “45” (37 = 458) in a four-column field.

Because the default_width and default_base variables are part of the
text_IO interface, the programmer can change them if desired. When using de-
fault values in calls with missing actuals, the compiler loads the defaults from
the variables of the package. As noted in Section 7.9.3, there are overloaded
instances of put for all the built-in types. In fact, there are two overloaded in-
stances of put for every type, one of which has an additional first parameter that
specifies the output file to which to write a value.4 It should be emphasized that
there is nothing special about I/O as far as default parameters are concerned:
defaults can be used in any subroutine declaration. In addition to Ada, default
parameters appear in C++, Common Lisp, Fortran 90, and Python. �

Named Parameters

In all of our discussions so far we have been assuming that parameters are posi-
tional: the first actual parameter corresponds to the first formal parameter, the

4 The real situation is actually a bit more complicated: the put routine for integers is nested in-
side integer_IO, a generic package that is in turn inside of text_IO. The programmer must
instantiate a separate version of the integer_IO package for each variety (size) of integer type.
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second actual to the second formal, and so on. In some languages, including
Ada, Common Lisp, Fortran 90, Modula-3, and Python, this need not be the
case. These languages allow parameters to be named. Named parameters (also
called keyword parameters) are particularly useful in conjunction with default
parameters. Positional notation allows us to write put(37, 4) to print “37” in
a four-column field, but it does not allow us to print in octal in a field of default
width: any call (with positional notation) that specifies a base must also specify
a width, explicitly, because the width parameter precedes the base in put’s pa-
rameter list. Named parameters provide the Ada programmer with a way aroundEXAMPLE 8.24

Named parameters in Ada this problem:

put(item => 37, base => 8);

Because the parameters are named, their order does not matter; we can also write

put(base => 8, item => 37);

We can even mix the two approaches, using positional notation for the first few
parameters, and names for all the rest:

put(37, base => 8); �
In addition to allowing parameters to be specified in arbitrary order, omitting

any intermediate default parameters for which special values are not required,
named parameter notation has the advantage of documenting the purpose of
each parameter. For a subroutine with a very large number of parameters, it can
be difficult to remember which is which. Named notation makes the meaning ofEXAMPLE 8.25

Self-documentation with
named parameters

arguments explicit in the call, as in the following hypothetical example.

format_page(columns => 2,

window_height => 400, window_width => 200,

header_font => Helvetica, body_font => Times,

title_font => Times_Bold, header_point_size => 10,

body_point_size => 11, title_point_size => 13,

justification => true, hyphenation => false,

page_num => 3, paragraph_indent => 18,

background_color => white); �

Variable Numbers of Arguments

Lisp, Python, and C and its descendants are unusual in that they allow the user to
define subroutines that take a variable number of arguments. Examples of such
subroutines can be found in Section 7.9.3: the printf and scanf functions
of C’s stdio I/O library. In C, printf can be declared as follows.

int printf(char *format, ...)

{ ...

The ellipsis (...) in the function header is a part of the language syntax. It in-
dicates that there are additional parameters following the format, but that their
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types and numbers are unspecified. Since C and C++ are statically typed, ad-
ditional parameters are not type safe. They are type safe in Common Lisp and
Python, however, thanks to dynamic typing.

Within the body of a function with a variable-length argument list, the C or
C++ programmer must use a collection of standard routines to access the extra
arguments. Originally defined as macros, these routines have implementations
that vary from machine to machine, depending on how arguments are passed
to functions; today the necessary support is often built into the compiler. ForEXAMPLE 8.26

Variable number of
arguments in C

printf, variable arguments would be used as follows in C.

#include <stdarg.h> /* macros and type definitions */

int printf(char *format, ...)

{

va_list args;

va_start(args, format);

...

char cp = va_arg(args, char);

...

double dp = va_arg(args, double);

...

va_end(args);

}

Here args is defined as an object of type va_list, a special (implementation-
dependent) type used to enumerate the elided parameters. The va_start routine
takes the last declared parameter (in this case, format) as its second argument. It
initializes its first argument (in this case args) so that it can be used to enumerate
the rest of the caller’s actual parameters. At least one formal parameter must be
declared; they can’t all be elided.

Each call to va_arg returns the value of the next elided parameter. Two exam-
ples appear above. Each specifies the expected type of the parameter, and assigns
the result into a variable of the appropriate type. If the expected type is differ-
ent from the type of the actual parameter, chaos can result. In printf, the %X
placeholders in the format string are used to determine the type: printf con-
tains a large switch statement, with one arm for each possible X. The arm for
%c contains a call to va_arg(args, char); the arm for %f contains a call to
va_arg(args, double). All C floating-point types are extended to double pre-
cision before being passed to a subroutine, so there is no need inside printf to
worry about the distinction between floats and doubles. Scanf, on the other
hand, must distinguish between pointers to floats and pointers to doubles. The
call to va_end allows the implementation to perform any necessary cleanup op-
erations (e.g., deallocation of any heap space used for the va_list, or repair of
any changes to the stack frame that might confuse the epilogue code). �

Older versions of C use a slightly different set of macros, defined in
varargs.h, for variable-length argument lists. The differences between the two
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interfaces reflect the introduction of function prototypes (headers with complete
information on parameter types) in C.5

Like C and C++, C# and recent versions of Java support variable numbers of
parameters, but unlike their parent languages they do so in a typesafe manner, by
requiring all trailing parameters to share a common type. In Java, for example,EXAMPLE 8.27

Variable number of
arguments in Java

one can write

static void print_lines(String foo, String... lines) {

System.out.println("First argument is \"" + foo + "\".");

System.out.println("There are " +

lines.length + " additional arguments:");

for (String str: lines) {

System.out.println(str);

}

}

...

print_lines("Hello, world", "This is a message", "from your sponsor.");

Here again the ellipsis in the method header is part of the language syntax.
Method print_lines has two arguments. The first, foo, is of type String; the
second, lines, is of type String.... Within print_lines, lines functions as
if it had type String[] (array of String). The caller, however, need not package
the second and subsequent parameters into an explicit array; the compiler does
this automatically, and the program prints

First argument is "Hello, world".

There are 2 additional arguments:

This is a message

from your sponsor. �
The parameter declaration syntax is slightly different in C#:EXAMPLE 8.28

Variable number of
arguments in C# static void print_lines(String foo, params String[] lines) {

Console.WriteLine("First argument is \"" + foo + "\".");

Console.WriteLine("There are " +

lines.Length + " additional arguments:");

for (int i = 0; i < lines.Length; i++) {

Console.WriteLine(lines[i]);

}

}

The calling syntax is the same. �

5 Prototypes were actually introduced in C++ and then adopted back into the parent language. C
accepts the older syntax, as well as the newer, for the sake of backward compatibility. Only the
newer is allowed in C++.
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8.3.4 Function Returns

Many languages place restrictions on the types of objects that can be returned
from a function. In Algol 60 and Fortran, a function must return a scalar value. In
Pascal and early versions of Modula-2, it must return a scalar or a pointer. Most
imperative languages are more flexible: Algol 68, Ada, C, and many (nonstan-
dard) implementations of Pascal allow functions to return values of composite
type. Modula-3 and Ada 95 allow a function to return a subroutine, implemented
as a closure. C has no closures, but it allows a function to return a pointer to a
subroutine. In functional languages such as Lisp and ML, returning a closure is
commonplace.

The syntax by which a function indicates the value to be returned varies
greatly. In languages like Lisp, ML, and Algol 68, which do not distinguish be-
tween expressions and statements, the value of a function is simply the value of
its body, which is itself an expression.

In several early imperative languages, including Algol 60, Fortran, and Pas-
cal, a function specifies its return value by executing an assignment statement
whose left-hand side is the name of the function. This approach has an unfor-
tunate interaction with the usual static scope rules (Section 3.3.1): the compiler
must forbid any immediately nested declaration that would hide the name of the
function, since the function would then be unable to return. This special case isEXAMPLE 8.29

Returning a value from a
function

avoided in more recent imperative languages by introducing an explicit return
statement:

return expression

In addition to specifying a value, return causes the immediate termination of
the subroutine. As noted in Section 6.2, this termination avoids the common
Pascal idiom of placing a statement label on the last line of a subroutine, and
then performing a goto to this label. A function that has figured out what to
return but doesn’t want to return yet can always assign the return value into a
temporary variable, and then return it later:

rtn := expression
...

return rtn �
Fortran separates early termination of a subroutine from the specification of re-
turn values: it specifies the return value by assigning to the function name, and
has a return statement that takes no arguments.

Argument-bearing return statements and assignment to the function name
share one additional shortcoming: they force the programmer to employ a tem-
porary variable in incremental computations. Here is an example in Ada:EXAMPLE 8.30

Incremental computation
of a return value type int_array is array (integer range <>) of integer;

-- array of integers with unspecified integer bounds

function A_max(A : int_array) return integer is

rtn : integer;



8.3 Parameter Passing 433

begin

rtn := integer’first;

for i in A’first .. A’last loop

if A(i) > rtn then rtn := A(i); end if;

end loop;

return rtn;

end A_max;

Here rtn must be declared as a variable so that the function can read it as well
as write it. Because rtn is a local variable, most compilers will allocate it within
the stack frame of A_max. The return statement must then perform an unnec-
essary copy to move that variable’s value into the return location allocated by the
caller. �

Some languages eliminate the need for a local variable by allowing the result
of a function to have a name in its own right. In SR one can write the following.6EXAMPLE 8.31

Explicitly named return
values in SR procedure A_max(ref A[1:*]: int) returns rtn : int

rtn := low(int)

fa i := 1 to ub(A) ->

if A[i] > rtn -> rtn := A[i] fi

af

end

Here rtn can reside throughout its lifetime in the return location allocated by the
caller. A similar facility can be found in Eiffel, in which every function contains
an implicitly declared object named Result. This object can be both read and
written, and is returned to the caller when the function returns. �

CHECK YOUR UNDERSTANDING

13. What is the difference between formal and actual parameters?

14. Describe four common parameter-passing modes. How does a programmer
choose which one to use when?

15. Explain the rationale for READONLY parameters in Modula-3.

16. What parameter mode is typically used in languages with a reference model
of variables?

17. Describe the parameter modes of Ada. How do they differ from the modes of
most other Algol-family languages?

18. What does it mean for an Ada program to be erroneous?

6 The fa in SR stands for “for all”; ub stands for “upper bound.” The -> symbol is roughly equiv-
alent to do and then in other languages. All structured statements in SR are terminated by
spelling the opening keyword backwards. Semicolons between statements may be omitted if they
occur at end-of-line.
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19. Give an example in which it is useful to return a reference from a function in
C++.

20. List three reasons why a language implementation might implement a pa-
rameter as a closure.

21. What is a conformant (open) array?

22. What are default parameters? How are they implemented?

23. What are named (keyword) parameters? Why are they useful?

24. Explain the value of variable-length argument lists. What distinguishes such
lists in Java and C# from their counterparts in C and C++?

25. Describe three common mechanisms for specifying the return value of a
function. What are their relative strengths and drawbacks?

8.4 Generic Subroutines and Modules

Subroutines provide a natural way to perform an operation for a variety of dif-
ferent object (parameter) values. In large programs, the need also often arises to
perform an operation for a variety of different object types. An operating sys-
tem, for example, tends to make heavy use of queues, to hold processes, memory
descriptors, file buffers, device control blocks, and a host of other objects. The
characteristics of the queue data structure are independent of the characteristics
of the items placed in the queue. Unfortunately, the standard mechanisms for
declaring enqueue and dequeue subroutines in most languages require that the
type of the items be declared, statically. In a language like Pascal or Fortran, this
static declaration of item type means that the programmer must create separate
copies of enqueue and dequeue for every type of item, even though the entire
text of these copies (other than the type names in the procedure headers) is the
same. In some languages (C is an obvious example) it is possible to define a queue
of pointers to arbitrary objects, but use of such a queue requires type casts that
abandon compile-time checking (Exercise 8.17).

Implicit parametric polymorphism, as suggested in Section 3.6.3, provides
a way around the problem, allowing us to declare subroutines whose parame-
ter types are incompletely specified but still type-safe. This approach has its
drawbacks, however. As realized in Lisp (Section 10.3) or the various script-
ing languages, it delays type checking until run time. As realized in ML (Sec-
tion 7.2.4), it makes the compiler substantially slower and more compli-
cated, and it forces the adoption of a structural view of type equivalence (Sec-
tion 7.2.1). An alternative, also mentioned in Section 3.6.3, is to provide an ex-
plicitly polymorphic generic facility that allows a collection of similar subroutines
or modules—with different types in each—to be created from a single copy of
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the source code. Languages that provide generics include Ada, C++ (which calls
them templates), Clu, Eiffel, Modula-3, Java, and C#.

Generic modules or classes are particularly valuable for creating containers:
data abstractions that hold a collection of objects, but whose operations are gen-EXAMPLE 8.32

Generic queues in Ada and
C++

erally oblivious to the type of those objects. Examples of containers include stack,
queue, heap, set, and dictionary (mapping) abstractions, implemented as lists, ar-
rays, trees, or hash tables. Ada and C++ examples of a generic queue appear in
Figure 8.4. �

Generic subroutines (methods) are needed in generic modules (classes), and
may also be useful in their own right. A generic “minimum” function in AdaEXAMPLE 8.33

Generic min function in
Ada (reprise)

appears in Figure 3.17 (page 147). Another standard example is a sorting routine,
which needs to be able to tell when objects are smaller or larger than each other,
but does not need to know anything else about them. �

Exactly what can be passed as a generic parameter varies from language to
language. Java and C# pass only types. Ada and C++ are a bit more general. In
particular, both allow values of ordinary (nongeneric) types, including subrou-
tines and classes. We can see examples in Figure 8.4, where an integer parameterEXAMPLE 8.34

Generic parameters specifies the maximum length of the queue. In Ada, which supports dynamic ar-
rays (Section 7.4.2), the value of max_items need not be known until run time;
in C++ it must be a compile-time constant. Often, as in the case of a sorting rou-
tine, the generic code needs to be able to count on certain minimal properties
of the type parameters. Appropriate constraints may be specified explicitly (as in
Ada) or inferred by the compiler (as in C++). We will discuss constraints in more
detail in Section 8.4.2. �

8.4.1 Implementation Options

Generics can be implemented several ways. In most implementations of Ada and
C++ they are a purely static mechanism: all the work required to create and use
multiple instances of the generic code takes place at compile time. In the usual
case, the compiler creates a separate copy of the code for every instance. (C++
goes farther, and arranges to type-check each of these instances independently.) If
several queues are instantiated with the same set of arguments, then the compiler
may share the code of the enqueue and dequeue routines among them. A clever
compiler may arrange to share the code for a queue of integers with the code for a
queue of single-precision floating-point numbers, if the two types have the same
size, but this sort of optimization is not required, and the programmer should
not be surprised if it doesn’t occur.

Java 5, by contrast, guarantees that all instances of a given generic will share
the same code at run time. In effect, if T is a generic type parameter in Java, then
objects of class T are treated as instances of the standard base class Object, except
that the programmer does not have to insert explicit casts to use them as objects
of class T, and the compiler guarantees, statically, that the elided casts will never
fail. C# plots an intermediate course. Like C++, it will create specialized imple-
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generic

type item is private;

-- can be assigned; other characteristics are hidden

max_items : in integer := 100; -- 100 items max by default

package queue is

procedure enqueue(it : in item);

function dequeue return item;

private

subtype index is integer range 1..max_items;

items : array(index) of item;

next_free, next_full : index := 1;

end queue;

package body queue is

procedure enqueue(it : in item) is

begin

items(next_free) := it;

next_free := next_free mod max_items + 1;

end enqueue;

function dequeue return item is

rtn : item := items(next_full);

begin

next_full := next_full mod max_items + 1;

return rtn;

end dequeue;

end queue;

...

package ready_list is new queue(process);

-- assume type process has previously been declared

package int_queue is new queue(integer, 50);

-- only 50 items long, instead of the default 100

Figure 8.4 Generic array-based queues in Ada (left) and C++ (right). C++ calls its generics
templates. Checks for overflow and underflow have been omitted for brevity of presentation.
(continued)

mentations of a generic for different built-in or value types. Like Java, however,
it requires that the generic code itself be demonstrably type safe, independent
of the arguments provided in any particular instantiation. We will examine the
tradeoffs among C++, Java, and C# generics in more detail in Section 8.4.4.

As we noted in Section 3.6.3, statically implemented generics have much in
common with macros. The designers of Ada describe generics as “a restricted
form of context-sensitive macro facility” [IBFW91, p. 236]. The designers of C++
describe templates as “a clever kind of macro that obeys the scope, naming, and
type rules of C++” [Str91, p. 257]. The difference between macros and gener-
ics is much like the difference between macros and in-line subroutines (Sections
6.6.2 and 8.2.4): generics are integrated into the rest of the language, and are un-
derstood by the compiler, rather than being tacked on as an afterthought, to be
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template<class item, int max_items = 100>

class queue {

item items[max_items];

int next_free;

int next_full;

public:

queue() {

next_free = next_full = 0; // initialization

}

void enqueue(item it) {

items[next_free] = it;

next_free = (next_free + 1) % max_items;

}

item dequeue() {

item rtn = items[next_full];

next_full = (next_full + 1) % max_items;

return rtn;

}

};

...

queue<process> ready_list;

queue<int, 50> int_queue;

Figure 8.4 (continued)

expanded by a preprocessor. Generic parameters are type checked. Arguments
to generic subroutines are evaluated exactly once. Names declared inside generic
code obey the normal scoping rules. In Ada, which allows nested subroutines and
modules, names passed as generic arguments are resolved in the referencing en-
vironment in which the instance of the generic was created, but all other names
in the generic are resolved in the environment in which the generic itself was
declared.

8.4.2 Generic Parameter Constraints

Because a generic is an abstraction, it is important that its interface (the header
of its declaration) provide all the information that must be known by a user of
the abstraction. Several languages, including Clu, Ada, Java, and C#, attempt to
enforce this rule by constraining generic parameters. Specifically, they require that
the operations permitted on a generic parameter type be explicitly declared. InEXAMPLE 8.35

Simple constraints in Ada the Ada portion of Figure 8.4, the generic clause said

type item is private;

A private type in Ada is one for which the only permissible operations are as-
signment, testing for equality and inequality, and accessing a few standard at-
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tributes (e.g., size). To prohibit testing for equality and inequality, the program-
mer can declare the parameter to be limited private. To allow additional op-
erations, the programmer must provide additional information. In simple cases,
it may be possible to specify a type pattern such as

type item is (<>);

Here the parentheses indicate that item is a discrete type, and will thus support
such operations as comparison for ordering (<, >, etc.) and the attributes first
and last. (As always in Ada, the “box” symbol, <>, is a placeholder for missing
information: enumeration values, subrange bounds, etc.) �

In more complex cases, the Ada programmer can specify the operations ofEXAMPLE 8.36
With constraints in Ada a generic type parameter by means of a trailing with clause. We saw a simple

example in the “minimum” function of Figure 3.17 (page 147). The declaration
of a generic sorting routine in Ada might be similar:

generic

type T is private;

type T_array is array (integer range <>) of T;

with function "<"(a1, a2 : T) return boolean;

procedure sort(A : in out T_array);

Without the with clause, procedure sort would be unable to compare elements
of A for ordering, because type T is private. �

Java and C# employ a particularly clean approach to constraints that exploits
the ability of object-oriented types to inherit methods from a parent type or in-
terface. We defer a full discussion of inheritance to Chapter 9. For now, we note
that it allows the Java or C# programmer to require that a generic parameter sup-
port a particular set of methods. In Java, for example, we might declare and useEXAMPLE 8.37

Generic sorting routine in
Java

our sorting routine as follows.

public static <T extends Comparable<T>> void sort(T A[]) {

...

if (A[i].compareTo(A[j]) >= 0) ...

...

}

...

Integer[] myArray = new Integer[50];

sort(myArray);

Where C++ requires a template<type args> prefix before a generic method, Java
puts the type parameters immediately in front of the method’s return type. The
extends clause constitutes a generic constraint: Comparable is an interface (a
set of required methods) from the Java standard library that includes the method
compareTo. This method returns −1, 0, or 1, respectively, depending on whether
the current object is less than, equal to, or greater than the object passed as a pa-
rameter. The compiler checks to make sure that the objects in any array passed
to sort are of a type that implements Comparable, and are therefore guaran-
teed to provide compareTo. If T had needed additional interfaces (that is, if we
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had wanted more constraints), they could have been specified with a comma-
separated list: <T extends I1, I2, I3>. �

C# syntax is similar:EXAMPLE 8.38
Generic sorting routine in
C# static void sort<T>(T[] A) where T : IComparable {

...

if (A[i].CompareTo(A[j]) >= 0) ...

...

}

...

int[] myArray = new int[50];

sort(myArray);

C# puts the type parameters after the name of the subroutine, and the constraints
(the where clause) after the regular parameter list. The compiler is smart enough
to recognize that int is a built-in type, and generates a customized implementa-
tion of sort, eliminating the need for Java’s Integer wrapper class and produc-
ing faster code. �

A few languages (notably C++ and Modula-3) forgo explicit constraints but
still check how parameters are used. The header of a generic sorting routine inEXAMPLE 8.39

Generic sorting routine in
C++

C++ can be extremely simple:

template<class T>

void sort(T A[], int A_size) { ...

No mention is made of the need for a comparison operator. The body of a generic
can (attempt to) perform arbitrary operations on objects of a generic parameter
type, but if the generic is instantiated with a type that does not support that
operation, the compiler will announce a static semantic error. Unfortunately, be-
cause the header of the generic does not necessarily specify which operations
will be required, it can be difficult for the programmer to predict whether a par-
ticular instantiation will cause an error message. Worse, in some cases the type
provided in a particular instantiation may support an operation required by the
generic’s code, but that operation may not do “the right thing.” Suppose in our
C++ sorting example that the code for sort makes use of the < operator. For
ints and doubles, this operator will do what one would expect. For character
strings, however, it will compare pointers, to see which referenced character has
a lower address. If the programmer is expecting comparison for lexicographic
ordering, the results may be surprising!

To avoid surprises, it is best to avoid implicit use of the operations of a
generic parameter type. There are several ways to make things more explicit in
C++ [Str91, pp. 271–277]: the comparison routine can be provided as a method
of class T, an extra argument to the sort routine, or an extra generic parameter.
To facilitate the first of these options, the programmer may choose to emulate
Java or C#, encapsulating the required methods in an abstract base class from
which the type T may inherit. �
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8.4.3 Implicit Instantiation

Because a class is a type, one must generally create an instance of a generic classEXAMPLE 8.40
Generic class instance in
C++

(i.e., an object) before the generic can be used. The declaration provides a natural
place to provide generic arguments:

queue<int, 50> *my_queue = new queue<int, 50>(); // C++ �
Some languages (Ada among them) also require generic subroutines to be in-EXAMPLE 8.41

Generic subroutine
instance in Ada

stantiated explicitly before they can be used:

procedure int_sort is new sort(integer, int_array, "<");

...

int_sort(my_array); �
Other languages (C++, Java, and C# among them) do not require this. Instead
they treat generic subroutines as a form of overloading. Given the C++ sortingEXAMPLE 8.42

Implicit instantiation in
C++

routine of Example 8.39 and the following objects:

int ints[10];

double reals[50];

char *strings[30];

we can perform the following calls without instantiating anything explicitly.

sort(ints, 10);

sort(reals, 50);

sort(strings, 30);

In each case, the compiler will implicitly instantiate an appropriate version of the
sort routine. Java and C# have similar conventions. To keep the language man-
ageable, the rules for implicit instantiation in C++ are more restrictive than the
rules for resolving overloaded subroutines in general. In particular, the compiler
will not coerce a subroutine argument to match a type expression containing a
generic parameter (Exercise 8.24). �

8.4.4 Generics in C++, Java, and C#

Several of the key tradeoffs in the design of generics can be illustrated by com-
paring the features of C++, Java, and C#. C++ is by far the most ambitious of the
three. Its templates are intended for almost any programming task that requires
substantially similar but not identical copies of an abstraction. Java 5 and C# 2.0
provide generics purely for the sake of polymorphism. Java’s design was heavily
influenced by the desire for backward compatibility, not only with existing ver-
sions of the language, but with existing virtual machines and libraries. The C#
designers, though building on an existing language, did not feel as constrained.
They had been planning for generics from the outset, and were able to engineer
substantial new support into the .NET virtual machine.
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IN MORE DEPTH

On the PLP CD we discuss C++, Java, and C# generics in more detail, and con-
sider the impact of their differing designs on the quality of error messages, the
speed and size of generated code, and the expressive power of the notation. We
note in particular the very different mechanisms used to make generic classes and
methods support as broad a class of generic arguments as possible.

CHECK YOUR UNDERSTANDING

26. What is the principal purpose of generics? In what sense do generics serve a
broader purpose in C++ and Ada than they do in Java and C#?

27. How does a generic subroutine differ from a macro?

28. Under what circumstances can a language implementation share code among
separate instances of a generic?

29. Summarize the relative strengths and weaknesses of generic container classes
and classes containing instances of a “generic reference type,” as defined in
Section 7.2.2 (page 331).

30. What does it mean for a generic parameter to be constrained? Explain the
difference between explicit and implicit constraints.

31. Why will C# accept int as a generic argument, but Java won’t?

32. Under what circumstances will C++ instantiate a generic function implicitly?

8.5 Exception Handling

Several times in the preceding chapters and sections we have referred to exception
handling mechanisms. We have delayed detailed discussion of these mechanisms
until now because exception handling generally requires the language implemen-
tation to “unwind” the subroutine call stack.

An exception can be defined as an unexpected—or at least unusual—
condition that arises during program execution, and that cannot easily be han-
dled in the local context. It may be detected automatically by the language imple-
mentation, or the program may raise it explicitly. The most common exceptions
are various sorts of run-time errors. In an I/O library, for example, an input
routine may encounter the end of its file before it can read a requested value,
or it may find punctuation marks or letters on the input when it is expecting
digits. To cope with such errors without an exception-handling mechanism, the
programmer has basically three options, none of which is entirely satisfactory:

1. “Invent” a value that can be used by the caller when a real value could not be
returned.
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2. Return an explicit “status” value to the caller, who must inspect it after every
call. The status may be written into an extra, explicit parameter, stored in a
global variable, or encoded as otherwise invalid bit patterns of a function’s
regular return value.

3. Pass a closure (in languages that support them) for an error-handling routine
that the normal routine can call when it runs into trouble.

The first of these options is fine in certain cases but does not work in the general
case. Options 2 and 3 tend to clutter up the program, and impose overhead that
we should like to avoid in the common case. The tests in option 2 are particularly
offensive: they obscure the normal flow of events in the common case. Because
they are so tedious and repetitive, they are also a common source of errors; one
can easily forget a needed test. Exception-handling mechanisms address these is-
sues by moving error-checking code “out of line,” allowing the normal case to be
specified simply, and arranging for control to branch to a handler when appro-
priate.

Exception handling was pioneered by PL/I, which includes an executable state-EXAMPLE 8.43
ON conditions in PL/I ment of the form

ON condition
statement

The nested statement (often a GOTO or a BEGIN...END block) is a handler. It is not
executed when the ON statement is encountered, but is “remembered” for future
reference. It will be executed later if exception condition (e.g., OVERFLOW) arises.
Because the ON statement is executable, the binding of handlers to exceptions
depends on the flow of control at run time. �

If a PL/I exception handler is invoked and then “returns” (i.e., does not per-
form a GOTO to somewhere else in the program), then one of two things will hap-
pen. For exceptions that the language designers considered to be fatal, the pro-
gram itself will terminate. For “recoverable” exceptions, execution will resume
at the statement following the one in which the exception occurred. Experience
with PL/I indicates that both the dynamic binding of handlers to exceptions and
the automatic resumption of code in which an exception occurred are confusing
and error-prone.

More recent languages, including Clu, Ada, Modula-3, Python, C++, Java, C#,
and ML, all provide exception-handling facilities in which handlers are lexically
bound to blocks of code, and in which the execution of the handler replaces the
yet-to-be-completed portion of the block. As a general rule, if an exception is not
handled within the current subroutine, then the subroutine returns abruptly and
the exception is raised at the point of call. If the exception is not handled in the
calling routine, it continues to propagate back up the dynamic chain. If it is not
handled in the program’s main routine, then a predefined outermost handler is
invoked, and usually terminates the program.

In a sense, the dependence of exception handling on the order of subroutine
calls might be considered a form of dynamic binding, but it is a much more re-
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stricted form than is found in PL/I. Rather than say that a handler in a calling
routine has been dynamically bound to an error in a called routine, we prefer to
say that the handler is lexically bound to the expression or statement that calls
the called routine. An exception that is not handled inside a called routine can
then be modeled as an “exceptional return”; it causes the calling expression or
statement to raise an exception, which is again handled lexically within its sub-
routine.

In practice, exception handlers tend to be used for three main purposes. First,
ideally, a handler will perform some operation that allows the program to recover
from the exception and continue execution. For example, in response to an “out
of memory” exception in a storage management routine, a handler might request
the operating system to allocate additional space to the application, after which it
could complete the requested operation. Second, when an exception occurs in a
given block of code but cannot be handled locally, it is often important to declare
a local handler that cleans up any resources allocated in the local block, and then
“reraises” the exception so that it will continue to propagate back to a handler
that can (hopefully) recover. Third, if recovery is not possible, a handler can at
least print a helpful error message before the program terminates.

As noted in Section 6.2, Common Lisp has an unusually rich set of features
for nonlocal transfer of control. Not only does it support multilevel returns as a
separate concept from exceptions, it also includes four versions of the exception
handling mechanism. Two provide the usual “exceptional return” semantics; the
others are designed to repair the problem and restart evaluation of some dynami-
cally enclosing expression. Orthogonally, two perform their work in the referenc-
ing environment where the handler is declared; the others perform their work in
the environment where the exception first arises. The latter option allows an ab-
straction to provide several alternative strategies for recovery from exceptions.
The user of the abstraction can then specify, dynamically, which of these strate-
gies should be used in a given context. We will consider Common Lisp further
in Exercise 8.32 and Exploration 8.48. The “exceptional return” mechanism, with
work performed in the environment of the handler, is known as handler-case;
it provides semantics comparable to those of most other modern languages.

8.5.1 Defining Exceptions

In many languages, including Clu, Ada, Modula-3, Python, Java, C#, and ML,
most dynamic semantic errors result in exceptions, which the program can then
catch. The programmer can also define additional, application-specific excep-
tions. Examples of predefined exceptions include arithmetic overflow, division
by zero, end-of-file on input, subscript and subrange errors, and null pointer
dereference. The rationale for defining these as exceptions (rather than as fatal
errors) is that they may arise in certain valid programs. Some other dynamic er-
rors (e.g., return from a subroutine that has not yet designated a return value)
are still fatal in most languages. In C++ and Common Lisp, most exceptions are
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programmer-defined. (The signal library provided by many C and C++ imple-
mentations is independent of language-level exceptions; it allows a program to
bind handlers dynamically to certain exceptions detected by the operating sys-
tem.) In Ada, some of the predefined exceptions can be suppressed by means of a
pragma.

In Ada, exception is a built-in type; an exception is simply an object of thisEXAMPLE 8.44
What is an exception? type:

declare empty_queue : exception;

In Modula-3, exceptions are another “kind” of object, akin to constants, types,
variables, or subroutines:

EXCEPTION empty_queue;

In Python, C++, Java, and C#, an exception is an ordinary object, in the object-
oriented sense of the word—a value of some class type:

class empty_queue { };

In ML, exception is a constructor, akin to datatype (as described in Sec-
tion 7.2.4). �

Most languages allow an exception to be “parameterized” so the code that
raises the exception can pass information to the code that handles it. InEXAMPLE 8.45

Parameterized exceptions C++/Java/C# and ML, the “parameters” of an exception are naturally expressed
as the fields of the class or constructor:

class duplicate_in_set { // C++

item dup; // element that was inserted twice

};

...

throw duplicate_in_set(d);

exception duplicate_in_set of item; (* ML *)

...

raise duplicate_in_set(d);

In Clu and Modula-3, the parameters are included in the exception declaration,
much as they are in a subroutine header (the Modula-3 empty_queue in Exam-
ple 8.44 has no parameters). Ada is unusual in that its exceptions are simply tags:
they contain no information other than their name. �

The throw statement (in C++/Java/C# and Common Lisp) or raise state-
ment (in Ada, Modula-3, Python, and ML) allows the programmer to write code
that will raise an exception at run time. A throw or raise statement is usually
embedded in an if statement that checks to see if something has gone wrong.
PL/I and Clu both use signal instead of throw or raise, and both provide se-
mantics significantly different from those of other exception-handling languages.
As noted earlier, PL/I handlers are dynamically bound; exceptions do not prop-
agate back down the dynamic chain. In Clu, signal is always an “exceptional
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return”: it cannot be handled locally, but rather causes an immediate return
from the current subroutine, forcing the caller to recover.

If a subroutine raises an exception but does not catch it internally, it may “re-
turn” in an unexpected way. This possibility is an important part of the rou-
tine’s interface to the rest of the program. Consequently, several languages, in-
cluding Clu, Modula-3, C++, and Java, include in each subroutine header a list
of the exceptions that may propagate out of the routine. This list is mandatory
in Modula-3: it is a run-time error if an exception arises that does not appear in
the header and is not caught internally. The list is optional in C++: if it appears,
the semantics are the same as in Modula-3; if it is omitted, all exceptions are
permitted to propagate. Java adopts an intermediate approach: it segregates its
exceptions into “checked” and “unchecked” categories. Checked exceptions must
be declared in subroutine headers; unchecked exceptions need not. Unchecked
exceptions are typically run-time errors that most programs will want to be fatal
(subscript out of bounds, for example)—and that would therefore be a nuisance
to declare in every function—but that a highly robust program may want to catch
if they occur in library routines.

8.5.2 Exception Propagation

In most languages, including Ada, Clu, Modula-3, Python, C++, and Java, an
exception handler is attached to a statement or to a list of statements. In Ada itEXAMPLE 8.46

Exception handler in Ada looks like this:

with text_IO; -- import I/O routines (and exceptions)

procedure read_rec ... is

begin

...

begin

...

-- potentially complicated sequence of operations

-- involving many calls to text_IO.get

...

exception

when end_error => ...

-- handler to catch any attempt to read past end-of-file

-- in any of the I/O calls

end;

...

end read_rec;

Here we have hypothesized a subroutine to read a record from a file. If the file
has been corrupted, it may end in the middle of a record. Rather than check for
end-of-file at every read (get) operation, we can place the entire series of reads
inside a begin...end block that is protected by a single handler.

As written, the handler above will catch only the end_error exception,
which is declared in package text_IO. In general, the exception part of a
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begin...end block can have an arbitrary number of handlers, each for a dif-
ferent exception. The syntax of the handlers resembles that of an Ada case state-
ment. As in a case statement, the final when clause can be written to catch all
unnamed exceptions:

when others => ... �

Syntax in other languages is similar. In C++:EXAMPLE 8.47
Exception handler in C++

try {

...

// protected block of code

...

} catch(end_of_file) {

...

} catch(io_error e) {

// handler for any io_error other than end_of_file

...

} catch(...) {

// handler for any exception not previously named

// (in this case, the triple-dot ellipsis is a valid C++ token;

// it does not indicate missing code)

}

The handlers attached to a block of code are always examined in order; control is
transferred to the first one that matches the exception. In Ada, a handler matches
if it names the propagating exception or if it is a “catch-all” others clause. In
C++, a handler matches if it names a class from which the exception is derived
or if it is a catch-all. In the current example, let us assume that end_of_file is a
subclass of io_error. Then an end_of_file exception, if it arises, will be han-
dled by the first of the three catch clauses. All other I/O errors will be caught by
the second catch clause. All non-I/O errors will be caught by the third catch
clause. Note that in the second catch clause we have declared a local name, e,
for the exception object. Within the catch clause, we can refer to the members
of e. This mechanism allows the code that raises (throws) the exception to pass
information to the handler. The C++ standard library declares exceptions as a hi-
erarchy of classes; programmers are encouraged to use and extend this hierarchy.
Java and C#, whose handlers look just like those of C++, provide similar standard
hierarchies. �

If an exception propagates out of the scope in which it was declared, it can
no longer be named by a handler, and thus can be caught only by a “catch-all”
handler. Modula-3 avoids this problem by requiring all exceptions to be declared
at the outermost level of lexical nesting. In most languages, an exception that
is declared in a recursive subroutine will be caught by the innermost handler
for that exception at run time. In a language with concurrency, one must also
consider what will happen if an exception is not handled at the outermost level
of a concurrent thread of control. In Modula-3, the entire program terminates
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abnormally; in Ada and Java, the affected thread terminates quietly; in C# the
behavior is implementation-defined.

Handlers on Expressions

In an expression-oriented language such as ML or Common Lisp, an exception
handler is attached to an expression, rather than to a statement. Since execu-
tion of the handler replaces the unfinished portion of the protected code when
an exception occurs, a handler attached to an expression must provide a value
for the expression. (In a statement-oriented language, the handler—like most
statements—is executed for its side effects.) In ML, a handler looks like this:EXAMPLE 8.48

Exception handler in ML
val foo = (f(a) * b) handle Overflow => max_int;

Here (f(a) * b) is the protected expression, handle is a keyword, Overflow is
a predefined exception (a value built from the exc constructor), and max_int is
an expression (in this case a constant) whose value replaces the value of the ex-
pression in which the Overflow exception arose. Both the protected expression
(here (f(a) * b)) and the handler (here max_int) could in general be arbitrar-
ily complicated, with many nested function calls. Exceptions that arise within a
nested call (and are not handled locally) propagate back down the dynamic chain,
just as they do in Ada or C++. �
Cleanup Operations

In the process of searching for a matching handler, the exception-handling mech-
anism must “unwind” the run-time stack by reclaiming the stack frames of any
subroutines from which the exception escapes. Reclaiming a frame requires not
only that its space be popped from the stack, but also that any registers that were
saved as part of the calling sequence be restored. (We discuss implementation
issues in more detail in Section 8.5.4.)

In C++, an exception that leaves a scope, whether a subroutine or just a
nested block, requires the language implementation to call destructor functions
for any objects declared within that scope. Destructors (to be discussed in more
detail in Section 9.3) are often used to deallocate heap space and other re-
sources (e.g., open files). Similar functionality is provided in Common Lisp by an
unwind-protect expression, and in Modula-3, Python, Java, and C# by means
of try. . . finally constructs. Code in Modula-3 might look like this:EXAMPLE 8.49

Finally clause in
Modula-3

DESIGN & IMPLEMENTATION

Structured exceptions
Exception handling mechanisms are among the most complex aspects of mod-
ern language design, from both a semantic and a pragmatic point of view.
Programmers have used subroutines since before there were computers (they
appear, among other places, in the 19th-century notes of Countess Ada Au-
gusta Byron). Structured exceptions, by contrast, were not invented until the
1970s, and did not become commonplace until the 1980s.
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TRY

myStream := OpenRead(myFileName); (* protected block *)

Parse(myStream);

FINALLY (* cleanup code *)

Close(myStream);

END;

A FINALLY clause will be executed whenever control escapes from the corre-
sponding protected block, whether the escape is due to normal completion, an
exit from a loop, a return from the current subroutine, or the propagation of
an exception. In fact, EXITs and RETURNs in Modula-3 are modeled as excep-
tions. We have assumed in our example that myStream is not bound to anything
at the beginning of the code, and that it is harmless to Close a not-yet-opened
stream. �

A try block may have both a finally clause and exception handlers. In JavaEXAMPLE 8.50
Catch and finally in Java we might write

static void parse(FileReader s) throws IOException {...

...

FileReader myStream = null;

try {

myStream = new FileReader(new File("foo"));

parse(myStream);

} catch(EOFException e) {

System.out.println("Oops; input file too short.");

} finally {

myStream.close();

}

Here the finally clause will be executed immediately before normal exit, imme-
diately after executing the catch clause (if an EOFException arises in parse), or
immediately before control escapes the try block due to some other exception.�

If cleanup is appropriate only when a certain exception occurs, but not in the
general case, then we will need to use a catch clause rather than a finally
clause. If the exception itself cannot be handled locally we will then need to reraise
it. The usual syntax for this purpose is a throw or raise statement without an
argument, permitted only in a handler.

8.5.3 Example: Phrase-Level Recovery in a Recursive Descent Parser

In Section 2.3.4 we presented a technique for phrase-level recovery from syn-
tax errors in a recursive descent parser. The key idea was this: at the beginning
of the subroutine whose job it is to parse a given nonterminal A, we check to see
whether the upcoming input token is acceptable. If not, we announce an error
and delete tokens until we find one in the FIRST or FOLLOW set of A. A good im-
plementation of this idea requires an extra parameter for every parsing routine
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(the context-specific FOLLOW set), a call to the error-checking routine in the be-
ginning of every parsing routine, and a globally defined set of “starter” symbols
that should not be deleted.

An attractive alternative approach is possible with exceptions. We can avoid
the clutter of the extra parameters and the expense of the error-checking calls
by declaring a single syntax error exception and then placing handlers for it at
a small number of “clean points” in the parse. In many languages, for example,EXAMPLE 8.51

Exceptions in a recursive
descent parser

we could obtain simple but probably serviceable error recovery by placing one
handler around the body of statement and another around declaration:

procedure statement
try . . . –– code to parse a statement
except when syntax error ⇒

loop
if next token ∈ FIRST(statement)

statement –– try again
return

elsif next token ∈ FOLLOW(statement)
return

else get next token

The code for declaration is similar. For better quality repair, we might add han-
dlers around the bodies of expression, aggregate, or other complex constructs.
To guarantee that we can always recover from an error, we must ensure that all
parts of the grammar lie inside at least one handler. At any point where a syntax
error is detected (i.e., when a parsing routine is unable to predict, or when match
sees an unexpected input token), we simply raise the syntax error exception. The
exception will propagate back out of an arbitrary number of nested constructs
(the number can be very large) until it encounters the innermost protected con-
struct. At that point we will toss the remainder of the phrase and continue with
the parse. �

8.5.4 Implementation of Exceptions

The most obvious implementation for exceptions maintains a linked-list stackEXAMPLE 8.52
Stacked exception handlers of handlers. When control enters a protected block, the handler for that block

is added to the head of the list. When an exception arises, either implicitly or as
a result of a raise statement, the language run-time system pops the innermost
handler off the list and calls it. The handler begins by checking to see if it matches
the exception that occurred; if not, it simply reraises it:

if exception matches duplicate in set
. . .

else
reraise exception
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To implement propagation back down the dynamic chain, each subroutine has
an implicit handler that performs the work of the subroutine epilogue code and
then reraises the exception. �

If a protected block of code has handlers for several different exceptions, theyEXAMPLE 8.53
Multiple exceptions per
handler

are implemented as a single handler containing a multi-arm if statement:

if exception matches end of file
. . .

elsif exception matches io error
. . .

else
. . . –– “catch-all” handler �

The problem with this implementation is that it incurs run-time overhead in
the common case. Every protected block and every subroutine begins with code
to push a handler onto the handler list, and ends with code to pop it back off the
list. We can usually do better.

The only real purpose of the handler list is to determine which handler is
active. Since blocks of source code tend to translate into contiguous blocks
of machine-language instructions, we can capture the correspondence between
handlers and protected blocks in the form of a table generated at compile time.
Each entry in the table contains two fields: the starting address of a block of code
and the address of the corresponding handler. The table is sorted on the first field.
When an exception occurs, the language run-time system performs binary search
in the table, using the program counter as key, to find the handler for the current
block. If that handler reraises the exception, the process repeats: handlers them-
selves are blocks of code, and can be found in the table. The only subtlety arises in
the case of the implicit handlers associated with propagation out of subroutines:
such a handler must ensure that the reraise code uses the return address of the
subroutine, rather than the current program counter, as the key for table lookup.

The cost of raising an exception is higher in this second implementation, by a
factor logarithmic in the number of handlers in the program. But this cost is paid
only when an exception actually occurs. On the assumption that exceptions are
unusual events, the net impact on performance is clearly beneficial: the cost in the
common case is zero. In its pure form the table-based approach requires that the
compiler have access to the entire program, or that the linker provide a mecha-
nism to glue subtables together. For a language like Java, in which code fragments
are compiled independently, we can employ a hybrid approach in which the com-
piler creates a separate table for each subroutine, and each stack frame contains a
pointer to the appropriate table.

Exception Handling without Exceptions

It is worth noting that exceptions can sometimes be simulated in a language that
does not provide them as a built-in. In Section 6.2 we noted that Pascal permits
gotos to labels outside the current subroutine, that Algol 60 allows labels to be
passed as parameters, and that PL/I allows them to be stored in variables. These
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mechanisms permit the program to escape from a deeply nested context, but in
a very unstructured way.

A much more attractive alternative appears in Scheme, which provides a gen-
eral purpose function called call-with-current-continuation, sometimes
abbreviated call/cc. This function takes a single argument f , which is itself a
function. It calls f , passing as argument a continuation c (a closure) that cap-
tures the current program counter and referencing environment. At any point in
the future, f can call c to reestablish the saved environment. If nested calls have
been made, control pops out of them, as it does with exceptions. More gener-
ally, however, c can be saved in variables, returned explicitly by subroutines, or
called repeatedly, even after control has returned from f (recall that closures in
Scheme have unlimited extent; see Section 3.5). Call/cc suffices to build a wide
variety of control abstractions, including iterators and coroutines (Section 8.6)
and the exits and returns of nonfunctional programs. It even subsumes the
notion of returning from a subroutine, though it seldom replaces it in prac-
tice.

Intermediate between the anarchy of nonlocal gotos and the generality ofEXAMPLE 8.54
Setjmp and longjmp in C call/cc, most versions of C (including the ISO standard) provide a pair of li-

brary routines entitled setjmp and longjmp. Setjmp takes as argument a buffer
into which to capture a representation of the program’s current state. This buffer
can later be passed to longjmp to restore the captured state. Setjmp returns C’s
equivalent of a Boolean value: a 0 or a 1. The 0 indicates “normal” return; the
1 indicates “return” from a longjmp. The usual programming idiom looks like
this:

if (!setjmp(buffer)) {

/* protected code */

} else {

/* handler */

}

When initially called, setjmp returns a 0, and control enters the protected
code. If longjmp(buffer) is called anywhere within the protected code, or
in subroutines called by that code, then setjmp will appear to return again,

DESIGN & IMPLEMENTATION

Setjmp

Because it saves many registers to memory, the usual implementation of
setjmp is quite expensive—more so than entry to a protected block in the
“obvious” implementation of exceptions described above. While implemen-
tors are free to use a more efficient, table-driven approach if desired, the usual
implementation minimizes the complexity of the run-time system and elimi-
nates the need for linker-supported integration of tables from separately com-
piled modules and libraries.
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this time with a 1, causing control to enter the handler. Unlike the closure
created by call/cc, the information captured by setjmp has limited ex-
tent; once the protected code completes, the behavior of longjmp(buffer) is
undefined. �

Setjmp and longjmp are usually implemented by saving the current machine
registers in the setjmp buffer, and by restoring them in longjmp. There is no
list of handlers; rather than “unwinding” the stack, the implementation simply
tosses all the nested frames by restoring old values of the sp and fp. The problem
with this approach is that the register contents at the beginning of the handler do
not reflect the effects of the successfully completed portion of the protected code:
they were saved before that code began to run. Any changes to variables that have
been written through to memory will be visible in the handler, but changes that
were cached in registers will be lost. To address this limitation, C allows the pro-
grammer to specify that certain variables are volatile. A volatile variable is one
whose value in memory can change “spontaneously”—for example, as the result
of activity by an I/O device or a concurrent thread of control. C implementations
are required to store volatile variables to memory whenever they are written, and
to load them from memory whenever they are read. If a handler needs to see
changes to a variable that may be modified by the protected code, then the pro-
grammer must include the volatile keyword in the variable’s declaration.

CHECK YOUR UNDERSTANDING

33. Describe the algorithm used to identify an appropriate handler when an ex-
ception is raised in a language like Ada or C++.

34. Explain why it is useful to define exceptions as classes in C++, Java, and C#.

35. Explain how to implement exceptions in a way that incurs no cost in the
common case (when exceptions don’t arise).

36. How do the exception handlers of a functional language like ML differ from
those of an imperative language like C++?

37. Describe the operations that must be performed by the implicit handler for a
subroutine.

38. Describe the call-with-current-continuation function of Scheme.

39. Summarize the shortcomings of the setjmp and longjmp library routines of
C.

40. What is a volatile variable in C? Under what circumstances is it useful?
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8.6 Coroutines

Given an understanding of the layout of the run-time stack, we can now consider
the implementation of more general control abstractions —coroutines in partic-
ular. Like a continuation, a coroutine is represented by a closure (a code address
and a referencing environment), into which we can jump by means of a nonlocal
goto—in this case a special operation known as transfer. The principal dif-
ference between the two abstractions is that a continuation is a constant—it does
not change once created—while a coroutine changes every time it runs. When we
goto a continuation, our old program counter is lost, unless we explicitly create a
new continuation to hold it. When we transfer from one coroutine to another,
our old program counter is saved: the coroutine we are leaving is updated to re-
flect it. Thus if we perform a goto into the same continuation multiple times,
each jump will start at precisely the same location, but if we perform a transfer
into the same coroutine multiple times, each jump will take up where the previ-
ous one left off.

In effect, coroutines are execution contexts that exist concurrently but exe-
cute one at a time, and that transfer control to each other explicitly, by name.
Coroutines can be used to implement iterators (Section 6.5.3) and threads (to
be discussed in Chapter 12). They are also useful in their own right, particularly
for certain kinds of servers and for discrete event simulation. Threads appear in a
variety of languages, including Algol 68, Modula (1), Modula-3, Ada, SR, Occam,
Java, and C#. They are also commonly provided (though with somewhat less at-
tractive syntax and semantics) outside the language proper by means of library
packages. Coroutines are less common as a user-level programming abstraction.
Languages that provide them include Simula and Modula-2. We focus in the fol-
lowing subsections on the implementation of coroutines and (on the PLP CD)
on their use in iterators (Section 8.6.3) and discrete event simulation (Sec-
tion 8.6.4).

As a simple example of an application in which coroutines might be useful,EXAMPLE 8.55
Explicit interleaving of
concurrent computations

imagine that we are writing a “screen-saver” program, which paints a mostly
black picture on the screen of an inactive workstation and keeps the picture mov-
ing, to avoid phosphor or liquid-crystal “burn-in.” Imagine also that our screen-
server performs “sanity checks” on the file system in the background, looking for
corrupted files. We could write our program as follows.

loop
–– update picture on screen
–– perform next sanity check

The problem with this approach is that successive sanity checks (and to a lesser
extent successive screen updates) are likely to depend on each other. On most
systems, the file-system checking code has a deeply nested control structure con-
taining many loops. To break it into pieces that can be interleaved with the screen
updates, the programmer must follow each check with code that saves the state
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of the nested computation, and must precede the following check with code that
restores that state. �

A much more attractive approach is to cast the operations as coroutines:7EXAMPLE 8.56
Interleaving coroutines us, cfs : coroutine

coroutine update screen
–– initialize
detach
loop

. . .
transfer(cfs)
. . .

coroutine check file system
–– initialize
detach
for all files

. . .
transfer(us)
. . .

transfer(us)
. . .
transfer(us)
. . .

begin –– main
us := new update screen
cfs := new check file system
transfer(us)

The syntax here is based loosely on that of Simula. When first created, a coroutine
performs any necessary initialization operations, and then detaches itself from
the main program. The detach operation creates a coroutine object to which

DESIGN & IMPLEMENTATION

Threads and coroutines
As we shall see in Section 12.2.4, it is easy to build a simple thread pack-
age given coroutines. Most programmers would agree, however, that threads
are substantially easier to use, because they eliminate the need for explicit
transfer operations. This contrast—a lot of extra functionality for a little
extra implementation complexity—probably explains why coroutines as an
explicit programming abstraction are relatively rare.

7 Threads could also be used in this example, and might in fact serve our needs better. Coroutines
suffice because there is a small number of execution contexts (namely two) and because it is easy
to identify points at which one should transfer to the other.
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control can later be transfered, and returns a reference to this coroutine to the
caller. The transfer operation saves the current program counter in the current
coroutine object and resumes the coroutine specified as a parameter. The main
body of the program plays the role of an initial, default coroutine.

Calls to transfer from within the body of check file system can occur at
arbitrary places, including nested loops and conditionals. A coroutine can also
call subroutines, just as the main program can, and calls to transfer may ap-
pear inside these routines. The context needed to perform the “next” sanity
check is captured by the program counter, together with the local variables of
check file system and any called routines, at the time of the transfer.

As in Example 8.55, the programmer must specify when to stop checking the
file system and update the screen; coroutines make the job simpler by providing
a transfer operation that eliminates the need to save and restore state explicitly.
To decide where to place the calls to transfer, we must consider both perfor-
mance and correctness. For performance, we must avoid doing too much work
between calls, so that screen updates aren’t too infrequent. For correctness, we
must avoid doing a transfer in the middle of any check that might be compro-
mised by file access in update screen. Parallel threads (to be described in Chap-
ter 12) would eliminate the first of these problems by ensuring that the screen
updater receives a share of the processor on a regular basis, but would complicate
the second problem: we should need to synchronize the two routines explicitly if
their references to files could interfere. �

8.6.1 Stack Allocation

Because they are concurrent (i.e., simultaneously started but not completed),
coroutines cannot share a single stack: their subroutine calls and returns, taken
as a whole, do not occur in last-in-first-out order. If each coroutine is declared at
the outermost level of lexical nesting (as required in Modula-2), then their stacks
are entirely disjoint: the only objects they share are global, and thus statically al-
located. Most operating systems make it easy to allocate one stack and to increase
its portion of the virtual address space as necessary during execution. It is usually
not easy to allocate an arbitrary number of such stacks; space for coroutines is
something of an implementation challenge.

The simplest solution is to give each coroutine a fixed amount of statically
allocated stack space. This approach is adopted in Modula-2, which requires
the programmer to specify the size and location of the stack when initializing a
coroutine. It is a run-time error for the coroutine to need additional space. Some
Modula-2 implementations catch the overflow and halt with an error message;
others display abnormal behavior. If the coroutine uses less space than it is given,
the excess is simply wasted.

If stack frames are allocated from the heap, as they are in most Lisp and
Scheme implementations, then the problems of overflow and internal fragmen-
tation are avoided. At the same time, the overhead of each subroutine call is sig-
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Figure 8.5 A cactus stack. Each branch to the side represents the creation of a coroutine
(A, B, C, and D). The static nesting of blocks is shown at right. Static links are shown with
arrows. Dynamic links are indicated simply by vertical arrangement: each routine has called the
one above it.

nificantly increased. An intermediate option is to allocate the stack in large, fixed-
size “chunks.” At each call, the subroutine calling sequence checks to see whether
there is sufficient space in the current chunk to hold the frame of the called rou-
tine. If not, another chunk is allocated and the frame is put there instead. At each
subroutine return, the epilogue code checks to see whether the current frame is
the last one in its chunk. If so, the chunk is returned to a “free chunk” pool.

In any of these implementations, subroutine calls can use the ordinary central
stack if the compiler is able to verify that they will not perform a transfer before
returning [Sco91].

If coroutines can be created at arbitrary levels of lexical nesting (as they canEXAMPLE 8.57
Cactus stacks in Simula), then two or more coroutines may be declared in the same non-global

scope, and must thus share access to objects in that scope. To implement this
sharing, the run-time system must employ a so-called cactus stack (named for its
resemblance to the Saguaro cacti of the American Southwest; see Figure 8.5).

Each branch off the stack contains the frames of a separate coroutine. The
dynamic chain of a given coroutine ends in the block in which the coroutine be-
gan execution. The static chain of the coroutine, however, extends down into the
remainder of the cactus, through any lexically surrounding blocks. In addition
to the coroutines of Simula, cactus stacks are needed for the threads of several
parallel languages, including Ada. “Returning” from the main block of a corou-
tine will generally terminate the program as a whole. Because a coroutine only
runs when specified as the target of a transfer, there is never any need to ter-
minate it explicitly: if it is running it can transfer to something else, which never
transfers back. When a given coroutine is no longer needed, the Modula-2 pro-
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grammer can simply reuse its stack space. In Simula, the space will be reclaimed
via garbage collection when it is no longer accessible. �

8.6.2 Transfer

To transfer from one coroutine to another, the run-time system must change the
program counter (PC), the stack, and the contents of the processor’s registers.
These changes are encapsulated in the transfer operation: one coroutine calls
transfer; a different one returns. Because the change happens inside transfer,
changing the PC from one coroutine to another simply amounts to remember-
ing the right return address: the old coroutine calls transfer from one location
in the program; the new coroutine returns to a potentially different location. If
transfer saves its return address in the stack, then the PC will change automat-
ically as a side effect of changing stacks.

So how do we change stacks? The usual approach is simply to change the stack
pointer register, and to avoid using the frame pointer inside of transfer itself. AtEXAMPLE 8.58

Switching coroutines the beginning of transfer we push the return address and all of the other callee-
saves registers onto the current stack. We then change the sp, pop the (new)
return address and other registers off the new stack, and return:

transfer:
push all registers other than sp (including ra)
*current coroutine := sp
current coroutine := r1 –– argument passed to transfer
sp := *r1
pop all registers other than sp (including ra)
return �

The data structure that represents a coroutine or thread is called a context
block. In a simple coroutine package, the context block contains a single value: the
coroutine’s sp as of its most recent transfer. (A thread package generally places
additional information in the context block, such as an indication of priority, or
pointers to link the thread onto various scheduling queues. Some coroutine or
thread packages choose to save registers in the context block, rather than at the
top of the stack; either approach works fine.)

In Modula-2, the coroutine creation routine initializes the coroutine’s stack
to look like the frame of transfer, with a return address and register contents
initialized to permit a “return” into the beginning of the coroutine’s code. The

DESIGN & IMPLEMENTATION

Coroutine stacks
Many languages require coroutines or threads to be declared at the outermost
level of lexical nesting, to avoid the complexity of noncontiguous stacks. Most
thread libraries for sequential languages (the POSIX standard pthread library
among them) likewise require or at least permit the use of contiguous stacks.



458 Chapter 8 Subroutines and Control Abstraction

creation routine sets the sp value in the context block to point into this artifi-
cial frame, and returns a pointer to the context block. To begin execution of the
coroutine, some existing routine must transfer to it.

In Simula (and in the code in Example 8.56), the coroutine creation routine
begins to execute the new coroutine immediately, as if it were a subroutine. Af-
ter the coroutine completes any application-specific initialization, it performs a
detach operation. Detach sets up the coroutine stack to look like the frame of
transfer, with a return address that points to the following statement. It then
allows the creation routine to return to its own caller.

In all cases, transfer expects a pointer to a context block as argument; by
dereferencing the pointer it can find the sp of the next coroutine to run. A global
(static) variable, called current coroutine in Example 8.58, contains a pointer
to the context block of the currently running coroutine. This pointer allows
transfer to find the location in which it should save the old sp.

8.6.3 Implementation of Iterators

Given an implementation of coroutines, iterators are almost trivial: one corou-
tine is used to represent the main program; a second is used to represent the
iterator. Additional coroutines may be needed if iterators nest.

IN MORE DEPTH

Additional detail appears on the PLP CD. We also consider a second, simpler
implementation of iterators that keeps all state in a single stack, and a third that
moves most of the work of coroutine management out of the run-time library
and into the compiler.

8.6.4 Discrete Event Simulation

One of the most important applications of coroutines (and the one for which
Simula was designed and named) is discrete event simulation. Simulation in gen-
eral refers to any process in which we create an abstract model of some real-world
system and then experiment with the model in order to infer properties of the
real-world system. Simulation is desirable when experimentation with the real
world would be complicated, dangerous, expensive, or otherwise impractical. A
discrete event simulation is one in which the model is naturally expressed in terms
of events (typically interactions among various interesting objects) that happen
at specific times. Discrete event simulation is usually not appropriate for the sim-
ulation of continuous processes, such as the growth of crystals or the flow of
water over a surface, unless these processes are captured at the level of individual
particles.
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IN MORE DEPTH

On the PLP CD we consider a traffic simulation, in which events model in-
teractions among automobiles, intersections, and traffic lights. We use a sep-
arate coroutine for each trip to be taken by car. At any given time we run
the coroutine with the earliest expected arrival time at an upcoming intersec-
tion. We keep inactive coroutines in a priority queue ordered by those arrival
times.

CHECK YOUR UNDERSTANDING

41. What was the first high-level programming language to provide coroutines?

42. What is the difference between a coroutine and a thread?

43. Why doesn’t the transfer library routine need to change the program counter
when switching between coroutines?

44. Describe three alternative means of allocating coroutine stacks. What are
their relative strengths and weaknesses?

45. What is a cactus stack? What is its purpose?

46. What is discrete event simulation? What is its connection with coroutines?

8.7 Summary and Concluding Remarks

This chapter has focused on the subject of control abstraction, and on subrou-
tines in particular. Subroutines allow the programmer to encapsulate code be-
hind a narrow interface, which can then be used without regard to its implemen-
tation. Control abstraction is crucial to the design and maintenance of any large
software system. It is particularly effective from an aesthetic point of view in lan-
guages like Lisp and Smalltalk, which use the same syntax for both built-in and
user-defined control constructs.

We began our study of subroutines in Section 8.1 by reviewing the manage-
ment of the subroutine call stack. We then considered the calling sequences used
to maintain the stack, with extra sections on the PLP CD devoted to displays;
case studies for the MIPSpro C compiler and the GNU x86 Pascal compiler
(gpc); and the register windows of the Sparc. After a brief consideration of in-
line expansion, we turned in Section 8.3 to the subject of parameters. We first
considered parameter-passing modes, all of which are implemented by passing
values, references, or closures. We noted that the goals of semantic clarity and
implementation speed sometimes conflict: it is usually most efficient to pass a
large parameter by reference, but the aliasing that results can lead to program
bugs. In Section 8.3.3 we considered special parameter-passing mechanisms, in-
cluding conformant arrays, default (optional) parameters, named parameters,
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and variable-length parameter lists. We noted that default and named para-
meters provide an attractive alternative to the use of dynamic scope. In Sec-
tion 8.4 we considered the design and implementation of generic subroutines
and modules. Generics allow a control abstraction to be parameterized (at com-
pile time) in terms of the types of its parameters, rather than just their val-
ues.

In the final two major sections we considered exception-handling mecha-
nisms, which allow a program to “unwind” in a well-structured way from a
nested sequence of subroutine calls, and coroutines, which allow a program to
maintain two or more execution contexts, and to switch back and forth among
them. As examples, we considered the use of exceptions for phrase-level recovery
from syntax errors in a recursive descent parser, and (on the PLP CD) the use
of coroutines for discrete event simulation. In Chapter 12, we will consider the
extension of coroutines to threads, which run (or appear to run) in parallel with
one another.

In several cases we can discern an evolving consensus about the sorts of con-
trol abstractions that a language should provide. The limited parameter-passing
modes of languages like Fortran and Algol 60 have been replaced by more exten-
sive or flexible options. The standard positional notation for arguments has been
augmented in languages like Ada and C++ with default and named parameters.
Less-structured error-handling mechanisms, such as label parameters, nonlocal
gotos, and dynamically bound handlers, have been replaced by structured ex-
ception handlers that are lexically scoped within subroutines, and can be imple-
mented at zero cost in the common (no-exception) case. In many cases, imple-
menting these newer features has required that compilers and run-time systems
become more complex. Occasionally, as in the case of call-by-name parameters,
label parameters, or nonlocal gotos, features that were semantically confusing
were also difficult to implement, and abandoning them has made compilers sim-
pler. In yet other cases language features that are useful but difficult to imple-
ment continue to appear in some languages but not in others. Examples in this
category include first-class subroutines, coroutines, iterators, continuations, and
local objects with unlimited extent.

8.8 Exercises

8.1 Describe as many ways as you can in which functions in Algol-family pro-
gramming languages differ from functions in mathematics.

8.2 Using your favorite language and compiler, write a program that determines
the order in which subroutine parameters are evaluated.

8.3 Consider the following (erroneous) program in C.
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void foo() {

int i;

printf("%d ", i++);

}

main() {

int j;

for (j = 1; j <= 10; j++) foo();

}

Local variable i in subroutine foo is never initialized. On many systems,
however, the program will display repeatable behavior, printing 0 1 2 3 4
5 6 7 8 9. Suggest an explanation. Also explain why the behavior on other
systems might be different, or nondeterministic.

8.4 The standard calling sequence for the Digital VAX instruction set employs
not only a stack pointer (sp) and frame pointer (fp), but a separate argu-
ments pointer (ap) as well. Under what circumstances might this separate
pointer be useful? In other words, when might it be handy not to have to
place arguments at statically known offsets from the fp?

8.5 Suppose you wish to minimize the size of closures in a language implemen-
tation that uses a display to access nonlocal objects. Assuming a language
like Pascal or Ada, in which subroutines have limited extent (Section 3.5),
explain how an appropriate display for a formal subroutine can be calcu-
lated when that routine is finally called, starting with only (1) the value of
the frame pointer, saved in the closure at the time that the closure was cre-
ated, (2) the subroutine return addresses found in the stack at the time the
formal subroutine is finally called, and (3) static tables created by the com-
piler. How costly is your scheme?

8.6 Write (in the language of your choice) a procedure or function that will have
four different effects, depending on whether arguments are passed by value,
by reference, by value/result, or by name.

8.7 Consider an expression like a + b that is passed to a subroutine in Fortran.
Is there any semantically meaningful difference between passing this expres-
sion as a reference to an unnamed temporary (as Fortran does) or passing it
by value (as one might, for example, in Pascal)?

8.8 Consider the following subroutine in Fortran 77.

subroutine shift(a, b, c)

integer a, b, c

a = b

b = c

end

Suppose we want to call shift(x, y, 0) but we don’t want to change the
value of y. Knowing that built-up expressions are passed as temporaries,
we decide to call shift(x, y+0, 0). Our code works fine at first, but then
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(with some compilers) fails when we enable optimization. What is going on?
What might we do instead?

8.9 In some implementations of Fortran IV, the following code would print a 3.
Can you suggest an explanation? How do you suppose more recent Fortran
implementations get around the problem?

c main program

call foo(2)

print*, 2

stop

end

subroutine foo(x)

x = x + 1

return

end

8.10 Suppose you are writing a program in which all parameters must be passed
by name. Can you write a subroutine that will swap the values of its actual
parameters? Explain. (Hint: Consider mutually dependent parameters like i
and A[i].)

8.11 Can you write a swap routine in Java, or in any other language with only
call-by-sharing parameters? What exactly should swap do in such a lan-
guage?

8.12 As noted in Section 8.3.1, out parameters in Ada 83 can be written by the
callee but not read. In Ada 95 they can be both read and written, but they
begin their life uninitialized. Why do you think the designers of Ada 95 made
this change? Does it have any drawbacks?

8.13 Fields of packed records (Example 7.39) cannot be passed by reference in
Pascal. Likewise, when passing a subrange variable by reference, Pascal re-
quires that all possible values of the corresponding formal parameter be
valid for the subrange:

type small = 1..100;

R = record x, y : small; end;

S = packed record x, y : small; end;

var a : 1..10;

b : 1..1000;

c : R;

d : S;

procedure foo(var n : small);

begin

n := 100;

writeln(a);

end;

...

a := 2;

foo(b); (* ok *)
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foo(a); (* static semantic error *)

foo(c.x); (* ok *)

foo(d.x); (* static semantic error *)

Using what you have learned about parameter-passing modes, explain these
language restrictions.

8.14 Consider the following declaration in C.

double (*foo(double (*)(double, double[]), double)) (double, ...);

Describe in English the type of foo.

8.15 Does a program run faster when the programmer leaves optional parame-
ters out of a subroutine call? Why or why not?

8.16 Why do you suppose that variable-length argument lists are so seldom sup-
ported by high-level programming languages?

8.17 In Section 7.2.2 we introduced the notion of a generic reference type (called
void * in C) that refers to an object of unknown type. Using such refer-
ences, implement a “poor man’s generic queue” in C, as suggested at the
beginning of Section 8.4. Where do you need type casts? Why? Give an ex-
ample of a use of the queue that will fail catastrophically at run time, due to
the lack of type checking.

8.18 Rewrite the code of Figure 8.4 in Ada, Java, or C#.

8.19 (a) Give a generic solution to Exercise 6.15.

(b) Translate this solution into Ada, Java, or C#.

8.20 In your favorite language with generics, write code for simple versions of the
following abstractions.

(a) A stack, implemented as a linked list

(b) A priority queue, implemented as a skip list or a partially ordered tree
embedded in an array

(c) A dictionary (mapping), implemented as a hash table

8.21 Figure 8.4 (C++ version) passes integer max_items to the queue abstrac-
tion as a generic parameter. Write an alternative version of the code that
makes max_items a parameter to the queue constructor instead. What is
the advantage of the generic parameter version?

8.22 Flesh out the C++ sorting routine of Example 8.39. Demonstrate that this
routine does “the wrong thing” when asked to sort an array of char* strings.

8.23 In the discussion of Example 8.39 we mentioned three ways to make the
need for comparisons more explicit when defining a generic sort routine
in C++: we can make the comparison routine a method of the generic pa-
rameter class T, an extra argument to the sort routine, or an extra generic
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parameter. Implement each of these options and discuss their comparative
strengths and weaknesses.

8.24 Consider the C++ program shown in Figure 8.6. Explain why the final call
to first_n generates a compile-time error, but the call to last_n does not.
(Note that first_n is generic, but last_n is not.) Show how to modify the
final call to first_n so that the compiler will accept it.

8.25 Consider the following code skeleton in C++.

#include <list>

using std::list;

class foo { ...

class bar : public foo { ...

static void print_all(list<foo*> &L) { ...

list<foo*> LF;

list<bar*> LB;

...

print_all(LF); // works fine

print_all(LB); // static semantic error

Explain why the compiler won’t allow the second call. Give an example of
bad things that could happen if it did.

8.26 In Section 8.3.1 we noted that Ada does not permit subroutines to be passed
as parameters, but that some of the same effect can be achieved with gener-
ics. Suppose we want to apply a function to every member of an array. We
might write the following in Ada.

generic

type item is private;

type item_array is array (integer range <>) of item;

with function F(it : in item) return item;

procedure apply_to_array(A : in out item_array);

procedure apply_to_array(A : in out item_array) is

begin

for i in A’first..A’last loop

A(i) := F(A(i));

end loop;

end apply_to_array;

Given an array of integers, scores, and a function on integers, foo, we
can write the following.

procedure apply_to_ints is new apply_to_array(integer, int_array, foo);

...

apply_to_ints(scores);
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#include <iostream>

#include <list>

using std::cout;

using std::list;

template<class T> void first_n(list<T> p, int n) {

for (typename list<T>::iterator li = p.begin(); li != p.end(); li++) {

if (n-- <= 0) break;

cout << *li << " ";

}

cout << "\n";

}

void last_n(list<int> p, int n) {

for (list<int>::reverse_iterator li = p.rbegin(); li != p.rend(); li++) {

if (n-- <= 0) break;

cout << *li << " ";

}

cout << "\n";

}

class int_list_box {

list<int> content;

public:

int_list_box(list<int> l) { content = l; }

operator list<int>() { return content; }

// user-supplied operator for coercion/conversion

};

int main() {

int i = 5;

list<int> l;

for (int i = 0; i < 10; i++) l.push_back(i);

int_list_box b(l);

first_n(l, i); // works

last_n(b, i); // works (coerces b)

first_n(b, i); // static semantic error

}

Figure 8.6 Coercion and generics in C++. The compiler refuses to accept the final call to first_n.

How general is this mechanism? What are its limitations? Is it a reason-
able substitute for formal (i.e., second-class, as opposed to third-class) sub-
routines?
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8.27 Modify the code of Figure 8.4 (C++ version) or your solution to Exer-
cise 8.21 to throw an exception if an attempt is made to enqueue an item
in a full queue or to dequeue an item from an empty queue.

8.28 Algol 60 allows labels to be passed as parameters, and allows gotos to these
labels. One can imagine using these “nonlocal gotos” to escape from a
nested function in response to unexpected conditions, but modern language
designers regard label parameters as a bad idea. In what way(s) is the excep-
tion handling of Ada, Modula-3, or C++/Java/C# better?

8.29 Building on Exercise 6.31, show how to implement exceptions using call-
with-current-continuation in Scheme. Model your syntax after the
handler-case of Common Lisp.

8.30 Given what you have learned about the implementation of structured ex-
ceptions, describe how you might implement the nonlocal gotos of Pascal
or the label parameters of Algol 60 (Section 6.2). Do you need to place any
restrictions on how these features can be used?

8.31 Use coroutines to build support for iterators in Modula-2. Your code should
allow the programmer to create new iterators easily. Try to hide as much of
the implementation as possible inside a module. In particular, hide the use
of transfer inside implementations of routines named yield (to be called
by an iterator coroutine) and next (to be called in the body of a loop). Dis-
cuss any weaknesses you encounter in the abstraction facilities of the lan-
guage.

8.32 In Common Lisp multilevel returns use catch and throw; exception han-
dling in the style of most other modern languages uses handler-case and
error. Show that the distinction between these is mainly a matter of style,
rather than expressive power. In other words, show that each facility can be
used to emulate the other.

8.34–8.43 In More Depth.

8.9 Explorations

8.44 Obtain a copy of the GNU Ada translator gnat. Explore its subroutine
calling conventions. How do they compare to those of gpc? Pay particu-
lar attention to language features present in Ada but not in Pascal, includ-
ing declarations in nested blocks (Section 3.3.2), dynamic-size arrays (Sec-
tion 7.4.2), value-result parameters (Section 8.3.1), optional and named
parameters (Section 8.3.3), generic subroutines (Section 8.4), exceptions
(Section 8.5), and concurrency (Section 12.2.3).

8.45 If you were designing a new imperative language, what set of parameter
modes would you pick? Why?
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8.46 Learn about references and the reference assignment operator in PHP. Dis-
cuss the similarities and differences between these and the references of
C++. In particular, note that assignments in PHP can change the object
to which a reference variable refers. Why does PHP allow this but C++ does
not?

8.47 Find manuals for several languages with exceptions and look up the set of
predefined exceptions—those that may be raised automatically by the lan-
guage implementation. Discuss the differences among the sets defined by
different languages. If you were designing an exception-handling facility,
what exceptions, if any, would you make predefined? Why?

8.48 Learn the details of nonlocal control transfer in Common Lisp. Write a
tutorial that explains tagbody and go; block and return-from; catch
and throw; and restart-case, restart-bind, handler-case,
handler-bind, find-restart, invoke-restart, ignore-errors,
signal, and error. What do you think of all this machinery? Is it overkill?
Be sure to give an example that illustrates the use of handler-bind.

8.49 If you have manuals for Common Lisp, Modula-3, and Java, compare the
semantics they provide for unwind-protect and try...finally. Specifi-
cally, what happens if an exception arises within a cleanup clause?

8.50–8.52 In More Depth.

8.10 Bibliographic Notes

Recursive subroutines became known primarily through McCarthy’s work on
Lisp [McC60].8 Stack-based space management for recursive subroutines devel-
oped with compilers for Algol 60 (see for example Randell and Russell [RR64]).
(Because of issues of extent, subroutine space in Lisp requires more general, heap-
based allocation.) Dijkstra [Dij60] presents an early discussion of the use of dis-
plays to access nonlocal data. Hanson [Han81] argues that nested subroutines are
unnecessary.

Calling sequences and stack conventions for gpc are partially documented
in the texinfo files distributed with gcc, on which gpc is based (see
http://www.gnu.org/software). Documentation for the MIPSpro C compiler can
be found at techpubs.sgi.com. Several of the details described on the PLP CD were
“reverse engineered” by examining the output of the two compilers.

The Ada language rationale [IBFW91, Chap. 8] contains an excellent dis-
cussion of parameter-passing modes. Harbison [Har92, Secs. 6.2–6.3] describes

8 John McCarthy (1927–), Professor Emeritus at Stanford University, is one of the founders of the
field of Artificial Intelligence. He introduced Lisp in 1958, and also made key contributions to the
early development of time-sharing and the use of mathematical logic to reason about computer
programs. He received the ACM Turing Award in 1971.
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the Modula-3 modes and compares them to those of other languages. Liskov
and Guttag [LG86, p. 25] liken call-by-sharing in Clu to parameter passing in
Lisp. Call-by-name parameters have their roots in the lambda calculus of Alonzo
Church [Chu41], which we consider in more detail in Section 10.6.1. Thunks
were first described by Ingerman [Ing61]. Fleck [Fle76] discusses the problems
involved in trying to write a swap routine with call-by-name parameters (Exer-
cise 8.10).

Garcia et al. provide a detailed comparison of generic facilities in ML, C++,
Haskell, Eiffel, Java, and C# [GJL+03]. The C# generic facility is described by
Kennedy and Syme [KS01]. Java generics are based on the work of Bracha et
al. [BOSW98].

MacLaren [Mac77] describes exception handling in PL/I. The lexically scoped
alternative of Ada, and of several more recent languages, draws heavily on
the work of Goodenough [Goo75]. Ada’s semantics are described formally by
Luckam and Polak [LP80]. Liskov and Snyder [LS79] discuss exception handling
in Clu. Friedman, Wand, and Haynes [FWH01, Chaps. 8–9] provide an excellent
explanation of continuation-passing style in Scheme.

An early description of coroutines appears in the work of Conway [Con63],
who uses them to represent the phases of compilation. Birtwistle et al. [BDMN73]
provide a tutorial introduction to the use of coroutines for simulation in Sim-
ula 67. Cactus stacks date from at least the mid-1960s; they were supported di-
rectly in hardware by the Burroughs B6500 and B7500 computers [HD68]. Murer
et al. [MOSS96] discuss the implementation of iterators in the Sather program-
ming language (a descendant of Eiffel).



9Data Abstraction and Object
Orientation

In Chapter 3 we presented several stages in the development of data ab-
straction, with an emphasis on the scoping mechanisms that control the visibility
of names. We began with global variables, whose lifetime spans program execu-
tion. We then added local variables, whose lifetime is limited to the execution
of a single subroutine; nested scopes, which allow subroutines themselves to be
local; and static variables, whose lifetime spans execution but whose names are
visible only within a single scope. These were followed by modules, which allow
a collection of subroutines to share a set of static variables; module types, which
allow the programmer to instantiate multiple instances of a given abstraction,
and classes, which allow the programmer to define families of related abstrac-
tions.

Ordinary modules encourage a “manager” style of programming, in which
a module exports an abstract type. Module types and classes allow the module
itself to be the abstract type. The distinction becomes apparent in two ways: First,
the explicit create and destroy routines typically exported from a manager
module are replaced by creation and destruction of an instance of the module
type. Second, invocation of a routine in a particular module instance replaces
invocation of a general routine that expects a variable of the exported type as
argument. Classes build on the module-as-type approach by adding mechanisms
for inheritance, which allows new abstractions to be defined as refinements or
extensions to existing ones, and dynamic method binding, which allows a new
version of an abstraction to display newly refined behavior, even when used in
a context that expects an earlier version. An instance of a class is known as an
object; languages and programming techniques based on classes are said to be
object-oriented.1

The stepwise evolution of data abstraction mechanisms presented in Chapter 3
is a useful way to organize ideas, but it does not completely reflect the historical

1 In previous chapters we used the term “object” informally to refer to almost anything that can
have a name. In this chapter we use it only to refer to an instance of a class.

469
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development of language features. In particular, it would be inaccurate to sug-
gest that object-oriented programming developed as an outgrowth of modules.
Rather, all three of the fundamental concepts of object-oriented programming—
encapsulation, inheritance, and dynamic method binding—have their roots in
the Simula programming language, developed in the mid-1960s by Ole-Johan
Dahl and Kristen Nygaard of the Norwegian Computing Centre.2 In compari-
son to modern object-oriented languages, Simula was weak in the data hiding
part of encapsulation, and it was in this area that Clu, Modula, Euclid, and re-
lated languages made important contributions in the 1970s. At the same time, the
ideas of inheritance and dynamic method binding were adopted and refined in
Smalltalk over the course of the 1970s. Smalltalk employs a distinctive “message-
based” programming model, with dynamic typing and unusual terminology and
syntax. The dynamic typing tends to make Smalltalk implementations relatively
slow, and delays the reporting of errors. The language is also tightly integrated
into a graphical programming environment, making it difficult to port to other
systems. For these reasons, Smalltalk is less widely used than one might expect,
given the influence it has had on subsequent developments. More recent object-
oriented languages, including Eiffel, C++, Modula-3, Ada 95, Python, Ruby, Java,
and C# represent to a large extent a reintegration of the inheritance and dynamic
method binding of Smalltalk with “mainstream” imperative syntax and seman-
tics. In an alternative vein, Objective-C [App04] combines Smalltalk-style mes-
saging and dynamic typing, in a relatively pure and unadulterated form, with tra-
ditional C syntax for intra-object operations. Object orientation has also become
important in functional languages; the leading notation is CLOS, the Common
Lisp Object System [Kee89; Ste90, Chap. 28].

In Section 9.1 we provide an overview of object-oriented programming and
of its three fundamental concepts. We consider encapsulation and data hiding
in more detail in Section 9.2. We then consider object initialization and finaliza-
tion in Section 9.3, and dynamic method binding in Section 9.4. In Section 9.5
(mostly on the PLP CD) we consider the subject of multiple inheritance, in which
a class is defined in terms of more than one existing class. As we shall see, mul-
tiple inheritance introduces some particularly thorny semantic and implementa-
tion challenges. Finally, in Section 9.6, we revisit the definition of object orien-
tation, considering the extent to which a language can or should model every-
thing as an object. Most of our discussion will focus on Smalltalk, Eiffel, C++,
and Java, though we shall have occasion to mention Simula, Modula-3, Python,
Ruby, Ada 95, C#, Objective-C, Oberon, and CLOS as well.

2 Kristen Nygaard (1926–2002) was widely admired as a mathematician, computer language pi-
oneer, and social activist. His career included positions with the Norwegian Defense Research
Establishment, the Norwegian Operational Research Society, the Norwegian Computing Center,
the Universities of Aarhus and Oslo, and a variety of labor, political, and social organizations.
Ole-Johan Dahl (1931–2002) also held positions at the Norwegian Defense Research Establish-
ment and the Norwegian Computing Center, and was the founding member of the Informatics
department at Oslo. Together, Nygaard and Dahl shared the 2001 ACM Turing Award.
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9.1 Object-Oriented Programming

With the development of ever-more complicated computer applications, data ab-
straction has become essential to software engineering. The abstraction provided
by modules and module types has at least three important benefits.

1. It reduces conceptual load by minimizing the amount of detail that the pro-
grammer must think about at one time.

2. It provides fault containment by preventing the programmer from using a
program component in inappropriate ways, and by limiting the portion of a
program’s text in which a given component can be used, thereby limiting the
portion that must be considered when searching for the cause of a bug.

3. It provides a significant degree of independence among program components,
making it easier to assign their construction to separate individuals, to mod-
ify their internal implementations without changing external code that uses
them, or to install them in a library where they can be used by other programs.

Unfortunately, experience with modules and module types indicates that the
reuse implied by the third of these points is difficult to achieve in practice.
One often finds that a previously constructed module has almost, but not quite,
the properties required by some new application. Perhaps one has a preexisting
queue abstraction but would like to be able to insert and delete from either end,
rather than being limited to first-in-first-out (FIFO) order. Perhaps one has a
preexisting dialog box abstraction for a graphical user interface but without any
mechanism to highlight a default response. Perhaps one has a package for sym-
bolic math, but it assumes that all values are real numbers, rather than complex.
In all these cases much of the advantage of abstraction will be lost if the pro-
grammer must copy the preexisting code, figure out how it works inside, and
modify it by hand, rather than using it “as-is.” If it becomes necessary to change
the abstraction at some point in the future (to fix a bug or implement an en-
hancement), the programmer will need to remember to fix all copies—a tedious
and error-prone activity.

Object-oriented programming can be seen as an attempt to enhance op-
portunities for code reuse by making it easy to define new abstractions as
extensions or refinements of existing abstractions. As a starting point for ex-EXAMPLE 9.1

List_node class in C++ amples, consider a list of records. Figure 9.1 contains C++ code for the ele-
ments of such a list. The example employs a “module-as-type” style of abstrac-
tion: each element of a list is an object of class list_node. The class contains
both data members (prev, next, head_node, and val) and subroutine members
(predecessor, successor, insert_before, and remove). Subroutine mem-
bers are called methods in many object-oriented languages; data members are also
called fields. The keyword this in C++ refers to the object of which the currently
executing method is a member. In Smalltalk and Objective-C, the equivalent key-
word is self; in Eiffel it is current. �
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class list_err { // exception

public:

char *description;

list_err(char *s) {description = s;}

};

class list_node {

list_node* prev;

list_node* next;

list_node* head_node;

public:

int val; // the actual data in a node

list_node() { // constructor

prev = next = head_node = this; // point to self

val = 0; // default value

}

list_node* predecessor() {

if (prev == this || prev == head_node) return 0;

return prev;

}

list_node* successor() {

if (next == this || next == head_node) return 0;

return next;

}

bool singleton() {

return (prev == this);

}

void insert_before(list_node* new_node) {

if (!new_node->singleton())

throw new list_err("attempt to insert node already on list");

prev->next = new_node;

new_node->prev = prev;

new_node->next = this;

prev = new_node;

new_node->head_node = head_node;

}

void remove() {

if (singleton())

throw new list_err(

"attempt to remove node not currently on list");

prev->next = next;

next->prev = prev;

prev = next = head_node = this; // point to self

}

~list_node() { // destructor

if (!singleton())

throw new list_err("attempt to delete node still on list");

}

};

Figure 9.1 A simple class for list nodes in C++. In this example we envision a list of integers.



9.1 Object-Oriented Programming 473

Given the existence of the list_node class, we could define a list as follows.EXAMPLE 9.2
List class that uses
list_node class list {

list_node header;

public:

// no explicit constructor required;

// implicit construction of ’header’ suffices

int empty() {

return header.singleton();

}

list_node* head() {

return header.successor();

}

void append(list_node *new_node) {

header.insert_before(new_node);

}

~list() { // destructor

if (!header.singleton())

throw new list_err("attempt to delete non-empty list");

}

};

To create an empty list, one could then write

list* my_list_ptr = new list;

Records to be inserted into a list are created in much the same way:

list_node* elem_ptr = new list_node; �
In C++, one can also simply declare an object of a given class:EXAMPLE 9.3

Declaration of in-line
(expanded) objects list my_list;

list_node elem;

Our list class includes such an object (header) as a field. When created with
new, an object is allocated in the heap; when created via elaboration of a declara-
tion it is allocated statically or on the stack, depending on lifetime. In either case,
creation causes the invocation of a programmer-specified initialization routine,
known as a constructor. In C++ and its descendants, Java and C#, the name of the
constructor is the same as that of the class itself. C++ also allows the program-
mer to specify a destructor method that will be invoked automatically when an
object is destroyed, either by explicit programmer action or by return from the
subroutine in which it was declared. The destructor’s name is also the same as
that of the class, but with a leading tilde (~). �

Public and Private Members

The public label within the list of members of list_node separates members
required by the implementation of the abstraction from members available to
users of the abstraction. In the terminology of Section 3.3.4, members that appear
after the public label are exported from the class; members that appear before
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the label are not. The language also provides a private label, so the publicly
visible portions of a class can be listed first if desired (or even intermixed). In
many other languages, including C#, every data or subroutine member (field or
method) is private unless individually labeled with the public keyword. Note
that C++ classes are open scopes, as defined in Section 3.3.4; nothing needs to be
explicitly imported.

Like packages in Ada or external (separately compiled) modules in Modula-2,
C++ classes allow certain information to be left out of the declaration, and pro-
vided in a separate file not visible to users of the abstraction. In our runningEXAMPLE 9.4

Method declaration
without definition

example, we could declare the public methods of list_node without providing
their bodies:

class list_node {

list_node* prev;

list_node* next;

list_node* head_node;

public:

int val;

list_node();

list_node* predecessor();

list_node* successor();

bool singleton();

void insert_before(list_node* new_node);

void remove();

~list_node();

}; �
This somewhat abbreviated class declaration might then be put in a.h “header”
file, with method bodies relegated to a.cc “implementation” file. (Conventions
for separate compilation in C were discussed in Section 3.7. The file name
suffixes used here are those expected by the GNU g++ compiler.) Within a .ccEXAMPLE 9.5

Separate method definition file, the header of a method definition must identify the class to which it belongs
by using a :: scope resolution operator:

void list_node::insert_before(list_node* new_node) {

if (!new_node->singleton())

throw new list_err("attempt to insert node already on list");

prev->next = new_node;

new_node->prev = prev;

new_node->next = this;

prev = new_node;

new_node->head_node = head_node;

} �

Tiny Subroutines

Object-oriented programs tend to make many more subroutine calls than do
ordinary imperative programs, and the subroutines tend to be shorter. Lots of
things that would be accomplished by direct access to record fields in a von Neu-
mann language tend to be hidden inside object methods in an object-oriented
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language. Many programmers in fact consider it bad style to declare public fields,
because they give users of an abstraction direct access to the internal repre-
sentation. Arguably, we should make the val field of list_node private, with
get_val and set_val methods to read and write it.

C# provides a property mechanism specifically designed to facilitate the decla-EXAMPLE 9.6
Property and indexer

methods in C#
ration of methods to “get” and “set” values. Using this mechanism, our val field
could be written as follows.

class list_node {

...

int val;

public int Val {

get { // presence of get and optional set

return val; // methods means that Val is a property

}

set {

val = value; // value is a keyword: argument to set

}

}

...

}

Users of the list_node class can now access the (private) val field through the
(public) Val property as if it were a field:

list_node n;

...

int a = n.Val; // implicit call to get method

n.Val = 3; // implicit call to set method

DESIGN & IMPLEMENTATION

What goes in a class declaration?
Two rules govern the choice of what to put in the declaration of a class, rather
than in separate definitions. First, the declaration must contain all the infor-
mation that a programmer needs in order to use the abstraction correctly. Sec-
ond, the declaration must contain all the information that the compiler needs
in order to generate code. The second rule is generally broader: it tends to
force information that is not required by the first rule into (the private part
of) the interface, particularly in languages that use a value model of variables,
instead of a reference model. If the compiler must generate code to allocate
space (e.g., in stack frames) to hold a value of an object type, then it must
know the size of the object; this is the rationale for including private fields in
the class declaration. In addition, if the compiler is to expand any method calls
in-line then it must have their code available. In-line expansion of the small-
est, most common methods an object-oriented program tends to be crucial
for good performance.
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A similar indexer mechanism can make objects of arbitrary classes look like ar-
rays, with conventional subscript syntax in both l-value and r-value contexts. An
example appears in the sidebar on page 351. In C++, operator overloading and
references (Section 8.3.1, page 412) can be used to provide the equivalent of in-
dexers, but not of properties. �

Derived Classes

Suppose now that we already have a list abstraction and would like a queue ab-EXAMPLE 9.7
Queue class derived from
list

straction. We could define the queue from scratch, but much of the code would
look the same as in Figure 9.1. In an object-oriented language we have a better
alternative: we can derive the queue from the list, allowing it to inherit preexisting
fields and methods:

class queue : public list { // derive from list

public:

// no specialized constructor or destructor required

void enqueue(list_node* new_node) {

append(new_node);

}

list_node* dequeue() {

if (empty())

throw new list_err("attempt to dequeue from empty queue");

list_node* p = head();

p->remove();

return p;

}

};

Here queue is said to be a derived class (also called a child class or subclass); list
is said to be a base class (also called a parent class or superclass). The derived class
automatically has all the fields and methods of the base class.3 All the program-
mer needs to declare explicitly are members that a queue has but a list lacks: in
this case, the enqueue and dequeue methods. We shall see examples shortly in
which derived classes have new fields as well. �

By deriving new classes from old ones, the programmer can create arbitrar-
ily deep class hierarchies, with additional functionality at every level of the tree.
The standard library for Smalltalk has as many as seven levels of derivationEXAMPLE 9.8

The Smalltalk class
hierarchy

(Figure 9.2): class FileStream is derived from ExternalStream, which is in
turn derived, in order, from ReadWriteStream, WriteStream, Positional-
Stream, Stream, and Object. (Unlike C++, Smalltalk has a single root super-
class, Object, from which all other classes are derived. Java, C#, and Objective-C
have a similar class, as does Eiffel; the latter refers to it as ANY.) �

3 Actually, users of a derived class in C++ can see the members of the base class only if the base
class name is preceded with the keyword public in the first line of the derived class’s declaration.
We will discuss the visibility rules of C++ in more detail in Section 9.2.
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Figure 9.2 The standard class hierarchy of Smalltalk-80.
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General Purpose Base Classes

The astute reader may have noticed that our original list abstraction made the
unfortunate assumption that the data in every item was to be an integer. This
assumption really isn’t necessary. Given an inheritance mechanism, we can createEXAMPLE 9.9

Base class for general
purpose lists

a general purpose element base class that contains only the fields and methods
needed to implement list operations:

class gp_list_node {

gp_list_node* prev;

gp_list_node* next;

gp_list_node* head_node;

public:

gp_list_node(); // assume method bodies given separately

gp_list_node* predecessor();

gp_list_node* successor();

bool singleton();

void insert_before(gp_list_node* new_node);

void remove();

~gp_list_node();

};

Now we can use this general purpose class to derive lists and queues with specific
types of fields:

class int_list_node : public gp_list_node {

public:

int val; // the actual data in a node

int_list_node() {

val = 0;

}

int_list_node(int v) {

val = v;

}

}; �
Templates (generics) are commonly used to facilitate the construction of such
type-specific classes; we will discuss this option further in Section 9.4.4.

Overloaded Constructors

We have overloaded the constructor in int_list_node, providing two alterna-EXAMPLE 9.10
Overloaded
int_list_node

constructor

tive implementations. One takes an argument; the other does not. Now the pro-
grammer can create int_list_nodes with or without specifying an initial value:

int_list_node element1; // val = 0

int_list_node *e_ptr = new int_list_node(13); // val = 13

In C++, the compiler ensures that constructors for base classes are executed be-
fore those of derived classes. In our example, the constructor for gp_list_node
will be executed first, followed by the constructor for int_list_node. We will
discuss constructors further in Section 9.3. �
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Modifying Base Class Methods

In addition to defining new fields and methods, a derived class can hide or re-
define members of base class(es). We will discuss data hiding in Section 9.2. To
redefine a method of a base class, a derived class simply declares a new version.
Suppose, for example, that we are creating an int_list_node class, but we wantEXAMPLE 9.11

Redefining a method in a
derived class

somewhat different semantics for the remove method. If written as in Figure 9.1,
gp_list_node::remove will throw a list_err exception if the node to be re-
moved is not currently on a list. If we want int_list_node::remove simply to
return without doing anything in this situation, we can declare it that way explic-
itly:

class int_list_node : public gp_list_node {

public:

...

void remove() {

if (!singleton()) {

prev->next = next;

next->prev = prev;

prev = next = head_node = this;

}

}

};

The disadvantage of this redefinition is that it pulls implementation details of
gp_list_node into an int_list_node method, a potential violation of abstrac-
tion. (As a matter of fact, a C++ compiler will not accept the code above: as we
shall see in Section 9.2, we would need to change the gp_list_node base class to
make its next and prev fields visible to derived classes.) �

A better approach is to leave the implementation details to the base class andEXAMPLE 9.12
Redefinition that builds on
the base class method

simply catch the exception if it arises:

void int_list_node::remove() {

try {

gp_list_node::remove();

} catch(list_err) {

; // do nothing

}

}

This version of the code may be slightly slower than the previous one, depend-
ing on how try blocks are implemented, but it does a better job of maintaining
abstraction. Note that the scope resolution operator (::) allows us to access the
remove method of the base class explicitly, even though we have redefined it for
int_list_node. �

Other object-oriented languages provide other means of accessing the mem-
bers of a base class. In Smalltalk, Objective-C, Java, and C#, one uses the keywordEXAMPLE 9.13

Accessing base class
members

base or super:
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gp_list_node::remove(); // C++

super.remove(); // Java

base.remove(); // C#

super remove. // Smalltalk

[super remove] // Objective-C �
In Eiffel, one must explicitly rename methods inherited from a base class, in orderEXAMPLE 9.14

Renaming methods in Eiffel to make them accessible:

class int_list_node

inherit

gp_list_node

rename

remove as old_remove

... -- other renames

end

Within methods of int_list_node, the remove method of gp_list_node can
be invoked as old_remove. C++ and Eiffel cannot use the keyword super, be-
cause it would be ambiguous in the presence of multiple inheritance. �
Containers/Collections

In object-oriented programming, an abstraction that holds a collection of objects
of some given class is often called a container. There are several different ways to
build containers. In this section we have explored an approach in which objects
are derived from a container element base class. The principal problem with this
approach is that an object cannot be placed in a container unless its class is de-
rived from the element class of the container. In order to put an arbitrary object
into, say, a list, we can adopt an alternative approach, in which list nodes are sep-
arate objects containing pointers (or references) to the listed objects, rather than
the data of the objects themselves. Examples of this approach can be found in
the binary trees of Section 6.5.3. A third alternative is to make the list node a
member (a subobject) of the listed object. In general, the design of consistent,
intuitive, and useful class hierarchies is a complex and difficult art. Containers
are only the tip of the iceberg.

