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Ian Millington crosses the boundary between academic and professional game Al with
his book Artificial Intelligence for Games. Most books either lack academic rigor or are
rigorous with algorithms that won’t work under the CPU constraints imposed by modern
games. This book walks a line between the two and does it well. It explains algorithms
rigorously while also discussing appropriate implementation details such as scheduling
Al over time and using the right data structures. I will be using this book for my Game
Al course.

—TJessica D. Bayliss, Ph.D.
Rochester Institute of Technology

This is the first serious attempt to create a comprehensive reference for all game Al prac-
tices, terminology, and know-how. Works like this are badly needed by the maturing
video games industry. Systematic yet accessible, it is a must-have for any student or pro-
fessional.

—Marcin Chady, Ph.D.
Radical Entertainment

This book promises to be the closest I've seen to what is needed in the field. I would highly
recommend it for people in the industry.

—John Laird
University of Michigan

Ian Millington’s book is a comprehensive reference to the most widely used techniques in
game Al today. Any game developer working on Al will learn something from this book,
and game producers should make sure their AI programmers have a copy.

—Dr. Ian Lane Davis
Mad Doc Software
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PREFACE

Two memories stand out in my career writing game Al

The first takes place in a dingy computer lab on the top floor of the computer sci-
ence building at Birmingham University in the UK. Although I am half-way through
the first year of my Artificial Intelligence degree, I've only been in the department
for a couple of weeks after transferring from a Mathematics major. Catching up on
a semester of work is, unexpectedly, great fun, and there are a great bunch of fellow
students eager to help me learn about Expert Systems, Natural Language Processing,
Philosophy of Mind, and the Prolog programming language.

One of my fellow students has written a simple text-based adventure game in
Prolog. I'm not new to game programming—I was part of the 8-bit bedroom coding
scene through my teenage years, and by this time had written more than ten games
myself. But this simple game completely captivates my attention. It is the first time
I’ve seen a finite state machine in action. There is an Ogre, who can be asleep, dozing,
distracted, or angry. And you can control his emotions through hiding, playing a
flute, or stealing his dinner.

All thoughts of assignment deadlines are thrown to the wind, and a day later I
have my own game in C written with this new technique. It is a mind-altering expe-
rience, taking me to an entirely new understanding of what is possible. The enemies
I’d always coded were stuck following fixed paths, or waited until the player came
close before homing right in. In the FSM I saw the prospect of modeling complex
emotional states, triggers, and behaviors. And I knew Game Al is what I wanted to
do.

The second memory is more than ten years later. Using some technology devel-
oped to simulate military tactics, I have founded a company called Mindlathe, ded-
icated to providing artificial intelligence middleware to games and other real-time
applications. It is more than two years into development, and we are well into the
process of converting prototypes and legacy code into a robust Al engine. I am work-
ing on the steering system; producing a formation motion plug-in.

On screen I have a team of eight robots wandering through a landscape of trees.
Using techniques in this book, they are staying roughly in formation, while avoid-
ing collisions and taking the easiest route through more difficult terrain. The idea
occurred to me to combine this with an existing demo we had of characters using
safe-tactical locations to hide in. With a few lines of code I had the formation locked
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to tactical locations. Rather than robots trying to stay in a V formation, they tried to
stick to safe locations, moving forward only if they would otherwise get left behind.
Immediately the result was striking: the robots dashed between cover points, moving
one at a time, so the whole group made steady progress through the forest, but each
individual stayed in cover as long as possible.

The memory stays with me, not because of that idea, but because it was the fastest
and most striking example of something I had seen many times: that incredibly real-
istic results can be gained from intelligently combining very simple algorithms.

Both memories, along with many years of experience have taught me that, with a
good toolbox of simple Al techniques, you can build stunningly realistic game charac-
ters. Characters with behaviors that would take far longer to code directly, and would
be far less flexible to changing needs and player tactics.

This book is an outworking of that experience. It doesn’t tell you how to build a
sophisticated Al from the ground up. It gives you a huge range of simple (and not so
simple) Al techniques that can be endlessly combined, re-used, and parameterized to
generate almost any character behavior that you can conceive.

This is the way I, and most of the developers I know, build game Al Those who do
it long-hand each time are a dying breed. As development budgets soar, as companies
get more risk averse, and as technology development costs need to be spread over
more titles; having a reliable toolkit of tried-and-tested techniques is the only sane
choice.

I hope you’ll find an inspiring palette of techniques in this book that will keep you
in realistic characters for decades to come.
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INTRODUCTION

G ame development lives in its own technical world. It has its own idioms, skills,
and challenges. That’s one of the reasons I find it so much fun to work on.
There’s a reasonably good chance of being the first person to meet and beat a new
programming challenge.

Despite numerous efforts to bring it into line with the rest of the development
industry, going back at least 15 years, the style of programming in a game is still very
different from that in any other sphere of development. There is a focus on speed,
but it isn’t very similar to programming for embedded or control applications. There
is a focus on clever algorithms, but it doesn’t share the same rigor as database server
engineering. It draws techniques from a huge range of different sources, but almost
without exception modifies them beyond resemblance. And, to add an extra layer of
intrigue, each developer makes their modifications in different ways, leaving algo-
rithms unrecognizable from studio to studio.

As exciting and challenging as this may be, it makes it difficult for developers to
get the information they need. Ten years ago, I found it almost impossible to get hold
of information about techniques and algorithms that real developers used in their
games. There was an atmosphere of secrecy, even alchemy, about the coding tech-
niques in top studios. Then came the Internet and an ever-growing range of websites,
along with books, conferences, and periodicals. It is now easier than ever to teach
yourself new techniques in game development.

This book is designed to help you master one element of game development: ar-
tificial intelligence (AI). There have been many articles published about different as-
pects of game Al: websites on particular techniques, compilations in book form, some
introductory texts, and plenty of lectures at development conferences. I was frustrated
that there wasn’t a book that covered it all, as a coherent whole. And that is where this
book is designed to be.



4 Chapter 1 Introduction

I’ve developed many Al modules for lots of different genres of games. I've devel-
oped an Al middleware tool that had a lot of new research and clever content. I work
on research and development for next-generation Al, and I get to do a lot with some
very clever technologies. However, throughout this book I’ve tried to resist the temp-
tation to pass off how I think it should be done as to how it is done. My aim has been
to tell it like it is (or for those next-generation technologies, to tell you how most
people agree it will be).

The meat of this book covers a wide range of techniques for game Al Some of
them are barely techniques: more like a general approach or development style. Some
are full-blown algorithms, and I've been able to give optimizations and a reference
implementation on the CD. Others are shallow introductions to huge fields well be-
yond the scope of this book. In these cases I've tried to give enough technique to
understand how and why an approach may be useful (or not).

I’'m aiming this book at a wide range of readers: from hobbyists or students look-
ing to get a solid understanding of game Al through to professionals who need a
comprehensive reference to techniques they may not have used before.

Before we get into the techniques themselves, this chapter introduces Al, its his-
tory, and the way it is used. We’ll look at a model of Al to help fit the techniques
together, and T’ll give some background on how the rest of the book is structured.

1.1 wHaTt Is AI?

Artificial intelligence is about making computers able to perform the thinking tasks
that humans and animals are capable of.

We can already program computers to have super-human abilities in solving
many problems: arithmetic, sorting, searching, and so on. We can even get comput-
ers to play some board games better than any human being (Reversi or Connect 4,
for example). Many of these problems were originally considered Al problems, but as
they have been solved in more and more comprehensive ways, they have slipped out
of the domain of Al developers.

But there are many things that computers aren’t good at which we find trivial:
recognizing familiar faces, speaking our own language, deciding what to do next, and
being creative. These are the domain of Al trying to work out what kinds of algo-
rithms are needed to display these properties.

In academia, some Al researchers are motivated by philosophy: understanding
the nature of thought and the nature of intelligence and building software to model
how thinking might work. Some are motivated by psychology: understanding the
mechanics of the human brain and mental processes. Others are motivated by engi-
neering: building algorithms to perform human-like tasks. This threefold distinction
is at the heart of academic Al, and the different mind-sets are responsible for different
subfields of the subject.

As games developers, we are primarily interested in only the engineering side:
building algorithms that make game characters appear human or animal-like. Devel-
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opers have always drawn from academic research, where that research helps them get
the job done.

It is worth taking a quick overview of the Al done in academia to get a sense of
what exists in the subject and what might be worth plagiarizing. I don’t have the room
(or the interest and patience) to give a complete walk-through of academic Al, but it
will set us up to look at what kinds of techniques end up in games.

1.1.1 Acapbemic Al

You can, by and large, divide academic Al into three periods: the early days, the sym-
bolic era, and the natural era. This is a gross oversimplification, of course, and the
three overlap to some extent, but I find it a helpful distinction.

The Early Days

The early days include the time before computers, where philosophy of mind occa-
sionally made forays into Al with questions like: “what produces thought?”; “could
you give life to an inanimate object?”; and “what is the difference between a cadaver
and the human it previously was?” Tangential to this was the popular taste in mechan-
ical robots, particularly in Victorian Europe. By the turn of the century, mechanical
models were created that displayed the kind of animated, animal-like behaviors that
we now employ game artists to create in a modelling package.

In the war effort of the 1940s, the need to break enemy codes and to perform
the calculations required for atomic warfare motivated the development of the first
programmable computers. Given that these machines were being used to perform cal-
culations that would otherwise be done by a person, it was natural for programmers
to be interested in Al. Several computing pioneers (such as Turing, von-Neumann,
and Shannon) were also pioneers in early Al Turing, in particular, has become an
adopted father to the field, as a result of a philosophical paper he published in 1950
[Turing, 1950].

The Symbolic Era

From the late 1950s through to the early 1980s the main thrust of Al research was in
“symbolic” systems. A symbolic system is one in which the algorithm is divided into
two components: a set of knowledge (represented as symbols such as words, numbers,
sentences, or pictures) and a reasoning algorithm that manipulates those symbols to
create new combinations of symbols that hopefully represent problem solutions or
new knowledge.

An expert system, one of the purest expressions of this approach, is the most fa-
mous Al technique. It has a large database of knowledge and applies rules to the
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knowledge to discover new things. Other symbolic approaches applicable to games in-
clude blackboard architectures, pathfinding, decision trees, state machines, and steer-
ing algorithms. All of these and many more are described in this book.

A common feature of symbolic systems is a trade-off: when solving a problem
the more knowledge you have, the less work you need to do in reasoning. Often,
reasoning algorithms consist of searching: trying different possibilities to get the best
result. This leads us to the golden rule of Al: search and knowledge are intrinsically
linked. The more knowledge you have, the less searching for an answer you need; the
more search you can do (i.e., the faster you can search), the less knowledge you need.

It was suggested by researchers Newell and Simon in 1976 that this is the way
all intelligent behavior arises. Unfortunately, despite it having several solid and im-
portant features, this theory has been largely discredited, and out with the bathwater
has often gone the baby. Many people with a recent education in Al are not aware
that, as an engineering trade-off, knowledge vs. search is unavoidable. Recent work
on the mathematics of problem solving has proved this theoretically [Wolpert and
Macready, 1997], and Al engineers have always known it.

The Natural Fra

Gradually through the 1980s and into the early 1990s, there was an increasing frus-
tration with symbolic approaches. The frustration came in two directions. First, from
an engineering point of view, the early successes on simple problems didn’t seem to
scale to more difficult problems. It might be easy to develop Al that understands (or
appears to understand) simple sentences, but understanding a full human language
seemed no nearer. Second, from a philosophical viewpoint, symbolic approaches
weren’t biologically plausible. You can’t understand how a human being plans a route
by using a symbolic route planning algorithm any more than you understand how
human muscles work by studying a forklift truck.

The effect was a move toward natural computing: techniques inspired by biology
or other natural systems. These techniques include neural networks, genetic algo-
rithms, and simulated annealing. Although symbolic work was still in progress, it
became more difficult to fund academic study into symbolic approaches and much
easier to fund natural computing research. When I did my undergraduate and post-
graduate research in the early 1990s, I naturally followed the zeitgeist and specialized
in genetic algorithms.

It is worth noting, however, that natural computing techniques weren’t invented
in the 1980s and 1990s. Neural networks, for example, predate the symbolic era; they
were first suggested in 1943 [McCulloch and Pitts, 1943]. I see it more of a fashion
shift to natural computing, although I'm sure there are those that would see it as
inevitable progress.
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Engineering

There are two interesting things to notice about the fashion change in academic Al.
First, natural computing techniques have not been any better at generating scalable
solutions to larger problems. Some natural computing techniques are particularly
suited to specific domains, but then so were some symbolic techniques. Neural net-
works have proved their usefulness in several areas, for example, but genetic algo-
rithms (despite still being the technique of the moment) haven’t been so successful.

Second, natural computing, in the current state of the art, is not biologically
plausible. Every natural computing field has had to make optimizations to the ba-
sic model to get sensible results. And these optimizations are, by and large, distinctly
un-biological.

The no-free-lunch theorem and subsequent work has shown that, over all prob-
lems, no single approach is better than any other. The only way any algorithm can
outperform another is to focus on a specific set of problems. The narrower the prob-
lem domain you focus on, the easier it will be for the algorithm to shine. Which, in
a roundabout way, brings us back to the golden rule of Al: search (trying possible
solutions) is the other side of the coin to knowledge (knowledge about the problem
is equivalent to narrowing the number of problems your approach is applicable to).

Engineering applications of natural computing always use symbolic technology.
A voice recognition program, for example, converts the input signals using known
formulae into a format where the neural network can decode it. The results are then
fed through a series of symbolic algorithms that look at words from a dictionary
and the way words are combined in the language. A genetic algorithm optimizing
the order of a production line will have the rules about production encoded into its
structure, so it can’t possibly suggest an illegal timetable: the knowledge is used to
reduce the amount of search required.

Although it is improving, there is a snooty air about symbolic AI among many
academics I’ve found. This skews the appearance of Al to those outside academia.
I've talked to several developers who've bought the hype that symbolic approaches
are dead and that natural computing techniques are the “new wave,” are “better,” or
are “the future.” Invariably, they try them out and find that they aren’t.

We'll look at several natural computing techniques in this book that are useful
for specific problems. I have enough experience to know that for other problems they
are a waste of time; the same effect can be achieved better, faster, and with more
control using a simpler approach. Overwhelmingly, the Al used in games is symbolic
technology.

1.1.2 GamME Al

Pacman [Midway Games West, Inc., 1979] was the first game I remember playing
with fledgling AI. Up to that point there had been Pong clones with opponent-
controlled bats (that basically followed the ball up and down) and countless shooters
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in the Space Invaders mold. But Pacman had definite enemy characters that seemed
to conspire against you, moved around the level just as you did, and made life tough.

Pacman relied on a very simple Al technique: a state machine (which we’ll cover
later in Chapter 5). Each of the four monsters (later called ghosts after a disastrously
flickering port to the Atari 2600) was either chasing you or running away. For each
state they took a semi-random route at each junction. In chase mode, each had a
different chance of chasing the player or choosing a random direction. In run away
mode, they either ran away or chose a random direction. All very simple and very
1979.

Game Al didn’t change much until the mid-1990s. Most computer-controlled
characters prior to then were about as sophisticated as a Pacman ghost.

Take a classic like Golden Axe [SEGA Entertainment, Inc., 1987] 8 years later.
Enemy characters stood still (or walked back and forward a short distance) until the
player got close to them, whereupon they homed in on the player. Golden Axe had
a neat innovation with enemies that would rush past the player and then switch to
homing mode, attacking from behind. The sophistication of the Al is only a small
step from Pacman.

In the mid-1990s Al began to be a selling point for games. Personally, Beneath
a Steel Sky [Revolution Software Ltd., 1994] was the first game I bought because it
mentioned Al on the back of the box. Unfortunately, its much-hyped “Virtual The-
atre” Al system simply allowed characters to walk backward and forward through the
game: hardly a real advancement.

Goldeneye 007 [Rare Ltd., 1997] probably did the most to show gamers what Al
could do to improve gameplay. Still relying on characters with a small number of
well-defined states, Goldeneye added a sense simulation system: a character could see
their colleagues and would notice if they were killed. Sense simulation was the topic
of the moment, with Thief: The Dark Project [Looking Glass Studios, Inc., 1998]
and Metal Gear Solid [Konami Corporation, 1998] basing their whole game design
on the technique.

In the mid-1990s RTS games were beginning to take off. Warcraft [Blizzard En-
tertainment, 1994] was the first time I noticed pathfinding in action (I later found
out it had been used several times before). I was working with emotional models of
soldiers in a military battlefield simulation in 1998 when I saw Warhammer: Dark
Omen [Mindscape, 1998] doing the same thing. It was also the first time I saw robust
formation motion in action.

Recently, an increasing number of games have made Al the point of the game.
Creatures [Cyberlife Technology Ltd., 1997] did this in 1997, but games like The Sims
[Maxis Software, Inc., 2000] and Black and White [Lionhead Studios Ltd., 2001] have
carried on the torch. Creatures still has one of the most complex Al systems seen in a
game, with a neural network-based brain for each creature (that admittedly can often
look rather stupid in action).

Now we have a massive diversity of Al in games. Many genres are still using the
simple AI of 1979 because that’s all they need. Bots in first person shooters have seen
more interest from academic Al than any other genre. RTS games have co-opted much
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of the Al used to build training simulators for the military (to the extent that Full
Spectrum Warrior [Pandemic Studios, 2004] started life as a military training simu-
lator).

Sports games and driving games in particular have their own Al challenges, some
of which remain largely unsolved (dynamically calculating the fastest way around a
race track, for example), while RPG games with complex character interactions still
implemented as conversation trees feel overdue for some better Al. A number of lec-
tures and articles in the last 5 or 6 years have suggested improvements that have not
yet materialized in production games.

The Al in most modern games addresses three basic needs: the ability to move
characters, the ability to make decisions about where to move, and the ability to think
tactically or strategically. Even though we’ve gone from using state-based Al every-
where (they are still used in most places) to a broad range of techniques, they all fulfil
the same three basic requirements.

1.2 My MopDEL oF GAME Al

In this book there is a vast zoo of techniques. It would be easy to get lost, and it’s
important to understand how the bits fit together.

To help, I've used a consistent structure to understand the Al used in a game.
This isn’t the only possible model, and it isn’t the only model that would benefit from
the techniques in this book. But to make discussions clearer, we will think of each
technique as fitting into a general structure for making intelligent game characters.

Figure 1.1 illustrates this model. It splits the Al task into three sections: move-
ment, decision making, and strategy. The first two sections contain algorithms that

Al gets given processor time

—| execution management I—

Al gets its
information __group Al
[0] .
8 I strategy | | content creation |
= T
]
€ — character Al _l— scripting
2 decision making Al has implications for
g related technologies
movement
i
¥
| animation physics

Al gets turned into on-screen action

Figure 1.1  The Al model
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work on a character-by-character basis, and the last section operates on a whole team
or side. Around these three Al elements is a whole set of additional infrastructure.

Not all game applications require all levels of Al. Board games like Chess or Risk
require only the strategy level; the characters in the game (if they can even be called
that) don’t make their own decisions and don’t need to worry about how to move.

On the other hand, there is no strategy at all in very many games. Characters in a
platform game, such as Jak and Daxter [Naughty Dog, Inc., 2001], or the Oddworld
games are purely reactive, making their own simple decisions and acting on them.
There is no coordination that makes sure the enemy characters do the best job of
thwarting the player.

1.2.1 MOVEMENT

Movement refers to algorithms that turn decisions into some kind of motion. When
an enemy character without a gun needs to attack the player in Super Mario Sunshine
[Nintendo Entertainment, Analysis and Development, 2002], it first heads directly for
the player. When it is close enough, it can actually do the attacking. The decision to
attack is carried out by a set of movement algorithms that home in on the player’s
location. Only then can the attack animation be played and the player’s health be
depleted.

Movement algorithms can be more complex than simply homing in. A character
may need to avoid obstacles on the way or even work their way through a series of
rooms. A guard in some levels of Splinter Cell [UbiSoft Montreal Studios, 2002] will
respond to the appearance of the player by raising an alarm. This may require navi-
gating to the nearest wall-mounted alarm point, which can be a long distance away,
and may involve complex navigation around obstacles or through corridors.

Lots of actions are carried out using animation directly. If a Sim, in The Sims, is
sitting by the table with food in front of them and wants to carry out an eating action,
then the eating animation is simply played. Once the Al has decided that the character
should eat, no more Al is needed (the animation technology used is not covered in
this book). If the same character is by the back door when they want to eat, however,
movement Al needs to guide them to their chair (or to some other nearby source of
food).

1.2.2 DEcIsION MAKING

Decision making involves a character working out what to do next. Typically, each
character has a range of different behaviors that they could choose to perform: at-
tacking, standing still, hiding, exploring, patrolling, and so on. The decision making
system needs to work out which of these behaviors is the most appropriate at each
moment of the game. The chosen behavior can then be executed using movement Al
and animation technology.
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At its simplest, a character may have very simple rules for selecting a behavior.
The farm animals in various levels of the Zelda games will stand still unless the player
gets too close, whereupon they will move away a small distance.

At the other extreme, enemies in Half-Life 2 [Valve, 2004] display complex deci-
sion making, where they will try a number of different strategies to reach the player:
chaining together intermediate actions like throwing grenades and laying down sup-
pression fire in order to achieve their goals.

Some decisions may require movement Al to carry them out. A melee (hand-to-
hand) attack action will require the character to get close to its victim. Others are
handled purely by animation (the Sim eating, for example) or simply by updating the
state of the game directly without any kind of visual feedback (when a country Al in
Sid Meier’s Civilization III [Firaxis Games, 2001] elects to research a new technology,
for example, it simply happens with no visual feedback).

1.2.3 STRATEGY

You can go a long way with movement Al and decision making Al, and most action-
based three-dimensional (3D) games use only these two elements. But to coordinate
a whole team, some strategic Al is required.

In the context of this book, strategy refers to an overall approach used by a group
of characters. In this category are Al algorithms that don’t control just one character,
but influence the behavior of a whole set of characters. Each character in the group
may (and usually will) have their own decision making and movement algorithms,
but overall their decision making will be influenced by a group strategy.

In the original Half-Life [Valve, 1998], enemies worked as a team to surround and
eliminate the player. One would often rush past the player to take up a flanking posi-
tion. This has been followed in more recent games such as Ghost Recon [Red Storm
Entertainment, Inc., 2001] with increasing sophistication of the kinds of strategic ac-
tions that a team of enemies can carry out.

1.2.4 INFRASTRUCTURE

Al algorithms on their own are only half of the story, however. In order to actually
build Al for a game, we’ll need a whole set of additional infrastructure. The movement
requests need to be turned into action in the game by using either animation or,
increasingly, physics simulation.

Similarly, the Al needs information from the game to make sensible decisions.
This is sometimes called “perception” (especially in academic AI): working out what
information the character knows. In practice, it is much broader than just simulating
what each character can see or hear, but includes all interfaces between the game
world and the AL This world interfacing is often a large proportion of the work done
by an Al programmer, and in my experience it is the largest proportion of the Al
debugging effort.

Finally, the whole Al system needs to be managed so it uses the right amount
of processor time and memory. While some kind of execution management typically
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exists for each area of the game (level of detail algorithms for rendering, for example),
managing the Al raises a whole set of techniques and algorithms of its own.

Each of these components may be thought of as being out of the remit of the Al
developer. Sometimes they are (in particular, the animation system is almost always
part of the graphics engine), but they are so crucial to getting the Al working that
they can’t be avoided all together. In this book I have covered each infrastructure
component except animation in some depth.

1.2.5 AGENT-BAsSED Al

I don’t use the term “agents” very much in this book, even though the model I've
described is an agent-based model.

In this context, agent-based Al is about producing autonomous characters that
take in information from the game data, determine what actions to take based on the
information, and carry out those actions.

It can be seen as bottom-up design: you start by working out how each character
will behave and by implementing the Al needed to support that. The overall behavior
of the whole game is simply a function of how the individual character behaviors
work together. The first two elements of the Al model I use, movement and decision
making, make up the Al for an agent in the game.

In contrast, a non-agent-based Al seeks to work out how everything ought to act
from the top down and builds a single system to simulate everything. An example
is the traffic and pedestrian simulation in the cities of Grand Theft Auto 3 [DMA
Design, 2001]. The overall traffic and pedestrian flows are calculated based on the
time of day and city region and are only turned into individual cars and people when
the player can see them.

The distinction is hazy, however. I'll look at level of detail techniques that are
very much top down, while most of the character Al is bottom up. A good Al devel-
oper will mix and match any reliable techniques that get the job done, regardless of
the approach. That pragmatic approach is the one I always follow. So in this book,
I avoid using agent-based terminology. I prefer to talk about game characters in gen-
eral, however they are structured.

1.2.6 IN THE BookK

In the text of the book each chapter will refer back to this model of Al, pointing out
where it fits in. The model is useful for understanding how things fit together and
which techniques are alternatives for others.

But the dividing lines aren’t always sharp; this is intended to be a general model,
not a straightjacket. In the final game code there are no joins. The whole set of Al
techniques from each category, as well as a lot of the infrastructure, will all operate
seamlessly together.
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Many techniques fulfil roles in more than one category. Pathfinding, for example,
can be both a movement and a decision making technique. Similarly, some tactical
algorithms that analyze the threats and opportunities in a game environment can be
used as decision makers for a single character or to determine the strategy of a whole
team.

