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PREFACE

Two memories stand out in my career writing game AI.
The first takes place in a dingy computer lab on the top floor of the computer sci-

ence building at Birmingham University in the UK. Although I am half-way through
the first year of my Artificial Intelligence degree, I’ve only been in the department
for a couple of weeks after transferring from a Mathematics major. Catching up on
a semester of work is, unexpectedly, great fun, and there are a great bunch of fellow
students eager to help me learn about Expert Systems, Natural Language Processing,
Philosophy of Mind, and the Prolog programming language.

One of my fellow students has written a simple text-based adventure game in
Prolog. I’m not new to game programming—I was part of the 8-bit bedroom coding
scene through my teenage years, and by this time had written more than ten games
myself. But this simple game completely captivates my attention. It is the first time
I’ve seen a finite state machine in action. There is an Ogre, who can be asleep, dozing,
distracted, or angry. And you can control his emotions through hiding, playing a
flute, or stealing his dinner.

All thoughts of assignment deadlines are thrown to the wind, and a day later I
have my own game in C written with this new technique. It is a mind-altering expe-
rience, taking me to an entirely new understanding of what is possible. The enemies
I’d always coded were stuck following fixed paths, or waited until the player came
close before homing right in. In the FSM I saw the prospect of modeling complex
emotional states, triggers, and behaviors. And I knew Game AI is what I wanted to
do.

The second memory is more than ten years later. Using some technology devel-
oped to simulate military tactics, I have founded a company called Mindlathe, ded-
icated to providing artificial intelligence middleware to games and other real-time
applications. It is more than two years into development, and we are well into the
process of converting prototypes and legacy code into a robust AI engine. I am work-
ing on the steering system; producing a formation motion plug-in.

On screen I have a team of eight robots wandering through a landscape of trees.
Using techniques in this book, they are staying roughly in formation, while avoid-
ing collisions and taking the easiest route through more difficult terrain. The idea
occurred to me to combine this with an existing demo we had of characters using
safe-tactical locations to hide in. With a few lines of code I had the formation locked
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to tactical locations. Rather than robots trying to stay in a V formation, they tried to
stick to safe locations, moving forward only if they would otherwise get left behind.
Immediately the result was striking: the robots dashed between cover points, moving
one at a time, so the whole group made steady progress through the forest, but each
individual stayed in cover as long as possible.

The memory stays with me, not because of that idea, but because it was the fastest
and most striking example of something I had seen many times: that incredibly real-
istic results can be gained from intelligently combining very simple algorithms.

Both memories, along with many years of experience have taught me that, with a
good toolbox of simple AI techniques, you can build stunningly realistic game charac-
ters. Characters with behaviors that would take far longer to code directly, and would
be far less flexible to changing needs and player tactics.

This book is an outworking of that experience. It doesn’t tell you how to build a
sophisticated AI from the ground up. It gives you a huge range of simple (and not so
simple) AI techniques that can be endlessly combined, re-used, and parameterized to
generate almost any character behavior that you can conceive.

This is the way I, and most of the developers I know, build game AI. Those who do
it long-hand each time are a dying breed. As development budgets soar, as companies
get more risk averse, and as technology development costs need to be spread over
more titles; having a reliable toolkit of tried-and-tested techniques is the only sane
choice.

I hope you’ll find an inspiring palette of techniques in this book that will keep you
in realistic characters for decades to come.
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1
INTRODUCTION

ame development lives in its own technical world. It has its own idioms, skills,
G and challenges. That’s one of the reasons I find it so much fun to work on.
There’s a reasonably good chance of being the first person to meet and beat a new
programming challenge.

Despite numerous efforts to bring it into line with the rest of the development
industry, going back at least 15 years, the style of programming in a game is still very
different from that in any other sphere of development. There is a focus on speed,
but it isn’t very similar to programming for embedded or control applications. There
is a focus on clever algorithms, but it doesn’t share the same rigor as database server
engineering. It draws techniques from a huge range of different sources, but almost
without exception modifies them beyond resemblance. And, to add an extra layer of
intrigue, each developer makes their modifications in different ways, leaving algo-
rithms unrecognizable from studio to studio.

As exciting and challenging as this may be, it makes it difficult for developers to
get the information they need. Ten years ago, I found it almost impossible to get hold
of information about techniques and algorithms that real developers used in their
games. There was an atmosphere of secrecy, even alchemy, about the coding tech-
niques in top studios. Then came the Internet and an ever-growing range of websites,
along with books, conferences, and periodicals. It is now easier than ever to teach
yourself new techniques in game development.

This book is designed to help you master one element of game development: ar-
tificial intelligence (AI). There have been many articles published about different as-
pects of game AI: websites on particular techniques, compilations in book form, some
introductory texts, and plenty of lectures at development conferences. I was frustrated
that there wasn’t a book that covered it all, as a coherent whole. And that is where this
book is designed to be.

3



4 Chapter 1 Introduction

I’ve developed many AI modules for lots of different genres of games. I’ve devel-
oped an AI middleware tool that had a lot of new research and clever content. I work
on research and development for next-generation AI, and I get to do a lot with some
very clever technologies. However, throughout this book I’ve tried to resist the temp-
tation to pass off how I think it should be done as to how it is done. My aim has been
to tell it like it is (or for those next-generation technologies, to tell you how most
people agree it will be).

The meat of this book covers a wide range of techniques for game AI. Some of
them are barely techniques: more like a general approach or development style. Some
are full-blown algorithms, and I’ve been able to give optimizations and a reference
implementation on the CD. Others are shallow introductions to huge fields well be-
yond the scope of this book. In these cases I’ve tried to give enough technique to
understand how and why an approach may be useful (or not).

I’m aiming this book at a wide range of readers: from hobbyists or students look-
ing to get a solid understanding of game AI through to professionals who need a
comprehensive reference to techniques they may not have used before.

Before we get into the techniques themselves, this chapter introduces AI, its his-
tory, and the way it is used. We’ll look at a model of AI to help fit the techniques
together, and I’ll give some background on how the rest of the book is structured.

1.1 WHAT IS AI?

Artificial intelligence is about making computers able to perform the thinking tasks
that humans and animals are capable of.

We can already program computers to have super-human abilities in solving
many problems: arithmetic, sorting, searching, and so on. We can even get comput-
ers to play some board games better than any human being (Reversi or Connect 4,
for example). Many of these problems were originally considered AI problems, but as
they have been solved in more and more comprehensive ways, they have slipped out
of the domain of AI developers.

But there are many things that computers aren’t good at which we find trivial:
recognizing familiar faces, speaking our own language, deciding what to do next, and
being creative. These are the domain of AI: trying to work out what kinds of algo-
rithms are needed to display these properties.

In academia, some AI researchers are motivated by philosophy: understanding
the nature of thought and the nature of intelligence and building software to model
how thinking might work. Some are motivated by psychology: understanding the
mechanics of the human brain and mental processes. Others are motivated by engi-
neering: building algorithms to perform human-like tasks. This threefold distinction
is at the heart of academic AI, and the different mind-sets are responsible for different
subfields of the subject.

As games developers, we are primarily interested in only the engineering side:
building algorithms that make game characters appear human or animal-like. Devel-
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opers have always drawn from academic research, where that research helps them get
the job done.

It is worth taking a quick overview of the AI done in academia to get a sense of
what exists in the subject and what might be worth plagiarizing. I don’t have the room
(or the interest and patience) to give a complete walk-through of academic AI, but it
will set us up to look at what kinds of techniques end up in games.

1.1.1 ACADEMIC AI

You can, by and large, divide academic AI into three periods: the early days, the sym-
bolic era, and the natural era. This is a gross oversimplification, of course, and the
three overlap to some extent, but I find it a helpful distinction.

The Early Days

The early days include the time before computers, where philosophy of mind occa-
sionally made forays into AI with questions like: “what produces thought?”; “could
you give life to an inanimate object?”; and “what is the difference between a cadaver
and the human it previously was?” Tangential to this was the popular taste in mechan-
ical robots, particularly in Victorian Europe. By the turn of the century, mechanical
models were created that displayed the kind of animated, animal-like behaviors that
we now employ game artists to create in a modelling package.

In the war effort of the 1940s, the need to break enemy codes and to perform
the calculations required for atomic warfare motivated the development of the first
programmable computers. Given that these machines were being used to perform cal-
culations that would otherwise be done by a person, it was natural for programmers
to be interested in AI. Several computing pioneers (such as Turing, von-Neumann,
and Shannon) were also pioneers in early AI. Turing, in particular, has become an
adopted father to the field, as a result of a philosophical paper he published in 1950
[Turing, 1950].

The Symbolic Era

From the late 1950s through to the early 1980s the main thrust of AI research was in
“symbolic” systems. A symbolic system is one in which the algorithm is divided into
two components: a set of knowledge (represented as symbols such as words, numbers,
sentences, or pictures) and a reasoning algorithm that manipulates those symbols to
create new combinations of symbols that hopefully represent problem solutions or
new knowledge.

An expert system, one of the purest expressions of this approach, is the most fa-
mous AI technique. It has a large database of knowledge and applies rules to the
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knowledge to discover new things. Other symbolic approaches applicable to games in-
clude blackboard architectures, pathfinding, decision trees, state machines, and steer-
ing algorithms. All of these and many more are described in this book.

A common feature of symbolic systems is a trade-off: when solving a problem
the more knowledge you have, the less work you need to do in reasoning. Often,
reasoning algorithms consist of searching: trying different possibilities to get the best
result. This leads us to the golden rule of AI: search and knowledge are intrinsically
linked. The more knowledge you have, the less searching for an answer you need; the
more search you can do (i.e., the faster you can search), the less knowledge you need.

It was suggested by researchers Newell and Simon in 1976 that this is the way
all intelligent behavior arises. Unfortunately, despite it having several solid and im-
portant features, this theory has been largely discredited, and out with the bathwater
has often gone the baby. Many people with a recent education in AI are not aware
that, as an engineering trade-off, knowledge vs. search is unavoidable. Recent work
on the mathematics of problem solving has proved this theoretically [Wolpert and
Macready, 1997], and AI engineers have always known it.

The Natural Era

Gradually through the 1980s and into the early 1990s, there was an increasing frus-
tration with symbolic approaches. The frustration came in two directions. First, from
an engineering point of view, the early successes on simple problems didn’t seem to
scale to more difficult problems. It might be easy to develop AI that understands (or
appears to understand) simple sentences, but understanding a full human language
seemed no nearer. Second, from a philosophical viewpoint, symbolic approaches
weren’t biologically plausible. You can’t understand how a human being plans a route
by using a symbolic route planning algorithm any more than you understand how
human muscles work by studying a forklift truck.

The effect was a move toward natural computing: techniques inspired by biology
or other natural systems. These techniques include neural networks, genetic algo-
rithms, and simulated annealing. Although symbolic work was still in progress, it
became more difficult to fund academic study into symbolic approaches and much
easier to fund natural computing research. When I did my undergraduate and post-
graduate research in the early 1990s, I naturally followed the zeitgeist and specialized
in genetic algorithms.

It is worth noting, however, that natural computing techniques weren’t invented
in the 1980s and 1990s. Neural networks, for example, predate the symbolic era; they
were first suggested in 1943 [McCulloch and Pitts, 1943]. I see it more of a fashion
shift to natural computing, although I’m sure there are those that would see it as
inevitable progress.
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Engineering

There are two interesting things to notice about the fashion change in academic AI.
First, natural computing techniques have not been any better at generating scalable
solutions to larger problems. Some natural computing techniques are particularly
suited to specific domains, but then so were some symbolic techniques. Neural net-
works have proved their usefulness in several areas, for example, but genetic algo-
rithms (despite still being the technique of the moment) haven’t been so successful.

Second, natural computing, in the current state of the art, is not biologically
plausible. Every natural computing field has had to make optimizations to the ba-
sic model to get sensible results. And these optimizations are, by and large, distinctly
un-biological.

The no-free-lunch theorem and subsequent work has shown that, over all prob-
lems, no single approach is better than any other. The only way any algorithm can
outperform another is to focus on a specific set of problems. The narrower the prob-
lem domain you focus on, the easier it will be for the algorithm to shine. Which, in
a roundabout way, brings us back to the golden rule of AI: search (trying possible
solutions) is the other side of the coin to knowledge (knowledge about the problem
is equivalent to narrowing the number of problems your approach is applicable to).

Engineering applications of natural computing always use symbolic technology.
A voice recognition program, for example, converts the input signals using known
formulae into a format where the neural network can decode it. The results are then
fed through a series of symbolic algorithms that look at words from a dictionary
and the way words are combined in the language. A genetic algorithm optimizing
the order of a production line will have the rules about production encoded into its
structure, so it can’t possibly suggest an illegal timetable: the knowledge is used to
reduce the amount of search required.

Although it is improving, there is a snooty air about symbolic AI among many
academics I’ve found. This skews the appearance of AI to those outside academia.
I’ve talked to several developers who’ve bought the hype that symbolic approaches
are dead and that natural computing techniques are the “new wave,” are “better,” or
are “the future.” Invariably, they try them out and find that they aren’t.

We’ll look at several natural computing techniques in this book that are useful
for specific problems. I have enough experience to know that for other problems they
are a waste of time; the same effect can be achieved better, faster, and with more
control using a simpler approach. Overwhelmingly, the AI used in games is symbolic
technology.

1.1.2 GAME AI

Pacman [Midway Games West, Inc., 1979] was the first game I remember playing
with fledgling AI. Up to that point there had been Pong clones with opponent-
controlled bats (that basically followed the ball up and down) and countless shooters
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in the Space Invaders mold. But Pacman had definite enemy characters that seemed
to conspire against you, moved around the level just as you did, and made life tough.

Pacman relied on a very simple AI technique: a state machine (which we’ll cover
later in Chapter 5). Each of the four monsters (later called ghosts after a disastrously
flickering port to the Atari 2600) was either chasing you or running away. For each
state they took a semi-random route at each junction. In chase mode, each had a
different chance of chasing the player or choosing a random direction. In run away
mode, they either ran away or chose a random direction. All very simple and very
1979.

Game AI didn’t change much until the mid-1990s. Most computer-controlled
characters prior to then were about as sophisticated as a Pacman ghost.

Take a classic like Golden Axe [SEGA Entertainment, Inc., 1987] 8 years later.
Enemy characters stood still (or walked back and forward a short distance) until the
player got close to them, whereupon they homed in on the player. Golden Axe had
a neat innovation with enemies that would rush past the player and then switch to
homing mode, attacking from behind. The sophistication of the AI is only a small
step from Pacman.

In the mid-1990s AI began to be a selling point for games. Personally, Beneath
a Steel Sky [Revolution Software Ltd., 1994] was the first game I bought because it
mentioned AI on the back of the box. Unfortunately, its much-hyped “Virtual The-
atre” AI system simply allowed characters to walk backward and forward through the
game: hardly a real advancement.

Goldeneye 007 [Rare Ltd., 1997] probably did the most to show gamers what AI
could do to improve gameplay. Still relying on characters with a small number of
well-defined states, Goldeneye added a sense simulation system: a character could see
their colleagues and would notice if they were killed. Sense simulation was the topic
of the moment, with Thief: The Dark Project [Looking Glass Studios, Inc., 1998]
and Metal Gear Solid [Konami Corporation, 1998] basing their whole game design
on the technique.

In the mid-1990s RTS games were beginning to take off. Warcraft [Blizzard En-
tertainment, 1994] was the first time I noticed pathfinding in action (I later found
out it had been used several times before). I was working with emotional models of
soldiers in a military battlefield simulation in 1998 when I saw Warhammer: Dark
Omen [Mindscape, 1998] doing the same thing. It was also the first time I saw robust
formation motion in action.

Recently, an increasing number of games have made AI the point of the game.
Creatures [Cyberlife Technology Ltd., 1997] did this in 1997, but games like The Sims
[Maxis Software, Inc., 2000] and Black and White [Lionhead Studios Ltd., 2001] have
carried on the torch. Creatures still has one of the most complex AI systems seen in a
game, with a neural network-based brain for each creature (that admittedly can often
look rather stupid in action).

Now we have a massive diversity of AI in games. Many genres are still using the
simple AI of 1979 because that’s all they need. Bots in first person shooters have seen
more interest from academic AI than any other genre. RTS games have co-opted much
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of the AI used to build training simulators for the military (to the extent that Full
Spectrum Warrior [Pandemic Studios, 2004] started life as a military training simu-
lator).

Sports games and driving games in particular have their own AI challenges, some
of which remain largely unsolved (dynamically calculating the fastest way around a
race track, for example), while RPG games with complex character interactions still
implemented as conversation trees feel overdue for some better AI. A number of lec-
tures and articles in the last 5 or 6 years have suggested improvements that have not
yet materialized in production games.

The AI in most modern games addresses three basic needs: the ability to move
characters, the ability to make decisions about where to move, and the ability to think
tactically or strategically. Even though we’ve gone from using state-based AI every-
where (they are still used in most places) to a broad range of techniques, they all fulfil
the same three basic requirements.

1.2 MY MODEL OF GAME AI

In this book there is a vast zoo of techniques. It would be easy to get lost, and it’s
important to understand how the bits fit together.

To help, I’ve used a consistent structure to understand the AI used in a game.
This isn’t the only possible model, and it isn’t the only model that would benefit from
the techniques in this book. But to make discussions clearer, we will think of each
technique as fitting into a general structure for making intelligent game characters.

Figure 1.1 illustrates this model. It splits the AI task into three sections: move-
ment, decision making, and strategy. The first two sections contain algorithms that
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Figure 1.1 The AI model
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work on a character-by-character basis, and the last section operates on a whole team
or side. Around these three AI elements is a whole set of additional infrastructure.

Not all game applications require all levels of AI. Board games like Chess or Risk
require only the strategy level; the characters in the game (if they can even be called
that) don’t make their own decisions and don’t need to worry about how to move.

On the other hand, there is no strategy at all in very many games. Characters in a
platform game, such as Jak and Daxter [Naughty Dog, Inc., 2001], or the Oddworld
games are purely reactive, making their own simple decisions and acting on them.
There is no coordination that makes sure the enemy characters do the best job of
thwarting the player.

1.2.1 MOVEMENT

Movement refers to algorithms that turn decisions into some kind of motion. When
an enemy character without a gun needs to attack the player in Super Mario Sunshine
[Nintendo Entertainment, Analysis and Development, 2002], it first heads directly for
the player. When it is close enough, it can actually do the attacking. The decision to
attack is carried out by a set of movement algorithms that home in on the player’s
location. Only then can the attack animation be played and the player’s health be
depleted.

Movement algorithms can be more complex than simply homing in. A character
may need to avoid obstacles on the way or even work their way through a series of
rooms. A guard in some levels of Splinter Cell [UbiSoft Montreal Studios, 2002] will
respond to the appearance of the player by raising an alarm. This may require navi-
gating to the nearest wall-mounted alarm point, which can be a long distance away,
and may involve complex navigation around obstacles or through corridors.

Lots of actions are carried out using animation directly. If a Sim, in The Sims, is
sitting by the table with food in front of them and wants to carry out an eating action,
then the eating animation is simply played. Once the AI has decided that the character
should eat, no more AI is needed (the animation technology used is not covered in
this book). If the same character is by the back door when they want to eat, however,
movement AI needs to guide them to their chair (or to some other nearby source of
food).

1.2.2 DECISION MAKING

Decision making involves a character working out what to do next. Typically, each
character has a range of different behaviors that they could choose to perform: at-
tacking, standing still, hiding, exploring, patrolling, and so on. The decision making
system needs to work out which of these behaviors is the most appropriate at each
moment of the game. The chosen behavior can then be executed using movement AI
and animation technology.
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At its simplest, a character may have very simple rules for selecting a behavior.
The farm animals in various levels of the Zelda games will stand still unless the player
gets too close, whereupon they will move away a small distance.

At the other extreme, enemies in Half-Life 2 [Valve, 2004] display complex deci-
sion making, where they will try a number of different strategies to reach the player:
chaining together intermediate actions like throwing grenades and laying down sup-
pression fire in order to achieve their goals.

Some decisions may require movement AI to carry them out. A melee (hand-to-
hand) attack action will require the character to get close to its victim. Others are
handled purely by animation (the Sim eating, for example) or simply by updating the
state of the game directly without any kind of visual feedback (when a country AI in
Sid Meier’s Civilization III [Firaxis Games, 2001] elects to research a new technology,
for example, it simply happens with no visual feedback).

1.2.3 STRATEGY

You can go a long way with movement AI and decision making AI, and most action-
based three-dimensional (3D) games use only these two elements. But to coordinate
a whole team, some strategic AI is required.

In the context of this book, strategy refers to an overall approach used by a group
of characters. In this category are AI algorithms that don’t control just one character,
but influence the behavior of a whole set of characters. Each character in the group
may (and usually will) have their own decision making and movement algorithms,
but overall their decision making will be influenced by a group strategy.

In the original Half-Life [Valve, 1998], enemies worked as a team to surround and
eliminate the player. One would often rush past the player to take up a flanking posi-
tion. This has been followed in more recent games such as Ghost Recon [Red Storm
Entertainment, Inc., 2001] with increasing sophistication of the kinds of strategic ac-
tions that a team of enemies can carry out.

1.2.4 INFRASTRUCTURE

AI algorithms on their own are only half of the story, however. In order to actually
build AI for a game, we’ll need a whole set of additional infrastructure. The movement
requests need to be turned into action in the game by using either animation or,
increasingly, physics simulation.

Similarly, the AI needs information from the game to make sensible decisions.
This is sometimes called “perception” (especially in academic AI): working out what
information the character knows. In practice, it is much broader than just simulating
what each character can see or hear, but includes all interfaces between the game
world and the AI. This world interfacing is often a large proportion of the work done
by an AI programmer, and in my experience it is the largest proportion of the AI
debugging effort.

Finally, the whole AI system needs to be managed so it uses the right amount
of processor time and memory. While some kind of execution management typically
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exists for each area of the game (level of detail algorithms for rendering, for example),
managing the AI raises a whole set of techniques and algorithms of its own.

Each of these components may be thought of as being out of the remit of the AI
developer. Sometimes they are (in particular, the animation system is almost always
part of the graphics engine), but they are so crucial to getting the AI working that
they can’t be avoided all together. In this book I have covered each infrastructure
component except animation in some depth.

1.2.5 AGENT-BASED AI

I don’t use the term “agents” very much in this book, even though the model I’ve
described is an agent-based model.

In this context, agent-based AI is about producing autonomous characters that
take in information from the game data, determine what actions to take based on the
information, and carry out those actions.

It can be seen as bottom-up design: you start by working out how each character
will behave and by implementing the AI needed to support that. The overall behavior
of the whole game is simply a function of how the individual character behaviors
work together. The first two elements of the AI model I use, movement and decision
making, make up the AI for an agent in the game.

In contrast, a non-agent-based AI seeks to work out how everything ought to act
from the top down and builds a single system to simulate everything. An example
is the traffic and pedestrian simulation in the cities of Grand Theft Auto 3 [DMA
Design, 2001]. The overall traffic and pedestrian flows are calculated based on the
time of day and city region and are only turned into individual cars and people when
the player can see them.

The distinction is hazy, however. I’ll look at level of detail techniques that are
very much top down, while most of the character AI is bottom up. A good AI devel-
oper will mix and match any reliable techniques that get the job done, regardless of
the approach. That pragmatic approach is the one I always follow. So in this book,
I avoid using agent-based terminology. I prefer to talk about game characters in gen-
eral, however they are structured.

1.2.6 IN THE BOOK

In the text of the book each chapter will refer back to this model of AI, pointing out
where it fits in. The model is useful for understanding how things fit together and
which techniques are alternatives for others.

But the dividing lines aren’t always sharp; this is intended to be a general model,
not a straightjacket. In the final game code there are no joins. The whole set of AI
techniques from each category, as well as a lot of the infrastructure, will all operate
seamlessly together.
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Many techniques fulfil roles in more than one category. Pathfinding, for example,
can be both a movement and a decision making technique. Similarly, some tactical
algorithms that analyze the threats and opportunities in a game environment can be
used as decision makers for a single character or to determine the strategy of a whole
team.

1.3 ALGORITHMS, DATA STRUCTURES, AND

REPRESENTATIONS

There are three key elements to implementing the techniques described in this book:
the algorithm itself, the data structures that the algorithm depends on, and the way
the game world is represented to the algorithm (often encoded as an appropriate data
structure). Each element is dealt with separately in the text.

1.3.1 ALGORITHMS

Algorithms are step-by-step processes that generate a solution to an AI problem. We
will look at algorithms that generate routes through a game level to reach a goal:
algorithms that work out which direction to move in to intercept a fleeing enemy,
algorithms that learn what the player will do next, and many others.

Data structures are the other side of the coin to algorithms. They hold data in
such a way that an algorithm can rapidly manipulate it to reach a solution. Often,
data structures need to be particularly tuned for one particular algorithm, and their
execution speeds are intrinsically linked.

There are a set of elements that you need to know to implement and tune an
algorithm, and these are treated step by step in the text:

� The problem that the algorithm tries to solve

� A general description of how the solution works, including diagrams, where they
are needed

� A pseudo-code presentation of the algorithm

� An indication of the data structures required to support the algorithm, including
pseudo-code, where required

� Particular implementation nodes

� Analysis of the algorithms performance: its execution speed, memory footprint,
and scalability

� Weaknesses in the approach

Often, a set of algorithms are presented that get increasingly more efficient. The
simpler algorithms are presented to help you get a feeling for why the complex algo-
rithms have their structure. The stepping stones are described a little more sketchily
than the full system.
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Some of the key algorithms in game AI have literally hundreds of variations. This
book can’t hope to catalog and describe them all. When a key algorithm is described,
I will often give a quick survey of the major variations in briefer terms.

Performance Characteristics

To the greatest extent possible, I have tried to include execution properties of the
algorithm in each case. Execution speed and memory consumption often depend on
the size of the problem being considered. I have used the standard O() notation to
indicate the order of the most significant element in this scaling.

So an algorithm might be described as being O(n log n) in execution and O(n)
in memory, where n is usually some kind of component of the problem, such as the
number of other characters in the area or the number of power-ups in the level.

Any good text on general algorithm design will give a full mathematical treatment
of how O() values are arrived at and the implications they have for the real-world per-
formance of an algorithm. In this book I will omit derivations; they’re not useful for
practical implementation. I’ll rely instead on a general indication. Where a complete
indication of the complexity is too involved, I’ll indicate the approximate running
time or memory in the text, rather than attempt to derive an accurate O() value.

Some algorithms have confusing performance characteristics. It is possible to set
up highly improbable situations to deliberately make them perform poorly. In regular
use (and certainly in any use you’re likely to have in a game), they will have a much
better performance. When this is the case, I’ve tried to indicate both the expected and
the worst case results. You can probably ignore the worst case value safely.

Pseudo-Code

Algorithms in this book are presented in pseudo-code for brevity and simplicity.
Pseudo-code is a fake programming language that cuts out any implementation de-
tails particular to one programming language, but describes the algorithm in suffi-
cient detail so that implementing it becomes simple. The pseudo-code in this book
has more of a programming language feel than some in pure algorithm books (be-
cause the algorithms contained here are often intimately tied to surrounding bits of
software in a way that is more naturally captured with programming idioms).

In particular, many AI algorithms need to work with relatively sophisticated data
structures: lists, tables, and so on. In C++ these structures are available as libraries
only and are accessed through functions. To make what is going on clearer, the
pseudo-code treats these data structures transparently, simplifying the code signifi-
cantly.

Full C++ source code implementations are provided on the accompanying CD,
and they can be used as the basis of your own implementation.

When creating the pseudo-code in this book, I’ve stuck to these conventions,
where possible:
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� Indentation indicates block structure and is normally preceded by a colon. There
are no including braces or “end” statements. This makes for much simpler code,
with less redundant lines to bloat the listings. Good programming style always
uses indentation as well as other block markers, so we may as well just use in-
dentation.

� Functions are introduced by the keyword def, and classes are introduced by the
keywords class or struct. Inherited classes are given after the class name, in
parentheses. Just like in C++, the only difference between classes and structures
is that structures are intended to have their member variables accessed directly.

� Looping constructs are while a, and for a in b. The for loop can iterate over
any array. It can also iterate over a series of numbers (in C++ style), using the
syntax for a in 0..5. The later item of syntax is a range.

� Ranges always include their lowest value, but not their highest. So 1..4 is the
numbers (1,2,3) only. Ranges can be open, such as 1.., which is all numbers
greater than or equal to 1; or ..4, which is identical to 0..4. Ranges can be
decreasing, but notice that the highest value is still not in the range: 4..0 is the
set (3,2,1,0).1

� All variables are local to the function or method. Variables declared within a
class definition, but not in a method, are class instance variables.

� The single equal sign “=” is an assignment operator, whereas the double equal
sign “==” is an equality test.

� Boolean operators are “and,” “or,” and “not.”

� Class methods are accessed by name using a period between the instance variable
and the method, for example, instance.variable().

� The symbol “#” introduces a comment for the remainder of the line.

� Array elements are given in square brackets and are zero indexed (i.e., the first
element of array a is a[0]). A sub-array is signified with a range in brackets,
so a[2..5] is the sub-array consisting of the 3rd to 5th elements of the array a.
Open range forms are valid: a[1..] is a sub-array containing all but the first
element of a.

� In general, we assume that arrays are equivalent to lists. We can write them as
lists and freely add and remove elements: if an array, a, is [0,1,2] and we write
a += 3, then a will have the value [0,1,2,3].

� Boolean values can be either “true” or “false.”

As an example, the following sample is pseudo-code for a simple algorithm to
select the highest value from an unsorted array:

1. The justification for this interpretation is connected with the way that loops are normally used to iterate
over an array. Indices for an array are commonly expressed as the range 0..length(array), in which case
we don’t want the last item in the range. If we are iterating backward, then the range length(array)..0
is similarly the one we need. I was undecided about this interpretation for a long time, but felt that the
pseudo-code was more readable if it didn’t contain lots of “-1” values.
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def maximum(array):
max = array[0]
for element in array[1..]:

if element > max: max = element
return max

Occasionally, an algorithm-specific bit of syntax will be explained as it arises in
the text.

Programming polymaths will probably notice that the pseudo-code has more
than a passing resemblance to the Python programming language, with Ruby-like
structures popping up occasionally and a seasoning of Lua. This is deliberate, insofar
as Python is an easy to read language. Nonetheless, they are still pseudo-code and not
Python implementations, and any similarity is not supposed to suggest a language or
an implementation bias.2

1.3.2 REPRESENTATIONS

Information in the game often needs to be turned into a suitable format for use by
the AI. Often, this means converting it to a different representation or data structure.
The game might store the level as sets of geometry and the character positions as 3D
locations in the world.

The AI will often need to convert this information into formats suitable for effi-
cient processing. This conversion is a critical process because it often loses informa-
tion (that’s the point: to simplify out the irrelevant details), and you always run the
risk of loosing the wrong bits of data.

Representations are a key element of AI, and certain key representations are par-
ticularly important in game AI. Several of the algorithms in the book require the game
to be presented to them in a particular format.

Although very similar to a data structure, we will often not worry directly about
how the representation is implemented, but instead will focus on the interface it
presents to the AI code. This makes it easier for you to integrate the AI techniques
into your game, simply by creating the right glue code to turn your game data into
the representation needed by the algorithms.

For example, imagine we want to work out if a character feels healthy or not
as part of some algorithm for determining its actions. We might simply require a
representation of the character with a method we can call:

class Character:
# Returns true if the character feels healthy,
# and false otherwise.
def feelsHealthy()

2. In fact, while Python and Ruby are good languages for rapid prototyping, they are too slow for building
the core AI engine in a production game. They are sometimes used as scripting languages in a game, and
we’ll cover their use in that context in Chapter 5.
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You may then implement this by checking against the character’s health score, by
keeping a Boolean “healthy” value for each character, or even by running a whole
algorithm to determine the character’s psychological state and its perception of its
own health. As far as the decision making routine is concerned, it doesn’t matter how
the value is being generated.

The pseudo-code defines an interface (in the object-oriented sense) that can be
implemented in any way you choose.

When a representation is particularly important or tricky (and there are several
that are), I will describe possible implementations in some depth.

1.4 ON THE CD

The text of this book contains no C++ source code. This is deliberate. The algorithms
given in pseudo-code can simply be converted into any language you would like to
use. As we’ll see, many games have some AI written in C++ and some written in a
scripting language. It is easier to reimplement the pseudo-code into any language you
choose than it would be if it were full of C++ idioms.

The listings are also about half the length of the equivalent full C++ source code.
In my experience, full source code listings in the text of a book are rarely useful and
often bloat the size of the book dramatically.

Most developers use C++ (although a significant but rapidly falling number
use C) for their core AI code. In places some of the discussion of data structures
and optimizations will assume that you are using C++, because the optimizations are
C++ specific.

Despite this, there are significant numbers using other languages such as Java,
Lisp, Lua, Lingo, ActionScript, or Python, particularly as scripting languages. I’ve
personally worked with all these languages at one point or another, so I’ve tried to
be as implementation independent as possible in the discussion of algorithms.

But you will want to implement this stuff; otherwise, what’s the point? And you’re
more than likely going to want to implement it in C++. So I’ve included source code
on the accompanying CD rather than in the text. You can run this code directly or use
it as the basis of your own implementations. The code is commented and (if I do say
myself) well structured.

The licence for this source code is very liberal, but make sure you do read the
licence.txt file on the CD before you use it.

1.4.1 PROGRAMS

There are a range of executable programs on the CD that illustrate topics in the book.
The book will occasionally refer to these programs. When you see the Program CD
icon in the left margin, it is a good idea to run the accompanying program. Lots of AI

PROGRAM

is inherently dynamic: things move. It is much easier to see some of the algorithms
working in this way than trying to figure them out from screenshots.
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1.4.2 LIBRARIES

The executables use the basic source code for each technique. This source code forms
an elementary AI library that you can use and extend for your own requirements.

LIBRARY

When an algorithm or data structure is implemented in the library, it will be indicated
by the Library CD icon in the left margin.

Optimizations

The library source code on the CD is suitable for running on any platform, including
consoles, with minimal changes. The executable software is designed for a PC running
Windows only (a complete set of requirements is given in the readme.txt file on the
CD).

I have not included all the optimizations for some techniques that I would use
in production code. Many optimizations are very esoteric; they are aimed at getting
around particular performance bottlenecks particular to a given console, graphics
engine, or graphics card. Some optimizations can only be sensibly implemented in
machine-specific assembly language (such as making the best use of different proces-
sors on the PC), and most complicate the code so that the core algorithms cannot be
properly understood.

My aim in this book is always that a competent developer can take the source code
and use it in a real game development situation, using their knowledge of standard
optimization and profiling techniques to make changes where needed. A less hard-
core developer can use the source code with minor modifications. In very many cases
the code is sufficiently efficient to be used as is, without further work.

Rendering and Maths

I’ve also included a simple rendering and mathematics framework for the executable
programs on the CD. This can be used as is, but it is more likely that you will replace
it with the math and rendering libraries in your game engine.

My implementation of these libraries is as simple as I could possibly make it. I’ve
made no effort to structure this for performance or its usability in a commercial game.
But I hope you’ll find it easy to understand and transparent enough that you can get
right to the meat of the AI code.

Getting the Latest Code

Inevitably, code is constantly evolving. New features are added, and bugs are discov-
ered and fixed. Although the source code on the CD corresponds to what’s in this
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book and is the latest version as of the final draft of the text, I am constantly working
on the AI code.

I would strongly recommend that you visit the website accompanying this book,
at http://www.ai4g.com, and download the latest version of the code before you start.
I’d also suggest that you may want to check back at the site from time to time to see if
there’s a later update.

1.5 LAYOUT OF THE BOOK

This book is split into five sections.
Part One introduces AI and games in Chapters 1 and 2, giving an overview of

the book and the challenges that face the AI developer in producing interesting game
characters.

Part Two is the meat of the technology in the book, presenting a range of different
algorithms and representations for each area of our AI model. It contains chapters on
decision making and movement and a specific chapter on pathfinding (a key element
of game AI that has elements of both decision making and movement). It also con-
tains information on tactical and strategic AI, including AI for groups of characters.
There is a chapter on learning, a key frontier in game AI, and finally a chapter on
board game AI. None of these chapters attempt to connect the pieces into a complete
game AI. It is a pick and mix array of techniques that can be used to get the job done.

Part Three looks at the technologies that enable the AI to do its job. It covers
everything from execution management to world interfacing and getting the game
content into an AI-friendly format.

Part Four looks at designing AI for games. It contains a genre-by-genre break-
down of the way techniques are often combined to make a full game. If you are stuck
among the range of different technique options, you can look up your game style
here and see what is normally done (then do it differently, perhaps). It also looks at a
handful of AI-specific game genres that seek to use the AI in the book as the central
gameplay mechanic.

Finally, there are appendices covering references to other sources of information.
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2
GAME AI

efore going into detail with particular techniques and algorithms, it is worth
B spending a little time thinking about what we need from our game’s AI. This
chapter looks at the high-level issues around game AI: what kinds of approaches work,
what they need to take account of, and how they can be all put together.

2.1 THE COMPLEXITY FALLACY

It is a common mistake to think that the more complex the AI in a game, the better
the characters will look to the player. Creating good AI is all about matching the right
behaviors to the right algorithms. There is a bewildering array of techniques in this
book, and the right one isn’t always the most obvious choice.

There have been countless examples of difficult to implement, complex AI that
have come out looking stupid. Equally, a very simple technique, used well, can be
perfect.

2.1.1 WHEN SIMPLE THINGS LOOK GOOD

In the last chapter I mentioned Pacman [Midway Games West, Inc., 1979]: the first
game I played with any form of character AI. The AI has two states: one normal state
when the player is collecting pips and another state when the player has eaten the
power-up and is out for revenge.

In their normal state, each of the four ghosts (or monsters) moves in a straight
line until they reach a junction. At a junction, they semi-randomly choose a route
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to move to next. Each ghost chooses either to take the route that is in the direction
of the player (as calculated by a simple offset to the player’s location: no pathfinding
at work) or to take a random route. The choice depends on the ghost: each has a
different likelihood of doing one or the other.

This is about as simple as you can imagine an AI. Any simpler and the ghosts
would be either very predictable (if they always homed in) or purely random. The
combination of the two gives great gameplay. In fact, the different biases of each ghost
are enough to make the four together a significant opposing force.

So much so that the AI to this day gets comments. I found this on a website a few
weeks ago: “To give the game some tension, some clever AI was programmed into the
game. The ghosts would group up, attack the player, then disperse. Each ghost had its
own AI.”

Other players have reported strategies among the ghosts: “The four of them are
programmed to set a trap, with Blinky leading the player into an ambush where the
other three lie in wait.”

The same thing has been reported by many other developers on their games. Chris
Kingsley of Rebellion talks about their Nintendo Game Boy title Cyberspace [Rebel-
lion]. Enemy characters home in on the player, but sidestep at random intervals as
they move forward. Players reported that characters were able to anticipate their fir-
ing patterns and dodge out of the way. Obviously, they couldn’t always anticipate it,
but a timely sidestep just at a crucial moment stayed in their minds and shaped their
perception of the AI.

2.1.2 WHEN COMPLEX THINGS LOOK BAD

Of course, the opposite thing can easily happen. A game that I looked forward to
immensely was Herdy Gerdy [Core Design Ltd., 2002], one of the games Sony used
to tout the new gameplay possibilities of their PlayStation 2 hardware before it was
launched. The game is a herding game. An ecosystem of characters is present in the
game level. The player has to herd individuals of different species into their corre-
sponding pens. Herding has been used before and since as a component of a bigger
game, but in Herdy Gerdy it was the whole gameplay. There is a section on AI for this
kind of game in Chapter 13.

Unfortunately, the characters neglected the basics of movement AI. It was easy to
get them caught on the scenery, and their collision detection could leave them stuck
in irretrievable places. The actual effect was one of frustration.

Unlike Herdy Gerdy, Black and White [Lionhead Studios Ltd., 2001] achieved
significant sales success. But at places it also suffered from great AI looking bad. The
game involves teaching a character what to do by a combination of example and feed-
back. In my first play through of the game, I ended up inadvertently teaching the
creature bad habits, and it ended up unable to carry out even the most basic actions.
After a restart, I paid more attention to how the creature worked and was able to
manipulate it better. But the illusion that I was teaching a real creature was gone.



2.1 The Complexity Fallacy 23

Most of the complex things I’ve seen that looked bad never made it to the final
game. It is a perennial temptation for developers to use the latest techniques and the
most hyped algorithms to implement their character AI. Late in development, when
a learning AI still can’t learn how to steer a car around a track without driving off at
every corner, the simpler algorithms invariably come to the rescue and make it into
the game’s release.

Knowing when to be complex and when to stay simple is the most difficult ele-
ment of the game AI programmer’s art. The best AI programmers are those who can
use a very simple technique to give the illusion of complexity.

2.1.3 THE PERCEPTION WINDOW

Unless your AI is controlling an ever-present sidekick, or a one-on-one enemy,
chances are your player will only come across a character for a short time.

This can be a significantly short time for disposable guards whose life is to be shot.
More difficult enemies can be on-screen for a few minutes as their downfall is plotted
and executed.

When we size someone up in real life, we naturally put ourselves into their shoes.
We look at their surroundings, the information they are gleaning from their environ-
ment, and the actions they are carrying out. A guard standing in a dark room hears a
noise: “I’d flick the light switch,” we think. If the guard doesn’t do that, we think he’s
stupid.

If we only catch a glimpse of someone for a short while, we don’t have enough
time to understand their situation. If we see a guard who has heard a noise suddenly
turn away and move slowly in the opposite direction, we assume the AI is faulty. The
guard should have moved across the room toward the noise. If we do hang around
for a bit longer and see the guard head over to a light switch by the exit, we will
understand his action. But then again, the guard might not flick on the light switch,
and we take that as a sign of poor implementation. But the guard may know that the
light is inoperable, or he may have been waiting for a colleague to slip some cigarettes
under the door and thought the noise was a predefined signal. If we knew all that,
we’d know the action was intelligent after all.

This no-win situation is the perception window. You need to make sure that a
characters’ AI matches their purpose in the game and the attention they’ll get from the
player. Adding more AI to incidental characters might endear you to the rare gamer
who plays each level for several hours, checking for curious behavior or bugs, but
everyone else (including the publisher and the press) may think your programming
was sloppy.

2.1.4 CHANGES OF BEHAVIOR

The perception window isn’t only about time. Think about the ghosts in Pacman
again. They might not give the impression of sentience, but they didn’t do anything
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out of place. This is because they rarely change behavior (the only occasion being
their transformation when the player eats a power-up).

Whenever a character in a game changes behavior, the change is far more notice-
able than the behavior itself. In the same way, when a character’s behavior should
obviously change and doesn’t, warning bells sound. If two guards are standing talk-
ing to each other and you shoot one down, the other guard shouldn’t carry on the
conversation!

A change in behavior almost always occurs when the player is nearby or has been
spotted. This is the same in platform games as it is in real-time strategy. A good so-
lution is to keep only two behaviors for incidental characters—a normal action and a
player-spotted action.

2.2 THE KIND OF AI IN GAMES

Games have always come under criticism for being poorly programmed (in a software
engineering sense): they use tricks, arcane optimizations, and unproven technologies
to get extra speed or neat effects. Game AI is no different. One of the biggest barriers
between game AI people and AI academics is what qualifies as AI.

In my experience, AI for a game is equal parts hacking (ad hoc solutions and
neat effects), heuristics (rules of thumb that only work in most, but not all, cases),
and algorithms (the “proper” stuff). Most of this book is aimed at the latter group,
because that’s the stuff we can examine analytically, can use in multiple games, and
that can form the basis of an AI engine.

But the first two categories are just as important and can breathe as much life into
characters as the most complicated algorithm.

2.2.1 HACKS

There’s a saying that goes “if it looks like a fish and smells like a fish: it’s probably a
fish.” The psychological correlate is behaviorism: we study behavior, and by under-
standing how a behavior is constructed, we understand all we can about the thing
that is behaving.

As a psychological approach it has its adherents, but has been largely superseded
(especially with the advent of neuropsychology). This fall from fashion has influenced
AI too. Whereas at one point it was quite acceptable to learn about human intelligence
by making a machine to replicate it, it is now considered poor science. And with good
reason, after all, building a machine to play Chess involves algorithms that look tens
of moves ahead. Human beings are simply not capable of this.

On the other hand, for in-game AI, behaviorism is the way to go. We are not
interested in the nature of reality or mind; we want characters that look right. In
most cases, this means starting from human behaviors and trying to work out the
easiest way to implement them in software.
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Good AI in games always works in this direction. Developers rarely build a great
new algorithm and then ask themselves, “So what can I do with this?” Instead, you
start with a design for a character and apply the most relevant tool to get the result.

This means that what qualifies as game AI may be unrecognizable as an AI tech-
nique. In the previous chapter, we looked at the AI for Pacman ghosts: a simple ran-
dom number generator applied judiciously. Generating a random number isn’t an
AI technique as such. In most languages there are built-in functions to get a random
number, so there is certainly no point giving an algorithm for it! But it can work in a
surprising number of situations.

Another good example of creative AI development is The Sims [Maxis Software,
Inc., 2000]. While there are reasonably complicated things going on under the sur-
face, a lot of the character behavior is communicated with animation. In Star Wars:
Episode 1 Racer [LucasArts Entertainment Company LLC], characters who are an-
noyed will give a little sideswipe to other characters. Quake II [id Software, Inc.] has
the “gesture” command where characters (and players) can flip their enemy off. All
these require no significant AI infrastructure. They don’t need complicated cogni-
tive models, learning, or genetic algorithms. They just need a simple bit of code that
performs an animation at the right point.

Always be on the look out for simple things that can give the illusion of intelli-
gence. If you want engaging emotional characters, is it possible to add a couple of
emotion animations (a frustrated rub of the temple, perhaps, or a stamp of the foot)
to your game design? Triggering these in the right place is much easier than trying to
represent the character’s emotional state through their actions. Do you have a bunch
of behaviors that the character will choose from? Will the choice involve complex
weighing up of many factors? If so, it might be worth trying a version of the AI that
picks a behavior purely at random (maybe with different probabilities for each be-
havior). You might be able to tell the difference, but your customers may not; so try it
out on a QA guy.

2.2.2 HEURISTICS

A heuristic is a rule of thumb: an approximate solution that might work in many
situations, but is unlikely to work in all.

Human beings use heuristics all the time. We don’t try to work out all the con-
sequences of our actions. Instead, we rely on general principles that we’ve found to
work in the past (or that we have been brainwashed with, equally). It might be some-
thing as simple as “if you lose something then retrace your steps” to heuristics that
govern our life choices “never trust a used-car salesman.”

Heuristics have been codified and incorporated into some of the algorithms in
this book, and saying “heuristic” to an AI programmer often conjures up images of
pathfinding or goal-oriented behaviors. Still, many of the techniques in this book rely
on heuristics that may not always be explicit. There is a trade-off in areas such as de-
cision making, movement, and tactical thinking (including board game AI) between
speed and accuracy. When accuracy is sacrificed, it is usually by replacing the search
for a correct answer with a heuristic.
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There are a whole range of heuristics that can be applied to general AI problems
and that don’t require a particular algorithm.

In our perennial Pacman example, the ghosts home in on the player by taking
the route at a junction that leads toward its current position. The route to the player
might be quite complex, it may involve turning back on oneself, and it might be ul-
timately fruitless if the player continues to move. But the rule of thumb (move in
the current direction of the player) works and provides sufficient competence for the
player to understand that the ghosts aren’t purely random in their motion.

In Warcraft [Blizzard Entertainment, 1994] (and many other RTS games that fol-
lowed) there is a heuristic that moves a character forward slightly into ranged-weapon
range if an enemy is a fraction beyond their reach. While this worked in most cases, it
wasn’t always the best option. Many players got frustrated as comprehensive defensive
structures went walkabout when enemies came close. Later, RTS games allowed the
player to choose whether this behavior was switched on or not.

In many strategic games, including board games, different units or pieces are
given a single numeric value to represent how “good” they are. This is a heuristic:
it replaces complex calculations about the capabilities of a unit with a single number.
And the number can be defined by the programmer in advance. The AI can work out
which side is ahead simply by adding the numbers. In an RTS it can find the best value
offensive unit to build by comparing the number with the cost. A lot of useful effects
can be achieved just by manipulating the number.

There isn’t an algorithm or a technique for this. And you won’t find it in published
AI research. But it is the bread and butter of an AI programmer’s job.

Common Heuristics

There is a handful of heuristics that appears over and over in AI and software in
general. They are good starting points when initially tackling a problem.

Most Constrained

Given the current state of the world, one item in a set needs to be chosen. The item
chosen should be the one that would be an option for the fewest number of states.

For example, a group of characters come across an ambush. One of the ambushers
is wearing phased force-field armor. Only the new, and rare, laser rifle can penetrate
it. One character has this rifle. When they select who to attack, the most constrained
heuristic comes into play: it is rare to be able to attack this enemy, so that is the action
that should be taken.

Do the Most Difficult Thing First

The hardest thing to do often had implications for lots of other actions. It is better
to do this first, rather than find that the easy stuff goes well, but is ultimately wasted.
This is ultimately a case of the most constrained heuristic, above.
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For example, an army has two squads with empty slots. The computer schedules
the creation of five Orc warriors and a huge Stone Troll. It wants to end up with
balanced squads. How should it assign the units to squads? The Stone Troll is the
hardest to assign, so it should be done first.

If the Orcs were assigned first, they would be balanced between the two squads,
leaving room for half a Troll in each squad, but nowhere for the Troll to go.

Try the Most Promising Thing First

If there are a number of options open to the AI, it is often possible to give each one a
really rough-and-ready score. Even if this score is dramatically inaccurate, trying the
options in decreasing score order will provide better performance than trying things
purely at random.

2.2.3 ALGORITHMS

And so we come to the final third of the AI programmer’s job: building algorithms to
support interesting character behavior. Hacks and heuristics will get you a long way,
but relying on them solely means you’ll have to constantly reinvent the wheel. General
bits of AI, such as movement, decision making, and tactical thinking, all benefit from
tried and tested methods that can be endlessly reused.

This book is about this kind of technique, and the next part introduces a large
number of them. Just remember that for every situation where a complex algorithm
is the best way to go, there are likely to be at least five where a simpler hack or heuristic
will get the job done.

2.3 SPEED AND MEMORY

The biggest constraint on the AI developer’s job is the physical limitations of the
game’s machine. Game AI doesn’t have the luxury of days of processing time and giga-
bytes of memory. Developers often work to a speed and memory budget for their AI.

One of the major reasons that new AI techniques don’t achieve widespread use is
their processing time or memory requirements. What might look like a compelling
algorithm in a simple demo (such as the example programs on the CD with this book)
can slow a production game to a standstill.

This section looks at low-level hardware issues related to the design and construc-
tion of AI code. Most of what is contained here is general advice for all game code,
and if you’re up to date with current game programming issues and just want to get
to the AI, you can safely skip this section.
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2.3.1 PROCESSOR ISSUES

The most obvious limitation on the efficiency of a game is the speed of the processor
on which it is running. As graphics technology has improved, there is an increasing
tendency to move graphics functions onto the graphics hardware. Typical processor
bound activities, like animation and collision detection, are being shared between
GPU and CPU or moved completely to the graphics chips.

This frees up a significant amount of processing power for AI and other new tech-
nologies (physics most notably, although environmental audio is also more promi-
nent now). The share of the processing time dedicated to AI has grown in fits and
starts over the last 5 years, to be around 20% in many cases and over 50% in some.
This is obviously good news for AI developers wanting to apply more complicated
algorithms, particularly to decision making and strategizing. But while incremental
improvements in processor time help unlock new techniques, they don’t solve the
underlying problem. Many AI algorithms take a long time to run. A comprehensive
pathfinding system can take tens of milliseconds to run per character. Clearly, in an
RTS with 1000 characters, there is no chance of running each frame for many years
to come.

Complex AI that does work in games needs to be split into bite-size components
that can be distributed over multiple frames. The chapter on resource management
shows how to accomplish this. Applying these techniques to any AI algorithm can
bring it into the realm of usability.

SIMD

As well as faster processing and increasing AI budgets, modern games CPUs have ad-
ditional features that help things move faster. Most have dedicated SIMD processing.
SIMD (single instruction multiple data) is a parallel programming technique where
a single program is applied to several items of data at the same time, just as it sounds.
So if each character needs to calculate the Euclidean distance to its nearest enemy and
the direction to run away, the AI can be written in such a way that multiple characters
(usually four on current hardware) can perform the calculation at the same time.

There are several algorithms in this book that benefit dramatically from SIMD
implementation (the steering algorithms being the most obvious). But, in general, it
is possible to speed up almost all the algorithms using judicious use of SIMD. On con-
soles, SIMD may be performed in a conceptually separate processing unit. In this case
the communication between the main CPU and the SIMD units, as well as the addi-
tional code to synchronize their operation, can often outweigh the speed advantage
of parallelizing a section of code.

In this book I’ve not provided SIMD implementations for algorithms. The use
of SIMD is very much dependent on having several characters doing the same thing
at the same time. Data for each set of characters needs to be stored together (rather
than having all the data for each character together as is normal), so the SIMD units



2.3 Speed and Memory 29

can find them as a whole. This leads to dramatic code restructuring and a significant
decrease in the readability of many algorithms. Since this book is about techniques,
rather than low-level coding, I’ll leave parallelization as an implementation exercise,
if your game needs it.

Multi-Core Processing and Hyper-Threading

Modern processors have several execution paths active at the same time. Code is
passed into the processor, dividing into several pipelines which execute in parallel.
The results from each pipeline are then recombined into the final result of the origi-
nal code. When the result of one pipeline depends on the result of another, this can
involve backtracking and repeating a set of instructions. There is a set of algorithms
on the processor that works out how and where to split the code and predicts the
likely outcome of certain dependent operations; this is called branch prediction. This
design of processor is called super-scalar.

Normal threading is the process of allowing different bits of code to process at the
same time. Since in a serial computer this is not possible, it is simulated by rapidly
switching backward and forward between different parts of the code. At each switch
(managed by the operating system, or manually implemented on many consoles), all
the relevant data need to also be switched. This switching can be a slow process and
can burn precious cycles.

Hyper-threading is an Intel trademark for using the super-scalar nature of the
processor to send different threads down different pipelines. Each pipeline can be
given a different thread to process, allowing threads to be genuinely processed in par-
allel.

As I write, hyper-threading is available only on certain processors and operating
systems. It is sometimes treated as a gimmick among developers, and I’ve spoken to
more than one who have dismissed it as a dead-end technology.

On the other hand, the processors in current-generation consoles (PlayStation 3,
XBox 360, and so on) are all multi-core. Newer PC processors from all vendors also
have the same structure.

A multi-core processor effectively has multiple separate processing systems (each
may be super-scalar in addition). Different threads can be assigned to different
processor cores, giving the same kind of hyper-threading style speed ups (greater in
fact, because there are even fewer interdependencies between pipelines).

In either case, the AI code can take advantage of this parallelism by running AI for
different characters in different threads, to be assigned to different processing paths.
On some platforms (Intel-based PCs for example), this simply requires an additional
function call to set-up. On others (PlayStation 3, for example), it needs to be thought
of early and to have the whole AI code structured accordingly.

All indications are that there will be an increasing degree of parallelism in future
hardware platforms, particularly in the console space where it is cheaper to leverage
processing power using multiple simpler processors rather than a single behemoth
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CPU. It will not be called hyper-threading (other than by Intel), but the technique is
here to stay and will be a key component of game development on all platforms until
the end of the decade at least.

Virtual Functions/Indirection

There is one particular trade-off that is keenly felt among AI programmers: the trade-
off between flexibility and the use of indirect function calls.

In a conventional function call, the machine code contains the address of the code
where the function is implemented. The processor jumps between locations in mem-
ory and continues processing at the new location (after performing various actions
to make sure the function can return to the right place). The super-scalar processor
logic is optimized for this, and it can predict, to some extent, how the jump will occur.

An indirect function call is a little different. It stores the location of the function’s
code in memory. The processor fetches the contents of the memory location and then
jumps to the location it specifies. This is how virtual function calls in C++ are imple-
mented: the function location is looked up in memory (in the virtual function table)
before being executed.

This extra memory load adds a trivial amount of time to processing, but it plays
havoc with the branch predictor on the processor (and has negative effects on the
memory cache too, as we’ll see below). Because the processor can’t predict where it
will be going, it often stalls, waits for all its pipelines to finish what they are doing, and
then picks up where it left off. This can also involve additional clean-up code being
run in the processor. Low-level timing shows that indirect function calls are typically
much more costly than direct function calls.

Traditional game development wisdom is to avoid unnecessary function calls of
any kind, particularly indirect function calls. Unfortunately, virtual function calls
make code far more flexible. It allows an algorithm to be developed that works in
many different situations. A chase-behavior, for example, doesn’t need to know what
it’s chasing, as long as it can get the location of its target easily.

AI, in particular, benefits immensely from being able to slot in different behaviors.
This is called polymorphism in an object-oriented language: writing an algorithm to
use a generic object and allowing a range of different implementations to slot in.

I’ve used polymorphism throughout this book, and I’ve used it throughout many
of the game AI systems I’ve developed. I felt it was clearer to show algorithms in a
completely polymorphic style, even though some of the flexibility may be optimized
out in the production code. Several of the implementations on the CD do this: re-
moving the polymorphism to give an optimized solution for a subset of problems.

It is a trade-off, and if you know what kinds of objects you’ll be working with in
your game, it can be worth trying to factor out the polymorphism in some algorithms
(in pathfinding particularly, I have seen speed ups this way).

My personal viewpoint, which is not shared by all (or perhaps even most) devel-
opers, is that inefficiencies due to indirect function calls are not worth losing sleep
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over. If the algorithm is distributed nicely over multiple frames, then the extra func-
tion call overhead will also be distributed and barely noticeable. There has been one
occasion where I’ve been berated for using virtual functions that “slowed down the
game” only to find that profiling showed they caused no bottleneck at all.

2.3.2 MEMORY CONCERNS

Most AI algorithms do not require a large amount of memory. Memory budgets for
AI are typically around 1Mb on 32Mb consoles and 8Mb on 512Mb machines: am-
ple storage for even heavyweight algorithms such as terrain analysis and pathfinding.
MMOGs typically require much more storage for their larger worlds, but are run on
server farms with a far greater storage capacity (measured in the gigabytes of RAM).

Cache

Memory size alone isn’t the only limitation on memory use. The time it takes to access
memory from the RAM and prepare it for use by the processor is significantly longer
than the time it takes for the processor to perform its operations. If processors had to
rely on the main RAM, they’d be constantly stalled waiting for data.

All modern processors use at least one level of cache: a copy of the RAM held
in the processor that can be very quickly manipulated. Cache is typically fetched in
pages; a whole section of main memory is streamed to the processor. It can then
be manipulated at will. When the processor has done its work, the cached memory
is sent back to the main memory. The processor typically cannot work on the main
memory; all the memory it needs must be on cache. Systems with an operating system
may add additional complexity to this: a memory request may have to pass through
an operating system routine that translates the request into a request for real or virtual
memory. This can introduce further constraints: two bits of physical memory with a
similar mapped address might not be available at the same time (called an aliasing
failure).

Multiple levels of cache work the same way as a single cache: a large amount of
memory is fetched to the lowest level cache, a subset of that is fetched to each higher
level cache, and the processor only ever works on the highest level.

If an algorithm uses data spread around memory, then it is unlikely that the right
memory will be in the cache from moment to moment. These cache misses are very
costly in time. The processor has to fetch a whole new chunk of memory into the
cache for one or two instructions, then it has to stream it all back out and request
another block. A good profiling system will show when cache misses are happening.
In my experience, dramatic speed ups can be achieved by making sure that all the data
needed for one algorithm is kept in the same place.

In this book, for ease of understanding, I’ve used an object-oriented style to lay
out the data. All the data for a particular game object is kept together. This may not
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be the most cache-efficient solution. In a game with 1000 characters, it may be better
to keep all their positions together in an array, then algorithms that make calculations
based on their positions don’t need to constantly jump around memory. As with all
optimizations, profiling is everything, but a general level of efficiency can be gained
by programming with data coherency in mind.

2.3.3 PC CONSTRAINTS

PCs are both the most powerful and weakest games machines. They can be frustrating
for developers because of their lack of consistency. Where a console has fixed hard-
ware, there is a bewildering array of different configurations for PCs. Things are easier
than they were: APIs such as DirectX insulate the developer from having to target spe-
cific hardware, but the game still needs to detect feature support and speed and adjust
accordingly.

Working with PCs involves building software that can scale from a casual gamers
limited system to the hard-core fan’s up-to-date hardware. For graphics, this scaling
can be reasonably simple: for low-specification machines we switch off advanced ren-
dering features. A simpler shadow algorithm might be used, or pixel shaders might
be replaced by simple texture mapping. A change in graphics sophistication usually
doesn’t change gameplay.

AI is different. If the AI gets less time to work, how should it respond? It can try
to perform less work. This is effectively the same as having more stupid AI and can
affect the difficulty level of the game. It is probably not acceptable to your quality
assurance (QA) team or publisher to have your game be dramatically easier on lower
specification machines. Similarly, if we try to perform the same amount of work, it
might take longer. This can mean a lower frame rate, or it can mean more frames
between characters making decisions. Slow-to-react characters are also often easier to
play against and can cause the same problems with QA.

The solution used by most developers is to target AI at the lowest common de-
nominator: the minimum specification machine listed in the technical design doc-
ument. The AI time doesn’t scale at all with the capabilities of the machine. Faster
machines simply use proportionally less of their processing budget on AI.

There are many games, however, where scalable AI is feasible. Many games use
AI to control ambient characters: pedestrians walking along the sidewalk, members
of the crowd cheering a race, or flocks of birds swarming in the sky. This kind of AI
is freely scalable: more characters can be used when the processor time is available.
The chapter on resource management covers some techniques for the level of detail
AI that can cope with this scalability.

2.3.4 CONSOLE CONSTRAINTS

Consoles can be simpler to work with than a PC. You know exactly the machine you
are targeting, and you can usually see code in operation on your target machine. There
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is no future proofing for new hardware or ever-changing versions of APIs to worry
about.

Developers working with next-generation technology often don’t have the exact
specs of the final machine or a reliable hardware platform (initial development kits
for the XBox 360 were little more than a dedicated emulator). But most console de-
velopment has a fairly fixed target.

The TRC (technical requirements checklist) process, by which a console manufac-
turer places minimum standards on the operation of a game, serves to fix things like
frame rates (although different territories may vary: PAL and NTSC, for example).
This means that AI budgets can be locked down in terms of a fixed number of mil-
liseconds. In turn, this makes it much easier to work out what algorithms can be used
and to have a fixed target for optimization (provided that the budget isn’t slashed at
the last milestone to make way for the latest graphics technique used in a competitor’s
game).

On the other hand, consoles generally suffer from a long turnaround time. It is
possible, and pretty essential, to set up a PC development project so that tweaks to
the AI can be compiled and tested without performing a full game build. As you add
new code, the behavior it supports can be rapidly assessed. Often, this is in the form
of cut down mini-applications, although many developers use shared libraries during
development to avoid re-linking the whole game. You can do the same thing on a
console, of course, but the round-trip to the console takes additional time.

AI with parameterized values that need a lot of tweaking (movement algorithms
are notorious on this, for example) almost requires some kind of in-game tweaking
system for a console. Some developers go further and allow their level design or AI
creation tool to be directly connected across a network from the development PC to
the running game on a text console. This allows direct manipulation of character be-
haviors and instant testing. The infrastructure needed to do this varies, with some
platforms (Nintendo’s Game Cube comes to mind) making life considerably more
difficult. In all cases it is a significant investment of effort, however, and is well be-
yond the scope of this book (not to mention violation of several confidentiality agree-
ments). This is one area where middleware companies have begun to excel, providing
robust tools for on-target debugging and content viewing as part of their technology
suites.

Working with Rendering Hardware

The biggest problem with older (i.e., previous generation) consoles is their optimiza-
tion for graphics. Graphics are typically the technology driver behind games, and with
only a limited amount of juice to put in a machine, it is natural for a console vendor
to emphasize graphic capabilities.

The original XBox architecture was a breath of fresh air in this respect, providing
the first PC-like console architecture: a PC-like main processor, an understandable
(but non-PC-like) graphics bus, and a familiar graphics chipset. At the other end of
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the spectrum, for the same generation, PlayStation 2 (PS2) was optimized for graph-
ics rendering, unashamedly. To make best use of the hardware you needed to par-
allelize as much of the rendering as possible, making synchronization and commu-
nication issues very difficult to resolve. Several developers simply gave up and used
laughably simple AI in their first PS2 games. Throughout the console iteration, it
continued to be the thorn in the side of the AI developer working on a cross-platform
title. Fortunately, with the multi-core processor in PlayStation 3, fast AI processing is
considerably easier to achieve.

Rendering hardware works on a pipeline model. Data goes in at one end and
is manipulated through a number of different simple programs. At the end of the
pipeline, it is ready to be rendered on-screen. Data cannot easily pass back up the
pipeline, and where there is support, the quantity of data is usually tiny (a few tens
of items of data, for example). Hardware can be constructed to run this pipeline very
efficiently: there is a simple and logical data flow, and processing phases have no in-
teraction except to transform their input data.

AI doesn’t fit into this model; it is inherently branchy: different bits of code run at
different times. It is also highly self-referential: the results of one operation feed into
many others, and their results feed back to the first set, and so on.

Even simple AI queries, such as determining where characters will collide if they
keep moving, are difficult to implement if all the geometry is being processed in ded-
icated hardware. Older graphics hardware can support collision detection, but the
collision prediction needed by AI code is still a drag to implement. More complex AI
is inevitably run on the CPU, but with this chip being relatively underpowered on
last-generation consoles, the AI is restricted to the kind of budgets seen on 5- or even
10-year-old PCs.

Historically, all this has tended to limit the amount of AI done on consoles, in
comparison to a PC with equal processing power. The most exciting part of doing AI
in the last 18 months has been the availability of the current generation of consoles
with their facility to run more PC-like AI.

Handheld Consoles

Handheld consoles typically lag around 5–10 years behind the capabilities of full-sized
consoles and PCs. This is also true of the typical technologies used to build games for
them. And just as AI came into its own in the mid-1990s, the mid-2000s are seeing
the rise of handhelds capable of advanced AI.

Most of the techniques in this book are suitable for use on current-generation
handheld devices (PlayStation Portable and beyond), with the same set of constraints
as for any other console.

On simpler devices (non-games optimized mobile phones, TV set-top boxes, or
low-specification PDAs), you are massively limited by memory and processing power.
In extreme cases there isn’t enough juice in the machine to implement a proper exe-
cution management layer, so any AI algorithm you use has to be fast. This limits the
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choice back to the kind of simple state machines and chase-the-player behaviors we
saw in the historical games of the last chapter.

2.4 THE AI ENGINE

There has been a distinct change in the way games have been developed in the last
10 years. When I started in the industry, a game was mostly built from scratch. Some
bits of code were dragged from previous projects, and some bits were reworked and
reused, but most were written from scratch.

A handful of companies used the same basic code to write multiple games, as long
as the games were a similar style and genre. LucasArt’s SCUMM engine, for example,
was a gradually evolving game engine used to power many point-and-click adventure
games.

Since then, the game engine has become ubiquitous: a consistent technical plat-
form on which a company builds most of its games. Some of the low-level stuff (like
talking to the operating system, loading textures, model file formats, and so on) is
shared among all games, often with a layer of genre-specific stuff on top. A company
that produces both a third person action adventure and a space shooter might still
use the same basic engine for both projects.

The way AI is developed has changed also. Initially, the AI was written for each
game and for each character. For each new character in a game there would be a block
of code to execute its AI. The character’s behavior was controlled by a small program,
and there was no need for the decision making algorithms in this book.

Now there is an increasing tendency to have general AI routines in the game en-
gine and to allow the characters to be designed by level editors or technical artists. The
engine structure is fixed, and the AI for each character combines the components in
an appropriate way.

So building a game engine involves building AI tools that can be easily reused,
combined, and applied in interesting ways. To support this, we need an AI structure
that makes sense over multiple genres.

2.4.1 STRUCTURE OF AN AI ENGINE

In my experience, there are a few basic structures that need to be in place for a general
AI system. They conform to the model of AI given in Figure 2.1.

First, there needs to be some kind of infrastructure in two categories: a general
mechanism for managing AI behaviors (deciding which behavior gets to run when,
and so on) and a world-interfacing system for getting information into the AI. Every
AI algorithm created needs to honor these mechanisms.

Second, there needs to be a means to turn whatever the AI wants to do into ac-
tion on-screen. This consists of standard interfaces to a movement and an animation
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Figure 2.1 The AI model

controller which can turn requests such as “pull lever 1” or “walk stealthily to posi-
tion x, y” into action.

Third, there needs to be a standard behavior structure to liaise between the two.
It is almost guaranteed that you will need to write one or two AI algorithms for each
new game. Having all AI conform to the same structure helps this immensely. New
code can be in development while the game is running, and the new AI can simply
replace placeholder behaviors when it is ready.

All this needs to be thought out in advance, of course. The structure needs to be in
place before you get well into your AI coding. Part III of this book, on support tech-
nologies, is the first thing to implement in an AI engine. The individual techniques
can then slot in.

I’m not going to harp on about this structure throughout the book. There are
techniques that I will cover that can work on their own, and all the algorithms are
fairly independent. For a demo, or a simple game, it might be sufficient to just use the
technique.

The code on the CD conforms to a standard structure for AI behaviors: each can
be given execution time, each gets information from a central messaging system, and
each outputs its actions in a standard format. The particular set of interfaces I’ve
used shows my own development bias. They were designed to be fairly simple, so the
algorithms aren’t overburdened by infrastructure code. By the same token, there are
easy optimizations you will spot that I haven’t implemented, again for clarity sake.

The full-size AI system I designed, Pensor, had a similar interface to the code on
CD, but with numerous speed and memory optimizations. Other AI engines on the
market have a different structure, and the graphics engine you are using will likely
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put additional constraints on your own implementation. As always, use the code on
the CD as a jumping-off point.

A good AI structure helps reuse, debugging, and development time. But creating
the AI for a specific character involves bringing different techniques together in just
the right way. The configuration of a character can be done manually, but increasingly
it requires some kind of editing tool.

2.4.2 TOOLCHAIN CONCERNS

The complete AI engine will have a central pool of AI algorithms that can be applied
to many characters. The definition for a particular character’s AI will therefore consist
of data (which may include scripts in some scripting language), rather than compiled
code. The data specifies how a character is put together: what techniques it will use,
and how those techniques are parameterized and combined.

This data needs to come from somewhere. It can be manually created, but this is
no better than writing the AI by hand each time. Stable and reliable toolchains are a
hot topic in game development, making sure that the artists and designers can create
the content in an easy way, while allowing the content to be inserted into the game
without manual help.