CHECK YOUR UNDERSTANDING

1. What are generally considered to be the three defining characteristics of
object-oriented programming?

2. In what programming language of the 1960s does object orientation find its
roots? Who invented that language? Summarize the evolution of the three
defining characteristics since that time.

3. Name three important benefits of abstraction.

4. What are the more common names for subroutine member and data member?

5. What is a property in C#?
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6. What is the purpose of the “private” part of an object interface? Why is it
required?

7. What is the purpose of the :: operator in C++?

8. What is a container class?

9. Explain why in-line subroutines are particularly important in object-oriented
languages.

10. What are constructors and destructors?

11. Give two other terms, each, for base class and derived class.

9.2 Encapsulation and Inheritance

Encapsulation mechanisms enable the programmer to group data and the sub-
routines that operate on them together in one place, and to hide irrelevant details
from the users of an abstraction. In the discussion above we have cast object-
oriented programming as an extension of the “module-as-type” mechanisms of
Simula and Euclid. It is also possible to cast object-oriented programming in a
“module-as-manager” framework. In the first subsection below we consider the
data-hiding mechanisms of modules in non-object-oriented languages. In the
second subsection we consider the new data-hiding issues that arise when we
add inheritance to modules to make classes. In the third subsection we briefly
consider an alternative approach, in which inheritance is added to records, and
(static) modules continue to provide data hiding.

9.2.1 Modules

Scope rules for data hiding were one of the principal innovations of Clu, Mod-
ula, Euclid, and other module-based languages of the 1970s. In Clu and Euclid,
the declaration and definition (header and body) of a module always appear to-
gether. The header clearly states which of the module’s names are to be exported.
If a Euclid module M exports a type T, by default the remainder of the program
can do nothing with objects of type T other than pass them to subroutines ex-
ported from M. T is said to be an opaque type. If desired, the Euclid programmer
can explicitly grant code outside the module the ability to perform bit-wise as-
signment and/or equality tests on values of type T, or to access T’s fields (if a
record), subscript it (if an array), or refer to its values by name (if an enumer-
ation). In the following, for example, code outside module Database would beEXAMPLE 9.15

Data hiding in Euclid able to assign tuple variables to each other and to access their name fields, but
not to check them for equality or to access their other fields.
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var Database : module

exports (tuple with (:=, name))

...

type tuple = record

var name : packed array 1..80 of char

...

end tuple

... �
In Clu, a module (called a cluster) implements a single abstract type. As-

signment and equality testing are permitted for that type, but because Clu uses
a reference model for variables, these operations copy or compare references to
objects, not the objects themselves.

In Modula-2, programmers have the option of separating the header and bodyEXAMPLE 9.16
Opaque types in Modula-2 of a module. In Chapter 3 (Figures 3.7 and 3.8) we looked only at so-called “in-

ternal” modules, in which the two parts appear together. In an “external” module
(meant for separate compilation), the header appears in one source file and the
body in another. Unfortunately, there is no way to divide the header into public
and private parts; everything in it is public (i.e., exported). The only concession
to data hiding is that a type may be made opaque by listing only its name in the
header:

TYPE T;

In this case variables of type T can only be assigned, compared for equality, and
passed to the module’s subroutines. There is no way to disable assignment and
comparison. �

Ada, which also allows the headers and bodies of modules (called packages)EXAMPLE 9.17
Data hiding in Ada to be separated, eliminates the problems of Modula-2 by allowing the header of

a package to be divided into public and private parts. A type can be exported
opaquely by putting its definition in the private part of the header and simply
naming it in the public part:

DESIGN & IMPLEMENTATION

Opaque exports in Modula-2
Because opaque types are not defined in a Modula-2 header module, there is
no obvious way for the compiler to determine the size of an object (in the in-
formal sense of the word) of an opaque type when compiling code that uses
the module. Modula-2 therefore requires that all opaque types be pointers. As-
suming that all pointers have the same size (which they do on most machines),
objects of opaque type can then be allocated statically or on the stack without
knowledge of internal structure. Some Modula-2 implementations permit cer-
tain additional opaque types, but only if they are implemented with the same
number of bits as a pointer.
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package foo is -- header

...

type T is private;

...

private -- definitions below here are inaccessible to users

...

type T is ... -- full definition

...

end foo;

Variables of private types can be assigned, compared for equality, or passed to
subroutines of the package. Optionally, the Ada programmer can disable assign-
ment and comparison with a more restrictive declaration:

type T is limited private; -- replaces third line of example �
When the header and body of a module appear in separate files, a change to a

module body never requires us to recompile any of the module’s users. A change
to the private part of a module header may require us to recompile the module’s
users, but never requires us to change their code. A change to the public part of a
header is a change to the module’s interface: it will often require us to change the
code of users.

Because they affect only the visibility of names, static, manager-style modules
introduce no special code generation issues. Storage for variables and other data
inside a module is managed in precisely the same way as storage for data im-
mediately outside the module. If the module appears in a global scope, then its
data can be allocated statically. If the module appears within a subroutine, then
its data can be allocated on the stack, at known offsets, when the subroutine is
called, and reclaimed when it returns.

Module types, as in Euclid, are somewhat more complicated: they allow a
module to have an arbitrary number of instances. The obvious implementation
then resembles that of a record. If all of the data in the module have a statically
known size, then each individual datum can be assigned a static offset within the
module’s storage. If the size of some of the data is not known until run time,
then the module’s storage can be divided into fixed-size and variable-size por-
tions, with a dope vector (descriptor) at the beginning of the fixed-size portion.
Instances of the module can be allocated statically, on the stack, or in the heap, as
appropriate.

The “this” Parameter

One additional complication arises for subroutines inside a module. How do they
know which variables to use? We could, of course, replicate the code for each sub-
routine in each instance of the module, just as we replicate the data. This repli-
cation would be highly wasteful, however, as the copies would vary only in the
details of address computations. A better technique is to create a single instance
of each module subroutine, and to pass that instance, at run time, the address of
the storage of the appropriate module instance. This address takes the form of an
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extra, hidden first parameter for every module subroutine. A Euclid call of theEXAMPLE 9.18
The hidden this

parameter
form

my_stack.push(x)

is translated as if it were really

push(my_stack, x)

where my_stack is passed by reference. �

Making Do Without Module Headers

As noted in Section 3.7, Java packages and C++/C# namespaces can be spread
across multiple compilation units (files). In C++ and C#, a single file can also
contain pieces of more than one namespace. More significantly, Java and C# dis-
pense with the notion of separate headers and bodies. While the programmer
must still define the interface (and specify it via public declarations), there is no
need to manually identify code that needs to be in the header for implementation
reasons: instead the compiler is responsible for extracting this information auto-
matically from the full text of the module. For software engineering purposes it
may still be desirable to create preliminary versions of a module, against which
other modules can be compiled, but this is optional. To assist in project man-
agement and documentation, many Java and C# implementations provide a tool
that will extract from the complete text of a module the minimum information
required by its users.

9.2.2 Classes

With the introduction of inheritance, object-oriented languages must supple-
ment the scope rules of module-based languages to cover additional issues. For
example, should private members of a base class be visible to methods of a de-
rived class? Should public members of a base class always be public members of
a derived class (i.e., be visible to users of the derived class)? How much control
should a base class exercise over the visibility of its members in derived classes?

We glossed over most of these questions in our examples in Section 9.1. ForEXAMPLE 9.19
Private base class in C++ example, we might want to hide the append method of a queue, since it is super-

seded by enqueue. To effect this hiding in C++, the definition of class queue can
specify that its base class is to be private:

class queue : private list {

public:

using list::empty;

using list::head;

// but NOT using list::append

void enqueue(gp_list_node* new_node);

gp_list_node* dequeue();

};
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Here the appearance of private in the first line of the declaration indicates that
public members of list will be visible to users of queue only if specifically made
so by later parts of the declaration. We have made the empty and head methods
visible by means of using declarations in queue’s public part. �

In addition to the public and private labels, C++ allows members of a class
to be designated protected. A protected member is visible only to methods of
its own class or of classes derived from that class. In our examples, a protected
member M of list would be accessible not only to methods of list itself, but
also to methods of queue. Unlike public members, however, M would not be
visible to arbitrary users of list or queue objects.

The protected keyword can also be used when specifying a base class:EXAMPLE 9.20
Protected base class in
C++ class derived : protected base { ...

Here public members of the base class act like protected members of the derived
class. �

The basic philosophy behind the visibility rules of C++ can be summarized as
follows.

� Any class can limit the visibility of its members. Public members are visible
anywhere the class declaration is in scope. Private members are visible only
inside the class’s methods. Protected members are visible inside methods of
the class or its descendants. (As an exception to the normal rules, a class can
specify that certain other friend classes or subroutines should have access to
its private members.)

� A derived class can restrict the visibility of members of a base class but can
never increase it. Private members of a base class are never visible in a de-
rived class. Protected and public members of a public base class are protected
or public, respectively, in a derived class. Protected and public members of a
protected base class are protected members of a derived class. Protected and
public members of a private base class are private members of a derived class.

� A derived class that limits the visibility of members of a base class by declaring
that base class protected or private can restore the visibility of individual
members of the base class by inserting a using declaration in the protected
or public portion of the derived class declaration.

Other object-oriented languages take different approaches to visibility. Eif-
fel is more flexible than C++ in the patterns of visibility it can support, but it
does not adhere to the first of the C++ principles above. Derived classes in Eif-
fel can both restrict and increase the visibility of members of base classes. Every
method (called a feature in Eiffel) can specify its own export status. If the status
is {NONE}, then the member is effectively private (called secret in Eiffel). If the
status is {ANY}, then the member is effectively public (called generally available
in Eiffel). In the general case the status can be an arbitrary list of class names, in
which case the feature is said to be selectively available to those classes and their
descendants only. Any feature inherited from a base class can be given a new sta-
tus in a derived class.
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Java and C# follow C++ in the declaration of public, protected, and
private members, but do not provide the protected and private designa-
tions for base classes; a derived class can neither increase nor restrict the visibility
of members of a base class. (Of course, a derived class can always redefine a data
or subroutine member with a method that generates a run-time error if used.)
The protected keyword has a slightly different meaning in Java than it does
in C++: a protected member of a Java class is visible not only within derived
classes, but also within the entire package (namespace) in which the class is de-
clared. A class member with no explicit access modifier in Java is visible through-
out the package in which the class is declared, but not in any derived classes that
reside in other packages. C# defines protected as C++ does, but provides an
additional internal keyword that makes a member visible throughout the as-
sembly in which the class appears. (An assembly is a collection of linked-together
compilation units, comparable to a.jar file in Java.) Members of a C# class are
private by default.

In Smalltalk and Objective-C, the issue of member visibility never arises: the
language allows code at run time to attempt to make a call to any method name in
any object. If the object has a method of the given name (with the right number
of parameters), then the invocation proceeds; otherwise a run-time error results.
There is no way in these languages to make a method available to some parts of
a program but not to others. In a related vein, Python class members are always
public.

9.2.3 Type Extensions

Smalltalk, Objective-C, Eiffel, C++, Java, and C# were all designed from the
outset as object-oriented languages, either starting from scratch or from an ex-
isting language without a strong encapsulation mechanism. They all support a
module-as-type approach to abstraction, in which a single mechanism (the class)
provides both encapsulation and inheritance. Several other languages, including
Modula-3, Ada 95, Oberon, CLOS, and Fortran 2003, can be characterized as
object-oriented extensions to languages in which modules already provide en-
capsulation. (Neither Modula-3 nor Oberon is strictly an extension to Modula-2,
but both draw heavily on the syntax and semantics of their common predeces-
sor.) Rather than alter the existing module mechanism, these languages provide
inheritance and dynamic method binding through a mechanism for extending
records. In Ada 95, for example, our list and queue abstractions could be definedEXAMPLE 9.21

List and queue abstractions
in Ada 95

as in Figure 9.3.
To control access to the structure of types, we hide them inside Ada pack-

ages. The procedures initialize, finalize, enqueue, and dequeue of gp_
list.queue can convert their parameter self to a list_ptr, because queue is
an extension of list. Package gp_list.queue is said to be a child of package
gp_list because its name is prefixed with that of its parent. A child package in
Ada 95 is similar to a derived class in Eiffel or C++, except that it is still a man-
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package gp_list is

list_err : exception;

type gp_list_node is tagged private;

-- ’tagged’ means extendible; ’private’ means opaque

type gp_list_node_ptr is access all gp_list_node;

-- ’all’ means that this can point at ’aliased’ nonheap data

procedure initialize(self : access gp_list_node);

procedure finalize(self : access gp_list_node);

function predecessor(self : access gp_list_node) return gp_list_node_ptr;

function successor(self : access gp_list_node) return gp_list_node_ptr;

function singleton(self : access gp_list_node) return boolean;

procedure insert_before(self : access gp_list_node;

new_node : gp_list_node_ptr);

procedure remove(self : access gp_list_node);

type list is tagged private;

type list_ptr is access all list;

procedure initialize(self : access list);

procedure finalize(self : access list);

function empty(self : access list) return boolean;

function head(self : access list) return gp_list_node_ptr;

procedure append(self : access list; new_node : gp_list_node_ptr);

private

type gp_list_node is tagged record

prev, next, head_node : gp_list_node_ptr;

end record;

type list is tagged record

header : aliased gp_list_node;

-- ’aliased’ means that an ’all’ pointer can refer to this

end record;

end gp_list;

...

package body gp_list is

-- definitions of subroutines

...

end gp_list;

...

package gp_list.queue is -- ’child’ of gp_list

type queue is new list with private

-- ’new’ means it’s a subtype; ’with’ means it’s an extension

procedure initialize(self : access queue);

procedure finalize(self : access queue);

procedure enqueue(self : access queue;

new_node : gp_list_node_ptr);

function dequeue(self : access queue) return gp_list_node_ptr;

private

type queue is new list with null record; -- no new fields

end gp_list.queue;

Figure 9.3 List and queue abstractions in Ada 95. The tagged types list and queue pro-
vide inheritance; the packages provide encapsulation. An int_list_node could be derived
from gp_list_node in a similar manner. Declaring self to have type access XX (instead
of XX_ptr) causes the compiler to recognize the subroutine as a method of the tagged type.
(continued)
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package body gp_list.queue is

procedure initialize(self : access queue) is

begin

initialize(list_ptr(self));

end initialize;

procedure finalize(self : access queue) is

begin

finalize(list_ptr(self));

end finalize;

procedure enqueue(self : access queue; new_node : gp_list_node_ptr) is

begin

append(list_ptr(self), new_node);

end enqueue;

function dequeue(self : access queue) return gp_list_node_ptr is

rtn : gp_list_node_ptr;

begin

if empty(list_ptr(self)) then

raise list_err;

end if;

rtn := head(list_ptr(self));

remove(rtn);

return rtn;

end dequeue;

end gp_list.queue;

Figure 9.3 (continued)

ager, not a type. Like Eiffel, but unlike C++, Ada 95 allows the body of a child
package to see the private parts of the parent package.

All of the list and queue subroutines in Figure 9.3 take an explicit first pa-
rameter; Ada 95, Oberon, and CLOS do not use “object.method()” notation.
Modula-3 and Python do use this notation, but only as syntactic sugar: a call to
A.B(C, D) is interpreted as a call to B(A, C, D), where B is declared as a three-
parameter subroutine. Arbitrary Ada code can pass an object of type queue to
any routine that expects a list; as in Java, there is no way for a derived type to
hide the public members of a base type. �

CHECK YOUR UNDERSTANDING

12. What is meant by an opaque export from a module?

13. What are private and limited private types in Ada?

14. Explain the significance of the this parameter in object-oriented languages.

15. How do Java and C# make do without explicit class headers?
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16. Explain the distinction between private, protected, and public class
members in C++.

17. Explain the distinction between private, protected, and public base
classes in C++.

18. Describe the notion of selective availability in Eiffel.

19. How do the rules for member name visibility in Smalltalk and Objective-C
differ from the rules of most other object-oriented languages?

20. Describe the key design difference between the object-oriented features of
Smalltalk, Eiffel, and C++ on the one hand, and Oberon, Modula-3, and
Ada 95 on the other.

9.3 Initialization and Finalization

In Section 3.2 we defined the lifetime of an object to be the interval during which
it occupies space and can thus hold data. Most object-oriented languages provide
some sort of special mechanism to initialize an object automatically at the begin-
ning of its lifetime. When written in the form of a subroutine, this mechanism is
known as a constructor. Though the name might be thought to imply otherwise,
a constructor does not allocate space; it initializes space that has already been
allocated. A few languages provide a similar destructor mechanism to finalize an
object automatically at the end of its lifetime. Several important issues arise.

choosing a constructor: An object-oriented language may permit a class to have
zero, one, or many distinct constructors. In the latter case, different construc-
tors may have different names, or it may be necessary to distinguish among
them by number and types of arguments.

references and values: If variables are references, then every object must be cre-
ated explicitly, and it is easy to ensure that an appropriate constructor is called.
If variables are values, then object creation can happen implicitly as a result
of elaboration. In this latter case, the language must either permit objects to
begin their lifetime uninitialized, or it must provide a way to choose an appro-
priate constructor for every elaborated object.

execution order: When an object of a derived class is created in C++, the com-
piler guarantees that the constructors for any base classes will be executed, out-
ermost first, before the constructor for the derived class. Moreover, if a class
has members that are themselves objects of some class, then the constructors
for the members will be called before the constructor for the object in which
they are contained. These rules are a source of considerable syntactic and se-
mantic complexity: when combined with multiple constructors, elaborated
objects, and multiple inheritance they can sometimes induce a complicated



490 Chapter 9 Data Abstraction and Object Orientation

sequence of nested constructor invocations, with overload resolution, before
control even enters a given scope. Other languages have simpler rules.

garbage collection: Most object-oriented languages provide some sort of con-
structor mechanism. Destructors are comparatively rare. Their principal pur-
pose is to facilitate manual storage reclamation in languages like C++. If the
language implementation collects garbage automatically, then the need for de-
structors is greatly reduced.

In the remainder of this section we consider these issues in more detail.

9.3.1 Choosing a Constructor

Smalltalk, Eiffel, C++, Java, and C# all allow the programmer to specify more
than one constructor for a given class. In C++, Java, and C#, the constructors
behave like overloaded subroutines: they must be distinguished by their numbers
and types of arguments. In Smalltalk and Eiffel, different constructors can haveEXAMPLE 9.22

Naming constructors in
Eiffel

different names; code that creates an object must name a constructor explicitly.
In Eiffel one might say

class COMPLEX

creation

new_cartesian, new_polar

feature {ANY}

x, y : REAL

new_cartesian(x_val, y_val : REAL) is

do

x := x_val; y := y_val

end

new_polar(rho, theta : REAL) is

do

x := ro * cos(theta)

y := ro * sin(theta)

end

-- other public methods

feature {NONE}

-- private methods

end -- class COMPLEX

...

a, b : COMPLEX

...

!!b.new_cartesian(0, 1)

!!a.new_polar(pi/2, 1)
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The !! operator is Eiffel’s equivalent of new. Because class COMPLEX specified
constructor (“creator”) methods, the compiler will insist that every use of !!
specify a constructor name and arguments. There is no straightforward analog of
this code in C++; the fact that both constructors take two real arguments means
that they could not be distinguished by overloading. �

Smalltalk resembles Eiffel in the use of multiple named constructors, but it
distinguishes more sharply between operations that pertain to an individual ob-
ject and operations that pertain to a class of objects. Smalltalk also adopts an
anthropomorphic programming model in which every operation is seen as be-
ing executed by some specific object in response to a request (a “message”) from
some other object. Since it makes little sense for an object O to create itself, O
must be created by some other object (call it C) that represents O’s class. Of
course, because C is an object, it must itself belong to some class. The result of
this reasoning is a system in which each class definition really introduces a pair
of classes and a pair of objects to represent them. Objective-C and CLOS have
similar dual hierarchies.

Consider, for example, the standard class named Date. Corresponding toEXAMPLE 9.23
Metaclasses in Smalltalk Date is a single object (call it D) that performs operations on behalf of the class.

In particular, it is D that creates new objects of class Date. Because only objects
execute operations (classes don’t), we don’t really need a name for D; we can
simply use the name of the class it represents:

todaysDate <- Date today

This code causes D to execute the today constructor of class Date, and assigns a
reference to the newly created object into a variable named todaysDate.

So what is the class of D ? It clearly isn’t Date, because D represents class Date.
Smalltalk says that D is an object (in fact the only object) of the metaclass Date
class. For technical reasons, it is also necessary for Date class to be repre-
sented by an object. To avoid an infinite regression, all objects that represent
metaclasses are instances of a single class named Metaclass. �

Modula-3 and Oberon provide no constructors at all: the programmer must
initialize everything explicitly. Ada 95 supports constructors and destructors
(called Initialize and Finalize routines) only for objects of types derived
from the standard library type Controlled.

9.3.2 References and Values

Several object-oriented languages, including Simula, Smalltalk, Python, Ruby,
and Java, use a programming model in which variables refer to objects. Other
languages, including C++, Modula-3, Ada 95, and Oberon, allow a variable to
have a value that is an object. Eiffel uses a reference model by default, but allows
the programmer to specify that certain classes should be expanded, in which case
variables of those classes will use a value model. In a similar vein, C# uses struct
to define types whose variables are values, and class to define types whose vari-
ables are references.



492 Chapter 9 Data Abstraction and Object Orientation

With a reference model for variables every object is created explicitly, and it
is easy to ensure that an appropriate constructor is called. With a value model
for variables object creation can happen implicitly as a result of elaboration. In
Modula-3, Ada 95, and Oberon, which don’t really have constructors, elaborated
objects begin life uninitialized and it is possible to accidentally attempt to use a
variable before it has a value. In C++, the compiler ensures that an appropriate
constructor is called for every elaborated object, but the rules it uses to identify
constructors and their arguments can sometimes be confusing.

If a C++ variable of class type foo is declared with no initial value, then theEXAMPLE 9.24
Declarations and
constructors in C++

compiler will call foo’s zero-argument constructor (if no such constructor exists,
but other constructors do, then the declaration is a static semantic error—a call
to a nonexistent subroutine):

foo b; // calls foo::foo()

If the programmer wants to call a different constructor, the declaration must
specify constructor arguments to drive overload resolution:

foo b(10, ’x’); // calls foo::foo(int, char) �
The most common argument list consists of a single object, of the same or dif-EXAMPLE 9.25

Copy constructors ferent class:

foo a;

bar b;

...

foo c(a); // calls foo::foo(foo&)

foo d(b); // calls foo::foo(bar&)

Usually the programmer’s intent is to declare a new object whose initial value is
“the same” as that of the existing object. In this case it is more natural to write

DESIGN & IMPLEMENTATION

The value/reference tradeoff
The reference model of variables is arguably more elegant than the value
model, particularly for object-oriented languages, but it generally requires that
objects be allocated from the heap, and imposes (in the absence of compiler
optimizations) an extra level of indirection on every access. The value model
tends to be more efficient but makes it difficult to control initialization. In
languages like Java, an optimization known as escape analysis can sometimes
allow the compiler to determine that references to a given object will always
be contained within (will never escape) a given method. In this case the object
can be allocated in the method’s stack frame, avoiding the overhead of heap
allocation and, more significantly, eventual garbage collection.
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foo a; // calls foo::foo()

bar b; // calls bar::bar()

...

foo c = a; // calls foo::foo(foo&)

foo d = b; // calls foo::foo(bar&)

In recognition of this intent, a single-argument constructor in C++ is called a
copy constructor. It is important to realize here that the equals sign (=) in these
declarations indicates initialization, not assignment. The effect is not the same as
that of the similar code fragment

foo a, c, d; // calls foo::foo() three times

bar b; // calls bar::bar()

...

DESIGN & IMPLEMENTATION

Initialization and assignment
The distinction between initialization and assignment in C++ can sometimes
have a surprising effect on performance. Consider, for example, the seemingly
innocuous declaration

foo a = b + c;

If foo is a nontrivial class, the compiler will need to create a hidden, temporary
object to be the target of the + operation, roughly equivalent to the following.

foo t;

t = b.operator+(c);

foo a = t;

The generated code will then include calls to both the zero-argument con-
structor and the destructor for t, as well as a copy constructor to move t into
a. The less elegant

foo a = b; a += c;

will call the copy constructor for a, followed by operator+=, avoiding the
need for t. Programmers who create explicit temporary objects to break up
complex expressions may see similar unexpected costs.

A similar issue arises in subroutine calls. A parameter that is passed by
value typically induces an implicit call to a copy constructor. A parameter that
is passed by reference does not. Of course the reference parameter imposes
the cost of indirection on accesses within the subroutine. It also creates an
alias, which may inhibit certain code improvements, as noted in Section 3.6.1.
Which parameter mode will result in the fastest code will depend on details of
the individual program. Unfortunately, C++ semantics are sufficiently com-
plex that it is difficult for the typical programmer to evaluate this tradeoff in
practice.
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c = a; // calls foo::operator=(foo&)

d = b; // calls foo::operator=(bar&)

Here c and d are initialized with the zero-argument constructor, and the later
use of the equals sign indicates assignment, not initialization. The distinction
is a common source of confusion in C++ programs. It arises from the com-
bination of a value model of variables and an insistence that every elaborated
object be initialized by a constructor. In CLOS, which requires objects to be
passed to methods as explicit first parameters, object creation and initializa-
tion relies on overloaded versions of subroutines named make-instance and
initialize-instance. Because CLOS employs a reference model uniformly,
the issue of initializing elaborated objects does not arise. �

In Eiffel, every variable is initialized to a default value. For built-in types (in-EXAMPLE 9.26
Eiffel constructors and
expanded objects

teger, floating-point, character, etc.), which are considered to be expanded, the
default values are all zero. For references to objects, the default value is void
(null). For variables of expanded class types, the defaults are applied recursively
to members. As noted on page 490 new objects are created by invoking Eiffel’s !!
creation operator:

!!var.creator(args)

where var is a variable of some class type T and creator is a constructor for
T. In the common case, var will be a reference, and the creation operator will
allocate space for an object of class T and then call the object’s constructor. This
same syntax is permitted, however, when T is an expanded class type, in which
case var will actually be an object, rather than a reference. In this case, the !!
operator simply passes to the constructor (a reference to) the already-allocated
object. �

DESIGN & IMPLEMENTATION

Initialization of “expanded” objects
C++ inherits from C a design philosophy that emphasizes execution speed,
minimal run-time support, and suitability for “systems” programming, in
which the programmer needs to be able to write code whose mapping to as-
sembly language is straightforward and self-evident. The use of a value model
for variables in C++ is thus more than an attempt to be backward compatible
with C; it reflects the desire to allocate variables statically or on the stack when-
ever possible, to avoid the overhead of dynamic allocation, deallocation, and
frequent indirection. In later sections we shall see several other ramifications
of the C++ philosophy, including manual storage reclamation (Section 9.3.4)
and static method binding (Section 9.4.1).
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9.3.3 Execution Order

As we have seen, C++ insists that every object be initialized before it can be used.
Moreover, if the object’s class (call it B) is derived from some other class (call it
A), C++ insists on calling an A constructor before calling a B constructor, so the
derived class is guaranteed never to see its inherited fields in an inconsistent state.
When the programmer creates an object of class B (either via declaration or with
a call to new), the creation operation specifies arguments for a B constructor.
These arguments allow the C++ compiler to resolve overloading when multiple
constructors exist. But where does the compiler obtain arguments for the A con-
structor? Adding them to the creation syntax (as Simula does) would be a clear
violation of abstraction. The answer adopted in C++ is to allow the header of theEXAMPLE 9.27

Specification of base class
constructor arguments

constructor of a derived class to specify base class constructor arguments:

foo::foo( foo params ) : bar( bar args ) {

...

Here foo is derived from bar. The list foo params consists of formal parameters
for this particular foo constructor. Between the parameter list and the opening
brace of the subroutine definition is a “call” to a constructor for the base class
bar. The arguments to the bar constructor can be arbitrarily complicated ex-
pressions involving the foo parameters. The compiler will arrange to execute the
bar constructor before beginning execution of the foo constructor. �

Similar syntax allows the C++ programmer to specify constructor argumentsEXAMPLE 9.28
Specification of member
constructor arguments

or initial values for members of the class. In Figure 9.1, for example, we could
have used this syntax to initialize prev, next, head_node, and val in the con-
structor for list_node:

list_node() : prev(this), next(this), head_node(this), val(0) {

// empty body -- nothing else to do

}

Given that all of these members have simple (pointer or integer) types, there will
be no significant difference in the generated code. But suppose we have members
that are themselves objects of some nontrivial class:

class foo : bar {

mem1_t member1; // mem1_t and

mem2_t member2; // mem2_t are classes

...

}

foo::foo( foo params ) : bar( bar args ), member1( mem1 args ),

member2( mem2 args ) {

...

Here the use of embedded calls in the header of the foo constructor causes the
compiler to call the copy constructors for the member objects, rather than calling
the default (zero-argument) constructors, followed by operator=. Both seman-
tics and performance may be different as a result. �
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Like C++, Java insists that a constructor for a base class be called before theEXAMPLE 9.29
Invocation of base class
constructor in Java

constructor for a derived class. The syntax is a bit simpler, however: the initial
line of the code for the derived class constructor may consist of a “call” to the
base class constructor:

super( args );

(C# has a similar mechanism.) As noted in Section 9.1, super is a Java keyword
that refers to the base class of the class in whose code it appears. If the call to
super is missing, the Java compiler automatically inserts a call to the base class’s
zero-argument constructor (in which case such a constructor must exist). �

Because Java uses a reference model uniformly for all objects, any class mem-
bers that are themselves objects will actually be references, rather than “expanded”
objects (to use the Eiffel term). Java simply initializes such members to null. If
the programmer wants something different, he or she must call new explicitly
within the constructor of the surrounding class. Smalltalk and (in the common
case) C# and Eiffel adopt a similar approach. In C#, members whose types are
structs are initialized by setting all of their fields to zero or null. In Eiffel, if a
class contains members of an expanded class type, that type is required to have
a single constructor, with no arguments; the Eiffel compiler arranges to call this
constructor when the surrounding object is created.

Smalltalk, Eiffel, and CLOS are all more lax than C++ regarding the initializa-
tion of base classes. The compiler or interpreter arranges to call the constructor
(creator, initializer) for each newly created object automatically, but it does not
arrange to call constructors for base classes automatically; all it does is initialize
base class data members to default (0 or null) values. If the derived class wants
different behavior, its constructor(s) must call a constructor for the base class
explicitly. Objective-C has no special notion of constructor: programmers must
write and explicitly invoke their own initialization methods.

9.3.4 Garbage Collection

When a C++ object is destroyed, the destructor for the derived class is called
first, followed by those of the base class(es), in reverse order of derivation. By
far the most common use of destructors in C++ is manual storage reclamation.
Suppose, for example, that we were to create a list or queue of character-stringEXAMPLE 9.30

Reclaiming space with
destructors

names:

class name_list_node : public gp_list_node {

char *name; // pointer to the data in a node

public:

name_list_node() {

name = 0; // empty string

}

name_list_node(char *n) {

name = new char[strlen(n)];

strcpy(name, n); // copy argument into member

}



9.4 Dynamic Method Binding 497

~name_list_node() {

if (name != 0) {

delete[] name; // reclaim space

}

}

};

The destructor in this class serves to reclaim space that was allocated in the heap
by the constructor. �

In languages with automatic garbage collection, there is much less need for
destructors. In fact, the entire idea of destruction is suspect in a garbage-collected
language, because the programmer has little or no control over when an object is
going to be destroyed. Java and C# allow the programmer to declare a finalize
method that will be called immediately before the garbage collector reclaims the
space for an object, but the feature is not widely used.

CHECK YOUR UNDERSTANDING

21. Does a constructor allocate space for an object? Explain.

22. What is a metaclass in Smalltalk?

23. Why is object initialization simpler in a language with a reference model of
variables (as opposed to a value model)?

24. How does a C++ (or Java or C#) compiler tell which constructor to use for a
given object? How does the answer differ for Eiffel and Smalltalk?

25. What is escape analysis?

26. Summarize the rules in C++ that determine the order in which constructors
are called for a class, its base class(es), and the classes of its fields. How are
these rules simplified in other languages?

27. Explain the difference between initialization and assignment in C++.

28. Why does C++ need destructors more than Eiffel does?

9.4 Dynamic Method Binding

One of the principal consequences of inheritance/type extension is that a derived
class D has all the members—data and subroutines—of its base class C. As long
as D does not hide any of the publicly visible members of C (see Exercise 9.13),
it makes sense to allow an object of class D to be used in any context that expects
an object of class C: anything we might want to do to an object of class C we
can also do to an object of class D. In Ada terminology, a derived class that does
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not hide any publicly visible members of its base class is a subtype of that base
class.

The ability to use a derived class in a context that expects its base class is called
subtype polymorphism. If we imagine an administrative computing system for aEXAMPLE 9.31

Derived class objects in a
base class context

university, we might derive classes student and professor from class person:

class person { ...

class student : public person { ...

class professor : public person { ...

Because both student and professor objects have all the properties of a person
object, we should be able to use them in a person context:

student s;

professor p;

...

person *x = &s;

person *y = &p;

Moreover a subroutine like

void person::print_mailing_label() { ...

would be polymorphic—capable of accepting arguments of multiple types:

s.print_mailing_label(); // i.e., print_mailing_label(s)

p.print_mailing_label(); // i.e., print_mailing_label(p)

As with other forms of polymorphism, we depend on the fact that print_mail-
ing_label uses only those features of its formal parameter that all actual pa-
rameters will have in common. �

But now suppose that we have redefined print_mailing_label in each ofEXAMPLE 9.32
Static and dynamic method
binding

the two derived classes. We might, for example, want to encode certain infor-
mation (student’s year in school, professor’s home department) in the corner
of the label. Now we have multiple versions of our subroutine—student::
print_mailing_label and professor::print_mailing_label, rather than
the single, polymorphic person::print_mailing_label. Which version we
will get depends on the object:

s.print_mailing_label(); // student::print_mailing_label(s)

p.print_mailing_label(); // professor::print_mailing_label(p)

But what about

x->print_mailing_label(); // ??

y->print_mailing_label(); // ??

Does the choice of the method to be called depend on the types of the vari-
ables x and y, or on the classes of the objects s and p to which those variables
refer? �
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The first option (use the type of the reference) is known as static method bind-
ing. The second option (use the class of the object) is known as dynamic method
binding. Dynamic method binding is central to object-oriented programming.
Imagine, for example, that our administrative computing program has created
a list of persons who have overdue library books. The list may contain both
students and professors. If we traverse the list and print a mailing label for
each person, dynamic method binding will ensure that the correct printing rou-
tine is called for each individual. In this situation the definitions in the derived
classes are said to override the definition in the base class.

Semantics and Performance

The principal argument against static method binding—and thus in favor of
dynamic binding based on the type of the referenced object—is that the stat-
ic approach denies the derived class control over the consistency of its own
state. Suppose, for example, that we are building an I/O library that containsEXAMPLE 9.33

The need for dynamic
binding

a text_file class:

class text_file {

char *name;

long position; // file pointer

public:

void seek(long whence);

...

}

Now suppose we have a derived class read_ahead_text_file:

class read_ahead_text_file : public text_file {

char *upcoming_characters;

public:

void seek(long whence); // redefinition

...

}

The code for read_ahead_text_file::seek will undoubtedly need to change
the value of the cached upcoming_characters. If the method is not dynami-
cally dispatched, however, we cannot guarantee that this will happen: if we pass a
read_ahead_text_file reference to a subroutine that expects a text_file ref-
erence as argument, and if that subroutine then calls seek, we’ll get the version
of seek in the base class. �

Unfortunately, as we shall see in Section 9.4.3, dynamic method binding
imposes run-time overhead. While this overhead is generally modest, it is
nonetheless a concern for small subroutines in performance-critical applications.
Smalltalk, Objective-C, Modula-3, Python, and Ruby use dynamic method bind-
ing for all methods. Java and Eiffel use dynamic method binding by default,
but allow individual methods and (in Java) classes to be labeled final (Java)
or frozen (Eiffel), in which case they cannot be overridden by derived classes,
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and can therefore employ an optimized implementation. Simula, C++, C#, and
Ada 95 use static method binding by default but allow the programmer to specify
dynamic binding when desired. In these latter languages it is common terminol-
ogy to distinguish between overriding a method that uses dynamic binding and
(merely) redefining a method that uses static binding. For the sake of clarity, C#
requires explicit use of the keywords override and new whenever a method in a
derived class overrides or redefines (respectively) a method of the same name in
a base class.

9.4.1 Virtual and Nonvirtual Methods

In Simula, C++, and C#, which use static method binding by default, the pro-
grammer can specify that particular methods should use dynamic binding by
labeling them as virtual. Calls to virtual methods are dispatched to the appro-
priate implementation at run time, based on the class of the object, rather than
the type of the reference. In C++ and C#, the keyword virtual prefixes the sub-EXAMPLE 9.34

Virtual methods in C++
and C#

routine declaration:4

class person {

public:

virtual void print_mailing_label();

... �
In Simula, virtual methods are listed at the beginning of the class declaration:EXAMPLE 9.35

Virtual methods in Simula
CLASS Person;

VIRTUAL: PROCEDURE PrintMailingLabel;

BEGIN

...

PROCEDURE PrintMailingLabel...

COMMENT body of subroutine

...

END Person; �
Ada 95 adopts a different approach. Rather than associate dynamic dispatch

with particular methods, the Ada 95 programmer associates it with certain ref-
erences. In our mailing label example, a formal parameter or an access variableEXAMPLE 9.36

Class-wide types in Ada 95 (pointer) can be declared to be of the class-wide type person’Class, in which
case all calls to all methods of that parameter or variable will be dispatched based
on the class of the object to which it refers:

4 C++ also uses the virtual keyword in certain circumstances to prefix the name of a base class
in the header of the declaration of a derived class. This usage supports the very different purpose
of shared multiple inheritance, which we will consider in Section 9.5.3.
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type person is tagged record ...

type student is new person with ...

type professor is new person with ...

procedure print_mailing_label(r : person) is ...

procedure print_mailing_label(s : student) is ...

procedure print_mailing_label(p : professor) is ...

procedure print_appropriate_label(r : person’Class) is

begin

print_mailing_label(r);

-- calls appropriate overloaded version, depending

-- on type of r at run time

end print_appropriate_label; �

9.4.2 Abstract Classes

In most object-oriented languages it is possible to omit the body of a virtual
method in a base class. In Java and C#, one does so by labeling both the class andEXAMPLE 9.37

Abstract methods in Java
and C#

the missing method as abstract:

abstract class person {

...

public abstract void print_mailing_label();

... �
The notation in C++ is somewhat less intuitive: one follows the subroutine dec-EXAMPLE 9.38

Abstract methods in C++ laration with an “assignment” to zero:

class person {

...

public:

virtual void print_mailing_label() = 0;

... �
C++ refers to abstract methods as pure virtual methods. In Simula all virtual
methods are abstract.

Regardless of declaration syntax, a class is said to be abstract if it has at least
one abstract method. It is not possible to declare an object of an abstract class,
because it would be missing at least one member. The only purpose of an abstract
class is to serve as a base for other, concrete classes. A concrete class (or one of its
intermediate ancestors) must provide a real definition for every abstract method
it inherits. The existence of an abstract method in a base class provides a “hook”
for dynamic method binding; it allows the programmer to write code that calls
methods of (references to) objects of the base class, under the assumption that
appropriate concrete methods will be invoked at run time. Classes that have no
members other than abstract methods—no fields or method bodies—are called



502 Chapter 9 Data Abstraction and Object Orientation

interfaces in Java and C#. They support a restricted, “mix-in” form of multiple
inheritance, which we will consider in Section 9.5.4.5

9.4.3 Member Lookup

With static method binding (as in Simula, C++, C#, or Ada 95), the compiler can
always tell which version of a method to call, based on the type of the variable
being used. With dynamic method binding, however, the object referred to byEXAMPLE 9.39

Vtables a reference or pointer variable must contain sufficient information to allow the
code generated by the compiler to find the right version of the method at run
time. The most common implementation represents each object with a record
whose first field contains the address of a virtual method table (vtable) for the
object’s class (see Figure 9.4). The vtable is an array whose ith entry indicates the
address of the code for the object’s ith virtual method. All objects of a given class
share the same vtable. �

Suppose that the this (self) pointer for methods is passed in register r1,EXAMPLE 9.40
Implementation of a virtual
method call

that m is the third method of class foo, and that f is a pointer to an object of
class foo. Then the code to call f->m() looks something like this:

r1 := f
r2 := *r1 –– vtable address
r2 := *(r2 + (3−1) × 4) –– assuming 4 = sizeof (address)
call *r2

On a typical RISC machine this calling sequence is two instructions (both of
which access memory) longer than a call to a statically identified method. The
extra overhead can be avoided whenever the compiler can deduce the type of the
relevant object at compile time. The deduction is trivial for calls to methods of
object-valued variables (as opposed to references and pointers). �

If bar is derived from foo, we place its additional fields at the end of theEXAMPLE 9.41
Implementation of single
inheritance

“record” that represents it. We create a vtable for bar by copying the vtable for
foo, replacing the entries of any virtual methods overridden by bar, and ap-
pending entries for any virtual methods declared in bar (see Figure 9.5). If we
have an object of class bar we can safely assign its address into a variable of type
foo*:

class foo { ...

class bar : public foo { ...

...

5 An abstract virtual method in Eiffel is called a deferred feature. (Recall that all features are vir-
tual.) An abstract class is called a deferred class. A concrete class is called an effective class. An
interface in the Java or C# sense of the word is called a fully deferred class.



9.4 Dynamic Method Binding 503

Figure 9.4 Implementation of virtual methods. The representation of object F begins with the address of the vtable for class
foo. (All objects of this class will point to the same vtable.) The vtable itself consists of an array of addresses, one for the code
of each virtual method of the class. The remainder of F consists of the representations of its fields.

Figure 9.5 Implementation of single inheritance. As in Figure 9.4, the representation of object B begins with the address of
its class’s vtable. The first four entries in the table represent the same members as they do for foo, except that one—m—has
been overridden and now contains the address of the code for a different subroutine. Additional fields of bar follow the ones
inherited from foo in the representation of B; additional virtual methods follow the ones inherited from foo in the vtable of
class bar.

foo F;

bar B;

foo* q;

bar* s;

...

q = &B; // ok; references through q will use prefixes

// of B’s data space and vtable

s = &F; // static semantic error; F lacks the additional

// data and vtable entries of a bar

In C++ (as in all the object-oriented languages we have considered, save
Smalltalk, Objective-C, and CLOS), the compiler can verify the type correct-
ness of this code statically. It does not know what the class of the object referred
to by q will be at run time, but it knows that it will either be foo or something
derived (directly or indirectly) from foo, and this ensures that it will have all the
members that may be accessed by foo-specific code. �

C++ allows “backward” assignments by means of a dynamic_cast operator:EXAMPLE 9.42
Casts in C++

s = dynamic_cast<bar*>(q); // performs a run-time check
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For backward compatibility C++ also supports traditional C-style casts of object
pointers and references.

s = (bar*) q; // permitted, but risky

With a C-style cast it is up to the programmer to ensure that the actual object
involved is of an appropriate type: no dynamic semantic check is performed. �

Java and C# employ the traditional cast notation but perform the dy-
namic check. Eiffel has a reverse assignment operator, ?=, which (like the C++EXAMPLE 9.43

Reverse assignment in
Eiffel and C#

dynamic_cast) assigns an object reference into a variable if and only if the type
at run time is acceptable:

DESIGN & IMPLEMENTATION

Reverse assignment
Implementations of Eiffel, Java, C#, and C++ typically support dynamic
checks on reverse assignment by including in each vtable the address of a run-
time type descriptor. In C++, dynamic_cast is permitted only on pointers and
references of polymorphic types (classes with virtual methods), since objects
of nonpolymorphic types do not have vtables. A separate static_cast opera-
tion can be used on nonpolymorphic types, but it performs no run-time check
and is thus inherently unsafe when applied to a pointer of a derived class type.

DESIGN & IMPLEMENTATION

The fragile base class problem
Under certain circumstances, it can be desirable to perform method lookup at
run time even when the language permits compile-time lookup. In Java, for
example, programs are usually distributed in a portable “byte code” format
that is either interpreted or, in some implementations, compiled immediately
before execution. The standard “virtual machine” interpreter for byte code
looks methods up at run time. By doing so it avoids what is known as the
fragile base class problem. Java implementations depend on the presence of a
large standard library. This library is expected to evolve over time. Though
the designers of the library will presumably be careful to maximize backward
compatibility—seldom if ever deleting any members of a class—it is likely that
users of old versions of the library will on occasion attempt to run code that
was written with a new version of the library in mind. In such a situation it
would be disastrous to rely on static assumptions about the representation of
library classes: code that tries to use a newly added library feature could end
up accessing memory beyond the end of the available representation. Run-
time method lookup, by contrast, will produce a helpful “member not found
in your version of the class” dynamic error message.
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class foo ...

class bar inherit foo ...

...

f : foo

b : bar

...

f := b -- always ok

b ?= f -- reverse assignment: b gets f if f refers to a bar object

-- at run time; otherwise b gets void

C# provides an as operator that performs a similar function. �
In Smalltalk, variables are untyped references. A reference to any object may

be assigned into any variable. Only when code actually attempts to invoke an op-
eration (send a “message”) at run time does the language implementation check
to see whether the operation is supported by the object. The implementation is
straightforward: fields of an object are never public; methods provide the only
means of object interaction. The representation of an object begins with the ad-
dress of a type descriptor. The type descriptor contains a dictionary that maps
method names to code fragments. At run time, the Smalltalk interpreter per-
forms a lookup operation in the dictionary to see if the method is supported.
If not, it generates a “message not understood” error—the equivalent of a type
clash error in Lisp. CLOS and Objective-C provide similar semantics and invite
similar implementations. The Smalltalk/CLOS/Objective-C approach is arguably
more flexible than that of more statically typed languages, but it incurs significant
run-time cost, and delays the reporting of errors.

In addition to imposing the overhead of indirection, virtual methods often
preclude the in-line expansion of subroutines at compile time. The lack of in-
line subroutines can be a serious performance problem when subroutines are
small and frequently called. Like C, C++ attempts to avoid run-time overhead
whenever possible: hence its use of static method binding as the default, and its
heavy reliance on object-valued variables, for which even virtual methods can be
dispatched at compile time.

9.4.4 Polymorphism

We have already noted that dynamic method binding introduces polymorphism
(specifically, subtype polymorphism) into any code that expects a reference to an
object of some base class foo. As long as objects of the derived class support the
operations of the base class, the code will work equally well with references to
objects of any class derived from foo. By declaring a reference parameter to be of
class foo, for example, the programmer asserts that the subroutine uses only the
“foo features” of the parameter, and will work on any object that provides those
features.

One might be tempted to think that the combination of inheritance and dy-
namic method binding would eliminate the need for generics, but this is not the
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case. We can see an example in the gp_list_node class and its descendants ofEXAMPLE 9.44
Inheritance and method
signatures

Section 9.1. By placing the structural aspects of an abstraction (in this case a
list) in a base class, we make it easy to create type-specific lists: int_list_node,
float_list_node, student_list_node, and so on. Unfortunately, base class
methods like predecessor and successor return references of the base class
type, which do not then support type-specific operations. To allow us to access
the values stored in objects returned by the list-manipulation routines, we must
perform an explicit type cast:

int_list_node_ptr q, r;

...

r = q->successor(); // error: type clash

gp_list_node_ptr p = q->successor();

cout << p.val; // error: gp_list_nodes have no val

r = (int_list_node_ptr) q->successor();

cout << r.val; // ok

The cast on the sixth line here is both awkward and unsafe. We can’t use a
dynamic_cast operation because gp_list_node has no virtual members, and
hence (in C++) no vtable. We can confine the awkwardness to the definition of
int_list_node by redefining methods:

int_list_node* int_list_node::predecessor() { // redefine

return (int_list_node*) gp_list_node::predecessor();

}

int_list_node* int_list_node::successor() { // redefine

return (int_list_node*) gp_list_node::successor();

} �

Unfortunately, redefining all of the appropriate arguments and return types of
base class methods in every derived class is still a frustratingly tedious exercise,
and the code is still unsafe: the compiler cannot verify type correctness. GenericsEXAMPLE 9.45

Generics and inheritance get around both problems. In C++, we can write

template<class V>

class list_node {

list_node<V>* prev;

list_node<V>* next;

list_node<V>* head_node;

public:

V val;

list_node<V>* predecessor() { ...

list_node<V>* successor() { ...

void insert_before(list_node<V>* new_node) { ...

...

};
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template<class V>

class list {

list_node<V> header;

public:

list_node<V>* head() { ...

void append(list_node<V> *new_node) { ...

...

};

typedef list_node<int> int_list_node;

typedef list<int> int_list;

...

int_list numbers;

int_list_node* first_int;

...

first_int = numbers->head(); �
In a nutshell, generics exist for the purpose of abstracting over unrelated types,

something that inheritance does not support. (NB: the type inference system of
ML and related languages does suffice to abstract over unrelated types; ML does
not require generics. On the other hand, while ML provides Euclid-like module
types, it does not provide inheritance, and thus cannot be considered an object-
oriented language.)

Eiffel, Java, and C# all provide generics as well. Java’s version is somewhat sim-
pler than the others: because object variables are always references, they always
have the same size, and a single copy of the code can generally be shared by every
instance of a generic. As a convenient shorthand, Eiffel allows the programmer toEXAMPLE 9.46

Like in Eiffel declare parameters and return values of methods to be of the same type as some
“anchor” field of the class. Then if a derived class redefines the anchor, the para-
meters and return values are automatically redefined as well, without the need to
specify them explicitly:

DESIGN & IMPLEMENTATION

Generics and dynamic method dispatch
As noted in Section 3.6.3, generics (explicit parametric polymorphism) are
usually implemented by creating multiple copies of the polymorphic code,
one specialized for each needed concrete type. (Java is an exception: it uses
a single copy. Other languages may share specializations when possible.) Sub-
type polymorphism is almost always implemented by creating a single copy of
the code, and relying on vtables for dynamic method dispatch. So in object-
oriented languages the two main forms of polymorphism—parametric and
subtype—not only serve different purposes, they typically have very different
implementations.
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class gp_list_node ...

...

class gp_list

feature {NONE} -- private

header : gp_list_node -- to be redefined by derived classes

feature {ALL} -- public

head : like header is ... -- methods

append(new_node : like header) is ...

...

end

...

class student_list_node inherit gp_list_node ...

...

class student_list

inherit gp_list

redefine header end

feature {NONE}

header : student_list_node

-- don’t need to redefine head and append

end

The like mechanism does not eliminate the need for generics, but it makes it
easier to define them, or to do without them in simple situations. �

9.4.5 Closures

Because the dispatch of virtual methods is delayed until run time, dynamic
method binding provides a mechanism similar to first-class subroutines (Sec-
tions 3.5 and 8.3.1). Code that looks like this in C++:EXAMPLE 9.47

Objects as closures
typedef void (*F_INT)(int);

// F_INT is a type: pointer to function from int to void

void p(int a) {

...

}

void q(F_INT f) {

...

f(3);

...

}

q(&p);

can more or less be replaced by code that looks like this:

class foo {

public:

virtual void f(int a) = 0;

};
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void q(foo& obj) {

...

obj.f(3);

...

}

class bar : public foo {

public:

virtual void f(int a) {

...

}

} my_obj;

q(my_obj);

This latter, object-oriented version of the code has an important advantage over
the pointer-to-subroutine version in C++: by adding fields to class bar (and ob-
ject my_obj), we can provide method f with data on which to operate, data that
q knows nothing about. In effect, the fields of an object with a virtual method
behave like the referencing environment of a closure in a language with nested
scopes (recall that C and C++ do not require closures, because they do not have
nested scopes). In Ada 95, which has both nested scopes and classes (tagged
types), the entries in vtables must themselves be closures, not just subroutine
addresses. �

In some cases, virtual methods and first-class subroutines can complement
each other. Suppose, for example, that we are writing a discrete event simulation,EXAMPLE 9.48

Encapsulating arguments as described in Section 8.6.4. We might like a general mechanism that allows
us to schedule a call to an arbitrary subroutine, with an arbitrary set of parame-
ters, to occur at some future point in time. If the subroutines we want to have
called vary in their numbers and types of parameters, we won’t be able to pass
them to a general purpose schedule_at routine. We can solve the problem with
virtual methods, as shown in Figure 9.6. As we shall see in Section 12.2.3, this
same technique is used in Modula-3 to encapsulate start-up arguments for newly
created threads of control. �

CHECK YOUR UNDERSTANDING

29. Explain the difference between dynamic and static method binding (i.e., be-
tween virtual and nonvirtual methods).

30. Summarize the fundamental argument for dynamic method binding. Why
do C++ and C# use static method binding by default?

31. Explain the distinction between redefining and overriding a method.

32. What is a class-wide type in Ada 95?

33. Explain the connection between dynamic method binding and polymor-
phism.



510 Chapter 9 Data Abstraction and Object Orientation

class fn_call {

public:

virtual void trigger() = 0;

};

void schedule_at(fn_call& fc, time t) {

...

}

...

void foo(int a, double b, char c) {

...

}

class call_foo : public fn_call {

int arg1;

double arg2;

char arg3;

void (*ptr)(int, double, char);

public:

call_foo(int a, double b, char c) : // constructor

arg1(a), arg2(b), arg3(c) {

// member initialization is all that is required

}

void trigger() {

foo(arg1, arg2, arg3);

}

};

...

call_foo cf(3, 3.14, ’x’); // declaration/constructor call

schedule_at(cf, now() + delay);

// at some point in the future, the discrete event system

// will call cf.trigger(), which will cause a call to

// foo(3, 3.14, ’x’)

Figure 9.6 Subroutine pointers and virtual methods. Class call_foo encapsulates a subrou-
tine pointer and values to be passed to the subroutine. It exports a parameter-less subroutine
that can be used to trigger the encapsulated call.

34. What is an abstract method (also called a pure virtual method in C++ and a
deferred feature in Eiffel)?

35. What is reverse assignment? Why does it require a run-time check?

36. What is a vtable? How is it used?

37. What is the fragile base class problem?

38. Describe how virtual functions can be used to achieve the effect of subroutine
closures.

39. What is an abstract (deferred) class?
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40. Explain why generics may be useful in an object-oriented language, despite
the extensive polymorphism already provided by inheritance.

41. Explain the use of like in Eiffel.

9.5 Multiple Inheritance

At times it can be useful for a derived class to inherit features from more than one
base class. Suppose, for example, that we want our administrative computingEXAMPLE 9.49

Deriving from two base
classes

system to keep all students of the same year (freshmen, sophomores, juniors,
seniors, unmatriculated) on some list. It may then be desirable to derive class
student from both person and gp_list_node. In C++ we can say

class student : public person, public gp_list_node { ...

Now an object of class student will have all the fields and methods of both a
person and a gp_list_node. The declaration in Eiffel is analogous:

class student

inherit

person

gp_list_node

feature

... �
Multiple inheritance also appears in CLOS and Python. Simula, Smalltalk,

Objective-C, Modula-3, Ada 95, and Oberon have only single inheritance. Java,
C#, and Ruby provide a limited, “mix-in” form of multiple inheritance, in which
only one parent class is permitted to have fields.

IN MORE DEPTH

Multiple inheritance introduces a wealth of semantic and pragmatic issues.

� Suppose two parent classes provide a method with the same name. Which one
do we use in the child? Can we access both?

� Suppose two parent classes are both derived from some common “grandpar-
ent” class. Does the “grandchild” have one copy or two of the grandparent’s
fields?

� Our implementation of single inheritance relies on the fact that the represen-
tation of an object of the parent class is a prefix of the representation of an
object of a derived class. With multiple inheritance, how can each parent be a
prefix of the child?

Multiple inheritance with a common “grandparent” is known as repeated in-
heritance. Repeated inheritance with separate copies of the grandparent is known
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as replicated inheritance; repeated inheritance with a single copy of the grand-
parent is known as shared inheritance. Shared inheritance is the default in Eiffel.
Replicated inheritance is the default in C++. Both languages allow the program-
mer to obtain the other option when desired.

Much of the complexity disappears if we insist, as in Java or C#, that all but
one of the parent classes consist of methods only. Both languages call such a class
an interface.

9.6 Object-Oriented Programming Revisited

At the beginning of this chapter, we characterized object-oriented programming
in terms of three fundamental concepts: encapsulation, inheritance, and dynamic
method binding. Encapsulation allows the implementation details of an abstrac-
tion to be hidden behind a simple interface. Inheritance allows a new abstraction
to be defined as an extension or refinement of some existing abstraction, obtain-
ing some or all of its characteristics automatically. Dynamic method binding al-
lows the new abstraction to display its new behavior even when used in a context
that expects the old abstraction.

Different programming languages support these fundamental concepts to dif-
ferent degrees. In particular, languages differ in the extent to which they require
the programmer to write in an object-oriented style. Some authors argue that
a truly object-oriented language should make it difficult or impossible to write
programs that are not object-oriented. From this purist point of view, an object-
oriented language should present a uniform object model of computing, in which
every data type is a class, every variable is a reference to an object, and every
subroutine is an object method. Moreover, objects should be thought of in an-
thropomorphic terms: as active entities responsible for all computation.

Smalltalk and Ruby come close to this ideal. In fact, as described in the sub-
section below (mostly on the PLP CD), even such control flow mechanisms as
selection and iteration are modeled as method invocations in Smalltalk. On the
other hand, Modula-3 and Ada 95 are probably best characterized as von Neu-
mann languages that permit the programmer to write in an object-oriented style
if desired.

So what about C++? It certainly has a wealth of features, including several
(multiple inheritance, elaborate access control, strict initialization order, destruc-
tors, generics) that are useful in object-oriented programs and that are not found
in Smalltalk. At the same time, it has a wealth of problematic wrinkles. Its simple
types are not classes. It has subroutines outside of classes. It uses static method
binding and replicated multiple inheritance by default, rather than the more
costly virtual alternatives. Its unchecked C-style type casts provide a major
loophole for type checking and access control. Its lack of garbage collection is
a major obstacle to the creation of correct, self-contained abstractions. Probably
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most serious of all, C++ retains all of the low level mechanisms of C, allowing the
programmer to escape or subvert the object-oriented model of programming en-
tirely. It has been suggested that the best C++ programmers are those who did
not learn C first: they are not as tempted to write “C-style” programs in the newer
language. On balance, it is probably safe to say that C++ is an object-oriented
language in the same sense that Common Lisp is a functional language. With the
possible exception of garbage collection, C++ provides all of the necessary tools,
but it requires substantial discipline on the part of the programmer to use those
tools “correctly.”

9.6.1 The Object Model of Smalltalk

Smalltalk is to a large extent the canonical object-oriented language. The original
version of Smalltalk was designed by Alan Kay as part of his doctoral work at the
University of Utah in the late 1960s. It was then adopted by the Software Concepts
Group at the Xerox Palo Alto Research Center (PARC), and went through five
major revisions in the 1970s, culminating in the Smalltalk-80 language.6

IN MORE DEPTH

We have mentioned several features of Smalltalk in previous sections. A some-
what longer treatment can be found on the PLP CD, where we focus in particular
on Smalltalk’s anthropomorphic programming model. A full introduction to the
language is beyond the scope of this book.

9.7 Summary and Concluding Remarks

This has been the last of our five core chapters on language design: names (Chap-
ter 3), control flow (Chapter 6), types (Chapter 7), subroutines (Chapter 8), and
objects (Chapter 9).

We began in Section 9.1 by identifying three fundamental concepts of object-
oriented programming: encapsulation, inheritance, and dynamic method binding.
We also introduced the terminology of classes, objects, and methods. We had al-
ready seen encapsulation in the modules of Chapter 3. Encapsulation allows the
details of a complicated data abstraction to be hidden behind a comparatively
simple interface. Inheritance extends the utility of encapsulation by making it

6 Alan Kay (1940–) joined PARC in 1972. In addition to developing Smalltalk and its graphical
user interface, he conceived and promoted the idea of the laptop computer, well before it was
feasible to build one. He became a Fellow at Apple Computer in 1984, and has subsequently held
positions at Walt Disney and Hewlett-Packard. He received the ACM Turing Award in 2003.
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easy for programmers to define new abstractions as refinements or extensions of
existing abstractions. Inheritance provides a natural basis for polymorphic sub-
routines: if a subroutine expects an instance of a given class as argument, then an
object of any class derived from the expected one can be used instead (assuming
that it retains the entire existing interface). Dynamic method binding extends this
form of polymorphism by arranging for a call to one of the parameter’s methods
to use the implementation associated with the class of the actual object at run
time, rather than the implementation associated with the declared class of the
parameter. We noted that some languages, including Modula-3, Ada 95, and For-
tran 2003, support object orientation through a type extension mechanism, in
which encapsulation is associated with modules, but inheritance and dynamic
method binding are associated with a special form of record.

In later sections we covered object initialization and finalization, dynamic
method binding, and (on the PLP CD) multiple inheritance in some detail. In
many cases we discovered tradeoffs between functionality on the one hand and
simplicity and execution speed on the other. Treating variables as references,
rather than values, often leads to simpler semantics, but requires extra indirec-
tion. Garbage collection, as previously noted in Section 7.7.3, dramatically eases
the creation and maintenance of software but imposes run-time costs. Dynamic
method binding requires (in the general case) that methods be dispatched using
vtables or some other lookup mechanism. Simple implementations of multiple
inheritance impose overheads even when unused.

In several cases we saw time/space tradeoffs as well. In-line subroutines, as
previously noted in Section 8.2.5, can dramatically improve the performance of
code with many small subroutines, not only by eliminating the overhead of the
subroutine calls themselves, but by allowing register allocation, common subex-
pression analysis, and other “global” code improvements to be applied across
calls. At the same time, in-line expansion generally increases the size of object
code. Exercises 9.25 and 9.27 explore similar tradeoffs in the implementa-
tion of multiple inheritance.

Despite its lack of multiple inheritance, Smalltalk is widely regarded as the
purest and most flexible of the object-oriented languages. Its lack of compile-
time type checking, however, together with its “message-based” model of com-
putation and its need for dynamic method lookup, render its implementations
rather slow. C++, with its object-valued variables, default static binding, min-
imal dynamic checks, and high-quality compilers, is largely responsible for the
growing popularity of object-oriented programming. Improvements in reliabil-
ity, maintainability, and code reuse may or may not justify the high-performance
overhead of Smalltalk, or even the lower overhead of Eiffel. They almost certainly
justify the relatively modest overhead of C++. With the ever-increasing size of
software systems, the explosive growth of distributed computing on the Inter-
net, and the development of highly portable object-oriented languages (Java) and
binary object standards (.NET [WHA03], CORBA [Sie96]/JavaBeans [Sun97]),
object-oriented programming will clearly play a central role in 21st-century com-
puting.
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9.8 Exercises

9.1 Some language designers argue that object orientation eliminates the need
for nested subroutines. Do you agree? Why or why not?

9.2 Design a class hierarchy to represent syntax trees for the CFG of Figure 4.5
(page 175). Provide a method in each class to return the value of a node.
Provide constructors that play the role of the make_leaf, make_un_op, and
make_bin_op subroutines.

9.3 Repeat the previous exercise, but using a variant record (union) type to rep-
resent syntax tree nodes. Repeat again using type extensions. Compare the
three solutions in terms of clarity, abstraction, type safety, and extensibil-
ity.

9.4 Rewrite the list and queue classes of Section 9.1 in such a way that ob-
jects not derived from a container base class can still be inserted in a list or
queue. You will probably want to include a pointer to data, rather than the
data itself, in each node of a list/queue.

9.5 In the spirit of Example 9.7, write a double-ended queue (deque) abstraction
(pronounced “deck”), derived from a doubly linked list base class. Borrow-
ing terminology from Icon, name your methods put (add at tail), get (re-
move at head), push (add at head), and pull (remove at tail).

9.6 Use templates (generics) to abstract your solutions to the previous two
questions over the type of data in the container.

9.7 Repeat Exercise 9.5 in Python or Ruby. Write a simple program to demon-
strate that generics are not needed to abstract over types. What happens if
you mix objects of different types in the same deque?

9.8 Write a package body for the list abstraction of Figure 9.3.

9.9 Rewrite the list and queue abstractions in Eiffel, Java, and/or C#.

9.10 Using C++, Java, or C#, implement a Complex class in the spirit of Exam-
ple 9.22.

9.11 Repeat the previous two exercises for Python and/or Ruby.

9.12 Compare Java final methods with C++ nonvirtual methods. How are they
the same? How are they different?

9.13 In several object-oriented languages, including C++ and Eiffel, a derived
class can hide members of the base class. In C++, for example, we can de-
clare a base class to be public, protected, or private:

class B : public A { ...

// public members of A are public members of B

// protected members of A are protected members of B

...
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class C : protected A { ...

// public and protected members of A are protected members of C

...

class D : private A { ...

// public and protected members of A are private members of D

In all cases, private members of A are inaccessible to methods of B, C, or D.
Consider the impact of protected and private base classes on dy-

namic method binding. Under what circumstances can a reference to an
object of class B, C, or D be assigned into a variable of type A*?

9.14 What happens to the implementation of a class if we redefine a data mem-
ber? For example, suppose we have

class foo {

public:

int a;

char *b;

};

...

class bar : public foo {

public:

float c;

int b;

};

Does the representation of a bar object contain one b field or two? If two,
are both accessible, or only one? Under what circumstances?

9.15 Discuss the relative merits of classes and type extensions. Which do you
prefer? Why?

9.16 Building on the outline of Example 9.25, write a program that illustrates
the difference between copy constructors and operator= in C++. Your
code should include examples of each situation in which one of these may
be called (don’t forget parameter passing and function returns). Instrument
the copy constructors and assignment operators in each of your classes so
that they will print their names when called. Run your program to verify
that its behavior matches your expectations.

9.17 What do you think of the decision, in C++, C#, and Ada 95, to use static
method binding, rather than dynamic, by default? Is the gain in implemen-
tation speed worth the loss in abstraction and reusability? Assuming that
we sometimes want static binding, do you prefer the method-by-method
approach of C++ and C#, or the variable-by-variable approach of Ada 95?
Why?
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9.18 If foo is an abstract class in a C++ program, why is it acceptable to declare
variables of type foo*, but not of type foo?

9.19–9.29 In More Depth.

9.9 Explorations

9.30 Return for a moment to Exercise 3.6. Build a (more complete) C++ ver-
sion of the singly linked list library of Figure 3.18. Discuss the issue of
storage management. Under what circumstances should one delete the el-
ements of a list when deleting the list itself? What should the destructor
for list_node do? Should it delete its data member? Should it recursively
delete node next?

9.31 Learn about the indexer mechanism in C#, and use it to create a hash table
class that can be indexed like an array. (In effect, create a simple version of
the System.Collections.Hashtable container class.) Alternatively, use
an overloaded version of operator[] to build a similar class in C++.

9.32 Several languages, including C++, Java, and C#, allow class declarations to
nest. Java additionally allows classes to be nested inside functions. Learn
the visibility rules associated with nested classes. Which members of an
outer class are visible to methods of an inner class? Which members of an
inner class are visible to methods of the outer class? Explain the distinction
between static and non-static nested classes in Java. Which of these
resembles the nested classes of C++ and C#? Finally, learn about anony-
mous delegates in C# 2.0 (introduced in the sidebar on page 425). What
functionality do they provide that is not available in Java?

9.33 In Section 5.5.1 we noted that performance on pipelined processors de-
pends critically on the ability of the hardware to successfully predict the
outcome of branches, so that processing of subsequent instructions can
begin before processing of the branch has completed. In object-oriented
programs, however, knowing the outcome of a branch is not enough: be-
cause branches are so often dispatched through vtables, one must also pre-
dict the destination. Learn how branch prediction works in one or more
modern processors. How well do these processors handle object-oriented
programs?

9.34 Learn about type hierarchy analysis and type propagation, which can often
be used in languages like C++ to infer the concrete type of objects at com-
pile time, allowing the compiler to generate direct calls to methods, rather
than indirecting through vtables. How effective are these techniques? What
fraction of method calls are they able to optimize in typical benchmarks?
What are their limitations? (You might start with the papers of Bacon and
Sweeney [BS96] and Diwan et al. [DMM96].)

9.35–9.37 In More Depth.
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9.10 Bibliographic Notes

Appendix A contains bibliographic citations for the various languages discussed
in this chapter, including Simula, Smalltalk, C++, Eiffel, Java, C#, Modula-3,
Python, Ruby, Ada 95, Oberon, and CLOS. Other object-oriented versions of Lisp
include Loops [BS83a] and Flavors [Moo86].

Ellis and Stroustrup [ES90] provide extensive discussion of both semantic
and pragmatic issues for C++. Chapters 16 through 19 of Stroustrup’s text on
C++ [Str97] contain a good introduction to the design and implementation
of container classes. Deutsch and Schiffman [DS84] describe techniques to im-
plement Smalltalk efficiently. Borning and Ingalls [BI82] discuss multiple in-
heritance in an extension to Smalltalk-80. Dolby describes how an optimizing
compiler can identify circumstances in which a nested object can be expanded
(in the Eiffel sense) while retaining reference semantics [Dol97]. Bacon and
Sweeney [BS96] and Diwan et al. [DMM96] discuss techniques to infer the con-
crete type of objects at compile time, thereby avoiding the overhead of vtable in-
direction. Driesen presents an alternative to vtables that requires whole-program
analysis but provides extremely efficient method dispatch, even in languages with
dynamic typing and multiple inheritance [Dri93].

Component systems provide a standard for the specification of object inter-
faces, allowing code produced by arbitrary compilers for arbitrary languages to be
joined together into a working program, often spanning a distributed collection
of machines. CORBA [Sie96] is a component standard promulgated by the Ob-
ject Management Group, a consortium of over 700 companies. .NET [WHA03]
is a competing standard from Microsoft Corporation, based on their earlier
ActiveX, DCOM, and OLE [Bro96] products. JavaBeans [Sun97] is a CORBA-
compliant binary standard for components written in Java.

Many of the seminal papers in object-oriented programming have appeared
in the proceedings of the ACM OOPSLA conferences (Object-Oriented Program-
ming Systems, Languages, and Applications), held annually since 1986, and pub-
lished as special issues of ACM SIGPLAN Notices. Wegner [Weg90] enumerates
the defining characteristics of object orientation. Meyer [Mey92, Sec. 21.10] ex-
plains the rationale for dynamic method binding.







IIIAlternative Programming Models

As we noted in Chapter 1, programming languages are traditionally though imperfectly classified

into various imperative and declarative families. We have had occasion in Parts I and II to men-

tion issues of particular importance to each of the major families. Moreover much of what we have

covered—syntax, semantics, naming, types, abstraction—applies uniformly to all. Still, our atten-

tion has focused mostly on mainstream imperative languages. In Part III we shift this focus.

Functional and logic languages are the principal nonimperative options. We consider them in

Chapters 10 and 11, respectively. In each case we structure our discussion around a representative

language: Scheme for functional programming, Prolog for logic programming. In Chapter 10 we

also cover eager and lazy evaluation, and first-class and higher-order functions. In Chapter 11 we

cover issues that make fully automatic, general purpose logic programming difficult, and describe

restrictions used in practice to keep the model tractable. Optional sections in both chapters consider

mathematical foundations: Lambda Calculus for functional programming, Predicate Calculus for

logic programming.

The remaining two chapters consider concurrent and scripting models, both of which are in-

creasingly popular and cut across the imperative/declarative divide. Concurrency is driven by the

hardware parallelism of internetworked computers and by the coming explosion in multithreaded

processors and chip-level multiprocessors. Scripting is driven by the growth of the World Wide Web

and by an increasing emphasis on programmer productivity, which places rapid development and

reusability above sheer run-time performance.

Chapter 12 begins with the fundamentals of concurrency, including communication and syn-

chronization, thread creation syntax, and the implementation of threads. The remainder of the

chapter is divided between shared-memory models, in which threads use explicit or implicit syn-

chronization mechanisms to manage a common set of variables, and message-passing models, in

which threads interact only through explicit communication.

The first half of Chapter 13 surveys problem domains in which scripting plays a major role: shell

(command) languages, text processing and report generation, mathematics and statistics, the “glu-

ing” together of program components, extension mechanisms for complex applications, and client

and server-side Web scripting. The second half considers some of the more important language in-

novations championed by scripting languages: flexible scoping and naming conventions, string and

pattern manipulation (extended regular expressions), and high level data types.





10Functional Languages

Previous chapters of this text have focused largely on imperative program-
ming languages. In the current chapter and the next we emphasize functional
and logic languages instead. While imperative languages are far more widely
used, “industrial strength” implementations exist for both functional and logic
languages, and both models have commercially important applications. Lisp
has traditionally been popular for the manipulation of symbolic data, particu-
larly in the field of artificial intelligence. In recent years functional languages—
statically typed ones in particular—have become increasingly popular for scien-
tific and business applications as well. Logic languages are widely used for for-
mal specifications and theorem proving and, less widely, for many other applica-
tions.

Of course, functional and logic languages have a great deal in common with
their imperative cousins. Naming and scoping issues arise under every model. So
do types, expressions, and the control-flow concepts of selection and recursion.
All languages must be scanned, parsed, and analyzed semantically. In addition,
functional languages make heavy use of subroutines—more so even than most
von Neumann languages—and the notions of concurrency and nondeterminacy
are as common in functional and logic languages as they are in the imperative
case.

As noted in Chapter 1, the boundaries between language categories tend to be
rather fuzzy. One can write in a largely functional style in many imperative lan-
guages, and many functional languages include imperative features (assignment
and iteration). The most common logic language—Prolog—provides certain im-
perative features as well. Finally, it is easy to build a logic programming system in
most functional programming languages.

Because of the overlap between imperative and functional concepts, we have
had occasion several times in previous chapters to consider issues of particu-
lar importance to functional programming languages. Most such languages de-
pend heavily on polymorphism (the implicit parametric kind—Sections 3.6.3

523
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and 7.2.4). Most make heavy use of lists (Section 7.8). Several are dynamically
scoped (Sections 3.3.6 and 3.4.2). All employ recursion (Section 6.6) for repet-
itive execution, with the result that program behavior and performance depend
heavily on the evaluation rules for parameters (Section 6.6.2). All have a tendency
to generate significant amounts of temporary data, which their implementations
reclaim through garbage collection (Section 7.7.3).

Our chapter begins with a brief introduction to the historical origins of the
imperative, functional, and logic programming models. We then enumerate fun-
damental concepts in functional programming and consider how these are re-
alized in the Scheme dialect of Lisp. More briefly, we also consider Common
Lisp, ML, Miranda, Haskell, Sisal, and pH. We pay particular attention to issues
of evaluation order and higher-order functions. For those with an interest in the
theoretical foundations of functional programming, we provide (on the PLP CD)
an introduction to functions, sets, and the lambda calculus. The formalism helps
to clarify the notion of a “pure” functional language, and illuminates the differ-
ences between the pure notation and its realization in more practical program-
ming languages.

10.1 Historical Origins

To understand the differences among programming models, it can be helpful to
consider their theoretical roots, all of which predate the development of elec-
tronic computers. The imperative and functional models grew out of work un-
dertaken by mathematicians Alan Turing, Alonzo Church, Stephen Kleene, Emil
Post, and others in the 1930s. Working largely independently, these individuals
developed several very different formalizations of the notion of an algorithm, or
effective procedure, based on automata, symbolic manipulation, recursive func-
tion definitions, and combinatorics. Over time, these various formalizations were
shown to be equally powerful: anything that could be computed in one could be
computed in the others. This result led Church to conjecture that any intuitively
appealing model of computing would be equally powerful as well; this conjecture
is known as Church’s thesis.

Turing’s model of computing was the Turing machine, an automaton remi-
niscent of a finite or pushdown automaton, but with the ability to access ar-
bitrary cells of an unbounded storage “tape.”1 The Turing machine computes
in an imperative way, by changing the values in cells of its tape, just as a high-

1 Alan Turing (1912–1954), for whom the Turing Award is named, was a British mathematician,
philosopher, and computer visionary. As intellectual leader of Britain’s cryptanalytic group dur-
ing World War II, he was instrumental in cracking the German “Enigma” code and turning
the tide of the war. He also laid the theoretical foundations of modern computer science, con-
ceived the general purpose electronic computer, and pioneered the field of Artificial Intelligence.
Persecuted as a homosexual after the war, stripped of his security clearance, and sentenced to
“treatment” with drugs, he committed suicide.
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level imperative program computes by changing the values of variables. Church’s
model of computing is called the lambda calculus. It is based on the notion of pa-
rameterized expressions (with each parameter introduced by an occurrence of
the letter λ—hence the notation’s name).2 Lambda calculus was the inspiration
for functional programming: one uses it to compute by substituting parameters
into expressions, just as one computes in a high-level functional program by pass-
ing arguments to functions. The computing models of Kleene and Post are more
abstract, and do not lend themselves directly to implementation as a program-
ming language.

The goal of early work in computability was not to understand computers
(aside from purely mechanical devices, computers did not exist) but rather to
formalize the notion of an effective procedure. Over time, this work allowed
mathematicians to formalize the distinction between a constructive proof (one
that shows how to obtain a mathematical object with some desired property)
and a nonconstructive proof (one that merely shows that such an object must ex-
ist, perhaps by contradiction, or counting arguments, or reduction to some other
theorem whose proof is nonconstructive). In effect, a program can be seen as a
constructive proof of the proposition that, given any appropriate inputs, there
exist outputs that are related to the inputs in a particular, desired way. Euclid’s
algorithm, for example, can be thought of as a constructive proof of the proposi-
tion that every pair of nonnegative integers has a greatest common divisor.

Logic programming is also intimately tied to the notion of constructive proofs,
but at a more abstract level. Rather than write a general constructive proof that
works for all appropriate inputs, the logic programmer writes a set of axioms
that allow the computer to discover a constructive proof for each particular set of
inputs. Where the imperative programmer saysEXAMPLE 10.1

Comparing programming
models To compute the gcd of a and b, check to see if a and b are equal. If so, print

one of them and stop. Otherwise, replace the larger one by their difference and
repeat.

and the functional programmer says

The gcd of a and b is defined to be a when a and b are equal, and to be the gcd

of c and d when a and b are unequal, where c is the smaller of a and b, and d

is their difference. To compute the gcd of a given pair of numbers, expand and
simplify this definition until it terminates.

the logic programmer says

The proposition gcd(a, b, g) is true if (1) a, b, and g are all equal, or (2) there
exist numbers c and d such that c is the minimum of a and b (i.e., min(a, b, c)

2 Alonzo Church (1903–1995) was a member of the mathematics faculty at Princeton University
from 1929 to 1967, and at UCLA from 1967 to 1990. While at Princeton he supervised the doc-
toral theses of, among many others, Alan Turing, Stephen Kleene, Michael Rabin, and Dana
Scott. His codiscovery, with Turing, of uncomputable problems was a major breakthrough in
understanding the limits of mathematics.
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is true), d is their difference (i.e., minus(a, b, d) is true), and gcd(c, d, g)

is true. To compute the gcd of a given pair of numbers, search for a number g

(and various numbers c and d) for which these two rules allow one to prove that
gcd(a, b, g) is true. �

We will consider logic programming in more detail in Chapter 11.

10.2 Functional Programming Concepts

In a strict sense of the term, functional programming defines the outputs of a
program as a mathematical function of the inputs, with no notion of internal
state, and thus no side effects. Among the common functional programming
languages, Miranda, Haskell, Sisal, pH, and Backus’s FP proposal [Bac78] are
purely functional; Lisp/Scheme and ML include imperative features. To make
functional programming practical, functional languages provide a number of
features, the following among them, that are often missing in imperative lan-
guages.

� First-class function values and higher-order functions

� Extensive polymorphism

� List types and operators

� Recursion

� Structured function returns

� Constructors (aggregates) for structured objects

� Garbage collection

In Section 3.5.2 we defined a first-class value to be one that can be passed
as a parameter, returned from a subroutine, or (in a language with side effects)
assigned into a variable. Under a strict interpretation of the term, first-class sta-
tus also requires the ability to create (compute) new values at run time. In the
case of subroutines, this notion of first-class status requires that we be able to
create a subroutine whose behavior is determined dynamically. Subroutines are
second-class values in most imperative languages, but first-class values (in the
strict sense of the term) in all functional programming languages. A higher-
order function takes a function as an argument or returns a function as a re-
sult.

Polymorphism is important in functional languages because it allows a func-
tion to be used on as general a class of arguments as possible. As we have seen
in Sections 7.1 and 7.2.4, Lisp and its dialects are dynamically typed, and thus
inherently polymorphic, while ML, Miranda, Haskell, and their relatives obtain
polymorphism through the mechanism of type inference. Lists are important in
functional languages because they have a natural recursive definition, and are
easily manipulated by operating on their first element and (recursively) the re-
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mainder of the list. Recursion is important because in the absence of side effects
it provides the only means of doing anything repeatedly.

Several of the items in our list of functional language features (recursion,
structured function returns, constructors, garbage collection) can be found in
some but not all imperative languages. Fortran 77 has no recursion, nor does
it allow structured types (i.e., arrays) to be returned from functions. Pascal and
early versions of Modula-2 allow only simple and pointer types to be returned
from functions. As we saw in Section 7.1.5, several imperative languages, includ-
ing Ada, C, and Fortran 90, provide aggregate constructs that allow a structured
value to be specified in-line. In most imperative languages, however, such con-
structs are lacking or incomplete. (It is extremely unusual, for example, to find
one that can specify an [unnamed] functional value.) A pure functional language
must provide completely general aggregates: it cannot build a structured object
via assignment to subcomponents. Finally, though garbage collection is increas-
ingly common in imperative languages, it is by no means universal, nor does it
apply to objects allocated in the stack. Because of the desire to provide unlimited
extent for first-class functions, functional languages tend to employ a (garbage-
collected) heap for all dynamically allocated data (or at least for all data for which
the compiler is unable to prove that stack allocation is safe).

Because Lisp was the original functional language and is still the most widely
used, several characteristics of Lisp are commonly, though inaccurately, described
as though they pertained to functional programming in general. We will examine
these characteristics (in the context of Scheme) in Section 10.3. They include the
following.

homogeneity of programs and data: A program in Lisp is itself a list, and can be
manipulated with the same mechanisms used to manipulate data.

self-definition: The operational semantics of Lisp can be defined elegantly in
terms of an interpreter written in Lisp.

interaction with the user through a “read-eval-print” loop.

Many programmers—probably most—who have written significant amounts
of software in both imperative and functional styles find the latter more aes-
thetically appealing. Moreover experience with a variety of large commercial
projects [Wad98a] suggests that the absence of side effects makes functional pro-
grams significantly easier to write, debug, and maintain than are their impera-
tive counterparts. When passed a given set of arguments, a pure function can
always be counted on to return the same results. Issues of undocumented side
effects, misordered updates, and dangling or (in most cases) uninitialized ref-
erences simply don’t occur. At the same time, most implementations of func-
tional languages still fall short in terms of portability, richness of library pack-
ages, interfaces to other languages, and debugging and profiling tools. We will
return to the tradeoffs between functional and imperative programming in Sec-
tion 10.7.



528 Chapter 10 Functional Languages

10.3 A Review/Overview of Scheme

Most Scheme implementations employ an interpreter that runs a “read-eval-
print” loop. The interpreter repeatedly reads an expression from standard input
(generally typed by the user), evaluates that expression, and prints the resulting
value. If the user typesEXAMPLE 10.2

The read-eval-print loop
(+ 3 4)

the interpreter will print

7

If the user types

7

the interpreter will also print

7

(The number 7 is already fully evaluated.) To save the programmer the need to
type an entire program verbatim at the keyboard, most Scheme implementations
provide a load function that reads (and evaluates) input from a file:

(load "my_Scheme_program") �
As we noted in Section 6.1, Scheme (like all Lisp dialects) uses Cambridge Pol-

ish notation for expressions. Parentheses indicate a function application (or in
some cases the use of a macro). The first expression inside the left parenthesis
indicates the function; the remaining expressions are its arguments. Suppose theEXAMPLE 10.3

Significance of parentheses user types

((+ 3 4))

When it sees the inner set of parentheses, the interpreter will call the function +,
passing 3 and 4 as arguments. Because of the outer set of parentheses, it will then
attempt to call 7 as a zero-argument function—a run-time error:

eval: 7 is not a procedure

Unlike the situation in almost all other programming languages, extra parenthe-
ses change the semantics of Lisp/Scheme programs:

(+ 3 4) �⇒ 7

((+ 3 4)) �⇒ error

Here the �⇒ means “evaluates to.” This symbol is not a part of the syntax of
Scheme itself. �

One can prevent the Scheme interpreter from evaluating a parenthesized ex-EXAMPLE 10.4
Quoting pression by quoting it:
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(quote (+ 3 4)) �⇒ (+ 3 4)

Here the result is a three-element list. More commonly, quoting is specified with
a special shorthand notation consisting of a leading single quote mark:

’(+ 3 4) �⇒ (+ 3 4) �
Though every expression has a type in Scheme, that type is generally not de-

termined until run time. Most predefined functions check dynamically to makeEXAMPLE 10.5
Dynamic typing sure that their arguments are of appropriate types. The expression

(if (> a 0) (+ 2 3) (+ 2 "foo"))

will evaluate to 5 if a is positive but will produce a run-time type clash error if
a is negative or zero. More significantly, as noted in Section 3.6.3, functions that
make sense for arguments of multiple types are implicitly polymorphic:

(define min (lambda (a b) (if (< a b) a b)))

The expression (min 123 456) will evaluate to 123; (min 3.14159
2.71828) will evaluate to 2.71828. �

User-defined functions can implement their own type checks using predefinedEXAMPLE 10.6
Type predicates type predicate functions:

(boolean? x) ; is x a Boolean?

(char? x) ; is x a character?

(string? x) ; is x a string?

(symbol? x) ; is x a symbol?

(number? x) ; is x a number?

(pair? x) ; is x a (not necessarily proper) pair?

(list? x) ; is x a (proper) list?

(This is not an exhaustive list.) �
A symbol in Scheme is comparable to what other languages call an identifier.

The lexical rules for identifiers vary among Scheme implementations but are in
general much looser than they are in other languages. In particular, identifiersEXAMPLE 10.7

Liberal syntax for symbols are permitted to contain a wide variety of punctuation marks:

(symbol? ’x$_%:&=*!) �⇒ #t

The symbol #t represents the Boolean value true. False is represented by #f. Note
the use here of quote (’); the symbol begins with x. �

To create a function in Scheme one evaluates a lambda expression:3EXAMPLE 10.8
Lambda expressions

3 A word of caution for readers familiar with Common Lisp: A lambda expression in Scheme eval-
uates to a function. A lambda expression in Common Lisp is a function (or, more accurately, is
automatically coerced to be a function, without evaluation). The distinction becomes impor-
tant whenever lambda expressions are passed as parameters or returned from functions: they
must be quoted in Common Lisp (with function or #’) to prevent evaluation. Common Lisp
also distinguishes between a symbol’s value and its meaning as a function; Scheme does not: if a
symbol represents a function, then the function is the symbol’s value.
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(lambda (x) (* x x)) �⇒ function

The first “argument” to lambda is a list of formal parameters for the function
(in this case the single parameter x). The remaining “arguments” (again just
one in this case) constitute the body of the function. As we shall see in Sec-
tion 10.4, Scheme differentiates between functions and so-called special forms
(lambda among them), which resemble functions but have special evaluation
rules. Strictly speaking, only functions have arguments, but we will also use the
term informally to refer to the subexpressions that look like arguments in a spe-
cial form. �

A lambda expression does not give its function a name; this can be done using
let or define (to be introduced in the next subsection). In this sense, a lambda
expression is like the aggregates that we used in Section 7.1.5 to specify array or
record values.

When a function is called, the language implementation restores the referenc-EXAMPLE 10.9
Function evaluation ing environment that was in effect when the lambda expression was evaluated.

It then augments this environment with bindings for the formal parameters and
evaluates the expressions of the function body in order. The value of the last such
expression (most often there is only one) becomes the value returned by the func-
tion:

((lambda (x) (* x x)) 3) �⇒ 9 �
Simple conditional expressions can be written using if:EXAMPLE 10.10

If expressions
(if (< 2 3) 4 5) �⇒ 4

(if #f 2 3) �⇒ 3

In general, Scheme expressions are evaluated in applicative order, as described in
Section 6.6.2. Special forms such as lambda and if are exceptions to this rule.
The implementation of if checks to see whether the first argument evaluates to
#t. If so, it returns the value of the second argument, without evaluating the third
argument. Otherwise it returns the value of the third argument, without evaluat-
ing the second. We will return to the issue of evaluation order in Section 10.4. �

10.3.1 Bindings

Names can be bound to values by introducing a nested scope.EXAMPLE 10.11
Nested scopes with let

(let ((a 3)

(b 4)

(square (lambda (x) (* x x)))

(plus +))

(sqrt (plus (square a) (square b)))) �⇒ 5

The special form let takes two arguments. The first of these is a list of pairs. In
each pair, the first element is a name and the second is the value that the name is
to represent within the second argument to let. The value of the construct as a
whole is then the value of this second argument.
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The scope of the bindings produced by let is let’s second argument only:

(let ((a 3))

(let ((a 4)

(b a))

(+ a b))) �⇒ 7

Here b takes the value of the outer a. The way in which names become visible
“all at once” at the end of the declaration list precludes the definition of recursive
functions. For these one employs letrec:

(letrec ((fact

(lambda (n)

(if (= n 1) 1

(* n (fact (- n 1)))))))

(fact 5)) �⇒ 120

There is also a let* construct in which names become visible “one at a time” so
that later ones can make use of earlier ones, but not vice versa. �

As noted in Section 3.3, Scheme is statically scoped. (Common Lisp is also stat-
ically scoped. Most other Lisp dialects are dynamically scoped.) While let andEXAMPLE 10.12

Global bindings with
define

letrec allow the user to create nested scopes, they do not affect the meaning of
global names (names known at the outermost level of the Scheme interpreter).
For these Scheme provides a special form called define that has the side effect
of creating a global binding for a name:

(define hypot

(lambda (a b)

(sqrt (+ (* a a) (* b b)))))

(hypot 3 4) �⇒ 5 �

10.3.2 Lists and Numbers

Like all Lisp dialects, Scheme provides a wealth of functions to manipulate lists.
We saw many of these in Section 7.8; we do not repeat them all here. The threeEXAMPLE 10.13

Basic list operations most important are car, which returns the head of a list, cdr (“coulder”), which
returns the rest of the list (everything after the head), and cons, which joins a
head to the rest of a list:

(car ’(2 3 4)) �⇒ 2

(cdr ’(2 3 4)) �⇒ (3 4)

(cons 2 ’(3 4)) �⇒ (2 3 4)

Also useful is the null? predicate, which determines whether its argument is the
empty list. Recall that the notation ’(2 3 4) indicates a proper list, in which the
final element is the empty list:

(cdr ’(2)) �⇒ ()

(cons 2 3) �⇒ (2 . 3) ; an improper list �
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For fast access to arbitrary elements of a sequence, Scheme provides a vector
type that is indexed by integers, like an array, and may have elements of hetero-
geneous types, like a record. Interested readers are referred to the Scheme man-
ual [ADH+98] for further information.

Scheme also provides a wealth of numeric and logical (Boolean) functions
and special forms. The language manual describes a hierarchy of five numeric
types: integer, rational, real, complex, and number. The last two levels are
optional: implementations may choose not to provide any numbers that are not
real. Most but not all implementations employ arbitrary-precision representa-
tions of both integers and rationals, with the latter stored internally as (numera-
tor, denominator) pairs.

10.3.3 Equality Testing and Searching

As described in Section 7.10, Scheme provides three different equality-testing
functions. The eq? function tests whether its arguments refer to the same object;
eqv? tests whether its arguments are provably semantically equivalent; equal?
tests whether its arguments have the same recursive structure, with eqv? leaves.

To search for elements in lists, Scheme provides two sets of functions, each of
which has variants corresponding to the three different forms of equality. TheEXAMPLE 10.14

List search functions functions memq, memv, and member take an element and a list as argument, and
return the longest suffix of the list (if any) beginning with the element:

(memq ’z ’(x y z w)) �⇒ (z w)

(memq ’(z) ’(x y (z) w)) �⇒ #f

(member ’(z) ’(x y (z) w)) �⇒ ((z) w)

The memq, memv, and member functions perform their comparisons using eq?,
eqv?, and equal?, respectively. They return #f if the desired element is not
found. It turns out that Scheme’s conditional expressions (e.g., if) treat any-
thing other than #f as true.4 One therefore often sees expressions of the form

(if (memq desired-element list-that-might-contain-it) ... �
The functions assq, assv, and assoc search for values in association listsEXAMPLE 10.15

Searching association lists (otherwise known as A-lists). A-lists were introduced in Section 3.4.2 in the
context of name lookup for languages with dynamic scoping (a picture can be
found in Figure 3.21, page 28-CD). An A-list is a dictionary implemented as a
list of pairs. The first element of each pair is a key of some sort; the second el-
ement is information corresponding to that key. Assq, assv, and assoc take a
key and an A-list as argument, and return the first pair in the list, if there is one,
whose first element is eq?, eqv?, or equal?, respectively, to the key. If there is
no matching pair, #f is returned. �

4 One of the more confusing differences between Scheme and Common Lisp is that Common
Lisp uses the empty list () for false, while most implementations of Scheme (including all that
conform to the version 5 standard) treat it as true.
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10.3.4 Control Flow and Assignment

We have already seen the special form if. It has a cousin named cond that re-EXAMPLE 10.16
Multiway conditional
expressions

sembles a more general if. . . elsif. . . else:

(cond

((< 3 2) 1)

((< 4 3) 2)

(else 3)) �⇒ 3

The arguments to cond are pairs. They are considered in order from first to last.
The value of the overall expression is the value of the second element of the first
pair in which the first element evaluates to #t. If none of the first elements evalu-
ates to #t, then the overall value is #f. The symbol else is permitted only as the
first element of the last pair of the construct, where it serves as syntactic sugar for
#t. �

Recursion, of course, is the principal means of doing things repeatedly in
Scheme. Many issues related to recursion were discussed in Section 6.6; we do
not repeat that discussion here.