1.3 ALGORITHMS, DATA STRUCTURES, AND
REPRESENTATIONS

There are three key elements to implementing the techniques described in this book:
the algorithm itself, the data structures that the algorithm depends on, and the way
the game world is represented to the algorithm (often encoded as an appropriate data
structure). Each element is dealt with separately in the text.

1.3.1 ALGORITHMS

Algorithms are step-by-step processes that generate a solution to an Al problem. We
will look at algorithms that generate routes through a game level to reach a goal:
algorithms that work out which direction to move in to intercept a fleeing enemy,
algorithms that learn what the player will do next, and many others.

Data structures are the other side of the coin to algorithms. They hold data in
such a way that an algorithm can rapidly manipulate it to reach a solution. Often,
data structures need to be particularly tuned for one particular algorithm, and their
execution speeds are intrinsically linked.

There are a set of elements that you need to know to implement and tune an
algorithm, and these are treated step by step in the text:

m  The problem that the algorithm tries to solve

A general description of how the solution works, including diagrams, where they
are needed

m A pseudo-code presentation of the algorithm

m  Anindication of the data structures required to support the algorithm, including
pseudo-code, where required

m  Particular implementation nodes

m  Analysis of the algorithms performance: its execution speed, memory footprint,
and scalability

m  Weaknesses in the approach

Often, a set of algorithms are presented that get increasingly more efficient. The
simpler algorithms are presented to help you get a feeling for why the complex algo-
rithms have their structure. The stepping stones are described a little more sketchily
than the full system.
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Some of the key algorithms in game Al have literally hundreds of variations. This
book can’t hope to catalog and describe them all. When a key algorithm is described,
I will often give a quick survey of the major variations in briefer terms.

Performance Characteristics

To the greatest extent possible, I have tried to include execution properties of the
algorithm in each case. Execution speed and memory consumption often depend on
the size of the problem being considered. I have used the standard O() notation to
indicate the order of the most significant element in this scaling.

So an algorithm might be described as being O(nlog#n) in execution and O(n)
in memory, where 7 is usually some kind of component of the problem, such as the
number of other characters in the area or the number of power-ups in the level.

Any good text on general algorithm design will give a full mathematical treatment
of how O() values are arrived at and the implications they have for the real-world per-
formance of an algorithm. In this book I will omit derivations; they’re not useful for
practical implementation. I'll rely instead on a general indication. Where a complete
indication of the complexity is too involved, I'll indicate the approximate running
time or memory in the text, rather than attempt to derive an accurate O() value.

Some algorithms have confusing performance characteristics. It is possible to set
up highly improbable situations to deliberately make them perform poorly. In regular
use (and certainly in any use you're likely to have in a game), they will have a much
better performance. When this is the case, I've tried to indicate both the expected and
the worst case results. You can probably ignore the worst case value safely.

Pseudo-Code

Algorithms in this book are presented in pseudo-code for brevity and simplicity.
Pseudo-code is a fake programming language that cuts out any implementation de-
tails particular to one programming language, but describes the algorithm in suffi-
cient detail so that implementing it becomes simple. The pseudo-code in this book
has more of a programming language feel than some in pure algorithm books (be-
cause the algorithms contained here are often intimately tied to surrounding bits of
software in a way that is more naturally captured with programming idioms).

In particular, many Al algorithms need to work with relatively sophisticated data
structures: lists, tables, and so on. In C++ these structures are available as libraries
only and are accessed through functions. To make what is going on clearer, the
pseudo-code treats these data structures transparently, simplifying the code signifi-
cantly.

Full C++ source code implementations are provided on the accompanying CD,
and they can be used as the basis of your own implementation.

When creating the pseudo-code in this book, I've stuck to these conventions,
where possible:
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m  Indentation indicates block structure and is normally preceded by a colon. There
are no including braces or “end” statements. This makes for much simpler code,
with less redundant lines to bloat the listings. Good programming style always
uses indentation as well as other block markers, so we may as well just use in-
dentation.

m  Functions are introduced by the keyword def, and classes are introduced by the
keywords class or struct. Inherited classes are given after the class name, in
parentheses. Just like in C++, the only difference between classes and structures
is that structures are intended to have their member variables accessed directly.

m  Looping constructs are while a, and for a in b. The for loop can iterate over
any array. It can also iterate over a series of numbers (in C++ style), using the
syntax for a in 0..5. The later item of syntax is a range.

m  Ranges always include their lowest value, but not their highest. So 1..4 is the
numbers (1, 2, 3) only. Ranges can be open, such as 1.., which is all numbers
greater than or equal to 1; or ..4, which is identical to 0..4. Ranges can be
decreasing, but notice that the highest value is still not in the range: 4. .0 is the
set (3,2,1,0).

m  All variables are local to the function or method. Variables declared within a
class definition, but not in a method, are class instance variables.

>

m  The single equal sign “=” is an assignment operator, whereas the double equal
sign “==" is an equality test.

» <
>

m  Boolean operators are “and,” “or,” and “not.”

m  Class methods are accessed by name using a period between the instance variable
and the method, for example, instance.variable().

m  The symbol “#” introduces a comment for the remainder of the line.

m  Array elements are given in square brackets and are zero indexed (i.e., the first
element of array a is a[0]). A sub-array is signified with a range in brackets,
so a[2..5] is the sub-array consisting of the 3rd to 5th elements of the array a.
Open range forms are valid: a[1..] is a sub-array containing all but the first
element of a.

m  In general, we assume that arrays are equivalent to lists. We can write them as
lists and freely add and remove elements: if an array, g, is [0,1,2] and we write
a += 3, then a will have the value [0,1,2,3].

m  Boolean values can be either “true” or “false.”

As an example, the following sample is pseudo-code for a simple algorithm to
select the highest value from an unsorted array:

. The justification for this interpretation is connected with the way that loops are normally used to iterate
over an array. Indices for an array are commonly expressed as the range 0..1ength(array), in which case
we don’t want the last item in the range. If we are iterating backward, then the range length(array)..0
is similarly the one we need. I was undecided about this interpretation for a long time, but felt that the
pseudo-code was more readable if it didn’t contain lots of “-1” values.
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def maximum(array):
max = array[0]
for element in array[l..]:
if element > max: max = element
return max

Occasionally, an algorithm-specific bit of syntax will be explained as it arises in
the text.

Programming polymaths will probably notice that the pseudo-code has more
than a passing resemblance to the Python programming language, with Ruby-like
structures popping up occasionally and a seasoning of Lua. This is deliberate, insofar
as Python is an easy to read language. Nonetheless, they are still pseudo-code and not
Python implementations, and any similarity is not supposed to suggest a language or
an implementation bias.

1.3.2 REPRESENTATIONS

Information in the game often needs to be turned into a suitable format for use by
the AL Often, this means converting it to a different representation or data structure.
The game might store the level as sets of geometry and the character positions as 3D
locations in the world.

The AI will often need to convert this information into formats suitable for effi-
cient processing. This conversion is a critical process because it often loses informa-
tion (that’s the point: to simplify out the irrelevant details), and you always run the
risk of loosing the wrong bits of data.

Representations are a key element of Al, and certain key representations are par-
ticularly important in game Al Several of the algorithms in the book require the game
to be presented to them in a particular format.

Although very similar to a data structure, we will often not worry directly about
how the representation is implemented, but instead will focus on the interface it
presents to the Al code. This makes it easier for you to integrate the Al techniques
into your game, simply by creating the right glue code to turn your game data into
the representation needed by the algorithms.

For example, imagine we want to work out if a character feels healthy or not
as part of some algorithm for determining its actions. We might simply require a
representation of the character with a method we can call:

class Character:
# Returns true if the character feels healthy,
# and false otherwise.
def feelsHealthy()

2. In fact, while Python and Ruby are good languages for rapid prototyping, they are too slow for building
the core Al engine in a production game. They are sometimes used as scripting languages in a game, and
we’ll cover their use in that context in Chapter 5.
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You may then implement this by checking against the character’s health score, by
keeping a Boolean “healthy” value for each character, or even by running a whole
algorithm to determine the character’s psychological state and its perception of its
own health. As far as the decision making routine is concerned, it doesn’t matter how
the value is being generated.

The pseudo-code defines an interface (in the object-oriented sense) that can be
implemented in any way you choose.

When a representation is particularly important or tricky (and there are several
that are), I will describe possible implementations in some depth.

14 ON THE CD

1.4.1

PROGRAM

The text of this book contains no C++ source code. This is deliberate. The algorithms
given in pseudo-code can simply be converted into any language you would like to
use. As we'll see, many games have some Al written in C++ and some written in a
scripting language. It is easier to reimplement the pseudo-code into any language you
choose than it would be if it were full of C++ idioms.

The listings are also about half the length of the equivalent full C++ source code.
In my experience, full source code listings in the text of a book are rarely useful and
often bloat the size of the book dramatically.

Most developers use C++ (although a significant but rapidly falling number
use C) for their core Al code. In places some of the discussion of data structures
and optimizations will assume that you are using C++, because the optimizations are
C++ specific.

Despite this, there are significant numbers using other languages such as Java,
Lisp, Lua, Lingo, ActionScript, or Python, particularly as scripting languages. I've
personally worked with all these languages at one point or another, so I've tried to
be as implementation independent as possible in the discussion of algorithms.

But you will want to implement this stuff; otherwise, what’s the point? And you're
more than likely going to want to implement it in C++. So I've included source code
on the accompanying CD rather than in the text. You can run this code directly or use
it as the basis of your own implementations. The code is commented and (if I do say
myself) well structured.

The licence for this source code is very liberal, but make sure you do read the
Ticence.txt file on the CD before you use it.

PROGRAMS

There are a range of executable programs on the CD that illustrate topics in the book.
The book will occasionally refer to these programs. When you see the Program CD
icon in the left margin, it is a good idea to run the accompanying program. Lots of Al
is inherently dynamic: things move. It is much easier to see some of the algorithms
working in this way than trying to figure them out from screenshots.
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1.4.2 LIBRARIES

LIBRARY

The executables use the basic source code for each technique. This source code forms
an elementary Al library that you can use and extend for your own requirements.
When an algorithm or data structure is implemented in the library, it will be indicated
by the Library CD icon in the left margin.

Optimizations

The library source code on the CD is suitable for running on any platform, including
consoles, with minimal changes. The executable software is designed for a PC running
Windows only (a complete set of requirements is given in the readme.txt file on the
CD).

I have not included all the optimizations for some techniques that I would use
in production code. Many optimizations are very esoteric; they are aimed at getting
around particular performance bottlenecks particular to a given console, graphics
engine, or graphics card. Some optimizations can only be sensibly implemented in
machine-specific assembly language (such as making the best use of different proces-
sors on the PC), and most complicate the code so that the core algorithms cannot be
properly understood.

My aim in this book is always that a competent developer can take the source code
and use it in a real game development situation, using their knowledge of standard
optimization and profiling techniques to make changes where needed. A less hard-
core developer can use the source code with minor modifications. In very many cases
the code is sufficiently efficient to be used as is, without further work.

Rendering and Maths

I've also included a simple rendering and mathematics framework for the executable
programs on the CD. This can be used as is, but it is more likely that you will replace
it with the math and rendering libraries in your game engine.

My implementation of these libraries is as simple as I could possibly make it. I've
made no effort to structure this for performance or its usability in a commercial game.
But I hope you'll find it easy to understand and transparent enough that you can get
right to the meat of the Al code.

Getting the Latest Code

Inevitably, code is constantly evolving. New features are added, and bugs are discov-
ered and fixed. Although the source code on the CD corresponds to what’s in this



1.5 Layout of the Book 19

book and is the latest version as of the final draft of the text, I am constantly working
on the Al code.

I would strongly recommend that you visit the website accompanying this book,
athttp://www.aidg.com, and download the latest version of the code before you start.
I’d also suggest that you may want to check back at the site from time to time to see if
there’s a later update.

1.5 LavouTt oF THE Book

This book is split into five sections.

Part One introduces Al and games in Chapters 1 and 2, giving an overview of
the book and the challenges that face the Al developer in producing interesting game
characters.

Part Two is the meat of the technology in the book, presenting a range of different
algorithms and representations for each area of our Al model. It contains chapters on
decision making and movement and a specific chapter on pathfinding (a key element
of game Al that has elements of both decision making and movement). It also con-
tains information on tactical and strategic Al, including Al for groups of characters.
There is a chapter on learning, a key frontier in game Al, and finally a chapter on
board game Al None of these chapters attempt to connect the pieces into a complete
game Al It is a pick and mix array of techniques that can be used to get the job done.

Part Three looks at the technologies that enable the Al to do its job. It covers
everything from execution management to world interfacing and getting the game
content into an Al-friendly format.

Part Four looks at designing Al for games. It contains a genre-by-genre break-
down of the way techniques are often combined to make a full game. If you are stuck
among the range of different technique options, you can look up your game style
here and see what is normally done (then do it differently, perhaps). It also looks at a
handful of Al-specific game genres that seek to use the Al in the book as the central
gameplay mechanic.

Finally, there are appendices covering references to other sources of information.
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GAME Al

B efore going into detail with particular techniques and algorithms, it is worth
spending a little time thinking about what we need from our game’s Al This
chapter looks at the high-level issues around game AI: what kinds of approaches work,
what they need to take account of, and how they can be all put together.

21 THE COMPLEXITY FALLACY

It is a common mistake to think that the more complex the Al in a game, the better
the characters will look to the player. Creating good Al is all about matching the right
behaviors to the right algorithms. There is a bewildering array of techniques in this
book, and the right one isn’t always the most obvious choice.

There have been countless examples of difficult to implement, complex Al that
have come out looking stupid. Equally, a very simple technique, used well, can be
perfect.

2.1.1 WHEN SIMPLE THINGS LOOK GooD

In the last chapter I mentioned Pacman [Midway Games West, Inc., 1979]: the first
game I played with any form of character Al. The Al has two states: one normal state
when the player is collecting pips and another state when the player has eaten the
power-up and is out for revenge.

In their normal state, each of the four ghosts (or monsters) moves in a straight
line until they reach a junction. At a junction, they semi-randomly choose a route

21
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to move to next. Each ghost chooses either to take the route that is in the direction
of the player (as calculated by a simple offset to the player’s location: no pathfinding
at work) or to take a random route. The choice depends on the ghost: each has a
different likelihood of doing one or the other.

This is about as simple as you can imagine an Al. Any simpler and the ghosts
would be either very predictable (if they always homed in) or purely random. The
combination of the two gives great gameplay. In fact, the different biases of each ghost
are enough to make the four together a significant opposing force.

So much so that the Al to this day gets comments. I found this on a website a few
weeks ago: “To give the game some tension, some clever Al was programmed into the
game. The ghosts would group up, attack the player, then disperse. Each ghost had its
own AlL”

Other players have reported strategies among the ghosts: “The four of them are
programmed to set a trap, with Blinky leading the player into an ambush where the
other three lie in wait.”

The same thing has been reported by many other developers on their games. Chris
Kingsley of Rebellion talks about their Nintendo Game Boy title Cyberspace [Rebel-
lion]. Enemy characters home in on the player, but sidestep at random intervals as
they move forward. Players reported that characters were able to anticipate their fir-
ing patterns and dodge out of the way. Obviously, they couldn’t always anticipate it,
but a timely sidestep just at a crucial moment stayed in their minds and shaped their
perception of the AL

2.1.2 WHEN CoMPLEX THINGS LOOK BAD

Of course, the opposite thing can easily happen. A game that I looked forward to
immensely was Herdy Gerdy [Core Design Ltd., 2002], one of the games Sony used
to tout the new gameplay possibilities of their PlayStation 2 hardware before it was
launched. The game is a herding game. An ecosystem of characters is present in the
game level. The player has to herd individuals of different species into their corre-
sponding pens. Herding has been used before and since as a component of a bigger
game, but in Herdy Gerdy it was the whole gameplay. There is a section on Al for this
kind of game in Chapter 13.

Unfortunately, the characters neglected the basics of movement Al. It was easy to
get them caught on the scenery, and their collision detection could leave them stuck
in irretrievable places. The actual effect was one of frustration.

Unlike Herdy Gerdy, Black and White [Lionhead Studios Ltd., 2001] achieved
significant sales success. But at places it also suffered from great Al looking bad. The
game involves teaching a character what to do by a combination of example and feed-
back. In my first play through of the game, I ended up inadvertently teaching the
creature bad habits, and it ended up unable to carry out even the most basic actions.
After a restart, I paid more attention to how the creature worked and was able to
manipulate it better. But the illusion that I was teaching a real creature was gone.
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Most of the complex things I've seen that looked bad never made it to the final
game. It is a perennial temptation for developers to use the latest techniques and the
most hyped algorithms to implement their character Al. Late in development, when
a learning Al still can’t learn how to steer a car around a track without driving off at
every corner, the simpler algorithms invariably come to the rescue and make it into
the game’s release.

Knowing when to be complex and when to stay simple is the most difficult ele-
ment of the game Al programmer’s art. The best Al programmers are those who can
use a very simple technique to give the illusion of complexity.

2.1.3 THE PERCEPTION WINDOW

Unless your Al is controlling an ever-present sidekick, or a one-on-one enemy,
chances are your player will only come across a character for a short time.

This can be a significantly short time for disposable guards whose life is to be shot.
More difficult enemies can be on-screen for a few minutes as their downfall is plotted
and executed.

When we size someone up in real life, we naturally put ourselves into their shoes.
We look at their surroundings, the information they are gleaning from their environ-
ment, and the actions they are carrying out. A guard standing in a dark room hears a
noise: “I’d flick the light switch,” we think. If the guard doesn’t do that, we think he’s
stupid.

If we only catch a glimpse of someone for a short while, we don’t have enough
time to understand their situation. If we see a guard who has heard a noise suddenly
turn away and move slowly in the opposite direction, we assume the Al is faulty. The
guard should have moved across the room toward the noise. If we do hang around
for a bit longer and see the guard head over to a light switch by the exit, we will
understand his action. But then again, the guard might not flick on the light switch,
and we take that as a sign of poor implementation. But the guard may know that the
light is inoperable, or he may have been waiting for a colleague to slip some cigarettes
under the door and thought the noise was a predefined signal. If we knew all that,
we’d know the action was intelligent after all.

This no-win situation is the perception window. You need to make sure that a
characters’ Al matches their purpose in the game and the attention they’ll get from the
player. Adding more Al to incidental characters might endear you to the rare gamer
who plays each level for several hours, checking for curious behavior or bugs, but
everyone else (including the publisher and the press) may think your programming
was sloppy.

2.1.4 CHANGES OF BEHAVIOR

The perception window isn’t only about time. Think about the ghosts in Pacman
again. They might not give the impression of sentience, but they didn’t do anything
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out of place. This is because they rarely change behavior (the only occasion being
their transformation when the player eats a power-up).

Whenever a character in a game changes behavior, the change is far more notice-
able than the behavior itself. In the same way, when a character’s behavior should
obviously change and doesn’t, warning bells sound. If two guards are standing talk-
ing to each other and you shoot one down, the other guard shouldn’t carry on the
conversation!

A change in behavior almost always occurs when the player is nearby or has been
spotted. This is the same in platform games as it is in real-time strategy. A good so-
lution is to keep only two behaviors for incidental characters—a normal action and a
player-spotted action.

22 THE KIND oF Al IN GAMES

Games have always come under criticism for being poorly programmed (in a software
engineering sense): they use tricks, arcane optimizations, and unproven technologies
to get extra speed or neat effects. Game Al is no different. One of the biggest barriers
between game Al people and Al academics is what qualifies as AL

In my experience, Al for a game is equal parts hacking (ad hoc solutions and
neat effects), heuristics (rules of thumb that only work in most, but not all, cases),
and algorithms (the “proper” stuff). Most of this book is aimed at the latter group,
because that’s the stuff we can examine analytically, can use in multiple games, and
that can form the basis of an Al engine.

But the first two categories are just as important and can breathe as much life into
characters as the most complicated algorithm.

2.2.1 HAcks

There’s a saying that goes “if it looks like a fish and smells like a fish: it’s probably a
fish.” The psychological correlate is behaviorism: we study behavior, and by under-
standing how a behavior is constructed, we understand all we can about the thing
that is behaving.

As a psychological approach it has its adherents, but has been largely superseded
(especially with the advent of neuropsychology). This fall from fashion has influenced
Al too. Whereas at one point it was quite acceptable to learn about human intelligence
by making a machine to replicate it, it is now considered poor science. And with good
reason, after all, building a machine to play Chess involves algorithms that look tens
of moves ahead. Human beings are simply not capable of this.

On the other hand, for in-game Al, behaviorism is the way to go. We are not
interested in the nature of reality or mind; we want characters that look right. In
most cases, this means starting from human behaviors and trying to work out the
easiest way to implement them in software.
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Good Al in games always works in this direction. Developers rarely build a great
new algorithm and then ask themselves, “So what can I do with this?” Instead, you
start with a design for a character and apply the most relevant tool to get the result.

This means that what qualifies as game Al may be unrecognizable as an Al tech-
nique. In the previous chapter, we looked at the Al for Pacman ghosts: a simple ran-
dom number generator applied judiciously. Generating a random number isn’t an
Al technique as such. In most languages there are built-in functions to get a random
number, so there is certainly no point giving an algorithm for it! But it can work in a
surprising number of situations.

Another good example of creative Al development is The Sims [Maxis Software,
Inc., 2000]. While there are reasonably complicated things going on under the sur-
face, a lot of the character behavior is communicated with animation. In Star Wars:
Episode 1 Racer [LucasArts Entertainment Company LLC], characters who are an-
noyed will give a little sideswipe to other characters. Quake II [id Software, Inc.] has
the “gesture” command where characters (and players) can flip their enemy off. All
these require no significant Al infrastructure. They don’t need complicated cogni-
tive models, learning, or genetic algorithms. They just need a simple bit of code that
performs an animation at the right point.

Always be on the look out for simple things that can give the illusion of intelli-
gence. If you want engaging emotional characters, is it possible to add a couple of
emotion animations (a frustrated rub of the temple, perhaps, or a stamp of the foot)
to your game design? Triggering these in the right place is much easier than trying to
represent the character’s emotional state through their actions. Do you have a bunch
of behaviors that the character will choose from? Will the choice involve complex
weighing up of many factors? If so, it might be worth trying a version of the Al that
picks a behavior purely at random (maybe with different probabilities for each be-
havior). You might be able to tell the difference, but your customers may not; so try it
out on a QA guy.

2.2.2 HEURISTICS

A heuristic is a rule of thumb: an approximate solution that might work in many
situations, but is unlikely to work in all.

Human beings use heuristics all the time. We don’t try to work out all the con-
sequences of our actions. Instead, we rely on general principles that we’ve found to
work in the past (or that we have been brainwashed with, equally). It might be some-
thing as simple as “if you lose something then retrace your steps” to heuristics that
govern our life choices “never trust a used-car salesman.”

Heuristics have been codified and incorporated into some of the algorithms in
this book, and saying “heuristic” to an Al programmer often conjures up images of
pathfinding or goal-oriented behaviors. Still, many of the techniques in this book rely
on heuristics that may not always be explicit. There is a trade-off in areas such as de-
cision making, movement, and tactical thinking (including board game AI) between
speed and accuracy. When accuracy is sacrificed, it is usually by replacing the search
for a correct answer with a heuristic.
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There are a whole range of heuristics that can be applied to general Al problems
and that don’t require a particular algorithm.

In our perennial Pacman example, the ghosts home in on the player by taking
the route at a junction that leads toward its current position. The route to the player
might be quite complex, it may involve turning back on oneself, and it might be ul-
timately fruitless if the player continues to move. But the rule of thumb (move in
the current direction of the player) works and provides sufficient competence for the
player to understand that the ghosts aren’t purely random in their motion.

In Warcraft [Blizzard Entertainment, 1994] (and many other RTS games that fol-
lowed) there is a heuristic that moves a character forward slightly into ranged-weapon
range if an enemy is a fraction beyond their reach. While this worked in most cases, it
wasn’t always the best option. Many players got frustrated as comprehensive defensive
structures went walkabout when enemies came close. Later, RTS games allowed the
player to choose whether this behavior was switched on or not.

In many strategic games, including board games, different units or pieces are
given a single numeric value to represent how “good” they are. This is a heuristic:
it replaces complex calculations about the capabilities of a unit with a single number.
And the number can be defined by the programmer in advance. The AI can work out
which side is ahead simply by adding the numbers. In an RTS it can find the best value
offensive unit to build by comparing the number with the cost. A lot of useful effects
can be achieved just by manipulating the number.

There isn’t an algorithm or a technique for this. And you won’t find it in published
Al research. But it is the bread and butter of an AI programmer’s job.

Common Heuristics

There is a handful of heuristics that appears over and over in Al and software in
general. They are good starting points when initially tackling a problem.

Most Constrained

Given the current state of the world, one item in a set needs to be chosen. The item
chosen should be the one that would be an option for the fewest number of states.

For example, a group of characters come across an ambush. One of the ambushers
is wearing phased force-field armor. Only the new, and rare, laser rifle can penetrate
it. One character has this rifle. When they select who to attack, the most constrained
heuristic comes into play: it is rare to be able to attack this enemy, so that is the action
that should be taken.