An increasing number of companies are developing AI components in their tool-
chain: editors for setting up character behaviors and facilities in their level editor for
marking tactical locations or places to avoid.

Being toolchain driven has its own effects on the choice of AI techniques. It is
easy to set up behaviors that always act the same way. Steering behaviors (covered in
Chapter 3) are a good example: they tend to be very simple, they are easily parame-
terized (with the physical capabilities of a character), and they do not change from
character to character.

It is more difficult to use behaviors that have lots of conditions, where the charac-
ter needs to evaluate special cases. A rule-based system (covered in Chapter 5) needs
to have complicated matching rules defined. When these are supported in a tool, they
typically look like program code, because a programming language is the most nat-
ural way to express them.

Several developers I’ve worked with have these kind of programming constructs
exposed in their level editing tools. Level designers with some programming ability
can write simple rules, triggers, or scripts in the language, and the level editor handles
turning them into data for the AI.

A different approach, used by several middleware packages, is to visually lay out
conditions and decisions. AI-Implant’s Maya module, for example, exposes complex
Boolean conditions, and state machines, through graphical controls.
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2.4.3 PUTTING IT ALL TOGETHER

The final structure of the AI engine might look something like Figure 2.2. Data is
created in a tool (the modelling or level design package, or a dedicated AI tool), which
is then packaged for use in the game. When a level is loaded, the game AI behaviors
are created from level data and registered with the AI engine. During gameplay, the
main game code calls the AI engine which updates the behaviors, getting information
from the world interface and finally applying their output to the game data.

The techniques used depend heavily on the genre of the game being developed.
I’ll cover a wide range of techniques for many different genres. As you develop your
game AI, you’ll need to take a mix and match approach to get the behaviors you are
looking for. The final chapter of the book gives some hints on this; it looks at how the
AI for games in the major genres are put together: piece by piece.
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3
MOVEMENT

ne of the most fundamental requirements of AI is to move characters around
O in the game sensibly. Even the earliest AI-controlled characters (the ghosts in
Pacman, for example, or the opposing bat in some Pong variants) had movement
algorithms that weren’t far removed from the games on the shelf today. Movement
forms the lowest level of AI techniques in our model, shown in Figure 3.1.
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Many games, including some with quite decent-looking AI, rely solely on move-
ment algorithms and don’t have any more advanced decision making. At the other
extreme, some games don’t need moving characters at all. Resource management
games and turn-based games often don’t need movement algorithms: once a deci-
sion is made where to move, the character can simply be placed there.

There is also some degree of overlap between AI and animation; animation is also
about movement. This chapter looks at large-scale movement: the movement of char-
acters around the game level, rather than the movement of their limbs or faces. The
dividing line isn’t always clear, however. In many games animation can take control
over a character, including some large-scale movement. In-engine cutscenes, com-
pletely animated, are increasingly being merged into gameplay. However, they are not
AI driven and therefore aren’t covered here.

This chapter will look at a range of different AI-controlled movement algorithms,
from the simple Pacman level up to the complex steering behaviors used for driving
a racing car or piloting a spaceship in full three dimensions.

3.1 THE BASICS OF MOVEMENT ALGORITHMS

Unless you’re writing an economic simulator, chances are the characters in your game
need to move around. Each character has a current position and possibly additional
physical properties that control its movement. A movement algorithm is designed to
use these properties to work out where the character should be next.

All movement algorithms have this same basic form. They take geometric data
about their own state and the state of the world, and they come up with a geometric
output representing the movement they would like to make. Figure 3.2 shows this
schematically. In the figure, the velocity of a character is shown as optional because it
is only needed for certain classes of movement algorithms.

Some movement algorithms require very little input: the position of the character
and the position of an enemy to chase, for example. Others require a lot of interac-
tion with the game state and the level geometry. A movement algorithm that avoids
bumping into walls, for example, needs to have access to the geometry of the wall to
check for potential collisions.

The output can vary too. In most games it is normal to have movement algorithms
output a desired velocity. A character might see its enemy immediately west of it, for
example, and respond that its movement should be westward at full speed. Often,
characters in older games only had two speeds: stationary and running (maybe a walk
speed in there too). So the output was simply a direction to move in. This is kinematic
movement; it takes no account of how characters accelerate and slow down.

Recently, there has been a lot of interest in “steering behaviors.” Steering behaviors
is the name given by Craig Reynolds to his movement algorithms; they are not kine-
matic, but dynamic. Dynamic movement takes account of the current motion of the
character. A dynamic algorithm typically needs to know the current velocities of the
character as well as its position. A dynamic algorithm outputs forces or accelerations
with the aim of changing the velocity of the character.
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Dynamics adds an extra layer of complexity. Let’s say your character needs to
move from one place to another. A kinematic algorithm simply gives the direction
to the target, you move in that direction until you arrive, whereupon the algorithm
returns no direction: you’ve arrived. A dynamic movement algorithm needs to work
harder. It first needs to accelerate in the right direction, and then as it gets near its
target, it needs to accelerate in the opposite direction, so its speed decreases at pre-
cisely the correct rate to slow it to a stop at exactly the right place. Because Craig’s
work is so well known, in the rest of this chapter I’ll usually follow the most common
terminology and call all dynamic movement algorithms steering behaviors.

Craig Reynolds also invented the flocking algorithm used in countless films and
games to animate flocks of birds or herds of other animals. We’ll look at this algorithm
later in the chapter. Because flocking is the most famous steering behavior, all steering
(in fact all movement) algorithms are sometimes wrongly called “flocking.”

3.1.1 TWO-DIMENSIONAL MOVEMENT

Many games have AI that works in two dimensions. Although games rarely are drawn
in two dimensions any more, their characters are usually under the influence of grav-
ity, sticking them to the floor and constraining their movement to two dimensions.

A lot of movement AI can be achieved in just two dimensions, and most of the
classic algorithms are only defined for this case. Before looking at the algorithms
themselves, we need to quickly cover the data needed to handle two-dimensional (2D)
maths and movement.
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Characters as Points

Although a character usually consists of a three-dimensional (3D) model that oc-
cupies some space in the game world, many movement algorithms assume that the
character can be treated as a single point. Collision detection, obstacle avoidance,
and some other algorithms use the size of the character to influence their results, but
movement itself assumes the character is at a single point.

This is a similar process to that used by physics programmers who treat objects in
the game as a “rigid body” located at its center of mass. Collision detection and other
forces can be applied to anywhere on the object, but the algorithm that determines
the movement of the object converts them so it can deal only with the center of mass.

3.1.2 STATICS

Characters in two dimensions have two linear coordinates representing the position
of the object. These coordinates are relative to two world axes that lie perpendicular
to the direction of gravity and perpendicular to each other. This set of reference axes
is termed the orthonormal basis of the 2D space.

In most games the geometry is typically stored and rendered in three dimensions.
The geometry of the model has a 3D orthonormal basis containing three axes: nor-
mally called x, y, and z. It is most common for the y axis to be in opposite direction
to gravity (i.e., “up”) and for the x and z axes to lie in the plane of the ground. Move-
ment of characters in the game takes place along the x and z axes used for rendering, as
shown in Figure 3.3. For this reason this chapter will use the x and z axes when repre-
senting movement in two dimensions, even though books dedicated to 2D geometry
tend to use x and y for the axis names.

In addition to the two linear coordinates, an object facing in any direction has one
orientation value. The orientation value represents an angle from a reference axis. In
our case we use a counterclockwise angle, in radians, from the positive z axis. This is
fairly standard in game engines; by default (i.e., with zero orientation) a character is
looking down the z axis.

With these three values the static state of a character can be given in the level, as
shown in Figure 3.4.

Algorithms or equations that manipulate this data are called static because the
data does not contain any information about the movement of a character.

We can use a data structure of the form

1 struct Static:
2 position # a 2D vector
3 orientation # a single floating point value

I will use the term orientation throughout this chapter to mean the direction in
which a character is facing. When it comes to rendering the character, we will make
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Figure 3.4 The positions of characters in the level

them appear to face one direction by rotating them (using a rotation matrix). Because
of this, some developers refer to orientation as rotation. I will use rotation in this
chapter only to mean the process of changing orientation; it is an active process.

2 1
2

Dimensions

Some of the math involved in 3D geometry is complicated. The linear movement
in three dimensions is quite simple and a natural extension to 2D movement. But
representing an orientation has tricky consequences that are better to avoid (at least
until the end of the chapter).
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As a compromise, developers often use a hybrid of 2D and 3D geometry which is
known as 2 1

2 D, or four degrees of freedom.
In 2 1

2 D we deal with a full 3D position, but represent orientation as a single value,
as if we are in two dimensions. This is quite logical when you consider that most
games involve characters under the influence of gravity. Most of the time a character’s
third dimension is constrained because it is pulled to the ground. In contact with the
ground, it is effectively operating in two dimensions, although jumping, dropping off
ledges, and using elevators all involve movement through the third dimension.

Even when moving up and down, characters usually remain upright. There may
be a slight tilt forward while walking or running or a lean sideways out from a wall, but
this tilting doesn’t affect the movement of the character; it is primarily an animation
effect. If a character remains upright, then the only component of its orientation we
need to worry about is the rotation about the up direction.

This is precisely the situation we take advantage of when we work in 2 1
2 D: the

simplification in the math is worth the decreased flexibility in most cases.
Of course, if you are writing a flight simulator or a space shooter, then all the

orientations are very important to the AI, so you’ll have to go to complete three di-
mensions. And at the other end of the scale, if your game world is completely flat, and
characters can’t jump or move vertically in any other way, then a strict 2D model is
needed. In the vast majority of cases, 2 1

2 D is an optimal solution. We’ll cover full 3D
motion at the end of the chapter, but aside from that, all the algorithms described in
this chapter are designed to work in 2 1

2 D.

Math

In the remainder of this chapter I will assume that you are comfortable using basic
vector and matrix mathematics (i.e., addition and subtraction of vectors, multipli-
cation by a scalar). Explanations of vector and matrix mathematics, and their use in
computer graphics, are beyond the scope of this book. Other books in this series, such
as Schneider and Eberly [2003], cover mathematical topics in computer games to a

LIBRARY

much deeper level. The source code on the CD provides implementations of all of
these functions, along with implementations for other 3D types.

Positions are represented as a vector with x and z components of position. In 2 1
2 D,

a y component is also given.
In two dimensions we need only an angle to represent orientation. This is the

scalar representation. The angle is measured from the positive z axis, in a right-
handed direction about the positive y axis (counterclockwise as you look down on
the x–z plane from above). Figure 3.4 gives an example of how the scalar orientation
is measured.

It is more convenient in many circumstances to use a vector representation of
orientation. In this case the vector is a unit vector (it has a length of one) in the
direction that the character is facing. This can be directly calculated from the scalar



3.1 The Basics of Movement Algorithms 47

1.5 radians
0.997
0.071

Figure 3.5 The vector form of orientation

orientation using simple trigonometry:

�ωv =
[

sinωs

cosωs

]
,

where ωs is the orientation as a scalar, and �ωv is the orientation expressed as a vector.
I am assuming a right-handed coordinate system here, in common with most of the
game engines I’ve worked on.1 If you use a left-handed system, then simply flip the
sign of the x coordinate:

�ωv =
[− sinωs

cosωs

]
.

If you draw the vector form of the orientation, it will be a unit length vector in
the direction that the character is facing, as shown in Figure 3.5.

3.1.3 KINEMATICS

So far each character has had two associated pieces of information: its position and its
orientation. We can create movement algorithms to calculate a target velocity based
on position and orientation alone, allowing the output velocity to change instantly.

While this is fine for many games, it can look unrealistic. A consequence of New-
ton’s laws of motion is that velocities cannot change instantly in the real world. If a
character is moving in one direction and then instantly changes direction or speed, it
will look odd. To make smooth motion or to cope with characters that can’t acceler-
ate very quickly, we need either to use some kind of smoothing algorithm or to take
account of the current velocity and use accelerations to change it.

1. Left-handed coordinates work just as well with all the algorithms in this chapter. See Eberly [2003] for
more details of the difference and how to convert between them.
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To support this, the character keeps track of its current velocity as well as position.
Algorithms can then operate to change the velocity slightly at each time frame, giving
a smooth motion.

Characters need to keep track of both their linear and their angular velocities.
Linear velocity has both x and z components, the speed of the character in each of
the axes in the orthonormal basis. If we are working in 2 1

2 D, then there will be three
linear velocity components, in x, y, and z.

The angular velocity represents how fast the characters’ orientation is changing.
This is given by a single value: the number of radians per second that the orientation
is changing.

We will call angular velocity “rotation,” since rotation suggests motion. Linear
velocity will normally be referred to as simply velocity. We can therefore represent all
the kinematic data for a character (i.e., its movement and position) in one structure:

1 struct Kinematic
2 position # a 2 or 3D vector
3 orientation # a single floating point value
4 velocity # another 2 or 3D vector
5 rotation # a single floating point value

Steering behaviors operate with this kinematic data. They return accelerations
that will change the velocities of a character in order to move them around the level.
Their output is a set of accelerations:

1 struct SteeringOutput:
2 linear # a 2 or 3D vector
3 angular # a single floating point value

Independent Facing

Notice that there is nothing to connect the direction that a character is moving and
the direction it is facing. A character can be oriented along the x axis, but be travelling
directly along the z axis. Most game characters should not behave in this way; they
should orient themselves so they move in the direction they are facing.

Many steering behaviors ignore facing altogether. They operate directly on the
linear components of the character’s data. In these cases the orientation should be
updated so that it matches the direction of motion.

This can be achieved by directly setting the orientation to the direction of motion,
but this can mean the orientation changes abruptly.

A better solution is to move it a proportion of the way toward the desired direc-
tion: to smooth the motion over many frames. In Figure 3.6, the character changes its
orientation to be halfway toward its current direction of motion in each frame. The
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Figure 3.6 Smoothing facing direction of motion over multiple frames

triangle indicates the orientation, and the grey shadows show where the character was
in previous frames, to indicate its motion.

Updating Position and Orientation

If your game has a physics simulation layer, it will be used to update the position and
orientation of characters. If you need to update them manually, however, you can use
a simple algorithm of the form:

1 struct Kinematic:
2

3 ... Member data as before ...
4

5 def update(steering, time):
6

7 # Update the position and orientation
8 position += velocity * time +
9 0.5 * steering.linear * time * time

10 orientation += rotation * time +
11 0.5 * steering.angular * time * time
12

13 # and the velocity and rotation
14 velocity += steering.linear * time
15 orientation += steering.angular * time

The updates use high-school physics equations for motion. If the frame rate is
high, then the update time passed to this function is likely to be very small. The square
of this time is likely to be even smaller, and so the contribution of acceleration to
position and orientation will be tiny. It is more common to see these terms removed
from the update algorithm, to give what’s known as the Newton-Euler-1 integration
update:
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1 struct Kinematic:
2

3 ... Member data as before ...
4

5 def update (steering, time):
6

7 # Update the position and orientation
8 position += velocity * time
9 orientation += rotation * time

10

11 # and the velocity and rotation
12 velocity += steering.linear * time
13 orientation += steering.angular * time

This is the most common update used for games. Note that in both blocks of code,
I’ve assumed that we can do normal mathematical operations with vectors, such as
addition and multiplication by a scalar. Depending on the language you are using,
you may have to replace these primitive operations with function calls.

The Game Physics [Eberly, 2004] book in this series, and my forthcoming Game
Physics Engine Development (0-12-369471-X, 2006) (also in this series), has a com-
plete analysis of different update methods and covers the complete range of physics
tools for games (as well as detailed implementations of vector and matrix operations).

Variable Frame Rates

Note that we have assumed that velocities are given in units per second rather than per
frame. Older games often used per-frame velocities, but that practice has largely died
out. Almost all games (even those on a console) are now written to support variable
frame rates, so an explicit update time is used.

If the character is known to be moving at 1 meter per second and the last frame
was of 20 milliseconds duration, then they will need to move 20 millimeters.

Forces and Actuation

In the real world we can’t simply apply an acceleration to an object and have it move.
We apply forces, and the forces cause a change in the kinetic energy of the object. They
will accelerate, of course, but the acceleration will depend on the inertia of the object.
The inertia acts to resist the acceleration; with higher inertia, there is less acceleration
for the same force.

To model this in a game, we could use the object’s mass for the linear inertia and
the moment of inertia (or inertia tensor in three dimensions) for angular acceleration.
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We could continue to extend the character data to keep track of these values and
use a more complex update procedure to calculate the new velocities and positions.
This is the method used by physics engines: the AI controls the motion of a character
by applying forces to it. These forces represent the ways in which the character can
affect its motion. Although not common for human characters, this approach is al-
most universal for controlling cars in driving games: the drive force of the engine and
the forces associated with the steering wheels are the only ways in which the AI can
control the movement of the car.

Because most well-established steering algorithms are defined with acceleration
outputs, it is not common to use algorithms that work directly with forces. Usually,
the movement controller considers the dynamics of the character in a post-processing
step called actuation.

Actuation takes as input a desired change in velocity, the kind that would be di-
rectly applied in a kinematic system. The actuator then calculates the combination of
forces that it can apply to get as near as possible to the desired velocity change.

At the simplest level this is just a matter of multiplying the acceleration by the
inertia to give a force. This assumes that the character is capable of applying any force,
however, which isn’t always the case (a stationary car can’t accelerate sideways, for
example). Actuation is a major topic in AI and physics integration, and we’ll return
to actuation at some length in Section 3.8 of this chapter.

3.2 KINEMATIC MOVEMENT ALGORITHMS

Kinematic movement algorithms use static data (position and orientation, no veloci-
ties) and output a desired velocity. The output is often simply an on or off and a target
direction, moving at full speed or being stationary. Kinematic algorithms do not use
acceleration, although the abrupt changes in velocity might be smoothed over several
frames.

Many games simplify things even further and force the orientation of a character
to be in the direction it is travelling. If the character is stationary, it faces either a pre-
set direction or the last direction it was moving in. If its movement algorithm returns
a target velocity, then that is used to set its orientation.

This can be done simply with the function

1 def getNewOrientation(currentOrientation, velocity):
2

3 # Make sure we have a velocity
4 if velocity.length() > 0:
5

6 # Calculate orientation using an arc tangent of
7 # the velocity components.
8 return atan2(-static.x, static.z)
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9

10 # Otherwise use the current orientation
11 else: return currentOrientation

We’ll look at two kinematic movement algorithms: seeking (with several of its
variants) and wandering. Building kinematic movement algorithms is extremely sim-
ple, so we’ll only look at these two as representative samples before moving on to
dynamic movement algorithms, the bulk of this chapter.

I can’t stress enough, however, that this brevity is not because they are uncommon
or unimportant. Kinematic movement algorithms still form the bread and butter of
movement systems in most games. The dynamic algorithms in the rest of the book
are becoming more widespread, but they are still in a minority.

3.2.1 SEEK

A kinematic seek behavior takes as input the character’s and their target’s static data.
It calculates the direction from the character to the target and requests a velocity
along this line. The orientation values are typically ignored, although we can use the
getNewOrientation function above to face in the direction we are moving.

The algorithm can be implemented in a few lines:

1 class KinematicSeek:
2 # Holds the static data for the character and target
3 character
4 target
5

6 # Holds the maximum speed the character can travel
7 maxSpeed
8

9 def getSteering():
10

11 # Create the structure for output
12 steering = new KinematicSteeringOutput()
13

14 # Get the direction to the target
15 steering.velocity =
16 target.position - character.position
17

18 # The velocity is along this direction, at full speed
19 steering.velocity.normalize()
20 steering.velocity *= maxSpeed
21

22 # Face in the direction we want to move
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23 character.orientation =
24 getNewOrientation(character.orientation,
25 steering.velocity)
26

27 # Output the steering
28 steering.rotation = 0
29 return steering

where the normalize method applies to a vector and makes sure it has a length of one.
If the vector is a zero vector, then it is left unchanged.

Data Structures and Interfaces

We use the Static data structure as defined at the start of the chapter and a Kinemat-
icSteeringOutput structure for output. The KinematicSteeringOutput structure has
the following form:

1 struct KinematicSteeringOutput:
2 velocity
3 rotation

In this algorithm rotation is never used; the character’s orientation is simply set
based on their movement. You could remove the call to getNewOrientation if you
want to control orientation independently somehow (to have the character aim at a
target while moving, as in Tomb Raider [Core Design Ltd., 1996], for example.

Performance

The algorithm is O(1) in both time and memory.

Flee

If we want the character to run away from their target, we can simply reverse the
second line of the getSteering method to give

1 # Get the direction away from the target
2 steering.velocity = character.position - target.position

The character will then move at maximum velocity in the opposite direction.
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Arriving

The algorithm above is intended for use by a chasing character; it will never reach its
goal, but continues to seek. If the character is moving to a particular point in the game
world, then this algorithm may cause problems. Because it always moves at full speed,
it is likely to overshoot an exact spot and wiggle backward and forward on successive
frames trying to get there. This characteristic wiggle looks unacceptable. We need to
end stationary at the target spot.

To avoid this problem we have two choices. We can just give the algorithm a large
radius of satisfaction and have it be satisfied if it gets closer to its target than that.
Alternatively, if we support a range of movement speeds, then we could slow the char-
acter down as it reaches its target, making it less likely to overshoot.

The second approach can still cause the characteristic wiggle, so we benefit from
blending both approaches. Having the character slow down allows us to use a much
smaller radius of satisfaction without getting wiggle and without the character ap-
pearing to stop instantly.

We can modify the seek algorithm to check if the character is within the radius.
If so, it doesn’t worry about outputting anything. If it is not, then it tries to reach its
target in a fixed length of time. (I’ve used a quarter of a second, which is a reasonable
figure. You can tweak the value if you need to.) If this would mean moving faster than
its maximum speed, then it moves at its maximum speed. The fixed time to target is
a simple trick that makes the character slow down as it reaches its target. At 1 unit of
distance away it wants to travel at 4 units per second. At a quarter of a unit of distance
away it wants to travel at 1 unit per second, and so on. The fixed length of time can
be adjusted to get the right effect. Higher values give a more gentle deceleration, and
lower values make the braking more abrupt.

The algorithm now looks like the following:

1 class KinematicArrive:
2 # Holds the static data for the character and target
3 character
4 target
5

6 # Holds the maximum speed the character can travel
7 maxSpeed
8

9 # Holds the satisfaction radius
10 radius
11

12 # Holds the time to target constant
13 timeToTarget = 0.25
14

15 def getSteering():
16
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17 # Create the structure for output
18 steering = new KinematicSteeringOutput()
19

20 # Get the direction to the target
21 steering.velocity =
22 target.position - character.position
23

24 # Check if we’re within radius
25 if steering.velocity.length() < radius:
26

27 # We can return no steering request
28 return None
29

30 # We need to move to our target, we’d like to
31 # get there in timeToTarget seconds
32 steering.velocity /= timeToTarget
33

34 # If this is too fast, clip it to the max speed
35 if steering.velocity.length() > maxSpeed:
36 steering.velocity.normalize()
37 steering.velocity *= maxSpeed
38

39 # Face in the direction we want to move
40 character.orientation =
41 getNewOrientation(character.orientation,
42 steering.velocity)
43

44 # Output the steering
45 steering.rotation = 0
46 return steering

I’ve assumed a length function that gets the length of a vector.

3.2.2 WANDERING

A kinematic wander behavior always moves in the direction of the character’s current
orientation with maximum speed. The steering behavior modifies the character’s ori-
entation, which allows the character to meander as it moves forward. Figure 3.7 il-
lustrates this. The character is shown at successive frames. Note that it moves only
forward at each frame (i.e., in the direction it was facing at the previous frame).
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Figure 3.7 A character using kinematic wander

Pseudo-Code

It can be implemented as follows:

1 class KinematicWander:
2 # Holds the static data for the character
3 character
4

5 # Holds the maximum speed the character can travel
6 maxSpeed
7

8 # Holds the maximum rotation speed we’d like, probably
9 # should be smaller than the maximum possible, to allow

10 # a leisurely change in direction
11 maxRotation
12

13 def getSteering():
14

15 # Create the structure for output
16 steering = new KinematicSteeringOutput()
17

18 # Get velocity from the vector form of the orientation
19 steering.velocity = maxSpeed *
20 character.orientation.asVector()
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21

22 # Change our orientation randomly
23 steering.rotation = randomBinomial() * maxRotation
24

25 # Output the steering
26 return steering

Data Structures

Orientation values have been given an asVector function that converts the orientation
into a direction vector using the formulae given at the start of the chapter.

Implementation Notes

I’ve used randomBinomial to generate the output rotation. This is a handy random
number function that isn’t common in standard libraries of programming languages.
It returns a random number between −1 and 1, where values around zero are more
likely. It can be simply created as

1 def randomBinomial():
2 return random() - random()

where random returns a random number from 0 to 1.
For our wander behavior, this means that the character is most likely to keep

moving in its current direction. Rapid changes of direction are less likely, but still
possible.

3.2.3 ON THE CD

The Kinematic Movement program on the CD gives you access to a range of different

PROGRAM

movement algorithms, including kinematic wander, arrive, seek, and flee. You simply
select the behavior you want to see for each of the two characters. The game world is
toroidal: if a character goes off one end, then they will reappear on the opposite side.

3.3 STEERING BEHAVIORS

Steering behaviors extend the movement algorithms in the previous section by adding
velocity and rotation. They are gaining larger acceptance in PC and console game
development. In some genres (such as driving games) they are dominant; in other
genres they are only just beginning to see serious use.
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There is a whole range of different steering behaviors, often with confusing and
conflicting names. As the field has developed, there have been no clear naming
schemes to tell the difference between one atomic steering behavior and a compound
behavior combining several of them together.

In this book we’ll separate the two: fundamental behaviors and behaviors that can
be built up from combinations of these.

There are a large number of named steering behaviors in various papers and code
samples. Many of these are variations of one or two themes. Rather than catalog a zoo
of suggested behaviors, we’ll look at the basic structures common to many of them
before looking at some exceptions with unusual features.

3.3.1 STEERING BASICS

By and large, most steering behaviors have a similar structure. They take as input the
kinematic of the character that is moving and a limited amount of target information.
The target information depends on the application. For chasing or evading behaviors,
the target is often another moving character. Obstacle avoidance behaviors take a
representation of the collision geometry of the world. It is also possible to specify a
path as the target for a path following behavior.

The set of inputs to a steering behavior isn’t always available in an AI-friendly for-
mat. Collision avoidance behaviors, in particular, need to have access to the collision
information in the level. This can be an expensive process: checking the anticipated
motion of the character using ray casts or trial movement through the level.

Many steering behaviors operate on a group of targets. The famous flocking be-
havior, for example, relies on being able to move toward the average position of the
flock. In these behaviors some processing is needed to summarize the set of targets
into something that the behavior can react to. This may involve averaging properties
of the whole set (to find and aim for their center of mass, for example), or it may
involve ordering or searching among them (such as moving away from the nearest or
avoiding bumping into those that are on a collision course).

Notice that the steering behavior isn’t trying to do everything. There is no be-
havior to avoid obstacles while chasing a character and making detours via nearby
power-ups. Each algorithm does a single thing and only takes the input needed to
do that. To get more complicated behaviors, we will use algorithms to combine the
steering behaviors and make them work together.

3.3.2 VARIABLE MATCHING

The simplest family of steering behaviors can be seen to operate by variable matching:
they try to match one or more of the elements of the character’s kinematic to a single
target kinematic.

We might try to match the position of the target, for example, not caring about
the other elements. This would involve accelerating toward the target position and
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decelerating once we are near. Alternatively, we could try to match the orientation of
the target, rotating so that we align with it. We could even try to match the velocity
of the target, following it on a parallel path and copying its movements, but staying a
fixed distance away.

Variable matching behaviors take two kinematics as input: the character kine-
matic and the target kinematic. Different named steering behaviors try to match a
different combination of elements, as well as adding additional properties that con-
trol how the matching is performed. It is possible, but not particularly helpful, to
create a general variable matching steering behavior and simply tell it which combi-
nation of elements to match. I’ve seen this type of implementation on a couple of
occasions.

The problem arises when more than one element of the kinematic is being
matched at the same time. They can easily conflict. We can match a target’s posi-
tion and orientation independently. But what about position and velocity? If I am
matching their velocity, then I can’t be trying to get any closer.

A better technique is to have individual matching algorithms for each element
and then combine them in the right combination later. This allows us to use any of
the steering behavior combination techniques in this chapter, rather than having one
hard-coded. The algorithms for combing steering behaviors are designed to resolve
conflicts and so are perfect for this task.

For each matching steering behavior, there is an opposite behavior that tries to
get as far away from matching as possible. A behavior that tries to catch its target
has an opposite that tries to avoid its target, and so on. As we saw in the kinematic
seek behavior, the opposite form is usually a simple tweak to the basic behavior. We
will look at several steering behaviors as pairs along with their opposites, rather than
separating them into separate sections.

3.3.3 SEEK AND FLEE

Seek tries to match the position of the character with the position of the target. Exactly
as for the kinematic seek algorithm, it finds the direction to the target and heads
toward it as fast as possible. Because the steering output is now an acceleration, it will
accelerate as much as possible.

Obviously, if it keeps on accelerating, its speed will grow larger and larger. Most
characters have a maximum speed they can travel; they can’t accelerate indefinitely.
The maximum can be explicit, held in a variable or constant. The current speed of
the character (the length of the velocity vector) is then checked regularly, and it is
trimmed back if it exceeds the maximum speed. This is normally done as a post-
processing step of the update function. It is not performed in a steering behavior. For
example,

1 struct Kinematic:
2
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3 ... Member data as before ...
4

5 def update(steering, maxSpeed, time):
6

7 # Update the position and orientation
8 position += velocity * time
9 orientation += rotation * time

10

11 # and the velocity and rotation
12 velocity += steering.linear * time
13 orientation += steering.angular * time
14

15 # Check for speeding and clip
16 if velocity.length() > maxSpeed:
17 velocity.normalize()
18 velocity *= maxSpeed

Alternatively, maximum speed might be a result of applying a drag to slow down
the character a little at each frame. Games that rely on physics engines typically in-
clude drag. They do not need to check and clip the current velocity; the drag (applied
in the update function) automatically limits the top speed.

Drag also helps another problem with this algorithm. Because the acceleration is
always directed toward the target, if the target is moving, the seek behavior will end
up orbiting rather than moving directly toward it. If there is drag in the system, then
the orbit will become an inward spiral. If drag is sufficiently large, the player will not
notice the spiral and will see the character simply move directly to its target.

Figure 3.8 illustrates the path that results from the seek behavior and its opposite,
the flee path, described below.

Pseudo-Code

The dynamic seek implementation looks very similar to our kinematic version:

1 class Seek:
2 # Holds the kinematic data for the character and target
3 character
4 target
5

6 # Holds the maximum acceleration of the character
7 maxAcceleration
8

9 # Returns the desired steering output
10 def getSteering():
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Flee path Seek path

Figure 3.8 Seek and flee

11

12 # Create the structure to hold our output
13 steering = new SteeringOutput()
14

15 # Get the direction to the target
16 steering.linear = target.position -
17 character.position
18

19 # Give full acceleration is along this direction
20 steering.linear.normalize()
21 steering.linear *= maxAcceleration
22

23 # Output the steering
24 steering.angular = 0
25 return steering

Note that we’ve removed the change in orientation that was included in the kine-
matic version. We can simply set the orientation, as we did before, but a more flexible
approach is to use variable matching to make the character face in the correct direc-
tion. The align behavior, described below, gives us the tools to change orientation
using angular acceleration. The “look where you’re going” behavior uses this to face
the direction of movement.
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Data Structures and Interfaces

This class uses the SteeringOutput structure we defined earlier in the chapter. It holds
linear and angular acceleration outputs.

Performance

The algorithm is again O(1) in both time and memory.

Flee

Flee is the opposite of seek. It tries to get as far from the target as possible. Just as
for kinematic flee, we simply need to flip the order of terms in the second line of the
function:

1 # Get the direction to the target
2 steering.linear = character.position -
3 explicitTarget.position

The character will now move in the opposite direction to the target, accelerating
as fast as possible.

On the CD

It is almost impossible to show steering behaviors in diagrams. The best way to get a

PROGRAM

feel of how the steering behaviors look is to run the Steering Behavior program from
the CD. In the program two characters are moving around a 2D game world. You
can select the steering behavior of each one from a selection provided. Initially, one
character is seeking and the other is fleeing. They have each other as a target.

To avoid the chase going off to infinity, the world is toroidal: characters that leave
one edge of the world reappear at the opposite edge.

3.3.4 ARRIVE

Seek will always move toward its goal with the greatest possible acceleration. This is
fine if the target is constantly moving and the character needs to give chase at full
speed. If the character arrives at the target, it will overshoot, reverse, and oscillate
through the target, or it will more likely orbit around the target without getting closer.

If the character is supposed to arrive at the target, it needs to slow down so that it
arrives exactly at the right location, just as we saw in the kinematic arrive algorithm.
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Seek path Arrive path

Figure 3.9 Seeking and arriving

Figure 3.9 shows the behavior of each for a fixed target. The trails show the paths taken
by seek and arrive. Arrive goes straight to its target, while seek orbits a bit and ends up
oscillating. The oscillation is not as bad for dynamic seek as it was in kinematic seek:
it cannot change direction immediately, so it appears to wobble rather than shake
around the target.

The dynamic arrive behavior is a little more complex than the kinematic version.
It uses two radii. The arrival radius, as before, lets the character get near enough to the
target without letting small errors keep it in motion. A second radius is also given, but
is much larger. The incoming character will begin to slow down when it passes this
radius. The algorithm calculates an ideal speed for the character. At the slowing down
radius, this is equal to its maximum speed. At the target point it is zero (we want
to have zero speed when we arrive). In between, the desired speed is an interpolated
intermediate value, controlled by the distance from the target.

The direction toward the target is calculated as before. This is then combined
with the desired speed to give a target velocity. The algorithm looks at the current
velocity of the character and works out the acceleration needed to turn it into the
target velocity. We can’t immediately change velocity, however, so the acceleration is
calculated based on reaching the target velocity in a fixed time scale.

This is exactly the same process as for kinematic arrive, where we tried to get the
character to arrive at its target in a quarter of a second. The fixed time period for
dynamic arrive can usually be a little smaller; we’ll use 0.1 as a good starting point.

When a character is moving too fast to arrive at the right time, its target velocity
will be smaller than its actual velocity, so the acceleration is in the opposite direction:
it is acting to slow the character down.
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Pseudo-Code

The full algorithm looks like the following:

1 class Arrive:
2 # Holds the kinematic data for the character and target
3 character
4 target
5

6 # Holds the max acceleration and speed of the character
7 maxAcceleration
8 maxSpeed
9

10 # Holds the radius for arriving at the target
11 targetRadius
12

13 # Holds the radius for beginning to slow down
14 slowRadius
15

16 # Holds the time over which to achieve target speed
17 timeToTarget = 0.1
18

19 def getSteering(target):
20

21 # Create the structure to hold our output
22 steering = new SteeringOutput()
23

24 # Get the direction to the target
25 direction = target.position - character.position
26 distance = direction.length()
27

28 # Check if we are there, return no steering
29 if distance < targetRadius
30 return None
31

32 # If we are outside the slowRadius, then go max speed
33 if distance > slowRadius:
34 targetSpeed = maxSpeed
35

36 # Otherwise calculate a scaled speed
37 else:
38 targetSpeed = maxSpeed * distance / slowRadius
39
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40 # The target velocity combines speed and direction
41 targetVelocity = direction
42 targetVelocity.normalize()
43 targetVelocity *= targetSpeed
44

45 # Acceleration tries to get to the target velocity
46 steering.linear =
47 targetVelocity - character.velocity
48 steering.linear /= timeToTarget
49

50 # Check if the acceleration is too fast
51 if steering.linear.length() > maxAcceleration:
52 steering.linear.normalize()
53 steering.linear *= maxAcceleration
54

55 # Output the steering
56 steering.angular = 0
57 return steering

Performance

The algorithm is O(1) in both time and memory, as before.

Implementation Notes

Many implementations do not use a target radius. Because the character will slow
down to reach its target, there isn’t the same likelihood of oscillation that we saw in
kinematic arrive. Removing the target radius usually makes no noticeable difference.
It can be significant, however, with low frame rates or where characters have high
maximum speeds and low accelerations. In general, it is good practice to give a margin
of error around any target, to avoid annoying instabilities.

Leave

Conceptually, the opposite behavior to arrive is leave. There is no point in imple-
menting it, however. If we need to leave a target, we are unlikely to want to accelerate
with miniscule (possibly zero) acceleration first and then build up. We are more likely
to accelerate as fast as possible. So for practical purposes the opposite of arrive is flee.



66 Chapter 3 Movement

3.3.5 ALIGN

Align tries to match the orientation of the character with that of the target. It pays no
attention to the position or velocity of the character or target. Recall that orientation
is not directly related to direction of movement for a general kinematic: this steering
behavior does not produce any linear acceleration; it only responds by turning.

Align behaves in a similar way to arrive. It tries to reach the target orientation and
tries to have zero rotation when it gets there. Most of the code from arrive we can
copy, but orientations have an added complexity that we need to consider.

Because orientations wrap around every 2π radians, we can’t simply subtract the
target orientation from the character orientation and determine what rotation we
need from the result. Figure 3.10 shows two very similar align situations, where the
character is the same angle away from its target. If we simply subtracted the two an-
gles, the first one would correctly rotate a small amount clockwise, but the second
one would travel all around to get to the same place.

To find the actual direction of rotation, we subtract the character orientation from
the target and convert the result into the range (−π,π) radians. We perform the
conversion by adding or subtracting some multiple of 2π to bring the result into the
given range. We can calculate the multiple to use by using the mod function and a
little jiggling about. The source code on the CD contains an implementation of a
function that does this, but many graphics libraries also have one available.

LIBRARY

We can then use the converted value to control rotation, and the algorithm looks
very similar to arrive. Like arrive, we use two radii: one for slowing down and one

Orientation = 1.05 radians Orientation = 6.27 radians

Target = 0.52 radians Target = 0.52 radians

z axis direction

Figure 3.10 Aligning over a 2π radians boundary
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to make orientations near the target acceptable. Because we are dealing with a single
scalar value, rather than a 2D or 3D vector, the radius acts as an interval.

We have no such problem when we come to subtracting the rotation values. Ro-
tations, unlike orientations, don’t wrap around. You can have huge rotation values,
well out of the (−π,π) range. Large values simply represent very fast rotation.

Pseudo-Code

Most of the algorithm is similar to arrive, we simply add the conversion:

1 class Align:
2 # Holds the kinematic data for the character and target
3 character
4 target
5

6 # Holds the max angular acceleration and rotation
7 # of the character
8 maxAngularAcceleration
9 maxRotation

10

11 # Holds the radius for arriving at the target
12 targetRadius
13

14 # Holds the radius for beginning to slow down
15 slowRadius
16

17 # Holds the time over which to achieve target speed
18 timeToTarget = 0.1
19

20 def getSteering(target):
21

22 # Create the structure to hold our output
23 steering = new SteeringOutput()
24

25 # Get the naive direction to the target
26 rotation = target.orientation -
27 character.orientation
28

29 # Map the result to the (-pi, pi) interval
30 rotation = mapToRange(rotation)
31 rotationSize = abs(rotationDirection)
32

33 # Check if we are there, return no steering
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34 if rotationSize < targetRadius
35 return None
36

37 # If we are outside the slowRadius, then use
38 # maximum rotation
39 if rotationSize > slowRadius:
40 targetRotation = maxRotation
41

42 # Otherwise calculate a scaled rotation
43 else:
44 targetRotation =
45 maxRotation * rotationSize / slowRadius
46

47 # The final target rotation combines
48 # speed (already in the variable) and direction
49 targetRotation *= rotation / rotationSize
50

51 # Acceleration tries to get to the target rotation
52 steering.angular =
53 targetRotation - character.rotation
54 steering.angular /= timeToTarget
55

56 # Check if the acceleration is too great
57 angularAcceleration = abs(steering.angular)
58 if angularAcceleration > maxAngularAcceleration:
59 steering.angular /= angularAcceleration
60 steering.angular *= maxAngularAcceleration
61

62 # Output the steering
63 steering.linear = 0
64 return steering

where the function abs returns the absolute (i.e., positive) value of a number: −1 is
mapped to 1, for example.

Implementation Notes

Whereas in the arrive implementation there are two vector normalizations, in this
code we need to normalize a scalar (i.e., turn it into either +1 or −1). To do this we
use the result that

1 normalizedValue = value / abs(value)
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In a production implementation in a language where you can access the bit pat-
tern of a floating point number (C and C++, for example), you can do the same thing
by manipulating the non-sign bits of the variable. Some C libraries provide an op-
timized sign function faster than the approach above. Be aware that many provide
implementations involving an if-statement, which is considerably slower (although
in this case the speed is unlikely to be significant).

Performance

The algorithm, unsurprisingly, is O(1) in both memory and time.

The Opposite

There is no such thing as the opposite of align. Because orientations wrap around
every 2π , fleeing from an orientation in one direction will simply lead you back to
where you started. To face the opposite direction to a target, simply add π to its ori-
entation and align to that value.

3.3.6 VELOCITY MATCHING

So far we have looked at behaviors that try to match position with a target. We could
do the same with velocity, but on its own this behavior is seldom useful. It could
be used to make a character mimic the motion of a target, but this isn’t very useful.
Where it does become critical is when combined with other behaviors. It is one of the
constituents of the flocking steering behavior, for example.

We have already implemented an algorithm that tries to match a velocity. Arrive
calculates a target velocity based on the distance to its target. It then tries to achieve
the target velocity. We can strip the arrive behavior down to provide a velocity match-
ing implementation.

Pseudo-Code

The stripped down code looks like the following:

1 class VelocityMatch:
2 # Holds the kinematic data for the character and target
3 character
4 target
5

6 # Holds the max acceleration of the character
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7 maxAcceleration
8

9 # Holds the time over which to achieve target speed
10 timeToTarget = 0.1
11

12 def getSteering(target):
13

14 # Create the structure to hold our output
15 steering = new SteeringOutput()
16

17 # Acceleration tries to get to the target velocity
18 steering.linear = target.velocity -
19 character.velocity
20 steering.linear /= timeToTarget
21

22 # Check if the acceleration is too fast
23 if steering.linear.length() > maxAcceleration:
24 steering.linear.normalize()
25 steering.linear *= maxAcceleration
26

27 # Output the steering
28 steering.angular = 0
29 return steering

Performance

The algorithm is O(1) in both time and memory.

3.3.7 DELEGATED BEHAVIORS

We have covered the basic building block behaviors that help to create many oth-
ers. Seek and flee, arrive and align perform the steering calculations for many other
behaviors.

All the behaviors that follow have the same basic structure: they calculate a target,
either position or orientation (they could use velocity, but none of those I’m going
to cover do), and then they delegate to one of the other behaviors to calculate the
steering. The target calculation can be based on many inputs. Pursue, for example,
calculates a target for seek based on the motion of another target. Collision avoidance
creates a target for flee based on the proximity of an obstacle. And wander creates its
own target that meanders around as it moves.

In fact, it turns out that seek, align, and velocity matching are the only fundamen-
tal behaviors (there is a rotation matching behavior, by analogy, but I’ve never seen an
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application for it). As we saw in the previous algorithm, arrive can be divided into the
creation of a (velocity) target and the application of the velocity matching algorithm.
This is common. Many of the delegated behaviors below can, in turn, be used as the
basis of another delegated behavior. Arrive can be used as the basis of pursue, pursue
can be used as the basis of other algorithms, and so on.

In the code that follows I will use a polymorphic style of programming to cap-
ture these dependencies. You could alternatively use delegation, having the primitive
algorithms as members of the new techniques. Both approaches have their problems.
In our case, when one behavior extends another, it normally does so by calculating
an alternative target. Using inheritance means we need to be able to change the target
that the super-class works on.

If we use the delegation approach, we’d need to make sure that each delegated
behavior has the correct character data, maxAcceleration, and other parameters. This
is a lot of duplication and data copying that using sub-classes removes.

3.3.8 PURSUE AND EVADE

So far we have moved based solely on position. If we are chasing a moving target,
then constantly moving toward its current position will not be sufficient. By the time
we reach where it is now, it will have moved. This isn’t too much of a problem when
the target is close and we are reconsidering its location every frame. We’ll get there
eventually. But if the character is a long distance from its target, it will set off in a
visibly wrong direction, as shown in Figure 3.11.

Instead of aiming at its current position, we need to predict where it will be at
some time in the future and aim toward that point. We did this naturally playing tag
as children, which is why the most difficult tag players to catch were those who kept
switching direction, foiling our predictions.

Seek output

Most efficient
direction

Chasing character

Target character

Figure 3.11 Seek moving in the wrong direction
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Chasing character

Pursue
route

Seek route

Figure 3.12 Seek and pursue

We could use all kinds of algorithms to perform the prediction, but most would be
overkill. Various research has been done into optimal prediction and optimal strate-
gies for the character being chased (it is an active topic in military research for evading
incoming missiles, for example). Craig Reynolds’ original approach is much simpler:
we assume the target will continue moving with the same velocity as it currently has.
This is a reasonable assumption over short distances, and even over longer distances
it doesn’t appear too stupid.

The algorithm works out the distance between character and target and works out
how long it would take to get there, at maximum speed. It uses this time interval as its
prediction look ahead. It calculates the position of the target if it continues to move
with its current velocity. This new position is then used as the target of a standard
seek behavior.

If the character is moving slowly, or the target is a long way away, the prediction
time could be very large. The target is less likely to follow the same path forever, so
we’d like to set a limit on how far ahead we aim. The algorithm has a maximum time
parameter for this reason. If the prediction time is beyond this, then the maximum
time is used.

Figure 3.12 shows a seek behavior and a pursue behavior chasing the same target.
The pursue behavior is more effective in its pursuit.

Pseudo-Code

The pursue behavior derives from seek, calculates a surrogate target, and then dele-
gates to seek to perform the steering calculation:
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1 class Pursue (Seek):
2

3 # Holds the maximum prediction time
4 maxPrediction
5

6 # OVERRIDES the target data in seek (in other words
7 # this class has two bits of data called target:
8 # Seek.target is the superclass target which
9 # will be automatically calculated and shouldn’t

10 # be set, and Pursue.target is the target we’re
11 # pursuing).
12 target
13

14 # ... Other data is derived from the superclass ...
15

16 def getSteering():
17

18 # 1. Calculate the target to delegate to seek
19

20 # Work out the distance to target
21 direction = target.position - character.position
22 distance = direction.length()
23

24 # Work out our current speed
25 speed = character.velocity.length()
26

27 # Check if speed is too small to give a reasonable
28 # prediction time
29 if speed <= distance / maxPrediction:
30 prediction = maxPrediction
31

32 # Otherwise calculate the prediction time
33 else:
34 prediction = distance / speed
35

36 # Put the target together
37 Seek.target = explicitTarget
38 Seek.target.position += target.velocity * prediction
39

40 # 2. Delegate to seek
41 return Seek.getSteering()
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Implementation Notes

In this code I’ve used the slightly unsavory technique of naming a member variable
in a derived class with the same name as the super-class. In most languages this will
have the desired effect of creating two members with the same name. In our case this
is what we want: setting the pursue behavior’s target will not change the target for the
seek behavior it extends.

Be careful though! In some languages (Python, for example) you can’t do this.
You’ll have to name the target variable in each class with a different name.

As mentioned previously, it may be beneficial to cut out these polymorphic calls
altogether to improve the performance of the algorithm. We can do this by having all
the data we need in the pursue class, removing its inheritance of seek, and making
sure that all the code it needs is contained in the getSteering method. This is faster,
but at the cost of duplicating the delegated code in each behavior that needs it and
obscuring the natural reuse of the algorithm.

Performance

Once again, the algorithm is O(1) in both memory and time.

Evade

The opposite behavior to pursuit is evade. Once again we calculate the predicted po-
sition of the target, but rather than delegating to seek, we delegate to flee.

In the code above, we change the class definition so that it is a subclass of Flee
rather than Seek and adjust the call Seek.getSteering to Flee.getSteering.

Overshooting

If the chasing character is able to move faster than the target, it will overshoot and
oscillate around its target, exactly as the normal seek behavior does.

To avoid this, we can replace the delegated call to seek with a call to arrive. This
illustrates the power of building up behaviors from their logical components; when
we need a slightly different effect, we can easily modify the code to get it.

3.3.9 FACE

The face behavior makes a character look at its target. It delegates to the align behavior
to perform the rotation, but calculates the target orientation first.

The target orientation is generated from the relative position of the target to the
character. It is the same process we used in the getOrientation function for kinematic
movement.
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Pseudo-Code

The implementation is very simple:

1 class Face (Align):
2

3 # Overrides the Align.target member
4 target
5

6 # ... Other data is derived from the superclass ...
7

8 # Implemented as it was in Pursue
9 def getSteering():

10

11 # 1. Calculate the target to delegate to align
12

13 # Work out the direction to target
14 direction = target.position - character.position
15

16 # Check for a zero direction, and make no change if so
17 if direction.length() == 0: return target
18

19 # Put the target together
20 Align.target = explicitTarget
21 Align.target.orientation = atan2(-direction.x, direction.z)
22

23 # 2. Delegate to align
24 return Align.getSteering()

3.3.10 LOOKING WHERE YOU’RE GOING

We have assumed that the direction a character is facing does not have to be its di-
rection of motion. In many cases, however, we would like the character to face in the
direction it is moving. In the kinematic movement algorithms we set it directly. Using
the align behavior, we can give the character angular acceleration to make it face the
right way. In this way the character changes facing gradually, which can look more
natural, especially for aerial vehicles such as helicopters or hovercraft or for human
characters that can move sideways (providing sidestep animations are available, of
course).

This is a similar process to the face behavior, above. The target orientation is cal-
culated using the current velocity of the character. If there is no velocity, then the
target orientation is set to the current orientation. We have no preference in this situ-
ation for any orientation.
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Pseudo-Code

The implementation is simpler even than face:

1 class LookWhereYoureGoing (Align):
2

3 # No need for an overridden target member, we have
4 # no explicit target to set.
5

6 # ... Other data is derived from the superclass ...
7

8 def getSteering():
9

10 # 1. Calculate the target to delegate to align
11

12 # Check for a zero direction, and make no change if so
13 if character.velocity.length() == 0: return
14

15 # Otherwise set the target based on the velocity
16 target.orientation =
17 atan2(-character.velocity.x, character.velocity.z)
18

19 # 2. Delegate to align
20 return Align.getSteering()

Implementation Notes

In this case we don’t need another target member variable. There is no overall target;
we are creating the current target from scratch. So we can simply use Align.target
for the calculated target (in the same way we did with pursue and the other derived
algorithms).

Performance

The algorithm is O(1) in both memory and time.

3.3.11 WANDER

The wander behavior controls a character moving aimlessly about.
When we looked at the kinematic wander behavior, we perturbed the wander

direction by a random amount each time it was run. This makes the character move
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Target

Seek output

Figure 3.13 The kinematic wander as a seek

forward smoothly, but the rotation of the character is erratic, appearing to twitch

PROGRAM

from side to side as it moves (run the Kinematic Steering program on the CD to see
it in action).

This initial idea for a wander behavior (move in a random direction) gave linear
jerkiness. The kinematic version added a layer of indirection and produced rotational
jerkiness. We can smooth this twitching by adding an extra layer: making the orien-
tation of the character indirectly reliant on the random number generator.

We can think of kinematic wander as behaving as a delegated seek behavior. There
is a circle around the character on which the target is constrained. Each time the
behavior is run, we move the target around the circle a little, by a random amount.
The character then seeks the target. Figure 3.13 illustrates this configuration.

We can improve this by moving the circle around which the target is constrained.
If we move it out in front of the character (where front is determined by its current
facing direction) and shrink it down, we get the situation in Figure 3.14.

The character tries to face the target in each frame, using the face behavior to align
to the target. It then adds an extra step: applying full acceleration in the direction of
its current orientation.

We could also implement the behavior by having it seek the target and perform a
look where you’re going behavior to correct its orientation.

In either case, the orientation of the character is retained between calls (so
smoothing the changes in orientation). The angles that the edges of the circle sub-
tend to the character determine how fast it will turn. If the target is on one of these
extreme points, it will turn quickly. The target will twitch and jitter around the edge
of the circle, but the character’s orientation will change smoothly.

This wander behavior biases the character to turn (in either direction). The target
will spend more time toward the edges of the circle, from the point of view of the
character.
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Figure 3.14 The full wander behavior

Pseudo-Code

1 class Wander (Face):
2

3 # Holds the radius and forward offset of the wander
4 # circle.
5 wanderOffset
6 wanderRadius
7

8 # Holds the maximum rate at which the wander orientation
9 # can change

10 wanderRate
11

12 # Holds the current orientation of the wander target
13 wanderOrientation
14

15 # Holds the maximum acceleration of the character
16 maxAcceleration
17

18 # Again we don’t need a new target
19

20 # ... Other data is derived from the superclass ...
21

22 def getSteering():
23

24 # 1. Calculate the target to delegate to face
25

26 # Update the wander orientation
27 wanderOrientation += randomBinomial() * wanderRate
28
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29 # Calculate the combined target orientation
30 targetOrientation = wanderOrientation +
31 character.orientation
32

33 # Calculate the center of the wander circle
34 target = character.position +
35 wanderOffset * character.orientation.asVector()
36

37 # Calculate the target location
38 target += wanderRadius * targetOrientation.asVector()
39

40 # 2. Delegate to face
41 steering = Face.getSteering()
42

43 # 3. Now set the linear acceleration to be at full
44 # acceleration in the direction of the orientation
45 steering.linear = maxAcceleration *
46 character.orientation.asVector()
47

48 # Return it
49 return steering

Data Structures and Interfaces

We’ve used the same asVector function as earlier to get a vector form of the orienta-
tion.

Performance

The algorithm is O(1) in both memory and time.

3.3.12 PATH FOLLOWING

So far we’ve seen behaviors that take a single target or no target at all. Path following is
a steering behavior that takes a whole path as a target. A character with path following
behavior should move along the path in one direction.

Path following, as it is usually implemented, is a delegated behavior. It calculates
the position of a target based on the current character location and the shape of the
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Seek output

Nearest point
on the path

Target

Figure 3.15 Path following behavior

path. It then hands its target off to seek. There is no need to use arrive, because the
target should always be moving along the path. We shouldn’t need to worry about the
character catching up with it.

The target position is calculated in two stages. First, the current character posi-
tion is mapped to the nearest point along the path. This may be a complex process,
especially if the path is curved or made up of many line segments. Second, a target
is selected which is further along the path than the mapped point by a fixed dis-
tance. To change the direction of motion along the path, we can change the sign of
this distance. Figure 3.15 shows this in action. The current path location is shown,
along with the target point a little way farther along. This approach is sometimes
called “chase the rabbit,” after the way greyhounds chase the cloth rabbit at the dog
track.

Some implementations generate the target slightly differently. They first predict
where the character will be in a short time and then map this to the nearest point
on the path. This is a candidate target. If the new candidate target has not been
placed farther along the path than it was at the last frame, then it is changed so that
it is. We’ll call this predictive path following. It is shown in Figure 3.16. This lat-
ter implementation can appear smoother for complex paths with sudden changes of
direction, but has the downside of cutting corners when two paths come close to-
gether.

Figure 3.17 shows this cutting-corner behavior. The character misses a whole sec-
tion of the path. The character is shown at the instant its predictive future position
crosses to a later part of the path.

This might not be what you want if, for example, the path represents a patrol
route.
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Figure 3.16 Predictive path following behavior

Path

Predicted future position

Nearest point
on the path

Target

Figure 3.17 Vanilla and predictive path following
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Pseudo-Code

1 class FollowPath (Seek):
2

3 # Holds the path to follow
4 path
5

6 # Holds the distance along the path to generate the
7 # target. Can be negative if the character is to move
8 # along the reverse direction.
9 pathOffset

10

11 # Holds the current position on the path
12 currentParam
13

14 # ... Other data is derived from the superclass ...
15

16 def getSteering():
17

18 # 1. Calculate the target to delegate to face
19

20 # Find the current position on the path
21 currentParam = path.getParam(character.position, currentPos)
22

23 # Offset it
24 targetParam = currentParam + pathOffset
25

26 # Get the target position
27 target.position = path.getPosition(targetParam)
28

29 # 2. Delegate to seek
30 return Seek.getSteering()

We can convert this algorithm to a predictive version by first calculating a surro-
gate position for the call to path.getParam. The algorithm looks almost identical:

1 class FollowPath (Seek):
2

3 # Holds the path to follow
4 path
5

6 # Holds the distance along the path to generate the
7 # target. Can be negative if the character is to move
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8 # along the reverse direction.
9 pathOffset

10

11 # Holds the current position on the path
12 currentParam
13

14 # Holds the time in the future to predict the
15 # character’s position
16 predictTime = 0.1
17

18 # ... Other data is derived from the superclass ...
19

20 def getSteering():
21

22 # 1. Calculate the target to delegate to face
23

24 # Find the predicted future location
25 futurePos = character.position +
26 character.velocity * predictTime
27

28 # Find the current position on the path
29 currentParam = path.getParam(futurePos, currentPos)
30

31 # Offset it
32 targetParam = currentParam + pathOffset
33

34 # Get the target position
35 target.position = path.getPosition(targetParam)
36

37 # 2. Delegate to seek
38 return Seek.getSteering()

Data Structures and Interfaces

The path that the behavior follows has the following interface:

1 class Path:
2 def getParam(position, lastParam)
3 def getPosition(param)

Both these functions use the concept of a path parameter. This is a unique value
that increases monotonically along the path. It can be thought of as a distance along
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Line segments

Splines

Figure 3.18 Path types

the path. Typically, paths are made up of line or curve splines; both of these are easily
assigned parameters. The parameter allows us to translate between the position on
the path and positions in 2D or 3D space.

Path Types

Performing this translation (i.e., implementing a path class) can be tricky, depending
on the format of the path used.

It is most common to use a path of straight line segments as shown in Figure 3.18.
In this case the conversion is not too difficult. We can implement getParam by looking
at each line segment in turn, determining which one the character is nearest to, and
then finding the nearest point on that segment. For smooth curved splines common
in some driving games, however, the math can be more complex. A good source for
closest-point algorithms for a range of different geometries is Schneider and Eberly
[2003].

The code on the CD gives a path class implementation for a series of line seg-

LIBRARY

ments. This can work directly with the paths generated by the pathfinding algorithms
of the next chapter and is best suited to human characters moving around.

Keeping Track of the Parameter

The pseudo-code interface above provides for sending the last parameter value to the
path in order to calculate the current parameter value. This is essential to avoid nasty
problems when lines are close together.

We limit the getParam algorithm to only considering areas of the path close to the
previous parameter value. The character is unlikely to have moved far, after all. This
technique, assuming the new value is close to the old one, is called coherence, and it is
a feature of many geometric algorithms. Figure 3.19 shows a problem that would fox



3.3 Steering Behaviors 85

Closest point?

Previous
point

Closest point?
Closest point?

Figure 3.19 Coherence problems with path following

a non-coherent path follower, but is easily handled by assuming the new parameter is
close to the old one.

Of course, you may really want corners to be cut or a character to move between
very different parts of the path. If another behavior interrupts and takes the character
across the level, for example, you don’t necessarily want it to come all the way back
to pick up a circular patrol route. In this case, you’ll need to remove coherence or at
least widen the range of parameters that it searches for a solution.

Performance

The algorithm is O(1) in both memory and time. The getParam function of the path
will usually be O(1), although it may be O(n), where n is the number of segments in
the path. If this is the case, then the getParam function will dominate the performance
scaling of the algorithm.

3.3.13 SEPARATION

The separation behavior is common in crowd simulations, where a number of char-
acters are all heading in roughly the same direction. It acts to keep the characters from
getting too close and being crowded.

It doesn’t work as well when characters are moving across each others’ paths. The
collision avoidance behavior, below, should be used in this case.
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Most of the time, the separation behavior has a zero output; it doesn’t recom-
mend any movement at all. If the behavior detects another character closer than some
threshold, it acts in a similar way to an evade behavior to move away from the charac-
ter. Unlike the basic evade behavior, however, the strength of the movement is related
to the distance from the target. The separation strength can decrease according to any
formula, but a linear or an inverse square law decay is common.

Linear separation looks like the following:

1 strength = maxAcceleration * (threshold - distance) / threshold

The inverse square law looks like the following:

1 strength = min(k * distance * distance, maxAcceleration)

In each case, distance is the distance between the character and its nearby neigh-
bor, threshold is the minimum distance at which any separation output occurs, and
maxAcceleration is the maximum acceleration of the character. The k constant can
be set to any positive value. It controls how fast the separation strength decays with
distance.

Separation is sometimes called the “repulsion steering” behavior, because it acts
in the same way as a physical repulsive force (an inverse square law force such as
magnetic repulsion).

Where there are multiple characters within the avoidance threshold, the steering
is calculated for each in turn and summed. The final value may be greater than the
maxAcceleration, in which case it can be clipped to that value.

Pseudo-Code

1 class Separation:
2

3 # Holds the kinematic data for the character
4 character
5

6 # Holds a list of potential targets
7 targets
8

9 # Holds the threshold to take action
10 threshold
11

12 # Holds the constant coefficient of decay for the
13 # inverse square law force
14 decayCoefficient
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15

16 # Holds the maximum acceleration of the character
17 maxAcceleration
18

19 # See the Implementation Notes for why we have two
20 # getSteering methods
21 def getSteering():
22

23 # The steering variable holds the output
24 steering = new Steering
25

26 # Loop through each target
27 for target in targets:
28

29 # Check if the target is close
30 direction = target.position - character.position
31 distance = direction.length()
32 if distance < threshold:
33

34 # Calculate the strength of repulsion
35 strength = min(decayCoefficient * distance * distance,
36 maxAcceleration)
37

38 # Add the acceleration
39 direction.normalize()
40 steering.linear = strength * direction
41

42 # We’ve gone through all targets, return the result
43 return steering

Implementation Notes

In the algorithm above, we simply look at each possible character in turn and work
out whether we need to separate from them. For a small number of characters, this
will be the fastest approach. For a few hundred characters in a level, we need a faster
method.

Typically, graphics and physics engines rely on techniques to determine what ob-
jects are close to one another. Objects are stored in spatial data structures, so it is rel-
atively easy to make this kind of query. Multi-resolution maps, quad- or octrees, and
binary space partition (BSP) trees are all popular data structures for rapidly calculat-
ing potential collisions. Each of these can be used by the AI to get potential targets
more efficiently.
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Implementing a spatial data structure for collision detection is beyond the scope
of this book. Other books in this series cover the topic in much more detail, particu-
larly Ericson [2005] and van den Bergen [2003].

Performance

The algorithm is O(1) in memory and O(n) in time, where n is the number of poten-
tial targets to check. If there is some efficient way of pruning potential targets before
they reach the algorithm above, the overall performance in time will improve. A BSP
system, for example, can give O(log n) time, where n is the total number of potential
targets in the game. The algorithm above will always remain linear in the number of
potential targets it checks, however.

Attraction

Using the inverse square law, we can set a negative valued constant of decay and get
an attractive force. The character will be attracted to others within its radius. This is
rarely useful, however.

Some developers have experimented with having lots of attractors and repulsors
in their level and having character movement mostly controlled by these. Characters
are attracted to their goals and repelled from obstacles, for example. Despite being
ostensibly simple, this approach is full of traps for the unwary.

The next section, on combining steering behaviors, shows why simply having lots
of attractors or repulsors leads to characters that regularly get stuck, and why starting
with a more complex algorithm ends up being less work in the long run.

Independence

The separation behavior isn’t much use on its own. Characters will jiggle out of sep-
aration, but then never move again. Separation, along with the remaining behaviors
in this chapter, is designed to work in combination with other steering behaviors. We
return to how this combination works in the next section.

3.3.14 COLLISION AVOIDANCE

In urban areas, it is common to have large numbers of characters moving around the
same space. These characters have trajectories that cross each other, and they need to
avoid constant collisions with other moving characters.

A simple approach is to use a variation of the evade or separation behavior, that
only engages if the target is within a cone in front of the character. Figure 3.20 shows
the cone that has another character inside it.
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The cone check can be carried out using a dot product:

1 if orientation.asVector() . direction > coneThreshold:
2 # do the evasion
3 else:
4 # return no steering

where direction is the direction between the behavior’s character and the potential
collision. The coneThreshold value is the cosine of the cone half-angle, as shown in
Figure 3.20.

If there are several characters in the cone, then the behavior needs to avoid them
all. It is often sufficient to find the average position and speed of all characters in
the cone and evade that target. Alternatively, the closest character in the cone can be
found and the rest ignored.

Unfortunately, this approach, while simple to implement, doesn’t work well with
more than a handful of characters. The character does not take into account whether
it will actually collide, but has a “panic” reaction to even coming close. Figure 3.21
shows a simple situation where the character will never collide, but our naive collision
avoidance approach will still take action.

Figure 3.22 shows another problem situation. Here the characters will collide, but
neither will take evasive action because they will not have the other in their cone until
the moment of collision.

A better solution works out whether or not the characters will collide if they keep
to their current velocity. This involves working out the closest approach of the two
characters and determining if the distance at this point is less than some threshold
radius. This is illustrated in Figure 3.23.

Note that the closest approach will not normally be the same as the point where
the future trajectories cross. The characters may be moving at very different velocities,

Ignored character

Character to avoid

Half-angle of the cone

Figure 3.20 Separation cones for collision avoidance
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Figure 3.21 Two in-cone characters who will not collide
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Figure 3.23 Collision avoidance using collision prediction
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so are likely to reach the same point at different times. We simply can’t see if their
paths will cross to check if the characters will collide. Instead, we have to find the
moment that they are at their closest and use this to derive their separation and check
if they collide.

The time of closest approach is given by

tclosest = dp.dv

|dv|2
,

where dp is the current relative position of target to character (what we called the
distance vector from previous behaviors):

dp = pt − pc

and dv is the relative velocity:

dv = vt − vc.

If the time of closest approach is negative, then the character is already moving
away from the target, and no action needs to be taken.

From this time, the position of character and target at the time of closest approach
can be calculated:

p′
c = pc + vctclosest,

p′
t = pt + vt tclosest.

We then use these positions as the basis of an evade behavior; we are performing
an evasion based on our predicted future positions, rather than our current positions.
In other words, the behavior makes the steering correction now, as if it were already
at the most compromised position it will get to.

For a real implementation it is worth checking if the character and target are
already in collision. In this case, action can be taken immediately, without going
through the calculations to work out if they will collide at some time in the future. In
addition, this approach will not return a sensible result if the centers of the character
and target will collide at some point. A sensible implementation will have some spe-
cial case code for this unlikely situation to make sure that the characters will sidestep
in different directions. This can be as simple as falling back to the evade behavior on
the current positions of the character.

For avoiding groups of characters, averaging positions and velocities do not work
well with this approach. Instead, the algorithm needs to search for the character
whose closest approach will occur first and to react to this character only. Once this
imminent collision is avoided, the steering behavior can then react to more distant
characters.
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Pseudo-Code

1 class CollisionAvoidance:
2

3 # Holds the kinematic data for the character
4 character
5

6 # Holds the maximum acceleration
7 maxAcceleration
8

9 # Holds a list of potential targets
10 targets
11

12 # Holds the collision radius of a character (we assume
13 # all characters have the same radius here)
14 radius
15

16 def getSteering():
17

18 # 1. Find the target that’s closest to collision
19

20 # Store the first collision time
21 shortestTime = infinity
22

23 # Store the target that collides then, and other data
24 # that we will need and can avoid recalculating
25 firstTarget = None
26 firstMinSeparation
27 firstDistance
28 firstRelativePos
29 firstRelativeVel
30

31 # Loop through each target
32 for target in targets:
33

34 # Calculate the time to collision
35 relativePos = target.position - character.position
36 relativeVel = target.velocity - character.velocity
37 relativeSpeed = relativeVel.length()
38 timeToCollision = (relativePos . relativeVel) /
39 (relativeSpeed * relativeSpeed)
40

41 # Check if it is going to be a collision at all
42 distance = relativePos.length()
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43 minSeparation = distance-relativeSpeed*shortestTime
44 if minSeparation > 2*radius: continue
45

46 # Check if it is the shortest
47 if timeToCollision > 0 and
48 timeToCollision < shortestTime:
49

50 # Store the time, target and other data
51 shortestTime = timeToCollision
52 firstTarget = target
53 firstMinSeparation = minSeparation
54 firstDistance = distance
55 firstRelativePos = relativePos
56 firstRelativeVel = relativeVel
57

58 # 2. Calculate the steering
59

60 # If we have no target, then exit
61 if not firstTarget: return None
62

63 # If we’re going to hit exactly, or if we’re already
64 # colliding, then do the steering based on current
65 # position.
66 if firstMinSeparation <= 0 or distance < 2*radius:
67 relativePos = firstTarget.position -
68 character.position
69

70 # Otherwise calculate the future relative position
71 else:
72 relativePos = firstRelativePos +
73 firstRelativeVel * shortestTime
74

75 # Avoid the target
76 relativePos.normalize()
77 steering.linear = relativePos * maxAcceleration
78

79 # Return the steering
80 return steering

Performance

The algorithm is O(1) in memory and O(n) in time, where n is the number of poten-
tial targets to check.
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Figure 3.24 Collision ray avoiding a wall

As in the previous algorithm, if there is some efficient way of pruning potential
targets before they reach the algorithm above, the overall performance in time will
improve. This algorithm will always remain linear in the number of potential targets
it checks, however.

3.3.15 OBSTACLE AND WALL AVOIDANCE

The collision avoidance behavior assumes that targets are spherical. It is interested in
avoiding getting too close to the center point of the target.

This can also be applied to any obstacle in the game that is easily represented by a
bounding sphere. Crates, barrels, and small objects can be avoided simply this way.

More complex obstacles cannot be easily represented in this way. The bounding
sphere of a large object, such as a staircase, can fill a room. We certainly don’t want
characters sticking to the outside of the room just to avoid a staircase in the corner.
By far the most common obstacles in the game, walls, cannot be simply represented
by bounding spheres at all.

The obstacle and wall avoidance behavior uses a different approach to avoiding
collisions. The moving character casts one or more rays out in the direction of its
motion. If these rays collide with an obstacle, then a target is created that will avoid
the collision, and the character does a basic seek on this target. Typically, the rays are
not infinite. They extend a short distance ahead of the character (usually a distance
corresponding to a few seconds of movement).

Figure 3.24 shows a character casting a single ray that collides with a wall. The
point and normal of the collision with the wall is used to create a target location at a
fixed distance from the surface.