For programmers who wish to make use of side effects, Scheme provides as-
signment, sequencing, and iteration constructs. Assignment employs the specialEXAMPLE 10.17

Assignment form set! and the functions set-car! and set-cdr!:

(let ((x 2)

(l ’(a b)))

(set! x 3)

(set-car! l ’(c d))

(set-cdr! l ’(e))

... x �⇒ 3

... l �⇒ ((c d) e)

The return values of the various varieties of set! are implementation-depen-
dent. �

Sequencing uses the special form begin:EXAMPLE 10.18
Sequencing

(begin

(display "hi ")

(display "mom")) �
Iteration uses the special form do and the function for-each:EXAMPLE 10.19

Iteration
(define iter-fib (lambda (n)

; print the first n+1 Fibonacci numbers

(do ((i 0 (+ i 1)) ; initially 0, inc’ed in each iteration

(a 0 b) ; initially 0, set to b in each iteration

(b 1 (+ a b))) ; initially 1, set to sum of a and b

((= i n) b) ; termination test and final value

(display b) ; body of loop

(display " ")))) ; body of loop
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(for-each (lambda (a b) (display (* a b)) (newline))

’(2 4 6)

’(3 5 7))

The first argument to do is a list of triples, each of which specifies a new variable,
an initial value for that variable, and an expression to be evaluated and assigned
(via set!) to that variable at the end of each iteration. The second argument
to do is a pair that specifies the termination condition and the expression to be
returned. At the end of each iteration all new values of loop variables (e.g., a and
b) are computed using the current values. Only after all new values are computed
are the assignments actually performed.

The function for-each takes as argument a function and a sequence of lists.
There must be as many lists as the function takes arguments, and the lists must
all be of the same length. For-each calls its function argument repeatedly, pass-
ing successive sets of arguments from the lists. In the example shown here, the
unnamed function produced by the lambda expression will be called on the ar-
guments 2 and 3, 4 and 5, and 6 and 7. The interpreter will print

6

20

42

()

The last line is the return value of for-each, assumed here to be the empty list.
The language definition allows this value to be implementation-dependent; the
construct is executed for its side effects. �

Two other control-flow constructs have been mentioned in previous chap-
ters. Delay and force (Section 6.6.2) permit the lazy evaluation of expressions.
Call-with-current-continuation (call/cc; Section 6.2.2) allows the cur-
rent program counter and referencing environment to be saved in the form of
a closure, and passed to a specified subroutine. We will discuss delay and force
further in Section 10.4.

DESIGN & IMPLEMENTATION

Iteration in functional programs
It is important to distinguish between iteration as a notation for repeated ex-
ecution and iteration as a means of orchestrating side effects. As we noted
in Section 6.6.1, one can define iteration as syntactic sugar for tail recursion,
and in fact Sisal and pH do precisely that (with special syntax to facilitate the
passing of values from one iteration to the next). Such a notation may still be
entirely side-effect free—entirely functional. Assignment and I/O are the truly
imperative features of Scheme. We think of iteration as imperative because
most Scheme programs that use it have assignments or I/O in their loops.
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10.3.5 Programs as Lists

As should be clear by now, a program in Scheme takes the form of a list. In
technical terms, we say that Lisp and Scheme are homoiconic: self-representing.
A parenthesized string of symbols (in which parentheses are balanced) is called
an S-expression regardless of whether we think of it as a program or as a list. In
fact, a program is a list, and can be constructed, de-constructed, and otherwise
manipulated with all the usual list functions.

Just as quote can be used to inhibit the evaluation of a list that appears as anEXAMPLE 10.20
Evaluating data as code argument in a function call, Scheme provides an eval function that can be used

to evaluate a list that has been created as a data structure:

(define compose

(lambda (f g)

(lambda (x) (f (g x)))))

((compose car cdr) ’(1 2 3)) �⇒ 2

(define compose2

(lambda (f g)

(eval (list ’lambda ’(x) (list f (list g ’x)))

(scheme-report-environment 5))))

((compose2 car cdr) ’(1 2 3)) �⇒ 2

In the first of these declarations, compose takes as arguments a pair of functions
f and g. It returns as result a function that takes as parameter a value x, applies
g to it, then applies f, and finally returns the result. In the second declaration,
compose2 performs the same function, but in a different way. The function list
returns a list consisting of its (evaluated) arguments. In the body of compose2,
this list is the unevaluated expression (lambda (x) (f (g x))). When passed
to eval, this list evaluates to the desired function. The second argument of eval
specifies the referencing environment in which the expression is to be evaluated.
In our example we have specified the environment defined by the Scheme ver-
sion 5 report [ADH+98]. �

Eval and Apply

The original description of Lisp [MAE+65] included a self-definition of the lan-
guage: code for a Lisp interpreter, written in Lisp. Though Scheme differs in a
number of ways from this early Lisp (most notably in its use of lexical scop-
ing), such a metacircular interpreter can still be written easily [AS96, Chapter
4]. The code is based on the functions eval and apply. The first of these we
have just seen. The second, apply, takes two arguments: a function and a list. It
achieves the effect of calling the function, with the elements of the list as argu-
ments.

The functions eval and apply can be defined as mutually recursive. When
passed a number or a string, eval simply returns that number or string. When
passed a symbol, it looks that symbol up in the specified environment and returns
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the value to which it is bound. When passed a list it checks to see whether the
first element of the list is one of a small number of symbols that name so-called
primitive special forms, built into the language implementation. For each of these
special forms (lambda, if, define, set!, quote, etc.) eval provides a direct
implementation. For other lists, eval calls itself recursively on each element and
then calls apply, passing as arguments the value of the first element (which must
be a function) and a list of the values of the remaining elements. Finally, eval
returns what apply returned.

When passed a function f and a list of arguments l, apply inspects the inter-
nal representation of f to see whether it is primitive. If so it invokes the built-in
implementation. Otherwise it retrieves (from the representation of f ) the refer-
encing environment in which f ’s lambda expression was originally evaluated. To
this environment it adds the names of f ’s parameters, with values taken from l.
Call this resulting environment e. Next apply retrieves the list of expressions that
make up the body of f . It passes these expressions, together with e, one at a time
to eval. Finally, apply returns what the eval of the last expression in the body
of f returned.

As an example, consider the function cadr, defined as (lambda (x) (carEXAMPLE 10.21
Eval-apply trace of a
simple expression

(cdr x))). Suppose that this function is represented internally as a three-
element list C consisting of a surrounding referencing environment (an A-list,
in this case the global one), a list of parameters (in this case the one-element
list (x)), and a list of body expressions (in this case the one-element list ((car
(cdr (x))))). Suppose also that p has been defined to be the list (a b). To eval-
uate the expression (cadr p), a Scheme interpreter written in Scheme would
execute (eval ’(cadr p) (scheme-report-environment 5)). When called,
eval would begin its work by evaluating the car of its first argument—namely
cadr—via a recursive call. This call would return the function c to which cadr
is bound, represented internally as the three-element list C. Next eval would
call itself recursively on p, returning the list (a b). Finally, eval would exe-
cute (apply c ’(a b)) and return the result. Internally, apply would notice
that c is represented by the list (E (x) (car (cdr (x)))), where E represents
the global environment A-list. It would then execute (eval ’(car (cdr (x)))
(cons (cons ’x ’(a b)) E)) and return the result. We do not trace the re-
mainder of the recursion here. It terminates with primitive special forms in eval
and primitive functions in apply. The latter include car, cdr, and cons. �

Formalizing Self-Definition

The idea of self-definition—a Scheme interpreter written in Scheme—may seem
a bit confusing unless one keeps in mind the distinction between the Scheme
code that constitutes the interpreter and the Scheme code that the interpreter is
interpreting. In particular, the interpreter is not running itself, though it could
run a copy of itself. What we really mean by “self-definition” is that for all expres-
sions E, we get the same result by evaluating E under the interpreter I that we get
by evaluating E directly.
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Suppose now that we wish to formalize the semantics of Scheme as some as-EXAMPLE 10.22
Denotational semantics of
Scheme

yet-unknown mathematical function M that takes a Scheme expression as an
argument and returns the expression’s value. (This value may be a number, a list,
a function, or a member of any of a small number of other domains.) How might
we go about this task? For certain simple strings of symbols we can define a value
directly: strings of digits, for example, map onto the natural numbers. For more
complex expressions, we note that

∀E[M(E) = (M(I))(E)]

Put another way,

M(I) =M

Suppose now that we let H(F) =F(I) where F can be any function that takes a
Scheme expression as its argument. Clearly

H(M) = M

Our desired function M is said to be a fixed point of H. Because H is well defined
(it simply applies its argument to I), we can use it to obtain a rigorous definition
of M. The tools to do so come from the field of denotational semantics, a subject
beyond the scope of this book.5 �

10.3.6 Extended Example: DFA Simulation

To conclude our introduction to Scheme, we present a complete program to sim-EXAMPLE 10.23
Simulating a DFA in
Scheme

ulate the execution of a DFA (deterministic finite automaton). The code appears
in Figure 10.1. We invoke the program by calling the function simulate, passing
it a DFA description and an input string. The DFA description is a list of three
items: the start state, the transition function, and a list of final states. The tran-
sition function is represented by a list of pairs. The first element of each pair is
another pair, whose first element is a state and whose second element is an input
symbol. If the current state and next input symbol match the first element of a
pair, then the finite automaton enters the state given by the second element of the
pair.

As it runs, the automaton accumulates as a list a trace of the states through
which it has traveled, ending with the symbol accept or reject. For example,
if we type

5 Actually, H has an infinite number of fixed points. What we want (and what denotational seman-
tics will give us) is the least fixed point: the one that defines a value for as few strings of symbols as
possible, while still producing the “correct” value for numbers and other simple strings. Another
example of least fixed points appears in Section 15.4.2.
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(define simulate

(lambda (dfa input)

(cons (car dfa) ; start state

(if (null? input)

(if (infinal? dfa) ’(accept) ’(reject))

(simulate (move dfa (car input)) (cdr input))))))

(define infinal?

(lambda (dfa)

(memq (car dfa) (caddr dfa))))

(define move

(lambda (dfa symbol)

(let ((curstate (car dfa)) (trans (cadr dfa)) (finals (caddr dfa)))

(list

(if (eq? curstate ’error)

’error

(let ((pair (assoc (list curstate symbol) trans)))

(if pair (cadr pair) ’error)))

trans

finals))))

Figure 10.1 Scheme program to simulate the actions of a DFA. The functions cadr and
caddr are defined as (lambda (x) (car (cdr x))) and (lambda (x) (car (cdr (cdr

x)))), respectively. Scheme provides a large collection of such abbreviations.

(simulate

’(q0 ; start state

(((q0 0) q2) ((q0 1) q1) ((q1 0) q3) ((q1 1) q0) ; transition fn

((q2 0) q0) ((q2 1) q3) ((q3 0) q1) ((q3 1) q2))

(q0)) ; final states

’(0 1 1 0 1)) ; input string

then the Scheme interpreter will print

(q0 q2 q3 q2 q0 q1 reject)

Careful examination of the DFA in this example will reveal that it accepts pre-
cisely those strings of zeros and ones in which each digit appears an even number
of times. If we change the input string to 010010 the interpreter will print

(q0 q2 q3 q1 q3 q2 q0 accept) �

CHECK YOUR UNDERSTANDING

1. What mathematical formalism underlies functional programming?

2. List several distinguishing characteristics of functional programming lan-
guages.
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3. Briefly describe the behavior of the Lisp/Scheme read-eval-print loop.

4. What is a first-class value?

5. Explain the difference between let, let*, and letrec in Scheme.

6. Explain the difference between eq?, eqv?, and equal?.

7. Describe three ways in which Scheme programs can depart from a purely
functional programming model.

8. What is an association list?

9. What does it mean for a language to be homoiconic?

10. What is an S-expression?

11. Outline the behavior of eval and apply.

10.4 Evaluation Order Revisited

In Section 6.6.2 we observed that the subcomponents of many expressions can
be evaluated in more than one order. In particular, one can choose to evaluate
function arguments before passing them to a function, or to pass them unevalu-
ated. The former option is called applicative-order evaluation; the latter is called
normal-order evaluation. Like most imperative languages, Scheme uses applica-
tive order in most cases. Normal order, which arises in the macros and call-by-
name parameters of imperative languages, is available in special cases.

Suppose, for example, that we have defined the following function.EXAMPLE 10.24
Applicative and
normal-order evaluation (define double (lambda (x) (+ x x)))

Evaluating the expression (double (* 3 4)) in applicative order (as Scheme
does), we have

(double (* 3 4))

�⇒ (double 12)

�⇒ (+ 12 12)

�⇒ 24

Under normal-order evaluation we would have

(double (* 3 4))

�⇒ (+ (* 3 4) (* 3 4))

�⇒ (+ 12 (* 3 4))

�⇒ (+ 12 12)

�⇒ 24

Here we end up doing extra work: normal order causes us to evaluate (* 3 4)
twice. �
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In other cases, applicative-order evaluation can end up doing extra work. Sup-EXAMPLE 10.25
Normal-order avoidance of
unnecessary work

pose we have defined the following.

(define switch (lambda (x a b c)

(cond ((< x 0) a)

((= x 0) b)

((> x 0) c))))

Evaluating the expression (switch -1 (+ 1 2) (+ 2 3) (+ 3 4)) in ap-
plicative order we have

(switch -1 (+ 1 2) (+ 2 3) (+ 3 4))

�⇒ (switch -1 3 (+ 2 3) (+ 3 4))

�⇒ (switch -1 3 5 (+ 3 4))

�⇒ (switch -1 3 5 7)

�⇒ (cond ((< -1 0) 3)

((= -1 0) 5)

((> -1 0) 7))

�⇒ (cond (#t 3)

((= -1 0) 5)

((> -1 0) 7))

�⇒ 3

Under normal-order evaluation we would have

(switch -1 (+ 1 2) (+ 2 3) (+ 3 4))

�⇒ (cond ((< -1 0) (+ 1 2))

((= -1 0) (+ 2 3))

((> -1 0) (+ 3 4)))

�⇒ (cond (#t (+ 1 2))

((= -1 0) (+ 2 3))

((> -1 0) (+ 3 4)))

�⇒ (+ 1 2)

�⇒ 3

Here normal-order evaluation avoids evaluating (+ 2 3) or (+ 3 4). �
Under both evaluation orders we must provide exceptions to the rules in cer-

tain cases. Specifically, special forms such as cond must take unevaluated argu-
ments, even under otherwise applicative-order evaluation, and arithmetic and
logical functions such as + and < must actually yield values, even under otherwise
normal-order evaluation, rather than passing their arguments on to something
else.

In our overview of Scheme we have differentiated on several occasions be-
tween special forms and functions. Arguments to functions are always passed by
sharing (Section 8.3.1), and are evaluated before they are passed (i.e., in applica-
tive order). Arguments to special forms are passed unevaluated—in other words,
by name. Each special form is free to choose internally when (and if) to evaluate
its parameters. Cond, for example, takes a sequence of unevaluated pairs as ar-
guments. It evaluates their cars internally, one at a time, stopping when it finds
one that evaluates to #t.
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Together, special forms and functions are known as expression types in Scheme.
Some expression types are primitive, in the sense that they must be built into the
language implementation. Others are derived; they can be defined in terms of
primitive expression types. In an eval/apply based interpreter, primitive spe-
cial forms are built into eval; primitive functions are recognized by apply. We
have seen how the special form lambda can be used to create derived functions,
which can be bound to names with let. Scheme provides an analogous special
form, syntax-rules, that can be used to create derived special forms. These can
then be bound to names with let-syntax. Derived special forms are known as
macros in Scheme, but they are only loosely related to the macros of other lan-
guages. In the terminology of this book, Scheme macros are functions whose
arguments are passed by name instead of by sharing. They are immune to the
problems discussed in Section 6.6.2, and may be implemented in any way that is
consistent with their semantics. The macros of C and C++, by contrast, are a low
level mechanism for textual expansion.

10.4.1 Strictness and Lazy Evaluation

Evaluation order can have an effect not only on execution speed but on pro-
gram correctness as well. A program that encounters a dynamic semantic error
or an infinite regression in an “unneeded” subexpression under applicative-order
evaluation may terminate successfully under normal-order evaluation. A (side-
effect-free) function is said to be strict if it requires all of its arguments to be
defined, so that its result will not depend on evaluation order. A function is said
to be nonstrict if it does not impose this requirement. A language is said to be
strict if it requires all functions to be strict. A language is said to be nonstrict if
it permits the definition of nonstrict functions. Expressions in a strict language
can safely be evaluated in applicative order. Expressions in a nonstrict language
cannot. ML and (with the exception of macros) Scheme are strict. Miranda and
Haskell are nonstrict.

Lazy evaluation (as described here—see footnote on page 294) gives us the ad-
vantage of normal-order evaluation (not evaluating unneeded subexpressions)
while running within a constant factor of the speed of applicative-order evalua-
tion for expressions in which everything is needed. The trick is to tag every argu-

DESIGN & IMPLEMENTATION

Lazy evaluation
One of the beauties of a purely functional language is that it makes lazy evalua-
tion a completely transparent performance optimization: the programmer can
think in terms of nonstrict functions and normal-order evaluation, counting
on the implementation to avoid the cost of repeated evaluation. For languages
with imperative features, however, this characterization does not hold: lazy
evaluation is not transparent in the presence of side effects.
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ment internally with a “memo” that indicates its value, if known. Any attempt to
evaluate the argument sets the value in the memo as a side effect, or returns the
value (without recalculating it) if it is already set. Lazy evaluation is particularly
useful for “infinite” data structures, as described in Section 6.6.2. It can also be
useful in programs that need to examine only a prefix of a potentially long list
(see Exercise 10.11). Lazy evaluation is used for all arguments in Miranda and
Haskell. It is available in Scheme through explicit use of delay and force. (Re-
call that the first of these is a special form that creates a (memo, closure) pair; the
second is a function that returns the value in the memo, using the closure to cal-
culate it first if necessary.) Where normal-order evaluation can be thought of as
function evaluation using call-by-name parameters, lazy evaluation is sometimes
said to employ “call by need.” In addition to Miranda and Haskell, call by need
can be found in the R scripting language, widely used by statisticians.

The principal problem with lazy evaluation is its behavior in the presence of
side effects. If an argument contains a reference to a variable that may be mod-
ified by an assignment, then the value of the argument will depend on whether
it is evaluated before or after the assignment. Likewise, if the argument contains
an assignment, values elsewhere in the program may depend on when evalua-
tion occurs. These problems do not arise in Miranda or Haskell because they are
purely functional: there are no side effects. Scheme leaves the problem up to the
programmer, but requires that every use of a delay-ed expression be enclosed
in force, making it relatively easy to identify the places where side effects are an
issue. ML provides no built-in mechanism for lazy evaluation. The same effect
can be achieved with assignment and explicit functions (Exercise 10.13), but the
code is rather awkward.

10.4.2 I/O: Streams and Monads

A major source of side effects can be found in traditional I/O, including the built-
in functions read and display of Scheme: read will generally return a different
value every time it is called, and multiple calls to display, though they never
return a value, must occur in the proper order if the program is to be considered
correct.

One way to avoid these side effects is to model input and output as streams:
unbounded-length lists whose elements are generated lazily. We saw an exam-
ple of a stream in Section 6.6.2, where we used Scheme’s delay and force to
implement a “list” of the natural numbers. Similar code in ML appears in Exer-
cise 10.13.6

If we model input and output as streams, then a program takes the formEXAMPLE 10.26
Stream-based program
execution (define output (my_prog input))

6 Note that delay and force automatically memoize their stream so that values are never com-
puted more than once. Exercise 10.13 asks the reader to write a memoizing version of a non-
memoizing stream.
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When it needs an input value, function my_prog forces evaluation of the car
of input, and passes the cdr on to the rest of the program. To drive execution,
the language implementation repeatedly forces evaluation of the car of output,
prints it, and repeats.

(define driver (lambda (s)

(if (null? s) ’() ; nothing left

(display (car s))

(driver (cdr s)))))

(driver output) �
To make things concrete, suppose we want to write a purely functional pro-EXAMPLE 10.27

Interactive I/O with
streams

gram that prompts the user for a sequence of numbers (one at a time!) and prints
their squares. If Scheme employed lazy evaluation of input and output streams
(it doesn’t), then we could write

(define squares (lambda (s)

(cons "please enter a number\n"

(let ((n (car s)))

(if (eof-object? n) ’()

(cons (* n n) (cons #\newline (squares (cdr s)))))))))

(define output (squares input)))

Prompts, inputs, and outputs (i.e., squares) would be interleaved naturally in
time. In effect, lazy evaluation would force things to happen in the proper order:
The car of output is the first prompt. The cadr of output is the first square, a
value that requires evaluation of the car of input. The caddr of output is the
second prompt. The cadddr of output is the second square, a value that requires
evaluation of the cadr of input. �

Streams formed the basis of the I/O system in early versions of Haskell. Unfor-
tunately, while they successfully encapsulate the imperative nature of interaction
at a terminal, they don’t work very well for graphics or random access to files.
More recent versions of Haskell employ a more general concept known as mo-
nads. In the context of the Haskell language, a monad is an abstract data type
that supports a notion of sequencing. The values of the I/O monad are actions
that the programmer can force to occur in a specified order.

Member functions of the Haskell I/O monad take actions as arguments orEXAMPLE 10.28
The Haskell I/O monad return actions as results. The getChar function, for example, returns an action

which, when invoked, will read a character of input; getChar is said to be of
type IO Char. The putChar function returns an action which, when invoked,
will write a character of output; putChar is said to be of type Char -> IO ().
In general, the notation IO t denotes the type of an action which, when invoked,
will return a result of type t. �

The Haskell I/O monad distinguishes between the definition of an action and
its invocation. Actions can be defined as components of arbitrarily complex data
structures in purely functional code. But defining an action does not cause it to
occur. For that we need the built-in operator do. (Do is actually syntactic sugar
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for a pair of more fundamental operators, >> and >>=; we ignore those operators
here.) A trivial Haskell program might look like this:EXAMPLE 10.29

Invocation of actions with
do main = do putStr "hi, mom\n"

When evaluated, do causes the invocation of the action returned by putStr. In
general, do accepts a sequence of actions, separated by semicolons or newlines,
which it invokes in order:

do putStr "hi, "

putStr "mom\n" �
Because actions can be manipulated like ordinary values, we can compose

them with arbitrary functions. The putStr function can be defined in terms ofEXAMPLE 10.30
Functional composition of
actions

putChar:

putStr :: String -> IO [()]

-- fn. from string to null-typed action sequence

putStr s = sequence (map putChar s)

Strings in Haskell are simply lists of characters. The map function is assumed to
take a function f and a list l as argument, and to return a list that contains the
results of applying f to the elements of l:

map :: (a->b) -> [a] -> [b]

map f [] = []

map f (h:t) = f h : map f t -- ’:’ is like cons in Scheme

Since putChar returns an action but does not invoke it, we must pass the result
of map to a function that will invoke the actions in a list:

sequence :: [IO ()] -> IO ()

sequence [] = return ()

sequence (a:more) = do a; sequence more

Sequence accepts a list of (null-typed) actions as argument and returns a single
action consisting of the sequential composition of the actions in the list. If main
were to evaluate sequence L, the actions in L would occur. �

DESIGN & IMPLEMENTATION

Monads
Monads are, in some sense, the conceptual cost of adopting a purely functional
model of computation. They acknowledge that the physical world is impera-
tive, and that a language that needs to interact with the physical world in non-
trivial ways must include imperative features. The beauty of monads is that
they confine those features to a relatively small fraction of the typical program,
where their side effects will not interfere with the bulk of the computation.
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In our examples main is allowed to use do because main is of type IO (). Uses
of do cannot occur in purely functional code. The typical Haskell program con-
tains a small amount of high level imperative code to sequence its I/O operations,
while most of the program—both the computation of values and the determina-
tion of the order in which any nontrivial set of actions should occur—is purely
functional. For a program whose I/O can be expressed in terms of streams, thisEXAMPLE 10.31

Streams and the I/O
monad

top-level structure may consist of a single line:

main = interact my_program

The library function interact is of type (String -> String) -> IO (). It
takes as argument a function from strings to strings (in this case my_program).
It calls this function, passing the contents of standard input as argument, and
writes the result to standard output. Internally, interact uses the function
getContents, which returns the program’s input as a lazily-evaluated string:
a stream. In a more sophisticated program, main may orchestrate much more
complex I/O actions, including graphics and random access to files. �

10.5 Higher-Order Functions

A function is said to be a higher-order function (also called a functional form)
if it takes a function as an argument or returns a function as a result. We
have seen several examples already of higher-order functions: call/cc (sec-
continuations), for-each (Example 10.19), compose (Example 10.20), and
apply (page 535). We also saw a Haskell version of the higher-order function
map in Section 10.4.2. The Scheme version of map is slightly more general. LikeEXAMPLE 10.32

Map function in Scheme for-each, it takes as argument a function and a sequence of lists. There must be
as many lists as the function takes arguments, and the lists must all be of the same
length. Map calls its function argument on corresponding sets of elements from
the lists:

(map * ’(2 4 6) ’(3 5 7)) �⇒ (6 20 42)

Where for-each is executed for its side effects, and has an implementation-
dependent return value, map is purely functional: it returns a list composed of
the values returned by its function argument. �

Programmers in Scheme (or in ML, Haskell, or other functional languages)
can easily define other higher-order functions. Suppose, for example, that weEXAMPLE 10.33

Folding (reduction) in
Scheme

want to be able to “fold” the elements of a list together, using an associative binary
operator:

(define fold (lambda (f l i)

(if (null? l) i ; i is commonly the identity element for f

(f (car l) (fold f (cdr l) i)))))

Now (fold + ’(1 2 3 4 5) 0) gives us the sum of the first five natural num-
bers, and (fold * ’(1 2 3 4 5) 1) gives us their product. �
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One of the most common uses of higher-order functions is to build new func-EXAMPLE 10.34
Combining higher-order
functions

tions from existing ones:

(define total (lambda (l) (fold + l 0)))

(total ’(1 2 3 4 5)) �⇒ 15

(define total-all (lambda (l)

(map total l)))

(total-all ’((1 2 3 4 5)

(2 4 6 8 10)

(3 6 9 12 15))) �⇒ (15 30 45)

(define make-double (lambda (f) (lambda (x) (f x x))))

(define twice (make-double +))

(define square (make-double *)) �

Currying

A common operation, named for logician Haskell Curry, is to replace a multi-EXAMPLE 10.35
Partial application with
currying

argument function with a function that takes a single argument and returns a
function that expects the remaining arguments:

(define curried-plus (lambda (a) (lambda (b) (+ a b))))

((curried-plus 3) 4) �⇒ 7

(define plus-3 (curried-plus 3))

(plus-3 4) �⇒ 7

Among other things, currying gives us the ability to pass a “partially applied”
function to a higher-order function:

(map (curried-plus 3) ’(1 2 3)) �⇒ (4 5 6) �
It turns out that we can write a general purpose function that “curries” itsEXAMPLE 10.36

General purpose curry

function
(binary) function argument:

(define curry (lambda (f) (lambda (a) (lambda (b) (f a b)))))

(((curry +) 3) 4) �⇒ 7

(define curried-plus (curry +)) �
ML, Miranda, and Haskell make it especially easy to define curried functions.

Consider the following function in ML.EXAMPLE 10.37
Tuples as ML function
arguments fun plus (a, b) : int = a + b;

==> val plus = fn : int * int -> int

Recall that the last line is printed by the ML interpreter, and indicates the inferred
type of plus. The type declaration is required to disambiguate the overloaded +
operator. Though one may think of plus as a function of two arguments, the ML
definition says that all functions take a single argument. What we have declared is
a function that takes a two-element tuple as argument. To call plus, we juxtapose
its name and the tuple that is its argument:



10.5 Higher-Order Functions 547

plus (3, 4);

==> val it = 7 : int

The parentheses here are not part of the function call syntax; they delimit the
tuple (3, 4). �

We can declare a single-argument function without parenthesizing its formalEXAMPLE 10.38
Optional parentheses on
singleton arguments

argument:

fun twice n : int = n + n;

==> val twice = fn : int -> int

twice 2;

==> val it = 4 : int

We can add parentheses in either the declaration or the call if we want, but be-
cause there is no comma inside, no tuple is implied:

fun double (n) : int = n + n;

twice (2);

==> val it = 4 : int

twice 2;

==> val it = 4 : int

double (2);

==> val it = 4 : int

double 2;

==> val it = 4 : int

Ordinary parentheses can be placed around any expression in ML. �
Now consider the definition of a curried function:EXAMPLE 10.39

Simple curried function in
ML fun curried_plus a = fn b : int => a + b;

==> val curried_plus = fn : int -> int -> int

DESIGN & IMPLEMENTATION

Higher-order functions
If higher-order functions are so powerful and useful, why aren’t they more
common in imperative programming languages? There would appear to be at
least two important answers. First, much of the power of first-class functions
depends on the ability to create new functions on the fly, and for that we need
a function constructor: something like Scheme’s lambda or ML’s fn. Though
they appear in certain recent languages, notably Python and C#, function con-
structors are a significant departure from the syntax and semantics of tradi-
tional imperative languages. Second, the ability to specify functions as return
values, or to store them in variables (if the language has side effects), requires
either that we eliminate function nesting (something that would again erode
the ability of programs to create functions with desired behaviors on the fly)
or that we give local variables unlimited extent, thereby increasing the cost of
storage management.
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Note the type of curried_plus: int -> int -> int groups implicitly as int
-> (int -> int). Where plus is a function mapping a pair (tuple) of integers
to an integer, curried_plus is a function mapping an integer to a function that
maps an integer to an integer:

curried_plus 3;

==> val it = fn : int -> int

plus 3;

==> Error: operator domain (int * int) and operand (int) don’t agree

�
To make it easier to declare functions like curried_plus, ML allows a se-EXAMPLE 10.40

Shorthand notation for
currying

quence of operands in the formal parameter position of a function declaration:

fun curried_plus a b : int = a + b;

==> val curried_plus = fn : int -> int -> int

This form is simply shorthand for the declaration in the previous example; it
does not declare a function of two arguments. Curried_plus has a single formal
parameter, a. Its return value is a function with formal parameter b that in turn
returns a + b. �

Using tuple notation, our fold function might be declared as follows in ML.EXAMPLE 10.41
Folding (reduction) in ML

fun fold (f, l, i) =

case l of

nil => i

| h :: t => f (h, fold (f, t, i));

==> val fold = fn : (’a * ’b -> ’b) * ’a list * ’b -> ’b �
The curried version would be declared as follows.EXAMPLE 10.42

Curried fold in ML
fun curried_fold f l i =

case l of

nil => i

| h :: t => f (h, curried_fold f t i);

==> val fold = fn : (’a * ’b -> ’b) -> ’a list -> ’b -> ’b

curried_fold plus;

==> val it = fn : int list -> int -> int

curried_fold plus [1, 2, 3, 4, 5];

==> val it = fn : int -> int

curried_fold plus [1, 2, 3, 4, 5] 0;

==> val it = 15 : int

Note again the difference in the inferred types of the functions. �
It is of course possible to define curried_fold by nesting occurrences of the

explicit fn notation within the function’s body. The shorthand notation, how-
ever, is substantially more intuitive and convenient. Note also that ML’s syntaxEXAMPLE 10.43

Currying in ML v. Scheme for function calls—juxtaposition of function and argument—makes the use of a
curried function more intuitive and convenient than it is in Scheme:
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curried_fold plus [1, 2, 3, 4, 5] 0; (* ML *)

(((curried_fold +) ’(1 2 3 4 5)) 0) ; Scheme �

10.6 Theoretical Foundations

Mathematically, a function is a single-valued mapping: it associates every element
in one set (the domain) with (at most) one element in another set (the range). InEXAMPLE 10.44

Declarative
(nonconstructive) function
definition

conventional notation, we indicate the domain and range of, say, the square root
function by writing

sqrt : R−→R

We can also define functions using conventional set notation:

sqrt ≡ {
(x, y) ∈R×R | y = x2

}

Unfortunately, this notation is nonconstructive: it doesn’t tell us how to compute
square roots. Church designed the lambda calculus to address this limitation. �

IN MORE DEPTH

Lambda calculus is a constructive notation for function definitions. Any com-
putable function can be written as a lambda expression. Computation amounts
to macro substitution of arguments into the function definition, followed by re-
duction to simplest form via simple and mechanical rewrite rules. The order in
which these rules are applied captures the distinction between applicative and
normal-order evaluation, as described in Section 6.6.2. Conventions on the use
of certain simple functions (e.g., the identity function) allow selection, struc-
tures, and even arithmetic to be captured as lambda expressions. Recursion is
captured through the notion of fixed points.

10.7 Functional Programming in Perspective

Side-effect-free programming is a very appealing idea. As discussed in Sections
6.1.2 and 6.3, side effects can make programs both hard to read and hard to
compile. By contrast, the lack of side effects makes expressions referentially
transparent—independent of evaluation order. Programmers and compilers of a
purely functional language can employ equational reasoning, in which the equiv-
alence of two expressions at any point in time implies their equivalence at all
times.

Unfortunately, there are common programming idioms in which the canoni-
cal side effect—assignment—plays a central role. Critics of functional program-
ming often point to these idioms as evidence of the need for imperative language
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features. I/O is one example. We have seen (in Section 10.4) that sequential ac-
cess to files can be modeled in a functional manner using streams. For graphics
and random file access we have also seen that the monads of Haskell can cleanly
isolate the invocation of actions from the bulk of the language, and allow the full
power of equational reasoning to be applied to both the computation of values
and the determination of the order in which I/O actions should occur.

Other commonly cited examples of “naturally imperative” idioms include the
following.

initialization of complex structures: The heavy reliance on lists in Lisp, ML, and
Haskell reflects the ease with which functions can build new lists out of the
components of old lists. Other data structures—multidimensional arrays in
particular—are much less easy to put together incrementally, particularly if
the natural order in which to initialize the elements is not strictly row-major
or column-major.

summarization: Many programs include code that scans a large data structure
or a large amount of input data, counting the occurrences of various items or
patterns. The natural way to keep track of the counts is with a dictionary data
structure in which one repeatedly updates the count associated with the most
recently noticed key.

in-place mutation: In programs with very large data sets, one must economize
as much as possible on memory usage, to maximize the amount of data that
will fit in memory or the cache. Sorting programs, for example, need to sort
in place, rather than copying elements to a new array or list. Matrix-based
scientific programs, likewise, need to update values in place.

DESIGN & IMPLEMENTATION

Side effects and compilation
As noted in Section 10.2, side-effect freedom has a strong conceptual appeal:
it frees the programmer from concern over undocumented access to nonlocal
variables, misordered updates, aliases, and dangling pointers. Side-effect free-
dom also has the potential, at least in theory, to allow the compiler to gen-
erate faster code: like aliases, side effects often preclude the caching of values
in registers (Section 3.6.1) or the use of constant and copy propagation (Sec-
tions 15.3 and 15.4).

So what are the technical obstacles to generating fast code for functional
programs? The trivial update problem is certainly a challenge, as is the cost
of heap management for values with unlimited extent. Type checking im-
poses significant run-time costs in languages descended from Lisp but not in
those descended from ML. Memoization is expensive in Miranda and Haskell,
though so-called strictness analysis may allow the compiler to eliminate it in
cases where applicative order evaluation is provably equivalent. These chal-
lenges are all the subject of continuing research.
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These last three idioms are examples of what has been called the trivial update
problem. If the use of a functional language forces the underlying implementation
to create a new copy of the entire data structure every time one of its elements
must change, then the result will be very inefficient. In imperative programs, the
problem is avoided by allowing an existing structure to be modified in place.

One can argue that while the trivial update problem causes trouble in Lisp and
its relatives, it does not reflect an inherent weakness of functional programming
per se. What is required for a solution is a combination of convenient notation—
to access arbitrary elements of a complex structure—and an implementation that
is able to determine when the old version of the structure will never be used again,
so it can be updated in place instead of being copied.

Sisal and pH combine array types and iterative syntax with purely functional
semantics. The iterative constructs are defined as syntactic sugar for tail recursive
functions. When nested, these constructs can easily be used to initialize a mul-
tidimensional array. The semantics of the language say that each iteration of the
loop returns a new copy of the entire array. The compiler can easily verify, how-
ever, that the old copy is never used after the return, and can therefore arrange
to perform all updates in place. Similar optimizations could be performed in
the absence of the imperative syntax, but they require somewhat more complex
analysis. Cann reports [Can92] that the Livermore Sisal compiler is able to elim-
inate 99–100% of all copy operations in standard numeric benchmarks.

Significant strides in both the theory and practice of functional programming
have been made in recent years. Wadler [Wad98b] argues persuasively that the
principal remaining obstacles to the widespread adoption of functional languages
are social and commercial, not technical: most programmers have been trained in
an imperative style; software libraries and development environments for func-
tional programming are not yet as mature as those of their imperative cousins.
It seems likely that the coming decade will see a significant increase in the use of
functional languages, pure functional languages in particular.

CHECK YOUR UNDERSTANDING

12. What is the difference between normal-order and applicative-order evalua-
tion? What is lazy evaluation?

13. What is the difference between a function and a special form in Scheme?

14. What does it mean for a function to be strict?

15. What is memoization?

16. How can one accommodate I/O in a purely functional programming model?

17. What is a higher-order function (also known as a functional form)? Give three
examples.

18. What is currying? What purpose does it serve in practical programs?

19. What is the trivial update problem in functional programming?
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20. Summarize the arguments for and against side-effect-free programming.

21. Why do functional languages make such heavy use of lists?

10.8 Summary and Concluding Remarks

In this chapter we have focused on the functional model of computing. Where
an imperative program computes principally through iteration and side effects
(i.e., the modification of variables), a functional program computes principally
through substitution of parameters into functions. We began by enumerating a
list of key issues in functional programming, including first-class and higher-
order functions, polymorphism, control flow and evaluation order, and support
for list-based data. We then turned to a concrete example—the Scheme dialect of
Lisp—to see how these issues may be addressed in a programming language. We
also considered, more briefly, ML and its descendants, Miranda and Haskell.

For imperative programming languages, the underlying formal model is often
taken to be a Turing machine. For functional languages, the model is the lambda
calculus. Both models evolved in the mathematical community as a means of
formalizing the notion of an effective procedure, as used in constructive proofs.
Aside from hardware-imposed limits on arithmetic precision, disk and mem-
ory space, and so on, the full power of lambda calculus is available in functional
languages. While a full treatment of the lambda calculus could easily consume
another book, we provided an overview on the PLP CD. We considered rewrite
rules, evaluation order, and the Church-Rosser theorem. We noted that conven-
tions on the use of very simple notation provide the computational power of
integer arithmetic, selection, recursion, and structured data types.

For practical reasons, many functional languages extend the lambda calculus
with additional features, including assignment, I/O, and iteration. Lisp dialects,
moreover, are homoiconic: programs look like ordinary data structures, and can
be created, modified, and executed on the fly.

Lists feature prominently in most functional programs, largely because they
can easily be built incrementally, without the need to allocate and then mod-
ify state as separate operations. Many functional languages provide other struc-
tured data types as well. In Sisal, an emphasis on iterative syntax, tail recursive se-
mantics, and high-performance compilers allows multidimensional array-based
functional programs to achieve performance comparable to that of imperative
programs.

10.9 Exercises

10.1 Is the define primitive of Scheme an imperative language feature? Why
or why not?
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10.2 It is possible to write programs in a purely functional subset of an imper-
ative language such as C, but certain limitations of the language quickly
become apparent. What features would need to be added to your favorite
imperative language to make it genuinely useful as a functional language?
(Hint: What does Scheme have that C lacks?)

10.3 Some authors characterize functional programming as one form of declar-
ative programming. Others characterize functional programming as a
separate computational model, co-equal with imperative and declarative
programming. Which characterization do you prefer? Why?

10.4 Explain the connection between short-circuit Boolean expressions and
normal-order evaluation. Why is cond a special form in Scheme, rather
than a function?

10.5 Write a program in your favorite imperative language that has the same in-
put and output as the Scheme program of Figure 10.1. Can you make any
general observations about the usefulness of Scheme for symbolic compu-
tation, based on your experience?

10.6 Suppose we wish to remove adjacent duplicate elements from a list (e.g.,
after sorting). The following Scheme function accomplishes this goal.

(define unique

(lambda (L)

(cond

((null? L) L)

((null? (cdr L)) L)

((eqv? (car L) (car (cdr L))) (unique (cdr L)))

(else (cons (car L) (unique (cdr L)))))))

Write a similar function that uses the imperative features of Scheme
to modify L “in place,” rather than building a new list. Compare your
function to the code above in terms of brevity, conceptual clarity, and
speed.

10.7 Write tail-recursive versions of the following.

(a) ;; compute integer log, base 2

;; (number of bits in binary representation)

;; works only for positive integers

(define log2

(lambda (n)

(if (= n 1) 0 (+ 1 (log2 (quotient (+ n 1) 2))))))

(b) ;; find minimum element in a list

(define min

(lambda (l)

(cond

((null? l) ’())

((null? (cdr l)) (car l))
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((null? (cdr l)) (car l))

(#t (let ((a (car l))

(b (min (cdr l))))

(if (< b a) b a))))))

10.8 Write purely functional Scheme functions to

(a) return all rotations of a given list. For example, (rotate ’(a b
c d e)) should return ((a b c d e) (b c d e a) (c d e a b)
(d e a b c) (e a b c d)) (in some order).

(b) return a list containing all elements of a given list that satisfy a given
predicate. For example, (filter (lambda (x) (< x 5)) ’(3 9 5
8 2 4 7)) should return (3 2 4).

10.9 Write a purely functional Scheme function that returns a list of all permu-
tations of a given list. For example, given (a b c) it should return ((a b
c) (b a c) (b c a) (a c b) (c a b) (c b a)) (in some order).

10.10 Modify the Scheme program of Figure 10.1 to simulate an NFA (nondeter-
ministic finite automaton), rather than a DFA. (The distinction between
these automata is described in Section 2.2.1.) Since you cannot “guess”
correctly in the face of a multi-valued transition function, you will need
either to use explicitly coded backtracking to search for an accepting se-
ries of moves (if there is one), or keep track of all possible states that the
machine could be in at a given point in time.

10.11 Consider the problem of determining whether two trees have the same
fringe: the same set of leaves in the same order, regardless of internal struc-
ture. An obvious way to solve this problem is to write a function flatten
that takes a tree as argument and returns an ordered list of its leaves. Then
we can say

(define same-fringe

(lambda (T1 T2)

(equal (flatten T1) (flatten T2))))

Write a straightforward version of flatten in Scheme. How efficient is
same-fringe when the trees differ in their first few leaves? How would
your answer differ in a language like Haskell, which uses lazy evaluation
for all arguments? How hard is it to get Haskell’s behavior in Scheme, using
delay and force?

10.12 We have noted that lists in ML are homogeneous, while lists in Lisp/
Scheme may contain elements of varying types. Discuss the advantages
and disadvantages of homogeneity.

10.13 We can use encapsulation within functions to delay evaluation in ML:

datatype ’a delayed_list =

pair of ’a * ’a delayed_list

| promise of unit -> ’a * ’a delayed_list;
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fun head (pair (h, r)) = h

| head (promise (f)) = let val (a, b) = f () in a end;

fun rest (pair (h, r)) = r

| rest (promise (f)) = let val (a, b) = f () in b end;

Now given

fun next_int (n) = (n, promise (fn () => next_int (n + 1)));

val naturals = promise (fn () => next_int (1));

we have

head (naturals) �⇒ 1

head (rest (naturals)) �⇒ 2

head (rest (rest (naturals))) �⇒ 3

...

The delayed list naturals is effectively of unlimited length. It will be com-
puted out only as far as actually needed. If a value is needed more than
once, however, it will be recomputed every time. Show how to use point-
ers and assignment (Section 7.7.1, page 375) to memoize the values of a
delayed_list so that elements are computed only once.

10.14 In Example 10.27 we showed how to implement interactive I/O in terms of
the lazy evaluation of streams. Unfortunately, our code would not work as
written, because Scheme uses applicative-order evaluation. We can make
it work, however, with calls to delay and force.

Suppose we define input to be a function that returns an “istream”—a
promise that when forced will yield a pair, the cdr of which is an istream:

(define input (lambda () (delay (cons (read) (input)))))

Now we can define the driver to expect an “ostream”—an empty list or a
pair, the cdr of which is an ostream.

(define driver

(lambda (s)

(if (null? s) ’()

(display (car s))

(driver (force (cdr s))))))

Note the use of force.
Show how to write the function squares so that it takes an istream

as argument and returns an ostream. You should then be able to type
(driver (squares (input))) and see appropriate behavior.

10.15 Write new versions of cons, car, and cdr that operate on streams. Us-
ing them, rewrite the code of the previous exercise to eliminate the calls
to delay and force. Note that the stream version of cons will need to
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avoid evaluating its second argument; you will need to learn how to define
macros (derived special forms) in Scheme.

10.16 Write the standard quicksort algorithm in Scheme, without using any im-
perative language features. Be careful to avoid the trivial update problem;
your code should run in expected time n log n.

Rewrite your code using arrays (you will probably need to consult a
Scheme manual for further information). Compare the running time and
space requirements of your two sorts.

10.17 Write insert and find routines that manipulate binary search trees in
Scheme (consult an algorithms text if you need more information). Ex-
plain why the trivial update problem does not impact the asymptotic per-
formance of insert.

10.18 Write an LL(1) parser generator in purely functional Scheme. If you con-
sult Figure 2.23, remember that you will need to use tail recursion in place
of iteration. Assume that the input CFG consists of a list of lists, one per
nonterminal in the grammar. The first element of each sublist should be
the nonterminal; the remaining elements should be the right-hand sides
of the productions for which that nonterminal is the left-hand side. You
may assume that the sublist for the start symbol will be the first one in the
list. If we use quoted strings to represent grammar symbols, the calculator
grammar of Figure 2.15 would look like this:

’(("program" ("stmt_list" "$$"))

("stmt_list" ("stmt" "stmt_list") ())

("stmt" ("id" ":=" "expr") ("read" "id") ("write" "expr"))

("expr" ("term" "term_tail"))

("term" ("factor" "factor_tail"))

("term_tail" ("add_op" "term" "term_tail") ())

("factor_tail" ("mult_op" "factor" "FT") ())

("add_op" ("+") ("-"))

("mult_op" ("*") ("/"))

("factor" ("id") ("number") ("(" "expr" ")")))

Your output should be a parse table that has this same format, except that
every right-hand side is replaced by a pair (a 2-element list) whose first
element is the predict set for the corresponding production, and whose
second element is the right-hand side. For the calculator grammar, the
table looks like this:

(("program" (("$$" "id" "read" "write") ("stmt_list" "$$")))

("stmt_list" (("id" "read" "write") ("stmt" "stmt_list")) (("$$") ()))

("stmt"

(("id") ("id" ":=" "expr"))

(("read") ("read" "id"))

(("write") ("write" "expr")))

("expr" (("(" "id" "number") ("term" "term_tail")))
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("term" (("(" "id" "number") ("factor" "factor_tail")))

("term_tail"

(("+" "-") ("add_op" "term" "term_tail"))

(("$$" ")" "id" "read" "write") ()))

("factor_tail"

(("*" "/") ("mult_op" "factor" "factor_tail"))

(("$$" ")" "+" "-" "id" "read" "write") ()))

("add_op" (("+") ("+")) (("-") ("-")))

("mult_op" (("*") ("*")) (("/") ("/")))

("factor"

(("id") ("id"))

(("number") ("number"))

(("(") ("(" "expr" ")"))))

(Hint: You may want to define a right_context function that takes a
nonterminal B as argument and returns a list of all pairs (A, β), where
A is a nonterminal and β is a list of symbols, such that for some poten-
tially different list of symbols α, A −→ α B β . This function is useful
for computing FOLLOW sets. You may also want to build a tail-recursive
function that recomputes FIRST and FOLLOW sets until they converge. You
will find it easier if you do not include ε in either set, but rather keep a
separate estimate, for each nonterminal, of whether it may generate ε.)

10.19 Write an ML version of the code in Figure 10.1. Alternatively (or in addi-
tion), solve Exercises 10.10, 10.11, or 10.16 in ML.

10.20–10.23 In More Depth.

10.10 Explorations

10.24 Read the original self-definition of Lisp [MAE+65]. Compare it to a sim-
ilar definition of Scheme [AS96, Chapter 4]. What is different? What has
stayed the same? What is built into apply and eval in each definition?
What do you think of the whole idea? Does a metacircular interpreter re-
ally define anything, or is it “circular reasoning”?

10.25 Read the Turing Award lecture of John Backus [Bac78], in which he argues
for functional programming. How does his FP notation compare to the
Lisp and ML language families?

10.26 Learn more about monads in Haskell. What exactly is a monad? What are
monads used for other than I/O? What is their relationship to continua-
tions?

10.27 We have seen that Lisp and ML include such imperative features as assign-
ment and iteration. How important are these? What do languages like
Haskell give up (conversely, what do they gain) by insisting on a purely
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functional programming style? In a similar vein, what do you think of at-
tempts in several recent imperative languages (notably Python and C#—
see the sidebar on page 547) to facilitate functional programming with
function constructors and unlimited extent?

10.28 Investigate the compilation of functional programs. What special issues
arise? What techniques are used to address them? Starting places for your
search might include the compiler texts of Appel [App97], Wilhelm and
Maurer [WM95], and Grune et al. [GBJL01].

10.29–10.31 In More Depth.

10.11 Bibliographic Notes

Lisp, the original functional programming language, dates from the work of
McCarthy and his associates in the late 1950s. Bibliographic references for
Lisp, Scheme, ML, Miranda, Haskell, Sisal, and pH can be found in Appen-
dix A. Historically important dialects of Lisp include Lisp 1.5 [MAE+65],
MacLisp [Moo78] (no relation to the Apple Macintosh), and Interlisp [TM81].

The book by Abelson and Sussman [AS96], used for introductory program-
ming classes at MIT and elsewhere, is a classic guide to fundamental program-
ming concepts, and to functional programming in particular. Additional histor-
ical references can be found in the paper by Hudak [Hud89], which surveys the
field from the point of view of Haskell.

The lambda calculus was introduced by Church in 1941 [Chu41]. A classic
reference is the text of Curry and Feys [CF58]. Barendregt’s book [Bar84] is a
standard modern reference. Michaelson [Mic89] provides an accessible intro-
duction to the formalism, together with a clear explanation of its relationship
to Lisp and ML. Stansifer [Sta95, Sec. 7.6] provides a good informal discussion
and correctness proof for the fixed-point combinator Y (see Exercise 10.21).

John Backus, one of the original developers of Fortran, argued forcefully for a
move to functional programming in his 1977 Turing Award lecture [Bac78]. His
functional programming notation is known as FP. Peyton Jones [Pey87, Pey92],
Wilhelm and Maurer [WM95, Chap. 3], Appel [App97, Chap. 15], and Grune et
al. [GBJL01, Chap. 7] discuss the implementation of functional languages.

Wadler describes the use of monads [Wad97]. In other articles he re-
lates experience with several “real-world” applications of functional program-
ming [Wad98a] and discusses the remaining barriers to more widespread use
of functional languages [Wad98b]. Hughes provides an articulate statement
of the benefits of the functional style [Hug89]. Online discussions of func-
tional programming in general, and of lazy functional programming in par-
ticular, can be found in the comp.lang.functional newsgroup. A frequently
asked questions list for this group, last updated in 2002, can be found at
www.cs.nott.ac.uk/Department/Staff/gmh/faq.html. There are also newsgroups
devoted to ML (comp.lang.ml) and Scheme (comp.lang.scheme).
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Having considered functional languages in some detail, we now turn to
the other principal declarative paradigm: logic languages. The overlap between
imperative and functional concepts in programming language design has led us
to discuss the latter at numerous points throughout the text. We have had less oc-
casion to remark on features of logic programming languages. Logic, of course,
is used heavily in the design of digital circuits, and most programming languages
provide a logical (Boolean) type and operators. Logic is also heavily used in the
formal study of language semantics, specifically in axiomatic semantics.1 It was
only in the 1970s, however, with the work of Alain Colmeraurer and Philippe
Roussel of the University of Aix–Marseille in France and Robert Kowalski and
associates at the University of Edinburgh in Scotland, that researchers began to
employ the process of logical deduction as a general purpose model of comput-
ing.

We introduce the basic concepts of logic programming in Section 11.1. We
then survey the most widely used logic language, Prolog, in Section 11.2. We
consider, in turn, the concepts of resolution and unification, support for lists and
arithmetic, and the search-based execution model. After presenting an extended
example based on the game of tic-tac-toe, we turn to the more advanced topics
of imperative control flow and database manipulation.

Much as functional programming is based on the formalism of lambda calcu-
lus, Prolog and other logic languages are based on first-order predicate calculus.
A brief introduction to this formalism appears in Section 11.3 on the PLP
CD. Where functional languages capture the full capabilities of the lambda cal-
culus, however (within the limits, at least, of memory and other resources), logic

1 Axiomatic semantics models each statement or expression in the language as a predicate trans-
former—an inference rule that takes a set of conditions known to be true initially and derives a
new set of conditions guaranteed to be true after the construct has been evaluated. The study of
formal semantics is beyond the scope of this book.

559
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languages do not capture the full power of predicate calculus. We consider the
relevant limitations as part of a general evaluation of logic programming in Sec-
tion 11.4.

11.1 Logic Programming Concepts

Logic programming systems allow the programmer to state a collection of ax-
ioms from which theorems can be proven. The user of a logic program states a
theorem, or goal, and the language implementation attempts to find a collection
of axioms and inference steps (including choices of values for variables) that to-
gether imply the goal. Of the several existing logic languages, Prolog is by far the
most widely used.

In almost all logic languages, axioms are written in a standard form knownEXAMPLE 11.1
Horn clauses as a Horn clause. A Horn clause consists of a head,2 or consequent term H, and a

body consisting of terms Bi:

H ← B1,B2, . . . ,Bn

The semantics of this statement are that when the Bi are all true, we can deduce
that H is true as well. When reading aloud, we say “H, if B1, B2, . . . , and Bn.”
Horn clauses can be used to capture most, but not all, logical statements. (We
return to the issue of completeness in Section 11.3.) �

In order to derive new statements, a logic programming system combines ex-
isting statements, canceling like terms, through a process known as resolution. IfEXAMPLE 11.2

Resolution we know that A and B imply C, for example, and that C implies D, we can deduce
that A and B imply D:

C ← A,B

D ← C

D ← A,B

In general, terms like A, B, C, and D may consist not only of constants
(“Rochester is rainy”) but also of predicates applied to atoms or to variables:
rainy(Rochester), rainy(Seattle), rainy(X). �

During resolution, free variables may acquire values through unification withEXAMPLE 11.3
Unification expressions in matching terms, much as variables acquire types in ML (Sec-

tion 7.2.4):

2 Note that the word head is used for two different things in Prolog: the head of a Horn clause and
the head of a list. The distinction between these is usually clear from context.
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flowery(X) ← rainy(X)

rainy(Rochester)

flowery(Rochester)

In the following section we consider Prolog in more detail. We return to formal
logic, and to its relationship to Prolog, in Section 11.3. �

11.2 Prolog

Much as a Scheme interpreter evaluates functions in the context of a referencing
environment in which other functions and constants have been defined, a Prolog
interpreter runs in the context of a database of clauses (Horn clauses) that are
assumed to be true. Each clause is composed of terms, which may be constants,
variables, or structures. A constant is either an atom or a number. A structure can
be thought of as either a logical predicate or a data structure.

Atoms in Prolog are similar to symbols in Lisp. Lexically, an atom looks likeEXAMPLE 11.4
Atoms, variables, scope,
and type

an identifier beginning with a lowercase letter, a sequence of “punctuation” char-
acters, or a quoted character string:

foo my_Const + ’Hi, Mom’

Numbers resemble the integers and floating-point constants of other program-
ming languages. A variable looks like an identifier beginning with an uppercase
letter:

Foo My_var X

Variables can be instantiated to (i.e., can take on) arbitrary values at run time as a
result of unification. The scope of every variable is limited to the clause in which
it appears. There are no declarations. As in Lisp, type checking occurs only when
a program attempts to use a value in a particular way at run time. �

Structures consist of an atom called the functor and a list of arguments:EXAMPLE 11.5
Structures and predicates

rainy(rochester)

teaches(scott, cs254)

bin_tree(foo, bin_tree(bar, glarch))

Prolog requires the opening parenthesis to come immediately after the functor,
with no intervening space. Arguments can be arbitrary terms: constants, vari-
ables, or (nested) structures. Internally, a Prolog implementation can represent
a structure using Lisp-like cons cells. Conceptually, the programmer may pre-
fer to think of certain structures (e.g., rainy) as logical predicates. We use the
term predicate to refer to the combination of a functor and an “arity” (number
of arguments). The predicate rainy has arity 1. The predicate teaches has
arity 2. �
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The clauses in a Prolog database can be classified as facts or rules, each of which
ends with a period. A fact is a Horn clause without a right-hand side. It looks likeEXAMPLE 11.6

Facts and rules a single term (the implication symbol is implicit):

rainy(rochester).

A rule has a right-hand side:

snowy(X) :- rainy(X), cold(X).

The token :- is the implication symbol; the comma indicates “and.” (X is snowy
if X is rainy and X is cold.) �

It is also possible to write a clause with an empty left-hand side. Such a clause
is called a query, or a goal. Queries do not appear in Prolog programs. Rather,
one builds a database of facts and rules and then initiates execution by giving the
Prolog interpreter (or the compiled Prolog program) a query to be answered (i.e.,
a goal to be proven).

In most implementations of Prolog, queries are entered with a special ?- ver-
sion of the implication symbol. If we were to type the following:EXAMPLE 11.7

Queries
rainy(seattle).

rainy(rochester).

?- rainy(C).

the Prolog interpreter would respond with

C = seattle

Of course, C = rochester would also be a valid answer, but Prolog will find
seattle first, because it comes first in the database. (Dependence on ordering
is one of the ways in which Prolog departs from pure logic; we discuss this issue
further in Section 11.2.4.) If we want to find all possible solutions, we can ask the
interpreter to continue by typing a semicolon:

C = seattle;

C = rochester

If we type another semicolon, the interpreter will indicate that no further so-
lutions are possible:

C = seattle;

C = rochester;

no

Similarly, given

rainy(seattle).

rainy(rochester).

cold(rochester).

snowy(X) :- rainy(X), cold(X).
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the query

?- snowy(C).

will yield only one solution. �

11.2.1 Resolution and Unification

The resolution principle, due to Robinson [Rob65], says that if C1 and C2 are Horn
clauses and the head of C1 matches one of the terms in the body of C2, then we
can replace the term in C2 with the body of C1. Consider the following exam-EXAMPLE 11.8

Resolution in Prolog ple.

takes(jane_doe, his201).

takes(jane_doe, cs254).

takes(ajit_chandra, art302).

takes(ajit_chandra, cs254).

classmates(X, Y) :- takes(X, Z), takes(Y, Z).

Here if we let X be jane_doe and Z be cs254, we can replace the first term on
the right-hand side of the last clause with the (empty) body of the second clause,
yielding the new rule

classmates(jane_doe, Y) :- takes(Y, cs254).

In other words, Y is a classmate of jane_doe if Y takes cs254. �
The pattern-matching process used to associate X with jane_doe and Z with

cs254 is known as unification. Variables that are given values as a result of unifi-
cation are said to be instantiated.

The unification rules for Prolog are as follows.

� A constant unifies only with itself.

� Two structures unify if and only if they have the same functor and the
same number of arguments, and the corresponding arguments unify recur-
sively.

� A variable unifies with anything. If the other thing has a value, then the vari-
able is instantiated. If the other thing is an uninstantiated variable, then the
two variables are associated in such a way that if either is given a value later,
that value will be shared by both.

Unification of structures in Prolog is very much akin to ML’s unification of theEXAMPLE 11.9
Unification in Prolog and
ML

types of formal and actual parameters. A formal parameter of type int * ’b
list, for example, will unify with an actual parameter of type ’a * real list
in ML by instantiating ’a to int and ’b to real. �

Equality in Prolog is defined in terms of “unifiability.” The goal =(A, B) suc-
ceeds if and only if A and B can be unified. For the sake of convenience, the goal
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may be written as A = B; the infix notation is simply syntactic sugar. In keepingEXAMPLE 11.10
Equality and unification with the rules above, we have

?- a = a.

yes % constant unifies with itself

?- a = b.

no % but not with another constant

?- foo(a, b) = foo(a, b).

yes % structures are recursively identical

?- X = a.

X = a; % variable unifies with constant

no % only once

?- foo(a, b) = foo(X, b).

X = a; % arguments must unify

no % only one possibility �
It is possible for two variables to be unified without instantiating them. If weEXAMPLE 11.11

Unification without
instantiation

type

?- A = B.

the interpreter will respond

A = _123

B = _123

where _123 is an underscore followed by some arbitrary (implementation-
dependent) integer that represents the (shared) location of A and B. In a similar
vein, suppose we are given the following rules.

takes_lab(S) :- takes(S, C), has_lab(C).

has_lab(D) :- meets_in(D, R), is_lab(R).

(S takes a lab class if S takes C and C is a lab class. Moreover D is a lab class if D
meets in room R and R is a lab.) An attempt to resolve these rules will unify the
head of the second with the second term in the body of the first, causing C and D
to be unified, even though neither is instantiated. �

11.2.2 Lists

Like equality checking, list manipulation is a sufficiently common operation in
Prolog to warrant its own notation. The construct [a, b, c] is syntactic sugarEXAMPLE 11.12

List notation in Prolog for the structure .(a, .(b, .(c, []))), where [] is the empty list and . is
a built-in cons-like predicate. This notation should be familiar to users of ML.
Prolog adds an extra convenience, however: an optional vertical bar that delim-
its the “tail” of the list. Using this notation, [a, b, c] could be expressed as
[a | [b, c]], [a, b | [c]], or [a, b, c | []]. The vertical-bar notation
is particularly handy when the tail of the list is a variable:
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member(X, [X|T]).

member(X, [H|T]) :- member(X, T).

sorted([]). % empty list is sorted

sorted([X]). % singleton is sorted

sorted([A, B | T]) :- A =< B, sorted([B | T]).

% compound list is sorted if first two elements are in order and

% remainder of list (after first element) is sorted

Here =< is a built-in predicate that operates on numbers. Note that [a, b | c]
is the improper list .(a, .(b, c)). The sequence of tokens [a | b, c] is syn-
tactically invalid. �

One of the interesting things about Prolog resolution is that it does not inEXAMPLE 11.13
Functions, predicates, and
two-way rules

general distinguish between “input” and “output” arguments (there are certain
exceptions, such as the is predicate described in the following subsection). Thus
given

append([], A, A).

append([H | T], A, [H | L]) :- append(T, A, L).

we can type

?- append([a, b, c], [d, e], L).

L = [a, b, c, d, e]

?- append(X, [d, e], [a, b, c, d, e]).

X = [a, b, c]

?- append([a, b, c], Y, [a, b, c, d, e]).

Y = [d, e]

This example highlights the difference between functions and predicates. The
former have a clear notion of inputs (arguments) and outputs (results); the latter
do not. In an imperative or functional language we apply functions to arguments
to generate results. In a logic language we search for values for which a predicate
is true. �

11.2.3 Arithmetic

The usual arithmetic operators are available in Prolog, but they play the role of
predicates, not of functions. Thus +(2, 3), which may also be written 2 + 3,EXAMPLE 11.14

Arithmetic and the is

predicate
is a two-argument structure, not a function call. In particular, it will not unify
with 5:

?- (2 + 3) = 5.

no

To handle arithmetic, Prolog provides a built-in predicate, is, that unifies its
first argument with the arithmetic value of its second argument:
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?- is(X, 1+2).

X = 3

?- X is 1+2.

X = 3 % infix is also ok

?- 1+2 is 4-1.

no % first argument (1+2) is already instantiated

?- X is Y.

<error> % second argument (Y) must already be instantiated

?- Y is 1+2, X is Y.

X = 3

Y = 3 % Y is instantiated by the time it is needed �

11.2.4 Search/Execution Order

So how does Prolog go about answering a query (satisfying a goal)? What it needs
is a sequence of resolution steps that will build the goal out of clauses in the
database, or a proof that no such sequence exists. In the realm of formal logic,
one can imagine two principal search strategies.

� Start with existing clauses and work forward, attempting to derive the goal.
This strategy is known as forward chaining.

� Start with the goal and work backward, attempting to “unresolve” it into a set
of preexisting clauses. This strategy is known as backward chaining.

If the number of existing rules is very large, but the number of facts is small, it is
possible for forward chaining to discover a solution more quickly than backward
chaining. In most circumstances, however, backward chaining turns out to be
more efficient. Prolog is defined to use backward chaining.

Because resolution is associative and commutative (Exercise 11.5), a back-
ward-chaining theorem prover can limit its search to sequences of resolutions in
which terms on the right-hand side of a clause are unified with the heads of other
clauses one by one in some particular order (e.g., left to right). The resultingEXAMPLE 11.15

Search tree exploration search can be described in terms of a tree of subgoals, as shown in Figure 11.1.
The Prolog interpreter (or program) explores this tree depth first, from left to
right. It starts at the beginning of the database, searching for a rule R whose head
can be unified with the top-level goal. It then considers the terms in the body
of R as subgoals, and attempts to satisfy them, recursively, left to right. If at any
point a subgoal fails (cannot be satisfied), the interpreter returns to the previous
subgoal and attempts to satisfy it in a different way (i.e., to unify it with the head
of a different clause). �

The process of returning to previous goals is known as backtracking. It strongly
resembles the control flow of generators in Icon (Section 6.5.4). Whenever a
unification operation is “undone” in order to pursue a different path through
the search tree, variables that were given values or associated with one another as
a result of that unification are returned to their uninstantiated or unassociated
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Figure 11.1 Backtracking search in Prolog. The tree of potential resolutions consists of alter-
nating AND and OR levels. An AND level consists of subgoals from the right-hand side of a
rule, all of which must be satisfied. An OR level consists of alternative database clauses whose
head will unify with the subgoal above; one of these must be satisfied. The notation _C = _X

is meant to indicate that while both C and X are uninstantiated, they have been associated with
one another in such a way that if either receives a value in the future it will be shared by both.

state. In Figure 11.1, for example, the binding of X to seattle is broken whenEXAMPLE 11.16
Backtracking and
instantiation

we backtrack to the rainy(X) subgoal. The effect is similar to the breaking of
bindings between actual and formal parameters in an imperative programming
language, except that Prolog couches the bindings in terms of unification rather
than subroutine calls. �

Space management for backtracking search in Prolog usually follows the
single-stack implementation of iterators described in Section 8.6.3. The in-
terpreter pushes a frame onto its stack every time it begins to pursue a new sub-
goal G. If G fails, the frame is popped from the stack and the interpreter begins to
backtrack. If G succeeds, control returns to the “caller” (the parent in the search
tree), but G’s frame remains on the stack. Later subgoals will be given space above
this dormant frame. If subsequent backtracking causes the interpreter to search
for alternative ways of satisfying G, control will be able to resume where it last
left off. Note that G will not fail unless all of its subgoals (and all of its siblings to
the right in the search tree) have also failed, implying that there is nothing above
G’s frame in the stack. At the top level of the interpreter, a semicolon typed by
the user is treated the same as failure of the most recently satisfied subgoal.
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Figure 11.2 Infinite regression in Prolog. With this database even a simple query like
?- path(a, a) will never terminate: the interpreter will never find the trivial branch.

The fact that clauses are ordered, and that the interpreter considers them from
first to last, means that the results of a Prolog program are deterministic and pre-
dictable. In fact, the combination of ordering and depth-first search means that
the Prolog programmer must often consider the order to ensure that recursive
programs will terminate. Suppose, for example, that we have a database describ-EXAMPLE 11.17

Order of rule evaluation ing a directed acyclic graph:

edge(a, b). edge(b, c). edge(c, d).

edge(d, e). edge(b, e). edge(d, f).

path(X, X).

path(X, Y) :- edge(Z, Y), path(X, Z).

The last two clauses tell us how to determine whether there is a path from node
X to node Y. If we were to reverse the order of the terms on the right-hand side
of the final clause, then the Prolog interpreter would search for a node Z that is
reachable from X before checking to see whether there is an edge from Z to Y.
The program would still work, but it would not be as efficient. �

Now consider what would happen if in addition we were to reverse the orderEXAMPLE 11.18
Infinite regression of the last two clauses:

path(X, Y) :- path(X, Z), edge(Z, Y).

path(X, X).

From a logical point of view, our database still defines the same relationships.
A Prolog interpreter, however, will no longer be able to find answers. Even a
simple query like ?- path(a, a) will never terminate. To see why, consider
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Figure 11.2. The interpreter first unifies path(a, a) with the left-hand side of
path(X, Y) :- path(X, Z), edge(Z, Y). It then considers the goals on the
right-hand side, the first of which (path(X, Z)) unifies with the left-hand side
of the very same rule, leading to an infinite regression. In effect, the Prolog in-
terpreter gets lost in an infinite branch of the search tree, and never discovers
finite branches to the right. We could avoid this problem by exploring the tree in
breadth-first order, but that strategy was rejected by Prolog’s designers because
of its expense: it can require substantially more space, and does not lend itself to
a stack-based implementation. �

11.2.5 Extended Example: Tic-Tac-Toe

In the previous subsection we saw how the order of clauses in the Prolog data-EXAMPLE 11.19
Tic-tac-toe in Prolog base, and the order of terms within a right-hand side, can affect both the effi-

ciency of a Prolog program and its ability to terminate. Ordering also allows the
Prolog programmer to indicate that certain resolutions are preferred, and should
be considered before other, “fallback” options. Consider, for example, the prob-
lem of making a move in tic-tac-toe. (Tic-tac-toe is a game played on a 3 × 3 grid
of squares. Two players, X and O, take turns placing markers in empty squares.
A player wins if he or she places three markers in a row, horizontally, vertically,
or diagonally.)

Let us number the squares from 1 to 9 in row-major order. Further, let us use
the Prolog fact x(n) to indicate that player X has placed a marker in square n,
and o(m) to indicate that player O has placed a marker in square m. For simplicity,
let us assume that the computer is player X, and that it is X’s turn to move. We
should like to be able to issue a query ?- move(A) that will cause the Prolog
interpreter to choose a good square A for the computer to occupy next.

Clearly we need to be able to tell whether three given squares lie in a row. One
way to express this is

ordered_line(1, 2, 3). ordered_line(4, 5, 6).

ordered_line(7, 8, 9). ordered_line(1, 4, 7).

ordered_line(2, 5, 8). ordered_line(3, 6, 9).

ordered_line(1, 5, 9). ordered_line(3, 5, 7).

line(A, B, C) :- ordered_line(A, B, C).

line(A, B, C) :- ordered_line(A, C, B).

line(A, B, C) :- ordered_line(B, A, C).

line(A, B, C) :- ordered_line(B, C, A).

line(A, B, C) :- ordered_line(C, A, B).

line(A, B, C) :- ordered_line(C, B, A).

It is easy to prove that there is no winning strategy for tic-tac-toe: either player
can force a draw. Let us assume, however, that our program is playing against a
less-than-perfect opponent. Our task then is never to lose, and to maximize our
chances of winning if our opponent makes a mistake. The following rules work
well.
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Figure 11.3 A “split” in tac-tac-toe. If X takes the bottom center square (square 8), no future
move by O will be able to stop X from winning the game—O cannot block both the 2–5–8 line
and the 7–8–9 line.

move(A) :- good(A), empty(A).

full(A) :- x(A).

full(A) :- o(A).

empty(A) :- not(full(A)).

% strategy:

good(A) :- win(A). good(A) :- block_win(A).

good(A) :- split(A). good(A) :- strong_build(A).

good(A) :- weak_build(A).

The initial rule indicates that we can satisfy the goal move(A) by choosing
a good, empty square. The not is a built-in predicate that succeeds if its argu-
ment (a goal) cannot be proven; we discuss it further in the following subsection.
Square n is empty if we cannot prove it is full; that is, if neither x(n) nor o(n) is
in the database.

The key to strategy lies in the ordering of the last five rules. Our first choice is
to win:

win(A) :- x(B), x(C), line(A, B, C).

Our second choice is to prevent our opponent from winning:

block_win(A) :- o(B), o(C), line(A, B, C).

Our third choice is to create a “split”—a situation in which our opponent cannot
prevent us from winning on the next move (see Figure 11.3):

split(A) :- x(B), x(C), different(B, C),

line(A, B, D), line(A, C, E), empty(D), empty(E).

same(A, A).

different(A, B) :- not(same(A, B)).

Here we have again relied on the built-in predicate not.
Our fourth choice is to build toward three in a row (i.e., to get two in a row)

in such a way that the obvious blocking move won’t allow our opponent to build
toward three in a row:
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strong_build(A) :- x(B), line(A, B, C), empty(C), not(risky(C)).

risky(C) :- o(D), line(C, D, E), empty(E).

Barring that, our fifth choice is to build toward three in a row in such a way that
the obvious blocking move won’t give our opponent a split:

weak_build(A) :- x(B), line(A, B, C), empty(C), not(double_risky(C)).

double_risky(C) :- o(D), o(E), different(D, E), line(C, D, F),

line(C, E, G), empty(F), empty(G).

If none of these goals can be satisfied, our final, default choice is to pick an un-
occupied square, giving priority to the center, the corners, and the sides in that
order:

good(5).

good(1). good(3). good(7). good(9).

good(2). good(4). good(6). good(8). �

CHECK YOUR UNDERSTANDING

1. What mathematical formalism underlies logic programming?

2. What is a Horn clause?

3. Briefly describe the process of resolution in logic programming.

4. What is a unification? Why is it important in logic programming?

5. What are clauses, terms, and structures in Prolog? What are facts, rules, and
queries?

6. Explain how Prolog differs from imperative languages in its handling of arith-
metic.

7. Describe the difference between forward chaining and backward chaining.
Which is used in Prolog by default?

8. Describe the Prolog search strategy. Discuss backtracking and the instantia-
tion of variables.

11.2.6 Imperative Control Flow

We have seen that the ordering of clauses and of terms in Prolog is significant,
with ramifications for efficiency, termination, and choice among alternatives. In
addition to simple ordering, Prolog provides the programmer with several ex-
plicit control-flow features. The most important of these features is known as the
cut.

The cut is a zero-argument predicate written as an exclamation point: !. As
a subgoal it always succeeds, but with a crucial side effect: it commits the inter-
preter to whatever choices have been made since unifying the parent goal with the
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left-hand side of the current rule, including the choice of that unification itself.
For example, recall our definition of list membership:EXAMPLE 11.20

The cut
member(X, [X|T]).

member(X, [H|T]) :- member(X, T).

If a given atom a appears in list L n times, then the goal ?- member(a, L) can
succeed n times. These “extra” successes may not always be appropriate. They can
lead to wasted computation, particularly for long lists, when member is followed
by a goal that may fail:

prime_candidate(X) :- member(X, candidates), prime(X).

Suppose that prime(X) is expensive to compute. To determine whether a is a
prime candidate, we first check to see whether it is a member of the candidates
list, and then check to see whether it is prime. If prime(a) fails, Prolog will
backtrack and attempt to satisfy member(a, candidates) again. If a is in the
candidates list more than once, then the subgoal will succeed again, leading to
reconsideration of the prime(a) subgoal, even though that subgoal is doomed
to fail. We can save substantial time by cutting off all further searches for a after
the first is found:

member(X, [X|T]) :- !.

member(X, [H|T]) :- member(X, T).

The cut on the right-hand side of the first rule says that if X is the head of L, we
should not attempt to unify member(X, L) with the left-hand side of the second
rule; the cut commits us to the first rule. �

An alternative way to ensure that member(X, L) succeeds no more than onceEXAMPLE 11.21
Not and its implementation is to embed a use of not in the second clause:

member(X, [X|T]).

member(X, [H|T]) :- not(X = H), member(X, T).

This code will display the same high-level behavior but is slightly less efficient:
now the interpreter will actually consider the second rule, abandoning it only
after (re)unifying X with H and reversing the sense of the test.

It turns out that not is actually implemented by a combination of the cut and
two other built-in predicates, call and fail:

not(P) :- call(P), !, fail.

not(P).

The call predicate takes a term as argument and attempts to satisfy it as a goal
(terms are first-class values in Prolog). The fail predicate always fails. �

In principle, it is possible to replace all uses of the cut with uses of not—to
confine the cut to the implementation of not. Doing so often makes a program
easier to read. As we have seen, however, it often makes it less efficient. In some
cases, explicit use of the cut may actually make a program easier to read. ConsiderEXAMPLE 11.22

Pruning unwanted answers
with the cut

our tic-tac-toe example. If we type semicolons at the program, it will continue to
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generate a series of increasingly poor moves from the same board position, even
though we only want the first move. We can cut off consideration of the others
by using the cut:

move(A) :- good(A), empty(A), !.

To achieve the same effect with not we would have to do more major surgery
(Exercise 11.8). �

In general, the cut can be used whenever we want the effect of if. . . then . . .EXAMPLE 11.23
Using the cut for selection else:

statement :- condition, !, then_part.

statement :- else_part. �
The fail predicate can be used in conjunction with a “generator” to implementEXAMPLE 11.24

Looping with fail a loop. We have already seen how to effect a generator by driving a set of rules
“backward.” Recall our definition of append:

append([], A, A).

append([H | T], A, [H | L]) :- append(T, A, L).

To enumerate the ways in which a list can be partitioned into pairs, we can follow
a use of append with fail:

print_partitions(L) :- append(A, B, L),

write(A), write(’ ’), write(B), nl,

fail.

The nl predicate prints a newline character. The query print_partitions
([a, b, c]) produces the following output.

[] [a, b, c]

[a] [b, c]

[a, b] [c]

[a, b, c] []

no �
In some cases, we may have a generator that produces an unbounded sequence

of values. The following, for example, generates all of the natural numbers.EXAMPLE 11.25
Looping with an
unbounded generator natural(1).

natural(N) :- natural(M), N is M+1.

We can use this generator in conjunction with a “cut-fail” combination to iterate
over the first n numbers:

my_loop(N) :- natural(I), I =< N,

write(I), nl, % loop body (nl prints a newline)

I = N, !, fail.

As long as I is less than N, the equality predicate will fail, and backtracking will
pursue another alternative for natural. If I = N succeeds, however, then the cut
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will be executed, committing us to the current (final) choice of I, and terminat-
ing the loop. �

This programming idiom—an unbounded generator with a test-cut-fail
terminator—is known as generate-and-test. Like the iterative constructs of
Scheme (pages 533–534), it is generally used in conjunction with side effects.
One such side effect, clearly, is I/O. Another—modification of the database—is
considered in the following subsection.

Prolog provides a variety of I/O features. In addition to write and nl, which
print to the current output file, the read predicate can be used to read terms
from the current input file. Individual characters are read and written with get
and put. Input and output can be redirected to different files using see and
tell. Finally, the built-in predicates consult and reconsult can be used to
read database clauses from a file, so they don’t have to be typed into the inter-
preter by hand.

The predicate get attempts to unify its argument with the next printable char-EXAMPLE 11.26
Character input with get acter of input, skipping over ASCII characters with codes below 32. In effect, it

behaves as if it were implemented in terms of the simpler predicates get0 and
repeat:

get(X) :- repeat, get0(X), X >= 32, !.

The get0 predicate attempts to unify its argument with the single next character
of input, regardless of value and, like get, cannot be resatisfied during back-
tracking. The repeat predicate, by contrast, can succeed an arbitrary number of
times; it behaves as if it were implemented with the following pair of rules.

repeat.

repeat :- repeat.

Within the above definition of get, backtracking will return to repeat as
often as needed to produce a printable character (one with ASCII code at
least 32). In general, repeat allows us to turn any predicate with side effects into
a generator. �

11.2.7 Database Manipulation

Clauses in Prolog are simply collections of terms, connected by the built-in pred-EXAMPLE 11.27
Prolog programs as data icates :- and ,, both of which can be written in either infix or prefix form:

rainy(rochester).

rainy(seattle).

cold(rochester).

snowy(X) :- rainy(X),

cold(X).






≡ ’,’(rainy(rochester),

’,’(rainy(seattle),

’,’(cold(rochester),

:-(snowy(X), ’,’(rainy(X),

cold(X))))))

Here the single quotes around the prefix commas serve to distinguish them from
the commas that separate the arguments of a predicate. �
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The structural nature of clauses and database contents implies that Prolog,
like Scheme, is homoiconic: it can represent itself. It can also modify itself. A run-EXAMPLE 11.28

Modifying the Prolog
database

ning Prolog program can add clauses to its database with the built-in predicate
assert, or remove them with retract:

?- rainy(X).

X = seattle;

X = rochester;

no

?- assert(rainy(syracuse)).

yes

?- rainy(X).

X = seattle;

X = rochester;

X = syracuse;

no

?- retract(rainy(rochester)).

yes

?- rainy(X).

X = seattle;

X = syracuse;

no �
Figure 11.4 contains a complete Prolog program for tic-tac-toe. It usesEXAMPLE 11.29

Tic-tac-toe (full game) assert, retract, the cut, fail, repeat, and write to play an entire game.
Moves are added to the database with assert. They are cleared with retract at
the beginning of each game. This way the user can play multiple games without
restarting the interpreter. �

DESIGN & IMPLEMENTATION

Homoiconic languages
As we have noted, both Lisp/Scheme and Prolog are homoiconic A few other
languages—notably Snobol, Forth, and Tcl—share this property. What is its
significance? For most programs the answer is: not much. As long as we write
the sorts of programs that we’d write in other languages, the fact that programs
and data look the same is really just a curiosity. It becomes something more
if we are interested in metacomputing—the creation of programs that create
or manipulate other programs, or that extend themselves. Metacomputing re-
quires, at the least, that we have true first-class functions in the strict sense of
the term—that is, that we be able to generate new functions whose behavior
is determined dynamically. A homoiconic language can simplify metacomput-
ing by eliminating the need to translate between internal (data structure) and
external (syntactic) representations of programs or program extensions.
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ordered_line(1, 2, 3). ordered_line(4, 5, 6). ordered_line(7, 8, 9).

ordered_line(1, 4, 7). ordered_line(2, 5, 8). ordered_line(3, 6, 9).

ordered_line(1, 5, 9). ordered_line(3, 5, 7).

line(A, B, C) :- ordered_line(A, B, C). line(A, B, C) :- ordered_line(A, C, B).

line(A, B, C) :- ordered_line(B, A, C). line(A, B, C) :- ordered_line(B, C, A).

line(A, B, C) :- ordered_line(C, A, B). line(A, B, C) :- ordered_line(C, B, A).

full(A) :- x(A). full(A) :- o(A). empty(A) :- not(full(A)).

% NB: empty must be called with an already-instantiated A.

same(A, A). different(A, B) :- not(same(A, B)).

move(A) :- good(A), empty(A), !.

% strategy:

good(A) :- win(A). good(A) :- block_win(A). good(A) :- split(A).

good(A) :- strong_build(A). good(A) :- weak_build(A).

good(5). good(1). good(3). good(7). good(9). good(2). good(4). good(6). good(8).

win(A) :- x(B), x(C), line(A, B, C).

block_win(A) :- o(B), o(C), line(A, B, C).

split(A) :- x(B), x(C), different(B, C), line(A, B, D), line(A, C, E), empty(D), empty(E).

strong_build(A) :- x(B), line(A, B, C), empty(C), not(risky(C)).

weak_build(A) :- x(B), line(A, B, C), empty(C), not(double_risky(C)).

risky(A) :- o(D), line(C, D, E), empty(E).

double_risky(C) :- o(D), o(E), different(D, E), line(C, D, F), line(C, E, G), empty(F), empty(G).

all_full :- full(1), full(2), full(3), full(4), full(5), full(6), full(7), full(8), full(9).

done :- ordered_line(A, B, C), x(A), x(B), x(C), write(’I won.’), nl.

done :- all_full, write(’Draw.’), nl.

getmove :- repeat, write(’Please enter a move: ’), read(X), empty(X), assert(o(X)).

makemove :- move(X), !, assert(x(X)).

makemove :- all_full.

printsquare(N) :- o(N), write(’ o ’).

printsquare(N) :- x(N), write(’ x ’).

printsquare(N) :- empty(N), write(’ ’).

printboard :- printsquare(1), printsquare(2), printsquare(3), nl,

printsquare(4), printsquare(5), printsquare(6), nl,

printsquare(7), printsquare(8), printsquare(9), nl.

clear :- x(A), retract(x(A)), fail.

clear :- o(A), retract(o(A)), fail.

% main goal:

play :- not(clear), repeat, getmove, respond.

respond :- ordered_line(A, B, C), o(A), o(B), o(C),

printboard, write(’You won.’), nl. % Shouldn’t ever happen!

respond :- makemove, printboard, done.

Figure 11.4 Tic-tac-toe program in Prolog.



11.2 Prolog 577

Individual terms in Prolog can be created, or their contents extracted, usingEXAMPLE 11.30
The functor predicate the built-in predicates functor, arg, and =... The goal functor(T, F, N) suc-

ceeds if and only if T is a term with functor F and number of arguments N:

?- functor(foo(a, b, c), foo, 3).

yes

?- functor(foo(a, b, c), F, N).

F = foo

N = 3

?- functor(T, foo, 3).

T = foo(_10, _37, _24) �
The goal arg(N, T, A) succeeds if and only if its first two argumentsEXAMPLE 11.31

Creating terms at run time (N and T) are instantiated, N is a natural number, T is a term, and A is the Nth
argument of T:

?- arg(3, foo(a, b, c), A).

A = c

Using functor and arg together, we can create an arbitrary term:

?- functor(T, foo, 3), arg(1, T, a), arg(2, T, b), arg(3, T, c).

T = foo(a, b, c)

Alternatively, we can use the (infix) =.. predicate, which “equates” a term with a
list:

?- T =.. [foo, a, b, c].

T = foo(a, b, c)

?- foo(a, b, c) =.. [F, A1, A2, A3].

F = foo

A1 = a

A2 = b

A3 = c

Note that

?- foo(a, b, c) = F(A1, A2, A3).

and

?- F(A1, A2, A3) = foo(a, b, c).

do not work: the term preceding a left parenthesis must be an atom, not a
variable. �

Using =.. and call, the programmer can arrange to pursue (attempt to sat-EXAMPLE 11.32
Pursuing a dynamic goal isfy) a goal created at run time:

param_loop(L, H, F) :- natural(I), I >= L, I =< H,

G =.. [F, I], call(G),

I = H, !, fail.
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The goal param_loop(5, 10, write) will produce the following output.

5678910

no

If we want the numbers on separate lines we can write

writeln(X) :- write(X), nl.

...

?- param_loop(5, 10, writeln). �
Taken together, the predicates described above allow a Prolog program to cre-

ate and decompose clauses, and to add and subtract them from the database.
So far, however, the only mechanism we have for perusing the database (i.e., to
determine its contents) is the built-in search mechanism. To allow programs toEXAMPLE 11.33

Custom database perusal “reason” in more general ways, Prolog provides a clause predicate that attempts
to match its two arguments against the head and body of some existing clause in
the database:

?- clause(snowy(X), B).

X = _19

B = rainy(_19), cold(_19);

no

Here we have discovered (by entering a query and requesting further matches
with a semicolon) that there is a single rule in the database whose head is a single-
argument term with functor snowy. The body of that rule is the conjunction

DESIGN & IMPLEMENTATION

Reflection
A language mechanism is said to be reflective if it allows a program to rea-
son about its own structure. A language is said to be fully reflective if it al-
lows a program to reason about all aspects of its current structure and state.
Fully reflective languages are still just research prototypes, but limited forms
of reflection appear in several languages. The clause predicate in Prolog is a
noteworthy example. Given the functor and arity of a starting goal, it allows
a program to explore the substructure under that goal in the database. Us-
ing clause, the programmer can in fact write a metacircular interpreter (i.e.,
an implementation of call, see Exercise 11.12) or an evaluator that uses a
nonstandard search order (e.g., breadth-first or forward-chaining, see Exer-
cise 11.13). Other languages with significant reflection facilities include Java,
C#, Perl, PHP, Tcl, Python, and Ruby, all of which allow a program to inspect
and reason about its complete type structure. A few languages (e.g., Python)
allow a program to inspect its own source code as text, but this is not as power-
ful as the homoiconic inspection of Prolog or Scheme, which allows a program
to reason about its own code structure directly.
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B = rainy(_19), cold(_19), where _19 is the (uninstantiated) argument of
the head of the rule. Prolog requires that the first argument to clause be suffi-
ciently instantiated that its functor can be determined.

A clause with no body (a fact) matches the body true:

?- clause(rainy(rochester), true).

yes

Note that clause is quite different from call: it does not attempt to satisfy a goal,
simply to match it against an existing clause:

?- clause(snowy(rochester)).

no �
Various other built-in predicates can also be used to “deconstruct” the con-

tents of a clause. The var predicate takes a single argument; it succeeds as a goal
if and only if its argument is an uninstantiated variable. The atom and integer
predicates succeed as goals if and only if their arguments are atoms and integers,
respectively. The name predicate takes two arguments. It succeeds as a goal if and
only if its first argument is an atom and its second is a list composed of the ASCII
codes for the characters of that atom.

11.3 Theoretical Foundations

In mathematical logic, a predicate is a function that maps constants (atoms) or
variables to the values true and false. If rainy is a predicate, for example, we mightEXAMPLE 11.34

Predicates as mathematical
objects

have rainy(Seattle) = true and rainy(Tijuana) = false. Predicate calculus provides a
notation and inference rules for constructing and reasoning about propositions
(statements) composed of predicate applications, operators (and, or, not, etc.),
and the quantifiers ∀ and ∃. Logic programming formalizes the search for variable
values that will make a given proposition true. �

IN MORE DEPTH

In conventional logical notation there are many ways to state a given proposi-
tion. Logic programming is built on clausal form, which provides a unique ex-
pression for every proposition. Many though not all clausal forms can be cast as
a collection of Horn clauses, and thus translated into Prolog. On the PLP CD we
trace the steps required to translate an arbitrary proposition into clausal form.
We also characterize the cases in which this form can and cannot be translated
into Prolog.

11.4 Logic Programming in Perspective

In the abstract, logic programming is a very compelling idea: it suggests a model
of computing in which we simply list the logical properties of an unknown value,
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and then the computer figures out how to find it (or tells us it doesn’t exist).
Unfortunately, the current state of the art falls quite a bit short of the vision, for
both theoretical and practical reasons.

11.4.1 Parts of Logic Not Covered

As noted in Section 11.3, Horn clauses do not capture all of first-order pred-
icate calculus. In particular, they cannot be used to express statements whose
clausal form includes a disjunction with more than one nonnegated term. We
can sometimes get around this problem in Prolog by using the not predicate, but
the semantics are not the same (see Section 11.4.3).

11.4.2 Execution Order

While logic is inherently declarative, most logic languages explore the tree of
possible resolutions in deterministic order. Prolog provides a variety of predi-
cates, including the cut, fail, and repeat, to control that execution order (Sec-
tion 11.2.6). It also provides predicates, including assert, retract, and call,
to manipulate its database explicitly during execution.

DESIGN & IMPLEMENTATION

Implementing logic
Predicate calculus is a significantly higher-level notation than lambda calculus.
It is much more abstract—much less algorithmic. It is natural, therefore, that a
language like Prolog not provide the full power of predicate calculus, and that
it include extensions to make it more algorithmic. We may someday reach the
point where programming systems are capable of discovering good algorithms
from very high-level declarative specifications, but we are not there yet.

DESIGN & IMPLEMENTATION

Alternative search strategies
Some approaches to logic programming attempt to customize the run-time
search strategy in a way that is likely to satisfy goals quickly. Darlington
[Dar90], for example, describes a technique in which, when an intermediate
goal G fails, we try to find alternative instantiations of the variables in G that
will allow it to succeed, before backing up to previous goals and seeing whether
the alternative instantiations will work in them as well. This “failure-directed
search” seems to work well for certain classes of problems. Unfortunately, no
general technique is known that will automatically discover the best algorithm
(or even just a “good” one) for any given problem.
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In Section 11.2.4 (page 566), we saw that one must often consider execution
order to ensure that a Prolog search will terminate. Even for searches that termi-
nate, naive code can be very inefficient. Consider the problem of sorting. A nat-EXAMPLE 11.35

Sorting incredibly slowly ural declarative way to say that L2 is the sorted version of L1 is to say that L2 is a
permutation of L1 and L2 is sorted:

declarative_sort(L1, L2) :- permutation(L1, L2), sorted(L2).

permutation([], []).

permutation(L, [H|T]) :- append(P, [H|S], L), append(P, S, W),

permutation(W, T).

(The append and sorted predicates are defined in Section 11.2.2.) Unfortu-
nately, Prolog’s default search strategy will take exponential time to sort a list
based on these rules: it will generate permutations until it finds one that is
sorted. �

To obtain a more efficient sort, the Prolog programmer must adopt a less nat-EXAMPLE 11.36
Quicksort in Prolog ural, “imperative” definition:

quicksort([], []).

quicksort([A|L1], L2) :- partition(A, L1, P1, S1),

quicksort(P1, P2), quicksort(S1, S2), append(P2, [A|S2], L2).

partition(A, [], [], []).

partition(A, [H|T], [H|P], S) :- A >= H, partition(A, T, P, S).

partition(A, [H|T], P, [H|S]) :- A =< H, partition(A, T, P, S).

Even this sort is less efficient than one might hope in certain cases. When given
an already-sorted list, for example, it takes quadratic time, instead of O(n log n).
A good heuristic for quicksort is to partition the list using the median of the first,
middle, and last elements. Unfortunately, Prolog provides no easy way to access
the middle and final elements of a list (it has no arrays). �

As we saw in Chapter 9, it can be useful to distinguish between the specification
of a program and its implementation. The specification says what the program
is to do; the implementation says how it is to do it. Horn clauses provide an
excellent notation for specifications. When augmented with search rules (as in
Prolog) they allow implementations to be expressed in the same notation.

11.4.3 Negation and the “Closed World” Assumption

A collection of Horn clauses, such as the facts and rules of a Prolog database,
constitutes a list of things assumed to be true. It does not include any things
assumed to be false. This reliance on purely “positive” logic explains why Pro-
log’s not predicate is different from logical negation. Unless the database is as-
sumed to contain everything that is true (this is the closed world assumption), the
goal not(T) can succeed simply because our current knowledge is insufficient
to prove T. Moreover, negation in Prolog occurs outside any implicit existentialEXAMPLE 11.37

Negation as failure quantifiers on the right-hand side of a rule. Thus
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?- not(takes(X, his201)).

where X is uninstantiated, means

? ¬∃X[takes(X, his201)]

rather than
? ∃X[¬takes(X, his201)]

If our database indicates that jane_doe takes his201, then the goal takes(X,
his201) can succeed, and not(takes(X, his201)) will fail:

?- not(takes(X, his201)).

no

If we had a way to put the negation inside the quantifier, we might hope for an
implementation that would respond

?- not(takes(X, his201)).

X = ajit_chandra

or even

?- not(takes(X, his201)).

X != jane_doe

A complete characterization of the values of X for which ¬takes(X, his201) is
true would require a complete exploration of the resolution tree, something that
Prolog does only when all goals fail, or when repeatedly prompted with semi-
colons. Mechanisms to incorporate some sort of “constructive negation” into
logic programming are an active topic of research. �

It is worth noting that the definition of not in terms of failure means thatEXAMPLE 11.38
Negation and instantiation variable bindings are lost whenever not succeeds. For example,

?- takes(X, his201).

X = jane_doe

?- not(takes(X, his201)).

no

?- not(not(takes(X, his201))).

X = _395

When takes first succeeds, X is bound to jane_doe. When the inner not fails,
the binding is broken. Then when the outer not succeeds, a new binding is cre-
ated to an uninstantiated value. Prolog provides no way to pull the binding of X
out through the double negation. �

CHECK YOUR UNDERSTANDING

9. Explain the purpose of the cut (!) in Prolog. How does it relate to not?

10. Describe three ways in which Prolog programs can depart from a pure logic
programming model.
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11. Describe the generate-and-test programming idiom.

12. Summarize Prolog’s facilities for database manipulation. Be sure to mention
assert, retract, and clause.

13. What sorts of logical statements cannot be captured in Horn clauses?

14. What is the closed world assumption? What problems does it cause for logic
programming?

11.5 Summary and Concluding Remarks

In this chapter we have focused on the logic model of computing. Where an im-
perative program computes principally through iteration and side effects, and
a functional program computes principally through substitution of parameters
into functions, a logic program computes through the resolution of logical state-
ments, driven by the ability to unify variables and terms.

Much of our discussion was driven by an examination of the principal logic
language, Prolog, which we used to illustrate clauses and terms, resolution and
unification, search/execution order, list manipulation, and high-order predicates
for inspection and modification of the logic database.