Do the Most Difficult Thing First

The hardest thing to do often had implications for lots of other actions. It is better
to do this first, rather than find that the easy stuff goes well, but is ultimately wasted.
This is ultimately a case of the most constrained heuristic, above.
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For example, an army has two squads with empty slots. The computer schedules
the creation of five Orc warriors and a huge Stone Troll. It wants to end up with
balanced squads. How should it assign the units to squads? The Stone Troll is the
hardest to assign, so it should be done first.

If the Orcs were assigned first, they would be balanced between the two squads,
leaving room for half a Troll in each squad, but nowhere for the Troll to go.

Try the Most Promising Thing First

If there are a number of options open to the Al, it is often possible to give each one a
really rough-and-ready score. Even if this score is dramatically inaccurate, trying the
options in decreasing score order will provide better performance than trying things
purely at random.

2.2.3 ALGORITHMS

And so we come to the final third of the Al programmer’s job: building algorithms to
support interesting character behavior. Hacks and heuristics will get you a long way,
but relying on them solely means you’ll have to constantly reinvent the wheel. General
bits of Al such as movement, decision making, and tactical thinking, all benefit from
tried and tested methods that can be endlessly reused.

This book is about this kind of technique, and the next part introduces a large
number of them. Just remember that for every situation where a complex algorithm
is the best way to go, there are likely to be at least five where a simpler hack or heuristic
will get the job done.

23 SPEED AND MEMORY

The biggest constraint on the Al developer’s job is the physical limitations of the
game’s machine. Game Al doesn’t have the luxury of days of processing time and giga-
bytes of memory. Developers often work to a speed and memory budget for their Al

One of the major reasons that new Al techniques don’t achieve widespread use is
their processing time or memory requirements. What might look like a compelling
algorithm in a simple demo (such as the example programs on the CD with this book)
can slow a production game to a standstill.

This section looks at low-level hardware issues related to the design and construc-
tion of Al code. Most of what is contained here is general advice for all game code,
and if you're up to date with current game programming issues and just want to get
to the Al you can safely skip this section.
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2.3.1

PROCESSOR ISSUES

The most obvious limitation on the efficiency of a game is the speed of the processor
on which it is running. As graphics technology has improved, there is an increasing
tendency to move graphics functions onto the graphics hardware. Typical processor
bound activities, like animation and collision detection, are being shared between
GPU and CPU or moved completely to the graphics chips.

This frees up a significant amount of processing power for Al and other new tech-
nologies (physics most notably, although environmental audio is also more promi-
nent now). The share of the processing time dedicated to Al has grown in fits and
starts over the last 5 years, to be around 20% in many cases and over 50% in some.
This is obviously good news for Al developers wanting to apply more complicated
algorithms, particularly to decision making and strategizing. But while incremental
improvements in processor time help unlock new techniques, they don’t solve the
underlying problem. Many Al algorithms take a long time to run. A comprehensive
pathfinding system can take tens of milliseconds to run per character. Clearly, in an
RTS with 1000 characters, there is no chance of running each frame for many years
to come.

Complex Al that does work in games needs to be split into bite-size components
that can be distributed over multiple frames. The chapter on resource management
shows how to accomplish this. Applying these techniques to any Al algorithm can
bring it into the realm of usability.

SIMD

As well as faster processing and increasing AI budgets, modern games CPUs have ad-
ditional features that help things move faster. Most have dedicated SIMD processing.
SIMD (single instruction multiple data) is a parallel programming technique where
a single program is applied to several items of data at the same time, just as it sounds.
So if each character needs to calculate the Euclidean distance to its nearest enemy and
the direction to run away, the Al can be written in such a way that multiple characters
(usually four on current hardware) can perform the calculation at the same time.

There are several algorithms in this book that benefit dramatically from SIMD
implementation (the steering algorithms being the most obvious). But, in general, it
is possible to speed up almost all the algorithms using judicious use of SIMD. On con-
soles, SIMD may be performed in a conceptually separate processing unit. In this case
the communication between the main CPU and the SIMD units, as well as the addi-
tional code to synchronize their operation, can often outweigh the speed advantage
of parallelizing a section of code.

In this book I've not provided SIMD implementations for algorithms. The use
of SIMD is very much dependent on having several characters doing the same thing
at the same time. Data for each set of characters needs to be stored together (rather
than having all the data for each character together as is normal), so the SIMD units
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can find them as a whole. This leads to dramatic code restructuring and a significant
decrease in the readability of many algorithms. Since this book is about techniques,
rather than low-level coding, I'll leave parallelization as an implementation exercise,
if your game needs it.

Multi-Core Processing and Hyper-Threading

Modern processors have several execution paths active at the same time. Code is
passed into the processor, dividing into several pipelines which execute in parallel.
The results from each pipeline are then recombined into the final result of the origi-
nal code. When the result of one pipeline depends on the result of another, this can
involve backtracking and repeating a set of instructions. There is a set of algorithms
on the processor that works out how and where to split the code and predicts the
likely outcome of certain dependent operations; this is called branch prediction. This
design of processor is called super-scalar.

Normal threading is the process of allowing different bits of code to process at the
same time. Since in a serial computer this is not possible, it is simulated by rapidly
switching backward and forward between different parts of the code. At each switch
(managed by the operating system, or manually implemented on many consoles), all
the relevant data need to also be switched. This switching can be a slow process and
can burn precious cycles.

Hyper-threading is an Intel trademark for using the super-scalar nature of the
processor to send different threads down different pipelines. Each pipeline can be
given a different thread to process, allowing threads to be genuinely processed in par-
allel.

As T write, hyper-threading is available only on certain processors and operating
systems. It is sometimes treated as a gimmick among developers, and I've spoken to
more than one who have dismissed it as a dead-end technology.

On the other hand, the processors in current-generation consoles (PlayStation 3,
XBox 360, and so on) are all multi-core. Newer PC processors from all vendors also
have the same structure.

A multi-core processor effectively has multiple separate processing systems (each
may be super-scalar in addition). Different threads can be assigned to different
processor cores, giving the same kind of hyper-threading style speed ups (greater in
fact, because there are even fewer interdependencies between pipelines).

In either case, the Al code can take advantage of this parallelism by running Al for
different characters in different threads, to be assigned to different processing paths.
On some platforms (Intel-based PCs for example), this simply requires an additional
function call to set-up. On others (PlayStation 3, for example), it needs to be thought
of early and to have the whole Al code structured accordingly.

All indications are that there will be an increasing degree of parallelism in future
hardware platforms, particularly in the console space where it is cheaper to leverage
processing power using multiple simpler processors rather than a single behemoth
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CPU. It will not be called hyper-threading (other than by Intel), but the technique is
here to stay and will be a key component of game development on all platforms until
the end of the decade at least.

Virtual Functions/Indirection

There is one particular trade-off that is keenly felt among Al programmers: the trade-
off between flexibility and the use of indirect function calls.

In a conventional function call, the machine code contains the address of the code
where the function is implemented. The processor jumps between locations in mem-
ory and continues processing at the new location (after performing various actions
to make sure the function can return to the right place). The super-scalar processor
logic is optimized for this, and it can predict, to some extent, how the jump will occur.

An indirect function call is a little different. It stores the location of the function’s
code in memory. The processor fetches the contents of the memory location and then
jumps to the location it specifies. This is how virtual function calls in C++ are imple-
mented: the function location is looked up in memory (in the virtual function table)
before being executed.

This extra memory load adds a trivial amount of time to processing, but it plays
havoc with the branch predictor on the processor (and has negative effects on the
memory cache too, as we'll see below). Because the processor can’t predict where it
will be going, it often stalls, waits for all its pipelines to finish what they are doing, and
then picks up where it left off. This can also involve additional clean-up code being
run in the processor. Low-level timing shows that indirect function calls are typically
much more costly than direct function calls.

Traditional game development wisdom is to avoid unnecessary function calls of
any kind, particularly indirect function calls. Unfortunately, virtual function calls
make code far more flexible. It allows an algorithm to be developed that works in
many different situations. A chase-behavior, for example, doesn’t need to know what
it’s chasing, as long as it can get the location of its target easily.

Al in particular, benefits immensely from being able to slot in different behaviors.
This is called polymorphism in an object-oriented language: writing an algorithm to
use a generic object and allowing a range of different implementations to slot in.

I’ve used polymorphism throughout this book, and I've used it throughout many
of the game AI systems I've developed. I felt it was clearer to show algorithms in a
completely polymorphic style, even though some of the flexibility may be optimized
out in the production code. Several of the implementations on the CD do this: re-
moving the polymorphism to give an optimized solution for a subset of problems.

It is a trade-off, and if you know what kinds of objects you’ll be working with in
your game, it can be worth trying to factor out the polymorphism in some algorithms
(in pathfinding particularly, I have seen speed ups this way).

My personal viewpoint, which is not shared by all (or perhaps even most) devel-
opers, is that inefficiencies due to indirect function calls are not worth losing sleep
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over. If the algorithm is distributed nicely over multiple frames, then the extra func-
tion call overhead will also be distributed and barely noticeable. There has been one
occasion where I've been berated for using virtual functions that “slowed down the
game” only to find that profiling showed they caused no bottleneck at all.

2.3.2 MEMORY CONCERNS

Most Al algorithms do not require a large amount of memory. Memory budgets for
Al are typically around 1Mb on 32Mb consoles and 8Mb on 512Mb machines: am-
ple storage for even heavyweight algorithms such as terrain analysis and pathfinding.
MMOGs typically require much more storage for their larger worlds, but are run on
server farms with a far greater storage capacity (measured in the gigabytes of RAM).

Cache

Memory size alone isn’t the only limitation on memory use. The time it takes to access
memory from the RAM and prepare it for use by the processor is significantly longer
than the time it takes for the processor to perform its operations. If processors had to
rely on the main RAM, they’d be constantly stalled waiting for data.

All modern processors use at least one level of cache: a copy of the RAM held
in the processor that can be very quickly manipulated. Cache is typically fetched in
pages; a whole section of main memory is streamed to the processor. It can then
be manipulated at will. When the processor has done its work, the cached memory
is sent back to the main memory. The processor typically cannot work on the main
memory; all the memory it needs must be on cache. Systems with an operating system
may add additional complexity to this: a memory request may have to pass through
an operating system routine that translates the request into a request for real or virtual
memory. This can introduce further constraints: two bits of physical memory with a
similar mapped address might not be available at the same time (called an aliasing
failure).

Multiple levels of cache work the same way as a single cache: a large amount of
memory is fetched to the lowest level cache, a subset of that is fetched to each higher
level cache, and the processor only ever works on the highest level.

If an algorithm uses data spread around memory, then it is unlikely that the right
memory will be in the cache from moment to moment. These cache misses are very
costly in time. The processor has to fetch a whole new chunk of memory into the
cache for one or two instructions, then it has to stream it all back out and request
another block. A good profiling system will show when cache misses are happening.
In my experience, dramatic speed ups can be achieved by making sure that all the data
needed for one algorithm is kept in the same place.

In this book, for ease of understanding, I've used an object-oriented style to lay
out the data. All the data for a particular game object is kept together. This may not
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be the most cache-efficient solution. In a game with 1000 characters, it may be better
to keep all their positions together in an array, then algorithms that make calculations
based on their positions don’t need to constantly jump around memory. As with all
optimizations, profiling is everything, but a general level of efficiency can be gained
by programming with data coherency in mind.

CONSTRAINTS

PCs are both the most powerful and weakest games machines. They can be frustrating
for developers because of their lack of consistency. Where a console has fixed hard-
ware, there is a bewildering array of different configurations for PCs. Things are easier
than they were: APIs such as DirectX insulate the developer from having to target spe-
cific hardware, but the game still needs to detect feature support and speed and adjust
accordingly.

Working with PCs involves building software that can scale from a casual gamers
limited system to the hard-core fan’s up-to-date hardware. For graphics, this scaling
can be reasonably simple: for low-specification machines we switch off advanced ren-
dering features. A simpler shadow algorithm might be used, or pixel shaders might
be replaced by simple texture mapping. A change in graphics sophistication usually
doesn’t change gameplay.

Al is different. If the AI gets less time to work, how should it respond? It can try
to perform less work. This is effectively the same as having more stupid Al and can
affect the difficulty level of the game. It is probably not acceptable to your quality
assurance (QA) team or publisher to have your game be dramatically easier on lower
specification machines. Similarly, if we try to perform the same amount of work, it
might take longer. This can mean a lower frame rate, or it can mean more frames
between characters making decisions. Slow-to-react characters are also often easier to
play against and can cause the same problems with QA.

The solution used by most developers is to target Al at the lowest common de-
nominator: the minimum specification machine listed in the technical design doc-
ument. The Al time doesn’t scale at all with the capabilities of the machine. Faster
machines simply use proportionally less of their processing budget on Al

There are many games, however, where scalable Al is feasible. Many games use
Al to control ambient characters: pedestrians walking along the sidewalk, members
of the crowd cheering a race, or flocks of birds swarming in the sky. This kind of AI
is freely scalable: more characters can be used when the processor time is available.
The chapter on resource management covers some techniques for the level of detail
Al that can cope with this scalability.

2.3.4 CONSOLE CONSTRAINTS

Consoles can be simpler to work with than a PC. You know exactly the machine you
are targeting, and you can usually see code in operation on your target machine. There
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is no future proofing for new hardware or ever-changing versions of APIs to worry
about.

Developers working with next-generation technology often don’t have the exact
specs of the final machine or a reliable hardware platform (initial development kits
for the XBox 360 were little more than a dedicated emulator). But most console de-
velopment has a fairly fixed target.

The TRC (technical requirements checklist) process, by which a console manufac-
turer places minimum standards on the operation of a game, serves to fix things like
frame rates (although different territories may vary: PAL and NTSC, for example).
This means that AI budgets can be locked down in terms of a fixed number of mil-
liseconds. In turn, this makes it much easier to work out what algorithms can be used
and to have a fixed target for optimization (provided that the budget isn’t slashed at
the last milestone to make way for the latest graphics technique used in a competitor’s
game).

On the other hand, consoles generally suffer from a long turnaround time. It is
possible, and pretty essential, to set up a PC development project so that tweaks to
the AI can be compiled and tested without performing a full game build. As you add
new code, the behavior it supports can be rapidly assessed. Often, this is in the form
of cut down mini-applications, although many developers use shared libraries during
development to avoid re-linking the whole game. You can do the same thing on a
console, of course, but the round-trip to the console takes additional time.

Al with parameterized values that need a lot of tweaking (movement algorithms
are notorious on this, for example) almost requires some kind of in-game tweaking
system for a console. Some developers go further and allow their level design or Al
creation tool to be directly connected across a network from the development PC to
the running game on a text console. This allows direct manipulation of character be-
haviors and instant testing. The infrastructure needed to do this varies, with some
platforms (Nintendo’s Game Cube comes to mind) making life considerably more
difficult. In all cases it is a significant investment of effort, however, and is well be-
yond the scope of this book (not to mention violation of several confidentiality agree-
ments). This is one area where middleware companies have begun to excel, providing
robust tools for on-target debugging and content viewing as part of their technology
suites.

Working with Rendering Hardware

The biggest problem with older (i.e., previous generation) consoles is their optimiza-
tion for graphics. Graphics are typically the technology driver behind games, and with
only a limited amount of juice to put in a machine, it is natural for a console vendor
to emphasize graphic capabilities.

The original XBox architecture was a breath of fresh air in this respect, providing
the first PC-like console architecture: a PC-like main processor, an understandable
(but non-PC-like) graphics bus, and a familiar graphics chipset. At the other end of
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the spectrum, for the same generation, PlayStation 2 (PS2) was optimized for graph-
ics rendering, unashamedly. To make best use of the hardware you needed to par-
allelize as much of the rendering as possible, making synchronization and commu-
nication issues very difficult to resolve. Several developers simply gave up and used
laughably simple Al in their first PS2 games. Throughout the console iteration, it
continued to be the thorn in the side of the Al developer working on a cross-platform
title. Fortunately, with the multi-core processor in PlayStation 3, fast Al processing is
considerably easier to achieve.

Rendering hardware works on a pipeline model. Data goes in at one end and
is manipulated through a number of different simple programs. At the end of the
pipeline, it is ready to be rendered on-screen. Data cannot easily pass back up the
pipeline, and where there is support, the quantity of data is usually tiny (a few tens
of items of data, for example). Hardware can be constructed to run this pipeline very
efficiently: there is a simple and logical data flow, and processing phases have no in-
teraction except to transform their input data.

Al doesn’t fit into this model; it is inherently branchy: different bits of code run at
different times. It is also highly self-referential: the results of one operation feed into
many others, and their results feed back to the first set, and so on.

Even simple Al queries, such as determining where characters will collide if they
keep moving, are difficult to implement if all the geometry is being processed in ded-
icated hardware. Older graphics hardware can support collision detection, but the
collision prediction needed by Al code is still a drag to implement. More complex Al
is inevitably run on the CPU, but with this chip being relatively underpowered on
last-generation consoles, the Al is restricted to the kind of budgets seen on 5- or even
10-year-old PCs.

Historically, all this has tended to limit the amount of Al done on consoles, in
comparison to a PC with equal processing power. The most exciting part of doing Al
in the last 18 months has been the availability of the current generation of consoles
with their facility to run more PC-like AL

Handheld Consoles

Handheld consoles typically lag around 5-10 years behind the capabilities of full-sized
consoles and PCs. This is also true of the typical technologies used to build games for
them. And just as Al came into its own in the mid-1990s, the mid-2000s are seeing
the rise of handhelds capable of advanced Al.

Most of the techniques in this book are suitable for use on current-generation
handheld devices (PlayStation Portable and beyond), with the same set of constraints
as for any other console.

On simpler devices (non-games optimized mobile phones, TV set-top boxes, or
low-specification PDAs), you are massively limited by memory and processing power.
In extreme cases there isn’t enough juice in the machine to implement a proper exe-
cution management layer, so any Al algorithm you use has to be fast. This limits the
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choice back to the kind of simple state machines and chase-the-player behaviors we
saw in the historical games of the last chapter.

24 THE Al ENGINE

There has been a distinct change in the way games have been developed in the last
10 years. When I started in the industry, a game was mostly built from scratch. Some
bits of code were dragged from previous projects, and some bits were reworked and
reused, but most were written from scratch.

A handful of companies used the same basic code to write multiple games, as long
as the games were a similar style and genre. LucasArt’s SCUMM engine, for example,
was a gradually evolving game engine used to power many point-and-click adventure
games.

Since then, the game engine has become ubiquitous: a consistent technical plat-
form on which a company builds most of its games. Some of the low-level stuff (like
talking to the operating system, loading textures, model file formats, and so on) is
shared among all games, often with a layer of genre-specific stuff on top. A company
that produces both a third person action adventure and a space shooter might still
use the same basic engine for both projects.

The way Al is developed has changed also. Initially, the Al was written for each
game and for each character. For each new character in a game there would be a block
of code to execute its Al. The character’s behavior was controlled by a small program,
and there was no need for the decision making algorithms in this book.

Now there is an increasing tendency to have general Al routines in the game en-
gine and to allow the characters to be designed by level editors or technical artists. The
engine structure is fixed, and the Al for each character combines the components in
an appropriate way.

So building a game engine involves building Al tools that can be easily reused,
combined, and applied in interesting ways. To support this, we need an Al structure
that makes sense over multiple genres.

24.1 STRUCTURE OF AN Al ENGINE

In my experience, there are a few basic structures that need to be in place for a general
Al system. They conform to the model of Al given in Figure 2.1.

First, there needs to be some kind of infrastructure in two categories: a general
mechanism for managing Al behaviors (deciding which behavior gets to run when,
and so on) and a world-interfacing system for getting information into the Al Every
Al algorithm created needs to honor these mechanisms.

Second, there needs to be a means to turn whatever the Al wants to do into ac-
tion on-screen. This consists of standard interfaces to a movement and an animation
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Figure 2.1
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controller which can turn requests such as “pull lever 1” or “walk stealthily to posi-
tion x, y” into action.

Third, there needs to be a standard behavior structure to liaise between the two.
It is almost guaranteed that you will need to write one or two Al algorithms for each
new game. Having all AI conform to the same structure helps this immensely. New
code can be in development while the game is running, and the new Al can simply
replace placeholder behaviors when it is ready.

All this needs to be thought out in advance, of course. The structure needs to be in
place before you get well into your Al coding. Part III of this book, on support tech-
nologies, is the first thing to implement in an Al engine. The individual techniques
can then slot in.

I'm not going to harp on about this structure throughout the book. There are
techniques that I will cover that can work on their own, and all the algorithms are
fairly independent. For a demo, or a simple game, it might be sufficient to just use the
technique.

The code on the CD conforms to a standard structure for Al behaviors: each can
be given execution time, each gets information from a central messaging system, and
each outputs its actions in a standard format. The particular set of interfaces I've
used shows my own development bias. They were designed to be fairly simple, so the
algorithms aren’t overburdened by infrastructure code. By the same token, there are
easy optimizations you will spot that I haven’t implemented, again for clarity sake.

The full-size Al system I designed, Pensor, had a similar interface to the code on
CD, but with numerous speed and memory optimizations. Other Al engines on the
market have a different structure, and the graphics engine you are using will likely
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put additional constraints on your own implementation. As always, use the code on
the CD as a jumping-off point.

A good Al structure helps reuse, debugging, and development time. But creating
the Al for a specific character involves bringing different techniques together in just
the right way. The configuration of a character can be done manually, but increasingly
it requires some kind of editing tool.

242 TOOLCHAIN CONCERNS

The complete Al engine will have a central pool of Al algorithms that can be applied
to many characters. The definition for a particular character’s Al will therefore consist
of data (which may include scripts in some scripting language), rather than compiled
code. The data specifies how a character is put together: what techniques it will use,
and how those techniques are parameterized and combined.

This data needs to come from somewhere. It can be manually created, but this is
no better than writing the Al by hand each time. Stable and reliable toolchains are a
hot topic in game development, making sure that the artists and designers can create
the content in an easy way, while allowing the content to be inserted into the game
without manual help.

An increasing number of companies are developing AI components in their tool-
chain: editors for setting up character behaviors and facilities in their level editor for
marking tactical locations or places to avoid.

Being toolchain driven has its own effects on the choice of Al techniques. It is
easy to set up behaviors that always act the same way. Steering behaviors (covered in
Chapter 3) are a good example: they tend to be very simple, they are easily parame-
terized (with the physical capabilities of a character), and they do not change from
character to character.

It is more difficult to use behaviors that have lots of conditions, where the charac-
ter needs to evaluate special cases. A rule-based system (covered in Chapter 5) needs
to have complicated matching rules defined. When these are supported in a tool, they
typically look like program code, because a programming language is the most nat-
ural way to express them.

Several developers I’'ve worked with have these kind of programming constructs
exposed in their level editing tools. Level designers with some programming ability
can write simple rules, triggers, or scripts in the language, and the level editor handles
turning them into data for the Al

A different approach, used by several middleware packages, is to visually lay out
conditions and decisions. Al-Implant’s Maya module, for example, exposes complex
Boolean conditions, and state machines, through graphical controls.



38 Chapter 2 Game Al

The final structure of the Al engine might look something like Figure 2.2. Data is
created in a tool (the modelling or level design package, or a dedicated Al tool), which
is then packaged for use in the game. When a level is loaded, the game Al behaviors
are created from level data and registered with the Al engine. During gameplay, the
main game code calls the Al engine which updates the behaviors, getting information

243 PUTTING IT ALL TOGETHER

from the world interface and finally applying their output to the game data.

The techniques used depend heavily on the genre of the game being developed.
I’ll cover a wide range of techniques for many different genres. As you develop your
game Al, you'll need to take a mix and match approach to get the behaviors you are
looking for. The final chapter of the book gives some hints on this; it looks at how the

Al for games in the major genres are put together: piece by piece.
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MOVEMENT

O ne of the most fundamental requirements of Al is to move characters around
in the game sensibly. Even the earliest Al-controlled characters (the ghosts in
Pacman, for example, or the opposing bat in some Pong variants) had movement
algorithms that weren’t far removed from the games on the shelf today. Movement

forms the lowest level of AI techniques in our model, shown in Figure 3.1.
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Many games, including some with quite decent-looking Al, rely solely on move-
ment algorithms and don’t have any more advanced decision making. At the other
extreme, some games don’t need moving characters at all. Resource management
games and turn-based games often don’t need movement algorithms: once a deci-
sion is made where to move, the character can simply be placed there.

There is also some degree of overlap between Al and animation; animation is also
about movement. This chapter looks at large-scale movement: the movement of char-
acters around the game level, rather than the movement of their limbs or faces. The
dividing line isn’t always clear, however. In many games animation can take control
over a character, including some large-scale movement. In-engine cutscenes, com-
pletely animated, are increasingly being merged into gameplay. However, they are not
Al driven and therefore aren’t covered here.

This chapter will look at a range of different Al-controlled movement algorithms,
from the simple Pacman level up to the complex steering behaviors used for driving
a racing car or piloting a spaceship in full three dimensions.

3.1 THE BAsICs OF MOVEMENT ALGORITHMS

Unless you’re writing an economic simulator, chances are the characters in your game
need to move around. Each character has a current position and possibly additional
physical properties that control its movement. A movement algorithm is designed to
use these properties to work out where the character should be next.