Pseudo-Code

1 class ObstacleAvoidance (Seek):
2
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3 # Holds a collision detector
4 collisionDetector
5

6 # Holds the minimum distance to a wall (i.e., how far
7 # to avoid collision) should be greater than the
8 # radius of the character.
9 avoidDistance

10

11 # Holds the distance to look ahead for a collision
12 # (i.e., the length of the collision ray)
13 lookahead
14

15 # ... Other data is derived from the superclass ...
16

17 def getSteering():
18

19 # 1. Calculate the target to delegate to seek
20

21 # Calculate the collision ray vector
22 rayVector = character.velocity
23 rayVector.normalize()
24 rayVector *= lookahead
25

26 # Find the collision
27 collision = collisionDetector.getCollision(
28 character.position, rayVector)
29

30 # If have no collision, do nothing
31 if not collision: return None
32

33 # Otherwise create a target
34 target = collision.position + collision.normal * avoidDistance
35

36 # 2. Delegate to seek
37 return Seek.getSteering()

Data Structures and Interfaces

The collision detector has the following interface:

1 class CollisionDetector:
2 def getCollision(position, moveAmount)
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where getCollision returns the first collision for the character if it begins at the given
position and moves by the given movement amount. Collisions in the same direction,
but farther than moveAmount, are ignored.

Typically, this call is implemented by casting a ray from position to position +
moveAmount and checking for intersections with walls or other obstacles.

The getCollision method returns a collision data structure of the form

1 struct Collision:
2 position
3 normal

where position is the collision point, and normal is the normal of the wall at the
point of collision. This is standard data to expect from a collision detection routine,
and most provide it as a matter of course.

Performance

The algorithm is O(1) in both time and memory, excluding the performance of the
collision detector (or rather, assuming that the collision detector is O(1)). In reality,
collision detection using ray casts is quite expensive and is almost certainly not O(1)
(it normally depends on the complexity of the environment). You should expect that
most of the time spent in this algorithm will be spent in the collision detection rou-
tine.

Collision Detection Problems

So far we have assumed that we are detecting collisions with a single ray cast. In prac-
tice, this isn’t a good solution.

Figure 3.25 shows a one-ray character colliding with a wall that it never detects.
Typically, a character will need to have two or more rays. The figure shows a three-
ray character, with the rays splayed out to act like whiskers. This character will not
graze the wall.

There are a handful of basic ray configurations used over and over for wall avoid-
ance. Figure 3.26 illustrates these.

There are no hard and fast rules as to which configuration is better. Each has their
own particular idiosyncrasies. A single ray with short whiskers is often the best initial
configuration to try, but can make it impossible for the character to move down tight
passages. The single ray configuration is useful in concave environments, but grazes
convex obstacles. The parallel configuration works well in areas where corners are
highly obtuse, but is very susceptible to the corner trap, as we’ll see.
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Figure 3.26 Ray configurations for obstacle avoidance

The Corner Trap

The basic algorithm for multi-ray wall avoidance can suffer from a crippling problem
with acute angled corners (any convex corner, in fact, but it is more prevalent with
acute angles). Figure 3.27 illustrates a trapped character. Currently, its left ray is col-
liding with the wall. The steering behavior will therefore turn it to the left to avoid the
collision. Immediately, the right ray will then be colliding, and the steering behavior
will turn the character to the right.

When the character is run in the game, it will appear to home into the corner
directly, until it slams into the wall. It will be unable to free itself from the trap.

The fan structure, with a wide enough fan angle, alleviates this problem. Often,
there is a trade-off, however, between avoiding the corner trap with a large fan an-
gle and keeping the angle small to allow the character to access small passageways.
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Figure 3.27 The corner trap for multiple rays

Projected 
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Figure 3.28 Collision detection with projected volumes

At worst, with a fan angle near π radians, the character will not be able to respond
quickly enough to collisions detected on its side rays and will still graze against walls.

Several developers have experimented with adaptive fan angles. If the character is
moving successfully without a collision, then the fan angle is narrowed. If a collision
is detected, then the fan angle is widened. If the character detects many collisions on
successive frames, then the fan angle will continue to widen, reducing the chance that
the character is trapped on a corner.

Other developers implement specific corner-trap avoidance code. If a corner trap
is detected, then one of the rays is considered to have won, and the collisions detected
by other rays are ignored for a while.
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Figure 3.29 Steering family tree

Both approaches work well and represent the most practical solutions to the prob-
lem. The only complete solution, however, is to perform the collision detection using
a projected volume rather than a ray, as shown in Figure 3.28.

Many game engines are capable of doing this, for the sake of modelling realis-
tic physics. Unlike for AI, the projection distances required by physics are typically
very small, however, and the calculations can be very slow when used in a steering
behavior.

In addition, there are complexities involved in interpreting the collision data re-
turned from a volume query. Unlike for physics, it is not the first collision point that
needs to be considered (this could be the edge of a polygon on one extreme of the
character model), but how the overall character should react to the wall. So far there
is no widely trusted mechanism for doing volume prediction in wall avoidance.

For now, it seems that the most practical solution is to use adaptive fan angles,
with one long ray cast and two shorter whiskers.

3.3.16 SUMMARY

Figure 3.29 shows a family tree of the steering behaviors we have looked at in this sec-
tion. I’ve marked a steering behavior as a child of another if it can be seen as extending
the behavior of its parent.
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3.4 COMBINING STEERING BEHAVIORS

Individually, steering behaviors can achieve a good degree of movement sophistica-
tion. In many games steering simply consists of moving toward a given location: the
seek behavior.

Higher level decision making tools are responsible for determining where the
character intends to move. This is often a pathfinding algorithm, generating inter-
mediate targets on the path to a final goal.

This only gets us so far, however. A moving character usually needs more than
one steering behavior. It needs to reach its goal, avoid collisions with other charac-
ters, tend toward safety as it moves, and avoid bumping into walls. Wall and obstacle
avoidance can be particularly difficult to get when working with other behaviors. In
addition, some complex steering, such as flocking and formation motion, can only be
accomplished when more than one steering behavior is active at once.

This section looks at increasingly sophisticated ways of accomplishing this com-
bination: from simple blending of steering outputs to complicated pipeline architec-
tures designed explicitly to support collision avoidance.

3.4.1 BLENDING AND ARBITRATION

By combining steering behaviors together, more complex movement can be achieved.
There are two methods of combining steering behaviors: blending and arbitration.

Each method takes a portfolio of steering behaviors, each with their own outputs,
and generates a single overall steering output. Blending does this by executing all the
steering behaviors and combining their results using some set of weights or priorities.
This is sufficient to achieve some very complex behaviors, but suffers problems when
there are a lot of constraints on how a character can move. Arbitration selects one or
more steering behaviors to have complete control over the character. There is a whole
range of arbitration schemes that control which behavior gets to have its way.

Blending and arbitration are not exclusive approaches, however. They are the ends
of a continuum.

Blending may have weights or priorities that change over time. Some process
needs to change these weights, and this might be in response to the game situation or
the internal state of the character. The weights used for some steering behaviors may
be zero; they are effectively switched off.

At the same time, there is nothing that requires an arbitration architecture to
return a single steering behavior to execute. It may return a set of blending weights
for combining a set of different behaviors.

A general steering system needs to combine elements of both blending and arbi-
tration. Although we’ll look at different algorithms for each, an ideal implementation
will mix elements of both.
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3.4.2 WEIGHTED BLENDING

The simplest way to combine steering behaviors is to blend their results together using
weights.

Suppose we have a crowd of rioting characters in our game. The characters need
to move as a mass, while making sure that they aren’t consistently bumping into each
other. Each character needs to stay by the others, while keeping a safe distance. Their
overall behavior is a blend of two behaviors: arriving at the center of mass of the
group and separation from nearby characters. At no point is the character doing just
one thing. It is always taking both concerns into consideration.

The Algorithm

A group of steering behaviors can be blended together to act as a single behavior. Each
steering behavior in the portfolio is asked for its acceleration request, as if it were the
only behavior operating.

These accelerations are combined together using a weighted linear sum, with co-
efficients specific to each behavior. There are no constraints on the blending weights;
they don’t have to sum to one, for example, and rarely do (i.e., it isn’t a weighted
mean).

The final acceleration from the sum may be too great for the capabilities of the
character, so it is trimmed according to the maximum possible acceleration (a more
complex actuation step can always be used: see Section 3.8 on actuation later in the
chapter).

In our crowd example, we may use weights of 1 for both separation and cohesion.
In this case the requested accelerations are summed and cropped to the maximum
possible acceleration. This is the output of the algorithm. Figure 3.30 illustrates this
process.

As in all parameterized systems, the choice of weights needs to be the subject of
inspired guesswork or good trial and error. There have been research projects that
have tried to evolve the steering weights using genetic algorithms or neural networks.

Separation Resulting
acceleration

Cohesion

Figure 3.30 Blending steering outputs
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Results have not been encouraging, however, and manual experimentation still seems
to be the most sensible approach.

Pseudo-Code

The algorithm for blended steering is as follows:

1 class BlendedSteering:
2

3 struct BehaviorAndWeight:
4 behavior
5 weight
6

7 # Holds a list of BehaviorAndWeight instances.
8 behaviors
9

10 # Holds the maximum acceleration and rotation
11 maxAcceleration
12 maxRotation
13

14 # Returns the acceleration required.
15 def getSteering():
16

17 # Create the steering structure for accumulation
18 steering = new Steering()
19

20 # Accumulate all accelerations
21 for behavior in behaviors:
22 steering += behavior.weight *
23 behavior.behavior.getSteering()
24

25 # Crop the result and return
26 steering.linear = max(steering.linear, maxAcceleration)
27 steering.angular = max(steering.angular, maxRotation)
28 return steering

Data Structures

We have assumed that instances of the steering structure can be added together and
multiplied by a scalar. In each case these operations should be performed component-
wise (i.e., each linear and angular component should individually be added and mul-
tiplied).
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Performance

The algorithm requires only temporary storage for the acceleration. It is O(1) in
memory. It is O(n) for time, where n is the number of steering behaviors in the list.
The practical execution speed of this algorithm depends on the efficiency of the com-
ponent steering behaviors.

Flocking and Swarming

The original research into steering behaviors by Craig Reynolds modelled the move-
ment patterns of flocks of simulated birds (known as “boids”). Flocking is the most
common steering behavior, relying on a simple weighted blend of simpler behaviors.

It is so ubiquitous that all steering behaviors are sometimes referred to, incor-
rectly, as “flocking.” I’ve even seen AI programmers fall into this habit at times.

The flocking algorithm relies on blending three simple steering behaviors: move
away from boids that are too close (separation), move in the same direction and at
the same velocity as the flock (alignment and velocity matching), and move toward
the center of mass of the flock (cohesion). The cohesion steering behavior calculates
its target by working out the center of mass of the flock. It then hands off this target
to a regular arrive behavior.

For simple flocking, using equal weights may be sufficient. In general, however,
separation is more important than cohesion, which is more important than align-
ment. The latter two are sometimes seen reversed.

These behaviors are shown schematically in Figure 3.31.
In most implementations the flocking behavior is modified to ignore distant

boids. In each behavior there is a neighborhood in which other boids are consid-
ered. Separation only avoids nearby boids; cohesion and alignment calculate and seek

Separation

Cohesion

Result

Match velocity/align

Center of
gravity

Average
velocity

Figure 3.31 The three components of flocking behaviors
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Figure 3.32 The neighborhood of a boid

the position, facing, and velocity of only neighboring boids. The neighborhood is
most commonly a simple radius cut-off, although Reynolds suggests it should have
an angular cut-off, shown in Figure 3.32.

On the CD

There is a Flocking program on the CD that demonstrates the classic flocking algo-

PROGRAM

rithm in two dimensions, modelling a herd of animals. You can switch on and off
each of the three component behaviors at any time to see the contribution they make
to the whole movement.

Problems

There are several important problems with blended steering behaviors in real games.
It is no coincidence that demonstrations of blended steering often use very sparse
outdoor environments, rather than indoor or urban levels.

In more realistic settings, characters can often get stuck in the environment in
ways that are difficult to debug. As with all AI techniques, it is essential to be able to
get good debugging information when you need it and at the very least to be able to
visualize the inputs and outputs to each steering behavior in the blend.

Some of these problems, but by no means all of them, will be solved by introduc-
ing arbitration into the steering system.

Stable Equilibria

Blending steering behaviors causes problems when two steering behaviors want to
do conflicting things. This can lead to the character doing nothing, being trapped at
an equilibrium. In Figure 3.33, the character is trying to reach its destination while
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Figure 3.34 A stable equilibrium

avoiding the enemy. The seek steering behavior is precisely balanced against the evade
behavior.

This balance will soon sort itself out. As long as the enemy is stationary, numer-
ical instability will give the character a minute lateral velocity. It will skirt around
increasingly quickly before making a dash for the destination. This is an unstable
equilibrium.

Figure 3.34 shows a more serious situation. Here, if the character does make it out
of equilibrium slightly (by numerical error, for example), it will immediately head
back into equilibrium. Here there is no escape for the character. It will stay fixed to
the spot, looking stupid and indecisive. The equilibrium is stable.

Stable equilibria have a basin of attraction: the region of the level where a char-
acter will fall into the equilibrium point. If this basin is large, then the chances of a
character becoming trapped are very large. Figure 3.34 shows a basin of attraction
that extends in a corridor for an unlimited distance. Unstable equilibria effectively
have a basin of zero size.

Basins of attraction aren’t only defined by a set of locations. They might only
attract characters that are travelling in a particular direction or that have a particular
orientation. For this reason they can be very difficult to visualize and debug.
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Constrained Environments

Steering behaviors, either singly or blended, work well in environments with few con-
straints. Movement in an open 3D space has the fewest constraints. Most games, how-
ever, take place in constrained 2D worlds. Indoor environments, racetracks, and for-
mation motion all greatly increase the number of constraints on a character’s move-
ment.

Figure 3.35 shows a chasing steering behavior returning a pathological suggestion
for the motion of a character. The pursue behavior alone would collide with the wall,
but adding the wall avoidance makes the direction even farther from the correct route
for capturing the enemy.

This problem is often seen in characters trying to move at acute angles through
narrow doorways, as shown in Figure 3.36. The obstacle avoidance behavior kicks in
and can send the character past the door, missing the route it wanted to take.

The problem of navigating into narrow passages is so perennial that many devel-
opers deliberately get their level designers to make wide passages where AI characters
need to navigate.

Wall
avoidance

Result

Pursue

Pursued enemy

Figure 3.35 Can’t avoid an obstacle and chase

Resulting acceleration

Collision
ray Route of character

Target

Figure 3.36 Missing a narrow doorway
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Figure 3.37 Long distance failure in a steering behavior

Nearsightedness

Steering behaviors act locally. They make decisions based on their immediate sur-
roundings only. As human beings, we anticipate the result of our actions and evaluate
if it will be worth it. Basic steering behaviors can’t do this, so they often take the wrong
course of action to reach their goal.

Figure 3.37 shows a character avoiding a wall using a standard wall avoidance
technique. The movement of the character catches the corner on just the wrong side.
It will never catch the enemy now, but it won’t realize that for a while.

There is no way to augment steering behaviors to get around this problem. Any
behavior that does not look ahead can be foiled by problems that are beyond its hori-
zon. The only way to solve this is to incorporate pathfinding into the steering system.
This integration is discussed below, and the pathfinding algorithms themselves are
found in the next chapter.

3.4.3 PRIORITIES

We have met a number of steering behaviors that will only request an acceleration
in particular conditions. Unlike seek or evade, which always produce an acceleration,
collision avoidance, separation, and arrive will suggest no acceleration in many cases.

When these behaviors do suggest an acceleration, it is unwise to ignore it. A colli-
sion avoidance behavior, for example, should be honored immediately to avoid bang-
ing into another character.

When behaviors are blended together, their acceleration requests are diluted by
the requests of the others. A seek behavior, for example, will always be returning
maximum acceleration in some direction. If this is blended equally with a collision
avoidance behavior, then the collision avoidance behavior will never have more than
50% influence over the motion of the character. This may not be enough to get the
character out of trouble.
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The Algorithm

A variation of behavior blending replaces weights with priorities. In a priority-based
system, behaviors are arranged in groups with regular blending weights. These groups
are then placed in priority order.

The steering system considers each group in turn. It blends the steering behav-
iors in the group together, exactly as before. If the total result is very small (less than
some small, but adjustable, parameter), then it is ignored and the next group is con-
sidered. It is best not to check against zero directly, because numerical instability in
calculations can mean that a zero value is never reached for some steering behaviors.
Using a small constant value (conventionally called the epsilon parameter) avoids this
problem.

When a group is found with a result that isn’t small, its result is used to steer the
character.

A pursuing character working in a team, for example, may have three groups:
a collision avoidance group, a separation group, and a pursuit group. The colli-
sion avoidance group contains behaviors for obstacle avoidance, wall avoidance, and
avoiding other characters. The separation group simply contains the separation be-
havior, which is used to avoid getting too close to other members of the chasing pack.
The pursuit group contains the pursue steering behavior used to home in on the tar-
get.

If the character is far from any interference, the collision avoidance group will
return with no desired acceleration. The separation group will then be considered,
but will also return with no action. Finally, the pursuit group will be considered, and
the acceleration needed to continue the chase will be used. If the current motion of
the character is perfect for the pursuit, this group may also return with no accelera-
tion. In this case, there are no more groups to consider, so the character will have no
acceleration: just as if they’d been exclusively controlled by the pursuit behavior.

In a different scenario, if the character is about to crash into a wall, the first group
will return an acceleration which will help avoid the crash. The character will carry
out this acceleration immediately, and the steering behaviors in the other groups will
never be considered.

Pseudo-Code

The algorithm for priority-based steering is as follows:

1 class PrioritySteering:
2

3 # Holds a list of BlendedSteering instances, which in turn
4 # contain sets of behaviors with their blending weights.
5 groups
6
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7 # Holds the epsilon parameter, should be a small value
8 epsilon
9

10 # Returns the acceleration required.
11 def getSteering():
12

13 # Go through each group
14 for group in groups:
15

16 # Create the steering structure for accumulation
17 steering = group.getSteering()
18

19 # Check if we’re above the threshold, if so return
20 if steering.linear.length() > epsilon or
21 abs(steering.angular) > epsilon:
22 return steering
23

24 # If we get here, it means that no group had a large
25 # enough acceleration, so return the small
26 # acceleration from the final group.
27 return steering

Data Structures and Interfaces

The priority steering algorithm uses a list of BlendedSteering instances. Each instance
in this list makes up one group, and within that group the algorithm uses the code we
created before to blend behaviors together.

Implementation Notes

The algorithm relies on being able to find the absolute value of a scalar (the angu-
lar acceleration) using the abs function. This function is found in most standard li-
braries.

The method also uses the length method to find the magnitude of a linear ac-
celeration vector. Because we’re only comparing the result with a fixed epsilon value,
we may as well get the squared magnitude and use that (making sure our epsilon
value is suitable for comparing against a squared distance). This saves a square root
calculation.

On the CD

PROGRAM The Combining Steering program on the CD lets you see this in action.
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Initially, the character moving around has a two stage priority-based steering be-
havior, and the priority stage that is in control is shown. Most of the time the character
will wander around, and its lowest level behavior is active. When the character comes
close to an obstacle, its higher priority avoidance behavior is run, until it is no longer
in danger of colliding.

You can switch the character to blend its two steering behaviors. Now it will wan-
der and avoid obstacles at the same time. Because the avoidance behavior is being
diluted by the wander behavior, you will notice the character responding less effec-
tively to obstacles.

Performance

The algorithm requires only temporary storage for the acceleration. It is O(1) in
memory. It is O(n) for time, where n is the total number of steering behaviors in
all the groups. Once again, the practical execution speed of this algorithm depends
on the efficiency of the getSteering methods for the steering behaviors it contains.

Equilibria Fallback

One notable feature of this priority-based approach is its ability to cope with stable
equilibria. If a group of behaviors is in equilibrium, its total acceleration will be near
zero. In this case the algorithm will drop down to the next group to get an accelera-
tion.

By adding a single behavior at the lowest priority (wander is a good candidate),
equilibria can be broken by reverting to a fallback behavior. This situation is illus-
trated in Figure 3.38.

Weaknesses

While this works well for unstable equilibria (it avoids the problem with slow creep-
ing around the edge of an exclusion zone, for example), it cannot avoid large stable
equilibria.

In a stable equilibrium the fallback behavior will engage at the equilibrium point
and move the character out, whereupon the higher priority behaviors will start to
generate acceleration requests. If the fallback behavior has not moved the character
out of the basin of attraction, the higher priority behaviors will steer the character
straight back to the equilibrium point. The character will oscillate in and out of equi-
librium, but never escape.
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Figure 3.38 Priority steering avoiding unstable equilibrium

Variable Priorities

The algorithm above uses a fixed order to represent priorities. Groups of behavior
that appear earlier in the list will take priority over those appearing later in the list. In
most cases priorities are fairly easy to fix: a collision avoidance, when activated, will
always take priority over a wander behavior, for example.

In some cases, however, we’d like more control. A collision avoidance behavior
may be low priority as long as the collision isn’t imminent, becoming absolutely crit-
ical near the last possible opportunity for avoidance.

We can modify the basic priority algorithm by allowing each group to return a
dynamic priority value. In the PrioritySteering.getSteering method, we initially
request the priority values and then sort the groups into priority order. The remainder
of the algorithm operates in exactly the same way as before.

Despite providing a solution for the occasional stuck character, there is only a
minor practical advantage to using this approach. On the other hand, the process of
requesting priority values and sorting the groups into order adds time. Although it is
an obvious extension, my feeling is that if you are going in this direction, you may as
well bite the bullet and upgrade to a full cooperative arbitration system.

3.4.4 COOPERATIVE ARBITRATION

So far we’ve looked at combining steering behaviors in an independent manner. Each
steering behavior knows only about itself and always returns the same answer. To
calculate the resulting steering acceleration, we select one or blend together several of
these results. This approach has the advantage that individual steering behaviors are
very simple and easily replaced. They can be tested on their own.
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Figure 3.39 An imminent collision during pursuit

But as we’ve seen, there are a number of significant weaknesses in the approach
that make it difficult to let characters loose without glitches appearing.

There is a trend toward increasingly sophisticated algorithms for combining steer-
ing behaviors. A core feature of this trend is the cooperation among different behav-
iors.

Suppose, for example, a character is chasing a target using a pursue behavior.
At the same time it is avoiding collisions with walls. Figure 3.39 shows a possible
situation. The collision is imminent and so needs to be avoided.

The collision avoidance behavior generates an avoidance acceleration away from
the wall. Because the collision is imminent, it takes precedence, and the character is
accelerated away.

The overall motion of the character is shown in Figure 3.39. It slows dramatically
when it is about to hit the wall because the wall avoidance behavior is providing only
a tangential acceleration.

The situation could be mitigated by blending the pursue and wall avoidance be-
haviors (although, as we’ve seen, simple blending would introduce other movement
problems in situations with unstable equilibria). Even in this case it would still be
noticeable because the forward acceleration generated by pursue is diluted by wall
avoidance.

To get a believable behavior, we’d like the wall avoidance behavior to take into
account what pursue is trying to achieve. Figure 3.40 shows a version of the same
situation. Here the wall avoidance behavior is context sensitive; it understands where
the pursue behavior is going, and it returns an acceleration which takes both concerns
into account.

Obviously, taking context into account in this way increases the complexity of the
steering algorithm. We can no longer use simple building blocks that selfishly do their
own thing.
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Figure 3.40 A context-sensitive wall avoidance

Many collaborative arbitration implementations are based on techniques we will
cover in Chapter 5 on decision making. It makes sense; we’re effectively making deci-
sions about where and how to move. Decision trees, state machines, and blackboard
architectures have all been used to control steering behaviors. Blackboard architec-
tures, in particular, are suited to cooperating steering behaviors: each behavior is an
expert that can read (from the blackboard) what other behaviors would like to do
before having its own say.

As yet it isn’t clear whether one approach will become the de facto standard for
games. Cooperative steering behaviors is an area that many developers have inde-
pendently stumbled across, and it is likely to be some time before any consensus is
reached on an ideal implementation.

Even though it lacks consensus, I think it is worth looking in depth at an example.
So I’ll introduce the steering pipeline algorithm, an example of a dedicated approach
that doesn’t use the decision making technology in Chapter 5.

3.4.5 STEERING PIPELINE

The steering pipeline approach was pioneered by a former colleague of mine, Marcin
Chady, as an intermediate step between simply blending or prioritizing steering be-
haviors and implementing a complete movement planning solution (discussed in
Chapter 4). It is a cooperative arbitration approach that allows constructive interac-
tion between steering behaviors. It provides excellent performance in a range of situa-
tions that are normally problematic, including tight passages and integrating steering
with pathfinding. So far it has been used by only a small number of developers.

Bear in mind when reading this section that this is just one example of a cooper-
ative arbitration approach. I’m not suggesting this is the only way it can be done.
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Figure 3.41 Steering pipeline

Algorithm

Figure 3.41 shows the general structure of the steering pipeline.
There are four stages in the pipeline: the targeters work out where the movement

goal is; decomposers provide sub-goals that lead to the main goal; constraints limit
the way a character can achieve a goal; and the actuator limits the physical movement
capabilities of a character.

In all but the final stage, there can be one or more components. Each component
in the pipeline has a different job to do. All are steering behaviors, but the way they
cooperate depends on the stage.

Targeters

Targeters generate the top-level goal for a character. There can be several targets: a po-
sitional target, an orientation target, a velocity target, and a rotation target. We call
each of these elements a channel of the goal (i.e., position channel, velocity channel,
etc.). All goals in the algorithm can have any or all of these channels specified. An
unspecified channel is simply a “don’t care.”

Individual channels can be provided by different behaviors (a chase-the-enemy
targeter may generate the positional target, while a look-toward targeter may pro-
vide an orientation target), or multiple channels can be requested by a single targeter.
When multiple targeters are used, only one may generate a goal in each channel. The
algorithm we develop here trusts that the targeters cooperate in this way. No effort is
made to avoid targeters overwriting previously set channels.

To the greatest extent possible, the steering system will try to fulfil all channels,
although some sets of targets may be impossible to achieve all at once. We’ll come
back to this possibility in the actuation stage.
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At first glance it can appear odd that we’re choosing a single target for steering.
Behaviors such as run away or avoid obstacle have goals to move away from, not to
seek. The pipeline forces you to think in terms of the character’s goal. If the goal is
to run away, then the targeter needs to choose somewhere to run to. That goal may
change from frame to frame as the pursuing enemy weaves and chases, but there will
still be a single goal.

Other “away from” behaviors, like obstacle avoidance, don’t become goals in the
steering pipeline. They are constraints on the way a character moves and are found in
the constraints stage.

Decomposers

Decomposers are used to split the overall goal into manageable sub-goals that can be
more easily achieved.

The targeter may generate a goal somewhere across the game level, for example.
A decomposer can check this goal, see that is not directly achievable, and plan a com-
plete route (using a pathfinding algorithm, for example). It returns the first step in
that plan as the sub-goal. This is the most common use for decomposers: to incorpo-
rate seamless path planning into the steering pipeline.

There can be any number of decomposers in the pipeline, and their order is sig-
nificant. We start with the first decomposer, giving it the goal from the targeter stage.
The decomposer can either do nothing (if it can’t decompose the goal) or can return
a new sub-goal. This sub-goal is then passed to the next decomposer, and so on, until
all decomposers have been queried.

Because the order is strictly enforced, we can perform hierarchical decomposi-
tion very efficiently. Early decomposers should act broadly, providing large-scale de-
composition. For example, they might be implemented as a coarse pathfinder. The
sub-goal returned will still be a long way from the character. Later decomposers can
then refine the sub-goal by decomposing it. Because they are decomposing only the
sub-goal, they don’t need to consider the big picture, allowing them to decompose
in more detail. This approach will seem familiar when we’ve looked at hierarchical
pathfinding in the next chapter. With a steering pipeline in place, we don’t need a
hierarchical pathfinding engine; we can simply use a set of decomposers pathfinding
on increasingly detailed graphs.

Constraints

Constraints limit the ability of a character to achieve their goal or sub-goal. They
detect if moving toward the current sub-goal is likely to violate the constraint, and
if so, they suggest a way to avoid it. Constraints tend to represent obstacles: moving
obstacles like characters or static obstacles like walls.

Constraints are used in association with the actuator, described below. The actu-
ator works out the path that the character will take toward its current sub-goal. Each
constraint is allowed to review that path and determine if it is sensible. If the path will
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Figure 3.42 Collision avoidance constraint

violate a constraint, then it returns a new sub-goal that will avoid the problem. The
actuator can then work out the new path and check if that one works, and so on, until
a valid path has been found.

It is worth bearing in mind that the constraint may only provide certain channels
in its sub-goal. Figure 3.42 shows an upcoming collision. The collision avoidance con-
straint could generate a positional sub-goal, as shown, to force the character to swing
around the obstacle. Equally, it could leave the position channel alone and suggest a
velocity pointing away from the obstacle, so that the character drifts out from its col-
lision line. The best approach depends to a large extent on the movement capabilities
of the character and, in practice, takes some experimentation.

Of course, solving one constraint may violate another constraint, so the algorithm
may need to loop around to find a compromise where every constraint is happy. This
isn’t always possible, and the steering system may need to give up trying to avoid
getting into an endless loop. The steering pipeline incorporates a special steering be-
havior, deadlock, that is given exclusive control in this situation. This could be imple-
mented as a simple wander behavior in the hope that the character will wander out of
trouble. For a complete solution, it could call a comprehensive movement planning
algorithm.

The steering pipeline is intended to provide believable yet lightweight steering
behavior, so that it can be used to simulate a large number of characters. We could
replace the current constraint satisfaction algorithm with a full planning system, and
the pipeline would be able to solve arbitrary movement problems. I’ve found it best to
stay simple, however. In the majority of situations, the extra complexity isn’t needed,
and the basic algorithm works fine.

As it stands, the algorithm is not always guaranteed to direct an agent through a
complex environment. The deadlock mechanism allows us to call upon a pathfinder
or another higher level mechanism to get out of trickier situations. The steering sys-
tem has been specially designed to allow you to do that only when necessary, so that
the game runs at the maximum speed. Always use the simplest algorithms that work.
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The Actuator

Unlike each of the other stages of the pipeline, there is only one actuator per char-
acter. The actuator’s job is to determine how the character will go about achieving
its current sub-goal. Given a sub-goal, and its internal knowledge about the physical
capabilities of the character, it returns a path indicating how the character will move
to the goal.

The actuator also determines which channels of the sub-goal take priority and
whether any should be ignored.

For simple characters, like a walking sentry or a floating ghost, the path can be
extremely simple: head straight for the target. They can often ignore velocity and
rotation channels and simply make sure the character is facing the target.

If the actuator does honor velocities, and the goal is to arrive at the target with
a particular velocity, we may choose to swing around the goal and take a run up, as
shown in Figure 3.43.

More constrained characters, like an AI-controlled car, will have more complex
actuation: the car can’t turn while stationary, it can’t move in any direction other
than the one in which it is facing, and the grip of the tires limits the maximum turning
speed. The resulting path may be more complicated, and it may be necessary to ignore
certain channels. For example, if the sub-goal wants us to achieve a particular velocity
while facing in a different direction, then we know the goal is impossible. Therefore,
we will probably throw away the orientation channel.

In the context of the steering pipeline, the complexity of actuators is often raised
as a problem with the algorithm. It is worth bearing in mind that this is an implemen-
tation decision; the pipeline supports comprehensive actuators when they are needed
(and you obviously have to pay the price in execution time), but they also support
trivial actuators that take virtually no time at all to run.

Actuation as a general topic is covered later in this chapter, so I’ll avoid getting
into the grimy details at this stage. For the purpose of this algorithm, we will assume
that actuators take a goal and return a description of the path the character will take
to reach it.

Path
taken

Target
velocity

Figure 3.43 Taking a run up to achieve a target velocity
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Eventually, we’ll want to actually carry out the steering. The actuator’s final job is
to return the forces and torques (or other motor controls—see Section 3.8 for details)
needed to achieve the predicted path.

Pseudo-Code

The steering pipeline is implemented with the following algorithm:

1 class SteeringPipeline:
2 # Lists of components at each stage of the pipe
3 targeters
4 decomposers
5 constraints
6 actuator
7

8 # Holds the number of attempts the algorithm will make
9 # to fund an unconstrained route.

10 constraintSteps
11

12 # Holds the deadlock steering behavior
13 deadlock
14

15 # Holds the current kinematic data for the character
16 kinematic
17

18 # Performs the pipeline algorithm and returns the
19 # required forces used to move the character
20 def getSteering():
21

22 # Firstly we get the top level goal
23 goal
24 for targeter in targeters:
25 goal.updateChannels(targeter.getGoal(kinematic))
26

27 # Now we decompose it
28 for decomposer in decomposers:
29 goal = decomposer.decompose(kinematic, goal)
30

31 # Now we loop through the actuation and constraint
32 # process
33 validPath = false
34 for i in 0..constraintSteps:
35
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36 # Get the path from the actuator
37 path = actuator.getPath(kinematic, goal)
38

39 # Check for constraint violation
40 for constraint in constraints:
41 # If we find a violation, get a suggestion
42 if constraint.isViolated(path):
43 goal = constraint.suggest(path, kinematic, goal)
44

45 # Go back to the top level loop to get the
46 # path for the new goal
47 break continue
48

49 # If we’re here it is because we found a valid path
50 return actuator.output(path, kinematic, goal)
51

52 # We arrive here if we ran out of constraint steps.
53 # We delegate to the deadlock behavior
54 return deadlock.getSteering()

Data Structures and Interfaces

We are using interface classes to represent each component in the pipeline. At each
stage, a different interface is needed.

Targeter

Targeters have the form

1 class Targeter:
2 def getGoal(kinematic)

The getGoal function returns the targeter’s goal.

Decomposer

Decomposers have the interface

1 class Decomposer:
2 def decompose(kinematic, goal)
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The decompose method takes a goal, decomposes it if possible, and returns a sub-
goal. If the decomposer cannot decompose the goal, it simply returns the goal it was
given.

Constraint

Constraints have two methods:

1 class Constraint:
2 def willViolate(path)
3 def suggest(path, kinematic, goal)

The willViolate method returns true if the given path will violate the constraint
at some point. The suggest method should return a new goal that enables the charac-
ter to avoid violating the constraint. We can make use of the fact that suggest always
follows a positive result from willViolate. Often, willViolate needs to perform cal-
culations to determine if the path poses a problem. If it does, the results of these
calculations can be stored in the class and reused in the suggest method that follows.
The calculation of the new goal can be entirely performed in the willViolate method,
leaving the suggest method to simply return the result. Any channels not needed in
the suggestion should take their values from the current goal passed into the method.

Actuator

The actuator creates paths and returns steering output:

1 class Actuator:
2 def getPath(kinematic, goal)
3 def output(path, kinematic, goal)

The getPath function returns the route that the character will take to the given
goal. The output function returns the steering output for achieving the given path.

Deadlock

The deadlock behavior is a general steering behavior. Its getSteering function returns
a steering output that is simply returned from the steering pipeline.

Goal

Goals need to store each channel, along with an indication as to whether the channel
should be used. The updateChannel method sets appropriate channels from another
goal object. The structure can be implemented as
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1 struct Goal:
2 # Flags to indicate if each channel is to be used
3 hasPosition, hasOrientation, hasVelocity, hasRotation
4

5 # Data for each channel
6 position, orientation, velocity, rotation
7

8 # Updates this goal
9 def updateChannels(o):

10 if o.hasPosition: position = o.position
11 if o.hasOrientation: orientation = o. orientation
12 if o.hasVelocity: velocity = o. velocity
13 if o.hasRotation: rotation = o. rotation

Paths

In addition to the components in the pipeline, we have used an opaque data structure
for the path. The format of the path doesn’t affect this algorithm. It is simply passed
between steering components unaltered.

I’ve used two different path implementations to drive the algorithm. Pathfinding-
style paths, made up of a series of line segments, give point-to-point movement in-
formation. They are suitable for characters who can turn very quickly, for example,
human beings walking. Point-to-point paths are very quick to generate, they can be
extremely quick to check for constraint violation, and they can be easily turned into
forces by the actuator.

The production version of this algorithm uses a more general path representation.
Paths are made up of a list of maneuvers, such as “accelerate” or “turn with constant
radius.” They are suitable for the most complex steering requirements, including race
car driving which is the ultimate test of a steering algorithm. They can be more dif-
ficult to check for constraint violation, however, because they involve curved path
sections.

It is worth experimenting to see if your game can make do with straight line paths
before going ahead and using maneuver sequences.

Performance

The algorithm is O(1) in memory. It uses only temporary storage for the current goal.
It is O(cn) in time, where c is the number of constraint steps, and n is the number

of constraints. Although c is a constant (and we could therefore say the algorithm
is O(n) in time), it helps to increase its value as more constraints are added to the
pipeline. In the past we’ve used a similar number of constraint steps to the number of
constraints, giving an algorithm O(n2) in time.



122 Chapter 3 Movement

The constraint violation test is at the lowest point in the loop, and its perfor-
mance is critical. Profiling a steering pipeline with no decomposers will show that
most of the time spent executing the algorithm is normally spent in this func-
tion.

Since decomposers normally provide pathfinding, they can be very long run-
ning, even though they will be inactive for much of the time. For a game where the
pathfinders are extensively used (i.e., the goal is always a long way away from the char-
acter), the speed hit will slow the AI unacceptably. The steering algorithm needs to be
split over multiple frames.

On the CD

LIBRARY The algorithm is implemented on the CD in its basic form and as an interruptible
algorithm capable of being split over several frames. The Steering Pipeline program

PROGRAM

shows it in operation.
An AI character is moving around a landscape, in which there are many obsta-

cles: walls and boulders. The pipeline display illustrates which decomposers and con-
straints are active in each frame.

Example Components

Actuation will be covered in Section 3.8 later in the chapter, but it is worth taking a
look at a sample steering component for use in the targeter, decomposer, and con-
straint stages of the pipeline.

Targeter

The chase targeter keeps track of a moving character. It generates its goal slightly
ahead of its victim’s current location, in the direction the victim is moving. The dis-
tance ahead is based on the victim’s speed and a lookahead parameter in the targeter.

1 class ChaseTargeter (Targeter):
2

3 # Holds a kinematic data structure for the chasee
4 chasedCharacter
5

6 # Controls how much to anticipate the movement
7 lookahead
8

9 def getGoal(kinematic):
10

11 goal = Goal()
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12 goal.position = chasedCharacter.position +
13 chasedCharacter.velocity * lookahead
14 goal.hasPosition = true
15 return goal

Decomposer

The pathfinding decomposer performs pathfinding on graph and replaces the given
goal with the first node in the returned plan. See Chapter 4 on pathfinding for more
information.

1 class PlanningDecomposer (Decomposer):
2 # Data for the graph
3 graph
4 heuristic
5

6 def decompose(kinematic, goal):
7

8 # First we quantize our current location and our goal
9 # into nodes of the graph

10 start = graph.getNode(kinematic.position)
11 end = graph.getNode(goal.position)
12

13 # If they are equal, we don’t need to plan
14 if startNode == endNode: return goal
15

16 # Otherwise plan the route
17 path = pathfindAStar(graph, start, end, heuristic)
18

19 # Get the first node in the path and localize it
20 firstNode = path[0].to_node
21 position = graph.getPosition(firstNode)
22

23 # Update the goal and return
24 goal.position = position
25 return goal

Constraint

The avoid obstacle constraint treats an obstacle as a sphere, represented as a single 3D
point and a constant radius. For simplicity, we are assuming that the path provided
by the actuator is a series of line segments, each with a start and an end point.
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1 class AvoidObstacleConstraint (Constraint):
2

3 # Holds the obstacle bounding sphere
4 center, radius
5

6 # Holds a margin of error by which we’d ideally like
7 # to clear the obstacle. Given as a proportion of the
8 # radius (i.e. should be > 1.0)
9 margin

10

11 # If a violation occurs, stores the part of the path
12 # that caused the problem
13 problemIndex
14

15 def willViolate(path):
16 # Check each segment of the path in turn
17 for i in 0..len(path):
18 segment = path[i]
19

20 # If we have a clash, store the current segment
21 if distancePointToSegment(center, segment) < radius:
22 problemIndex = i
23 return true
24

25 # No segments caused a problem.
26 return false
27

28 def suggest(path, kinematic, goal):
29 # Find the closest point on the segment to the sphere
30 # center
31 closest = closestPointOnSegment(segment, center)
32

33 # Check if we pass through the center point
34 if closest.length() == 0:
35

36 # Get any vector at right angles to the segment
37 dirn = segment.end - segment.start
38 newDirn = dirn.anyVectorAtRightAngles()
39

40 # Use the new dirn to generate a target
41 newPt = center + newDirn*radius*margin
42

43 # Otherwise project the point out beyond the radius
44 else:
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45 newPt = center + (closest-center)*radius*margin /
46 closest.length()
47

48 # Set up the goal and return
49 goal.position = newPt
50 return goal

The suggest method appears more complex that it actually is. We find a new goal
by finding the point of closest approach and projecting it out so that we miss the
obstacle by far enough. We need to check that the path doesn’t pass right through the
center of the obstacle, however, because in that case we can’t project the center out. If
it does, we use any point around the edge of the sphere, at a tangent to the segment,
as our target. Figure 3.44 shows both situations in two dimensions and also illustrates
how the margin of error works.

I added the anyVectorAtRightAngles method just to simplify the listing. It re-
turns a new vector at right angles to its instance. This is normally achieved by using
a cross product with some reference direction and then returning a cross product of
the result with the original direction. This will not work if the reference direction
is the same as the vector we start with. In this case a back-up reference direction is
needed.

Figure 3.44 Obstacle avoidance projected and at right angles
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Conclusion

The steering pipeline is one of many possible cooperative arbitration mechanisms.
Unlike other approaches, such as decision trees or blackboard architectures, it is
specifically designed for the needs of steering.

On the other hand, it is not the most efficient technique. While it will run very
quickly for simple scenarios, it can slow down when the situation gets more complex.
If you are determined for your characters to move intelligently, then you will have to
pay the price in execution speed sooner or later (in fact, to guarantee it, you’ll need
full motion planning, which is even slower than pipeline steering). In many games,
however, the prospect of some foolish steering is not a major issue, and it may be
easier to use a simpler approach to combining steering behaviors, such as blending.

3.5 PREDICTING PHYSICS

A common requirement of AI in 3D games is to interact well with some kind of
physics simulation. This may be as simple as the AI in variations of Pong, that tracked
the current position of the ball and moved the bat so that it intercepted the ball, or
it might involve the character correctly calculating the best way to throw a ball so
that it reaches a teammate who is running. We’ve seen examples of this already. The
pursue steering behavior predicted the future position of its target by assuming it
would carry on with its current velocity. At its most complex, it may involve deciding
where to stand to minimize the chance of being hit by an incoming grenade.

In each case, we are doing AI not based on the character’s own movement (al-
though that may be a factor), but on the basis of other characters’ or objects’ move-
ment.

By far, the most common requirement for predicting movement is for aiming and
shooting firearms. This involves the solution of ballistic equations: the so-called “Fir-
ing Solution.” In this section we will first look at firing solutions and the mathematics
behind them. We will then look at the broader requirements of predicting trajectories
and a method of iteratively predicting objects with complex movement patterns.

3.5.1 AIMING AND SHOOTING

Firearms, and their fantasy counterparts, are a key feature of game design. In almost
any game you choose to think of, the characters can wield some variety of projectile
weapon. In a fantasy game it might be a crossbow or fireball spell, and in a science
fiction (sci-fi) game it could be a disrupter or phaser.

This puts two common requirements on the AI. Characters should be able to
shoot accurately, and they should be able to respond to incoming fire. The second
requirement is often omitted, since the projectiles from many firearms and sci-fi
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weapons move too fast for anyone to be able to react to. When faced with weapons
such as RPGs or mortars, however, the lack of reaction can appear unintelligent.

Regardless of whether a character is giving or receiving fire, it needs to understand
the likely trajectory of a weapon. For fast-moving projectiles over small distances, this
can be approximated by a straight line, so older games tended to use simple straight
line tests for shooting. With the introduction of increasingly complex physics simula-
tion, however, shooting along a straight line to your targets is likely to see your bullets
in the dirt at their feet. Predicting correct trajectories is now a core part of the AI in
shooters.

3.5.2 PROJECTILE TRAJECTORY

A moving projectile under gravity will follow a curved trajectory. In the absence of
any air resistance or other interference, the curve will be part of a parabola, shown in
Figure 3.45.

The projectile moves according to the formula

�pt = �p0 + �usmt + �gt2

2
[3.1]

where �pt is its position (in three dimensions) at time t, �p0 is the firing position
(again in three dimensions), sm is the muzzle velocity (the speed the projectile left
the weapon—it is not strictly a velocity because it is not a vector), �u is the direction
the weapon was fired in (a normalized 3D vector), t is the length of time since the
shot was fired, and �g is the acceleration due to gravity. The notation �x denotes that x
is a vector. Others values are scalar.

It is worth noting that although the acceleration due to gravity on earth is

�g =
[ 0

−9.81
0

]
ms−2

(i.e., 9.81 ms−2 in the down direction), this can look too slow in a game envi-
ronment. Physics middleware vendors such as Havok recommend using a value

Figure 3.45 Parabolic arc
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around double that for games, although some tweaking is needed to get the exact
look.

The simplest thing we can do with the trajectory equations is to determine if a
character will be hit by an incoming projectile. This is a fairly fundamental require-
ment of any character in a shooter with slow-moving projectiles (such as grenades).

We will split this into two elements: determining where a projectile will land and
determining if its trajectory will touch the character.

Predicting a Landing Spot

The AI should determine where an incoming grenade will land and then move quickly
away from that point (using a flee steering behavior, for example, or a more complex
compound steering system that takes into account escape routes). If there’s enough
time, an AI might move toward the grenade point as fast as possible (using arrive,
perhaps) and then intercept and throw back the ticking grenade, forcing the player to
pull the grenade pin and hold it for just the right length of time.

We can determine where a grenade will land by solving the projectile equation for
a fixed value of py (i.e., the height). If we know the current velocity of the grenade and
its current position, we can solve for just the y component of the position and get the
time at which the grenade will reach a known height (i.e., the height of the floor on
which the character is standing):

ti =
−uysm ±

√
u2

ys2
m − 2gy(py0 − pyt)

gy
, [3.2]

where pyi is the position of impact, and ti is the time at which this occurs. There may
be zero, one, or two solutions to this equation. If there are zero solutions, then the
projectile never reaches the target height; it is always below it. If there is one solution,
then the projectile reaches the target height at the peak of its trajectory. Otherwise, the
projectile reaches the height once on the way up and once on the way down. We are
interested in the solution when the projectile is descending, which will be the greater
time value (since whatever goes up will later come down). If this time value is less
than zero, then the projectile has already passed the target height and won’t reach it
again.

The time ti from Equation 3.2 can be substituted into Equation 3.1 to get the
complete position of impact:

�pi =
[px0 + uxsmti + 1

2 gxt2
i

pyi

pz0 + uzsmti + 1
2 gzt2

i

]
[3.3]
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which further simplifies, if (as it normally does) gravity only acts in the down direc-
tion, to

�pi =
[px0 + uxsmti

pyi

pz0 + uzsmti

]
.

For grenades, we could compare the time to impact with the known length of
the grenade fuse to determine whether it is safer to run from or catch and return the
grenade.

Note that this analysis does not deal with the situation where the ground level is
rapidly changing. If the character is on a ledge or walkway, for example, the grenade
may miss impacting at its height entirely and sail down the gap behind it. We can use
the result of Equation 3.3 to check if the impact point is valid.

For outdoor levels with rapidly fluctuating terrain, we can also use the equation
iteratively, generating (x, z) coordinates with Equation 3.3 and then feeding the py

coordinate of the impact point back into the equation, until the resulting (x, z) values
stabilize. There is no guarantee that they will ever stabilize, but in most cases they
do. In practice, however, high explosive projectiles typically damage a large area, so
inaccuracies in the impact point prediction are difficult to spot when the character is
running away.

The final point to note about incoming hit prediction is that the floor height of the
character is not normally the height at which the character catches. If the character is
intending to catch the incoming object (as it will in most sports games, for example),
it should use a target height value at around chest height. Otherwise, it will appear to
maneuver in such a way that the incoming object drops at its feet.

3.5.3 THE FIRING SOLUTION

To hit a target at a given point �E, we need to solve Equation 3.1. In most cases we
know the firing point �S (i.e., �S ≡ �p0), the muzzle velocity sm, and the acceleration due
to gravity �g; we’d like to find just �u, the direction to fire in (although finding the time
to collision can also be useful for deciding if a slow-moving shot is worth it).

Archers and grenade throwers can change the velocity of the projectile as they fire
(i.e., they select an sm value), but most weapons have a fixed value for sm. We will
assume, however, that characters who can select a velocity will always try to get the
projectile to its target in the shortest time possible. In this case they will always choose
the highest possible velocity.

In an indoor environment with many obstacles (such as barricades, joists, and
columns), it might be advantageous for a character to throw its grenade more slowly
so that it arches over obstacles. Dealing with obstacles in this way gets to be very com-
plex and is best solved by a trial and error process, trying different sm values (normally
trials are limited to a few fixed values: “throw fast,” “throw slow,” and “drop,” for ex-
ample). For the purpose of this book, we’ll assume that sm is constant and known in
advance.
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The quadratic Equation 3.1 has vector coefficients. Add the requirement that the
firing vector should be normalized,

|�u| = 1,

and we have four equations in four unknowns:

Ex = Sx + uxsmti + 1

2
gxt2

i ,

Ey = Sy + uysmti + 1

2
gyt2

i ,

Ez = Sz + uzsmti + 1

2
gzt2

i ,

1 = u2
x + u2

y + u2
z .

These can be solved to find the firing direction and the projectile’s time to target.
First, we get an expression for ti:

|�g|2t4
i − 4

(�g. �� + s2
m

)
t2
i + 4| ��|2 = 0,

where �� is the vector from the start point to the end point, given by �� = �E − �S. This
is a quartic in ti, with no odd powers. We can therefore use the quadratic equation
formula to solve for t2

i and take the square root of the result. Doing this, we get

ti = +2

√√√√�g. �� + s2
m ±

√
( �g. �� + s2

m)2 − |�g|2| ��|2

2|�g|2

which gives us two real-valued solutions for time, of which a maximum of two may
be positive. Note that we should strictly take into account the two negative solutions
also (replacing the positive sign with a negative sign before the first square root). We
omit these because solutions with a negative time are entirely equivalent to aiming in
exactly the opposite direction to get a solution in positive time.

There are no solutions if

(�g. �� + s2
m

)2
< |�g|2| ��|2.

In this case the target point cannot be hit with the given muzzle velocity from
the start point. If there is one solution, then we know the end point is at the absolute
limit of the given firing capabilities. Usually, however, there will be two solutions, with
different arcs to the target. This is illustrated in Figure 3.46. We will almost always
choose the lower arc, which has the smaller time value, since it gives the target less
time to react to the incoming projectile and produces a shorter arc that is less likely
to hit obstacles (especially the ceiling).
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Short time
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Figure 3.46 Two possible firing solutions

We might want to choose the longer arc if we are firing over a wall, in a castle-
strategy game, for example.

With the appropriate ti value selected, we can determine the firing vector using
the equation

�u = 2 �� − �gt2
i

2smti
.

The intermediate derivations of these equations are left as an exercise.
This is admittedly a mess to look at, but can be easily implemented as follows:

1 def calculateFiringSolution(start, end, muzzle_v, gravity):
2

3 # Calculate the vector from the target back to the start
4 delta = start - end
5

6 # Calculate the real-valued a,b,c coefficients of a conventional
7 # quadratic equation
8 a = gravity * gravity
9 b = -4 * (gravity * delta + muzzle_v*muzzle_v)

10 c = 4 * delta * delta
11

12 # Check for no real solutions
13 if 4*a*c > b*b: return None
14

15 # Find the candidate times
16 time0 = sqrt((-b + sqrt(b*b-4*a*c)) / (2*a))
17 time1 = sqrt((-b - sqrt(b*b-4*a*c)) / (2*a))
18

19 # Find the time to target
20 if times0 < 0:
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21 if times1 < 0:
22 # We have no valid times
23 return None
24 else:
25 ttt = times1
26 else:
27 if times1 < 0:
28 ttt = times0
29 else:
30 ttt = min(times0, times1)
31

32 # Return the firing vector
33 return (2 * delta - gravity * ttt*ttt) / (2 * muzzle_v * ttt)

This code assumes that we can take the scalar product of two vectors using the
a * b notation. The algorithm is O(1) in both memory and time. There are opti-
mizations to be had, and the C++ source code on the CD contains an implementation

LIBRARY

of this function where the math has been automatically optimized by a commercial
equation to code converter for added speed.

3.5.4 PROJECTILES WITH DRAG

The situation becomes more complex if we introduce air resistance. Because it adds
complexity, it is very common to see developers ignoring drag altogether for calcu-
lating firing solutions. Often, a drag-free implementation of ballistics is a perfectly
acceptable approximation. Once again, the gradual move toward including drag in
trajectory calculations is motivated by the use of physics engines. If the physics en-
gine includes drag (and most of them do to avoid numerical instability problems),
then a drag-free ballistic assumption can lead to inaccurate firing over long distances.
It is worth trying an implementation without drag, however, even if you are using a
physics engine. Often, the results will be perfectly usable and much simpler to imple-
ment.

The trajectory of a projective moving under the influence of drag is no longer a
parabolic arc. As the projectile moves, it slows down, and its overall path looks like
Figure 3.47.

Adding drag to the firing calculations considerably complicates the mathematics,
and for this reason most games either ignore drag in their firing calculations or use a
kind of trial and error process that we’ll look at in more detail later.

Although drag in the real world is a complex process caused by many interacting
factors, drag in computer simulation is often dramatically simplified. Most physics
engines relate the drag force to the speed of a body’s motion with components related
to either velocity or velocity squared or both. The drag force on a body, D, is given
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Figure 3.47 Projectile moving with drag

(in one dimension) by

D = −kv − cv2,

where v is the velocity of the projectile, and k and c are both constants. The k coef-
ficient is sometimes called the viscous drag and c the aerodynamic drag (or ballistic
coefficient). These terms are somewhat confusing, however, because they do not cor-
respond directly to real-world viscous or aerodynamic drag.

Adding these terms changes the equation of motion from a simple expression into
a second-order differential equation:

�̈pt = g − k�̇pt − c�̇pt

∣∣�̇pt

∣∣.
Unfortunately, the second term in the equation, c�̇pt |�̇pt |, is where the complica-

tions set in. It relates the drag in one direction to the drag in another direction. Up to
this point, we’ve assumed that for each of the three dimensions the projectile motion
is independent of what is happening in the other directions. Here the drag is relative
to the total speed of the projectile: even if it is moving slowly in the x-direction, for ex-
ample, it will experience a great deal of drag if it is moving quickly in the z-direction.
This is the characteristic of a non-linear differential equation, and with this term in-
cluded there can be no simple equation for the firing solution.

Our only option is to use an iterative method that performs a simulation of the
projectile’s flight. We will return to this approach below.

More progress can be made if we remove the second term to give

�̈pt = g − k�̇pt . [3.4]

While this makes the mathematics tractable, it isn’t the most common setup for a
physics engine. If you need very accurate firing solutions and you have control over
the kind of physics you are running, this may be an option. Otherwise, you will need
to use an iterative method.

LIBRARY

We can solve this equation to get an equation for the motion of the particle. If
you’re not interested in the math, you can skip to the implementation on the CD.
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Omitting the derivations, we solve Equation 3.4 and find that the trajectory of the
particle is given by

�pt = �gt − �Ae−kt

k
+ �B, [3.5]

where �A and �B are constants found from the position and velocity of the particle at
time t = 0:

�A = sm�u − �g
k

and

�B = �p0 − �A
k
.

We can use this equation for the path of the projectile on its own, if it corresponds
to the drag in our physics (or if accuracy is less important). Or we can use it as the
basis of an iterative algorithm in more complex physics systems.

Rotating and Lift

Another complication in the movement calculations occurs if the projectile is rotating
while it is in flight.

We have treated all projectiles as if they are not rotating during their flight. Spin-
ning projectiles (golf balls, for example) have additional lift forces applying to them
as a result of their spin and are more complex still to predict. If you are developing
an accurate golf game that simulates this effect (along with wind that varies over the
course of the ball’s flight), then it is likely to be impossible to solve the equations of
motion directly. The best way to predict where the ball will land is to run it through
your simulation code (possibly with a coarse simulation resolution, for speed).

3.5.5 ITERATIVE TARGETING

When we cannot create an equation for the firing solution, or when such an equa-
tion would be very complex or prone to error, we can use an iterative targeting tech-
nique. This is similar to the way that long-range weapons and artillery (euphemisti-
cally called “effects” in military-speak) are really targeted.

The Problem

We would like to be able to determine a firing solution that hits a given target, even
if the equations of motion for the projectile cannot be solved or if we have no simple
equations of motion at all.
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The generated firing solution may be approximate (i.e., it doesn’t matter if we are
slightly off center as long as we hit), but we need to be able to control its accuracy to
make sure we can hit small or large objects correctly.

The Algorithm

The process has two stages. We initially make a guess as to the correct firing solution.
The trajectory equations are then processed to check if the firing solution is accurate
enough (i.e., does it hit the target?). If it is not accurate, then a new guess is made,
based on the previous guess.

The process of testing involves checking how close the trajectory gets to the target
location. In some cases we can find this mathematically from the equations of mo-
tion (although it is very likely that if we can find this, then we could also solve the
equation of motion and find a firing solution without an iterative method). In most
cases the only way to find the closest approach point is to follow a projectile through
its trajectory and record the point at which it made its closest approach.

To make this process faster, we only test at intervals along the trajectory. For a
relatively slow-moving projectile with a simple trajectory, we might check every half
second. For a fast-moving object with complex wind, lift, and aerodynamic forces, we
may need to test every tenth or hundredth of a second. The position of the projectile is
calculated at each time interval. These positions are linked by straight line segments,
and we find the nearest point to our target on this line segment. We are approximating
the trajectory by a piecewise linear curve.

We can add additional tests to avoid checking too far in the future. This is not
normally a full collision detection process, because of the time that would take, but
we do a simple test such as stopping when the projectile’s height is a good deal lower
than its target.

The initial guess for the firing solution can be generated from the firing solution
function described earlier, i.e., we assume there is no drag or other complex move-
ment in our first guess.

After the initial guess, the refinement depends to some extent on the forces that
exist in the game. If there is no wind being simulated, then the direction of the first-
guess solution in the x–z plane will be correct (called the “bearing”). We only need
two tweak the angle between the x–z plane and the firing direction (called the “eleva-
tion”). This is shown in Figure 3.48.

If we have a drag coefficient, then the elevation will need to be higher than that
generated by the initial guess. If the projectile experiences no lift, then the maximum
elevation should be 45◦. Any higher than that and the total flight distance will start
decreasing again. If the projectile does experience lift, then it might be better to send
it off higher, allowing it to fly longer and to generate more lift, which will increase its
distance.

If we have a crosswind, then just adjusting the elevation will not be enough. We
will also need to adjust the bearing. It is a good idea to iterate between the two adjust-
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Figure 3.48 Refining the guess

ments in series: getting the elevation right first for the correct distance, then adjusting
the bearing to get the projectile to land in the direction of the target, then adjusting
the elevation to get the right distance, and so on.

You would be quite right if you get the impression that refining the guesses is
akin to complete improvisation. In fact, real targeting systems for military weapons
use complex simulations for the flights of their projectiles and a range of algorithms,
heuristics, and search techniques to find the best solution. In games, the best approach
is to get the AI running in a real game environment and adjust the guess refinement
rules until good results are generated quickly.

Whatever the sequence of adjustment, or the degree to which the refinement al-
gorithm takes into account physical laws, a good starting point is a binary search, the
stalwart of many algorithms in computer science, described in depth in any good text
on algorithmics or computer science.

Pseudo-Code

Because the refinement algorithm depends to a large extent on the kind of forces we
are modelling in the game, the pseudo-code presented below will assume that we are
trying to find a firing solution for a projectile moving with drag alone. This allows us
to simplify the search from a search for a complete firing direction to just a search for
an angle of elevation.

This is the only situation I have seen in a commercial game that requires this
technique, although, as we have seen, in military simulation more complex situations
occur.

The code uses the equation of motion for a projectile experiencing only viscous
drag, as we derived earlier.

1 def refineTargeting(source, target, muzzleVelocity, gravity,
2 margin):
3

4 # Get the target offset from the source
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5 deltaPosition = target - source
6

7 # Take an initial guess from the dragless firing solution
8 direction = calculateFiringSolution(source, target,
9 muzzleVelocity,

10 gravity)
11

12 # Convert it into a firing angle.
13 minBound = asin(direction.y / direction.length())
14

15 # Find how close it gets us
16 distance = distanceToTarget(direction, source,
17 target, muzzleVelocity)
18

19 # Check if we made it
20 if distance*distance < margin*margin:
21 return direction
22

23 # Otherwise check if we overshot
24 else if minBoundDistance > 0:
25

26 # We’ve found a maximum, rather than a minimum bound,
27 # put it in the right place
28 maxBound = minBound
29

30 # Use the shortest possible shot as the minimum bound
31 minBound = -90
32

33 # Otherwise we need to find a maximum bound, we use
34 # 45 degrees
35 else:
36 maxBound = 45
37

38 # Calculate the distance for the maximum bound
39 direction = convertToDirection(deltaPosition, angle)
40 distance = distanceToTarget(direction, source,
41 target, muzzleVelocity)
42

43 # See if we’ve made it
44 if distance*distance < margin*margin:
45 return direction
46

47 # Otherwise make sure it overshoots
48 else if distance < 0:
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49

50 # Our best shot can’t make it
51 return None
52

53 # Now we have a minimum and maximum bound, use a binary
54 # search from here on.
55 distance = margin
56 while distance*distance < margin*margin:
57

58 # Divide the two bounds
59 angle = (maxBound - minBound) * 0.5
60

61 # Calculate the distance
62 direction = convertToDirection(deltaPosition, angle)
63 distance = distanceToTarget(direction, source,
64 target, muzzleVelocity)
65

66 # Change the appropriate bound
67 if distance < 0: minBound = angle
68 else: maxBound = angle
69

70 return direction

Data Structures and Interfaces

In the code we rely on three functions. The calculateFiringSolution is the function
we defined earlier. It is used to create a good initial guess.

The distanceToTarget function runs the physics simulator and returns how close
the projectile got to the target. The sign of this value is critical. It should be positive
if the projectile overshot its target and negative if it undershot. Simply performing
a 3D distance test will always give a positive distance value, so the simulation algo-
rithm needs to determine whether the miss was too far or too near and set the sign
accordingly.

The convertToDirection function creates a firing direction from an angle. It can
be implemented in the following way:

1 def convertToDirection(deltaPosition, angle):
2

3 # Find the planar direction
4 direction = deltaPosition
5 direction.y = 0
6 direction.normalize()
7
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8 # Add in the vertical component
9 direction *= cos(angle)

10 direction.y = sin(angle)
11

12 return direction

Performance

The algorithm is O(1) in memory and O(r log n−1) in time, where r is the resolution
of the sampling we use in the physics simulator for determining the closest approach
to target, and n is the accuracy threshold that determines if a hit has been found.

Iterative Targeting without Motion Equations

Although the algorithm given above treats the physical simulation as a black-box, in
the discussion I assumed that we could implement it by sampling the equations of
motion at some resolution.

The actual trajectory of an object in the game may be affected by more than just
mass and velocity. Drag, lift, wind, gravity wells, and all manner of other exotica
can change the movement of a projectile. This can make it impossible to calculate
a motion equation to describe where the projectile will be at any point in time.

If this is the case, then we need a different method of following the trajectory
to determine how close to its target it gets. The real projectile motion, once it has
actually been released, is likely to be calculated by a physics system. We can use the
same physics system to perform miniature simulations of the motion for targeting
purposes.

At each iteration of the algorithm, the projectile is set up and fired, and the physics
is updated (normally at relatively coarse intervals compared to the normal operation
of the engine; extreme accuracy is probably not needed). The physics update is repeat-
edly called, and the position of the projectile after each update is recorded, forming
the piecewise linear curve we saw previously. This is then used to find out the closest
point of the projectile to the target.

This approach has the advantage that the physical simulation can be as complex
as necessary to capture the dynamics of the projectile’s motion. We can even include
other factors, such as a moving target.

On the other hand, this method requires a physics engine that can easily set up
isolated simulations. If your physics engine is only optimized for having one simu-
lation at a time (i.e., the current game world), then this will be a problem. Even if
the physics system allows it, the technique can be time-consuming. It is only worth
contemplating when simpler methods (such as assuming a simpler set of forces for
the projectile) give visibly poor results.
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Other Uses of Prediction

Prediction of projectile motion is the most complex common type of motion predic-
tion in games.

In games involving collisions as an integral part of gameplay, such as ice-hockey
games and pool or snooker simulators, the AI may need to be able to predict the
results of impacts. This is commonly done using an extension of the iterative targeting
algorithm: we have a go in a simulation and see how near we get to our goal.

Throughout this chapter we’ve used another prediction technique that is so ubiq-
uitous that developers often fail to realize that its purpose is to predict motion.

In the pursue steering behavior, for example, the AI aims its motion at a spot
some way in front of its target, in the direction the target is moving. We are assuming
that the target will continue to move in the same direction at the current speed and
choose a target position to effectively cut it off. If you remember playing tag at school,
the good players did the same thing: predict the motion of the player they wanted to
catch or evade.

We can add considerably more complex prediction to a pursuit behavior, making
a genuine prediction as to their motion (if the target is coming up on a wall, for
example, we know it won’t carry on in the same direction and speed; it will swerve
to avoid impact). Complex motion prediction for chase behaviors is the subject of
active academic research (and is beyond the scope of this book). Despite the body of
research done, games still use the simple version, assuming the prey will keep doing
what they are doing.

In the last 10 years, motion prediction has also started to be used extensively
outside character-based AI. Networking technologies for multi-player games need to
cope when the details of a character’s motion have been delayed or disrupted by the
network. In this case, the server can use a motion prediction algorithm (which is al-
most always the simple “keep doing what they were doing” approach) to guess where
the character might be. If it later finds out it was wrong, it can gradually move the
character to its correct position (common in massively multi-player games) or snap
it immediately there (more common in shooters), depending on the needs of the
game design.

An active area of research in at least one company I know is to use more complex
character AI to learn the typical actions of players and use the AI to control a charac-
ter when network lag occurs. Effectively, they predict the motion of the character by
trying to simulate the thought processes of the real-life player controlling them.

3.6 JUMPING

The biggest problem with character movement in shooters is jumping. The regular
steering algorithms are not designed to incorporate jumps, which are a core part of
the shooter genre.
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Jumps are inherently risky. Unlike other steering actions, they can fail, and such a
failure may make it difficult or impossible to recover (at the very limit, it may kill the
character).

For example, consider a character chasing an enemy around a flat level. The steer-
ing algorithm estimates that the enemy will continue to move at its current speed and
so sets the character’s trajectory accordingly. The next time the algorithm runs (usu-
ally the next frame, but it may be a little later if the AI is running every few frames) the
character finds that its estimate was wrong and that its target has decelerated fraction-
ally. The steering algorithm again assumes that the target will continue at its current
speed and estimates again. Even though the character is decelerating, the algorithm
can assume that it is not. Each decision it makes can be fractionally wrong, and the
algorithm can recover the next time it runs. The cost of the error is almost zero.

By contrast, if a character decides to make a jump between two platforms, the
cost of an error may be greater. The steering controller needs to make sure that the
character is moving at the correct speed and in the correct direction and that the jump
action is executed at the right moment (or at least not too late). Slight perturbations
in the character’s movement (caused by clipping an obstacle, for example, from gun
recoil, or the blast wave from an explosion) can lead to the character missing the
landing spot and plummeting to its doom, a dramatic failure.

Steering behaviors effectively distribute their thinking over time. Each decision
they make is very simple, but because they are constantly reconsidering the decision,
the overall effect is competent. Jumping is a one-time, fail-sensitive decision.

3.6.1 JUMP POINTS

The simplest support for jumps puts the onus on the level designer. Locations in
the game level are labelled as being jump points. These regions need to be manually
placed. If characters can move at many different speeds, then jump points also have
an associated minimum velocity set. This is the velocity at which a character needs to
be travelling in order to make the jump.

Depending on the implementation, characters either may seek to get as near their
target velocity as possible or may simply check that the component of their velocity
in the correct direction is sufficiently large.

Figure 3.49 shows two walkways with a jump point placed at their nearest point.
A character that wishes to jump between the walkways needs to have enough veloc-
ity toward the other platform to make the jump. The jump point has been given a
minimum velocity in the direction of the other platform.

In this case it doesn’t make sense for a character to try to make a run up in that ex-
act direction. The character should be allowed to have any velocity with a sufficiently
large component in the correct direction, as shown in Figure 3.50.

If the structure of the landing area is a little different, however, the same strategy
would result in disaster. In Figure 3.51 the same run up has disastrous results.
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Figure 3.49 Jump points between walkways
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Figure 3.50 Flexibility in the jump velocity
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Character path

Jump point

Figure 3.51 A jump to a narrower platform

Achieving the Jump

To achieve the jump, the character can use a velocity matching steering behavior to
take a run up. For the period before its jump, the movement target is the jump point,
and the velocity the character is matching is that given by the jump point. As the
character crosses onto the jump point, a jump action is executed, and the character
becomes airborne.

This approach requires very little processing at run time.

1. The character needs to decide to make a jump. It may use some pathfinding system
to determine that it needs to be on the other side of the gap, or else it may be using
a simple steering behavior and be drawn toward the ledge.

2. The character needs to recognize which jump it will make. This will normally hap-
pen automatically when we are using a pathfinding system (see the section on jump
links, below). If we are using a local steering behavior, then it can be difficult to de-
termine that a jump is ahead in enough time to make it. A reasonable lookahead is
required.

3. Once the character has found the jump point it is using, a new steering behavior
takes over that performs velocity matching to bring the character into the jump
point with the correct velocity and direction.



144 Chapter 3 Movement

4. When the character touches the jump point, a jump action is requested. The char-
acter doesn’t need to work out when or how to jump, it simply gets thrown into
the air as it hits the jump point.

Weaknesses

The examples at the start of this section hint at the problems suffered by this ap-
proach. In general, the jump point does not contain enough information about the
difficulty of the jump for every possible jumping case.

Figure 3.52 illustrates a number of different jumps that are difficult to mark up
using jump points. Jumping onto a thin walkway requires velocity in exactly the right
direction; jumping onto a narrow ledge requires exactly the right speed; and jumping
onto a pedestal involves correct speed and direction. Notice that the difficulty of the
jump also depends on the direction it is taken from. Each of the jumps in the figure
would be easy in the opposite direction.

In addition, not all failed jumps are equal. A character might not mind occasion-
ally missing a jump if it only lands in 2 feet of water with an easy option to climb out.
If the jump crosses a 50-foot drop into boiling lava, then accuracy is more important.

We can incorporate more information into the jump point: data that includes the
kinds of restrictions on approach velocities and how dangerous it would be to get
it wrong. Because it is created by the level designer, this data is prone to error and
difficult to tune. Bugs in the velocity information may not surface throughout QA if
the AI characters don’t happen to attempt the jump in the wrong way.