Like imperative and functional programming, logic programming is related
to constructive proofs. But where an imperative or functional program in some
sense is a proof (of the ability to generate outputs from inputs), a logic program
is a set of axioms from which the computer attempts to construct a proof. And
where imperative and functional programming provide the full power of Turing
machines and lambda calculus, respectively (ignoring hardware-imposed limits
on arithmetic precision, disk and memory space, etc.), Prolog provides less than
the full generality of resolution theorem proving, in the interests of time and
space efficiency. At the same time, Prolog extends its formal counterpart with
true arithmetic, I/O, imperative control flow, and higher-order predicates for self-
inspection and modification.

Like Lisp/Scheme, Prolog makes heavy use of lists, largely because they can
easily be built incrementally, without the need to allocate and then modify state as
separate operations. And like Lisp/Scheme (but unlike ML and its descendants),
Prolog is homoiconic: programs look like ordinary data structures, and can be
created, modified, and executed on the fly.

As we stressed in Chapter 1, different models of computing are appealing in
different ways. Imperative programs more closely mirror the underlying hard-
ware, and can more easily be “tweaked” for high performance. Purely functional
programs avoid the semantic complexity of side effects, and have proven partic-
ularly handy for the manipulation of symbolic (nonnumeric) data. Logic pro-
grams, with their highly declarative semantics and their emphasis on unification,
are well-suited to problems that emphasize relationships and search. At the same
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time, their de-emphasis of control flow can lead to inefficiency. At the current
state of the art, computers have surpassed people in their ability to deal with
low-level details (e.g., of instruction scheduling), but people are still better at in-
venting good algorithms.

As we also stressed in Chapter 1, the borders between language classes are often
very fuzzy. The backtracking search of Prolog strongly resembles the execution of
generators in Icon. Unification in Prolog resembles (but is more powerful than)
the pattern matching capabilities of ML and Haskell. (Unification is also used
for type checking in ML and Haskell, and for template instantiation in C++, but
those are compile-time activities.)

There is much to be said for programming in a purely functional or logic-
based style. While most Scheme and Prolog programs make some use of impera-
tive language features, those features tend to be responsible for a disproportionate
share of program bugs. At the same time, there seem to be programming tasks—
graphical I/O, for example—that are almost impossible to accomplish without
side effects.

11.6 Exercises

11.1 Starting with the clauses at the beginning of Example 11.17, use resolution
(as illustrated in Example 11.3) to show, in two different ways, that there
is a path from a to e.

11.2 Solve Exercise 6.18 in Prolog.

11.3 Write a gcd definition in Prolog. Does your definition work “backward”
as well as forward? (Given integers d and n, can you use it to generate a
sequence of integers m such that gcd(n,m) = d?)

11.4 In the spirit of Example 10.23, write a Prolog program that exploits back-
tracking to simulate the execution of a nondeterministic finite automaton.

11.5 Show that resolution is commutative and associative. Specifically, if A, B,
and C are Horn clauses, show that (A ⊕ B) = (B ⊕ A) and that ((A ⊕ B)⊕
C) = (A ⊕ (B ⊕ C)), where ⊕ indicates resolution. Be sure to think about
what happens to variables that are instantiated as a result of unification.

11.6 In Example 11.8, the query ?- classmates(jane_doe, X) will suc-
ceed three times: twice with X = jane_doe and once with X = ajit_
chandra. Show how to modify the classmates(X, Y) rule so that a stu-
dent is not considered a classmate of him or herself.

11.7 Modify Example 11.17 so that the goal path(X, Y), for arbitrary already-
instantiated X and Y, will succeed no more than once, even if there are
multiple paths from X to Y.
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11.8 Using only not (no cuts), modify the tic-tac-toe example of Section 11.2.5
so it will generate only one candidate move from a given board position.
How does your solution compare to the cut-based one (Example 11.22)?

11.9 Prove that the tic-tac-toe strategy of Example 11.19 is optimal (wins when-
ever possible, draws otherwise), or give a counterexample.

11.10 Starting with the tic-tac-toe program of Figure 11.4, draw a directed
acyclic graph in which every clause is a node and an arc from A to B
indicates that it is important, either for correctness or efficiency, that A
come before B in the program. (Do not draw any other arcs.) Any topo-
logical sort of your graph should constitute an equally efficient version of
the program. (Is the existing program one of them?)

11.11 Write Prolog rules to define a version of the member predicate that will
generate all members of a list during backtracking, but without generating
duplicates. Note that the cut and not based versions of Example 11.20 will
not suffice; when asked to look for an uninstantiated member, they find
only the head of the list.

11.12 Use the clause predicate of Prolog to implement the call predicate
(pretend that it isn’t built-in). You needn’t implement all of the built-in
predicates of Prolog; in particular, you may ignore the various imperative
control-flow mechanisms and database manipulators. Extend your code
by making the database an explicit argument to call, effectively produc-
ing a meta-circular interpreter.

11.13 Use the clause predicate of Prolog to write a predicate call_bfs that
attempts to satisfy goals breadth-first. (Hint: You will want to keep a queue
of yet-to-be-pursued subgoals, each of which is represented by a stack that
captures backtracking alternatives.)

11.14 Write a (list-based) insertion sort algorithm in Prolog. Here’s what it looks
like in C, using arrays:

void insertion_sort(int A[], int N)

{

int i, j, t;

for (i = 1; i < N; i++) {

t = A[i];

for (j = i; j > 0; j--) {

if (t >= A[j-1]) break;

A[j] = A[j-1];

}

A[j] = t;

}

}

11.15 Quicksort works well for large lists, but has higher overhead than insertion
sort for short lists. Write a sort algorithm in Prolog that uses quicksort
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initially, but switches to insertion sort (as defined in the previous exercise)
for sublists of fifteen or fewer elements. (Hint: You can count the number
of elements during the partition operation.)

11.16 Write a Prolog sorting routine that is guaranteed to take O(n log n) time in
the worst case. (Hint: Try merge sort. A description can be found in almost
any algorithms or data structures text.)

11.17 Consider the following interaction with a Prolog interpreter.

?- Y = X, X = foo(X).

Y = foo(foo(foo(foo(foo(foo(foo(foo(foo(foo(foo(

foo(foo(foo(foo(foo(foo(foo(foo(foo(foo(foo(foo(

foo(foo(foo(foo(foo(foo(foo(foo(foo(foo(foo(foo(

foo(foo(foo(foo(foo(foo(foo(foo(foo(foo(foo(foo(

foo(foo(foo(foo(foo(foo(...

What is going on here? Why does the interpreter fall into an infinite loop?
Can you think of any circumstances (presumably not requiring output)
in which a structure like this one would be useful? If not, can you suggest
how a Prolog interpreter might implement checks to forbid its creation?
How expensive would those checks be? Would the cost in your opinion be
justified?

11.18–11.20 In More Depth.

11.7 Explorations

11.21 Learn about alternative search strategies for Prolog and other logic lan-
guages. How do backward chaining solvers work? What are the prospects
for intelligent hybrid strategies?

11.22 Between 1982 and 1992 the Japanese government invested large sums of
money in logic programming. Research the Fifth Generation project, ad-
ministered by the Japanese Ministry of International Trade and Industry
(MITI). What were its goals? What was achieved? What was not? How
tightly were the goals and outcomes tied to Prolog? What lessons can we
learn from the project today?

11.23 Read ahead to Chapter 13 and learn about XSLT, a language used to ma-
nipulate data represented in XML, the extended markup language (of
which XHTML, the latest standard for web pages, is an example). XSLT
is generally described as declarative. Is it logic-based? How does it com-
pare to Prolog in expressive power, level of abstraction, and execution ef-
ficiency?

11.24 Repeat the previous question for SQL, the database query language (for
an introduction, type “SQL tutorial” into your favorite Internet search en-
gine).
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11.25 Spreadsheets like Microsoft Excel and the older VisiCalc and Lotus 1-2-3
are sometimes characterized as declarative programming. Is this fair? Ig-
noring extensions like Visual Basic macros, does the ability to define rela-
tionships among cells provide Turing-equivalent computing power? Com-
pare the execution model to that of Prolog. How is the order of update for
cells determined? Can data be pushed “both ways” as they can in Prolog?

11.26–11.29 In More Depth.

11.8 Bibliographic Notes

Logic programming has its roots in automated theorem proving. Much of the
theoretical groundwork was laid by Horn in the early 1950s [Hor51] and by
Robinson in the early 1960s [Rob65]. The breakthrough for computing came in
the early 1970s, when Colmeraurer and Roussel at the University of Aix–Marseille
in France and Kowalski and his colleagues at the University of Edinburgh in
Scotland developed the initial version of Prolog. The early history of the lan-
guage is recounted by Robinson [Rob83]. Theoretical foundations are covered by
Lloyd [Llo87].

Prolog was originally intended for research in natural language processing, but
it soon became apparent that it could serve as a general purpose language. Several
versions of Prolog have since evolved. The one described here is the widely used
Edinburgh dialect. The ISO standard [Int95c] is similar.

Several other logic languages have been developed, though none has yet to
rival Prolog in popularity. The most widely used is probably OPS5 [BFKM86].
The more recent Gödel [HL94] includes modules, strong typing, a richer va-
riety of logical operators, and enhanced control of execution order. Database
query languages stemming from Datalog [Ull85][UW97, Secs. 4.2–4.4] are im-
plemented using forward chaining. CLP (Constraint Logic Programming) and
its variants are largely based on Prolog, but employ a more general constraint-
satisfaction mechanism in place of unification [JM94]. Extensive online resources
for logic programming can be found at http://vl.fmnet.info/logic-prog/. There is
also a comp.lang.prolog newsgroup.
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The bulk of this text has focused, implicitly, on sequential programs: pro-
grams with a single active execution context. As we saw in Chapter 6, sequen-
tiality is fundamental to imperative programming. It also tends to be implicit in
declarative programming, partly because practical functional and logic languages
usually include some imperative features and partly because people tend to de-
velop imperative implementations and mental models of declarative programs
(applicative order reduction, backward chaining with backtracking), even when
language semantics do not require such a model.

By contrast, a program is said to be concurrent if it contains more than one
active execution context—more than one “thread of control.” Concurrency arises
for at least three important reasons.

1. To capture the logical structure of a problem. Many programs, particularly
servers and graphical applications, must keep track of more than one largely
independent “task” at the same time. Often the simplest and most logical way
to structure such a program is to represent each task with a separate thread
of control. We touched on this “multithreaded” structure when discussing
coroutines (Section 8.6); we will return to it in Section 12.1.2.

2. To cope with independent physical devices. Some software is by necessity con-
current. An operating system may be interrupted by a device at almost any
time. It needs one context to represent what it was doing before the interrupt
and another for the interrupt itself. Likewise a system for real-time control
(e.g., of a factory, or even an automobile) is likely to include a large number
of processors, each connected to a separate machine or device. Each processor
has its own thread(s) of control, which must interact with the threads on other
processors to accomplish the overall objectives of the system. Message-routing
software for the Internet is in some sense a very large concurrent program,
running on thousands of servers around the world.

3. To increase performance by running on more than one processor at once.
Even when concurrency is not dictated by the structure of a program or the

589
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hardware on which it has to run, we can often increase performance by choos-
ing to have more than one processor work on the problem simultaneously.
With many processors, the resulting parallel speedup can be very large.

Section 12.1 contains a brief overview of the history of concurrent program-
ming. It highlights major advances in parallel hardware and applications, makes
the case for multithreaded programs (even on uniprocessors), and surveys the
architectural features of modern multiprocessors. In Section 12.2 we survey the
many ways in which parallelism may be expressed in an application. We intro-
duce the message-passing and shared-memory approaches to communication
and synchronization, and note that they can be implemented either in an ex-
plicitly concurrent programming language or in a library package intended for
use with a conventional sequential language. Building on coroutines, we explain
how a language or library can create and schedule threads. In the two remaining
sections (12.3 and 12.4) we look at shared memory and message passing in detail.
Most of the shared-memory section is devoted to synchronization.

12.1 Background and Motivation

Concurrency is not a new idea. Much of the theoretical groundwork for con-
current programming was laid in the 1960s, and Algol 68 includes concurrent
programming features. Widespread interest in concurrency is a relatively recent
phenomenon, however; it stems in part from the availability of low-cost multi-
processors and in part from the proliferation of graphical, multimedia, and web-
based applications, all of which are naturally represented by concurrent threads
of control.

Concurrency is an issue at many levels of a typical computer system. At the
digital logic level, almost everything happens in parallel: signals propagate down
thousands of connections at once. At the next level up, the pipelining and super-
scalar features of modern processors are designed to exploit the instruction-level
parallelism available in well-scheduled programs. In this chapter we will focus
on medium to large scale concurrency, represented by constructs that are seman-
tically visible to the programmer, and that can be exploited by machines with
many processors. In Sections 12.1.3 and 12.3.6 we will also mention an interme-
diate level of parallelism available on special purpose vector processors.

12.1.1 A Little History

The very first computers were single-user machines, used in stand-alone mode:
people signed up for blocks of time, during which they enjoyed exclusive use of
the hardware. Unfortunately, while single-user machines make good economic
sense today, they constituted a terrible waste of resources in the late 1940s, when
the cheapest computer cost millions of dollars. Rather than allow a machine to
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sit idle while the user examined output or pondered the source of a bug, com-
puter centers quickly switched to a mode of operation in which users created jobs
(sequences of programs and their input) offline (e.g., on a keypunch machine)
and then submitted them to an operator for execution. The operator would keep
a batch of jobs constantly queued up for input on punch cards or magnetic tape.
As its final operation, each program would transfer control back to a resident
monitor program—a form of primitive operating system—which would imme-
diately read the next program into memory for execution, from the current job
or the next one, without operator intervention.

Unfortunately, this simple form of batch processing still left the processor idle
much of the time, particularly on commercial applications, which tended to read
a large number of data records from cards or tape, with comparatively little com-
putation per record. To perform an I/O operation (to write results to a printer
or magnetic tape, or to read a new program or input data into memory), the
processor in a simple batch system would send a command to the I/O device
and then busy-wait for completion, repeatedly testing a variable that the device
would modify when done with its operation. Given a punch card device capable
of reading four cards per second, a 40-kHz vacuum-tube computer would waste
10,000 instructions per card while waiting for input. If it performed fewer than
10,000 instructions of computation on average before reading another card, the
processor would be idle more than half the time! To make use of the cycles lost
to busy-waiting, researchers developed techniques to overlap I/O and compu-
tation. In particular, they developed interrupt-driven I/O, which eliminates the
need to busy-wait, and multiprogramming, which allows more than one applica-
tion program to reside in memory at once. Both of these innovations required
new hardware support: the former to implement interrupts, the latter to imple-
ment memory protection, so that errors in one program could not corrupt the
memory of another.

Multiprogramming and Interrupt-Driven I/O

On a multiprogrammed batch system, the operating system keeps track of which
programs are waiting for I/O to complete and which are currently runnable. To
read or write a record, the currently running program transfers control to the
operating system. The OS sends a command to the device to start the requested
operation, and then transfers control immediately to a different program (as-
suming one is runnable). When the device completes its operation, it generates
an interrupt, which causes the processor to transfer back into the operating sys-
tem. The OS notes that the earlier program is runnable again. It then chooses a
program from among those that are runnable and transfers back to it. The only
time the processor is idle is when all of the programs that have been loaded into
memory are waiting for I/O.

Interrupt-driven I/O introduced concurrency within the operating system.
Because an interrupt can happen at an arbitrary time, including when control
is already in the operating system, the interrupt handlers and the main bulk of
the OS function as concurrent threads of control. If an interrupt occurs while theEXAMPLE 12.1

A race condition in the
operating system
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Figure 12.1 Example of a race condition. Here the currently running program attempts to
insert a new element into the beginning of a list. In the middle of this operation, an interrupt oc-
curs and the interrupt handler attempts to insert a different element into the list. In the absence
of synchronization, one of the elements may be lost (unreachable from the head pointer).

OS is modifying a data structure (e.g., the list of runnable programs) that may
also be used by a handler, then it is possible for the handler to see that data struc-
ture in an inconsistent state (see Figure 12.1). This problem is an example of a
race condition: the thread that corresponds to the main body of the OS and the
thread that corresponds to the device are “racing” toward points in the code at
which they touch some common object, and the behavior of the system depends
on which thread gets there first. To ensure correct behavior, we must synchronize
the actions of the threads: take explicit steps to control the order in which their
actions occur. We discuss synchronization further in Section 12.3. It should be
noted that not all race conditions are bad: sometimes any of the possible pro-
gram outcomes are acceptable. The goal of synchronization is to resolve “bad”
race conditions: those that might otherwise cause the program to produce incor-
rect results. �

Timesharing and Distribution

With increases in the size of physical memory, and with the development of vir-
tual memory, it became possible to build systems with an almost arbitrary num-
ber of simultaneously loaded programs. Instead of submitting jobs offline, users
could now sit at a terminal and interact with the computer directly. To provide
interactive response to keystrokes, however, the OS needed to implement preemp-
tion. Whereas a batch system switches from one program to another only when
the first one blocks for I/O, a preemptive, timesharing system switches several
times per second as a matter of course. These context switches prevent a compute-
bound program from hogging the machine for seconds or minutes at a time,
denying access to users at keyboards.
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By the early 1970s, timesharing systems were relatively common. When aug-
mented with mechanisms to allow data sharing or other forms of communication
among currently runnable programs, they introduced concurrency in user-level
applications. Shortly thereafter, the emergence of computer networks introduced
true parallelism in the form of distributed systems: programs running on physi-
cally separate machines and communicating with messages.

Most distributed systems reflect our second rationale for concurrency: they
have to be concurrent in order to cope with multiple devices. A few reflect
the third rationale: they are distributed in order to exploit the speedup avail-
able from multiple processors. Parallel speedup is more commonly pursued on
single-chassis multiprocessors, with internal networks designed for very high
bandwidth communication. Though multiprocessors have been around since the
1960s, they did not become commonplace until the 1980s. Around the turn of
the century they began to appear in consumer-grade desktop machines. Given
the challenge of cooling ever more complex uniprocessors, it seems likely that
within the next few years most desktop machines will employ multiple simpler
processors on a single chip.

12.1.2 The Case for Multithreaded Programs

Our first rationale for concurrency—to capture the logical structure of certain
applications—has arisen several times in earlier chapters. In Section 7.9.1 we
noted that interactive I/O must often interrupt the execution of the current pro-
gram. In a video game, for example, we must handle keystrokes and mouse or
joystick motions while continually updating the image on the screen. By far the
most convenient way to structure such a program is to represent the input han-
dlers as concurrent threads of control, which coexist with one or more threads
responsible for updating the screen. In Section 8.6, we considered a screen saver
program that used coroutines to interleave “sanity checks” on the file system with
updates to a moving picture on the screen. We also considered discrete-event sim-
ulation, which uses coroutines to represent the active entities of some real-world
system.

The semantics of discrete-event simulation require that events occur atomi-
cally at fixed points in time. Coroutines provide a natural implementation be-
cause they execute one at a time. In our other examples, however—and indeed
in most “naturally concurrent” programs—there is no need for coroutine se-
mantics. By assigning concurrent tasks to threads instead of to coroutines, we
acknowledge that those tasks can proceed in parallel if more than one processor
is available. We also move responsibility for figuring out which thread should run
when from the programmer to the language implementation.

The need for multithreaded programs has become particularly apparent in re-EXAMPLE 12.2
Multithreaded web
browser

cent years with the development of web-based applications. In a browser such
as Firefox or Internet Explorer (see Figure 12.2), there are typically many differ-
ent threads simultaneously active, each of which is likely to communicate with a
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procedure parse page(address : url)
contact server, request page contents
parse html header
while current token in {“<p>”, “<h1>”, “<ul>”, . . . ,

“<background”, “<image”, “<table”, “<frameset”, . . . }
case current token of

“<p>” : break paragraph
“<h1>” : format heading; match(“< /h1>”)
“<ul>” : format list; match(“< /ul>”)
. . .
“<background” :

a : attributes := parse attributes
fork render background(a)

“<image” : a : attributes := parse attributes
fork render image(a)

“<table” : a : attributes := parse attributes
scan forward for “< /table>” token
token stream s :=. . . –– table contents
fork format table(s, a)

“<frameset” :
a : attributes := parse attributes
parse frame list(a)
match(“< /frameset>”)

. . .
. . .

procedure parse frame list(a1 : attributes)
while current token in {“<frame”, “<frameset”, “<noframes>”}

case current token of
“<frame” : a2 : attributes := parse attributes

fork format frame(a1, a2)
. . .

Figure 12.2 Thread-based code from a hypothetical Web browser. To first approximation,
the parse page subroutine is the root of a recursive-descent parser for HTML. In several cases,
however, the actions associated with recognition of a construct (background, image, table, frame-
set) proceed concurrently with continued parsing of the page itself. In this example, concurrent
threads are created with the fork operation. Other threads would be created automatically in
response to keyboard and mouse events.

remote (and possibly very slow) server several times before completing its task.
When the user clicks on a link, the browser creates a thread to request the speci-
fied document. For all but the tiniest pages, this thread will then receive a long se-
ries of message “packets.” As these packets begin to arrive the thread must format
them for presentation on the screen. The formatting task is akin to typesetting:
the thread must access fonts, assemble words, and break the words into lines. For
many special tags within the page, the formatting thread will spawn additional
threads: one for each image, one for the background if any, one to format each
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table, and possibly more to handle separate frames. Each spawned thread will
communicate with the server to obtain the information it needs (e.g., the con-
tents of an image) for its particular task. The user, meanwhile, can access items in
menus to create new browser windows, edit bookmarks, change preferences, and
so on, all in “parallel” with the rendering of page elements. �

The use of many threads ensures that comparatively fast operations (e.g., dis-
play of text) do not wait for slow operations (e.g., display of large images). When-
ever one thread blocks (waits for a message or I/O), the implementation automat-
ically switches to a different thread. In a preemptive thread package, the imple-
mentation switches among threads at other times as well, to make sure that none
of them hogs the CPU. Any reader who remembers the early, more sequential
browsers will appreciate the difference that multithreading makes in perceived
performance and responsiveness.

The Dispatch Loop Alternative

Without language or library support for threads, a browser must either adopt aEXAMPLE 12.3
Dispatch loop web
browser

more sequential structure, or centralize the handling of all delay-inducing events
in a single dispatch loop (see Figure 12.3). Data structures associated with the
dispatch loop keep track of all the tasks the browser has yet to complete. The
state of a task may be quite complicated. For the high-level task of rendering a
page, the state must indicate which packets have been received and which are still
outstanding. It must also identify the various subtasks of the page (images, tables,
frames, etc.) so that we can find them all and reclaim their state if the user clicks
on a “stop” button.

To guarantee good interactive response, we must make sure that no subaction
of continue task takes very long to execute. Clearly we must end the current ac-
tion whenever we wait for a message. We must also end it whenever we read from
a file, since disk operations are slow. Finally, if any task needs to compute for
longer than about a tenth of a second (the typical human perceptual threshold),
then we must divide the task into pieces, between which we save state and return
to the top of the loop. These considerations imply that the condition at the top
of the loop must cover the full range of asynchronous events, and that evalua-
tions of the condition must be interleaved with continued execution of any tasks
that were subdivided due to lengthy computation. (In practice we would prob-
ably need a more sophisticated mechanism than simple interleaving to ensure
that neither input-driven nor compute-bound tasks hog more than their share of
resources.) �

The principal problem with a dispatch loop—beyond the complexity of subdi-
viding tasks and saving state—is that it hides the algorithmic structure of the pro-
gram. Every distinct task (retrieving a page, rendering an image, walking through
nested menus) could be described elegantly with standard control-flow mecha-
nisms, if not for the fact that we must return to the top of the dispatch loop
at every delay-inducing operation. In effect, the dispatch loop turns the pro-
gram “inside out,” making the management of tasks explicit and the control flow
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type task descriptor = record
–– fields in lieu of thread-local variables, plus control-flow information
. . .

ready tasks : queue of task descriptor
. . .
procedure dispatch

loop
–– try to do something input-driven
if a new event E (message, keystroke, etc.) is available

if an existing task T is waiting for E
continue task(T, E)

else if E can be handled quickly, do so
else

allocate and initialize new task T
continue task(T, E)

–– now do something compute bound
if ready tasks is nonempty

continue task(dequeue(ready tasks), ‘ok’)

procedure continue task(T : task, E : event)
if T is rendering an image

and E is a message containing the next block of data
continue image render(T, E)

else if T is formatting a page
and E is a message containing the next block of data

continue page parse(T, E)
else if T is formatting a page

and E is ‘ok’ –– we’re compute bound
continue page parse(T, E)

else if T is reading the bookmarks file
and E is an I/O completion event

continue goto page(T, E)
else if T is formatting a frame

and E is a push of the “stop” button
deallocate T and all tasks dependent upon it

else if E is the “edit preferences” menu item
edit preferences(T, E)

else if T is already editing preferences
and E is a newly typed keystroke

edit preferences(T, E)
. . .

Figure 12.3 Dispatch loop from a hypothetical non-thread-based Web browser. The clauses
in continue task must cover all possible combinations of task state and triggering event. The
code in each clause performs the next coherent unit of work for its task, returning when (1) it
must wait for an event, (2) it has consumed a significant amount of compute time, or (3) the
task is complete. Prior to returning, respectively, code (1) places the task in a dictionary (used
by dispatch) that maps awaited events to the tasks that are waiting for them, (2) enqueues the
task in ready tasks, or (3) deallocates the task.
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within tasks implicit. The resulting complexity is similar to what we encountered
when trying to enumerate a recursive set with iterator objects in Section 6.5.3,
only worse. Like true iterators, a thread package turns the program “right-side
out,” making the management of tasks (threads) implicit and the control flow
within threads explicit.

Personal Computers

With the development of personal computers, much of the history of operat-
ing systems has repeated itself. Early PCs performed busy-wait I/O and ran one
application at a time. With the development of Microsoft Windows and the Mul-
tifinder version of the MacOS, PC vendors added the ability to hold more than
one program in memory at once, and to switch between them on I/O. Because
a PC is a single-user machine, however, the need for preemption was not felt as
keenly as in multiuser systems. For a long time it was considered acceptable for
the currently running program to hog the processor: after all, that program is
what the (single) user wants to run. As PCs became more sophisticated, how-
ever, users began to demand concurrent execution of threads such as those in a
browser, as well as “background” threads that update windows, check for e-mail,
babysit slow printers, and so on. To some extent background computation can
be accommodated by requiring every program to “voluntarily” yield control of
the processor at well-defined “clean points” in the computation. This sort of “co-
operative multiprogramming” was found in Windows 3.1 and MacOS version
7. Unfortunately, some programs do not yield as often as they should, and the
inconsistent response of cooperatively multiprogrammed systems grew increas-
ingly annoying to users. Windows 95 added preemption for 32-bit applications.
Windows NT and MacOS X add preemption for all programs, running them in
separate address spaces so bugs in one program don’t damage another or cause
the machine to crash.

12.1.3 Multiprocessor Architecture

Single-site (non-distributed) parallel computers can be grouped into two broad
categories: those in which processors share access to common memory and those
in which they must communicate with messages. Shared-memory machines are
typically referred to as multiprocessors, though occasionally one hears that term
applied to message-based machines as well. A multiprocessor typically occupies
a single cabinet, in which the processors share not only memory, but also disks,
power supplies, and a single copy of the operating system. Recent years have also
seen a proliferation of computer clusters, in which uniprocessors or small mul-
tiprocessors, each physically capable of independent operation, are packed into
a shared set of racks, connected by a high-speed system-area network, and ad-
ministered as a single entity. Large-scale online services like Google, Amazon, or
eBay are typically backed by clusters with hundreds or even thousands of proces-
sors. One will sometimes hear the term multicomputer applied to a single-chassis
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message-based machine. Multicomputers were popular for high-end scientific
and database applications of the 1980s and 1990s, but have for the most part
been displaced in recent years by clusters and large multiprocessors.

Small shared-memory multiprocessors are usually symmetric in the sense that
all memory is equally distant from all processors. Large multiprocessors usually
display a distributed memory architecture, in which each memory bank is physi-
cally adjacent to a particular processor or small group of processors. Any proces-
sor can access the memory of any other, but local memory is faster. The small ma-
chines are sometimes called SMPs, for “symmetric multiprocessor.” Their large
cousins are sometimes called NUMA machines, for “nonuniform memory ac-
cess.”

Since the late 1960s, the market for high-end supercomputers has been dom-
inated by so-called vector processors, which provide special instructions capable
of applying the same operation to every element of an array. Vector instructions
are very easy to pipeline. They are useful in many scientific programs, partic-
ularly those in which the programmer has explicitly annotated loops whose it-
erations can execute concurrently (we will discuss such loops in Sections 12.2.3
[Example 12.9] and 12.3.6). Traditional vector processors, however, are special
purpose, multichip designs, and the inexorable advance of the general purpose
microprocessor has steadily eroded their market share. At the same time, ideas
from vector processors have made their way into the microprocessor world—for
example, in the form of the MMX extensions to the Pentium instruction set.

From the point of view of a language or library implementor, the principal dis-
tinction between a message-based cluster and a shared-memory multiprocessor
is that communication on the former requires the active participation of proces-
sors on both ends of the connection: one to send, the other to receive. On a
shared-memory machine, a processor can read and write remote memory with-
out the assistance of a remote processor. In most cases remote reads and writes
use the same interface (i.e., load and store instructions) as local reads and writes.

Interconnection Networks

No matter what the communication model, every parallel computer requires
some sort of interconnection network to tie its processors and memories to-
gether. Most small, symmetric machines are connected by a bus. A few are con-
nected by a crossbar switch, in which every processor has a direct connection to
every memory bank, forming a complete bipartite graph. Larger machines canEXAMPLE 12.4

Direct and indirect
networks

be grouped into two camps: those with indirect and direct networks. An indirect
network resembles a fishing net stretched around the outside of a cylinder (see
Figure 12.4). The “knots” in the net are message-routing switches. A direct net-
work has no internal switches: all connections run directly from one node to an-
other. Both indirect and direct networks have many topological variants. Indirect
networks are generally designed so that the distance from any node to any other
is O(log P), where P is the total number of nodes. The distance between nodes
in a direct network may be as large as O(

√
P). In practice, a hardware technique
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Figure 12.4 Multiprocessor network topology. In an indirect network (left), processing nodes
are equally distant from one another. They communicate through a log-depth switching network.
In a direct network (right), there are no switching nodes: each processing node sends messages
through a small fixed number of neighbors.

known as wormhole routing makes communication with distant nodes almost as
fast as with neighbors. �

Memory Coherence

In any machine built from modern microprocessors, performance depends crit-
ically on very fast (low latency) access to memory. To minimize delays, almost
all machines depend on caches. On a message-passing machine, each processor
caches its own memory. On a shared-memory machine, however, caches intro-
duce a serious problem: unless we do something special, a processor that has
cached a particular memory location will not see changes that are made to that
location by other processors. This problem—how to keep cached copies of aEXAMPLE 12.5

The cache coherence
problem

memory location consistent with one another—is known as the coherence prob-
lem (see Figure 12.5). On bus-based symmetric machines the problem is rela-
tively easy to solve: the broadcast nature of the communication medium allows
cache controllers to eavesdrop (snoop) on the memory traffic of other processors.
When another processor writes a location that is contained in the local cache, the
controller can either grab the new value off the bus or, more commonly, inval-
idate the affected cache line, forcing the processor to go back to memory (or to
some other processor’s cache) the next time the line is needed. Bus-based cache
coherence algorithms are now a standard, built-in part of most commercial mi-
croprocessors. On large machines, the lack of a broadcast bus makes cache co-
herence a significantly more difficult problem; commercial implementations are
available, but the subject remains an active topic of research. �

As of 2005, small bus-based SMPs are available from dozens of manufacturers,
with x86, PowerPC, Sparc, AMD64 (Opteron), and IA-64 (Itanium) processors.
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Figure 12.5 The cache coherence problem for shared-memory multiprocessors. Here
processors A and B have both read variable X from memory. As a side effect, a copy of X
has been created in the cache of each processor. If A now changes X to 4 and B reads X again,
how do we ensure that the result is a 4 and not the still-cached 3? Similarly, if Z reads X into its
cache, how do we ensure that it obtains the 4 from A’s cache instead of the stale 3 from main
memory?

Several manufacturers have recently released, or are currently developing, single-
chip multiprocessors. Larger, cache-coherent shared-memory multiprocessors
are available from several manufacturers, including Sun, HP, IBM, and SGI. All of
these machines copy remote data to the local cache when accessed. The Cray X1,
by contrast, has a shared, coherent address space, but remote locations are never
cached. The field is very much in flux: several large parallel machines and manu-
facturers have disappeared from the market in recent years; several new machines
are scheduled to appear in the near future.

CHECK YOUR UNDERSTANDING

1. Explain the rationale for concurrency: why do people write concurrent pro-
grams? What accounts for the increased interest in concurrency in recent
years?

2. Describe the evolution of computer operation from stand-alone mode to
batch processing, to multiprogramming and timesharing.

3. What is interrupt-driven I/O? What does it have to do with concurrency?

4. What is a race condition?

5. What is a context switch? What is preemption?

6. What is a dispatch loop? What are its advantages and disadvantages?

7. Explain the distinction between a multiprocessor and a cluster.

8. Explain the coherence problem in the context of multiprocessor caches.

9. What is symmetric about a symmetric multiprocessor (SMP)?
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12.2 Concurrent Programming Fundamentals

We will use the word concurrency to characterize any program in which two or
more execution contexts may be active at the same time. Under this definition,
coroutines are not concurrent, because only one of them can be active at once.
We will use the term parallelism to characterize concurrent programs in which
execution is actually happening in more than one context at once. True paral-
lelism thus requires parallel hardware. From a semantic point of view, there is no
difference between true parallelism and the “quasiparallelism” of a preemptive
concurrent system, which switches between execution contexts at unpredictable
times: the same programming techniques apply in both situations.

Within a concurrent program, we will refer to an execution context as a thread.
The threads of a given program are implemented on top of one or more processes
provided by the operating system. OS designers often distinguish between a
heavyweight process, which has its own address space, and a collection of light-
weight processes, which may share an address space. Lightweight processes were
added to most variants of Unix in the late 1980s and early 1990s, to accommo-
date the proliferation of shared-memory multiprocessors. Without lightweight
processes, the threads of a concurrent program must run on top of more than
one heavyweight process, and the language implementation must ensure that any
data that is to be shared among threads is mapped into the address space of all
the processes.

We will sometimes use the word task to refer to a well-defined unit of work
that must be performed by some thread. In one common programming idiom, a
collection of threads shares a common “bag of tasks”: a list of work to be done.
Each thread repeatedly removes a task from the bag, performs it, and goes back
for another. Sometimes the work of a task entails adding new tasks to the bag.

Unfortunately, the vocabulary of concurrent programming is not consistent
across languages or authors. Several languages call their threads processes. Ada
calls them tasks. Several operating systems call lightweight processes threads. The
Mach OS, from which OSF Unix and MacOS X are derived, calls the address space
shared by lightweight processes a task. A few systems try to avoid ambiguity by
coining new words, such as “actors” or “filaments.” We will attempt to use the
definitions of the preceding two paragraphs consistently, and to identify cases in
which the terminology of particular languages or systems differs from this usage.

12.2.1 Communication and Synchronization

In any concurrent programming model, two of the most crucial issues to be ad-
dressed are communication and synchronization. Communication refers to any
mechanism that allows one thread to obtain information produced by another.
Communication mechanisms for imperative programs are generally based on
either shared memory or message passing. In a shared-memory programming



602 Chapter 12 Concurrency

model, some or all of a program’s variables are accessible to multiple threads.
For a pair of threads to communicate, one of them writes a value to a variable
and the other simply reads it. In a message-passing programming model, threads
have no common state. For a pair of threads to communicate, one of them must
perform an explicit send operation to transmit data to another.

Synchronization refers to any mechanism that allows the programmer to con-
trol the relative order in which operations occur in different threads. Synchro-
nization is generally implicit in message-passing models: a message must be sent
before it can be received. If a thread attempts to receive a message that has not yet
been sent, it will wait for the sender to catch up. Synchronization is generally not
implicit in shared-memory models: unless we do something special, a “receiving”
thread could read the “old” value of a variable, before it has been written by the
“sender.” In both shared-memory and message-based programs, synchronization
can be implemented either by spinning (also called busy-waiting) or by blocking.
In busy-wait synchronization, a thread runs a loop in which it keeps reevaluating
some condition until that condition becomes true (e.g., until a message queue
becomes nonempty or a shared variable attains a particular value)—presumably
as a result of action in some other thread, running on some other processor. Note
that busy-waiting makes no sense for synchronizing threads on a uniprocessor:
we cannot expect a condition to become true while we are monopolizing a re-
source (the processor) required to make it true. (A thread on a uniprocessor may
sometimes busy-wait for the completion of I/O, but that’s a different situation:
the I/O device runs in parallel with the processor.)

In blocking synchronization (also called scheduler-based synchronization), the
waiting thread voluntarily relinquishes its processor to some other thread. Before
doing so, it leaves a note in some data structure associated with the synchro-
nization condition. A thread that makes the condition true at some point in the
future will find the note and take action to make the blocked thread run again.
We will consider synchronization again briefly in Section 12.2.4, and then more
thoroughly in Section 12.3.

DESIGN & IMPLEMENTATION

Hardware and software communication
As noted in Section 12.1.3, the distinction between shared memory and mes-
sage passing applies not only to languages and libraries but also to computer
hardware. It is important to note that the model of communication and syn-
chronization provided by the language or library need not necessarily agree
with that of the underlying hardware. It is easy to implement message passing
on top of shared-memory hardware. With a little more effort, one can also im-
plement shared memory on top of message-passing hardware. Systems in this
latter camp are sometimes referred to as software distributed shared memory
(S-DSM).
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12.2.2 Languages and Libraries

Concurrency can be provided to the programmer in the form of explicitly con-
current languages, compiler-supported extensions to traditional sequential lan-
guages, or library packages outside the language proper. The latter two alterna-
tives have historically been the most common: most parallel programs currently
in use are either annotated Fortran for vector machines or C/C++ code with li-
brary calls. With the proliferation of Java and C# this situation is beginning to
change, at least at the “low end.” It is likely to be some time, however, before
explicitly parallel languages displace Fortran, C, and C++ for high-performance
parallel applications.

Most SMP vendors provide a parallel programming library based on shared
memory and threads. In the Unix world this library typically implements the
POSIX pthreads standard [Ope96]. (Microsoft provides similar functionality
for Windows.) For message-based computing, existing libraries can be grouped
into two main categories: those that are intended primarily for communication
among the processes of a single program and those that are intended primar-
ily for communication across program boundaries. Packages in this latter camp
usually implement one of the standard Internet protocols [PD03, Chap. 6] and
bear a strong resemblance to file-based I/O (Section 7.9).

The two most popular packages for message passing within a parallel program
are PVM [Sun90, GBD+94] and MPI [BDH+95, SOHL+98]. The two packages
provide similar functionality in most respects. PVM is richer in the area of cre-
ating and managing processes on a heterogeneous distributed network, in which
machines of different types may join and leave the computation during execu-
tion. MPI provides more control over how communication is implemented (to
map it onto the primitives of particular high-performance multicomputers) and
a richer set of communication primitives, especially for so-called collective com-
munication: one-to-all, all-to-one, or all-to-all patterns of messages among a set
of threads. Implementations of PVM and MPI are available for C, C++, and For-
tran.

For communication based on requests from clients to servers, remote proce-
dure calls (RPCs) provide an attractive interface to message passing. Rather than
talk to a server directly, an RPC client calls a local stub procedure, which packages
its parameters into a message, sends them to a server, and waits for a response,
which it returns to the client in the form of result parameters. Several vendors
provide tools that will generate stubs automatically from a formal description of
the server interface. In the Unix world, Sun’s RPC [Sri95] is the de facto stan-
dard. Several generalizations of RPC, most of them based on binary components
(page 518), are currently competing for prominence for Internet-based comput-
ing. RPC in object-oriented systems is sometimes referred to as remote method
invocation (RMI).

In comparison to library packages, an explicitly concurrent programming lan-
guage has the advantage of compiler support. It can make use of syntax other
than subroutine calls, and can integrate communication and thread manage-
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ment more tightly with such concepts as type checking, scoping, and exceptions.
At the same time, since most programs are sequential, it is difficult for a con-
current language to gain widespread acceptance, particularly if the concurrent
features make the sequential case more difficult to understand. As noted in Sec-
tion 12.1, Algol 68 included concurrent features, though they were never widely
used. Concurrency also appears in more recent “mainstream” languages, includ-
ing Ada, Modula-3, Java, and C#. A little farther afield, but still commercially im-
portant, the Occam programming language, based on Hoare’s Communicating
Sequential Processes (CSP) notation, has an active user community. Occam was
the language of choice for systems built from the INMOS transputer processor,
widely used in Europe in the 1980s and 90s. Andrews’s SR has been influential as
a teaching language.

In the scientific community, expertise with vectorizing compilers has made its
way into parallelizing compilers for multicomputers and multiprocessors, again
exploiting annotations provided by the programmer. Several of the groups in-
volved with this transition came together in the early 1990s to develop High Per-
formance Fortran (HPF) [KLS+94], a data-parallel dialect of Fortran 90. (A data-
parallel program is one in which the principal source of parallelism is the appli-
cation of common operations to the members of a very large data set. A task-
parallel program is one in which much of the parallelism stems from performing
different operations concurrently. A data-parallel language is one whose features
are designed for data-parallel programs.)

12.2.3 Thread Creation Syntax

One could imagine a concurrent programming system in which a fixed collec-
tion of threads was created by the language implementation, but such a static
form of concurrency is generally too restrictive. Most concurrent systems allow
the programmer to create new threads at run time. Syntactic and semantic details
vary considerably from one language or library to another. There are at least six
common options: (1) co-begin, (2) parallel loops, (3) launch-at-elaboration,
(4) fork (with optional join), (5) implicit receipt, and (6) early reply. The first
two options delimit threads with special control-flow constructs. The others de-
clare threads with syntax resembling (or identical to) subroutines.

The SR programming language provides all six options. Algol 68 and Oc-
cam use co-begin. Occam also uses parallel loops, as does HPF. Ada uses both
launch-at-elaboration and fork. Modula-3, Java, and C# use fork/join. Im-
plicit receipt is the usual mechanism in RPC systems. The coroutine detach op-
eration of Simula can be considered a form of early reply.

Co-Begin

In Algol 68 the behavior of a begin. . . end block depends on whether the internalEXAMPLE 12.6
Par begin in Algol 68 expressions are separated by semicolons or commas. In the former case, we have

the usual sequential semantics. In the latter case, we have either nondetermin-
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istic or concurrent semantics, depending on whether begin is preceded by the
keyword par. The block

begin

a := 3,

b := 4

end

indicates that the assignments to a and b can occur in either order. The block

par begin

a := 3,

b := 4

end

indicates that they can occur in parallel. Of course, parallel execution makes lit-
tle sense for such trivial operations as assignments; the par begin construct is
usually used for more interesting operations:

par begin # concurrent #

p(a, b, c),

begin # sequential #

d := q(e, f);

r(d, g, h)

end,

s(i, j)

end

Here the executions of p and s can proceed in parallel with the sequential execu-
tion of the nested block (with the calls to q and r):

�
Several other concurrent languages provide a variant of par begin. In Oc-EXAMPLE 12.7

Par in Occam cam, which uses indentation to delimit nested control constructs, one would
write

par

p(a, b, c)

seq

d := q(e, f)

r(d, g, h)

s(i, j)
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In general, a control construct whose constituent statements are meant to be ex-
ecuted concurrently is known as co-begin. �

Parallel Loops

Several concurrent languages, including SR, Occam, and some dialects of For-
tran, provide a loop whose iterations are to be executed concurrently. In SR oneEXAMPLE 12.8

Parallel loops in SR can say

co (i := 5 to 10) ->

p(a, b, i) # six instances of p, each with a different i

oc

In Occam:

par i = 5 for 6

p(a, b, i) # six instances of p, each with a different i

In SR it is the programmer’s responsibility to make sure that concurrent exe-
cution is safe, in the sense that correctness will never depend on the outcome of
race conditions. In the above example, access to global variables in the various
instances of p would generally need to be synchronized, to make sure that those
instances do not conflict with one another. In Occam, language rules prohibit
conflicting accesses. The compiler checks to make sure that a variable that is writ-
ten by one thread is neither read nor written by any concurrently active thread. In
the code above, the Occam compiler would insist that all three parameters to p be
passed by value (not result). Concurrently active threads in Occam communicate
solely by sending messages. �

Several parallel dialects of Fortran have provided parallel loops, with varying
semantics. The forall loop adopted by HPF was subsequently incorporated into
the 1995 revision of Fortran 90. Like the parallel loops of SR and Occam, it indi-
cates that iterations can proceed in parallel. To resolve race conditions, however,
it imposes automatic, internal synchronization on the constituent statements of
the loop, each of which must be an assignment statement or a nested forall
loop. Specifically, all reads of variables in a given assignment statement, in all it-
erations, must occur before any write to the left-hand side, in any iteration. The

DESIGN & IMPLEMENTATION

Stack frames for nested threads
In an Algol 68 or Occam implementation, threads created by co-begin must
share access to a common stack frame. To avoid this implementation compli-
cation, SR provides a variant of co-begin (delimited by co. . . oc) in which
the constituent statements must all be procedure invocations, each of which
begins execution in its own stack frame. In fact every new thread in SR is cre-
ated in a separate subroutine, and subroutines do not nest. SR therefore has
no need for the cactus stacks of Section 8.6.1.
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writes of the left-hand side in turn must occur before any reads in the follow-
ing assignment statement. In the following example, the first assignment in theEXAMPLE 12.9

Forall in Fortran 90 loop will read n − 1 elements of B and n − 1 elements of C, and then update
n − 1 elements of A. Subsequently, the second assignment statement will read all
n elements of A and then update n − 1 of them.

forall (i=1:n-1)

A(i) = B(i) + C(i)

A(i+1) = A(i) + A(i+1)

end forall

Note in particular that all of the updates to A(i) in the first assignment state-
ment occur before any of the reads in the second assignment statement. More-
over in the second assignment statement the update to A(i+1) is not seen by
the read of A(i) in the “subsequent” iteration: the iterations occur in parallel
and each reads the variables on its right-hand side before updating its left-hand
side. �

For loops that “iterate” over the elements of an array, the forall semantics
are ideally suited for execution on a vector machine. With a little extra effort,
they can also be adapted to a more conventional multiprocessor. In HPF, an ex-
tensive set of data distribution and alignment directives allows the programmer
to scatter the elements of an array across the memory associated with a large
number of processors. Within a forall loop, the computation in a given assign-
ment statement is usually performed by the processor that “owns” the element
on the assignment’s left-hand side. In many cases an HPF or Fortran 95 compiler
can prove that there are no dependences among certain (portions of) constituent
statements of a forall loop, and can allow them to proceed without actually
implementing synchronization.

Launch-at-Elaboration

In Ada and SR (and in many other languages), the code for a thread may be de-
clared with syntax resembling that of a subroutine with no parameters. When the
declaration is elaborated, a thread is created to execute the code. In Ada (whichEXAMPLE 12.10

Elaborated tasks in Ada calls its threads tasks) we may write the following.

procedure P is

task T is

...

end T;

begin -- P

...

end P;

Task T has its own begin. . . end block, which it begins to execute as soon as
control enters procedure P. If P is recursive, there may be many instances of T
at the same time, all of which execute concurrently with each other and with
whatever task is executing (the current instance of) P. The main program behaves
like an initial default task.
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Figure 12.6 Lifetime of concurrent threads. With co-begin, parallel loops, or launch-at-
elaboration (a), threads are always properly nested. With fork/join (b), more general pat-
terns are possible.

When control reaches the end of procedure P, it will wait for the appropriate
instance of T (the one that was created at the beginning of this instance of P) to
complete before returning. This rule ensures that the local variables of P (which
are visible to T under the usual static scope rules) are never deallocated before T
is done with them. �

A launch-at-elaboration thread in SR is called a process.

Fork/Join

Co-begin, parallel loops, and launch-at-elaboration all lead to a concurrentEXAMPLE 12.11
Co-begin v. fork/join control-flow pattern in which thread executions are properly nested (see Fig-

ure 12.6a). With parallel loops, each thread executes the same code, using differ-
ent data; with co-begin and launch-at-elaboration, the code in different threads
can be different. Put another way, parallel loops are generally data-parallel;
co-begin and launch-at-elaboration are task-parallel.

The fork operation is more general: it makes the creation of threads an ex-
plicit, executable operation. The companion join operation allows a thread to
wait for the completion of a previously forked thread. Because fork and join
are not tied to nested constructs, they can lead to arbitrary patterns of concurrent
control flow (Figure 12.6b). �

In addition to providing launch-at-elaboration tasks, Ada allows the program-EXAMPLE 12.12
Task types in Ada mer to define task types:

task type T is

...

begin

...

end T;
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The programmer may then declare variables of type access T (pointer to T),
and may create new tasks via dynamic allocation:

pt : access T := new T;

The new operation is a fork: it creates a new thread and starts it executing. There
is no explicit join operation in Ada, though parent and child tasks can always
synchronize with one another explicitly if desired (e.g., immediately before the
child completes its execution). In any scope in which a task type is declared, con-
trol will wait automatically at the end of the scope for all dynamically created
tasks of that type to terminate. This convention avoids creating dangling refer-
ences to local variables (Ada stack frames have limited extent). �

Modula-3 provides both fork and join. The fork operation returns a refer-EXAMPLE 12.13
Fork/Join in Modula-3 ence of type thread; the join operation takes this reference as parameter:

t := Fork(c);

...

Join(t);

Each Modula-3 thread begins execution in a specified subroutine. The language
designers could have chosen to make this subroutine the argument to Fork, but
this choice would have forced all Forked subroutines to accept the same fixed
set of parameters, in accordance with strong typing. To avoid this limitation,
Modula-3 defines the parameter to Fork to be a “thread closure”1 object, as de-
scribed in Section 9.4.5. The object contains a reference to the thread’s initial sub-
routine, together with any needed start-up arguments. The Fork operation calls
the specified subroutine, passing a single argument: a reference to the thread clo-
sure object itself. The standard thread library defines a thread closure class with
nothing in it except the subroutine reference. Programmers can define derived
classes that contain additional fields, which the thread’s subroutine can then ac-
cess. There is no comparable mechanism to pass start-up arguments to a task in
Ada; information that would be passed as thread closure fields in Modula-3 must
be sent to the already-started task in Ada via messages or shared variables. �

Threads may be created in SR by sending a message to a proc, which re-EXAMPLE 12.14
Forking a proc in SR sembles a procedure with a separate forward declaration, called an op. One of

the most distinctive characteristics of SR is a remarkably elegant integration of
sequential and concurrent constructs, and of message passing and subroutine in-
vocation. An SR procedure is actually defined as syntactic sugar for an op/proc
pair that has been limited to call style forks, in which the parent thread waits

1 Thread closures should not be confused with the closures used for deep binding of subroutine
referencing environments, as described in Section 3.5. Modula-3 uses closures in the traditional
sense of the word when passing subroutines as parameters, but because its local objects have
limited extent (again, see Section 3.5), it does not allow nested subroutines to be returned from
functions or assigned into subroutine-valued variables. The subroutine reference in a thread
“closure” is therefore guaranteed not to require a special referencing environment; it can be
implemented as just a code address.
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for the child to complete before continuing execution. As in Ada, there is no ex-
plicit join operation in SR, though a parent and child can always synchronize
with one another explicitly if desired. �

In Java one obtains a thread by constructing an object of some class derivedEXAMPLE 12.15
Thread creation in Java 2 from a predefined class called Thread:

class image_renderer extends Thread {

...

image_renderer( args ) {

// constructor

}

public void run() {

// code to be run by the thread

}

}

...

image_renderer rend = new image_renderer( constructor args );

Superficially, the use of new resembles the creation of dynamic tasks in Ada. In
Java, however, the new thread does not begin execution when first created. To
start it, the parent (or some other thread) must call the method named start,
which is defined in Thread:

rend.start();

Start makes the thread runnable, arranges for it to execute a method named
run, and returns to the caller. The programmer must define an appropriate run
method in every class derived from Thread. The run method is meant to be
called only by start; programmers should not call it directly, nor should they
redefine start. There is also a join method:

rend.join(); // wait for completion �

As of Java 5 (with its java.util.concurrent library), programmers are dis-
couraged from creating threads explicitly. Rather, tasks to be accomplished (ob-
jects that support the Callable or Runnable interface) may be passed to an
Executor object, which in turn may farm them out to a managed pool of threads.
By separating the concepts of task and thread, Java allows the Executor class toEXAMPLE 12.16

Thread pools in Java 5 optimize the level of true concurrency and the scheduling discipline to match the
characteristics of the underlying platform.

class image_renderer implements Runnable {

...

// constructor and run() method same as before

...

Executor pool = Executors.newFixedThreadPool(4);

...

pool.execute(new image_renderer( constructor args ));



12.2 Concurrent Programming Fundamentals 611

Here the argument to newFixedThreadPool (one of a large number of standard
Executor factories) indicates that pool should manage four threads. Each task
specified in a call to pool.execute will be run by one of these threads. Thread
and thread pool facilities in C# are similar to those of Java. �
Implicit Receipt

The mechanisms described in the last few paragraphs allow a program to create
new threads at run time. In each case those threads run in the same address space
as the existing threads. In RPC systems it is often desirable to create a new thread
automatically in response to an incoming request from some other address space.
Rather than have an existing thread execute a receive operation, a server can
bind a communication channel (which may be called a link, socket, or connec-
tion) to a local thread body or subroutine. When a request comes in, a new thread
springs into existence to handle it.

In effect, the bind operation grants remote clients the ability to perform a
fork within the server’s address space. In SR the effect of bind is achieved by
declaring a capability variable, initializing it with a reference to a procedure (an
op for which there is a proc), and then sending it in a message to a thread in
another address space. The receiving thread can then use that capability in a send
or call operation, just as it would use the name of a local op. When it does so,
the resulting message has the effect of performing a fork in the original address
space. In RPC stub systems designed for use with ordinary sequential languages,
the creation and management of threads to handle incoming calls is often less
than completely automatic; we will consider the alternatives in Section 12.4.4.

Early Reply

The similarity of fork and implicit receipt in SR reflects an important dualityEXAMPLE 12.17
Modeling subroutines with
fork/join

in the nature of subroutines. We normally think of sequential subroutines in
terms of a single thread which saves its current context (its program counter
and registers), executes the subroutine, and returns to what it was doing be-
fore (Figure 12.7a). The effect is the same, however, if we have two threads: one
that executes the caller and another that executes the callee (Figure 12.7b). The
caller waits for the callee to reply before continuing execution. The call itself is a
fork/join pair, or a send and receive on a communication channel that has
been set up for implicit receipt on the callee’s end. �

The two ways of thinking about subroutine calls suggest two different imple-
mentations, but either can be used to implement the other. In general, a compiler
will want to avoid creating a separate thread whenever possible, in order to save
time. As noted in the discussion on fork/join above, SR uses the two-thread
model of subroutine calls. Within a single address space, however, it implements
them with the usual subroutine-call mechanism whenever possible. In a sim-
ilar vein, the Hermes language [SBG+91], which models subroutines in terms
of threads and message passing, is able to use the usual subroutine-call imple-
mentation in the common case. If we think of subroutines in terms of separateEXAMPLE 12.18

Returning without
terminating

threads for the caller and callee, there is actually no particular reason why the
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Figure 12.7 Threads, subroutine calls, and early reply. Conventionally, subroutine calls are
conceptualized as using a single thread (a). Equivalent functionality can be achieved with separate
threads (b). Early reply (c) allows a forked thread to continue execution after “returning” to the
caller. To avoid creation of a callee thread in the common case, we can wait until the reply to
do the fork (d).

callee should have to complete execution before it allows the caller to proceed: all
it really has to do is complete the portion of its work on which result parameters
depend. Early reply is a mechanism that allows a callee to return those results to
the caller without terminating. After an early reply, the caller and callee continue
execution concurrently (Figure 12.7c).

DESIGN & IMPLEMENTATION

Counterintuitive implementation
Over the course of 12 chapters we have seen numerous cases in which the im-
plementation of a language feature may run counter to the programmer’s in-
tuition. Early reply is but the most recent example. Others have included ex-
pression evaluation order (Section 6.1.4), subroutine inlining (Section 8.2.5),
tail recursion (Section 6.6.1), nonstack allocation of activation records (for
unlimited extent—Section 3.5.2), out-of-order or even noncontiguous layout
of record fields (Section 7.3.2), variable lookup in a central reference table
(Section 3.4.2), immutable objects under a reference model of variables
(Section 6.1.2), and implementations of generics (Sections 3.6.3 and 8.4) that
share code among instances with different type parameters. A compiler may,
particularly at higher levels of code improvement, produce code that differs
dramatically from the form and organization of its input. Unless otherwise
constrained by the language definition, an implementation is free to choose
any translation that is provably equivalent to the input.
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If we think of subroutines in terms of a single thread for the caller and callee,
then early reply can also be seen as a means of creating new threads. When the
thread executing a subroutine performs an early reply, it splits itself into a pair
of threads: one of these returns, the other continues execution in the callee (Fig-
ure 12.7d). �

In SR, any subroutine can execute an early reply operation:EXAMPLE 12.19
Early reply in SR

reply

For calls within a single address space, the SR compiler waits until the reply
before creating a new thread; a subroutine that returns without replying uses
a single implementation thread for the caller and callee. Until the time of the
reply, the stack frame of the subroutine belongs to the calling thread. To allow
it to become the initial frame of a newly created thread, an SR implementation
can employ a memory management scheme in which stack frames are allocated
dynamically from the heap and linked together with pointers. Alternatively, the
implementation can copy the current frame into the bottom of a newly allocated
stack at the time of the reply. Early reply resembles the coroutine detach opera-
tion of Simula. It also appears in Lynx [Sco91]. �

Much of the motivation for early reply comes from applications in which the
parent of a newly created thread needs to ensure that the thread has been ini-
tialized properly before it (the parent) continues execution. In a web browser,EXAMPLE 12.20

Early reply for initialization for example, the thread responsible for formatting a page will create a new child
for each in-line image. The child will contact the appropriate server and begin
to transfer data. The first thing the server will send is an indication of the im-
age’s size. The page-formatting thread (the parent of the image-rendering thread)
needs to know this size in order to place text and other images properly on the
page. Early reply allows the parent to create the child and then wait for it to re-
ply with size information, at which point the parent and child can proceed in
parallel. (We ignored this issue in Figure 12.2.)

In Java and C#, a similar purpose is served by separating thread creation from
invocation of the start method. In our browser example, a page-formatting
thread that creates a child to render an image could call a get_size method
of the child before it calls the child’s start method. Get_size would make the
initial contact with the server and return size information to the parent. Because
get_size is a method of the child, any data it initializes, including the size and
connection-to-server information, will be stored in the thread’s fields, where they
will be available to the thread’s run method. �

12.2.4 Implementation of Threads

As we noted near the beginning of Section 12.2, the threads of a concurrent pro-
gram are usually implemented on top of one or more processes provided by the
operating system. At one extreme, we could use a separate OS process for every
thread; at the other extreme we could multiplex all of a program’s threads on
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Figure 12.8 Two-level implementation of threads. A thread scheduler, implemented in a library
or language run-time package, multiplexes threads on top of one or more kernel-level processes,
just as the process scheduler, implemented in the operating system kernel, multiplexes processes
on top of one or more physical processors.

top of a single process. On a personal computer with a single address space and
relatively inexpensive processes, the one-process-per-thread extreme is often ac-
ceptable. In a simple language on a uniprocessor, the all-threads-on-one-process
extreme may be acceptable. Commonly, language implementations adopt an in-EXAMPLE 12.21

Multiplexing threads on
processes

between approach, with a potentially large number of threads running on top of
a smaller number of processes (see Figure 12.8). �

The problem with putting every thread on a separate process is that processes
(even “lightweight” ones) are simply too expensive in many operating systems.
Because they are implemented in the kernel, performing any operation on them
requires a system call. Because they are general purpose, they provide features
that most languages do not need but have to pay for anyway. (Examples include
separate address spaces, priorities, accounting information, and signal and I/O
interfaces, all of which are beyond the scope of this book.) At the other extreme,
there are two problems with putting all threads on top of a single process: first, it
precludes parallel execution on a multiprocessor; second, if the currently running
thread makes a system call that blocks (e.g., waiting for I/O), then none of the
program’s other threads can run, because the single process is suspended by the
OS.

In the common two-level organization of concurrency (user-level threads on
top of kernel-level processes), similar code appears at both levels of the sys-
tem: the language run-time system implements threads on top of one or more
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Figure 12.9 Data structures of a simple scheduler. A designated current thread is running.
Threads on the ready list are runnable. Other threads are blocked, waiting for various conditions
to become true. If threads run on top of more than one OS-level process, each such process
will have its own current thread variable. If a thread makes a call into the operating system, its
process may block in the kernel.

processes in much the same way that the operating system implements processes
on top of one or more physical processors. A multiprocessor operating system
may attempt to ensure that processes belonging to the same application run on
separate processors simultaneously, in order to minimize synchronization delays
(this technique is called coscheduling, or gang scheduling). Alternatively, it may
give an application exclusive use of some subset of the processors (this technique
is called space sharing, or processor partitioning). Such kernel-level issues are be-
yond the scope of this book; we concentrate here on user-level threads.

Typically, user-level threads are built on top of coroutines (Section 8.6). Re-
call that coroutines are a sequential control-flow mechanism, designed for im-
plementation on top of a single OS process. The programmer can suspend the
current coroutine and resume a specific alternative by calling the transfer op-
eration. The argument to transfer is typically a pointer to the context block of
the coroutine.

To turn coroutines into threads, we can proceed in a series of three steps. First,
we hide the argument to transfer by implementing a scheduler that chooses
which thread to run next when the current thread yields the processor. Second,
we implement a preemption mechanism that suspends the current thread auto-
matically on a regular basis, giving other threads a chance to run. Third, we allow
the data structures that describe our collection of threads to be shared by more
than one OS process, possibly on separate processors, so that threads can run on
any of the processes.

Uniprocessor Scheduling

Figure 12.9 illustrates the data structures employed by a simple scheduler. At anyEXAMPLE 12.22
Cooperative
multithreading on a
uniprocessor

particular time, a thread is either blocked (i.e., for synchronization) or runnable.
A runnable thread may actually be running on some processor or it may be await-
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ing its chance to do so. Context blocks for threads that are runnable but not cur-
rently running reside on a queue called the ready list. Context blocks for threads
that are blocked for scheduler-based synchronization reside in data structures
(usually queues) associated with the conditions for which they are waiting. To
yield the processor to another thread, a running thread calls the scheduler:

procedure reschedule
t : thread := dequeue(ready list)
transfer(t)

Before calling into the scheduler, a thread that wants to run again at some
point in the future must place its own context block in some appropriate data
structure. If it is blocking for the sake of fairness—to give some other thread a
chance to run—then it enqueues its context block on the ready list:

procedure yield
enqueue(ready list, current thread)
reschedule

To block for synchronization, a thread adds itself to a queue associated with the
awaited condition:

procedure sleep on(ref Q : queue of thread)
enqueue(Q, current thread)
reschedule

When a running thread performs an operation that makes a condition true, it
removes one or more threads from the associated queue and enqueues them on
the ready list. �

Fairness becomes an issue whenever a thread may run for a significant amount
of time while other threads are runnable. To give the illusion of concurrent ac-
tivity, even on a uniprocessor, we need to make sure that each thread gets a fre-
quent “slice” of the processor. With cooperative multithreading, any long-running
thread must yield the processor explicitly from time to time (e.g., at the tops of
loops) to allow other threads to run. As noted in Section 12.1.2, this approach
allows one improperly written thread to monopolize the system. Even with prop-
erly written threads, it leads to less than perfect fairness due to nonuniform times
between yields in different threads.

Preemption

Ideally, we should like to multiplex the processor fairly and at a relatively fine
grain (i.e., many times per second) without requiring that threads call yield ex-
plicitly. On many systems we can do this in the language implementation by using
timer signals for preemptive multithreading. When switching between threads we
ask the operating system (which has access to the hardware clock) to deliver a
signal to the currently running process at a specified time in the future. The OS
delivers the signal by saving the context (registers and pc) of the process at the
top of the current stack and transferring control to a previously specified handler
routine in the language run-time system. When called, the handler modifies the
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state of the currently running thread to make it appear that the thread had just
executed a call to the standard yield routine. The handler then “returns” into
yield, which transfers control to some other thread, as if the one that had been
running had relinquished control of the process voluntarily.

Unfortunately, the fact that a signal may arrive at an arbitrary time introduces
a race between voluntary calls to the scheduler and the automatic calls triggered
by preemption. To illustrate the problem, suppose that a signal arrives when theEXAMPLE 12.23

A race condition in
preemptive multithreading

currently running process has just enqueued the currently running thread onto
the ready list in yield and is about to call reschedule. When the signal handler
“returns” into yield, the process will put the current thread into the ready list a
second time. If at some point in the future the thread blocks for synchronization,
its second entry in the ready list may cause it to run again immediately, when it
should be waiting. Even worse problems can arise if a signal occurs in the middle
of an enqueue, at a moment when the ready list is not even a properly structured
queue. To resolve the race and avoid corruption of the ready list, thread packages
commonly disable signal delivery during scheduler calls:

procedure yield
disable signals
enqueue(ready list, current thread)
reschedule
reenable signals

For this convention to work, every fragment of code that calls reschedule must
disable signals prior to the call, and must reenable them afterward. Because
reschedule contains a call to transfer, signals may be disabled in one thread
and reenabled in another. �

It turns out that the sleep_on routine must also assume that signals are dis-EXAMPLE 12.24
Disabling signals during
context switch

abled and enabled by the caller. To see why, suppose that a thread checks a con-
dition, finds that it is false, and then calls sleep_on to suspend itself on a queue
associated with the condition. Suppose further that a timer signal occurs imme-
diately after checking the condition but before the call to sleep_on. Finally, sup-
pose that the thread is allowed to run after the signal makes the condition true.
Since the first thread never got a chance to put itself on the condition queue,
the second thread will not find it to make it runnable. When the first thread
runs again, it will immediately suspend itself, and may never be awakened. To
close this timing window— this internal in which a concurrent event may com-
promise program correctness—the caller must ensure that signals are disabled
before checking the condition:

disable signals
if not desired condition

sleep on(condition queue)
reenable signals

On a uniprocessor, disabling signals allows the check and the sleep to occur as
a single, atomic operation: they always appear to happen “all at once” from the
point of view of other threads. �
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Multiprocessor Scheduling

A few concurrent languages (e.g., Distributed Processes [Bri78] and Lynx
[Sco91]) are explicitly nonparallel: language semantics guarantee that only one
thread will run in a given address space at a time, with switches among threads
occurring only at well-defined points in the code. Most concurrent languages,
however, permit threads to run in parallel. As we noted in Section 12.2, there is
no difference from the programmer’s point of view between true parallelism (on
multiple processors) and the “quasiparallelism” of a system that switches between
threads on timer interrupts: in both cases, threads must synchronize explicitly to
cope with race conditions in the application program.

We can extend our preemptive thread package to run on top of more than one
OS-provided process by arranging for the processes to share the ready list and
related data structures (condition queues, etc.; note that each process must have
a separate current thread variable). If the processes run on different processors
of a shared-memory multiprocessor, then more than one thread will be able to
run at once. If the processes share a single processor, then the program will be
able to make forward progress even when all but one of the processes are blocked
in the operating system. Any thread that is runnable is placed in the ready list,
where it becomes a candidate for execution by any of the application’s processes.
When a process calls reschedule, the queue-based ready list we have been using
in our examples will give it the longest-waiting thread. The ready list of a more
elaborate scheduler might give priority to interactive or time-critical threads, or
to threads that last ran on the current processor and may therefore still have data
in the cache.

Just as preemption introduced a race between voluntary and automatic calls
to scheduler operations, true or quasiparallelism introduces races between calls
in separate OS processes. To resolve the races, we must implement additional
synchronization to make scheduler operations in separate processes atomic. We
will return to this subject in Section 12.3.2.

CHECK YOUR UNDERSTANDING

10. Explain the difference between a coroutine, a thread, a lightweight process, and
a heavyweight process.

11. What is quasiparallelism?

12. Describe the bag of tasks programming model.

13. What is busy-waiting? What is its principal alternative?

14. Name four explicitly concurrent programming languages.

15. Why don’t message-passing programs require explicit synchronization mech-
anisms?

16. What are the tradeoffs between language-based and library-based implemen-
tations of concurrency?
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17. Explain the difference between data parallelism and task parallelism.

18. What is collective communication?

19. Describe six different syntactic constructs commonly used to create new
threads of control in a concurrent program.

20. In what sense is fork/join more powerful than co-begin?

21. What is a thread pool in Java? What purpose does it serve?

22. Why is meant by a two-level thread implementation?

23. What is a ready list?

24. Describe the progressive implementation of scheduling, preemption, and
(true) parallelism on top of coroutines.

25. What is coscheduling? What is its purpose?

12.3 Shared Memory

As noted in Section 12.2.1, synchronization is the principal semantic challenge
for shared-memory concurrent programs. One commonly sees two forms of syn-
chronization: mutual exclusion and condition synchronization. Mutual exclusion
ensures that only one thread is executing a critical section of code at a given point
in time. Condition synchronization ensures that a given thread does not proceed
until some specific condition holds (e.g., until a given variable has a given value).
It is tempting to think of mutual exclusion as a form of condition synchroniza-
tion (don’t proceed until no other thread is in its critical section), but this sort
of condition would require consensus among all extant threads, something that
condition synchronization doesn’t generally provide.

Our implementation of parallel threads, sketched at the end of Section 12.2.4,
requires that processes (provided by the OS) use both mutual exclusion and con-
dition synchronization to protect the ready list and related data structures. Mu-
tual exclusion appears in the requirement that a process must never read or write
the ready list while it is being modified by another process; condition synchro-
nization appears in the requirement that a process in need of a thread to run must
wait until the ready list is nonempty.

It is worth emphasizing that we do not in general want to overly synchro-
nize programs. To do so would eliminate opportunities for parallelism, which we
generally want to maximize in the interest of performance. The goal is to provide
only as much synchronization as is necessary in order to eliminate “bad” race
conditions: those that might otherwise cause the program to produce incorrect
results.

In the first subsection below we consider busy-wait synchronization. In the
second we use busy-waiting among processes to implement a parallelism-safe
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thread scheduler. In subsequent subsections we use the scheduler to implement
blocking synchronization for threads: semaphores, monitors, conditional critical
regions, and various higher-level mechanisms in which synchronization is im-
plicit.

12.3.1 Busy-Wait Synchronization

Busy-wait condition synchronization is generally easy: if we can cast a condition
in the form of “location X contains value Y ,” then a thread (or process) that needs
to wait for the condition can simply read X in a loop, waiting for Y to appear. All
that is required from the hardware is that individual load and store instructions
be atomic. Providing this atomicity is not a trivial task (memory and/or busses
must serialize concurrent accesses by processors and devices), but almost every
computer ever made has done it.

Busy-wait mutual exclusion is harder. We consider it under Spin Locks below.
We then consider a special form of condition synchronization—namely barriers.
A barrier is meant to be executed by all of the threads in a program. It guaran-
tees that no thread will continue past a given point in a program until all threads
have reached that point. Like mutual exclusion (and unlike most condition syn-
chronization), barriers require consensus among all extant threads. Barriers are
fundamental to data-parallel computing. They can be implemented either with
busy-waiting or with blocking; we consider the busy-wait version here.

Spin Locks

Dekker is generally credited with finding the first two-thread mutual exclu-
sion algorithm that requires no atomic instructions other than load and store.
Dijkstra [Dij65] published a version that works for n threads in 1965. Peterson
[Pet81] published a much simpler two-thread algorithm in 1981. Building on
Peterson’s algorithm, one can construct a hierarchical n-thread lock, but it re-
quires O(n log n) space and O(log n) time to get one thread into its critical sec-
tion [YA93]. Lamport [Lam87] published an n-thread algorithm in 1987 that
takes O(n) space and O(1) time in the absence of competition for the lock. Un-
fortunately, it requires O(n) time when multiple threads attempt to enter their
critical section at once.

To achieve mutual exclusion in constant time, one needs a more powerful
atomic instruction. Beginning in the 1960s, hardware designers began to equip
their processors with instructions that read, modify, and write a memory loca-
tion as a single atomic operation. The simplest read-modify-write instructionEXAMPLE 12.25

The basic test_and_set

lock
is known as test_and_set. It sets a Boolean variable to true and returns an
indication of whether the variable was false previously. Given test_and_set,
acquiring a spin lock is almost trivial:

while not test and set(L)
–– nothing –– spin �
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type lock = Boolean := false;

procedure acquire lock(ref L : lock)
while not test and set(L)

while L
–– nothing –– spin

procedure release lock(ref L : lock)
L := false

Figure 12.10 A simple test-and-test_and_set lock. Waiting processes spin with ordinary
read (load) instructions until the lock appears to be free, then use test_and_set to acquire
it. The very first access is a test_and_set, for speed in the common (no competition) case.

In practice, embedding test_and_set in a loop tends to result in unacceptable
amounts of bus traffic on a multiprocessor, as the cache coherence mechanism at-
tempts to reconcile writes by multiple processors attempting to acquire the lock.
This overdemand for hardware resources is known as contention, and is a major
obstacle to good performance on large machines.

To reduce contention, the writers of synchronization libraries often employ aEXAMPLE 12.26
Test-and-test_and_set test-and-test_and_set lock, which spins with ordinary reads (satisfied by the

cache) until it appears that the lock is free (see Figure 12.10). When a thread
releases a lock there still tends to be a flurry of bus activity as waiting threads per-
form their test_and_sets, but at least this activity happens only at the bound-
aries of critical sections. On a large machine, bus or interconnect traffic can
be further reduced by implementing a backoff strategy, in which a thread that
is unsuccessful in attempting to acquire a lock waits for a while before trying
again. �

Many processors provide atomic instructions more powerful than test_and_
set. Several can swap the contents of a register and a memory location atomi-
cally. A few can add a constant to a memory location atomically, returning the
previous value. On the x86, most arithmetic instructions can be prefaced with a
“lock” byte that causes them to update a memory location atomically. MIPS, Al-
pha, and PowerPC processors provide a pair of instructions called load_linked
and store_conditional (LL/SC). The first of these instructions loads a mem-
ory location into a register and stores certain bookkeeping information into hid-
den processor registers. The second instruction stores the register back into the
memory location, but only if the location has not been modified by any other
processor since the load_linked was executed. In the time between the two in-
structions the processor may be limited in its ability to touch memory (imple-
mentations vary), but it can perform an almost arbitrary computation in regis-
ters, allowing the LL/SC pair to function as a universal atomic primitive. To addEXAMPLE 12.27

Atomic update with LL/SC the value in register r2 to memory location foo, atomically, one would execute
the following instructions.
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start:
r1 := load linked(foo)
r1 := r1 + r2
store conditional(r1, foo)
if failed goto start

If several processors execute this code simultaneously, one of them is guaranteed
to succeed the first time around the loop. The others will fail and try again. Exer-
cise 12.6 considers another universal primitive, called compare_and_swap, that
appears in the x86, the Sparc, the IA-64, and descendants of the IBM 370. �

Using instructions like atomic_add or LL/SC, one can build spin locks that
are fair, in the sense that threads are guaranteed to acquire the lock in the order
in which they first attempt to do so. One can also build locks that work well—
with no contention—on arbitrarily large machines [MCS91]. Finally, one can
use universal atomic primitives to build special purpose concurrent data struc-
tures and algorithms that operate without locks, by modifying locations atomi-
cally in a carefully determined order. Lock-free concurrent algorithms are ideal
for environments in which threads may pause (e.g., due to preemption) for arbi-
trary periods of time. In important special cases (e.g., queues [MS96] or memory
management [Mic04]) lock-free algorithms can also be significantly faster than
lock-based algorithms. Herlihy [Her91] and others [HLMS03, HF03] have devel-
oped general purpose techniques to turn sequential data structures into lock-free
concurrent data structures, but these are not yet able, for most applications, to
rival the performance of lock-based algorithms.

An important variant on mutual exclusion is the reader–writer lock [CHP71].
Reader–writer locks recognize that if several threads wish to read the same data
structure, they can do so simultaneously without mutual interference. It is only
when a thread wants to write the data structure that we need to prevent other
threads from reading or writing simultaneously. Most busy-wait mutual exclu-
sion locks can be extended to allow concurrent access by readers (see Exer-
cise 12.8).

Barriers

Barriers are common in data-parallel numeric algorithms. In finite element analy-
sis, for example, a physical object such as, say, a bridge may be modeled as an
enormous collection of tiny metal fragments. Each fragment imparts forces to
the fragments adjacent to it. Gravity exerts a downward force on all fragments.
Abutments exert an upward force on the fragments that make up base plates.
The wind exerts forces on surface fragments. To evaluate stress on the bridge as
a whole (e.g., to assess its stability and resistance to failures), a finite element
program might divide the metal fragments among a large collection of threads
(probably one per physical processor). Beginning with the external forces, the
program would then proceed through a sequence of iterations. In each iteration
each thread would recompute the forces on its fragments based on the forces
found in the previous iteration. Between iterations, the threads would synchro-
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shared count : integer := n
shared sense : Boolean := true
per-thread private local sense : Boolean := true

procedure central barrier
local sense := not local sense

–– each thread toggles its own sense
if fetch and decrement(count) = 1

–– last arriving thread
count := n –– reinitialize for next iteration
sense := local sense –– allow other threads to proceed

else
repeat

–– spin
until sense = local sense

Figure 12.11 A simple “sense-reversing” barrier. Each thread has its own copy of local sense.
Threads share a single copy of count and sense.

nize with a barrier. The program would halt when no thread found a significant
change in any forces during the last iteration.

The simplest way to implement a busy-wait barrier is to use a globally sharedEXAMPLE 12.28
The “sense-reversing”
barrier

counter, modified by an atomic fetch_and_decrement instruction (or equiv-
alently by fetch_and_add, LL/SC, etc.). The counter begins at n, the number
of threads in the program. As each thread reaches the barrier it decrements the
counter. If it is not the last to arrive, the thread then spins on a Boolean flag.
The final thread (the one that changes the counter from 1 to 0) flips the Boolean
flag, allowing the other threads to proceed. To make it easy to reuse the barrier
data structures in successive iterations (known as barrier episodes), threads wait
for alternating values of the flag each time through. Code for this simple barrier
appears in Figure 12.11. �

Like a simple spin lock, the “sense-reversing” barrier can lead to unacceptable
levels of contention on large machines. Moreover the serialization of access to
the counter implies that the time to achieve an n-thread barrier is O(n). It is
possible to do better, but even the fastest software barriers require O(log n) time
to synchronize n threads [MCS91]. Several large multiprocessors, including the
Thinking Machines CM-5 and the Cray T3D, T3E, and X1, have provided special
hardware for near-constant-time busy-wait barriers.

12.3.2 Scheduler Implementation

To implement user-level threads, OS-level processes must synchronize access to
the ready list and condition queues, generally by means of spinning. Code for aEXAMPLE 12.29

Scheduling threads on
processes

simple reentrant thread scheduler (one that can be “reentered” safely by a second
process before the first one has returned) appears in Figure 12.12. As in the code
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shared scheduler lock : low level lock
shared ready list : queue of thread
per-process private current thread : thread

procedure reschedule
–– assume that scheduler lock is already held
–– and that timer signals are disabled
t : thread
loop

t := dequeue(ready list)
if t �= nil

exit
–– else wait for a thread to become runnable
release lock(scheduler lock)
–– window allows another thread to access ready list
–– (no point in reenabling signals;
–– we’re already trying to switch to a different thread)
acquire lock(scheduler lock)

transfer(t)
–– caller must release scheduler lock
–– and reenable timer signals after we return

procedure yield
disable signals
acquire lock(scheduler lock)
enqueue(ready list, current thread)
reschedule
release lock(scheduler lock)
reenable signals

procedure sleep on(ref Q : queue of thread)
–– assume that caller has already disabled timer signals
–– and acquired scheduler lock, and will reverse
–– these actions when we return
enqueue(Q, current thread)
reschedule

Figure 12.12 Pseudocode for part of a simple reentrant (parallelism-safe) scheduler. Every
process has its own copy of current thread. There is a single shared scheduler lock and a single
ready list. If processes have dedicated processors, then the low level lock can be an ordinary
spin lock; otherwise it can be a “spin-then-yield” lock (Figure 12.13). The loop inside reschedule
busy-waits until the ready list is nonempty. The code for sleep on cannot disable timer signals
and acquire the scheduler lock itself, because the caller needs to test a condition and then block
as a single atomic operation.
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in Section 12.2.4, we disable timer signals before entering scheduler code, to pro-
tect the ready list and condition queues from concurrent access by a process and
its own signal handler. �

Our code assumes a single “low-level” lock (scheduler lock) that protects the
entire scheduler. Before saving its context block on a queue (e.g., in yield orEXAMPLE 12.30

A race condition in thread
scheduling

sleep_on), a thread must acquire the scheduler lock. It must then release the
lock after returning from reschedule. Of course, because reschedule calls
transfer, the lock will usually be acquired by one thread (the same one that dis-
ables timer signals) and released by another (the same one that reenables timer
signals). The code for yield can implement synchronization itself, because its
work is self-contained. The code for sleep_on, on the other hand, cannot, be-
cause a thread must generally check a condition and block if necessary as a single
atomic operation:

disable signals
acquire lock(scheduler lock)
if not desired condition

sleep on(condition queue)
release lock(scheduler lock)
reenable signals

If the signal and lock operations were moved inside of sleep_on, the following
race could arise: thread A checks the condition and finds it to be false; thread B
makes the condition true, but finds the condition queue to be empty; thread A
sleeps on the condition queue forever. �

A spin lock will suffice for the “low-level” lock that protects the ready list and
condition queues, as long as every process runs on a different processor. As we
noted in Section 12.2.1, however, it makes little sense to spin for a condition that
can only be made true by some other process using the processor on which we
are spinning. If we know that we’re running on a uniprocessor, then we don’t
need a lock on the scheduler (just the disabled signals). If we might be runningEXAMPLE 12.31

A “spin-then-yield” lock on a uniprocessor, however, or on a multiprocessor with fewer processors than
processes, then we must be prepared to give up the processor if unable to obtain a
lock. The easiest way to do this is with a “spin-then-yield” lock, first suggested by
Ousterhout [Ous82]. A simple example of such a lock appears in Figure 12.13. On
a multiprogrammed machine, it might also be desirable to relinquish the proces-
sor inside reschedule when the ready list is empty: though no other process of
the current application will be able to do anything, overall system throughput
may improve if we allow the operating system to give the processor to a process
from another application. �

On a large multiprocessor we might increase concurrency by employing a sep-
arate lock for each condition queue, and another for the ready list. We would
have to be careful, however, to make sure it wasn’t possible for one process to
put a thread into a condition queue (or the ready list) and for another process to
attempt to transfer into that thread before the first process had finished transfer-
ring out of it (see Exercise 12.9).
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type lock = Boolean := false;

procedure acquire lock(ref L : lock)
while not test and set(L)

count := TIMEOUT
while L

count −:= 1
if count = 0

OS yield –– relinquish processor
count := TIMEOUT

procedure release lock(ref L : lock)
L := false

Figure 12.13 A simple spin-then-yield lock, designed for execution on a multiprocessor that
may be multiprogrammed (i.e., on which OS-level processes may be preempted). If unable to
acquire the lock in a fixed, short amount of time, a process calls the OS scheduler to yield its
processor. Hopefully the lock will be available the next time the process runs.

Scheduler-Based Synchronization

The problem with busy-wait synchronization is that it consumes processor cycles,
cycles that are therefore unavailable for other computation. Busy-wait synchro-
nization makes sense only if (1) one has nothing better to do with the current
processor, or (2) the expected wait time is less than the time that would be re-
quired to switch contexts to some other thread and then switch back again. To
ensure acceptable performance on a wide variety of systems, most concurrent
programming languages employ scheduler-based synchronization mechanisms,
which switch to a different thread when the one that was running blocks.

In the following subsection we consider the three most common forms of
scheduler-based synchronization: semaphores, monitors, and conditional criti-
cal regions. In each case, scheduler-based synchronization mechanisms remove
the waiting thread from the scheduler’s ready list, returning it only when the
awaited condition is true (or is likely to be true). By contrast, the spin-then-
yield lock described in Section 12.3.2 is still a busy-wait mechanism: the cur-
rently running process relinquishes the processor but remains on the ready list.
It will perform a test_and_set operation every time it gets a chance to run,
until it finally succeeds. It is worth noting that busy-wait synchronization is
generally “level-independent”—it can be thought of as synchronizing threads,
processes, or processors, as desired. Scheduler-based synchronization is “level-
dependent”—it is specific to threads when implemented in the language run-
time system, or to processes when implemented in the operating system.

We will use a bounded buffer abstraction to illustrate the semantics of various
scheduler-based synchronization mechanisms. A bounded buffer is a concurrent
queue of limited size into which producer threads insert data, and from which
consumer threads remove data. The buffer serves to even out fluctuations in the
relative rates of progress of the two classes of threads, increasing system through-
put. A correct implementation of a bounded buffer requires both mutual exclu-
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type semaphore = record
N : integer –– usually initialized to something nonnegative
Q : queue of threads

procedure P(ref S : semaphore)
disable signals
acquire lock(scheduler lock)
S.N −:= 1
if S.N < 0

sleep on(S.Q)
release lock(scheduler lock)
reenable signals

procedure V(ref S : semaphore)
disable signals
acquire lock(scheduler lock)
S.N +:= 1
if N ≤ 0

–– at least one thread is waiting
enqueue(ready list, dequeue(S.Q))

release lock(scheduler lock)
reenable signals

Figure 12.14 Semaphore operations, for use with the scheduler code of Figure 12.12.

sion and condition synchronization: the former to ensure that no thread sees the
buffer in an inconsistent state in the middle of some other thread’s operation; the
latter to force consumers to wait when the buffer is empty and producers to wait
when the buffer is full.

12.3.3 Semaphores

Semaphores are the oldest of the scheduler-based synchronization mechanisms.
They were described by Dijkstra in the mid-1960s [Dij68a], and appear in
Algol 68. They are still heavily used today, both in library packages and in lan-
guages like SR and Modula-3.

A semaphore is basically a counter with two associated operations, P and V.2EXAMPLE 12.32
Semaphore
implementation

A thread that calls P atomically decrements the counter and then waits until it is
nonnegative. A thread that calls V atomically increments the counter and wakes
up a waiting thread, if any. It is generally assumed that semaphores are fair, in
the sense that threads complete P operations in the same order they start them.
Implementations of P and V in terms of our scheduler operations appear in Fig-
ure 12.14. �

2 P and V stand for the Dutch words passeren (“to pass”) and vrijgeven (“to release”). To keep them
straight, speakers of English may wish to think of P as standing for “pause,” since a thread will
pause at a P operation if the semaphore count is negative. Algol 68 calls the P and V operations
down and up, respectively.
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shared buf : array [1..SIZE] of bdata
shared next full, next empty : integer := 1, 1
shared mutex : semaphore := 1
shared empty slots, full slots : semaphore := SIZE, 0

procedure insert(d : bdata)
P(empty slots)
P(mutex)
buf[next empty] := d
next empty := next empty mod SIZE + 1
V(mutex)
V(full slots)

function remove : bdata
P(full slots)
P(mutex)
d : bdata := buf[next full]
next full := next full mod SIZE + 1
V(mutex)
V(empty slots)
return d

Figure 12.15 Semaphore-based code for a bounded buffer. The mutex binary semaphore
protects the data structure proper. The full slots and empty slots general semaphores ensure
that no operation starts until it is safe to do so.

A semaphore whose counter is initialized to one and for which P and V op-
erations always occur in matched pairs is known as a binary semaphore. It serves
as a scheduler-based mutual exclusion lock: the P operation acquires the lock; V
releases it. More generally, a semaphore whose counter is initialized to k can be
used to arbitrate access to k copies of some resource. The value of the counter at
any particular time is always k more than the difference between the number of P
operations (#P) and the number of V operations (#V) that have occurred so far
in the program. A P operation blocks the caller until #P ≤ #V + k. Exercise 12.18
notes that binary semaphores can be used to implement general semaphores, so
the two are of equal expressive power, if not of equal convenience.

Figure 12.15 shows a semaphore-based solution to the bounded buffer prob-EXAMPLE 12.33
Bounded buffer with
semaphores

lem. It uses a binary semaphore for mutual exclusion, and two general (or count-
ing) semaphores for condition synchronization. Exercise 12.14 considers the use
of semaphores to construct an n-thread barrier. �

CHECK YOUR UNDERSTANDING

26. What is a critical section?

27. What does it mean for an operation to be atomic?
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28. Explain the difference between mutual exclusion and condition synchroniza-
tion.

29. Describe the behavior of a test_and_set instruction. Show how to use it to
build a spin lock.

30. Describe the behavior of the load_linked and store_conditional in-
structions. What advantages do they offer in comparison to test_and_set?

31. Explain how a reader–writer lock differs from an “ordinary” lock.

32. What is a barrier? In what types of programs are barriers common?

33. What does it mean for code to be reentrant?

34. Explain how to extend a preemptive uniprocessor scheduler to work correctly
on a multiprocessor.

35. What is a spin-then-yield lock?

36. What is a bounded buffer?

37. What is a semaphore? What operations does it support? How do binary and
general semaphores differ?

12.3.4 Monitors

Though widely used, semaphores are also widely considered to be too “low-level”
for well-structured, maintainable code. They suffer from two principal problems.
First, their operations are simply subroutine calls, it is easy to leave one out (e.g.,
on a control path with several nested if statements). Second, unless they are
hidden inside an abstraction, uses of a given semaphore tend to get scattered
throughout a program, making it difficult to track them down for purposes of
software maintenance.

Monitors were suggested by Dijkstra [Dij72] as a solution to these problems.
They were developed more thoroughly by Brinch Hansen [Bri73] and formalized
by Hoare [Hoa74] in the early 1970s. They have been incorporated into at least
a score of languages, of which Concurrent Pascal [Bri75], Modula (1) [Wir77b],
and Mesa [LR80] have probably been the most influential.3

3 Together with Smalltalk and Interlisp, Mesa was one of three influential languages to emerge
from Xerox’s Palo Alto Research Center in the 1970s. All three were developed on the Alto per-
sonal computer, which pioneered such concepts as the bitmapped display, the mouse, the graph-
ical user interface, WYSIWYG editing, Ethernet networking, and the laser printer. The Mesa
project was led by Butler Lampson (1943–), who played a key role in the later development of
Euclid and Cedar as well. For his contributions to personal and distributed computing, Lampson
received the ACM Turing Award in 1992.
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monitor bounded buf
imports bdata, SIZE
exports insert, remove

buf : array [1..SIZE] of data
next full, next empty : integer := 1, 1
full slots : integer := 0
full slot, empty slot : condition

entry insert(d : bdata)
if full slots = SIZE

wait(empty slot)
buf[next empty] := d
next empty := next empty mod SIZE + 1
full slots +:= 1
signal(full slot)

entry remove : bdata
if full slots = 0

wait(full slot)
d : bdata := buf[next full]
next full := next full mod SIZE + 1
full slots −:= 1
signal(empty slot)
return d

Figure 12.16 Monitor-based code for a bounded buffer. Insert and remove are entry subrou-
tines: they require exclusive access to the monitor’s data. Because conditions are memory-less,
both insert and remove can safely end their operation with a signal.

A monitor is a module or object with operations, internal state, and a number
of condition variables. Only one operation of a given monitor is allowed to be
active at a given point in time. A thread that calls a busy monitor is automatically
delayed until the monitor is free. On behalf of its calling thread, any operation
may suspend itself by waiting on a condition variable. An operation may also
signal a condition variable, in which case one of the waiting threads is resumed,
usually the one that waited first.

Because the operations (entries) of a monitor automatically exclude one an-
other in time, the programmer is relieved of the responsibility of using P and V
operations correctly. Moreover because the monitor is an abstraction, all opera-
tions on the encapsulated data, including synchronization, are collected together
in one place. Figure 12.16 shows a monitor-based solution to the bounded bufferEXAMPLE 12.34

Bounded buffer monitor problem. It is worth emphasizing that monitor condition variables are not the
same as semaphores. Specifically, they have no “memory”: if no thread is waiting
on a condition at the time that a signal occurs, then the signal has no effect.
Whereas a V operation on a semaphore increments the semaphore’s counter, al-
lowing some future P operation to succeed, an un-awaited signal on a condition
variable is lost. �
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Semantic Details

Hoare’s definition of monitors employs one thread queue for every condition
variable, plus two bookkeeping queues: the entry queue and the urgent queue.
A thread that attempts to enter a busy monitor waits in the entry queue. When
a thread executes a signal operation from within a monitor, and some other
thread is waiting on the specified condition, then the signaling thread waits on
the monitor’s urgent queue, and the first thread on the appropriate condition
queue obtains control of the monitor. If no thread is waiting on the signaled
condition, then the signal operation is a no-op. When a thread leaves a monitor,
either by completing its operation or by waiting on a condition, it unblocks the
first thread on the urgent queue or, if the urgent queue is empty, the first thread
on the entry queue, if any.

Many monitor implementations dispense with the urgent queue, or make
other changes to Hoare’s original definition. From the programmer’s point of
view, the two principal areas of variation are the semantics of the signal op-
eration and the management of mutual exclusion when a thread waits inside
a nested sequence of two or more monitor calls. We will return to these issues
below.

Correctness for monitors depends on the notion of a monitor invariant. The
invariant is a predicate that captures the notion that “the state of the monitor is
consistent.” The invariant needs to be true initially, and at monitor exit. It also
needs to be true at every wait statement and, in a Hoare monitor, at signal
operations as well. For our bounded buffer example, a suitable invariant would
assert that full slots correctly indicates the number of items in the buffer, and
that those items lie in slots numbered next full through next empty - 1 (mod
SIZE). Careful inspection of the code in Figure 12.16 reveals that the invariant
does indeed hold initially, and that anytime we modify one of the variables men-
tioned in the invariant, we always modify the others accordingly before waiting,
signaling, or returning from an entry.

Hoare defined his monitors in terms of semaphores. Conversely, it is easy to
define semaphores in terms of monitors (Exercise 12.17). Together, the two def-
initions prove that semaphores and monitors are equally powerful: each can ex-
press all forms of synchronization expressible with the other.