All movement algorithms have this same basic form. They take geometric data
about their own state and the state of the world, and they come up with a geometric
output representing the movement they would like to make. Figure 3.2 shows this
schematically. In the figure, the velocity of a character is shown as optional because it
is only needed for certain classes of movement algorithms.

Some movement algorithms require very little input: the position of the character
and the position of an enemy to chase, for example. Others require a lot of interac-
tion with the game state and the level geometry. A movement algorithm that avoids
bumping into walls, for example, needs to have access to the geometry of the wall to
check for potential collisions.

The output can vary too. In most games it is normal to have movement algorithms
output a desired velocity. A character might see its enemy immediately west of it, for
example, and respond that its movement should be westward at full speed. Often,
characters in older games only had two speeds: stationary and running (maybe a walk
speed in there t00). So the output was simply a direction to move in. This is kinematic
movement; it takes no account of how characters accelerate and slow down.

Recently, there has been a lot of interest in “steering behaviors.” Steering behaviors
is the name given by Craig Reynolds to his movement algorithms; they are not kine-
matic, but dynamic. Dynamic movement takes account of the current motion of the
character. A dynamic algorithm typically needs to know the current velocities of the
character as well as its position. A dynamic algorithm outputs forces or accelerations
with the aim of changing the velocity of the character.
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Figure 3.2  The movement algorithm structure

Dynamics adds an extra layer of complexity. Let’s say your character needs to
move from one place to another. A kinematic algorithm simply gives the direction
to the target, you move in that direction until you arrive, whereupon the algorithm
returns no direction: you've arrived. A dynamic movement algorithm needs to work
harder. It first needs to accelerate in the right direction, and then as it gets near its
target, it needs to accelerate in the opposite direction, so its speed decreases at pre-
cisely the correct rate to slow it to a stop at exactly the right place. Because Craig’s
work is so well known, in the rest of this chapter I'll usually follow the most common
terminology and call all dynamic movement algorithms steering behaviors.

Craig Reynolds also invented the flocking algorithm used in countless films and
games to animate flocks of birds or herds of other animals. We’ll look at this algorithm
later in the chapter. Because flocking is the most famous steering behavior, all steering
(in fact all movement) algorithms are sometimes wrongly called “flocking.”

3.1.1 Two-DIMENSIONAL MOVEMENT

Many games have Al that works in two dimensions. Although games rarely are drawn
in two dimensions any more, their characters are usually under the influence of grav-
ity, sticking them to the floor and constraining their movement to two dimensions.

A lot of movement Al can be achieved in just two dimensions, and most of the
classic algorithms are only defined for this case. Before looking at the algorithms
themselves, we need to quickly cover the data needed to handle two-dimensional (2D)
maths and movement.
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Characters as Points

Although a character usually consists of a three-dimensional (3D) model that oc-
cupies some space in the game world, many movement algorithms assume that the
character can be treated as a single point. Collision detection, obstacle avoidance,
and some other algorithms use the size of the character to influence their results, but
movement itself assumes the character is at a single point.

This is a similar process to that used by physics programmers who treat objects in
the game as a “rigid body” located at its center of mass. Collision detection and other
forces can be applied to anywhere on the object, but the algorithm that determines
the movement of the object converts them so it can deal only with the center of mass.

3.1.2 STATICS

Characters in two dimensions have two linear coordinates representing the position
of the object. These coordinates are relative to two world axes that lie perpendicular
to the direction of gravity and perpendicular to each other. This set of reference axes
is termed the orthonormal basis of the 2D space.

In most games the geometry is typically stored and rendered in three dimensions.
The geometry of the model has a 3D orthonormal basis containing three axes: nor-
mally called x, y, and z. It is most common for the y axis to be in opposite direction
to gravity (i.e., “up”) and for the x and z axes to lie in the plane of the ground. Move-
ment of characters in the game takes place along the x and z axes used for rendering, as
shown in Figure 3.3. For this reason this chapter will use the x and z axes when repre-
senting movement in two dimensions, even though books dedicated to 2D geometry
tend to use x and y for the axis names.

In addition to the two linear coordinates, an object facing in any direction has one
orientation value. The orientation value represents an angle from a reference axis. In
our case we use a counterclockwise angle, in radians, from the positive z axis. This is
fairly standard in game engines; by default (i.e., with zero orientation) a character is
looking down the z axis.

With these three values the static state of a character can be given in the level, as
shown in Figure 3.4.

Algorithms or equations that manipulate this data are called static because the
data does not contain any information about the movement of a character.

We can use a data structure of the form

1 struct Static:
2 position # a 2D vector
3 orientation # a single floating point value

I will use the term orientation throughout this chapter to mean the direction in
which a character is facing. When it comes to rendering the character, we will make
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them appear to face one direction by rotating them (using a rotation matrix). Because
of this, some developers refer to orientation as rotation. I will use rotation in this
chapter only to mean the process of changing orientation; it is an active process.

2% Dimensions

Some of the math involved in 3D geometry is complicated. The linear movement
in three dimensions is quite simple and a natural extension to 2D movement. But
representing an orientation has tricky consequences that are better to avoid (at least
until the end of the chapter).
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LIBRARY

As a compromise, developers often use a hybrid of 2D and 3D geometry which is
known as Z%D, or four degrees of freedom.

In Z%D we deal with a full 3D position, but represent orientation as a single value,
as if we are in two dimensions. This is quite logical when you consider that most
games involve characters under the influence of gravity. Most of the time a character’s
third dimension is constrained because it is pulled to the ground. In contact with the
ground, it is effectively operating in two dimensions, although jumping, dropping off
ledges, and using elevators all involve movement through the third dimension.

Even when moving up and down, characters usually remain upright. There may
be a slight tilt forward while walking or running or a lean sideways out from a wall, but
this tilting doesn’t affect the movement of the character; it is primarily an animation
effect. If a character remains upright, then the only component of its orientation we
need to worry about is the rotation about the up direction.

This is precisely the situation we take advantage of when we work in 21D: the
simplification in the math is worth the decreased flexibility in most cases.

Of course, if you are writing a flight simulator or a space shooter, then all the
orientations are very important to the Al, so you'll have to go to complete three di-
mensions. And at the other end of the scale, if your game world is completely flat, and
characters can’t jump or move vertically in any other way, then a strict 2D model is
needed. In the vast majority of cases, 23D is an optimal solution. We'll cover full 3D
motion at the end of the chapter, but aside from that, all the algorithms described in
this chapter are designed to work in Z%D.

Math

In the remainder of this chapter I will assume that you are comfortable using basic
vector and matrix mathematics (i.e., addition and subtraction of vectors, multipli-
cation by a scalar). Explanations of vector and matrix mathematics, and their use in
computer graphics, are beyond the scope of this book. Other books in this series, such
as Schneider and Eberly [2003], cover mathematical topics in computer games to a
much deeper level. The source code on the CD provides implementations of all of
these functions, along with implementations for other 3D types.

Positions are represented as a vector with x and z components of position. In Z%D,
a y component is also given.

In two dimensions we need only an angle to represent orientation. This is the
scalar representation. The angle is measured from the positive z axis, in a right-
handed direction about the positive y axis (counterclockwise as you look down on
the x—z plane from above). Figure 3.4 gives an example of how the scalar orientation
is measured.

It is more convenient in many circumstances to use a vector representation of
orientation. In this case the vector is a unit vector (it has a length of one) in the
direction that the character is facing. This can be directly calculated from the scalar
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orientation using simple trigonometry:

- sin w;
(,()U = ,
COS W

where w; is the orientation as a scalar, and @, is the orientation expressed as a vector.
I am assuming a right-handed coordinate system here, in common with most of the
game engines I’ve worked on.! If you use a left-handed system, then simply flip the

sign of the x coordinate:
- — sin w;
Wy = .
COS W

If you draw the vector form of the orientation, it will be a unit length vector in
the direction that the character is facing, as shown in Figure 3.5.

3.1.3 KINEMATICS

So far each character has had two associated pieces of information: its position and its
orientation. We can create movement algorithms to calculate a target velocity based
on position and orientation alone, allowing the output velocity to change instantly.

While this is fine for many games, it can look unrealistic. A consequence of New-
ton’s laws of motion is that velocities cannot change instantly in the real world. If a
character is moving in one direction and then instantly changes direction or speed, it
will look odd. To make smooth motion or to cope with characters that can’t acceler-
ate very quickly, we need either to use some kind of smoothing algorithm or to take
account of the current velocity and use accelerations to change it.

1. Left-handed coordinates work just as well with all the algorithms in this chapter. See Eberly [2003] for
more details of the difference and how to convert between them.
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To support this, the character keeps track of its current velocity as well as position.
Algorithms can then operate to change the velocity slightly at each time frame, giving
a smooth motion.

Characters need to keep track of both their linear and their angular velocities.
Linear velocity has both x and z components, the speed of the character in each of
the axes in the orthonormal basis. If we are working in Z%D, then there will be three
linear velocity components, in x, y, and z.

The angular velocity represents how fast the characters’ orientation is changing.
This is given by a single value: the number of radians per second that the orientation
is changing.

We will call angular velocity “rotation,” since rotation suggests motion. Linear
velocity will normally be referred to as simply velocity. We can therefore represent all
the kinematic data for a character (i.e., its movement and position) in one structure:

1 struct Kinematic

2 position # a 2 or 3D vector

3 orientation # a single floating point value
4 velocity # another 2 or 3D vector

5 rotation # a single floating point value

Steering behaviors operate with this kinematic data. They return accelerations
that will change the velocities of a character in order to move them around the level.
Their output is a set of accelerations:

1 struct SteeringOutput:

2 lTinear # a 2 or 3D vector
3 angular # a single floating point value
Independent Facing

Notice that there is nothing to connect the direction that a character is moving and
the direction it is facing. A character can be oriented along the x axis, but be travelling
directly along the z axis. Most game characters should not behave in this way; they
should orient themselves so they move in the direction they are facing.

Many steering behaviors ignore facing altogether. They operate directly on the
linear components of the character’s data. In these cases the orientation should be
updated so that it matches the direction of motion.

This can be achieved by directly setting the orientation to the direction of motion,
but this can mean the orientation changes abruptly.

A better solution is to move it a proportion of the way toward the desired direc-
tion: to smooth the motion over many frames. In Figure 3.6, the character changes its
orientation to be halfway toward its current direction of motion in each frame. The
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Smoothing facing direction of motion over multiple frames

triangle indicates the orientation, and the grey shadows show where the character was
in previous frames, to indicate its motion.

Updating Position and Orientation
If your game has a physics simulation layer, it will be used to update the position and

orientation of characters. If you need to update them manually, however, you can use
a simple algorithm of the form:

1 struct Kinematic:

3 ... Member data as before ...

4

5 def update(steering, time):

6

7 # Update the position and orientation

8 position += velocity * time +

9 0.5 * steering.linear * time * time
10 orientation += rotation * time +

1 0.5 * steering.angular * time * time

13 # and the velocity and rotation
14 velocity += steering.linear * time
15 orientation += steering.angular * time

The updates use high-school physics equations for motion. If the frame rate is
high, then the update time passed to this function is likely to be very small. The square
of this time is likely to be even smaller, and so the contribution of acceleration to
position and orientation will be tiny. It is more common to see these terms removed
from the update algorithm, to give what’s known as the Newton-Euler-1 integration
update:
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1 struct Kinematic:

3 ... Member data as before ...

4

5 def update (steering, time):

6

7 # Update the position and orientation
8 position += velocity * time

9 orientation += rotation * time

1 # and the velocity and rotation
12 velocity += steering.linear * time
13 orientation += steering.angular * time

This is the most common update used for games. Note that in both blocks of code,
I’ve assumed that we can do normal mathematical operations with vectors, such as
addition and multiplication by a scalar. Depending on the language you are using,
you may have to replace these primitive operations with function calls.

The Game Physics [Eberly, 2004] book in this series, and my forthcoming Game
Physics Engine Development (0-12-369471-X, 2006) (also in this series), has a com-
plete analysis of different update methods and covers the complete range of physics
tools for games (as well as detailed implementations of vector and matrix operations).

Variable Frame Rates

Note that we have assumed that velocities are given in units per second rather than per
frame. Older games often used per-frame velocities, but that practice has largely died
out. Almost all games (even those on a console) are now written to support variable
frame rates, so an explicit update time is used.

If the character is known to be moving at 1 meter per second and the last frame
was of 20 milliseconds duration, then they will need to move 20 millimeters.

Forces and Actuation

In the real world we can’t simply apply an acceleration to an object and have it move.
We apply forces, and the forces cause a change in the kinetic energy of the object. They
will accelerate, of course, but the acceleration will depend on the inertia of the object.
The inertia acts to resist the acceleration; with higher inertia, there is less acceleration
for the same force.

To model this in a game, we could use the object’s mass for the linear inertia and
the moment of inertia (or inertia tensor in three dimensions) for angular acceleration.
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We could continue to extend the character data to keep track of these values and
use a more complex update procedure to calculate the new velocities and positions.
This is the method used by physics engines: the Al controls the motion of a character
by applying forces to it. These forces represent the ways in which the character can
affect its motion. Although not common for human characters, this approach is al-
most universal for controlling cars in driving games: the drive force of the engine and
the forces associated with the steering wheels are the only ways in which the Al can
control the movement of the car.

Because most well-established steering algorithms are defined with acceleration
outputs, it is not common to use algorithms that work directly with forces. Usually,
the movement controller considers the dynamics of the character in a post-processing
step called actuation.

Actuation takes as input a desired change in velocity, the kind that would be di-
rectly applied in a kinematic system. The actuator then calculates the combination of
forces that it can apply to get as near as possible to the desired velocity change.

At the simplest level this is just a matter of multiplying the acceleration by the
inertia to give a force. This assumes that the character is capable of applying any force,
however, which isn’t always the case (a stationary car can’t accelerate sideways, for
example). Actuation is a major topic in Al and physics integration, and we’ll return
to actuation at some length in Section 3.8 of this chapter.

3.2 KINEMATIC MOVEMENT ALGORITHMS

Kinematic movement algorithms use static data (position and orientation, no veloci-
ties) and output a desired velocity. The output is often simply an on or off and a target
direction, moving at full speed or being stationary. Kinematic algorithms do not use
acceleration, although the abrupt changes in velocity might be smoothed over several
frames.

Many games simplify things even further and force the orientation of a character
to be in the direction it is travelling. If the character is stationary, it faces either a pre-
set direction or the last direction it was moving in. If its movement algorithm returns
a target velocity, then that is used to set its orientation.

This can be done simply with the function

1 def getNewOrientation(currentOrientation, velocity):

3 # Make sure we have a velocity

4 if velocity.length() > 0:

6 # Calculate orientation using an arc tangent of
7 # the velocity components.

8 return atan2(-static.x, static.z)
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10 # Otherwise use the current orientation
1 else: return currentOrientation

We'll look at two kinematic movement algorithms: seeking (with several of its
variants) and wandering. Building kinematic movement algorithms is extremely sim-
ple, so we’ll only look at these two as representative samples before moving on to
dynamic movement algorithms, the bulk of this chapter.

I can’t stress enough, however, that this brevity is not because they are uncommon
or unimportant. Kinematic movement algorithms still form the bread and butter of
movement systems in most games. The dynamic algorithms in the rest of the book
are becoming more widespread, but they are still in a minority.

3.2.1 SEEK

A kinematic seek behavior takes as input the character’s and their target’s static data.
It calculates the direction from the character to the target and requests a velocity
along this line. The orientation values are typically ignored, although we can use the
getNewOrientation function above to face in the direction we are moving.

The algorithm can be implemented in a few lines:

| class KinematicSeek:

2 # Holds the static data for the character and target
3 character

4 target

5

6 # Holds the maximum speed the character can travel

7 maxSpeed

8

9 def getSteering():

1 # Create the structure for output

12 steering = new KinematicSteeringOutput()

13

14 # Get the direction to the target

15 steering.velocity =

16 target.position - character.position

17

18 # The velocity is along this direction, at full speed
19 steering.velocity.normalize()

20 steering.velocity *= maxSpeed

2 # Face in the direction we want to move
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2 character.orientation =

2 getNewOrientation(character.orientation,
2 steering.velocity)

26

27 # Output the steering

28 steering.rotation = 0

29 return steering

where the normalize method applies to a vector and makes sure it has a length of one.
If the vector is a zero vector, then it is left unchanged.

Data Structures and Interfaces
We use the Static data structure as defined at the start of the chapter and a Kinemat-

icSteeringOutput structure for output. The KinematicSteeringOutput structure has
the following form:

1 struct KinematicSteeringQutput:
2 velocity
3 rotation

In this algorithm rotation is never used; the character’s orientation is simply set
based on their movement. You could remove the call to getNewOrientation if you
want to control orientation independently somehow (to have the character aim at a
target while moving, as in Tomb Raider [Core Design Ltd., 1996], for example.

Performance

The algorithm is O(1) in both time and memory.

Flee

If we want the character to run away from their target, we can simply reverse the
second line of the getSteering method to give

1 # Get the direction away from the target
2 steering.velocity = character.position - target.position

The character will then move at maximum velocity in the opposite direction.
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Arriving

The algorithm above is intended for use by a chasing character; it will never reach its
goal, but continues to seek. If the character is moving to a particular point in the game
world, then this algorithm may cause problems. Because it always moves at full speed,
it is likely to overshoot an exact spot and wiggle backward and forward on successive
frames trying to get there. This characteristic wiggle looks unacceptable. We need to
end stationary at the target spot.

To avoid this problem we have two choices. We can just give the algorithm a large
radius of satisfaction and have it be satisfied if it gets closer to its target than that.
Alternatively, if we support a range of movement speeds, then we could slow the char-
acter down as it reaches its target, making it less likely to overshoot.

The second approach can still cause the characteristic wiggle, so we benefit from
blending both approaches. Having the character slow down allows us to use a much
smaller radius of satisfaction without getting wiggle and without the character ap-
pearing to stop instantly.

We can modify the seek algorithm to check if the character is within the radius.
If so, it doesn’t worry about outputting anything. If it is not, then it tries to reach its
target in a fixed length of time. (I've used a quarter of a second, which is a reasonable
figure. You can tweak the value if you need to.) If this would mean moving faster than
its maximum speed, then it moves at its maximum speed. The fixed time to target is
a simple trick that makes the character slow down as it reaches its target. At 1 unit of
distance away it wants to travel at 4 units per second. At a quarter of a unit of distance
away it wants to travel at 1 unit per second, and so on. The fixed length of time can
be adjusted to get the right effect. Higher values give a more gentle deceleration, and
lower values make the braking more abrupt.

The algorithm now looks like the following:

1 class KinematicArrive:

2 # Holds the static data for the character and target
3 character

4 target

5

6 # Holds the maximum speed the character can travel
7 maxSpeed

8

9 # Holds the satisfaction radius

10 radius

11

12 # Holds the time to target constant

13 timeToTarget = 0.25

14

15 def getSteering():

16
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17 # Create the structure for output

18 steering = new KinematicSteeringOutput()

19

20 # Get the direction to the target

21 steering.velocity =

2 target.position - character.position

23

u # Check if we're within radius

2 if steering.velocity.length() < radius:

26

27 # We can return no steering request

2 return None

29

30 # We need to move to our target, we'd like to
31 # get there in timeToTarget seconds

E steering.velocity /= timeToTarget

33

34 # If this is too fast, clip it to the max speed
35 if steering.velocity.length() > maxSpeed:
36 steering.velocity.normalize()

37 steering.velocity *= maxSpeed

38

39 # Face in the direction we want to move

40 character.orientation =

4 getNewOrientation(character.orientation,
2 steering.velocity)

43

m # Output the steering

15 steering.rotation = 0

16 return steering

I’ve assumed a Tength function that gets the length of a vector.

3.2.2 WANDERING

A kinematic wander behavior always moves in the direction of the character’s current
orientation with maximum speed. The steering behavior modifies the character’s ori-
entation, which allows the character to meander as it moves forward. Figure 3.7 il-
lustrates this. The character is shown at successive frames. Note that it moves only
forward at each frame (i.e., in the direction it was facing at the previous frame).
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Figure 3.7

A character using kinematic wander

Pseudo-Code

It can be implemented as follows:

1 class KinematicWander:

2 # Holds the static data for the character

3 character

4

5 # Holds the maximum speed the character can travel

6 maxSpeed

7

8 # Holds the maximum rotation speed we'd Tike, probably
9 # should be smaller than the maximum possible, to allow
10 # a leisurely change in direction

1 maxRotation

13 def getSteering():

14

15 # Create the structure for output

16 steering = new KinematicSteeringOutput()

17

18 # Get velocity from the vector form of the orientation
19 steering.velocity = maxSpeed *

2 character.orientation.asVector()
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21

2 # Change our orientation randomly

23 steering.rotation = randomBinomial() * maxRotation
24

2 # Output the steering

2 return steering

Data Structures

Orientation values have been given an asVector function that converts the orientation
into a direction vector using the formulae given at the start of the chapter.

Implementation Notes

I’ve used randomBinomial to generate the output rotation. This is a handy random
number function that isn’t common in standard libraries of programming languages.
It returns a random number between —1 and 1, where values around zero are more
likely. It can be simply created as

1 def randomBinomial():
2 return random() - random()

where random returns a random number from 0 to 1.

For our wander behavior, this means that the character is most likely to keep
moving in its current direction. Rapid changes of direction are less likely, but still
possible.

THE CD

The Kinematic Movement program on the CD gives you access to a range of different
movement algorithms, including kinematic wander, arrive, seek, and flee. You simply
select the behavior you want to see for each of the two characters. The game world is
toroidal: if a character goes off one end, then they will reappear on the opposite side.

33 STEERING BEHAVIORS

Steering behaviors extend the movement algorithms in the previous section by adding
velocity and rotation. They are gaining larger acceptance in PC and console game
development. In some genres (such as driving games) they are dominant; in other
genres they are only just beginning to see serious use.
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There is a whole range of different steering behaviors, often with confusing and
conflicting names. As the field has developed, there have been no clear naming
schemes to tell the difference between one atomic steering behavior and a compound
behavior combining several of them together.

In this book we’ll separate the two: fundamental behaviors and behaviors that can
be built up from combinations of these.

There are a large number of named steering behaviors in various papers and code
samples. Many of these are variations of one or two themes. Rather than catalog a zoo
of suggested behaviors, we’ll look at the basic structures common to many of them
before looking at some exceptions with unusual features.

3.3.1 STEERING BAsics

By and large, most steering behaviors have a similar structure. They take as input the
kinematic of the character that is moving and a limited amount of target information.
The target information depends on the application. For chasing or evading behaviors,
the target is often another moving character. Obstacle avoidance behaviors take a
representation of the collision geometry of the world. It is also possible to specify a
path as the target for a path following behavior.

The set of inputs to a steering behavior isn’t always available in an Al-friendly for-
mat. Collision avoidance behaviors, in particular, need to have access to the collision
information in the level. This can be an expensive process: checking the anticipated
motion of the character using ray casts or trial movement through the level.

Many steering behaviors operate on a group of targets. The famous flocking be-
havior, for example, relies on being able to move toward the average position of the
flock. In these behaviors some processing is needed to summarize the set of targets
into something that the behavior can react to. This may involve averaging properties
of the whole set (to find and aim for their center of mass, for example), or it may
involve ordering or searching among them (such as moving away from the nearest or
avoiding bumping into those that are on a collision course).

Notice that the steering behavior isn’t trying to do everything. There is no be-
havior to avoid obstacles while chasing a character and making detours via nearby
power-ups. Each algorithm does a single thing and only takes the input needed to
do that. To get more complicated behaviors, we will use algorithms to combine the
steering behaviors and make them work together.

3.3.2 VARIABLE MATCHING

The simplest family of steering behaviors can be seen to operate by variable matching:
they try to match one or more of the elements of the character’s kinematic to a single
target kinematic.

We might try to match the position of the target, for example, not caring about
the other elements. This would involve accelerating toward the target position and
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decelerating once we are near. Alternatively, we could try to match the orientation of
the target, rotating so that we align with it. We could even try to match the velocity
of the target, following it on a parallel path and copying its movements, but staying a
fixed distance away.

Variable matching behaviors take two kinematics as input: the character kine-
matic and the target kinematic. Different named steering behaviors try to match a
different combination of elements, as well as adding additional properties that con-
trol how the matching is performed. It is possible, but not particularly helpful, to
create a general variable matching steering behavior and simply tell it which combi-
nation of elements to match. I've seen this type of implementation on a couple of
occasions.

The problem arises when more than one element of the kinematic is being
matched at the same time. They can easily conflict. We can match a target’s posi-
tion and orientation independently. But what about position and velocity? If I am
matching their velocity, then I can’t be trying to get any closer.

A better technique is to have individual matching algorithms for each element
and then combine them in the right combination later. This allows us to use any of
the steering behavior combination techniques in this chapter, rather than having one
hard-coded. The algorithms for combing steering behaviors are designed to resolve
conflicts and so are perfect for this task.

For each matching steering behavior, there is an opposite behavior that tries to
get as far away from matching as possible. A behavior that tries to catch its target
has an opposite that tries to avoid its target, and so on. As we saw in the kinematic
seek behavior, the opposite form is usually a simple tweak to the basic behavior. We
will look at several steering behaviors as pairs along with their opposites, rather than
separating them into separate sections.