A common workaround is to limit the placement of jump points to give the AI the
best chance of looking intelligent. If there are no risky jumps that the AI knows about,
then it is less likely to fail. To avoid this being obvious to the player, some restrictions

Jump point Jump point Jump point

Figure 3.52 Three cases of difficult jump points
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on the level structure are commonly imposed, reducing the number of risky jumps
that the player can make, but characters choose not to. This is typical of many aspects
of AI development: the capabilities of the AI put natural restrictions on the layout
of the game’s levels. Or, put another way, the level designers have to avoid exposing
weaknesses in the AI.

3.6.2 LANDING PADS

A better alternative is to combine jump points with landing pads. A landing pad is
another region of the level, very much like the jump point. Each jump point is paired
with a landing pad. We can then simplify the data needed in the jump point. Rather
than require the level designer to set up the required velocity, we can leave that up to
the character.

When the character determines that it will make a jump, it adds an extra process-
ing step. Using trajectory prediction code similar to that which we saw in the previous
section, the character calculates the velocity required to land exactly on the landing
pad when taking off from the jump point. The character can then use this calculation
as the basis of its velocity matching algorithm.

This approach is significantly less prone to error. Because the character is calcu-
lating the velocity needed, it will not be prone to accuracy errors in setting up the
jump point. It also benefits from allowing characters to take into account their own
physics when determining how to jump. If characters are heavily laden with weapons,
they may not be able to jump up so high. In this case they will need to have a higher
velocity to carry themselves over the gap. Calculating the jump trajectory allows them
to get the exact approach velocity they need.

The Trajectory Calculation

The trajectory calculation is slightly different to the firing solution discussed previ-
ously. In the current case we know the start point S, the end point E, the gravity g, and
the Y component of velocity vy. We don’t know the time t or the x and z components
of velocity. We therefore have three equations in three unknowns:

Ex = Sx + vxt,

Ey = Sy + vyt + 1

2
gyt2,

Ez = Sz + vzt.

I have assumed here that gravity is acting in the vertical direction only and that
the known jump velocity is in the vertical direction also. To support other gravity
directions, we would need to allow the maximum jump velocity to be not just in the
y-direction, but also to have an arbitrary vector. The equations above would then
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need to be rewritten in terms of both the jump vector to find and the known jump
velocity vector. This causes significant problems in the mathematics which are best
avoided, especially since the vast majority of cases require y-direction jumps only,
exactly as shown here.

I have also assumed that there is no drag during the trajectory. This is the most
common situation. Drag is usually non-existent or negligible for these calculations.
If you need to include drag for your game, then replace these equations with those
given in Section 3.5.4; solving them will be correspondingly more difficult.

We can solve the system of equations to give

t =
−vy ±

√
2g(Ey − Sy) + v2

y

g
[3.6]

and then

vx = Ex − Sx

t

and

vz = Ez − Sz

t
.

Equation 3.6 has two solutions. We’d ideally like to achieve the jump in the fastest
time possible, so we want to use the smaller of the two values. Unfortunately, this
value might give us an impossible launch velocity, so we need to check and use the
higher value if necessary.

We can now implement a jumping steering behavior to use a jump point and
landing pad. This behavior is given a jump point when it is created and tries to achieve
the jump. If the jump is not feasible, it will have no effect, and no acceleration will be
requested.

Pseudo-Code

The jumping behavior can be implemented in the following way:

1 class Jump (VelocityMatch):
2

3 # Holds the jump point to use
4 jumpPoint
5

6 # Keeps track of whether the jump is achievable
7 canAchieve = False
8

9 # Holds the maximum speed of the character
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10 maxSpeed
11

12 # Holds the maximum vertical jump velocity
13 maxYVelocity
14

15 # Retrieve the steering for this jump
16 def getSteering():
17

18 # Check if we have a trajectory, and create
19 # one if not.
20 if not target:
21 target = calculateTarget()
22

23 # Check if the trajectory is zero
24 if not canAchieve:
25 # If not, we have no acceleration
26 return new SteeringOutput()
27

28 # Check if we’ve hit the jump point (character
29 # is inherited from the VelocityMatch base class)
30 if character.position.near(target.position) and
31 character.velocity.near(target.velocity):
32

33 # Perform the jump, and return no steering
34 # (we’re airborne, no need to steer).
35 scheduleJumpAction()
36 return new SteeringOutput()
37

38 # Delegate the steering
39 return VelocityMatch.getSteering()
40

41 # Works out the trajectory calculation
42 def calculateTarget():
43

44 target = new Kinematic()
45 target.position = jumpPoint.jumpLocation
46

47 # Calculate the first jump time
48 sqrtTerm = sqrt(2*gravity.y*jumpPoint.deltaPosition.y +
49 maxYVelocity*maxVelocity)
50 time = (maxYVelocity - sqrtTerm) / gravity.y
51

52 # Check if we can use it
53 if not checkJumpTime(time):
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54

55 # Otherwise try the other time
56 time = (maxYVelocity + sqrtTerm) / gravity.y
57 checkJumpTime(time)
58

59 # Private helper method for the calculateTarget
60 # function
61 def checkJumpTime(time):
62

63 # Calculate the planar speed
64 vx = jumpPoint.deltaPosition.x / time
65 vz = jumpPoint.deltaPosition.z / time
66 speedSq = vx*vx + vz*vz
67

68 # Check it
69 if speedSq < maxSpeed*maxSpeed:
70

71 # We have a valid solution, so store it
72 target.velocity.x = vx
73 target.velocity.z = vz
74 canAchieve = true
75

Data Structures and Interfaces

We have relied on a simple jump point data structure that has the following form:

1 struct JumpPoint:
2

3 # The position of the jump point
4 jumpLocation
5

6 # The position of the landing pad
7 landingLocation
8

9 # The change in position from jump to landing
10 # This is calculated from the other values
11 deltaPosition

In addition, I have used the near method of a vector to determine if the vectors are
roughly similar. This is used to make sure that we start the jump without requiring ab-
solute accuracy from the character. The character is unlikely to ever hit a jump point
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completely accurately, so this function provides some margin of error. The particular
margin for error depends on the game and the velocities involved: faster moving or
larger characters require larger margins for error.

Finally, I have used a scheduleJumpAction function to force the character into the
air. This can schedule an action to a regular action queue (a structure we will look
at in depth in Chapter 5), or it can simply add the required vertical velocity directly
to the character: sending it upward. The latter approach is fine for testing, but makes
it difficult to schedule a jump animation at the correct time. As we’ll see later in the
book, sending the jump through the a central action resolution system allows us to
simplify animation selection.

Implementation Notes

When implementing this behavior as part of a whole steering system, it is important
to make sure it can take complete control of the character. If the steering behavior
is combined with others using a blending algorithm, then it will almost certainly fail
eventually. A character that is avoiding an enemy at a tangent to the jump will have its
trajectory skewed. It either will not arrive at the jump point (and therefore not take
off) or will jump in the wrong direction and plummet.

Performance

The algorithm is O(1) in both time and memory.

Jump Links

Rather than have jump points as a new type of game entity, many developers incor-
porate jumping into their pathfinding framework. Pathfinding will be discussed at
length in Chapter 4, so I don’t want to anticipate too much here.

As part of the pathfinding system, we create a network of locations in the game.
The connections that link locations have information stored with them (the distance
between the locations in particular). We can simply add jumping information to this
connection.

A connection between two nodes on either side of a gap is labelled as requiring a
jump. At run time, the link can be treated just like a jump point and landing pad pair,
and the algorithm we developed above can be applied to carry out the jump.

3.6.3 HOLE FILLERS

Another approach used by several developers allows characters to choose their own
jump points. The level designer fills holes with an invisible object, labelled as a
jumpable gap.
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Gaps at the edge ensure the character
doesn’t try to jump here and hit the

edge of the opposite wall

Jumpable gap object

Figure 3.53 A one-direction chasm jump

The character steers as normal, but has a special variation of the obstacle avoid-
ance steering behavior (we’ll call it a jump detector). This behavior treats collisions
with the jumpable gap object differently from collisions with walls. Rather than try-
ing to avoid the wall, it moves toward it at full speed. At the point of collision (i.e.,
the last possible moment that the character is on the ledge), it executes a jump action
and leaps into the air.

This approach has great flexibility; characters are not limited to a particular set
of locations from which they can jump. In a room that has a large chasm running
through it, for example, the character can jump across at any point. If it steers toward
the chasm, the jump detector will execute the jump across automatically. There is no
need for separate jump points on each side of the chasm. The same jumpable gap
object works for both sides.

We can easily support one-directional jumps. If one side of the chasm is lower
than the other, we could set up the situation shown in Figure 3.53. In this case the
character can jump from the high side to the low side, but not the other way around.
In fact, we can use very small versions of this collision geometry in a similar way to
jump points (label them with a target velocity and they are the 3D version of jump
points).

While they are flexible and convenient, this approach suffers even more from the
problem of sensitivity to landing areas. With no target velocity, or notion of where
the character wants to land, it will not be able to sensibly work out how to take off
to avoid missing a landing spot. In the chasm example above, the technique is ideal
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because the landing area is so large, and there is very little possibility of failing the
jump.

If you use this approach, then make sure you design levels that don’t show the
weaknesses in the approach. Aim only to have jumpable gaps that are surrounded by
ample take off and landing space.

3.7 COORDINATED MOVEMENT

Games increasingly require groups of characters to move in a coordinated manner.
Coordinated motion can occur at two levels. The individuals can make decisions that
compliment each other, making their movements appear coordinated. Or they can
make a decision as a whole and move in a prescribed, coordinated group.

Tactical decision making will be covered in Chapter 6. This section looks at ways
to move groups of characters in a cohesive way, having already made the decision that
they should move together. This is usually called formation motion.

Formation motion is the movement of a group of characters so that they retain
some group organization. At its simplest it can consist of moving in a fixed geometric
pattern such as a V or line abreast, but it is not limited to that. Formations can also
make use of the environment. Squads of characters can move between cover points
using formation steering with only minor modifications, for example. Formation mo-
tion is used in team sports games; squad-based games; real-time strategy games; and
an increasing number of first person shooters, driving games, and action adventures.
It is a simple and flexible technique that is much quicker to write and execute and can
produce much more stable behavior than collaborative tactical decision making.

3.7.1 FIXED FORMATIONS

The simplest kind of formation movement uses fixed geometric formations. A for-
mation is defined by a set of slots: locations where a character can be positioned.
Figure 3.54 shows some common formations used in military-inspired games.

One slot is marked as the leader’s slot. All the other slots in the formation are de-
fined relative to this slot. Effectively, it defines the “zero” for position and orientation
in the formation.

The character at the leader’s location moves through the world like any non-
formation character would. It can be controlled by any steering behavior, it may fol-
low a fixed path, or it may have a pipeline steering system blending multiple move-
ment concerns. Whatever the mechanism, it does not take account of the fact that it
is positioned in the formation.

The formation pattern is positioned and oriented in the game so that the leader
is located in its slot, facing the appropriate direction. As the leader moves, the pattern
also moves and turns in the game. In turn, each of the slots in the pattern move and
turn in unison.
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Figure 3.54 A selection of formations

Each additional slot in the formation can then be filled by an additional charac-
ter. The position of these characters can be determined directly from the formation
geometry, without needing a kinematic or steering system of its own. Often, the char-
acter in the slot has its position and orientation set directly.

If a slot is located at rs relative to the leader’s slot, then the position of the character
at that slot will be

ps = pl + Ωlrs,

where ps is the final position of slot s in the game, pl is the position of the leader
character, and Ωl is the orientation of the leader character, in matrix form. In the
same way, the orientation of the character in the slot will be

ωs = ωl + ωs,

where ωs is the orientation of slot s, relative to the leader’s orientation, and ωl is the
orientation of the leader.

The movement of the leader character should take into account the fact that it is
carrying the other characters with it. The algorithms it uses to move will be no differ-
ent to a non-formation character, but it should have limits on the speed it can turn
(to avoid outlying characters sweeping round at implausible speeds), and any colli-
sion or obstacle avoidance behaviors should take into account the size of the whole
formation.

In practice, these constrains on the leader’s movement make it difficult to use
this kind of formation for anything but very simple formation requirements (small
squads of troops in a strategy game where you control 10,000 units, for example).
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4 characters
7 characters

12 characters

Figure 3.55 A defensive circle formation with different numbers of characters

3.7.2 SCALABLE FORMATIONS

In many situations the exact structure of a formation will depend on the number of
characters that are participating in it. A defensive circle, for example, will be wider
with 20 defenders than with 5. With 100 defenders, it may be possible to structure the
formation in several concentric rings. Figure 3.55 illustrates this.

It is common to implement scalable formations without an explicit list of slot po-
sitions and orientations. A function can dynamically return the slot locations, given
the total number of characters in the formation, for example.

This kind of implicit, scalable formation can be seen very clearly in Homeworld
[Relic Entertainment, 1999]. When additional ships are added to a formation, the
formation accommodates them, changing its distribution of slots accordingly. Un-
like our example so far, Homeworld uses a more complex algorithm for moving the
formation around.

3.7.3 EMERGENT FORMATIONS

Emergent formations provide a different solution to scalability. Each character has its
own steering system using the arrive behavior. The characters select their target based
on the position of other characters in the group.

Imagine that we are looking to create a large V formation. We can force each
character to choose another target character in front of it and select a steering target
behind and to the side, for example. If there is another character already selecting that
target, then it selects another. Similarly, if there is another character already targeting
a location very near, it will continue looking. Once a target is selected, it will be used
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Figure 3.56 Emergent arrowhead formation

for all subsequent frames, updated based on the position and orientation of the tar-
get character. If the target becomes impossible to achieve (it passes into a wall, for
example), then a new target will be selected.

Overall, this emergent formation will organize itself into a V formation. If there
are many members of the formation, the gap between the bars of the V will fill up with
smaller V shapes. As Figure 3.56 shows, the overall arrowhead effect is pronounced
regardless of the number of characters in the formation. In the figure, the lines con-
nect a character with the character it is following.

There is no overall formation geometry in this approach, and the group does not
necessarily have a leader (although it helps if one member of the group isn’t trying to
position itself relative to any other member). The formation emerges from the indi-
vidual rules of each character, in exactly the same way as we saw flocking behaviors
emerge from the steering behavior of each flock member.

This approach also has the advantage of allowing each character to react individ-
ually to obstacles and potential collisions. There is no need to factor in the size of
the formation when considering turning or wall avoidance, because each individual
in the formation will act appropriately (as long as it has those avoidance behaviors as
part of its steering system).

While this method is simple and effective, it can be difficult to set up rules to get
just the right shape. In the V example above, a number of characters often end up
jostling for position in the center of the V. With more unfortunate choices in each
character’s target selection, the same rule can give a formation consisting of a single
long diagonal line with no sign of the characteristic V shape.

Debugging emergent formations, like any kind of emergent behavior, can be a
challenge. The overall effect is often one of controlled disorder, rather than formation
motion. For military groups, this characteristic disorder makes emergent formations
of little practical use.
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3.7.4 TWO-LEVEL FORMATION STEERING

We can combine strict geometric formations with the flexibility of an emergent ap-
proach using a two-level steering system. We use a geometric formation, defined as a
fixed pattern of slots, just as before. Initially, we will assume we have a leader charac-
ter, although we will remove this requirement later.

Rather than directly placing each character it its slot, it follows the emergent ap-
proach by using the slot at a target location for an arrive behavior. Characters can have
their own collision avoidance behaviors and any other compound steering required.

This is two-level steering because there are two steering systems in sequence: first
the leader steers the formation pattern, and then each character in the formation
steers to stay in the pattern. As long as the leader does not move at maximum velocity,
each character will have some flexibility to stay in its slot while taking account of its
environment.

Figure 3.57 shows a number of agents moving in V formation through a wood.
The characteristic V shape is visible, but each character has moved slightly from its
slot position to avoid bumping into trees.

The slot that a character is trying to reach may be briefly impossible to achieve,
but its steering algorithm ensures that it still behaves sensibly.

Figure 3.57 Two-level formation motion in a V



156 Chapter 3 Movement

Removing the Leader

In the example above, if the leader needs to move sideways to avoid a tree, then all
the slots in the formation will also lurch sideways and every other character will lurch
sideways to stay with the slot. This can look odd because the leader’s actions are mim-
icked by the other characters, although they are largely free to cope with obstacles in
their own way.

We can remove the responsibility for guiding the formation from the leader and
have all the characters react in the same way to their slots. The formation is moved
around by an invisible leader: a separate steering system that is controlling the whole
formation, but none of the individuals. This is the second level of the two-level for-
mation.

Because this new leader is invisible, it does not need to worry about small ob-
stacles, bumping into other characters, or small terrain features. The invisible leader
will still have a fixed location in the game, and that location will be used to lay out
the formation pattern and determine the slot locations for all the proper characters.
The location of the leader’s slot in the pattern will not correspond to any character,
however. Because it is not acting like a slot, we call this the pattern’s anchor point.

Having a separate steering for the formation typically simplifies implementation.
We no longer have different characters with different roles, and there is no need to
worry about making one character take over as leader if another one dies.

The steering for the anchor point is often simplified. Outdoors, we might only
need to use a single high-level arrive behavior, for example, or maybe a path follower.
In indoor environments the steering will still need to take account of large scale ob-
stacles, such as walls. A formation that passes straight through into a wall will strand
all its characters, making them unable to follow their slots.

Moderating the Formation Movement

So far information has flowed in only one direction: from the formation to the char-
acters within it.

When we have a two-level steering system, this causes problems. The formation
could be steering ahead, oblivious to the fact that its characters are having problems
keeping up. When the formation was being led by a character, this was less of a prob-
lem, because difficulties faced by the other characters in the formation were likely to
also be faced by the leader.

When we steer the anchor point directly, it is usually allowed to disregard small-
scale obstacles and other characters. The characters in the formations may take con-
siderably longer to move than expected because they are having to navigate these
obstacles. This can lead to the formation and its characters getting a long way out of
synch.

One solution is to slow the formation down. A good rule of thumb is to make the
maximum speed of the formation around half that of the characters. In fairly complex
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environments, however, the slow down required is unpredictable, and it is better not
to burden the whole game with slow formation motion for the sake of a few occasions
when a faster speed would be problematic.

A better solution is to moderate the movement of the formation based on the
current positions of the characters in its slots: in effect to keep the anchor point on a
leash. If the characters in the slots are having trouble reaching their targets, then the
formation as a whole should be held back to give them a chance to catch up.

This can be simply achieved by resetting the kinematic of the anchor point at
each frame. Its position, orientation, velocity, and rotation are all set to the average
of those properties for the characters in its slots. If the anchor point’s steering system
gets to run first, it will move forward a little, moving the slots forward and forcing
the characters to move also. After the slot characters are moved, the anchor point is
reined back so that it doesn’t move too far ahead.

Because the position is reset at every frame, the target slot position will only be
a little way ahead of the character when it comes to steer toward it. Using the ar-
rive behavior will mean that each character is fairly nonchalant about moving such a
small distance, and the speed for the slot characters will decrease. This, in turn, will
mean that the speed of the formation decreases (because it is being calculated as the
average of the movement speeds for the slot characters). On the following frame the
formation’s velocity will be even less again. Over a handful of frames it will slow to a
halt.

An offset is generally used to move the anchor point a small distance ahead of the
center of mass. The simplest solution is to move it a fixed distance forward, as given
by the velocity of the formation:

panchor = pc + koffsetvc,

where pc is the position, and vc is the velocity of the center of mass. It is also necessary
to set a very high maximum acceleration and maximum velocity for the formation’s
steering. The formation will not actually achieve this acceleration or velocity because
it is being held back by the actual movement of its characters.

Drift

Moderating the formation motion requires that the anchor point of the formation
always be at the center of mass of its slots (i.e., its average position). Otherwise, if the
formation is supposed to be stationary, the anchor point will be reset to the average
point, which will not be where it was in the last frame. The slots will all be updated
based on the new anchor point and will again move the anchor point, causing the
whole formation to drift across the level.

It is relatively easy, however, to recalculate the offsets of each slot based on a cal-
culation of the center of mass of a formation. The center of mass of the slots is given
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by

pc = 1

n

∑
i=1..n

{
psi if slot i is occupied,
0 otherwise,

where psi is the position of slot i. Changing from the old to the new anchor point
involves changing each slot coordinate according to

p′
si

= psi − pc.

For efficiency, this should be done once and the new slot coordinates stored,
rather than being repeated every frame. It may not be possible, however, to perform
the calculation offline. Different combinations of slots may be occupied at different
times. When a character in a slot gets killed, for example, the slot coordinates will
need to be recalculated because the center of mass will have changed.

Drift also occurs when the anchor point is not at the average orientation of the
occupied slots in the pattern. In this case, rather than drifting across the level, the
formation will appear to spin on the spot. We can again use an offset for all the ori-
entations based on the average orientation of the occupied slots:

�ωc = �vc

|�vc| ,

where

�vc = 1

n

∑
i=1..n

{ �ωsi if slot i is occupied,
0 otherwise,

and �ωsi is the orientation of slot i. The average orientation is given in vector form and
can be converted back into an angle ωc , in the range (−π,π). As before, changing
from the old to the new anchor point involves changing each slot orientation accord-
ing to

ω′
si

= ωsi − ωc.

This should also be done as infrequently as possible, being cached internally until the
set of occupied slots changes.

3.7.5 IMPLEMENTATION

We can now implement the two-level formation system. The system consists of a for-
mation manager that processes a formation pattern and generates targets for the char-
acters occupying its slots. It has this form.

The formation manager then can be implemented in the following way:
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1 class FormationManager:
2

3 # Holds the assignment of a single character to a slot
4 struct SlotAssignment:
5 character
6 slotNumber
7

8 # Holds a list of slots assignments.
9 slotAssignments

10

11 # Holds a Static structure (i.e., position and orientation)
12 # representing the drift offset for the currently filled
13 # slots.
14 driftOffset
15

16 # Holds the formation pattern
17 pattern
18

19

20 # Updates the assignment of characters to slots
21 def updateSlotAssignments():
22

23 # A very simply assignment algorithm: we simply go through
24 # each assignment in the list and assign sequential slot
25 # numbers
26 for i in 0..slotAssignments.length():
27 slotAssignments[i].slotNumber = i
28

29 # Update the drift offset
30 driftOffset = pattern.getDriftOffset(slotAssignments)
31

32

33 # Add a new character to the first available slot. Returns
34 # false if no more slots are available.
35 def addCharacter(character):
36

37 # Find out how many slots we have occupied
38 occupiedSlots = slotAssignments.length()
39

40 # Check if the pattern supports more slots
41 if pattern.supportsSlots(occupiedSlots + 1):
42

43 # Add a new slot assignment
44 slotAssignment = new SlotAssignment()
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45 slotAssignment.character = character
46 slotAssignments.append(slotAssignment)
47

48 # Update the slot assignments and return success
49 updateSlotAssignments()
50 return true
51

52 # Otherwise we’ve failed to add the character
53 return false
54

55

56 # Removes a character from its slot.
57 def removeCharacter(character):
58

59 # Find the character’s slot
60 slot = charactersInSlots.find(character)
61

62 # Make sure we’ve found a valid result
63 if slot in 0..slotAssignments.length():
64

65 # Remove the slot
66 slotAssignments.removeElementAt(slot)
67

68 # Update the assignments
69 updateSlotAssignments()
70

71

72 # Write new slot locations to each character
73 def updateSlots():
74

75 # Find the anchor point
76 anchor = getAnchorPoint()
77

78 # Get the orientation of the anchor point as a matrix
79 orientationMatrix = anchor.orientation.asMatrix()
80

81 # Go through each character in turn
82 for i in 0..slotAssignments.length():
83

84 # Ask for the location of the slot relative to the
85 # anchor point. This should be a Static structure
86 relativeLoc =
87 pattern.getSlotLocation(slotAssignments[i].slotNumber)
88
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89 # Transform it by the anchor point’s position and
90 # orientation
91 location = new Static()
92 location.position = relativeLoc.position *
93 orientationMatrix +
94 anchor.position
95 location.orientation = anchor.orientation +
96 relativeLoc.orientation
97

98 # And add the drift component
99 location.position -= driftOffset.position

100 location.orientation -= driftOffset.orientation
101

102 # Write the static to the character
103 slotAssignments[i].character.setTarget(location)

For simplicity, in the code I’ve assumed that we can look up a slot in the slotAs-
signments list by its character using a findIndexFromCharacter method. Similarly, I’ve
used a remove method of the same list to remove an element at a given index.

Data Structures and Interfaces

The formation manager relies on access to the current anchor point of the formation
through the getAnchorPoint function. This can be the location and orientation of a
leader character, a modified center of mass of the characters in the formation, or an
invisible but steered anchor point for a two-level steering system.

In the code on the CD, getAnchorPoint is implemented by finding the current

LIBRARY

center of mass of the characters in the formation.
The formation pattern class generates the slot offsets for a pattern, relative to its

anchor point. It does this after being asked for its drift offset, given a set of assign-
ments. In calculating the drift offset, the pattern works out which slots are needed. If
the formation is scalable and returns different slot locations depending on the num-
ber of slots occupied, it can use the slot assignments passed into the getDriftOffset
function to work out how many slots are used and therefore what positions each slot
should occupy.

Each particular pattern (such as a V, Wedge, Circle) needs its own instance of a
class that matches the formation pattern interface:

1 class FormationPattern:
2

3 # Holds the number of slots currently in the
4 # pattern. This is updated in the getDriftOffset
5 # method. It may be a fixed value.
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6 numberOfSlots
7

8 # Calculates the drift offset when characters are in
9 # given set of slots

10 def getDriftOffset(slotAssignments)
11

12 # Gets the location of the given slot index.
13 def getSlotLocation(slotNumber)
14

15 # Returns true if the pattern can support the given
16 # number of slots
17 def supportsSlots(slotCount)

In the manager class, we’ve also assumed that the characters provided to the for-
mation manager can have their slot target set. The interface is simple:

1 class Character:
2

3 # Sets the steering target of the character. Takes a
4 # Static object (i.e. containing position and orientation).
5 def setTarget(static)

Implementation Caveats

In reality, the implementation of this interface will depend on the rest of the character
data we need to keep track of for a particular game. Depending on how the data is
arranged in your game engine, you may need to adjust the formation manager code
so that it accesses your character data directly.

Performance

The target update algorithm is O(n) in time, where n is the number of occupied slots
in the formation. It is O(1) in memory, excluding the resulting data structure into
which the assignments are written, which is O(n) in memory, but is part of the overall
class and exists before and after the class’s algorithms run.

Adding or removing a character consists of two parts in the pseudo-code above:
the actual addition or removal of the character from the slot assignments list, and the
updating of the slot assignments on the resulting list of characters.

Adding a character is an O(1) process in both time and memory. Removing a
character involves finding if the character is present in the slot assignments list. Using
a suitable hashing representation, this can be O(log n) in time and O(1) in memory.
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As we have it above, the assignment algorithm is O(n) in time and O(1) in mem-
ory (again excluding the assignment data structure). Typically, assignment algorithms
will be more sophisticated and have worse performance than O(n), as we will see later
in this chapter.

In the (somewhat unlikely) event that this kind of assignment algorithm is suit-
able, we can optimize it by having the assignment only reassign slots to characters
that need to change (adding a new character, for example, may not require the other
characters to change their slot numbers). I have deliberately not tried to optimize this
algorithm, because we will see that it has serious behavioral problems that need to be
resolved with more complex assignment techniques.

Sample Formation Pattern

To make things more concrete, let’s consider a usable formation pattern. The defen-
sive circle posts characters around the circumference of a circle, so their backs are to
the center of the circle. The circle can consist of any number of characters (although
a huge number might look silly, we will not put any fixed limit).

The defensive circle formation class might look something like the following:

1 class DefensiveCirclePattern:
2

3 # The radius of one character, this is needed to determine
4 # how close we can pack a given number of characters around
5 # a circle.
6 characterRadius
7

8 # Calculates the number of slots in the pattern from
9 # the assignment data. This is not part of the formation

10 # pattern interface.
11 def calculateNumberOfSlots(assignments):
12

13 # Find the number of filled slots: it will be the
14 # highest slot number in the assignments
15 filledSlots = 0
16 for assignment in assignments:
17 if assignment.slotNumber >= maxSlotNumber:
18 filledSlots = assignment.slotNumber
19

20 # Add one to go from the index of the highest slot to the
21 # number of slots needed.
22 numberOfSlots = filledSlots + 1
23

24 return numberOfSlots
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25

26 # Calculates the drift offset of the pattern.
27 def getDriftOffset(assignments):
28

29 # Store the center of mass
30 center = new Static()
31

32 # Now go through each assignment, and add its
33 # contribution to the center.
34 for assignment in assignments:
35 location = getSlotLocation(assignment.slotNumber)
36 center.position += location.position
37 center.orientation += location.orientation
38

39 # Divide through to get the drift offset.
40 numberOfAssignments = assignments.length()
41 center.position /= numberOfAssignments
42 center.orientation /= numberOfAssignments
43 return center
44

45 # Calculates the position of a slot.
46 def getSlotLocation(slotNumber):
47

48 # We place the slots around a circle based on their
49 # slot number
50 angleAroundCircle = slotNumber / numberOfSlots * PI * 2
51

52 # The radius depends on the radius of the character,
53 # and the number of characters in the circle:
54 # we want there to be no gap between character’s shoulders.
55 radius = characterRadius / sin(PI / numberOfSlots)
56

57 # Create a location, and fill its components based
58 # on the angle around circle.
59 location = new Static()
60 location.position.x = radius * cos(angleAroundCircle)
61 location.position.z = radius * sin(angleAroundCircle)
62

63 # The characters should be facing out
64 location.orientation = angleAroundCircle
65

66 # Return the slot location
67 return location
68
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69 # Makes sure we can support the given number of slots
70 # In this case we support any number of slots.
71 def supportsSlots(slotCount):
72 return true

If we know we are using the assignment algorithm given in the previous pseudo-
code, then we know that the number of slots will be the same as the number of as-
signments (since characters are assigned to sequential slots). In this case the calcu-
lateNumberOfSlots method can be simplified to be

1 def calculateNumberOfSlots(assignments):
2 return assignments.length()

In general, with more useful assignment algorithms, this may not be the case, so
the long form above is usable in all cases, at the penalty of some decrease in perfor-
mance.

3.7.6 EXTENDING TO MORE THAN TWO LEVELS

The two-level steering system can be extended to more levels, giving the ability to cre-
ate formations of formations. This is becomingly increasingly important in military
simulation games with lots of units; real armies are organized in this way.

The framework above can be simply extended to support any depth of formation.
Each formation has its own steering anchor point, either corresponding to a leader
character or representing the formation in an abstract way. The steering for this an-
chor point can be managed in turn by another formation. The anchor point is trying
to stay in a slot position of a higher level formation.

Figure 3.58 shows an example adapted from the U.S. infantry soldiers training
manual [U.S. Army Infantry School, 1992]. The infantry rifle fire team has its char-
acteristic finger-tip formation (called the “Wedge” in army-speak). These finger-tip
formations are then combined into the formation of a whole infantry squad. In turn,
this squad formation is used in the highest level formation: the column movement
formation for a rifle platoon.

Figure 3.59 shows each formation on its own to illustrate how the overall structure
of Figure 3.58 is constructed.2 Notice that in the squad formation there are three slots,
one of which is occupied by an individual character. The same thing happens at a
whole platoon level: additional individuals occupy slots in the formation. As long as
both characters and formations expose the same interface, the formation system can
cope with putting either an individual or a whole sub-formation into a single slot.

2. The format of the diagram uses military mapping symbols common to all NATO countries. A full guide on
military symbology can be found from Kourkolis [1986], but it is not necessary to understand any details
for our purposes in this book.
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The squad and platoon formations in the example show a weakness in our current
implementation. The squad formation has three slots. There is nothing to stop the
squad leader’s slot from being occupied by a rifle team, and there is nothing to stop
a formation having two leaders and only one rifle team. To avoid these situations we
need to add the concept of slot roles.

3.7.7 SLOT ROLES AND BETTER ASSIGNMENT

So far we have assumed that any character can occupy each slot. While this is nor-
mally the case, some formations are explicitly designed to give each character a dif-
ferent role. A rifle fire team in a military simulation game, for example, will have a
rifleman, grenadier, machine gunner, and squad leader in very specific locations. In a
real-time strategy game, it is often advisable to keep the heavy artillery in the center
of a defensive formation, while using agile infantry troops in the vanguard.

Slots in a formation can have roles so that only certain characters can fill certain
slots. When a formation is assigned to a group of characters (often, this is done by the
player), the characters need to be assigned to their most appropriate slot. Whether
using slot roles or not, this should not be a haphazard process, with lots of characters
scrabbling over each other to reach the formation.

Assigning characters to slots in a formation is not difficult or error prone if we
don’t use slot roles. With roles it can become a complex problem. In game applica-
tions, a simplification can be used that gives good enough performance.

Hard and Soft Roles

Imagine a formation of characters in a fantasy RPG game. As they explore a dungeon,
the party needs to be ready for action. Magicians and missile weapon users should be
in the middle of the formation, surrounded by characters who fight hand to hand.

We can support this by creating a formation with roles. We have three roles: ma-
gicians (we’ll assume that they do not need a direct line of sight to their enemy),
missile weapon users (including magicians with fireballs and spells that do follow a
trajectory), and melee (hand to hand) weapon users. Let’s call these roles “melee,”
“missile,” and “magic” for short.

Similarly, each character has one or more roles that it can fulfil. An elf might be
able to fight with a bow or sword, while a dwarf may rely solely on its axe. Characters
are only allowed to fill a slot if they can fulfil the role associated with that slot. This is
known as a hard role.

Figure 3.60 shows what happens when a party is assigned to the formation. We
have four kinds of character: fighters (F) fill melee slots, elves (E) fill either melee
or missile slots, archers (A) fill melee slots, and mages (M) fill magic slots. The first
party maps nicely onto the formation, but the second party, consisting of all melee
combatants, does not.
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Figure 3.60 An RPG formation, and two examples of the formation filled

We could solve this problem by having many different formations for different
compositions of the party. In fact, this would be the optimal solution, since a party of
sword-wielding thugs will move differently to one consisting predominantly of highly
trained archers. Unfortunately, it requires lots of different formations to be designed.
If the player can switch formation, this could multiply up to several hundred different
designs.

On the other hand, we could use the same logic that gave us scalable formations:
we feed in the number of characters in each role, and we write code to generate the
optimum formation for those characters. This would give us impressive results, again,
but at the cost of more complex code. Most developers would ideally want to move as
much content out of code as possible, ideally using separate tools to structure forma-
tion patterns and define roles.

A simpler compromise approach uses soft roles: roles that can be broken. Rather
than a character having a list of roles it can fulfil, it has a set of values representing
how difficult it would find it to fulfil every role. In our example, the elf would have
low values for both melee and missile roles, but would have a high value for occupying
the magic role. Similarly, the fighter would have high values in both missile and magic
roles, but would have a very low value for the melee role.

The value is known as the slot cost. To make a slot impossible for a character to fill,
its slot cost should be infinite. Normally, this is just a very large value. The algorithm
below works better if the values aren’t near to the upper limit of the data type (such
as FLT_MAX) because several costs will be added. To make a slot ideal for a character,
its slot cost should be zero. We can have different levels of unsuitable assignment for
one character. Our mage might have a very high slot cost for occupying a melee role,
but a slightly lower cost for missile slots.
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Figure 3.61 Different total slot costs for a party

We would like to assign characters to slots in such a way that the total cost is
minimized. If there are no ideal slots left for a character, then it can still be placed in
a non-suitable slot. The total cost will be higher, but at least characters won’t be left
stranded with nowhere to go. In our example, the slot costs are given for each role
below.

Magic Missile Melee

Archer 1000 0 1500

Elf 1000 0 0

Fighter 2000 1000 0

Mage 0 500 2000

Figure 3.61 shows that a range of different parties can now be assigned to our
formation.

These flexible slot costs are called soft roles. They act just like hard roles when
the formation can be sensibly filled, but don’t fail when the wrong characters are
available.

3.7.8 SLOT ASSIGNMENT

We have grazed along the topic of slot assignment several times in this section, but
have not looked at the algorithm.

Slot assignment needs to happen relatively rarely in a game. Most of the time a
group of characters will simply be following their slots around. Assignment usually
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occurs when a group of previously disorganized characters are assigned to a forma-
tion. We will see that it also occurs when characters spontaneously change slots in
tactical motion.

For large numbers of character and slots, the assignment can be done in many
different ways. We could simply check each possible assignment and use the one with
the lowest slot cost. Unfortunately, the number of assignments to check very quickly
gets huge. The number of possible assignments of k characters to n slots is given by
the permutations formula:

nPk ≡ n!

(n − k)!
.

For a formation of 20 slots and 20 characters, this gives nearly 2500 trillion dif-
ferent possible assignments. Clearly, no matter how infrequently we need to do it, we
can’t check every possible assignment. And a highly efficient algorithm won’t help us
here. The assignment problem is an example of a non-polynomial time complete (NP
Complete) problem; it cannot be properly solved in a reasonable amount of time by
any algorithm.

Instead, we simplify the problem by using a heuristic. We won’t be guaranteed to
get the best assignment, but we will usually get a decent assignment very quickly. The
heuristic assumes that a character will end up in a slot which is best suited to it. We
can therefore look at each character in turn and assign it to a slot with the lowest slot
cost.

We run the risk of leaving a character until last and having nowhere sensible to
put it. We can improve the performance by considering highly constrained characters
first and flexible characters last. The characters are given an ease of assignment value
which reflects how hard they are to find a slot for.

The ease of assignment value is given by

∑
i=1..n

{ 1
1+ci

if ci < k,

0 otherwise,

where ci is the cost of occupying slot i, n is the number of possible slots, and k is
a slot-cost limit, beyond which a slot is considered to be too expensive to consider
occupying.

Characters that can only occupy a few slots will have lots of high slot costs and
therefore a low ease rating. Notice that we are not adding up the costs for each role,
but for each actual slot. Our dwarf may only be able to occupy melee slots, but if there
are twice the number of melee slots than other types, it will still be relatively flexible.
Similarly, a magician that can fulfil both magic and missile roles will be inflexible if
there is only one of each to choose from in a formation of ten slots.

The list of characters is sorted according to their ease of assignment values, and
the most awkward characters are assigned first. This approach works in the vast ma-
jority of cases and is the standard approach for formation assignment.
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Generalized Slot Costs

Slot costs do not necessarily have to depend only on the character and the slot roles.
They can be generalized to include any difficulty a character might have in taking up
a slot.

If a formation is spread out, for example, a character may choose a slot that is
close by over a more distant slot. Similarly, a light infantry unit may be willing to
move farther to get into position than a heavy tank. This is not a major issue when the
formations will be used for motion, but it can be significant in defensive formations.
This is the reason we used a slot cost, rather than a slot score (i.e., high is bad and
low is good, rather than the other way around). Distance can be directly used as a slot
cost.

There may be other trade-offs in taking up a formation position. There may be
a number of defensive slots positioned at cover points around the room. Characters
should take up positions in order of the cover they provide. Partial cover should only
be occupied if no better slot is available.

Whatever the source of variation in slot costs, the assignment algorithm will still
operate normally. In our implementation, we will generalize the slot cost mechanism
to be a method call; we ask a character how costly it will be to occupy a particular

LIBRARY

slot. The code on the CD includes an implementation of this interface that supports
the basic slot roles mechanism.

Implementation

We can now implement the assignment algorithm using generalized slot costs. The
calculateAssignment method is part of the formation manager class, as before.

1 class FormationManager
2

3 # ... other content as before ...
4

5 def updateSlotAssignments():
6

7 # Holds a slot and its corresponding cost.
8 struct CostAndSlot:
9 cost

10 slot
11

12 # Holds a character’s ease of assignment and its
13 # list of slots.
14 struct CharacterAndSlots:
15 character
16 assignmentEase
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17 costAndSlots
18

19 # Holds a list of character and slot data for
20 # each character.
21 characterData
22

23 # Compile the character data
24 for assignment in slotAssignments:
25

26 # Create a new character datum, and fill it
27 datum = new CharacterAndSlots()
28 datum.character = assignment.character
29

30 # Add each valid slot to it
31 for slot in 0..pattern.numberOfSlots:
32

33 # Get the cost of the slot
34 cost = pattern.getSlotCost(assignment.character)
35

36 # Make sure the slot is valid
37 if cost >= LIMIT: continue
38

39 # Store the slot information
40 slotDatum = new CostAndSlot()
41 slotDatum.slot = slot
42 slotDatum.cost = cost
43 datum.costAndSlots.append(slotDatum)
44

45 # Add it to the character’s ease of assignment
46 datum.assignmentEase += 1 / (1+cost)
47

48 # Keep track of which slots we have filled
49 # Filled slots is an array of booleans of size:
50 # numberOfSlots. Initially all should be false
51 filledSlots = new Boolean[pattern.numberOfSlots]
52

53 # Clear the set of assignments, in order to keep track
54 # of new assignments
55 assignments = []
56

57 # Arrange characters in order of ease of assignment, with
58 # the least easy first.
59 characterData.sortByAssignmentEase()
60 for characterDatum in characterData:
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61

62 # Choose the first slot in the list that is still
63 # open
64 characterDatum.costAndSlots.sortByCost()
65 for slot in characterDatum.costAndSlots:
66

67 # Check if this slot is valid
68 if not filledSlots[slot]:
69

70 # Create an assignment
71 assignment = new SlotAssignment()
72 assignment.character = characterDatum.character
73 assignment.slotNumber = slot
74 assignments.append(assignment)
75

76 # Reserve the slot
77 filledSlots[slot] = true
78

79 # Go to the next character
80 break continue
81

82 # If we reach here, it is because a character has no
83 # valid assignment. Some sensible action should be
84 # taken, such as reporting to the player.
85 error
86

87 # We have a complete set of slot assignments now,
88 # so store them
89 slotAssignments = assignments

The break continue statement indicates that the innermost loop should be left
and the surrounding loop should be restarted with the next element. In some lan-
guages this is not an easy control flow to achieve. In C/C++ it can be done by labelling
the outermost loop and using a named continue statement (which will continue the
named loop, automatically breaking out of any enclosing loops). See the reference
information for your language to see how to achieve the same effect.

Data Structures and Interfaces

In this code I have hidden a lot of complexity in data structures. There are two lists, the
characterData and the costAndSlots, within the CharacterAndSlots structure that
are both sorted.
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In the first case, the character data is sorted by the ease of assignment rating,
using the sortByAssignmentEase method. This can be implemented as any sort, or
alternatively the method can be rewritten to sort as it goes, which may be faster if the
character data list is implemented as a linked list, where data can be very quickly in-
serted. If the list is implemented as an array (which is normally faster), then it is better
to leave the sort till last and use a fast in-place sorting algorithm such as quicksort.

In the second case, the character data is sorted by slot cost using the sortByCost
method. Again, this can be implemented to sort as the list is compiled if the underly-
ing data structure supports fast element inserts.

Performance

The performance of the algorithm is O(kn) in memory, where k is the number of
characters, and n is the number of slots. It is O(ka log a) in time, where a is the average
number of slots that can be occupied by any given character. This is normally a lower
value than the total number of slots, but grows as the number of slots grows. If this
is not the case, if the number of valid slots for a character is not proportional to the
number of slots, then the performance of the algorithm is also O(kn) in time.

In either case, this is significantly faster than an O(nPk) process.
Often, the problem with this algorithm is one of memory rather than speed. There

are ways to get the same algorithmic effect with less storage, if necessary, but at a
corresponding increase in execution time.

Regardless of the implementation, this algorithm is often not fast enough to be
used regularly. Because assignment happens rarely (when the user selects a new pat-
tern, for example, or adds a unit to a formation), it can be split over several frames.
The player is unlikely to notice a delay of a few frames before the characters begin to
assemble into a formation.

3.7.9 DYNAMIC SLOTS AND PLAYS

So far we have assumed that the slots in a formation pattern are fixed relative to the
anchor point. A formation is a fixed 2D pattern that can move around the game level.
The framework we’ve developed so far can be extended to support dynamic forma-
tions that change shape over time.

Slots in a pattern can be dynamic, moving relative to the anchor point of the
formation. This is useful for introducing a degree of movement when the formation
itself isn’t moving, for implementing set plays in some sports games, and for using as
the basis of tactical movement.

Figure 3.62 shows how fielders move in a textbook baseball double play.
This can be implemented as a formation. Each fielder has a fixed slot depending

on the position they play. Initially, they are in a fixed pattern formation and are in
their normal fielding positions (actually, there may be many of these fixed formations
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Figure 3.62 A baseball double play

depending on the strategy of the defense). When the AI detects that the double play
is on, it sets the formation pattern to a dynamic double play pattern. The slots move
along the paths shown, bringing the fielders in place to throw out both batters.

In some cases, the slots don’t need to move along a path, they can simply jump to
their new locations and have the characters use their arrive behaviors to move there.
In more complex plays, however, the route taken is not direct, and characters weave
their way to their destination.

To support dynamic formations, an element of time needs to be introduced. We
can simply extend our pattern interface to take a time value. This will be the time
elapsed since the formation began. The pattern interface now looks like the following:

1 class FormationPattern:
2

3 # ... other elements as before ...
4

5 # Gets the location of the given slot index at a given time
6 def getSlotLocation(slotNumber, time)

Unfortunately, this can cause problems with drift, since the formation will have
its slots changing position over time. We could extend the system to recalculate the
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Figure 3.63 A corner kick in soccer

drift offset in each frame to make sure it is accurate. Many games that use dynamic
slots and set plays do not use two-level steering, however. For example, the movement
of slots in a baseball game is fixed with respect to the field, and in a football game,
the plays are often fixed with respect to the line of scrimmage. In this case, there is no
need for two-level steering (the anchor point of the formation is fixed), and drift is
not an issue, since it can be removed from the implementation.

Many sports titles use techniques similar to formation motion to manage the co-
ordinated movement of players on the field. Some care does need to be taken to en-
sure that the players don’t merrily follow their formation oblivious to what’s actually
happening on the field.

There is nothing to say that the moving slot positions have to be completely pre-
defined. The slot movement can be determined dynamically by a coordinating AI
routine. At the extreme, this gives complete flexibility to move players anywhere in
response to the tactical situation in the game. But that simply shifts the responsibility
for sensible movement onto a different bit of code and begs the question, how should
that be implemented?

In practical use some intermediate solution is sensible. Figure 3.63 shows a set
soccer play for a corner kick, where only three of the players have fixed play motions.

The movement of the remaining offensive players will be calculated in response
to the movement of the defending team, while the key set play players will be rela-
tively fixed, so the player taking the corner knows where to place the ball. The player
taking the corner may wait until just before he kicks to determine which of the three
potential scorers he will cross to. This again will be in response to the actions of the
defense.
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Figure 3.64 Bounding overwatch

The decision can be made by any of the techniques in the decision making chapter
(Chapter 5). We could, for example, look at the opposing players in each of A, B, and
C’s shot cone and pass to the character with the largest free angle to aim for.

3.7.10 TACTICAL MOVEMENT

An important application of formations is tactical squad-based movement.
When they are not confident of the security of the surrounding area, a military

squad will move in turn, while other members of the squad provide a lookout and
rapid return of fire if an enemy should be spotted. Known as bounding overwatch,
this movement involves stationary squad members who remain in cover, while their
colleagues run for the next cover point. Figure 3.64 illustrates this.

Dynamic formation patterns are not limited to creating set plays for sports games,
they can also be used to create a very simple but effective approximation of bounding
overwatch. Rather than moving between set locations on a sports field, the forma-
tion slots will move in a predictable sequence between whatever cover is near to the
characters.
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Figure 3.65 Formation patterns match cover points

First we need access to the set of cover points in the game. A cover point is some
location in the game where a character will be safe if it takes cover. These locations
can be created manually by the level designers, or they can be calculated from the
layout of the level. Chapter 6 will look at how cover points are created and used in
much more detail. For our purposes here, we’ll assume that there is some set of cover
points available.

We need a rapid method of getting a list of cover points in the region surrounding
the anchor point of the formation. The overwatch formation pattern accesses this list
and chooses the closest set of cover points to the formation’s anchor point. If there
are four slots, it finds four cover points, and so on.

When asked to return the location of each slot, the formation pattern uses one
of this set of cover points for each slot. This is shown in Figure 3.65. For each of the
illustrated formation anchor points, the slot positions correspond to the nearest cover
points.

So the pattern of the formation is linked to the environment, rather than geo-
metrically fixed beforehand. As the formation moves, cover points that used to cor-
respond to a slot will suddenly not be part of the set of nearest points. As one cover
point leaves the list, another (by definition) will enter. The trick is to give the new ar-
riving cover point to the slot whose cover point has just been removed and not assign
all the cover points to slots afresh.

Because each character is assigned to a particular slot, using some kind of slot id
(an integer in our sample code), the newly valid slot should have the same id as the
recently disappeared slot. The cover points that are still valid should all still have the
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Figure 3.66 An example of slot change in bounding overwatch

same ids. This typically requires checking the new set of cover points against the old
ones and reusing id values.

Figure 3.66 shows the character at the back of the group assigned to a cover point
called slot 5. A moment later, the cover point is no longer one of the five closest to the
formation’s anchor point. The new cover point, at the front of the group, reuses the
slot 4 id, so the character at the back (who is assigned to slot 4) now finds its target
has moved and steers toward it.

LIBRARY

The accompanying code on the CD gives an example implementation of a bound-
ing overwatch formation pattern.

Tactical Motion and Anchor Point Moderation

We can now run the formation system. We need to turn off moderation of the anchor
point’s movement; otherwise, the characters are likely to get stuck at one set of cover
points. Their center of mass will not change, since the formation is stationary at their
cover points. Therefore, the anchor point will not move forward, and the formation
will not get a chance to find new cover points.

Because moderation is now switched off, it is essential to make the anchor point
move slowly in comparison with the individual characters. This is what you’d expect
to see in any case, as bounding overwatch is not a fast maneuver.

An alternative used in a couple of game prototypes I’ve seen is to go back to the
idea of having a leader character that acts as the anchor point. This leader character
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can be under the player’s control, or it can be controlled with some regular steer-
ing behavior. As the leader character moves, the rest of the squad moves in bounding
overwatch around it. If the leader character moves at full speed, then its squad doesn’t
have time to take their defensive positions, and it appears as if they are simply follow-
ing behind the leader. If the leader slows down, then they take cover around it.

To support this, make sure that any cover point near to the leader is excluded from
the list of cover points that can be turned into slots. Otherwise, other characters may
try to join the leader in its cover.

3.8 MOTOR CONTROL

So far the chapter has looked at moving characters by being able to directly affect their
physical state. This is an acceptable approximation in many cases. But, increasingly,
motion is being controlled by physics simulation. This is almost universal in driving
games, where it is the cars that are doing the steering. It has also been used for flying
characters and is starting to filter through to human character physics.

The outputs from steering behaviors can be seen as movement requests. An arrive
behavior, for example, might request an acceleration in one direction. We can add a
motor control layer to our movement solution that takes this request and works out
how to best execute it; this is the process of actuation. In simple cases this is sufficient,
but there are occasions where the capabilities of the actuator need to have an effect
on the output of steering behaviors.

Think about a car in a driving game. It has physical constraints on its movement:
it cannot turn while stationary; the faster it moves, the slower it can turn (without
going into a skid); it can brake much more quickly than it can accelerate; and it only
moves in the direction it is facing (we’ll ignore power slides for now). On the other
hand, a tank has different characteristics; it can turn while stationary, but it also needs
to slow for sharp corners. And a human character will have different characteristics
again. They will have sharp acceleration in all directions and different top speeds for
moving forward, sideways, or backward.

When we simulate vehicles in a game, we need to take into account their physical
capabilities. A steering behavior may request a combination of accelerations that is
impossible for the vehicle to carry out. We need some way to end up with a maneuver
that the character can perform.

A very common situation that arises in first and third person games is the need to
match animations. Typically, characters have a palette of animations. A walk anima-
tion, for example, might be scaled so that it can support a character moving between
0.8 and 1.2 meters per second. A jog animation might support a range of 2.0 to 4.0
meters per second. The character needs to move in one of these two ranges of speed;
no other speed will do. The actuator, therefore, needs to make sure that the steering
request can be honored using the ranges of movement that can be animated.

There are two angles of attack for actuation, which I’ll refer to as output filtering
and capability-sensitive steering.
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3.8.1 OUTPUT FILTERING

The simplest approach to actuation is to filter the output of steering based on the
capabilities of the character. In Figure 3.67, we see a stationary car that wants to be-
gin chasing another. The indicated linear and angular accelerations show the result
of a pursue steering behavior. Clearly, the car cannot perform these accelerations: it
cannot accelerate sideways, and it cannot begin to turn without moving forward.

A filtering algorithm simply removes all the components of the steering output
that cannot be achieved. The result is for no angular acceleration and a smaller linear
acceleration in its forward direction.

If the filtering algorithm is run every frame (even if the steering behavior isn’t),
then the car will take the indicated path. At each frame the car accelerates forward,
allowing it to accelerate angularly. The rotation and linear motion serves to move the
car into the correct orientation so that it can go directly after its quarry.

This approach is very fast, easy to implement, and surprisingly effective. It even
naturally provides some interesting behaviors. If we rotate the car in the example
below so that the target is almost behind it, then the path of the car will be a J-turn,
as shown in Figure 3.68.

There are problems with this approach, however. When we remove the unavail-
able components of motion, we will be left with a much smaller acceleration than
originally requested. In the first example above, the initial acceleration is small in
comparison with the requested acceleration. In this case it doesn’t look too bad. We
can justify it by saying that the car is simply moving off slowly to perform its initial
turn.

Requested acceleration Filtered acceleration

Pursuing car

Target car

Figure 3.67 Requested and filtered accelerations
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Car moving
forward

Car reversing

Pursuing car

Target car

Figure 3.68 A J-turn emerges

Pursuing car

Requested acceleration
(all filtered)

Target car

Figure 3.69 Everything is filtered: nothing to do

We could also scale the final request so that it is the same magnitude as the initial
request. This makes sure that a character doesn’t move more slowly because its request
is being filtered.

In Figure 3.69 the problem of filtering becomes pathological. There is now no
component of the request that can be performed by the car. Filtering alone will leave
the car immobile until the target moves or until numerical errors in the calculation
resolve the deadlock.

To resolve this last case, we can detect if the final result is zero and engage a dif-
ferent actuation method. This might be a complete solution such as the capability-
sensitive technique below, or it could be a simple heuristic such as drive forward and
turn hard.

In my experience a majority of cases can simply be solved with filtering-based
actuation. Where it tends not to work is where there is a small margin of error in
the steering requests. For driving at high speed, maneuvering through tight spaces,
matching the motion in an animation, or jumping, the steering request needs to be
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honored as closely as possible. Filtering can cause problems, but, to be fair, so can the
other approaches in this section (although to a lesser extent).

3.8.2 CAPABILITY-SENSITIVE STEERING

A different approach to actuation is to move the actuation into the steering behaviors
themselves. Rather than generating movement requests solely based on where the
character wants to go, the AI also takes into account the physical capabilities of the
character.

If the character is pursuing an enemy, it will consider each of the maneuvers that it
can achieve and choose the one that best achieves the goal of catching the target. If the
set of maneuvers that can be performed is relatively small (we can move forward or
turn left or right, for example), then we can simply look at each in turn and determine
the situation after the maneuver is complete. The winning action is the one that leads
to the best situation (the situation with the character nearest its target, for example).

In most cases, however, there is an almost unlimited range of possible actions
that a character can take. It may be able to move with a range of different speeds, for
example, or to turn through a range of different angles. A set of heuristics are needed
to work out what action to take depending on the current state of the character and its
target. Section 3.8.3 gives examples of heuristic sets for a range of common movement
AIs.

The key advantage of this approach is that we can use information discovered in
the steering behavior to determine what movement to take. Figure 3.70 shows a skid-
ding car that needs to avoid an obstacle. If we were using a regular obstacle avoiding
steering behavior, then path A would be chosen. Using output filtering, this would be
converted into putting the car into reverse and steering to the left.

We could create a new obstacle avoidance algorithm that considered both pos-
sible routes around the obstacle, in the light of a set of heuristics (such as those in
Section 3.8.3).

Because a car will prefer to move forward to reach its target, it would correctly use
route B, which involves accelerating to avoid the impact. This is the choice a rational
human being would make.

There isn’t a particular algorithm for capability-sensitive steering. It involves im-
plementing heuristics that model the decisions a human being would make in the
same situation: when it is sensible to use each of the vehicles’ possible actions to get
the desired effect.

Coping with Combined Steering Behaviors

Although it seems an obvious solution, to bring the actuation into the steering behav-
iors, it causes problems when combining behaviors together. In a real game situation,
where there will be several steering concerns active at one time, we need to do actua-
tion in a more global way.
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Velocity
(skidding) Route A

Route B

Target

Obstacle

Figure 3.70 Heuristics make the right choice

One of the powerful features of steering algorithms, as we’ve seen earlier in the
chapter, is the ability to combine concerns to produce complex behaviors. If each
behavior is trying to take into account the physical capabilities of the character, they
are unlikely to give a sensible result when combined.

If you are planning to blend steering behaviors, or combine them using a black-
board system, state machine, or steering pipeline, it is advisable to delay actuation to
the last step, rather than actuating as you go.

This final actuation step will normally involve a set of heuristics. At this stage we
don’t have access to the inner workings of any particular steering behavior; we can’t
look at alternative obstacle avoidance solutions, for example. The heuristics in the
actuator, therefore, need to be able to generate a roughly sensible movement guess
for any kind of input; they will be limited to acting on one input request with no
additional information.

3.8.3 COMMON ACTUATION PROPERTIES

This section looks at common actuation restrictions for a range of movement AI in
games, along with a set of possible heuristics for performing context-sensitive actua-
tion.

Human Characters

Human characters can move in any direction relative to their facing, although they
are considerably faster in their forward direction than any other. As a result, they will
rarely try to achieve their target by moving sideways or backward, unless the target is
very close.
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They can turn very fast at low speed, but their turning abilities decrease at higher
speeds. This is usually represented by a “turn on the spot” animation that is only
available to stationary or very slow-moving characters. At a walk or a run, the char-
acter may either slow and turn on the spot or turn in its motion (represented by the
regular walk or run animation, but along a curve rather than a straight line).

Actuation for human characters depends, to a large extent, on the animations that
are available. At the end of Chapter 4, we will look at a technique that can always find
the best combination of animations to reach its goal. Most developers simply use a
set of heuristics, however.

� If the character is stationary or moving very slowly, and if it is a very small distance
from its target, it will step there directly, even if this involves moving backward or
sidestepping.

� If the target is farther away, the character will first turn on the spot to face its
target and then move forward to reach it.

� If the character is moving with some speed, and if the target is within a speed-
dependent arc in front of it, then it will continue to move forward, but add a
rotational component (usually while still using the straight line animation, which
puts a natural limit on how much rotation can be added to its movement without
the animation looking odd).

� If the target is outside its arc, then it will stop moving and change direction on the
spot before setting off once more.

The radius for sidestepping, how fast is “moving very slowly,” and the size of the
arc are all parameters that need to be determined and, to a large extent, that depend
on the scale of the animations that the character will use.

Cars and Motorbikes

Typical motor vehicles are highly constrained. They cannot turn while stationary, and
they cannot control or initiate sideways movement (skidding). At speed, they typically
have limits to their turning capability, which is determined by the grip of their tires
on the ground.

In a straight line, a motor vehicle will be able to brake more quickly than acceler-
ate and will be able to move forward at a higher speed (though not necessarily with
greater acceleration) than backward. Motorbikes almost always have the constraint of
not being able to travel backward at all.

There are two decision arcs used for motor vehicles, as shown in Figure 3.71. The
forward arc contains targets for which the car will simply turn without braking. The
rear arc contains targets for which the car will attempt to reverse. This rear arc is zero
for motorbikes and will usually have a maximum range to avoid cars reversing for
miles to reach a target behind them.
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Figure 3.71 Decision arcs for motor vehicles

At high speeds, the arcs shrink, although the rate at which they do so depends on
the grip characteristics of the tires, and needs to be found by tweaking. If the car is
at low speed (but not at rest), then the two arcs should touch, as shown in the figure.
The two arcs must still be touching when the car is moving slowly. Otherwise, the car
will attempt to brake to stationary in order to turn toward a target in the gap. Because
it cannot turn while stationary, this will mean it will be unable to reach its goal. If the
arcs are still touching at too high a speed, then the car may be travelling too fast when
it attempts to make a sharp turn and skid.

� If the car is stationary, then it should accelerate.
� If the car is moving and the target lies between the two arcs, then the car should

brake while turning at the maximum rate that will not cause a skid. Eventually,
the target will cross back into the forward arc region, and the car can turn and
accelerate toward it.

� If the target is inside the forward arc, then continue moving forward and steer
toward it. Cars that should move as fast as possible should accelerate in this case.
Other cars should accelerate to their optimum speed, whatever that might be (the
speed limit for a car on a public road, for example).

� If the target is inside the rearward arc, then accelerate backward and steer toward
it.

This heuristic can be a pain to parameterize, especially when using a physics en-
gine to drive the dynamics of the car. Finding the forward arc angle so that it is near
to the grip limit of the tires, but doesn’t exceed it (to avoid skidding all the time), can
be a pain. In most cases it is best to err on the side of caution, giving a healthy margin
of error.

A common tactic is to artificially boost the grip of AI-controlled cars. The forward
arc can then be set so it would be right on the limit, if the grip was the same as for
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the player’s car. In this case it is the AI that is limiting the capabilities of the car, not
the physics, but its vehicle does not behave in an unbelievable or unfair way. The only
downside with this approach is that the car will never skid out, which may be a desired
feature of the game.

These heuristics are designed to make sure the car does not skid. In some games
lots of wheel spinning and handbrake turns are the norm, and the parameters need
to be tweaked to allow this.

Tracked Vehicles (Tanks)

Tanks behave in a very similar manner to cars and bikes. They are capable of moving
forward and backward (typically with much smaller acceleration than a car or bike)
and turning at any speed. At high speeds, their turning capabilities are limited by grip
once more. At low speed or when stationary, they can turn very rapidly.

Tanks use decision arcs in exactly the same way as cars. There are two differences
in the heuristic.

� The two arcs may be allowed to touch only at zero speed. Because the tank can
turn without moving forward, it can brake right down to nothing to perform a
sharp turn. In practice this is rarely needed, however. The tank can turn sharply
while still moving forward. It doesn’t need to stop.

� The tank does not need to accelerate when stationary.

3.9 MOVEMENT IN THE THIRD DIMENSION

So far we have looked at 2D steering behavior. We allowed the steering behavior to
move vertically in the third dimension, but forced its orientation to remain about the
up vector. This is 2 1

2 D, suitable for most development needs.
Full 3D movement is required if your characters aren’t limited by gravity. Char-

acters scurrying along the roof or wall, airborne vehicles that can bank and twist, and
turrets that rotate in any direction are all candidates for steering in full three dimen-
sions.

Because 2 1
2 D algorithms are so easy to implement, it is worth thinking hard before

you take the plunge into full three dimensions. There is often a way to shoehorn the
situation into 2 1

2 D and take advantage of the faster execution that it provides. At the
end of this chapter is an algorithm, for example, that can model the banking and
twisting of aerial vehicles using 2 1

2 D math. There comes a point, however, where the
shoehorning takes longer to perform than the 3D math.

This section looks at introducing the third dimension into orientation and ro-
tation. It then considers the changes that need to be made to the primitive steering
algorithms we saw earlier. Finally, we’ll look at a common problem in 3D steering:
controlling the rotation for air and space vehicles.
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3.9.1 ROTATION IN THREE DIMENSIONS

To move to full three dimensions we need to expand our orientation and rotation
to be about any angle. Both orientation and rotation in three dimensions have three
degrees of freedom. We can represent rotations using a 3D vector. But for reasons
beyond the scope of this book, it is impossible to practically represent an orientation
with three values.

The most useful representation for 3D orientation is the quaternion: a value with
4 real components, the size of which (i.e., the Euclidean size of the 4 components) is
always one. The requirement that the size is always one reduces the degrees of freedom
from 4 (for 4 values) to 3.

Mathematically, quaternions are hypercomplex numbers. Their mathematics is
not the same as that of a 4-element vector. So dedicated routines are needed for mul-
tiplying quaternions and multiplying position vectors by them. A good 3D math li-
brary will have the relevant code, and the graphics engine you are working with will
almost certainly use quaternions.

It is possible to also represent orientation using matrices, and this was the dom-
inant technique up until the mid-1990s. These 9-element structures have additional
constraints to reduce the degrees of freedom to 3. Because they require a good deal of
checking to make sure the constraints are not broken, they are no longer widely used.

The rotation vector has three components. It is related to the axis of rotation and
the speed of rotation according to

�r =
[axω

ayω

azω

]
, [3.7]

where [ ax ay az ]T is the axis of rotation, and ω is the angular velocity, in radians
per second (units are critical; the math is more complex if degrees per second are
used).

The orientation quaternion has four components: [ r i j k ] (sometimes
called [w x y z ]—although personally I think that confuses them with a po-
sition vector, which in homogeneous form has an additional w coordinate).

It is also related to an axis and angle. This time the axis and angle correspond
to the minimal rotation required to transform from a reference orientation to the
desired orientation. Every possible orientation can be represented as some rotation
from a reference orientation about a single fixed axis.

The axis and angle are converted into a quaternion using the following equation:

q̂ =

⎡
⎢⎢⎣

cos θ
2

ax sin θ
2

ay sin θ
2

az sin θ
2

⎤
⎥⎥⎦ , [3.8]
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where [ ax ay az ]T is the axis, as before, θ is the angle, and p̂ indicates that p is a
quaternion.

Note that different implementations use different orders for the elements in a
quaternion. Often, the r component appears at the end.

We have four numbers in the quaternion, but we only need 3 degrees of freedom.
The quaternion needs to be further constrained, so that it has a size of 1 (i.e., it is a
unit quaternion). This occurs when

r2 + i2 + j2 + k2 = 1,

verifying that this always follows from the axis and angle representation is left as an
exercise. Even though the maths of quaternions used for geometrical applications
normally ensure that quaternions remain of unit length, numerical errors can make
them wander. Most quaternion math libraries have extra bits of code that periodically
normalize the quaternion back to unit length. We will rely on the fact that quaternions
are unit length.

The mathematics of quaternions is a wide field, and we will only cover those topics
that we need in the following sections. Other books in this series, particularly Eberly
[2004], contain in-depth mathematics for quaternion manipulation.

3.9.2 CONVERTING STEERING BEHAVIORS TO THREE

DIMENSIONS

In moving to three dimensions, only the angular mathematics has changed. To con-
vert our steering behaviors into three dimensions, we divide them into those that do
not have an angular component, such as pursue or arrive, and those that do, such
as align. The former translates directly to three dimensions, and the latter requires
different math for calculating the angular acceleration required.

Linear Steering Behaviors in Three Dimensions

In the first two sections of the chapter we looked at 14 steering behaviors. Of these, 10
did not explicitly have an angular component: seek, flee, arrive, pursue, evade, veloc-
ity matching, path following, separation, collision avoidance, and obstacle avoidance.

Each of these behaviors works linearly: they try to match a given linear position
or velocity, or they try to avoid matching a position. None of them require any mod-
ification to move from 2 1

2 D to three dimensions. The equations work unaltered with
3D positions.

Angular Steering Behaviors in Three Dimensions

The remaining four steering behaviors are align, face, look where you’re going, and
wander. Each of these has an explicit angular component. Align, look where you’re
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going, and face are all purely angular. Align matches another orientation, face ori-
ents toward a given position, and look where you’re going orients toward the current
velocity vector.

Between the three we have orientation based on three of the four elements of a
kinematic (it is difficult to see what orientation based on rotation might mean). We
can update each of these three behaviors in the same way.

The wander behavior is different. Its orientation changes semi-randomly, and the
orientation then motivates the linear component of the steering behavior. We will
deal with wander separately.

3.9.3 ALIGN

Align takes as input a target orientation and tries to apply a rotation to change the
character’s current orientation to match the target.

In order to do this, we’ll need to find the required rotation between the target and
current quaternions. The quaternion that would transform the start orientation to
the target orientation is

q̂ = ŝ−1 t̂,

where ŝ is the current orientation, and t̂ is the target quaternion. Because we are deal-
ing with unit quaternions (the square of their elements sum to one), the quaternion
inverse is equal to the conjugate q̂∗ and is given by

q̂−1 =
⎡
⎢⎣

r
i
j
k

⎤
⎥⎦

−1

=
⎡
⎢⎣

r
−i
−j
−k

⎤
⎥⎦ .

In other words, the axis components are flipped. This is because the inverse of the
quaternion is equivalent to rotating about the same axis, but by the opposite angle
(i.e., θ−1 = −θ ). For each of the x, y, and z components, related to sin θ , we have
sin−θ = − sin θ , where as the w component is related to cos θ , and cos−θ = − cos θ ,
leaving the w component unchanged.

We now need to convert this quaternion into a rotation vector. First, we split the
quaternion back into an axis and angle:

θ = 2 arccos qw,

�a = 1

sin θ
2

[ qi

qj

qk

]
.

In the same way as for the original align behavior, we would like to choose a
rotation so that the character arrives at the target orientation with zero rotation speed.
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We know the axis through which this rotation needs to occur, and we have a total
angle that needs to be achieved. We only need to find the rotation speed to choose.

Finding the correct rotation speed is equivalent to starting at zero orientation in
two dimensions and having a target orientation of θ . We can apply the same algorithm
used in two dimensions to generate a rotation speed, ω, and then combine this with
the axis, �a, above to produce an output rotation, using Equation 3.7.

3.9.4 ALIGN TO VECTOR

Both the face steering behavior and look where you’re going started with a vector
along which the character should align. In the former case it is a vector from the
current character position to a target, and in the latter case it is the velocity vector.
We are assuming that the character is trying to position its z axis (the axis it is looking
down) in the given direction.

In two dimensions it is simple to calculate a target orientation from a vector using
the atan2 function available in most languages. In three dimensions there is no such
shortcut to generate a quaternion from a target facing vector.

In fact, there are an infinite number of orientations that look down a given vector,
as illustrated in Figure 3.72. The dotted vector is the projection of the solid vector onto
the x–z plane: a shadow to give you a visual clue. The grey vectors represent the three
axes.

This means that there is no single way to convert a vector to an orientation. We
have to make some assumptions to simplify things.

The most common assumption is to bias the target toward a “base” orientation.
We’d like to choose an orientation that is as near to the base orientation as possible.
In other words, we start with the base orientation and rotate it through the minimum
angle possible (about an appropriate axis) so that its local z axis points along our
target vector.