Signals as Hints and Absolutes

In general, one signals a condition variable when some condition on which a
thread may be waiting has become true. If we want to guarantee that the condi-
tion is still true when the thread wakes up, then we need to switch to the thread as
soon as the signal occurs—hence the need for the urgent queue, and the need to
ensure the monitor invariant at signal operations. In practice, switching con-EXAMPLE 12.35

How to wait for a signal
(hint or absolute)

texts on a signal tends to induce unnecessary scheduling overhead: a signaling
thread seldom changes the condition associated with the signal during the re-
mainder of its operation. To reduce the overhead and to eliminate the need to
ensure the monitor invariant, Mesa specifies that signals are only hints: the
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language run-time system moves some waiting thread to the ready list, but the
signaler retains control of the monitor, and the waiter must recheck the con-
dition when it awakes. In effect, the standard idiom

if not desired condition
wait(condition variable)

in a Hoare monitor becomes

while not desired condition
wait(condition variable)

in a Mesa monitor. Modula-3 takes a similar approach. An alternative appears in
Concurrent Pascal, which specifies that a signal operation causes an immediate
return from the monitor operation in which it appears. This rule keeps overhead

DESIGN & IMPLEMENTATION

Monitor signal semantics
By specifying that signals are hints, instead of absolutes, Mesa and Modula-3
(and similarly Java and C#, which we consider in Section 12.3.5) avoid the need
to perform an immediate context switch from a signaler to a waiting thread.
They also admit simpler though less efficient implementations that lack a one-
to-one correspondence between signals and thread queues, or that do not nec-
essarily guarantee that a waiting thread will be the first to run in its monitor
after the signal occurs. This approach can lead to complications, however, if we
want to ensure that an appropriate thread always runs in the wake of a signal.
Suppose an awakened thread rechecks its condition and discovers that it still
can’t run. If there may be some other thread that could run, the erroneously
awakened thread may need to resignal the condition before it waits again:

if not desired condition
loop

wait(condition variable)
if desired condition

break

signal(condition variable)

In effect, the signal “cascades” from thread to thread until some thread is able
to run. (If it is possible that no waiting thread will be able to run, then we
will need additional logic to stop the cascading when every thread has been
checked.) Alternatively, the thread that makes a condition (potentially) true
can use a special broadcast version of the signal operation to awaken all
waiting threads at once. Each thread will then recheck the condition and if
appropriate wait again, without the need for explicit cascading. In either case
(cascading signals or broadcast), signals as hints trade potentially high over-
head in the worst case for potentially low overhead in the common case and a
potentially simpler implementation.
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low, and also preserves invariants, but precludes algorithms in which a thread
does useful work in a monitor after signaling a condition. �

Nested Monitor Calls

In most monitor languages, a wait in a nested sequence of monitor operations
will release mutual exclusion on the innermost monitor but will leave the outer
monitors locked. This situation can lead to deadlock if the only way for another
thread to reach a corresponding signal operation is through the same outer
monitor(s). In general, we use the term “deadlock” to describe any situation in
which a collection of threads are all waiting for each other, and none of them can
proceed. In this specific case, the thread that entered the outer monitor first is
waiting for the second thread to execute a signal operation; the second thread,
however, is waiting for the first to leave the monitor.

The alternative—to release exclusion on outer monitors when waiting in
an inner one—was adopted by several early monitor implementations for
uniprocessors, including the original implementation of Modula [Wir77a]. It
has a significant semantic drawback, however: it requires that the monitor in-
variant hold not only at monitor exit and (perhaps) at signal operations, but
also at any subroutine call that may result in a wait or (with Hoare semantics) a
signal in a nested monitor. Such calls may not all be known to the programmer;
they are certainly not syntactically distinguished in the source.

DESIGN & IMPLEMENTATION

The nested monitor problem
While maintaining exclusion on outer monitor(s) when waiting in an inner
one may lead to deadlock with a signaling thread, releasing those outer moni-
tors may lead to similar (if a bit more subtle) deadlocks. When a waiting thread
awakens it must reacquire exclusion on both inner and outer monitors. The
innermost monitor is of course available, because the matching signal hap-
pened there, but there is in general no way to ensure that unrelated threads
will not be busy in the outer monitor(s). Moreover one of those threads may
need access to the inner monitor in order to complete its work and release the
outer monitor(s). If we insist that the awakened thread be the first to run in the
inner monitor after the signal, then deadlock will result. One way to avoid
this problem is to arrange for mutual exclusion across all the monitors of a
program. This solution severely limits concurrency in multiprocessor imple-
mentations, but may be acceptable on a uniprocessor. A more general solution
is addressed in Exercise 12.19.
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buffer : record
buf : array [1..SIZE] of data
next full, next empty : integer := 1, 1
full slots : integer := 0

procedure insert(d : bdata)
region buffer when full slots < SIZE

buf[next empty] := d
next empty := next empty mod SIZE + 1
full slots −:= 1

function remove : bdata
region buffer when full slots > 0

d : bdata := buf[next full]
next full := next full mod SIZE + 1
full slots +:= 1

return d

Figure 12.17 Conditional critical regions for a bounded buffer. Boolean conditions on the
region statements eliminate the need for explicit condition variables.

12.3.5 Conditional Critical Regions

Conditional critical regions (CCRs) are another alternative to semaphores, pro-
posed by Brinch Hansen at about the same time as monitors [Bri73]. A criticalEXAMPLE 12.36

Original CCR syntax region is a syntactically delimited critical section in which code is permitted to
access a protected variable. A conditional critical region also specifies a Boolean
condition, which must be true before control will enter the region:

region protected variable when Boolean condition do
. . .

end region

No thread can access a protected variable except within a region statement for
that variable, and any thread that reaches a region statement waits until the
condition is true and no other thread is currently in a region for the same vari-
able. Regions can nest, though as with nested monitor calls, the programmer
needs to worry about deadlock. Figure 12.17 uses CCRs to implement a bounded
buffer. �

Conditional critical regions appear in the concurrent language Edison [Bri81],
and also seem to have influenced the synchronization mechanisms of Ada 95 and
Java/C#. These later languages might be said to blend the features of monitors
and CCRs, albeit in different ways.

Synchronization in Ada 95

The principal mechanism for synchronization in Ada, introduced in Ada 83, is
based on message passing; we will describe it in Section 12.4. Ada 95 augments
this mechanism with a notion of protected object. A protected object can have
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three types of methods: functions, procedures, and entries. Functions can only
read the fields of the object; procedures and entries can read and write them.
An implicit reader–writer lock on the protected object ensures that potentially
conflicting operations exclude one another in time: a procedure or entry obtains
exclusive access to the object; a function can operate concurrently with other
functions but not with a procedure or entry.

Procedures and entries differ from one another in two important ways. First,
an entry can have a Boolean expression guard, for which the calling task (thread)
will wait before beginning execution (much as it would for the condition of a
CCR). Second, an entry supports three special forms of call: timed calls, which
abort after waiting for a specified amount of time; conditional calls, which execute
alternative code if the call cannot proceed immediately; and asynchronous calls,
which begin executing alternative code immediately but abort it if the call is able
to proceed before the alternative completes.

In comparison to the conditions of CCRs, the guards on entries of protected
objects in Ada 95 admit a more efficient implementation, because they do not
have to be evaluated in the context of the calling thread. Moreover, because all
guards are gathered together in the definition of the protected object, the com-
piler can generate code to test them as a group as efficiently as possible, in a
manner suggested by Kessels [Kes77]. Though an Ada task cannot wait on a con-
dition in the middle of an entry (only at the beginning), it can requeue itself on
another entry, achieving much the same effect. Ada 95 code for a bounded buffer
would closely resemble the pseudocode of Figure 12.17; we leave the details to
Exercise 12.21.

Synchronization in Java

In Java, every object accessible to more than one thread has an implicit mutualEXAMPLE 12.37
Synchronized statement
in Java

exclusion lock, acquired and released by means of synchronized statements:

DESIGN & IMPLEMENTATION

Conditional critical regions
Conditional critical regions avoid the question of signal semantics because
they use explicit Boolean conditions instead of condition variables and be-
cause conditions can be awaited only at the beginning of critical regions. At
the same time, they introduce potentially significant inefficiency. In the gen-
eral case, the code used to exit a conditional critical region must tentatively
resume each waiting thread, allowing that thread to recheck its condition in
its own referencing environment. Optimizations are possible in certain special
cases (e.g., for conditions that depend only on global variables, or that consist
of only a single Boolean variable), but in the worst case it may be necessary
to perform context switches in and out of every waiting thread on every exit
from a region.
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synchronized (my_shared_obj) {

... // critical section

}

All executions of synchronized statements that refer to the same shared object
exclude one another in time. Synchronized statements that refer to different
objects may proceed concurrently. As a form of syntactic sugar, a method of a
class may be prefixed with the synchronized keyword, in which case the body of
the method is considered to have been surrounded by an implicit synchronized
(this) statement. Invocations of nonsynchronized methods of a shared object—
and direct accesses to public fields—can proceed concurrently with each other,
or with a synchronized statement or method. �

Within a synchronized statement or method, a thread can suspend itself by
calling the predefined method wait. Wait has no arguments in Java: the core
language does not distinguish among the different reasons why threads may be
suspended on a given object (the java.util.concurrent library, which became
standard with Java 5, does provide a mechanism for multiple conditions; more
on this below). Like Mesa, Java allows a thread to be awoken for spurious rea-EXAMPLE 12.38

Notify as hint in Java sons; programs must therefore embed the use of wait within a condition-testing
loop:

while (!condition) {

wait();

}

A thread that calls the wait method of an object releases the object’s lock. With
nested synchronized statements, however, or with nested calls to synchronized
methods, the thread does not release locks on any other objects. �

To resume a thread that is suspended on a given object, some other thread
must execute the predefined method notify from within a synchronized state-
ment or method that refers to the same object. Like wait, notify has no ar-
guments. In response to a notify call, the language run-time system picks an
arbitrary thread suspended on the object and makes it runnable. If there are no
such threads then the notify is a no-op. As in Mesa, it may sometimes be ap-
propriate to awaken all threads waiting in a given object. Java provides a built-in
notifyAll method for this purpose.

If threads are waiting for more than one condition (i.e., if their waits are
embedded in dissimilar loops), there is no guarantee that the “right” thread will
awaken. To ensure that an appropriate thread does wake up, the programmer
may choose to use notifyAll instead of notify. To ensure that only one thread
continues after wakeup, the first thread to discover that its condition has been
satisfied must modify the state of the object in such a way that other awakened
threads, when they get to run, will simply go back to sleep. Unfortunately, since all
waiting threads will end up reevaluating their conditions every time one of them
can run, this “solution” to the multiple-condition problem can be prohibitively
expensive.
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The mechanisms for synchronization in C# are similar to the Java mechanisms
just described. The C# lock statement is similar to Java’s synchronized. It can-
not be used to label a method, but a similar effect can be achieved (a bit more
clumsily) by specifying a Synchronized attribute for the method. The methods
Pulse and PulseAll are used instead of signal and signalAll.

Lock Variables In C# and in versions of Java prior to Java 5, programmers
concerned with efficiency must generally look for algorithms in which threads
are never waiting for more than one condition within a given object at a given
time. The java.util.concurrent package, released in 2004, provides a more
general solution. As an alternative to synchronized statements and methods,EXAMPLE 12.39

Lock variables in Java 5 the programmer may now create explicit Lock variables. Code that might once
have been written

synchronized (my_shared_obj) {

... // critical section

}

may now be written

Lock l = new ReentrantLock();

l.lock();

try {

... // critical section

} finally {

l.unlock();

}

DESIGN & IMPLEMENTATION

Condition variables in Java
As illustrated by Mesa and Java, the distinction between monitors and CCRs
is somewhat blurry. It turns out to be possible (see Exercise 12.20) to solve
completely general synchronization problems in such a way that for every pro-
tected object there is only one Boolean condition on which threads ever spin.
The solutions, however, may not be pretty: they amount to low-level use of
semaphores, without the implicit mutual exclusion of synchronized statements
and methods. For programs that are naturally expressed with multiple con-
ditions, Java’s basic synchronization mechanism (and the similar mechanism
in C#) may force the programmer to choose between elegance and efficiency.
The concurrency enhancements of Java 5 are a deliberate attempt to lessen this
dilemma: Lock variables retain the distinction between mutual exclusion and
condition synchronization characteristic of both monitors and CCRs, while
allowing the programmer to partition waiting threads into equivalence classes
that can be awoken independently. By varying the fineness of the partition
the programmer can choose essentially any point of the spectrum between the
simplicity of CCRs and the efficiency of Hoare-style monitors. Exercises 12.22
though 12.24 explore this issue further using bounded buffers as a running
example.
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A similar interface supports reader–writer locks. �
Like semaphores, Java Lock variables lack the implicit release at end of scope

associated with synchronized statements and methods. The need for an explicit
release introduces a potential source of bugs, but allows programmers to create
algorithms in which locks are acquired and released in non-LIFO order (see Ex-
ample 12.12). In a manner reminiscent of the timed entry calls of Ada 95, Java
Lock variables also support a tryLock method, which acquires the lock only
if it is available immediately or within an optionally specified timeout interval
(a Boolean return value indicates whether the attempt was successful). Finally,EXAMPLE 12.40

Multiple Conditions in
Java 5

a Lock variable may have an arbitrary number of associated Condition vari-
ables, making it easy to write algorithms in which threads wait for multiple con-
ditions, without resorting to notifyAll:

Condition c1 = l.newCondition();

Condition c2 = l.newCondition();

...

c1.await();

...

c2.signal(); �
Java objects that use only synchronized methods (no locks or synchron-

ized statements) closely resemble Mesa monitors in which there is a limit of
one condition variable per monitor. By the same token, a synchronized state-
ment in Java that begins with a wait in a loop resembles a CCR in which the
retesting of conditions has been made explicit. Because notify also is explicit, a
Java implementation need not reevaluate conditions on every exit from a critical
section—only those in which a notify occurs.

12.3.6 Implicit Synchronization

In several shared-memory languages, the operations that threads can perform on
shared data are restricted in such a way that synchronization can be implicit in
the operations themselves, rather than appearing as separate, explicit operations.
We have seen one example of implicit synchronization already: the forall loop
of HPF and Fortran 95 (Example 12.9). Separate iterations of a forall loop
proceed concurrently, semantically in lock-step with each other: each iteration
reads all data used in its instance of the first assignment statement before any
iteration updates its instance of the left-hand side. The left-hand side updates
in turn occur before any iteration reads the data used in its instance of the sec-
ond assignment statement, and so on. Compilation of forall loops for vector
machines, while far from trivial, is more or less straightforward. On a more con-
ventional multiprocessor, however, good performance usually depends on high-
quality dependence analysis, which allows the compiler to identify situations in
which statements within a loop do not in fact depend on one another, and can
proceed without synchronization.
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Dependence analysis plays a crucial role in other languages as well. In Sec-
tion 6.6.1 we mentioned the purely functional languages Sisal and pH (recall that
iterative constructs in these languages are syntactic sugar for tail recursion). Be-
cause Sisal and pH are side-effect-free, their constructs can be evaluated in any
order, or concurrently, as long as no construct attempts to use a value that has
yet to be computed. The Sisal implementation developed at Lawrence Livermore
National Lab uses extensive compiler analysis to identify promising constructs
for parallel execution. It also employs tags on data objects that indicate whether
the object’s value has been computed yet. When the compiler is unable to guar-
antee that a value will have been computed by the time it is needed at run time,
the generated code uses tag bits for synchronization, spinning or blocking until
they are properly set. Sisal’s developers claim [Can92] that their language and
compiler rival parallel Fortran in performance.

In a less ambitious vein, the Multilisp [Hal85, MKH91] dialect of Scheme al-EXAMPLE 12.41
Future construct in
Multilisp

lows the programmer to enclose any function evaluation in a special future con-
struct:

(future (my-function my-args))

In a purely functional program, future is semantically neutral: program behav-
ior will be exactly the same as if (my-function my-args) had appeared without
the surrounding call. In the implementation, however, future arranges for the
embedded function to be evaluated by a separate thread of control. The par-
ent thread continues to execute until it actually tries to use the return value of
my-function, at which point it waits for execution of the future to complete.
If two or more arguments to a function are enclosed in futures, then evaluation
of the arguments can proceed in parallel:

(parent-func (future (child-1 args-1)) (future (child-2 args-2)))

There are no additional synchronization mechanisms: future itself is Multilisp’s
only addition to Scheme. �

Multilisp, Sisal, and pH employ the same basic idea: concurrent evaluation
of functions in a language that is (at least mostly) side-effect-free. The Sisal and
pH compilers attempt to find code fragments that can profitably be executed in
parallel; the Multilisp programmer must identify them explicitly. In some ways
the future construct of Multilisp resembles the built-in delay and force of
Scheme (Section 6.6.2). Where future supports concurrency, however, delay
supports lazy evaluation: it defers evaluation of its embedded function until the
return value is known to be needed. Any use of a delayed expression in Scheme
must be surrounded by force. By contrast, synchronization on a future is im-
plicit: there is no analog of force.

Several researchers have noted that the backtracking search of logic languages
such as Prolog is also amenable to parallelization. Two strategies are possible.
The first is to pursue in parallel the subgoals found in the right-hand side of
a rule. This strategy is known as AND parallelism. The fact that variables in
logic, once initialized, are never subsequently modified ensures that parallel
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branches of an AND cannot interfere with one another. The second strategy is
known as OR parallelism; it pursues alternative resolutions in parallel. Because
they will generally employ different unifications, branches of an OR must use
separate copies of their variables. In a search tree such as that of Figure 11.1
(page 567), AND parallelism and OR parallelism create new threads at alternat-
ing levels.

OR parallelism is speculative: since success is required on only one branch,
work performed on other branches is in some sense wasted. OR parallelism
works well, however, when a goal cannot be satisfied (in which case the entire
tree must be searched) or when there is high variance in the amount of execution
time required to satisfy a goal in different ways (in which case exploring several
branches at once reduces the expected time to find the first solution). Both AND
and OR parallelism are problematic in Prolog, because they fail to adhere to the
deterministic search order required by language semantics.

Some of the ideas embodied in concurrent functional languages can be
adapted to imperative languages as well. CC++ [Fos95], for example, is a con-
current extension to C++ in which synchronization is implicit in the use of
single-assignment variables. To declare a single-assignment variable, the CC++
programmer prepends the keyword synch to an ordinary variable declaration.
The value of a synch variable is initially undefined. A thread that attempts to
read the variable will wait until it is assigned a value by some other thread. It is a
runtime error for any thread to attempt to assign to a synch variable that already
has a value.

DESIGN & IMPLEMENTATION

Side-effect freedom and implicit synchronization
In a partially imperative Multilisp program, the programmer must take care
to make sure that concurrent execution of futures will not compromise
program correctness. The expression (f1 (future (f2 args2)) (future
(f3 args3))) may produce unpredictable behavior if the evaluations of f2
and f3 depend on one another, or if the evaluation of f1 depends on any as-
pect of f2 and f3 other than their return values. Such behavior may be very
difficult to debug. Sisal and pH avoid the problem by permitting only side-
effect-free programs.

In a key sense, Sisal and pH are ideally suited to parallel execution: they
eliminate all artificial connections—all anti- and output dependences (Sec-
tion 15.6)—among expressions: all that remains is the actual data flow. Two
principal barriers to performance remain: (1) the standard challenges of effi-
cient code generation for functional programs (Section 10.7), and (2) the need
to identify which potentially parallel code fragments are large enough and in-
dependent enough to merit the overhead of thread creation and implicit syn-
chronization.
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In a similar vein, Linda [ACG86] is a set of concurrent programming mecha-
nisms that can be embedded into almost any imperative language. It consists of
a set of subroutines that manipulate a shared abstraction called the tuple space.
The elements of tuple space resemble the tuples of ML (Example 7.111) and
Python (Example 13.73), except that they have single assignment semantics, and
are accessed associatively by content, rather than by name. The in procedure
adds a tuple to the tuple space. The out procedure extracts a tuple that matches a
specified pattern, waiting if no such tuple currently exists. The read procedure is
a nondestructive out. A special form of in forks a concurrent thread to calculate
the value to be inserted, much like a future in Multilisp. All three subroutines
can be supported as ordinary library calls, but performance is substantially bet-
ter when using a specially designed compiler that generates optimized code for
commonly occurring patterns of tuple space operations.

A few multiprocessors, including the Denelcor HEP [Jor85] and the Tera ma-
chine [ACC+90], provide hardware support for single-assignment variables in
the form of so-called full–empty bits. Each memory location contains a bit that
indicates whether the variable in that location has been initialized. Any attempt
to access an uninitialized variable stalls the current processor, causing it to switch
contexts (in hardware) to another thread of control.

CHECK YOUR UNDERSTANDING

38. What is a monitor? How do monitor condition variables differ from sema-
phores?

39. Explain the difference between treating monitor signals as hints and treating
them as absolutes.

40. What is a monitor invariant? Under what circumstances must it be guaranteed
to hold?

41. Describe the nested monitor problem and some potential solutions.

42. What is deadlock?

43. What is a conditional critical region? How does it differ from a monitor?

44. Summarize the synchronization mechanisms of Ada 95, Java, and C#. Con-
trast them with one another, and with monitors and conditional critical re-
gions. Be sure to explain the features added to Java 5.

45. Describe the semantics of the HPF/Fortran 95 forall loop.

46. Why might pure functional languages be said to provide a particularly attrac-
tive notation for concurrent programming?



642 Chapter 12 Concurrency

Figure 12.18 Three common schemes to name communication partners. In (a), processes
name each other explicitly. In (b), senders name an input port of a receiver. The port may be
called an entry or an operation. The receiver is typically a module with one or more threads
inside. In (c), senders and receivers both name an independent channel abstraction, which may
be called a connection or a mailbox.

47. Explain the difference between AND parallelism and OR parallelism in Pro-
log.

48. What are single-assignment variables? In what languages do they appear?

12.4 Message Passing

While shared-memory concurrent programming is common on small-scale mul-
tiprocessors, most concurrent programming on large multicomputers and net-
works is currently based on messages. In Sections 12.4.1 through 12.4.3 we con-
sider three principal issues in message-based computing: naming, sending, and
receiving. In Section 12.4.4 we look more closely at one particular combination
of send and receive semantics, namely remote procedure call. Most of our exam-
ples will be drawn from the Ada, Occam, and SR programming languages, the
Java network library, and the PVM and MPI library packages.

12.4.1 Naming Communication Partners

To send or receive a message, one must generally specify where to send it to orEXAMPLE 12.42
Naming processes, ports,
and entries

where to receive it from: communication partners need names for (or references
to) one another. Names may refer directly to a thread or process. Alternatively,
they may refer to an entry or port of a module, or to some sort of socket or channel
abstraction. We illustrate these options in Figure 12.18. �

The first naming option—addressing messages to processes—appears in
Hoare’s original CSP proposal and in PVM and MPI. Each PVM or MPI process
has a unique id (an integer), and each send or receive operation specifies
the id of the communication partner. MPI implementations are required to be
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reentrant; a process can safely be divided into multiple threads, each of which
can send or receive messages on the process’s behalf. PVM has hidden state vari-
ables that are not automatically synchronized, making threaded PVM programs
problematic.

The second naming option—addressing messages to ports—appears in Ada.
An Ada entry call of the form t.foo(args) sends a message to the entry namedEXAMPLE 12.43

Entry calls in Ada foo in task (thread) t (t may be either a task name or the name of a variable
whose value is a pointer to a task). As we saw in Section 12.2.3, an Ada task
resembles a module; its entries resemble subroutine headers nested directly inside
the task. A task receives a message that has been sent to one of its entries by
executing an accept statement (to be discussed in Section 12.4.3). Every entry
belongs to exactly one task; all messages sent to the same entry must be received
by that one task. �

The third naming option—addressing messages to channels —appears in Oc-EXAMPLE 12.44
Channels in Occam cam (though not in CSP). Channel declarations are supported with the built-in

CHAN and CALL types:

CHAN OF BYTE stream :

CALL lookup(RESULT [36]BYTE name, VAL INT ssn) :

These declarations specify a one-directional channel named stream that carries
messages of type BYTE and a two-directional channel named lookup that carries
requests containing an integer named ssn and replies containing a 36-byte string
named name. CALL channels are syntactic sugar for a pair of CHAN channels, one
in each direction. To send a message on a CHAN channel, an Occam thread uses a
special “exclamation point” operator:

stream ! ’x’

To send a message (and receive a reply) on a CALL channel, a thread uses syntax
that resembles a subroutine call:

lookup(name, 123456789) �
We noted in our coverage of parallel loops (page 606) that language rules in

Occam prohibit concurrent threads from making conflicting accesses to the same
variable. For channels, the basic rule is that exactly one thread may send to a
channel, and exactly one may receive from it. (For CALL channels, exactly one
thread may send requests, and exactly one may accept them and send replies.)
These rules are relaxed in Occam 3 to permit SHARED channels, which provide
a mutual exclusion mechanism. Only one thread may accept requests over a
SHARED CALL channel, but multiple threads may send them. In a similar vein,
multiple threads may CLAIM a set of CHAN channels for exclusive use in a criti-
cal section, but only one thread may GRANT those channels; it serves as the other
party for every message sent or received.

In SR and the Internet libraries of Java we see combinations of our naming
options. An SR program executes on a collection of one or more virtual ma-
chines, each of which has a separate address space, and may be implemented on a



644 Chapter 12 Concurrency

separate node of a network. Within a virtual machine, messages are sent to (and
received from) a channel-like abstraction called an op. Unlike an Occam channel,
an SR op has no restrictions on the number or identity of sending and receiving
threads: any thread that can see an op under the usual lexical scoping rules can
send to it or receive from it. A receive operation must name its op explicitly;
a send operation may do so also, or it may use a capability variable. A capability
in SR is like a pointer to an op, except that pointers work only within a given vir-
tual machine, while capabilities work across the boundaries between them. Aside
from start-up parameters and possibly I/O, capabilities provide the only means of
communicating among separate virtual machines. At the outermost level, then,
an SR program can be seen as having a port-like naming scheme: messages are
sent (via capabilities) to ops of virtual machines, within which they may poten-
tially be received by any local thread.

Java’s standard java.net library provides two styles of message passing, cor-
responding to the UDP and TCP Internet protocols. UDP is the simpler of the
two. It is a datagram protocol, meaning that each message is sent to its destina-
tion independently and unreliably. The network software will attempt to deliver
it but makes no guarantees. Moreover two messages sent to the same destination
(assuming they both arrive) may arrive in either order. UDP messages use port-
based naming (Figure 12.18b): each message is sent to a specific Internet address
and port number.4 The TCP protocol also uses port-based naming, but only for
the purpose of establishing connections (Figure 12.18c), which it then uses for all
subsequent communication. Connections deliver messages reliably and in order.

To send or receive UDP messages, a Java thread must create a datagram socket:EXAMPLE 12.45
Datagram messages in Java

DatagramSocket my_socket = new DatagramSocket(port_id);

The parameter of the DatagramSocket constructor is optional; if it is not speci-
fied, the operating system will choose an available port. Typically servers specify
a port and clients allow the OS to choose. To send a UDP message, a thread says

DatagramPacket my_msg = new DatagramPacket(buf, len, addr, port);

... // initialize message

my_socket.send(my_msg);

The parameters to the DatagramPacket constructor specify an array of bytes
buf, its length len, and the Internet address and port of the receiver. Receiving
is symmetric:

my_socket.receive(my_msg);

... // parse content of my_msg �

4 Every publicly visible machine on the Internet has its own unique address. Though a transition
to 128-bit addresses has been underway for some time, as of 2005 most addresses are still 32-
bit integers, usually printed as four period-separated fields (e.g., 192.5.54.209). Internet name
servers translate symbolic names (e.g., gate.cs.rochester.edu) into numeric addresses. Port
numbers are also integers, but are local to a given Internet address. Ports 1024 through 4999 are
generally available for application programs; larger and smaller numbers are reserved for servers.
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For TCP communication, a server typically “listens” on a port to which clientsEXAMPLE 12.46
Connection-based
messages in Java

send requests to establish a connection:

ServerSocket my_server_socket = new ServerSocket(port_id);

Socket client_connection = my_server_socket.accept();

The accept operation blocks until the server receives a connection request from
a client. Typically a server will immediately fork a new thread to communicate
with the client; the parent thread loops back to wait for another connection with
accept.

A client sends a connection request by passing the server’s symbolic name and
port number to the Socket constructor:

Socket server_connection = new Socket(host_name, port_id);

Once a connection has been created, a client and server in Java typically call
methods of the Socket class to create input and output streams, which support
all of the standard Java mechanisms for text I/O (Section 7.9.3):

BufferedReader in = new BufferedReader(

new InputStreamReader(client_connection.getInputStream()));

PrintStream out =

new PrintStream(client_connection.getOutputStream());

// This is in the server; the client would make streams out

// of server_connection.

...

String s = in.readLine();

out.println("Hi, Mom\n"); �
Among all the message-passing mechanisms we have considered, datagrams

are the only one that does not provide some sort of ordering constraint. In gen-
eral, most message-passing systems guarantee that messages sent over the same
“communication path” arrive in order. When naming processes explicitly, a path
links a single sender to a single receiver. All messages from that sender to that
receiver arrive in the order sent. When naming ports, a path links an arbitrary
number of senders to a single receiver (though as we saw in SR, if a receiver is a
complex entity like a virtual machine, it may have many threads inside). Messages
that arrive at a port in a given order will be seen by receivers in that order. Note,
however, that while messages from the same sender will arrive at a port in order,
messages from different senders may arrive in different orders.5 When naming
channels, a path links all the senders that can use the channel to all the receivers

5 Suppose, for example, that process A sends a message to port p of process B and then sends a
message to process C, while process C first receives the message from A and then sends its own
message to port p of B. If messages are sent over a network with internal delays, and if A is allowed
to send its message to C before its first message has reached port p, then it is possible for B to
hear from C before it hears from A. This apparent reversal of ordering could easily happen on
the Internet, for example, if the message from A to B traverses a satellite link, while the messages
from A to C and from C to B use ocean-floor cables.
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that can use it. A Java TCP connection has a single OS process at each end, but
there may be many threads inside, each of which can use its process’s end of the
connection. An SR op can be used by any thread to which it is visible. In both
cases, the channel functions as a queue: send (enqueue) and receive (dequeue)
operations are ordered, so that everything is received in the order it was sent.

12.4.2 Sending

One of the most important issues to be addressed when designing a send oper-
ation is the extent to which it may block the caller: once a thread has initiated a
send operation, when is it allowed to continue execution? Blocking can serve at
least three purposes.

resource management: A sending thread should not modify outgoing data un-
til the underlying system has copied the old values to a safe location. Most
systems block the sender until a point at which it can safely modify its data
without danger of corrupting the outgoing message.

failure semantics: Particularly when communicating over a long-distance net-
work, message passing is more error-prone than most other aspects of com-
puting. Many systems block a sender until they are able to guarantee that the
message will be delivered without error.

return parameters: In many cases a message constitutes a request, for which a
reply is expected. Many systems block a sender until a reply has been received.

When deciding how long to block, we must consider synchronization semantics,
buffering requirements, and the reporting of run-time errors.

Synchronization Semantics

On its way from a sender to a receiver, a message may pass through many in-
termediate steps, particularly if traversing the Internet. It first descends through
several layers of software on the sender’s machine, then through a potentially
large number of intermediate machines, and finally up through several layers of
software on the receiver’s machine. We could imagine unblocking the sender after
any of these steps, but most of the options would be indistinguishable in terms
of user-level program behavior. If we assume for the moment that a message-EXAMPLE 12.47

Three main options for
send semantics

passing system can always find buffer space to hold an outgoing message, then
our three rationales for delay suggest three principal semantic options.

no-wait send: The sender does not block for more than a small, bounded period
of time. The message-passing implementation copies the message to a safe
location and takes responsibility for its delivery.

synchronization send: The sender waits until its message has been received.

remote-invocation send: The sender waits until it receives a reply.
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These three alternatives are illustrated in Figure 12.19. �
No-wait send appears in SR and in the Java Internet library. Synchroniza-

tion send appears in Occam. Remote-invocation send appears in SR, Occam,
and Ada. PVM and MPI provide an implementation-oriented hybrid of no-
wait send and synchronization send: a send operation blocks until the data in
the outgoing message can safely be modified. In implementations that do their
own internal buffering, this rule amounts to no-wait send. In other implemen-
tations, it amounts to synchronization send. PVM programs must be written
to cope with the latter, more restrictive option. In MPI, the programmer has
the option, if desired, to insist on no-wait send or synchronization send; per-
formance may suffer on some systems if the request is different from the de-
fault.

Buffering

In practice, unfortunately, no message-passing system can provide a version of
send that never waits (unless of course it simply throws some messages away). If
we imagine a thread that sits in a loop sending messages to a thread that never
receives them, we quickly see that unlimited amounts of buffer space would be
required. At some point, any implementation must be prepared to block an over-
active sender, to keep it from overwhelming the system. Such blocking is a form
of backpressure. Milder backpressure can also be applied by reducing a thread’s
scheduling priority or by changing parameters of the underlying message deliv-
ery mechanism.

DESIGN & IMPLEMENTATION

The semantic impact of implementation issues
The inability to buffer unlimited amounts of data, or to report errors syn-
chronously to a sender that has continued execution, are only the most recent
of the many examples we have seen in which pragmatic implementation is-
sues may restrict the language semantics available to the programmer. Other
examples include limitations on the length of source lines or variable names
(Section 2.1.1); limits on the memory available for data (whether global, stack,
or heap allocated) and for recursive function evaluation (Section 3.2); the lack
of ranges in case statement labels (Section 6.4.2); in reverse, downto, and
constant step sizes for for loops (Section 6.5.1); limits on set universe size
(to accommodate bit vectors—Section 7.6); limited procedure nesting (to ac-
commodate displays—Section 8.1); the fixed size requirement for opaque ex-
ports in Modula-2 (Section 9.2.1); and the lack of nested threads or of unre-
stricted arms on a cobegin statement (to avoid the need for cactus stacks—
Section 8.6.1 and the sidebar on page 606). Some of these limitations are re-
flected in the formal semantics of the language. Others (generally those that
vary most from one implementation to another) restrict the set of semanti-
cally valid programs that the system will run correctly.
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Figure 12.19 Synchronization semantics for the send operation: no-wait send (a), synchro-
nization send (b), and remote-invocation send (c). In each diagram we have assumed that the
original message arrives before the receiver executes its receive operation; this need not in
general be the case.

For any fixed amount of buffer space, it is possible to design a program that
requires a larger amount of space to run correctly. Imagine, for example, that theEXAMPLE 12.48

Buffering-dependent
deadlock

message-passing system is able to buffer n messages on a given communication
path. Now imagine a program in which A sends n + 1 messages to B, followed by
one message to C. C then sends one message to B on a different communication
path. Finally, B insists on receiving the message from C before receiving the mes-
sages from A. If A blocks after message n, implementation-dependent deadlock
will result. The best that an implementation can do is to provide a sufficiently
large amount of space that realistic applications are unlikely to find the limit to
be a problem. �

For synchronization send and remote-invocation send, buffer space is not
generally a problem: the total amount of space required for messages is bounded
by the number of threads, and there are already likely to be limits on how many
threads a program can create. A thread that sends a reply message can always be
permitted to proceed: we know that we shall be able to reuse the buffer space
quickly, because the thread that sent the request is already waiting for the reply.

Error Reporting

If the underlying message-passing system is unreliable, a language or libraryEXAMPLE 12.49
Acknowledgments will typically employ acknowledgment messages to verify successful transmission

(Figure 12.20). If an acknowledgment is not received within a reasonable amount
of time, the implementation will typically resend. If several attempts fail to elicit
an acknowledgment, an error will be reported. �
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Figure 12.20 Acknowledgment messages for error detection. In the absence of piggyback-
ing, remote-invocation send (left) may require four underlying messages; synchronization send

(right) may require two.

As long as the sender of a message is blocked, errors that occur in attempting
to deliver a message can be reflected back as exceptions, or as status information
in result parameters or global variables. Once a sender has continued, there is no
obvious way in which to report any problems that arise. Like limits on message
buffering, this dilemma poses semantic problems for no-wait send. For UDP,
the solution is to state that messages are unreliable: if something goes wrong,
the message is simply lost, silently. For TCP, the “solution” is to state that only
“catastrophic” errors will cause a message to be lost, in which case the connec-
tion will become unusable and future calls will fail immediately. An even more
drastic approach is taken in MPI: certain implementation-specific errors may be
detected and handled at run time, but in general if a message cannot be delivered
then the program as a whole is considered to have failed. PVM provides a notifi-
cation mechanism that will send a message to a previously designated process in
the event of a node or process failure. The designated process can then perform
cleanup actions such as aborting any related, dependent processes, or starting
new processes to pick up the work of those that failed.

Emulation of Alternatives

All three varieties of send can be emulated by the others. To obtain the effect of
remote-invocation send, a thread can follow a no-wait send of a request with
a receive of the reply. Similar code will allow us to emulate remote-invocation
send using synchronization send. To obtain the effect of synchronization send,
a thread can follow a no-wait send with a receive of a high-level acknowl-
edgment, which the receiver will send immediately upon receipt of the original
message. To obtain the effect of synchronization send using remote-invocation
send, a thread that receives a request can simply reply immediately, with no re-
turn parameters.

To obtain the effect of no-wait send using synchronization send or remote-
invocation send, we must interpose a buffer process (the message-passing
analogue of our shared-memory bounded buffer) that replies immediately to
“senders” or “receivers” whenever possible. The space available in the buffer
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process makes explicit the resource limitations that are always present below the
surface in implementations of no-wait send.

Syntax and Language Integration

In the preceding emulation examples we assumed a library-based implementa-
tion of message passing. Because send, receive, accept, and so on are ordinary
subroutines in such an implementation, they take a fixed, static number of para-
meters, two of which typically specify the location and size of the message to be
sent. To send a message containing values held in more than one program vari-
able, the programmer must explicitly gather, or marshal, those values into the
fields of a record. On the receiving end, the programmer must scatter (unmar-
shal) the values back into program variables. By contrast, a concurrent program-
ming language can provide message-passing operations whose “argument” lists
can include an arbitrary number of values to be sent. Moreover, the compiler can
arrange to perform type checking on those values, using techniques similar to
those employed for subroutine linkage across compilation units (to be described
in Section 14.6.2). Finally, as we shall see in Section 12.4.3, an explicitly concur-
rent language can employ non-procedure-call syntax—for example, to couple a
remote-invocation accept and reply in such a way that the reply doesn’t have
to explicitly identify the accept to which it corresponds.

DESIGN & IMPLEMENTATION

Emulation and efficiency
Unfortunately, user-level emulations of alternative send semantics are seldom
as efficient as optimized implementations using the underlying primitives.
Suppose for example that we wish to use remote-invocation send to emulate
synchronization send. Suppose further that our implementation of remote-
invocation send is built on top of network software that needs acknowledg-
ments to verify message delivery. After sending a reply, the server’s run-time
system will wait for an acknowledgment from the client. If a server thread can
work for an arbitrary amount of time before sending a reply, then the run-time
system will need to send separate acknowledgments for the request and the
reply. If a programmer uses this implementation of remote-invocation send
to emulate synchronization send, then the underlying network may end up
transmitting a total of four messages (more if there are any transmission er-
rors). By contrast, a “native” implementation of synchronization send would
require only two underlying messages. In some cases the run-time system for
remote-invocation send may be able to delay transmission of the first ac-
knowledgment long enough to “piggyback” it on the subsequent reply if there
is one; in this case an emulation of synchronization send may transmit three
underlying messages instead of only two. We consider the efficiency of emula-
tions further in Exercise 12.33 and Exploration 12.38.
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12.4.3 Receiving

Probably the most important dimension on which to categorize mechanisms for
receiving messages is the distinction between explicit receive operations and
the implicit receipt described in Section 12.2.3 (page 611). Among the languages
and systems we have been using as examples, only SR provides implicit receipt
(some RPC systems also provide it, as we shall see in Section 12.4.4).

With implicit receipt, every message that arrives at a given port (or over a
given channel) will create a new thread of control, subject to resource limitations
(any implementation will have to stall incoming requests when the number of
threads grows too large). With explicit receipt, a message must be queued un-
til some already-existing thread indicates a willingness to receive it. At any given
point in time there may be a potentially large number of messages waiting to
be received. Most languages and libraries with explicit receipt allow a thread to
exercise some sort of selectivity with respect to which messages it wants to con-
sider.

In PVM and MPI, every message includes the id of the process that sent it, to-
gether with an integer tag specified by the sender. A receive operation specifies
a desired sender id and message tag. Only matching messages will be received. In
many cases receivers specify “wild cards” for the sender id and/or message tag,
allowing any of a variety of messages to be received. Special versions of receive
also allow a process to test (without blocking) to see if a message of a particular
type is currently available (this operation is known as polling) or to “time out”
and continue if a matching message cannot be received within a specified interval
of time.

Because they are languages instead of library packages, Ada, Occam, and SR
are able to use special, non-procedure-call syntax for selective message receipt.
Moreover because messages are built into the naming and typing system, these
languages are able to receive selectively on the basis of port/channel names and
parameters, rather than the more primitive notion of tags. In all three languages,
the selective receive construct is a special form of guarded command, as de-
scribed in Section 6.7.

Figure 12.21 contains code for a bounded buffer in Ada 83. Here an activeEXAMPLE 12.50
Bounded buffer in Ada 83 “manager” thread executes a select statement inside a loop. (Recall that it is

also possible to write a bounded buffer in Ada using protected objects, without
a manager thread, as described in Section 12.3.2.) The Ada accept statement
receives the in and in out parameters (Section 8.3.1) of a remote invocation
request. At the matching end, accept returns the in out and out parameters
as a reply message. A client task would communicate with the bounded buffer
using an entry call:

-- producer: -- consumer:

buffer.insert(3); buffer.remove(x);
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task buffer is

entry insert(d : in bdata);

entry remove(d : out bdata);

end buffer;

task body buffer is

SIZE : constant integer := 10;

subtype index is integer range 1..SIZE;

buf : array (index) of bdata;

next_empty, next_full : index := 1;

full_slots : integer range 0..SIZE := 0;

begin

loop

select

when full_slots < SIZE =>

accept insert(d : in bdata) do

buf(next_empty) := d;

end;

next_empty := next_empty mod SIZE + 1;

full_slots := full_slots + 1;

or

when full_slots > 0 =>

accept remove(d : out bdata) do

d := buf(next_full);

end;

next_full := next_full mod SIZE + 1;

full_slots := full_slots - 1;

end select;

end loop;

end buffer;

Figure 12.21 Bounded buffer in Ada, with an explicit manager task.

The select statement in our buffer example has two arms. The first arm may
be selected when the buffer is not full and there is an available insert request;
the second arm may be selected when the buffer is not empty and there is an
available remove request. Selection among arms is a two-step process: first the
guards (when expressions) are evaluated, then for any that are true the subse-
quent accept statements are considered to see if a message is available. (The
guard in front of an accept is optional; if missing it behaves like when true
=>.) If both of the guards in our example are true (the buffer is partly full) and
both kinds of messages are available, then either arm of the statement may be
executed, at the discretion of the implementation. (For a discussion of issues of
fairness in the choice among true guards, see the sidebar on page 76-CD.) �

Every select statement must have at least one arm beginning with acceptEXAMPLE 12.51
Timeout and distributed
termination

(and optionally when). In addition, it may have three other types of arms:
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when condition => delay how long
other statements

...

or when condition => terminate

...

else ...

A delay arm may be selected if no other arm becomes selectable within how long
seconds. (Ada implementations are required to support delays as long as one
day or as short as 20 ms.) A terminate arm may be selected only if all po-
tential communication partners have already terminated or are likewise stuck in
select statements with terminate arms. Selection of the arm causes the task
that was executing the select statement to terminate. An else arm, if present,
will be selected when none of the guards are true or when no accept statement
can be executed immediately. A select statement with an else arm is not per-
mitted to have any delay arms. In practice, one would probably want to in-
clude a terminate arm in the select statement of a manager-style bounded
buffer. �

Occam’s equivalent of select is known as ALT. As in Ada, the choice among
arms can be based both on Boolean conditions and on the availability of mes-
sages. (One minor difference: Occam semantics specify a one-step evaluation
process; message availability is considered part of the guard.) The body of ourEXAMPLE 12.52

Bounded buffer in Occam bounded buffer example is shown in Figure 12.22. Recall that Occam uses in-
dentation to delimit control-flow constructs. Also note that Occam has no mod
operator.

The question-mark operator (?) is Occam’s receive; the exclamation-mark
operator (!) is its send. As in Ada, an active manager thread must embed the
ALT statement in a loop. As written here, the ALT statement has two guards. The
first guard is true when full_slots < SIZE and a message is available on the
channel named producer; the second guard is true when full_slots > 0 and
a message is available on the channel named request. �

Because we are using synchronization send in this example, there is an asym-EXAMPLE 12.53
Asymmetry of
synchronization send

metry between the treatment of producers and consumers: the former need only
send the manager data; the latter must send it a dummy argument and then wait
for the manager to send the data back:

BDATA x :

-- producer: -- consumer:

producer ! x request ! TRUE

consumer ? x

The asymmetry could be removed by using remote invocation on CALL channels:

-- channel declarations:

CALL insert(VAL BDATA d) :

CALL remove(RESULT BDATA d) :
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-- channel declarations:

CHAN OF BDATA producer, consumer :

CHAN OF BOOL request :

-- buffer manager:

... -- (data declarations omitted)

WHILE TRUE

ALT

full_slots < SIZE & producer ? d

SEQ

buf[next_empty] := d

IF

next_empty = SIZE

next_empty := 1

next_empty < SIZE

next_empty := next_empty + 1

full_slots := full_slots + 1

full_slots > 0 & request ? t

SEQ

consumer ! buf[next_full]

IF

next_full = SIZE

next_full := 1

next_full < SIZE

next_full := next_full + 1

full_slots := full_slots - 1

Figure 12.22 Bounded buffer as an active Occam process.

-- buffer manager:

WHILE TRUE

ALT

full_slots < SIZE & ACCEPT insert(VAL BDATA d)

buf[next_empty] := d

IF -- increment next_empty, etc.

...

full_slots > 0 & ACCEPT remove(RESULT BDATA d)

d := buf[next_full]

IF -- increment next_full, etc.

...

Client code now looks like this:

-- producer: -- consumer:

insert(x) remove(x)

In the code of the buffer manager, the body of the ACCEPT is the single subsequent
statement (the one that accesses buf). Updates to next_empty, next_full, and
full_slots occur after replying to the client. �

The effect of an Ada delay can be achieved in Occam by an ALT arm thatEXAMPLE 12.54
Timeout in Occam receipt “receives” from a timer pseudo-process:
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resource buffer

op insert(d : bdata)

op remove() returns d : bdata

body buffer()

const SIZE := 10;

var buf[0:SIZE-1] : bdata

var full_slots := 0, next_empty := 0, next_full := 0

process manager

do true ->

in insert(d) st full_slots < SIZE ->

buf[next_empty] := d

next_empty := (next_empty + 1) % SIZE

full_slots++

[] remove() returns d st full_slots > 0 ->

d := buf[next_full]

next_full := (next_full + 1) % SIZE

full_slots--

ni

od

end # manager

end # buffer

Figure 12.23 Bounded buffer as an active SR process.

clock ? AFTER quit_time

An arm can also be selected on the basis of a Boolean condition alone, without
attempting to receive:

a > b & SKIP -- do nothing

Occam’s ALT has no equivalent of the Ada terminate, nor is there an else (a
similar effect can be achieved with a very short delay). �

DESIGN & IMPLEMENTATION

Peeking inside messages
The ability of guards and scheduling expressions to “peek inside” a message in
SR requires that all pending messages be visible to the language run-time sys-
tem. An SR implementation must therefore be prepared to accept (and buffer)
an arbitrary number of messages; it cannot rely on the operating system or
other underlying software to provide the buffering for it. Moreover the fact
that buffer space can never be truly unlimited means that guards and schedul-
ing expressions will be unable to see messages whose delivery has been delayed
by backpressure.
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In SR, selective receipt is again based on guarded commands; code appears inEXAMPLE 12.55
Bounded buffer in SR Figure 12.23. The st stands for “such that”; it introduces the Boolean half of a

guard. Client code looks like this:

# producer: # consumer:

call insert(x) x := remove()

If desired, an explicit reply to the client could be inserted between the access to
buf and the updates of next_empty, next_full, and full_slots in each arm
of the in. �

In a significant departure from Ada and Occam, SR arranges for the para-EXAMPLE 12.56
Peeking at messages in SR meters of a potential message to be in the scope of the st condition, allowing a

receiver to “peek inside” a message before deciding whether to receive it:

in insert(d) st d % 2 = 1 -> # only accept odd numbers

A receiver can also accept messages on a given port (i.e., of a given op) out-of-
order by specifying a scheduling expression:

in insert(d) st d % 2 = 1 by -d ->

# only accept odd numbers, and pick the largest one first �
Like an Ada select, an SR in statement can end with an else guard; this

guard will be selected if no message is immediately available. There is no equiva-
lent of delay or terminate.

12.4.4 Remote Procedure Call

Any of the three principal forms of send (no-wait, synchronization, remote-
invocation) can be paired with either of the principal forms of receive (explicit
or implicit). The combination of remote-invocation send with explicit receipt
(e.g., as in Ada) is sometimes known as rendezvous. The combination of remote-
invocation send with implicit receipt is usually known as remote procedure call.
RPC is available in several concurrent languages (SR obviously among them). It is
also supported on many systems by augmenting a sequential language with a stub
compiler. The stub compiler is independent of the language’s regular compiler. It
accepts as input a formal description of the subroutines that are to be called re-
motely. The description is roughly equivalent to the subroutine headers and dec-
larations of the types of all parameters. Based on this input the stub compiler gen-
erates source code for client and server stubs. A client stub for a given subroutine
marshals request parameters and an indication of the desired operation into a
message buffer, sends the message to the server, waits for a reply message, and un-
marshals that message into result parameters. A server stub takes a message buffer
as parameter, unmarshals request parameters, calls the appropriate local subrou-
tine, marshals return parameters into a reply message, and sends that message
back to the appropriate client. Invocation of a client stub is relatively straightfor-
ward. Invocation of server stubs is discussed under “Implementation” below.
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Semantics

A principal goal of most RPC systems is to make the remote nature of calls as
transparent as possible; that is, to make remote calls look as much like local calls
as possible [BN84]. In a stub compiler system, a client stub should have the same
interface as the remote procedure for which it acts as proxy; the programmer
should usually be able to call the routine without knowing or caring whether it is
local or remote.

Several issues make it difficult to achieve transparency in practice.

parameter modes: It is difficult to implement call-by-reference parameters
across a network, since actual parameters will not be in the address space
of the called routine. (Access to global variables is similarly difficult.)

performance: There is no escaping the fact that remote procedures may take
a long time to return. In the face of network delays, one cannot use them
casually.

failure semantics: Remote procedures are much more likely to fail than are local
procedures. It is generally acceptable in the local case to assume that a called
procedure will either run exactly once or else the entire program will fail. Such
an assumption is overly restrictive in the remote case.

We can use value/result parameters in place of reference parameters as long
as program correctness does not rely on the aliasing created by reference pa-
rameters. As noted in Section 8.3.1, Ada declares that a program is erroneous if it
can tell the difference between pass-by-reference and pass-by-value/result imple-
mentations of in out parameters. If absolutely necessary, reference parameters
and global variables can be implemented with message-passing thunks in a man-
ner reminiscent of call-by-name parameters (Section 8.3.2), but only at very
high cost. As noted in Section 7.10, a few languages and systems perform deep
copies of linked data structures passed to remote routines.

Performance differences between local and remote calls can only be hidden by
artificially slowing down the local case. Such an option is clearly unacceptable.

Exactly-once failure semantics can be provided by aborting the caller in the
event of failure or, in highly reliable systems, by delaying the caller until the oper-
ating system or language run-time system is able to rebuild the failed computa-
tion using information previously dumped to disk. (Failure recovery techniques
are beyond the scope of this text.) An attractive alternative is to accept “at-most-
once” semantics with notification of failure. The implementation retransmits re-
quests for remote invocations as necessary in an attempt to recover from lost
messages. It guarantees that retransmissions will never cause an invocation to
happen more than once, but it admits that in the presence of communication
failures the invocation may not happen at all. If the programming language pro-
vides exceptions, then the implementation can use them to make communication
failures look like any other kind of run-time error.
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Implementation

At the level of the kernel interface, receive is usually an explicit operation. To
make receive appear implicit to the application programmer, the code pro-
duced by an RPC stub compiler (or the run-time system of a language like SR)
must bridge this explicit-to-implicit gap. We describe the implementation here
in terms of stub compilers; in a concurrent language with implicit receipt the
regular compiler does essentially the same work.

Figure 12.24 illustrates the layers of a typical RPC system. Code above the up-EXAMPLE 12.57
An RPC server system per horizontal line is written by the application programmer. Code in the middle

is a combination of library routines and code produced by the RPC stub gener-
ator. To initialize the RPC system, the application makes a pair of calls into the
run-time system. The first provides the system with pointers to the stub routines
produced by the stub compiler; the second starts a message dispatcher. What hap-
pens after this second call depends on whether the server is concurrent and, if so,
whether its threads are implemented on top of one OS process or several.

In the simplest case—a single-threaded server on a single OS process—the
dispatcher runs a loop that calls into the kernel to receive a message. When a
message arrives, the dispatcher calls the appropriate RPC stub, which unmarshals
request parameters and calls the appropriate application-level procedure. When
that procedure returns, the stub marshals return parameters into a reply message,
calls into the kernel to send the message back to the caller, and then returns to
the dispatcher. �

DESIGN & IMPLEMENTATION

Parameters to remote procedures
Ada’s comparatively high-level semantics for parameter modes allows the same
set of modes to be used for both subroutines and entries (rendezvous). An
Ada compiler will generally pass a large argument to a subroutine by reference
whenever possible, to avoid the expense of copying. If tasks are on separate
processors of a multicomputer or cluster, however, the compiler will generally
pass the same argument to an entry by value-result.

A few concurrent languages provide parameter modes specifically designed
with remote invocation in mind. In Emerald [JLHB88], for example, every
parameter is a reference to an object. References to remote objects are imple-
mented transparently via message passing. To minimize the frequency of such
references, objects passed to remote procedures often migrate with the call:
they are packaged with the request message, sent to the remote site (where
they can be accessed locally), and returned to the caller in the reply. Emerald
calls this call by move. In Hermes [SBG+91], parameter-passing is destruc-
tive: arguments become uninitialized from the caller’s point of view and can
therefore migrate to a remote callee without danger of inducing remote refer-
ences.
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Figure 12.24 Implementation of a remote procedure call server. Application code initializes
the RPC system by installing stubs generated by the stub compiler (not shown). It then calls into
the run-time system to enable incoming calls. Depending on details of the particular system in
use, the dispatcher may use the main program’s single process (in which case the call to start the
dispatcher never returns), or it may create a pool of processes that handle incoming requests.

This simple organization works well as long as each remote request can be
handled quickly, without ever needing to block. If remote requests must some-
times wait for user-level synchronization, then the server’s process must manage
a ready list of threads, as described in Section 12.2.4, but with the dispatcher in-
tegrated into the usual thread scheduler. When the current thread blocks (in ap-
plication code), the scheduler/dispatcher will grab a new thread from the ready
list. If the ready list is empty, the scheduler/dispatcher will call into the kernel to
receive a message, fork a new thread to handle it, and then continue to execute
runnable threads until the list is empty again.

In a multiprocess server, the call to start the dispatcher will generally ask the
kernel to fork a “pool” of processes to service remote requests. Each of these
processes will then perform the operations described in the previous paragraphs.
In a language or library with a one-one correspondence between threads and
processes, each process will repeatedly receive a message from the kernel and
then call the appropriate stub. With a more general thread package, each process
will run threads from the ready list until the list is empty, at which point it (the
process) will call into the kernel for another message. As long as the number of
runnable threads is greater than or equal to the number of processes, no new
messages will be received. When the number of runnable threads drops below
the number of processes, then the extra processes will call into the kernel, where
they will block until requests arrive.

CHECK YOUR UNDERSTANDING

49. Describe three ways in which processes commonly name their communica-
tion partners.
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50. What is a datagram?

51. Why, in general, might a send operation need to block?

52. What are the three principal synchronization options for the sender of a mes-
sage? What are the tradeoffs among them?

53. What are gather and scatter operations in a message-passing program? What
is marshaling and unmarshaling?

54. Describe the tradeoffs between explicit and implicit message receipt.

55. What is a remote procedure call (RPC)? What is a stub compiler?

56. What are the obstacles to transparency in an RPC system?

57. What is a rendezvous? How does it differ from a remote procedure call?

58. Explain the purpose of a select statement in Ada (or, equivalently, of ALT
in Occam).

59. What semantic and pragmatic challenges are introduced by the ability to
“peek” inside messages before they are received?

12.5 Summary and Concluding Remarks

Concurrency and parallelism have become ubiquitous in modern computer sys-
tems. It is probably safe to say that most computer research and development
today involves concurrency in one form or another. High-end computer systems
are almost always parallel, and multiprocessor PCs are likely to become the norm
within the next few years. With the explosion over the past decade in multimedia
and Internet-based applications, multithreaded and message-passing programs
have become central to day-to-day computing even on uniprocessors.

In this chapter we have provided an introduction to concurrent program-
ming with an emphasis on programming language issues. We began with a quick
synopsis of the history of concurrency, the motivation for multithreaded pro-
grams, and the architecture of modern multiprocessors. We then surveyed the
fundamentals of concurrent software, including communication, synchroniza-
tion, and the creation and management of threads. We distinguished between
shared-memory and message-passing models of communication and synchro-
nization, and between language and library-based implementations of concur-
rency.

Our survey of thread creation and management described some six different
constructs for creating threads: co-begin, parallel loops, launch-at-elaboration,
fork/join, implicit receipt, and early reply. Of these fork/join is the most
common; it is found in Ada, Java, C#, Modula-3, SR, and library-based packages
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such as PVM and MPI. RPC systems usually use fork/join internally to imple-
ment implicit receipt. Regardless of thread creation mechanism, most concurrent
programming systems implement their language or library-level threads on top
of a collection of OS-level processes, which the operating system implements in a
similar manner on top of a collection of hardware processors. We built our sam-
ple implementation in stages, beginning with coroutines on a uniprocessor, then
adding a ready list and scheduler, then timers for preemption, and finally parallel
scheduling on multiple processors.

Our section on shared memory focused primarily on synchronization. We
distinguished between mutual exclusion and condition synchronization, and be-
tween busy-wait and scheduler-based implementations. Among busy-wait mech-
anisms we looked in particular at spin locks and barriers. Among scheduler-based
mechanisms we looked at semaphores, monitors, and conditional critical regions.
Of the three, semaphores are the simplest and most common. Monitors and con-
ditional critical regions provide a better degree of encapsulation and abstraction
but are not amenable to implementation in a library. Conditional critical regions
might be argued to provide the most pleasant programming model but cannot
in general be implemented as efficiently as monitors. We also considered the im-
plicit synchronization found in the loops of High Performance Fortran, the func-
tional constructs of Sisal and pH, and the future-like constructs of Multilisp,
Linda, and CC++.

Our section on message passing examined four principal issues: how to name
communication partners, how long to block when sending a message, whether
to receive explicitly or implicitly, and how to select among messages that may
be available for receipt simultaneously. We noted that any of the three principal
send mechanisms (no-wait, synchronization, remote-invocation) can be paired
with either of the principal receive mechanisms (explicit, implicit). Remote-
invocation send with explicit receipt is sometimes known as rendezvous. Remote-
invocation send with implicit receipt is generally known as remote procedure call.

As in previous chapters, we saw many cases in which language design and lan-
guage implementation influence one another. Some mechanisms (cactus stacks,
conditional critical regions, content-based message screening) are sufficiently
complex that many language designers have chosen not to provide them. Other
mechanisms (Ada-style parameter modes) have been developed specifically to
facilitate an efficient implementation technique. And in still other cases (the se-
mantics of no-wait send, blocking inside a monitor) implementation issues play
a major role in some larger set of tradeoffs.

Despite the very large number of concurrent languages that have been de-
signed to date, much concurrent programming continues to employ conven-
tional sequential languages augmented with library packages. As of 2005, HPF
and other concurrent languages for large-scale clusters have yet to seriously un-
dermine the dominance of MPI (though OpenMP, a shared-memory system that
combines a library package with modest C or Fortran compiler support, is mak-
ing inroads [Exploration 12.41]). For smaller-scale shared-memory computing,
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many programmers continue to rely on library packages in C and C++, though
Java and, more recently, C# are challenging that state of affairs. Java’s suitability
for network-based computing and its extreme portability across platforms have
earned it a very strong base of support. Microsoft clearly hopes that C# will prove
equally popular, though only time will tell whether it will be successful beyond
the x86/Windows platform.

12.6 Exercises

12.1 Give an example of a “benign” race condition: one whose outcome affects
program behavior but not correctness.

12.2 We have defined the ready list of a thread package to contain all threads
that are runnable but not running, with a separate variable to identify the
currently running thread. Could we just as easily have defined the ready
list to contain all runnable threads, with the understanding that the one
at the head of the list is running? (Hint: Think about multiprocessors.)

12.3 Imagine you are writing the code to manage a hash table that will be
shared among several concurrent threads. Assume that operations on the
table need to be atomic. You could use a single mutual exclusion lock to
protect the entire table, or you could devise a scheme with one lock per
hash-table bucket. Which approach is likely to work better, under what
circumstances? Why?

12.4 The typical spin lock holds only one bit of data but requires a full word
of storage, because only full words can be read, modified, and written
atomically in hardware. Consider, however, the hash table of the previous
exercise. If we choose to employ a separate lock for each bucket of the
table, explain how to implement a “two-level” locking scheme that cou-
ples a conventional spin lock for the table as a whole with a single bit of
locking information for each bucket. Explain why such a scheme might
be desirable, particularly in a table with external chaining. (Hint: See the
paper by Stumm et al. [UKGS94].)

12.5 Many of the most compute-intensive scientific applications are “dusty-
deck” Fortran programs, generally very old and very complex. Years of
effort may sometimes be required to rewrite a dusty-deck program to
run on a parallel machine. An attractive alternative would be to develop
a compiler that could “parallelize” old programs automatically. Explain
why this is not an easy task.

12.6 The load_linked and store_conditional (LL/SC) instructions of Sec-
tion 12.3.1 resemble an earlier universal atomic operation known as
compare-and-swap (CAS). CAS was introduced by the IBM 370 architec-
ture. It also appears in the x86, IA-64, and Sparc V9 instruction sets.
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It takes three operands: the location to be modified, a value that the loca-
tion is expected to contain, and a new value to be placed there if (and only
if) the expected value is found. Like store_conditional, CAS returns an
indication of whether it succeeded. The atomic add instruction sequence
shown for load_linked/store_conditional in Example 12.27 would
be written as follows with CAS.

start:
r1 := foo
r3 := r1 + r2
CAS(foo, r1, r3)
if failed goto start

Discuss the relative advantages of LL/SC and CAS. Consider how they
might be implemented on a cache-coherent multiprocessor. Are there sit-
uations in which one would work but the other would not? (Hints: Con-
sider algorithms in which a thread may need to touch more than one
memory location. Also consider algorithms in which the contents of a
memory location might be changed and then restored.)

12.7 On most machines, a SC instruction can fail for any of several reasons,
including the occurrence of an interrupt in the time since the matching
LL. What steps must a programmer take to make sure that algorithms
work correctly in the face of such “spurious” SC failures?

12.8 Starting with the test-and-test_and_set lock of Figure 12.10, imple-
ment busy-wait code that will allow readers to access a data structure
concurrently. Writers will still need to lock out both readers and other
writers. You may use any reasonable atomic instruction(s) (e.g., LL/SC).
Consider the issue of fairness. In particular, if there are always readers in-
terested in accessing the data structure, your algorithm should ensure that
writers are not locked out forever.

12.9 The mechanism used in Figure 12.12 (page 624) to make scheduler code
reentrant employs a single OS-provided lock for all the scheduling data
structures of the application. Among other things, this mechanism pre-
vents threads on separate processors from performing P or V operations
on unrelated semaphores, even when none of the operations needs to
block. Can you devise another synchronization mechanism for scheduler-
related operations that admits a higher degree of concurrency but that is
still correct?

12.10 We have seen how the scheduler for a thread package that runs on top
of more than one OS-provided process must both disable timer signals
and acquire a spin lock to safeguard the integrity of the ready list and
condition queues. To implement processes within the operating system,
the kernel still uses spin locks, but with processors instead of processes,
and hardware interrupts instead of signals. Unfortunately, the kernel can-
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not afford to disable interrupts for more than a small, bounded period
of time, or devices may not work correctly. A straightforward adaptation
of the code in Figure 12.12 will not suffice because it would attempt to
acquire a spin lock (an unbounded operation) while interrupts were dis-
abled. Similarly, the kernel cannot afford to acquire a spin lock and then
disable interrupts because, if an interrupt occurs in between these two
operations, other processors may be forced to spin for a very long time.
How would you solve this problem? (Hint: Look carefully at the loop in
the middle of reschedule, and consider a hybrid technique that disables
interrupts and acquires a spin lock as a single operation.)

12.11 Mohit Aron and Peter Druschel of Rice University have proposed a mech-
anism they call a soft timer [AD00]. Soft timers use the hardware cycle
counter available in many modern processors. This counter is a special
register, readable with a nonprivileged instruction, whose contents are
automatically incremented at some high frequency, typically once per mi-
crosecond. Among other things, soft timers can be used to implement
preemption in a thread package. Instead of asking the OS kernel to deliver
a signal at some specified future time, the thread scheduler can arrange
to inspect the cycle counter every once in a while and perform a context
switch if it has exceeded some previously computed value. Discuss the ad-
vantages and disadvantages of soft timers in comparison to signal-based
timers.

12.12 Show how to implement a concurrent set as a singly linked sorted list.
Your implementation should support insert, find, and remove opera-
tions, and should permit operations on separate portions of the list to
occur concurrently (so a single lock for the entire list will not suffice).
(Hint: You will want to use a “walking lock” idiom in which acquire and
release operations are interleaved in non-LIFO order.)

12.13 To make spin locks useful on a multiprogrammed multiprocessor, one
might want to ensure that no process is ever preempted in the middle of a
critical section. That way it would always be safe to spin in user space, be-
cause the process holding the lock would be guaranteed to be running on
some other processor, rather than preempted and possibly in need of the
current processor. Explain why an operating system designer might not
want to give user processes the ability to disable preemption arbitrarily.
(Hint: Think about fairness and multiple users.) Can you suggest a way to
get around the problem? (References to several possible solutions can be
found in the paper by Kontothanassis, Wisniewski, and Scott [KWS97].)

12.14 Show how to use semaphores to construct an n-thread barrier.

12.15 Would it ever make sense to declare a semaphore with an initially negative
count? Why or why not?

12.16 Without looking at Hoare’s definition, show how to implement monitors
with semaphores.
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12.17 Using monitors, show how to implement semaphores. What is your mon-
itor invariant?

12.18 Show how to use binary semaphores to implement general semaphores.

12.19 Suppose that every monitor has a separate mutual exclusion lock, so that
different threads can run in different monitors concurrently, and that we
want to release exclusion on both inner and outer monitors when a thread
waits in a nested call. When the thread awakens it will need to reacquire
the outer locks. How can we ensure its ability to do so? (Hint: Think about
the order in which to acquire locks, and be prepared to abandon Hoare
semantics. For further hints, see Wettstein [Wet78].)

12.20 Show how general semaphores can be implemented with conditional crit-
ical regions in which all threads wait for the same condition, thereby
avoiding the overhead of unproductive wakeups.

12.21 Write code for a bounded buffer using the protected object mechanism of
Ada 95.

12.22 Repeat the previous exercise in Java using synchronized statements or
methods. Try to make your solution as simple and conceptually clear as
possible. You will probably want to use notifyAll.

12.23 Give a more efficient solution to the previous exercise that avoids the use
of notifyAll. (Warning: It is tempting to observe that the buffer can
never be both full and empty at the same time, and to assume therefore
that waiting threads are either all producers or all consumers. This need
not, however, be the case: if the buffer ever becomes even a temporary
performance bottleneck, there may be an arbitrary number of waiting
threads, including both producers and consumers.)

12.24 Repeat the previous exercise using Java Lock variables.

12.25 Explain how escape analysis, mentioned briefly in the sidebar on page 492,
could be used to reduce the cost of certain synchronized statements and
methods in Java.

12.26 The dining philosophers problem [Dij72] is a classic exercise in synchro-
nization (Figure 12.25). Five philosophers sit around a circular table. In
the center is a large communal plate of spaghetti. Each philosopher re-
peatedly thinks for a while and then eats for a while, at intervals of his or
her own choosing. On the table between each pair of adjacent philoso-
phers is a single fork. To eat, a philosopher requires both adjacent forks:
the one on the left and the one on the right. Because they share a fork,
adjacent philosophers cannot eat simultaneously.

Write a solution to the dining philosophers problem in which each
philosopher is represented by a process and the forks are represented by
shared data. Synchronize access to the forks using semaphores, monitors,
or conditional critical regions. Try to maximize concurrency.
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Figure 12.25 The dining philosophers. Hungry philosophers must contend for the forks to
their left and right in order to eat.

12.27 In the previous exercise you may have noticed that the dining philoso-
phers are prone to deadlock. One has to worry about the possibility that
all five of them will pick up their right-hand forks simultaneously and
then wait forever for their left-hand neighbors to finish eating.

Discuss as many strategies as you can think of to address the deadlock
problem. Can you describe a solution in which it is provably impossible
for any philosopher to go hungry forever? Can you describe a solution that
is fair in a strong sense of the word (i.e., in which no one philosopher gets
more chance to eat than some other over the long term)? For a particularly
elegant solution, see the paper by Chandy and Misra [CM84].

12.28 In some concurrent programming systems, global variables are shared by
all threads. In others, each newly created thread has a separate copy of the
global variables, commonly initialized to the values of the globals of the
creating thread. Under this private globals approach, shared data must be
allocated from a special heap. In still other programming systems, the pro-
grammer can specify which global variables are to be private and which
are to be shared.

Discuss the tradeoffs between private and shared global variables.
Which would you prefer to have available, for which sorts of programs?
How would you implement each? Are some options harder to implement
than others? To what extent do your answers depend on the nature of
processes provided by the operating system?

12.29 AND parallelism in logic languages is analogous to the parallel evalua-
tion of arguments in a functional language (e.g., Multilisp). Does OR
parallelism have a similar analog? (Hint: Think about special forms [Sec-
tion 10.4].) Can you suggest a way to obtain the effect of OR parallelism
in Multilisp?
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12.30 In Section 12.3.6 we claimed that both AND parallelism and OR paral-
lelism were problematic in Prolog because they failed to adhere to the
deterministic search order required by language semantics. Elaborate on
this claim. What specifically can go wrong?

12.31 In Section 12.3.4 we cast monitors as a mechanism for synchronizing ac-
cess to shared memory, and we described their implementation in terms
of semaphores. It is also possible to think of a monitor as a module in-
habited by a single process, which accepts request messages from other
processes, performs appropriate operations, and replies. Give the details
of a monitor implementation consistent with this conceptual model. Be
sure to include condition variables. (Hint: See the discussion of early reply
in Section 12.2.3, page 611.)

12.32 Show how shared memory can be used to implement message passing.
Specifically, choose a set of message-passing operations (e.g., no-wait
send and explicit message receipt), and show how to implement them
in your favorite shared-memory notation.

12.33 When implementing reliable messages on top of unreliable messages, a
sender can wait for an acknowledgment message, and retransmit if it
doesn’t receive it within a bounded period of time. But how does the re-
ceiver know that its acknowledgment has been received? Why doesn’t the
sender have to acknowledge the acknowledgment (and the receiver ac-
knowledge the acknowledgment of the acknowledgment . . . )? (For more
information on the design of fast, reliable protocols, you might want to
consult a text on computer networks [Tan02, PD03].)

12.34 An arm of an Occam ALT statement may include an input guard—a re-
ceive (?) operation—in which case the arm can be chosen only if a po-
tential partner is trying to send a matching message. One could imagine
allowing output guards as well: send (!) operations that would allow their
arm to be chosen only if a potential partner were trying to receive a match-
ing message. Neither Occam nor CSP (as originally defined) permits out-
put guards. Can you guess why? Suppose you wished to provide them.
How would the implementation work? (Hint: For ideas, see the articles of
Bernstein [Ber80], Buckley and Silbershatz [BS83b], Bagrodia [Bag86], or
Ramesh [Ram87].)

12.35 In Section 12.4.3 we described the semantics of a terminate arm on an
Ada select statement: this arm may be selected if and only if all po-
tential communication partners have terminated, or are likewise stuck in
select statements with terminate arms. Occam and SR have no similar
facility, though the original CSP proposal does. How would you imple-
ment terminate arms in Ada? Why do you suppose they were left out of
Occam and SR? (Hint: For ideas, see the work of Apt and Francez [Fra80,
AF84].)
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12.7 Explorations

12.36 In Section 12.3.1 (page 622) we alluded to the design of nonblocking con-
current data structures, which work correctly without locks. Learn more
about this topic. How hard is it to write correct nonblocking code? How
does the performance compare to that of lock-based code? You might want
to start with the work of Michael [MS98] and Sundell [Sun04].

12.37 Learn about the software transactional memory systems of Herlihy et
al. [HLMS03] and Harris and Fraser [HF03]. To what extent do these con-
stitute a general purpose mechanism for the construction of nonblock-
ing concurrent data structures? Under what circumstances might they be
preferable to locks?

12.38 Find out how message-passing is implemented in some locally available
concurrent language or library. Does this system provide no-wait send,
synchronization send, remote-invocation send, or some related hybrid? If
you wanted to emulate the other options using the one available, how ex-
pensive would emulation be in terms of low-level operations performed by
the underlying system? How would this overhead compare to what could
be achieved on the same underlying system by a language or library that
provided an optimized implementation of the other varieties of send?

12.39 Throughout Section 12.3 we assumed, implicitly, that memory shared be-
tween processors is sequentially consistent—that all memory operations
occur in some global total order that is consistent with the actions of each
individual processor. Many multiprocessors, however, implement relaxed
memory models that provide significantly weaker consistency guarantees.

Learn about relaxed memory models (see, for example, the tutorial by
Adve and Gharachorloo [AG96]). Explain how the implementor of a lan-
guage run-time system might use so-called fence instructions to ensure
correct program behavior.

12.40 In light of the issues raised in the previous exploration, several program-
ming languages, including Ada, Java, and C#, explicitly define a required
memory model in the language definition. Learn the rules in each of these.
Compare and contrast them. How efficiently can each be implemented on
various real machines? What are the challenges for implementors? Note
in particular the controversy that arose around the memory model in the
original definition of Java (fixed in Java 5—see the paper by Pugh [Pug00]
for a discussion).

12.41 OpenMP is a combination of compiler directives and run-time system for
shared-memory programming on large multiprocessors and clusters. Its
supporters promote it as an easier-to-use alternative to MPI. Learn about
OpenMP (visit openmp.org or see the book by Chandra et al. [CMD+01]).
Describe its programming model. What mechanisms does it provide to
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create and synchronize threads? How do these mechanisms compare to
the ones discussed in Section 12.3? What compromises, if any, have the
designers made for the sake of high performance on very large machines?

12.42 Learn about the shmem library package, originally developed by Robert
Numrich of Cray, Inc., for the T3D supercomputer. Shmem is widely used
for parallel programming on both large-scale multiprocessors and clusters.
It has been characterized as a cross between shared memory and message
passing. Is this a fair characterization? Under what circumstances might a
shmem program be expected to outperform solutions in MPI or OpenMP?
(Note: As of this writing, shmem has not been standardized, so implemen-
tations may differ some across platforms. The Cray man pages are available
at docs.cray.com/books/S-2383-23/S-2383-23-manual.pdf .)

12.43 In the spirit of the previous two questions, investigate co-array For-
tran (www.co-array.org), UPC (upc.gwu.edu), and/or Titanium (www.cs
.berkeley.edu/projects/titanium/). These are extensions to Fortran, C, and
Java, respectively, designed for nonuniform shared-memory computing,
in which the physical location of data is under explicit program control.
How do these language extensions compare to OpenMP and shmem? How
easy are they to use? What compromises, if any, have been made for the
sake of efficiency?
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of concurrent programming notations. A more recent book by Andrews [And91]
extends this survey with extensive discussion of axiomatic semantics for con-
current programs and algorithmic paradigms for distributed computing. Holt et
al. [HGLS78] is a useful reference for many of the classic problems in concur-
rency and synchronization. Anderson [ALL89] discusses thread package imple-
mentation details and their implications for performance. The July 1989 issue of
IEEE Software and the September 1989 issue of ACM Computing Surveys con-
tain survey articles and descriptions of many concurrent languages. References
for monitors appear in Section 12.3.4.

Peterson’s two-process synchronization algorithm appears in a remarkably el-
egant and readable two-page paper [Pet81]. Lamport’s 1978 article on “Time,
Clocks, and the Ordering of Events in a Distributed System” [Lam78] argued con-
vincingly that the notion of global time cannot be well defined, and that distrib-
uted algorithms must therefore be based on causal happens before relationships
among individual processes. Reader–writer locks are due to Courtois, Heymans,
and Parnas [CHP71]. Mellor-Crummey and Scott [MCS91] survey the princi-
pal busy-wait synchronization algorithms and introduce locks and barriers that
scale without contention to very large machines. The seminal paper on lock-free
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synchronization is that of Herlihy [Her91]. Promising new general purpose tech-
niques for software transactional memory have recently been reported by Herlihy,
Luchangco, Moir, and Scherer [HLMS03] and by Harris and Fraser [HF03].

Concurrent logic languages are surveyed by Shapiro [Sha89], Tick [Tic91],
and Ciancarini [Cia92]. Parallel Lisp dialects include Multilisp [Hal85, MKH91]
(Section 12.3.6), Qlisp [GG89], and Spur Lisp [ZHL+89].

Remote procedure call received increasing attention in the wake of Nelson’s
doctoral research [Nel81, BN84]. Schroeder and Burrows [SB90] discuss the ef-
ficient implementation of RPC on a network of workstations. Bershad [BALL90]
discusses its implementation across address spaces within a single machine.

Almasi and Gottlieb [AG94] describe the principal classes of parallel com-
puters and the styles of algorithms and languages that work well on each. The
leading texts on computer networks are by Tanenbaum [Tan02] and Peterson
and Davie [PD03]. The text of Culler, Singh, and Gupta [CS98] contains a
wealth of information on parallel programming and multiprocessor architecture.
PVM [Sun90, GBD+94] and MPI [BDH+95, SOHL+98] are documented in a
variety of articles and books. Sun RPC is documented in Internet RFC number
1831 [Sri95].

Software distributed shared memory (S-DSM) was originally proposed by Li
as part of his doctoral research [LH89]. Stumm and Zhou [SZ90] and Nitzberg
and Lo [NL91] provide early surveys of the field. The TreadMarks system from
Rice University is widely considered the best of the more recent implementa-
tions [ACD+96].
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Traditional programming languages are intended primarily for the con-
struction of self-contained applications: programs that accept some sort of input,
manipulate it in some well understood way, and generate appropriate output. But
most actual uses of computers require the coordination of multiple programs.
A large institutional payroll system, for example, must process time-reporting
data from card readers, scanned paper forms, and manual (keyboard) entry;
execute thousands of database queries; enforce hundreds of legal and institu-
tional rules; create an extensive “paper trail” for record keeping, auditing, and tax
preparation purposes; print paychecks; and communicate with servers around
the world for online direct deposit, tax withholding, retirement accumulation,
medical insurance, and so on. These tasks are likely to involve dozens or hun-
dreds of separately executable programs. Coordination among these programs is
certain to require tests and conditionals, loops, variables and types, subroutines
and abstractions—the same sorts of logical tools that a conventional language
provides inside an application.

On a much smaller scale, a graphic artist or photojournalist may routinely
download pictures from a digital camera; convert them to a favorite format; ro-
tate the pictures that were shot in vertical orientation; down-sample them to cre-
ate browsable thumbnail versions; index them by date, subject, and color his-
togram; back them up to a remote archive; and then reinitialize the camera’s
memory. Performing these steps at hand is likely to be both tedious and error-
prone. In a similar vein, the creation of a dynamic web page may require au-
thentication and authorization, database lookup, image manipulation, remote
communication, and the reading and writing of HTML text. All these scenarios
suggest a need for programs that coordinate other programs.

It is of course possible to write coordination code in Java, C, or some other
conventional language, but it isn’t always easy. Conventional languages tend to
stress efficiency, maintainability, portability, and the static detection of errors.
Their type systems tend to be built around such hardware-level concepts as fixed-
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size integers, floating-point numbers, characters, and arrays. By contrast scripting
languages tend to stress flexibility, rapid development, local customization, and
dynamic (run-time) checking. Their type systems, likewise, tend to embrace such
high level concepts as tables, patterns, lists, and files.

General purpose scripting languages like Perl and Python are sometimes called
glue languages, because they were originally designed to “glue” existing programs
together to build a larger system. With the growth of the World Wide Web, script-
ing languages have gained new prominence in the generation of dynamic con-
tent. They are also widely used as extension languages, which allow the user to
customize or extend the functionality of “scriptable” tools.

We consider the history and nature of scripting in more detail in Section 13.1.
We then turn in Section 13.2 to some of the problem domains in which scripting
is widely used. These include command interpretation (shells), text processing
and report generation, mathematics and statistics, general purpose program co-
ordination, and configuration and extension. In Section 13.3 we consider several
forms of scripting used on the World Wide Web, including CGI scripts, server-
and client-side processing of scripts embedded in web pages, Java applets, and
XSLT. Finally, in Section 13.4, we consider some of the more interesting language
features, common to many scripting languages, that distinguish them from their
more traditional “mainstream” cousins. We look in particular at naming, scop-
ing, and typing; string and pattern manipulation; and high-level structured data.
We will not provide a detailed introduction to any one scripting language, though
we will consider concrete examples in several. As in most of this book, the em-
phasis will be on underlying concepts.

13.1 What Is a Scripting Language?

Modern scripting languages have two principal sets of ancestors. In one set
are the command interpreters or “shells” of traditional batch and “terminal”
(command-line) computing. In the other set are various tools for text process-
ing and report generation. Examples in the first set include IBM’s JCL, the MS-
DOS command interpreter, and the Unix sh and csh shell families. Examples in
the second set include IBM’s RPG, and Unix’s sed and awk. From these evolved
Rexx, IBM’s “Restructured Extended Executor,” which dates from 1979, and Perl,
originally devised by Larry Wall in the late 1980s and now the most widely used
general purpose scripting language. Other general purpose scripting languages
include Tcl (“tickle”), Python, Ruby, VBScript (for Windows) and AppleScript
(for the Mac).

With the growth of the World Wide Web in the late 1990s, Perl was widely
adopted for “server side” web scripting, in which a web server executes a pro-
gram (on the server’s machine) to generate the content of a page. One early web
scripting enthusiast was Rasmus Lerdorf, who created a collection of scripts to
track access to his personal home page. Originally written in Perl but soon re-
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designed as a full-fledged and independent language, these scripts evolved into
PHP, now the most popular platform for server-side web scripting. PHP com-
petitors include JSP (Java Server Pages) and, on Microsoft platforms, VBScript.
For scripting on the client computer, all major browsers implement JavaScript, a
language developed by Netscape Corporation in the mid-1990s and standardized
by ECMA (the European standards body) in 1999 [ECM99].

In his classic paper on scripting [Ous98], John Ousterhout, the creator of Tcl,
notes that “Scripting languages assume that a collection of useful components
already exist in other languages. They are intended not for writing applications
from scratch but rather for combining components.” Ousterhout envisions a fu-

DESIGN & IMPLEMENTATION

Scripting on Microsoft platforms
As in several other aspects of computing, Microsoft tends to rely on internally
developed technology in the area of scripting languages. Most of its scripting
applications are based on VBScript, a dialect of Visual Basic. At the same time,
Microsoft has developed a very general scripting interface (Windows Script)
that is implemented uniformly by the operating system (Windows Script Host
[WSH]), the web server (Active Server Pages [ASP]), and the Internet Explorer
browser. A Windows Script implementation of JScript, the company’s version
of JavaScript, comes preinstalled on Windows machines, but languages like
Perl and Python can be installed as well, and used to drive the same inter-
face. Many other Microsoft applications, including the entire Office suite, use
VBScript as an extension language, but for these the implementation frame-
work (Visual Basic for Applications [VBA]) does not make it easy to use other
languages instead.

Given Microsoft’s share of the desktop computing market, VBScript is one
of the most widely used scripting languages. It is almost never used on other
platforms, however, while Perl, Tcl, Python, PHP, and others see significant
use on Windows. For server-side web scripting, PHP currently predominates:
as of February 2005, some 69% of the 59 million Internet web sites surveyed by
Netcraft LTD were running the open source Apache web server,1 and of them
most of the ones with active content were using PHP. Microsoft’s Internet In-
formation Server (IIS) was second to Apache, with 21% of the sites, and many
of those had PHP installed as well.2 For client-side scripting, where Internet
Explorer controls about 70% of the browser market,3 most web site admin-
istrators need their content to be visible to the other 30%. Explorer supports
JavaScript (JScript), but other browsers do not support VBScript.

1news.netcraft.com/archives/web_server_survey.html
2news.netcraft.com/archives/2003/08/30/php_growing_surprisingly_strongly_on_windows.html
3www.w3schools.com/browsers/browsers_stats.asp
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ture in which programmers increasingly rely on scripting languages for the top-
level structure of their systems, where clarity, reusability, and ease of development
are crucial. Traditional “systems languages” like C, C++, or Java, he argues, will
be used for self-contained, reusable system components, which emphasize com-
plex algorithms or execution speed. As a general rule of thumb, he suggests that
code can be developed 5 to 10 times faster in a scripting language but will run 10
to 20 times faster in a traditional systems language.

Some authors reserve the term “scripting” for the glue languages used to co-
ordinate multiple programs. In common usage, however, scripting is a broader
and vaguer concept. It clearly includes web scripting. For most authors it also
includes extension languages.

Many readers will be familiar with the Visual Basic “macros” of Microsoft Of-
fice and related applications. Others may be familiar with the Lisp-based exten-
sion language of the emacs text editor. Several languages, including Tcl, Rexx,
Python, and the Guile and Elk dialects of Scheme, have implementations de-
signed in such a way that they can be incorporated into a larger program and
used to extend its features. Extension was in fact the original purpose of Tcl. In a
similar vein, several widely used commercial applications provide their own pro-
prietary extension languages. For graphical user interface (GUI) programming,
the Tk toolkit, originally designed for use with Tcl, has been incorporated into
several scripting languages, including Perl, Python, and Ruby.

One can also view XSLT (extensible stylesheet language transformations) as a
scripting language, albeit somewhat different from the others considered in this
chapter. XSLT is part of the growing family of XML (extensible markup language)
tools. We consider it further in Section 13.3.5.

13.1.1 Common Characteristics

While it is difficult to define scripting languages precisely, there are several char-
acteristics that they tend to have in common.

Both batch and interactive use. A few scripting languages (notably Perl) use a
just-in-time compiler that insists on reading the entire source program before
it produces any output. Most other languages, however, are willing to com-
pile or interpret their input line-by-line. Rexx, Python, Tcl, Guile, and (with a
short helper script) Ruby will all accept commands from the keyboard.

Economy of expression. To support both rapid development and interactive use,
scripting languages tend to require a minimum of “boilerplate.” Some make
heavy use of punctuation and very short identifiers (Perl is notorious for this),
while others (e.g., Rexx, Tcl, and AppleScript) tend to be more “English-like,”
with lots of words and not much punctuation. All attempt to avoid the exten-
sive declarations and top-level structure common to conventional languages.
Where a trivial program looks like this in Java:EXAMPLE 13.1

Trivial programs in
conventional and scripting
languages
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class Hello {

public static void main(String[] args) {

System.out.println("Hello, world!");

}

}

and like this in Ada:

with ada.text_IO; use ada.text_IO;

procedure hello is

begin

put_line("Hello, world!");

end hello;

in Perl, Python, or Ruby it is simply:

print "Hello, world!\n" �

DESIGN & IMPLEMENTATION

Compiling interpreted languages
Several times in this chapter we will make reference to “the compiler” for a
scripting language. As we saw in Examples 1.6 and 1.7, interpreters almost
never work with source code; a front-end translator first replaces that source
with some sort of intermediate form. For most implementations of most of
the languages described in this chapter, the front end is sufficiently complex
to deserve the name “compiler.” Intermediate forms are typically “byte code”
representations reminiscent of those of Java.

DESIGN & IMPLEMENTATION

Canonical implementations
Because they are implemented with interpreters, scripting languages tend to be
easy to port from one machine to another—substantially easier than compilers
for which one must write a new code generator. Given a native compiler for
the language in which the interpreter is written, the only difficult part (and it
may indeed be difficult) is to implement any necessary modifications to the
part of the interpreter that provides the interface to the operating system.

At the same time, the ease of porting an interpreter means that several
scripting languages, including Perl, Python, Tcl, and Ruby, have a single widely
used implementation, which serves as the de facto language definition. Read-
ing a book on Perl, it can be difficult to tell how a subtle program will be-
have. When in doubt, one may need to “try it out.” Rexx and JavaScript ap-
pear to be unique among widely used scripting languages in having a for-
mal definition codified by an international standards body and independent
of any one implementation. (Sed, awk, and sh have also been standardized by
POSIX [Int03b], but none of these has the complexity of Perl, Python, Tcl, or
Ruby.)
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Lack of declarations; simple scoping rules. Most scripting languages dispense with
declarations, and provide simple rules to govern the scope of names. In some
languages (e.g., Perl) everything is global by default; optional declarations can
be used to limit a variable to a nested scope. In other languages (e.g., PHP
and Tcl), everything is local by default; globals must be explicitly imported.
Python adopts the interesting rule that any variable that is assigned a value is
local to the block in which the assignment appears. Special syntax is required
to assign to a variable in a surrounding scope.

Flexible dynamic typing. In keeping with the lack of declarations, most script-
ing languages are dynamically typed. In some (e.g., PHP, Python, Ruby, and
Scheme), the type of a variable is checked immediately prior to use. In others
(e.g. Rexx, Perl, and Tcl), a variable will be interpreted differently in different
contexts. In Perl, for example, the programEXAMPLE 13.2

Coercion in Perl
$a = "4";

print $a . 3 . "\n"; # ’.’ is concatenation

print $a + 3 . "\n"; # ’+’ is addition

will print

43

7

This contextual interpretation is similar to coercion, except that there isn’t
necessarily a notion of “natural” type from which an object must be converted;
the various possible interpretations may all be equally “natural.” We shall have
more to say about context in Perl in Section 13.4.3. �

Easy access to other programs. Most programming languages provide a way to
ask the underlying operating system to run another program, or to perform
some operation directly. In scripting languages, however, these requests are
much more fundamental, and have much more direct support. Perl, for one,
provides well over 100 built-in commands that access operating system func-
tions for input and output, file and directory manipulation, process manage-
ment, database access, sockets, interprocess communication and synchroniza-
tion, protection and authorization, time-of-day clock, and network commu-
nication. These built-in commands are generally a good bit easier to use than
corresponding library calls in languages like C.

Sophisticated pattern matching and string manipulation. In keeping with their
text processing and report generation ancestry, and to facilitate the manip-
ulation of textual input and output for external programs, scripting languages
tend to have extraordinarily rich facilities for pattern matching, search, and
string manipulation. Typically these are based on extended regular expressions.
We discuss these further in Section 13.4.2.

High-level data types. High-level data types like sets, bags, dictionaries, lists,
and tuples are increasingly common in the standard library packages of con-
ventional programming languages. A few languages (notably C++) allow users
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to redefine standard infix operators to make these types as easy to use as more
primitive, hardware-centric types. Scripting languages go one step further by
building high-level types into the syntax and semantics of the language it-
self. In most scripting languages, for example, it is commonplace to have an
“array” that is indexed by character strings, with an underlying implementa-
tion based on hash tables. Storage is invariably garbage collected.

Much of the most rapid change in programming languages today is occurring
in scripting languages. This can be attributed to several causes, including the con-
tinued growth of the web, the dynamism of the open-source community, and the
comparatively low investment required to create a new scripting language. Where
a compiled, industrial quality language like Java or C# requires a multiyear in-
vestment by a very large programming team, a single talented designer, working
alone, can create a usable implementation of a new scripting language in only a
year or two.

Due in part to this rapid change, newer scripting languages have been able to
incorporate some of the most innovative concepts in language design. Ruby, for
example, has a uniform object model (much like Smalltalk), true iterators (like
Clu), array slices (like Fortran 90), structured exception handling, multiway as-
signment, and reflection. Python also provides several of these features, together
with anonymous first-class functions and Haskell-like list comprehensions.

13.2 Problem Domains

Some general purpose languages—Scheme and Visual Basic in particular—are
widely used for scripting. Conversely, some scripting languages, including Perl,
Python, and Ruby, are intended by their designers for general purpose use, with
features intended to support “programming in the large”: modules, separate
compilation, reflection, program development environments, and so on. For the
most part, however, scripting languages tend to see their principal use in well-
defined problem domains. We consider some of these in the following subsec-
tions.

13.2.1 Shell (Command) Languages

In the days of punch card computing, simple command languages allowed the
user to “script” the processing of a card deck. A control card at the front of the
deck, for example, might indicate that the upcoming cards represented a program
to be compiled, or perhaps assembly language for the compiler itself, or input for
a program already compiled and stored on disk. A control card embedded later
in the deck might test the exit status of the most recently executed program and
choose what to do next based on whether that program completed successfully.
Given the linear nature of a card deck, however (one can’t in general back up),
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command languages for batch processing tend not to be very sophisticated. JCL,
for example, has no iteration constructs.

With the development of interactive timesharing in the 1960s and early 1970s,
command languages became much more sophisticated. Louis Pouzin wrote a
simple command interpreter for CTSS, the Compatible Time Sharing System
at MIT, in 1963 and 1964. When work began on the groundbreaking Multics
system in 1964, Pouzin sketched the design of an extended command language,
with quoting and argument-passing mechanisms, for which he coined the term
“shell.” The subsequent implementation served as inspiration for Ken Thomp-
son in the design of the original Unix shell in 1973. In the mid-1970s Stephen
Bourne and John Mashey separately extended the Thompson shell with control
flow and variables; Bourne’s design was adopted as the Unix standard, taking the
place (and the name) of the Thompson shell, sh.

In the late 1970s Bill Joy developed the so-called “C shell” (csh), inspired at
least in part by Mashey’s syntax, and introducing significant enhancements for
interactive use, including history, aliases, and job control. The tcsh version of
csh adds command line editing and command completion. David Korn incorpo-
rated these mechanisms into a direct descendant of the Bourne shell, ksh, which
is very similar to the standard POSIX shell [Int03b]. The popular “Bourne again”
shell, bash, is an open source version of ksh. While tcsh is still popular in some
quarters, ksh/bash/POSIX sh is substantially better for writing shell scripts, and
comparable for interactive use.

In addition to features designed for interactive use, which we will not consider
further here, shell languages provide a wealth of mechanisms to manipulate file
names, arguments, and commands, and to glue together other programs. Most of
these features are retained by more general scripting languages. We consider a few
of them here, using bash syntax. The discussion is of necessity heavily simplified;
full details can be found in the bash man page, or in various online tutorials.