3.33 SEEK AND FLEE

Seek tries to match the position of the character with the position of the target. Exactly
as for the kinematic seek algorithm, it finds the direction to the target and heads
toward it as fast as possible. Because the steering output is now an acceleration, it will
accelerate as much as possible.

Obviously, if it keeps on accelerating, its speed will grow larger and larger. Most
characters have a maximum speed they can travel; they can’t accelerate indefinitely.
The maximum can be explicit, held in a variable or constant. The current speed of
the character (the length of the velocity vector) is then checked regularly, and it is
trimmed back if it exceeds the maximum speed. This is normally done as a post-
processing step of the update function. It is not performed in a steering behavior. For
example,

1 struct Kinematic:
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3 ... Member data as before ...

4

5 def update(steering, maxSpeed, time):

6

7 # Update the position and orientation
8 position += velocity * time

9 orientation += rotation * time

1 # and the velocity and rotation

12 velocity += steering.linear * time

13 orientation += steering.angular * time
14

15 # Check for speeding and clip

16 if velocity.length() > maxSpeed:

17 velocity.normalize()

18 velocity *= maxSpeed

Alternatively, maximum speed might be a result of applying a drag to slow down
the character a little at each frame. Games that rely on physics engines typically in-
clude drag. They do not need to check and clip the current velocity; the drag (applied
in the update function) automatically limits the top speed.

Drag also helps another problem with this algorithm. Because the acceleration is
always directed toward the target, if the target is moving, the seek behavior will end
up orbiting rather than moving directly toward it. If there is drag in the system, then
the orbit will become an inward spiral. If drag is sufficiently large, the player will not
notice the spiral and will see the character simply move directly to its target.

Figure 3.8 illustrates the path that results from the seek behavior and its opposite,
the flee path, described below.

Pseudo-Code

The dynamic seek implementation looks very similar to our kinematic version:

1 class Seek:

2 # Holds the kinematic data for the character and target
3 character

4 target

5

6 # Holds the maximum acceleration of the character

7 maxAcceleration

8

9 # Returns the desired steering output

10 def getSteering():
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Flee path

Seek path

Seek and flee

# Create the structure to hold our output
steering = new SteeringOutput()

# Get the direction to the target
steering.linear = target.position -
character.position

# Give full acceleration is along this direction
steering.linear.normalize()
steering.linear *= maxAcceleration

# Output the steering
steering.angular = 0
return steering

Note that we’ve removed the change in orientation that was included in the kine-

matic version. We can simply set the orientation, as we did before, but a more flexible
approach is to use variable matching to make the character face in the correct direc-
tion. The align behavior, described below, gives us the tools to change orientation
using angular acceleration. The “look where you're going” behavior uses this to face
the direction of movement.
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PROGRAM

Data Structures and Interfaces

This class uses the SteeringOutput structure we defined earlier in the chapter. It holds
linear and angular acceleration outputs.

Performance

The algorithm is again O(1) in both time and memory.

Flee

Flee is the opposite of seek. It tries to get as far from the target as possible. Just as
for kinematic flee, we simply need to flip the order of terms in the second line of the
function:

1 # Get the direction to the target
2 steering.linear = character.position -
3 explicitTarget.position

The character will now move in the opposite direction to the target, accelerating
as fast as possible.

On the CD

It is almost impossible to show steering behaviors in diagrams. The best way to get a
feel of how the steering behaviors look is to run the Steering Behavior program from
the CD. In the program two characters are moving around a 2D game world. You
can select the steering behavior of each one from a selection provided. Initially, one
character is seeking and the other is fleeing. They have each other as a target.

To avoid the chase going off to infinity, the world is toroidal: characters that leave
one edge of the world reappear at the opposite edge.

3.34 ARRIVE

Seek will always move toward its goal with the greatest possible acceleration. This is
fine if the target is constantly moving and the character needs to give chase at full
speed. If the character arrives at the target, it will overshoot, reverse, and oscillate
through the target, or it will more likely orbit around the target without getting closer.

If the character is supposed to arrive at the target, it needs to slow down so that it
arrives exactly at the right location, just as we saw in the kinematic arrive algorithm.
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Seek path Arrive path

Seeking and arriving

Figure 3.9 shows the behavior of each for a fixed target. The trails show the paths taken
by seek and arrive. Arrive goes straight to its target, while seek orbits a bit and ends up
oscillating. The oscillation is not as bad for dynamic seek as it was in kinematic seek:
it cannot change direction immediately, so it appears to wobble rather than shake
around the target.

The dynamic arrive behavior is a little more complex than the kinematic version.
It uses two radii. The arrival radius, as before, lets the character get near enough to the
target without letting small errors keep it in motion. A second radius is also given, but
is much larger. The incoming character will begin to slow down when it passes this
radius. The algorithm calculates an ideal speed for the character. At the slowing down
radius, this is equal to its maximum speed. At the target point it is zero (we want
to have zero speed when we arrive). In between, the desired speed is an interpolated
intermediate value, controlled by the distance from the target.

The direction toward the target is calculated as before. This is then combined
with the desired speed to give a target velocity. The algorithm looks at the current
velocity of the character and works out the acceleration needed to turn it into the
target velocity. We can’t immediately change velocity, however, so the acceleration is
calculated based on reaching the target velocity in a fixed time scale.

This is exactly the same process as for kinematic arrive, where we tried to get the
character to arrive at its target in a quarter of a second. The fixed time period for
dynamic arrive can usually be a little smaller; we’ll use 0.1 as a good starting point.

When a character is moving too fast to arrive at the right time, its target velocity
will be smaller than its actual velocity, so the acceleration is in the opposite direction:
it is acting to slow the character down.
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Pseudo-Code

The full algorithm looks like the following:

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

class Arrive:
# Holds the kinematic data for the character and target
character
target

# Holds the max acceleration and speed of the character
maxAcceleration
maxSpeed

# Holds the radius for arriving at the target
targetRadius

# Holds the radius for beginning to sTow down
sTowRadius

# Holds the time over which to achieve target speed
timeToTarget = 0.1

def getSteering(target):

# Create the structure to hold our output
steering = new SteeringOutput()

# Get the direction to the target
direction = target.position - character.position
distance = direction.length()

# Check if we are there, return no steering
if distance < targetRadius
return None

# If we are outside the slowRadius, then go max speed
if distance > slowRadius:
targetSpeed = maxSpeed

# Otherwise calculate a scaled speed
else:
targetSpeed = maxSpeed * distance / slowRadius
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s # The target velocity combines speed and direction
4 targetVelocity = direction

2 targetVelocity.normalize()

5 targetVelocity *= targetSpeed

44

45 # Acceleration tries to get to the target velocity
46 steering.linear =

47 targetVelocity - character.velocity

18 steering.linear /= timeToTarget

49

50 # Check if the acceleration is too fast

51 if steering.linear.length() > maxAcceleration:

5 steering.linear.normalize()

53 steering.linear *= maxAcceleration

54

55 # Output the steering

56 steering.angular = 0

57 return steering

Performance

The algorithm is O(1) in both time and memory, as before.

Implementation Notes

Many implementations do not use a target radius. Because the character will slow
down to reach its target, there isn’t the same likelihood of oscillation that we saw in
kinematic arrive. Removing the target radius usually makes no noticeable difference.
It can be significant, however, with low frame rates or where characters have high
maximum speeds and low accelerations. In general, it is good practice to give a margin
of error around any target, to avoid annoying instabilities.

Leave

Conceptually, the opposite behavior to arrive is leave. There is no point in imple-
menting it, however. If we need to leave a target, we are unlikely to want to accelerate
with miniscule (possibly zero) acceleration first and then build up. We are more likely
to accelerate as fast as possible. So for practical purposes the opposite of arrive is flee.
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3.35 ALIGN

LIBRARY

Align tries to match the orientation of the character with that of the target. It pays no
attention to the position or velocity of the character or target. Recall that orientation
is not directly related to direction of movement for a general kinematic: this steering
behavior does not produce any linear acceleration; it only responds by turning.

Align behaves in a similar way to arrive. It tries to reach the target orientation and
tries to have zero rotation when it gets there. Most of the code from arrive we can
copy, but orientations have an added complexity that we need to consider.

Because orientations wrap around every 27 radians, we can’t simply subtract the
target orientation from the character orientation and determine what rotation we
need from the result. Figure 3.10 shows two very similar align situations, where the
character is the same angle away from its target. If we simply subtracted the two an-
gles, the first one would correctly rotate a small amount clockwise, but the second
one would travel all around to get to the same place.

To find the actual direction of rotation, we subtract the character orientation from
the target and convert the result into the range (—m, 7) radians. We perform the
conversion by adding or subtracting some multiple of 27 to bring the result into the
given range. We can calculate the multiple to use by using the mod function and a
little jiggling about. The source code on the CD contains an implementation of a
function that does this, but many graphics libraries also have one available.

We can then use the converted value to control rotation, and the algorithm looks
very similar to arrive. Like arrive, we use two radii: one for slowing down and one

z axis direction

Target = 0.52 radians Target = 0.52 radians

\@ ®

Orientation = 1.05 radians Orientation = 6.27 radians

Figure 3.10  Aligning over a 27 radians boundary
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to make orientations near the target acceptable. Because we are dealing with a single
scalar value, rather than a 2D or 3D vector, the radius acts as an interval.

We have no such problem when we come to subtracting the rotation values. Ro-
tations, unlike orientations, don’t wrap around. You can have huge rotation values,
well out of the (—, ) range. Large values simply represent very fast rotation.

Pseudo-Code

Most of the algorithm is similar to arrive, we simply add the conversion:

1 class Align:

2 # Holds the kinematic data for the character and target
3 character

4 target

6 # Holds the max angular acceleration and rotation

7 # of the character

8 maxAngularAcceleration

9 maxRotation

1 # Holds the radius for arriving at the target

12 targetRadius

13

14 # Holds the radius for beginning to slow down
15 sTowRadius

16

17 # Holds the time over which to achieve target speed
18 timeToTarget = 0.1

19

2 def getSteering(target):

21

2 # Create the structure to hold our output
3 steering = new SteeringOutput()

24

25 # Get the naive direction to the target

2 rotation = target.orientation -

27 character.orientation

28

2 # Map the result to the (-pi, pi) interval
30 rotation = mapToRange(rotation)

31 rotationSize = abs(rotationDirection)

33 # Check if we are there, return no steering
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3 if rotationSize < targetRadius

35 return None

36

37 # If we are outside the slowRadius, then use
38 # maximum rotation

39 if rotationSize > slowRadius:

10 targetRotation = maxRotation

41

2 # Otherwise calculate a scaled rotation

2 else:

" targetRotation =

5 maxRotation * rotationSize / slowRadius
46

47 # The final target rotation combines

18 # speed (already in the variable) and direction
4 targetRotation *= rotation / rotationSize

50

51 # Acceleration tries to get to the target rotation
52 steering.angular =

53 targetRotation - character.rotation

54 steering.angular /= timeToTarget

55

56 # Check if the acceleration is too great

57 angularAcceleration = abs(steering.angular)
58 if angularAcceleration > maxAngularAcceleration:
59 steering.angular /= angularAcceleration

60 steering.angular *= maxAngularAcceleration
61

6 # Output the steering

6 steering.linear = 0

o4 return steering

where the function abs returns the absolute (i.e., positive) value of a number: —1 is
mapped to 1, for example.

Implementation Notes
Whereas in the arrive implementation there are two vector normalizations, in this

code we need to normalize a scalar (i.e., turn it into either +1 or —1). To do this we
use the result that

! normalizedValue = value / abs(value)
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In a production implementation in a language where you can access the bit pat-
tern of a floating point number (C and C++, for example), you can do the same thing
by manipulating the non-sign bits of the variable. Some C libraries provide an op-
timized sign function faster than the approach above. Be aware that many provide
implementations involving an if-statement, which is considerably slower (although
in this case the speed is unlikely to be significant).

Performance

The algorithm, unsurprisingly, is O(1) in both memory and time.

The Opposite

There is no such thing as the opposite of align. Because orientations wrap around
every 27, fleeing from an orientation in one direction will simply lead you back to
where you started. To face the opposite direction to a target, simply add = to its ori-
entation and align to that value.

3.3.6 VELOCITY MATCHING

So far we have looked at behaviors that try to match position with a target. We could
do the same with velocity, but on its own this behavior is seldom useful. It could
be used to make a character mimic the motion of a target, but this isn’t very useful.
Where it does become critical is when combined with other behaviors. It is one of the
constituents of the flocking steering behavior, for example.

We have already implemented an algorithm that tries to match a velocity. Arrive
calculates a target velocity based on the distance to its target. It then tries to achieve
the target velocity. We can strip the arrive behavior down to provide a velocity match-
ing implementation.

Pseudo-Code

The stripped down code looks like the following:

1 class VelocityMatch:

2 # Holds the kinematic data for the character and target
3 character
4 target

6 # Holds the max acceleration of the character
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7 maxAcceleration

8

9 # Holds the time over which to achieve target speed
10 timeToTarget = 0.1

11

12 def getSteering(target):

13

14 # Create the structure to hold our output

15 steering = new SteeringOutput()

16

17 # Acceleration tries to get to the target velocity
18 steering.linear = target.velocity -

19 character.velocity

20 steering.linear /= timeToTarget

21

2 # Check if the acceleration is too fast

2 if steering.linear.length() > maxAcceleration:
24 steering.linear.normalize()

25 steering.linear *= maxAcceleration

26

27 # Output the steering

28 steering.angular = 0

29 return steering

Performance

The algorithm is O(1) in both time and memory.

3.3.7 DELEGATED BEHAVIORS

We have covered the basic building block behaviors that help to create many oth-
ers. Seek and flee, arrive and align perform the steering calculations for many other
behaviors.

All the behaviors that follow have the same basic structure: they calculate a target,
either position or orientation (they could use velocity, but none of those I'm going
to cover do), and then they delegate to one of the other behaviors to calculate the
steering. The target calculation can be based on many inputs. Pursue, for example,
calculates a target for seek based on the motion of another target. Collision avoidance
creates a target for flee based on the proximity of an obstacle. And wander creates its
own target that meanders around as it moves.

In fact, it turns out that seek, align, and velocity matching are the only fundamen-
tal behaviors (there is a rotation matching behavior, by analogy, but I've never seen an
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application for it). As we saw in the previous algorithm, arrive can be divided into the
creation of a (velocity) target and the application of the velocity matching algorithm.
This is common. Many of the delegated behaviors below can, in turn, be used as the
basis of another delegated behavior. Arrive can be used as the basis of pursue, pursue
can be used as the basis of other algorithms, and so on.

In the code that follows I will use a polymorphic style of programming to cap-
ture these dependencies. You could alternatively use delegation, having the primitive
algorithms as members of the new techniques. Both approaches have their problems.
In our case, when one behavior extends another, it normally does so by calculating
an alternative target. Using inheritance means we need to be able to change the target
that the super-class works on.

If we use the delegation approach, we’d need to make sure that each delegated
behavior has the correct character data, maxAcceleration, and other parameters. This
is a lot of duplication and data copying that using sub-classes removes.

3.3.8 PURSUE AND EVADE

Figure 3.11

So far we have moved based solely on position. If we are chasing a moving target,
then constantly moving toward its current position will not be sufficient. By the time
we reach where it is now, it will have moved. This isn’t too much of a problem when
the target is close and we are reconsidering its location every frame. We’ll get there
eventually. But if the character is a long distance from its target, it will set off in a
visibly wrong direction, as shown in Figure 3.11.

Instead of aiming at its current position, we need to predict where it will be at
some time in the future and aim toward that point. We did this naturally playing tag
as children, which is why the most difficult tag players to catch were those who kept
switching direction, foiling our predictions.

Target character

O @9

Seek output
Most eﬁicien:\
direction

Chasing character

Seek moving in the wrong direction
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Figure 3.12

Seek route

Pursue
route

o

Chasing character

Seek and pursue

We could use all kinds of algorithms to perform the prediction, but most would be
overkill. Various research has been done into optimal prediction and optimal strate-
gies for the character being chased (it is an active topic in military research for evading
incoming missiles, for example). Craig Reynolds’ original approach is much simpler:
we assume the target will continue moving with the same velocity as it currently has.
This is a reasonable assumption over short distances, and even over longer distances
it doesn’t appear too stupid.

The algorithm works out the distance between character and target and works out
how long it would take to get there, at maximum speed. It uses this time interval as its
prediction look ahead. It calculates the position of the target if it continues to move
with its current velocity. This new position is then used as the target of a standard
seek behavior.

If the character is moving slowly, or the target is a long way away, the prediction
time could be very large. The target is less likely to follow the same path forever, so
we’d like to set a limit on how far ahead we aim. The algorithm has a maximum time
parameter for this reason. If the prediction time is beyond this, then the maximum
time is used.

Figure 3.12 shows a seek behavior and a pursue behavior chasing the same target.
The pursue behavior is more effective in its pursuit.

Pseudo-Code

The pursue behavior derives from seek, calculates a surrogate target, and then dele-
gates to seek to perform the steering calculation:
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class Pursue (Seek):

# Holds the maximum prediction time
maxPrediction

# OVERRIDES the target data in seek (in other words
# this class has two bits of data called target:

# Seek.target is the superclass target which

# will be automatically calculated and shouldn't

# be set, and Pursue.target is the target we're

# pursuing).

target

# ... Other data is derived from the superclass ...
def getSteering():
# 1. Calculate the target to delegate to seek

# Work out the distance to target
direction = target.position - character.position
distance = direction.length()

# Work out our current speed
speed = character.velocity.length()

# Check if speed is too small to give a reasonable
# prediction time
if speed <= distance / maxPrediction:

prediction = maxPrediction

# Otherwise calculate the prediction time
else:
prediction = distance / speed

# Put the target together
Seek.target = explicitTarget
Seek.target.position += target.velocity * prediction

# 2. Delegate to seek
return Seek.getSteering()
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Implementation Notes

In this code I've used the slightly unsavory technique of naming a member variable
in a derived class with the same name as the super-class. In most languages this will
have the desired effect of creating two members with the same name. In our case this
is what we want: setting the pursue behavior’s target will not change the target for the
seek behavior it extends.

Be careful though! In some languages (Python, for example) you can’t do this.
You'll have to name the target variable in each class with a different name.

As mentioned previously, it may be beneficial to cut out these polymorphic calls
altogether to improve the performance of the algorithm. We can do this by having all
the data we need in the pursue class, removing its inheritance of seek, and making
sure that all the code it needs is contained in the getSteering method. This is faster,
but at the cost of duplicating the delegated code in each behavior that needs it and
obscuring the natural reuse of the algorithm.

Performance

Once again, the algorithm is O(1) in both memory and time.

Evade

The opposite behavior to pursuit is evade. Once again we calculate the predicted po-
sition of the target, but rather than delegating to seek, we delegate to flee.

In the code above, we change the class definition so that it is a subclass of Flee
rather than Seek and adjust the call Seek.getSteering to Flee.getSteering.

Overshooting

If the chasing character is able to move faster than the target, it will overshoot and
oscillate around its target, exactly as the normal seek behavior does.

To avoid this, we can replace the delegated call to seek with a call to arrive. This
illustrates the power of building up behaviors from their logical components; when
we need a slightly different effect, we can easily modify the code to get it.

3.3.9 FaAcE

The face behavior makes a character look at its target. It delegates to the align behavior
to perform the rotation, but calculates the target orientation first.

The target orientation is generated from the relative position of the target to the
character. It is the same process we used in the getOrientation function for kinematic
movement.
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Pseudo-Code

The implementation is very simple:

! class Face (Align):

3 # Overrides the Align.target member

4 target

6 # ... Other data is derived from the superclass ...
7

8 # Implemented as it was in Pursue

9 def getSteering():

1 # 1. Calculate the target to delegate to align

13 # Work out the direction to target

14 direction = target.position - character.position

15

16 # Check for a zero direction, and make no change if so
17 if direction.length() == 0: return target

18

19 # Put the target together

2 Align.target = explicitTarget

21 Align.target.orientation = atan2(-direction.x, direction.z)
22

23 # 2. Delegate to align

N return Align.getSteering()

3.3.10 LooOKING WHERE YOU’RE GOING

We have assumed that the direction a character is facing does not have to be its di-
rection of motion. In many cases, however, we would like the character to face in the
direction it is moving. In the kinematic movement algorithms we set it directly. Using
the align behavior, we can give the character angular acceleration to make it face the
right way. In this way the character changes facing gradually, which can look more
natural, especially for aerial vehicles such as helicopters or hovercraft or for human
characters that can move sideways (providing sidestep animations are available, of
course).

This is a similar process to the face behavior, above. The target orientation is cal-
culated using the current velocity of the character. If there is no velocity, then the
target orientation is set to the current orientation. We have no preference in this situ-
ation for any orientation.
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Pseudo-Code

The implementation is simpler even than face:

1 class LookWhereYoureGoing (Align):

2

3 # No need for an overridden target member, we have
4 # no explicit target to set.

5

6 # ... Other data is derived from the superclass ...
7

8 def getSteering():

9

10 # 1. Calculate the target to delegate to align

11

12 # Check for a zero direction, and make no change if so
13 if character.velocity.length() == 0: return

14

15 # Otherwise set the target based on the velocity
16 target.orientation =

17 atan2(-character.velocity.x, character.velocity.z)
18

19 # 2. Delegate to align

2 return Align.getSteering()

Implementation Notes

In this case we don’t need another target member variable. There is no overall target;
we are creating the current target from scratch. So we can simply use Align.target
for the calculated target (in the same way we did with pursue and the other derived
algorithms).

Performance

The algorithm is O(1) in both memory and time.

3.3.11 WANDER

The wander behavior controls a character moving aimlessly about.
When we looked at the kinematic wander behavior, we perturbed the wander
direction by a random amount each time it was run. This makes the character move
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The kinematic wander as a seek

forward smoothly, but the rotation of the character is erratic, appearing to twitch
from side to side as it moves (run the Kinematic Steering program on the CD to see
it in action).

This initial idea for a wander behavior (move in a random direction) gave linear
jerkiness. The kinematic version added a layer of indirection and produced rotational
jerkiness. We can smooth this twitching by adding an extra layer: making the orien-
tation of the character indirectly reliant on the random number generator.

We can think of kinematic wander as behaving as a delegated seek behavior. There
is a circle around the character on which the target is constrained. Each time the
behavior is run, we move the target around the circle a little, by a random amount.
The character then seeks the target. Figure 3.13 illustrates this configuration.

We can improve this by moving the circle around which the target is constrained.
If we move it out in front of the character (where front is determined by its current
facing direction) and shrink it down, we get the situation in Figure 3.14.

The character tries to face the target in each frame, using the face behavior to align
to the target. It then adds an extra step: applying full acceleration in the direction of
its current orientation.

We could also implement the behavior by having it seek the target and perform a
look where you're going behavior to correct its orientation.

In either case, the orientation of the character is retained between calls (so
smoothing the changes in orientation). The angles that the edges of the circle sub-
tend to the character determine how fast it will turn. If the target is on one of these
extreme points, it will turn quickly. The target will twitch and jitter around the edge
of the circle, but the character’s orientation will change smoothly.

This wander behavior biases the character to turn (in either direction). The target
will spend more time toward the edges of the circle, from the point of view of the
character.
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Figure 3.14  The full wander behavior

Pseudo-Code

! class Wander (Face):

2

3 # Holds the radius and forward offset of the wander
4 # circle.

5 wanderOffset

6 wanderRadius

7

8 # Holds the maximum rate at which the wander orientation
9 # can change

10 wanderRate

11

12 # Holds the current orientation of the wander target
13 wanderOrientation

14

15 # Holds the maximum acceleration of the character

16 maxAcceleration

17

18 # Again we don't need a new target

19

2 # ... Other data is derived from the superclass ...
21

2 def getSteering():

23

2 # 1. Calculate the target to delegate to face

25

2 # Update the wander orientation

27 wanderOrientation += randomBinomial() * wanderRate
28
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# Calculate the combined target orientation
targetOrientation = wanderOrientation +
character.orientation

# Calculate the center of the wander circle
target = character.position +
wanderOffset * character.orientation.asVector()

# Calculate the target location
target += wanderRadius * targetOrientation.asVector()

# 2. Delegate to face
steering = Face.getSteering()

# 3. Now set the linear acceleration to be at full

# acceleration in the direction of the orientation

steering.linear = maxAcceleration *
character.orientation.asVector()

# Return it
return steering

Data Structures and Interfaces

We've used the same asVector function as earlier to get a vector form of the orienta-

tion.

Performance

The algorithm is O(1) in both memory and time.

3.3.12 PATH FOLLOWING

So far we’ve seen behaviors that take a single target or no target at all. Path following is
a steering behavior that takes a whole path as a target. A character with path following
behavior should move along the path in one direction.

Path following, as it is usually implemented, is a delegated behavior. It calculates

the position of a target based on the current character location and the shape of the
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Figure 3.15
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path. It then hands its target off to seek. There is no need to use arrive, because the
target should always be moving along the path. We shouldn’t need to worry about the
character catching up with it.

The target position is calculated in two stages. First, the current character posi-
tion is mapped to the nearest point along the path. This may be a complex process,
especially if the path is curved or made up of many line segments. Second, a target
is selected which is further along the path than the mapped point by a fixed dis-
tance. To change the direction of motion along the path, we can change the sign of
this distance. Figure 3.15 shows this in action. The current path location is shown,
along with the target point a little way farther along. This approach is sometimes
called “chase the rabbit,” after the way greyhounds chase the cloth rabbit at the dog
track.