This minimum rotation can be found by converting the z-direction of the base
orientation into a vector and then taking the vector product of this and the target

x

z

y

Figure 3.72 Infinite number of orientations per vector
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vector. The vector product gives

�zb ×�t = �r,
where �zb is the vector of the local z-direction in the base orientation, �t is the target
vector, and �r being a cross product is defined to be

�r = �zb ×�t = (|�zb||�t| sin θ
)�ar = sin θ�ar,

where θ is the angle, and �ar is the axis of minimum rotation. Because the axis will
be a unit vector (i.e., |�ar| = 1), we can recover angle θ = arcsin |�r| and divide �r by
this to get the axis. This will not work if sin θ = 0 (i.e., θ = nπ for all n ∈ Z). This
corresponds to our intuition about the physical properties of rotation. If the rotation
angle is zero, then it doesn’t make sense to talk about any rotation axis. If the rota-
tion is through π radians (90◦), then any axis will do; there is no particular axis that
requires a smaller rotation than any other.

As long as sin θ �= 0, we can generate a target orientation by first turning the axis
and angle into a quaternion, r̂ (using Equation 3.8), and applying the formula:

t̂ = b̂−1r̂,

where b̂ is the quaternion representation of the base orientation, and t̂ is the target
orientation to align to.

If sin θ = 0, then we have two possible situations: either the target z axis is the
same as the base z axis or it is π radians away from it. In other words, �zb = ±�zt . In
each case we use the base orientation’s quaternion, with the appropriate sign change:

t̂ =
{

+b̂ if �zb = �zt ,
−b̂ otherwise.

The most common base orientation is the zero orientation: [ 1 0 0 0 ]. This
has the effect that the character will stay upright when its target is in the x–z plane.
Tweaking the base vector can provide visually pleasing effects. We could tilt the base
orientation when the character’s rotation is high to force it to lean into its turns, for
example.

We will implement this process in the context of the face steering behavior below.

3.9.5 FACE

Using the align to vector process, both face and look where you’re going can be easily
implemented using the same algorithm as we used at the start of the chapter, but
replacing the atan2 calculation by the procedure above to calculate the new target
orientation.

By way of an illustration, I’ll give an implementation for the face steering behavior
in three dimensions. Since this is a modification of the algorithm given earlier in the



3.9 Movement in the Third Dimension 193

chapter, I won’t discuss the algorithm in any depth (see the previous version for more

information).

1 class Face3D (Align3D):
2

3 # The base orientation used to calculate facing
4 baseOrientation
5

6 # Overridden target
7 target
8

9 # ... Other data is derived from the superclass ...
10

11 # Calculate an orientation for a given vector
12 def calculateOrientation(vector):
13

14 # Get the base vector by transforming the z axis by base
15 # orientation (this only needs to be done once for each base
16 # orientation, so could be cached between calls).
17 baseZVector = new Vector(0,0,1) * baseOrientation
18

19 # If the base vector is the same as the target, return
20 # the base quaternion
21 if baseZVector == vector:
22 return baseOrientation
23

24 # If it is the exact opposite, return the inverse of the base
25 # quaternion
26 if baseZVector == -vector:
27 return -baseOrientation
28

29 # Otherwise find the minimum rotation from the base to the target
30 change = baseZVector x vector
31

32 # Find the angle and axis
33 angle = arcsin(change.length())
34 axis = change
35 axis.normalize()
36

37 # Pack these into a quaternion and return it
38 return new Quaternion(cos(angle/2),
39 sin(angle/2)*axis.x,
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40 sin(angle/2)*axis.y,
41 sin(angle/2)*axis.z)
42

43

44 # Implemented as it was in Pursue
45 def getSteering():
46

47 # 1. Calculate the target to delegate to align
48

49 # Work out the direction to target
50 direction = target.position -
51 character.position
52

53 # Check for a zero direction, and make no change if so
54 if direction.length() == 0: return target
55

56 # Put the target together
57 Align3D.target = explicitTarget
58 Align3D.target.orientation = calculateOrientation(direction)
59

60 # 2. Delegate to align
61 return Align3D.getSteering()

This implementation assumes that we can take the vector product of two vectors
using the syntax vector1 x vector2. The x operator doesn’t exist in most languages.
In C++, for example, you could use either a function call or perhaps the overload
modular division operator % for this purpose.

We also need to look at the mechanics of transforming a vector by a quaternion. In
the code above this is performed with the * operator, so vector * quaternion should
return a vector that is equivalent to rotating the given vector by the quaternion. Math-
ematically, this is given by

v̂′ = q̂v̂q̂∗,

where v̂ is a quaternion derived from the vector, according to

v̂ =
⎡
⎢⎣

0
vx

vy

vz

⎤
⎥⎦ ,

and q̂∗ is the conjugate of the quaternion, which is the same as the inverse for unit
quaternions. This can be implemented as
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1 # Transforms the vector by the given quaternion
2 def transform(vector, orientation):
3

4 # Convert the vector into a quaternion
5 vectorAsQuat = Quaternion(0, vector.x, vector.y, vector.z)
6

7 # Transform it
8 vectorAsQuat = orientation * vectorAsQuat * (-orientation)
9

10 # Unpick it into the resulting vector
11 return new Vector(vectorAsQuat.i, vectorAsQuat.j, vectorAsQuat.k)

Quaternion multiplication, in turn, is defined by

p̂q̂ =
⎡
⎢⎣

prqr − piqi − pjqj − pkqk

prqi + piqr + pjqk − pkqj

prqj + pjqr − piqk + pkqi

prqk + pkqr + piqj − pjqi

⎤
⎥⎦ .

It is important to note that the order does matter. Unlike normal arithmetic,
quaternion multiplication isn’t commutative. In general, p̂q̂ �= q̂p̂.

3.9.6 LOOK WHERE YOU’RE GOING

Look where you’re going would have a very similar implementation to face. We simply
replace the calculation for the direction vector in the getSteering method with a
calculation based on the character’s current velocity:

1 # Work out the direction to target
2 direction = character.velocity
3 direction.normalize()

3.9.7 WANDER

In the 2D version of wander, a target point was constrained to move around a circle
offset in front of the character at some distance. The target moved around this cir-
cle randomly. The position of the target was held at an angle, representing how far
around the circle the target lay, and that random change in that was generated by
adding a random amount to the angle.

In three dimensions, the equivalent behavior uses a 3D sphere on which the target
is constrained, again offset at a distance in front of the character. We cannot use a
single angle to represent the location of the target on the sphere, however. We could
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use a quaternion, but it becomes difficult to change it by a small random amount
without a good deal of math.

Instead, we represent the position of the target on the sphere as a 3D vector, con-
straining the vector to be of unit length. To update its position, we simply add a ran-
dom amount to each component of the vector and normalize it again. To avoid the
random change making the vector zero (and hence making it impossible to normal-
ize), we make sure that the maximum change in any component is smaller than 1√

3
.

After updating the target position on the sphere, we transform it by the orienta-
tion of the character, scale it by the wander radius, and then move it out in front of
the character by the wander offset, exactly as in the 2D case. This keeps the target in
front of the character and makes sure that the turning angles are kept low.

Rather than using a single value for the wander offset, we now use a vector. This
would allow us to locate the wander circle anywhere relative to the character. This
is not a particularly useful feature. We will want it to be in front of the character
(i.e., having only a positive z coordinate, with zero for x and y values). Having it in
vector form does simplify the math, however. The same thing is true of the maximum
acceleration property: replacing the scalar with a 3D vector simplifies the math and
provides more flexibility.

With a target location in world space, we can use the 3D face behavior to rotate
toward it and accelerate forward to the greatest extent possible.

In many 3D games we want to keep the impression that there is an up and down
direction. This illusion is damaged if the wanderer can change direction up and down
as fast as it can in the x–z plane. To support this, we can use two radii for scaling the
target position: one for scaling the x and z components, and the other for scaling the
y component. If the y scale is smaller, then the wanderer will turn more quickly in
the x–z plane. Combined with using the face implementation described above, with
a base orientation where up is in the direction of the y axis, this gives a natural look
for flying characters, such as bees, birds, or aircraft.

The new wander behavior can be implemented like the following:

1 class Wander3D (Face3D):
2

3 # Holds the radius and offset of the wander circle. The
4 # offset is now a full 3D vector.
5 wanderOffset
6 wanderRadiusXZ
7 wanderRadiusY
8

9 # Holds the maximum rate at which the wander orientation
10 # can change. Should be strictly less than
11 # 1/sqrt(3) = 0.577 to avoid the chance of ending up with
12 # a zero length wanderVector.
13 wanderRate
14
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15 # Holds the current offset of the wander target
16 wanderVector
17

18 # Holds the maximum acceleration of the character, this
19 # again should be a 3D vector, typically with only a
20 # non-zero z value.
21 maxAcceleration
22

23 # ... Other data is derived from the superclass ...
24

25 def getSteering():
26

27 # 1. Calculate the target to delegate to face
28

29 # Update the wander direction
30 wanderVector.x += randomBinomial() * wanderRate
31 wanderVector.y += randomBinomial() * wanderRate
32 wanderVector.z += randomBinomial() * wanderRate
33 wanderVector.normalize()
34

35 # Calculate the transformed target direction and scale it
36 target = wanderVector * character.orientation
37 target.x *= wanderRadiusXZ
38 target.y *= wanderRadiusY
39 target.z *= wanderRadiusXZ
40

41 # Offset by the center of the wander circle
42 target += character.position +
43 wanderOffset * character.orientation
44

45 # 2. Delegate it to face
46 steering = Face3D.getSteering(target)
47

48 # 3. Now set the linear acceleration to be at full
49 # acceleration in the direction of the orientation
50 steering.linear = maxAcceleration * character.orientation
51

52 # Return it
53 return steering

Again, this is heavily based on the 2D version and shares its performance charac-
teristics. See the original definition for more information.
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3.9.8 FAKING ROTATION AXES

A common issue with vehicles moving in three dimensions is their axis of rotation.
Whether spacecraft or aircraft, they have different turning speeds for each of their
three axes (see Figure 3.73: roll, pitch, and yaw). Based on the behavior of aircraft, we
assume that roll is faster than pitch which is faster than yaw.

If a craft is moving in a straight line and needs to yaw, it will first roll so that its
up direction points toward the direction of the turn, then it can pitch up to turn in
the correct direction. This is how aircraft are piloted, and it is a physical necessity
imposed by the design of the wing and control surfaces. In space there is no such
restriction, but we want to give the player some kind of sense that craft obey physical
laws. Having them yaw rapidly looks unbelievable, so we tend to impose the same
rule: roll and pitch produces a yaw.

Most aircraft don’t roll far enough so that all the turn can be achieved by pitching.
In a conventional aircraft flying level, using only pitch to perform a right turn would
involve rolling by π radians. This would cause the nose of the aircraft to dive sharply
toward the ground, requiring significant compensation to avoid losing the turn (in a
light aircraft it would be a hopeless attempt). Rather than tip the aircraft’s local up
vector so that it is pointing directly into the turn, we angle it slightly. A combination
of pitch and yaw then provides the turn. The amount to tip is determined by speed:
the faster the aircraft, the greater the roll. A Boeing 747 turning to come into land
might only tip up by π

6 radians (15◦); an F-22 Raptor might tilt by π
2 radians (45◦);

or the same turn in an X-Wing by 5π
6 (75◦).

RollYaw

Pitch

Figure 3.73 Local rotation axes of an aircraft
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Most craft moving in three dimensions have an “up–down” axis. This can be seen
in 3D space shooters as much as in aircraft simulators. Homeworld, for example, had
an explicit up and down direction, to which craft would orient themselves when not
moving. The up direction is significant because craft moving in a straight line, other
than in the up direction, tend to align themselves with up.

The up direction of the craft points as near to up as the direction of travel will
allow. This again is a consequence of aircraft physics: the wings of an aircraft are de-
signed to produce lift in the up direction, so if you don’t keep your local up direction
pointing up, you are eventually going to fall out of the sky.

It is true that in a dog fight, for example, craft will roll while travelling in a straight
line, to get a better view, but this is a minor effect. In most cases the reason for rolling
is to perform a turn.

It is possible to bring all this processing into an actuator: to calculate the best way
to trade off pitch, roll, and yaw, based on the physical characteristics of the aircraft.
If you are writing an AI to control a physically modelled aircraft, you may have to
do this. For the vast majority of cases, however, this is overkill. We are interested in
having enemies that just look right.

It is also possible to add a steering behavior that forces a bit of roll whenever there
is a rotation. This works well, but tends to lag. Pilots will roll before they pitch, rather
than afterward. If the steering behavior is monitoring the rotational speed of the craft
and rolling accordingly, there is a delay. If the steering behavior is being run every
frame, this isn’t too much of a problem. If the behavior is running only a couple of
times a second, it can look very strange.

Both of the above approaches rely on techniques already covered in this chapter,
so I won’t revisit them here. There is another approach, used in some aircraft games
and many space shooters, that fakes rotations based on the linear motion of the craft.
It has the advantages that it reacts instantly; is doesn’t put any burden on the steering
system because it is a post-processing step. It can be applied to 2 1

2 D steering, giving
the illusion of full 3D rotations.

The Algorithm

Movement is handled using steering behaviors as normal. We keep two orientation
values. One is part of the kinematic data and is used by the steering system, and
one is calculated for display. This algorithm calculates the latter value based on the
kinematic data.

First, we find the speed of the vehicle: the magnitude of the velocity vector. If
the speed is zero, then the kinematic orientation is used without modification. If the
speed is below a fixed threshold, then the result of the rest of the algorithm will be
blended with the kinematic orientation. So above the threshold the algorithm has
complete control. As it drops below the threshold, there is a blend of the algorith-
mic orientation and the kinematic orientation, until at a speed of zero, the kinematic
orientation is used.
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At zero speed the motion of the vehicle can’t produce any sensible orientation;
it isn’t moving. So we’ll have to use the orientation generated by the steering system.
The threshold and blending is there to make sure that the vehicle’s orientation doesn’t
jump as it slows to a halt. If your application never has stationary vehicles (aircraft
without the ability to hover, for example), then this blending can be removed.

The algorithm generates an output orientation in three stages. This output can
then be blended with the kinematic orientation, as described above.

First, the vehicle’s orientation about the up vector (its 2D orientation in a 2 1
2 D

system) is found from the kinematic orientation. We’ll call this value θ .
Second, the tilt of the vehicle is found by looking at the component of the vehicle’s

velocity in the up direction. The output orientation has an angle above the horizon
given by

φ = sin−1 �v.�u
|�v| ,

where v is its velocity (taken from the kinematic data), and u is a unit vector in the
up direction.

Third, the roll of the vehicle is found by looking at the vehicle’s rotation speed
about the up direction (i.e., the 2D rotation in a 2 1

2 D system). The roll is given by

ψ = tan−1 r

k
,

where r is the rotation, and k is a constant that controls how much lean there should
be. When the rotation is equal to k, then the vehicle will have a roll of π

2 radians.
Using this equation, the vehicle will never achieve a roll of π radians, but very fast
rotation will give very steep rolls.

The output orientation is calculated by combining the three rotations in the order
θ , φ, ψ .

Pseudo-Code

The algorithm has the following structure when implemented:

1 def getFakeOrientation(kinematic, speedThreshold,
2 rollScale):
3

4 # Find the speed
5 speed = kinematic.velocity.length()
6

7 # Find the blend factors
8 if speed < speedThreshold:
9 # Check for all kinematic
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10 if speed == 0:
11 return kinematic.orientation
12 else:
13 kinematicBlend = speed / speedThreshold
14 fakeBlend = 1.0 - kinematicBlend
15 else:
16 # We’re completely faked
17 fakeBlend = 1.0
18 kinematicBlend = 0.0
19

20 # Find the y-axis orientation
21 yaw = kinematic.orientation
22

23 # Find the tilt
24 pitch = asin(kinematic.velocity.y / speed)
25

26 # Find the roll
27 roll = atan2(kinematic.rotation, rollScale)
28

29 # Find the output orientation by combining the three
30 # component quaternions
31 result = orientationInDirection(roll, Vector(0,0,1))
32 result *= orientationInDirection(pitch, Vector(1,0,0))
33 result *= orientationInDirection(yaw, Vector(0,1,0))
34 return result

Data Structures and Interfaces

The code relies on appropriate vector and quaternion mathematics routines being
available, and I have assumed that I can create a vector using a three argument con-
structor.

Most operations are fairly standard and will be present in any vector math library.
The orientationInDirection function of a quaternion is less common. It returns an
orientation quaternion representing a rotation by a given angle about a fixed axis. It
can be implemented in the following way:

1 def orientationInDirection(angle, axis):
2

3 result = new Quaternion()
4

5 result.r = cos(angle*0.5)
6

7 sinAngle = sin(angle*0.5)
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8 result.i = axis.x * sinAngle
9 result.j = axis.y * sinAngle

10 result.k = axis.z * sinAngle
11 return result

which is simply Equation 3.8 in code form.

Implementation Notes

The same algorithm also comes in handy in other situations. By reversing the direc-
tion of roll (ψ), the vehicle will roll outward with a turn. This can be applied to the
chassis of cars driving (excluding the φ component, since there will be no controllable
vertical velocity) to fake the effect of soggy suspension. In this case a high k value is
needed.

Performance

The algorithm is O(1) in both memory and time. It involves an arc sine and an arc
tangent call and three calls to orientationInDirection function. Arc sin and arc tan
calls are typically slow, even compared to other trigonometry functions. Various faster
implementations are available. In particular, an implementation using a low resolu-
tion lookup table (256 entries or so) would be perfectly adequate for our needs. It
would provide 256 different levels of pitch or roll, which would normally be enough
for the player not to notice that the tilting isn’t completely smooth.
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ame characters usually need to move around their level. Sometimes this move-
Gment is set in stone by the developers, such as a patrol route that a guard can
follow blindly or a small fenced region in which a dog can randomly wander around.
Fixed routes are simple to implement, but can easily be fooled if an object is pushed
in the way. Free wandering characters can appear aimless and can easily get stuck.

More complex characters don’t know in advance where they’ll need to move.
A unit in a real-time strategy game may be ordered to any point on the map by the
player at any time; a patrolling guard in a stealth game may need to move to its nearest
alarm point to call for reinforcements; and a platform game may require opponents
to chase the player across a chasm using available platforms.

For each of these characters the AI must be able to calculate a suitable route
through the game level to get from where it is now to its goal. We’d like the route
to be sensible and as short or rapid as possible (it doesn’t look smart if your character
walks from the kitchen to the lounge via the attic).

This is pathfinding, sometimes called path planning, and it is everywhere in
game AI.

In our model of game AI (Figure 4.1), pathfinding sits on the border between
decision making and movement. Often, it is used simply to work out where to move to
reach a goal; the goal is decided by another bit of AI, and the pathfinder simply works
out how to get there. To accomplish this, it can be embedded in a movement control
system so that it is only called when it is needed to plan a route. This is discussed in
Chapter 3 on movement algorithms.

But pathfinding can also be placed in the driving seat, making decisions about
where to move as well as how to get there. We’ll look at a variation of pathfinding,
open goal pathfinding, that can be used to work out both the path and the destination.

203
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Figure 4.1 The AI model

The vast majority of games use pathfinding solutions based on an algorithm
called A*. Although it’s efficient and easy to implement, A* can’t work directly with
the game level data. It requires that the game level be represented in a particular data
structure: a directed non-negative weighted graph.

This chapter introduces the graph data structure and then looks at the older
brother of the A* algorithm, the Dijkstra algorithm. Although Dijkstra is more of-
ten used in tactical decision making than in pathfinding, it is a simpler version of A*,
so we’ll cover it here on the way to the full A* algorithm.

Because the graph data structure isn’t the way that most games would naturally
represent their level data, we’ll look in some detail at the knowledge representation
issues involved in turning the level geometry into pathfinding data. Finally, we’ll look
at a handful of the many tens of useful variations of the basic A* algorithm.

4.1 THE PATHFINDING GRAPH

Neither A* nor Dijkstra (nor their many variations) can work directly on the geom-
etry that makes up a game level. They rely on a simplified version of the level to be
represented in the form of a graph. If the simplification is done well (and we’ll look at
how later in the chapter), then the plan returned by the pathfinder will be useful when
translated back into game terms. On the other hand, in the simplification we throw
away information, and that might be significant information. Poor simplification can
mean that the final path isn’t so good.

Pathfinding algorithms use a type of graph called a directed non-negative
weighted graph. We’ll work up to a description of the full pathfinding graph via
simpler graph structures.
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4.1.1 GRAPHS

A graph is a mathematical structure often represented diagrammatically. It has noth-
ing to do with the more common use of the word “graph” to mean any diagram, such
as a pie chart, or histogram.

A graph consists of two different types of element: nodes are often drawn as points
or circles in a graph diagram, while connections link nodes together with lines. Fig-
ure 4.2 shows a graph structure.

Formally, the graph consists of a set of nodes and a set of connections, where
a connection is simply an unordered pair of nodes (the nodes on either end of the
connection).

For pathfinding, each node usually represents a region of the game level, such as a
room, a section of corridor, a platform, or a small region of outdoor space. Connec-
tions show which locations are connected. If a room adjoins a corridor, then the node
representing the room will have a connection to the node representing the corridor.
In this way the whole game level is split into regions, which are connected together.
Later in the chapter, we’ll see a way of representing the game level as a graph that
doesn’t follow this model, but in most cases this is the approach taken.

To get from one location in the level to another, we use connections. If we can go
directly from our starting node to our target node, then life is simple. Otherwise, we
may have to use connections to travel through intermediate nodes on the way.

Figure 4.2 A general graph
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A path through the graph consists of zero or more connections. If the start and
end node are the same, then there are no connections in the path. If the nodes are
connected, then only one connection is needed, and so on.

4.1.2 WEIGHTED GRAPHS

A weighted graph is made up of nodes and connections, just like the general graph.
In addition to a pair of nodes for each connection, we add a numerical value. In
mathematical graph theory this is called the weight, and in game applications it is
more commonly called the cost (although the graph is still called a “weighted graph,”
rather than a “costed graph”).

Drawing the graph (Figure 4.3), we see that each connection is labelled with an
associated cost value.

The costs in a pathfinding graph often represent time or distance. If a node rep-
resenting a platform is a long distance from a node representing the next platform,
then the cost of the connection will be large. Similarly, moving between two rooms
that are both covered in traps will take a long time, so the cost will be large.

The costs in a graph can represent more than just time or distance. We will see a
number of applications of pathfinding to situations where the cost is a combination
of time, distance, and other factors.

For a whole route through a graph, from a start node to a target node, we can
work out the total path cost. It is simply the sum of the costs of each connection in
the route. In Figure 4.4, if we are heading from node A to node C, via node B, and if
the costs are 4 from A to B and 5 from B to C, then the total cost of the route is 9.

1 0.3

2.1

0.6

0.6

1.5
1.2

0.2

0.3

0.35

Figure 4.3 A weighted graph
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Figure 4.4 Total path cost

Representative Points in a Region

You might notice immediately that if two regions are connected (such as a room and
a corridor), then the distance between them (and therefore the time to move between
them) will be zero. If you are standing in a doorway, then moving from the room side
of the doorway to the corridor side is instant. So shouldn’t all connections have a zero
cost?

We tend to measure connection distances or times from a representative point
in each region. So we pick the center of the room and the center of the corridor. If
the room is large and the corridor is long, then there is likely to be a large distance
between their center points, so the cost will be large.

You will often see this in diagrams of pathfinding graphs, such as Figure 4.5: a rep-
resentative point is marked in each region.

A complete analysis of this approach will be left to a later section. It is one of the
subtleties of representing the game level for the pathfinder, and we’ll return to the
issues it causes at some length.

The Non-Negative Constraint

It doesn’t seem to make sense to have negative costs. You can’t have a negative distance
between two points, and it can’t take a negative amount of time to move there.

Mathematical graph theory does allow negative weights, however, and they have
direct applications in some practical problems. These problems are entirely outside
of normal game development, and all of them are beyond the scope of this book.
Writing algorithms that can work with negative weights is typically more complex
than for those with strictly non-negative weights.

In particular, the Dijkstra and A* algorithms should only be used with non-
negative weights. It is possible to construct a graph with negative weights such that a
pathfinding algorithm will return a sensible result. In the majority of cases, however,
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Figure 4.5 Weighted graph overlaid onto level geometry

Dijkstra and A* would go into an infinite loop. This is not an error in the algorithms.
Mathematically, there is no such thing as a shortest path across many graphs with
negative weights; a solution simply doesn’t exist.

When we use the term “cost” in this book, it means a non-negative weight. Costs
are always positive. We will never need to use negative weights or the algorithms that
can cope with them. I’ve never needed to use them in any game development project
I’ve worked on, and I can’t foresee a situation when I might.

4.1.3 DIRECTED WEIGHTED GRAPHS

For many situations a weighted graph is sufficient to represent a game level, and I have
seen implementations that use this format. We can go one stage further, however. The
major pathfinding algorithms support the use of a more complex form of graph, the
directed graph (see Figure 4.6), which is often useful to developers.

So far we’ve assumed that if it is possible to move between node A and node B
(the room and corridor, for example), then it is possible to move from node B to
node A. Connections go both ways, and the cost is the same in both directions. Di-
rected graphs instead assume that connections are in one direction only. If you can
get from node A to node B, and vice versa, then there will be two connections in the
graph: one for A to B and one for B to A.

This is useful in many situations. First, it is not always the case that the ability to
move from A to B implies that B is reachable from A. If node A represents an ele-
vated walkway and node B represents the floor of the warehouse underneath it, then
a character can easily drop from A to B, but will not be able to jump back up again.
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Figure 4.6 A directed weighted graph

Second, having two connections in different directions means that there can be
two different costs. Let’s take the walkway example again, but add a ladder. Thinking
about costs in terms of time, it takes almost no time at all to fall off the walkway, but
it may take several seconds to climb back up the ladder. Because costs are associated
with each connection, this can be simply represented: the connection from A (the
walkway) to B (the floor) has a small cost, and the connection from B to A has a
larger cost.

Mathematically, a directed graph is identical to a non-directed graph, except that
the pair of nodes that makes up a connection is now ordered. Whereas a connection
〈node A, node B, cost〉 in a non-directed graph is identical to 〈node B, node A, cost〉
(so long as the costs are equal) in a directed graph they are different connections.

4.1.4 TERMINOLOGY

Terminology for graphs varies. In mathematical texts you often see vertices rather
than nodes and edges rather than connections (and, as we’ve already seen, weights
rather than costs). Many AI developers who actively research pathfinding use this ter-
minology from exposure to the mathematical literature. It can be confusing in a game
development context because vertices more commonly mean something altogether
different.

There is no agreed terminology for pathfinding graphs in games’ articles and sem-
inars. I have seen locations and even “dots” for nodes, and I have seen arcs, paths,
links, and “lines” for connections.
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I will use the nodes and connections terminology throughout this chapter because
it is common, relatively meaningful (unlike dots and lines), and unambiguous (arcs
and vertices both have meaning in game graphics).

In addition, while we have talked about directed non-negative weighted graphs,
almost all pathfinding literature just calls them graphs and assumes that you know
what kind of graph is meant. I’ll do the same.

4.1.5 REPRESENTATION

We need to represent our graph in such a way that pathfinding algorithms such as A*
and Dijkstra can work with it.

As we will see, the algorithms need to find out the outgoing connections from any
given node. And for each such connection, they need to have access to its cost and
destination.

We can represent the graph to our algorithms using the following interface:

1 class Graph:
2 # Returns an array of connections (of class
3 # Connection) outgoing from the given node
4 def getConnections(fromNode)
5

6 class Connection:
7 # Returns the non-negative cost of the
8 # connection
9 def getCost()

10

11 # Returns the node that this connection came
12 # from
13 def getFromNode()
14

15 # Returns the node that this connection leads to
16 def getToNode()

The graph class simply returns an array of connection objects for any node that is
queried. From these objects the end node and cost can be retrieved.

A simple implementation of this class would store the connections for each node
and simply return the list. Each connection would have the cost and end node stored
in memory.

A more complex implementation might calculate the cost only when it is required,
using information from the current structure of the game level.

Notice that there is no specific data type for a node in this interface, because we
don’t need to specify one. In many cases it is sufficient just to give nodes a unique



4.2 Dijkstra 211

number and to use integers as the data type. In fact, we will see that this is a particu-
larly powerful implementation because it opens up some specific, very fast, optimiza-
tions of the A* algorithm.

4.2 DIJKSTRA

The Dijkstra algorithm is named for Edsger Dijkstra, the mathematician who devised
it (and the same man who coined the famous programming phrase “GOTO consid-
ered harmful”).

Dijkstra’s algorithm wasn’t originally designed for pathfinding as games under-
stand it. It was designed to solve a problem in mathematical graph theory, confusingly
called “shortest path.”

Where pathfinding in games has one start point and one goal point, the shortest
path algorithm is designed to find the shortest routes to everywhere from an initial
point. The solution to this problem will include a solution to the pathfinding problem
(we’ve found the shortest route to everywhere, after all), but it is wasteful if we are
going to throw away all the other routes. It can be modified to generate only the path
we are interested in, but is still quite inefficient at doing that.

Because of these issues, I have seen Dijkstra used only once in production
pathfinding: not as the main pathfinding algorithm, but to analyze general proper-
ties of a level in the very complex pathfinding system of a military simulation.

Nonetheless, it is an important algorithm for tactical analysis (covered in Chap-
ter 6, Tactical and Strategic AI) and has uses in a handful of other areas of game AI.
We will examine it here because it is a simpler version of the main pathfinding algo-
rithm A*.

4.2.1 THE PROBLEM

Given a graph (a directed non-negative weighted graph) and two nodes (called start
and goal) in that graph, we would like to generate a path such that the total path cost
of that path is minimal among all possible paths from start to goal.

There may be any number of paths with the same minimal cost. Figure 4.7 has 10
possible paths, all with the same minimal cost. When there is more than one optimal
path, we only expect one to be returned, and we don’t care which one it is.

Recall that the path we expect to be returned consists of a set of connections, not
nodes. Two nodes may be linked by more than one connection, and each connection
may have a different cost (it may be possible to either fall off a walkway or climb down
a ladder, for example). We therefore need to know which connections to use; a list of
nodes will not suffice.

Many games don’t make this distinction. There is, at most, one connection be-
tween any pair of nodes. After all, if there are two connections between a pair of
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Figure 4.7 All optimal paths

nodes, the pathfinder should always take the one with the lower cost. In some appli-
cations, however, the costs change over the course of the game or between different
characters, and keeping track of multiple connections is useful.

There is no more work in the algorithm to cope with multiple connections. And
for those applications where it is significant, it is often essential. We’ll always assume
a path consists of connections.

4.2.2 THE ALGORITHM

Informally, Dijkstra works by spreading out from the start node along its connections.
As it spreads out to more distant nodes, it keeps a record of the direction it came from
(imagine it drawing chalk arrows on the floor to indicate the way back to the start).
Eventually, it will reach the goal node and can follow the arrows back to its start point
to generate the complete route. Because of the way Dijkstra regulates the spreading
process, it guarantees that the chalk arrows always point back along the shortest route
to the start.

Let’s break this down in more detail.
Dijkstra works in iterations. At each iteration it considers one node of the graph

and follows its outgoing connections. At the first iteration it considers the start node.
At successive iterations it chooses a node to consider using an algorithm we’ll discuss
shortly. We’ll call each iteration’s node the “current node.”

Processing the Current Node

During an iteration, it considers each outgoing connection from the current node.
For each connection it finds the end node and stores the total cost of the path so far
(we’ll call this the “cost-so-far”), along with the connection it arrived there from.
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In the first iteration, where the start node is the current node, the total cost-so-far
for each connection’s end node is simply the cost of the connection. Figure 4.8 shows
the situation after the first iteration. Each node connected to the start node has a cost-
so-far equal to the cost of the connection that led there, as well as a record of which
connection that was.

For iterations after the first, the cost-so-far for the end node of each connection
is the sum of the connection cost and the cost-so-far of the current node (i.e., the
node from which the connection originated). Figure 4.9 shows another iteration of
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the same graph. Here the cost-so-far stored in node E is the sum of cost-so-far from
node B and the connection cost of connection IV from B to E.

In implementations of the algorithm, there is no distinction between the first and
successive iterations. By setting the cost-so-far value of the start node as 0 (since the
start node is at zero distance from itself), we can use one piece of code for all itera-
tions.

The Node Lists

The algorithm keeps track of all the nodes it has seen so far in two lists, called “open”
and “closed.” In the open list it records all the nodes it has seen, but that haven’t had
their own iteration yet. It also keeps track of those nodes that have been processed
in the closed list. To start with, the open list contains only the start node (with zero
cost-so-far), and the closed list is empty.

Each node can be thought of as being in one of three categories: it can be in the
closed list, having been processed in its own iteration; it can be in the open list, having
been visited from another node, but not yet processed in its own right; or it can be in
neither list. The node is sometimes said to be either closed, open, or unvisited.

At each iteration, the algorithm chooses the node from the open list that has the
smallest cost-so-far. This is then processed in the normal way. The processed node is
then removed from the open list and placed on the closed list.

There is one complication. When we follow a connection from the current node,
we’ve assumed that we’ll end up at an unvisited node. We may instead end up at
a node that is either open or closed, and we’ll have to deal slightly differently with
them.

Calculating Cost-So-Far for Open and Closed Nodes

If we arrive at an open or closed node during an iteration, then the node will already
have a cost-so-far value and a record of the connection that led there. Simply setting
these values will overwrite the previous work the algorithm has done.

Instead, we check if the route we’ve now found is better than the route that we’ve
already found. Calculate the cost-so-far value as normal, and if it is higher than the
recorded value (and it will be higher in almost all cases), then don’t update the node
at all and don’t change what list it is on.

If the new cost-so-far value is smaller than the node’s current cost-so-far, then
update it with the better value, and set its connection record. The node should then
be placed on the open list. If it was previously on the closed list, it should be removed
from there.

Strictly speaking, Dijkstra will never find a better route to a closed node, so we
could check if the node is closed first and not bother doing the cost-so-far check.
A dedicated Dijkstra implementation would do this. We will see that the same is not
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true of the A* algorithm, however, and we will have to check for faster routes in both
cases.

Figure 4.10 shows the updating of an open node in a graph. The new route, via
node C, is faster, and so the record for node D is updated accordingly.

Terminating the Algorithm

The basic Dijkstra algorithm terminates when the open list is empty: it has considered
every node in the graph that be reached from the start node, and they are all on the
closed list.

For pathfinding, we are only interested in reaching the goal node, however, so we
can stop earlier. The algorithm should terminate when the goal node is the smallest
node on the open list.

Notice that this means we will have already reached the goal on a previous itera-
tion, in order to move it onto the open list. Why not simply terminate the algorithm
as soon as we’ve found the goal?

Consider Figure 4.10 again. If D is the goal node, then we’ll first find it when
we’re processing node B. So if we stop here, we’ll get the route A–B–D, which is not
the shortest route. To make sure there can be no shorter routes, we have to wait until
the goal has the smallest cost-so-far. At this point, and only then, we know that a
route via any other unprocessed node (either open or unvisited) must be longer.

In practice, this rule is often broken. The first route found to the goal is very often
the shortest, and even when there is a shorter route, it is usually only a tiny amount
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longer. For this reason, many developers implement their pathfinding algorithms to
terminate as soon as the goal node is seen, rather than waiting for it to be selected
from the open list.

Retrieving the Path

The final stage is to retrieve the path.
We do this by starting at the goal node and looking at the connection that was

used to arrive there. We then go back and look at the start node of that connection
and do the same. We continue this process, keeping track of the connections, until
the original start node is reached. The list of connections is correct, but in the wrong
order, so we reverse it and return the list as our solution.

Figure 4.11 shows a simple graph after the algorithm has run. The list of con-
nections found by following the records back from the goal is reversed to give the
complete path.

4.2.3 PSEUDO-CODE

The Dijkstra pathfinder takes as input a graph (conforming to the interface given in
the previous section), a start node, and an end node. It returns an array of connection
objects that represent a path from the start node to the end node.
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1 def pathfindDijkstra(graph, start, end):
2

3 # This structure is used to keep track of the
4 # information we need for each node
5 struct NodeRecord:
6 node
7 connection
8 costSoFar
9

10 # Initialize the record for the start node
11 startRecord = new NodeRecord()
12 startRecord.node = start
13 startRecord.connection = None
14 startRecord.costSoFar = 0
15

16 # Initialize the open and closed lists
17 open = PathfindingList()
18 open += startRecord
19 closed = PathfindingList()
20

21 # Iterate through processing each node
22 while length(open) > 0:
23

24 # Find the smallest element in the open list
25 current = open.smallestElement()
26

27 # If it is the goal node, then terminate
28 if current.node == goal: break
29

30 # Otherwise get its outgoing connections
31 connections = graph.getConnections(current)
32

33 # Loop through each connection in turn
34 for connection in connections:
35

36 # Get the cost estimate for the end node
37 endNode = connection.getToNode()
38 endNodeCost = current.costSoFar +
39 connection.getCost()
40

41 # Skip if the node is closed
42 if closed.contains(endNode): continue
43

44 # .. or if it is open and we’ve found a worse
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45 # route
46 else if open.contains(endNode):
47

48 # Here we find the record in the open list
49 # corresponding to the endNode.
50 endNodeRecord = open.find(endNode)
51

52 if endNodeRecord.cost <= endNodeCost:
53 continue
54

55 # Otherwise we know we’ve got an unvisited
56 # node, so make a record for it
57 else:
58 endNodeRecord = new NodeRecord()
59 endNodeRecord.node = endNode
60

61 # We’re here if we need to update the node
62 # Update the cost and connection
63 endNodeRecord.cost = endNodeCost
64 endNodeRecord.connection = connection
65

66 # And add it to the open list
67 if not open.contains(endNode):
68 open += endNodeRecord
69

70 # We’ve finished looking at the connections for
71 # the current node, so add it to the closed list
72 # and remove it from the open list
73 open -= current
74 closed += current
75

76 # We’re here if we’ve either found the goal, or
77 # if we’ve no more nodes to search, find which.
78 if current.node != goal:
79

80 # We’ve run out of nodes without finding the
81 # goal, so there’s no solution
82 return None
83

84 else:
85

86 # Compile the list of connections in the path
87 path = []
88
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89 # Work back along the path, accumulating
90 # connections
91 while current.node != start:
92 path += current.connection
93 current = current.connection.getFromNode()
94

95 # Reverse the path, and return it
96 return reverse(path)

Other Functions

The pathfinding list is a specialized data structure that acts very much like a regu-
lar list. It holds a set of NodeRecord structures and supports the following additional
methods:

� The smallestElement() method returns the NodeRecord structure in the list with
the lowest costSoFar value.

� The contains(node) method returns true only if the list contains a NodeRecord
structure whose node member is equal to the given parameter.

� The find(node) method returns the NodeRecord structure from the list whose
node member is equal to the given parameter.

In addition, I have used a function, reverse(array), that returns a reversed copy
of a normal array.

4.2.4 DATA STRUCTURES AND INTERFACES

There are three data structures used in the algorithm: the simple list used to accumu-
late the final path, the pathfinding list used to hold the open and closed lists, and the
graph used to find connections from a node (and their costs).

Simple List

The simple list is not very performance critical, since it is only used at the end of the
pathfinding process. It can be implemented as a basic linked list (a std::list in C++,
for example) or even a resizable array (such as std::vector in C++).

Pathfinding List

The open and closed lists in the Dijkstra algorithm (and in A*) are critical data struc-
tures that directly affect the performance of the algorithm. Almost all optimization
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effort in pathfinding goes into their implementation. In particular, there are four op-
erations on the list that are critical:

1. Adding an entry to the list (the += operator);

2. Removing an entry from the list (the -= operator);

3. Finding the smallest element (the smallestElement method);

4. Finding an entry in the list corresponding to a particular node (the contains and
find methods both do this).

Finding a suitable balance between these four operations is key to building a
fast implementation. Unfortunately, the balance is not always identical from game
to game.

Because the pathfinding list is most commonly used with A* for pathfinding,
a number of its optimizations is specific to that algorithm. We will wait to examine it
in more detail until we have looked at A*.

Graph

We have covered the interface presented by the graph in the first section of this chap-
ter.

The getConnections method is called low down in the loop and is typically a
critical performance element to get right. The most common implementation has a
lookup table indexed by a node (where nodes are numbered as consecutive integers).
The entry in the lookup table is an array of connection objects. Thus, the getConnec-
tions method needs to do minimal processing and is efficient.

Some methods of translating a game level into a pathfinding graph do not allow
for this simple lookup approach and can therefore lead to much slower pathfinding.
Such situations are described in more detail in Section 4.4 on world representation
later in the chapter.

The getToNode and getCost methods of the connection class are even more per-
formance critical. In an overwhelming majority of implementations, however, no
processing is performed in these methods, and they simply return a stored value in
each case. The Connection class might therefore look like the following:

1 class Connection:
2 cost
3 fromNode
4 toNode
5

6 def getCost(): return cost
7 def getFromNode(): return fromNode
8 def getToNode(): return toNode
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For this reason the connection class is rarely a performance bottleneck.
Of course, these values need to be calculated somewhere. This is usually done

when the game level is converted into a graph and is an offline process independent
of the pathfinder.

4.2.5 PERFORMANCE OF DIJKSTRA

The practical performance of Dijkstra in both memory and speed depends mostly on
the performance of the operations in the pathfinding list data structure.

Ignoring the performance of the data structure for a moment, we can see the
theoretical performance of the overall algorithm. The algorithm considers each node
in the graph that is closer than the end node. We call this number n. For each of
these nodes, it processes the inner loop once for each outgoing connection. We call
the average number of outgoing connections per node m. So the algorithm itself is
O(nm) in execution speed. The total memory depends on both the size of the open list
and the size of the closed list. When the algorithm terminates there will be n elements
in the closed list and no more than nm elements in the open list (in fact, there will
typically be fewer than n elements in the open list). So the worst case memory use
is O(nm).

Now to include the data structure times, we note that both the list addition and
the find operation (see the section on the pathfinding list data structure, above) are
called nm times, while the extraction and smallestElement operations are called n
times. If the order of the execution time for the addition or find operations is greater
than O(m), or if the extraction and smallestElement operations are greater than O(1),
then the actual execution performance will be worse than O(nm).

In order to speed up the key operations, data structure implementations are often
chosen that have worse than O(nm) memory requirements.

When we look in more depth at the list implementations in the next section, we
will consider their impact on performance characteristics.

If you look up Dijkstra in a computer science textbook, it may tell you that it is
O(n2). In fact, this is exactly the result above. The worst-conceivable performance
occurs when the graph is so densely connected that m = n. In this case for games,
however, there’ll be a direct path to the goal anyway, so we can avoid Dijkstra alto-
gether.

4.2.6 WEAKNESSES

The principle problem with Dijkstra is that it searches the whole graph indiscrimi-
nately for the shortest possible route. This is useful if we’re trying to find the shortest
path to every possible node (the problem that Dijkstra was designed for), but wasteful
for point-to-point pathfinding.
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We can visualize the way the algorithm works by showing the nodes currently
on its open and closed lists at various stages through a typical run. This is shown in
Figure 4.12.

In each case the boundary of the search is made up of nodes on the open list. This
is because the nodes closer to the start (i.e., with lower distance values) have already
been processed and placed on the closed list.

The final part of Figure 4.12 shows the state of the lists when the algorithm termi-
nates. The line shows the best path that has been calculated. Notice that most of the
level has still been explored, even well away from the path that is generated.

The number of nodes that were considered, but never made part of the final route,
is called the fill of the algorithm. In general, you want to consider as few nodes as
possible, because each takes time to process.

Sometimes Dijkstra will generate a search pattern with a relatively small amount
of fill. This is the exception rather than the rule, however. In the vast majority of cases,
Dijkstra suffers from a terrible amount of fill.

Algorithms with big fills, like Dijkstra, are inefficient for point-to-point pathfind-
ing and are rarely used. This brings us to the star of pathfinding algorithms: A*. It can
be thought of as a low-fill version of Dijkstra.

Start
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Unvisited nodes

NB: connections are
hidden for simplicity

Figure 4.12 Dijkstra in steps



4.3 A* 223

4.3 A*

Pathfinding in games is synonymous with the A* algorithm. A* is simple to imple-
ment, very efficient, and has lots of scope for optimization. Every pathfinding system
I’ve come across in the last 10 years has used some variation of A* as its key algorithm,
and it has applications well beyond pathfinding too. In Chapter 5, we will see how A*
can be used to plan complex series of actions for characters.

Unlike the Dijkstra algorithm, A* is designed for point-to-point pathfinding and
is not used to solve the shortest path problem in graph theory. It can neatly be ex-
tended to more complex cases, as we’ll see later, but it always returns a single path
from source to goal.

4.3.1 THE PROBLEM

The problem is identical to that solved by our Dijkstra pathfinding algorithm.
Given a graph (a directed non-negative weighted graph) and two nodes in that

graph (called start and goal), we would like to generate a path such that the total path
cost of that path is minimal among all possible paths from start to goal. Any minimal
cost path will do, and the path should consist of a list of connections from the start
node to the goal node.

4.3.2 THE ALGORITHM

Informally, the algorithm works in much the same way as Dijkstra does. Rather than
always considering the open node with the lowest cost-so-far value, we chose the node
that is most likely to lead to the shortest overall path. The notion of “most likely”
is controlled by a heuristic. If the heuristic is accurate, then the algorithm will be
efficient. If the heuristic is terrible, then it can perform even worse than Dijkstra.

In more detail, A* works in iterations. At each iteration it considers one node
of the graph and follows its outgoing connections. The node (again called the “cur-
rent node”) is chosen using a selection algorithm similar to Dijkstra’s, but with the
significant difference of the heuristic, which we’ll return to later.

Processing the Current Node

During an iteration, A* considers each outgoing connection from the current node.
For each connection it finds the end node and stores the total cost of the path so far
(the “cost-so-far”) and the connection it arrived there from, just as before.

In addition, it also stores one more value: the estimate of the total cost for a path
from the start node through this node and onto the goal (we’ll call this value the
estimated-total-cost). This estimate is the sum of two values: the cost-so-far and how
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far it is from the node to the goal. This estimate is generated by a separate piece of
code and isn’t part of the algorithm.

These estimates are called the “heuristic value” of the node, and it cannot be neg-
ative (since the costs in the graph are non-negative, it doesn’t make sense to have a
negative estimate). The generation of this heuristic value is a key concern in imple-
menting the A* algorithm, and we’ll return to it later in some depth.

Figure 4.13 shows the calculated values for some nodes in a graph. The nodes
are labelled with their heuristic values, and the two calculated values (cost-so-far and
estimated-total-cost) are shown for the nodes that the algorithm has considered.

The Node Lists

As before, the algorithm keeps an open list of nodes that have been visited but not
processed and closed nodes that have been processed. Nodes are moved onto the open
list as they are found at the end of connections. Nodes are moved onto the closed list
as they are processed in their own iteration.

Unlike previously, the node from the open list with the smallest estimated-total-
cost is selected at each iteration. This is almost always different from the node with
the smallest cost-so-far.



4.3 A* 225

This alteration allows the algorithm to examine nodes that are more promising
first. If a node has a small estimated-total-cost, then it must have a relatively short
cost-so-far and a relatively small estimated distance to go to reach the goal. If the
estimates are accurate, then the nodes that are closer to the goal are considered first,
narrowing the search into the most profitable area.

Calculating Cost-So-Far for Open and Closed Nodes

As before, we may arrive at an open or closed node during an iteration, and we will
have to revise its recorded values.

We calculate the cost-so-far value as normal, and if the new value is lower than
the existing value for the node, then we will need to update it. Notice that we do this
comparison strictly on the cost-so-far value (the only reliable value, since it doesn’t
contain any element of estimate), not the estimated-total-cost.

Unlike Dijkstra, the A* algorithm can find better routes to nodes that are already
on the closed list. If a previous estimate was very optimistic, then a node may have
been processed thinking it was the best choice when, in fact, it was not.

This causes a knock-on problem. If a dubious node has been processed and put
on the closed list, then it means all its connections have been considered. It may be
possible that a whole set of nodes have had their cost-so-far values based on the cost-
so-far of the dubious node. Updating the value for the dubious node is not enough.
All its connections will also have to be checked again to propagate the new value.

In the case of revising a node on the open list, this isn’t necessary, since we know
that connections from a node on the open list haven’t been processed yet.

Fortunately, there is a simple way to force the algorithm to recalculate and propa-
gate the new value. We can remove the node from the closed list and place it back on
the open list. It will then wait until it is closed and have its connections reconsidered.
Any nodes that rely on its value will also eventually be processed once more.

Figure 4.14 shows the same graph as the previous diagram, but two iterations
later. It illustrates the updating of a closed node in a graph. The new route to E, via
node C, is faster, and so the record for node E is updated accordingly, and it is placed
on the open list. On the next iteration the value for node G is correspondingly revised.

So closed nodes that have their values revised are removed from the closed list and
placed on the open list. Open nodes that have their values revised stay on the open
list, as before.

Terminating the Algorithm

In many implementations, A* terminates when the goal node is the smallest node on
the open list.

But as we have already seen, a node that has the smallest estimated-total-cost value
(and will therefore be processed next iteration and put on the closed list) may later
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need its values revised. We can no longer guarantee, just because the node is the small-
est on the open list, that we have the shortest route there. So terminating A* when the
goal node is the smallest on the open list will not guarantee that the shortest route
has been found.

It is natural, therefore, to ask whether we could run A* a little longer to generate
a guaranteed optimal result. We can do this by requiring that the algorithm only ter-
minates when the node in the open list with the smallest cost-so-far (not estimated-
total-cost) has a cost-so-far value greater than the cost of the path we found to the
goal. Then and only then can we guarantee that no future path will be found that
forms a shortcut.

This is effectively the same termination condition we saw in Dijkstra, and it can
be shown that imposing this condition will generate the same amount of fill as run-
ning the Dijkstra pathfinding algorithm. The nodes may be searched in a different
order, and there may be slight differences in the set of nodes on the open list, but the
approximate fill level will be the same. In other words, it robs A* of any performance
advantage and makes it effectively worthless.



4.3 A* 227

A* implementations completely rely on the fact that they can theoretically pro-
duce non-optimal results. Fortunately, this can be controlled using the heuristic func-
tion. Depending on the choice of heuristic function, we can guarantee optimal results,
or we can deliberately allow sub-optimal results to give us faster execution. We’ll re-
turn to the influence of the heuristic later in this section.

Because A* so often flirts with sub-optimal results, a large number of A* imple-
mentations instead terminate when the goal node is first visited without waiting for
it to be the smallest on the open list. The performance advantage is not as great as
doing the same thing in Dijkstra, but many developers feel that every little bit counts,
especially as the algorithm won’t necessarily be optimal in any case.

Retrieving the Path

We get the final path in exactly the same way as before: by starting at the goal and
accumulating the connections as we move back to the start node. The connections
are again reversed to form the correct path.

4.3.3 PSEUDO-CODE

Exactly as before, the pathfinder takes as input a graph (conforming to the interface
given in the previous section), a start node, and an end node. It also requires an object
that can generate estimates of the cost to reach the goal from any given node. In the
code this object is “heuristic.” It is described in more detail later in the data structures
section.

The function returns an array of connection objects that represents a path from
the start node to the end node.

1 def pathfindAStar(graph, start, end, heuristic):
2

3 # This structure is used to keep track of the
4 # information we need for each node
5 struct NodeRecord:
6 node
7 connection
8 costSoFar
9 estimatedTotalCost

10

11 # Initialize the record for the start node
12 startRecord = new NodeRecord()
13 startRecord.node = start
14 startRecord.connection = None
15 startRecord.costSoFar = 0



228 Chapter 4 Pathfinding

16 startRecord.estimatedTotalCost =
17 heuristic.estimate(start)
18

19 # Initialize the open and closed lists
20 open = PathfindingList()
21 open += startRecord
22 closed = PathfindingList()
23

24 # Iterate through processing each node
25 while length(open) > 0:
26

27 # Find the smallest element in the open list
28 # (using the estimatedTotalCost)
29 current = open.smallestElement()
30

31 # If it is the goal node, then terminate
32 if current.node == goal: break
33

34 # Otherwise get its outgoing connections
35 connections = graph.getConnections(current)
36

37 # Loop through each connection in turn
38 for connection in connections:
39

40 # Get the cost estimate for the end node
41 endNode = connection.getToNode()
42 endNodeCost = current.costSoFar +
43 connection.getCost()
44

45 # If the node is closed we may have to
46 # skip, or remove it from the closed list.
47 if closed.contains(endNode):
48

49 # Here we find the record in the closed list
50 # corresponding to the endNode.
51 endNodeRecord = closed.find(endNode)
52

53 # If we didn’t find a shorter route, skip
54 if endNodeRecord.costSoFar <= endNodeCost:
55 continue;
56

57 # Otherwise remove it from the closed list
58 closed -= endNodeRecord
59
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60 # We can use the node’s old cost values
61 # to calculate its heuristic without calling
62 # the possibly expensive heuristic function
63 endNodeHeuristic = endNodeRecord.cost -
64 endNodeRecord.costSoFar
65

66 # Skip if the node is open and we’ve not
67 # found a better route
68 else if open.contains(endNode):
69

70 # Here we find the record in the open list
71 # corresponding to the endNode.
72 endNodeRecord = open.find(endNode)
73

74 # If our route is no better, then skip
75 if endNodeRecord.costSoFar <= endNodeCost:
76 continue;
77

78 # We can use the node’s old cost values
79 # to calculate its heuristic without calling
80 # the possibly expensive heuristic function
81 endNodeHeuristic = endNodeRecord.cost -
82 endNodeRecord.costSoFar
83

84 # Otherwise we know we’ve got an unvisited
85 # node, so make a record for it
86 else:
87 endNodeRecord = new NodeRecord()
88 endNodeRecord.node = endNode
89

90 # We’ll need to calculate the heuristic value
91 # using the function, since we don’t have an
92 # existing record to use
93 endNodeHeuristic = heuristic.estimate(endNode)
94

95 # We’re here if we need to update the node
96 # Update the cost, estimate and connection
97 endNodeRecord.cost = endNodeCost
98 endNodeRecord.connection = connection
99 endNodeRecord.estimatedTotalCost =

100 endNodeCost + endNodeHeuristic
101

102 # And add it to the open list
103 if not open.contains(endNode):
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104 open += endNodeRecord
105

106 # We’ve finished looking at the connections for
107 # the current node, so add it to the closed list
108 # and remove it from the open list
109 open -= current
110 closed += current
111

112 # We’re here if we’ve either found the goal, or
113 # if we’ve no more nodes to search, find which.
114 if current.node != goal:
115

116 # We’ve run out of nodes without finding the
117 # goal, so there’s no solution
118 return None
119

120 else:
121

122 # Compile the list of connections in the path
123 path = []
124

125 # Work back along the path, accumulating
126 # connections
127 while current.node != start:
128 path += current.connection
129 current = current.connection.getFromNode()
130

131 # Reverse the path, and return it
132 return reverse(path)

Changes from Dijkstra

The algorithm is almost identical to the Dijkstra algorithm. It adds an extra check to
see if a closed node needs updating and removing from the closed list. It also adds
two lines to calculate the estimated-total-cost of a node using the heuristic function
and adds an extra field in the NodeRecord structure to hold this information.

There are a set of calculations to derive the heuristic value from the cost values of
an existing node. This is done simply to avoid calling the heuristic function any more
than is necessary. If a node has already had its heuristic calculated, then that value will
be reused when the node needs updating.

Other than these minor changes, the code is identical.
As for the supporting code, the smallestElement method of the pathfinding list

data structure should now return the NodeRecord with the smallest estimated-total-
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cost value, not the smallest cost-so-far value as before. Otherwise, the same imple-
mentations can be used.

4.3.4 DATA STRUCTURES AND INTERFACES

The graph data structure and the simple path data structure used to accumulate the
path are both identical to those used in the Dijkstra algorithm. The pathfinding list
data structure has a smallestElement method that now considers estimated-total-cost
rather than cost-so-far, but is otherwise the same.

Finally, we have added a heuristic function that generates estimates of the distance
from a given node to the goal.

Pathfinding List

Recall from the discussion on Dijkstra that the four component operations required
on the pathfinding list are the following:

1. Adding an entry to the list (the += operator);

2. Removing an entry from the list (the -= operator);

3. Finding the smallest element (the smallestElement method);

4. Finding an entry in the list corresponding to a particular node (the contains and
find methods both do this).

Of these operations, numbers 3 and 4 are typically the most fruitful for optimiza-
tion (although optimizing these often requires changes to numbers 1 and 2 in turn).
We’ll look at a particular optimization for number 4, which uses a non-list structure,
later in this section.

A naive implementation of number 3, finding the smallest element in the list,
involves looking at every node in the open list, every time through the algorithm, to
find the lowest total path estimate.

There are lots of ways to speed this up, and all of them involve changing the way
the list is structured so that the best node can be found quickly. This kind of special-
ized list data structure is usually called a “priority queue.” It minimizes the time it
takes to find the best node.

In this book we won’t cover each possible priority queue implementation in
depth. Priority queues are a common data structure detailed in any good algorithms
text.

Priority Queues

The simplest approach is to require that the open list be sorted. This means that we
can get the best node immediately because it is the first one in the list.
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But making sure the list is sorted takes time. We could sort it each time we need
it, but this would take a very long time. A more efficient way is to make sure that
when we add things to the open list, they are in the right place. Previously, we have
appended new nodes to the list with no regard for order, a very fast process. Inserting
the new node in its correct sorted position in the list takes longer.

This is a common trade-off when designing data structures: if you make it fast to
add an item, it may be costly to get it back, and if you optimize retrieval, then adding
may take time.

If the open list is already sorted, then adding a new item involves finding the
correct insertion point in the list for the new item. In our implementation so far,
we have used a linked list. To find the insertion point in a linked list we need to go
through each item in the list until we find one with a higher total path estimate than
ours. This is faster than searching for the best node, but still isn’t too efficient.

If we use an array rather than a linked list, we can use binary search to find the
insertion point. This is faster, and for a very large list (and the open list is often huge)
it provides a massive speed up.

Adding to a sorted list is faster than removing from an unsorted list. If we added
nodes about as often as we removed them, then it would be better to have a sorted list.
Unfortunately, A* adds many more nodes than it retrieves to the open list. It rarely
removes nodes from the closed list at all.

Priority Heaps

Priority heaps are an array-based data structure which represents a tree of elements.
Each item in the tree can have up to two children, both of which must have higher
values.

The tree is balanced, so that no branch is more than one level deeper than any
other. In addition, it fills up each level from the left to the right. This is shown in
Figure 4.15.

This structure is useful because it allows the tree to be mapped to a simple array
in memory: the left and right children of a node are found in the array at position 2i
and 2i + 1, respectively, where i is the position of the parent node in the array. See
Figure 4.15 for an example, where the tree connections are overlaid onto the array
representation.

With this ultra-compact representation of the heap, the well-known sorting algo-
rithm heap-sort can be applied, which takes advantage of the tree structure to keep
nodes in order. Finding the smallest element takes constant time (it is always the first
element: the head of the tree). Removing the smallest element, or adding any new
element, takes O(log n), where n is the number of elements in the list.

The priority heap is a well-known data structure commonly used for scheduling
problems and is the heart of an operating system’s process manager.
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Figure 4.15 Priority heap

Bucketed Priority Queues

Bucketed priority queues are more complex data structures that have partially sorted
data. The partial sorting is designed to give a blend of performance across different
operations, so adding items doesn’t take too long and removing them is still fast.

The eponymous buckets are small lists that contain unsorted items within a speci-
fied range of values. The buckets themselves are sorted, but the contents of the buckets
aren’t.

To add to this kind of priority queue, you search through the buckets to find the
one your node fits in. You then add it to the start of the bucket’s list. This is illustrated
in Figure 4.16.

The buckets can be arranged in a simple list, as a priority queue themselves, or as
a fixed array. In the latter case, the range of possible values must be fairly small (total
path costs often lie in a reasonably small range). Then the buckets can be arranged
with fixed intervals: the first bucket might contain values from 0 to 10, the second
from 10 to 20, and so on. In this case the data structure doesn’t need to search for the
correct bucket. It can go directly there, speeding up node adding even more.

To find the node with the lowest score, you go to the first non-empty bucket and
search its contents for the best node.

By changing the number of buckets, you can get just the right blend of adding and
removal time. Tweaking the parameters is time-consuming, however, and is rarely
needed. For very large graphs, such as those representing levels in massively multi-
player online games, the speed up can be worth the programming effort. In most
cases it is not.

There are still more complex implementations, such as “multi-level buckets,”
which have sorted lists of buckets containing lists of buckets containing unsorted
items (and so on). I built a pathfinding system that used a multi-level bucket list,
but it was more an act of hubris than a programming necessity, and I wouldn’t do it
again!
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Figure 4.16 Bucketed priority queues

Implementations

In my experience there is little to choose from between priority heaps and bucketed
queues in many applications. I’ve built production implementations using both ap-
proaches. For very large pathfinding problems (with millions of nodes in the graph),
bucketed priority queues can be written that are kinder to the processor’s memory
cache and are therefore much faster. For indoor levels with a few thousand or tens of
thousands of nodes, the simplicity of a priority heap is often sufficient.

LIBRARY

On the CD the A* implementation uses a simple priority queue implementation
for its pathfinding lists, for simplicity’s sake.

Heuristic Function

The heuristic is often talked about as a function, and it can be implemented as a
function. Throughout this book, we’ve preferred to show it in pseudo-code as an
object. The heuristic object we used in the algorithm has a simple interface:

1 class Heuristic:
2 # Generates an estimated cost to reach the goal
3 # from the given node
4 def estimate(node)

A Heuristic for Any Goal

Because it is inconvenient to produce a different heuristic function for each possible
goal in the world, the heuristic is often parameterized by the goal node. In that way a
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general heuristic implementation can be written that estimates the distance between
any two nodes in the graph. The interface might look something like

1 class Heuristic:
2

3 # Stores the goal node that this heuristic is
4 # estimating for
5 goalNode
6

7 # Constructor, takes a goal node for estimating.
8 def Heuristic(goal): goalNode = goal
9

10 # Generates an estimated cost to reach the
11 # stored goal from the given node
12 def estimate(node)

which can then be used to call the pathfinder in code such as

1 pathfindAStar(graph, start, end, new Heuristic(end))

Heuristic Speed

The heuristic is called at the lowest point in the loop. Because it is making an estimate,
it might involve some algorithmic process. If the process is complex, the time spent
evaluating heuristics might quickly dominate the pathfinding algorithm.

While some situations may allow you to build a lookup table of heuristic values,
in most cases the number of combinations is huge so this isn’t practical.

It is essential that you run a profiler on the pathfinding system and look for ways
to optimize the heuristic. I’ve seen situations where developers tried to squeeze extra
speed from the pathfinding algorithm when over 80% of the execution time was spent
evaluating heuristics.

4.3.5 IMPLEMENTATION NOTES

The design of the A* algorithm we’ve looked at so far is the most general. It can work
with any kinds of cost value, with any kind of data type for nodes, and with graphs
that have a huge range of sizes.

This generality comes at a price. There are better implementations of A* for most
game pathfinding tasks. In particular, if we can assume that there are only a relatively
small number (up to a hundred thousand, say, to fit in around 2Mb of memory) of
nodes in the graph, and that these nodes can be numbered using sequential integers,
then we can speed up our implementation significantly.



236 Chapter 4 Pathfinding

I call this node array A* (although you should be aware that I’ve made this name
up; strictly, the algorithm is still just A*), and it is described in detail below.

Depending on the structure of the cost values returned and the assumptions that
can be made about the graph, even more efficient implementations can be created.
Most of these are outside the scope of this book (I could easily fill the whole book with
just pathfinding variations), but the most important are given in a brief introduction
at the end of this chapter.

The general A* implementation is still useful, however. In some cases you may
need a variable number of nodes (if your game’s level is being paged into memory
in sections, for example), or there just isn’t enough memory available for more com-
plex implementations. I’ve used the general A* implementation on several occasions
where more efficient implementations were not suitable.

4.3.6 ALGORITHM PERFORMANCE

Once again, the biggest factor in determining the performance of A* is the perfor-
mance of its key data structures: the pathfinding list, the graph, and the heuristic.

Once again, ignoring these, we can look simply at the algorithm (this is equivalent
to assuming that all data structure operations take constant time).

The number of iterations that A* performs is given by the number of nodes whose
total estimated-path-cost is less than that of the goal. We’ll call this number l, different
from n in the performance analysis of Dijkstra. In general, l should be less than n.
The inner loop of A* has the same complexity as Dijkstra, so the total speed of the
algorithm is O(lm), where m is the average number of outgoing connections from
each node, as before. Similarly for memory usage, A* ends with O(lm) entries in its
open list which is the peak memory usage for the algorithm.

In addition to Dijkstra’s performance concerns of the pathfinding list and the
graph, we add the heuristic function. The heuristic function is called very low in the
loop, in the order of O(lm) times. Often, the heuristic function requires some process-
ing and can dominate the execution load of the algorithm. It is rare, however, for its
implementation to directly depend on the size of the pathfinding problem. Although
it may be time-consuming, the heuristic will most commonly have O(1) execution
time and memory and so will not have an effect on the order of the performance of
the algorithm. This is an example of when the algorithm’s order doesn’t necessarily
tell you very much about the real performance of the code.

4.3.7 NODE ARRAY A*

Node array A* is my name for a common implementation of the A* algorithm that
is faster in many cases than the general A*. In the implementation we looked at so
far, data is held for each node in the open or closed lists, and this data is held as a
NodeRecord instance. Records are created when a node is first considered and then
moved between the open and closed lists, as required.
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There is a key step in the algorithm where the lists are searched for a node record
corresponding to a particular node.

Keeping a Node Array

We can make a trade-off by increasing memory use to improve execution speed. To
do this, we create an array of all the node records for every node in the whole graph
before the algorithm begins. This node array will include records for nodes that will
never be considered (hence the waste of memory), as well as for those that would have
been created anyway.

If nodes are numbered using sequential integers, we don’t need to search for a
node in the two lists at all. We can simply use the node number to look up its record
in the array (this is the logic of using node integers that I mentioned at the start of
the chapter).

Checking if a Node Is in Open or Closed

We need to find the node data in order to check if we’ve found a better route to a node
or if we need to add the node to one of the two lists.

Our original algorithm checked through each list, open and closed, to see if the
node was already there. This is a very slow process, especially if there are many nodes
in each list. It would be useful if we could look at a node and immediately discover
what list, if any, it was in.

To find out which list a node is in, we add a new value to the node record. This
value tells us which of the three categories the node is in: unvisited, open, or closed.
This makes the search step very fast indeed (in fact, there is no search, and we can go
straight to the information we need).

The new NodeRecord structure looks like the following:

1 # This structure is used to keep track of the
2 # information we need for each node
3 struct NodeRecord:
4 node
5 connection
6 costSoFar
7 estimatedTotalCost
8 category

where the category member is either OPEN, CLOSED, or UNVISITED.
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The Closed List Is Irrelevant

Because we’ve created all the nodes in advance, and they are located in an array, we no
longer need to keep a closed list at all. The only time the closed list is used is to check
if a node is contained within it and, if so, to retrieve the node record. Because we have
the node records immediately available, we can find the record. With the record, we
can look at the category value and see if it has been closed.

The Open List Implementation

We can’t get rid of the open list in the same way because we still need to be able
to retrieve the element with the lowest score. We can use the array for times when
we need to retrieve a node record, from either open or closed lists, but we’ll need a
separate data structure to hold the priority queue of nodes.

Because we no longer need to hold a complete node record in the priority queue,
it can be simplified. Often, the priority queue simply needs to contain the node num-
bers, whose records can be immediately looked up from the node array.

Alternatively, the priority queue can be intertwined with the node array records
by making the node records part of a linked list:

1 # This structure is used to keep track of the
2 # information we need for each node
3 struct NodeRecord:
4 node
5 connection
6 costSoFar
7 estimatedTotalCost
8 category
9 nextRecordInList

Although the array will not change order, each element of the array has a link to
the next record in a linked list. The sequence of nodes in this linked list jumps around
the array and can be used as a priority queue to retrieve the best node on the open
list.

Although I’ve seen implementations that add other elements to the record to sup-
port full bucketed priority queues, my experience is that this general approach leads
to wasted memory (most nodes aren’t in the list, after all), unnecessary code complex-
ity (the code to maintain the priority queue can look very ugly), and cache problems
(jumping around memory should be avoided when possible).

The node array pathfinding implementation on the CD uses the separate priority

LIBRARY

queue approach. I’d recommend you do the same, unless you have a good reason to
do otherwise.
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A Variation for Large Graphs

Creating all the nodes in advance is a waste of space if you aren’t going to consider
most of them. For small graphs on a PC, the memory waste is often worth it for the
speed up. For large graphs, or for consoles with limited memory, it can be problem-
atic.

In C, or other languages with pointers, we can blend the two approaches. Cre-
ate an array of pointers to node records, rather than an array of records themselves,
setting all the pointers to NULL initially.

In the A* algorithm, we create the nodes when they are needed, as before, and set
the appropriate pointer in the array. When we come to find what list a node is in, we
can see if it has been created by checking if its pointer is NULL (if it is, then it hasn’t
been created and, by deduction, must be unvisited), if it is there, and if it is in either
the closed or open list.

This approach requires less memory than allocating all the nodes in advance, but
may still take up too much memory for very large graphs.

4.3.8 CHOOSING A HEURISTIC

The more accurate the heuristic, the less fill A* will experience, and the faster it will
run. If you can get a perfect heuristic (one that always returns the exact minimum
path distance between two nodes), A* will go straight to the correct answer: the algo-
rithm becomes O(p), where p is the number of steps in the path.

Unfortunately, to work out the exact distance between two nodes, you typically
have to find the shortest route between them. This would mean solving the pathfind-
ing problem—which is what we’re trying to do in the first place! In only a few cases
will a practical heuristic be accurate.

For non-perfect heuristics, A* behaves slightly differently depending on whether
the heuristic is too low or too high.

Underestimating Heuristics

If the heuristic is too low, so that it underestimates the actual path length, A* takes
longer to run. The estimated-total-cost will be biased toward the cost-so-far (because
the heuristic value is smaller than reality). So A* will prefer to examine nodes closer
to the start node, rather than those closer to the goal. This will increase the time it
takes to find the route through to the goal.

If the heuristic underestimates in all possible cases, then the result that A* pro-
duces will be the best path possible. It will be the exact same path that the Dijkstra
algorithm would generate. This avoids the problem we discussed earlier with sub-
optimal paths.

If the heuristic ever overestimates, however, this guarantee is lost.
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In applications where accuracy is more important than performance, it is impor-
tant to ensure that the heuristic is underestimating. When you read articles about path
planning in commercial and academic problems, accuracy is often very important,
and so underestimating heuristics about. This bias in the literature to underestimat-
ing heuristics often influences game developers. In practice, try to resist dismissing
overestimating heuristics outright. A game isn’t about optimum accuracy, its about
believability.

Overestimating Heuristics

If the heuristic is too high, so that it overestimates the actual path length, A* may not
return the best path. A* will tend to generate a path with fewer nodes in it, even if the
connections between nodes are more costly.