Filename and Variable Expansion

Most users of a Unix shell are familiar with “wildcard” expansion of file names.
The following command will list all files in the current directory whose namesEXAMPLE 13.3

“Wildcards” and
“globbing”

end in .pdf.

ls *.pdf

The shell expands the pattern *.pdf into a list of all matching names. If there are
three of them (say fig1.pdf, fig2.pdf, and fig3.pdf), the result is equivalent
to

ls fig1.pdf fig2.pdf fig3.pdf

Filename expansion is sometimes called “globbing,” after the original Unix
glob command that implemented it. In addition to * wildcards, one can
usually specify “don’t care” or alternative characters or substrings. The pat-
tern fig?.pdf will match (expand to) any file(s) with a single character be-
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tween the g and the dot. The pattern fig[0-9].pdf will require that charac-
ter to be a digit. The pattern fig3.{eps,pdf} will match both fig3.eps and
fig3.pdf. �

Filename expansion is particularly useful in loops. Such loops may be typed
directly from the keyboard, or embedded in scripts intended for later execution.
Suppose, for example, that we wish to create PDF versions of all our EPS figures:4EXAMPLE 13.4

For loops in the shell
for fig in *.eps

do

ps2pdf $fig

done

The for construct arranges for the shell variable fig to take on the names in
the expansion of *.eps, one at a time, in consecutive iterations of the loop. The
dollar sign in line 3 causes the value of fig to be expanded into the ps2pdf
command before it is executed. (Interestingly, ps2pdf is itself a shell script that
calls the gs PostScript interpreter.) Optional braces can be used to separate a
variable name from following characters, as in cp $foo ${foo}_backup. �

Multiple commands can be entered on a single line if they are separated byEXAMPLE 13.5
A whole loop on one line semicolons. The following, for example, is equivalent to the loop in the previous

example.

for fig in *.eps; do ps2pdf $fig; done �

Tests, Queries, and Conditions

The loop of the preceding example will execute ps2pdf for every EPS file in the
current directory. Suppose, however, that we already have some PDF files, andEXAMPLE 13.6

Conditional tests in the
shell

only want to create the ones that are missing.

for fig in *.eps

do

target=${fig%.eps}.pdf

if [ $fig -nt $target ]

then

ps2pdf $fig

fi

done

The third line of this script is a variable assignment. The expression ${fig%.eps}
within the right-hand side expands to the value of fig with any trailing .eps re-

4 PostScript is a programming language developed at Adobe Systems, Inc. for the description of
images and documents (we consider it again in the sidebar on page 767). Encapsulated PostScript
(EPS) is a restricted form of PostScript intended for figures that are to be embedded in other
documents. Portable Document Format (PDF, also by Adobe) is a self-contained file format that
combines a subset of PostScript with font embedding and compression mechanisms. It is strictly
less powerful than PostScript from a computational perspective, but much more portable, and
faster and easier to render.
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moved. Similar special expansions can be used to test or modify the value of a
varible in many different ways. The square brackets in line four delimit a con-
ditional test. The -nt operator checks to see whether the file named by its left
operand is newer than the file named by its right operand (or if the left operand
exists but the right does not). Similar file query operators can be used to check
many other properties of files. Additional operators can be used for arithmetic or
string comparisons. �

Pipes and Redirection

One of the principal innovations of Unix was the ability to chain commands
together, “piping” the output of one to the input of the next. Like most shells,
bash uses the vertical bar character (|) to indicate a pipe. To count the number ofEXAMPLE 13.7

Pipes figures in our directory, without distinguishing between EPS and PDF versions,
we might type

for fig in *; do echo ${fig%.*}; done | sort -u | wc -l

Here the first command, a for loop, prints the names of all files with extensions
(dot-suffixes) removed. The echo command inside the loop simply prints its ar-
guments. The sort -u command after the loop removes duplicates, and the wc
-l command counts lines. �

Like most shells, bash also allows output to be directed to a file, or input read
from a file. To create a list of figures, we might typeEXAMPLE 13.8

Output redirection
for fig in *; do echo ${fig%.*}; done | sort -u > all_figs

DESIGN & IMPLEMENTATION

Built-in commands in the shell
Commands in the shell generally take the form of a sequence of words, the
first of which is the name of the command. Most commands are executable
programs, found in directories on the shell’s search path. A large number, how-
ever (about 50 in bash) are built-ins—commands that the shell recognizes and
executes itself, rather than starting an external program. Interestingly, several
commands that are available as separate programs are duplicated as built-ins,
either for the sake of efficiency or to provide additional semantics. Conditional
tests, for example, were originally supported by the external test command
(for which square brackets are syntactic sugar), but these occur sufficiently
often in scripts that execution speed improved significantly when a built-in
version was added. By contrast, while the kill command is not used very
often, the built-in version allows processes to be identified by small integer
or symbolic names from the shell’s job control mechanism. The external ver-
sion supports only the longer and comparatively unintuitive process identifiers
supplied by the operating system.
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The “greater than” sign indicates output redirection. If doubled (sort -u >>
all_figs) it causes output to be appended to the specified file, rather than over-
writing the previous contents.

In a similar vein, the “less than” sign indicates input redirection. Suppose we
want to print our list of figures all on one line, separated by spaces, instead of on
multiple lines. On a Unix system we can type

tr ’\n’ ’ ’ < all_figs

This invocation of the standard tr command converts all newline characters to
spaces. Because tr was written as a simple filter, it does not accept a list of files
on the command line; it only reads standard input. �

For any executing Unix program, the operating system keeps track of a list
of open files. By convention, standard input and standard output (stdin and
stdout) are files numbers 0 and 1. File number 2 is by convention standard er-
ror (stderr), to which programs are supposed to print diagnostic error mes-
sages. One of the advantages of the sh family of shells over the csh family is
the ability to redirect stderr and other open files independent of stdin and
stdout. Consider, for example, the ps2pdf script. Under normal circumstancesEXAMPLE 13.9

Redirection of stderr and
stdout

this script works silently. If it encounters an error, however, it prints a message
to stdout and quits. This violation of convention (the message should go to
stderr) is harmless when the command is invoked from the keyboard. If it is
embedded in a script, however, and the output of the script is directed to a file,
the error message may end up in the file instead of on the screen, and go unno-
ticed by the user. With bash we can type

ps2pdf my_fig.eps 1>&2

Here 1>&2 means “make ps2pdf send file 1 (stdout) to the same place that the
surrounding context would normally send file 2 (stderr).” �

Finally, like most shells, bash allows the user to provide the input to a com-EXAMPLE 13.10
Heredocs (in-line input) mand in-line:

tr ’\n’ ’ ’ <<END

list

of

input

lines

END

The <<END indicates that subsequent input lines, up to a line containing only END,
are to be supplied as input to tr. Such in-line input (traditionally called a “here
document”) is seldom used interactively, but is highly useful in shell scripts. �

Quoting and Expansion

Shells typically provide several quoting mechanisms to group words together into
strings. Single (forward) quotes inhibit filename and variable expansion in theEXAMPLE 13.11

Single and double quotes quoted text, and cause it to be treated as a single word, even if it contains white



682 Chapter 13 Scripting Languages

space. Double quotes also cause the contents to be treated as a single word, but
do not inhibit expansion. Thus

foo=bar

single=’$foo’

double="$foo"

echo $single $double

will print “$foo bar”. �
Several other bracketing constructs in bash group the text inside, for various

purposes. Command lists enclosed in parentheses are passed to a subshell forEXAMPLE 13.12
Subshells evaluation. If the opening parenthesis is preceded by a dollar sign, the output of

the nested command list is expanded into the surrounding context:

for fig in $(cat my_figs); do ps2pdf ${fig}.eps; done

Here cat is the standard command to print the content of a file. Most shells use
backward single quotes for the same purpose (‘cat my_figs‘); bash supports
this syntax as well, for backward compatibility. �

Command lists enclosed in braces are treated by bash as a single unit. TheyEXAMPLE 13.13
Brace-quoted blocks in the
shell

can be used, for example, to redirect the output of a sequence of commands:

{ date; ls; } >> file_list

Unlike parenthesized lists, commands enclosed in braces are executed by the cur-
rent shell. From a programming languages perspective, parentheses and braces
behave “backward” from the way they do in C: parentheses introduce a nested
dynamic scope in bash, while braces are purely for grouping. In particular, vari-
ables that are assigned new values within a parenthesized command list will revert
to their previous values once the list has completed execution. �

When not surrounded by white space, braces perform pattern-based list gen-EXAMPLE 13.14
Pattern-based list
generation

eration, in a manner similar to filename expansion but without the connec-
tion to the file system. For example, echo abc{12,34,56}xyz prints abc12xyz
abc34xyz abc56xyz. Also, as we have seen, braces serve to delimit variable
names when the opening brace is preceded by a dollar sign. �

In Example 13.6 we used square brackets to enclose a conditional expression.
Double square brackets serve a similar purpose, but with more C-like expression
syntax, and without filename expansion. Double parentheses are used to enclose
arithmetic computations, again with C-like syntax.

The interpolation of commands in $( ) or backquotes, patterns in { }, and
arithmetic expressions in (( )) are all considered forms of expansion, analogous
to filename expansion and variable expansion. The splitting of strings into words
is also considered a form of expansion, as is the replacement, in certain contexts,
of tilde (~) characters with the name of the user’s home directory. All told, these
give us seven different kinds of expansion in bash.

All of the various bracketing constructs have rules governing which kinds of
expansion are performed within. The rules are intended to be as intuitive as pos-
sible, but they are not uniform across constructs. Filename expansion, for exam-
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ple, does not occur within [[ ]]-bracketed conditions. Similarly, a double quote
character may appear inside a double-quoted string if escaped with a backslash,
but a single quote character may not appear inside a single-quoted string.

Functions

Users can define functions in bash that then work like built-in commands. ManyEXAMPLE 13.15
User-defined shell
functions

users, for example, define ll as a shortcut for ls -l, which lists files in the cur-
rent directory in “long format:”

function ll () {

ls -l "$@"

}

Within the function, $1 represents the first parameter, $2 represents the second,
and so on. In the definition of ll, $@ represents the entire parameter list. Func-
tions can be arbitrarily complex. In particular, bash supports both local variables
and recursion. Shells in the csh family provide a more primitive alias mecha-
nism that works via macro expansion. �

The #! Convention

As noted above, shell commands can be read from a script file. To execute themEXAMPLE 13.16
The #! convention in
script files

in the current shell, one uses the “dot” command:

. my_script

where my_script is the name of the file. Many operating systems, including most
versions of Unix, allow one to make a script function as an executable program,
so that users can simply type

DESIGN & IMPLEMENTATION

Magic numbers
When the Unix kernel is asked to execute a file (via the execve system call),
it checks the first few bytes of the file for a “magic number” that indicates
the file’s type. Some values correspond to directly executable object file for-
mats. Under Linux, for example, the first four bytes of an object file are
0x7f45_4c46 (〈del〉ELF in ASCII). Under MacOS X they are 0xfeed_face.
If the first two bytes are 0x2321 (#! in ASCII), the kernel assumes that the file
is a script, and reads subsequent characters to find the name of the interpreter.

The #! convention in Unix is the main reason that most scripting languages
use # as the opening comment delimiter. Early versions of sh used the no-op
command (:) as a way to introduce comments. Joy’s C shell introduced #,
whereupon some versions of sh were modified to launch csh when asked to
execute a script that appeared to begin with a C shell comment. This mecha-
nism evolved into the more general mechanism used in many (though not all)
variants of Unix today.
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my_script

Two steps are required. First, the file must be marked executable in the eyes of
the operating system. On Unix one types chmod +x my_script. Second, the file
must be self-descriptive in a way that allows the operating system to tell which
shell (or other interpreter) will understand the contents. Under Unix, the file
must begin with the characters #!, followed by the name of the shell. The typical
bash script thus begins with

#!/bin/bash

Specifying the full path name is a safety feature: it anticipates the possibility that
the user may have a search path for commands on which some other program
named bash appears before the shell. (Unfortunately, the requirement for full
path names makes #! lines nonportable, since shells and other interpreters may
be installed in different places on different machines.) �

CHECK YOUR UNDERSTANDING

1. Give a plausible one-sentence definition of “scripting language.”

2. List the principal ways in which scripting languages differ from conventional
“systems” languages.

3. From what two principal sets of ancestors are modern scripting languages
descended?

4. What IBM creation is generally considered the first general purpose scripting
language?

5. What is the most popular language for server-side web scripting?

6. How does the notion of context in Perl differ from coercion?

7. What is globbing? What is a wildcard?

8. What is a pipe in Unix? What is redirection?

9. Describe the three standard I/O streams provided to every Unix process.

10. Explain the significance of the #! convention in Unix shell scripts.

13.2.2 Text Processing and Report Generation

Shell languages tend to be heavily string-oriented. Commands are strings, parsed
into lists of words. Variables are string-valued. Variable expansion mechanisms
allow the user to extract prefixes, suffixes, or arbitrary substrings. Concatenation
is indicated by simple juxtaposition. There are elaborate quoting conventions.
Few more conventional languages have similar support for strings.
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# label (target for branch):

:top

/<[hH][123]>.*<\/[hH][123]>/ { ;# match whole heading

h ;# save copy of pattern space

s/\(<\/[hH][123]>\).*$/\1/ ;# delete text after closing tag

s/^.*\(<[hH][123]>\)/\1/ ;# delete text before opening tag

p ;# print what remains

g ;# retrieve saved pattern space

s/<\/[hH][123]>// ;# delete closing tag

b top

} ;# and branch to top of script

/<[hH][123]>/ { ;# match opening tag (only)

N ;# extend search to next line

b top

} ;# and branch to top of script

d ;# if no match at all, delete

Figure 13.1 Script in sed to extract headers from an HTML file. The script assumes that
opening and closing tags are properly matched, and that headers do not nest.

At the same time, shell languages are clearly not intended for the sort of text
manipulation commonly performed in editors like emacs or vi. Search and sub-
stitution, in particular, are missing, and many other tasks that editors accomplish
with a single keystroke—insertion, deletion, replacement, bracket-matching, for-
ward and backward motion—would be awkward to implement, or simply make
no sense, in the context of the shell. For repetitive text manipulation it is natural
to want to automate the editing process. Tools to accomplish this task constitute
the second principal class of ancestors for modern scripting languages.

Sed

As a simple text processing example, consider the problem of extracting all head-EXAMPLE 13.17
Extracting HTML headers
with sed

ers from a web page (an HTML file). These are strings delimited by <H1> . . .
</H1>, <H2> . . . </H2>, and <H3> . . . </H3> tags. Accomplishing this task in an
editor like emacs, vi, or even Microsoft Word is straightforward but tedious:
one must search for an opening tag, delete preceding text, search for a clos-
ing tag, mark the current position (as the starting point for the next deletion),
and repeat. A program to perform these tasks in sed, the Unix “stream edi-
tor,” appears in Figure 13.1. The code consists of a label and three commands,
the first two of which are compound. The first compound command prints the
first header, if any, found in the portion of the input currently being examined
(what sed calls the pattern space). The second compound command appends
a new line to the pattern space whenever it already contains a header-opening
tag. Both compound commands, and several of the subcommands, use regular
expression patterns, delimited by slashes. We will discuss these patterns further
in Section 13.4.2. The third command (the lone d) simply deletes the current
line. Because each compound command ends with a branch back to the top of
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the script, the second will execute only if the first does not, and the delete will
execute only if neither compound does. �

The editor heritage of sed is clear in this example. Commands are generally
one character long, and there are no variables—no state of any kind beyond the
program counter and text that is being edited. These limitations make sed best
suited to “one-line programs,” typically entered verbatim from the keyboard with
the -e command-line switch. The following, for example, will read from stan-EXAMPLE 13.18

One-line scripts in sed dard input, delete blank lines, and (implicitly) print the nonblank lines to stan-
dard output.

sed -e’/^[[:space:]]*$/d’

Here ^ represents the beginning of the line and $ represents the end. The
[[:space:]] expression matches any white-space character in the local char-
acter set, to be repeated an arbitrary number of times, as indicated by the Kleene
star (*). The d indicates deletion. Nondeleted lines are printed by default. �

Awk

In an attempt to address the limitations of sed, Alfred Aho, Peter Weinberger,
and Brian Kernighan designed awk in 1977 (the name is based on the initial let-
ters of their last names). Awk is in some sense an evolutionary link between stream
editors like sed and full-fledged scripting languages. It retains sed’s line-at-a-
time filter model of computation, but allows the user to escape this model when
desired, and replaces single-character editing commands with syntax reminiscent
of C. Awk provides (typeless) variables and a variety of control flow constructs,
including subroutines.

An awk program consists of a sequence of patterns, each of which has an asso-
ciated action. For every line of input, the interpreter executes, in order, the actions
whose patterns evaluate to true. An example with a single pattern-action pair ap-EXAMPLE 13.19

Extracting HTML headers
with awk

pears in Figure 13.2. It performs essentially the same task as the sed script of Fig-
ure 13.1. Lines that contain no opening tag are ignored. In a line with an opening
tag, we delete any text that precedes the header. We then print lines until we find
the closing tag, and repeat if there is another opening tag on the same line. We
fall back into the interpreter’s main loop when we’re cleanly outside any header.

Several conventions can be seen in this example. The current input line is
available in the pseudo-variable $0. The getline function reads into this vari-
able by default. The substr(s, a, b) function extracts the portion of string
s starting at position a and with length b. If b is omitted, the extracted por-
tion runs to the end of s. Conditions, like patterns, can use regular expressions;
we can see an example in the do . . . while loop. By default, regular expressions
match against $0. �

Perhaps the two most important innovations of awk are fields and associa-
tive arrays, neither of which appears in Figure 13.2. Like the shell, awk parses
each input line into a series of words (fields). By default these are delimited by
white space, though the user can change this behavior dynamically by assign-
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/<[hH][123]>/ {

# execute this block if line contains an opening tag

do {

open_tag = match($0, /<[hH][123]>/)

$0 = substr($0, open_tag) # delete text before opening tag

# $0 is the current input line

while (!/<\/[hH][123]>/) { # print interior lines

print # in their entirety

if (getline != 1) exit

}

close_tag = match($0, /<\/[hH][123]>/) + 4

print substr($0, 0, close_tag) # print through closing tag

$0 = substr($0, close_tag + 1) # delete through closing tag

} while (/<[hH][123]>/) # repeat if more opening tags

}

Figure 13.2 Script in awk to extract headers from an HTML file. Unlike the sed script, this
version prints interior lines incrementally. It again assumes that the input is well formed.

ing a regular expression to the built-in variable FS (field separator). The fields
of the current input line are available in the pseudo-variables $1, $2, . . . . The
built-in variable NR gives the total number of fields. Awk is frequently used for
field-based one-line programs. The following, for example, will print the secondEXAMPLE 13.20

Fields in awk word of every line of standard input.

awk ’print $2’ �
Associative arrays will be considered in more detail in Section 13.4.3. Briefly,

they combine the functionality of hash tables with the syntax of arrays. We canEXAMPLE 13.21
Capitalizing a title in awk illustrate both fields and associative arrays with an example script (Figure 13.3)

that capitalizes each line of its input as if it were a title. The script declines to
modify “noise” words (articles, conjunctions, and short prepositions) unless they
are the first word of the title or of a subtitle, where a subtitle follows a word
ending with a colon or a dash. The script also declines to modify words in which
any letter other than the first is already capitalized. �
Perl

Perl was originally developed by Larry Wall in 1987, while he was working at the
National Security Agency. The original version was, to first approximation, an at-
tempt to combine the best features of sed, awk, and sh. It was a Unix-only tool,
meant primarily for text processing (the name stands for “practical extraction
and report language”). Over the years Perl has grown into a large and complex
language, with an enormous user community. Though it is hard to judge such
things, Perl is almost certainly the most popular and widely used scripting lan-
guage. It is also fast enough for much general purpose use, and includes separate
compilation, modularization, and dynamic library mechanisms appropriate for
large-scale projects. It has been ported to almost every known operating system.
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BEGIN { # "noise" words

nw["a"] = 1; nw["an"] = 1; nw["and"] = 1; nw["but"] = 1

nw["by"] = 1; nw["for"] = 1; nw["from"] = 1; nw["in"] = 1

nw["into"] = 1; nw["nor"] = 1; nw["of"] = 1; nw["on"] = 1

nw["or"] = 1; nw["over"] = 1; nw["the"] = 1; nw["to"] = 1

nw["via"] = 1; nw["with"] = 1

}

{

for (i=1; i <= NF; i++) {

if ((!nw[$i] || i == 0 || $(i-1) ~ /[:-]$/) && ($i !~ /.+[A-Z]/)) {

# capitalize

$i = toupper(substr($i, 1, 1)) substr($i, 2)

}

printf $i " "; # don’t add trailing line feed

}

printf "\n";

}

Figure 13.3 Script in awk to capitalize a title. The BEGIN block is executed before reading any
input lines. The main block has no explicit pattern, so it is applied to every input line.

Perl consists of a relatively simple language core, augmented with an enor-
mous number of built-in library functions and an equally enormous number of
shortcuts and special cases. A hint at this richness of expression can be found on
page 622 of the standard language reference [WCO00], which lists (only) the 97
built-in functions “whose behavior varies the most across platforms.” The cover
of the book is emblazoned with the language motto: “There’s more than one way
to do it.”

We will return to Perl several times in this chapter, notably in Sections 13.2.4
and 13.4. For the moment we content ourselves with a simple text processingEXAMPLE 13.22

Extracting HTML headers
with Perl

example, again to extract headers from an HTML file (Figure 13.4). We can see
several Perl shortcuts in this figure, most of which help to make the code shorter
than the equivalent programs in sed (Figure 13.1) and awk (Figure 13.2). Angle
brackets (<>) are the “readline” operator, used for text file input. Normally they
surround a file handle variable name, but as a special case, empty angle brackets
generate as input the concatenation of all files specified on the command line
when the script was first invoked (or standard input, if there were no such files).
When a readline operator appears by itself in the control expression of a while
loop (but nowhere else in the language), it generates its input a line at a time into
the pseudo-variable $_. Several other operators work on $_ by default. Regular
expressions, for example, can be used to search within arbitrary strings, but when
none is specified, $_ is assumed.

The next statement is similar to continue in C or Fortran: it jumps to the
bottom of the innermost loop and begins the next iteration. The redo state-
ment also skips the remainder of the current iteration, but returns to the top of
the loop, without reevaluating the control expression. In our example program,
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while (<>) { # iterate over lines of input

next if !/<[hH][123]>/; # jump to next iteration

while (!/<\/[hH][123]>/) { $_ .= <>; } # append next line to $_

s/.*?(<[hH][123]>.*?<\/[hH][123]>)//s;

# perform minimal matching; capture parenthesized expression in $1

print $1, "\n";

redo unless eof; # continue without reading next line of input

}

Figure 13.4 Script in Perl to extract headers from an HTML file. For simplicity we have again
adopted the strategy of buffering entire headers, rather than printing them incrementally.

redo allows us to append additional input to the current line, rather than reading
a new line. Because end-of-file is normally detected by an undefined return value
from <>, and because that failure will happen only once per file, we must explic-
itly test for eof when using redo here. Note that if and its symmetric opposite,
unless, can be used as either a prefix or a postfix test.

Readers familiar with Perl may have noticed two subtle but key innovations
in the substitution command of line 4 of the script. First, where the expression
.* (in sed, awk, and Perl) matches the longest possible string of characters that
permits subsequent portions of the match to succeed, the expression .*? in Perl
matches the shortest possible such string. This distinction allows us to easily iso-
late the first header in a given line. Second, much as sed allows later portions
of a regular expression to refer back to earlier, parenthesized portions (line 4
of Figure 13.1), Perl allows such captured strings to be used outside the regular
expression. We have leveraged this feature to print matched headers in line 6 of
Figure 13.4. In general, the regular expressions of Perl are significantly more pow-
erful than those of sed and awk; we will return to this subject in more detail in
Section 13.4.2. �

13.2.3 Mathematics and Statistics

As we noted in our discussions of sed and awk, one of the distinguishing charac-
teristics of text processing and report generation is the frequent use of “one-line
programs” and other simple scripts. Anyone who owns a programmable calcu-
lator realizes that similar needs arise in mathematics and statistics. And just as
shell and report generation tools have evolved into powerful languages for gen-
eral purpose computing, so too have notations and tools for mathematical and
statistical computing.

In Section 7.4.1 we mentioned APL, one of the more unusual languages of
the 1960s. Originally conceived as a pen-and-paper notation for teaching applied
mathematics, APL retained its emphasis on the concise, elegant expression of
mathematical algorithms when it evolved into a programming language. Though
it lacks both easy access to other programs and sophisticated string manipulation,
APL displays all the other characteristics of scripting described in Section 13.1.1,
and one sometimes finds it listed as a scripting language.
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The modern successors to APL include a trio of commercial packages for
mathematical computing: Maple, Mathematica, and Matlab. Though their de-
sign philosophies differ, each provides extensive support for numerical methods,
symbolic mathematics (formula manipulation), data visualization, and mathe-
matical modeling. All three provide powerful scripting languages, with a heavy
orientation toward scientific and engineering applications.

As the “3 Ms” are to mathematical computing, so the S and R languages are to
statistical computing. Originally developed at Bell Labs by John Chambers and
colleagues in the late 1970s, S is a commercial package widely used in the statistics
community and in quantitative branches of the social and behavioral sciences. R
is an Open Source alternative to S that is largely though not entirely compatible
with its commercial cousin. Among other things, R supports multidimensional
array and list types, array slice operations, user-defined infix operators, call-by-
need parameters, first-class functions, and unlimited extent.

13.2.4 “Glue” Languages and General Purpose Scripting

From their text processing ancestors, scripting languages inherit a rich set of pat-
tern matching and string manipulation mechanisms. From command interpreter
shells they inherit a wide variety of additional features including simple syntax;
flexible typing; easy creation and management of subprograms, with I/O redirec-
tion and access to completion status; file queries; easy interactive and file-based
I/O; easy access to command-line arguments, environment strings, process iden-
tifiers, time-of-day clock, and so on; and automatic interpreter start-up (the #!
convention). As noted in Section 13.1.1, many scripting languages have inter-
preters that will accept commands interactively.

The combination of shell and text processing mechanisms allows a scripting
language to prepare input to, and parse output from, subsidiary processes. As aEXAMPLE 13.23

“Force quit” script in Perl simple example, consider the (Unix-specific) “force quit” Perl script shown in
Figure 13.5. Invoked with a regular expression as argument, the script identifies
all of the user’s currently running processes whose name, process id, or command
line arguments match that regular expression. It prints the information for each,
and prompts the user for an indication of whether the process should be killed.

The second line of the code starts a subsidiary process to execute the Unix
ps command. The command-line arguments cause ps to print the process id
and name of all processes owned by the current user, together with their full
command-line arguments. The pipe symbol (|) at the end of the command in-
dicates that the output of ps is to be fed to the script through the PS file handle.
The main while loop then iterates over the lines of this output. Within the loop,
the if condition matches each line against $ARGV[0], the regular expression pro-
vided on the script’s command line. It also compares the first word of the line (the
process id) against $$, the id of the Perl interpreter currently running the script.

Scalar variables (which in Perl include strings) begin with a dollar sign ($).
Arrays begin with an at sign (@). In the first line of the while loop in Figure 13.5,
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$#ARGV == 0 || die "usage: $0 pattern\n";

open(PS, "ps -w -w -x -o’pid,command’ |"); # ’process status’ command

<PS>; # discard header line

while (<PS>) {

@words = split; # parse line into space-separated words

if (/$ARGV[0]/i && $words[0] ne $$) {

chomp; # delete trailing newline

print;

do {

print "? ";

$answer = <STDIN>;

} until $answer =~ /^[yn]/i;

if ($answer =~ /^y/i) {

kill 9, $words[0]; # signal 9 in Unix is always fatal

sleep 1; # wait for ’kill’ to take effect

die "unsuccessful; sorry\n" if kill 0, $words[0];

} # kill 0 tests for process existence

}

}

Figure 13.5 Script in Perl to “force quit” errant processes. Perl’s text processing features allow
us to parse the output of ps, rather than filtering it through an external tool like sed or awk.

the input line ($_, implicitly) is split into space-separated words, which are then
assigned into the array @words. In the following line, $words[0] refers to the
first element of this array, a scalar. A single variable name may have different
values when interpreted as a scalar, an array, a hash table, a subroutine, or a file
handle. The choice of interpretation depends on the leading punctuation mark
and on the context in which the name appears. We shall have more to say about
context in Perl in Section 13.4.3. �

Beyond the combination of shell and text processing mechanisms, the typi-
cal glue language provides an extensive library of built-in operations to access
features of the underlying operating system, including files, directories, and I/O;
processes and process groups; protection and authorization; interprocess com-
munication and synchronization; timing and signals; and sockets, name service,
and network communication. Just as text processing mechanisms minimize the
need to employ external tools like sed, awk, and grep, operating system built-ins
minimize the need for other external tools.

At the same time, scripting languages have, over time, developed a rich set
of features for internal computation. Most have significantly better support for
mathematics than is typically found in a shell. Several, including Scheme, Python,
and Ruby, support arbitrary precision arithmetic. Most provide extensive sup-
port for higher level types, including arrays, strings, tuples, lists, and hashes
(associative arrays). Several support classes and object orientation. Some sup-
port iterators, continuations, threads, reflection, and first-class and higher-order
functions. Some, including Perl, Tcl, Python, and Ruby, support modules and
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dynamic loading, for “programming in the large.” These features serve to maxi-
mize the amount of code that can be written in the scripting language itself, and
to minimize the need to escape to a more traditional, compiled language.

In summary, the philosophy of general purpose scripting is make it as easy
as possible to construct the overall framework of a program, escaping to exter-
nal tools only for special purpose tasks, and to compiled languages only when
performance is at a premium.

Tcl

Tcl was originally developed in the late 1980s by Professor John Ousterhout of
the University of California, Berkeley. Over the previous several years his group
had developed a suite of VLSI design automation tools, each of which had its own
idiosyncratic command language. The initial motivation for Tcl (“tool command
language”) was the desire for an extension language that could be embedded in all
the tools, providing them with uniform command syntax and reducing the com-
plexity of development and maintenance. Tk, a set of extensions for graphical
user interface programming, was added to Tcl early in its development, and both
Tcl and Tk were made available to other researchers starting in 1990. The user
community grew rapidly in the 1990s, and Tcl quickly evolved beyond its empha-
sis on command extension to encompass “glue” applications as well. Ousterhout
joined Sun Microsystems in 1994, where for three years he led a multiperson team
devoted to Tcl development. In 1997 he launched a startup company specializing
in Tcl applications and tools.

In comparison to Perl, Tcl is somewhat more verbose. It makes less use of
punctuation and has fewer special cases. Everything in the language, including
control flow constructs, takes the form of a (possibly quoted) command (an iden-
tifier) followed by a series of arguments. In the spirit of Unix command-line in-
vocation, the first few, optional arguments typically begin with a minus sign (-)
and are known as “switches.”

A simple Tcl script, equivalent to the Perl script of Figure 13.5, appears inEXAMPLE 13.24
“Force quit” script in Tcl Figure 13.6. The set command is an assignment; it copies the value of its second

argument into the variable named by the first argument. In most other contexts
a variable name needs to be preceded by a dollar sign ($); as in shell languages,
this indicates that the value of the variable should be expanded in-line. (Note the
contrast to Perl, in which the dollar sign indicates scalar type and must appear
even when the variable is used as an l-value.) As in most scripting languages,
variables in Tcl need not be declared.

Double quote marks (as in "$line? ") behave in the familiar way: variable
references inside are expanded before the string is used. Braces ({ }) work much
as the single quotes of shell languages or Perl: they inhibit internal expansion.
Brackets ([ ]) are a bit like traditional backquotes, but instead of interpreting the
enclosed string as a program name and arguments, they interpret that string as
a Tcl script, whose output should be expanded in place of the bracketed string.
In the header of the while loop of Figure 13.6, the eof command returns a 1 or
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if {$argc != 1} {puts stderr "usage: $argv0 pattern"; exit 1}

set PS [open "|/bin/ps -w -w -x -opid,command" r]

gets $PS ;# discard header line

while {! [eof $PS]} {

set line [gets $PS] ;# returns blank line at eof

regexp {[0-9]+} $line proc

if {[regexp [lindex $argv 0] $line] && [expr $proc != [pid]]} {

puts -nonewline "$line? "

flush stdout ;# force prompt out to screen

set answer [gets stdin]

while {! [regexp -nocase {^[yn]} $answer]} {

puts -nonewline "? "

flush stdout

set answer [gets stdin]

}

if {[regexp -nocase {^y} $answer]} {

set stat [catch {exec kill -9 $proc}]

exec sleep 1

if {$stat || [exec ps -p $proc | wc -l] > 1} {

puts stderr "unsuccessful; sorry"; exit 1

}

}

}

}

Figure 13.6 Script in Tcl to “force quit” errant processes. Compare to the Perl script of
Figure 13.5.

a 0, which is then interpreted as true or false. Like $-prefixed variable names,
bracketed expressions are expanded inside double quotes and brackets, but not
inside braces.

In the third line of the while loop there are two pairs of nested brackets.
The expression [lindex $argv 0] returns the first element of the list $argv
(the one with index zero). This is the pattern specified on the command line
of the script. It is passed as the first argument to the regexp command, along
with the current line of output from the ps program. The regexp command
in turn returns a 1 or a 0, depending on whether the pattern could be found
within the line. The expr command interprets its remaining arguments as an
arithmetic/logical expression with infix operators. The pid command returns
the process id of the Tcl interpreter currently running the script. To facilitate the
use of infix notation in conditions, the first argument to the if and while com-
mands is automatically passed to expr.

Multiple Tcl commands can be written on a single line, as long as they are
separated by semicolons. A newline character terminates the current command
unless it is escaped with a backslash (\) or appears within a brace-quoted string.
Control structures like if and while can thus span multiple lines so long as



694 Chapter 13 Scripting Languages

the nested commands are enclosed in braces, and the opening brace appears on
the same line as the condition. All variables and arguments, including nested
bracketed scripts, are represented internally as character strings. Moreover argu-
ments are expanded and evaluated lazily, so if and while behave as one would
expect. The sharp character (#) introduces a comment, but as in sed (and in
contrast to most programming languages) this is permitted only where a com-
mand might otherwise appear. In particular, a comment that follows a command
on the same line of the script must be separated from the command by a semi-
colon.

The exec command interprets its remaining arguments as the name and ar-
guments of an external program; it executes that program and returns its output.
Many functions that are built into Perl must be invoked as external programs in
Tcl; the kill and sleep functions of Figures 13.5 and 13.6 are two examples.
The catch command executes the nested exec in a protected environment that
produces no error messages but returns a status code than can be inspected later
(nonzero indicates error). The external pipe ps -p $proc | wc -l counts the
number of lines (including header) generated by a request to list the (hopefully
now nonexistent) process proc. �
Python

As noted in Section 13.1, Rexx is generally considered the first of the general
purpose scripting languages, predating Perl and Tcl by almost a decade. Perl and
Tcl are roughly contemporaneous: both were initially developed in the late 1980s.
Perl was originally intended for glue and text processing applications. Tcl was
originally an extension language, but soon grew into glue applications as well. As
the popularity of scripting grew in the 1990s, users were motivated to develop
additional languages, provide additional features, address the needs of specific
application domains (more on this in subsequent sections), or support a style of
programming more in keeping with the personal taste of their designers.

Python was originally developed by Guido van Rossum at CWI in Amsterdam,
the Netherlands, in the early 1990s. He continued his work at CNRI in Reston,
Virginia, beginning in 1995. In 2000 the Python team moved to BeOpen.com,
and to Digital Creations (now Zope Corp.) shortly thereafter. Recent versions of
the language are owned by the Python Software Foundation, of which Zope is a
member. All releases are Open Source.

Figure 13.7 presents a Python version of our “force quit” program. ReflectingEXAMPLE 13.25
“Force quit” script in
Python

the maturation of programming language design, Python was from the begin-
ning an object-oriented language.5 It includes a standard library as rich as that of
Perl, but partitioned into a collection of namespaces reminiscent of those of C++,
Java, or C#. The first line of our script imports symbols from the sys, os, re, and

5 Rexx and Tcl have object-oriented extensions, named Object Rexx and Incr Tcl, respectively.
Perl 5 includes some (rather awkward) object-oriented features; Perl 6 will have more uniform
object support.



13.2 Problem Domains 695

import sys, os, re, time

if len(sys.argv) != 2:

sys.stderr.write(’usage: ’ + sys.argv[0] + ’ pattern\n’)

sys.exit(1)

PS = os.popen("/bin/ps -w -w -x -o’pid,command’")

line = PS.readline() # discard header line

line = PS.readline().rstrip() # prime pump

while line != "":

proc = int(re.search(’\S+’, line).group())

if re.search(sys.argv[1], line) and proc != os.getpid():

print line + ’? ’,

answer = sys.stdin.readline()

while not re.search(’^[yn]’, answer, re.I):

print ’? ’, # trailing comma inhibits newline

answer = sys.stdin.readline()

if re.search(’^y’, answer, re.I):

os.kill(proc, 9)

time.sleep(1)

try: # expect exception if process

os.kill(proc, 0) # no longer exists

sys.stderr.write("unsuccessful; sorry\n"); sys.exit(1)

except: pass # do nothing

sys.stdout.write(’’) # inhibit prepended blank on next print

line = PS.readline().rstrip()

Figure 13.7 Script in Python to “force quit” errant processes. Compare to Figures 13.5
and 13.6.

time library modules. The fifth line launches ps as an external program and ties
its output to the file object PS. In standard object-oriented style, readline is
then invoked as a method of this object.

Perhaps the most distinctive feature of Python, though hardly the most impor-
tant, is its reliance on indentation for syntactic grouping. We have already seen
that Tcl uses line breaks to separate commands. Python does so also, and fur-
ther specifies that the body of a structured statement consists of precisely those
subsequent statements that are indented one more tab stop. Like the “more than
one way to do it” philosophy of Perl, Python’s use of indentation tends to arouse
strong feelings among users: some strongly positive, some strongly negative.

The regular expression (re) library has all of the power available in Perl but
employs the somewhat more verbose syntax of method calls, rather than the
built-in notation of Perl. The search routine returns a “match object” that cap-
tures, lazily, the places in the string at which the pattern appears. If no match is
found, search returns None, the empty object, instead. In a condition, None is
interpreted as false, while a true match object is interpreted as true. The match
object in turn supports a variety of methods, including group, which returns the
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substring corresponding to the first match. The re.I flag to search indicates
case insensitivity. Note that group returns a string. Unlike Perl and Tcl, Python
will not coerce this to an integer—hence the need for the explicit type conversion
on the first line of the body of the while loop.

As in Perl (and in contrast to Tcl), the readline method does not remove the
newline character at the end of an input line; we use the rstrip method to do
this. The print routine adds a newline to the end of its argument list unless that
list ends with a trailing comma. The print routine also prepends a space to its
output unless a set of well-defined heuristics indicate that the output will appear
at the beginning of a line. The write of a null string at the bottom of the while
loop serves to defeat these heuristics in the wake of the user’s input, avoiding a
spurious blank at the beginning of the next process prompt.

The sleep and kill routines are built into Python, much as they are in Perl.
When given a signal number of 0, kill tests for process existence. Instead of
returning a status code, however, as it does in Perl, the Python kill throws an
exception if the process does not exist. We use a try block to catch this exception
in the expected case. �

While our “force quit” program may convey, at least in part, the “feel” of vari-
ous languages, it cannot capture the breadth of their features. Python includes
many of the more interesting features discussed in earlier chapters, including
nested functions with static scoping, lambda expressions and higher-order func-
tions, true iterators, list comprehensions, array slice operations, reflection, struc-
tured exception handling, multiple inheritance, and modules and dynamic load-
ing.

Ruby

Ruby is the newest of the widely used glue languages. It was developed in Japan
in the early 1990s by Yukihiro “Matz” Matsumoto. Matz writes that he “wanted
a language more powerful than Perl, and more object-oriented than Python”
[TH04, Foreword]. The first public release was made available in 1995, and
quickly gained widespread popularity in Japan. With the more recent publica-
tion of English-language documentation, Ruby has spread rapidly elsewhere as
well.

In keeping with Matz’s original motivation, Ruby is a pure object-orientedEXAMPLE 13.26
Method call syntax in Ruby language, in the sense of Smalltalk: everything—even instances of built-in

types—is an object. Integers have more than 25 built-in methods. Strings have
more than 75. Smalltalk-like syntax is even supported: 2 * 4 + 5 is syntac-
tic sugar for (2.*( 4)).+(5), which is in turn equivalent to (2.send(’*’,

4)).send(’+’, 5).6 �

6 Parentheses here are significant. Infix arithmetic follows conventional precedence rules, but
method invocation proceeds from left to right. Likewise, parentheses can be omitted around
argument lists, but the method-selecting dot (.) groups more tightly than the argument-
separating comma (,), so 2.send ’*’, 4.send ’+’, 5 evaluates to 18, not 13.
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ARGV.length() == 1 or begin

$stderr.print("usage: #{$0} pattern\n"); exit(1)

end

pat = Regexp.new(ARGV[0])

IO.popen("ps -w -w -x -o’pid,command’") {|PS|

PS.gets # discard header line

PS.each {|line|

proc = line.split[0].to_i

if line =~ "pat" and proc != Process.pid then

print line.chomp

begin

print "? "

answer = $stdin.gets

end until answer =~ /^[yn]/i

if answer =~ /^y/i then

Process.kill(9, proc)

sleep(1)

begin # expect exception (process gone)

Process.kill(0, proc)

$stderr.print("unsuccessful; sorry\n"); exit(1)

rescue # handler -- do nothing

end

end

end

}

}

Figure 13.8 Script in Ruby to “force quit” errant processes. Compare to Figures 13.5, 13.6,
and 13.7.

Figure 13.8 presents a Ruby version of our “force quit” program. As in Tcl,EXAMPLE 13.27
“Force quit” script in Ruby a newline character serves to end the current statement, but indentation is not

significant. A dollar sign ($) at the beginning of an identifier indicates a global
name. Though it doesn’t appear in this example, an at sign (@) indicates an in-
stance variable of the current object. Double at signs (@@) indicate an instance
variable of the current class.

Probably the most distinctive feature of Figure 13.8 is its use of blocks and it-
erators. The IO.popen class method takes as argument a string that specifies the
name and arguments of an external program. The method also accepts, in a man-
ner reminiscent of Smalltalk, an associated block, specified as a multiline fragment
of Ruby code delimited with curly braces. This block is invoked by popen, passing
as parameter a file handle (an object of class IO) that represents the output of the
external command. The |PS| at the beginning of the block specifies the name by
which this handle is known within the block. In a similar vein, the each method
of object PS is an iterator that invokes the associated block (the code in braces
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beginning with |line|) once for every line of data. For those more comfortable
with traditional for loop syntax, the iterator can also be written

for line in PS

...

end

In addition to (true) iterators, Ruby provides continuations and first-class and
higher-order functions. Its module mechanism supports an extended form of
mix-in inheritance. Though a class cannot inherit data members from a module,
it can inherit code. Run-time type checking makes such inheritance more or less
straightforward. Methods of modules that have not been explicitly included into
the current class can be accessed as qualified names; Process.kill is an exam-
ple in Figure 13.8. Methods sleep and exit belong to module Kernel, which is
included by class Object, and is thus available everywhere without qualification.
Like popen, they are class methods rather than instance methods; they have no
notion of “current object.” Variables stdin and stderr refer to global objects of
class IO.

Regular expression operations in Ruby are methods of class RegExp, and can
be invoked with standard object-oriented syntax. For convenience, Perl-like no-
tation is also supported as syntactic sugar; we have used this notation in Fig-
ure 13.8.

The rescue clause of the innermost begin . . . end block is an exception han-
dler. As in the Python code of Figure 13.7, it allows us to determine whether the
kill operation has succeeded by catching the (expected) exception that arises
when we attempt to refer to a process after it has died. �

13.2.5 Extension Languages

Most applications accept some sort of commands, which tell them what to do.
Sometimes these commands are entered textually; more often they are triggered
by user interface events such as mouse clicks, menu selections, and keystrokes.
Commands in a graphical drawing program might save or load a drawing; select,
insert, delete, or modify its parts; choose a line style, weight, or color; zoom or
rotate the display; or modify user preferences.

An extension language serves to increase the usefulness of an application by al-
lowing the user to create new commands, generally using the existing commands
as primitives. Extension languages are increasingly seen as an essential feature
of sophisticated tools. Adobe’s graphics suite (Illustrator, Photoshop, InDesign,
etc.) can be extended (scripted) using JavaScript, Visual Basic (on Windows), or
AppleScript (on the Mac). AOLserver, an open-source web server from Amer-
ica Online, can be scripted using Tcl. Disney and Industrial Light and Magic use
Python to extend their internal (proprietary) tools. Many commercially available
packages, including AutoCAD, Maya, Director, and Flash have their own unique
scripting languages. This list barely scratches the surface.
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To admit extension, a tool must

� incorporate, or communicate with, an interpreter for a scripting language.

� provide hooks that allow scripts to call the tool’s existing commands.

� allow the user to tie newly defined commands to user interface events.

With care, these mechanisms can be made independent of any particular script-
ing language. As we noted in the sidebar on page 673, Microsoft’s Windows Script
interface allows arbitrary languages to be used to script the operating system, web
server, and browser. GIMP, the widely used GNU Image Manipulation Program,
has a comparably general interface and can be scripted in Scheme, Tcl, Python,
and Perl, among others. There is a tendency, of course, for user communities to
converge on a favorite language, to facilitate sharing of code. Microsoft tools are
usually scripted with Visual Basic. GIMP is usually scripted with the SIOD di-
alect of Scheme. Adobe tools are usually scripted with Visual Basic on the PC or
AppleScript on the Mac.

One of the oldest existing extension mechanisms is that of the emacs text ed-
itor, used to write this book. An enormous number of extension packages have
been created for emacs; many of them are installed by default in the standard
distribution. In fact much of what users consider the editor’s core functional-
ity is actually provided by extensions; the truly built-in parts are comparatively
small.

The extension language for emacs is a dialect of Lisp called Emacs Lisp. An ex-EXAMPLE 13.28
Numbering lines with
Emacs Lisp

ample script appears in Figure 13.9. It assumes that the user has used the standard
marking mechanism to select a region of text. It then inserts a line number at the
beginning of every line in the region. The first line is numbered 1 by default, but
an alternative starting number can be specified with an optional parameter. Line
numbers are bracketed with a prefix and suffix that are “ ” (empty) and “) ” by
default, but can be changed by the user if desired. To maintain existing alignment,
small numbers are padded on the left with enough spaces to match the width of
the number on the final line.

Many features of Emacs Lisp can be seen in this example. The setq-default
command is an assignment that is visible in the current buffer (editing session)
and in any concurrent buffers that haven’t explicitly overridden the previous
value. The defun command defines a new command. Its arguments are, in or-
der, the command name, formal parameter list, documentation string, interac-
tive specification, and body. The argument list for number-region includes the
start and end locations of the currently marked region, and the optional ini-
tial line number. The documentation string is automatically incorporated into
the online help system. The interactive specification controls how arguments are
passed when the command is invoked through the user interface. (The com-
mand can also be called from other scripts, in which case arguments are passed
in the conventional way.) The “*” raises an exception if the buffer is read-only.
The “r” represents the beginning and end of the currently marked region. The
“\n” separates the “r” from the following “p,” which indicates an optional nu-
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(setq-default line-number-prefix "")

(setq-default line-number-suffix ") ")

(defun number-region (start end &optional initial)

"Add line numbers to all lines in region.

With optional prefix argument, start numbering at num.

Line number is bracketed by strings line-number-prefix

and line-number-suffix (default \"\" and \") \")."

(interactive "*r\np") ; how to parse args when invoked from keyboard

(let* ((i (or initial 1))

(num-lines (+ -1 initial (count-lines start end)))

(fmt (format "%%%dd" (length (number-to-string num-lines))))

; yields "%1d", "%2d", etc. as appropriate

(finish (set-marker (make-marker) end)))

(save-excursion

(goto-char start)

(beginning-of-line)

(while (< (point) finish)

(insert line-number-prefix (format fmt i) line-number-suffix)

(setq i (1+ i))

(forward-line 1))

(set-marker finish nil))))

Figure 13.9 Emacs Lisp function to number the lines in a selected region of text.

meric prefix argument. When the command is bound to a keystroke, a prefix ar-
gument of, say, 10 can be specified by preceding the keystroke with “C-u 10”
(control-U 10).

As usual in Lisp, the let* command introduces a set of local variables in
which later entries in the list (fmt) can refer to earlier entries (num-lines).
A marker is an index into the buffer that is automatically updated to maintain
its position when text is inserted in front of it. We create the finish marker so
that newly inserted line numbers do not alter our notion of where the to-be-
numbered region ends. We set finish to nil at the end of the script to relieve
emacs of the need to keep updating the marker between now and whenever the
garbage collector gets around to reclaiming it.

The format command is similar to sprintf in C. We have used it, once in the
declaration of fmt and again in the call to insert, to pad all line numbers out to
an appropriate length. The save-excursion command is roughly equivalent to
an exception handler (e.g., a Java try block) with a finally clause that restores
the current focus of attention ((point)) and the borders of the marked region.

Our script can be supplied to emacs by including it in a personal startup file
(usually ~/.emacs), by using the interactive load-file command to read some
other file in which it resides, or by loading it into a buffer, placing the focus of
attention immediately after it, and executing the interactive eval-last-sexp
command. Once any of these has been done, we can invoke our command inter-
actively by typing M-x number-region <RET> (meta-X, followed by the com-
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mand name and the return key). Alternatively, we can bind our command to a
keyboard shortcut:

(define-key global-map "\C-c#" ’number-region)

This one-line script, executed in any of the ways described above, binds
our number-region command to the two-character sequence “C-c #”
(control-C #). �

CHECK YOUR UNDERSTANDING

11. What is the most widely used scripting language?

12. List the principal limitations of sed.

13. What is meant by the pattern space in sed?

14. Briefly describe the fields and associative arrays of awk.

15. What is the Perl motto?

16. Explain the special relationship between while loops and file handles in Perl.
What is the meaning of the empty file handle, <>?

17. Name three widely used commercial packages for mathematical computing.

18. List several distinctive features of the R statistical scripting language.

19. Explain the meaning of the $ and @ characters at the beginning of variable
names in Perl. Explain the different meaning for the $ sign in Tcl, and the
still different meanings of $, @, and @@ in Ruby.

20. Describe the semantics of braces ({ }) and square brackets ([ ]) in Tcl.

21. Which of the languages described in Section 13.2.4 uses indentation to con-
trol syntactic grouping?

22. List several distinctive features of Python.

23. Describe, briefly, how Ruby uses blocks and iterators.

24. What capabilities must a scripting language provide in order to be used for
extension?

25. Name several commercial tools that use extension languages.

13.3 Scripting the World Wide Web

Much of the content of the World Wide Web—particularly the content that is
visible to search engines—is static: pages that seldom, if ever, change. But hyper-
text, the abstract notion on which the web is based, was always conceived as a way
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to represent “the complex, the changing, and the indeterminate” [Nel65]. Much
of the power of the web today lies in its ability to deliver pages that move, play
sounds, respond to user actions, or—perhaps most important—contain infor-
mation created or formatted on demand, in response to the page fetch request.

From a programming languages point of view, simple playback of recorded
audio or video is not particularly interesting. We therefore focus our attention
here on content that is generated on the fly by a program—a script—associated
with an Internet URI (uniform resource identifier).7 Suppose we type a URI into
a browser on a client machine, and the browser sends a request to the appropriate
web server. If the content is dynamically created, an obvious first question is: does
the script that creates it run on the server or the client machine? These options
are known as server-side and client-side web scripting, respectively.

Server-side scripts are typically used when the service provider wants to re-
tain complete control over the content of the page but can’t (or doesn’t want to)
create the content in advance. Examples include the pages returned by search
engines, Internet retailers, auction sites, and any organization that provides its
clients with online access to personal accounts. Client-side scripts are typically
used for tasks that don’t need access to proprietary information, and are more
efficient if executed on the client’s machine. Examples include interactive anima-
tion, error-checking of fill-in forms, and a wide variety of other self-contained
calculations.

13.3.1 CGI Scripts

The original mechanism for server-side web scripting is the Common Gateway
Interface (CGI). A CGI script is an executable program residing in a special di-
rectory known to the web server program. When a client requests the URI corre-
sponding to such a program, the server executes the program and sends its output
back to the client. Naturally, this output needs to be something that the browser
will understand: typically HTML.

CGI scripts may be written in any language available on the server’s machine,
though Perl is particularly popular: its string-handling and “glue” mechanisms
are ideally suited to generating HTML, and it was already widely available during
the early years of the web. As a simple if somewhat artificial example, supposeEXAMPLE 13.29

Remote monitoring with a
CGI script

we would like to be able to monitor the status of a server machine shared by
some community of users. The Perl script in Figure 13.10 creates a web page ti-
tled by the name of the server machine and containing the output of the uptime
and who commands (two simple sources of status information). The script’s ini-
tial print command produces an HTTP message header, indicating that what

7 The term “URI” is often used interchangably with “URL” (uniform resource locator), but the
World Wide Web Consortium distinguishes between the two. All URIs are hierarchical (multi-
part) names. URLs are one kind of URIs; they use a naming scheme that indicates where to find
the resource. Other URIs can use other naming schemes.
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#!/usr/bin/perl

print "Content-type: text/html\n\n";

$host = ‘hostname‘; chop $host;

print "<HTML>\n<HEAD>\n<TITLE>Status of ", $host,

"</TITLE>\n</HEAD>\n<BODY>\n";

print "<H1>", $host, "</H1>\n";

print "<PRE>\n", ‘uptime‘, "\n", ‘who‘;

print "</PRE>\n</BODY>\n</HTML>\n";

Figure 13.10 A simple CGI script in Perl. If this script is named status.perl and is installed
in the server’s cgi-bin directory, then a user anywhere on the Internet can obtain summary
statistics and a list of users currently logged into the server by typing hostname/cgi-bin/status.perl
into a browser window.

follows is HTML. Sample output from executing the script appears in Fig-
ure 13.11. �

CGI scripts are commonly used to process online forms. A simple exampleEXAMPLE 13.30
Adder web form with a
CGI script

appears in Figure 13.12. The FORM element in the HTML file specifies the URI
of the CGI script, which is invoked when the user hits the Submit button. Values
previously entered into the INPUT fields are passed to the script either as a trailing
part of the URI (for a get type form) or on the standard input stream (for a post

type form, shown here).8 With either method, we can access the values using the
param routine of the standard CGI Perl library, loaded at the beginning of our
script. �

13.3.2 Embedded Server-Side Scripts

Though widely used, CGI scripts have several disadvantages.

� The web server must launch each script as a separate program, with potentially
significant overhead (though a CGI script compiled to native code can be very
fast once running).

� Because the server has little control over the behavior of a script, scripts must
generally be installed in a trusted directory by trusted system administrators;
they cannot reside in arbitrary locations as ordinary pages do.

� The name of the script appears in the URI, typically prefixed with the name of
the trusted directory, so static and dynamic pages look different to end users.

8 One typically uses post type forms for one-time requests. A get type form appears a little
clumsier, because arguments are visibly embedded in the URI, but this gives it the advantage of
repeatability: it can be “bookmarked” by client browsers.
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<HTML>

<HEAD>

<TITLE>Status of sigma.cs.rochester.edu</TITLE>

</HEAD>

<BODY>

<H1>sigma.cs.rochester.edu</H1>

<PRE>

22:10 up 5 days, 12:50, 5 users, load averages: 0.40 0.37 0.31

scott console Feb 13 09:21

scott ttyp2 Feb 17 15:27

test ttyp3 Feb 18 17:10

test ttyp4 Feb 18 17:11

</PRE>

</BODY>

</HTML>

Status of sigma.cs.rochester.edu

sigma.cs.rochester.edu
22:10 up 5 days, 12:50, 5 users, load averages: 0.40 0.37 0.31

scott console Feb 13 09:21

scott ttyp2 Feb 17 15:27

test ttyp3 Feb 18 17:10

test ttyp4 Feb 18 17:11

Figure 13.11 Sample output from the script of Figure 13.10. HTML source appears at top; the
rendered page is below.

� Each script must generate not only dynamic content, but also the HTML tags
that are needed to format and display it. This extra “boilerplate” makes scripts
more difficult to write.

To address these disadvantages, most web servers now provide a “module
loading” mechanism that allows interpreters for one or more scripting languages
to be incorporated into the server itself. Scripts in the supported language(s)
can then be embedded in “ordinary” web pages. The web server interprets such
scripts directly, without launching an external program. It then replaces the
scripts with the output they produce, before sending the page to the client. Clients
have no way to even know that the scripts exist.

Embedable server-side scripting languages include PHP, Visual Basic (in Mi-
crosoft Active Server Pages), Cold Fusion (from Macromedia Corp.), and Java
(via “Servlets” running in Java Server Pages). The most common of these is PHP.
Though descended from Perl, PHP has been extensively customized for its target
domain, with built-in support for (among other things) e-mail and MIME en-
coding, all the standard Internet communication protocols, authentication and
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<HTML>

<HEAD>

<TITLE>Adder</TITLE>

</HEAD>

<BODY>

<FORM action="/cgi-bin/add.perl" method="post">

<P><INPUT name="argA" size=3>First addend<BR>

<INPUT name="argB" size=3>Second addend

<P><INPUT type="submit">

</FORM>

</BODY>

</HTML>

Adder

12 First addend

34 Second addend

�

�

�

�
Submit

#!/usr/bin/perl

use CGI qw(:standard); # provides access to CGI input fields

$argA = param("argA"); $argB = param("argB"); $sum = $argA + $argB;

print "Content-type: text/html\n\n";

print "<HTML>\n<HEAD>\n<TITLE>Sum</TITLE>\n</HEAD>\n<BODY>\n";

print "<P>$argA plus $argB is $sum";

print "</BODY>\n</HTML>\n";

<HTML>

<HEAD>

<TITLE>Sum</TITLE>

</HEAD>

<BODY>

<P>12 plus 34 is 46</BODY>

</HTML>

Sum

12 plus 34 is 46

Figure 13.12 An interactive CGI form. Source for the original web page is shown at the upper left, with the rendered page
to the right. The user has entered 12 and 34 in the text fields. When the Submit button is pressed, the client browser sends a
request to the server for URI /cgi-bin/add.perl. The values 12 and 13 are contained within the request. The Perl script, shown
in the middle, uses these values to generate a new web page, shown in HTML at the bottom left, with the rendered page to
the right.

security, HTML and URI manipulation, and interaction with dozens of database
systems.

The PHP equivalent of Figure 13.10 appears in Figure 13.13. Most of theEXAMPLE 13.31
Remote monitoring with a
PHP script

text in this figure is standard HTML. PHP code is embedded between <?php
and ?> delimiters. These delimiters are not themselves HTML; rather they iden-
tify the portions of the page that need to be executed by the PHP interpreter
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<HTML>

<HEAD>

<TITLE>Status of <?php echo $host = chop(‘hostname‘) ?></TITLE>

</HEAD>

<BODY>

<H1><?php echo $host ?></H1>

<PRE>

<?php echo ‘uptime‘, "\n", ‘who‘ ?>

</PRE>

</BODY>

</HTML>

Figure 13.13 A simple PHP script embedded in a web page. When served by a PHP-enabled
host, this page performs the equivalent of the CGI script of Figure 13.10.

<HTML><BODY><P>

<?php

for ($i = 0; $i < 20; $i++) {

if ($i % 2) { ?>

<B><?php

echo " $i"; ?>

</B><?php

} else echo " $i";

}

?>

</BODY></HTML>

Figure 13.14 A fragmented PHP script. The if and for statements work as one might ex-
pect, despite the intervening raw HTML. When requested by a browser, this page displays the
numbers from 0 to 19, with odd numbers written in bold.

to generate replacement text. The “boilerplate” parts of the page can thus ap-
pear verbatim; they need not be generated by print (Perl) or echo (PHP) com-
mands. Note that the separate script fragments are part of a single program. The
$host variable, for example, is set in the first fragment and used again in the
second. �

PHP scripts can even be broken into fragments in the middle of structuredEXAMPLE 13.32
A fragmented PHP script statements. Figure 13.14 contains a script in which if and for statements span

fragments. In effect, the HTML text between the end of one script fragment and
the beginning of the next behaves as if it had been output by an echo command.
Web designers are free to use whichever approach (echo or escape to raw HTML)
seems most convenient for the task at hand. �

Self-Posting Forms

By changing the action attribute of the FORM element, we can arrange for theEXAMPLE 13.33
Adder web form with a
PHP script

Adder page of Figure 13.12 to invoke a PHP script instead of a CGI script:
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<HTML><HEAD><TITLE>Sum</TITLE></HEAD><BODY><P>

<?php

$argA = $_REQUEST[’argA’]; $argB = $_REQUEST[’argB’];

$sum = $argA + $argB;

echo "$argA plus $argB is $sum\n";

?>

</BODY></HTML>

<?php

$argA = $_REQUEST[’argA’]; $argB = $_REQUEST[’argB’];

if (!isset($_REQUEST[’argA’]) || $argA == "" || $argB == "") {

# form has not been posted, or arguments are incomplete

?>

<HTML><HEAD><TITLE>Adder</TITLE></HEAD><BODY>

<FORM action="adder.php" method="post">

<P>First addend: <INPUT name="argA" size=3>

Second addend: <INPUT name="argB" size=3>

<P><INPUT type="submit">

</FORM></BODY></HTML>

<?php

} else { # form is complete; return results

?>

<HTML><HEAD><TITLE>Sum</TITLE></HEAD><BODY><P>

<?php

$sum = $argA + $argB;

echo "$argA plus $argB is $sum\n";

?>

</BODY></HTML>

<?php

}

?>

Figure 13.15 An interactive PHP web page. The script at top could be used in place of the
script in the middle of Figure 13.12. The lower script in the current figure replaces both the web
page at the top and the script in the middle of Figure 13.12. It checks to see if it has received a
full set of arguments. If it hasn’t, it displays the fill-in form; if it has, it displays results.

<FORM action="add.php" method="post">

The PHP script itself is shown in the top half of Figure 13.15. Form values are
made available to the script in an associative array (hash table) named _REQUEST.
No special library is required. �

Because our PHP script is executed directly by the web server, it can safelyEXAMPLE 13.34
Self-posting Adder web
form

reside in an arbitrary web directory, including the one in which the Adder page
resides. In fact, by checking to see how a page was requested, we can merge the
form and the script into a single page, and let it service its own requests! We
illustrate this option in the bottom half of Figure 13.15. �
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13.3.3 Client-Side Scripts

While embedded server-side scripts are generally faster than CGI scripts, at least
when startup cost predominates, communication across the Internet is still too
slow for truly interactive pages. If we want the behavior or appearance of the
page to change as the user moves the mouse, clicks, types, or hides or ex-
poses windows, we really need to execute some sort of script on the client’s ma-
chine.

Because they run on the web designer’s site, CGI scripts and, to a lesser extent,
embedable server-side scripts can be written in many different languages. All the
client ever sees is standard HTML. Client-side scripts, by contrast, require an
interpreter on the client’s machine. As a result, there is a powerful incentive for
convergence in client-side scripting languages: most designers want their pages
to be viewable by as wide an audience as possible. While Visual Basic is widely
used within specific organizations, where all the clients of interest are known to
run Internet Explorer, pages intended for the general public almost always use
JavaScript for interactive features.

Figure 13.16 shows a page with embedded JavaScript that imitates (on theEXAMPLE 13.35
Adder web form in
JavaScript

client) the behavior of the Adder scripts of Figures 13.12 and 13.15. Function
doAdd is defined in the header of the page so it is available throughout. In par-
ticular, it will be invoked when the user clicks on the Calculate button. By de-
fault the input values are character strings; we use the parseInt function to
convert them to integers. The parentheses around (argA + argB) in the final
assignment statement then force the use of integer addition. The other occur-
rences of + are string concatenation. To disable the usual mechanism whereby
input data are submitted to the server when the user hits the enter or return
key, we have specified a dummy behavior for the onsubmit attribute of the
form.

Rather than replace the page with output text, as our CGI and PHP scripts
did, we have chosen in our JavaScript version to append the output at the bot-
tom. The HTML SPAN element provides a named place in the document where
this output can be inserted, and the getElementById JavaScript method pro-
vides us with a reference to this element. The HTML Document Object Model
(DOM), standardized by the World Wide Web Consortium, specifies a very large
number of other elements, attributes, and user actions, all of which are accessi-
ble in JavaScript. Through them scripts can, at appropriate times, inspect or alter
almost any aspect of the content, structure, or style of a page. �

13.3.4 Java Applets

An applet is a program designed to run inside some other program. The term is
most often used for Java programs that display their output in (a portion of) a
web page. To support the execution of applets, most modern browsers contain a
Java virtual machine.
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<HTML>

<HEAD>

<TITLE>Adder</TITLE>

<SCRIPT type="text/javascript">

function doAdd() {

argA = parseInt(document.adder.argA.value)

argB = parseInt(document.adder.argB.value)

x = document.getElementById(’sum’)

while (x.hasChildNodes())

x.removeChild(x.lastChild) // delete old content

t = document.createTextNode(argA + " plus "

+ argB + " is " + (argA + argB))

x.appendChild(t)

}

</SCRIPT>

</HEAD>

<BODY>

<FORM name="adder" onsubmit="return false">

<P><INPUT name="argA" size=3> First addend<BR>

<INPUT name="argB" size=3> Second addend

<P><INPUT type="button" onclick="doAdd()" value="Calculate">

</FORM>

<P><SPAN id="sum"></SPAN>

</BODY>

</HTML>

Adder

12 First addend

34 Second addend

�

�

�

�
Calculate

12 plus 34 is 46

Figure 13.16 An interactive JavaScript web page. Source appears at left. The rendered version on the right shows the
appearance of the page after the user has entered two values and hit the Calculate button, causing the output message to
appear. By entering new values and clicking again, the user can calculate as many sums as desired. Each new calculation will
replace the output message.

Like JavaScript, Java applets can be used to create animated or interactive
pages. Together with the similarity in language names, the fact that many tasks
can be accomplished with either mechanism has created a great deal of confu-
sion between the two (see sidebar on page 710). In fact, however, they are very
different.

To embed an applet in a web page, one would traditionally use an APPLET tag:EXAMPLE 13.36
Embedding an applet in a
web page <APPLET width=150 height=150 code="Clock.class">

Seeing this element embedded in the page, the client browser would request the
URI Clock.class from the server. Assuming the server returned an applet, it would
run this applet and display the output on the page. �

Unlike a JavaScript script, an applet does not produce HTML output for the
browser to render. Rather it directly controls a portion of the page’s real estate, in
which it uses routines from one of Java’s graphical user interface (GUI) libraries
(typically AWT or Swing) to display whatever it wants. The width and height
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attributes of the APPLET element tell the browser how big the applet’s portion of
the page should be.

In effect, applets allow the web designer to escape from HTML entirely,
and to create a very precise “look and feel,” independent of any design choices
embodied by the browser. Images, of course, provide another way to escape
from HTML, with static or simple animated content, as do embedded objects
of other kinds (movies in Flash or QuickTime format are popular examples).
Most modern browsers provide a “plug-in” mechanism that allows the instal-EXAMPLE 13.37

Embedding an object in a
web page

lation of interpreters for arbitrary formats. In support of these, the HTML
4.0 standard provides a generic OBJECT element that is meant to be used for
any embedded content not rendered by the browser itself. The APPLET ele-
ment is now officially deprecated: one is supposed to use the following in-
stead.

<P><OBJECT codetype="application/java" classid="java:Clock.class"

width=150 height=150> �
Applets are subject to certain restrictions intended to prevent them from dam-

aging the client’s machine. For the most part, however, they can make use of the
entire Java language, and it is usually a simple task to covert an applet to a stand-
alone program or vice versa. The typical applet has no significant interaction
with the browser or any other program. For this reason, applets are generally not
considered a scripting mechanism.

DESIGN & IMPLEMENTATION

JavaScript and Java
Despite its name, JavaScript has no connection to Java beyond some superficial
syntactic similarity. The language was originally developed by Brendan Eich at
Netscape Corp. in 1995. Eich called his creation LiveScript, but the company
chose to rename it as part of a joint marketing agreement with Sun Microsys-
tems, prior to its public release. Trademark on the JavaScript name is actually
owned by Sun.

Netscape’s browser was still the market leader in 1995, and JavaScript us-
age grew extremely fast. To remain competitive, developers at Microsoft added
JavaScript support to Internet Explorer, but they used the name JScript instead,
and they introduced a number of incompatibilities with the Netscape version
of the language. A common version was standardized as ECMAScript by the
European standards body in 1997, but major incompatibilities remained in
the Document Object Models provided by different browsers. These have been
gradually resolved through a series of standards from the World Wide Web
Consortium, but legacy pages and legacy browsers continue to plague web de-
velopers.
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CHECK YOUR UNDERSTANDING

26. Explain the distinction between server-side and client-side web scripting.

27. List the tradeoffs between CGI scripts and embedded PHP.

28. Why are CGI scripts usually installed only in a special directory?

29. Explain how a PHP page can service its own requests.

30. Why might we prefer to execute a web script on the server rather than the
client? Why might we sometimes prefer the client instead?

31. What is the HTML Document Object Model? What is its significance for
client-side scripting?

32. What is the relationship between JavaScript and Java?

DESIGN & IMPLEMENTATION

Sandboxing
Security becomes an issue whenever code is executed using someone else’s re-
sources. Web servers are usually installed with very limited access rights and
with only a limited view of the file system of the server machine. This gen-
erally limits the set of pages they can serve to a well-defined subset of what
would be visible to users logged into the server machine directly. Because they
are separate executable programs, CGI scripts can be designed to run with the
privileges of whoever installed them. To prevent users on the server machine
from accidentally or intentionally passing their privileges to arbitrary users on
the Internet, most system administrators configure their servers so that CGI
scripts must reside in a special directory, and be installed by a trusted user.
Embedded server-side scripts can reside in any file because they are guaran-
teed to run with the (limited) rights of the server.

A larger risk is posed by code downloaded over the Internet and executed
on a client machine. Because such code is in general untrusted, it must be
executed in a carefully controlled environment, sometimes called a sandbox, to
prevent it from doing any damage. As a general rule, JavaScript scripts cannot
access the local file system, memory management system, or network, nor can
they manipulate documents from other sites. Java applets, likewise, have only
limited ability to access external resources. Reality is a bit more complicated, of
course: sometimes a script needs access to, say, a temporary file of limited size,
or a network connection to a trusted server. Mechanisms exist to certify sites
as trusted, or to allow a trusted site to certify the trustworthiness of pages from
other sites. Scripts on pages obtained through a trusted mechanism may then
be given extended rights. Such mechanisms must be used with care. Finding
the right balance between security and functionality remains one of the central
challenges of the Web, and of distributed computing in general.
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33. What is an applet? Why are applets usually not considered a form of script-
ing?

13.3.5 XSLT

Most readers will undoubtedly have had the opportunity to write, or at least
to read, the HTML (hypertext markup language) used to compose web pages.
HTML has, for the most part, a nested structure in which fragments of docu-
ments (elements) are delimited by tags that indicate their purpose or appearance.
We saw in Section 13.2.2, for example, that top-level headings are delimited with
<H1> and </H1>. HTML is inspired by an older standard known as SGML (stan-
dard generalized markup language), widely used in the business world to repre-
sent structured data. Because of the informal way in which the web evolved, and
the sometimes incompatible and ad hoc extensions made by competing vendors,
standardization of HTML has been a long and complicated process. Incompati-
bilities between browsers continue to frustrate web designers, and several features
of HTML that have been deprecated 9 in the most recent standards are nonethe-
less still widely used. Other features, while not deprecated, are widely regarded in
hindsight to have been mistakes.

Probably the biggest problem with HTML is that it does not adequately dis-
tinguish between the content and the appearance of a document. As a trivial ex-EXAMPLE 13.38

Content versus
appearance in HTML

ample, web designers frequently use <I> . . . </I> tags to request that text be set
in an italic font, when <EM> . . . </EM> (emphasis) would be more appropriate.
A browser for the visually impaired might choose to emphasize text with some-
thing other than italics, and might render book titles (also often specified with
<I> . . . </I>) in some entirely different fashion. More significantly, many web
designers use tables (<TABLE> . . . </TABLE>) to control the relative positioning
of elements on a page, when the content isn’t tabular at all. As more and more
vendors work to bring web content to cell phones, televisions, handheld com-
puters, and audio-only devices, the need to distinguish between content and ap-
pearance (presentation) is becoming increasingly critical. SGML has always made
this distinction, but it is widely seen as overkill—far too complex for use on the
web. �

This is where XML steps in. XML (extensible markup language) is a deliber-
ately streamlined descendant of SGML with at least three important advantages
over HTML: (1) its syntax and semantics are more regular and consistent, and
more consistently implemented across platforms; (2) it is extensible, meaning that
users can define new tags; and (3) it specifies content only, leaving presentation
to a companion standard known as XSL (extensible stylesheet language). XSLT
is a portion of XSL devoted to transforming XML: selecting, reorganizing, and

9 A deprecated feature is one whose use is officially discouraged, but permitted on a temporary
basis to ease the transition to new and presumably better alternatives.
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modifying tags and the elements they delimit—in effect, scripting the processing
of data represented in XML.

Internet Alphabet Soup

Learning about web standards can be a daunting task: there is an enormous num-
ber of buzzwords, standards, and multiletter abbreviations. It helps to remem-
ber the three families of markup languages—SGML, HTML, and XML—and to
know that each has a corresponding stylesheet language: DSSSL, CSS, and XSL,
respectively. A stylesheet language is used to control the presentation of a doc-
ument, separate from its content. Stylesheet languages are essential for SGML
and XML; without them there is no way to know whether a <RECORD> represents
a database entry, an antique phonograph album, or an Olympic achievement,
much less how to display it. HTML is less dependent on stylesheets, but web sites
increasingly use CSS to create a uniform “look and feel” across a collection of
pages without embedding redundant information in every page.

SGML and DSSSL remain important in the business world but are little used
on the web. HTML is likely to persist for a very long time, but its lack of ex-
tensibility and its mix of content and presentation are increasingly perceived as
fundamental limitations. XML is widely viewed as the notation of the future.
Even for documents that remain in HTML, designers are likely to migrate to-
ward XHTML (extensible hypertext markup language), an almost (but not quite)
backward compatible variant of HTML that conforms to the XML standard.

XML and XHTML

An XML document must be well formed: tags must either constitute properly
nested, matched pairs or be explicit singletons, which end with a “/>” delim-
iter. The following fragment, for example, is well formed (though incomplete)EXAMPLE 13.39

Well-formed XHTML XHTML.

<em><q><a id="favorite-quote" />I defy the tyranny of precedent</q>

(Clara Barton).</em>

Here the quotation element (<q> . . . </q>) is nested inside the emphasis element
(<em> . . . </em>). Moreover the anchor element (<a . . . />), which can serve as
the target of a link, is explicitly a singleton; it has a slash before its closing “>”
delimiter. (To avoid confusing certain legacy browsers, one sometimes needs a
space in front of the slash.) The example fragment would be malformed if the
slash were missing or if the opening <em><q> tags were reversed (<q><em>). �

Well-formedness is a simple syntactic rule, like the requirement that parenthe-
ses be balanced in Lisp. It makes XML (and thus XHTML) much easier than plain
HTML to parse and to process automatically. The careful reader may also have
noticed that we used lowercase letters for tags in XHTML, where previous HTML
examples were all in uppercase. HTML is case-insensitive; either style is accepted,
though uppercase has been the convention in standards documents. XML is case-
sensitive, so <em> and <EM> are different. The XHTML designers had to pick one.
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Going against the existing convention (but not the existing rules) preserves back-
ward compatibility while helping the reader identify documents that are likely to
conform to the newer standard.

The set of tags to be used in an XML document is specified by either a
document type definition (DTD) or an XML Schema. DTDs are inherited from
SGML. They indicate which tags are allowed, whether they are pairs or single-
tons, whether they permit attributes (name-value pairs like the id="favorite-
quote" in Example 13.39), and whether any attributes are mandatory. The rules
of the DTD take the form of XML declarations, which look like elements begin-
ning with a “<!” delimiter. These can be included directly in the XML docu-
ment. More often they are kept in an external document with its own URI, and
the XML document begins with a <!DOCTYPE . . . > declaration that specifies that
URI. (Comments also look like declarations: <!-- ignored -->.) If an XML
document has no explicit DTD (neither in-line nor external), it is said to define
a DTD implicitly by virtue of which tags are actually used.

XML Schemas are a newer mechanism, meant to replace DTDs. They are writ-
ten in XSD, the XML Schema Definition language, which is itself an example of
well-formed XML, defined by a DTD. Because they are written in XSD, XML
Schemas can be created using XML-aware editors, parsed with XML parsers, and
transformed with XSLT. In comparison to DTDs, XSD provides a significantly
richer vocabulary for specifying syntactic rules. Among other things, it allows
the designer to specify the data types of elements and attributes in considerable
detail, providing a level of automatic checking not possible with DTDs. XSD also
supports inheritance, so one XML Schema can be defined as an extension of an-
other. Unfortunately, as of this writing DTDs are still more common than XML
Schemas. In particular, XHTML is officially defined by a set of DTDs; the corre-
sponding XML Schemas are still a work in progress. We will rely on DTDs in the
remainder of this section.

Because tags must nest in XML, a document has a natural tree-based struc-
ture. Figure 13.17 shows the source for a small but complete XHTML documentEXAMPLE 13.40

XHTML to display a
favorite quote

together with the tree it represents. There are three kinds of nodes in the tree: el-
ements (delimited by tags in the source), text, and attributes. The internal (non-
leaf) nodes are all elements. Everything nested between the beginning and ending
tags of an element is an attribute or child of that element in the tree.

Our document begins with an <?xml . . . ?> processing directive. This directive
indicates the version of XML and the character encoding used in the rest of the
document. The directive is included for the benefit of tools that process the doc-
ument; it isn’t part of the XML source itself. (Note that we’ve seen processing
directives before, in Section 13.3.2, where they provided input to the PHP inter-
preter.)

The second line of our document is a <!DOCTYPE . . . > declaration that names
an XHTML DTD at the World Wide Web Consortium. The remainder of the
document is data. The root, named “/”, has one child: the html element. This
in turn has two children: the head and the body. The head has a title child
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<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Favorite Quote</title>

</head>

<body>

<p>

<em><q><a id="favorite-quote" />

I defy the tyranny of precedent</q>

(Clara Barton).</em>

</p>

</body>

</html>

Figure 13.17 A complete XHTML document and its corresponding tree. Child relationships are shown with solid lines,
attributes with dashed lines.

and an xmlns attribute. The latter declares xhtml to be the default namespace for
the document. Namespaces in XML are similar to the namespaces of C99 or the
packages of Java (Section 3.7); they allow us to give tag names a disambiguating
prefix: xhtml:table versus furniture:table. With the value we have specified
for the xmlns attribute, any tag in the document that doesn’t have a prefix will
automatically be interpreted as being in the xhtml namespace. �

XSLT, XPath, and XSL-FO

XSL (extensible stylesheet language) can be thought of as a language for spec-
ifying what to do with an XML document. It has three sublanguages, called
XSLT, XPath, and XSL-FO. XSLT is a scripting language that takes XML as input
and produces textual output—often transformed XML or HTML but potentially
other formats as well.

XPath is a language used to name things in XML files. XPath names frequently
appear in the attributes of XSLT elements. Returning to Figure 13.17, the quo-EXAMPLE 13.41

XPath names for XHTML
elements

tation element of our document could be named in XPath as /html/body/p/
em/q. The quotation element and its text-node sibling, together, could be named
as /html/body/p/em/*. XPath includes a rich set of naming mechanisms, in-
cluding absolute (from the root) and relative (from the current node) navigation;
wildcards; predicates; substring and regular expression manipulation; and count-
ing and arithmetic functions. We will see some of these in the extended example
below. �

XSL-FO (XSL formatting objects) is a set of tags to specify the layout (appear-
ance) of a document, in terms of pages, regions (e.g., header, body, footer), blocks
(paragraph, table, list), lines, and in-line elements (character, image). An XSLT
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<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl" href="bib.xsl"?>

<bibliography>

<book>

<author>Guido van Rossum</author>

<editor>Fred L. Drake, Jr.</editor>

<title>The Python Language Reference Manual</title>

<publisher>Network Theory, Ltd.</publisher>

<address>Bristol, UK</address>

<year>2003</year>

<note>Available at <uri>http://www.network-theory.co.uk/docs/pylang/</uri></note>

</book>

<article>

<author>John K. Ousterhout</author>

<title>Scripting: Higher-Level Programming for the 21st Century</title>

<journal>Computer</journal>

<volume>31</volume>

<number>3</number>

<month>March</month>

<year>1998</year>

<pages>23&#8211;30</pages>

</article>

<inproceedings>

<author>Theodor Holm Nelson</author>

<title>Complex Information Processing: A File Structure for the

Complex, the Changing, and the Indeterminate</title>

<booktitle>Proceedings of the Twentieth ACM National Conference</booktitle>

<month>August</month>

<year>1965</year>

<address>Cleveland, OH</address>

<pages>84&#8211;100</pages>

</inproceedings>

<inproceedings>

<author>Stephan Kepser</author>

<title>A Simple Proof for the Turing-Completeness of XSLT and

XQuery</title>

<booktitle>Proceedings, Extreme Markup Languages 2004</booktitle>

<address>Montr&#233;al, Canada</address>

<year>2004</year>

<month>August</month>

<note>Available at <uri>http://www.mulberrytech.com/Extreme/Proceedings/html

/2004/Kepser01/EML2004Kepser01.html</uri></note>

</inproceedings>

Figure 13.18 A bibliography in XML. References (two books, a journal article, and three conference papers) appear in
arbitrary order. The Kepser URI has been wrapped to fit on the printed page. (continued)
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<inproceedings>

<author>David G. Korn</author>

<title><code>ksh</code>: An Extensible High Level Language</title>

<booktitle>Proceedings of the USENIX Very High Level Languages

Symposium</booktitle>

<address>Santa Fe, NM</address>

<year>1994</year>

<month>October</month>

<pages>129&#8211;146</pages>

</inproceedings>

<book>

<author>Larry Wall</author>

<author>Tom Christiansen</author>

<author>Jon Orwant</author>

<title>Programming Perl</title>

<edition>third</edition>

<publisher>O&#8217;Reilly and Associates</publisher>

<address>Cambridge, MA</address>

<year>2000</year>

</book>

</bibliography>

Figure 13.18 (continued)

script might be used to add XSL-FO tags to an XML document, or to transform a
document that already has XSL-FO tags in it—perhaps to split a long single-page
document intended for the web into a multipage document intended for print-
ing on paper. For the sake of simplicity, we will not use XSL-FO in any of our
examples. Rather we will format XML documents by using XSLT to turn them
into HTML.

An XML document can explicitly specify an XSLT script that should be used
to transform or format it. This is a standard but somewhat restrictive way to go
about things: by tying a single stylesheet to the XML file we compromise the
separation between content and presentation that was a principal motivation for
creating XML in the first place. An alternative is to use client-side JavaScript or
server-side PHP to invoke the XSLT processor, passing the XML document and
the XSLT script as arguments. Unfortunately, as of this writing the details vary
across both server and client platforms.

Extended Example: Bibliographic Formatting

As an example of a task for which we might realistically use XSLT, con-EXAMPLE 13.42
Creating a reference list
with XSLT

sider the creation of a bibliographic reference list. Figure 13.18 contains XML
source for such a list. (Field names have been borrowed from BIBTEX [Lam94,
Appendix B].) The document begins with a pair of processing directives: one to
specify the XML version and character encoding, the other to specify the XSL
stylesheet to be used to format the file.
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<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html><head><title>Bibliography</title></head><body><h1>Bibliography</h1><ol>

<xsl:for-each select="bibliography/*"><xsl:sort select="title"/>

<li><xsl:apply-templates select="."/></li>

</xsl:for-each>

</ol></body></html>

</xsl:template>

<xsl:template match="bibliography/article">

<q><xsl:apply-templates select="title/node()"/>,</q>

by <xsl:call-template name="author-list"/>.&#160;

<em><xsl:apply-templates select="journal/node()"/>

<xsl:text> </xsl:text><xsl:apply-templates select="volume/node()"/>

</em>:<xsl:apply-templates select="number/node()"/>

(<xsl:apply-templates select="month/node()"/><xsl:text> </xsl:text>

<xsl:apply-templates select="year/node()"/>),

pages <xsl:apply-templates select="pages/node()"/>.

<xsl:if test="note"><xsl:apply-templates select="note/node()"/>.</xsl:if>

</xsl:template>

<xsl:template match="bibliography/book">

<em><xsl:apply-templates select="title/node()"/>,</em>

by <xsl:call-template name="author-list"/>.&#160;

<xsl:apply-templates select="publisher/node()"/>,

<xsl:apply-templates select="address/node()"/>,

<xsl:if test="edition">

<xsl:apply-templates select="edition/node()"/> edition, </xsl:if>

<xsl:apply-templates select="year/node()"/>.

<xsl:if test="note"><xsl:apply-templates select="note/node()"/>.</xsl:if>

</xsl:template>

<xsl:template match="bibliography/inproceedings">

<q><xsl:apply-templates select="title/node()"/>,</q>

by <xsl:call-template name="author-list"/>.&#160;

In <em><xsl:apply-templates select="booktitle/node()"/></em>

<xsl:if test="pages">, pages <xsl:apply-templates select="pages/node()"/></xsl:if>

<xsl:if test="address">, <xsl:apply-templates select="address/node()"/></xsl:if>

<xsl:if test="month">, <xsl:apply-templates select="month/node()"/></xsl:if>

<xsl:if test="year">, <xsl:apply-templates select="year/node()"/></xsl:if>.

<xsl:if test="note"><xsl:apply-templates select="note/node()"/>.</xsl:if>

</xsl:template>

Figure 13.19 Bibliography stylesheet in XSL. This script will generate HTML when applied to a bibliography like that of
Figure 13.18. (continued)
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<xsl:template name="author-list"> <!-- format author list -->

<xsl:for-each select="author|editor">

<xsl:if test="last() > 1 and position() = last()"> and </xsl:if>

<xsl:apply-templates select="./node()"/>

<xsl:if test="self::editor"> (editor)</xsl:if>

<xsl:if test="last() > 2 and last() > position()">, </xsl:if>

</xsl:for-each>

</xsl:template>

<xsl:template match="uri"> <!-- format link -->

<a><xsl:attribute name="href"><xsl:value-of select="."/></xsl:attribute>

<xsl:value-of select="substring-after(., ’http://’)"/></a>

</xsl:template>

<xsl:template match="@*|node()"> <!-- default: copy content -->

<xsl:copy><xsl:apply-templates select="@*|node()"/></xsl:copy>

</xsl:template>

</xsl:stylesheet>

Figure 13.19 (continued)

At the top level, the bibliography element consists of a series of book,
article, and inproceedings elements, each of which may contain elements
for author and editor names, title, publisher, date and address, and so on. Some
elements may contain nested uri elements, which specify online links. Charac-
ters that cannot be represented in ASCII are shown as Unicode character entities,
as described in the sidebar on page 313.

Figure 13.19 contains an XSLT stylesheet (script) to format the bibliography
as HTML, which may then be rendered in a browser. This script was named
at the beginning of the XML document (Figure 13.18). Like the XML docu-
ment, the script begins with a pair of processing directives. The first specifies
the XML version and character encoding; the second specifies the XSL version
and namespace. The remainder of the script contains a mix of XSL and HTML
elements. The XSL tags all specify the xsl: namespace explicitly. They are recog-
nized by the XSLT processor. Elements from other namespaces are treated as or-
dinary text, to be copied through to the output when encountered.

The fundamental construct in XSLT is the template, which specifies a set of
instructions to be applied to nodes in an XML source tree. Templates are typically
invoked by executing an apply-templates or call-template instruction in
some other template. Each invocation has a concept of current node. The execu-
tion as a whole begins by invoking an initial template with the root of the source
tree (/) as current node. In our bibliographic example, the initial template is the
one at the top of the script, because its match attribute is the XPath expression
"/". The body of the initial template begins with a string of HTML elements and
text. This string is copied directly to the output. The for-each element, however,
is an XSLT instruction, so it is executed.
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The select attribute of the for-each uses an XPath expression
("bibliography/*") to build a node set consisting of all top-level entries in
our bibliography. Other expressions could have been used if we wanted to
be selective: "bibliography/*[year>=2000]" would match only recent en-
tries; "bibliography/*[note]" would match only entries with note elements;
"bibliography/article|bibliography/book" would match only articles and
books.

The nested sort instruction forces the selected node set to be ordered alpha-
betically by title. The body of the for-each is then executed with each entry
in turn selected as current node. The body contains a recursive invocation of
apply-templates, bracketed by HTML list tags (<li> . . . </li>). These tags are
copied to the output, with the result of the recursive call nested in between.

So how does the recursive call work? Its select attribute, like that of
for-each, uses XPath to build a node set. In this case it is the trivial node set
containing only ".", the current node of the current iteration of for-each. The
XSLT processor searches for a template that matches this node. We have created
three appropriate candidates, one for each kind of bibliographic entry. When it
finds the matching template, the processor invokes it, with an updated notion of
current node.

Each of our three main templates contains a set of instructions to format its
kind of entry (article, book, conference paper). Most of the instructions use addi-
tional invocations of apply-templates to format individual portions of an en-
try (author, title, publisher, etc.). Interspersed in these instructions are snippets
of text and HTML elements. In several cases we use an if instruction to gener-
ate output only when a given XML element is present in the source. In most of
these the recursive call uses the XPath node() function to select all children of
the element in question.

White space is ignored when it comes between the end of one instruction and
the beginning of the next. To force white space into the output in this case, we
must delimit it with <text> . . . </text> tags. Extra white space (e.g., after the
ends of sentences) is specified with the “nonbreaking space” character entity,
&#160;.

Three extra templates end our script. The most interesting of these serves to
format author lists. It has a name attribute rather than a match attribute, and is
invoked with call-template rather than apply-templates. A called tem-
plate always takes the current node of the caller—in this case the node that
represents a bibliographic entry. Internally, the author list template executes a
for-each instruction that selects all child nodes representing authors or editors.
The for-each, in turn, uses the XPath last() and position() functions to
determine how many names there are, and where each name falls in the list. It
inserts the word “and” between the final two names, and puts commas after all
names but the last in lists of three or more.

The template with match="uri" serves to format URIs that appear anywhere
in the XML source. It creates an HTML link in the output, but uses the XPath
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substring-after function to strip the leading http://off the visible text. XPath
provides a variety of similar functions for string and regular expression manipu-
lation. The value-of instruction copies the contents of the selected node to the
output, as a character string.

Our final template serves as a default case. The XPath expression "@*|node()"
will match any attribute or other node in the XML source. Inside, the copy in-
struction copies the node’s tags, if any, to the output, with the result of a recursive
call to apply-templates in between. The "@*|node()" on the recursive call se-
lects a node set consisting of all the current node’s attributes and children. The
end result is that any XML elements in the source that are delimited by tags for
which we do not have special templates will be regenerated in the output just as
they appear in the source. The recursion stops at text nodes and attributes, which
are the leaves of the XML tree.

HTML output from our script appears in Figure 13.20. The rendered web page
appears in Figure 13.21.

While lengthy by the standards of this text, our example illustrates only a frac-
tion of the capabilities of XSLT. In the standard categorization of programming
languages, the notation is strongly declarative: values may have names, but there
are no mutable variables and no side effects. There is a limited looping mecha-
nism (for-each), but the real power comes from recursion, and from recursive
traversal of XML trees in particular. �

CHECK YOUR UNDERSTANDING

34. Explain the relationships among SGML, HTML, and XML. What are their
corresponding stylesheet languages?

35. Why does XML work so hard to distinguish between content and appearance?

36. What are the three main components of XSL? What are their respective pur-
poses?

37. What is XHTML? How does it differ from HTML?

38. Explain the correspondence between XML documents and trees.

39. What does it mean for an XML document to be well formed?

40. What is a document type definition (DTD)? An XML Schema? Briefly, how do
they compare?

41. Explain the distinctions (syntactic and semantic) among elements, declara-
tions, and processing directives in XML. Also explain the distinctions among
elements, tags, and attributes.

42. Summarize the execution model of XSLT. In a nutshell, how does it work?

43. Explain the difference between applying templates and calling them in XSLT.
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<html><head><title>Bibliography</title></head>

<body><h1>Bibliography</h1><ol>

<li>

<q>A Simple Proof for the Turing-Completeness of XSLT and XQuery,</q>

by Stephan Kepser.&nbsp; In <em>Proceedings, Extreme Markup Languages

2004</em>, Montr&eacute;al, Canada, August, 2004. Available at

<a href="http://www.mulberrytech.com/Extreme/Proceedings/html/2004/Kepser01

/EML2004Kepser01.html">www.mulberrytech.com/Extreme/Proceedings/html/2004

/Kepser01/EML2004Kepser01.html</a>.</li>

<li>

<q>Complex Information Processing: A File Structure for the Complex,

the Changing, and the Indeterminate,</q> by Theodor Holm Nelson.&nbsp;

In <em>Proceedings of the Twentieth ACM National Conference</em>,

pages 84&ndash;100, Cleveland, OH, August, 1965.</li>

<li>

<q><code>ksh</code>: An Extensible High Level Language,</q> by David

G. Korn.&nbsp; In <em>Proceedings of the USENIX Very High Level Languages

Symposium</em>, pages 129&ndash;146, Santa Fe, NM, October, 1994.</li>

<li>

<em>Programming Perl,</em> by Larry Wall, Tom Christiansen, and Jon

Orwant.&nbsp; O&rsquo;Reilly and Associates, Cambridge, MA, third edition,

2000.</li>

<li>

<q>Scripting: Higher-Level Programming for the 21st Century,</q> by

John K. Ousterhout.&nbsp; <em>Computer 31</em>:3 (March 1998), pages

23&ndash;30.</li>

<li>

<em>The Python Language Reference Manual,</em> by Guido van Rossum and

Fred L. Drake, Jr. (editor).&nbsp; Network Theory, Ltd., Bristol, UK, 2003.

Available at <a href="http://www.network-theory.co.uk/docs/pylang/">www.network-

theory.co.uk/docs/pylang/</a>.</li>

</ol>

</body></html>

Figure 13.20 Result of applying the stylesheet of Figure 13.19 to the bibliography of Figure 13.18.

13.4 Innovative Features

In Section 13.1.1 we listed several common characteristics of scripting languages.

1. Both batch and interactive use

2. Economy of expression

3. Lack of declarations; simple scoping rules

4. Flexible dynamic typing

5. Easy access to other programs
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Figure 13.21 Rendered version of the HTML in Figure 13.20.

6. Sophisticated pattern matching and string manipulation

7. High-level data types

Several of these are discussed in more detail in the subsections below. Specifi-
cally, Section 13.4.1 considers naming and scoping in scripting languages; Sec-
tion 13.4.2 discusses string and pattern manipulation; and Section 13.4.3 con-
siders data types. Items (1), (2), and (5) in our list, while important, are not
particularly difficult or subtle, and will not be considered further here.

13.4.1 Names and Scopes

Most scripting languages (Scheme is the obvious exception) do not require vari-
ables to be declared. A few languages, notably Perl and JavaScript, permit op-
tional declarations, primarily as a sort of compiler-checked documentation. Perl
can be run in a mode (use strict ’vars’) that requires declarations.

With or without declarations, most scripting languages use dynamic typing.
Values are generally self-descriptive, so the interpreter can perform type checking
at run time, or coerce values when appropriate. Tcl is unusual in that all values—
even lists—are represented internally as strings, which are parsed as appropriate
to support arithmetic, indexing, and other operations.

Nesting and scoping conventions vary quite a bit. Scheme, Python, JavaScript,
and R provide the classic combination of nested subroutines and static (lexi-
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cal) scope. Tcl allows subroutines to nest but uses dynamic scope (more on this
below). Named subroutines (methods) do not nest in PHP or Ruby, and they
only sort of nest in Perl (more on this below as well), but Perl and Ruby join
Scheme, Python, JavaScript, and R in providing first-class anonymous local sub-
routines. Nested blocks are statically scoped in Perl. In Ruby they are part of the
named scope in which they appear. Scheme, Perl, Python, and R provide un-
limited extent for variables captured in closures. Ruby and JavaScript do not.
PHP, R, and the major glue languages (Perl, Tcl, Python, Ruby) all have sophisti-
cated namespace mechanisms for information hiding and the selective import of
names from separate modules.

What Is the Scope of an Undeclared Variable?

In languages with static scope, the lack of declarations raises an interesting ques-
tion: when we access a variable x, how do we know if it is local, global, or (if
scopes can nest) something in between? Existing languages take several differ-
ent approaches. In Perl all variables are global unless explicitly declared. In PHP
they are local unless explicitly imported (and all imports are global, since scopes
do not nest). Ruby, too, has only two real levels of scoping, but as we saw in Sec-
tion 13.2.4 it distinguishes between them using prefix characters on names: foo is
a local variable; $foo is a global variable; @foo is an instance variable of the cur-
rent object (the one whose method is currently executing); @@foo is an instance
variable of the current object’s class (shared by all sibling instances). (Note: As
we shall see in Section 13.4.3, Perl uses similar prefix characters to indicate type.
These very different uses are a potential source of confusion for programmers
who switch between the two languages.)