Some implementations generate the target slightly differently. They first predict
where the character will be in a short time and then map this to the nearest point
on the path. This is a candidate target. If the new candidate target has not been
placed farther along the path than it was at the last frame, then it is changed so that
it is. We’ll call this predictive path following. It is shown in Figure 3.16. This lat-
ter implementation can appear smoother for complex paths with sudden changes of
direction, but has the downside of cutting corners when two paths come close to-
gether.

Figure 3.17 shows this cutting-corner behavior. The character misses a whole sec-
tion of the path. The character is shown at the instant its predictive future position
crosses to a later part of the path.

This might not be what you want if, for example, the path represents a patrol
route.
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Pseudo-Code

20

21
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23

24
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27

28

29

30

class FollowPath (Seek):

# Holds the path to follow
path

# Holds the distance along the path to generate the

# target. Can be negative if the character is to move
# along the reverse direction.

pathOffset

# Holds the current position on the path
currentParam

# ... Other data is derived from the superclass ...
def getSteering():
# 1. Calculate the target to delegate to face

# Find the current position on the path
currentParam = path.getParam(character.position, currentPos)

# Offset it
targetParam = currentParam + pathOffset

# Get the target position
target.position = path.getPosition(targetParam)

# 2. Delegate to seek
return Seek.getSteering()

We can convert this algorithm to a predictive version by first calculating a surro-

gate position for the call to path.getParam. The algorithm looks almost identical:

class FollowPath (Seek):

# Holds the path to follow
path

# Holds the distance along the path to generate the
# target. Can be negative if the character is to move
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8 # along the reverse direction.

9 pathOffset

10

1 # Holds the current position on the path

12 currentParam

13

14 # Holds the time in the future to predict the
15 # character's position

16 predictTime = 0.1

17

18 # ... Other data is derived from the superclass ...
19

2 def getSteering():

21

2 # 1. Calculate the target to delegate to face
23

u # Find the predicted future Tocation

2 futurePos = character.position +

2% character.velocity * predictTime
27

2 # Find the current position on the path

29 currentParam = path.getParam(futurePos, currentPos)
30

31 # Offset it

2 targetParam = currentParam + pathOffset

33

34 # Get the target position

35 target.position = path.getPosition(targetParam)
36

37 # 2. Delegate to seek

38 return Seek.getSteering()

83

Data Structures and Interfaces

The path that the behavior follows has the following interface:

1 class Path:
2 def getParam(position, lastParam)
3 def getPosition(param)

Both these functions use the concept of a path parameter. This is a unique value
that increases monotonically along the path. It can be thought of as a distance along
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Figure 3.18
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the path. Typically, paths are made up of line or curve splines; both of these are easily
assigned parameters. The parameter allows us to translate between the position on
the path and positions in 2D or 3D space.

Path Types

Performing this translation (i.e., implementing a path class) can be tricky, depending
on the format of the path used.

It is most common to use a path of straight line segments as shown in Figure 3.18.
In this case the conversion is not too difficult. We can implement getParam by looking
at each line segment in turn, determining which one the character is nearest to, and
then finding the nearest point on that segment. For smooth curved splines common
in some driving games, however, the math can be more complex. A good source for
closest-point algorithms for a range of different geometries is Schneider and Eberly
[2003].

The code on the CD gives a path class implementation for a series of line seg-
ments. This can work directly with the paths generated by the pathfinding algorithms
of the next chapter and is best suited to human characters moving around.

Keeping Track of the Parameter

The pseudo-code interface above provides for sending the last parameter value to the
path in order to calculate the current parameter value. This is essential to avoid nasty
problems when lines are close together.

We limit the getParam algorithm to only considering areas of the path close to the
previous parameter value. The character is unlikely to have moved far, after all. This
technique, assuming the new value is close to the old one, is called coherence, and it is
a feature of many geometric algorithms. Figure 3.19 shows a problem that would fox
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Figure 3.19  Coherence problems with path following

a non-coherent path follower, but is easily handled by assuming the new parameter is
close to the old one.

Of course, you may really want corners to be cut or a character to move between
very different parts of the path. If another behavior interrupts and takes the character
across the level, for example, you don’t necessarily want it to come all the way back
to pick up a circular patrol route. In this case, you’ll need to remove coherence or at
least widen the range of parameters that it searches for a solution.

Performance

The algorithm is O(1) in both memory and time. The getParam function of the path
will usually be O(1), although it may be O(n), where 7 is the number of segments in
the path. If this is the case, then the getParam function will dominate the performance
scaling of the algorithm.

3.3.13 SEPARATION

The separation behavior is common in crowd simulations, where a number of char-
acters are all heading in roughly the same direction. It acts to keep the characters from
getting too close and being crowded.

It doesn’t work as well when characters are moving across each others’ paths. The
collision avoidance behavior, below, should be used in this case.
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Most of the time, the separation behavior has a zero output; it doesn’t recom-
mend any movement at all. If the behavior detects another character closer than some
threshold, it acts in a similar way to an evade behavior to move away from the charac-
ter. Unlike the basic evade behavior, however, the strength of the movement is related
to the distance from the target. The separation strength can decrease according to any
formula, but a linear or an inverse square law decay is common.

Linear separation looks like the following:

1 strength = maxAcceleration * (threshold - distance) / threshold

The inverse square law looks like the following:

1 strength = min(k * distance * distance, maxAcceleration)

In each case, distance is the distance between the character and its nearby neigh-
bor, threshold is the minimum distance at which any separation output occurs, and
maxAcceleration is the maximum acceleration of the character. The k constant can
be set to any positive value. It controls how fast the separation strength decays with
distance.

Separation is sometimes called the “repulsion steering” behavior, because it acts
in the same way as a physical repulsive force (an inverse square law force such as
magnetic repulsion).

Where there are multiple characters within the avoidance threshold, the steering
is calculated for each in turn and summed. The final value may be greater than the
maxAcceleration, in which case it can be clipped to that value.

Pseudo-Code

1 class Separation:

2

3 # Holds the kinematic data for the character
4 character

5

6 # Holds a Tist of potential targets

7 targets

8

9 # Holds the threshold to take action

10 threshold

11

12 # Holds the constant coefficient of decay for the
13 # inverse square law force

14 decayCoefficient
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# Holds the maximum acceleration of the character
maxAcceleration

# See the Implementation Notes for why we have two
# getSteering methods
def getSteering():

# The steering variable holds the output
steering = new Steering

# Loop through each target
for target in targets:

# Check if the target is close

direction = target.position - character.position
distance = direction.length()

if distance < threshold:

# Calculate the strength of repulsion
strength = min(decayCoefficient * distance * distance,
maxAcceleration)

# Add the acceleration
direction.normalize()
steering.linear = strength * direction

# We've gone through all targets, return the result
return steering

87

Implementation Notes

In the algorithm above, we simply look at each possible character in turn and work
out whether we need to separate from them. For a small number of characters, this
will be the fastest approach. For a few hundred characters in a level, we need a faster

method.
Typically, graphics and physics engines rely on techniques to determine what ob-

jects are close to one another. Objects are stored in spatial data structures, so it is rel-
atively easy to make this kind of query. Multi-resolution maps, quad- or octrees, and
binary space partition (BSP) trees are all popular data structures for rapidly calculat-
ing potential collisions. Each of these can be used by the Al to get potential targets
more efficiently.
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Implementing a spatial data structure for collision detection is beyond the scope
of this book. Other books in this series cover the topic in much more detail, particu-
larly Ericson [2005] and van den Bergen [2003].

Performance

The algorithm is O(1) in memory and O(#) in time, where # is the number of poten-
tial targets to check. If there is some efficient way of pruning potential targets before
they reach the algorithm above, the overall performance in time will improve. A BSP
system, for example, can give O(logn) time, where # is the total number of potential
targets in the game. The algorithm above will always remain linear in the number of
potential targets it checks, however.

Attraction

Using the inverse square law, we can set a negative valued constant of decay and get
an attractive force. The character will be attracted to others within its radius. This is
rarely useful, however.

Some developers have experimented with having lots of attractors and repulsors
in their level and having character movement mostly controlled by these. Characters
are attracted to their goals and repelled from obstacles, for example. Despite being
ostensibly simple, this approach is full of traps for the unwary.

The next section, on combining steering behaviors, shows why simply having lots
of attractors or repulsors leads to characters that regularly get stuck, and why starting
with a more complex algorithm ends up being less work in the long run.

Independence

The separation behavior isn’t much use on its own. Characters will jiggle out of sep-
aration, but then never move again. Separation, along with the remaining behaviors
in this chapter, is designed to work in combination with other steering behaviors. We
return to how this combination works in the next section.

3.3.14 CoLLISION AVOIDANCE

In urban areas, it is common to have large numbers of characters moving around the
same space. These characters have trajectories that cross each other, and they need to
avoid constant collisions with other moving characters.

A simple approach is to use a variation of the evade or separation behavior, that
only engages if the target is within a cone in front of the character. Figure 3.20 shows
the cone that has another character inside it.
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The cone check can be carried out using a dot product:

1 if orientation.asVector() . direction > coneThreshold:

2 # do the evasion
3 else:
4 # return no steering

where direction is the direction between the behavior’s character and the potential
collision. The coneThreshold value is the cosine of the cone half-angle, as shown in
Figure 3.20.

If there are several characters in the cone, then the behavior needs to avoid them
all. It is often sufficient to find the average position and speed of all characters in
the cone and evade that target. Alternatively, the closest character in the cone can be
found and the rest ignored.

Unfortunately, this approach, while simple to implement, doesn’t work well with
more than a handful of characters. The character does not take into account whether
it will actually collide, but has a “panic” reaction to even coming close. Figure 3.21
shows a simple situation where the character will never collide, but our naive collision
avoidance approach will still take action.

Figure 3.22 shows another problem situation. Here the characters will collide, but
neither will take evasive action because they will not have the other in their cone until
the moment of collision.

A better solution works out whether or not the characters will collide if they keep
to their current velocity. This involves working out the closest approach of the two
characters and determining if the distance at this point is less than some threshold
radius. This is illustrated in Figure 3.23.

Note that the closest approach will not normally be the same as the point where
the future trajectories cross. The characters may be moving at very different velocities,

Ignored character

Character to avoid

Half-angle of the cone

Figure 3.20  Separation cones for collision avoidance
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Figure 3.21  Two in-cone characters who will not collide
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Figure 3.22  Two out-of-cone characters who will collide
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Figure 3.23  Collision avoidance using collision prediction
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so are likely to reach the same point at different times. We simply can’t see if their
paths will cross to check if the characters will collide. Instead, we have to find the
moment that they are at their closest and use this to derive their separation and check
if they collide.

The time of closest approach is given by

dy.d,

Lclosest = |dv|2

where d, is the current relative position of target to character (what we called the
distance vector from previous behaviors):

dy =pi —p.
and d, is the relative velocity:

dy = v; — V..

If the time of closest approach is negative, then the character is already moving
away from the target, and no action needs to be taken.

From this time, the position of character and target at the time of closest approach
can be calculated:

’
PC =P + Vcllosests

/
pt =p: + Vitdlosest-

We then use these positions as the basis of an evade behavior; we are performing
an evasion based on our predicted future positions, rather than our current positions.
In other words, the behavior makes the steering correction now, as if it were already
at the most compromised position it will get to.

For a real implementation it is worth checking if the character and target are
already in collision. In this case, action can be taken immediately, without going
through the calculations to work out if they will collide at some time in the future. In
addition, this approach will not return a sensible result if the centers of the character
and target will collide at some point. A sensible implementation will have some spe-
cial case code for this unlikely situation to make sure that the characters will sidestep
in different directions. This can be as simple as falling back to the evade behavior on
the current positions of the character.

For avoiding groups of characters, averaging positions and velocities do not work
well with this approach. Instead, the algorithm needs to search for the character
whose closest approach will occur first and to react to this character only. Once this
imminent collision is avoided, the steering behavior can then react to more distant
characters.
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Pseudo-Code
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class CollisionAvoidance:

# Holds the kinematic data for the character
character

# Holds the maximum acceleration
maxAcceleration

# Holds a Tist of potential targets
targets

# Holds the collision radius of a character (we assume
# all characters have the same radius here)
radius

def getSteering():
# 1. Find the target that's closest to collision

# Store the first collision time
shortestTime = infinity

# Store the target that collides then, and other data
# that we will need and can avoid recalculating
firstTarget = None

firstMinSeparation

firstDistance

firstRelativePos

firstRelativeVel

# Loop through each target
for target in targets:

# Calculate the time to collision

relativePos = target.position - character.position

relativeVel = target.velocity - character.velocity

relativeSpeed = relativeVel.length()

timeToCollision = (relativePos . relativeVel) /
(relativeSpeed * relativeSpeed)

# Check if it is going to be a collision at all
distance = relativePos.length()
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minSeparation = distance-relativeSpeed*shortestTime
if minSeparation > 2*radius: continue

# Check if it is the shortest
if timeToCollision > 0 and
timeToCollision < shortestTime:

# Store the time, target and other data
shortestTime = timeToCollision
firstTarget = target

firstMinSeparation = minSeparation
firstDistance = distance
firstRelativePos = relativePos
firstRelativeVel = relativeVel

# 2. Calculate the steering

# If we have no target, then exit
if not firstTarget: return None

# If we're going to hit exactly, or if we're already
# colliding, then do the steering based on current
# position.
if firstMinSeparation <= 0 or distance < 2*radius:
relativePos = firstTarget.position -
character.position

# Otherwise calculate the future relative position
else:
relativePos = firstRelativePos +
firstRelativeVel * shortestTime

# Avoid the target
relativePos.normalize()
steering.linear = relativePos * maxAcceleration

# Return the steering
return steering

Performance

The algorithm is O(1) in memory and O(#) in time, where # is the number of poten-
tial targets to check.
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Single ray cast

Collision
normal

Figure 3.24  Collision ray avoiding a wall

As in the previous algorithm, if there is some efficient way of pruning potential
targets before they reach the algorithm above, the overall performance in time will
improve. This algorithm will always remain linear in the number of potential targets
it checks, however.

3.3.15 OBSTACLE AND WALL AVOIDANCE

The collision avoidance behavior assumes that targets are spherical. It is interested in
avoiding getting too close to the center point of the target.

This can also be applied to any obstacle in the game that is easily represented by a
bounding sphere. Crates, barrels, and small objects can be avoided simply this way.

More complex obstacles cannot be easily represented in this way. The bounding
sphere of a large object, such as a staircase, can fill a room. We certainly don’t want
characters sticking to the outside of the room just to avoid a staircase in the corner.
By far the most common obstacles in the game, walls, cannot be simply represented
by bounding spheres at all.

The obstacle and wall avoidance behavior uses a different approach to avoiding
collisions. The moving character casts one or more rays out in the direction of its
motion. If these rays collide with an obstacle, then a target is created that will avoid
the collision, and the character does a basic seek on this target. Typically, the rays are
not infinite. They extend a short distance ahead of the character (usually a distance
corresponding to a few seconds of movement).

Figure 3.24 shows a character casting a single ray that collides with a wall. The
point and normal of the collision with the wall is used to create a target location at a
fixed distance from the surface.

Pseudo-Code

! class ObstacleAvoidance (Seek):
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3 # Holds a collision detector

4 collisionDetector

6 # Holds the minimum distance to a wall (i.e., how far
7 # to avoid collision) should be greater than the

8 # radius of the character.

9 avoidDistance

10

1 # Holds the distance to Took ahead for a collision
12 # (i.e., the length of the collision ray)

13 lookahead

14

15 # ... Other data is derived from the superclass ...
16

17 def getSteering():

18

19 # 1. Calculate the target to delegate to seek

20

21 # Calculate the collision ray vector

2 rayVector = character.velocity

2 rayVector.normalize()

2 rayVector *= lookahead

25

2% # Find the collision

27 collision = collisionDetector.getCollision(

28 character.position, rayVector)

29

30 # If have no collision, do nothing

31 if not collision: return None

32

33 # Otherwise create a target

34 target = collision.position + collision.normal * avoidDistance
35

36 # 2. Delegate to seek

37 return Seek.getSteering()

95

Data Structures and Interfaces

The collision detector has the following interface:

1 class CollisionDetector:
2 def getCollision(position, moveAmount)
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where getCol11ision returns the first collision for the character if it begins at the given
position and moves by the given movement amount. Collisions in the same direction,
but farther than moveAmount, are ignored.

Typically, this call is implemented by casting a ray from position to position +
moveAmount and checking for intersections with walls or other obstacles.

The getCollision method returns a collision data structure of the form

1 struct Collision:
2 position
3 normal

where position is the collision point, and normal is the normal of the wall at the
point of collision. This is standard data to expect from a collision detection routine,
and most provide it as a matter of course.

Performance

The algorithm is O(1) in both time and memory, excluding the performance of the
collision detector (or rather, assuming that the collision detector is O(1)). In reality,
collision detection using ray casts is quite expensive and is almost certainly not O(1)
(it normally depends on the complexity of the environment). You should expect that
most of the time spent in this algorithm will be spent in the collision detection rou-
tine.

Collision Detection Problems

So far we have assumed that we are detecting collisions with a single ray cast. In prac-
tice, this isn’t a good solution.

Figure 3.25 shows a one-ray character colliding with a wall that it never detects.
Typically, a character will need to have two or more rays. The figure shows a three-
ray character, with the rays splayed out to act like whiskers. This character will not
graze the wall.

There are a handful of basic ray configurations used over and over for wall avoid-
ance. Figure 3.26 illustrates these.

There are no hard and fast rules as to which configuration is better. Each has their
own particular idiosyncrasies. A single ray with short whiskers is often the best initial
configuration to try, but can make it impossible for the character to move down tight
passages. The single ray configuration is useful in concave environments, but grazes
convex obstacles. The parallel configuration works well in areas where corners are
highly obtuse, but is very susceptible to the corner trap, as we’ll see.



Figure 3.25

Figure 3.26
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The Corner Trap

The basic algorithm for multi-ray wall avoidance can suffer from a crippling problem
with acute angled corners (any convex corner, in fact, but it is more prevalent with
acute angles). Figure 3.27 illustrates a trapped character. Currently, its left ray is col-
liding with the wall. The steering behavior will therefore turn it to the left to avoid the
collision. Immediately, the right ray will then be colliding, and the steering behavior
will turn the character to the right.

When the character is run in the game, it will appear to home into the corner
directly, until it slams into the wall. It will be unable to free itself from the trap.

The fan structure, with a wide enough fan angle, alleviates this problem. Often,
there is a trade-off, however, between avoiding the corner trap with a large fan an-
gle and keeping the angle small to allow the character to access small passageways.
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Figure 3.27  The corner trap for multiple rays
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Figure 3.28  Collision detection with projected volumes

At worst, with a fan angle near 7 radians, the character will not be able to respond
quickly enough to collisions detected on its side rays and will still graze against walls.
Several developers have experimented with adaptive fan angles. If the character is
moving successfully without a collision, then the fan angle is narrowed. If a collision
is detected, then the fan angle is widened. If the character detects many collisions on
successive frames, then the fan angle will continue to widen, reducing the chance that
the character is trapped on a corner.

Other developers implement specific corner-trap avoidance code. If a corner trap
is detected, then one of the rays is considered to have won, and the collisions detected
by other rays are ignored for a while.
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Figure 3.29  Steering family tree

Both approaches work well and represent the most practical solutions to the prob-
lem. The only complete solution, however, is to perform the collision detection using
a projected volume rather than a ray, as shown in Figure 3.28.

Many game engines are capable of doing this, for the sake of modelling realis-
tic physics. Unlike for A, the projection distances required by physics are typically
very small, however, and the calculations can be very slow when used in a steering
behavior.

In addition, there are complexities involved in interpreting the collision data re-
turned from a volume query. Unlike for physics, it is not the first collision point that
needs to be considered (this could be the edge of a polygon on one extreme of the
character model), but how the overall character should react to the wall. So far there
is no widely trusted mechanism for doing volume prediction in wall avoidance.

For now, it seems that the most practical solution is to use adaptive fan angles,
with one long ray cast and two shorter whiskers.

3.3.16 SUMMARY

Figure 3.29 shows a family tree of the steering behaviors we have looked at in this sec-
tion. I've marked a steering behavior as a child of another if it can be seen as extending
the behavior of its parent.
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34 COMBINING STEERING BEHAVIORS

Individually, steering behaviors can achieve a good degree of movement sophistica-
tion. In many games steering simply consists of moving toward a given location: the
seek behavior.

Higher level decision making tools are responsible for determining where the
character intends to move. This is often a pathfinding algorithm, generating inter-
mediate targets on the path to a final goal.

This only gets us so far, however. A moving character usually needs more than
one steering behavior. It needs to reach its goal, avoid collisions with other charac-
ters, tend toward safety as it moves, and avoid bumping into walls. Wall and obstacle
avoidance can be particularly difficult to get when working with other behaviors. In
addition, some complex steering, such as flocking and formation motion, can only be
accomplished when more than one steering behavior is active at once.

This section looks at increasingly sophisticated ways of accomplishing this com-
bination: from simple blending of steering outputs to complicated pipeline architec-
tures designed explicitly to support collision avoidance.

341 BLENDING AND ARBITRATION

By combining steering behaviors together, more complex movement can be achieved.
There are two methods of combining steering behaviors: blending and arbitration.

Each method takes a portfolio of steering behaviors, each with their own outputs,
and generates a single overall steering output. Blending does this by executing all the
steering behaviors and combining their results using some set of weights or priorities.
This is sufficient to achieve some very complex behaviors, but suffers problems when
there are a lot of constraints on how a character can move. Arbitration selects one or
more steering behaviors to have complete control over the character. There is a whole
range of arbitration schemes that control which behavior gets to have its way.

Blending and arbitration are not exclusive approaches, however. They are the ends
of a continuum.

Blending may have weights or priorities that change over time. Some process
needs to change these weights, and this might be in response to the game situation or
the internal state of the character. The weights used for some steering behaviors may
be zero; they are effectively switched off.

At the same time, there is nothing that requires an arbitration architecture to
return a single steering behavior to execute. It may return a set of blending weights
for combining a set of different behaviors.

A general steering system needs to combine elements of both blending and arbi-
tration. Although we’ll look at different algorithms for each, an ideal implementation
will mix elements of both.
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342 WEIGHTED BLENDING

Figure 3.30

The simplest way to combine steering behaviors is to blend their results together using
weights.

Suppose we have a crowd of rioting characters in our game. The characters need
to move as a mass, while making sure that they aren’t consistently bumping into each
other. Each character needs to stay by the others, while keeping a safe distance. Their
overall behavior is a blend of two behaviors: arriving at the center of mass of the
group and separation from nearby characters. At no point is the character doing just
one thing. It is always taking both concerns into consideration.

The Algorithm

A group of steering behaviors can be blended together to act as a single behavior. Each
steering behavior in the portfolio is asked for its acceleration request, as if it were the
only behavior operating.

These accelerations are combined together using a weighted linear sum, with co-
efficients specific to each behavior. There are no constraints on the blending weights;
they don’t have to sum to one, for example, and rarely do (i.e., it isn’t a weighted
mean).

The final acceleration from the sum may be too great for the capabilities of the
character, so it is trimmed according to the maximum possible acceleration (a more
complex actuation step can always be used: see Section 3.8 on actuation later in the
chapter).

In our crowd example, we may use weights of 1 for both separation and cohesion.
In this case the requested accelerations are summed and cropped to the maximum
possible acceleration. This is the output of the algorithm. Figure 3.30 illustrates this
process.

As in all parameterized systems, the choice of weights needs to be the subject of
inspired guesswork or good trial and error. There have been research projects that
have tried to evolve the steering weights using genetic algorithms or neural networks.

Cohesion g
Yoo

Separation Resulting
acceleration

Blending steering outputs
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Results have not been encouraging, however, and manual experimentation still seems
to be the most sensible approach.

Pseudo-Code

The algorithm for blended steering is as follows:

1 class BlendedSteering:

2

3 struct BehaviorAndWeight:

4 behavior

5 weight

6

7 # Holds a list of BehaviorAndWeight instances.

8 behaviors

9

10 # Holds the maximum acceleration and rotation

1 maxAcceleration

12 maxRotation

13

14 # Returns the acceleration required.

15 def getSteering():

16

17 # Create the steering structure for accumulation
18 steering = new Steering()

19

2 # Accumulate all accelerations

21 for behavior in behaviors:

2 steering += behavior.weight *

2 behavior.behavior.getSteering()

24

2 # Crop the result and return

2 steering.linear = max(steering.linear, maxAcceleration)
7 steering.angular = max(steering.angular, maxRotation)
2 return steering

Data Structures

We have assumed that instances of the steering structure can be added together and
multiplied by a scalar. In each case these operations should be performed component-
wise (i.e., each linear and angular component should individually be added and mul-
tiplied).
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Performance

The algorithm requires only temporary storage for the acceleration. It is O(1) in
memory. It is O(n) for time, where n is the number of steering behaviors in the list.
The practical execution speed of this algorithm depends on the efficiency of the com-
ponent steering behaviors.

Flocking and Swarming

The original research into steering behaviors by Craig Reynolds modelled the move-
ment patterns of flocks of simulated birds (known as “boids”). Flocking is the most
common steering behavior, relying on a simple weighted blend of simpler behaviors.