The estimated-total-cost value will be biased toward the heuristic. The A* algo-
rithm will pay proportionally less attention to the cost-so-far and will tend to favor
nodes that have less distance to go. This will move the focus of the search toward the
goal faster, but with the prospect of missing the best routes to get there.

This means that the total length of the path may be greater than that of the best
path. Fortunately, it doesn’t mean you’ll suddenly get very poor paths. It can be shown
that if the heuristic overestimates by at most x (i.e., x is the greatest overestimate for
any node in the graph), then the final path will be no more than x too long.

An overestimating heuristic is sometimes called an “inadmissible heuristic.” This
doesn’t mean you can’t use it; it refers to the fact that the A* algorithm no longer
returns the shortest path.

Overestimates can make A* faster if they are almost perfect, because they home
in on the goal more quickly. If they are only slightly overestimating, they will tend to
produce paths that are often identical to the best path, so the quality of results is not
a major issue.

But the margin for error is small. As a heuristic overestimates more, it rapidly
makes A* perform worse. Unless your heuristic is consistently close to perfect, it can
be more efficient to underestimate, and you get the added advantage of getting the
correct answer.

Let’s look at some common heuristics used in games.

Euclidean Distance

Imagine that the cost values in our pathfinding problem refer to distances in the game
level. The connection cost is generated by the distance between the representative
points of two regions. This is a common case, especially in FPS games where each
route through the level is equally possible for each character.

In this case (and in others that are variations on the pure distance approach),
a common heuristic is Euclidean distance. It is guaranteed to be underestimating.
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Figure 4.17 Euclidean distance heuristic

Euclidean distance is “as the crow flies” distance. It is measured directly between
two points in space, through walls and obstructions.

Figure 4.17 shows Euclidean distances measured in an indoor level. The cost of
a connection between two nodes is given by the distance between the representative
points of each region. The estimate is given by the distance to the representative point
of the goal node, even if there is no direct connection.

Euclidean distance is always either accurate or an underestimate. Travelling
around walls or obstructions can only add extra distance. If there are no such ob-
structions, then the heuristic is accurate. Otherwise, it is an underestimate.

In outdoor settings, with few constraints on movement, Euclidean distance can
be very accurate and provide fast pathfinding. In indoor environments, such as that
shown in Figure 4.17, it can be a dramatic underestimate, causing less than optimal
pathfinding.

Figure 4.18 shows the fill visualized for a pathfinding task through both tile-based
indoor and outdoor levels. With the Euclidean distance heuristic, the fill for the in-
door level is dramatic, and performance is poor. The outdoor level has minimal fill,
and performance is good.
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Cluster Heuristic

The cluster heuristic works by grouping nodes together in clusters. The nodes in a
cluster represent some region of the level that is highly interconnected. Clustering can
be done automatically using graph clustering algorithms that are beyond the scope of
this book. Often, clustering is manual, however, or a by-product of the level design
(portal-based game engines lend themselves well to having clusters for each room).

A lookup table is then prepared that gives the smallest path length between each
pair of clusters. This is an offline processing step that requires running a lot of
pathfinding trials between all pairs of clusters and accumulating their results. A suf-
ficiently small set of clusters is selected so that this can be done in a reasonable time
frame and stored in a reasonable amount of memory.

When the heuristic is called in the game, if the start and goal nodes are in the same
cluster, then Euclidean distance (or some other fallback) is used to provide a result.
Otherwise, the estimate is looked up in the table. This is shown in Figure 4.19 for a
graph where each connection has the same cost in both directions.

The cluster heuristic often dramatically improves pathfinding performance in
indoor areas over Euclidean distance, because it takes into account the convoluted
routes that link seemingly nearby locations (the distance through a wall may be tiny,
but the route to get between the rooms may involve lots of corridors and intermediate
areas).
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Figure 4.19 The cluster heuristic

It has one caveat, however. Because all nodes in a cluster are given the same heuris-
tic value, the A* algorithm cannot easily find the best route through a cluster. Visu-
alized in terms of fill, a cluster will tend to be almost completely filled before the
algorithm moves on to the next cluster.

If cluster sizes are small, then this is not a problem, and the accuracy of the heuris-
tic can be excellent. On the other hand, the lookup table will be large (and the pre-
processing time will be huge).

If cluster sizes are too large, then there will be marginal performance gain, and a
simpler heuristic would be a better choice.

I’ve seen various modifications to the cluster heuristic to provide better estimates
within a cluster, including some that include several Euclidean distance calculations
for each estimate. There are opportunities for performance gain here, but as yet there
are no accepted techniques for reliable improvement. It seems to be a case of experi-
menting in the context of your game’s particular level design.

Clustering is intimately related to hierarchical pathfinding, explained in Sec-
tion 4.6, which also clusters sets of locations together. Some of the calculations we’ll
meet there for distance between clusters can be adapted to calculate the heuristics
between clusters.

Even without such optimizations, the cluster heuristic is worth trying for labyrin-
thine indoor levels.
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Fill Patterns in A*

Figure 4.20 shows the fill patterns of a tile-based indoor level using A* with different
heuristics.

The first example has a zero heuristic; it always returns 0 (the most dramatic
underestimate possible) and gives us the fill we’d get if we used plain Dijkstra for
pathfinding. The second example uses Euclidean distance, and the final example uses
a cluster heuristic tailored specifically to this level. The fill decreases in each example;
the cluster heuristic has very little fill, whereas the zero heuristic fills most of the level.

This is a good example of the knowledge vs. search trade-off we looked at in Chap-
ter 2.

If the heuristic is more complex and more tailored to the specifics of the game
level, then the A* algorithm needs to search less. It provides a good deal of knowledge
about the problem. The ultimate extension of this is a heuristic with ultimate knowl-
edge: completely accurate estimates. As we have seen, this would produce optimum
A* performance with no search.

On the other hand, the Euclidean distance provides a little knowledge. It knows
that the cost of moving between two points depends on their distance apart. This little
bit of knowledge goes a long way, but still requires more searching than the perfect
heuristic.

Cluster heuristic Euclidean distance heuristic Null heuristic

Closed node
Open node
Unvisited node

Key

Figure 4.20 Fill patterns indoors
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Closed node
Open node
Unvisited node

Euclidean distance heuristic Null heuristic

Key

Figure 4.21 Fill patterns outdoors

The zero heuristic has no knowledge, and it requires lots of search.
In our indoor example, where there are large obstructions, the Euclidean distance

is not the best indicator of the actual distance. In outdoor maps, it is far more accu-
rate. Figure 4.21 shows the zero and Euclidean heuristics applied to an outdoor map,
where there are fewer obstructions. Now the Euclidean heuristic is more accurate, and
the fill is correspondingly lower.

In this case Euclidean distance is a very good heuristic, and we have no need to try
to produce a better one. In fact, cluster heuristics don’t tend to improve performance
(and can dramatically reduce it) in open outdoor levels.

Quality of Heuristics

Producing a heuristic is far more of an art than a science. Its significance is massively
underestimated by AI developers. In my experience, many developers drop in a simple
Euclidean distance heuristic without thought and hope for the best.

The only surefire way to get a decent heuristic is to visualize the fill of your algo-
rithm. This can be in-game, or using output statistics that you can later examine. I’ve
found to my cost that tweaks to the heuristic I thought would be beneficial have often
produced inferior results.
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There has been some research done into automatically generating heuristics based
on examining the structure of the graph and its connections. This may lead in time to
automated heuristic algorithms that can produce better than Euclidean performance
and may support graphs with non-distance-based costs. It is an interesting line of
attack, but the results have yet to prove compelling.

Most developers aim for heuristics that are close, but err on the side of underesti-
mating. The simplest, and most common, heuristic is Euclidean distance, and it will
continue to be so for some time.

Dijkstra Is A*

It is worth noticing that the Dijkstra algorithm is a subset of the A* algorithm. In A*
we calculate the estimated-total-cost of a node by adding the heuristic value to the
cost-so-far. A* then chooses a node to process based on this value.

If the heuristic always returns 0, then the estimated-total-cost will always be equal
to the cost-so-far. When A* chooses the node with the smallest estimated-total-cost, it
is choosing the node with the smallest cost-so-far. This is identical to Dijkstra. A* with
a zero heuristic is the pathfinding version of Dijkstra.

4.4 WORLD REPRESENTATIONS

So far we’ve assumed that pathfinding takes place on a graph made up of nodes and
connections with costs. This is the world that the pathfinding algorithm knows about,
but games aren’t made up of nodes and connections.

To squeeze your game level into the pathfinder you need to do some translation—
from the geometry of the map and the movement capabilities of your characters to
the nodes and connections of the graph and the cost function that values them.

For each pathfinding world representation, we will divide the game level into
linked regions that correspond to nodes and connections. The different ways this can
be achieved are called division schemes. Each division scheme has three important
properties we’ll consider in turn: quantization/localization, generation, and validity.

You might also be interested in Chapter 11, Tools and Content Creation, which
looks at how the pathfinding data is created by the level designer or by an automatic
process. In a complete game, the choice of world representation will have as much to
do with your toolchain as technical implementation issues.

Quantization and Localization

Because the pathfinding graph will be simpler than the actual game level, some mech-
anism is needed to convert locations in the game into nodes in the graph. When a
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character decides it wants to reach a switch, for example, it needs to be able to con-
vert its own position and the position of the switch into graph nodes. This process is
called quantization.

Similarly, if a character is moving along a path generated by the pathfinder, it
needs to convert nodes in the plan back into game world locations so that it can move
correctly. This is called localization.

Generation

There are many ways of dividing up a continuous space into regions and connections
for pathfinding. There are a handful of standard methods used regularly. Each works
either manually (the division being done by hand) or algorithmically.

Ideally, of course, we’d like to use techniques that can be run automatically. On
the other hand, manual techniques often give the best results, as they can be tuned
for each particular game level.

The most common division scheme used for manual techniques is the Dirichlet
domain. The most common algorithmic methods are tile graphs, points of visibil-
ity, and polygonal meshes. Of these, polygonal meshes and points of visibility are
often augmented so that they automatically generate graphs with some user supervi-
sion.

Validity

If a plan tells a character to move along a connection from node A to node B, then
the character should be able to carry out that movement. This means that wherever
the character is in node A, it should be able to get to any point in node B. If the
quantization regions around A and B don’t allow this, then the pathfinder may have
created a useless plan.

A division scheme is valid if all points in two connected regions can be reached
from each other. In practice, most division schemes don’t enforce validity. There can
be different levels of validity, as Figure 4.22 demonstrates.

In the first part of the figure, the issue isn’t too bad. An “avoid walls” algorithm
(see Chapter 3) would easily cope with the problem. In the second figure with the
same algorithm, it is terminal. Using a division scheme that gave the second graph
would not be sensible. Using the first scheme will cause fewer problems. Unfortu-
nately, the dividing line is difficult to predict, and an easily handled invalidity is only
a small change away from being pathological.

It is important to understand the validity properties of graphs created by each
division scheme; at the very least it has a major impact on the types of character
movement algorithm that can be used.

So, let’s look at the major division schemes used in games.
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Figure 4.22 Two poor quantizations show that a path may not be viable

4.4.1 TILE GRAPHS

Tile-based levels, in the form of two-dimensional (2D) isometric graphics, have al-
most disappeared from mainstream games. The tile is far from dead, however. Al-
though strictly not made up of tiles, a large number of tiles use grids in which they
place their three-dimensional (3D) models. Underlying the graphics is still a regular
grid.

This grid can be simply turned into a tile-based graph. Many RTS games still use
tile-based graphs extensively, and many outdoor games use graphs based on height
and terrain data.

Tile-based levels split the whole world into regular, usually square, regions (al-
though hexagonal regions are occasionally seen in turn-based war simulation games).

Division Scheme

Nodes in the pathfinder’s graph represent tiles in the game world. Each tile in the
game world normally has an obvious set of neighbors (the eight surrounding tiles
in a rectangular grid, for example). The connections between nodes connect to their
immediate neighbors.

Quantization and Localization

We can determine which tile any point in the world is within, and this is often a
fast process. In the case of a square grid, we can simply use a character’s x and z
coordinates to determine the square it is contained in. For example,

1 tileX = floor(x / tileSize)
2 tileZ = floor(z / tileSize)
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where floor() is a function that returns the highest valued integer less than or equal
to its argument, and tileX and tileZ identify the tile within the regular grid of tiles.

Similarly, for localization we can use a representative point in the tile (often the
center of the tile) to convert a node back into a game location.

Generation

Tile-based graphs are generated automatically. In fact, because they are so regular
(always having the same possible connections and being simple to quantize), they
can be generated at run time. An implementation of a tile-based graph doesn’t need
to store the connections for each node in advance. It can generate them as they are
requested by the pathfinder.

Most games allow tiles to be blocked. In this case the graph will not return con-
nections to blocked tiles, and the pathfinder will not try to move through them.

For tile-based grids representing outdoor height fields (a rectangular grid of
height values), the costs often depend on gradient. The height field data is used to
calculate a connection cost based both on distance and on gradient. Each sample in
the height field represents the center point of a tile in the graph, and costs can be cal-
culated based on distance and the change in elevation between the two points. In this
way it will cost less to go downhill than uphill.

Validity

In many games that use tile-based layouts, a tile will be either completely blocked or
completely empty. In this case, if the only tiles that are connected are empty, then the
graph will be guaranteed to be valid.

When a graph node is only partially blocked, then the graph may not be valid,
depending on the shape of the blockage. Figure 4.23 shows two cases: one in which a
partial blockage does not make the graph invalid, and another in which it does.

Usefulness

While tile-based levels are one of the easiest to convert to a graph representation,
there are often a vast number of tiles in the game. A small RTS level can have many
hundreds of thousands of tiles. This means that the pathfinder has to work hard to
plan sensible paths.

When the plans returned by the pathfinder are drawn on the graph (using local-
ization for each node in the plan), they can appear blocky and irregular. Characters
following the plan will look strange. This is illustrated in Figure 4.24.

While this is a problem with all division schemes, it is most noticeable for tile-
based graphs (see Section 4.4.7 on path smoothing for an approach to solving this
problem).
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Valid partial blockage Invalid partial blockage

Figure 4.23 Tile-based graph with partially blocked validity
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Output blocky plan

Ideal direct plan

Figure 4.24 Tile-based plan is blocky
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4.4.2 DIRICHLET DOMAINS

A Dirichlet domain, also called a Voronoi polygon in two dimensions, is a region
around one of a finite set of source points whose interior consists of everywhere that
is closer to that source point than any other.

Division Scheme

So pathfinding nodes have an associated point in space called the characteristic point,
and the quantization takes place by mapping all locations in the point’s Dirichlet
domain to the node. To determine the node for a location in the game, we find the
characteristic point that is closest.

The set of characteristic points is usually specified by a level designer as part of
the level data.

You can think of Dirichlet domains as being cones originating from the source
point. If you view them from the top, as in Figure 4.25, the area of each cone that you
see is the area that “belongs” to that source point. This is often a useful visualization
for troubleshooting.

The basic idea has been extended to use different falloff functions for each node,
so some nodes have a larger “pull” than others in the quantization step. This is some-
times called a weighted Dirichlet domain: each point has an associated weight value
that controls the size of its region. Changing the weight is equivalent to changing the
slope on the cone; squatter cones end up with larger regions. But care needs to be
taken. Once you change the slope, you can get strange effects.

Figure 4.26 shows the Dirichlet domains in a passageway. You can see that the end
of the passageway belongs to the wrong source point: the fat cone has peaked back
out. This can make it difficult to debug pathfinding problems.

If you are manually assigning weighted Dirichlet domains, it’s a good idea to have
them displayed to check for overlapping problems.

Figure 4.25 Dirichlet domains as cones



252 Chapter 4 Pathfinding
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Top viewSide view

A B

Figure 4.26 Problem domains with variable falloff

Connections are placed between bordering domains. The pattern of connections
can be found using a mathematical structure that has deep connections to Voronoi
diagrams, called a Delaunay triangulation. The edges of the Delaunay triangulation
are the connections in the graph, and the vertices are the characteristic points of the
domains. Creating a Delaunay triangulation of a set of points is beyond the scope of
this book. There are very many websites dedicated to the algorithms for constructing
Delaunay triangulations.

Most developers don’t bother with a mathematically correct algorithm, however.
They either make the artist specify connections as part of their level design, or they
ray cast between points to check for connections (see the points of visibility method
below). Even if you use the Delaunay triangulation method, you will need to check
that domains that touch can actually be moved between: there might be a wall in the
way.

Quantization and Localization

Positions are quantized by finding the characteristic point that is closest.
Searching through all points to find the closest is a time-consuming process (an

O(n) process, where n is the number of domains). Typically, we will use some kind
of spatial partitioning algorithm (quad-tree, octree, binary space partition, or multi-
resolution map) to allow us to consider only those points that are nearby.

The localization of a node is given by the position of the characteristic point that
forms the domain (i.e., the tip of the cone in the example above).

Validity

Dirichlet domains can form intricate shapes. There is no way to guarantee that trav-
elling from a point in one domain to a point in a connected domain will not pass
through a third domain. This third domain might be impassable and might have been
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discounted by the pathfinder. In this case, following the path will lead to a problem.
Strictly, therefore, Dirichlet domains produce invalid graphs.

In practice, however, the placement of nodes is often based on the structure of
obstacles. Obstacles are not normally given their own domains, and so the invalidity
of the graph is rarely exposed.

To make sure, you can provide some kind of backup mechanism (like an avoid
walls steering behavior) to solve the issue and avoid your characters happily running
headfirst into walls.

Usefulness

Dirichlet domains are very widely used. They have the advantage of being very easy
to program (automatic generation of connections aside) and easy to change. It is
possible to rapidly change the structure of the pathfinding graph in a level editing
program without having to change any level geometry.

4.4.3 POINTS OF VISIBILITY

It can be shown that the optimal path through any 2D environment will always have
inflection points (i.e., points on the path where the direction changes) at convex ver-
tices in the environment. If the character that is moving has some radius, these inflec-
tion points are replaced by arcs of a circle at a distance away from the vertex. This is
illustrated in Figure 4.27.

In three dimensions, the same thing applies, but inflection points are located at
either convex polygon edges or vertices.

In either case, we can approximate these inflection points by choosing a charac-
teristic point that is shifted out from the vertices a short distance. This will not give
us the curves, but it will give us believable paths. These new characteristic points can
be calculated from the geometry by extending out the geometry a little way and cal-
culating where the edges of the new geometry are.

Division Scheme

Since these inflection points naturally occur in the shortest path, we can use them as
nodes in the pathfinding graph.

Working on the actual level geometry will provide us with far too many inflection
points. A simplified version is needed so that we can find inflection points where the
large-scale geometry changes. It may be possible to take these points from collision
geometry, or they may need to be generated specially.

These inflection points can then be used as the node locations to build a graph.
To work out how these points are connected, rays are cast between them, and a

connection is made if the ray doesn’t collide with any other geometry. This is almost
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Optimal path for zero-width character

Path for character with width

Path using vertex offsets

Original characteristic points at vertices

Offset characteristic points

Figure 4.27 Path with inflections at vertices

equivalent to saying that one point can be seen from the other. For this reason it is
called a “points of visibility” approach. In many cases the resultant graph is huge.
A complex cavern, for example, may have many hundreds of inflection points, each
of which may be able to see most of the others. This is shown in Figure 4.28.

Quantization, Localization, and Validity

Points of visibility are usually taken to represent the centers of Dirichlet domains for
the purpose of quantization.
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Connection between nodes

Key

Figure 4.28 Points of visibility graph bloat

In addition, if Dirichlet domains are used for quantization, points quantized to
two connected nodes may not be able to reach each other. As we saw in Dirichlet
domains above, this means that the graph is strictly invalid.

Usefulness

Despite its major shortcomings, a points of visibility approach is a relatively popular
method for automatic graph generation.

Personally, I think the results are not worth the effort. In my experience a lot of
fiddling and clearing up is needed by hand, which defeats the object. If automatic
graph generation is essential, then I’d look at polygonal meshes. If manual placement
is required, then I’d recommend regular Dirichlet domains.

Some AI developers will passionately disagree, however, and swear by points of
visibility.

4.4.4 POLYGONAL MESHES

The level designer needs to specify the way the level is connected, the regions it has,
and whether there is any AI in the game or not. The level itself is made up of polygons
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Figure 4.29 Polygonal mesh graph

connected to other polygons. We can use this graphical structure as the basis of a
pathfinding representation.

Division Scheme

Many games use floor polygons, as defined by artists, as regions. Each polygon acts as
a node in the graph, as shown in Figure 4.29.

The graph is based on the mesh geometry of the level and therefore is often called
a navigation mesh, or just “nav’ mesh.”

Nodes are connected if their corresponding polygons share an edge. Floor poly-
gons are typically triangles, but may be quads. Nodes therefore have either 3 or 4 con-
nections.

Creating a navigation mesh usually involves the artist labelling particular poly-
gons as floor in their modelling package. They may need to do this anyway to specify
sound effects or grip characteristics. Navigation meshes require less artist interven-
tion than other approaches, with the exception of tile-based graphs.
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Quantization and Localization

A position is localized into the floor polygon that contains it. We could search a large
number of polygons to find the right one, or we could use a coherence assumption.

Coherence refers to the fact that, if we know which location a character was in at
the previous frame, it is likely to be in the same node or an immediate neighbor on
the next frame. We can check these nodes first.

This approach is useful in lots of division schemes, but is particular crucial when
dealing with navigation maps.

The only wrinkle occurs when a character is not touching the floor. We can simply
find the first polygon below it and quantize it to that. Unfortunately, it is possible for
the character to be placed in a completely inappropriate node as it falls or jumps. In
Figure 4.30, for example, the character is quantized to the bottom of the room, even
though it is actually using the walkways above. This may then cause the character to
re-plan its route as if it were in the bottom of the room: not the desired effect.

Localization can choose any point in the polygon, but normally uses the geomet-
ric center (the average position of its vertices). This works fine for triangles. For quads
or polygons with more sides, the polygon must be concave for this to work. Geomet-

Figure 4.30 Quantization into a gap
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Figure 4.31 Non-interpolation of the navigation mesh

ric primitives used in graphics engines have this requirement anyway. So if we are
using the same primitives used for rendering, we are safe.

Validity

The regions generated by polygonal meshes can be problematic. A pair of triangles,
like that below, has areas where travelling directly between the connected triangles
causes a collision. We have assumed that any point in one region can move directly to
any point in a connected region, and this may not be the case. See Figure 4.31 for an
example.

Because floor polygons are created by the level designer, this situation can be miti-
gated. The geometry naturally created by most sensible level designers does not suffer
from major problems.

Usefulness

Using this approach also requires additional processing to take into account the
agent’s geometry. Since not all locations in a floor polygon may be occupied by a
character (some are too close to the wall), some trimming is required; this may affect
the connections generated by finding shared edges. This problem is especially evident
at convex areas such as doorways.

Despite this, it is an overwhelmingly popular approach. Games such as Jak and
Daxter [Naughty Dog, Inc., 2001] and hundreds of others use this approach, as does
the PathEngine middleware solution.

For the occasional game that needs it, they have the additional benefit of allowing
characters to plan routes up walls, across ceilings, or for any other kind of geometry.
This might be useful if characters stick to walls, for example. It is much more difficult
to achieve the same result with other world representations.
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Edges as Nodes

Floor polygons can also be converted into a pathfinding graph by assigning nodes to
the edges between polygons and using connections across the face of each polygon.
Figure 4.32 illustrates this.

This approach is also commonly used in association with portal-based rendering,
where nodes are assigned to portals, and where connections link all portals within
the line of sight of one another. Portal rendering is a graphics technique where the
geometry of the whole level is split into chunks, linked by portals: a 2D polygonal
interface between the regions. By separating the level into chunks, it is easier to test
which chunks need to be drawn, reducing the rendering time. Full details are beyond
the scope of this book, but should be covered in any good modern text on game
engine design.

In the polygonal mesh, the edges of every floor polygon act like a portal and there-
fore have their own node. We don’t need to do the line of sight tests. By definition,
each edge of a convex floor polygon can be seen from every other edge.

Some articles I’ve come across suggest that the nodes on the edges of floor poly-
gons are placed dynamically in the best position as the pathfinder does its work. De-
pending on the direction that the character is moving, the nodes should be at a dif-
ferent location. This is shown in Figure 4.33.

Figure 4.32 Portal representation of a navigation mesh

Figure 4.33 Different node positions for different directions
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This is a kind of continuous pathfinding, and we’ll look at the algorithm for con-
tinuous pathfinding later in the chapter. In my opinion, however, this approach is
overkill. It is better to work with the faster fixed graph. If the resulting path looks too
crinkled, then a path smoothing step (which I’ll cover in Section 4.4.7) is perfectly
sufficient.

Both the polygon-as-node and the edge-as-node representations are known as
navigation meshes. Often, one or the other approach is assumed, so it is worth making
sure that whatever source you are using makes it clear which version they are talking
about.

4.4.5 NON-TRANSLATIONAL PROBLEMS

There is nothing in the above discussion about regions and connections that requires
us to be dealing with positions only.

In some tile-based games, where agents cannot turn quickly, tiles are created for
each location and orientation. So an agent with a large turning circle can only move
to a tile with a slightly different orientation in one step.

In Figure 4.34 an agent cannot turn without moving and can only turn by 90◦ at
a time. Nodes A1, A2, A3, and A4 all correspond to the same location. They repre-
sent different orientations, however, and they have different sets of connections. The

A1 B1

C1

A2 B2

C2

A4 B4

C4

A3 B3

C3

Figure 4.34 A non-translational tile-based world
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Figure 4.35 Plan on a non-translational tile graph

quantization of an agent’s state into a graph node needs to take account of both their
position and their orientation.

The result from planning on this graph will be a sequence of translations and
rotations. A plan on the graph above is shown in Figure 4.35.

4.4.6 COST FUNCTIONS

In the simplest cases, where we are interested in finding the shortest path, the cost
of a connection can represent distance. The higher the cost, the larger is the distance
between nodes.

If we are interested in finding the quickest path to move along, we could use costs
that depend on time. This isn’t the same thing as distance: it is quicker to run 10 feet
than to climb a 10-foot ladder.

We can add all sorts of other concerns to the costs on a graph. In an RTS, for ex-
ample, we could make certain connections more costly if they were exposed to enemy
fire or if they wandered too near to dangerous terrain. The final path would then be
the one with the lowest danger.

Often, the cost function is a blend of many different concerns, and there can be
different cost functions for different characters in a game. A reconnaissance squad, for
example, may be interested in visibility and speed. A heavy artillery weapon would be
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more interested in terrain difficulty. This is called tactical pathfinding, and we’ll look
at it in depth in Chapter 6.

4.4.7 PATH SMOOTHING

A path that travels from node to node through a graph can appear erratic. Sensible
node placing can give rise to very odd looking paths. Figure 4.36 shows a section of a
level with nodes placed in a reasonable manner. The path shown constantly switches
direction; a character following the path will not look intelligent.

Some world representations are more prone to rough paths than others. Portal
representations with points of visibility connections can give rise to very smooth
paths, while tile-based graphs tend to be highly erratic. The final appearance also
depends on how characters act on the path. If they are using some kind of path fol-
lowing steering behavior (see Chapter 3), then the path will be gently smoothed by the
steering. It is worth testing your game before assuming the path will need smoothing.

For some games, path smoothing is essential to get the AI looking smart. The
path smoothing algorithm is relatively simple to implement, but involves queries to
the level geometry. Therefore, it can be somewhat time-consuming.

The Algorithm

We will assume in this algorithm that there is a clear route between any two adjacent
nodes in the input path. In other words, we are assuming that the division scheme is
valid.

Key

Original path

Smoothed path

Optimal smoothing

Figure 4.36 Smoothed path with a better smoothing indicated
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First, we create a new empty path. This is the output path. We add the start node
to it. The output path will start and end at the same nodes as the input path.

Starting at the third node in the input path, a ray is cast to each node in turn from
the last node in the output path. We start at the third node because we are assuming
that there is a clear line (a passed ray cast) between the first and second nodes.

When a ray fails to get through, the previous node in the input path is added to
the output path. Ray casting starts again from the next node in the input path. When
the end node is reached, it is added to the output path. The output path is used as the
path to follow.

Figure 4.36 illustrates a path that has been smoothed with this algorithm.
Although this algorithm produces a smooth path, it doesn’t search all possible

smoothed paths to find the best one. The figure shows the smoothest possible path
in our example; it cannot be generated by this algorithm. To generate the smoothest
path, we’d need another search among all possible smoothed paths. This is rarely, if
ever, necessary.

Pseudo-Code

The path smoothing algorithm takes an input path made up of nodes and returns a
smoothed output path:

1 def smoothPath(inputPath):
2

3 # If the path is only two nodes long, then
4 # we can’t smooth it, so return
5 if len(inputPath) == 2: return inputPath
6

7 # Compile an output path
8 outputPath = [inputPath[0]]
9

10 # Keep track of where we are in the input path
11 # We start at 2, because we assume two adjacent
12 # nodes will pass the raycast
13 inputIndex = 2
14

15 # Loop until we find the last item in the input
16 while inputIndex < len(inputPath)-1:
17

18 # Do the ray cast
19 if not rayClear(outputPath[len(outputPath)-1],
20 inputPath[inputIndex]):
21

22 # The ray text failed, add the last node that
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23 # passed to the output list
24 outputPath += inputPath[inputIndex-1]
25

26 # Consider the next node
27 inputIndex ++
28

29 # We’ve reached the end of the input path, add the
30 # end node to the output and return it
31 outputPath += inputPath[len(inputPath)-1]
32 return outputPath

Data Structures and Interfaces

The pseudo-code works with paths that are a list of nodes. The pathfinding algorithms
so far have returned a path as a list of connections. Although we could take this kind
of path as input, the output path cannot be made up of connections. The smoothing
algorithm links nodes that are in line of sight, but are unlikely to have any connections
between them (if they were connected in the graph, the pathfinder would have found
the smoothed route directly, unless their connections had dramatically large costs).

Performance

The path smoothing algorithm is O(1) in memory, requiring only temporary storage.
It is O(n) in time, where n is the number of nodes in the path.

The majority of the time spent in this algorithm is spent carrying out ray casting
checks.

4.5 IMPROVING ON A*

With a good heuristic, A* is a very efficient algorithm. Even simple implementations
can plan across many tens of thousands of nodes in a frame. Even better performance
can be achieved using additional optimizations, such as those we considered in the
previous sections.

Many game environments are huge and contain hundreds of thousands or even
millions of locations. Massively multi-player games may be hundreds of times larger
still. While it is possible to run an A* algorithm on an environment of this size, it will
be extremely slow and take a huge amount of memory. The results are also less than
practical. If a character is trying to move between cities in an MMOG, then a route
that tells it how to avoid a small boulder in the road 5 miles away is overkill. This
problem can be better solved using hierarchical pathfinding.
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Often, many different plans need to be made in quick succession: a whole army
may need to plan its routes through a battlefield, for example. Other techniques, such
as dynamic pathfinding, can increase the speed of re-planning, and a number of A*
variations dramatically reduce the amount of memory required to find a path, at the
cost of some performance.

The remainder of this chapter will look at some of these issues in detail and will
try to give a flavor for the range of different A* variations that are possible.

4.6 HIERARCHICAL PATHFINDING

Hierarchical pathfinding plans a route in much the same way as a person would. We
plan an overview route first and then refine it as needed. The high-level overview
route might be “to get to the rear parking lot, I’ll go down the stairs, out of the front
lobby, and around the side of the building,” or “I’ll go through the office, out the fire
door, and down the fire escape.” For a longer route, the high-level plan would be even
more abstract: “to get to the London office, I’ll go to the airport, catch a flight, and
get a cab from the airport.”

Each stage of the path will consist of another route plan. To get to the airport, for
example, we need to know the route. The first stage of this route might be to get to
the car. This, in turn, might require the plan to get to the rear parking lot, which in
turn will require a plan to maneuver around the desks and get out of the office.

This is a very efficient way of pathfinding. To start with, we plan the abstract
route, take the first step of that plan, find a route to complete it, and so on down to
the level where we can actually move. After the initial multi-level planning, we only
need to plan the next part of the route when we complete a previous section. When
I arrive at the bottom of the stairs, on my way to the parking lot (and from there to
the London office), I plan my route through the lobby. When I arrive at my car, I then
have completed the “get to the car” stage of my next plan up, and I can plan the “drive
to the airport” stage.

The plan at each level is typically simple, and we split the pathfinding problem
over a long period of time, only doing the next bit when the current bit is complete.

4.6.1 THE HIERARCHICAL PATHFINDING GRAPH

To be able to pathfind at higher levels we can still use the A* algorithm and all its op-
timizations. In order to support hierarchical pathfinding, we need to alter the graph
data structure.

Nodes

This is done by grouping locations together to form clusters. The individual locations
for a whole room, for example, can be grouped together. There may be 50 navigation
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Figure 4.37 Hierarchical nodes

points in the room, but for higher level plans they can be treated as one. This group
can be treated as a single node in the pathfinder, as shown in Figure 4.37.

This process can be repeated as many times as needed. The nodes for all the rooms
in one building can be combined into a single group, which can then be combined
with all the buildings in a complex, and so on. The final product is a hierarchical
graph. At each level of the hierarchy, the graph acts just like any other graph you
might pathfind on.

To allow pathfinding on this graph, you need to be able to convert a node at the
lowest level of the graph (which is derived from the character’s position in the game
level) to one at a higher level. This is the equivalent of the quantization step in regular
graphs. A typical implementation will store a mapping from nodes at one level to
groups at a higher level.

Connections

Pathfinding graphs require connections as well as nodes. The connections between
higher level nodes need to reflect the ability to move between grouped areas. If any
low-level node in one group is connected to any low-level node in another group,
then a character can move between the groups, and the two groups should have a
connection connected.

Figure 4.38 shows the connections between two nodes based on the connectivity
of their constituent nodes at the next level down in the hierarchy.

Connection Costs

The cost of a connection between two groups should reflect the difficulty of travelling
between them. This can be specified manually, or it can be calculated from the cost of
the low-level connections between those groups.
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Figure 4.39 A tile-based representation of a level with groups marked

This is a complex calculation, however. Figure 4.39 shows that the cost of moving
from group C to group D depends on whether you entered group C from group A
(a cost of 1) or from group B (a cost of 4).

In general, the grouping should be chosen to minimize this problem, but it cannot
be resolved easily.



268 Chapter 4 Pathfinding

There are three heuristics that are commonly used, straight or blended, to calcu-
late the connection cost between groups.

Minimum Distance

The first is minimum distance. This heuristic says that the cost of moving between
two groups is the cost of the cheapest link between any nodes in those groups. This
makes sense because the pathfinder will try to find the shortest route between two
locations. In the example above, the cost of moving from C to D would be 1. Note
that if you entered C from either A or B, it would take more than 1 move to get to D.
The value of 1 is almost certainly too low, but this may be an important property
depending on how accurate you want your final path to be.

Maximin Distance

The second is the “maximin” distance. For each incoming link, the minimum distance
to any suitable outgoing link is calculated. This calculation is usually done with a
pathfinder. The largest of these values is then added to the cost of the outgoing link
and used as the cost between groups.

In the example, to calculate the cost of moving from C to D, two costs are calcu-
lated: the minimum cost from C1 to C5 (4) and the minimum cost from C6 to C7 (1).
The largest of these (C1 to C5) is then added to the cost of moving from C5 to D1 (1).
This leaves a final cost from C to D of 5. To get from C to D from anywhere other
than C1, this value will be too high. Just like the previous heuristic, this may be what
you need.

Average Minimum Distance

A value in the middle of these extremes is sometimes better. The “average minimum”
distance is a good general choice. This can be calculated in the same way as the max-
imin distance, but the values are averaged, rather than simply selecting the largest. In
our example, to get from C to D coming from B (i.e., via C6 and C7), the cost is 2,
and when coming from A (via C2 to C5) it is 5. So the average cost of moving from C
to D is 31

2 .

Summary of the Heuristics

The minimum distance heuristic is very optimistic. It assumes that there will never be
any cost to moving around the nodes within a group. The maximin distance heuristic
is pessimistic. It finds one of the largest possible costs and always uses that. The aver-
age minimum distance heuristic is pragmatic. It gives the average cost you’ll pay over
lots of different pathfinding requests.

The approach you choose isn’t only dictated by accuracy; each heuristic has an
effect on the kinds of paths returned by a hierarchical pathfinder. We’ll return to why
this is so after we look in detail at the hierarchical pathfinding algorithm.
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4.6.2 PATHFINDING ON THE HIERARCHICAL GRAPH

Pathfinding on a hierarchical graph uses the normal A* algorithm. It applies the A*
algorithm several times, starting at a high level of the hierarchy and working down.
The results at high levels are used to limit the work it needs to do at lower levels.

Algorithm

Because a hierarchical graph may have many different levels, the first task is to find
which level to begin on. We want as high a level as possible, so we do the minimum
amount of work. However, we also don’t want to be solving trivial problems either.

The initial level should be the first in which the start and goal locations are not at
the same node. Any lower and we would be doing unnecessary work; any higher and
the solution would be trivial, since the goal and start nodes are identical.

In Figure 4.38 the pathfinding should take place initially at level 2, because level 3
has the start and end locations at the same node.

Once a plan is found at the start level, then the initial stages of the plan need to be
refined. We refine the initial stages because those are the most important for moving
the character. We won’t initially need to know the fine detail of the end of the plan;
we can work that out nearer the time.

The first stage in the high-level plan is considered (occasionally, it can be useful
to consider the first few; this is a heuristic that needs to be tried for different game
worlds). This small section will be refined by planning at a slightly lower level in the
hierarchy.

The start point is the same, but if we kept the end point the same we’d be planning
through the whole graph at this level, so our previous planning would be wasted. So
the end point is set at the end of the first move in the high-level plan.

For example, if we are planning through a set of rooms, the first level we consider
might give us a plan that takes us from where our character is at in the lobby to the
guardroom and from there to its goal in the armory. At the next level we are interested
in maneuvering around obstacles in the room, so we keep the start location the same
(where the character currently is), but set the end location to be the doorway between
the lobby and the guardroom. At this level we will ignore anything we may have to do
in the guardroom and beyond.

This process of lowering the level and resetting the end location is repeated until
we reach the lowest level of the graph. Now we have a plan in detail for what the char-
acter needs to do immediately. We can be confident that, even though we have only
looked in detail at the first few steps, making those moves will still help us complete
our goal in a sensible way.

Pseudo-Code

The algorithm for hierarchical pathfinding has the following form:
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1 def hierarchicalPathfind(graph, start, end, heuristic):
2

3 # Check if we have no path to find
4 if start == end: return None
5

6 # Set up our initial pair of nodes
7 startNode = start
8 endNode = end
9 levelOfNodes = 0

10

11 # Descend through levels of the graph
12 currentLevel = graph.getLevels()-1
13 while currentLevel >= 0:
14

15 # Find the start and end nodes at this level
16 startNode = graph.getNodeAtLevel(0, start,
17 currentLevel)
18 endNode = graph.getNodeAtLevel(levelOfNodes,
19 endNode, currentLevel)
20 levelOfNodes = currentLevel
21

22 # Are the start and end node the same?
23 if startNode == endNode:
24

25 # Skip this level
26 continue
27

28 # Otherwise we can perform the plan
29 graph.setLevel(currentLevel)
30 path = pathfindAStar(graph, startNode, endNode, heuristic)
31

32 # Now take the first move of this plan and use it
33 # for the next run through
34 endNode = path[0].getToNode()
35

36 # The last path we considered would have been the
37 # one at level zero: we return it.
38 return path

Data Structures and Interfaces

We have made some additions to our graph data structure. Its interface now looks
like the following:
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1 class HierarchicalGraph (Graph):
2

3 # ... Inherits getConnections from graph ...
4

5 # Returns the number of levels in the graph
6 def getLevels()
7

8 # Sets the graph so all future calls to getConnections
9 # are treated as requests at the given level

10 def setLevel(level)
11

12 # Converts the node at the input level into a node
13 # at the output level.
14 def getNodeAtLevel(inputLevel, node, outputLevel)

The setLevel method switches the graph into a particular level. All calls to
getConnections then act as if the graph was just a simple, non-hierarchical graph at
that level. The A* function has no way of telling that it is working with a hierarchical
graph; it doesn’t need to.

The getNodeAtLevel method converts nodes between different levels of the hi-
erarchy. When increasing the level of a node, we can simply find which higher level
node it is mapped to. When decreasing the level of a node, however, one node might
map to any number of nodes at the next level down.

This is just the same process as localizing a node into a position for the game.
There are any number of positions in the node, but we select one in localization. The
same thing needs to happen in the getNodeAtLevel method. We need to select a single
node that can be representative of the higher level node. This is usually a node near
the center, or it could be the node that covers the greatest area or the most connected
node (an indicator that it is a significant one for route planning).

Personally, I have used a fixed node at a lower level, generated by finding the node
closest to the center of all those mapped to the same higher level node. This is a fast,
geometric, pre-processing step that doesn’t need human intervention. This node is
then stored with the higher level node, and it can be returned when needed without
additional processing. This has worked well and produced no problems for me, but
you may prefer to try different methods or manual specification by the level designer.

Performance

The A* algorithm has the same performance characteristics as before, since we are
using it unchanged.

The hierarchical pathfinder function is O(1) in memory and O(p) in time, where
p is the number of levels in the graph. Overall, the function is O(plm) in time. Obvi-
ously, this appears to be slower than the basic pathfinding algorithm.
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And it may be. It is possible to have a hierarchical graph that is so poorly struc-
tured that the overall performance is lower. In general, however, there are p stages of
the O(lm) A* algorithm, but in each case the number of iterations (l) should be much
smaller than a raw A* call, and the practical performance will be significantly higher.

For large graphs (tens of thousands of nodes, for example) it is not uncommon
to see two orders of magnitude improvement in running speed, using several levels in
the hierarchy. I’ve used this technique to allow characters to pathfind on a graph with
a hundred million nodes in real time (with the AI getting 10% of the processor time).

4.6.3 HIERARCHICAL PATHFINDING ON EXCLUSIONS

A character can only follow the plan generated by the previous algorithm for a short
time. When it reaches the end of the lowest level plan, it will need to plan its next
section in more detail.

When its plan runs out, the algorithm is called again, and the next section is re-
turned. If you use a pathfinding algorithm that stores plans (see Section 4.7, Other
Ideas in Pathfinding), the higher level plans won’t need to be rebuilt from scratch
(although that is rarely a costly process).

In some applications, however, you might prefer to get the whole detailed plan
up front. In this case hierarchical pathfinding can still be used to make the planning
more efficient.

The same algorithm is followed, but the start and end locations are never moved.
Without further modification, this would lead to a massive waste of effort, as we are
performing a complete plan at each level.

To avoid this, at each lower level, the only nodes that the pathfinder can consider
are those that are within a group node that is part of the higher level plan.

For example, in Figure 4.40 the first high-level plan is shown. When the low-
level plan is made (from the same start and end locations), all the shaded nodes are
ignored. They are not even considered by the pathfinder. This dramatically reduces
the size of the search, but it can also miss the best route, as shown.

It is not as efficient as the standard hierarchical pathfinding algorithm, but it can
still be a very powerful technique.

4.6.4 STRANGE EFFECTS OF HIERARCHIES ON PATHFINDING

It is important to realize that hierarchical pathfinding gives an approximate solution.
Just like any other heuristic, it can perform well in certain circumstances and poorly
in others. It may be that high-level pathfinding finds a route that can be a shortcut at a
lower level. This shortcut will never be found, because the high-level route is “locked
in” and can’t be reconsidered.

The source of this approximation is the link costs we calculated when we turned
the lowest level graph into a hierarchical graph. Because no single value can accurately
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Figure 4.40 Switching off nodes as the hierarchy is descended

represent all the possible routes through a group of nodes, they will always be wrong
some of the time.

Figures 4.41 and 4.42 show cases in which each method of calculating the link cost
produces the wrong path.

In Figure 4.41 we see that because the minimum cost is 1 for all connections be-
tween rooms, the path planner chooses the route with the smallest number of rooms,
rather than the much more direct route. The minimum cost method works well for
situations where each room is roughly the same size.

We see in Figure 4.42 that the obvious, direct route is not used because the con-
nection has a very large maximin value. The maximin algorithm works better when
every route has to pass through many rooms.

In the same example, using the average minimum method does not help, since
there is only one route between rooms. The direct route is still not used. The average
minimum method often performs better than the maximin method, except in cases
where most of the rooms are long and thin with entrances at each end (networks of
corridors, for example) or when there are few connections between rooms.

The failure of each of these methods doesn’t indicate that there is another, better,
method that we haven’t found yet; all possible methods will be wrong in some cases.
Whatever method you use, it is important to understand what effects the wrongness
has. One of the scenarios above, or a blend of them, is likely to provide the optimum
trade-off for your game, but finding it is a matter of tweaking and testing.
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Figure 4.42 Pathological example of the maximin method
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4.6.5 INSTANCED GEOMETRY

In a single-player game or a level-based multi-player game, all the detail for a level
is typically unique. If multiple copies of the same geometry are used, then they are
usually tweaked to be slightly different. The pathfinding graph is unique for the whole
level, and it doesn’t make sense to use the same subsection of the graph for more than
one area in the level.

For massively multi-player games, the whole world can consist of a single level.
There is no way to have the same detailed, unique modelling on this scale. Most
MMOGs use one large definition for the topology of the landscape (typically, a height
field grid that can be represented to the pathfinding system as a tile-based graph).
Onto this landscape buildings are placed, either as a whole or as entrances to a sepa-
rate mini-level representing the inside of the building. Tombs, castles, caves, or space-
ships can all be implemented in this way. I’ve used the technique to model bridges
connecting islands in a squad-based game, for example. For simplicity, I’ll refer to
them all as a building in this section.

These placed buildings are sometimes unique (for special areas with significance
to the game content). In most cases, however, they are generic. There may be 20 farm-
house designs, for example, but there may be hundreds of farmhouses across the
world. In the same way that the game wouldn’t store many copies of the geometry
for the farmhouse, it shouldn’t store many copies of the pathfinding graph.

We would like to be able to instantiate the pathfinding graph so that it can be
reused for every copy of the building.

Algorithm

For each type of building in the game, we have a separate pathfinding graph. The
pathfinding graph contains some special connections labelled as “exits” from the
building. These connections leave from nodes that we’ll call “exit nodes.” They are
not connected to any other node in the building’s graph.

For each instance of a building in the game, we keep a record of its type and which
nodes in the main pathfinding graph (i.e., the graph for the whole world) each exit
is attached to. Similarly, we store a list of nodes in the main graph that should have
connections into each exit node in the building graph. This provides a record of how
the building’s pathfinding graph is wired into the rest of the world.

Instance Graph

The building instance presents a graph to be used by the pathfinder. Let’s call this the
instance graph. Whenever it is asked for a set of connections from a node, it refers to
the corresponding building type graph and returns the results.

To avoid the pathfinder getting confused about which building instance it is in,
the instance makes sure that the nodes are changed so that they are unique to each
instance.
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Figure 4.43 The delegation in progress

The instance graph is simply acting as a translator. When asked for connections
from a node, it translates the requested node into a node value understood by the
building graph. It then delegates the connection request to the building graph, as
shown in Figure 4.43. Finally, it translates the results so that the node values are all
instance-specific again and returns the result to the pathfinder.

For exit nodes, the process adds an additional stage. The building graph is called
in the normal way, and its results are translated. If the node is an exit node, then
the instance graph adds the exit connections, with destinations set to the appropriate
nodes in the main pathfinding graph.

Because it is difficult to tell the distance between nodes in different buildings, the
connection costs of exit connections are often assumed to be zero. This is equivalent
to saying that the source and destination nodes of the connection are at the same
point in space.

World Graph

To support entrance into the building instance, a similar process needs to occur in the
main pathfinding graph. Each node requested has its normal set of connections (the
eight adjacent neighbors in a tile-based graph, for example). It may also have connec-
tions into a building instance. If so, the world graph adds the appropriate connection
to the list. The destination node of this connection is looked up in the instance defi-
nition, and its value is in instance graph format. This is illustrated in Figure 4.44.
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Figure 4.44 An instance in the world graph

The pathfinder, as we’ve implemented it in this chapter, can only handle one
graph at a time. The world graph manages all the instance graphs to make it appear
as if it is generating the whole graph. When asked for the connections from a node, it
first works out which building instance the node value is from or if it is from the main
pathfinding graph. If the node is taken from a building, it delegates to that building
to process the getConnections request and returns the result unchanged. If the node
is not taken from a building instance, it delegates to the main pathfinding graph, but
this time adds connections for any entrance nodes into a building.

If you are building a pathfinder from scratch to use in a game where you need
instancing, it is possible to include the instancing directly in the pathfinding algo-
rithm, so it makes calls to both the top-level graph and the instanced graphs. This
approach makes it much more difficult to later incorporate other optimizations such
as hierarchical pathfinding, or node array A*, however, so we’ll stick with the basic
pathfinding implementation here.

Pseudo-Code

To implement instanced geometry we need two new implicit graphs: one for building
instances and one for the main pathfinding graph.
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I’ve added the data used to store the building instance with the instance graph

class, since the same data is needed for each. The instance graph implementation

therefore has the following form:

1 class InstanceGraph (Graph):
2

3 # Holds the building graph to delegate to
4 buildingGraph
5

6 # Holds data for exit nodes
7 struct ExitNodeAssignment:
8 fromNode
9 toWorldNode

10

11 # Holds a hash of exit node assignments for
12 # connections to the outside world
13 exitNodes
14

15 # Stores the offset for the nodes values used in
16 # this instance.
17 nodeOffset
18

19 def getConnections(fromNode):
20

21 # Translate the node into building graph values+
22 buildingFromNode = fromNode - nodeOffset
23

24 # Delegate to the building graph
25 connections =
26 buildingGraph.getConnections(buildingFromNode)
27

28 # Translate the returned connections into instance
29 # node values
30 for connection in connections:
31 connection.toNode += nodeOffset
32

33 # Add connections for each exit from this node
34 for exitAssignment in exitNodes[fromNode]:
35 connection = new Connection
36 connection.fromNode = fromNode
37 connection.toNode = exitAssignment.toWorldNode
38 connection.cost = 0
39 connections += connection
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40

41 return connections

The main pathfinding graph has the following structure:

1 class MainGraph (Graph):
2

3 # Holds the graph for the rest of the world
4 worldGraph
5

6 # Holds data for a building instance
7 struct EntranceNodeAssignment:
8 fromNode
9 toInstanceNode

10 instanceGraph
11

12 # Holds entrance node assignments. This data structure
13 # can act as a hash, and is described below.
14 buildingInstances
15

16 # Holds a record of
17

18 def getConnections(fromNode):
19

20 # Check if the fromNode is in the range of any
21 # building instances
22 building = buildingInstances.getBuilding(fromNode)
23

24 # If we have a building, then delegate to the building
25 if building:
26 return building.getConnections(fromNode)
27

28 # Otherwise, delegate to the world graph
29 else:
30 connections = worldGraph.getConnections(fromNode)
31

32 # Add connections for each entrance from this node.
33 for building in buildingInstances[fromNode]:
34 connection = new Connection
35 connection.fromNode = fromNode
36 connection.toNode = building.toInstanceNode
37 connection.cost = 0
38 connections += connection
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39

40 return connections

Data Structures and Interfaces

In the instance graph class, we access the exit nodes as a hash, indexed by node num-
ber and returning a list of exit node assignments. This process is called every time the
graph is asked for connections, so it needs to be implemented in an efficient a manner
as possible. The building instances structure in the world graph class is used in exactly
the same way, with the same efficiency requirements.

The building instances structure also has a getBuilding method in the pseudo-
code above. This method takes a node and returns a building instance from the list
if the node is part of the instance graph. If the node is part of the main pathfinding
graph, then the method returns a null value. This method is also highly speed critical.
Because a range of node values are used by each building, however, it can’t be easily
implemented as a hash table. A good solution is to perform a binary search on the
nodeOffsets of the buildings. A further speed up can be made using coherence, taking
advantage of the fact that if the pathfinder requests a node in a building instance, it is
likely to follow it with requests to other nodes in the same building.

Implementation Nodes

The translation process between instance node values and building node values as-
sumes that nodes are numeric values. This is the most common implementation of
nodes. However, they can be implemented as an opaque data instead. In this case
the translation operations (adding and subtracting nodeOffset in the pseudo-code)
would be replaced by some other operation on the node data type.

The main pathfinding graph for a tile-based world is usually implicit. Rather than
delegating from a new implicit graph implementation to another implicit implemen-
tation, it is probably better to combine the two. The getConnections method compiles

LIBRARY

the connections to each neighboring tile, as well as checks for building entrances. The
implementationon the CD follows this pattern.

Performance

Both the instance graph and the world graph need to perform a hash lookup for en-
trance or exit connections. This check takes place at the lowest part of the pathfinding
loop and therefore is speed critical. For a well-balanced hash, the speed of hash lookup
approaches O(1).

The world graph also needs to look up a building instance from a node value.
In the case where nodes are numeric, this cannot be performed using a reasonably
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sized hash table. A binary search implementation is O(log2 n) in time, where n is the
number of buildings in the world. Judicial use of caching can reduce this to almost
O(1) in practice, although pathological graph structures can theoretically foil any
caching scheme and give the O(log2 n) worst case.

Both algorithms are O(1) in memory, requiring only temporary storage.

Weaknesses

This approach introduces a fair amount of complexity low down in the pathfinding
loop. The performance of the pathfinder is extremely sensitive to inefficiencies in the
graph data structure. I’ve seen a halving of execution speed by using this method. It
is not worth the extra time if the game level is small enough to create a single master
graph.

For massive worlds with instanced buildings, however, this may not be an option,
and instanced graphs are the only way to go. I would personally not consider using
instanced graphs in a production environment unless the pathfinding system was hi-
erarchical (if the graph is big enough to need instanced buildings, it is big enough to
need hierarchical pathfinding). In this case each building instance can be treated as
a single node higher up the hierarchy. When using a hierarchical pathfinding algo-
rithm, moving to instanced geometry usually produces a negligible drop in pathfind-
ing speed.

Setting Node Offsets

In order for this code to work, we need to make sure that every building instance
has a unique set of node values. The node values should not only be unique within
instances of the same building type, but also between different building types. If node
values are numeric, this can be simply accomplished by assigning the first building
instance a nodeOffset equal to the number of nodes in the main pathfinding graph.
Thereafter, subsequent building instances have offsets which differ from the previous
building by the number of nodes in the previous building’s graph.

For example, let’s say we have a pathfinding graph of 10,000 nodes and three
building instances. The first and third buildings are instances of a type with 100 nodes
in the graph. The second building has 200 nodes in its graph. Then the node offset
values for the building instances would be 10,000; 10,200; and 10,300.

4.7 OTHER IDEAS IN PATHFINDING

There are many variations on the A* algorithm that have been developed for specific
applications. It would take a book this size to describe them all. This section takes a
whirlwind tour of some of the most interesting. There are pointers to more informa-
tion, including algorithm specifications, in the references at the end of the book.
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4.7.1 OPEN GOAL PATHFINDING

In many applications there may be more than one possible node in the graph that is a
goal. If a character is pathfinding to an alarm point, for example, then any alarm will
do, and there will be multiple possible goals.

Rather than checking if a node is the goal, we need to check if the node is a goal.
This has implications for the design of the heuristic: the heuristic needs to accurately
report the distance to the nearest goal. To do that it needs to understand which goal
will eventually be chosen.

Imagine a situation where a character is trying to reach one of two alarm points
to raise the alarm. Alarm point A is near, but has been blocked by the player; alarm
point B is much further away. The heuristic gives a low score for the area of the level
close to point A, including the area that is in completely the wrong direction to get to
point B. This low score is given because the heuristic believes that point A will be the
chosen goal for these areas.

The pathfinder will search all around A, including all the areas in completely the
wrong direction to get to B, before it starts to look at routes to B. In the worst case
scenario, it could search the whole level before realizing that A is blocked.

Because of these kinds of issues, it is rare for game AI to use multiple goals at
a great distance from one another. Usually, some kind of decision making process
decides which alarm point to go to, and the pathfinding simply finds a route.

4.7.2 DYNAMIC PATHFINDING

So far we have always assumed that the pathfinder can know everything about the
game level it is working in. We also assumed that what it knows cannot change: a con-
nection will always be useable, and its cost will always be the same.

The methods we have looked at so far do not work well if the environment is
changing in unpredictable ways or if its information is otherwise incomplete.

Imagine human soldiers navigating through enemy terrain. They will have a map
and possibly satellite intelligence showing the position of enemy encampments and
defenses. Despite this information, they may come across a new site not shown on
their map. Human beings will be able to accommodate this information, changing
their route ahead to avoid detection by the newly discovered enemy squad.

We can achieve the same thing using the standard pathfinding algorithms. Each
time we find some information that doesn’t match what we expected, we can re-plan.
This new pathfinding attempt would include the new information we’ve found.

This approach works, and in many cases it is perfectly adequate. But if the game
level is constantly changing, there will be lots of re-planning. This can eventually
swamp the pathfinder; it has to start again before it finishes the previous plan, so no
progress is ever made.

Dynamic pathfinding is an interesting modification to the pathfinding algorithm
that allows the pathfinder to only recalculate the parts of the plan that may have
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changed. The dynamic version of A* is called D*. While it dramatically reduces the
time required to pathfind in an uncertain environment, it requires a lot of storage
space to keep intermediate data that might be required later.

4.7.3 OTHER KINDS OF INFORMATION REUSE

The intermediate information gained while pathfinding (such as the path estimates
and the parents of nodes in the open list) can be useful if the task changes midway
through. This is the approach used by D* and similar dynamic pathfinders.

Even if the task doesn’t change, the same information can be useful to speed up
successive pathfinding attempts. For example, if we calculate that the shortest path
from A to D is [A B C D], then we know that the shortest path from B to D will
be [B C D].

Keeping partial plans in storage can dramatically speed up future searches. If a
pathfinder comes across a pre-built section of plan, it can often use it directly and
save a lot of processing time.

Complete plans are easy to store and check. If exactly the same task is performed
a second time, the plan is ready to use. However, the chance of having exactly the
same task many times is small. More sophisticated algorithms, such as LPA* (lifelong
planning A*), keep information about small sections of a plan, which are much more
likely to be useful in a range of different pathfinding tasks.

Like dynamic pathfinding, the storage requirements of this kind of algorithm are
large. While they may be suited to small pathfinding graphs in first person shooters,
they are unlikely to be useful for large open air levels. Ironically, this is exactly the
application where their increased speed would be useful.

4.7.4 LOW MEMORY ALGORITHMS

Memory is a major issue in designing a pathfinding algorithm. There are two well-
known variations on the A* algorithm that have lower memory requirements. Ac-
cordingly, they are less open to optimizations such as dynamic pathfinding.

IDA*—Iterative Deepening A*

Iterative deepening A* has no open or closed list and doesn’t look very much like the
standard A* algorithm.

IDA* starts with a “cut-off” value, a total path length beyond which it will stop
searching. Effectively, it searches all possible paths until it finds one to the goal that is
less than this cut-off value.

The initial cut-off value is small (it is the heuristic value of the starting node,
which usually underestimates the path length), so there is unlikely to be a suitable
path that gets to the goal.
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Each possible path is considered, recursively. The total path estimate is calculated
exactly as it is in the regular A* algorithm. If the total path estimate is less than the
cut-off, then the algorithm extends the path and continues looking. Once all possi-
ble paths less than the cut-off are exhausted, the cut-off is increased slightly and the
process starts again.

The new cut-off value should be the smallest path length, greater than the previ-
ous cut-off value, that was found in the previous iteration.

Because the cut-off value keeps increasing, eventually the cut-off value will be
larger than the distance from the start to the goal, and the correct path will be found.

This algorithm requires no storage other than the list of nodes in the current plan
being tested. It is very simple to implement, taking no more than 50 lines of code.

Unfortunately, by restarting the planning over and over, it is very much less effi-
cient than regular A* and is less efficient than Dijkstra in some cases. It should prob-
ably be reserved for instances when memory is the key limiting factor (such as on
handheld devices, for example).

In some non-pathfinding situations, IDA* can be an excellent variation to use,
however. It will get its moment of glory when we look at goal-oriented action plan-
ning, a decision making technique, in Chapter 5 (see Chapter 5 for a full implemen-
tation of IDA*).

SMA*—Simplified Memory-Bounded A*

Simplified memory-bounded A* solves the storage problem by putting a fixed limit
on the size of the open list. When a new node is processed, if it has a total path length
(including heuristic) that is larger than any node in the list, it is discarded. Otherwise,
it is added, and the node already in the list with the largest path length is removed.

This approach can be far more efficient than the IDA* approach, although it can
still revisit the same node multiple times during a search. It is highly sensitive to the
heuristic used. A heuristic that is a dramatic underestimate can see useless nodes eject
important nodes from the open list.

SMA* is an example of a “lossy” search mechanism. In order to reduce search
efficiency, it throws away information, assuming that the information it discards is
not important. There is no guarantee that it is unimportant, however. In all cases
with SMA*, the final path returned has no guarantee of being the optimal path. An
early, unpromising node can be rejected from consideration, and the algorithm will
never know that by following this seemingly unpromising line, it would have found
the shortest path.

Setting a large limit on the size of the open list helps ease this problem, but defeats
the object of limiting memory usage. At the other extreme, a limit of 1 node in the
open list will see the algorithm wander toward its target, never considering any but
the most promising path.

I feel that SMA* is underrated as an alternative to A*. One of the key problems
in optimizing pathfinding is memory cache performance (see the section on memory
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issues in Chapter 2). By limiting the size of the open list to exactly the right size, SMA*
can avoid problems that A* has with cache misses and aliasing.

4.7.5 INTERRUPTIBLE PATHFINDING

Planning is a time-consuming process. For large graphs, even the best pathfinding
algorithm may take tens of milliseconds to plan a route. If the pathfinding code has
to run in the constraints imposed by rendering every 60th or 30th of a second, it is
likely to not have enough time to complete.

Pathfinding is an easily interruptible process. The A* algorithm, in the form de-
scribed in this chapter, can be stopped after any iteration and resumed later. The data
required to resume that algorithm is all contained in the open and closed lists, or their
equivalents.

Pathfinding algorithms are often written so that they can perform over the course
of several frames. The data is retained between frames to allow the algorithm to con-
tinue processing later. Because the character may move in this time, a pathfinding
algorithm such as D* or LPA* can be useful to avoid having to start over.

Chapter 9 on execution management covers interruptible algorithms in more de-
tail, along with the infrastructure code required to use them.

4.7.6 POOLING PLANNERS

Pathfinding was first used extensively in real-time strategy games. A large number of
characters need to be able to navigate autonomously around the game environment.
Consequently, there may be many pathfinding requests on the go at the same time.

We could simply complete a pathfinding task for one character before moving
onto the next. With many characters and with pathfinding split over several frames,
the queue for pathfinding time can mount.

Alternatively, we could use a separate pathfinding instance for each character in
the game. Unfortunately, the data associated with a pathfinding algorithm can be
sizeable, especially if the algorithm is experiencing a high degree of fill or if we use an
algorithm such as node array A*. Even if the data for all characters fits into memory,
it will almost certainly not fit in the cache, and performance will slow accordingly.

RTS games use a pool of pathfinders and a pathfinding queue. When a character
needs to plan a route, it places its request on a central pathfinding queue. A fixed set
of pathfinders then services these requests in order (usually first in, first out order).

The same approach has been used to provide pathfinding for NPC characters
in massively multi-player games. A server-based pathfinding pool processes requests
from characters throughout the game, on an as needed basis.

When I worked on such a system for an MMORPG with lots of AI characters, we
found that a variation on the LPA* algorithm was the best algorithm to use. Because
each pathfinder was regularly asked to plan different routes, information from previ-
ous runs could be useful in cutting down execution time. For any pathfinding request,



286 Chapter 4 Pathfinding

the chances are good that another character has had to pathfind a similar route in the
past. This is especially true when hierarchical pathfinding is being performed, since
the high-level components of the plan are common to thousands or even millions of
requests.

After a while, an algorithm that reuses data will be more efficient, despite having
to do extra work to store the data. Any form of data reuse is advantageous, including
storing partial plans or keeping information about short through-routes in the data
for each node (as in the LPA*’s case).

Despite the large amount of additional data in each pathfinder, in our tests
the memory consumption was often reduced using this method. Faster pathfind-
ing means fewer pathfinders can service the same volume of requests, which in turn
means less memory used overall.

This approach is particularly significant in MMORPGs, where the same game
level is active for days or weeks at a time (only changing when new buildings or new
content alters the pathfinding graph). In an RTS it is less significant, but worth trying
if the pathfinding code is causing performance bottlenecks.

4.8 CONTINUOUS TIME PATHFINDING

So far we’ve worked with discrete pathfinding. The only choices available to the
pathfinding system occur at specific locations and times. The pathfinding algorithm
doesn’t get to choose where to change direction. It can only move directly between
nodes in the graph. The locations of nodes are the responsibility of whatever or who-
ever creates the graph.

As we’ve seen, this is powerful enough to cope with the pathfinding tasks required
in most games. Some of the inflexibility of fixed graphs can also be mitigated by path
smoothing or by using steering behaviors to follow the path (there is a section on
movement and pathfinding with more details in Chapter 3).

There still remains a handful of scenarios in which regular pathfinding cannot be
applied directly: situations where the pathfinding task is changing rapidly, but pre-
dictably. We can view it as a graph that is changing from moment to moment. Algo-
rithms such as D* can cope with graphs that change dynamically, but they are only
efficient when the graph changes infrequently.

4.8.1 THE PROBLEM

The main situation in which I’ve come across the need for more flexible planning is
for vehicle pathfinding.

Imagine we have an AI-controlled police vehicle moving along a busy city road,
as shown in Figure 4.45. The car needs to travel as quickly as possible when pursuing
a criminal or trying to reach a designated roadblock. For the sake of our example, we
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Figure 4.45 Police car moving along a four-lane road

will assume there is not enough room to drive between two lanes of traffic; we have
to stay in one lane.

Each lane of traffic has vehicles travelling along. We will not be concerned with
how these vehicles are controlled at the moment, as long as they are moving fairly
predictably (i.e., rarely changing lanes).

The pathfinding task for the police car is to decide when to change lanes. A path
will consist of a period of time in a series of adjacent lanes. We could split this task
down by placing a node every few yards along the road. At each node, the connections
join to the next node in the same lane or to nodes in the adjacent lane.

If the other cars on the road are moving relatively quickly (such as the oncom-
ing traffic), then a reasonable node spacing will inevitably mean that the police car
misses opportunities to travel faster. Because the nodes are positioned in an arbitrary
way, the player will see the police car sometimes make death-defying swerves through
traffic (when the nodes line up just right), while at other times miss obvious oppor-
tunities to make progress (when the nodes don’t correspond to the gaps in traffic).

Shrinking the spacing of the nodes down will help. But for a fast-moving vehicle,
a very fine graph would be required, most of which is impossible to navigate because
of vehicles in the way.

Even with a static graph, we couldn’t use an algorithm such as A* to perform the
pathfinding. A* assumes that the cost of travelling between two nodes is irrespective
of the path to get to the first node. This isn’t true of our situation. If the vehicle
takes 10 seconds to reach a node, then there may be a gap in traffic, and the cost of
the corresponding connection will be small. If the vehicle reaches the same node in
12 seconds, however, the gap may be closed, and the connection is no longer available
(i.e., it has infinite cost). The A* family of algorithms cannot work directly with this
kind of graph.

We need a pathfinding algorithm that can cope with a continuous problem.
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4.8.2 THE ALGORITHM

The police car may change lanes at any point along the road; it isn’t limited to specific
locations. We can view the problem as being in two parts. First, we need to decide
where and when it might be sensible to change lanes. Second, we can work out a
route between these points.

The algorithm is also in two parts. We create a dynamic graph that contains in-
formation about position and timing for lane changes, and then we use a regular
pathfinding algorithm (i.e., A*) to arrive at a final route.

Previously, I mentioned that the A* family of algorithms is not capable of solving
this problem. To redeem their use, we first need to reinterpret the pathfinding graph
so that it no longer represents positions.

Nodes as States

So far we have assumed that each node in the pathfinding graph represents a position
in the game level or, at most, a position and an orientation. Connections similarly
represent which locations can be reached from a node.

As I stressed before, the pathfinding system doesn’t understand what its graph
represents. It is simply trying to find the best route in terms of the graph. We can
make use of this.

Rather than having nodes as locations, we interpret nodes in the graph to be states
of the road. A node has two elements: a position (made up of a lane and a distance
along the road section) and a time. A connection exists between two nodes if the end
node can be reached from the start node and if the time it takes to reach the node is
correct.

Figure 4.46 illustrates this. In the second lane there are two nodes at the same
location, C and D. Each node has a different time. If the car travelling from A stayed
in the same lane, then it would reach the end of the section in 5 seconds and so would
be at node C. If it travelled via lane 1, at node B, then it would reach the end in
7 seconds and would be at node D. Nodes C and D are shown in the figure slightly
apart, so you can see the connections. Because we are only concerned with the lane
number and the distance, in reality they represent the exact same location.

A, time=0

B, time=4

C, time=5

D, time=7

Figure 4.46 Different nodes with different times and the same position
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Using a graph of this kind means that we’ve removed the path dependent cost
length. C and D are different nodes. If the traffic is different there after 5 seconds
rather than 7 seconds, then the connections out from C and D will have different
costs. This is fine, because they are different nodes. The pathfinding algorithm no
longer has to worry about which route it came from. It can trust that the cost of a
connection from a node will always be the same.

Incorporating time into the pathfinding graph allows us to rescue A* as our
pathfinding algorithm for this problem.

The Size of the Graph

Unfortunately, we’ve only moved the problem along, not really solved it. Now there
are not only an infinite number of places where we can change lanes, but (because
of acceleration and braking) there are an infinite number of nodes for every single
place along the road. We now truly have a huge pathfinding graph, far too large to use
efficiently.

We get around this problem by dynamically generating only the subsection of the
graph that is actually relevant to the task. Figure 4.47 shows a simple case of the car
dodging sideways through a gap in the oncoming traffic.

There are any number of ways to accomplish this. We can drive at full speed into
the center lane as soon as possible and immediately out to the far side. We could
brake, wait until the gap comes closer, and then pull into the gap. We could brake and
wait for all the cars to go by. The options are endless.

We constrain the problem by using a heuristic. We make two assumptions: (1) if
the car is to change lanes, it will do so as soon as possible; and (2) it will move in its
current lane to its next lane change as quickly as possible.

The first assumption is sound. There are no situations in which changing lanes
earlier rather than later will give the car less flexibility. The opposite is not true.
Changing lanes at the last possible moment will often mean that opportunities are
missed.

Goal

Figure 4.47 Navigating a gap through oncoming traffic
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Goal

Lane 1

Lane 2

Lane 3

Lane 4

Figure 4.48 When top speed isn’t a good idea

The second assumption helps make sure the car is moving at top speed as much
as possible. Unlike the first assumption, this may not be the best strategy. Figure 4.48
shows an extreme example.