Perhaps the most interesting scope resolution rule is that of Python and R.
In these languages a variable that is written is assumed to be local, unless it is
explicitly imported. A variable that is only read in a given scope is found in the
closest enclosing scope that contains a defining write. Consider, for example, theEXAMPLE 13.43

Scoping rules in Python Python program of Figure 13.22. Here we have a set of nested subroutines, as in-
dicated by indentation level. The main program calls outer, which calls middle,
which in turn calls inner. Before its call, the main program writes both i and j.
Outer reads j (to pass it to middle) but does not write it. It does, however, write
i. Consequently outer reads the global j, but has its own i, different from the
global one. Middle reads both i and j, but it does not write either, so it must
find them in surrounding scopes. It finds i in outer, and j at the global level.
Inner, for its part, also writes the global i. When executed the program prints

(2, 3, 3)

4 3

Note that while the tuple returned from middle (forwarded on by outer, and
printed by the main program) has a 2 as its first element, the global i still con-
tains the 4 that was written by inner. Note also that while the write to i in outer
appears textually after the read of i in middle, its scope extends over all of outer,
including the body of middle. �
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i = 1; j = 3

def outer():

def middle(k):

def inner():

global i # from main program, not outer

i = 4

inner()

return i, j, k # 3-element tuple

i = 2 # new local i

return middle(j) # old (global) j

print outer()

print i, j

Figure 13.22 A program to illustrate scope rules in Python. There is one instance each of j
and k, but two of i: one global and one local to outer. The scope of the latter is all of outer,
not just the portion after the assignment. The global statement provides inner with access
to the outermost i, so it can write it without defining a new instance.

Interestingly, there is no way in Python for a nested routine to write a vari-
able that belongs to a surrounding but nonglobal scope. In Figure 13.22, innerEXAMPLE 13.44

Super-assignment in R could not be modified to access outer’s i. R provides an alternative mecha-
nism that does provide this functionality. Rather than declare i to be global,
R uses a “super-assignment” operator. Where a normal assignment i <- 4 as-
signs the value 4 into a local variable i, the super-assignment i <<- 4 assigns
4 into whatever i would be found under the normal rules of static (lexical)
scoping. �

In a completely different vein, Tcl makes the unusual choice not only of em-
ploying dynamic scope, but of implementing that choice in an unusual way. Vari-
ables in calling scopes are never accessed automatically. The programmer must
ask for them explicitly, as shown in Figure 13.23. The upvar and uplevel com-EXAMPLE 13.45

Scoping rules in Tcl mands take an optional first argument that specifies a frame on the dynamic
chain, either as an absolute value prefaced with a sharp sign (#) or, as in the
call to uplevel shown in our example, as a distance below the current frame.
If omitted, as in our call to upvar, the argument defaults to 1. The upvar com-
mand accesses a variable in the specified frame, and gives it a local name. The
uplevel command provides a nested Tcl script, which is executed in the context
of the specified frame in a manner reminiscent of call-by-name parameters. In
our example we use upvar to obtain a local name for foo’s i, and uplevel to
execute a command that uses the global a and b. The program prints a 5 and
a 3. Note that the usual behavior of dynamic scoping, in which we automatically
obtain the most recently created variable of a given name regardless of the scope
that created it, is not available in Tcl. �
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proc bar { } {

upvar i j ;# j is local name for caller’s i

puts "$j"

uplevel 2 { puts [expr $a + $b] }

# execute ’puts’ two scopes up the dynamic chain

}

proc foo { i } {

bar

}

set a 1; set b 2; foo 5

Figure 13.23 A program to illustrate scope rules in Tcl. The upvar command allows bar to
access variable i in its caller’s scope, using the name j. The uplevel command allows bar to
execute a nested Tcl script (the puts command) in its caller’s caller’s scope.

Scoping in Perl

Perl has evolved over the years. At first there were only global variables. Locals
were soon added for the sake of modularity, so a subroutine with a variable
named i wouldn’t have to worry about modifying a global i that was needed
elsewhere in the code. Unfortunately, locals were originally defined in terms of
dynamic scope, and the need for backward compatibility required that this be-
havior be retained when static scoping was added in Perl 5. Consequently, the
language provides both mechanisms.

Any variable that is not declared is global in Perl by default. Variables declared
with the local operator are dynamically scoped. Variables declared with the my
operator are statically scoped. The difference can be seen in Figure 13.24, in whichEXAMPLE 13.46

Static and dynamic scope
in Perl

subroutine outer declares two local variables, lex and dyn. The former is stati-
cally scoped; the latter is dynamically scoped. Both are initialized to be a copy of
foo’s first parameter. (Parameters are passed in the pseudo-variable @_. The first
element of this array is $_[0].)

Two lexically identical anonymous subroutines are nested inside outer, one
before and one after the redeclarations of $lex and $dyn. References to these are
stored in local variables sub_A and sub_B. Because static scopes in Perl extend
from a declaration to the end of its block, sub_A sees the global $lex, while
sub_B sees outer’s $lex. In contrast, because the declaration of local $dyn
occurs before either sub_A or sub_B is called, both see this local version. Our
program prints

main 1, 1

outer 2, 2

sub_A 1, 2

sub_B 2, 2

main 1, 1 �
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sub outer($) { # must be called with scalar arg

$sub_A = sub {

print "sub_A $lex, $dyn\n";

};

my $lex = $_[0]; # static local initialized to first arg

local $dyn = $_[0]; # dynamic local initialized to first arg

$sub_B = sub {

print "sub_B $lex, $dyn\n";

};

print "outer $lex, $dyn\n";

$sub_A->();

$sub_B->();

}

$lex = 1; $dyn = 1;

print "main $lex, $dyn\n";

outer(2);

print "main $lex, $dyn\n";

Figure 13.24 A program to illustrate scope rules in Perl. The my operator creates a statically
scoped local variable; the local operator creates a new dynamically scoped instance of a global
variable. Static scope extends from the point of declaration to the lexical end of the block;
dynamic scope extends from elaboration to the end of the block’s execution.

In cases where static scoping would normally access a variable at an in-EXAMPLE 13.47
Accessing globals in Perl between level of nesting, Perl allows the programmer to force the use of a global

variable with the our operator, whose name is intended to contrast with my:

DESIGN & IMPLEMENTATION

Thinking about dynamic scope
In Section 3.3.6 we described dynamic scope rules as introducing a new mean-
ing for a name that remains visible, wherever we are in the program, until
control leaves the scope in which the new meaning was created. This con-
ceptual model mirrors the association list implementation described in Sec-
tion 3.4.2 and, as described in the sidebar on page 133, probably accounts
for the use of dynamic scoping in early dialects of Lisp.

Documentation for Perl suggests a semantically equivalent but conceptually
different model. Rather than saying that a local declaration introduces a new
variable whose name hides previous declarations, Perl says that there is a single
variable, at the global level, whose previous value is saved when the new decla-
ration is encountered, and then automatically restored when control leaves the
new declaration’s scope. This model mirrors the underlying implementation in
Perl, which uses a central reference table (also described in Section 3.4.2).
In keeping with this model and implementation, Perl does not allow a local
operator to create a dynamic instance of a variable that is not global.
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($x, $y, $z) = (1, 1, 1); # global scope

{ # middle scope

my ($x, $y) = (2, 2);

local $z = 3;

{ # inner scope

our ($x, $z); # use globals

print "$x, $y, $z\n";

}

}

Here there is one lexical instance of z and two of x and y: one global, one in the
middle scope. There is also a dynamic z in the middle scope. When it executes its
print statement, the inner scope finds the y from the middle scope. It finds the
global x, however, because of the our operator on line 6. Now what about z? The
rules require us to start with static scope, ignoring local operators. According,
then, to the our operator in the inner scope, we are using the global z. Once we
know this, we look to see whether a dynamic (local) redeclaration of z is in
effect. In this case indeed it is, and our program prints 1, 2, 3. As it turns out,
the our declaration in the inner scope had no effect on this program. If only x
had been declared our, we would still have used the global z and then found the
dynamic instance from the middle scope. �

13.4.2 String and Pattern Manipulation

When we first considered regular expressions, in Section 2.1.1, we noted that
many scripting languages and related tools employ extended versions of the no-
tation. Some extensions are simply a matter of convenience. Others increase the
expressive power of the notation, allowing us to generate (match) nonregular
sets of strings. Still other extensions serve to tie the notation to other language
features.

We have already seen examples of extended regular expressions in sed (Fig-
ure 13.1), awk (Figures 13.2 and 13.3), Perl (Figures 13.4 and 13.5), Tcl (Fig-
ure 13.6), Python (Figure 13.7), and Ruby (Figure 13.8). We’ve also made note of
grep, the stand-alone Unix pattern-matching tool (see sidebar on page 729).

While there are many different implementations of extended regular expres-
sions (“REs” for short), with slightly different syntax, most fall into two main
groups. The first group includes awk, egrep (the most widely used of several dif-
ferent versions of grep), the regex routines of the C standard library, and older
versions of Tcl. These implement REs as defined in the POSIX standard [Int03b].
Languages in the second group follow the lead of Perl, which provides a large set
of extensions, sometimes referred to as “advanced REs.” Perl-like advanced REs
appear in PHP, Python, Ruby, JavaScript, Emacs Lisp, Java, C#, and recent ver-
sions of Tcl. They can also be found in third-party packages for C++ and other
languages. A few tools, including sed, classic grep, and older Unix editors, pro-
vide so-called “basic” REs, less capable than those of egrep.
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In certain languages and tools—notably sed, awk, Perl, PHP, Ruby, and
JavaScript—regular expressions are tightly integrated into the rest of the lan-
guage, with special syntax and built-in operators. In these languages an RE is typ-
ically delimited with slash characters, though other delimiters may be accepted in
some cases (and Perl in fact provides slightly different semantics for a few alterna-
tive delimiters). In most other languages, REs are expressed as ordinary character
strings and are manipulated by passing them to library routines. Over the next
few pages we will consider POSIX and advanced REs in more detail. Following
Perl, we will use slashes as delimiters. Our coverage will of necessity be incom-
plete. The chapter on REs in the Perl book [WCO00, Chapter 5] is nearly 80 pages
long. The corresponding Unix man page runs to more than 20 pages.

DESIGN & IMPLEMENTATION

Automata for regular expressions
POSIX regular expressions are typically implemented using the constructions
described in Section 2.2.1, which transform the RE into an NFA and then a
DFA. Advanced REs of the sort provided by Perl are typically implemented
via backtracking search in the obvious NFA. The NFA-to-DFA construction
is usually not employed, because it fails to preserve some of the advanced
RE extensions (notably the capture mechanism described in Examples 13.62–
13.65) [WCO00, pages 197–202]. Some implementations use a DFA first to
determine whether there is a match, and then an NFA or backtracking search
to actually effect the match. This strategy pays the price of the slower automa-
ton only when it’s sure to be worthwhile.

DESIGN & IMPLEMENTATION

The grep command and the birth of Unix tools
Historically, regular expression tools have their roots in the pattern matching
mechanism of the ed line editor, which dates from the earliest days of Unix.
In 1973, Doug McIlroy, head of the department where Unix was born, was
working on a project in computerized voice synthesis. As part of this project
he was using the editor to search for potentially challenging words in an on-
line dictionary. The process was both tedious and slow. At McIlroy’s request,
Ken Thompson extracted the pattern matcher from ed and made it a stand-
alone tool. He named his creation grep, after the g/re/p command sequence
in the editor: g for “global”; / / to search for a regular expression (re); p to
print [HH97a, Chapter 9].

Thompson’s creation was one of the first in a large suite of stream-based
Unix tools. As described in Section 13.2.1 (page 680), such tools are frequently
combined with pipes to perform a variety of filtering, transforming, and for-
matting operations.
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POSIX Regular Expressions

Like the “true” regular expressions of formal language theory, extended REs sup-EXAMPLE 13.48
Basic operations in POSIX
REs

port concatenation, alternation, and Kleene closure. Parentheses are used for
grouping.

/ab(cd|ef)g*/ matches abcd, abcdg, abefg, abefgg, abcdggg, etc. �
Several other quantifiers (generalizations of Kleene closure) are also available:EXAMPLE 13.49

Extra quantifiers in POSIX
REs

? indicates zero or one repetitions, + indicates one or more repetitions, {n} in-
dicates exactly n repetitions, {n,} indicates at least n repetitions, and {n,m} in-
dicates n–m repetitions.

/a(bc)*/ matches a, abc, abcbc, abcbcbc, etc.
/a(bc)?/ matches a or abc

/a(bc)+/ matches abc, abcbc, abcbcbc, etc.
/a(bc){3}/ matches abcbcbc only
/a(bc){2,}/ matches abcbc, abcbcbc, etc.
/a(bc){1,3}/ matches abc, abcbc, and abcbcbc (only) �
Two zero-length assertions, ^ and $, match only at the beginning and end, re-

spectively, of a target string. Thus while /abe/ will match abe, abet, babe, andEXAMPLE 13.50
Zero-length assertions label, /^abe/ will match only the first two of these, /abe$/ will match only the

first and the third, and /^abe$/ will match only the first. �
As an abbreviation for /a|b|c|d/, extended REs permit character classes to beEXAMPLE 13.51

Character classes specified with square brackets:

/b[aeiou]d/ matches bad, bed, bid, bod, and bud

Ranges are also permitted:

/0x[0-9a-fA-F]+/ matches any hexadecimal integer �
Outside a character class, a dot (.) matches any character other than a new-

line. The expression /b.d/, for example, matches not only bad, bbd, bcd, and soEXAMPLE 13.52
The dot (.) character on, but also b:d, b7d, and many, many others, including sequences in which the

middle character isn’t printable. In a Unicode-enabled version of Perl, there are
tens of thousands of options. �

A caret (^) at the beginning of a character class indicates negation: the class
expression matches anything other than the characters inside. Thus /b[^aq]d/EXAMPLE 13.53

Negation and quoting in
character classes

matches anything matched by /b.d/ except for bad and bqd. A caret, right
bracket, or hyphen can be specified inside a character class by preceding it with a
backslash. A backslash will similarly protect any of the special characters | ( )

[ ] { } $ . * + ? outside a character class.10 To match a literal backslash, use
two of them in a row:

/a\\b/ matches a\b �

10 Strictly speaking, ] and } don’t require a protective backslash unless there is a preceding un-
matched (and unprotected) [ or {, respectively.
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Several character classes’ expressions are predefined in the POSIX standard.
As we saw in Example 13.18, the expression [:space:] can be used to cap-EXAMPLE 13.54

Predefined POSIX
character classes

ture white space. For punctuation there is [:punct:]. The exact definition
of these classes depends on the local character set and language. Note, too,
that these expressions must be used inside a built-up character class; they
aren’t classes by themselves. A variable name in C, for example, might be
matched by /[[:alpha:]_][[:alpha:][:digit:]_]*/ or, a bit more simply,
/[[:alpha:]_][[:alnum:]_]*/. Additional syntax, not described here, allows
character classes to capture Unicode collating elements (multibyte sequences such
as a character and associated accents) that collate (sort) as if they were sin-
gle elements. Perl provides less cumbersome versions of most of these special
classes. �
Perl Extensions

Extended REs are a central part of Perl. The built-in =~ operator is used to testEXAMPLE 13.55
RE matching in Perl for matching:

$foo = "albatross";

if ($foo =~ /ba.*s+/) ... # true

if ($foo =~ /^ba.*s+/) ... # false (no match at start of string)

The string to be matched against can also be left unspecified, in which case Perl
uses the pseudo-variable $_ by default:

$_ = "albatross";

if (/ba.*s+/) ... # true

if (/^ba.*s+/) ... # false

Recall that (as we noted in Section 13.2.2 [page 687]), $_ is set automatically
when iterating over the lines of a file. It is also the default index variable in for
loops. �

The !~ operator returns true when a pattern does not match:EXAMPLE 13.56
Negating a match in Perl

if ("albatross" !~ /^ba.*s+/) ... # true �
For substitution, the binary “mixfix” operator s/// replaces whatever lies be-EXAMPLE 13.57

RE substitution in Perl tween the first and second slashes with whatever lies between the second and the
third:

$foo = "albatross";

$foo =~ s/lbat/c/; # "across"

Again, if a left-hand side is not specified, s/// matches and modifies $_. �
Modifers and Escape Sequences

Both matches and substitutions can be modified by adding one or more charac-
ters after the closing delimiter. A trailing i, for example, makes the match case-
insensitive:EXAMPLE 13.58

Trailing modifiers on RE
matches $foo = "Albatross";

if ($foo =~ /^al/i) ... # true
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Escape Meaning

\0 NUL character
\a alarm (BEL) character
\b backspace (within character class)
\e escape (ESC) character
\f form-feed (FF) character
\n newline
\r return
\t tab
\NNN character given by NNN in octal
\x{abcd} character given by abcd in hexadecimal

\b word boundary (outside character classes)
\B not a word boundary
\A beginning of string
\z end of string
\Z prior to final newline, or end of string if none

\d digit (decimal)
\D not a digit
\s white space (space, tab, newline, return, form feed)
\S not white space
\w word character (letter, digit, underscore)
\W not a word character

Figure 13.25 Regular expression escape sequences in Perl. Sequences in the top portion of
the table represent individual characters. Sequences in the middle are zero-width assertions.
Sequences at the bottom are built-in character classes.

A trailing g on a substitution replaces all occurrences of the regular expression:

$foo = "albatross";

$foo =~ s/[aeiou]/-/g; # "-lb-tr-ss" �
For matching in multiline strings, a trailing s allows a dot (.) to match an em-
bedded newline (which it normally cannot). A trailing m allows $ and ^ to match
immediately before and after such a newline, respectively. A trailing x causes
Perl to ignore both comments and embedded white space in the pattern, so that
particularly complicated expressions can be broken across multiple lines, docu-
mented, and indented.

In the tradition of C and its relatives (Example 7.73, page 366), Perl allows
nonprinting characters to be specified in REs using backslash escape sequences.
These are summarized in the top portion of Figure 13.25. Perl also provides sev-
eral zero-width assertions, in addition to the standard ^ and $. These are shown
in the middle of the figure. The \A and \Z escapes differ from ^ and $ in that
they continue to match only at the beginning and end of the string, respectively,
even in multiline searches that use the modifier m. Finally, Perl provides several
built-in character classes, shown at the bottom of the figure. These can be used
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both inside and outside user-defined (i.e., bracket-delimited) classes. Note that
\b has different meanings inside and outside such classes.

Greedy and Minimal Matches

The usual rule for matching in REs is sometimes called “leftmost longest”: when
a pattern can match at more than one place within a string, the chosen match
will be the one that starts at the earliest possible position within the string, and
then extends as far as possible. In the string abcbcbcde, for example, the patternEXAMPLE 13.59

Greedy and minimal
matching

/(bc)+/ can match in six different ways:

abcbcbcde

abcbcbcde

abcbcbcde

abcbcbcde

abcbcbcde

abcbcbcde

The third of these is “leftmost longest,” also known as greedy. In some cases, how-
ever, it may be desirable to obtain a “leftmost shortest” or minimal match. This
corresponds to the first alternative above. �

We saw a more realistic example in Example 13.22 (Figure 13.4), which con-EXAMPLE 13.60
Minimal matching of HTML
headers

tains the following substitution.

s/.*?(<[hH][123]>.*?<\/[hH][123]>)//s;

Assuming that the HTML input is well formed and that headers do not nest, this
substitution deletes everything between the beginning of the string (implicitly
$_) and the end of the first embedded header. It does so by using the *? quantifier
instead of the usual *. Without the question marks, the pattern would match
through (and the substitution would delete through) the end of the last header
in the string. Recall that the trailing s modifier allows our headers to span lines.

In general, *? matches the smallest number of instances of the preceding
subexpression that will allow the overall match to succeed. Similarly, +? matches
at least one instance, but no more than necessary to allow the overall match
to succeed, and ?? matches either zero or one instances, with a preference for
zero. �

Variable Interpolation and Capture

Like double-quoted strings, regular expressions in Perl support variable interpo-
lation. Any dollar sign that does not immediately precede a vertical bar, closing
parenthesis, or end of string is assumed to introduce the name of a Perl variable,
whose value as a string is expanded prior to passing the pattern to the regular
expression evaluator. This allows us to write code that generates patterns at runEXAMPLE 13.61

Variable interpolation in
extended REs

time:

$prefix = ...

$suffix = ...

if ($foo =~ /^$prefix.*$suffix$/) ...
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Note the two different roles played by $ in this example. �
The flow of information can go the other way as well: we can pull the values of

variables out of regular expressions. We saw a simple example in the sed scriptEXAMPLE 13.62
Variable capture in
extended REs

of Figure 13.1:

s/^.*\(<[hH][123]>\)/\1/ ;# delete text before opening tag

The equivalent in Perl would look something like this:

$line =~ s/^.*(<[hH][123]>)/\1/;

Every parenthesized fragment of a Perl RE is said to capture the text that it
matches. The captured strings may be referenced in the right-hand side of the
substitution as \1, \2, and so on. Outside the expression they remain available
(until the next substitution is executed) as $1, $2, and so on:

print "Opening tag: ", $1, "\n"; �
One can even use a captured string later in the RE itself. Such a string is calledEXAMPLE 13.63

Backreferences in
extended REs

a backreference:

if (/.*?(<[hH]([123])>.*?<\/[hH]\2>)/) {

print "header: $1\n";

}

Here we have used \2 to insist that the closing tag of an HTML header match the
opening tag. �

One can, of course capture multiple strings:EXAMPLE 13.64
Dissecting a floating-point
literal if (/^([+-]?)((\d+)\.|(\d*)\.(\d+))(e([+-]?\d+))?$/) {

# floating point number

print "sign: ", $1, "\n";

print "integer: ", $3, $4, "\n";

print "fraction: ", $5, "\n";

print "mantissa: ", $2, "\n";

print "exponent: ", $7, "\n";

}

As in the previous example, the numbering corresponds to the occurrence of left
parentheses, read from left to right. With input -123.45e-6 we see

sign: -

integer: 123

fraction: 45

mantissa: 123.45

exponent: -6

Note that because of alternation, exactly one of $3 and $4 is guaranteed to be set.
Note also that while we need the sixth set of parentheses for grouping (it has a ?
quantifier), we don’t really need it for capture. �

For simple matches, Perl also provides pseudo-variables named $‘, $&,
and $’. These name the portions of the string before, in, and after the mostEXAMPLE 13.65

Implicit capture of prefix,
match, and suffix

recent match, respectively:
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$line = <>;

chop $line; # delete trailing newline

$line =~ /is/;

print "prefix($‘) match($&) suffix($’)\n";

With input “now is the time”, this code prints

prefix(now ) match(is) suffix( the time) �

CHECK YOUR UNDERSTANDING

44. What popular scripting language uses dynamic scope?

45. Summarize the strategies used in Perl, PHP, Ruby, and Python to determine
the scope of variables that are not declared.

46. Describe the conceptual model for dynamically scoped variables in Perl.

47. List the principal features found in POSIX regular expressions, but not in the
regular expressions of formal language theory (Section 2.1.1).

48. List the principal features found in Perl REs, but not in those of POSIX.

DESIGN & IMPLEMENTATION

Compiling regular expressions
Before it can be used as the basis of a search, a regular expression must be
compiled into a deterministic or nondeterministic (backtracking) automaton.
Patterns that are clearly constant can be compiled once, either when the pro-
gram is loaded or when they are first encountered. Patterns that contain in-
terpolated strings, however, must in the general case be recompiled whenever
they are encountered, at potentially significant run-time cost. A programmer
who knows that interpolated variables will never change can inhibit recom-
pilation by attaching a trailing o modifier to the regular expression, in which
case the expression will be compiled the first time it is encountered and never
thereafter. For expressions that must sometimes but not always be recompiled,
the programmer can use the qr operator to force recompilation of a pattern,
yielding a result that can be used repeatedly and efficiently:

for (@patterns) { # iterate over patterns

my $pat = qr($_); # compile to automaton

for (@strings) { # iterate over strings

if (/$pat/) { # no recompilation required

print; # print all strings that match

print "\n";

}

}

print "\n";

}
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49. Explain the purpose of search modifers (characters following the final delim-
iter) in Perl-type regular expressions.

50. Describe the three different categories of escape sequences in Perl-type regular
expressions.

51. Explain the difference between greedy and minimal matches.

52. Describe the notion of capture in regular expressions.

13.4.3 Data Types

As we have seen, scripting languages don’t generally require (or even permit)
the declaration of types for variables. Most perform extensive run-time checks to
make sure that values are never used in inappropriate ways. Some languages (e.g.,
Scheme, Python, and Ruby) are relatively strict about this checking; the program-
mer who wants to convert from one type to another must say so explicitly. If weEXAMPLE 13.66

Coercion in Ruby and Perl type the following in Ruby

a = "4"

print a + 3, "\n"

we get the following message at run time: “In ‘+’: failed to convert Fixnum into
String (TypeError).” Perl is much more forgiving. As we saw in Example 13.2, the
program

$a = "4";

print $a . 3 . "\n"; # ’.’ is concatenation

print $a + 3 . "\n"; # ’+’ is addition

prints 43 and 7. �
In general, Perl (and likewise Rexx and Tcl) takes the position that program-

mers should check for the errors they care about, and in the absence of such
checks the program should do something reasonable. Perl is willing, for example,EXAMPLE 13.67

Coercion and context in
Perl

to accept the following (though it prints a warning if run with the -w compile-
time switch):

$a[3] = "1"; # (array @a was previously undefined)

print $a[3] + $a[4], "\n";

Here $a[4] is uninitialized and hence has value undef. In a numeric context (as
an operand of +) the string "1" evaluates to 1, and undef evaluates to 0. Added
together, these yield 1, which is converted to a string and printed. �

A comparable code fragment in Ruby requires a bit more care. Before we canEXAMPLE 13.68
Explicit conversion in Ruby subscript a we must make sure that it refers to an array:

a = [] # empty array assignment

a[3] = "1"
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If the first line were not present (and a had not been initialized in any other
way), the second line would have generated an “undefined local variable” error.
After these assignments, a[3] is a string, but other elements of a are nil. We
cannot concatenate a string and nil; neither can we add them (both operators
are specified in Ruby using the operator +). If we want concatenation, and a[4]
may be nil, we must say

print a[3] + String(a[4]), "\n"

If we want addition, we must say

print Integer(a[3]) + Integer(a[4]), "\n" �

As these examples suggest, Perl (and likewise Tcl) uses a value model of vari-
ables. Scheme, Python, and Ruby use a reference model. PHP and JavaScript, like
Java, use a value model for variables of primitive type and a reference model for
variables of object type. The distinction is less important in PHP and JavaScript
than it is in Java, because the same variable can hold a primitive value at one
point in time and an object reference at another.

Numeric Types

As we have seen in Section 13.4.2, scripting languages generally provide a very
rich set of mechanisms for string and pattern manipulation. Syntax and interpo-
lation conventions vary, but the underlying functionality is remarkably consis-
tent, and heavily influenced by Perl. The underlying support for numeric types
shows a bit more variation across languages, but the programming model is again
remarkably consistent: users are, to first approximation, encouraged to think of
numeric values as “simply numbers,” and not to worry about the distinction be-
tween fixed and floating point or about the limits of available precision.

Internally, numbers in JavaScript are always double precision floating point. In
Tcl they are strings, converted to integers or floating-point numbers (and back
again) when arithmetic is needed. PHP uses integers (guaranteed to be at least
32 bits wide), plus double-precision floating point. To these Perl and Ruby add
arbitrary precision (multiword) integers, sometimes known as bignums. Python
has bignums too, plus support for complex numbers. Scheme has all of the above,
plus precise rationals, maintained as 〈numerator, denominator〉 pairs. In all cases
the interpreter “up-converts” as necessary when doing arithmetic on values with
different representations, or when overflow would otherwise occur.

Perl is scrupulous about hiding the distinctions among different numeric rep-
resentations. Most other languages allow the user to determine which is being
used, though this is seldom necessary. Ruby is perhaps the most explicit about
the existence of different representations: classes Fixnum, Bignum, and Float
(double-precision floating point) have overlapping but not identical sets of built-
in methods. In particular, integers have iterator methods, which floating-point
numbers do not, and floating-point numbers have rounding and error checking
methods, which integers do not. Fixnum and Bignum are both descendants of
Integer.
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Composite Types

The type constructors of compiled languages like C, Fortran, and Ada were cho-
sen largely for the sake of efficient implementation. Arrays and records, in partic-
ular, have straightforward time- and space-efficient implementations, which we
studied in Chapter 7. Efficiency, however, is less important in scripting languages.
Designers have felt free to choose type constructors oriented more toward ease
of understanding than pure run-time performance. In particular, most scripting
languages place a heavy emphasis on mappings, sometimes called dictionaries,
hashes, or associative arrays. As might be guessed from the third of these names,
a mapping is typically implemented with a hash table. Access time for a hash re-
mains O(1), but with a significantly higher constant than is typical for a compiled
array or record.

Perl, the oldest of the widely used scripting languages, inherits its principal
composite types—the array and the hash—from awk. It also uses prefix char-
acters on variable names as an indication of type: $foo is a scalar (a number,
Boolean, string, or pointer [which Perl calls a “reference”]); @foo is an array;
%foo is a hash; &foo is a subroutine; and plain foo is a filehandle or an I/O
format, depending on context.

Ordinary arrays in Perl are indexed using square brackets and integers startingEXAMPLE 13.69
Perl arrays with 0:

@colors = ("red", "green", blue"); # initializer syntax

print $colors[2]; # green

Note that we use the @ prefix when referring to the array as a whole and the $
prefix when referring to one of its (scalar) elements. Arrays are self-expanding:
assignment to an out-of-bounds element simply makes the array larger (at the
cost of dynamic memory allocation and copying). Uninitialized elements have
the value undef by default. �

Hashes are indexed using curly braces and character string names:EXAMPLE 13.70
Perl hashes

%complements = ("red" => "cyan",

"green" => "magenta", "blue" => "yellow");

print $complements{"blue"}; # yellow

These, too, are self-expanding.
Records and objects are typically built from hashes. Where the C programmer

would write fred.age = 19, the Perl programmer writes $fred{"age"} = 19.
In object-oriented code, $fred is more likely to be a reference, in which case we
have $fred->{"age"} = 19. �

Python and Ruby, like Perl, provide both conventional arrays and hashes. TheyEXAMPLE 13.71
Arrays and hashes in
Python and Ruby

use square brackets for indexing in both cases, and distinguish between array and
hash initializers (aggregates) using bracket and brace delimiters, respectively:

colors = ["red", "green", "blue"]

complements = {"red" => "cyan",

"green" => "magenta", "blue" => "yellow"}

print colors[2], complements["blue"]
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(This is Ruby syntax; Python uses : in place of =>.) �
As a purely object-oriented language, Ruby defines subscripting as syntacticEXAMPLE 13.72

Array access methods in
Ruby

sugar for invocations of the [] (get) and []= (put) methods:

c = colors[2] # same as c = colors.[](2)

colors[2] = c # same as colors.[]=(2,c) �
In addition to arrays (which it calls lists) and hashes (which it calls dictionar-

ies), Python provides two other composite types: tuples and sets. A tuple is es-EXAMPLE 13.73
Tuples in Python sentially an immutable list (array). The initializer syntax uses parentheses rather

than brackets:

crimson = (0xdc, 0x14, 0x3c) # R,G,B components

Tuples are more efficient to access than arrays: their immutability eliminates the
need for most bounds and resizing checks. They also form the basis of multiway
assignment:

a, b = b, a # swap

Parentheses can be omitted in this example: the comma groups more tightly than
the assignment operator. �

DESIGN & IMPLEMENTATION

Typeglobs in Perl
It turns out that a global name in Perl can have multiple independent mean-
ings. It is possible, for example, to use $foo, @foo, %foo, &foo and two differ-
ent meanings of foo, all in the same program. To keep track of these multiple
meanings, Perl interposes a level of indirection between the symbol table en-
try for foo and the various values foo may have. The intermediate structure is
called a typeglob. It has one slot for each of foo’s meanings. It also has a name
of its own: *foo. By manipulating typeglobs, the expert Perl programmer can
actually modify the table used by the interpreter to look up names at run time.
The simplest use is to create an alias:

*a = *b;

After executing this statement, a and b are indistinguishable; they both refer
to the same typeglob, and changes made to (any meaning of) one of them will
be visible through the other. Perl also supports selective aliasing, in which one
slot of a typeglob is made to point to a value from a different typeglob:

*a = \&b;

The backslash operator (\) in Perl is used to create a pointer. After executing
this statement, &a (the meaning of a as a function) will be the same as &b, but
all other meanings of a will remain the same. Selective aliasing is used, among
other things, to implement the mechanism that imports names from libraries
in Perl.
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Python sets are like dictionaries that don’t map to anything of interest butEXAMPLE 13.74
Sets in Python simply serve to indicate whether elements are present or absent. Unlike dictio-

naries, they also support union, intersection, and difference operations:

X = set([’a’, ’b’, ’c’, ’d’]) # set constructor

Y = set([’c’, ’d’, ’e’, ’f’]) # takes array as parameter

U = X | Y # ([’a’, ’b’, ’c’, ’d’, ’e’, ’f’])

I = X & Y # ([’c’, ’d’])

D = X - Y # ([’a’, ’b’])

O = X ^ Y # ([’a’, ’b’, ’e’, ’f’])

’c’ in I # True �

PHP and Tcl have simpler composite types: they eliminate the distinction be-EXAMPLE 13.75
Conflated types in PHP,
Tcl, and JavaScript

tween arrays and hashes. An array is simply a hash for which the programmer
chooses to use numeric keys. JavaScript employs a similar simplification, unify-
ing arrays, hashes, and objects. The usual obj.attr notation to access a mem-
ber of an object (what JavaScript calls a property) is simply syntactic sugar for
obj["attr"]. So objects are hashes, and arrays are objects with integer property
names. �

Higher dimensional types are straightforward to create in most scripting lan-
guages: one can define arrays of (references to) hashes, hashes of (references to)
arrays, and so on. Alternatively, one can create a “flattened” implementation byEXAMPLE 13.76

Multidimensional arrays in
Python and other
languages

using composite objects as keys in a hash. Tuples in Python work particularly
well:

matrix = {} # empty dictionary (hash)

matrix[2, 3] = 4 # key is (2, 3)

This idiom provides the appearance and functionality of multidimensional ar-
rays, though not their efficiency. There exist extension libraries for Python that
provide more efficient homogeneous arrays, with only slightly more awkward
syntax. Numeric and statistical scripting languages, such as Maple, Mathemat-
ica, Matlab, and R, have much more extensive support for multidimensional
arrays. �

Context

In Section 7.2.2 we defined the notion of type compatibility, which determines,
in a statically typed language, which types can be used in which contexts. In this
definition the term “context” refers to information about how a value will be
used. In C, for example, one might say that in the declaration

double d = 3;

the 3 on the right-hand side occurs in a context that expects a floating-point
number. The C compiler coerces the 3 to make it a double instead of an int.

In Section 7.2.3 we went on to define the notion of type inference, which al-
lows a compiler to determine the type of an expression based on the types of its
constituent parts and, in some cases, the context in which it appears. We saw an
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extreme example in ML and its descendants, which use a sophisticated form of
inference to determine types for most objects without the need for declarations.

In both of these cases—compatibility and inference—contextual information
is used at compile time only. Perl extends the notion of context to drive deci-
sions made at run time. More specifically, each operator in Perl determines, at
compile time, and for each of its arguments, whether that argument should be
interpreted as a scalar or a list. Conversely each argument (which may itself be a
nested operator) is able to tell, at run time, which kind of context it occupies, and
can consequently exhibit different behavior.

As a simple example, the assignment operator (=) provides a scalar or list con-EXAMPLE 13.77
Scalar and list context in
Perl

text to its right-hand side based on the type of its left-hand side. This type is al-
ways known at compile time, and is usually obvious to the casual reader, because
the left-hand side is a name and its prefix character is either a dollar sign ($),
implying a scalar context, or an at (@) or percent (%) sign, implying a list context.
If we write

$time = gmtime();

Perl’s standard gmtime() library function will return the time as a character
string, along the lines of "Tue Mar 15 21:09:39 2005". On the other hand,
if we write

@time_arry = gmtime();

the same function will return (39, 09, 21, 15, 2, 105, 2, 73), an 8-
element array indicating seconds, minutes, hours, day of month, month of year
(with January = 0), year (counting from 1900), day of week (with Sunday = 0),
and day of year. �

So how does gmtime know what to do? By calling the built-in functionEXAMPLE 13.78
Using wantarray to
determine calling context

wantarray. This returns true if the current function was called in a list context,
and false if it was called in a scalar context. By convention, functions typically
indicate an error by returning the empty array when called in a list context, and
the undefined value (undef) when called in a scalar context:

if ( something went wrong ) {

return wantarray ? () : undef;

} �

13.4.4 Object Orientation

Though not an object-oriented language, Perl 5 has features that allow one to
program in an object-oriented style.11 PHP and JavaScript have cleaner, more
conventional-looking object-oriented features, but both allow the programmer
to use a more traditional imperative style as well. Python and Ruby are explicitly
and uniformly object-oriented.

11 More extensive features, currently under design for Perl 6, will not be covered here.



742 Chapter 13 Scripting Languages

Perl uses a value model for variables; objects are always accessed via pointers.
In PHP and JavaScript, a variable can hold either a value of a primitive type or
a reference to an object of composite type. In contrast to Perl, however, these
languages provide no way to speak of the reference itself, only the object to which
it refers. Python and Ruby use a uniform reference model.

Classes are themselves objects in Python and Ruby, much as they are in
Smalltalk. They are merely types in PHP, much as they are in C++, Java, or C#.
Classes in Perl are simply an alternative way of looking at packages (namespaces).
JavaScript, remarkably, has objects but no classes; its inheritance is based on a
concept known as prototypes.

Perl 5

Object support in Perl 5 boils down to two main things: (1) a blessing mecha-
nism that associates a reference with a package and (2) special syntax for method
calls that automatically passes an object reference or package name as the ini-
tial argument to a function. While any reference can in principle be blessed, the
usual convention is to use a hash so that fields can be named as shown in Exam-
ple 13.70.

As a very simple example, consider the Perl code of Figure 13.26. Here we haveEXAMPLE 13.79
A simple class in Perl defined a package, Integer, that plays the role of a class. It has three functions,

one of which (new) is intended to be used as a constructor, and two of which
(set and get) are intended to be used as accessors. Given this defintion we can
write

$c1 = Integer->new(2); # Integer::new("Integer", 2)

$c2 = new Integer(3); # alternative syntax

$c3 = new Integer; # no initial value specified

Both Integer->new and new Integer are syntactic sugar for calls to
Integer::new with an additional first argument that contains the name of the
package (class) as a character string. In the first line of function new we assign
this string into the variable $class. (The shift operator returns the first ele-
ment of pseudo-variable @_ [the function’s arguments], and shifts the remaining
arguments, if any, so they will be seen if shift is used again.) We then create a
reference to a new hash, store it in local variable $self, and invoke the bless
operator to associate it with the appropriate class. With a second call to shift we
retrieve the initial value for our integer, if any. (The “or” expression [||] allows
us to use 0 instead if no explicit argument was present.) We assign this initial
value into the val field of $self using the usual Perl syntax to dereference a
pointer and subscript a hash. Finally we return a reference to the newly created
object. �

Once a reference has been blessed, Perl allows it to be used with method in-EXAMPLE 13.80
Invoking methods in Perl vocation syntax: c1->get() and get c1() are syntactic sugar for Integer::

get($c1). Note that this call passes a reference as the additional first parameter,
rather than the name of a package. Given the declarations of $c1, $c2, and $c3
above, the following code
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{ package Integer;

sub new {

my $class = shift; # probably "Integer"

my $self = {}; # reference to new hash

bless($self, $class);

$self->{val} = (shift || 0);

return $self;

}

sub set {

my $self = shift;

$self->{val} = shift;

}

sub get {

my $self = shift;

return $self->{val};

}

}

Figure 13.26 Object-oriented programming in Perl. Blessing a reference (object) into package
Integer allows Integer’s functions to serve as the object’s methods.

print $c1->get, " ", $c2->get, " ", $c3->get, " ", "\n";

$c1->set(4); $c2->set(5); $c3->set(6);

print $c1->get, " ", $c2->get, " ", $c3->get, " ", "\n";

will print

2 3 0

4 5 6

As usual in Perl, if an argument list is empty, the parentheses can be omitted. �
Inheritance in Perl is obtained by means of the @ISA array, initialized at the

global level of a package. Extending the previous example, we might define aEXAMPLE 13.81
Inheritance in Perl Tally class that inherits from Integer:

{ package Tally;

@ISA = ("Integer");

sub inc {

my $self = shift;

$self->{val}++;

}

}

...

$t1 = new Tally(3);

$t1->inc;

$t1->inc;

print $t1->get, "\n"; # prints 5
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The inc method of t1 works as one might expect. However when Perl sees a
call to Tally::new or Tally::get (neither of which is actually in the package),
it uses the @ISA array to locate additional package(s) in which these methods
may be found. We can list as many packages as we like in the @ISA array; Perl
supports multiple inheritance. The possibility that new may be called through
Tally rather than Integer explains the use of shift to obtain the class name
in Figure 13.26. If we had used "Integer" explicitly we would not have obtained
the desired behavior when creating a Tally object. �

Most often packages (and thus classes) in Perl are declared in separate modulesEXAMPLE 13.82
Inheritance via use base (files). In this case, one must import the module corresponding to a superclass

in addition to modifying @ISA. The standard base module provides convenient
syntax for this combined operation, and is the preferred way to specify inheri-
tance relationships:

{ package Tally;

use base ("Integer");

... �

PHP and JavaScript

While Perl’s mechanisms suffice to create object-oriented programs, dynamic
lookup makes them slower than equivalent imperative programs, and it seems
fair to characterize the syntax as less than elegant. Both PHP and JavaScript are
more explicitly object-oriented.

PHP 4 provided a variety of object-oriented features, which were heavily re-
vised in PHP 5. The newer version of the language provides a reference model
of (class typed) variables, interfaces and mix-in inheritance, abstract methods
and classes, final methods and classes, static and constant members, and access
control specifiers (public, protected, and private) reminiscent of those of
Java, C#, and C++. In contrast to all other languages discussed in this subsec-
tion, class declarations in PHP must include declarations of all members (fields
and methods), and the set of members in a given class cannot subsequently
change (though one can of course declare derived classes with additional mem-
bers).

JavaScript takes the unusual approach of providing objects—with inheritance
and dynamic method dispatch—without providing classes. Functions are first-
class entities in JavaScript—objects, in fact. A method is simply a function that is
referred to by a property (member) of an object. When we call o.m, the keyword
this will refer to o during the execution of the function referred to by m. Likewise
when we call new f, this will refer to a newly created (initially empty) object
during the execution of f. A constructor in JavaScript is thus a function whose
purpose is to assign values into properties (fields and methods) of a newly created
object.

Associated with every constructor f is an object f.prototype. If object o
was constructed by f, then JavaScript will look in f.prototype whenever we
attempt to use a property of o that o itself does not provide. In effect, o inherits
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function Integer(n) {

this.val = n || 0; // use 0 if n is missing (undefined)

}

function Integer_set(n) {

this.val = n;

}

function Integer_get() {

return this.val;

}

Integer.prototype.set = Integer_set;

Integer.prototype.get = Integer_get;

Figure 13.27 Object-oriented programming in JavaScript. The Integer function is used as a
constructor. Assignments to members of its prototype object serve to establish methods. These
will be available to any object created by Integer that doesn’t have corresponding members
of its own.

from f.prototype anything that it does not override. Prototype properties are
commonly used to hold methods. They can also be used for constants or for what
other languages would call “class variables.”

Figure 13.27 illustrates the use of prototypes. It is roughly equivalent to theEXAMPLE 13.83
Prototypes in JavaScript Perl code of Figure 13.26. Function Integer serves as a constructor. Assignments

to properties of Integer.prototype serve to establish methods for objects con-
structed by Integer. Using the code in the figure, we can write

c2 = new Integer(3);

c3 = new Integer;

document.write(c2.get() + "&nbsp;&nbsp;" + c3.get() + "<BR>");

c2.set(4); c3.set(5);

document.write(c2.get() + "&nbsp;&nbsp;" + c3.get() + "<BR>");

This code will print

3 0
4 5 �
Interestingly, the lack of a formal notion of class means that we can overrideEXAMPLE 13.84

Overriding instance
methods in JavaScript

methods and fields on an object-by-object basis:

c2.set = new Function("n", "this.val = n * n;");

// anonymous function constructor

c2.set(3); c3.set(4); // these call different methods!

document.write(c2.get() + "&nbsp;&nbsp;&nbsp;" + c3.get() + "<BR>");

If nothing else has changed since the previous example, this code will print

9 4 �
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To obtain the effect of inheritance, we can writeEXAMPLE 13.85
Inheritance in JavaScript

function Tally(n) {

this.base(n); // call to base constructor

}

function Tally_inc() {

this.val++;

}

Tally.prototype = new Integer; // inherit methods

Tally.prototype.base = Integer; // make base constructor available

Tally.prototype.inc = Tally_inc; // new method

...

t1 = new Tally(3);

t1.inc(); t1.inc();

document.write(t1.get() + "<br>");

This code will print a 5. �

Python and Ruby

As we have noted, both Python and Ruby are explicitly object-oriented. Both
employ a uniform reference model for variables. Like Smalltalk, both incorporate
an object hierarchy in which classes themselves are represented by objects. The
root class in Python is called object; in Ruby it is Object.

In both Python and Ruby, each class has a single distinguished constructor,EXAMPLE 13.86
Constructors in Python
and Ruby

which cannot be overloaded. In Python it is __init__; in Ruby it is initialize.
To create a new object in Python one says my_object = My_class(args); in
Ruby one says my_object = My_class.new(args). In each case the args are
passed to the constructor. To achieve the effect of overloading, with different
numbers or types of arguments, one must arrange for the single constructor
to inspect its arguments explicitly. We employed a similar idiom in Perl (in the
new routine of Figure 13.26) and JavaScript (in the Integer function of Fig-
ure 13.27). �

Both Python and Ruby are more flexible than PHP or more traditional object-
oriented languages regarding the contents (members) of a class. New fields can
be added to a Python object simply by assigning to them: my_object.new_field
= value. The set of methods, however, is fixed when the class is first defined. In
Ruby only methods are visible outside a class (“put” and “get” methods must be
used to access fields), and all methods must be explicitly declared. It is possible,
however, to modify an existing class declaration, adding or overriding methods.
One can even do this on an object-by-object basis. As a result, two objects of the
same class may not display the same behavior.

Python and Ruby differ in many other ways. The initial parameter to methodsEXAMPLE 13.87
Naming class members in
Python and Ruby

is explicit in Python; by convention it is usually named self. In Ruby self is a
keyword, and the parameter it represents is invisible. Any variable beginning with
a single @ sign in Ruby is a field of the current object. Within a Python method,
uses of object members must name the object explicitly. One must, for example,
write self.print(); just print() will not suffice. �
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Ruby methods may be public, protected, or private.12 Access control
in Python is purely a matter of convention; both methods and fields are uni-
versally accessible. Finally, Python has multiple inheritance. Ruby has mix-in
inheritance: a class cannot obtain data from more than one ancestor. Unlike most
other languages, however, Ruby allows an interface (mix-in) to define not only
the signatures of methods, but also their implementation (code).

CHECK YOUR UNDERSTANDING

53. Contrast the philosophies of Perl and Ruby with regard to error checking and
reporting.

54. Compare the numeric types of popular scripting languages to those of com-
piled languages like C or Fortran.

55. What are bignums? Which languages support them?

DESIGN & IMPLEMENTATION

Executable class declarations
Both Python and Ruby take the interesting position that class declarations are
executable code. Elaboration of a declaration executes the code inside. Among
other things, we can use this mechanism to achieve the effect of conditional
compilation:

class My_class # Ruby code

def initialize(a, b)

@a = a; @b = b;

end

if expensive_function()

def get()

return @a

end

else

def get()

return @b

end

end

end

Instead of computing the expensive function inside get, on every invocation,
we compute it once, ahead of time, and define an appropriate specialized ver-
sion of get.

12 The meanings of private and protected in Ruby are different from those in C++, Java, or C#:
private methods in Ruby are available only to the current instance of an object; protected
methods are available to any instance of the current class or its descendants.
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56. What are associative arrays? By what other names are they sometimes known?

57. Why don’t most scripting languages provide direct support for records?

58. What is a typeglob in Perl? What purpose does it serve?

59. Describe the typle and set types of Python.

60. Explain the unification of arrays and hashes in PHP and Tcl.

61. Explain the unification of arrays and objects in JavaScript.

62. Explain how tuples and hashes can be used to emulate multidimensional
arrays in Python.

63. Explain the concept of context in Perl. How is it related to type compatibil-
ity and type inference? What are the two principal contexts defined by the
language’s operators?

64. Compare the approaches to object orientation taken by Perl 5, PHP 5,
JavaScript, Python, and Ruby.

65. What is meant by the blessing of a reference in Perl?

66. What are prototypes in JavaScript? What purpose do they serve?

13.5 Summary and Concluding Remarks

Scripting languages serve primarily to control and coordinate other software
components. Though their roots go back to interpreted languages of the 1960s,
they have received relatively little attention from academic computer science.
With an increasing emphasis on programmer productivity, however, and with the
birth of the World Wide Web, scripting languages have seen enormous growth in
interest and popularity, both in industry and in academia. Many significant ad-
vances have been made by commercial developers and by the Open Source com-
munity. Scripting languages may well come to dominate programming in the
21st century, with traditional compiled languages more and more seen as special
purpose tools.

In comparison to their traditional cousins, scripting languages emphasize flex-
ibility and richness of expression over sheer run-time performance. Common
characteristics include both batch and interactive use, economy of expression,
lack of declarations, simple scoping rules, flexible dynamic typing, easy access
to other programs, sophisticated pattern matching and string manipulation, and
high-level data types.

We began our chapter by tracing the historical development of scripting, start-
ing with the command interpreter, or shell programs of the mid-1970s, and the
text processing and report generation tools that followed soon thereafter. We
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looked in particular at the “Bourne again” shell, bash, and the Unix tools sed
and awk. We also mentioned such special purpose domains as mathematics and
statistics, where scripting languages are widely used for data analysis, visualiza-
tion, modeling, and simulation. We then turned to the three domains that dom-
inate scripting today: “glue” (coordination) applications, configuration and ex-
tension, and scripting of the World Wide Web.

In terms of “market share,” Perl is almost certainly the most popular of the
general purpose scripting languages, widely used for report generation, glue, and
server-side (CGI) web scripting. Python and Ruby both appear to be growing in
popularity, and Tcl retains a strong core of support. Several scripting languages,
including Scheme, Python, and Tcl, are widely used to extend the functionality
of complex applications. In addition, many commercial packages have their own
proprietary extension languages. Visual Basic has historically been the language
of choice for scripting on Microsoft platforms but will probably give way over
time to C# and the various cross-platform options.

Web scripting comes in many forms. On the server side of an HTTP connec-
tion, the Common Gateway Interface (CGI) standard allows a URI to name a
program that will be used to generate dynamic content. Alternatively, web-page-
embedded scripts, often written in PHP, can be used to create dynamic content
in a way that is invisible to users. To reduce the load on servers, and to improve
interactive responsiveness, scripts can also be executed within the client browser.
JavaScript is the dominant notation in this domain; it uses the HTML Document
Object Model (DOM) to manipulate web page elements. For more demanding

DESIGN & IMPLEMENTATION

Worse Is Better
Any discussion of the relative merits of scripting and “systems” languages in-
variably ends up addressing the tradeoffs between expressiveness and flexibil-
ity on the one hand and compile-time safety and performance on the other. It
may also digress into questions of “quick and dirty” versus “polished” applica-
tions. An interesting take on this debate can be found in the widely circulated
essays of Richard Gabriel (www.dreamsongs.com/WorseIsBetter.html). While
working for Lucid Corp. in 1989, Gabriel found himself asking why Unix and
C had been so successful at attracting users, while Common Lisp (Lucid’s prin-
cipal focus) had not. His explanation contrasts “The Right Thing,” as exempli-
fied by Common Lisp, with a “Worse Is Better” philosophy, as exemplified by C
and Unix. “The Right Thing” emphasizes complete, correct, consistent, and el-
egant design. “Worse Is Better” emphasizes the rapid development of software
that does most of what users need most of the time, and can be tuned and im-
proved incrementally, based on field experience. Much of scripting, and Perl
in particular, fits the “Worse Is Better” philosophy (Ruby and Scheme enthu-
siasts might beg to disagree). Gabriel, for his part, says he still hasn’t made up
his mind; his essays argue both points of view.
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tasks, most browsers can be directed to run a Java applet, which takes full respon-
sibility for some portion of the “screen real estate.” With the continued evolution
of the web, XML is likely to become the standard vehicle for storing and trans-
mitting structured data. XSL, the Extensible Stylesheet Language, will then play
a major role in transforming and formatting dynamic content.

Because of their rapid evolution, scripting languages have been able to take ad-
vantage of many of the most powerful and elegant mechanisms described in pre-
vious chapters, including first class and higher-order functions, garbage collec-
tion, unlimited extent, iterators, list comprehensions, and object orientation—
not to mention extended regular expressions and such high-level data types as
dictionaries, sets, and tuples. Given current technological trends, scripting lan-
guages are likely to become increasingly ubiquitous and to remain a principal
focus of language innovation.

13.6 Exercises

13.1 Does filename “globbing” provide the expressive power of standard regu-
lar expressions? Explain.

13.2 Write shell scripts to

(a) Replace blanks with underscores in the names of all files in the current
directory.

(b) Rename every file in the current directory by prepending to its name
an ASCII representation of its modification date.

(c) Find all eps files in the file hierarchy below the current directory, and
create any corresponding pdf files that are missing or out of date.

(d) Print the names of all files in the file hierarchy below the current di-
rectory for which a given predicate evaluates to true. Your (quoted)
predicate should be specified on the command line using the syntax
of the Unix test command, with one or more at signs (@) standing
in for the name of the candidate file.

13.3 In Example 13.15 we used "$@" to refer to the parameters passed to ll.
What would happen if we removed the quote marks? (Hint: Try this for
files whose names contain spaces!) Read the man page for bash and learn
the difference between $@ and $*. Create versions of ll that use $* or
"$*" instead of "$@". Explain what’s going on.

13.4 (a) Extend the code in Figures 13.5, 13.6, 13.7, or 13.8 to try to kill processes
more gently. You’ll want to read the man page for the standard kill
command. Use a TERM signal first. If that doesn’t work, ask the user if
you should resort to KILL.
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(b) Extend your solution to part (a) so that the script accepts an optional
argument specifying the signal to be used. Alternatives to TERM and
KILL include HUP, INT, QUIT, and ABRT.

13.5 Write a Perl, Python, or Ruby script that creates a simple concordance: a
sorted list of significant words appearing in an input document, with a
sublist for each that indicates the lines on which the word occurs, with up
to six words of surrounding context. Exclude from your list all common
articles, conjunctions, prepositions, and pronouns.

13.6 Write Emacs Lisp scripts to perform the following tasks.

(a) Insert today’s date into the current buffer at the insertion point (cur-
rent cursor location).

(b) Place quote marks (" ") around the word surrounding the insertion
point.

(c) Fix end-of-sentence spaces in the current buffer. Use the following
heuristic: if a period, question mark, or exclamation point is followed
by a single space (possibly with closing quote marks, parentheses,
brackets, or braces in between), then add an extra space, unless the
character preceding the period, question mark, or exclamation point
is a capital letter (in which case we assume it is an abbreviation).

(d) Run the contents of the current buffer through your favorite spell
checker, and create a new buffer containing a list of misspelled words.

(e) Delete one misspelled word from the buffer created in (d), and place
the cursor (insertion point) on top of the first occurrence of that mis-
spelled word in the current buffer.

13.7 Explain the circumstances under which it makes sense to realize an inter-
active task on the Web as a CGI script, an embedded server-side script, or
a client-side script. For each of these implementation choices, give three
examples of tasks for which it is clearly the preferred approach.

13.8 (a) Write a web page with embedded PHP to print the first 10 rows of
Pascal’s triangle (see Example 15.10 if you don’t know what this is).
When rendered, your output should look like Figure 13.28.

(b) Modify your page to create a self-posting form that accepts the num-
ber of desired rows in an input field.

(c) Rewrite your page in JavaScript.

13.9 Create a fill-in web form that uses a JavaScript implementation of the
Luhn formula (Exercise 4.9) to check for typos in credit card numbers.
(But don’t use real credit card numbers; homework exercises don’t tend to
be very secure!)
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Pascal’s Triangle

Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

Figure 13.28 Pascal’s triangle rendered in a web page (Exercise 13.8).

13.10 (a) Modify the code of Figure 13.16 (Example 13.35) so that it replaces the
form with its output, as the CGI and PHP versions of Figures 13.12
and 13.15 do.

(b) Modify the CGI and PHP scripts of Figures 13.12 and 13.15 (Exam-
ples 13.30 and 13.34) so they appear to append their output to the
bottom of the form, as the JavaScript version of Figure 13.16 does.

13.11 Run the following program in Perl.

sub foo {

my $lex = $_[0];

sub bar {

print "$lex\n";

}

bar();

}

foo(2); foo(3);

You may be surprised by the output. Perl 5 allows named subroutines to
nest but does not create closures for them properly. Rewrite the code above
to create a reference to an anonymous local subroutine and verify that it
does create closures correctly. Add the line use diagnostics; to the be-
ginning of the original version and run it again. Based on the explanation
this will give you, speculate as to how nested named subroutines are im-
plemented in Perl 5.

13.12 Modify the XSLT of Figure 13.19 to do one or more of the following.

(a) Alter the titles of conference papers so that only first words, words
that follow a dash or colon (and thus begin a subtitle), and proper
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nouns are capitalized. You will need to adopt a convention by which
the creator of the document can identify proper nouns.

(b) Sort entries by the last name of the first author or editor. You will
need to adopt a convention by which the creator of the document can
identify compound last names (“von Neumann,” for example, should
be alphabetized under ‘v’).

(c) Allow bibliographic entries to contain an abstract element, which
when formatted appears as an indented block of text in a smaller font.

(d) In addition to the book, article, and inproceedings elements, add
support for other kinds of entries, such as manuals, technical reports,
theses, newspaper articles, web sites, and so on. You may want to draw
inspiration from the categories supported by BIBTEX [Lam94, Appen-
dix B].

(e) Format entries according to some standard style convention (e.g., that
of the Chicago Manual of Style [Uni03] or the ACM Transactions
[www.acm.org/pubs/submissions/latex_style/index.htm]).

13.13 Suppose bibliographic entries in Figure 13.18 contain a mandatory key
element, and that other documents can contain matching cite elements.
Create an XSLT script that imitates the work of BibTEX. Your script
should

(a) read an XML document, find all the cite elements, collect the keys
they contain, and replace them with bibref elements that contain
small integers instead.

(b) read a separate XML bibliography document, extract the entries with
matching keys, and write them, in sorted order, to a new (and proba-
bly smaller) bibliography.

The small numbers in the bibref elements of the new document from (a)
should match the corresponding numbered entries in the new bibliogra-
phy from (b).

13.14 Write a program that will read an XHTML file and print an outline of its
contents, by extracting all <title>, <h1>, <h2>, and <h3> elements, and
printing them at varying levels of indentation. Write

(a) in C or Java.

(b) in sed or awk.

(c) in Perl, Python, Tcl, or Ruby.

(d) in XSLT.

Compare and contrast your solutions.

13.15 Write a program that will map the web pages stored in the file hierarchy
below the current directory. Your output should itself be a web page con-
taining the names of all directories and .html files, printed at levels of
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indentation corresponding to their level in the file hierarchy. Each .html
file name should be a live link to a file of the form described in the previous
exercise. Use whatever language(s) seem most appropriate to the task.

13.16 In Section 13.4.1 we claimed that nested blocks in Ruby were part of the
named scope in which they appear. Verify this claim by running the fol-
lowing Ruby script and explaining its output.

def foo(x)

y = 2

bar = proc {

print x, "\n"

y = 3

}

bar.call()

print y, "\n"

end

foo(3)

Now comment out the second line (y = 2) and run the script again. Ex-
plain what happens. Restate our claim about scoping more carefully and
precisely.

13.17 Write a Perl script to translate English measurements (in, ft, yd, mi) into
metric equivalents (cm, m, km). You may want to learn about the e mod-
ifier on regular expressions, which allows the right-hand side of an s///e
expression to contain executable code.

13.18 Write a Perl script to find, for each input line, the longest substring that
appears at least twice within the line, without overlapping. (Hint: This is
harder than it sounds. Remember that by default Perl searches for a left-
most longest match.)

13.19 Perl provides an alternative (?:. . . ) form of parentheses that supports
grouping in regular expressions without performing capture. Using this
syntax, Example 13.64 could have been written as follows.

if (/^([+-]?)((\d+)\.|(\d*)\.(\d+))(?:e([+-]?\d+))?$/) {

# floating point number

print "sign: ", $1, "\n";

print "integer: ", $3, $4, "\n";

print "fraction: ", $5, "\n";

print "mantissa: ", $2, "\n";

print "exponent: ", $6, "\n"; # not $7

}

What purpose does this extra notation serve? Why might the code here be
preferable to that of Example 13.64?



13.7 Explorations 755

13.20 Consider again the sed code of Figure 13.1. It is tempting to write the first
of the compound statements as follows (note the differences in the three
substitution commands).

/<[hH][123]>.*<\/[hH][123]>/ { ;# match whole heading

h ;# save copy of pattern space

s/^.*\(<[hH][123]>\)/\1/ ;# delete text before opening tag

s/\(<\/[hH][123]>\).*$/\1/ ;# delete text after closing tag

p ;# print what remains

g ;# retrieve saved pattern space

s/^.*<\/[hH][123]>// ;# delete through closing tag

b top

Explain why this doesn’t work. (Hint: Remember the difference between
greedy and minimal matches [Example 13.60]. Sed lacks the latter.)

13.21 Consider the following regular expression in Perl: /^(?:((?:ab)+)
|a((?:ba)*))$/. Describe, in English, the set of strings it will match.
Show a natural NFA for this set, together with the minimal DFA. Describe
the substrings that should be captured in each matching string. Based on
this example, discuss the practicality of using DFAs to match strings in
Perl.

13.7 Explorations

13.22 Learn about the Scheme shell, scsh. Compare it to sh/bash. Which would
you rather use from the keyboard? Which would you rather use for script-
ing?

13.23 Research the security mechanisms of JavaScript and/or Java applets. What
exactly are programs allowed to do and why? What potentially useful fea-
tures have not been provided because they can’t be made secure? What
potential security holes remain in the features that are provided?

13.24 Learn about web crawlers: programs that explore the World Wide Web.
Build a crawler that searches for something of interest. What language fea-
tures or tools seem most useful for the task? Warning: Automated web
crawling is a public activity, subject to strict rules of etiquette. Before cre-
ating a crawler, do a web search and learn the rules, and test your code very
carefully before letting it outside your local subnet (or even your own ma-
chine). In particular, be aware that rapid-fire requests to the same server
constitute a denial of service attack, a potentially criminal offense.

13.25 Learn about taint mode in Perl and Ruby. How does it compare to the
notion of sandboxing (as described in the sidebar on page 711)? What
sorts of security problems does it catch? What sorts of problems does it
not catch?
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13.26 In the sidebar on page 729 we noted that the “extended” REs of awk and
egrep are typically implemented by translating first to an NFA and then
to a DFA, while those of Perl et al. are typically implemented via back-
tracking search. Some tools, including GNU ggrep, use a variant of the
Boyer-Moore-Gosper algorithm [BM77, KMP77] for faster deterministic
search. Find out how this algorithm works. What are its advantages? Could
it be used in languages like Perl?

13.27 In the sidebar on page 735 we noted that nonconstant patterns must gener-
ally be recompiled whenever they are used. Perl programmers who wish to
reduce the resulting overhead can inhibit recompilation using the o trail-
ing modifier or the qr quoting operator. Investigate the impact of these
mechanisms on performance. Also speculate as to the extent to which it
might be possible for the language implementation to determine, auto-
matically and efficiently, when recompilation should occur.

13.28 Our coverage of Perl REs in Section 13.4.2 was incomplete. Features not
covered include look-ahead and look-behind (context) assertions, com-
ments, incremental enabling and disabling of modifiers, embedded code,
conditionals, Unicode support, non-slash delimiters, and the translitera-
tion (tr///) operator. Learn how these work. Explain if (and how) they
extend the expressive power of the notation. How could each be emulated
(possibly with surrounding Perl code) if it were not available?

13.29 Investigate the details of RE support in PHP, Tcl, Python, Ruby, JavaScript,
Emacs Lisp, Java, and C#. Write a paper that documents, as concisely as
possible, the differences among these, using Perl as a reference for com-
parison.

13.30 Do a web search for Perl 6 (currently under development as of early 2005).
Write a report that summarizes the changes with respect to Perl 5. What
do you think of these changes? If you were in charge of the revision, what
would you do differently?

13.8 Bibliographic Notes

Most of the major scripting languages are described in books by the language
designers or their close associates: awk [AKW88], Perl [WCO00], PHP [LT02],
Tcl [Ous94, WJH03], Python [vRD03], and Ruby [TH04]. Several of these have
versions available online. Most of the languages are also described in a vari-
ety of other texts, and most have dedicated web sites: perl.com, php.net, tcl.tk,
python.org, ruby-lang.org. Extensive documentation for Perl is available online at
many sites; type man perl for an index.

Rexx [Ame96a] has been standardized by ANSI, the American National Stan-
dards Institute. JavaScript [ECM99] has been standardized by ECMA, the Euro-
pean standards body. Scheme implementations intended for scripting include
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Elk (www-rn.informatik.uni-bremen.de/software/elk/, sam.zoy.org/projects/elk/),
Guile (gnu.org/software/guile/), and SIOD (Scheme in One Defun) (people
.delphiforums.com/gjc/siod.html). Standards for the World Wide Web, including
HTML, XML, XSL, XPath, and XHTML, are promulgated by the World Wide
Web Consortium: www.w3.org. For those experimenting with the conversion to
XHTML, the validation service at validator.w3.org is particularly useful. High-
quality tutorials on many web-related topics can be found at w3schools.com.

Hauben and Hauben [HH97a] describe the historical roots of the Internet, in-
cluding early work on Unix. Original articles on the various Unix shell languages
include those of Mashey [Mas76], Bourne [Bou78], and Korn [Kor94]. Infor-
mation on the Scheme shell, scsh, is available at scsh.net. The original reference
on APL is by Iverson [Ive62]. Ousterhout [Ous98] makes the case for scripting
languages in general and Tcl in particular. Chonacky and Winch [CW05] com-
pare and contrast Maple, Mathematica, and Matlab. Richard Gabriel’s collection
of “Worse Is Better” papers can be found at www.dreamsongs.com/WorseIsBetter
.html. A similar comparison of Tcl and Scheme can be found in the introductory
chapter of Abelson, Greenspun, and Sandon’s on-line Tcl for Web Nerds guide
(philip.greenspun.com/tcl/index.adp).





IVA Closer Look at Implementation

In this, the final and shortest of the major sections of the text, we return our focus to implementation

issues.

Chapter 14 considers the work that must be done, in the wake of semantic analysis, to generate a

runnable program. The first half of the chapter describes, in general terms, the structure of the back

end of the typical compiler, surveys intermediate program representations, and uses the attribute

grammar framework of Chapter 4 to describe how a compiler produces assembly-level code. The

second half of the chapter describes the structure of the typical process address space, and explains

how the assembler and linker transform the output of the compiler into executable code.

The back-end compiler description in Chapter 14 is by necessity simplistic. Entire books and

courses are devoted to the fuller story, most of which focuses on the code improvement or optimiza-

tion techniques used to produce efficient code. Chapter 15 of the current text, contained entirely

on the PLP CD, provides an overview of code improvement. Since most programmers will never

write the back end of a compiler, the goal of Chapter 15 is more to convey a sense of what the com-

piler does than exactly how it does it. Programmers who understand this material will be in a better

position to “work with” the compiler, knowing what is possible, what to expect in common cases,

and how to avoid programming idioms that are hard to optimize. Topics include local and “global”

(procedure-level) redundancy elimination, data flow analysis, loop optimization, and register allo-

cation.





14Building a Runnable Program

As noted in Section 1.6, the various phases of compilation are commonly
grouped into a front end responsible for the analysis of source code and a back end
responsible for the synthesis of target code. Chapters 2 and 4 discussed the work
of the front end, culminating in the construction of a syntax tree. The current
chapter turns to the work of the back end, and specifically to code generation,
assembly, and linking. We will continue with code improvement in Chapter 15.

In Chapters 6 through 9, we often discussed the code that a compiler would
generate to implement various imperative language features. Now we will look
at how the compiler produces that code from a syntax tree, and how it combines
the output of multiple compilations to produce a runnable program. We begin
in Section 14.1 with a more detailed overview of the work of program synthesis
than was possible in Chapter 1. We focus in particular on one of several plausible
ways of dividing that work into phases. In Section 14.2 we then consider the many
possible forms of intermediate code passed between these phases. On the PLP CD
we provide a bit more detail on two concrete examples: Diana, commonly used
by Ada compilers, and RTL, used by the GNU compilers.

In Section 14.3 we discuss the generation of assembly code from an abstract
syntax tree, using attribute grammars as a formal framework. In Section 14.4 we
discuss the internal organization of binary object files and the layout of programs
in memory. Section 14.5 describes assembly. Section 14.6 considers linking.

14.1 Back-End Compiler Structure

As we noted in Chapter 4, there is less uniformity in back-end compiler structure
than there is in front-end structure. Even such unconventional compilers as text
processors, source-to-source translators, and VLSI layout tools must scan, parse,
and analyze the semantics of their input. When it comes to the back end, how-
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ever, even compilers for the same language on the same machine can have very
different internal structure.

As we shall see in Section 14.2, different compilers may use different interme-
diate forms to represent a program internally. Depending on the preferences of
the programmers building a compiler, the constraints under which those pro-
grammers are working, and the expected user community, compilers may also
differ dramatically in the forms of code improvement they perform. A simple
compiler, or one designed for speed of compilation rather than speed of target
code execution (a “just-in-time” compiler, for example) may not do much im-
provement at all. A just-in-time or “load-and-go” compiler (one that compiles
and then executes a program as a single high level operation, without writing the
target code to a file) may not use a separate linker. In many compilers, much or
all of the code generator may be written automatically by a tool (a “code gen-
erator generator”) that takes a formal description of the target machine as in-
put [GFH82].

14.1.1 A Plausible Set of Phases

Figure 14.1 illustrates a plausible seven-phase structure for a conventional com-EXAMPLE 14.1
Phases of compilation piler. The first three phases (scanning, parsing, and semantic analysis) are

language-dependent; the last two (target code generation and machine-specific
code improvement) are machine-dependent, and the middle two (intermediate
code generation and machine-independent code improvement) are (to first ap-
proximation) dependent on neither the language nor the machine. The scanner
and parser drive a set of action routines that build a syntax tree. The semantic
analyzer traverses the tree, performing all static semantic checks and initializing
various attributes (mainly symbol table pointers and indications of the need for
dynamic checks) of use to the back end. �

While certain code improvements can be performed on syntax trees, a less hi-
erarchical representation of the program makes most code improvement easier.
Our example compiler therefore includes an explicit phase for intermediate code
generation. The code generator begins by grouping the nodes of the tree into
basic blocks, each of which consists of a maximal-length set of operations that
should execute sequentially at run time, with no branches in or out. It then cre-
ates a control flow graph in which the nodes are basic blocks and the arcs represent
interblock control flow. Within each basic block, operations are represented as in-
structions for an idealized RISC machine with an unlimited number of registers.
We will call these virtual registers. By allocating a new one for every computed
value, the compiler can avoid creating artificial connections between otherwise
independent computations too early in the compilation process.

In Section 1.6 we used a simple greatest common divisor (GCD) program toEXAMPLE 14.2
GCD program abstract
syntax tree (reprise)

illustrate the phases of compilation. The syntax tree for this program appeared in
Figure 1.4; it is reproduced here (in slightly altered form) as Figure 14.2. A cor-
responding control flow graph appears in Figure 14.3. We will discuss techniques
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Figure 14.1 A plausible structure for the compiler back end. Here we have shown a sharper
separation between semantic analysis and intermediate code generation than we considered in
Chapter 1 (see Figure 1.2, page 23). Machine-independent code improvement employs an inter-
mediate form that resembles the assembly language for an idealized machine with an unlimited
number of registers. Machine-specific code improvement—register allocation and instruction
scheduling in particular—employs the assembly language of the target machine. The dashed line
shows a common alternative “break point” between the front end and back end of a two-pass
compiler.

to generate this graph in Section 14.3 and Exercise 14.6. Additional examples of
control flow graphs will appear in Chapter 15. �

The second phase of the back end, machine-independent code improvement,
performs a variety of transformations on the control flow graph. It modifies
the instruction sequence within each basic block to eliminate redundant loads,
stores, and arithmetic computations; this is local code improvement. It also iden-
tifies and removes a variety of redundancies across the boundaries between basic
blocks within a subroutine; this is global code improvement. As an example of the
latter, an expression whose value is computed immediately before an if state-
ment need not be recomputed within the code that follows the else. Likewise an
expression that appears within the body of a loop need only be evaluated once
if its value will not change in subsequent iterations. Some global improvements
change the number of basic blocks and/or the arcs among them.
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Figure 14.2 Syntax tree and symbol table for the GCD program. The only difference from Figure 1.4 is the addition of
explicit null nodes to terminate statement lists.

It is worth noting that “global” code improvement typically considers only the
current subroutine, not the program as a whole. Much recent research in com-
piler technology has been aimed at “truly global” techniques, known as inter-
procedural code improvement. Since programmers are generally unwilling to give
up separate compilation (recompiling hundreds of thousands of lines of code is a
very time-consuming operation), a practical interprocedural code improver must
do much of its work at link time. One of the (many) challenges to be overcome is
to develop a division of labor and an intermediate representation that allow the
compiler to do as much work as possible during (separate) compilation but leave
enough of the details undecided that the link-time code improver is able to do its
job.

Following machine-independent code improvement, the next phase of compi-
lation is target code generation. This phase strings the basic blocks together into
a linear program, translating each block into the instruction set of the target ma-
chine and generating branch instructions (or “fall-throughs”) that correspond to
the arcs of the control flow graph. The output of this phase differs from real as-
sembly language primarily in its continued reliance on virtual registers. As long
as the pseudoinstructions of the intermediate form are reasonably close to those
of the target machine, this phase of compilation, though tedious, is more or less
straightforward.
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Figure 14.3 Control flow graph for the GCD program. Code within basic blocks is shown
in the pseudo-assembly notation of Section 5.4.5, with a different virtual register (here named
v1 . . v13) for every computed value. Registers a1, a2, and rv are used to pass values to and
from subroutines.

To reduce programmer effort and increase the ease with which a compiler can
be ported to a new target machine, target code generators are often generated
automatically from a formal description of the machine. Automatically generated
code generators all rely on some sort of pattern-matching algorithm to replace
sequences of intermediate code instructions with equivalent sequences of target
machine instructions. References to several such algorithms can be found in the
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Bibliographic Notes at the end of this chapter; details are beyond the scope of this
book.

The final phase of our example compiler structure consists of register al-
location and instruction scheduling, both of which can be thought of as
machine-specific code improvement. Register allocation requires that we map the
unlimited virtual registers employed in earlier phases onto the bounded set of
architectural registers available in the target machine. If there aren’t enough ar-
chitectural registers to go around, we may need to generate additional loads and
stores to multiplex a given architectural register among two or more virtual reg-
isters. As described in Section 5.5, instruction scheduling consists of reordering
the instructions of each basic block in an attempt to fill the pipeline(s) of the
target machine.

14.1.2 Phases and Passes

In Section 1.6 we defined a pass of compilation as a phase or sequence of phases
that is serialized with respect to the rest of compilation: it does not start until
previous phases have completed, and it finishes before any subsequent phases
start. If desired, a pass may be written as a separate program, reading its input
from a file and writing its output to a file. Two-pass compilers are particularly
common. They may be divided between the front end and the back end (i.e.,
between semantic analysis and intermediate code generation) or between inter-
mediate code generation and global code improvement. In the latter case, the first
pass is still commonly referred to as the front end and the second pass as the back
end.

Like most compilers, our example generates symbolic assembly language as its
output (a few compilers, including those written by IBM for the PowerPC, gen-
erate binary machine code directly). The assembler (not shown in Figure 14.1)
behaves as an extra pass, assigning addresses to fragments of data and code, and
translating symbolic operations into their binary encodings. In most cases, the
input to the compiler will have consisted of source code for a single compilation
unit. After assembly, the output will need to be linked to other fragments of the
application, and to various preexisting subroutine libraries. Some of the work of
linking may be delayed until load time (immediately prior to program execution)
or even until run time (during program execution). We will discuss assembly and
linking in Sections 14.5 through 14.7.

14.2 Intermediate Forms

An intermediate form (IF) provides the connection between the front end and
the back end of the compiler, and continues to represent the program during the
various back-end phases.

IFs can be classified in terms of their level, or degree of machine dependence.
High-level IFs are often based on trees or directed acyclic graphs (DAGs) that
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directly capture the hierarchical structure of modern programming languages.
A high-level IF facilitates certain kinds of machine-independent code improve-
ment, incremental program updates (e.g., in a language-based editor), direct in-
terpretation, and other operations based strongly on the structure of the source.
Because the permissible structure of a tree can be described formally by a set of
productions (as described in Section 4.6), manipulations of tree-based forms can
be written as attribute grammars.

Stack-based languages are another common type of high-level IF. We saw two
examples of these languages in Section 1.4: the P-code generated by many early
Pascal compilers and the byte code used by Java. Stack-based IFs are both simple
and compact. Though written in linear form, they closely resemble the result
of enumerating tree nodes in post-order. Operations in a stack-based language
obtain their operands from, and return their result to, a common implicit stack.

The most common medium-level IFs consist of three-address instructions for
a simple idealized machine, typically one with an unlimited number of registers.

DESIGN & IMPLEMENTATION

Stack-based IFs
For Pascal, the simplicity of P-code interpreters was a major contributing fac-
tor to the language’s popularity: Pascal was easy to port to a wide variety of ma-
chines. For Java, the compactness of byte code helps reduce the time required
to send program fragments (applets) over low-bandwidth Internet links. Un-
fortunately, stack-based languages do not lend themselves well to many im-
portant code improvements, especially for modern machines. As a result they
tend not to be used in most conventional compilers.

DESIGN & IMPLEMENTATION

Postscript
Perhaps the most important use of stack-based languages today occurs in
document preparation. Many document compilers (TEX, troff, Microsoft
Word, etc.) generate Postscript as their target language (most employ some
special purpose intermediate language as well, and have multiple back ends,
so they can also generate other target languages). Postscript is stack-based. It is
portable, compact, and easy to generate. It is also written in ASCII, so it can be
read (albeit with some difficulty) by human beings. Postscript interpreters are
embedded in most professional-quality printers. Issues of code improvement
are relatively unimportant: most of the time required for printing is consumed
by network delays, mechanical paper transport, and data manipulations em-
bedded in (optimized) library routines; interpretation time is seldom a bot-
tleneck. Compactness, on the other hand, is crucial, because it contributes to
network delays.
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Since the typical instruction specifies two operands, an operator, and a destina-
tion, three-address instructions are sometimes called quadruples. In older com-
pilers, one may sometimes find an intermediate form consisting of triples or in-
direct triples in which destinations are specified implicitly: the index of a triple in
the instruction stream serves as the name of the result, and an operand is gener-
ally named by specifying the index of the triple that produced it.

Different compilers use different IFs. Many compilers use more than one IF
internally, though in the common two-pass organization one of these is distin-
guished as “the” intermediate form by virtue of being the externally visible con-
nection between the front end and the back end. In the example of Section 14.1.1,
the syntax trees passed from semantic analysis to intermediate code generation
constitute a high-level IF. Control flow graphs containing pseudo-assembly lan-
guage (passed in and out of machine-independent code improvement) are a
medium-level IF. The assembly language of the target machine (initially with
virtual registers; later with architectural registers) serves as a low-level IF.

Compilers that have back ends for several different target architectures tend to
do as much work as possible on a high- or medium-level IF, so that the machine-
independent parts of the code improver can be shared by different back ends.
By contrast, some (but not all) compilers that generate code for a single archi-
tecture perform most code improvement on a comparatively low-level IF, closely
modeled after the assembly language of the target machine.

In a multilanguage compiler family, an IF that is independent of both source
language and target machine allows a software vendor who wishes to sell compil-
ers for n languages on m machines to build just n front ends and m back ends,
rather than n × m integrated compilers. Even in a single-language compiler fam-
ily, a common, possibly language-dependent IF simplifies the task of porting to
a new machine by isolating the code that needs to be changed. In a rich pro-
gram development environment, there may be a variety of tools in addition to the
passes of the compiler that understand and operate on the IF. Examples include
editors, assemblers, linkers, debuggers, pretty-printers, and version-management
software. In a language system capable of interprocedural (whole-program) code
improvement, separately compiled modules and libraries may be compiled only
to the IF, rather than the target language, leaving the final stages of compilation
to the linker.

To be stored in a file, an IF requires a linear representation. Sequences of
quadruples are naturally linear. Tree-based IFs can be linearized via ordered tra-
versal. Structures like control flow graphs can be linearized by replacing pointers
with indices relative to the beginning of the file.

IN MORE DEPTH

On the PLP CD we consider a pair of widely used IFs. The first is a high-level
tree-based form called Diana [GWEB83], used by most Ada compilers. The sec-
ond is a medium-level IF called RTL (Register Transfer Language), used by gcc
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Figure 14.4 A simpler, nonoptimizing compiler structure, assumed in Section 14.3. The target
code generation phase closely resembles the intermediate code generation phase of Figure 14.1.

and most of the Free Software Foundation’s other GNU compilers (including the
Ada 95 Translator, gnat).

14.3 Code Generation

The back end of Figure 14.1 is too complex to present in any detail in a singleEXAMPLE 14.3
Simpler compiler structure chapter. To limit the scope of our discussion, we will content ourselves in this

chapter with producing correct but naive code. This choice will allow us to con-
sider a significantly simpler back end. Starting with the structure of Figure 14.1,
we drop the machine-independent code improver and then merge intermediate
and target code generation into a single phase. This merged phase generates pure,
linear assembly language; because we are not performing code improvements
that alter the program’s control flow, there is no need to represent that flow ex-
plicitly in a control flow graph. We also adopt a much simpler register allocation
algorithm, which can operate directly on the syntax tree prior to code generation,
eliminating the need for virtual registers and the subsequent mapping onto archi-
tectural registers. Finally, we drop instruction scheduling. The resulting compiler
structure appears in Figure 14.4. Its code generation phase closely resembles the
intermediate code generation of Figure 14.1. �

14.3.1 An Attribute Grammar Example

Like semantic analysis, intermediate code generation can be formalized in terms
of an attribute grammar, though it is most commonly implemented via hand-



770 Chapter 14 Building a Runnable Program

reg names : array [0..k−1] of register name := [“r1”, “r2”, . . . , “rk”]
–– ordered set of temporaries

program −→ id stmt
� stmt.next free reg := 0
� program.code := [“main:”] + stmt.code + [“goto exit”]
� program.name := id.stp→name

while : stmt1 −→ expr stmt2 stmt3

� expr.next free reg := stmt2.next free reg := stmt3.next free reg := stmt1.next free reg
� L1 := new label( ); L2 := new label( )

stmt1.code := [“goto” L1] + [L2 “:”] + stmt2.code + [L1 “:”] + expr.code
+ [“if” expr.reg “goto” L2] + stmt3.code

if : stmt1 −→ expr stmt2 stmt3 stmt4

� expr.next free reg := stmt2.next free reg := stmt3.next free reg := stmt4.next free reg :=
stmt1.next free reg

� L1 := new label( ); L2 := new label( )
stmt1.code := expr.code + [“if” expr.reg “goto” L1] + stmt3.code + [“goto” L2]

+ [L1 “:”] + stmt2.code + [L2 “:”] + stmt4.code

assign : stmt1 −→ id expr stmt2

� expr.next free reg := stmt2.next free reg := stmt1.next free reg
� stmt1.code := expr.code + [id.stp→name “:=” expr.reg] + stmt2.code

read : stmt1 −→ id1 id2 stmt2

� stmt1.code := [“a1 := &” id1.stp→name] –– file
+ [“call” if id2.stp→type = int then “readint” else . . . ]
+ [id2.stp→name “:= rv”] + stmt2.code

write : stmt1 −→ id expr stmt2

� expr.next free reg := stmt2.next free reg := stmt1.next free reg
� stmt1.code := [“a1 := &” id.stp→name] –– file

+ [“a2 :=” expr.reg] –– value
+ [“call” if id.stp→type = int then “writeint” else . . . ] + stmt2.code

writeln : stmt1 −→ id stmt2

� stmt1.code := [“a1 := &” id.stp→name] + [“call writeln”] + stmt2.code

null : stmt −→ ε
� stmt.code := nil

‘<>’ : expr1 −→ expr2 expr3

� handle op(expr1, expr2, expr3, “ �=”)

Figure 14.5 Attribute grammar to generate code from a syntax tree. Square brackets delimit individual target instructions.
Juxtaposition indicates concatenation within instructions; the “+” operator indicates concatenation of instruction lists. The
handle op macro is used in three of the attribute rules. (continued)

written ad hoc traversal of a syntax tree. We present an attribute grammar here
for the sake of clarity.

In Figure 1.5 (page 29) we presented naive MIPS assembly language for the
GCD program. We will use our attribute grammar example to generate a similar
version here, in pseudo-assembly notation. Because this notation is now meant
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‘>’ : expr1 −→ expr2 expr3

� handle op(expr1, expr2, expr3, “>”)

‘−’ : expr1 −→ expr2 expr3

� handle op(expr1, expr2, expr3, “−”)

id : expr −→ ε

� expr.reg := reg names[expr.next free reg mod k]
� expr.code := [expr.reg “:=” expr.stp→name]

macro handle op(ref result, L operand, R operand, op : syntax tree node)
result.reg := L operand.reg
L operand.next free reg := result.next free reg
R operand.next free reg := result.next free reg + 1
if R operand.next free reg < k

spill code := restore code := nil
else

spill code := [“*sp :=” reg name[R operand.next free reg mod k]]
+ [“sp := sp − 4”]

restore code := [“sp := sp + 4”]
+ [reg names[R operand.next free reg mod k] “:= *sp”]

result.code := L operand.code + spill code + R operand.code
+ [result.reg “:=” L operand.reg op R operand.reg] + restore code

Figure 14.5 (continued)

to represent target code, rather than medium- or low-level intermediate code,
we will assume a fixed, limited register set reminiscent of real machines. We will
reserve several registers (a1, a2, sp, rv) for special purposes; others (r1 . . rk) will
be available for temporary values and expression evaluation.

Figure 14.5 contains a fragment of our attribute grammar. To save space, weEXAMPLE 14.4
An attribute grammar for
code generation

have shown only those productions that actually appear in Figure 14.2. As in
Chapter 4, notation like while : stmt on the left-hand side of a production in-
dicates that a while node in the syntax tree is one of several kinds of stmt node;
it may serve as the stmt in the right-hand side of its parent production. In our
attribute grammar fragment, program, expr, and stmt all have a synthesized at-
tribute code that contains a sequence of instructions. Program has a synthesized
attribute name of type string. Id has a synthesized attribute stp that points to
the symbol table entry for the identifier. Expr has a synthesized attribute reg that
indicates the register that will hold the value of the computed expression at run
time. Expr and stmt have an inherited attribute next free reg that indicates the
next register (in an ordered set of temporaries) that is available for use (i.e., that
will hold no useful value at run time) immediately before evaluation of a given
expression or statement. �

Because we use a symbol table in our example, and because symbol tables
lie outside the formal attribute grammar framework, we must augment our at-
tribute grammar with some extra code for storage management. Specifically,
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prior to evaluating the attribute rules of Figure 14.5, we must traverse the symbol
table in order to calculate stack frame offsets for local variables and parameters
(none of which occur in the GCD program) and in order to generate assembler
directives to allocate space for global variables (of which our program has two).
Storage allocation and other assembler directives will be discussed in more detail
in Section 14.5.

14.3.2 Register Allocation

Evaluation of the rules of the attribute grammar itself consists of two main tasks.
In each subtree we first determine the registers that will be used to hold various
quantities at run time; then we generate code. Our naive register allocation strat-EXAMPLE 14.5

Stack-based register
allocation

egy uses the next free reg inherited attribute to manage registers r1 . . rk as an
expression evaluation stack. To calculate the value of (a + b) × (c − (d / e)) for
example, we would generate the following.

r1 := a –– push a
r2 := b –– push b
r1 := r1 + r2 –– add
r2 := c –– push c
r3 := d –– push d
r4 := e –– push e
r3 := r3 / r4 –– divide
r2 := r2 − r3 –– subtract
r1 := r1 × r2 –– multiply

Allocation of the next register on the “stack” occurs in the production id :
expr −→ ε , where we use expr.next free reg to index into reg names, the ar-
ray of temporary register names, and in macro handle op, where we increment
next free reg to make this register unavailable during evaluation of the right-
hand operand. There is no need to “pop” the “register stack” explicitly; this hap-
pens automatically when the attribute evaluator returns to a parent node and uses
the parent’s (unmodified) next free reg attribute. In our example grammar, left-
hand operands are the only constructs that tie up a register during the evaluation
of anything else. In a more complete grammar, other long-term uses of registers
would probably occur in constructs like for loops (for the step size, index, and
bound).

In a particularly complicated fragment of code it is possible to run out of ar-
chitectural registers. In this case we must spill one or more registers to mem-
ory. Our naive register allocator pushes a register onto the program’s subroutine
call stack, reuses the register for another purpose, and then pops the saved value
back into the register before it is needed again. In effect, architectural registers
hold the top k elements of an expression evaluation stack of effectively unlimited
size. �

It should be emphasized that our register allocation algorithm, while correct,
makes very poor use of machine resources. We have made no attempt to reor-
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ganize expressions to minimize the number of registers used, or to keep com-
monly used variables in registers over extended periods of time (avoiding loads
and stores). If we were generating medium-level intermediate code, instead of
target code, we would employ virtual registers, rather than architectural ones,
and would allocate a new one every time we needed it, never reusing one to hold
a different value. Mapping of virtual registers to architectural registers would oc-
cur much later in the compilation process.

Target code for the GCD program appears in Figure 14.6. The first few linesEXAMPLE 14.6
GCD program target code are generated during symbol table traversal, prior to attribute evaluation. At-

tribute program.name might be passed to the assembler, to tell it the name of
the file into which to place the runnable program. A production-quality com-
piler would probably also generate assembler directives to embed symbol-table
information in the target program. As in Figure 1.5, the quality of our code is
very poor. We will investigate techniques to improve it in Chapter 15. In the
remaining sections of the current chapter we will consider assembly and link-
ing. �

CHECK YOUR UNDERSTANDING

1. What is a code generator generator? Why might it be useful?

2. What is a basic block? A control flow graph?

3. What are virtual registers? What purpose do they serve?

4. What is the difference between local and global code improvement?

5. What is register spilling?

6. Explain what is meant by the “level” of an intermediate form (IF). What are
the comparative advantages and disadvantages of high-, medium-, and low-
level IFs?

7. What is the IF most commonly used in Ada compilers?

8. Name two advantages of a stack-based IF. Name one disadvantage.

9. Explain the rationale for basing a family of compilers (several languages, sev-
eral target machines) on a single IF.

10. Outline some of the major design alternatives for back-end compiler organi-
zation and structure.

11. Why might a compiler employ more than one IF?
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–– first few lines generated during symbol table traversal
.data –– begin static data

i: .word 0 –– reserve one word to hold i
j: .word 0 –– reserve one word to hold j

.text –– begin text (code)
–– remaining lines accumulated into program.code

main:
a1 := &input –– “input” and “output” are file control blocks

–– located in a library, to be found by the linker
call readint –– “readint”, “writeint”, and “writeln” are library subroutines
i := rv
a1 := &input
call readint
j := rv
goto L1

L2: r1 := i –– body of while loop
r2 := j
r1 := r1 > r2
if r1 goto L3
r1 := j –– “else” part
r2 := i
r1 := r1 − r2
j := r1
goto L4

L3: r1 := i –– “then” part
r2 := j
r1 := r1 − r2
i := r1

L4:
L1: r1 := i –– test terminating condition

r2 := j
r1 := r1 �= r2
if r1 goto L2
a1 := &output
r1 := i
a2 := r1
call writeint
a1 := &output
call writeln
goto exit –– return to operating system

Figure 14.6 Target code for the GCD program, generated from the syntax tree of Figure 14.2,
using the attribute grammar of Figure 14.5.
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14.4 Address Space Organization

Assemblers, linkers, and loaders typically operate on a pair of related file formats:
relocatable object code and executable object code. Relocatable object code is ac-
ceptable as input to a linker; multiple files in this format can be combined to
create an executable program. Executable object code is acceptable as input to a
loader: it can be brought into memory and run. A relocatable object file includes
the following descriptive information.

import table: Identifies instructions that refer to named locations whose ad-
dresses are unknown, but are presumed to lie in other files yet to be linked
to this one.

relocation table: Identifies instructions that refer to locations within the current
file, but that must be modified at link time to reflect the offset of the current
file within the final, executable program.

export table: Lists the names and addresses of locations in the current file that
may be referred to in other files.

Imported and exported names are known as external symbols.
An executable object file is distinguished by the fact that it contains no ref-

erences to external symbols. It also defines a starting address for execution. An
executable file may or may not be relocatable, depending on whether it contains
the tables above.

Internally, an object file is typically divided into several sections, each of which
is handled differently by the linker, loader, or operating system. The first section
includes the import, export, and relocation tables, together with an indication of
how much space will be required by the program for noninitialized static data.
Other sections commonly include code (instructions), read-only data (constants,
jump tables for case statements, etc.), initialized but writable static data, and
high-level symbol table information saved by the compiler. The initial descriptive
section is used by the linker and loader. The high-level symbol table section is
used by debuggers and performance profilers. Neither of these tables is usually
brought into memory at run time; neither is needed by most running programs
(an exception occurs in the case of programs that employ reflection mechanisms
to examine their own type structure).

In its runnable (loaded) form, a program is typically organized into several
segments. On some machines (e.g., the x86 or PA-RISC), segments are visible
to the assembly language programmer, and may be named explicitly in instruc-
tions. More commonly on modern machines, segments are simply subsets of the
address space that the operating system manages in different ways. Two or three
of them—code, constants, and initialized data—correspond to sections of the
object file. Code and constants are usually read-only, and are often combined
in a single segment; the operating system arranges to receive an interrupt if the
program attempts to modify them. (In response to such an interrupt, it will
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most likely print an error message and terminate the program.) Initialized data
is writable. At load time, the operating system either reads code, constants, and
initialized data from disk, or arranges to read them in at run time in response to
“invalid access” (page fault) interrupts or dynamic linking requests.

In addition to code, constants, and initialized data, the typical running pro-
gram has several additional segments:

uninitialized data: May be allocated at load time or on demand in response to
page faults. Usually zero-filled, both to provide repeatable symptoms for pro-
grams that erroneously read data they have not yet written, and to enhance
security on multiuser systems by preventing a program from reading the con-
tents of pages written by previous users.

stack: May be allocated in some fixed amount at load time. More commonly, is
given a small initial size and is then extended automatically by the operating
system in response to (faulting) accesses beyond the current segment end.

heap: Like stack, may be allocated in some fixed amount at load time. More
commonly, is given a small initial size and is then extended in response to
explicit requests (via system call) from heap-management library routines.

files: In many systems, library routines allow a program to map a file into mem-
ory. The map routine interacts with the operating system to create a new seg-
ment for the file, and returns the address of the beginning of the segment. The
contents of the segment are usually fetched from disk on demand, in response
to page faults.

dynamic libraries: Modern operating systems typically arrange for most pro-
grams to share a single copy of the code for popular libraries (Section 14.7).
From the point of view of an individual process, each such library tends to oc-
cupy a pair of segments: one for the shared code and one for a private copy of
any writable data it may use.

14.5 Assembly

Some compilers translate source files directly into object files acceptable to the
linker. More commonly, they generate assembly language that must subsequently
be processed by an assembler to create an object file.

In our examples we have consistently employed a symbolic (textual) notation
for code. Within a compiler, the representation would not be ASCII text, but
it would still be symbolic, most likely consisting of records and linked lists. To
translate this symbolic representation into executable code, we must

1. replace opcodes and operands with their machine language encodings, and

2. replace uses of symbolic names with actual addresses.