It is so ubiquitous that all steering behaviors are sometimes referred to, incor-
rectly, as “flocking.” I've even seen Al programmers fall into this habit at times.

The flocking algorithm relies on blending three simple steering behaviors: move
away from boids that are too close (separation), move in the same direction and at
the same velocity as the flock (alignment and velocity matching), and move toward
the center of mass of the flock (cohesion). The cohesion steering behavior calculates
its target by working out the center of mass of the flock. It then hands off this target
to a regular arrive behavior.

For simple flocking, using equal weights may be sufficient. In general, however,
separation is more important than cohesion, which is more important than align-
ment. The latter two are sometimes seen reversed.

These behaviors are shown schematically in Figure 3.31.

In most implementations the flocking behavior is modified to ignore distant
boids. In each behavior there is a neighborhood in which other boids are consid-
ered. Separation only avoids nearby boids; cohesion and alignment calculate and seek
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The three components of flocking behaviors
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Figure 3.32
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the position, facing, and velocity of only neighboring boids. The neighborhood is
most commonly a simple radius cut-off, although Reynolds suggests it should have
an angular cut-off, shown in Figure 3.32.

On the CD

There is a Flocking program on the CD that demonstrates the classic flocking algo-
rithm in two dimensions, modelling a herd of animals. You can switch on and off
each of the three component behaviors at any time to see the contribution they make
to the whole movement.

Problems

There are several important problems with blended steering behaviors in real games.
It is no coincidence that demonstrations of blended steering often use very sparse
outdoor environments, rather than indoor or urban levels.

In more realistic settings, characters can often get stuck in the environment in
ways that are difficult to debug. As with all Al techniques, it is essential to be able to
get good debugging information when you need it and at the very least to be able to
visualize the inputs and outputs to each steering behavior in the blend.

Some of these problems, but by no means all of them, will be solved by introduc-
ing arbitration into the steering system.

Stable Equilibria

Blending steering behaviors causes problems when two steering behaviors want to
do conflicting things. This can lead to the character doing nothing, being trapped at
an equilibrium. In Figure 3.33, the character is trying to reach its destination while
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Figure 3.34
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avoiding the enemy. The seek steering behavior is precisely balanced against the evade
behavior.

This balance will soon sort itself out. As long as the enemy is stationary, numer-
ical instability will give the character a minute lateral velocity. It will skirt around
increasingly quickly before making a dash for the destination. This is an unstable
equilibrium.

Figure 3.34 shows a more serious situation. Here, if the character does make it out
of equilibrium slightly (by numerical error, for example), it will immediately head
back into equilibrium. Here there is no escape for the character. It will stay fixed to
the spot, looking stupid and indecisive. The equilibrium is stable.

Stable equilibria have a basin of attraction: the region of the level where a char-
acter will fall into the equilibrium point. If this basin is large, then the chances of a
character becoming trapped are very large. Figure 3.34 shows a basin of attraction
that extends in a corridor for an unlimited distance. Unstable equilibria effectively
have a basin of zero size.

Basins of attraction aren’t only defined by a set of locations. They might only
attract characters that are travelling in a particular direction or that have a particular
orientation. For this reason they can be very difficult to visualize and debug.



106 Chapter 3 Movement

Figure 3.35

Figure 3.36

Constrained Environments

Steering behaviors, either singly or blended, work well in environments with few con-
straints. Movement in an open 3D space has the fewest constraints. Most games, how-
ever, take place in constrained 2D worlds. Indoor environments, racetracks, and for-
mation motion all greatly increase the number of constraints on a character’s move-
ment.

Figure 3.35 shows a chasing steering behavior returning a pathological suggestion
for the motion of a character. The pursue behavior alone would collide with the wall,
but adding the wall avoidance makes the direction even farther from the correct route
for capturing the enemy.

This problem is often seen in characters trying to move at acute angles through
narrow doorways, as shown in Figure 3.36. The obstacle avoidance behavior kicks in
and can send the character past the door, missing the route it wanted to take.

The problem of navigating into narrow passages is so perennial that many devel-
opers deliberately get their level designers to make wide passages where Al characters
need to navigate.
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Figure 3.37 Long distance failure in a steering behavior

Nearsightedness

Steering behaviors act locally. They make decisions based on their immediate sur-
roundings only. As human beings, we anticipate the result of our actions and evaluate
if it will be worth it. Basic steering behaviors can’t do this, so they often take the wrong
course of action to reach their goal.

Figure 3.37 shows a character avoiding a wall using a standard wall avoidance
technique. The movement of the character catches the corner on just the wrong side.
It will never catch the enemy now, but it won’t realize that for a while.

There is no way to augment steering behaviors to get around this problem. Any
behavior that does not look ahead can be foiled by problems that are beyond its hori-
zon. The only way to solve this is to incorporate pathfinding into the steering system.
This integration is discussed below, and the pathfinding algorithms themselves are
found in the next chapter.

3.4.3 PRIORITIES

We have met a number of steering behaviors that will only request an acceleration
in particular conditions. Unlike seek or evade, which always produce an acceleration,
collision avoidance, separation, and arrive will suggest no acceleration in many cases.

When these behaviors do suggest an acceleration, it is unwise to ignore it. A colli-
sion avoidance behavior, for example, should be honored immediately to avoid bang-
ing into another character.

When behaviors are blended together, their acceleration requests are diluted by
the requests of the others. A seek behavior, for example, will always be returning
maximum acceleration in some direction. If this is blended equally with a collision
avoidance behavior, then the collision avoidance behavior will never have more than
50% influence over the motion of the character. This may not be enough to get the
character out of trouble.
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The Algorithm

A variation of behavior blending replaces weights with priorities. In a priority-based
system, behaviors are arranged in groups with regular blending weights. These groups
are then placed in priority order.

The steering system considers each group in turn. It blends the steering behav-
iors in the group together, exactly as before. If the total result is very small (less than
some small, but adjustable, parameter), then it is ignored and the next group is con-
sidered. It is best not to check against zero directly, because numerical instability in
calculations can mean that a zero value is never reached for some steering behaviors.
Using a small constant value (conventionally called the epsilon parameter) avoids this
problem.

When a group is found with a result that isn’t small, its result is used to steer the
character.

A pursuing character working in a team, for example, may have three groups:
a collision avoidance group, a separation group, and a pursuit group. The colli-
sion avoidance group contains behaviors for obstacle avoidance, wall avoidance, and
avoiding other characters. The separation group simply contains the separation be-
havior, which is used to avoid getting too close to other members of the chasing pack.
The pursuit group contains the pursue steering behavior used to home in on the tar-
get.

If the character is far from any interference, the collision avoidance group will
return with no desired acceleration. The separation group will then be considered,
but will also return with no action. Finally, the pursuit group will be considered, and
the acceleration needed to continue the chase will be used. If the current motion of
the character is perfect for the pursuit, this group may also return with no accelera-
tion. In this case, there are no more groups to consider, so the character will have no
acceleration: just as if they’d been exclusively controlled by the pursuit behavior.

In a different scenario, if the character is about to crash into a wall, the first group
will return an acceleration which will help avoid the crash. The character will carry
out this acceleration immediately, and the steering behaviors in the other groups will
never be considered.

Pseudo-Code

The algorithm for priority-based steering is as follows:

1 class PrioritySteering:

3 # Holds a list of BlendedSteering instances, which in turn
4 # contain sets of behaviors with their blending weights.
5 groups
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7 # Holds the epsilon parameter, should be a small value
8 epsilon

9

10 # Returns the acceleration required.

n def getSteering():

12

13 # Go through each group

14 for group in groups:

15

16 # Create the steering structure for accumulation
17 steering = group.getSteering()

18

19 # Check if we're above the threshold, if so return
2 if steering.linear.length() > epsilon or

2 abs(steering.angular) > epsilon:

2 return steering

23

2 # If we get here, it means that no group had a large
25 # enough acceleration, so return the small

2% # acceleration from the final group.

2 return steering

Data Structures and Interfaces

The priority steering algorithm uses a list of BlendedSteering instances. Each instance
in this list makes up one group, and within that group the algorithm uses the code we
created before to blend behaviors together.

Implementation Notes

The algorithm relies on being able to find the absolute value of a scalar (the angu-
lar acceleration) using the abs function. This function is found in most standard li-
braries.

The method also uses the Tength method to find the magnitude of a linear ac-
celeration vector. Because we’re only comparing the result with a fixed epsilon value,
we may as well get the squared magnitude and use that (making sure our epsilon
value is suitable for comparing against a squared distance). This saves a square root
calculation.

On the CD

The Combining Steering program on the CD lets you see this in action.
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Initially, the character moving around has a two stage priority-based steering be-
havior, and the priority stage that is in control is shown. Most of the time the character
will wander around, and its lowest level behavior is active. When the character comes
close to an obstacle, its higher priority avoidance behavior is run, until it is no longer
in danger of colliding.

You can switch the character to blend its two steering behaviors. Now it will wan-
der and avoid obstacles at the same time. Because the avoidance behavior is being
diluted by the wander behavior, you will notice the character responding less effec-
tively to obstacles.

Performance

The algorithm requires only temporary storage for the acceleration. It is O(1) in
memory. It is O(n) for time, where 7 is the total number of steering behaviors in
all the groups. Once again, the practical execution speed of this algorithm depends
on the efficiency of the getSteering methods for the steering behaviors it contains.

Equilibria Fallback

One notable feature of this priority-based approach is its ability to cope with stable
equilibria. If a group of behaviors is in equilibrium, its total acceleration will be near
zero. In this case the algorithm will drop down to the next group to get an accelera-
tion.

By adding a single behavior at the lowest priority (wander is a good candidate),
equilibria can be broken by reverting to a fallback behavior. This situation is illus-
trated in Figure 3.38.

Weaknesses

While this works well for unstable equilibria (it avoids the problem with slow creep-
ing around the edge of an exclusion zone, for example), it cannot avoid large stable
equilibria.

In a stable equilibrium the fallback behavior will engage at the equilibrium point
and move the character out, whereupon the higher priority behaviors will start to
generate acceleration requests. If the fallback behavior has not moved the character
out of the basin of attraction, the higher priority behaviors will steer the character
straight back to the equilibrium point. The character will oscillate in and out of equi-
librium, but never escape.
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Figure 3.38  Priority steering avoiding unstable equilibrium

Variable Priorities

The algorithm above uses a fixed order to represent priorities. Groups of behavior
that appear earlier in the list will take priority over those appearing later in the list. In
most cases priorities are fairly easy to fix: a collision avoidance, when activated, will
always take priority over a wander behavior, for example.

In some cases, however, we’d like more control. A collision avoidance behavior
may be low priority as long as the collision isn’t imminent, becoming absolutely crit-
ical near the last possible opportunity for avoidance.

We can modify the basic priority algorithm by allowing each group to return a
dynamic priority value. In the PrioritySteering.getSteering method, we initially
request the priority values and then sort the groups into priority order. The remainder
of the algorithm operates in exactly the same way as before.

Despite providing a solution for the occasional stuck character, there is only a
minor practical advantage to using this approach. On the other hand, the process of
requesting priority values and sorting the groups into order adds time. Although it is
an obvious extension, my feeling is that if you are going in this direction, you may as
well bite the bullet and upgrade to a full cooperative arbitration system.

344 COOPERATIVE ARBITRATION

So far we’ve looked at combining steering behaviors in an independent manner. Each
steering behavior knows only about itself and always returns the same answer. To
calculate the resulting steering acceleration, we select one or blend together several of
these results. This approach has the advantage that individual steering behaviors are
very simple and easily replaced. They can be tested on their own.
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Figure 3.39
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But as we’ve seen, there are a number of significant weaknesses in the approach
that make it difficult to let characters loose without glitches appearing.

There is a trend toward increasingly sophisticated algorithms for combining steer-
ing behaviors. A core feature of this trend is the cooperation among different behav-
iors.

Suppose, for example, a character is chasing a target using a pursue behavior.
At the same time it is avoiding collisions with walls. Figure 3.39 shows a possible
situation. The collision is imminent and so needs to be avoided.

The collision avoidance behavior generates an avoidance acceleration away from
the wall. Because the collision is imminent, it takes precedence, and the character is
accelerated away.

The overall motion of the character is shown in Figure 3.39. It slows dramatically
when it is about to hit the wall because the wall avoidance behavior is providing only
a tangential acceleration.

The situation could be mitigated by blending the pursue and wall avoidance be-
haviors (although, as we’ve seen, simple blending would introduce other movement
problems in situations with unstable equilibria). Even in this case it would still be
noticeable because the forward acceleration generated by pursue is diluted by wall
avoidance.

To get a believable behavior, we’'d like the wall avoidance behavior to take into
account what pursue is trying to achieve. Figure 3.40 shows a version of the same
situation. Here the wall avoidance behavior is context sensitive; it understands where
the pursue behavior is going, and it returns an acceleration which takes both concerns
into account.

Obviously, taking context into account in this way increases the complexity of the
steering algorithm. We can no longer use simple building blocks that selfishly do their
own thing.
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Figure 3.40 A context-sensitive wall avoidance

Many collaborative arbitration implementations are based on techniques we will
cover in Chapter 5 on decision making. It makes sense; we’re effectively making deci-
sions about where and how to move. Decision trees, state machines, and blackboard
architectures have all been used to control steering behaviors. Blackboard architec-
tures, in particular, are suited to cooperating steering behaviors: each behavior is an
expert that can read (from the blackboard) what other behaviors would like to do
before having its own say.

As yet it isn’t clear whether one approach will become the de facto standard for
games. Cooperative steering behaviors is an area that many developers have inde-
pendently stumbled across, and it is likely to be some time before any consensus is
reached on an ideal implementation.

Even though it lacks consensus, I think it is worth looking in depth at an example.
So I'll introduce the steering pipeline algorithm, an example of a dedicated approach
that doesn’t use the decision making technology in Chapter 5.

3.45 STEERING PIPELINE

The steering pipeline approach was pioneered by a former colleague of mine, Marcin
Chady, as an intermediate step between simply blending or prioritizing steering be-
haviors and implementing a complete movement planning solution (discussed in
Chapter 4). It is a cooperative arbitration approach that allows constructive interac-
tion between steering behaviors. It provides excellent performance in a range of situa-
tions that are normally problematic, including tight passages and integrating steering
with pathfinding. So far it has been used by only a small number of developers.

Bear in mind when reading this section that this is just one example of a cooper-
ative arbitration approach. 'm not suggesting this is the only way it can be done.
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Figure 3.41  Steering pipeline

Algorithm

Figure 3.41 shows the general structure of the steering pipeline.

There are four stages in the pipeline: the targeters work out where the movement
goal is; decomposers provide sub-goals that lead to the main goal; constraints limit
the way a character can achieve a goal; and the actuator limits the physical movement
capabilities of a character.

In all but the final stage, there can be one or more components. Each component
in the pipeline has a different job to do. All are steering behaviors, but the way they
cooperate depends on the stage.

Targeters

Targeters generate the top-level goal for a character. There can be several targets: a po-
sitional target, an orientation target, a velocity target, and a rotation target. We call
each of these elements a channel of the goal (i.e., position channel, velocity channel,
etc.). All goals in the algorithm can have any or all of these channels specified. An
unspecified channel is simply a “don’t care.”

Individual channels can be provided by different behaviors (a chase-the-enemy
targeter may generate the positional target, while a look-toward targeter may pro-
vide an orientation target), or multiple channels can be requested by a single targeter.
When multiple targeters are used, only one may generate a goal in each channel. The
algorithm we develop here trusts that the targeters cooperate in this way. No effort is
made to avoid targeters overwriting previously set channels.

To the greatest extent possible, the steering system will try to fulfil all channels,
although some sets of targets may be impossible to achieve all at once. We’ll come
back to this possibility in the actuation stage.
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At first glance it can appear odd that we’re choosing a single target for steering.
Behaviors such as run away or avoid obstacle have goals to move away from, not to
seek. The pipeline forces you to think in terms of the character’s goal. If the goal is
to run away, then the targeter needs to choose somewhere to run to. That goal may
change from frame to frame as the pursuing enemy weaves and chases, but there will
still be a single goal.

Other “away from” behaviors, like obstacle avoidance, don’t become goals in the
steering pipeline. They are constraints on the way a character moves and are found in
the constraints stage.

Decomposers

Decomposers are used to split the overall goal into manageable sub-goals that can be
more easily achieved.

The targeter may generate a goal somewhere across the game level, for example.
A decomposer can check this goal, see that is not directly achievable, and plan a com-
plete route (using a pathfinding algorithm, for example). It returns the first step in
that plan as the sub-goal. This is the most common use for decomposers: to incorpo-
rate seamless path planning into the steering pipeline.

There can be any number of decomposers in the pipeline, and their order is sig-
nificant. We start with the first decomposer, giving it the goal from the targeter stage.
The decomposer can either do nothing (if it can’t decompose the goal) or can return
a new sub-goal. This sub-goal is then passed to the next decomposer, and so on, until
all decomposers have been queried.

Because the order is strictly enforced, we can perform hierarchical decomposi-
tion very efficiently. Early decomposers should act broadly, providing large-scale de-
composition. For example, they might be implemented as a coarse pathfinder. The
sub-goal returned will still be a long way from the character. Later decomposers can
then refine the sub-goal by decomposing it. Because they are decomposing only the
sub-goal, they don’t need to consider the big picture, allowing them to decompose
in more detail. This approach will seem familiar when we’ve looked at hierarchical
pathfinding in the next chapter. With a steering pipeline in place, we don’t need a
hierarchical pathfinding engine; we can simply use a set of decomposers pathfinding
on increasingly detailed graphs.

Constraints

Constraints limit the ability of a character to achieve their goal or sub-goal. They
detect if moving toward the current sub-goal is likely to violate the constraint, and
if so, they suggest a way to avoid it. Constraints tend to represent obstacles: moving
obstacles like characters or static obstacles like walls.

Constraints are used in association with the actuator, described below. The actu-
ator works out the path that the character will take toward its current sub-goal. Each
constraint is allowed to review that path and determine if it is sensible. If the path will
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violate a constraint, then it returns a new sub-goal that will avoid the problem. The
actuator can then work out the new path and check if that one works, and so on, until
a valid path has been found.

It is worth bearing in mind that the constraint may only provide certain channels
in its sub-goal. Figure 3.42 shows an upcoming collision. The collision avoidance con-
straint could generate a positional sub-goal, as shown, to force the character to swing
around the obstacle. Equally, it could leave the position channel alone and suggest a
velocity pointing away from the obstacle, so that the character drifts out from its col-
lision line. The best approach depends to a large extent on the movement capabilities
of the character and, in practice, takes some experimentation.

Of course, solving one constraint may violate another constraint, so the algorithm
may need to loop around to find a compromise where every constraint is happy. This
isn’'t always possible, and the steering system may need to give up trying to avoid
getting into an endless loop. The steering pipeline incorporates a special steering be-
havior, deadlock, that is given exclusive control in this situation. This could be imple-
mented as a simple wander behavior in the hope that the character will wander out of
trouble. For a complete solution, it could call a comprehensive movement planning
algorithm.

The steering pipeline is intended to provide believable yet lightweight steering
behavior, so that it can be used to simulate a large number of characters. We could
replace the current constraint satisfaction algorithm with a full planning system, and
the pipeline would be able to solve arbitrary movement problems. I've found it best to
stay simple, however. In the majority of situations, the extra complexity isn’t needed,
and the basic algorithm works fine.

As it stands, the algorithm is not always guaranteed to direct an agent through a
complex environment. The deadlock mechanism allows us to call upon a pathfinder
or another higher level mechanism to get out of trickier situations. The steering sys-
tem has been specially designed to allow you to do that only when necessary, so that
the game runs at the maximum speed. Always use the simplest algorithms that work.
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The Actuator

Unlike each of the other stages of the pipeline, there is only one actuator per char-
acter. The actuator’s job is to determine how the character will go about achieving
its current sub-goal. Given a sub-goal, and its internal knowledge about the physical
capabilities of the character, it returns a path indicating how the character will move
to the goal.

The actuator also determines which channels of the sub-goal take priority and
whether any should be ignored.

For simple characters, like a walking sentry or a floating ghost, the path can be
extremely simple: head straight for the target. They can often ignore velocity and
rotation channels and simply make sure the character is facing the target.

If the actuator does honor velocities, and the goal is to arrive at the target with
a particular velocity, we may choose to swing around the goal and take a run up, as
shown in Figure 3.43.

More constrained characters, like an Al-controlled car, will have more complex
actuation: the car can’t turn while stationary, it can’t move in any direction other
than the one in which it is facing, and the grip of the tires limits the maximum turning
speed. The resulting path may be more complicated, and it may be necessary to ignore
certain channels. For example, if the sub-goal wants us to achieve a particular velocity
while facing in a different direction, then we know the goal is impossible. Therefore,
we will probably throw away the orientation channel.

In the context of the steering pipeline, the complexity of actuators is often raised
as a problem with the algorithm. It is worth bearing in mind that this is an implemen-
tation decision; the pipeline supports comprehensive actuators when they are needed
(and you obviously have to pay the price in execution time), but they also support
trivial actuators that take virtually no time at all to run.

Actuation as a general topic is covered later in this chapter, so I'll avoid getting
into the grimy details at this stage. For the purpose of this algorithm, we will assume
that actuators take a goal and return a description of the path the character will take
to reach it.

Target
velocity

Figure 3.43 Taking a run up to achieve a target velocity
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Eventually, we’ll want to actually carry out the steering. The actuator’s final job is

to return the forces and torques (or other motor controls—see Section 3.8 for details)
needed to achieve the predicted path.

Pseudo-Code

The steering pipeline is implemented with the following algorithm:

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

class SteeringPipeline:
# Lists of components at each stage of the pipe
targeters
decomposers
constraints
actuator

# Holds the number of attempts the algorithm will make
# to fund an unconstrained route.
constraintSteps

# Holds the deadlock steering behavior
deadTock

# Holds the current kinematic data for the character
kinematic

# Performs the pipeline algorithm and returns the
# required forces used to move the character
def getSteering():

# Firstly we get the top level goal

goal

for targeter in targeters:
goal.updateChannels(targeter.getGoal (kinematic))

# Now we decompose it
for decomposer in decomposers:
goal = decomposer.decompose(kinematic, goal)

# Now we Toop through the actuation and constraint
# process

validPath = false

for i in 0..constraintSteps:
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36 # Get the path from the actuator

37 path = actuator.getPath(kinematic, goal)

38

39 # Check for constraint violation

40 for constraint in constraints:

4 # If we find a violation, get a suggestion

2 if constraint.isViolated(path):

5 goal = constraint.suggest(path, kinematic, goal)
44

5 # Go back to the top Tevel Toop to get the

16 # path for the new goal

4 break continue

48

2 # If we're here it is because we found a valid path
50 return actuator.output(path, kinematic, goal)

51

52 # We arrive here if we ran out of constraint steps.
53 # We delegate to the deadlock behavior

54 return deadlock.getSteering()

Data Structures and Interfaces

We are using interface classes to represent each component in the pipeline. At each
stage, a different interface is needed.

Targeter

Targeters have the form

1 class Targeter:
2 def getGoal (kinematic)

The getGoal function returns the targeter’s goal.

Decomposer

Decomposers have the interface

1 class Decomposer:
2 def decompose(kinematic, goal)
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The decompose method takes a goal, decomposes it if possible, and returns a sub-
goal. If the decomposer cannot decompose the goal, it simply returns the goal it was
given.

Constraint

Constraints have two methods:

1 class Constraint:
2 def willViolate(path)
3 def suggest(path, kinematic, goal)

The willViolate method returns true if the given path will violate the constraint
at some point. The suggest method should return a new goal that enables the charac-
ter to avoid violating the constraint. We can make use of the fact that suggest always
follows a positive result from willViolate. Often, wil1Violate needs to perform cal-
culations to determine if the path poses a problem. If it does, the results of these
calculations can be stored in the class and reused in the suggest method that follows.
The calculation of the new goal can be entirely performed in the wil1Violate method,
leaving the suggest method to simply return the result. Any channels not needed in
the suggestion should take their values from the current goal passed into the method.

Actuator

The actuator creates paths and returns steering output:

1 class Actuator:
2 def getPath(kinematic, goal)
3 def output(path, kinematic, goal)

The getPath function returns the route that the character will take to the given
goal. The output function returns the steering output for achieving the given path.

Deadlock

The deadlock behavior is a general steering behavior. Its getSteering function returns
a steering output that is simply returned from the steering pipeline.

Goal

Goals need to store each channel, along with an indication as to whether the channel
should be used. The updateChannel method sets appropriate channels from another
goal object. The structure can be implemented as
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1 struct Goal:

2 # Flags to indicate if each channel is to be used

3 hasPosition, hasOrientation, hasVelocity, hasRotation
4

5 # Data for each channel

6 position, orientation, velocity, rotation

7

8 # Updates this goal

9 def updateChannels(o):

10 if o.hasPosition: position = o.position

1 if o.hasOrientation: orientation = o. orientation
12 if o.hasVelocity: velocity = o. velocity

13 if o.hasRotation: rotation = o. rotation

Paths

In addition to the components in the pipeline, we have used an opaque data structure
for the path. The format of the path doesn’t affect this algorithm. It is simply passed
between steering components unaltered.