Lane 4 is empty, but lanes 2 and 3 are both very busy. If the car streaks ahead to
the front gap in lane 2, then it will not be able to cross into lane 3 and from there into
lane 4. If it breaks, however, and waits until the second gap in lane 2 is aligned with
the gap in lane 3, then it can streak through both gaps and onto the empty highway.
In this case it pays to go slower initially.

In practice, such obvious pathological examples are rare. Drivers in a rush to get
somewhere are quite likely to go as fast as they possibly can. Although it is not opti-
mal, using this assumption produces AI drivers that behave plausibly: they don’t look
like they are obviously missing simple opportunities.

How the Graph Is Created

The graph is created as is required by the pathfinding algorithm. Initially, the graph
has only a single node in it: the current location of the AI police car, with the current
time.

When the pathfinder asks for outgoing connections from the current node, the
graph examines the cars on the road and returns four sets of connections.

First, it returns a connection to one node for each adjacent lane that is vacant at
this point. We’ll call these nodes the lane change nodes. Their connection cost is the
time required to change lanes at the current speed, and the destination nodes will
have a position and a time value reflecting the lane change.

Second, the graph adds a connection to a node immediately behind the next car in
the current lane, assuming that it travels as fast as possible and breaks at the very last
minute to match the car’s speed (i.e., it doesn’t keep travelling at top speed and slam
into the back of the car). The arrive and velocity match behaviors from Chapter 3 can
calculate this kind of maneuver.
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Lane 1

Lane 2

Figure 4.49 The placement of nodes within the same lane

We’ll call this node the boundary node. If the AI cannot possibly avoid the colli-
sion (i.e., it can’t brake fast enough), then the boundary node is omitted; we don’t let
the pathfinder even consider the possibility of crashing.

Next, the graph returns connections to nodes along the current lane immediately
after the AI passes each car in each adjacent lane, up until it reaches the next car in
the current lane. For calculating these nodes we assume that the car travels in the
same way as we calculated for the boundary node; i.e., as fast as possible, making sure
it doesn’t crash into the car in front. We’ll call these nodes safe opportunity nodes,
because they represent the opportunity for the AI to change lanes, while making sure
to avoid a collision with the car in front. Figure 4.49 shows this situation.

Because it is difficult to show time passing on a 2D graphic, I’ve indicated the
position of each car in 1-second intervals as a black spot. Notice that the nodes in
the current lane aren’t placed immediately after the current position of each car, but
immediately after the position of each car when the AI would reach it.

Finally, the graph returns a set of unsafe opportunity nodes. These are exactly the
same as the safe opportunity nodes, but are calculated assuming that the car always
travels at top speed and doesn’t avoid slamming into the back of a car in front. These
are useful because the pathfinder may choose to change lanes. There is no point in
slowing down to avoid hitting a car in front if you intend to swerve around it into a
different lane.

Notice that all four groups of connections are returned in the same set. They are
all the connections outgoing from the current position of the police car; there is no
distinction in the pathfinding algorithm. The connections and the nodes that they
point to are created specially on this request.

The connections include a cost value. This is usually just a measure of time be-
cause we’re trying to move as quickly as possible. It would also be possible to include
additional factors in the cost. A police driver might factor in how close each maneuver
comes to colliding with an innocent motorist. Particularly close swerves would then
only be used if they saved a lot of time.

The nodes pointed to by each connection include both position information and
time information.

As we’ve seen, we couldn’t hope to pre-create all nodes and connections, so they
are built from scratch when the outgoing connections are requested from the graph.

On successive iterations of the pathfinding algorithm, the graph will be called
again with a new start node. Since this node includes both a position and a time, we
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can predict where the cars on the road will be and repeat the process of generating
connections.

Which Pathfinder

Two routes through the graph may end up at an identical node (i.e., one with the
same position and timing information). In this case the connections leaving the
node should be identical in every respect. In practice, this happens very rarely; the
pathfinding graph tends to resemble a tree rather than a connected network.

Because it is rare to revisit a node that has already been visited, there is little point
in storing a large number of nodes for future reference. Combined with the large size
of the resulting graphs, a memory-saving variant of A* is the best choice. IDA* is
unsuitable because retrieving the outgoing connections from a node is a very time-
consuming process. IDA* re-plans through the same set of nodes at each iteration,
incurring a significant performance hit. This could be mitigated by caching the con-
nections from each node, but that goes against the memory-saving ethos of IDA*.

In the experimentation I’ve done, SMA* seems to be an excellent choice for
pathfinding in this kind of continuous, dynamic task.

The remainder of this section is concerned with the dynamic graph algorithm
only. The particular choice of pathfinder responsible for the planning is independent
of the way the graph is implemented.

4.8.3 IMPLEMENTATION NOTES

It is convenient to store driving actions in the connection data structure. When the
final path is returned from the pathfinder, the driving AI will need to execute each
maneuver. Each connection may have come from one of the four different categories,
each of which involves a particular sequence of steering, acceleration, or breaking.
There is no point in having to calculate this sequence again when it was calculated in
the pathfinding graph. By storing it we can feed the action directly into the code that
moves the car.

4.8.4 PERFORMANCE

The algorithm is O(1) in memory, requiring only temporary storage. It is O(n) in
time, where n is the number of vehicles in adjacent lanes, closer than the nearest
vehicle in the current lane. The performance of the algorithm may be hampered by
acquiring the data on adjacent cars. Depending on the data structure that stores the
traffic pattern, this can be itself an O(log2 m) algorithm, where m is the number of
cars in the lane (if it does a binary search for nearby cars, for example). By caching
the results of the search each time, the practical performance can be brought back
to O(n).
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This algorithm is called at the lowest part of the pathfinding loop and therefore is
highly speed critical.

4.8.5 WEAKNESSES

Continuous pathfinding is a fairly complex algorithm to implement, and it can be
extremely difficult to debug the placement of dynamic nodes. I personally suffered
building my first continuous planning system, and I watched my colleagues have the
same difficulties. Hopefully, the code on the CD will act as a springboard for your
own implementation.

Even when working properly, the algorithm is not fast, even in comparison with
other pathfinders. It should probably be used for only small sections of planning. In
the police driving game which I’ve based this section on, we used continuous plan-
ning to plan a route for only the next 100 yards or so. The remainder of the route was
planned only on an intersection by intersection. The pathfinding system that drove
the car was hierarchical, with the continuous planner being the lowest level of the
hierarchy.

4.9 MOVEMENT PLANNING

In the section on world representations, we looked briefly at situations where the
orientation as well as the position of a character was used in planning. This helps
to generate sensible paths for characters that cannot easily turn on the spot. In many
cases pathfinding is used at a high level and doesn’t need to take account of these kinds
of constraints; they will be handled by the steering behaviors. Increasingly, however,
characters are highly constrained, and the steering behaviors discussed in the next
chapter cannot produce sensible results.

The first genre of game to show this inadequacy was urban driving. Vehicles such
as cars or lorries need maneuver room and can often have lots of constraints specific
to their physical capabilities (a car, for example, may need to decelerate before it can
turn to avoid skidding).

Even non-driving game genres, in particular first and third person action games,
are now being set in highly constrained environments where steering alone cannot
succeed. Movement planning is a technique for using the algorithms in this chapter
to produce sensible character steering.

4.9.1 ANIMATIONS

Most characters in a game have a range of animations that are used when the character
is moving. A character may have a walk animation, a run animation, and a sprint ani-
mation, for example. Likewise, there are animations for turning, for example, turning
while walking, turning on the spot, and turning while crouched.
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Rotation

Stand still Velocity

Run

Walk

Creep

Shuffle turn

Turn on the spot

Figure 4.50 Velocity diagram for allowed animations

Each of these animations can be used over a range of different movement scenar-
ios. A walk animation, for example, needs to have the feet sticking to the ground and
not sliding. So the character must move at a particular rate in order for the anima-
tion to look right. The speed of animation can be increased to accommodate slightly
faster motion, but there are limits. Eventually, the character will look speeded up and
unbelievable.

It is possible to visualize animations as being applicable to a range of different
movement speeds, both linear movement and angular movement. Figure 4.50 shows
which animations can be used for different linear and angular velocities of a character.

Notice that not all the space of possible velocities has an associated animation.
These are velocities that the character should not use for more than a moment.

In addition, it may not make sense to stop an animation before it has been com-
pleted. Most animation sets define transitions between walking and running and
standing and crouching, for example. But a walk cycle can’t turn into a run cycle until
it reaches the right point for the transition to occur. This means that each movement
has a natural length in the game world. Again, we can show this visually on a diagram.
In this case, however, it is position and orientation shown, rather than velocity and
rotation.

Notice in Figure 4.51 that the range over which the animations are believable is
much smaller than for velocities.

There are some efforts being applied to breaking out of these constraints. Proce-
dural animation is being applied to generating sensible animations for any interme-
diate movement required. It remains an open problem, however, and in the majority
of cases the results are not optimal, and developers are sticking to a modest portfolio
of possible animations.
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Shuffle turn

Turn on the spot

Figure 4.51 Position diagram for allowed animations

4.9.2 MOVEMENT PLANNING

In a highly constrained environment, the particular animations chosen may impact
highly on whether the character can maneuver correctly. A character that needs to
move exactly 2 meters forward before doing a 30◦ right turn may not be able to use
an animation that sends them 1.5 meters forward and rotates them by 45◦.

To achieve a particular large-scale maneuver, the particular sequence of anima-
tions may be significant. In this case movement planning is required: planning a se-
quence of allowed maneuvers that lead to an overall state.

Movement planning isn’t used in current-generation games, so I’m going to be
brief discussing it. Several developers have experimented with it, however, and I ex-
pect to see it used in regular production over the next 5 years or so.

The Planning Graph

Just like pathfinding, movement planning uses a graph representation. In this case
each node of the graph represents both the position and the state of the character
at that point. A node may include the character’s position vector, its velocity vector,
and the set of allowable animations that can follow. A running character, for example,
may have high velocity and be capable of only carrying out the “run,” “transition run
to walk,” or “collide with object” animations.

Connections in the graph represent valid animations; they lead to nodes repre-
senting the state of the character after the animation is complete. A run animation,
for example, may lead to the character being 2 meters further forward and travelling
at the same velocity.

With the graph defined in this way, a heuristic can be used that determines how
close a character’s state is to the goal. If the goal is to maneuver through a room full
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of exposed electrical wires, then the goal may be the door on the other side, and the
heuristic may be based on distance alone. If the goal is to reach the edge of a platform
travelling fast enough to jump a large gap, then the goal may include both position
and velocity components.

Planning

With the graph defined in this way, the regular A* algorithm can be used to plan
a route. The route returned consists of a set of animations that, when executed in
order, will move a character to its goal.

Care needs to be taken to define the goal in a broad way. If an exact position and
orientation are given as a goal, then there may be no sequence of animations that
exactly reach it, and the planning algorithm will fail (after considering every possible
combination of animations, at a great cost of time). Rather the goal needs to make
sure the character is “near enough”; a range of states is allowable.

Infinite Graphs

Recall that an animation can be used to travel a range of distances and through a range
of velocities. Each possible distance and velocity would be a different state. So from
one state the character may transition to any one of many similar states, depending
on the speed they play the following animation. If the velocities and positions are
continuous (represented by real numbers), then there may be an infinite number of
possible connections.

A* can be adapted to apply to infinite graphs. At each iteration of A*, all the
successor nodes are examined using the heuristic function and added to the open
list. To avoid this taking infinitely long, only the best successor nodes are returned
for addition to the open list. This is often done by returning a few trial successors and
then rating each heuristically. The algorithm can then try to generate a few more trials
based on the best of the previous bunch, and so on until it is confident that the best
successors have been provided. Although this technique is used in several non-games
domains, it is slow and highly sensitive to the quality of the heuristic function.

To avoid the headaches involved in adapting A* to operate on infinite graphs, it
is common to divide up the possible range into a small set of discrete values. If an
animation can be played at between 15 and 30 frames per second (fps), then there
may be four different possible values exposed to the planner: 15, 20, 25, and 30 fps.

Another alternative is to use a heuristic, as we saw in the previous section on
continuous pathfinding. This allows us to dynamically generate a small subset of the
pathfinding graph based on heuristics about what sections of the graph might be
useful.
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Implementation Issues

Even limiting the number of connections in this way, there are still a huge number of
possible connections in the graph, and the graph tends to be very large indeed. The
optimized versions of A* require us to know in advance the number of nodes in the
graph. In movement planning the graph is usually generated on the fly: the successor
nodes are generated by applying allowable animations to the current state. A basic,
two list A* is therefore the most applicable for movement planning.

Typically, movement planning is only used for small sequences of movement. In
the same way that the steering behavior of a character is guided by the large-scale
pathfinding plan, movement planning can be used to fill in detail for just the next
part of the overall route. If the plan states to move through a room with lots of live
electrical wires, the movement planner may generate a sequence of animations to get
to the other side only. It is unlikely to be used to generate a complete path through a
level, because of the size of the graph involved and the planning time it would require.

4.9.3 EXAMPLE

As an example consider a walking bipedal character. The character has the following
animations: walk, stand to walk, walk to stand, sidestep, and turn on the spot. Each
animation starts or ends from one of two positions: mid-walk or standing still. The
animation can be represented as the state machine in Figure 4.52, with the positions
as states and the transitions as animations.

The animations can apply to the range of movement distances as shown on the
graph in Figure 4.53.

The character is moving through the lava-filled room shown in Figure 4.54. There
are many dangerous areas where the character should not walk. The character needs
to work out a valid sequence of movements from its initial position to the opposite
doorway. The goal is shown as a range of positions with no orientation. We don’t care
what speed the character is travelling, which way it is facing, or what its animation
state is when it reaches the goal.

Walk

Mid-walk Standing
Walk to stand

Stand to walk

Sidestep

Turn on the spot

Figure 4.52 Example of an animation state machine
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Rotation

Stand still
Position

Walk
Sidestep

Turn on the spot

Figure 4.53 Example of position ranges for animations

Goal

Lava

StartWalkway

Figure 4.54 The dangerous room

Running an A*-style algorithm, we get the route generated in Figure 4.55. It can
be seen that this avoids the dangers correctly using a combination of walking, turning,
and sidestepping.

4.9.4 FOOTFALLS

The latest research extends the motion planning idea to plan footfalls: a series of an-
imations that can be combined so that the feet of a character only touch the ground
at the correct positions. This is useful for characters walking up stairs, maneuvering
across platforms, or avoiding stepping on twigs.

This has been active research for animation controllers, independent of pathfind-
ing. The most recent third person games lock footfalls correctly to stairs, for example.
At the time of writing, the current state of the art for production games uses purely
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Goal

Walk
Sidestep

Walk to stop

Walk

Walk

Walk

Walk to stop

Turn on the spot

Stop to walk

Sidestep
Stop to walk

Figure 4.55 The example path through the dangerous room

local constraints to achieve this: the character’s footfall is examined and moved to
the nearest suitable location, causing adjustments in the rest of the animation if re-
quired. This uses inverse kinematics algorithms for the animation that have little to
do with AI.

Footfall planning, on the other hand, looks ahead, using a series of animations to
place footfalls in the correct locations to achieve a distant goal.

The graphs associated with this level of movement planning are huge, and general
applications in games seem to be some way off. It may be possible to use footfall
planning as a third level of pathfinding to generate just the next couple of animations
to play. I’m not aware of anyone doing this yet, however.
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5
DECISION MAKING

sk a gamer about game AI, and they think about decision making: the ability
A of a character to decide what to do. Carrying out that decision (movement,
animation, and the like) is taken for granted.

In reality, decision making is typically a small part of the effort needed to build
great game AI. Most games use very simple decision making systems: state machines
and decision trees. Rule-based systems are rarer, but important.

In recent years a lot of interest has been shown in more sophisticated decision
making tools, such as fuzzy logic and neural networks. However, developers haven’t
been in a rush to embrace these technologies. It can be hard to get them working
right.

Decision making is the middle component of our AI model (Figure 5.1), but de-
spite this chapter’s name, we will also cover a lot of techniques used in tactical and
strategic AI. All the techniques here are applicable to both intra-character and inter-
character decision making.

This chapter will look at a wide range of decision making tools, from very simple
mechanisms that can be implemented in minutes to comprehensive decision making
tools that require more sophistication, but can support richer behaviors to complete
programming languages embedded in the game. At the end of the chapter we’ll look
at the output of decision making and how to act on it.

5.1 OVERVIEW OF DECISION MAKING

Although there are many different decision making techniques, we can look at them
all as acting in the same way.

301
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Figure 5.1 The AI model

The character processes a set of information that it uses to generate an action
that it wants to carry out. The input to the decision making system is the knowledge
that a character possesses, and the output is an action request. The knowledge can
be further broken down into external and internal knowledge. External knowledge is
the information that a character knows about the game environment around them:
the position of other characters, the layout of the level, whether a switch has been
thrown, the direction that a noise is coming from, and so on. Internal knowledge is
information about the character’s internal state or thought processes: its health, its
ultimate goals, what it was doing a couple of seconds ago, and so on.

Typically, the same external knowledge can drive any of the algorithms in this
chapter, whereas the algorithms themselves control what kinds of internal knowledge
can be used (although they don’t constrain what that knowledge represents, in game
terms).

Actions, correspondingly, can have two components: they can either request an
action that will change the external state of the character (such as throwing a switch,
firing a weapon, moving into a room) or actions that only affect the internal state (see
Figure 5.2). Changes to the internal state are less obvious in game applications, but are
significant in some decision making algorithms. They might correspond to changing
the character’s opinion of the player, changing its emotional state, or changing its
ultimate goal. Again, algorithms will typically have the internal actions as part of
their makeup, while external actions can be generated in a form that is identical for
each algorithm.

The format and quantity of the knowledge depends on the requirements of the
game. Knowledge representation is intrinsically linked with most decision making
algorithms. It is difficult to be completely general with knowledge representation,
although we will consider some widely applicable mechanisms in Chapter 11.
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Internal knowledge

Decision maker

Internal changes

External changesExternal knowledge

Action
request

Figure 5.2 Decision making schematic

Actions, on the other hand, can be treated more consistently. We’ll return to the
problem of representing and executing actions at the end of this chapter.

5.2 DECISION TREES

Decision trees are fast, easily implemented, and simple to understand. They are the
simplest decision making technique that we’ll look at, although extensions to the basic
algorithm can make them quite sophisticated. They are used extensively to control
characters and for other in-game decision making, such as animation control.

They have the advantage of being very modular and easy to create. I’ve seen them
used for everything from animation to complex strategic and tactical AI.

Although it is rare in current games, decision trees can also be learned, and that
learning is relatively fast (compared to approaches such as neural networks or genetic
algorithms). We’ll come back to this topic later in Chapter 7.

5.2.1 THE PROBLEM

Given a set of knowledge, we need to generate a corresponding action from a set of
possible actions.

The mapping between input and output may be quite complex. The same action
will be used for many different sets of input, but any small change in one input value
might make the difference between an action being sensible and an action appearing
stupid.

We need a method that can easily group lots of inputs together under one action,
while allowing the input values that are significant to control the output.
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5.2.2 THE ALGORITHM

A decision tree is made up of connected decision points. The tree has a starting deci-
sion, its root. For each decision, starting from the root, one of a set of ongoing options
is chosen.

Each choice is made based on the character’s knowledge. Because decision trees
are often used as simple and fast decision mechanisms, characters usually refer di-
rectly to the global game state rather than have a representation of what they person-
ally know.

The algorithm continues along the tree, making choices at each decision node un-
til the decision process has no more decisions to consider. At the each leaf of the tree
an action is attached. When the decision algorithm arrives at an action, that action is
carried out immediately.

Most decision trees make very simple decisions, typically with only two possible
responses. In Figure 5.3 the decisions relate to the position of an enemy.

Notice that one action can be placed at the end of multiple branches. In Figure 5.3
the character will choose to attack unless it can’t see the enemy or unless it is flanked.
The attack action is present at two leaves.

Figure 5.4 shows the same decision tree with a decision having been made. The
path taken by the algorithm is highlighted, showing the arrival at a single action,
which may then be executed by the character.

Is enemy visible?

Is enemy <10 m away?

Yes

Yes

Yes

Is enemy audible?

YesNo

No

No

Creep

Attack

Attack

Move

Is enemy
on flank?

Figure 5.3 A decision tree
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Is enemy visible?

Is enemy <10 m away?

Yes

Yes

Yes

Is enemy audible?

YesNo

No

No

Creep

Attack

Attack

Move

Is enemy
on flank?

Figure 5.4 The decision tree with a decision made

Decisions

Decisions in a tree are simple. They typically check a single value and don’t contain
any Boolean logic (i.e., they don’t join tests together with AND or OR).

Depending on the implementation and the data types of the values stored in the
character’s knowledge, different kinds of tests may be possible. A representative set is
given in the following table, based on a game engine I’ve worked on.

Data Type Decisions

Boolean Value is true

Enumeration (i.e., a set of values, Matches one of a given set of values

only one of which might be

allowable)

Numeric value (either integer or Value is within a given range

floating point)

3D Vector Vector has a length within a given range

(this can be used to check the distance

between the character and an enemy,

for example)

In addition to primitive types, in object-oriented game engines it is common to
allow the decision tree to access methods of instances. This allows the decision tree to
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delegate more complex processing to optimized and compiled code, while still apply-
ing the simple decisions in the previous table to the return value.

Combinations of Decisions

The decision tree is efficient because the decisions are typically very simple. Each
decision only makes one test. When Boolean combinations of tests are required, the
tree structure represents this.

To AND two decisions together, they are placed in series in the tree. The first part
of Figure 5.5 illustrates a tree with two decisions, both of which need to be true in
order for action 2 to be carried out. This tree has the logic “if A AND B, then carry
out action 1, otherwise carry out action 2.”

To OR two decisions together, we also use the decisions in series, but with the two
actions swapped over from the AND example above. The second part of Figure 5.5
illustrates this. If either test returns true, then action 1 is carried out. Only if neither
test passes is action 2 run. This tree has the logic “if A OR B, then carry out action 1,
otherwise carry out action 2.”

This ability for simple decision trees to build up any logical combination of tests
is used in other decision making systems. We’ll see it again in the Rete algorithm in
Section 5.7 on rule-based systems.

Yes

Yes

If A AND B then action 1, otherwise action 2

No

No

A

B

2

2

1

Yes

Yes

If A OR B then action 1, otherwise action 2

No

No

A

B

1

2

1

Figure 5.5 Trees representing AND and OR
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Figure 5.6 Wide decision tree with decision

Decision Complexity

Because decisions are built into a tree, the number of decisions that need to be con-
sidered is usually much smaller than the number of decisions in the tree. Figure 5.6
shows a decision tree with 15 different decisions and 8 possible actions. After the
algorithm is run, we see that only four decisions are ever considered.

Decision trees are relatively simple to build and can be built in stages. A simple
tree can be implemented initially, and then as the AI is tested in the game, additional
decisions can be added to trap special cases or add new behaviors.

Branching

In the examples so far, and in most of the rest of the chapter, decisions will choose
between two options. This is called a binary decision tree. There is no reason why you
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Green action

Is black? Is red? Is yellow?

No No No

Yes

Yes
YesBlack action

Red action

Yellow action

Figure 5.7 Deep binary decision tree

Green action

Which alert
state?

Black
Black action

Red action

Yellow action

Red
Yellow

Green

Figure 5.8 Flat decision tree with four branches

can’t build your decision tree so that decisions can have any number of options. You
can also have different decisions with different numbers of branches.

Imagine having a guard character in a military facility. The guard needs to make
a decision based on the current alert status of the base. This alert status might be one
of a set of states: “green,” “yellow,” “red,” or “black,” for example. Using the simple
binary decision making tree described above, we’d have to build the tree in Figure 5.7
to make a decision.

The same value (the alert state) may be checked three times. This won’t be as
much of a problem if we order the checks so that the most likely states come first.
Even so, the decision tree may have to do the same work several times to make a
decision.

We could allow our decision tree to have several branches at each decision point.
With four branches, the same decision tree now looks like Figure 5.8.

This structure is flatter, only ever requires one decision, and is obviously more
efficient.
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Despite the obvious advantages, it is more common to see decision trees using
only binary decisions. First, this is because the underlying code for multiple branches
usually simplifies down to a series of binary tests (if statements in C/C++, for exam-
ple). Although the decision tree is simpler with multiple branches, the implementa-
tion speed is usually not significantly different.

Second, decision trees are typically binary because they can be more easily opti-
mized. In addition, some learning algorithms that work with decision trees require
them to be binary.

You can do anything with a binary tree that you can do with a more complex
tree, so it has become traditional to stick with two branches per decision. Most, al-
though not all, of the decision tree systems I’ve worked with have used binary de-
cisions. I think it is a matter of implementation preference. Do you want the extra
programming work and reduction in flexibility for the sake of a marginal speed up?

5.2.3 PSEUDO-CODE

A decision tree takes as input a tree definition, consisting of decision tree nodes. De-
cision tree nodes might be decisions or actions. In an object-oriented language, these
may be sub-classes of the tree node class. The base class specifies a method used to
perform the decision tree algorithm. It is not defined in the base class (i.e., it is a
pure-virtual function):

1 class DecisionTreeNode:
2 def makeDecision() # Recursively walks through the tree

Actions simply contain details of the action to run if the tree arrives there. Their
structure depends on the action information needed by the game (see Section 5.10
later in the chapter on the structure of actions). Their makeDecision function simply
returns the action (we’ll see how this is used in a moment):

1 class Action:
2 def makeDecision():
3 return this

Decisions have the following format:

1 class Decision (DecisionTreeNode):
2 trueNode
3 falseNode
4 testValue
5 def getBranch() # carries out the test
6 def makeDecision() # Recursively walks through the tree
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where the trueNode and falseNode members are pointers to other nodes in the tree,
and the testValue member points to the piece of data in the character’s knowledge
which will form the basis of the test. The getBranch function carries out the test and
returns which branch to follow. Often, there are different forms of the decision node
structure for different types of tests (i.e., for different data types). For example, a de-
cision for floating point values might look like the following:

1 class FloatDecision (Decision):
2 minValue
3 maxValue
4

5 def getBranch():
6 if maxValue >= testValue >= minValue:
7 return trueNode
8 else:
9 return falseNode

A decision tree can be referred to by its root node: the first decision it makes.
A decision tree with no decisions might have an action as its root. This can be useful
for prototyping a character’s AI, by forcing a particular action to always be returned
from its decision tree.

The decision tree algorithm is recursively performed by the makeDecision
method. It can be trivially expressed as:

1 class Decision:
2

3 def makeDecision():
4

5 # Make the decision and recurse based on the result
6 branch = getBranch()
7 return branch.makeDecision()

The makeDecision function is called initially on the root node of the decision tree.

Multiple Branches

We can implement a decision that supports multiple branches almost as simply. Its
general form is

1 class MultiDecision (DecisionTreeNode):
2 daughterNodes
3 testValue
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4

5 # Carries out the test and returns the node to follow
6 def getBranch():
7 return daughterNodes[testValue]
8

9 # Recursively runs the algorithm, exactly as before
10 def makeDecision():
11 branch = getBranch()
12 return branch.makeDecision()

where daughterNodes is a mapping between possible values of the testValue and
branches of the tree. This can be implemented as a hash table, or for a numeric test
value it might be an array of daughter nodes that can be searched using a binary
search algorithm.

5.2.4 ON THE CD

To see the decision tree in action, run the Decision Tree program on the CD. It is a

PROGRAM

command line program designed to let you see behind the scenes of a decision making
process.

Each decision in the tree is presented to you as a true or false option, so you are
making the decision, rather than the software. The output clearly shows how each
decision is considered in turn until a final output action is available.

5.2.5 KNOWLEDGE REPRESENTATION

Decision trees work directly with primitive data types. Decisions can be based on
integers, floating point numbers, Booleans, or any other kind of game-specific data.
One of the benefits of decision trees is that they require no translation of knowledge
from the format used by the rest of the game.

Correspondingly, decision trees are most commonly implemented so they access
the state of the game directly. If a decision tree needs to know how far the player is
from an enemy, then it will most likely access the player and enemy’s position directly.

This lack of translation can cause difficult-to-find bugs. If a decision in the tree is
very rarely used, then it may not be obvious if it is broken. During development, the
structure of the game state regularly changes, and this can break decisions that rely on
a particular structure or implementation. A decision might detect, for example, which
direction a security camera is pointing. If the underlying implementation changes
from a simple angle to a full quaternion to represent the camera rotation, then the
decision will break.

To avoid this situation, some developers choose to insulate all access to the state
of the game. The techniques described in Chapter 10 on world interfacing provide
this level of protection.
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5.2.6 IMPLEMENTATION NODES

The function above relies on being able to tell whether a node is an action or a deci-
sion and being able to call the test function on the decision and have it carry out the
correct test logic (i.e., in object-oriented programming terms, the test function must
be polymorphic).

Both are simple to implement using object-oriented languages with run time type
information (i.e., we can detect which class an instance belongs to at run time).

Most games written in C++ switch off RTTI (run time type information) for
speed reasons. In this case the “is instance of” test must be made using identifica-
tion codes embedded into each class or another manual method.

Similarly, many developers avoid using virtual functions (the C++ implementa-
tion of polymorphism). In this case some manual mechanism is needed to detect
which kind of decision is needed and to call the appropriate test code.

The implementation on the CD demonstrates both these techniques. It uses nei-

LIBRARY

ther RTTI nor virtual functions, but relies on a numeric code embedded in each class.
The implementation also stores nodes in a single block of memory. This avoids

problems with different nodes being stored in different places, which causes memory
cache problems and slower execution.

5.2.7 PERFORMANCE OF DECISION TREES

You can see from the pseudo-code that the algorithm is very simple. It takes no mem-
ory, and its performance is linear with the number of nodes visited.

If we assume that each decision takes a constant amount of time and that the
tree is balanced (see the next section for more details), then the performance of the
algorithm is O(log2 n), where n is the number of decision nodes in the tree.

It is very common for the decisions to take constant time. The example decisions
I gave in the table at the start of the section are all constant time processes. There are
some decisions that take more time, however. A decision that checks if any enemy is
visible, for example, may involve complex ray casting sight checks through the level
geometry. If this decision is placed in a decision tree, then the execution time of the
decision tree will be swamped by the execution time of this one decision.

5.2.8 BALANCING THE TREE

Decision trees are intended to be fast to run and are fastest when the tree is balanced.
A balanced tree has about the same number of leaves on each branch. Compare the
decision trees in Figure 5.9. The second is balanced (same number of behaviors in
each branch), while the first is extremely unbalanced. Both have 8 behaviors and 7 de-
cisions.
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Figure 5.9 Balanced and unbalanced trees

To get to behavior H, the first tree needs 8 decisions, whereas the second tree only
needs 3. In fact, if all behaviors were equally likely, then the first tree would need an
average of nearly 4 1

2 decisions, whereas the second tree would always only need 3.
At its worst, with a severely unbalanced tree, the decision tree algorithm goes

from being O(log2 n) to O(n). Clearly, we’d like to make sure we stay as balanced as
possible, with the same number of leaves resulting from each decision.

Although a balanced tree is theoretically optimal, in practice the fastest tree struc-
ture is slightly more complex.

In reality, the different results of a decision are not equally likely. Consider the ex-
ample trees in Figure 5.9 again. If we were likely to end up in behavior A the majority
of the time, then the first tree would be more efficient: it gets to A in one step. The
second tree takes 3 decisions to arrive at A.

Not all decisions are equal. A decision that is very time-consuming to run (such
as one that searches for the distance to the nearest enemy) should only be taken if
absolutely necessary. Having this further down the tree, even at the expense of having
an unbalanced tree, is a good idea.

Structuring the tree for maximum performance is a black art. Since decision trees
are very fast anyway, it is rarely important to squeeze out every ounce of speed. Use
these general guidelines: balance the tree, but make commonly used branches shorter
than rarely used ones and put the most expensive decisions late.
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5.2.9 BEYOND THE TREE

So far we have kept a strict branching pattern for our tree. We can extend the tree to
allow multiple branches to merge into a new decision. Figure 5.10 shows an example
of this.

The algorithm we developed earlier will support this kind of tree without modifi-
cation. It is simply a matter of assigning the same decision to more than one trueNode
or falseNode in the tree. It can then be reached in more than one way. This is just the
same as assigning a single action to more than one leaf.

You need to take care not to introduce possible loops in the tree. In Figure 5.11,
the third decision in the tree has a falseNode earlier in the tree. The decision process
can loop around forever, never finding a leaf.

Strictly, the valid decision structure is called a directed acyclic graph (DAG). In
the context of this algorithm, it still is always called a decision tree.

Figure 5.10 Merging branches

Figure 5.11 Pathological tree
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5.2.10 RANDOM DECISION TREES

Often, we don’t want the choice of behavior to be completely predictable. Some ele-
ment of random behavior choice adds unpredictability, interest, and variation.

It is simple to add a decision into the decision tree that has a random element.
We could generate a random number, for example, and choose a branch based on its
value.

Because decision trees are intended to run frequently, reacting to the immediate
state of the world, random decisions cause problems. Imagine running the tree in
Figure 5.12 for every frame.

As long as the agent isn’t under attack, the stand still and patrol behaviors will be
chosen at random. This choice is made at every frame, so the character will appear to
vacillate between standing and moving. This is likely to appear odd and unacceptable
to the player.

To introduce random choices in the decision tree, the decision making process
needs to become stable: if there is no relevant change in world state, there should be
no change in decision. Note that this isn’t the same as saying the agent should make
the same decision every time for a particular world state. Faced with the same state
at very different times, it can make different decisions, but at consecutive frames it
should stay with one decision.

In the previous tree, every time the agent is not under attack, it can stand still or
patrol. We don’t care which it does, but once it has chosen, it should continue doing
that.

This is achieved by allowing the random decision to keep track of what it did last
time. When the decision is first considered, a choice is made at random, and that
choice is stored. The next time the decision is considered, there is no randomness,
and the previous choice is automatically taken.

Defend

Patrol

Stand still

Yes
Under
attack?

No
H

TFlip a
coin

Figure 5.12 Random tree



316 Chapter 5 Decision Making

If the decision tree is run again, and the same decision is not considered, it means
that some other decision went a different way—something in the world must have
changed. In this case we need to get rid of the choice we made.

Pseudo-Code

This is the pseudo-code for a random binary decision:

1 struct RandomDecision (Decision):
2 lastFrame = -1
3 lastDecision = false
4

5 def test():
6 # check if our stored decision is too old
7 if frame() > lastFrame + 1:
8 # Make a new decision and store it
9 lastDecision = randomBoolean()

10

11 # Either way we need to update the frame value
12 lastFrame = frame()
13

14 # We return the stored value
15 return lastDecision

To avoid having to go through each unused decision and remove its previous
value, we store the frame number at which a stored decision is made. If the test
method is called, and the previous stored value was stored on the previous frame,
we use it. If it was stored prior to that, then we create a new value.

This code relies on two functions:

� frame() returns the number of the current frame. This should increment by one
each frame. If the decision tree isn’t called every frame, then frame should be
replaced by a function that increments each time the decision tree is called.

� randomBoolean() returns a random Boolean value, either true or false.

This algorithm for a random decision can be used with the decision tree algorithm
provided above.

Timing Out

If the agent continues to do the same thing forever, it may look strange. The decision
tree in our example above, for example, could leave the agent standing still forever, as
long as we never attack.
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Random decisions that are stored can be set with time-out information, so the
agent changes behavior occasionally.

The pseudo-code for the decision now looks like the following:

1 struct RandomDecisionWithTimeOut (Decision):
2 lastFrame = -1
3 firstFrame = -1
4 lastDecision = false
5

6 timeOut = 1000 # Time out after this number of frames
7

8 def test():
9 # check if our stored decision is too old, or if

10 # we’ve timed out
11 if frame() > lastFrame + 1 or
12 frame() > firstFrame + timeOut:
13

14 # Make a new decision and store it
15 lastDecision = randomBoolean()
16

17 # Set when we made the decision
18 firstFrame = frame()
19

20 # Either way we need to update the frame value
21 lastFrame = frame()
22

23 # We return the stored value
24 return lastDecision

Again, this decision structure can be used directly with the previous decision tree
algorithm.

There can be any number of more sophisticated timing schemes. For example,
make the stop time random so that there is extra variation, or alternate behaviors
when they time out so that the agent doesn’t happen to stand still multiple times in a
row. Use your imagination.

On the CD

The Random Decision Tree program on the CD is a modified version of the previous
Decision Tree program. It replaces some of the decisions in the first version with
random decisions and others with a timed-out version. As before, it provides copious
amounts of output, so you can see what is going on behind the scenes.
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Using Random Decision Trees

I’ve included this section on random decision trees as a simple extension to the de-
cision tree algorithm. It isn’t a common technique. In fact, I’ve come across it just
once.

It is the kind of technique, however, that can breathe a lot more life into a simple
algorithm for very little implementation cost. One perennial problem with decision
trees is their predictability; they have a reputation for giving AI that is overly simplistic
and prone to exploitation. Introducing just a simple random element in this way goes
a long way to rescuing the technique. Therefore, I think it deserves to be used more
widely.

5.3 STATE MACHINES

Often, characters in a game will act in one of a limited set of ways. They will carry on
doing the same thing until some event or influence makes them change. A covenant
warrior in Halo [Bungie Software, 2001], for example, will stand at its post until it
notices the player, then it will switch into attack mode, taking cover and firing.

We can support this kind of behavior using decision trees, and we’ve gone some
way to doing that using random decisions. In most cases, however, it is easier to use a
technique designed for this purpose: state machines.

State machines are the technique most often used for this kind of decision making
and, along with scripting (see Section 5.9), make up the vast majority of decision
making systems used in current games.

State machines take account of both the world around them (like decision trees)
and their internal makeup (their state).

A Basic State Machine

In a state machine each character occupies one state. Normally, actions or behaviors
are associated with each state. So as long as the character remains in that state, it will
continue carrying out the same action.

States are connected together by transitions. Each transition leads from one state
to another, the target state, and each has a set of associated conditions. If the game
determines that the conditions of a transition are met, then the character changes
state to the transition’s target state. When a transition’s conditions are met, it is said
to trigger, and when the transition is followed to a new state, it has fired.

Figure 5.13 shows a simple state machine with three states: On Guard, Fight, and
Run Away. Notice that each state has its own set of transitions.

The state machine diagrams in this chapter are based on the UML state chart di-
agram format, a standard notation used throughout software engineering. States are
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On guard Fight

Run away

[See small enemy]

[See big enemy][Escaped]

[Losing fight]

Figure 5.13 A simple state machine

shown as curved corner boxes. Transitions are arrowed lines, labelled by the condition
that triggers them. Conditions are contained in square brackets.

The solid circle in Figure 5.13 has only one transition without a trigger condition.
The transition points to the initial state that will be entered when the state machine
is first run.

You won’t need an in-depth understanding of UML to understand this chapter. If
you want to find out more about UML, I’d recommend Pilone [2005].

In a decision tree the same set of decisions is always used, and any action can be
reached through the tree. In a state machine only transitions from the current state
are considered, so not every action can be reached.

Finite State Machines

In game AI any state machine with this kind of structure is usually called a finite state
machine (FSM). This and the following sections will cover a range of increasingly
powerful state machine implementations, all of which are often referred to as FSMs.

This causes confusion with non-games programmers, for whom the term FSM
is more commonly used for a particular type of simple state machine. An FSM in
computer science normally refers to an algorithm used for parsing text. Compilers
use an FSM to tokenize the input code into symbols that can be interpreted by the
compiler.

The Game FSM

The basic state machine structure is very general and admits any number of imple-
mentations. I have seen tens of different ways to implement a game FSM, and it is rare
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to find any two developers using exactly the same technique. That makes it difficult
to put forward a single algorithm as being the “state machine” algorithm.

Later in this section, I’ll look at a range of different implementation styles for the
FSM, but the main algorithm I work through is just one. I chose it for its flexibility
and the cleanness of its implementation.

5.3.1 THE PROBLEM

We would like a general system that supports arbitrary state machines with any kind
of transition condition. The state machine will conform to the structure given above
and will occupy only one state at a time.

5.3.2 THE ALGORITHM

We will use a generic state interface which can be implemented to include any spe-
cific code. The state machine keeps track of the set of possible states and records the
current state it is in. Alongside each state, a series of transitions are maintained. Each
transition is again a generic interface that can be implemented with the appropriate
conditions. It simply reports to the state machine whether it is triggered or not.

At each iteration (normally each frame), the state machine’s update function is
called. This checks to see if any transition from the current state is triggered. The first
transition that is triggered is scheduled to fire. The method then compiles a list of
actions to perform from the currently active state. If a transition has been triggered,
then the transition is fired.

This separation of the triggering and firing of transitions allows the transitions
to also have their own actions. Often, transitioning from one state to another also
involves carrying out some action. In this case a fired transition can add the action it
needs to those returned by the state.

5.3.3 PSEUDO-CODE

The state machine holds a list of states, with an indication of which one is the current
state. It has an update function for triggering and firing transitions and a function
that returns a set of actions to carry out.

1 class StateMachine:
2

3 # Holds a list of states for the machine
4 states
5

6 # Holds the initial state
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7 initialState
8

9 # Holds the current state
10 currentState = initialState
11

12 # Checks and applies transitions, returning a list of
13 # actions.
14 def update():
15

16 # Assume no transition is triggered
17 triggeredTransition = None
18

19 # Check through each transition and store the first
20 # one that triggers.
21 for transition in currentState.getTransitions():
22 if transition.isTriggered():
23 triggeredTransition = transition
24 break
25

26 # Check if we have a transition to fire
27 if triggeredTransition:
28 # Find the target state
29 targetState = triggeredTransition.getTargetState()
30

31 # Add the exit action of the old state, the
32 # transition action and the entry for the new state.
33 actions = currentState.getExitAction()
34 actions += triggeredTransition.getAction()
35 actions += targetState.getEntryAction()
36

37 # Complete the transition and return the action list
38 currentState = targetState
39 return actions
40

41 # Otherwise just return the current state’s actions
42 else: return currentState.getAction()

5.3.4 DATA STRUCTURES AND INTERFACES

The state machine relies on having states and transitions with a particular interface.
The state interface has the following form:
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1 class State:
2 def getAction()
3 def getEntryAction()
4 def getExitAction()
5

6 def getTransitions()

Each of the getXAction methods should return a list of actions to carry out. As
we will see below, the getEntryAction is only called when the state is entered from
a transition, and the getExitAction is only called when the state is exited. The rest
of the time that the state is active, getAction is called. The getTransitions method
should return a list of transitions that are outgoing from this state.

The transition interface has the following form:

1 class Transition:
2 def isTriggered()
3 def getTargetState()
4 def getAction()

The isTriggered method returns true if the transition can fire; the getTarget-
State method reports which state to transition to; and the getAction method returns
a list of actions to carry out when the transition fires.

Transition Implementation

Only one implementation of the state class should be required: it can simply hold the
three lists of actions and the list of transitions as data members, returning them in the
corresponding get methods.

In the same way, we can store the target state and a list of actions in the transition
class and have its methods return the stored values. The isTriggered method is more
difficult to generalize. Each transition will have its own set of conditions, and much
of the power in this method is allowing the transition to implement any kind of tests
it likes.

Because state machines are often defined in a data file and read into the game at
run time, it is a common requirement to have a set of generic transitions. The state
machine can then be set up from the data file by using the appropriate transitions for
each state.

In the previous section on decision trees, we saw generic testing decisions that
operated on basic data types. The same principle can be used with state machine
transitions: we have generic transitions that trigger when data they are looking at is
in a given range.

Unlike decision trees, state machines don’t provide a simple way of combining
these tests together to make more complex queries. If we need to transition based on



5.3 State Machines 323

the condition that the enemy is far away AND health is low, then we need some way
of combining triggers together.

In keeping with our polymorphic design for the state machine, we can accom-
plish this with the addition of another interface: the condition interface. We can use
a general transition class of the following form:

1 class Transition:
2

3 actions
4 def getAction(): return actions
5

6 targetState
7 def getTargetState(): return targetState
8

9 condition
10 def isTriggered(): return condition.test()

The isTriggered function now delegates the testing to its condition member.
Conditions have the following simple format:

1 class Condition:
2 def test()

We can then make a set of sub-classes of condition for particular tests, just like we
did for decision trees:

1 class FloatCondition (Condition):
2 minValue
3 maxValue
4

5 testValue # Pointer to the game data we’re interested in
6

7 def test():
8 return minValue <= testValue <= maxValue

We can combine conditions together using Boolean sub-classes, such as AND,
NOT, and OR:

1 class AndCondition (Condition):
2 conditionA
3 conditionB
4

5 def test():
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6 return conditionA.test() and conditionB.test()
7

8

9 class NotCondition (Condition):
10 condition
11

12 def test():
13 return not condition.test()
14

15

16 class OrCondition (Condition):
17 conditionA
18 conditionB
19

20 def test():
21 return conditionA.test() or conditionB.test()

and so on, for any level of sophistication we need.

Weaknesses

This approach to transitions gives a lot of flexibility, but at the price of lots of method
calls. In C++ these method calls have to be polymorphic, which can slow down the
call and confuse the processor. All this adds time, which may make it unsuitable for
use in every frame on lots of characters.

Several developers I have come across use a homegrown scripting language to ex-
press conditions for transitions. This still allows designers to create the state machine
rules, but can be slightly more efficient. In practice, however, the speed up over this
approach is quite small, unless the scripting language includes some kind of compila-
tion into machine code (i.e., Just In Time Compiling). For all but the simplest code,
interpreting a script is at least as time-consuming as calling polymorphic functions.

5.3.5 ON THE CD

To get a sense of what is happening during an iteration, run the State Machine pro-

PROGRAM

gram from the CD. It is a command line program that allows you to manually trigger
transitions.

The software displays the current state (states have letters from A to G), and lets
you select a transition to trigger. The program clearly shows what is happening at
each stage. You see the transition triggered, then which methods are being called, and
finally the transition fire. You can also select no transition and see the state’s regular
action being returned.
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5.3.6 PERFORMANCE

The state machine algorithm only requires memory to hold a triggered transition and
the current state. It is O(1) in memory, and O(m) in time, where m is the number of
transitions per state.

The algorithm calls other functions in both the state and the transition classes,
and in most cases the execution time of these functions accounts for most of the time
spent in the algorithm.

5.3.7 IMPLEMENTATION NOTES

As I mentioned earlier, there are any number of ways to implement a state machine.
The state machine described in this section is as flexible as possible. I’ve tried to

aim for an implementation that allows you to experiment with any kind of state ma-
chine and add interesting features. In many cases it may be too flexible. If you’re only
planning to use a small subset of its flexibility, then it is very likely to be unnecessarily
inefficient.

5.3.8 HARD-CODED FSM

A few years back, almost all state machines were hard-coded. The rules for transitions
and the execution of actions were part of the game code. It has become less common
as level designers get more control over building the state machine logic, but it is still
an important approach.

Pseudo-Code

In a hard-coded FSM, the state machine consists of an enumerated value, indicating
which state is currently occupied, and a function that checks if a transition should be
followed. Here I’ve combined the two into a class definition (although I personally
tend to associate hard-coded FSMs with developers still working in C).

1 class MyFSM:
2

3 # Defines the names for each state
4 enum State:
5 PATROL
6 DEFEND
7 SLEEP
8

9 # Holds the current state
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10 myState
11

12 def update():
13

14 # Find the correct state
15 if myState == PATROL:
16

17 # Example transitions
18 if canSeePlayer(): myState = DEFEND
19 if tired(): myState = SLEEP
20

21 elif myState == DEFEND:
22

23 # Example transitions
24 if not canSeePlayer(): myState = PATROL
25

26 elif myState == SLEEP:
27

28 # Example transitions
29 if not tired(): myState = PATROL
30

31 def notifyNoiseHeard(volume):
32 if myState == SLEEP and volume > 10:
33 myState = DEFEND

Notice that this is pseudo-code for a particular state machine rather than a type
of state machine. In the update function there is a block of code for each state. In that
block of code the conditions for each transition are checked in turn, and the state
is updated if required. The transitions in this example all call functions (tired and
canSeePlayer), which I am assuming have access to the current game state.

In addition, I’ve added a state transition in a separate function, notifyNoiseHeard.
I am assuming that the game code will call this function whenever the character hears
a loud noise. This illustrates the difference between a polling (asking for informa-
tion explicitly) and an event-based (waiting to be told information) approach to state
transitions. Chapter 10 on world interfacing contains more details on this distinction.

The update function is called in each frame, as before, and the current state is used
to generate an output action. To do this, the FSM might have a method containing
conditional blocks of the following form:

1 def getAction():
2 if myState == PATROL: return PatrolAction
3 elif myState == DEFEND: return DefendAction
4 elif myState == SLEEP: return SleepAction
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Often, the state machine simply carries out the actions directly, rather than re-
turning details of the action for another piece of code to execute.

Performance

This approach requires no memory and is O(n + m), where n is the number of states,
and m is the number of transitions per state.

Although this appears to perform worse than the flexible implementation, it is
usually faster in practice for all but huge state machines (i.e., thousands of states).

Weaknesses

Although hard-coded state machines are easy to write, they are notoriously difficult
to maintain. State machines in games can often get fairly large, and this can appear as
ugly and unclear code.

Most developers, however, find that the main drawback is the need for program-
mers to write the AI behaviors for each character. This implies a need to recompile
the game each time the behavior changes. While it may not be a problem for a hobby
game writer, it can become critical in a large game project that takes many minutes
or hours to rebuild.

More complex structures, such as hierarchical state machines (see below), are also
difficult to coordinate using hard-coded FSMs. With a more flexible implementation,
debugging output can easily be added to all state machines, making it easier to track
down problems in the AI.

5.3.9 HIERARCHICAL STATE MACHINES

On its own, one state machine is a powerful tool, but it can be difficult to express
some behaviors. One common source of difficulty is “alarm behaviors.”

Imagine a service robot that moves around a facility cleaning the floors. It has a
state machine allowing it to do this. It might search around for objects that have been
dropped, pick one up when it finds it, and carry it off to the trash compactor. This
can be simply implemented using a normal state machine (see Figure 5.14).

Unfortunately, the robot can run low on power, whereupon it has to scurry off
to the nearest electrical point and get recharged. Regardless of what it is doing at the
time, it needs to stop, and when it is fully charged again, it needs to pick up where
it left off. The recharging periods could allow the player to sneak by unnoticed, for
example, or allow the player to disable all electricity to the area and thereby disable
the robot.

This is an alarm mechanism: something that interrupts normal behavior to re-
spond to something important. Representing this in a state machine leads to a dou-
bling in the number of states.
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[Trash disposed]

Figure 5.14 The basic cleaning robot state machine

With one level of alarm this isn’t a problem, but what would happen if we wanted
the robot to hide when fighting breaks out in the corridor. If its hiding instinct is
more important than its refuelling instinct, then it will have to interrupt refuelling to
go hide. After the battle it will need to pick up refuelling where it left off, after which
it will pick up whatever it was doing before that. For just 2 levels of alarm, we would
have 16 states.

Rather than combining all the logic into a single state machine, we can separate it
into several. Each alarm mechanism has its own state machine, along with the original
behavior. They are arranged in a hierarchy, so the next state machine down is only
considered when the higher level state machine is not responding to its alarm.

Figure 5.15 shows one alarm mechanism and corresponds exactly to the diagram
above.

We will nest one state machine inside another to indicate a hierarchical state ma-
chine (Figure 5.16). The solid circle again represents the start state of the machine.
When a composite state is first entered, the circle with H* inside it indicates which
sub-state should be entered.

If the composite state has already been entered, then the previous sub-state is
returned to. The H* node is called the “history state” for this reason.

The details of why there’s an asterisk after the H, and some of the other vagaries
of the UML state chart diagram, are beyond the scope of this chapter. Refer back to
Pilone [2005] for more details.

Rather than having separate states to keep track of the non-alarm state, we intro-
duce nested states. We still keep track of the state of the cleaning state machine, even
if we are in the process of refuelling. When the refuelling is over, the cleaning state
machine will pick up where it left off.

In effect, we are in more than one state at once: we might be in the “Refuel”
state in the alarm mechanism, while at the same time be in the “Pick Up Object”
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Figure 5.15 An alarm mechanism in a standard state machine
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Figure 5.16 A hierarchical state machine for the robot



330 Chapter 5 Decision Making

[No trash found]

Head for
trash

Search

Head for
compactor

[Seen trash]

[G
ot

 it
em

]

[Trash disposed]

H*

Clean up

Get power[Recharged]

[No power]

Figure 5.17 A hierarchical state machine with a cross hierarchy transition

state in the cleaning machine. Because there is a strict hierarchy, there is never any
confusion about which state wins out: the highest state in the hierarchy is always in
control.

To implement this, we could simply arrange the state machines in our program
so that one state machine calls another if it needs to. So if the refuelling state ma-
chine is in its “Clean Up” state, it calls the cleaning state machine and asks it for
the action to take. When it is in the “Refuel” state, it returns the refuelling action
directly.

While this would lead to slightly ugly code, it would implement our scenario.
Most hierarchical state machines, however, support transitions between levels of the
hierarchy, and for that we’ll need more complex algorithms.

For example, let’s expand our robot so that it can do something useful if there are
no objects to collect. It makes sense that it will use the opportunity to go and recharge,
rather than standing around waiting for its battery to go flat. The new state machine
is shown in Figure 5.17.

Notice that we’ve added one more transition: from the “Search” state right out
into the “Refuel” state. This transition is triggered when there are no objects to collect.
Because we transitioned directly out of this state, the inner state machine no longer
has any state. When the robot has refuelled and the alarm system transitions back to
cleaning, the robot will not have a record of where to pick up from, so it must start
the state machine again from its initial node (“Search”).
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The Problem

We’d like an implementation of a state machine system that supports hierarchical
state machines. We’d also like transitions that pass between different layers of the
machine.

The Algorithm

In a hierarchical state machine each state can be a complete state machine in its own
right. We therefore rely on recursive algorithms to process the whole hierarchy. As
with most recursive algorithms, this can be pretty tricky to follow. The simplest im-
plementation covered here is doubly tricky because it recurses up and down the hier-
archy at different points. I’d encourage you to use the informal discussion and exam-
ples in this section alongside the pseudo-code in the next section and play with the
Hierarchical State Machine program on the CD to get a feel for how it is all working.

The first part of the system returns the current state. The result is a list of states,
from highest to lowest in the hierarchy. The state machine asks its current state to
return its hierarchy. If the state is a terminal state, it returns itself; otherwise, it returns
itself and adds to it the hierarchy of state from its own current state.

In Figure 5.18 the current state is [State L, State A].
The second part of the hierarchical state machine is its update. In the original state

machine we assumed that each state machine started off in its initial state. Because the
state machine always transitioned from one state to another, there was never any need

State BState A

State C

State L

State M

H*

Figure 5.18 Current state in a hierarchy
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to check if there was no state. State machines in a hierarchy can be in no state; they
may have a cross hierarchy transition. The first stage of the update, then, is to check
if the state machine has a state. If not, it should enter its initial state.

Next, we check if the current state has a transition it wants to execute. Transitions
at higher levels in the hierarchy always take priority, and the transitions of sub-states
will not be considered if the super-state has one that triggers.

A triggered transition may be one of three types: it might be a transition to an-
other state at the current level of the hierarchy; it might be a transition to a state
higher up in the hierarchy; or it might be a transition to a state lower in the hierarchy.
Clearly, the transition needs to provide more data than just a target state. We allow it
to return a relative level: how many steps up or down the hierarchy the target state is.

We could simply search the hierarchy for the target state and not require an ex-
plicit level. While this would be more flexible (we wouldn’t have to worry about the
level values being wrong), it would be considerably more time-consuming. A hybrid,
but fully automatic, extension could search the hierarchy once offline and store all
appropriate level values.

So the triggered transition has a level of zero (state is at the same level), a level
greater than zero (state is higher in the hierarchy), or a level less than zero (state is
lower in the hierarchy). It acts differently depending on which category the level falls
into.

If the level is zero, then the transition is a normal state machine transition and
can be performed at the current level, using the same algorithm used in the finite
state machine.

If the level is greater than zero, then the current state needs to be exited and noth-
ing else needs to be done at this level. The exit action is returned, along with an
indication to whoever called the update function that the transition hasn’t been com-
pleted. We will return the exit action, the transition outstanding, and the number of
levels higher to pass the transition. This level value is decreased by one as it is re-
turned. As we will see, the update function will be returning to the next highest state
machine in the hierarchy.

If the level is less than zero, then the current state needs to transition to the an-
cestor of the target state on the current level in the hierarchy. In addition, each of the
children of that state also needs to do the same, down to the level of the final desti-
nation state. To achieve this we use a separate function, updateDown, that recursively
performs this transition from the level of the target state back up to the current level
and returns any exit and entry actions along the way. The transition is then complete
and doesn’t need to be passed on up. All the accumulated actions can be returned.

So we’ve covered all possibilities if the current state has a transition that triggers.
If it does not have a transition that triggers, then its action depends on whether the
current state is a state machine itself. If not, and if the current state is a plain state,
then we can return the actions associated with being in that state, just as before.

If the current state is a state machine, then we need to give it the opportunity to
trigger any transitions. We can do this by calling its update function. The update func-
tion will handle any triggers and transitions automatically. As we saw above, a lower
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level transition that fires may have its target state at a higher level. The update func-
tion will return a list of actions, but it may also return a transition that it is passing
up the hierarchy and that hasn’t yet been fired.

If such a transition is received, its level is checked. If the level is zero, then the
transition should be acted on at this level. The transition is honored, just as if it were
a regular transition for the current state. If the level is still greater than zero (it should
never be less than zero, because we are passing up the hierarchy at this point), then the
state machine should keep passing it up. It does this, as before, by exiting the current
state and returning the following pieces of information: the exit action; any actions
provided by the current state’s update function; the transition that is still pending;
and the transition’s level, less one.

If no transition is returned from the current state’s update function, then we can
simply return its list of actions. If we are at the top level of the hierarchy, the list alone
is fine. If we are lower down, then we are also within a state, so we need to add the
action for the state we’re in to the list we return.

Fortunately, this algorithm is at least as difficult to explain as it is to implement.
To see how and why it works, let’s work through an example.

Examples

Figure 5.19 shows a hierarchical state machine that we will use as an example.
To clarify the actions returned for each example, we will say S-entry is the set of

entry actions for state S, similarly S-active and S-exit for active and exit actions. In

State B

State A State C

H*

State L

State M

State N

1

2

4

3

6

5 7

Figure 5.19 Hierarchical state machine example
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transitions we use the same format 1-actions for the actions associated with transi-
tion 1.

These examples can appear confusing if you skim them through. If you’re having
trouble with the algorithm, I urge you to follow through step by step with both the
diagram above and the pseudo-code from the next section.

Suppose we start just in State L, and no transition triggers. We will transition into
State [L, A], because L’s initial state is A. The update function will return: L-active and
A-entry, because we are staying in L and just entering A.

Now suppose transition 1 is the only one that triggers. The top-level state ma-
chine will detect no valid transitions, so will call state machine L to see if it has any.
L finds that its current state (A) has a triggered transition. Transition 1 is a transition
at the current level, so it is handled within L and not passed anywhere. A transitions
to A, and L’s update function returns: A-exit, 1-actions, B-entry. The top-level state
machine accepts these actions and adds its own active action. Because we have stayed
in State L throughout, the final set of actions is A-exit, 1-actions, B-entry, L-active.
The current state is [L, B].

From this state, transition 4 triggers. The top-level state machine sees that transi-
tion 4 triggers, and because it is a top-level transition, it can be honored immediately.
The transition leads to State M, and the corresponding actions are L-exit, 4-actions,
M-entry. The current state is [M]. Note that L is still keeping a record of being in
State B, but because the top-level state machine is in State M, this record isn’t used at
the moment.

We’ll go from State M to State N in the normal way through transition 5. The pro-
cedure is exactly the same as for the previous example and the non-hierarchical state
machine. Now transition 6 triggers. Because it is a level zero transition, the top-level
state machine can honor it immediately. It transitions into State L and returns the ac-
tions N-exit, 6-actions, L-entry. But now, L’s record of being in State B is important:
we end up in State [L, B] again. In our implementation we don’t return the B-entry
action, because we didn’t return the B-exit action when we left State L previously. This
is a personal preference on my part and isn’t fixed in stone. If you want to exit and
re-enter State B, then you can modify your algorithm to return these extra actions at
the appropriate time.

Now suppose from State [L, B] transition 3 triggers. The top-level state machine
finds no triggers, so it will call state machine L to see if it has any. L finds that State B
has a triggered transition. This transition has a level of one: its target is one level
higher in the hierarchy. This means that State B is being exited, and it means that we
can’t honor the transition at this level. We return B-exit, along with the uncompleted
transition, and the level minus one (i.e., zero, indicating that the next level up needs
to handle the transition). So control returns to the top-level update function. It sees
that L returned an outstanding transition, with zero level, so it honors it, transition-
ing in the normal way to State N. It combines the actions that L returned (namely,
B-exit) with the normal transition actions to give a final set of actions: B-exit, L-exit,
3-actions, N-entry. Note that, unlike in our third example, L is no longer keeping
track of the fact that it is in State B, because we transitioned out of that state. If we
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fire transition 6 to return to State L, then State L’s initial state, A, would be entered,
just like in the first example.

Our final example covers transitions with level less than zero. Suppose we moved
from State N to State M via transition 7. Now we make transition 2 trigger. The top-
level state machine looks at its current state (M) and finds transition 2 triggered. It
has a level of minus one, because it is descending one level in the hierarchy. Because it
has a level of minus one, the state machine calls the updateDown function to perform
the recursive transition. The updateDown function starts at the state machine (L) that
contains the final target state (C), asking it to perform the transition at its level. State
machine L, in turn, asks the top-level state machine to perform the transition at its
level. The top-level state machine changes from State M to State L, returning M-exit,
L-entry as the appropriate actions. Control returns to state machine L’s updateDown
function. State machine L checks if it is currently in any state (it isn’t, since we left
State B in the last example). It adds its action, C-entry, to those returned by the top-
level machine. Control then returns to the top-level state machine’s update function:
the descending transition has been honored, it adds the transition’s actions to the
result, and returns M-exit, C-entry, L-entry, 2-actions.

If state machine L had still been in State B, then when L’s updateDown function was
called, it would transition out of B and into C. It would add B-exit and C-entry to the
actions that it received from the top-level state machine.

Pseudo-Code

The hierarchical state machine implementation is made up of five classes and forms
one of the longest algorithms in this book. The State and Transition classes are sim-
ilar to those in the regular finite state machine. The HierarchicalStateMachine class
runs state transitions, and SubMachineState combines the functionality of the state
machine and a state. It is used for state machines that aren’t at the top level of the
hierarchy. All classes but the Transition inherit from a HSMBase class, which simpli-
fies the algorithm by allowing functions to treat anything in the hierarchy in the same
way.

The HSMBase has the following form:

1 class HSMBase:
2 # The structure returned by update
3 struct UpdateResult:
4 actions
5 transition
6 level
7

8 def getAction(): return []
9

10 def update():
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11 UpdateResult result
12 result.actions = getAction()
13 result.transition = None
14 result.level = 0
15 return result
16

17 def getStates() # unimplemented function

The HierarchicalStateMachine class has the following implementation:

1 class HierarchicalStateMachine (HSMBase):
2

3 # List of states at this level of the hierarchy
4 states
5

6 # The initial state for when the machine has to
7 # current state.
8 initialState
9

10 # The current state of the machine.
11 currentState = initialState
12

13 # Gets the current state stack
14 def getStates():
15 if currentState: return currentState.getStates()
16 else: return []
17

18 # Recursively updates the machine.
19 def update():
20

21 # If we’re in no state, use the initial state
22 if not currentState:
23 currentState = initialState
24 return currentState.getEntryAction()
25

26 # Try to find a transition in the current state
27 triggeredTransition = None
28 for transition in currentState.getTransitions():
29 if transition.isTriggered():
30 triggeredTransition = transition
31 break
32
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33 # If we’ve found one, make a result structure for it
34 if triggeredTransition:
35 result = UpdateResult()
36 result.actions = []
37 result.transition = triggeredTransition
38 result.level = triggeredTransition.getLevel()
39

40 # Otherwise recurse down for a result
41 else:
42 result = currentState.update()
43

44 # Check if the result contains a transition
45 if result.transition:
46

47 # Act based on its level
48 if result.level == 0:
49

50 # Its on our level: honor it
51 targetState = result.transition.getTargetState()
52 result.actions += currentState.getExitAction()
53 result.actions += result.transition.getAction()
54 result.actions += targetState.getEntryAction()
55

56 # Set our current state
57 currentState = targetState
58

59 # Add our normal action (we may be a state)
60 result.actions += getAction()
61

62 # Clear the transition, so nobody else does it
63 result.transition = None
64

65 else if result.level > 0:
66

67 # Its destined for a higher level
68 # Exit our current state
69 result.actions += currentState.getExitAction()
70 currentState = None
71

72 # Decrease the number of levels to go
73 result.level -= 1
74

75 else:
76
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77 # It needs to be passed down
78 targetState = result.transition.getTargetState()
79 targetMachine = targetState.parent
80 result.actions += result.transition.getAction()
81 result.actions += targetMachine.updateDown(
82 targetState, -result.level
83 )
84

85 # Clear the transition, so nobody else does it
86 result.transition = None
87

88 # If we didn’t get a transition
89 else:
90

91 # We can simply do our normal action
92 result.action += getAction()
93

94 # Return the accumulated result
95 return result
96

97 # Recurses up the parent hierarchy, transitioning into
98 # each state in turn for the given number of levels
99 def updateDown(state, level):

100

101 # If we’re not at top level, continue recursing
102 if level > 0:
103 # Pass ourself as the transition state to our parent
104 actions = parent.updateDown(this, level-1)
105

106 # Otherwise we have no actions to add to
107 else: actions = []
108

109 # If we have a current state, exit it
110 if currentState:
111 actions += currentState.getExitAction()
112

113 # Move to the new state, and return all the actions
114 currentState = state
115 actions += state.getEntryAction()
116 return actions

The state class is substantially the same as before, but adds an implementation for

getStates:
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1 class State (HSMBase):
2

3 def getStates():
4 # If we’re just a state, then the stack is just us
5 return [this]
6

7 # As before...
8 def getAction()
9 def getEntryAction()

10 def getExitAction()
11 def getTransitions()

Similarly, the Transition class is the same, but adds a method to retrieve the level
of the transition.

1 class Transition:
2

3 # Returns the different in levels of the hierarchy from
4 # the source to the target of the transition.
5 def getLevel()
6

7 # As before...
8 def isTriggered()
9 def getTargetState()

10 def getAction()

Finally, the SubMachineState class merges the functionality of a state and a state
machine.

1 class SubMachineState (State, HierarchicalStateMachine):
2

3 # Route get action to the state
4 def getAction(): return State::getAction()
5

6 # Route update to the state machine
7 def update(): return HierarchicalStateMachine::update()
8

9 # We get states by adding ourself to our active children
10 def getStates():
11 if currentState:
12 return [this] + currentState.getStates()
13 else:
14 return [this]
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Implementation Notes

I’ve used multiple inheritance to implement SubMachineState. For languages (or pro-
grammers) that don’t support multiple inheritance, there are two options. The Sub-
MachineState could encapsulate HierarchicalStateMachine, or the Hierarchical-
StateMachine can be converted so that it is a sub-class of State. The downside with the
latter approach is that the top-level state machine will always return its active action
from the update function, and getStates will always have it as the head of the list.

I’ve elected to use a polymorphic structure for the state machine again. It is possi-
ble to implement the same algorithm without any polymorphic method calls. Given
that it is complex enough already, however, I’ll leave that as an exercise. My experi-
ence deploying a hierarchical state machine involved an implementation using poly-

LIBRARY

morphic method calls (provided on the CD). In-game profiling on both PC and PS2
showed that the method call overhead was not a bottleneck in the algorithm. In a
system with hundreds or thousands of states, it may well be, as cache efficiency issues
come into play.

Some implementations of hierarchical state machines are significantly simpler
than this by making it a requirement that transitions can only occur between states
at the same level. With this requirement, all the recursion code can be eliminated. If
you don’t need cross hierarchy transitions, then the simpler version will be easier to
implement. It is unlikely to be any faster, however. Because the recursion isn’t used
when the transition is at the same level, the code above will run about as fast if all the
transitions have a zero level.

Performance

The algorithm is O(n) in memory, where n is the number of layers in the hierarchy. It
requires temporary storage for actions when it recurses down and up the hierarchy.

Similarly, it is O(nt) in time, where t is the number of transitions per state. To
find the correct transition to fire, it potentially needs to search each transition at each
level of the hierarchy and O(nt) process. The recursion, both for a transition level <0
and for a level >0 is O(n), so it does not affect the O(nt) for the whole algorithm.

On the CD

Following hierarchical state machines, especially when they involve transitions across
hierarchies, can be confusing at first. I’ve tried to be as apologetic as possible for the
complexity of the algorithm, even though I’ve made it as simple as I can. Nonetheless,
it is a powerful technique to have in your arsenal and worth the effort to master.

The Hierarchical State Machine program on the CD lets you step through a state
machine, triggering any transition at each step. It works in the same way as the State

PROGRAM

Machine program, giving you plenty of feedback on transitions. I hope it will help
give a clearer picture, alongside the content of this chapter.
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5.3.10 COMBINING DECISION TREES AND STATE MACHINES

The implementation of transitions bears more than a passing resemblance to the im-
plementation of decision trees. This is no coincidence, but we can take it even further.

Decision trees are an efficient way of matching a series of conditions, and this has
application in state machines for matching transitions.

We can combine the two approaches by replacing transitions from a state with a
decision tree. The leaves of the tree, rather than being actions as before, are transitions
to new states.

A simple state machine might look like Figure 5.20.
The diamond symbol is also part of the UML state chart diagram format, repre-

senting a decision. In UML there is no differentiation between decisions and transi-
tions, and the decisions themselves are usually not labelled.

In this book I’ve labelled the decisions with the test that they perform, which is
clearer for our needs.

When in the “Alert” state, a sentry has only one possible transition: via the de-
cision tree. It quickly ascertains whether the sentry can see the player. If the sentry
is not able to see the player, then the transition ends and no new state is reached. If
the sentry is able to see the player, then the decision tree makes a choice based on the
distance of the player. Depending on the result of this choice, two different states may
be reached: “Raise Alarm” or “Defend.” The latter can only be reached if a further test
(distance to the player) passes.

To implement the same state machine without the decision nodes, the state ma-
chine in Figure 5.21 would be required. Note that now we have two very complex con-
ditions and both have to evaluate the same information (distance to the player and
distance to the alarm point). If the condition involved a time-consuming algorithm

Alert

Raise alarm

Defend

Can see
the player?

[Yes]

[Yes]

[No]

Player
nearby?