These are the principal tasks of an assembler.
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In the early days of computing, most programmers wrote in assembly lan-
guage. To simplify the more tedious and repetitive aspects of assembly program-
ming, assemblers often provided extensive macro expansion facilities. With the
move to high-level languages, such programmer-centric features have largely dis-
appeared. Most assembly language programs now are written by compilers. At
the same time, the evolution of compiler technology and the development of
RISC machines have pushed new features into the assembler. In particular, some
assemblers now perform some of the machine-specific parts of code improve-
ment, such as instruction scheduling, register allocation, and peephole optimiza-
tion (to be described in Section 15.2).

When passing assembly language from the compiler to the assembler, it makesEXAMPLE 14.7
Assembly as a final
compiler pass

sense to use some internal (records and linked lists) representation. At the same
time, we must provide a textual front end to accommodate the occasional need
for human input:

The text-based assembler front end simply translates ASCII source into internal
symbolic form. By sharing the assembler back end, the compiler and assembler
front end avoid duplication of effort. For debugging purposes, the compiler will
generally have an option to dump a textual representation of the code it passes to
the assembler. �

An alternative organization has the compiler generate object code directly:EXAMPLE 14.8
Direct generation of object
code

This organization gives the compiler a bit more flexibility: operations normally
performed by an assembler (e.g., assignment of addresses to variables) can be
performed earlier if desired. Because there is no separate assembly pass, the over-
all translation to object code may be slightly faster. The stand-alone assembler can
be relatively simple. If it is used only for small, special purpose code fragments,
it probably doesn’t need to perform instruction scheduling or other machine-
specific code improvement. Using a disassembler instead of an assembly language
dump from the compiler ensures that what the programmer sees corresponds
precisely to what is in the object file. If the compiler uses a fancier assembler as
a back end, then program modifications effected by the assembler will not be
visible in the assembly language dumped by the compiler. �
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14.5.1 Emitting Instructions

The most basic task of the assembler is to translate symbolic representations of
instructions into binary form. In some assemblers this is an entirely straight-
forward task, because there is a one-one correspondence between mnemonic
operations and instruction opcodes. Many assemblers, however, extend the in-
struction set in minor ways (sometimes a large number of minor ways) to make
the assembly language easier for human beings to read. Most MIPS assemblers,
for example, provide a large number of pseudoinstructions that translate into
different real instructions depending on their arguments, or that correspond to
multi-instruction sequences. Here are a few examples.

� Many of the arithmetic/logic instructions come in several variants, dependingEXAMPLE 14.9
Instruction variants on whether they take one of their operands from an “immediate” constant

field within the instruction, as opposed to taking both from registers. Strictly
speaking, these are different instructions; the assembler picks the right one
based on the syntax of the operands:

add $10, $8, $9 -- r10 := r8 + r9

is translated as is, while

add $10, $8, 0x12 becomes addi $10, $8, 0x12 �

� Some pseudoinstructions actually generate multi-instruction sequences. ForEXAMPLE 14.10
Pseudoinstruction
expansion

example, the pseudoinstruction

div $10, $8, $9

is meant to divide register 8 by register 9 and put the result in register 10. In ac-
tuality, the assembler translates it into the following 11-instruction sequence:

div $8, $9 -- LO := quotient; HI := remainder

bne $9, $0, L1 -- branch if divisor not zero

nop -- branch delay

break 0x7 -- trap to operating system

L1: li $1, -1

bne $9, $1, L2 -- branch if divisor not -1

lui $1, 0x8000 -- $1 := 0x80000000

bne $8, $1, L2 -- branch if dividend not minint

nop -- branch delay

break 0x6 -- overflow; trap to OS

L2: mflo $10 -- $10 := quotient

In most cases, the hardware integer divide instruction generates an exact quo-
tient and remainder into the special registers LO and HI. The exceptions are
division by zero and division of the largest-magnitude negative number (for
which two’s complement arithmetic has no positive counterpart) by −1. Soft-
ware must test for these cases; the hardware simply produces invalid results,
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silently. Assuming the tests succeed, the instruction sequence ends by moving
the quotient to the desired target register. �

� Because instructions are 32 bits in length, a 32-bit constant cannot be loadedEXAMPLE 14.11
Two-instruction loads into a register with a single instruction:

li $14, 0x12345abc becomes lui $14, 0x1234

ori $14, 0x5abc

The mnemonics li, lui, and ori stand for “load immediate,” “load upper
immediate,” and “or immediate.” The lui instruction loads a 16-bit operand
into the high-order 16 bits of the target register, and sets the low-order 16 bits
to zero. �

� The assembler supports a large suite of conditional branch pseudoinstruc-EXAMPLE 14.12
Nontrivial conditional
branches

tions, many of which compare a register to a constant or to another register,
and branch on the result. The hardware, on the other hand, can only compare
a register to zero, or test two registers for equality. Thus

bge $9, 0x10, foo becomes slti $1, $9, 0x10

beq $1, $0, foo

The slti instruction sets its destination register to one if the source register
is less than the immediate operand, or to zero otherwise. �
In addition to translating from symbolic to binary instruction representations,EXAMPLE 14.13

Assembler directives most assemblers respond to a variety of directives. Here are some examples from
the MIPS assembler.

segment switching: The .text directive indicates that subsequent instructions
and data should be placed in the code (text) segment. The .data directive
indicates that subsequent instructions and data should be placed in the ini-
tialized data segment. (It is possible, though uncommon, to put instructions
in the data segment, or data in the code segment.) The.space n directive indi-
cates that n bytes of space should be reserved in the uninitialized data segment.
(This latter directive is usually preceded by a label.)

data generation: The.byte,.half,.word,.float, and.double directives each
take a sequence of arguments, which they place in successive locations in the
current segment of the output program. They differ in the types of operands.
The related.ascii directive takes a single character string as argument, which
it places in consecutive bytes.

symbol identification: The.globl name directive indicates that name should be
entered into the table of exported symbols.

alignment: The .align n directive causes the subsequent output to be aligned
at an address evenly divisible by 2n. �

In effect, most RISC assemblers implement a virtual machine whose instruc-
tion set is “nicer” than that of the real hardware. In addition to pseudoinstruc-
tions, the virtual machine may have nondelayed branches. If desired, the com-
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piler or assembly language programmer can ignore the existence of branch de-
lays. The assembler will move nearby instructions to fill delay slots if possible,
or generate nops if necessary. (To minimize the number of nops, it may still be
desirable for the compiler to place independent instructions near the branch,
where the assembler will be able to find them. To support systems programmers,
the assembler must also make it possible to specify [e.g., with a .set noreorder
directive] that delay slots have already been filled.) Note that the task of filling
branch delays is substantially easier in the presence of nullifying branches (Sec-
tion 5.5.1). Assuming that the target of the branch lies within the current file, and
is not itself a branch, we can always fill the delay slot with a duplicate of the target
instruction, and increment the target address.

Some assemblers go beyond the simple filling of branch delays to provide the
final pass of general purpose instruction scheduling. Though this job can be han-
dled by the compiler, the existence of pseudoinstructions such as the division ex-
ample above argues strongly for doing it in the assembler. In addition to having
two branch delays that might be filled by neighboring instructions, the expanded
division sequence can be used as a source of instructions to fill nearby branch,
load, or functional unit delays.

14.5.2 Assigning Addresses to Names

Like compilers, assemblers commonly work in several phases. If the input is tex-
tual, an initial phase scans and parses the input, and builds an internal represen-
tation. In the most common organization there are two additional phases. The
first identifies all internal and external (imported) symbols, assigning locations
to the internal ones. This phase is complicated by the fact that the length of some
instructions (on a CISC machine) or the number of real instructions produced
by a pseudoinstruction (on a RISC machine) may depend on the number of sig-
nificant bits in an address. Given values for symbols, the final phase produces
object code.

Within the object file, any symbol mentioned in a .globl directive must ap-
pear in the table of exported symbols, with an entry that indicates the symbol’s
address. Any symbol referred to in a directive or an instruction, but not defined
in the input program, must appear in the table of imported symbols, with an
entry that identifies all places in the code at which such references occur. Finally,
any instruction or datum whose value depends on the placement of the current
file within a final executable program must be listed in the relocation table.

Traditionally, assemblers for CISC machines distinguished between absoluteEXAMPLE 14.14
Encoding of addresses in
object files

and relocatable words in an object file. Absolute words are known at assembly
time; they need not be changed by the linker. Examples include constants and
register-register instructions. A relocatable word, on the other hand, must be
modified by adding to it the address within the final program of the code or
data segment of the current object file. A CISC jump instruction, for example,
might consist of a one-byte jmp opcode followed by a four-byte target address.
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For a local target, the address bytes in the object file would contain the symbol’s
offset within the file. The linker would finalize the address by adding the offset of
the file’s code segment within the final program.

On RISC machines, this single form of relocation no longer suffices. Addresses
are encoded into instructions in many different ways, and these encodings must
be reflected in the relocation table and the import table. On a MIPS processor,
for example, a j (jump) instruction has a 26-bit target field. The processor left-
shifts this field by 2 bits and tacks on the high-order 4 bits of the address of
the instruction in the delay slot. To relocate such an instruction, the linker must
right-shift and left-truncate the address of the file’s code segment, add it into
the low-order 26 bits of the instruction, and verify that the target and delay slot
instructions share the same top 4 address bits. In a similar vein, a two-instruction
load of a 32-bit quantity (as described in Example 14.11) requires the linker to
recalculate the 16-bit operands of both instructions. �

14.6 Linking

Most language implementations—certainly all that are intended for the construc-
tion of large programs—support separate compilation: fragments of the program
can be compiled and assembled more or less independently. After compilation,
these fragments (known as compilation units) are “glued together” by a linker. In
many languages and environments, the programmer explicitly divides the pro-
gram into modules or files, each of which is separately compiled. More integrated
environments may abandon the notion of a file in favor of a database of subrou-
tines, each of which is separately compiled.

The task of a linker is to join together compilation units. A static linker does its
work prior to program execution, producing an executable object file. A dynamic
linker (described in Section 14.7) does its work after the program has been
brought into memory for execution.

Each of the compilation units of a program to be linked must be a relocatable
object file. Typically, some of these files will have been produced by compiling
fragments of the application being constructed, while others will be general pur-
pose library packages needed by the application. Since most programs make use
of libraries, even a “one-file” application typically needs to be linked.

Linking involves two subtasks: relocation and the resolution of external ref-
erences. Some authors refer to relocation as loading, and call the entire “join-
ing together” process “link-loading.” Other authors (including the current one)
use “loading” to refer to the process of bringing an executable object file into
memory for execution. On very simple machines, or on machines with very sim-
ple operating systems, loading entails relocation. More commonly, the operating
system uses virtual memory to give every program the impression that it starts at
some standard address (e.g., zero). In many systems loading also entails a certain
amount of linking (Section 14.7).
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Figure 14.7 Linking relocatable object files A and B to make an executable object file. A’s code section has been placed at
offset 0, with B’s code section immediately after, at offset 800. To allow the operating system to establish different protections
for the code and data segments, A’s data section has been placed at the next page boundary (offset 3000), with B’s data section
immediately after (offset 3500). External references to M and X have been set to use the appropriate addresses. Internal
references to L and Y have been updated by adding in the starting addresses of B’s code and data sections, respectively.

14.6.1 Relocation and Name Resolution

Each relocatable object file contains the information required for linking: the
import, export, and relocation tables. A static linker uses this information in a
two-phase process analogous to that described for assemblers in Section 14.5. In
the first phase, the linker gathers all of the compilation units together, chooses
an order for them in memory, and notes the address at which each will conse-
quently lie. In the second phase, the linker processes each unit, replacing un-
resolved external references with appropriate addresses, and modifying instruc-
tions that need to be relocated to reflect the addresses of their units. These phasesEXAMPLE 14.15

Static linking are illustrated pictorially in Figure 14.7. Addresses and offsets are assumed to be
written in hexadecimal notation, with a page size of 4K (100016) bytes. �

Libraries present a bit of a challenge. Many consist of hundreds of separately
compiled program fragments, most of which will not be needed by any particular
application. Rather than link the entire library into every application, the linker
needs to search the library to identify the fragments that are referenced from the
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main program. If these refer to additional fragments, then those must be included
also, recursively. Many systems support a special library format for relocatable
object files. A library in this format may contain an arbitrary number of code and
data sections, together with an index that maps symbol names to the sections in
which they appear.

14.6.2 Type Checking

Within a compilation unit, the compiler enforces static semantic rules. Across the
boundaries between units, it uses module headers to enforce the rules pertaining
to external references. In effect, the header for module M makes a set of promises
regarding M’s interface to its users. When compiling the body of M, the compiler
ensures that those promises are kept. Imagine what could happen, however, if
we compiled the body of M and then changed the numbers and types of para-
meters for some of the subroutines in its header file before compiling some user
module U . If both compilations succeed, then M and U will have very differ-
ent notions of how to interpret the parameters passed between them; while they
may still link together, chaos is likely to ensue at run time. To prevent this sort of
problem, we must ensure whenever M and U are linked together that both were
compiled using the same version of M’s header.

In most module-based languages, the following technique suffices. When
compiling the body of module M we create a dummy symbol whose name
uniquely characterizes the contents of M’s header. When compiling the body of
U we create a reference to the dummy symbol. An attempt to link M and U to-
gether will succeed only if they agree on the name of the symbol.

One way to create the symbol name that characterizes M is to use an ASCIIEXAMPLE 14.16
Checksumming headers
for consistency

representation of the time of the most recent modification of M’s header. Because
files may be moved across machines, however (e.g., to deliver source files to geo-
graphically distributed customers), modification times are problematic: clocks
on different machines are often poorly synchronized, and file copy operations of-
ten change the modification time. A better candidate is a checksum of the header
file: essentially the output of a hash function that uses the entire text of the file

DESIGN & IMPLEMENTATION

Type checking for separate compilation
The encoding of type information in symbol names works well in C++ but is
too strict for use in C: it would outlaw programming tricks which, while ques-
tionable, are permitted by the language definition. Symbol-name encoding is
facilitated in C++ by the use of structural equivalence for types. In princi-
ple, one could use it in a language with name equivalence, but given that such
languages generally have well-structured modules, it is simpler just to use a
checksum of the header.
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as key. It is possible in theory for two different but valid files to have the same
checksum, but with a good choice of hash function the odds of this error are
exceedingly small. �

The checksum strategy does require that we know when we’re using a mod-
ule header. Unfortunately, as described in Section 3.7, we don’t know this in C
and C++: headers in these languages are simply a programming convention, sup-
ported by the textual inclusion mechanism of the language’s preprocessor. Most
implementations of C do not enforce consistency of interfaces at link time; in-
stead, programmers rely on configuration management tools (e.g., Unix’s make)
to recompile files when necessary. Such tools are typically driven by file modifi-
cation times.

Most implementations of C++ adopt a different approach, sometimes called
name mangling. The name of each imported or exported symbol in an object file
is created by concatenating the corresponding name from the program source
with a representation of its type. For an object, the type consists of the class name
and a terse encoding of its structure. For a function, it consists of an encoding
of the types of the arguments and the return value. For complicated objects or
functions of many arguments, the resulting names can be very long. If the linker
limits symbols to some too-small maximum length, the type information can be
compressed by hashing, at some small loss in security [SF88].

One problem with any technique based on file modification times or check-
sums is that a trivial change to a header file (modification of a comment, for
example, or definition of a new constant not needed by existing users of the in-
terface) can prevent files from linking correctly. A similar problem occurs with
configuration management tools: a trivial change may cause the tool to recom-
pile files unnecessarily. A few programming environments address this issue by
tracking changes at a granularity smaller than compilation units [Tic86]. Most
just live with the need to recompile.

14.7 Dynamic Linking

On a multiuser system, it is common for several instances of a program (an editor
or web browser, for example) to be executing simultaneously. It would be highly
wasteful to allocate space in memory for a separate, identical copy of the code
of such a program for every running instance. Many operating systems therefore
keep track of the programs that are running, and set up memory mapping tables
so that all instances of the same program share the same read-only copy of the
program’s code segment. Each instance receives its own writable copy of the data
segment. Code segment sharing can save enormous amounts of space. It does not
work, however, for instances of programs that are similar but not identical.

Many sets of programs, while not identical, have large amounts of library code
in common, for example, to manage a graphical user interface. If every appli-
cation has its own copy of the library, then large amounts of memory may be
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wasted. Moreover, if programs are statically linked, then much larger amounts
of disk space may be wasted on nearly identical copies of the library in separate
executable object files.

IN MORE DEPTH

In the early 1990s, most operating system vendors adopted dynamic linking in
order to save space in memory and on disk. Each dynamically linked library
resides in its own code and data segments. Every program instance that uses a
given library has a private copy of the library’s data segment, but shares a single
system-wide read-only copy of the library’s code segment. These segments may
be linked to the remainder of the code when the program is loaded into memory,
or they may be linked incrementally on demand, during execution. In addition to
saving space, dynamic linking allows a programmer or system administrator to
install backward-compatible updates to a library without rebuilding all existing
executable object files: the next time it runs, each program will obtain the new
version of the library automatically.

CHECK YOUR UNDERSTANDING

12. What are the distinguishing characteristics of a relocatable object file? An ex-
ecutable object file?

13. Why do operating systems typically zero-fill pages used for uninitialized data?

14. List four tasks commonly performed by an assembler.

15. Summarize the comparative advantages of assembly language and object
code as the output of a compiler.

16. Give three examples of pseudoinstructions and three examples of directives
that an assembler might be likely to provide.

17. Why might a RISC assembler perform its own final pass of instruction
scheduling?

18. Explain the distinction between absolute and relocatable words in an object
file. Why is the notion of “relocatability” more complicated than it used to
be?

19. What is the difference between linking and loading?

20. What are the principal tasks of a linker?

21. How can a linker enforce type checking across compilation units?

22. What is the motivation for dynamic linking?
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14.8 Summary and Concluding Remarks

In this chapter we focused our attention on the back end of the compiler, and on
code generation, assembly, and linking in particular.

Compiler back ends vary greatly in internal structure. We discussed one plau-
sible structure, in which semantic analysis is followed by, in order, intermediate
code generation, machine-independent code improvement, target code genera-
tion, and machine-specific code improvement (including register allocation and
instruction scheduling). The semantic analyzer passes a syntax tree to the inter-
mediate code generator, which in turn passes a control flow graph to the machine-
independent code improver. Within the nodes of the control flow graph, we sug-
gested that code be represented by instructions in a pseudo-assembly language
with an unlimited number of virtual registers. In order to delay discussion of
code improvement to Chapter 15, we also presented a simpler back-end structure
in which code improvement is dropped, naive register allocation happens early,
and intermediate and target code generation are merged into a single phase. This
simpler structure provided the context for our discussion of code generation.

We also discussed intermediate forms (IFs). These can be categorized in terms
of their level, or degree of machine independence. On the PLP CD we consid-
ered two examples: the high-level, tree-based Diana language used by most Ada
compilers, and the medium-level Register Transfer Language of the Free Soft-
ware Foundation GNU compilers. A well-defined IF facilitates the construction
of compiler families, in which front ends for one or more languages can be paired
with back ends for many machines.

Intermediate code generation is typically performed via ad hoc traversal of
a syntax tree. Like semantic analysis, the process can be formalized in terms of
attribute grammars. We presented part of a small example grammar and used
it to generate code for the GCD program introduced in Chapter 1. We noted
in passing that target code generation is often automated, in whole or in part,
using a code generator generator that takes as input a formal description of the
target machine and produces code that performs pattern matching on instruction
sequences or trees.

In our discussion of assembly and linking we described the format of relo-
catable and executable object files, and discussed the notions of name resolution
and relocation. We noted that while not all compilers include an explicit assem-
bly phase, all compilation systems must make it possible to generate assembly
code for debugging purposes, and must allow the programmer to write special
purpose routines in assembler. In compilers that use an assembler, the assembly
phase is sometimes responsible for instruction scheduling and other low-level
code improvement. The linker, for its part, supports separate compilation, by
“gluing” together object files produced by multiple compilations. In many mod-
ern systems, significant portions of the linking task are delayed until load time
or even run time, to allow programs to share the code segments of large, pop-
ular libraries. For many languages the linker must perform a certain amount of
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semantic checking, to guarantee type consistency. In more aggressive optimiz-
ing compilation systems (not discussed in this text), the linker may also perform
interprocedural code improvement.

As noted in Section 1.5, the typical programming environment includes a host
of additional tools, including debuggers, performance profilers, configuration
and version managers, style checkers, preprocessors, pretty-printers, and perusal
and cross-referencing utilities. Many of these tools, particularly in well-integrated
environments, are directly supported by the compiler. Many make use, for exam-
ple, of symbol-table information embedded in object files. Performance profilers
often rely on special instrumentation code inserted by the compiler at subroutine
calls, loop boundaries, and other key points in the code. Perusal, style-checking,
and pretty-printing programs may share the compiler’s scanner and parser. Con-
figuration tools often rely on lists of interfile dependences, again generated by
the compiler, to tell when a change to one part of a large system may require that
other parts be recompiled.

14.9 Exercises

14.1 If you were writing a two-pass compiler, why might you choose a high-
level IF as the link between the front end and the back end? Why might
you choose a medium-level IF?

14.2 Consider a language like Ada or Modula-2, in which a module M can be
divided into a specification (header) file and an implementation (body)
file for the purpose of separate compilation (Section 9.2.1). Should M’s
specification itself be separately compiled, or should the compiler simply
read it in the process of compiling M’s body and the bodies of other mod-
ules that use abstractions defined in M? If the specification is compiled,
what should the output consist of?

14.3 Many research compilers (e.g., for SR [AO93], Cedar [SZBH86], Lynx
[Sco91], and Modula-3 [Har92]) use C as their IF. C is well documented
and mostly machine-independent, and C compilers are much more widely
available than alternative back ends. What are the disadvantages of gener-
ating C, and how might they be overcome?

14.4 List as many ways as you can think of in which the back end of a just-
in-time compiler might differ from that of a more conventional compiler.
What design goals dictate the differences?

14.5 Suppose that k (the number of temporary registers) in Figure 14.5 is 4 (this
is an artificially small number for modern machines). Give an example of
an expression that will lead to register spilling under our naive register
allocation algorithm.
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Figure 14.8 Syntax tree and symbol table for a program that computes the average of N real numbers. The children of the
for node are the index variable, the lower bound, the upper bound, and the body.

14.6 Modify the attribute grammar of Figure 14.5 in such a way that it will gen-
erate the control flow graph of Figure 14.3 instead of the linear assembly
code of Figure 14.6.

14.7 Add productions and attribute rules to the grammar of Figure 14.5 to
handle Ada-style for loops (described in Section 6.5.1). Using your mod-
ified grammar, hand-translate the syntax tree of Figure 14.8 into pseudo-
assembly notation. Keep the index variable and the upper loop bound in
registers.

14.8 One problem (of many) with the code we generated in Section 14.3 is that it
computes at run time the value of expressions that could have been com-
puted at compile time. Modify the grammar of Figure 14.5 to perform a
simple form of constant folding: whenever both operands of an operator
are compile-time constants, we should compute the value at compile time
and then generate code that uses the value directly. Be sure to consider
how to handle overflow.

14.9 Modify the grammar of Figure 14.5 to generate jump code for Boolean
expressions, as described in Section 6.4.1. You should assume short-circuit
evaluation (Section 6.1.5).
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14.10 Our GCD program did not employ subroutines. Extend the grammar of
Figure 14.5 to handle procedures without parameters (feel free to adopt
any reasonable conventions on the structure of the syntax tree). Be sure to
generate appropriate prologue and epilogue code for each subroutine, and
to save and restore any needed temporary registers.

14.11 The grammar of Figure 14.5 assumes that all variables are global. In the
presence of subroutines, we would need to generate different code (with
fp-relative displacement mode addressing) to access local variables and
parameters. In a language with nested scopes we would need to derefer-
ence the static chain (or index into the display) to access objects that are
neither local nor global. Suppose that we are compiling a language with
nested subroutines, and are using a static chain. Modify the grammar of
Figure 14.5 to generate code to access objects correctly, regardless of scope.

You may find it useful to define a to register subroutine that generates
the code to load a given object. Be sure to consider both l-values and r-
values, and parameters passed by both value and result.

14.12–14.14 In More Depth.

14.10 Explorations

14.15 Investigate and describe the IF of the compiler you use most often. Can
you instruct the compiler to dump it to a file which you can then inspect?
Are there tools other than the back end of the compiler that operate on the
IF (e.g., debuggers, code improvers, configuration managers, etc.)? Is the
same IF used by compilers for other languages or machines?

14.16 Implement Figure 14.5 in your favorite programming language. Define
appropriate data structures to represent a syntax tree; then generate code
for some sample trees via ad hoc tree traversal.

14.17 Augment your solution to the previous exercise to handle various other
language features. Several interesting options have been mentioned in ear-
lier exercises. Others include functions, first-class subroutines, case state-
ments, records and with statements, arrays (particularly those of dynamic
size), and iterators.

14.18 Find out what tools are available on your favorite system to inspect the
content of object files (on a Unix system, use nm or objdump). Consider
some program consisting of a modest number (three to six, say) of com-
pilation units. Using the appropriate tool, list the imported and exported
symbols in each compilation unit. Then link the files together. Draw an
address map showing the locations at which the various code and data
segments have been placed. Which instructions within the code segments
have been changed by relocation?
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14.19 If you have access to g++ (the Gnu C++ compiler), or to a C++ compiler
based on AT&T’s translator, investigate the encoding of type information
in the names of external symbols. See if you can “reverse engineer” the
algorithm used to generate the funny characters at the end of every name.

14.20–14.23 In More Depth.

14.11 Bibliographic Notes

Standard compiler textbooks (e.g., those by Cooper and Torczon [CT04], Grune
et al. [GBJL01], Appel [App97], Aho, Sethi, and Ullman [ASU86], or Fischer and
LeBlanc [FL88]) are an accessible source of information on back-end compiler
technology, though the last two have grown a bit dated. More detailed informa-
tion can be found in the text of Muchnick [Muc97]. Fraser and Hanson provide a
wealth of detail on code generation and (simple) code improvement in their lcc
compiler [FH95].

The Diana intermediate form is documented by Goos, Wulf, Evans, and But-
ler [GWEB83]. A simpler tree-based IF is described by Fraser and Hanson [FH95,
Chap. 5]. RTL is documented in a set of texinfo files distributed with gcc (avail-
able from www.gnu.org/software). Java byte code is documented by Lindholm and
Yellin [LY97].

Ganapathi, Fischer, and Hennessy provide an early survey of automatic code
generator generators [GFH82]. A later and more comprehensive survey is that of
Henry and Damron [HD89]. The most widely used automatic code generation
technique is based on LR parsing, and is due to Glanville and Graham [GG78].

Sources of information on assemblers, linkers, and software development
tools include the texts of Beck [Bec97] and of Kernighan and Plauger [KP76].
Gingell et al. describe the implementation of shared libraries for the Sparc ar-
chitecture and the SunOS variant of Unix [GLDW87]. Ho and Olsson describe a
particularly ambitious dynamic linker for Unix [HO91]. Tichy presents a compi-
lation system that avoids unnecessary recompilations by tracking dependences at
a granularity finer than the source file [Tic86].



15Code Improvement

In Chapter 14 we discussed the generation, assembly, and linking of target
code in the back end of a compiler. The techniques we presented led to correct
but highly suboptimal code: there were many redundant computations, and in-
efficient use of the registers, multiple functional units, and cache of a modern
microprocessor. This chapter takes a look at code improvement: the phases of
compilation devoted to generating good (fast) code. As noted in Section 1.6.4,
code improvement is often referred to as optimization, though it seldom makes
anything optimal in any absolute sense.

Our study will consider simple peephole optimization, which “cleans up” gen-
erated target code within a very small instruction window; local optimization,
which generates near-optimal code for individual basic blocks; and global op-
timization, which performs more aggressive code improvement at the level of
entire subroutines. We will not cover interprocedural improvement; interested
readers are referred to other texts (see the Bibliographic Notes at the end of the
chapter). Moreover, even for the subjects we cover, our intent will be more to
“demystify” code improvement than to describe the process in detail. Much of
the discussion will revolve around the successive refinement of code for a single
subroutine. This extended example will allow us to illustrate the effect of several
key forms of code improvement without dwelling on the details of how they are
achieved.

IN MORE DEPTH

Chapter 15 can be found in its entirety on the PLP CD.
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AProgramming Languages Mentioned

This appendix provides brief descriptions, bibliographic references, and
(in many cases) URLs for online information concerning each of the principal
programming languages mentioned in this book. The URLs are accurate as of
May 2005, though they are subject to change as people move files around. Some
additional URLs can be found in the bibliographic references.

For many languages XXX, there exists an Internet newsgroup comp.lang.XXX.
Many of these newsgroups host frequently-asked-question (FAQ) lists. Bill Kin-
nersley maintains an extremely useful index of online materials for approximate-
ly 2500 programming languages at people.ku.edu/~nkinners/LangList/Extras/
langlist.htm. Other resources include the Google and Yahoo language indices
(directory.google.com/Top/Computers/Programming/Languages/ and dir.yahoo.
com/Computers_and_Internet/Programming_and_Development/Languages/), and
the Open Directory and HyperNews languages lists (www.dmoz.org/Computers/
Programming/Languages/ and www.hypernews.org/HyperNews/get/computing/
lang-list.html).

Figure A.1 shows the genealogy of some of the more influential or widely used
programming languages. The date for each language indicates the approximate
time at which its features became widely known. Arrows indicate principal influ-
ences on design. Many influences, of course, cannot be shown in a single figure.

Ada: Originally intended to be the standard language for all software commis-
sioned by the U.S. Department of Defense [Ame83]. Prototypes designed by
teams at several sites; final ’83 language developed by a team at Honeywell’s
Systems and Research Center in Minneapolis and Alsys Corp. in France, led
by Jean Ichbiah. A very large language, descended largely from Pascal. Design
rationale articulated in a remarkably clear companion document [IBFW91].
Ada 95 [Int95b] is a revision developed under government contract by a
team at Intermetrics, Inc. It fixes several subtle problems in the earlier lan-
guage, and adds objects, shared-memory synchronization, and several other
features. Freely available implementation distributed by Ada Core Technolo-

793
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Figure A.1 Genealogy of selected programming languages. Dates are approximate.
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gies (www.gnat.com/) under terms of the Free Software Foundation’s GNU
public license.

Algol 60: The original block-structured language. The original definition by
Naur et al. [NBB+63] is considered a landmark of clarity and conciseness. It
includes the original use of Backus-Naur Form (BNF).

Algol 68: A large and relatively complex successor to Algol 60, designed by a
committee led by A. van Wijngaarden. Includes (among other things) struc-
tures and unions, expression-based syntax, reference parameters, a reference
model of variables, and concurrency. The official definition [vMP+75] uses
unconventional terminology and is very difficult to read; other sources [Pag76,
Lv77] are more accessible.

Algol W: A smaller, simpler alternative to Algol 68, proposed by Niklaus
Wirth and C. A. R. Hoare [WH66, Sit72]. The precursor to Pascal. Introduced
the case statement.

APL: Designed by Kenneth Iverson in the late 1950s and early 1960s, primar-
ily for the manipulation of numeric arrays. Functional. Extremely concise.
Powerful set of operators. Employs an extended character set. Intended for
interactive use. Original syntax [Ive62] was nonlinear; implementations gen-
erally use a revised syntax due to a team at IBM [IBM87]. Online resources at
www.acm.org/sigs/sigapl/.

Basic: Simple imperative language, originally intended for interactive use.
Original version developed by John Kemeny and Thomas Kurtz of Dartmouth
College in the early 1960s. Dozens of dialects exist. Microsoft’s Visual Basic
[Mic91], which bears little resemblance to the original, is the most widely used
today. Minimal subset defined by ANSI standard [Ame78b].

C: One of the most successful imperative languages. Originally defined by
Brian Kernighan and Dennis Ritchie of Bell Labs as part of the development
of Unix [KR88]. Concise syntax. Unusual declaration syntax. Intended for sys-
tems programming. Weak type checking. No dynamic semantic checks. Stan-
dardized by ANSI/ISO in 1990 [Ame90]. Extensions for international char-
acter sets adopted in 1994. More extensive changes adopted in 1999 (the C99
standard) [Int99]. Freely available implementation (gcc) distributed for many
platforms by the Free Software Foundation (www.gnu.org/software/gcc/).

C#: Object-oriented language based heavily on C++ and Java. Designed by An-
ders Hejlsberg, Scott Wiltamuth, and associates at Microsoft Corporation in
the late 1990s and early 2000s [HWG04, ECM02]. Intended as the principal
language for the .NET platform, a run-time and middleware system for mul-
tilanguage distributed computing. Regarded by many as Microsoft’s alterna-
tive to Java. Includes most of Java’s features, plus many from C++ and Visual
Basic, including both reference and value types, both contiguous and row-
pointer arrays, both virtual and nonvirtual methods, operator overloading,
delegates, and an “unsafe” superset with pointers. Standardized by ECMA/ISO
in 2002 [ECM02]. Commercial resources at msdn.microsoft.com/vcsharp/.
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Open source implementations available from www.gnu.org/projects/dotgnu/
pnet.htmland www.go-mono.com/c-sharp.html.

C++: The first object-oriented successor to C to gain widespread adoption. Still
widely considered the one most suited to “industrial strength” computing.
Designed by Bjarne Stroustrup of Bell Labs. Includes (among other things)
generalized reference types, both static and dynamic method binding, exten-
sive facilities for overloading and coercion, and multiple inheritance. No au-
tomatic garbage collection. Useful references include Stroustrup’s text [Str97]
and the reference manual of Ellis and Stroustrup [ES90]. Standardized by the
ISO [Int98]. Freely available implementation included in the gcc distribution
(see C).

Cedar: See Mesa and Cedar.

CLOS: The Common Lisp Object System [Kee89; Ste90, Chap. 28]. A set
of object-oriented extensions to Common Lisp, now incorporated into the
ANSI standard language (see Common Lisp). The leading notation for object-
oriented functional programming.

Clu: Developed by Barbara Liskov and associates at MIT in the late 1970s
[LG86]. Designed to provide an unusually powerful set of features for data
abstraction [LSAS77]. Also includes iterators and exception handling. Freely
available implementations for most Unix platforms at ftp://ftp.lcs.mit.edu/
pub/pclu.

Cobol: Originally developed by the U.S. Department of Defense in the late
1950s and early 1960s by a team led by Grace Murray Hopper [Uni60]. Long
the most widely used programming language in the world. Standardized by
ANSI in 1968; revised in 1974 and 1985 [Ame85]. Intended principally for
business data processing. Introduced the concept of structures. Elaborate I/O
facilities.

Common Lisp: The standard modern Lisp (see also Lisp). A large language.
Includes (among other things) static scoping, an extensive type system, excep-
tion handling, and object-oriented features (see CLOS). For years the standard
reference was the book by Guy Steele, Jr. [Ste90]. Subsequently standardized
by ANSI [Ame96b]. An abridged hypertext version of the standard is available
online at www.lispworks.com/documentation/HyperSpec/Front/index.htm.

CSP: See Occam.

Eiffel: An object-oriented language developed by Bertrand Meyer and asso-
ciates at the Société des Outils du Logiciel à Paris [Mey92]. Includes (among
other things) multiple inheritance, automatic garbage collection, and power-
ful mechanisms for renaming of data members and methods in derived classes.
Online resources at www.eiffel.com/.

Euclid: Imperative language developed by Butler Lampson and associates at
the Xerox Palo Alto Research Center in the mid-1970s [LHL+77]. Designed to
eliminate many of the sources of common programming errors in Pascal, and
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to facilitate formal verification of programs. Has closed scopes and module
types.

Forth: A small and rather ingenious stack-based language designed for inter-
pretation on machines with limited resources [Bro87, Int97]. Originally de-
veloped by Charles H. Moore in the late 1960s. Has a loyal following in the
instrumentation and process-control communities.

Fortran: The original high-level imperative language. Developed in the mid-
1950s by John Backus and associates at IBM. The most important versions are
Fortran I, Fortran II, Fortran IV, Fortran 77, and Fortran 90. The latter two
are documented in a pair of ANSI standards [Ame78a, Ame92]. Fortran 90
[MR96] (updated in 1995) is a major revision to the language, adding (among
other things) recursion, pointers, new control constructs, and a wealth of array
operations. Fortran 2003 [Int03b] adds object orientation. Fortran 77, how-
ever, is still very widely used. Freely available implementation distributed as
part of the gcc compiler suite (www.gnu.org/software/gcc/fortran/). Support
for the older g77 front end was discontinued as of gcc version 3.4.

Haskell: The leading purely functional language. Descended from Miranda.
Designed by a committee of researchers beginning in 1987. Includes cur-
ried functions, higher-order functions, nonstrict semantics, static polymor-
phic typing, pattern matching, list comprehensions, modules, monadic I/O,
and layout (indentation)-based syntactic grouping. Haskell 98 [Pey03] is the
most recent as of this writing; design of Haskell 2 is under way. Online re-
sources at haskell.org/.

Icon: The successor to Snobol. Developed by Ralph Griswold (Snobol’s prin-
cipal designer) at the University of Arizona [GG96]. Adopts more conven-
tional control-flow constructs, but with powerful iteration and search fa-
cilities based on pattern-matching and backtracking. Online resources at
www.cs.arizona.edu/icon/.

Java: Object-oriented language based largely on a subset of C++. Developed by
James Gosling and associates at Sun Microsystems in the early 1990s [AG98,
GJS96]. Intended for the construction of highly portable, architecture-neutral
programs. Defined in conjunction with an intermediate byte code format
intended for execution on a Java virtual machine [LY97]. Includes (among
other things) a reference model of (class-typed) variables, mix-in inheritance,
threads, and extensive predefined libraries for graphics, communication, and
other activities. Heavily used for transmission of program fragments (applets)
over the Internet. Online resources at www.sun.com/java/.

JavaScript: Simple scripting language developed by Brendan Eich at Netscape
Corp. in the mid-1990s for the purpose of client-side web scripting. Has no
connection to Java beyond superficial syntactic similarity. Embedded in most
commercial web browsers. Microsoft’s JScript is very similar. The two were
merged into a single ECMA standard [ECM99] in 1997 (since revised).
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Linda: A set of language extensions intended to add concurrency to conven-
tional programming languages [ACG86]. Developed by David Gelernter for
his doctoral research at SUNY Stony Brook in the early 1980s and later re-
fined by Gelernter and his student, Nicholas Carriero, at Yale University. Based
on the notion of a distributed, associative tuple space. Has inspired numer-
ous implementations, including Sun’s JavaSpaces [FHA99] and IBM’s TSpaces
(www.almaden.ibm.com/cs/TSpaces/).

Lisp: The original functional language [McC60]. Developed by John McCarthy
in the late 1950s as a realization of Church’s lambda calculus. Many dialects ex-
ist. The two most common today are Common Lisp and Scheme (see separate
entries). Historically important dialects include Lisp 1.5 [MAE+65], MacLisp
[Moo78], and Interlisp [TM81].

Mesa and Cedar: Mesa [LR80] is a successor to Euclid developed in the
1970s at Xerox’s Palo Alto Research Center by a team led by Butler Lamp-
son. Includes monitor-based concurrency. Along with Interlisp and Smalltalk,
one of three companion projects that pioneered the use of personal worksta-
tions, with bitmapped displays, mice, and a graphical user interface. Cedar
[SZBH86] is a successor to Mesa with (among other things) complete type
safety, exceptions, and automatic garbage collection.

Miranda: Purely functional language designed by David Turner in the mid-
1980s [Tur86]. Resembles ML in several respects; has type inference and au-
tomatic currying. Unlike ML, provides list comprehensions (Section 7.8),
and uses lazy evaluation for all arguments. Uses indentation and line breaks
for syntactic grouping. Commercial implementations available from Research
Software Ltd. of Canterbury, England.

ML: Functional language with “Pascal-like” syntax. Originally designed in the
mid- to late 1970s by Robin Milner and associates at the University of Edin-
burgh as the meta-language (hence the name) for a program verification sys-
tem. Pioneered aggressive compile-time type inference and polymorphism.
Has a few imperative features. Several dialects exist; the most widely used is
Standard ML [MTHM97]. Stansifer’s book [Sta92] is an accessible introduc-
tion. Standard ML of New Jersey, a project of Princeton University and Bell
Labs, has produced freely available implementations for many platforms; see
www.smlnj.org/.

Modula and Modula-2: The immediate successors to Pascal, developed by
Niklaus Wirth. The original Modula [Wir77b] was an explicitly concurrent
monitor-based language. It is sometimes called Modula (1) to distinguish it
from its successors. The more commercially important Modula-2 [Wir85b]
was originally designed with coroutines (Section 8.6), but no real concur-
rency. Both languages provide mechanisms for module-as-manager style data
abstractions. Modula-2 was standardized by the ISO in 1996 [Int96]. A freely
available implementation for x86 Linux (and moderately priced implementa-
tions for several other Unix variants) is available from the University of Karl-
sruhe, Germany at www.info.uni-karlsruhe.de/~modula/.
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Modula-3: A major extension to Modula-2 developed by Luca Cardelli, Jim
Donahue, Mick Jordan, Bill Kalsow, and Greg Nelson at the Digital Systems
Research Center and the Olivetti Research Center in the late 1980s [Har92].
Intended to provide a level of support for large, reliable, and maintainable
systems comparable to that of Ada, but in a simpler and more elegant form.
Online resources at research.compaq.com/SRC/modula-3/html/.

Oberon: A deliberately minimal language designed by Niklaus Wirth [Wir88b,
RW92]. Essentially a subset of Modula-2 [Wir88a], augmented with a mech-
anism for type extension (Section 9.2.3) [Wir88c]. Online resources at
www.oberon.ethz.ch/.

Objective-C: An object-oriented extension to C based on Smalltalk-style
“messaging.” Designed by Brad Cox and StepStone corporation in the early
1980s. Adopted by NeXT Software, Inc. in the late 1980s for their NeXTStep
operating system and programming environment. Adopted by Apple as the
principal development language for MacOS X after Apple acquired NeXT in
1997. Substantially simpler than other object-oriented descendants of C. Dis-
tinguished by fully dynamic method dispatch and unusual messaging syntax.
Freely available implementation included in the gcc distribution (see C). On-
line documentation at developer.apple.com/documentation/Cocoa/Conceptual/
ObjectiveC/.

Occam: A concurrent language [JG89] based on CSP [Hoa78], Hoare’s nota-
tion for message-based communication using guarded commands and syn-
chronization send. The language of choice for systems built from INMOS
Corporation’s transputer processors, once widely used in Europe. Uses inden-
tation and line breaks for syntactic grouping. Online resources at wotug.kent.
ac.uk/parallel/occam/.

Pascal: Designed by Niklaus Wirth in the late 1960s [Wir71], largely in re-
action to Algol 68, which was widely perceived as bloated. Heavily used in
the 1970s and 1980s, particularly for teaching. Introduced subrange and enu-
meration types. Unified structures and unions. For many years the stan-
dard reference was Wirth’s book with Kathleen Jensen [JW91]; more re-
cently, the language has been standardized by the ISO and ANSI [Int90].
Freely available implementation distributed by the Free Software Foundation
(directory.fsf.org/devel/prog/other/pascal/).

Perl: A general purpose scripting language designed by Larry Wall in the
late 1980s [WCO00]. Includes unusually extensive mechanisms for charac-
ter string manipulation and pattern matching based on (extended) regular
expressions. Borrows features from C, sed and awk [AKW88] (two earlier
scripting languages), and various Unix shell (command interpreter) languages.
Is famous/infamous for having multiple ways of doing almost anything. En-
joyed an upsurge in popularity in the late 1990s as a server-side web script-
ing language. Version 5 released in 1995; version 6 currently under devel-
opment. Online resources at www.perl.org/. Larry Wall’s own Perl page is at
www.wall.org/~larry/perl.html.
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PHP: A descendant of Perl designed for server-side web scripting. Scripts are
typically embedded in web pages. Originally created by Rasmus Lerdorf in
1995 to help manage his personal home page. The name is now officially
a recursive acronym (PHP: Hypertext Preprocessor). More recent versions
due to Andi Gutmans and Zeev Suraski, in cooperation with Lerdorf. In-
cludes built-in support for a wide range of Internet protocols and for access to
dozens of different commercial database systems. Version 5 (released in Sep-
tember 2004) includes extensive object-oriented features, mix-in inheritance,
iterator objects, autoloading, structured exception handling, reflection, over-
loading, and optional type declarations for parameters. Online resources at
www.php.net/.

PL/I: A large, general purpose language designed in the mid-1960s as a suc-
cessor to Fortran, Cobol, and Algol [Bee70]. Never managed to displace its
predecessors; kept alive largely through IBM corporate influence.

Postscript: A stack-based language for the description of graphics and print
operations [Ado86, Ado90]. Developed and marketed by Adobe Systems,
Inc. Based in part on the Forth programming language [Bro87]. Generated
by many word processors and drawing programs. Most professional-quality
printers contain a Postscript interpreter.

Prolog: The most widely used logic programming language. Developed in
the early 1970s by Alain Colmeraurer and Philippe Roussel of the Univer-
sity of Aix–Marseille in France and Robert Kowalski and associates at the
University of Edinburgh in Scotland. Many dialects exist. Partially standard-
ized in 1995 [Int95c]. Numerous implementations, both free and commercial,
are available. The AI group at CMU maintains a large Prolog repository at
www-2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/lang/prolog/0.html;
additional information can be found at vl.fmnet.info/logic-prog/#Prolog.

Python: A general purpose, object-oriented scripting language designed by
Guido van Rossum in the early 1990s. Uses indentation for syntactic group-
ing. Includes dynamic typing, nested functions with lexical scoping, lambda
expressions and higher-order functions, true iterators, list comprehensions,
array slices, reflection, structured exception handling, multiple inheritance,
and modules and dynamic loading. Online resources at www.python.org/.

R: Open source scripting language intended primarily for statistical analysis.
Based on the proprietary S statistical programming language, originally de-
veloped by John Chambers and others at Bell Labs. Supports first class and
higher-order functions, unlimited extent, call-by-need, multidimensional ar-
rays and slices, and an extensive library of statistical functions. Online re-
sources at www.r-project.org/.

Ruby: An elegant, general purpose, object-oriented scripting language de-
signed by Yukihiro “Matz” Matsumoto, beginning in 1993. First released in
1995. Inspired by Ada, Eiffel, and Perl, with traces of Python, Lisp, Clu, and
Smalltalk. Includes dynamic typing, arbitrary precision arithmetic, true itera-
tors, user-level threads, first-class and higher-order functions, continuations,
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reflection, Smalltalk-style messaging, mix-in inheritance, autoloading, struc-
tured exception handling, and support for the Tk windowing toolkit. The
text by Thomas and Hunt is a standard reference [TH04]. Online resources
at ruby-lang.org/en/.

Scheme: A small, elegant dialect of Lisp (see also Lisp) developed in the
mid-1970s by Guy Steele and Gerald Sussman. Has static scoping and
true first-class functions. Widely used for teaching. Current standard is
“R5RS” [ADH+98]; R6RS is currently under development. Earlier version
standardized by the IEEE and ANSI [Ins91]. The book by Abelson and Suss-
man [AS96], used for introductory programming classes at MIT and else-
where, is a classic guide to fundamental programming concepts, and to func-
tional programming in particular. Online resources at www.schemers.org/.

Simula: Designed at the Norwegian Computing Centre, Oslo, in the mid-
1960s by Ole-Johan Dahl, Bjørn Myhrhaug, and Kristen Nygaard [BDMN73,
ND78]. Extends Algol 60 with classes and coroutines. The name of the lan-
guage reflects its suitability for discrete-event simulation (Section 8.6.4).
Free Simula-to-C translator available at www.ifi.uio.no/~cim/cim.html.

Sisal: A functional language with “imperative-style” syntax. Developed by
James McGraw and associates at Lawrence Livermore National Laboratory
in the early to mid-1980s [MSA+85, FCO90, Can92]. Intended primarily for
high-performance scientific computing, with automatic parallelization. A de-
scendant of the dataflow language Val [McG82]. No longer under develop-
ment at LLNL; available open source from sisal.sourceforge.net/.

Smalltalk: The quintessential object-oriented language. Developed by Alan
Kay, Adele Goldberg, Dan Ingalls, and associates at the Xerox Palo Alto Re-
search Center throughout the 1970s, culminating in the Smalltalk-80 lan-
guage [GR89]. Anthropomorphic programming model based on “messages”
between active objects. The Smalltalk group at the University of Illinois
maintains a variety of resources at st-www.cs.uiuc.edu/. Online resources at
www.smalltalk.org.

Snobol: Developed by Ralph Griswold and associates at Bell Labs in the 1960s
[GPP71]. The principal version is SNOBOL4. Intended primarily for process-
ing character strings. Includes an extremely rich set of string-manipulating
primitives and a novel control-flow mechanism based on the notions of suc-
cess and failure. Online resources at ftp://ftp.cs.arizona.edu/snobol/and www.
snobol4.org.

SR: Concurrent programming language developed by Greg Andrews and
colleagues at the University of Arizona in the 1980s [AO93]. Integrates
not only sequential and concurrent programming but also shared memory,
semaphores, message passing, remote procedures, and rendezvous into a sin-
gle conceptual framework and simple syntax. Online resources at
ftp://ftp.cs.arizona.edu/sr/.
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Tcl/Tk: Tcl (Tool command language, pronounced “tickle”) is a script-
ing language designed by John Ousterhout in the late 1980s [Ous94,
WJH03]. Keyword-based syntax resembles Unix command-line invocations
and switches; punctuation is relatively spare. Uses dynamic scoping. Supports
reflection, recursive invocation of interpreter. Tk (pronounced “tee-kay”) is
a set of Tcl commands for graphical user interface (GUI) programming. De-
signed by Ousterhout as an extension to Tcl, Tk has also been embedded in
Ruby, Perl, and several other languages. Online resources at www.tcl.tk/.

Turing: Derived from Euclid by Richard Holt and associates at the University
of Toronto in the early 1980s [HMRC88]. Originally intended as a pedagogical
language, but can be used for a wide range of applications. Turing Plus and
Object-Oriented Turing are more recent descendants, also developed by Holt’s
group. Online resources at www.holtsoft.com/turing.

XSL: The Extensible Stylesheet Language, standardized by the World Wide
Web Consortium. Serves as the standard stylesheet language for XML (Ex-
tensible Markup Language), the increasingly ubiquitous standard for self-
descriptive tree-structured data, of which XHTML, the successor to HTML,
is a dialect. XSL includes three substandards: XSLT (XSL Transformations)
[Wor04b], which specifies how to translate from one dialect of XML to an-
other; XPath [Wor04a], used to name elements of an XML document; and
XSL-FO (XSL Formatting Objects) [Wor01], which specifies how to format
documents. XSLT, though highly specialized to the transformation of XML, is
a Turing complete programming language [Kep04]. Standards and additional
resources at www.w3.org/.



BLanguage Design and Language
Implementation

Throughout this text we have had occasion to remark on the many connections
between language design and language implementation. Some of the more direct
connections have been highlighted in separate sidebars. We list those sidebars
here.

Chapter I: Introduction

1 Introduction 7

2 Compiled and interpreted languages 15

3 The early success of Pascal 19

4 Powerful development environments 21

Chapter 2: Progamming Language Syntax

5 Formatting restrictions 40

6 Nested comments 47

7 Longest possible tokens 57

8 The dangling else 79

Chapter 3: Names, Scopes, and Bindings

9 Binding time 105

10 Recursion in Fortran 109

11 Mutual recursion 120

12 Redeclarations 123

13 Dynamic scoping 133

14 Binding rules and extent 141

15 Pointers in C and Fortran 142

16 Coercion and overloading 146

17 Generics as macros 147

18 Separate compilation CD 34
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Chapter 4: Semantic Analysis

19 Dynamic semantic checks 164

20 Forward references 174

21 Attribute evaluators 179

Chapter 5: Target Machine Architecture

22 The processor/memory gap 198

23 How much is a megabyte? CD 54

24 In-line subroutines 220

Chapter 6: Control Flow

25 Implementing the reference model 240

26 Safety v. performance 248

27 Evaluation order 251

28 Cleaning up continuations 259

29 Short-circuit evaluation 264

30 Case statements 268

31 Numerical imprecision 272

32 For loops 276

33 “True” iterators and iterator objects 280

34 Inline as a hint 292

35 Normal-order evaluation 294

36 Nondeterminacy and fairness CD 76

Chapter 7: Data Types

37 Dynamic typing 310

38 Multilingual character sets 313

39 Decimal types 314

40 Multiple sizes of integers 317

41 Nonconverting casts 328

42 Unification CD 83

43 The order of record fields 340

44 With statements CD 91

45 The placement of variant fields 347

46 Is [ ] an operator? 351

47 Array layout 360

48 Lower bounds on array indices 363

49 Representing sets 368

50 Implementation of pointers 369

51 Pointers and arrays 377

52 Garbage collection 383
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53 Reference counts v. tracing 388

54 Car and cdr 391

55 I/O 392

Chapter 8: Subroutines and Control Abstraction

56 Lexical nesting and displays CD 107

57 Executing code in the stack CD 117

58 Hints and directives 415

59 Inline and modularity 416

60 Parameter modes 419

61 Anonymous delegates in C# 2.0 425

62 Call by name CD 123

63 Call by need CD 124

64 Why erasure? CD 131

65 Structured exceptions 447

66 Setjmp 451

67 Threads and coroutines 454

68 Coroutine stacks 457

Chapter 9: Data Abstraction and Object Orientation

69 What goes in a class declaration? 475

70 Opaque exports in Modula-2 482

71 The value/reference tradeoff 492

72 Initialization and assignment 493

73 Initialization of “expanded” objects 494

74 Reverse assignment 504

75 The fragile base class problem 504

76 Generics and dynamic method dispatch 507

77 The cost of multiple inheritance CD 149

Chapter 10: Functional Languages

78 Iteration in functional programs 534

79 Lazy evaluation 541

80 Monads 544

81 Higher-order functions 547

82 Side effects and compilation 550

Chapter 11: Logic Languages

83 Homoiconic languages 575

84 Reflection 578

85 Implementing logic 580

86 Alternative search strategies 580
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Chapter 12: Concurrency

87 Hardware and software communication 602

88 Stack frames for nested threads 606

89 Counterintuitive implementation 612

90 Monitor signal semantics 632

91 The nested monitor problem 633

92 Conditional critical regions 635

93 Condition variables in Java 637

94 Side-effect freedom and implicit synchronization 640

95 The semantic impact of implementation issues 647

96 Emulation and efficiency 650

97 Peeking inside messages 655

98 Parameters to remote procedures 658

Chapter 13: Scripting Languages

99 Scripting on Microsoft platforms 673

100 Compiling interpreted languages 675

101 Canonical implementations 675

102 Built-in commands in the shell 680

103 Magic numbers 683

104 JavaScript and Java 710

105 Sandboxing 711

106 Thinking about dynamic scope 727

107 Automata for regular expressions 729

108 The grep command and the birth of Unix tools 729

109 Compiling regular expressions 735

110 Typeglobs in Perl 739

111 Executable class declarations 747

112 Worse Is Better 749

Chapter 14: Building a Runnable Program

113 Stack-based IFs 767

114 Postscript 767

115 Type checking for separate compilation 783

Chapter 15: Code Improvement

116 Peephole optimization CD 208

117 Basic blocks CD 209

118 Common subexpressions CD 215

119 Pointer analysis CD 216

120 Loop invariants CD 228

121 Control flow analysis CD 228
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1.1 GCD program in MIPS machine language 3
1.2 GCD program in MIPS assembler 3

The Art of Language Design

The Programming Language Spectrum

1.3 Classification of programming languages 8

Why Study Programming Languages?

Compilation and Interpretation

1.4 Pure compilation 13
1.5 Pure interpretation 14
1.6 Mixing compilation and interpretation 14
1.7 Preprocessing 15
1.8 Library routines and linking 16
1.9 Post-compilation assembly 16
1.10 The C preprocessor 17
1.11 Source-to-source translation (C++) 17
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1.13 Compiling interpreted languages 20
1.14 Dynamic and just-in-time compilation 20
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Programming Environments

An Overview of Compilation

1.16 Phases of compilation 22
1.17 GCD program in Pascal 23
1.18 GCD program tokens 24
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1.20 GCD program parse tree 25
1.21 GCD program abstract syntax tree 27
1.22 GCD program assembly code 28
1.23 GCD program optimization 30

Chapter 2: Programming Language Syntax

2.1 Syntax of Arabic numerals 37

Specifying Syntax

2.2 Syntax of numbers in Pascal 41
2.3 Syntactic nesting in expressions 42
2.4 Extended BNF (EBNF) 42
2.5 Derivation of slope * x + intercept 43
2.6 Parse trees for slope * x +

intercept 44
2.7 Expression grammar with precedence

and associativity 45

Scanning

2.8 Outline of a scanner for Pascal 47
2.9 Finite automaton for part of a Pascal

scanner 48
2.10 Constructing an NFA for a given regular

expression 50
2.11 NFA for ( 1 *01 *0 )*1 * 50
2.12 DFA for ( 1 *01 *0 )*1 * 51
2.13 Minimal DFA for ( 1 *01 *0 )*1 * 53
2.14 Nested case statement automaton 54
2.15 The “dot-dot problem” in Pascal 57
2.16 Look-ahead in Fortran scanning 57
2.17 Table-driven scanning 58
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Parsing

2.18 Top-down and bottom-up parsing 62
2.19 Bounding space with a bottom-up

grammar 64
2.20 Top-down grammar for a calculator

language 64
2.21 Recursive descent parser for the

calculator language 66
2.22 Recursive descent parse of a “sum and

average” program 66
2.23 Driver and table for top-down parsing 70
2.24 Table-driven parse of the “sum and

average” program 71
2.25 Predict sets for the calculator language 72
2.26 Left recursion 77
2.27 Common prefixes 77
2.28 Eliminating left recursion 77
2.29 Left factoring 77
2.30 Parsing a “dangling else” 78
2.31 “Dangling else” program bug 78
2.32 End markers for structured statements 79
2.33 The need for elsif 79
2.34 Derivation of an id list 81
2.35 Bottom-up grammar for the calculator

language 81
2.36 Bottom-up parse of the “sum and

average” program 82
2.37 CFSM for the bottom-up calculator

grammar 86
2.38 Epsilon productions in the bottom-up

calculator grammar 86
2.39 CFSM with epsilon productions 90
2.40 A syntax error in C 93
2.41 Syntax error in C (reprise) CD 1
2.42 The problem with panic mode CD 2
2.43 Phrase-level recovery in recursive

descent CD 2
2.44 Cascading syntax errors CD 3
2.45 Reducing cascading errors with

context-specific look-ahead CD 4
2.46 Recursive descent with full phrase-level

recovery CD 4
2.47 Error production for “; else” CD 5
2.48 Insertion-only repair in FMQ CD 8
2.49 FMQ with deletions CD 8
2.50 Panic mode in yacc/bison CD 10
2.51 Panic mode with statement terminators CD 11
2.52 Phrase-level recovery in yacc/bison CD 11

Theoretical Foundations

2.53 Formal DFA for ( 1 *01 *0 )*1 * CD 14

2.54 Reconstructing the regular expression for
a 2-state DFA CD 15

2.55 0n1n is not a regular language CD 17
2.56 Separation of grammar classes CD 17
2.57 Separation of language classes CD 18

Chapter 3: Names, Scopes, and Bindings

The Notion of Binding Time

Object Lifetime and Storage Management

3.1 Static allocation of local variables 108
3.2 Layout of the run-time stack 109
3.3 External fragmentation in the heap 111

Scope Rules

3.4 Nested scopes 117
3.5 Static chains 119
3.6 A “gotcha” in declare-before-use 121
3.7 Whole-block scope in C# 121
3.8 “Local if written” in Python 122
3.9 Declaration order in Scheme 122
3.10 Declarations v. definitions in C 122
3.11 Inner declarations in C 124
3.12 Static variables in C 125
3.13 Stack module in Modula-2 126
3.14 Module as “manager” for a type 128
3.15 Module types in Euclid 129
3.16 N-ary methods in C++ 131
3.17 Static v. dynamic scope 132
3.18 Customization via dynamic scope 134
3.19 Multiple interface alternative 134
3.20 Static variable alternative 134

Implementing Scope

3.34 The LeBlanc-Cook symbol table CD 24
3.35 Symbol table for a sample program CD 25
3.36 A-list lookup in Lisp CD 27
3.37 Central reference table CD 27

The Binding of Referencing Environments

3.21 Deep and shallow binding 136
3.22 Binding rules with static scoping 139
3.23 Returning a first-class subroutine in

Scheme 140

Binding Within a Scope

3.24 Aliasing with parameters 142
3.25 Aliases and code improvement 142
3.26 Overloaded enumeration constants in

Ada 143
3.27 Resolving ambiguous overloads 143
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3.28 Overloading in Ada and C++ 144
3.29 Overloading built-in operators 144
3.30 Overloading v. coercion 145
3.31 Generic min function in Ada 147
3.32 Implicit polymorphism in Scheme 148
3.33 Implicit polymorphism in Haskell 148

Separate Compilation

3.38 Namespaces in C++ CD 32
3.39 Using names from another namespace CD 33
3.40 Packages in Java CD 33
3.41 Using names from another package CD 33
3.42 Multipart package names CD 35

Chapter 4: Semantic Analysis

The Role of the Semantic Analyzer

4.1 Assertions in Euclid 164
4.2 Assertions in C 164

Attribute Grammars

4.3 Bottom-up CFG for constant expressions 166
4.4 Bottom-up AG for constant expressions 166

Evaluating Attributes

4.5 Decoration of a parse tree 168
4.6 Top-down CFG and parse tree for

subtraction 169
4.7 Decoration with left-to-right attribute

flow 170
4.8 Top-down AG for subtraction 171
4.9 Top-down AG for constant expressions 171
4.10 Bottom-up and top-down AGs to build a

syntax tree 175

Action Routines

4.11 Top-down action routines to build a
syntax tree 180

Space Management for Attributes

4.16 Stack trace for bottom-up parse, with
action routines CD 39

4.17 Finding inherited attributes in “buried”
records CD 40

4.18 Grammar fragment requiring context CD 41
4.19 Semantic hooks for context CD 42
4.20 Semantic hooks that break an LR CFG CD 42
4.21 Action routines in the trailing part CD 43
4.22 Left factoring in lieu of semantic hooks CD 43
4.23 Operation of an LL attribute stack CD 44
4.24 Ad hoc management of a semantic stack CD 47
4.25 Processing lists with an attribute stack CD 48

4.26 Processing lists with a semantic stack CD 49

Decorating a Syntax Tree

4.12 Bottom-up CFG for calculator language
with types 182

4.13 Syntax tree to average an integer and a
real 182

4.14 Tree grammar for the calculator language
with types 182

4.15 Tree AG for the calculator language with
types 184

Chapter 5: Target Machine Architecture

The Memory Hierarchy

5.1 Memory hierarchy stats 196

Data Representation

5.2 Big- and little-endian 199
5.15 Hexadecimal numbers CD 54
5.16 Two’s complement CD 55
5.17 Overflow in two’s complement addition CD 56
5.18 Biased exponents CD 57
5.19 IEEE floating point CD 57

Instruction Set Architecture

5.3 An if statement in x86 assembler 202
5.4 Compare and test instructions 202
5.5 Conditional branches on the MIPS 203

Architecture and Implementation

5.6 The x86 ISA 208
5.7 The MIPS ISA 208
5.20 x86 and MIPS register sets CD 59
5.8 Pseudo-assembler 209

Compiling for Modern Processors

5.9 Performance �= clock rate 211
5.10 Filling a load delay slot 213
5.11 Renaming registers for scheduling 213
5.12 Filling a branch delay slot 215
5.13 Register allocation for a simple loop 216
5.14 Register allocation and instruction

scheduling 218

Chapter 6: Control Flow

Expression Evaluation

6.1 A typical function call 234
6.2 Typical operators 235
6.3 Cambridge Polish (prefix) notation 235
6.4 Mixfix notation in Smalltalk 235
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6.5 Conditional expressions 235
6.6 A complicated Fortran expression 236
6.7 Precedence in four influential languages 236
6.8 A “gotcha” in Pascal precedence 236
6.9 Common rules for associativity 238
6.10 L-values and r-values 239
6.11 L-values in C 239
6.12 L-values in C++ 239
6.13 Variables as values and references 240
6.14 Wrapper objects in Java 2 241
6.15 Boxing in Java 5 241
6.16 Boxing in C# 241
6.17 Expression orientation in Algol 68 242
6.18 A “gotcha” in C conditions 243
6.19 Updating assignments 243
6.20 Side effects and updates 243
6.21 Assignment operators 244
6.22 Prefix and postfix inc/dec 244
6.23 Advantages of postfix inc/dec 244
6.24 Simple multiway assignment 245
6.25 Advantages of multiway assignment 245
6.26 Programs outlawed by definite

assignment 248
6.27 Indeterminate ordering 249
6.28 A value that depends on ordering 250
6.29 An optimization that depends on

ordering 250
6.30 Optimization and mathematical “laws” 250
6.31 Reordering and numerical stability 252
6.32 Short-circuited expressions 252
6.33 Saving time with short-circuiting 252
6.34 Short-circuit pointer chasing 252
6.35 Short-circuiting and other errors 253
6.36 When not to use short-circuiting 253
6.37 Optional short-circuiting 254

Structured and Unstructured Flow

6.38 Control flow with gotos in Fortran 254
6.39 Leaving the middle of a loop 256
6.40 Returning from the middle of a

subroutine 256
6.41 Escaping a nested subroutine 256
6.42 Structured nonlocal transfers 257
6.43 Error-checking with status codes 258

Sequencing

6.44 Side effects in a random number
generator 261

Selection

6.45 Selection in Algol 60 261

6.46 Elsif/elif 262
6.47 Cond in Lisp 262
6.48 Code generation for a Boolean condition 263
6.49 Code generation for short-circuiting 263
6.50 Short-circuit creation of a Boolean value 264
6.51 Case statements and nested ifs 265
6.52 Translation of nested ifs 265
6.53 Jump tables 266
6.54 Fall-through in C switch statements 269
6.55 Fortran computed goto 269
6.56 Algol 60 switch 269

Iteration

6.57 Early Fortran do loop 271
6.58 Meaning of a do loop 271
6.59 Modula-2 for loop 273
6.60 Obvious translation of a for loop 274
6.61 For loop translation with test at the

bottom 274
6.62 Reverse direction for loop 274
6.63 For loop translation with iteration count 275
6.64 Index value after loop 275
6.65 Preserving the final index value 276
6.66 Algol 60 for loop 277
6.67 Combination (for) loop in C 277
6.68 Simple iterator in Clu 279
6.69 Clu iterator for tree enumeration 279
6.70 Java iterator for tree enumeration 279
6.71 Iterator objects in C++ 282
6.72 Passing the “loop body” to an iterator in

Scheme 282
6.73 Iteration with blocks in Smalltalk 283
6.74 Imitating iterators in C 283
6.95 Simple generator in Icon CD 69
6.96 A generator inside an expression CD 69
6.97 Generating in search of success CD 70
6.98 Backtracking with multiple generators CD 70
6.75 While loop in Pascal 284
6.76 Imitating while loops in Fortran 77 284
6.77 Post-test loop in Pascal and Modula 284
6.78 Post-test loop in C 285
6.79 Midtest loop in Modula 285
6.80 Exit as a separate statement 286
6.81 Break statement in C 286
6.82 Exiting a nested loop 286

Recursion

6.83 A “naturally iterative” problem 288
6.84 A “naturally recursive” problem 288
6.85 Implementing problems “the other way” 288
6.86 Implementation of tail recursion 289
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6.87 By-hand creation of tail-recursive code 289
6.88 Naive recursive Fibonacci function 290
6.89 Efficient iterative Fibonacci function 290
6.90 Efficient tail-recursive Fibonacci function 291
6.91 Tail-recursive Fibonacci function in Sisal 291
6.92 Divisibility macro in C 292
6.93 “Gotchas” in C macros 293
6.94 Lazy evaluation of an infinite data

structure 294

Nondeterminacy

6.99 Avoiding asymmetry with
nondeterminism CD 72

6.100 Selection with guarded commands CD 73
6.101 Looping with guarded commands CD 73
6.102 Nondeterministic message receipt CD 74
6.103 Nondeterministic server in SR CD 74
6.104 Naive (unfair) implementation of

nondeterminism CD 75
6.105 “Gotcha” in round-robin implementation

of nondeterminism CD 75

Chapter 7: Data Types

7.1 Operations that leverage type
information 307

7.2 Errors captured by type information 307

Type Systems

7.3 Enumerations in Pascal 315
7.4 Enumerations as constants 315
7.5 Converting to and from enumeration

type 315
7.6 Distinguished values for enums 316
7.7 Emulating distinguished enum values in

Java 5 316
7.8 Subranges in Pascal 316
7.9 Subranges in Ada 316
7.10 Space requirements of subrange type 317
7.11 Void (empty) type 319
7.12 Making do without void 319
7.13 Aggregates in Ada 320

Type Checking

7.14 Trivial differences in type 321
7.15 Other minor differences in type 322
7.16 The problem with structural equivalence 322
7.17 Semantically equivalent alias types 323
7.18 Semantically distinct alias types 323
7.19 Derived types and subtypes in Ada 324
7.20 Name v. structural equivalence 324
7.21 Contexts that expect a given type 325

7.22 Type conversions in Ada 326
7.23 Unchecked conversions in Ada 327
7.24 Type conversions in C 327
7.25 Coercion in Ada 329
7.26 Coercion in C 329
7.27 Java container of Object 332
7.28 Inference of subrange types 333
7.29 Using inference to avoid run-time checks 333
7.30 Heuristic nature of subrange inference 334
7.31 Type inference on string operations 334
7.32 Type inference for sets 334
7.104 Fibonacci function in ML CD 81
7.105 Expression types CD 81
7.106 Type inconsistency CD 82
7.107 Polymorphic functions CD 82
7.108 Polymorphic list operators CD 84
7.109 List notation CD 84
7.110 Resolving ambiguity with explicit types CD 85
7.111 Pattern matching of argument tuples CD 85
7.112 Swap in ML CD 85
7.113 Run-time pattern matching CD 86
7.114 ML case expression CD 86
7.115 Coverage of case labels CD 86
7.116 Function as a series of alternatives CD 87
7.117 Pattern matching of return tuple CD 87
7.118 ML records CD 87
7.119 ML datatypes CD 87
7.120 Recursive datatypes CD 88
7.121 Type equivalence in ML CD 88

Records (Structures) and Variants (Unions)

7.33 A Pascal record 337
7.34 A C struct 337
7.35 Accessing record fields 337
7.36 Nested records 337
7.37 ML records and tuples 338
7.38 Memory layout for a record type 338
7.39 Layout of packed types 339
7.40 Assignment and comparison of records 339
7.41 Minimizing holes by sorting fields 340
7.42 Pascal with statement 341
7.122 Elliptical references in Cobol and PL/I CD 90
7.123 Pascal with statement (reprise) CD 90
7.124 Modula-3 with statement CD 91
7.125 Multiple-object with statements CD 91
7.126 Nonrecord with statements CD 91
7.127 Emulating with in Scheme CD 92
7.128 Emulating with in C CD 92
7.43 Variant record in Pascal 341
7.44 Fortran equivalence statement 342
7.45 Mixing structs and unions in C 342
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7.46 Breaking type safety with equivalence 343
7.47 Union conformity in Algol 68 344
7.48 Tagged variant record in Pascal 344
7.49 Breaking type safety with variant records 345
7.50 Untagged variants in Pascal 345
7.51 Ada variants and tags (discriminants) 346
7.52 A discriminated subtype in Ada 347
7.53 Discriminated array in Ada 347

Arrays

7.54 Array declarations 350
7.55 Multidimensional arrays 350
7.56 Multidimensional v. built-up arrays 351
7.57 Arrays of arrays in C 352
7.58 Array slice operations 352
7.59 Stack allocation of elaborated arrays 354
7.60 Stack allocation of new arrays 355
7.61 Conformant array parameters 355
7.62 Local arrays of dynamic shape 356
7.63 Dynamic strings in Java and C# 356
7.64 Elaborated arrays in Fortran 90 356
7.65 Row-major v. column-major array layout 358
7.66 Array layout and cache performance 358
7.67 Contiguous v. row-pointer array layout 360
7.68 Indexing a contiguous array 361
7.69 Pseudo-assembler for contiguous array

indexing 362
7.70 Static and dynamic portions of an array

index 362
7.71 Indexing complex structures 363
7.72 Pseudo-assembler for row-pointer array

indexing 364

Strings

7.73 Character escapes in C and C++ 366
7.74 Char* assignment in C 367

Sets

7.75 Set types 367

Pointers and Recursive Types

7.76 Tree type in ML 371
7.77 Tree type in Lisp 371
7.78 Mutually recursive types in ML 372
7.79 Tree types in Pascal, Ada, and C 373
7.80 Allocating heap nodes 374
7.81 Object-oriented allocation of heap nodes 374
7.82 Pointer-based tree 374
7.83 Pointer dereferencing 374
7.84 Implicit dereferencing in Ada 375
7.85 Pointer dereferencing in ML 375

7.86 Assignment in Lisp 375
7.87 Array names and pointers in C 376
7.88 Pointer comparison and subtraction in C 376
7.89 Pointer and array declarations in C 376
7.90 Arrays as parameters in C 377
7.91 Sizeof in C 377
7.92 Multidimensional array parameters in C 378
7.93 Explicit storage reclamation 379
7.94 Dangling reference detection with

tombstones 380
7.95 Dangling reference detection with locks

and keys 381
7.96 Reference counts and circular structures 384
7.97 Heap tracing with pointer reversal 386

Lists

7.98 Lists in ML and Lisp 390
7.99 List notation 390
7.100 Basic list operations in Lisp 391
7.101 Basic list operations in ML 391
7.102 List comprehensions 392

Files and Input/Output

7.129 Files as a built-in type CD 95
7.130 The open operation CD 95
7.131 The close operation CD 95
7.132 Formatted output in Fortran CD 97
7.133 Labeled formats CD 97
7.134 Printing to standard output CD 98
7.135 Formatted output in Ada CD 99
7.136 Overloaded put routines CD 99
7.137 Formatted output in C CD 100
7.138 Text in format strings CD 100
7.139 Formatted input in C CD 100
7.140 Formatted output in C++ CD 101
7.141 Stream manipulators CD 102
7.142 Array output in C++ CD 103
7.143 Changing default format CD 103

Equality Testing and Assignment

7.103 Equality testing in Scheme 394

Chapter 8: Subroutines and Control Abstrac-
tion

Review of Stack Layout

8.1 Layout of run-time stack (reprise) 408
8.2 Offsets from frame pointer 408
8.3 Static and dynamic links 409
8.4 Visibility of nested routines 409
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Calling Sequences

8.5 A typical calling sequence 411
8.59 Nonlocal access using a display CD 107
8.60 SGI MIPSpro C calling sequence CD 111
8.61 Gnu Pascal x86 calling sequence CD 115
8.62 Subroutine closure trampoline CD 117
8.63 Register windows on the Sparc CD 119
8.6 Requesting an inline subroutine 415
8.7 In-lining and recursion 416

Parameter Passing

8.8 Infix operators 418
8.9 Control abstraction in Lisp and Smalltalk 418
8.10 Passing a subroutine argument 418
8.11 Value and reference parameters 419
8.12 Emulating call-by-reference in C 420
8.13 Const parameters in C 421
8.14 Reference and value/result parameters 422
8.15 Reference parameters in C++ 423
8.16 References as aliases in C++ 423
8.17 Returning a reference from a function 424
8.18 Subroutines as parameters in Pascal 424
8.19 Subroutine types in Modula-2 424
8.20 Subroutine pointers in C and C++ 425
8.21 First-class subroutines in Scheme 425
8.22 First-class subroutines in ML 426
8.64 Jensen’s device CD 122
8.23 Default parameters in Ada 428
8.24 Named parameters in Ada 429
8.25 Self-documentation with named

parameters 429
8.26 Variable number of arguments in C 430
8.27 Variable number of arguments in Java 431
8.28 Variable number of arguments in C# 431
8.29 Returning a value from a function 432
8.30 Incremental computation of a return

value 432
8.31 Explicitly named return values in SR 433

Generic Subroutines and Modules

8.32 Generic queues in Ada and C++ 435
8.33 Generic min function in Ada (reprise) 435
8.34 Generic parameters 435
8.35 Simple constraints in Ada 437
8.36 With constraints in Ada 438
8.37 Generic sorting routine in Java 438
8.38 Generic sorting routine in C# 439
8.39 Generic sorting routine in C++ 439
8.40 Generic class instance in C++ 440
8.41 Generic subroutine instance in Ada 440
8.42 Implicit instantiation in C++ 440

8.65 Generic arbiter class in C++ CD 125
8.66 Instantiation-time errors in C++

templates CD 127
8.67 Generic arbiter class in Java CD 128
8.68 Wildcards and bounds on Java generic

parameters CD 129
8.69 Type erasure and implicit casts CD 130
8.70 Unchecked warnings in Java 5 CD 131
8.71 Java 5 generics and built-in types CD 131
8.72 Sharing generic implementations in C# CD 132
8.73 C# generics and built-in types CD 132
8.74 Generic arbiter class in C# CD 132

Exception Handling

8.43 ON conditions in PL/I 442
8.44 What is an exception? 444
8.45 Parameterized exceptions 444
8.46 Exception handler in Ada 445
8.47 Exception handler in C++ 446
8.48 Exception handler in ML 447
8.49 Finally clause in Modula-3 447
8.50 Catch and finally in Java 448
8.51 Exceptions in a recursive descent parser 449
8.52 Stacked exception handlers 449
8.53 Multiple exceptions per handler 450
8.54 Setjmp and longjmp in C 451

Coroutines

8.55 Explicit interleaving of concurrent
computations 453

8.56 Interleaving coroutines 454
8.57 Cactus stacks 456
8.58 Switching coroutines 457
8.75 Coroutine-based iterator invocation CD 135
8.76 Coroutine-based iterator implementation CD 135
8.77 Iterator usage in C# CD 136
8.78 Implementation of C# iterators CD 137
8.79 Sequential simulation of a complex

physical system CD 139
8.80 Initialization of a coroutine-based traffic

simulation CD 139
8.81 Traversing a street segment in the traffic

simulation CD 140
8.82 Scheduling a coroutine for future

execution CD 140
8.83 Queueing cars at a traffic light CD 140
8.84 Waiting at a light CD 141
8.85 Sleeping in anticipation of future

execution CD 141
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Chapter 9: Data Abstraction and Object Ori-
entation

Object-Oriented Programming

9.1 List_node class in C++ 471
9.2 List class that uses list_node 473
9.3 Declaration of in-line (expanded) objects 473
9.4 Method declaration without definition 474
9.5 Separate method definition 474
9.6 Property and indexer methods in C# 475
9.7 Queue class derived from list 476
9.8 The Smalltalk class hierarchy 476
9.9 Base class for general purpose lists 478
9.10 Overloaded int_list_node

constructor 478
9.11 Redefining a method in a derived class 479
9.12 Redefinition that builds on the base class

method 479
9.13 Accessing base class members 479
9.14 Renaming methods in Eiffel 480

Encapsulation and Inheritance

9.15 Data hiding in Euclid 481
9.16 Opaque types in Modula-2 482
9.17 Data hiding in Ada 482
9.18 The hidden this parameter 484
9.19 Private base class in C++ 484
9.20 Protected base class in C++ 485
9.21 List and queue abstractions in Ada 95 486

Initialization and Finalization

9.22 Naming constructors in Eiffel 490
9.23 Metaclasses in Smalltalk 491
9.24 Declarations and constructors in C++ 492
9.25 Copy constructors 492
9.26 Eiffel constructors and expanded objects 494
9.27 Specification of base class constructor

arguments 495
9.28 Specification of member constructor

arguments 495
9.29 Invocation of base class constructor in

Java 496
9.30 Reclaiming space with destructors 496

Dynamic Method Binding

9.31 Derived class objects in a base class
context 498

9.32 Static and dynamic method binding 498
9.33 The need for dynamic binding 499
9.34 Virtual methods in C++ and C# 500
9.35 Virtual methods in Simula 500
9.36 Class-wide types in Ada 95 500

9.37 Abstract methods in Java and C# 501
9.38 Abstract methods in C++ 501
9.39 Vtables 502
9.40 Implementation of a virtual method call 502
9.41 Implementation of single inheritance 502
9.42 Casts in C++ 503
9.43 Reverse assignment in Eiffel and C# 504
9.44 Inheritance and method signatures 506
9.45 Generics and inheritance 506
9.46 Like in Eiffel 507
9.47 Objects as closures 508
9.48 Encapsulating arguments 509

Multiple Inheritance

9.49 Deriving from two base classes 511
9.50 Deriving from two base classes (reprise) CD 146
9.51 (Nonrepeated) multiple inheritance CD 146
9.52 Method invocation with multiple

inheritance CD 147
9.53 This correction CD 148
9.54 Methods found in more than one base

class CD 148
9.55 Overriding an ambiguous method CD 149
9.56 Repeated multiple inheritance CD 150
9.57 Shared inheritance in C++ CD 151
9.58 Replicated inheritance in Eiffel CD 151
9.59 Using replicated inheritance CD 151
9.60 Overriding methods with shared

inheritance CD 153
9.61 Implementation of shared inheritance CD 153
9.62 Mixing interfaces into a derived class CD 155
9.63 Compile-time implementation of mix-in

inheritance CD 155

Object-Oriented Programming Revisited

9.64 Operations as messages in Smalltalk CD 158
9.65 Mixfix messages CD 158
9.66 Selection as an ifTrue: ifFalse:

message CD 159
9.67 Iterating with messages CD 159
9.68 Blocks as closures CD 160
9.69 Logical looping with messages CD 160
9.70 Defining control abstractions CD 160
9.71 Recursion in Smalltalk CD 161

Chapter 10: Functional Languages

Historical Origins

10.1 Comparing programming models 525
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Functional Programming Concepts

A Review/Overview of Scheme

10.2 The read-eval-print loop 528
10.3 Significance of parentheses 528
10.4 Quoting 528
10.5 Dynamic typing 529
10.6 Type predicates 529
10.7 Liberal syntax for symbols 529
10.8 Lambda expressions 529
10.9 Function evaluation 530
10.10 If expressions 530
10.11 Nested scopes with let 530
10.12 Global bindings with define 531
10.13 Basic list operations 531
10.14 List search functions 532
10.15 Searching association lists 532
10.16 Multiway conditional expressions 533
10.17 Assignment 533
10.18 Sequencing 533
10.19 Iteration 533
10.20 Evaluating data as code 535
10.21 Eval-apply trace of a simple

expression 536
10.22 Denotational semantics of Scheme 537
10.23 Simulating a DFA in Scheme 537

Evaluation Order Revisited

10.24 Applicative and normal-order evaluation 539
10.25 Normal-order avoidance of unnecessary

work 540
10.26 Stream-based program execution 542
10.27 Interactive I/O with streams 543
10.28 The Haskell I/O monad 543
10.29 Invocation of actions with do 544
10.30 Functional composition of actions 544
10.31 Streams and the I/O monad 545

Higher-Order Functions

10.32 Map function in Scheme 545
10.33 Folding (reduction) in Scheme 545
10.34 Combining higher-order functions 546
10.35 Partial application with currying 546
10.36 General purpose curry function 546
10.37 Tuples as ML function arguments 546
10.38 Optional parentheses on singleton

arguments 547
10.39 Simple curried function in ML 547
10.40 Shorthand notation for currying 548
10.41 Folding (reduction) in ML 548
10.42 Curried fold in ML 548
10.43 Currying in ML v. Scheme 548

Theoretical Foundations

10.44 Declarative (nonconstructive) function
definition 549

10.45 Functions as mappings CD 166
10.46 Functions as sets CD 166
10.47 Functions as powerset elements CD 167
10.48 Function spaces CD 167
10.49 Higher-order functions as sets CD 167
10.50 Curried functions as sets CD 168
10.51 Juxtaposition as function application CD 168
10.52 Lambda calculus syntax CD 168
10.53 Binding parameters with λ CD 169
10.54 Free variables CD 169
10.55 Naming functions for future reference CD 169
10.56 Evaluation rules CD 169
10.57 Delta reduction for arithmetic CD 170
10.58 Eta reduction CD 170
10.59 Reduction to simplest form CD 170
10.60 Nonterminating applicative-order

reduction CD 171
10.61 Booleans and conditionals CD 172
10.62 Beta abstraction for recursion CD 172
10.63 The fixed-point combinator Y CD 173
10.64 Lambda calculus list operators CD 173
10.65 List operator identities CD 175
10.66 Nesting of lambda expressions CD 175
10.67 Paired arguments and currying CD 176

Functional Programming in Perspective

Chapter 11: Logic Languages

Logic Programming Concepts

11.1 Horn clauses 560
11.2 Resolution 560
11.3 Unification 560

Prolog

11.4 Atoms, variables, scope, and type 561
11.5 Structures and predicates 561
11.6 Facts and rules 562
11.7 Queries 562
11.8 Resolution in Prolog 563
11.9 Unification in Prolog and ML 563
11.10 Equality and unification 564
11.11 Unification without instantiation 564
11.12 List notation in Prolog 564
11.13 Functions, predicates, and two-way rules 565
11.14 Arithmetic and the is predicate 565
11.15 Search tree exploration 566
11.16 Backtracking and instantiation 567
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11.17 Order of rule evaluation 568
11.18 Infinite regression 568
11.19 Tic-tac-toe in Prolog 569
11.20 The cut 572
11.21 Not and its implementation 572
11.22 Pruning unwanted answers with the cut 572
11.23 Using the cut for selection 573
11.24 Looping with fail 573
11.25 Looping with an unbounded generator 573
11.26 Character input with get 574
11.27 Prolog programs as data 574
11.28 Modifying the Prolog database 575
11.29 Tic-tac-toe (full game) 575
11.30 The functor predicate 577
11.31 Creating terms at run time 577
11.32 Pursuing a dynamic goal 577
11.33 Custom database perusal 578

Theoretical Foundations

11.34 Predicates as mathematical objects 579
11.39 Propositions CD 180
11.40 Different ways to say things CD 181
11.41 Conversion to clausal form CD 181
11.42 Conversion to Prolog CD 182
11.43 Disjunctive left-hand side CD 182
11.44 Empty left-hand side CD 183
11.45 Theorem proving as a search for

contradiction CD 183
11.46 Skolem constants CD 183
11.47 Skolem functions CD 184
11.48 Limitations of Skolemization CD 184

Logic Programming in Perspective

11.35 Sorting incredibly slowly 581
11.36 Quicksort in Prolog 581
11.37 Negation as failure 581
11.38 Negation and instantiation 582

Chapter 12: Concurrency

Background and Motivation

12.1 A race condition in the operating system 591
12.2 Multithreaded web browser 593
12.3 Dispatch loop web browser 595
12.4 Direct and indirect networks 598
12.5 The cache coherence problem 599

Concurrent Programming Fundamentals

12.6 Par begin in Algol 68 604
12.7 Par in Occam 605
12.8 Parallel loops in SR 606

12.9 Forall in Fortran 90 607
12.10 Elaborated tasks in Ada 607
12.11 Co-begin v. fork/join 608
12.12 Task types in Ada 608
12.13 Fork/Join in Modula-3 609
12.14 Forking a proc in SR 609
12.15 Thread creation in Java 2 610
12.16 Thread pools in Java 5 610
12.17 Modeling subroutines with fork/join 611
12.18 Returning without terminating 611
12.19 Early reply in SR 613
12.20 Early reply for initialization 613
12.21 Multiplexing threads on processes 614
12.22 Cooperative multithreading on a

uniprocessor 615
12.23 A race condition in preemptive

multithreading 617
12.24 Disabling signals during context switch 617

Shared Memory

12.25 The basic test_and_set lock 620
12.26 Test-and-test_and_set 621
12.27 Atomic update with LL/SC 621
12.28 The “sense-reversing” barrier 623
12.29 Scheduling threads on processes 623
12.30 A race condition in thread scheduling 625
12.31 A “spin-then-yield” lock 625
12.32 Semaphore implementation 627
12.33 Bounded buffer with semaphores 628
12.34 Bounded buffer monitor 630
12.35 How to wait for a signal (hint or

absolute) 631
12.36 Original CCR syntax 634
12.37 Synchronized statement in Java 635
12.38 Notify as hint in Java 636
12.39 Lock variables in Java 5 637
12.40 Multiple Conditions in Java 5 638
12.41 Future construct in Multilisp 639

Message Passing

12.42 Naming processes, ports, and entries 642
12.43 Entry calls in Ada 643
12.44 Channels in Occam 643
12.45 Datagram messages in Java 644
12.46 Connection-based messages in Java 645
12.47 Three main options for send semantics 646
12.48 Buffering-dependent deadlock 648
12.49 Acknowledgments 648
12.50 Bounded buffer in Ada 83 651
12.51 Timeout and distributed termination 652
12.52 Bounded buffer in Occam 653
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12.53 Asymmetry of synchronization send 653
12.54 Timeout in Occam receipt 654
12.55 Bounded buffer in SR 656
12.56 Peeking at messages in SR 656
12.57 An RPC server system 658

Chapter 13: Scripting Languages

What Is a Scripting Language?

13.1 Trivial programs in conventional and
scripting languages 674

13.2 Coercion in Perl 676

Problem Domains

13.3 “Wildcards” and “globbing” 678
13.4 For loops in the shell 679
13.5 A whole loop on one line 679
13.6 Conditional tests in the shell 679
13.7 Pipes 680
13.8 Output redirection 680
13.9 Redirection of stderr and stdout 681
13.10 Heredocs (in-line input) 681
13.11 Single and double quotes 681
13.12 Subshells 682
13.13 Brace-quoted blocks in the shell 682
13.14 Pattern-based list generation 682
13.15 User-defined shell functions 683
13.16 The #! convention in script files 683
13.17 Extracting HTML headers with sed 685
13.18 One-line scripts in sed 686
13.19 Extracting HTML headers with awk 686
13.20 Fields in awk 687
13.21 Capitalizing a title in awk 687
13.22 Extracting HTML headers with Perl 688
13.23 “Force quit” script in Perl 690
13.24 “Force quit” script in Tcl 692
13.25 “Force quit” script in Python 694
13.26 Method call syntax in Ruby 696
13.27 “Force quit” script in Ruby 697
13.28 Numbering lines with Emacs Lisp 699

Scripting the World Wide Web

13.29 Remote monitoring with a CGI script 702
13.30 Adder web form with a CGI script 703
13.31 Remote monitoring with a PHP script 705
13.32 A fragmented PHP script 706
13.33 Adder web form with a PHP script 706
13.34 Self-posting Adder web form 707
13.35 Adder web form in JavaScript 708
13.36 Embedding an applet in a web page 709
13.37 Embedding an object in a web page 710

13.38 Content versus appearance in HTML 712
13.39 Well-formed XHTML 713
13.40 XHTML to display a favorite quote 714
13.41 XPath names for XHTML elements 715
13.42 Creating a reference list with XSLT 717

Innovative Features

13.43 Scoping rules in Python 724
13.44 Super-assignment in R 725
13.45 Scoping rules in Tcl 725
13.46 Static and dynamic scope in Perl 726
13.47 Accessing globals in Perl 727
13.48 Basic operations in POSIX REs 730
13.49 Extra quantifiers in POSIX REs 730
13.50 Zero-length assertions 730
13.51 Character classes 730
13.52 The dot (.) character 730
13.53 Negation and quoting in character classes 730
13.54 Predefined POSIX character classes 731
13.55 RE matching in Perl 731
13.56 Negating a match in Perl 731
13.57 RE substitution in Perl 731
13.58 Trailing modifiers on RE matches 731
13.59 Greedy and minimal matching 733
13.60 Minimal matching of HTML headers 733
13.61 Variable interpolation in extended REs 733
13.62 Variable capture in extended REs 734
13.63 Backreferences in extended REs 734
13.64 Dissecting a floating-point literal 734
13.65 Implicit capture of prefix, match, and

suffix 734
13.66 Coercion in Ruby and Perl 736
13.67 Coercion and context in Perl 736
13.68 Explicit conversion in Ruby 736
13.69 Perl arrays 738
13.70 Perl hashes 738
13.71 Arrays and hashes in Python and Ruby 738
13.72 Array access methods in Ruby 739
13.73 Tuples in Python 739
13.74 Sets in Python 740
13.75 Conflated types in PHP, Tcl, and

JavaScript 740
13.76 Multidimensional arrays in Python and

other languages 740
13.77 Scalar and list context in Perl 741
13.78 Using wantarray to determine calling

context 741
13.79 A simple class in Perl 742
13.80 Invoking methods in Perl 742
13.81 Inheritance in Perl 743
13.82 Inheritance via use base 744
13.83 Prototypes in JavaScript 745
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13.84 Overriding instance methods in
JavaScript 745

13.85 Inheritance in JavaScript 746
13.86 Constructors in Python and Ruby 746
13.87 Naming class members in Python and

Ruby 746

Chapter 14: Building a Runnable Program

Back-End Compiler Structure

14.1 Phases of compilation 762
14.2 GCD program abstract syntax tree

(reprise) 762

Intermediate Forms

14.17 ExpressionTree abstraction in Diana CD 190
14.18 An RTL insn sequence CD 193

Code Generation

14.3 Simpler compiler structure 769
14.4 An attribute grammar for code

generation 771
14.5 Stack-based register allocation 772
14.6 GCD program target code 773

Address Space Organization

Assembly

14.7 Assembly as a final compiler pass 777
14.8 Direct generation of object code 777
14.9 Instruction variants 778
14.10 Pseudoinstruction expansion 778
14.11 Two-instruction loads 779
14.12 Nontrivial conditional branches 779
14.13 Assembler directives 779
14.14 Encoding of addresses in object files 780

Linking

14.15 Static linking 782
14.16 Checksumming headers for consistency 783

Dynamic Linking

14.19 PIC under MIPS/IRIX CD 196
14.20 Dynamic linking under MIPS/IRIX CD 197

Chapter 15: Code Improvement

15.1 Code Improvement Phases CD 204

15.2 Elimination of redundant loads and stores CD 206
15.3 Constant folding CD 206
15.4 Constant propagation CD 206
15.5 Common subexpression elimination CD 207
15.6 Copy propagation CD 207
15.7 Strength reduction CD 207
15.8 Elimination of useless instructions CD 208
15.9 Exploitation of the instruction set CD 208
15.10 The combinations subroutine CD 210
15.11 Syntax tree and naive control flow graph CD 210
15.12 Result of local redundancy elimination CD 215
15.13 Conversion to SSA form CD 218
15.14 Global value numbering CD 220
15.15 Data flow equations for available

expressions CD 222
15.16 Fixed point for available expressions CD 222
15.17 Result of global common subexpression

elimination CD 224
15.18 Edge splitting transformations CD 225
15.19 Data flow equations for live variables CD 226
15.20 Fixed point for live variables CD 226
15.21 Data flow equations for reaching

definitions CD 228
15.22 Result of hoisting loop invariants CD 229
15.23 Induction variable strength reduction CD 230
15.24 Induction variable elimination CD 230
15.25 Result of induction variable optimization CD 231
15.26 Remaining pipeline delays CD 233
15.27 Value dependence DAG CD 233
15.28 Result of instruction scheduling CD 235
15.29 Result of loop unrolling CD 237
15.30 Result of software pipelining CD 237
15.31 Loop interchange CD 241
15.32 Loop tiling (blocking) CD 241
15.33 Loop distribution CD 242
15.34 Loop fusion CD 243
15.35 Obtaining a perfect loop nest CD 243
15.36 Loop-carried dependences CD 244
15.37 Loop reversal and interchange CD 244
15.38 Loop skewing CD 245
15.39 Coarse-grain parallelization CD 246
15.40 Strip mining CD 247
15.41 Live ranges of virtual registers CD 248
15.42 Register coloring CD 248
15.43 Optimized combinations subroutine CD 249
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