I’ve used two different path implementations to drive the algorithm. Pathfinding-
style paths, made up of a series of line segments, give point-to-point movement in-
formation. They are suitable for characters who can turn very quickly, for example,
human beings walking. Point-to-point paths are very quick to generate, they can be
extremely quick to check for constraint violation, and they can be easily turned into
forces by the actuator.

The production version of this algorithm uses a more general path representation.
Paths are made up of a list of maneuvers, such as “accelerate” or “turn with constant
radius.” They are suitable for the most complex steering requirements, including race
car driving which is the ultimate test of a steering algorithm. They can be more dif-
ficult to check for constraint violation, however, because they involve curved path
sections.

It is worth experimenting to see if your game can make do with straight line paths
before going ahead and using maneuver sequences.

Performance

The algorithm is O(1) in memory. It uses only temporary storage for the current goal.

It is O(cn) in time, where ¢ is the number of constraint steps, and # is the number
of constraints. Although ¢ is a constant (and we could therefore say the algorithm
is O(n) in time), it helps to increase its value as more constraints are added to the
pipeline. In the past we’ve used a similar number of constraint steps to the number of
constraints, giving an algorithm O(n?) in time.
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The constraint violation test is at the lowest point in the loop, and its perfor-
mance is critical. Profiling a steering pipeline with no decomposers will show that
most of the time spent executing the algorithm is normally spent in this func-
tion.

Since decomposers normally provide pathfinding, they can be very long run-
ning, even though they will be inactive for much of the time. For a game where the
pathfinders are extensively used (i.e., the goal is always a long way away from the char-
acter), the speed hit will slow the Al unacceptably. The steering algorithm needs to be
split over multiple frames.

On the CD

The algorithm is implemented on the CD in its basic form and as an interruptible
algorithm capable of being split over several frames. The Steering Pipeline program
shows it in operation.

An Al character is moving around a landscape, in which there are many obsta-
cles: walls and boulders. The pipeline display illustrates which decomposers and con-
straints are active in each frame.

Example Components

Actuation will be covered in Section 3.8 later in the chapter, but it is worth taking a
look at a sample steering component for use in the targeter, decomposer, and con-
straint stages of the pipeline.

Targeter

The chase targeter keeps track of a moving character. It generates its goal slightly
ahead of its victim’s current location, in the direction the victim is moving. The dis-
tance ahead is based on the victim’s speed and a lookahead parameter in the targeter.

! class ChaseTargeter (Targeter):

3 # Holds a kinematic data structure for the chasee
4 chasedCharacter

5

6 # Controls how much to anticipate the movement

7 lookahead

8

9 def getGoal(kinematic):

n goal = Goal()
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12 goal.position = chasedCharacter.position +

13 chasedCharacter.velocity * lookahead
14 goal.hasPosition = true

15 return goal

Decomposer

The pathfinding decomposer performs pathfinding on graph and replaces the given
goal with the first node in the returned plan. See Chapter 4 on pathfinding for more
information.

1 class PlanningDecomposer (Decomposer):

2 # Data for the graph

3 graph

4 heuristic

5

6 def decompose(kinematic, goal):

7

8 # First we quantize our current location and our goal
9 # into nodes of the graph

10 start = graph.getNode(kinematic.position)

1 end = graph.getNode(goal.position)

13 # If they are equal, we don't need to plan

14 if startNode == endNode: return goal

15

16 # Otherwise plan the route

17 path = pathfindAStar(graph, start, end, heuristic)
18

19 # Get the first node in the path and Tocalize it
2 firstNode = path[0].to_node

2 position = graph.getPosition(firstNode)

22

23 # Update the goal and return

2 goal.position = position

2 return goal

Constraint

The avoid obstacle constraint treats an obstacle as a sphere, represented as a single 3D
point and a constant radius. For simplicity, we are assuming that the path provided
by the actuator is a series of line segments, each with a start and an end point.
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class AvoidObstacleConstraint (Constraint):

# Holds the obstacle bounding sphere
center, radius

# Holds a margin of error by which we'd ideally Tike
# to clear the obstacle. Given as a proportion of the
# radius (i.e. should be > 1.0)

margin

# If a violation occurs, stores the part of the path
# that caused the problem
probTemIndex

def willViolate(path):
# Check each segment of the path in turn
for i in 0..len(path):
segment = path[i]

# If we have a clash, store the current segment

if distancePointToSegment (center, segment) < radius:
probTlemIndex = i
return true

# No segments caused a problem.
return false

def suggest(path, kinematic, goal):
# Find the closest point on the segment to the sphere
# center
closest = closestPointOnSegment (segment, center)

# Check if we pass through the center point
if closest.length() == 0:

# Get any vector at right angles to the segment
dirn = segment.end - segment.start
newDirn = dirn.anyVectorAtRightAngles()

# Use the new dirn to generate a target
newPt = center + newDirn*radius*margin

# Otherwise project the point out beyond the radius
else:
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5 newPt = center + (closest-center)*radius*margin /
16 closest.length()

47

m # Set up the goal and return

2 goal.position = newPt

50 return goal

The suggest method appears more complex that it actually is. We find a new goal
by finding the point of closest approach and projecting it out so that we miss the
obstacle by far enough. We need to check that the path doesn’t pass right through the
center of the obstacle, however, because in that case we can’t project the center out. If
it does, we use any point around the edge of the sphere, at a tangent to the segment,
as our target. Figure 3.44 shows both situations in two dimensions and also illustrates
how the margin of error works.

I added the anyVectorAtRightAngles method just to simplify the listing. It re-
turns a new vector at right angles to its instance. This is normally achieved by using
a cross product with some reference direction and then returning a cross product of
the result with the original direction. This will not work if the reference direction
is the same as the vector we start with. In this case a back-up reference direction is
needed.

. |
Optional f@ﬁ.‘s I Original
sub-goal A b goal
s x ma P Y

Radius X margin

Direct route

sub-goal B

Figure 3.44  Obstacle avoidance projected and at right angles
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Conclusion

The steering pipeline is one of many possible cooperative arbitration mechanisms.
Unlike other approaches, such as decision trees or blackboard architectures, it is
specifically designed for the needs of steering.

On the other hand, it is not the most efficient technique. While it will run very
quickly for simple scenarios, it can slow down when the situation gets more complex.
If you are determined for your characters to move intelligently, then you will have to
pay the price in execution speed sooner or later (in fact, to guarantee it, you'll need
full motion planning, which is even slower than pipeline steering). In many games,
however, the prospect of some foolish steering is not a major issue, and it may be
easier to use a simpler approach to combining steering behaviors, such as blending.

3.5 PREDICTING PHYSICS

A common requirement of Al in 3D games is to interact well with some kind of
physics simulation. This may be as simple as the Al in variations of Pong, that tracked
the current position of the ball and moved the bat so that it intercepted the ball, or
it might involve the character correctly calculating the best way to throw a ball so
that it reaches a teammate who is running. We’ve seen examples of this already. The
pursue steering behavior predicted the future position of its target by assuming it
would carry on with its current velocity. At its most complex, it may involve deciding
where to stand to minimize the chance of being hit by an incoming grenade.

In each case, we are doing Al not based on the character’s own movement (al-
though that may be a factor), but on the basis of other characters’ or objects’ move-
ment.

By far, the most common requirement for predicting movement is for aiming and
shooting firearms. This involves the solution of ballistic equations: the so-called “Fir-
ing Solution.” In this section we will first look at firing solutions and the mathematics
behind them. We will then look at the broader requirements of predicting trajectories
and a method of iteratively predicting objects with complex movement patterns.

3.5.1 AIMING AND SHOOTING

Firearms, and their fantasy counterparts, are a key feature of game design. In almost
any game you choose to think of, the characters can wield some variety of projectile
weapon. In a fantasy game it might be a crossbow or fireball spell, and in a science
fiction (sci-f1) game it could be a disrupter or phaser.

This puts two common requirements on the Al. Characters should be able to
shoot accurately, and they should be able to respond to incoming fire. The second
requirement is often omitted, since the projectiles from many firearms and sci-fi
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weapons move too fast for anyone to be able to react to. When faced with weapons
such as RPGs or mortars, however, the lack of reaction can appear unintelligent.

Regardless of whether a character is giving or receiving fire, it needs to understand
the likely trajectory of a weapon. For fast-moving projectiles over small distances, this
can be approximated by a straight line, so older games tended to use simple straight
line tests for shooting. With the introduction of increasingly complex physics simula-
tion, however, shooting along a straight line to your targets is likely to see your bullets
in the dirt at their feet. Predicting correct trajectories is now a core part of the Al in
shooters.

3.5.2 PROJECTILE TRAJECTORY

Figure 3.45

A moving projectile under gravity will follow a curved trajectory. In the absence of
any air resistance or other interference, the curve will be part of a parabola, shown in
Figure 3.45.

The projectile moves according to the formula

I ot
Br=Po + tisut + g? (3.1]

where p, is its position (in three dimensions) at time f, py is the firing position
(again in three dimensions), s,, is the muzzle velocity (the speed the projectile left
the weapon—it is not strictly a velocity because it is not a vector), u is the direction
the weapon was fired in (a normalized 3D vector), ¢ is the length of time since the
shot was fired, and g is the acceleration due to gravity. The notation X denotes that x
is a vector. Others values are scalar.

It is worth noting that although the acceleration due to gravity on earth is

0
g= |:—9.81:| ms™~?
0

(i.e., 9.81 ms™2 in the down direction), this can look too slow in a game envi-
ronment. Physics middleware vendors such as Havok recommend using a value

Parabolic arc
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around double that for games, although some tweaking is needed to get the exact
look.

The simplest thing we can do with the trajectory equations is to determine if a
character will be hit by an incoming projectile. This is a fairly fundamental require-
ment of any character in a shooter with slow-moving projectiles (such as grenades).

We will split this into two elements: determining where a projectile will land and
determining if its trajectory will touch the character.

Predicting a Landing Spot

The Al should determine where an incoming grenade will land and then move quickly
away from that point (using a flee steering behavior, for example, or a more complex
compound steering system that takes into account escape routes). If there’s enough
time, an Al might move toward the grenade point as fast as possible (using arrive,
perhaps) and then intercept and throw back the ticking grenade, forcing the player to
pull the grenade pin and hold it for just the right length of time.

We can determine where a grenade will land by solving the projectile equation for
a fixed value of p, (i.e., the height). If we know the current velocity of the grenade and
its current position, we can solve for just the y component of the position and get the
time at which the grenade will reach a known height (i.e., the height of the floor on
which the character is standing):

—UySy, + \/ufsi1 —2g,(pyo — Pyr)
= , [3.2]
&

where p,; is the position of impact, and ¢; is the time at which this occurs. There may
be zero, one, or two solutions to this equation. If there are zero solutions, then the
projectile never reaches the target height; it is always below it. If there is one solution,
then the projectile reaches the target height at the peak of its trajectory. Otherwise, the
projectile reaches the height once on the way up and once on the way down. We are
interested in the solution when the projectile is descending, which will be the greater
time value (since whatever goes up will later come down). If this time value is less
than zero, then the projectile has already passed the target height and won’t reach it
again.

The time #; from Equation 3.2 can be substituted into Equation 3.1 to get the
complete position of impact:

Dyi [3.3]

pr + uxsmti + %gxtiz
pi= |: j|
P20 + USmti + %gztf
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which further simplifies, if (as it normally does) gravity only acts in the down direc-

tion, to
pr + uxsmti
pi= Dyi .

PZO + UzSm ti

For grenades, we could compare the time to impact with the known length of
the grenade fuse to determine whether it is safer to run from or catch and return the
grenade.

Note that this analysis does not deal with the situation where the ground level is
rapidly changing. If the character is on a ledge or walkway, for example, the grenade
may miss impacting at its height entirely and sail down the gap behind it. We can use
the result of Equation 3.3 to check if the impact point is valid.

For outdoor levels with rapidly fluctuating terrain, we can also use the equation
iteratively, generating (x, z) coordinates with Equation 3.3 and then feeding the p,
coordinate of the impact point back into the equation, until the resulting (x, z) values
stabilize. There is no guarantee that they will ever stabilize, but in most cases they
do. In practice, however, high explosive projectiles typically damage a large area, so
inaccuracies in the impact point prediction are difficult to spot when the character is
running away.

The final point to note about incoming hit prediction is that the floor height of the
character is not normally the height at which the character catches. If the character is
intending to catch the incoming object (as it will in most sports games, for example),
it should use a target height value at around chest height. Otherwise, it will appear to
maneuver in such a way that the incoming object drops at its feet.

3.5.3 THE FIRING SOLUTION

To hit a target at a given point E, we need to solve Equation 3.1. In most cases we
know the firing point S (i.e., S = p), the muzzle velocity s,,, and the acceleration due
to gravity g; we’d like to find just 1, the direction to fire in (although finding the time
to collision can also be useful for deciding if a slow-moving shot is worth it).

Archers and grenade throwers can change the velocity of the projectile as they fire
(i.e., they select an s,, value), but most weapons have a fixed value for s,,. We will
assume, however, that characters who can select a velocity will always try to get the
projectile to its target in the shortest time possible. In this case they will always choose
the highest possible velocity.

In an indoor environment with many obstacles (such as barricades, joists, and
columns), it might be advantageous for a character to throw its grenade more slowly
so that it arches over obstacles. Dealing with obstacles in this way gets to be very com-
plex and is best solved by a trial and error process, trying different s,, values (normally
trials are limited to a few fixed values: “throw fast,” “throw slow,” and “drop,” for ex-
ample). For the purpose of this book, we’ll assume that s,, is constant and known in
advance.
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The quadratic Equation 3.1 has vector coefficients. Add the requirement that the
firing vector should be normalized,

and we have four equations in four unknowns:
1
Ex = Sx + usti + ngti s

1
E, =S, +usnti + Egytiz,

1
Ez Sz + uzsmti + Egztfa
1= ui + ui + uﬁ.

These can be solved to find the firing direction and the projectile’s time to target.
First, we get an expression for #;:

817t — 4(3.A +52) 12 + 4|A]P =0,

where A is the vector from the start point to the end point, given by A =E—S. This
is a quartic in t;, with no odd powers. We can therefore use the quadratic equation
formula to solve for #7 and take the square root of the result. Doing this, we get

§A+5,+ @A+ —FPIAP
28

=42

which gives us two real-valued solutions for time, of which a maximum of two may
be positive. Note that we should strictly take into account the two negative solutions
also (replacing the positive sign with a negative sign before the first square root). We
omit these because solutions with a negative time are entirely equivalent to aiming in
exactly the opposite direction to get a solution in positive time.

There are no solutions if

@A +s2)" <BPIAL

In this case the target point cannot be hit with the given muzzle velocity from
the start point. If there is one solution, then we know the end point is at the absolute
limit of the given firing capabilities. Usually, however, there will be two solutions, with
different arcs to the target. This is illustrated in Figure 3.46. We will almost always
choose the lower arc, which has the smaller time value, since it gives the target less
time to react to the incoming projectile and produces a shorter arc that is less likely
to hit obstacles (especially the ceiling).
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Two possible firing solutions

We might want to choose the longer arc if we are firing over a wall, in a castle-
strategy game, for example.
With the appropriate t; value selected, we can determine the firing vector using
the equation
2A — g2
2Smt; ’

u=

The intermediate derivations of these equations are left as an exercise.
This is admittedly a mess to look at, but can be easily implemented as follows:

1 def calculateFiringSolution(start, end, muzzle v, gravity):

3 # Calculate the vector from the target back to the start
4 delta = start - end

6 # Calculate the real-valued a,b,c coefficients of a conventional
7 # quadratic equation

8 a = gravity * gravity

9 b = -4 * (gravity * delta + muzzle v*muzzle v)

10 c =4 * delta * delta

11

12 # Check for no real solutions

13 if 4*a*c > b*b: return None

14

15 # Find the candidate times

16 time0 = sqrt((-b + sqrt(b*b-4*a*c)) / (2*a))

17 timel = sqrt((-b - sqrt(b*b-4*a*c)) / (2*a))

18

19 # Find the time to target

20 if timesO < 0:
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21 if timesl < 0:

2 # We have no valid times
23 return None

2 else:

25 ttt = timesl

2 else:

2 if timesl < 0:

28 ttt = timesO

2 else:

30 ttt = min(times0, timesl)
31

3 # Return the firing vector

3 return (2 * delta - gravity * ttt*ttt) / (2 * muzzle v * ttt)

This code assumes that we can take the scalar product of two vectors using the
a * b notation. The algorithm is O(1) in both memory and time. There are opti-
mizations to be had, and the C++ source code on the CD contains an implementation
of this function where the math has been automatically optimized by a commercial
equation to code converter for added speed.

3.54 PROJECTILES WITH DRAG

The situation becomes more complex if we introduce air resistance. Because it adds
complexity, it is very common to see developers ignoring drag altogether for calcu-
lating firing solutions. Often, a drag-free implementation of ballistics is a perfectly
acceptable approximation. Once again, the gradual move toward including drag in
trajectory calculations is motivated by the use of physics engines. If the physics en-
gine includes drag (and most of them do to avoid numerical instability problems),
then a drag-free ballistic assumption can lead to inaccurate firing over long distances.
It is worth trying an implementation without drag, however, even if you are using a
physics engine. Often, the results will be perfectly usable and much simpler to imple-
ment.

The trajectory of a projective moving under the influence of drag is no longer a
parabolic arc. As the projectile moves, it slows down, and its overall path looks like
Figure 3.47.

Adding drag to the firing calculations considerably complicates the mathematics,
and for this reason most games either ignore drag in their firing calculations or use a
kind of trial and error process that we’ll look at in more detail later.

Although drag in the real world is a complex process caused by many interacting
factors, drag in computer simulation is often dramatically simplified. Most physics
engines relate the drag force to the speed of a body’s motion with components related
to either velocity or velocity squared or both. The drag force on a body, D, is given
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Projectile moving with drag

(in one dimension) by
D= —kv — cv?,

where v is the velocity of the projectile, and k and ¢ are both constants. The k coef-
ficient is sometimes called the viscous drag and ¢ the aerodynamic drag (or ballistic
coefficient). These terms are somewhat confusing, however, because they do not cor-
respond directly to real-world viscous or aerodynamic drag.

Adding these terms changes the equation of motion from a simple expression into
a second-order differential equation:

=

P =8— kl_;t - ijti;t|‘

Unfortunately, the second term in the equation, cf)t|f7t|, is where the complica-
tions set in. It relates the drag in one direction to the drag in another direction. Up to
this point, we’ve assumed that for each of the three dimensions the projectile motion
is independent of what is happening in the other directions. Here the drag is relative
to the total speed of the projectile: even if it is moving slowly in the x-direction, for ex-
ample, it will experience a great deal of drag if it is moving quickly in the z-direction.
This is the characteristic of a non-linear differential equation, and with this term in-
cluded there can be no simple equation for the firing solution.

Our only option is to use an iterative method that performs a simulation of the
projectile’s flight. We will return to this approach below.

More progress can be made if we remove the second term to give

=

p.=g—kp,. [3.4]

While this makes the mathematics tractable, it isn’t the most common setup for a
physics engine. If you need very accurate firing solutions and you have control over
the kind of physics you are running, this may be an option. Otherwise, you will need
to use an iterative method.

We can solve this equation to get an equation for the motion of the particle. If
you're not interested in the math, you can skip to the implementation on the CD.
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Onmitting the derivations, we solve Equation 3.4 and find that the trajectory of the
particle is given by

. gt—AeH
p=5""% LB [3.5]
k
where A and B are constants found from the position and velocity of the particle at
time t = 0:
A=s,1— %
and
. . A
B= Po — % .

We can use this equation for the path of the projectile on its own, if it corresponds
to the drag in our physics (or if accuracy is less important). Or we can use it as the
basis of an iterative algorithm in more complex physics systems.

Rotating and Lift

Another complication in the movement calculations occurs if the projectile is rotating
while it is in flight.

We have treated all projectiles as if they are not rotating during their flight. Spin-
ning projectiles (golf balls, for example) have additional lift forces applying to them
as a result of their spin and are more complex still to predict. If you are developing
an accurate golf game that simulates this effect (along with wind that varies over the
course of the ball’s flight), then it is likely to be impossible to solve the equations of
motion directly. The best way to predict where the ball will land is to run it through
your simulation code (possibly with a coarse simulation resolution, for speed).

3.5.5 ITERATIVE TARGETING

When we cannot create an equation for the firing solution, or when such an equa-
tion would be very complex or prone to error, we can use an iterative targeting tech-
nique. This is similar to the way that long-range weapons and artillery (euphemisti-
cally called “effects” in military-speak) are really targeted.

The Problem

We would like to be able to determine a firing solution that hits a given target, even
if the equations of motion for the projectile cannot be solved or if we have no simple
equations of motion at all.
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The generated firing solution may be approximate (i.e., it doesn’t matter if we are
slightly off center as long as we hit), but we need to be able to control its accuracy to
make sure we can hit small or large objects correctly.

The Algorithm

The process has two stages. We initially make a guess as to the correct firing solution.
The trajectory equations are then processed to check if the firing solution is accurate
enough (i.e., does it hit the target?). If it is not accurate, then a new guess is made,
based on the previous guess.

The process of testing involves checking how close the trajectory gets to the target
location. In some cases we can find this mathematically from the equations of mo-
tion (although it is very likely that if we can find this, then we could also solve the
equation of motion and find a firing solution without an iterative method). In most
cases the only way to find the closest approach point is to follow a projectile through
its trajectory and record the point at which it made its closest approach.

To make this process faster, we only test at intervals along the trajectory. For a
relatively slow-moving projectile with a simple trajectory, we might check every half
second. For a fast-moving object with complex wind, lift, and aerodynamic forces, we
may need to test every tenth or hundredth of a second. The position of the projectile is
calculated at each time interval. These positions are linked by straight line segments,
and we find the nearest point to our target on this line segment. We are approximating
the trajectory by a piecewise linear curve.

We can add additional tests to avoid checking too far in the future. This is not
normally a full collision detection process, because of the time that would take, but
we do a simple test such as stopping when the projectile’s height is a good deal lower
than its target.

The initial guess for the firing solution can be generated from the firing solution
function described earlier, i.e., we assume there is no drag or other complex move-
ment in our first guess.

After the initial guess, the refinement depends to some extent on the forces that
exist in the game. If there is no wind being simulated, then the direction of the first-
guess solution in the x—z plane will be correct (called the “bearing”). We only need
two tweak the angle between the x—z plane and the firing direction (called the “eleva-
tion”). This is shown in Figure 3.48.

If we have a drag coefficient, then the elevation will need to be higher than that
generated by the initial guess. If the projectile experiences no lift, then the maximum
elevation should be 45°. Any higher than that and the total flight distance will start
decreasing again. If the projectile does experience lift, then it might be better to send
it off higher, allowing it to fly longer and to generate more lift, which will increase its
distance.

If we have a crosswind, then just adjusting the elevation will not be enough. We
will also need to adjust the bearing. It is a good idea to iterate between the two adjust-
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Figure 3.48
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ments in series: getting the elevation right first for the correct distance, then adjusting
the bearing to get the projectile to land in the direction of the target, then adjusting
the elevation to get the right distance, and so on.

You would be quite right if you get the impression that refining the guesses is
akin to complete improvisation. In fact, real targeting systems for military weapons
use complex simulations for the flights of their projectiles and a range of algorithms,
heuristics, and search techniques to find the best solution. In games, the best approach
is to get the Al running in a real game environment and adjust the guess refinement
rules until good results are generated quickly.

Whatever the sequence of adjustment, or the degree to which the refinement al-
gorithm takes into account physical laws, a good starting point is a binary search, the
stalwart of many algorithms in computer science, described in depth in any good text
on algorithmics or computer science.

Pseudo-Code

Because the refinement algorithm depends to a large extent on the kind of forces we
are modelling in the game, the pseudo-code presented below will assume that we are
trying to find a firing solution for a projectile moving with drag alone. This allows us
to simplify the search from a search for a complete firing direction to just a search for
an angle of elevation.

This is the only situation I have seen in a commercial game that requires this
technique, although, as we have seen, in military simulation more complex situations
occur.

The code uses the equation of motion for a projectile experiencing only viscous
drag, as we derived earlier.

| def refineTargeting(source, target, muzzleVelocity, gravity,
) margin) :

4 # Get the target offset from the source
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deltaPosition = target - source

# Take an initial guess from the dragless firing solution

direction = calculateFiringSolution(source, target,
muzzleVelocity,
gravity)

# Convert it into a firing angle.
minBound = asin(direction.y / direction.length())

# Find how close it gets us
distance = distanceToTarget(direction, source,
target, muzzleVelocity)

# Check if we made it
if distance*distance < margin*margin:
return direction

# Otherwise check if we overshot
else if minBoundDistance > 0:

# We've found a maximum, rather than a minimum bound,
# put it in the right place
maxBound = minBound

# Use the shortest possible shot as the minimum bound
minBound = -90

# Otherwise we need to find a maximum bound, we use
# 45 degrees
else:

maxBound = 45

# Calculate the distance for the maximum bound

direction = convertToDirection(deltaPosition, angle)

distance = distanceToTarget(direction, source,
target, muzzleVelocity)

# See if we've made it
if distance*distance < margin*margin:
return direction

# Otherwise make sure it overshoots
else if distance < 0:

137
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# Our best shot can't make it
return None

# Now we have a minimum and maximum bound, use a binary

# search from here on.
dist