Figure 5.20 State machine with decision tree transitions
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Alert

Raise alarm

Defend

[Player in sight AND player is far away]

[Player in sight AND player is close by]

Figure 5.21 State machine without decision tree transitions

(such as the line of sight test in our example), then the decision tree implementation
would be significantly faster.

Pseudo-Code

We can incorporate a decision tree into the state machine framework we’ve developed
so far.

The decision tree, as before, consists of DecisionTreeNodes. These may be deci-
sions (using the same Decision class as before) or TargetStates (which replace the
Action class in the basic decision tree). TargetStates hold the state to transition to
and can contain actions. As before, if a branch of the decision tree should lead to no
result, then we can have some null value at the leaf of the tree.

1 class TargetState (DecisionTreeNode):
2 getAction()
3 getTargetState()

The decision making algorithm needs to change. Rather than testing for Actions
to return, it now tests for TargetState instances:

1 def makeDecision(node):
2

3 # Check if we need to make a decision
4 if not node or node is_instance_of TargetState:
5

6 # We’ve got the target (or a null target); return it
7 return node
8
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9 else:
10 # Make the decision and recurse based on the result
11 if node.test():
12 return makeDecision(node.trueNode)
13 else
14 return makeDecision(node.falseNode)

We can then build an implementation of the Transition interface which supports
these decision trees. It has the following algorithm:

1 class DecisionTreeTransition (Transition):
2

3 # Holds the target state at the end of the decision
4 # tree, when a decision has been made
5 targetState = None
6

7 # Holds the root decision in the tree
8 decisionTreeRoot
9

10 def getAction():
11 if targetState: return targetState.getAction()
12 else return None
13

14 def getTargetState():
15 if targetState: return targetState.getTargetState()
16 else: return None
17

18 def isTriggered():
19

20 # Get the result of the decision tree and store it
21 targetState = makeDecision(decisionTreeRoot)
22

23 # Return true if the target state points to a
24 # destination, otherwise assume that we don’t trigger
25 return targetState != None

Implementation

As before, this implementation relies heavily on polymorphic methods in an object-
oriented framework. The corresponding performance overhead may be unacceptable
in some cases where lots of transitions or decisions are being considered.
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5.4 FUZZY LOGIC

So far the decisions we’ve made have been very cut and dried. Conditions and deci-
sions have been true or false, and we haven’t questioned the dividing line. Fuzzy logic
is a set of mathematical techniques designed to cope with grey areas.

Imagine we’re writing AI for a character moving through a dangerous environ-
ment. In a finite state machine approach, we could choose two states: “Cautious” and
“Confident.” When the character is cautious, it sneaks slowly along, keeping an eye
out for trouble. When the character is confident, it walks normally. As the character
moves through the level, it will switch between the two states. This may appear odd.
We might think of the character getting gradually braver, but this isn’t shown until
suddenly it stops creeping and walks along as if nothing had ever happened.

Fuzzy logic allows us to blur the line between cautious and confident, giving us a
whole spectrum of confidence levels. With fuzzy logic we can still make decisions like
“walk slowly when cautious,” but both “slowly” and “cautious” can include a range of
degrees.

5.4.1 INTRODUCTION TO FUZZY LOGIC

This section will give a quick overview of the fuzzy logic needed to understand the
techniques in this chapter. Fuzzy logic itself is a huge subject, with many subtle fea-
tures, and we don’t have the space to cover all the interesting and useful bits of the
theory. If you want a broad grounding, I’d recommend Buckley and Eslami [2002],
a widely used text on the subject.

Fuzzy Sets

In traditional logic we use the notion of a “predicate”: a quality or description of
something. A character might be hungry, for example. In this case “hungry” is a pred-
icate, and every character either does or doesn’t have it. Similarly, a character might
be hurt. There is no sense of how hurt; each character either does or doesn’t have
the predicate. We can view these predicates as sets. Everything to which the predicate
applies is in the set, and everything else is outside.

These sets are called classical sets, and traditional logic can be completely formu-
lated in terms of them.

Fuzzy logic extends the notion of a predicate by giving it a value. So a character
can be hurt with a value of 0.5, for example, or hungry with a value of 0.9. A character
with a hurt value of 0.7 will be more hurt than one with a value of 0.3. So rather than
belonging to a set or being excluded from it, everything can partially belong to the
set, and some things can belong more than others.

In the terminology of fuzzy logic, these sets are called fuzzy sets, and the numeric
value is called the degree of membership. So a character with a hungry value of 0.9 is
said to belong to the hungry set with a 0.9 degree of membership.
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For each set, a degree of membership of 1 is given to something completely in
the fuzzy set. It is equivalent to membership of the classical set. Similarly, the value
of 0 indicates something completely outside the fuzzy set. When we look at the rules
of logic, below, you’ll find that all the rules of traditional logic still work when set
memberships are either zero or one.

In theory, we could use any range of numeric values to represent the degree of
membership. I am going to use consistent values from 0 to 1 for degree of member-
ship in this book, in common with almost all fuzzy logic texts. It is quite common,
however, to implement fuzzy logic using integers (on a 0 to 255 scale, for example)
because integer arithmetic is faster and more accurate than using floating point val-
ues.

Whatever value we use doesn’t mean anything outside fuzzy logic. A common
mistake is to interpret the value as a probability or a percentage. Occasionally, it helps
to view it that way, but the results of applying fuzzy logic techniques will rarely be the
same as if you applied probability techniques, and that can be confusing.

Membership of Multiple Sets

Anything can be a member of multiple sets at the same time. A character may be both
hungry and hurt, for example. This is the same for both classical and fuzzy sets.

Often, in traditional logic we have a group of predicates that are mutually exclu-
sive. A character cannot be both hurt and healthy, for example. In fuzzy logic this is
no longer the case. A character can be hurt and healthy, it can be tall and short, and
it can be confident and curious. The character will simply have different degrees of
membership for each set (e.g., it may be 0.5 hurt and 0.5 healthy).

The fuzzy equivalent of mutual exclusion is the requirement that membership
degrees sum to 1. So if the sets of hurt and healthy characters are mutually exclusive,
it would be invalid to have a character who is hurt 0.4 and healthy 0.7. Similarly, if
we had three mutually exclusive sets—confident, curious, and terrified—a character
who is confident 0.2 and curious 0.4 will be terrified 0.4.

It is rare for implementations of fuzzy decision making to enforce this. Most
implementations allow any sets of membership values, relying on the fuzzification
method (see the next section) to give a set of membership values that approximately
sum to 1. In practice, values that are slightly off make very little difference to the
results.

Fuzzification

Fuzzy logic only works with degrees of membership of fuzzy sets. Since this isn’t the
format that most games keep their data in, some conversion is needed. Turning reg-
ular data into degrees of membership is called fuzzification; turning it back is, not
surprisingly, defuzzification.
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Numeric Fuzzification

The most common fuzzification technique is turning a numeric value into the mem-
bership of one or more fuzzy sets. Characters in the game might have a number of
hit points, for example, which we’d like to turn into the membership of the “healthy”
and “hurt” fuzzy sets.

This is accomplished by a membership function. For each fuzzy set, a function
maps the input value (hit points, in our case) to a degree of membership. Figure 5.22
shows two membership functions, one for the “healthy” set and one for the “hurt”
set.

From this set of functions, we can read off the membership values. Two characters
are marked: character A is healthy 0.8 and hurt 0.2, while character B is healthy 0.3
and hurt 0.7. Note that in this case I’ve made sure the values output by the member-
ship functions always sum to 1.

There is no limit to the number of different membership functions that can rely
on the same input value, and their values don’t need to add up to 1, although in most
cases it is convenient if they do.

Fuzzification of Other Data Types

In a game context we often also need to fuzzify Boolean values and enumerations.
The most common approach is to store pre-determined membership values for each
relevant set.

A character might have a Boolean value to indicate if it is carrying a powerful ar-
tifact. The membership function has a stored value for both true and false, and the

0% 100%
0

1 Hurt Healthy

Character B

Character A

Health value

Figure 5.22 Membership functions
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Figure 5.23 Membership function for enumerated value

appropriate value is chosen. If the fuzzy set corresponds directly to the Boolean value
(if the fuzzy set is “possession of powerful artifact,” for example), then the member-
ship values will be zero and one.

The same structure holds for enumerated values, where there are more than two
options: each possible value has a pre-determined stored membership value. In a
kung fu game, for example, characters might possess one of a set of sashes indicating
their prowess. To determine the degree of membership in the “fearsome fighter” fuzzy
set, the membership function in Figure 5.23 could be used.

Defuzzification

After applying whatever fuzzy logic we need, we are left with a set of membership
values for fuzzy sets. To turn it back into useful data, we need to use a defuzzification
technique.

The fuzzification technique we looked at in the last section is fairly obvious and
almost ubiquitous. Unfortunately, there isn’t a correspondingly obvious defuzzifica-
tion method. There are several possible defuzzification techniques, and there is no
clear consensus on which is the best to use. All have a similar basic structure, but
differ in efficiency and stability of results.

Defuzzification involves turning a set of membership values into a single out-
put value. The output value is almost always a number. It relies on having a set of
membership functions for the output value. We are trying to reverse the fuzzification
method: to find an output value which would lead to the membership values we know
we have.

It is rare for this to be directly possible. In Figure 5.24, we have membership values
of 0.2, 0.4, and 0.7 for the fuzzy sets “creep,” “walk,” and “run.”

The membership functions show that there is no possible value for movement
speed which would give us those membership values, if we fed it into the fuzzifi-
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Figure 5.24 Impossible defuzzification

cation system. We would like to get as near as possible, however, and each method
approaches the problem in a different way.

It is worth noting that there is confusion in the terms used to describe defuzzifica-
tion methods. You’ll often find different algorithms described under the same name.
The lack of any real meaning to the degree of membership values means that different
but similar methods often produce equally useful results, encouraging confusion and
a diversity of approaches.

Using the Highest Membership

We can simply choose the fuzzy set which has the greatest degree of membership and
choose an output value based on that. In our example above, the “run” membership
value is 0.7, so we could choose a speed that is representative of running.

There are four common points chosen: the minimum value at which the func-
tion returns 1 (i.e., the smallest value that would give a value of 1 for membership
of the set), the maximum value (calculated the same way), the average of the two,
and the bisector of the function. The bisector of the function is calculated by inte-
grating the area under the curve of the membership function and choosing the point
which bisects this area. Figure 5.25 shows this, along with other methods, for a single
membership function.

Although the integration process may be time consuming, it can be carried out
once, possibly offline. The resulting value is then always used as the representative
point for that set.

Figure 5.25 shows all four values for the example.
This is a very fast technique and simple to implement. Unfortunately, it provides

only a course defuzzification. A character with membership values of 0 creep, 0 walk,
1 run will have exactly the same output speed as a character with 0.33 creep, 0.33 walk,
0.34 run.
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Figure 5.25 Minimum, average bisector, and maximum of the maximum

Blending Based on Membership

A simple way around this limitation is to blend each characteristic point based on its
corresponding degree of membership. So a character with 0 creep, 0 walk, 1 run will
use the characteristic speed for the run set (calculated in any of the ways we saw above:
minimum, maximum, bisector, or average). A character with 0.33 creep, 0.33 walk,
0.34 run will have a speed given by (0.33 * characteristic creep speed) + (0.33 * char-
acteristic walk speed) + (0.34 * characteristic run speed).

The only proviso is to make sure that the multiplication factors are normalized.
It is possible to have a character with 0.6 creep, 0.6 walk, 0.7 run. Simply multiplying
the membership values by the characteristic points will likely give an output speed
faster than running.

When the minimum values are blended, the resulting defuzzification is often
called a Smallest of Maximum method, or Left of Maximum (LM). Similarly, a blend
of the maximums may be called Largest of Maximum (also occasionally LM!), or
Right of Maximum. The blend of the average values can be known as Mean of Maxi-
mum (MoM).

Unfortunately, some references are based on having only one membership func-
tion involved in defuzzification. In these references you will find the same method
names used to represent the unblended forms. Nomenclature among defuzzification
methods is often a matter of guesswork.

In practice, it doesn’t matter what they are called, as long as you can find one that
works for you.

Center of Gravity

This technique is also known as Centroid of Area. This method takes into account all
the membership values, rather than just the largest.
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Center of
gravity

Figure 5.26 Membership function cropped, and all membership functions cropped

First, each membership function is cropped at the membership value for its cor-
responding set. So if a character has a run membership of 0.4, the membership func-
tion is cropped above 0.4. This is shown in Figure 5.26 for one and for the whole set
of functions.

The center of mass of the cropped regions is then found by integrating each in
turn. This point is used as the output value. The center of mass point is labelled in
the figure.

Using this method takes time. Unlike the bisector of area method, we can’t do
the integration offline because we don’t know in advance what level each function
will be cropped at. The resulting integration (often numeric, unless the membership
function has a known integral) can take time.

It is worth noting that this “center of gravity” method, while often used, differs
from the identically named method in the IEEE specification for fuzzy control. The
IEEE version doesn’t crop each function before calculating its center of gravity. The
resulting point is therefore constant for each membership function and so would
come under a blended points approach in my categorization.

Choosing a Defuzzification Approach

Although the center of gravity approach is favored in many fuzzy logic applications,
it is fairly complex to implement and can make it harder to add new membership
functions. The results provided by the blended points approach is often just as good
and is much quicker to calculate.

It also supports an implementation speed up that removes the need to use mem-
bership functions. Rather than calculating the representative points of each function,
you can simply specify values directly. These values can then be blended in the nor-
mal way. In our example we can specify that a creep speed is 0.2 meters per second,
while a walk is 1 meters per second, and a run is 3 meters per second. The defuzzifi-
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cation is then simply a weighted sum of these values, based on normalized degrees of
membership.

Defuzzification to a Boolean Value

To arrive at a Boolean output, we use a single fuzzy set and a cut-off value. If the de-
gree of membership for the set is less than the cut-off value, the output is considered
to be false; otherwise, it is considered to be true.

If there are several fuzzy sets that need to contribute to the decision, then they are
usually combined using a fuzzy rule (see below) into a single set, which can then be
defuzzified to the output Boolean.

Defuzzification to an Enumerated Value

The method for defuzzifying an enumerated value depends on whether the different
enumerations form a series or if they are independent categories. Our previous ex-
ample of kung fu belts forms a series: the belts are in order, and they fall in increasing
order of prowess. By contrast, a set of enumerated values might represent different
actions to carry out: a character may be deciding whether to eat, sleep, or watch a
movie. These cannot easily be placed in any order.

Enumerations that can be ordered are often defuzzified as a numerical value. Each
of the enumerated values corresponds to a non-overlapping range of numbers. The
defuzzification is carried out exactly as for any other numerical output, and then an
additional step places the output into its appropriate range, turning it into one of the
enumerated options. Figure 5.27 shows this in action for the kung fu example: the de-
fuzzification results in a “prowess” value, which is then converted into the appropriate
belt color.

Enumerations that cannot be ordered are usually defuzzified by making sure there
is a fuzzy set corresponding to each possible option. There may be a fuzzy set for “eat,”
another for “sleep,” and another for “watch movie.” The set which has the highest
membership value is chosen, and its corresponding enumerated value is output.

Combining Facts

Now that we’ve covered fuzzy sets and their membership, and how to get data in and
out of fuzzy logic, we can look at the logic itself. Fuzzy logic is similar to traditional
logic: logical operators (such as AND, OR, and NOT) are used to combine the truth
of simple facts to understand the truth of complex facts. If we know the two separate
facts “it is raining” and “it is cold,” then we know the statement “it is raining and
cold” is also true.

Unlike traditional logic, now each simple fact is not true or false, but is a nu-
merical value: the degree of membership of its corresponding fuzzy set. It might be
partially raining (membership of 0.5) and slightly cold (membership of 0.2). We need
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Figure 5.27 Enumerated defuzzification in a range

to be able to work out the truth value for compound statements such as “it is raining
and cold.”

In traditional logic we use a truth table, which tells us what the truth of a com-
pound statement is based on the different possible truth values of its constituents. So
AND is represented as

A B A AND B

false false false

false true false

true false false

true true true

In fuzzy logic each operator has a numerical rule that lets us calculate the degree
of truth based on the degrees of truth of each of its inputs. The fuzzy rule for AND is

m(A AND B) = min(mA,mB),
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where mA is the degree of membership of set A (i.e., the truth value of A). As
promised, the truth table for traditional logic corresponds to this rule, when 0 is used
for false and 1 is used for true:

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

The corresponding rule for OR is

m(A OR B) = max(mA,mB)

and for NOT it is

m(NOT A) = 1 − mA.

Notice that just like traditional logic, the NOT operator only relates to a single
fact, where AND and OR relate to two facts.

The same correspondences present in traditional logic are used in fuzzy logic. So

A OR B = NOT(NOT A AND NOT B).

Using these correspondences, we get the following table of fuzzy logic operators:

Expression Equivalent Fuzzy Equation

NOT A 1 − mA

A AND B min(mA,mB)

A OR B max(mA,mB)

A XOR B NOT(B) AND A min(mA,1 − mB)

NOT(A) AND B min(1 − mA,mB)

A NOR B NOT(A OR B) 1 − max(mA,mB)

A NAND B NOT(A AND B) 1 − min(mA,mB)

These definitions are, by far, the most common. Some researchers have proposed
the use of alternative definitions for AND and OR and therefore also for the other
operators. It is reasonably safe to use these definitions; alternative formulations are
almost always made explicit when they are used.

Fuzzy Rules

The final element of fuzzy logic we’ll need is the concept of a fuzzy rule. Fuzzy rules
relate the known membership of certain fuzzy sets to generate new membership val-
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ues for other fuzzy sets. We might say, for example, “if I am close to the corner, and I
am travelling fast, then I should brake.”

This rule relates two input sets: “close to the corner” and “travelling fast.” It deter-
mines the degree of membership of the third set, “should brake.” Using the definition
for AND given above, we can see that

m(Should Brake) = min(m(Close to the Corner),m(Travelling Quickly)).

If we knew that we were “close to the corner” with a membership of 0.6 and “trav-
elling fast” with a membership of 0.9, then we would know that our membership of
“should brake” is 0.6.

5.4.2 FUZZY LOGIC DECISION MAKING

There are several things we can do with fuzzy logic in order to make decisions. We
can use it in any system where we’d normally have traditional logic AND, NOT, and
OR. It can be used to determine if transitions in a state machine should fire. It can be
used also in the rules of the rule-based system discussed later in the chapter.

In this section we’ll look at a different decision making structure that uses only
rules involving the fuzzy logic AND operator.

The algorithm doesn’t have a name. Developers often simply refer to it as “fuzzy
logic.” It is taken from a subfield of fuzzy logic called fuzzy control and is typically
used to build industrial controllers that take action based on a set of inputs.

Some pundits call it a fuzzy state machine, a name given more often to a differ-
ent algorithm that we’ll look at in the next section. Inevitably, we could say that the
nomenclature for these algorithms is somewhat fuzzy.

The Problem

In many problems a set of different actions can be carried out, but it isn’t always clear
which one is best. Often, the extremes are very easy to call, but there are grey areas in
the middle. It is particularly difficult to design a solution when the set of actions is
not on/off, but can be applied with some degree.

Take the example mentioned above of driving a car. The actions available to the
car include steering and speed control (acceleration and braking), both of which can
be done to a range of degrees. It is possible to brake sharply to a halt or simply dab
the brake to shed some speed.

If the car is travelling headlong at high speed into a tight corner, then it is pretty
clear we’d like to brake. If the car is out of a corner at the start of a long straightaway,
then we’d like to floor the accelerator. These extremes are clear, but exactly when to
brake and how hard to hit the pedal are grey areas that decide the great drivers from
the mediocre.
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The decision making techniques we’ve used so far will not help us very much
in these circumstances. We could build a decision tree or finite state machine, for
example, to help us brake at the right time, but it would be an either/or process.

A fuzzy logic decision maker should help to represent these grey areas. We can use
fuzzy rules written to cope with the extreme situations. These rules should generate
sensible (although not necessarily optimal) conclusions about which action is best in
any situation.

The Algorithm

The decision maker has any number of crisp inputs. These may be numerical, enu-
merated, or Boolean values.

Each input is mapped into fuzzy states using membership functions as described
earlier.

Some implementations require that an input be separated into two or more fuzzy
states so that the sum of their degrees of membership is 1. In other words, the set of
states represents all possible states for that input. We will see how this property allows
us optimizations later in the section. Figure 5.28 shows an example of this with three
input values: the first and second have two corresponding states, and the third has
three states.

So the set of crisp inputs is mapped into lots of states, which can be arranged in
mutually inclusive groups.

In addition to these input states, we have a set of output states. These output states
are normal fuzzy states, representing the different possible actions that the character
can take.

Linking the input and output states are a set of fuzzy rules. Typically, rules have
the structure

input 1 state AND . . . AND input n state THEN output state

For example, using the three inputs in Figure 5.28 below, we might have rules
such as

chasing AND corner-entry AND going-fast THEN brake

leading AND mid-corner AND going-slow THEN accelerate

Rules are structured so that each clause in a rule is a state from a different crisp
input. Clauses are always combined with a fuzzy AND. In our example, there are
always three clauses because we had three crisp inputs, and each clause represents
one of the states from each input.

It is a common requirement to have a complete set of rules: one for each com-
bination of states from each input. For our example this would produce 18 rules
(2 × 3 × 3).
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Figure 5.28 Exclusive mapping to states for fuzzy decision making

To generate the output, we go through each rule and calculate the degree of mem-
bership for the output state. This is simply a matter of taking the minimum degree of
membership for the input states in that rule (since they are combined using AND).
The final degree of membership for each output state will be the maximum output
from any of the applicable rules.

For example, in an oversimplified version of the previous example, we have two
inputs (corner position and speed), each with two possible states. The rule block looks
like the following:

corner-entry AND going-fast THEN brake

corner-exit AND going-fast THEN accelerate

corner-entry AND going-slow THEN accelerate

corner-exit AND going-slow THEN accelerate

We might have the following degrees of membership:

Corner-entry: 0.1

Corner-exit: 0.9
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Going-fast: 0.4

Going-slow: 0.6

Then the results from each rule are

Brake = min(0.1,0.4) = 0.1

Accelerate = min(0.9,0.4) = 0.4

Accelerate = min(0.1,0.6) = 0.1

Accelerate = min(0.9,0.6) = 0.6

So the final value for brake is 0.1, and the final value for accelerate is the maximum
of the degrees given by each rule, namely, 0.6.

The pseudo-code below includes a shortcut that means we don’t need to calculate
all the values for all the rules. When considering the second acceleration rule, for
example, we know that the accelerate output will be at least 0.4 (the result from the
first accelerate rule). As soon as we see the 0.1 value, we know that this rule will have
an output of no more than 0.1 (since it takes the minimum). With a value of 0.4
already, the current rule cannot possibly be the maximum value for acceleration, so
we may as well stop processing this rule.

After generating the correct degrees of membership for the output states, we can
perform defuzzification to determine what to do (in our example we might output a
numeric value to indicate how hard to accelerate or break—in this case a reasonable
acceleration).

Rule Structure

It is worth being clear about the rule structure we’ve used above. This is a structure
that makes it efficient to calculate the degree of membership of the output state. Rules
can be stored simply as a list of states, and they are always treated the same way be-
cause they are the same size (one clause per input variable), and their clauses are
always combined using AND.

I’ve come across several misleading papers, articles, and talks that have presented
this structure as if it were somehow fundamental to fuzzy logic itself. There is nothing
wrong with using any rule structure, involving any kind of fuzzy operation (AND,
OR, NOT, etc.), and any number of clauses. For very complex decision making with
lots of inputs, parsing general fuzzy logic rules can be faster.

With the restriction that the set of fuzzy states for one input represents all possible
states, and with the added restriction that all possible rule combinations are present
(we’ll call these block format rules), the system has a neat mathematical property. Any
general rules using any number of clauses combined with any fuzzy operators can be
expressed as a set of block format rules.

If you are having trouble seeing this, observe that with a complete set of AND-ed
rules we can specify any truth table we like (try it). Any set of consistent rules will
have its own truth table, and we can directly model this using the block format rules.
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In theory, any set of (non-contradictory) rules can be transformed into our for-
mat. Although there are transformations for this purpose, they are only of practical
use for converting an existing set of rules. For developing a game, it is better to start
by encoding rules in the format they are needed.

Pseudo-Code

The fuzzy decision maker can be implemented in the following way:

1 def fuzzyDecisionMaker(inputs, membershipFns, rules):
2

3 # Will hold the degrees of membership for each input
4 # state and output state, respectively
5 inputDom = []
6 outputDom = [0,0,...,0]
7

8 # Convert the inputs into state values
9 for i in 0..len(inputs):

10 # Get the input value
11 input = inputs[i]
12

13 # Get the membership functions for this input
14 membershipFnList = membershipFns[i]
15

16 # Go through each membership function
17 for membershipFn in membershipFnList:
18

19 # Convert the input into a degree of membership
20 inputDom[membershipFn.stateId] =
21 membershipFn.dom(input)
22

23 # Go through each rule
24 for rule in rules:
25

26 # Get the current output dom for the conclusion state
27 best = outputDom[rule.conclusionStateId]
28

29 # Hold the minimum of the inputDoms seen so far
30 min = 1
31

32 # Go through each state in the input of the rule
33 for state in rule.inputStateIds:
34
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35 # Get the d.o.m. for this input state
36 dom = inputDom[state]
37

38 # If we’re smaller than the best conclusion so
39 # far, we may as well exit now, because even if
40 # we are the smallest in this rule, the
41 # conclusion will not be the best overall
42 if dom < best:
43 break continue # i.e., go to next rule
44

45 # Check if we’re the lowest input d.o.m. so far
46 if dom < min: min = dom
47

48 # min now holds the smallest d.o.m. of the inputs,
49 # and because we didn’t break above, we know it is
50 # larger than the current best, so write the current
51 # best.
52 outputDom[rule.conclusionStateId] = min
53

54 # Return the output state degrees of membership
55 return outputDom

The function takes as input the set of input variables, a list of lists of membership
functions, and a list of rules.

The membership functions are organized in lists where each function in the list
operates on the same input variable. These lists are then combined in an overall list
with one element per input variable. The inputs and membershipFns lists therefore
have the same number of elements.

Data Structures and Interfaces

We have treated the membership functions as structures with the following form:

1 struct MembershipFunction:
2 stateId
3 def dom(input)

where stateId is the unique integer identifier of the fuzzy state for which the func-
tion calculates degree of membership. If membership functions define a zero-based
continuous set of identifiers, then the corresponding degrees of membership can be
simply stored in an array.

Rules also act as structures in the code above and have the following form:
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1 struct FuzzyRule:
2 inputStateIds
3 conclusionStateId

where the inputStateIds is a list of the identifiers for the states on the left-hand side
of the rule, and the conclusionStateId is an integer identifier for the output state on
the right-hand side of the rule.

The conclusion state id is also used to allow the newly generated degree of mem-
bership to be written to an array. The id numbers for input and output states should
both begin from zero and be continuous (i.e., there is an input 0 and an output 0,
an input 1 and an output 1, and so on). They are treated as indices into two separate
arrays.

Implementation Notes

The code illustrated above can often be implemented for SIMD hardware, such as
the PC’s SSE extensions or (less beneficially) a vector unit on PS2. In this case the
short circuit code illustrated will be omitted; such heavy branching isn’t suitable for
parallelizing the algorithm.

In a real implementation, it is common to retain the degrees of membership
for input values that stay the same from frame to frame, rather than sending them
through the membership functions each time.

The rule block is large, but predictable. Because every possible combination is
present, it is possible to order the rules so that they do not need to store the list of
input state ids. A single array containing conclusions can be used, which is indexed
by the offsets for each possible input state combination.

Performance

The algorithm is O(n + m) in memory, where n is the number of input states, and m
is the number of output states. It simply holds the degree of membership for each.

Outside the algorithm itself, the rules need to be stored. This requires

O

( ∏
k=0...i

nk

)

memory, where ni is the number of states per input variable, and i is the number of
input variables. So

n =
∑

k=0...1

nk.
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It is

O

(
i

∏
k=0...i

nk

)

in time. There are ∏
k=0...i

nk

rules, and each one has i clauses. Each clause needs to be evaluated in the algorithm.

Weaknesses

The overwhelming weakness of this approach is its lack of scalability. It works well
for a small number of input variables and a small number of states per variable. To
process a system with 10 input variables, each with 5 states, would require almost 10
million rules. This is well beyond the ability of anyone to create.

For larger systems of this kind, we can either use a small number of general fuzzy
rules, or we can use Combs method for creating rules, where the number of rules
scales linearly with the number of input states.

Combs Method

Combs method relies on a simple result from classical logic: a rule of the form

a AND b ENTAILS c

can be expressed as

(a ENTAILS c) OR (b ENTAILS c)

where ENTAILS is a Boolean operator with its own truth table:

a b a ENTAILS b

true true true

true false false

false true true

false false false

As an exercise you can create the truth tables for the previous two logical statements
and check that they are equal.

The ENTAILS operator is equivalent to “IF a THEN b.” It says that should a be
true, then b must be true. If ‘a’ is not true, then it doesn’t matter if ‘b’ is true or not.
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At first glance it may seem odd that

false ENTAILS true = true

but this is quite logical. Suppose we say that

IF I’m-in-the-bath THEN I’m-wet

So If I’m in the bath then I am going to be wet (ignoring the possibility that I’m
in an empty bath, of course). But I can be wet for very many other reasons: getting
caught in the rain, being in the shower, and so on. So I’m-wet can be true and I’m-
in-the-bath can be false, and the rule would still be valid.

What this means is that we can write

IF a AND b THEN c

as

(IF a THEN c) or (IF b THEN c)

Previously, we said that the conclusions of rules are OR-ed together, so we can
split the new format rule into two separate rules:

IF a THEN c

IF b THEN c

For the purpose of this discussion, we’ll call this Combs format (although that’s
not a widely used term).

The same thing works for larger rules:

IF a1 AND . . . AND an THEN c

can be rewritten as

IF a1 THEN c
...

IF an THEN c

So we’ve gone from having rules involving all possible combinations of states to a
simple set of rules with only one state in the IF-clause and one in the THEN-clause.

Because we no longer have any combinations, there will be the same number of
rules as there are input states. Our example of 10 inputs with 5 states each gives us 50
rules only, rather than 10 million.
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If rules can always be decomposed into this form, then why bother with the block
format rules at all? Well, so far we’ve only looked at decomposing one rule, and we’ve
hidden a problem. Consider the pair of rules:

IF corner-entry AND going-fast THEN brake

IF corner-exit AND going-fast THEN accelerate

These get decomposed into four rules:

IF corner-entry THEN brake

IF going-fast THEN brake

IF corner-exit THEN accelerate

IF going-fast THEN accelerate

Which is an inconsistent set of rules: we can’t both brake and accelerate at the
same time. So when we’re going fast, which is it to be? The answer, of course, is that
it depends on where we are in the corner.

So while one rule can be decomposed, more than one rule cannot. Unlike for
block format rules, we cannot represent any truth table using Combs format rules.
Because of this, there is no possible transformation that converts a general set of rules
into this format. It may just so happen that a particular set of rules can be converted
into Combs format, but that is simply a happy coincidence.

Combs method instead starts from scratch: the fuzzy logic designers build up
rules, limiting themselves to Combs format only. The overall sophistication of the
fuzzy logic system will inevitably be limited, but the tractability of creating the rules
means they can be tweaked more easily.

Our running example, which in block format was

corner-entry AND going-fast THEN brake

corner-exit AND going-fast THEN accelerate

corner-entry AND going-slow THEN accelerate

corner-exit AND going-slow THEN accelerate

could be expressed as

corner-entry THEN brake

corner-exit THEN accelerate

going-fast THEN brake

going-slow THEN accelerate
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With inputs of

Corner-entry: 0.1

Corner-exit: 0.9

Going-fast: 0.4

Going-slow: 0.6

the block format rules give us results of

Brake = 0.1

Accelerate = 0.6

while Combs method gives us

Brake = 0.4

Accelerate = 0.9

When both sets of results are defuzzified, they are both likely to lead to a modest
acceleration.

Combs method is surprisingly practical in fuzzy logic systems. If Combs method
were used in classical logic (building conditions for state transitions, for example), it
would end up hopelessly restrictive. But in fuzzy logic, multiple fuzzy states can be
active at the same time, and this means they can interact with one another (we can
both brake and accelerate, for example, but the overall speed change depends on the
degree of membership of both states). This interaction means that Combs method
produces rules that are still capable of producing interaction effects between states,
even though those interactions are no longer explicit in the rules.

5.4.3 FUZZY STATE MACHINES

Although developers regularly talk about fuzzy state machines, they don’t always
mean the same thing by it. A fuzzy state machine can be any state machine with some
element of fuzziness. It can have transitions that use fuzzy logic to trigger, or it might
use fuzzy states rather than conventional states. It could even do both.

Although I’ve seen several approaches, with none of them particularly wide-
spread, as an example we’ll look at a simple state machine with fuzzy states, but with
crisp triggers for transitions.

The Problem

Regular state machines are suitable when the character is clearly in one state or an-
other. As we have seen, there are many situations in which grey areas exist. We’d like
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to be able to have a state machine that can sensibly handle state transitions, while
allowing a character to be in multiple states at the same time.

The Algorithm

In the conventional state machine we kept track of the current state as a single value.
Now we can be in any or even all states with some degree of membership (DOM).
Each state therefore has its own DOM value. To determine which states are currently
active (i.e., have a DOM greater than zero), we can simply look through all states. In
most practical applications, only a subset of the states will be active at one time, so it
can be more efficient to keep a separate list of all active states.

At each iteration of the state machine, the transitions belonging to all active states
are given the chance to trigger. The first transition in each active state is fired. This
means that multiple transitions can happen in one iteration. This is essential for keep-
ing the fuzziness of the machine.

Unfortunately, because we’ll implement the state machine on a serial computer,
the transitions can’t be simultaneous. It is possible to cache all firing transitions and
execute them simultaneously. In our algorithm we will use a simpler process: we will
fire transitions belonging to each state in decreasing order of DOM.

If a transition fires it can transition to any number of new states. The transition
itself also has an associated degree of transition. The DOM of the target state is given
by the DOM of the current state AND-ed with the degree of transition.

For example, state A has a DOM of 0.4, and one of its transitions, T, leads to
another state, B, with a degree of transition 0.6. Assume for now that the DOM of B
is currently zero. The new DOM of B will be

MB = M(A AND T) = min(0.4,0.6) = 0.4,

where Mx is the DOM of the set x, as before.
If the current DOM of State B is not zero, then the new value will be OR-ed with

the existing value. Suppose it is 0.3 currently, we have

M′
B = M(B OR (A AND T)) = max(0.3,0.4) = 0.4.

At the same time, the start state of the transition is AND-ed with NOT T, i.e.,
the degree to which we don’t leave the start state is given by one minus the degree of
transition. In our example, the degree of transition is 0.6. This is equivalent to saying
0.6 of the transition happens, so 0.4 of the transition doesn’t happen. The DOM for
state A is given by

M′
A = M(A AND NOT T) = min(0.4,1 − 0.6) = 0.4.

If you convert this into crisp logic, it is equivalent to the normal state machine
behavior: the start state being on AND the transition firing causes the end state to be
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on; and any such transition will cause the end state to be on, there may be several pos-
sible sources (i.e., they are OR-ed together). Similarly, when the transition has fired
the start state is switched off, because the transition has effectively taken its activation
and passed it on.

Transitions are triggered in the same way as for finite state machines. We will
hide this functionality behind a method call, so any kind of tests can be performed,
including tests involving fuzzy logic, if required.

The only other modification we need is to change the way actions are performed.
Because actions in a fuzzy logic system are typically associated with defuzzified values,
and because defuzzification typically uses more than one state, it doesn’t make sense
to have states directly request actions. Instead, we separate all action requests out
of the state machine and assume that there is an additional, external defuzzification
process used to determine the action required.

Pseudo-Code

The algorithm is simpler than the state machines we saw earlier. It can be imple-
mented in the following way:

1 class FuzzyStateMachine:
2

3 # Holds a state along with its current degree
4 # of membership
5 struct StateAndDOM:
6 state
7 dom
8

9 # Holds a list of states for the machine
10 states
11

12 # Holds the initial states, along with DOM values
13 initialStates
14

15 # Holds the current states, with DOM values
16 currentStates = initialStates
17

18 # Checks and applies transitions
19 def update():
20

21 # Sorts the current states into DOM order
22 states = currentStates.sortByDecreasingDOM()
23

24 # Go through each state in turn



5.4 Fuzzy Logic 367

25 for state in states:
26

27 # Go through each transition in the state
28 for transition in currentState.getTransitions():
29

30 # Check for triggering
31 if transition.isTriggered():
32

33 # Get the transition’s degree of transition
34 dot = transition.getDot()
35

36 # We have a transition, process each target
37 for endState in transition.getTargetStates():
38

39 # Update the state
40 end = currentStates.get(endState)
41 end.dom = max(end.dom, min(state.dom, dot))
42

43 # Check if we need to add the state
44 if end.dom > 0 and not end in currentStates:
45 currentStates.append(end)
46

47 # Update the start state from the transition
48 state.dom = min(state.dom, 1 - dot)
49

50 # Check if we need to remove the start state
51 if state.dom <= 0.0: currentStates.remove(state)
52

53 # We don’t look at any more transitions for this
54 # active state
55 break

Data Structures and Interfaces

The currentStates member is a list of StateAndDom instances. In addition to its nor-
mal list-style operations (i.e., iteration, removal of an element, testing for member-
ship, addition of an element), it supports two operations specific for this algorithm.

The sortByDecreasingDOM method returns a copy of the list sorted in order of de-
creasing DOM values. It does not make copies of any of the StateAndDom instances in
the list. We need a copy, since we’ll be making changes to the original while we iterate
through its contents. This can cause problems or infinite loops (although no infinite
loops will be caused in this algorithm), so it is to be avoided as good programming
practice.
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The get method looks up a StateAndDom instance in the list from its state mem-
ber.

It therefore has the following form:

1 class StateAndDomList (VanillaList):
2 def get(state)
3 def sortByDecreasingDOM()

where VanillaList is whatever data structure that normally handles growable arrays.
Transitions have the following form:

1 class Transition:
2 def isTriggered()
3 def getTargetStates()
4 def getDot()

The isTriggered method returns true if the transition can fire; the getTarget-
States returns a list of states to transition to; and getDot returns the degree of transi-
tion.

Implementation Notes

The isTriggered method of the transition class can be implemented in the same way
as for a standard state machine. It can use the infrastructure we developed earlier in
the chapter, including decision trees.

It can also contain fuzzy logic to determine transitions. The degree of transition
provides a mechanism to expose this fuzzy logic to the state machine.

Suppose, for example, that the isTriggered method uses some fuzzy logic to de-
termine that its transition conditions are met with a DOM of 0.5. It can then expose
0.5 as the degree of transition, and the transition will have approximately half of its
normal action on the state of the machine.

Performance

The algorithm requires temporary storage for each active state and therefore is O(n)
in memory, where n is the number of active states (i.e., those with DOM > 0).

The algorithm looks at each transition for each active state and therefore is O(nm)
in time, where m is the number of transitions per state.

As in all previous decision making tools, the performance and memory require-
ments can easily be much higher if the algorithms in any of its data structures are not
O(1) in both time or memory.
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Multiple Degrees of Transition

It is possible to have a different degree of transition per target state. The degree of
membership for target states is calculated in the same way as before.

The degree of membership of the start state is more complex. We take the current
value and AND it with the NOT of the degree of transition, as before. In this case,
however, there are multiple degrees of transition. To get a single value, we take the
maximum of the degrees of transition (i.e., we OR them together first).

For example, say we have the following states:

State A: DOM = 0.5

State B: DOM = 0.6

State C: DOM = 0.4

Then applying the transition

From A to B (DOT = 0.2) AND C (DOT = 0.7)

will give

State B: DOM = max
(
0.6,min(0.2,0.5)

) = 0.6

State C: DOM = max
(
0.4,min(0.7,0.5)

) = 0.5

State A: DOM = min
(
0.5,1 − max(0.2,0.7)

) = 0.3

Again, if you unpack this in terms of the crisp logic, it matches with the behavior
of the finite state machine.

With different degrees of transition to different states, we effectively have com-
pletely fuzzy transitions: the degrees of transition represent grey areas between tran-
sitioning fully to one state or another.

On the CD

The Fuzzy State Machine program on the CD illustrates this kind of state machine,

PROGRAM

with multiple degrees of transition. As in the previous state machine program, you
can select any transition to fire. In this version you can also tailor the degrees of tran-
sition to see the effects of fuzzy transitions.

5.5 MARKOV SYSTEMS

The fuzzy state machine could simultaneously be in multiple states, each with an as-
sociated degree of membership. Being proportionally in a whole set of states is useful
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outside fuzzy logic. Whereas fuzzy logic does not assign any outside meaning to its
degrees of membership (they need to be defuzzified into any useful quantity), it is
sometimes useful to work directly with numerical values for states.

We might have a set of priority values, for example, controlling which of a group
of characters gets to spearhead an assault. Or a single character might use numer-
ical values to represent the safety of each sniping position in a level. Both of these
applications benefit from dynamic values. Different characters might lead in differ-
ent tactical situations or as their relative health fluctuates during battle. The safety
of sniping positions may vary depending on the position of enemies and whether
protective obstacles have been destroyed.

This situation comes up regularly, and it is relatively simple to create an algorithm
similar to a state machine to manipulate the values. There is no consensus as to what
this kind of algorithm is called, however. Most often it is called a fuzzy state machine,
with no distinction between implementations that use fuzzy logic and those that do
not. In this book I’ll reserve “fuzzy state machine” for algorithms involving fuzzy
logic. The mathematics behind my implementation is a Markov process, so I’ll refer
to the algorithm as a Markov state machine. Bear in mind that this nomenclature isn’t
widespread.

Before we look at the state machine, I’ll give a brief introduction to Markov
processes.

5.5.1 MARKOV PROCESSES

We can represent the set of numerical states as a vector of numbers. Each position in
the vector corresponds to a single state (i.e., a single priority value, or the safety of a
particular location). The vector is called the state vector.

There is no constraint on what values appear in the vector. There can be any
number of zeros, and the entire vector can sum to any value. The application may
put its own constraints on allowed values. If the values represent a distribution (what
proportion of the enemy force is in each territory of a continent, for example), then
they will sum to 1. Markov processes in mathematics are almost always concerned
with the distribution of random variables. So much of the literature assumes that the
state vector sums to 1.

The values in the state vector change according to the action of a transition ma-
trix. First-order Markov processes (the only ones we will consider) have a single tran-
sition matrix that generates a new state vector from the previous values. Higher order
Markov processes also take into account the state vector at earlier iterations.

Transition matrices are always square. The element at (i, j) in the matrix repre-
sents the proportion of element i in the old state vector that is added to element j in
the new vector. One iteration of the Markov process consists of multiplying the state
vector by the transition matrix, using normal matrix multiplication rules. The result
is a state vector of the same size as the original. Each element in the new state vector
has components contributed by every element in the old vector.
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Conservative Markov Processes

A conservative Markov process ensures that the sum of the values in the state vector
does not change over time. This is essential for applications where the sum of the
state vector should always be fixed (where it represents a distribution, for example, or
if the values represent the number of some object in the game). The process will be
conservative if all the rows in the transition matrix sum to 1.

Iterated Processes

It is normally assumed that the same transition matrix applies over and over again to
the state vector. There are techniques to calculate what the final, stable values in the
state vector will be (it is an eigenvector of the matrix, as long as such a vector exists).

This iterative process forms a Markov chain.
In game applications, however, it is common for there to be any number of dif-

ferent transition matrices. Different transition matrices represent different events in
the game, and they update the state vector accordingly.

Returning to our sniper example, let’s say that we have a state vector representing
the safety of four sniping positions.

V =
⎡
⎢⎣

1.0
0.5
1.0
1.5

⎤
⎥⎦

which sums to 4.0.
Taking a shot from the first position will alert the enemy to its existence. The safety

of that position will diminish. But while the enemy is focussing on the direction of the
attack, the other positions will be correspondingly safer. We could use the transition
matrix

M =
⎡
⎢⎣

0.1 0.3 0.3 0.3
0.0 0.8 0.0 0.0
0.0 0.0 0.8 0.0
0.0 0.0 0.0 0.8

⎤
⎥⎦

to represent this case. Applying this to the state vector, we get the new safety values:

V =
⎡
⎢⎣

0.1
0.7
1.1
1.5

⎤
⎥⎦

which sums to 3.4.
So the total safety has gone down (from 4.0 to 3.4). The safety of sniping point

1 has been decimated (from 1.0 to 0.1), but the safety of the other three points has
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marginally increased. There would be similar matrices for shooting from each of the
other sniping points.

Notice that if each matrix had the same kind of form, the overall safety would
keep decreasing. After a while, nowhere would be safe. This might be realistic (after
being sniped at for a while, the enemy is likely to make sure that nowhere is safe), but
in a game we might want the safety values to increase if no shots are fired. A matrix
such as

M =
⎡
⎢⎣

1.0 0.1 0.1 0.1
0.1 1.0 0.1 0.1
0.1 0.1 1.0 0.1
0.1 0.1 0.1 1.0

⎤
⎥⎦

would achieve this, if it is applied once for every minute that passes without gunfire.
Unless you are dealing with known probability distributions, the values in the

transition matrix will be created by hand. Tuning values to give the desired effect
can be difficult. It will depend on what the values in the state vector are used for. In
applications I have worked on (related to steering behaviors and priorities in a rule-
based system, both of which are described elsewhere in the book), the behavior of the
final character has been quite tolerant of a range of values and tuning was not too
difficult.

Markov Processes in Math and Science

In mathematics a first-order Markov process is any probabilistic process where the
future depends only on the present and not on the past. It is used to model changes
in probability distribution over time.

The values in the state vector are probabilities for a set of events, and the transition
matrix determines what probability each event will have at the next trial given their
probabilities at the last trial. The states might be probability of sun or probability of
rain, indicating the weather on one day. The initial state vector indicates the known
weather on one day (e.g., [1 0] if it was sunny), and by applying the transition we can
determine the probability of the following day being sunny. By repeatedly applying
the transition we have a Markov chain, and we can determine the probability of each
type of weather for any time in the future.

In AI, Markov chains are more commonly found in prediction: predicting the
future from the present. They are the basis of a number of techniques for speech
recognition, for example, where it makes sense to predict what the user will say next
to aid disambiguation of similar-sounding words.

There are also algorithms to do learning with Markov chains (by calculating or
approximating the values of the transition matrix). In the speech recognition exam-
ple, the Markov chains undergo learning to better predict what a particular user is
about to say.
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5.5.2 MARKOV STATE MACHINE

Using Markov processes, we can create a decision making tool that uses numeric val-
ues for its states.

The state machine will need to respond to conditions or events in the game by
executing a transition on the state vector. If no conditions or events occur for a while,
then a default transition can occur.

The Algorithm

We store a state vector as a simple list of numbers. The rest of the game code can use
these values in whatever way is required.

We store a set of transitions. Transitions consist of a set of triggering conditions
and a transition matrix. The trigger conditions are of exactly the same form as for
regular state machines.

The transitions belong to the whole state machine, not to individual states.
At each iteration, we examine the conditions of each transition and determine

which of them trigger. The first transition that triggers is then asked to fire, and it
applies its transition matrix to the state vector to give a new value.

Default Transitions

We would like a default transition to occur after a while if no other transitions trig-
ger. We could do this by implementing a type of transition condition that relies on
time. The default transition would then be just another transition in the list, trigger-
ing when the timer counts down. The transition would have to keep an eye on the
state machine, however, and make sure it resets the clock every time another transi-
tion triggers. To do this, it may have to directly ask the transitions for their trigger
state, which is a duplication of effort, or the state machine would have to expose that
information through a method.

Since the state machine already knows if no transitions trigger, it is more common
to bring the default transition into the state machine as a special case. The state ma-
chine has an internal timer and a default transition matrix. If any transition triggers,
the timer is reset. If no transitions trigger, then the timer is decremented. If the timer
reaches zero, then the default transition matrix is applied to the state vector, and the
timer is reset again.

Note that this can also be done in a regular state machine if a transition should
occur after a period of inactivity. I’ve seen it more often in numeric state machines,
however.

Actions

Unlike a finite state machine, we are in no particular state. Therefore, states cannot di-
rectly control which action the character takes. In the finite state machine algorithm,
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the state class could return actions to perform for as long as the state was active. Tran-
sitions also returned actions that could be carried out when the transition was active.

In the Markov state machine, transitions still return actions, but states do not.
There will be some additional code that uses the values in the state vector in some
way. In our sniper example we can simply pick the largest safety value and schedule
a shot from that position. However the numbers are interpreted, a separate piece of
code is needed to turn the value into action.

Pseudo-Code

The Markov state machine has the following form:

1 class MarkovStateMachine:
2

3 # The state vector
4 state
5

6 # The period to wait before using the default transition
7 resetTime
8

9 # The default transition matrix
10 defaultTransitionMatrix
11

12 # The current countdown
13 currentTime = resetTime
14

15 # List of transitions
16 transitions
17

18 def update():
19

20 # Check each transition for a trigger
21 for transition in transitions:
22 if transition.isTriggered():
23 triggeredTransition = transition
24 break
25

26 # No transition is triggered
27 triggeredTransition = None
28

29 # Check if we have a transition to fire
30 if triggeredTransition:
31
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32 # Reset the timer
33 currentTime = resetTime
34

35 # Multiply the matrix and the state vector
36 matrix = triggeredTransition.getMatrix()
37 state = matrix * state
38

39 # Return the triggered transition’s action list
40 return triggeredTransition.getAction()
41

42 else:
43 # Otherwise check the timer
44 currentTime -= 1
45

46 if currentTime <= 0:
47 # Do the default transition
48 state = state * defaultTransitionMatrix
49 # Reset the timer
50 currentTime = reset Time
51

52 # Return no actions, since no transition triggered
53 return []

Data Structures and Interfaces

The transitions list in the state machine holds instances with the following interface:

1 class MarkovTransition:
2 def isTriggered()
3 def getMatrix()
4 def getAction()

On the CD

The Markov State Machine program on the CD demonstrates a Markov state ma-
chine in action. At each iteration you can select one of the transitions to fire or no

PROGRAM

transition. The internal time for the state machine will run down after a while of in-
activity, and the default transition will be applied. The software is a command line
demonstration that outputs copious detail, such as what it is doing at each iteration,
when a transition triggers, and the results of the transition on the state vector.
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5.6 GOAL-ORIENTED BEHAVIOR

So far we have focussed on approaches that react: a set of inputs are provided to the
character, and a behavior selects an appropriate action. There is no implementation
of desires or goals. The character merely reacts to input.

It is possible, of course, to make the character seem like it has goals or desires,
even with the simplest decision making techniques. A character whose desire is to kill
an enemy will hunt one down, will react to the appearance of an enemy by attacking,
and will search for an enemy when there is a lack of one. The same character may
also have the apparent desire to stay alive, in which case it will take account of its own
protection, reacting to low health or the presence of danger. The underlying structure
may be reacting to input, but the character doesn’t need to appear that way. In my
experience this is a fundamental misunderstanding that academic AI folk often have
about game AI: it doesn’t matter what is controlling the character, as long as it looks
right.

There are techniques we can use to make the character more flexible in its goal
seeking, however, and in some game genres this is a useful approach. It is particularly
visible in people simulation games, such as The Sims [Maxis Software, Inc., 2000].

Here a small number of characters are on-screen at one time. Each has a range
of emotional and physical parameters that change over time in relation to its envi-
ronment and its actions. The player can often control the character’s actions directly,
although the character is always capable of independent action.

In a game such as The Sims, there is no overall goal to the game. In other titles
such as Ghost Master [Sick Puppies Studio and International Hobo Ltd., 2003], there
is a definite aim (you try to scare the inhabitants out of a house using various ghosts
and supernatural powers).

In this kind of game a wide range of different actions are available to characters.
Actions might include boiling the kettle, sitting on a sofa, or talking to another char-
acter. The action itself is represented by a canned animation.

Characters need to demonstrate their emotional and physical state by choosing
appropriate actions. They should eat when hungry, sleep when tired, chat to friends
when lonely, and hug when in need of love. We could simply run a decision tree that
selects available actions based on the current emotional and physical parameters of
the character. In a game such as The Sims, this would lead to a very big decision
tree. There are literally hundreds of parameterized actions to choose from for every
character.

A better approach would be to present the character with a suite of possible ac-
tions and have it choose the one that best meets its immediate needs.

This is goal-oriented behavior (GOB), explicitly seeking to fulfil the character’s
internal goals. Like many algorithms in this book, the name can only be loosely ap-
plied. GOB may mean different things to different people, and it is often used either
vaguely to refer to any goal seeking decision maker or to specific algorithms similar
to those here. I’ll use it as a general term.
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We’ll look at a very simple GOB framework and a utility-based GOB decision
maker. We’ll also look at goal-oriented action planning (GOAP) an extension to the
basic GOB system which can plan sequences of actions to achieve its goal.

5.6.1 GOAL-ORIENTED BEHAVIOR

Goal-oriented behavior is a blanket term that covers any technique taking into ac-
count goals or desires. There isn’t a single technique for GOB, and some of the other
techniques in this chapter, notably rule-based systems, can be used to create goal seek-
ing characters. Goal-oriented behavior is still fairly rare in games, so it is also difficult
to say what the most popular techniques are.

In this section we will look at a utility-based decision making system that can
choose from a range of actions based on its current goals. It is a system I have imple-
mented once myself, and I have seen the same technique in two other companies.

Goals

A character may have one or more goals, also called motives. There may be hundreds
of possible goals, and the character can have any number of them currently active.
They might have goals such as eat, regenerate health, or kill enemy. Each goal has a
level of importance (often called “insistence” among GOB aficionados) represented
by a number. A goal with a high insistence will tend to influence the character’s be-
havior more strongly.

The character will try to fulfil the goal or to reduce its insistence. Some games
allow goals to be completely satisfied (such as killing an enemy). Other games have
a fixed set of goals that are always there, and they simply reduce the insistence when
the goal is fulfilled (a character might always have a goal of “get healthy,” for example,
but at a low insistence when they are already healthy). A zero value for insistence is
equivalent to a completely satisfied goal.

I’ve deliberately conflated goals and motives here. For the purpose of making great
game characters, goals and motives can usually be treated as the same thing or at least
blurred together somewhat. In some AI research they are quite distinct, but their defi-
nitions vary from researcher to researcher: motives might give rise to goals based on a
character’s beliefs, for example (i.e., I may have a goal of killing my enemy motivated
by revenge for my colleagues, out of the belief that my enemy killed them). This is an
extra layer we don’t need for this algorithm, so I’ll treat motives and goals as largely
the same thing and normally refer to them as goals.

We could easily implement goals without insistence values, but it makes it more
difficult to choose which goals to focus on. I’ve chosen to use real numbers rather than
Booleans, because the resulting algorithms are no more complex. If your game has
thousands of characters with hundreds of goals, it might be worth just using on/off
goals and saving storage space.
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In a game like The Sims, the character’s physical and emotional parameters can
be interpreted as goal values. A character might have a hunger motive: the higher the
hunger value, the more eating becomes a pressing goal.

Actions

In addition to a set of goals, we need a suite of possible actions to choose from. These
actions can be generated centrally, but it is also common for them to be generated by
objects in the world. In The Sims world, a kettle adds a “boil kettle” action and an
empty oven adds an “insert raw food” action to the list of possibilities. In an action
game an enemy might introduce an “attack me” action, while a door might expose a
“lock” action.

The actions available depend on the current state of the game. The empty oven
might check if the character is carrying raw food before positing its “insert” action.
An oven containing raw food does not allow more food to be added; it exposes a “cook
food” action. Similarly, the door exposes an “unlock” action if it is already locked or
maybe an “insert key” action first before unlocking is allowed.

As the actions are added to the list of options, they are rated against each motive
the character has. This rating shows how much impact the action would have on
a particular motive. So the “playing with the games console” action might increase
happiness a lot, but also decrease energy.

In a shooter the actions are more atomic. Each action gives a list of goals that
can be achieved. A “shoot” action, for example, can fulfil a kill enemy goal, as can a
“spring-trap” action, and so on.

The goal that an action promises to fulfil might be several steps away. A piece of
raw food might offer to fulfil hunger, for example. If the character picks it up, it will
not become less hungry, but now the empty oven will offer the insert action, again
promising to feed the character. The same thing continues through a cooking action,
a remove food from oven action, and finally an eat action. In some games the single
action is made up of a sequence of actions. The shoot action might be made up of
draw-weapon, aim, and fire actions, for example. The action execution section at the
end of this chapter has more details about this kind of combined action.

5.6.2 SIMPLE SELECTION

So we have a set of possible actions and a set of goals. The actions promise to fulfil
different goals. Continuing with the people simulation example, we might have

Goal: Eat = 4 Goal: Sleep = 3

Action: Get-Raw-Food (Eat − 3)

Action: Get-Snack (Eat − 2)

Action: Sleep-In-Bed (Sleep − 4)

Action: Sleep-On-Sofa (Sleep − 2)



5.6 Goal-Oriented Behavior 379

We can use a range of decision making tools to select an action and give
intelligent-looking behavior. A simple approach would be to choose the most press-
ing goal (the one with the largest insistence) and find an action that either fulfils it
completely or provides it with the largest decrease in insistence. In the example above,
this would be the get-raw-food action (which in turn might lead to cooking and eat-
ing the food). The change in goal insistence that is promised by an action is a heuristic
estimate of its utility: the use that it might be to a character. The character naturally
wants to choose the action with the highest utility, and the change in goal is used to
do so.

If more than one action can fulfil a goal, we could choose between them at ran-
dom or simply select the first one we find.

Pseudo-Code

We could implement this as

1 def chooseAction(actions, goals):
2

3 # Find the goal to try and fulfil
4 topGoal = goals[0]
5 for goal in goals[1..]:
6 if goal.value > topGoal.value:
7 topGoal = goal
8

9 # Find the best action to take
10 bestAction = actions[0]
11 bestUtility = -actions[0].getGoalChange(topGoal)
12 for action in actions[1..]:
13

14 # We invert the change because a low change value
15 # is good (we want to reduce the value for the goal)
16 # but utilities are typically scaled so high values
17 # are good.
18 utility = -action.getGoalChange(topGoal)
19

20 # We look for the lowest change (highest utility)
21 if thisUtility > bestUtility:
22 bestUtility = thisUtility
23 bestAction = action
24

25 # Return the best action, to be carried out
26 return bestAction
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which is simply two max()-style blocks of code, one for the goal and one for the action.

Data Structures and Interfaces

In the code above, I’ve assumed that goals have an interface of the form

1 struct Goal:
2 name
3 value

and actions have the form

1 struct Action:
2 def getGoalChange(goal)

Given a goal, the getGoalChange function returns the change in insistence that
carrying out the action would provide.

Performance

The algorithm is O(n + m) in time, where n is the number of goals, and m is the
number of possible actions. It is O(1) in memory, requiring only temporary storage.
If goals are identified by an associated zero-based integer (it is simple to make them
do so, since the full range of goals is normally known before the game runs), then the
getGoalChange method of the action structure can be simply implemented by looking
up the change in an array, a constant time operation.

Weaknesses

This approach is simple, fast, and can give surprisingly sensible results, especially in
games with a limited number of actions available (such as shooters, third person ac-
tion or adventure games, or RPGs).

It has two major weaknesses: it fails to take account of side effects that an ac-
tion may have, and it doesn’t incorporate any timing information. We’ll resolve these
issues in turn.

5.6.3 OVERALL UTILITY

The previous algorithm worked in two steps. It first considered which goal to reduce,
and then it decided the best way to reduce it. Unfortunately, dealing with the most
pressing goal might have side effects on others.
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Here is another people simulation example, where insistence is measured on a five
point scale:

Goal: Eat = 4 Goal: Bathroom = 3

Action: Drink-Soda (Eat − 2; Bathroom + 3)

Action: Visit-Bathroom (Bathroom − 4)

A character that is hungry and in need of the bathroom, as shown in the example,
probably doesn’t want to drink a soda. The soda may stave off the snack-craving,
but it will lead to the situation where the need for the toilet is at the top of the five
point scale. Clearly, human beings know that snacking can wait a few minutes for a
bathroom break.

This unintentional interaction might end up being embarrassing, but it could
equally be fatal. A character in a shooter might have a pressing need for a health pack,
but running right into an ambush to get it isn’t a sensible strategy. Clearly, we often
need to consider side effects of actions.

We can do this by introducing a new value: the discontentment of the character.
It is calculated based on all the goal insistence values, where high insistence leaves the
character more discontent. The aim of the character is to reduce its overall discon-
tentment level. It isn’t focussing on a single goal any more, but on the whole set.

We could simply add together all the insistence values to give the discontentment
of the character. A better solution is to scale insistence so that higher values con-
tribute disproportionately high discontentment values. This accentuates high valued
goals and avoids a bunch of medium values swamping one high goal. From my ex-
perimentation, squaring the goal value is sufficient.

For example,

Goal: Eat = 4 Goal: Bathroom = 3

Action: Drink-Soda (Eat − 2; Bathroom + 2)

� afterwards: Eat = 2, Bathroom = 5: Discontentment = 29

Action: Visit-Bathroom (Bathroom − 4)

� afterwards: Eat = 4, Bathroom = 0: Discontentment = 16

To make a decision, each possible action is considered in turn. A prediction is
made of the total discontentment after the action is completed. The action that leads
to the lowest discontentment is chosen. The list above shows this choice in the same
example as we saw before. Now the “visit-bathroom” action is correctly identified as
the best one.

Discontentment is simply a score we are trying to minimize; we could call it any-
thing. In search literature (where GOB and GOAP are found in academic AI), it is
known as an energy metric. This is because search theory is related to the behavior
of physical processes (particularly, the formation of crystals and the solidification of
metals), and the score driving them is equivalent to the energy. I’ll stick with discon-
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tentment in this section, and we’ll return to energy metrics in the context of learning
algorithms in Chapter 7.

Pseudo-Code

The algorithm now looks like the following:

1 def chooseAction(actions, goals):
2

3 # Go through each action, and calculate the
4 # discontentment.
5 bestAction = actions[0]
6 bestValue = calculateDiscontentment(actions[0], goals)
7

8 for action in actions:
9 thisValue = calculateDiscontentment(action, goals)

10 if thisValue < bestValue:
11 bestValue = thisValue
12 bestAction = action
13

14 # return the best action
15 return bestAction
16

17 def calculateDiscontentment(action, goals):
18

19 # Keep a running total
20 discontentment = 0
21

22 # Loop through each goal
23 for goal in action:
24 # Calculate the new value after the action
25 newValue = goal.value + action.getGoalChange(goal)
26

27 # Get the discontentment of this value
28 discontentment += goal.getDiscontentment(value)

Here I’ve split the process into two functions. The second function calculates the
total discontentment resulting from taking one particular action. It, in turn, calls the
getDiscontentment method of the Goal structure.

Having the goal calculate its discontentment contribution gives us extra flexibility,
rather than always using the square of its insistence. Some goals may be really impor-
tant and have very high discontentment values for large values (such as the stay-alive
goal, for example); they can return their insistence cubed, for example, or to a higher
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power. Others may be relatively unimportant and make a tiny contribution only. In
practice, this will need some tweaking in your game to get it right.

Data Structures and Interfaces

The action structure stays the same as before, but the goal structure adds its getDis-
contentment method, implemented as the following:

1 struct Goal:
2 value
3

4 def getDiscontentment(newValue):
5 return newValue * newValue

Performance

This algorithm remains O(1) in memory, but is now O(nm) in time, where n is the
number of goals, and m is the number of actions, as before. It has to consider the
discontentment factor of each goal for each possible action. For large numbers of
actions and goals, it can be significantly slower than the original version.

For small numbers of actions and goals, with the right optimizations, it can actu-
ally be much quicker. This optimization speed up is because the algorithm is suitable
for SIMD optimizations, where the discontentment values for each goal are calculated
in parallel. The original algorithm doesn’t have the same potential.

5.6.4 TIMING

In order to make an informed decision as to which action to take, the character needs
to know how long the action will take to carry out. It may be better for an energy-
deficient character to get a smaller boost quickly (by eating a chocolate bar, for exam-
ple), rather than spending eight hours sleeping. Actions expose the time they take to
complete, enabling us to work that into the decision making.

Actions that are the first of several steps to a goal will estimate the total time to
reach the goal. The pick-up raw food action, for example, may report a 30-minute
duration. The picking up action is almost instantaneous, but it will take several more
steps (including the long cooking time) before the food is ready.

Timing is often split into two components. Actions typically take time to com-
plete, but in some games it may also take significant time to get to the right loca-
tion and start the action. Because game time is often extremely compressed in some
games, the length of time it takes to begin an action becomes significant. It may take
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20 minutes of game time to walk from one side of the level to the other. This is a long
journey to make to carry out a 10-minute-long action.

If it is needed, the length of journey required to begin an action cannot be directly
provided by the action itself. It needs to be either provided as a guess (a heuristic
such as “the time is proportional to the straight line distance from the character to
the object”) or calculated accurately (by pathfinding the shortest route, see Chapter 6
for how).

There is significant overhead for pathfinding on every possible action available.
For a game level with hundreds of objects and many hundreds or thousands of possi-
ble actions, pathfinding to calculate the timing of each one is impractical. A heuristic
must be used. An alternative approach to this problem is given by the “Smelly” GOB
extension, described at the end of this section.

Utility Involving Time

To use time in our decision making we have two choices: we could incorporate the
time into our discontentment or utility calculation, or we would prefer actions that
are short over those that are long, with all other things being equal. This is relatively
easy to add to the previous structure by modifying the calculateDiscontentment
function to return a lower value for shorter actions. We’ll not go into details here.

A more interesting approach is to take into account the consequences of the extra
time. In some games goal values change over time: a character might get increasingly
hungry unless it gets food, a character might tend to run out of ammo unless it finds
an ammo pack, or a character might gain power for a combo attack the longer it holds
its defensive position.

When goal insistences change on their own, an action not only directly affects
some goals, but the time it takes to complete an action may cause others to change
naturally. This can be factored into the discontentment calculation we looked at pre-
viously. If we know how goal values will change over time (and that is a big “if” that
we’ll need to come back to), then we can factor those changes into the discontentment
calculation.

Returning to our bathroom example, here is a character who is in desperate need
of food:

Goal: Eat = 4 changing at + 4 per hour

Goal: Bathroom = 3 changing at + 2 per hour

Action: Eat-Snack (Eat − 2) 15 minutes

� afterwards: Eat = 2, Bathroom = 3.5: Discontentment = 21.25

Action: Eat-Main-Meal (Eat − 4) 1 hour

� afterwards: Eat = 0, Bathroom = 5: Discontentment = 25

Action: Visit-Bathroom (Bathroom − 4) 15 minutes

� afterwards: Eat = 5, Bathroom = 0: Discontentment = 25
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The character will clearly be looking for some food before worrying about the
bathroom. It can choose between cooking a long meal and taking a quick snack. The
quick snack is now the action of choice. The long meal will take so long that by the
time it is completed, the need to go to the bathroom will be extreme. The overall
discontentment with this action is high. On the other hand, the snack action is over
quickly and allows ample time. Going directly to the bathroom isn’t the best option,
because the hunger motive is so pressing.

In a game with many shooters, where goals are either on or off (i.e., any insistence
values are only there to bias the selection; they don’t represent a constantly changing
internal state for the character), this approach will not work so well.

Pseudo-Code

Only the calculateDiscontentment function needs to be changed from our previous
version of the algorithm. It now looks like the following:

1 def calculateDiscontentment(action, goals):
2

3 # Keep a running total
4 discontentment = 0
5

6 # Loop through each goal
7 for goal in action:
8 # Calculate the new value after the action
9 newValue = goal.value + action.getGoalChange(goal)

10

11 # Calculate the change due to time alone
12 newValue += action.getDuration() * goal.getChange()
13

14 # Get the discontentment of this value
15 discontentment += goal.getDiscontentment(newValue)

It works by modifying the expected new value of the goal by both the action (as
before) and the normal rate of change of the goal, multiplied by the action’s duration.

Data Structures and Interfaces

We’ve added a method to both the goal and the action class. The goal class now has
the following format:

1 struct Goal:
2 value
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3 def getDiscontentment(newValue)
4 def getChange()

The getChange method returns the amount of change that the goal normally ex-
periences, per unit of time. I’ll come back to how this might be done below.

The action has the following interface:

1 struct Action:
2 def getGoalChange(goal)
3 def getDuration()

where the new getDuration method returns the time it will take to complete the ac-
tion. This may include follow-on actions, if the action is part of a sequence, and may
include the time it would take to reach a suitable location to start the action.

Performance

This algorithm has exactly the same performance characteristics as before: O(1) in
memory and O(nm) in time (with n being the number of goals, and m the number
of actions, as before). If the Goal.getChange and Action.getDuration methods simply
return a stored value, then the algorithm can still be easily implemented on SIMD
hardware, although it adds an extra couple of operations over the basic form.

Calculating the Goal Change over Time

In some games the change in goals over time is fixed and set by the designers. The
Sims, for example, has a basic rate at which each motive changes. Even if the rate isn’t
constant, but varies with circumstance, the game still knows the rate, because it is
constantly updating each motive based on it. In both situations we can simply use the
correct value directly in the getChange method.

In some situations we may not have any access to the value, however. In a shooter,
where the “hurt” motive is controlled by the number of hits being taken, we don’t
know in advance how the value will change (it depends on what happens in the game).
In this case we need to approximate the rate of change.

The simplest and most effective way to do this is to regularly take a record of
the change in each goal. Each time the GOB routine is run, we can quickly check
each goal and find out how much it has changed (this is an O(n) process, so it won’t
dramatically affect the execution time of the algorithm). The change can be stored in
a recency weighted average such as

1 rateSinceLastTime = changeSinceLastTime / timeSinceLast
2 basicRate = 0.95 * basicRate + 0.05 * rateSinceLastTime
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where the 0.95 and 0.05 can be any values that sum to 1. The timeSinceLast value is
the number of units of time that has passed since the GOB routine was last run.

This gives a natural pattern to a character’s behavior. It lends a feel of context-
sensitive decision making for virtually no implementation effort, and the recency
weighted average provides a very simple degree of learning. If the character is tak-
ing a beating, it will automatically act more defensively (because it will be expecting
any action to cost it more health), whereas if it is doing well, it will start to get bolder.

The Need for Planning

No matter what selection mechanism we use (within reason, of course), we have as-
sumed that actions are only available for selection when the character can execute
them. We would therefore expect characters to behave fairly sensibly and not to select
actions that are currently impossible. We have looked at a method that considers the
effects that one action has on many goals and have chosen an action to give the best
overall result. The final result is often suitable for use in a game without any more
sophistication.

Unfortunately, there is another type of interaction that our approach so far
doesn’t solve. Because actions are situation dependent, it is normal for one action
to enable or disable several others. Problems like this have been deliberately designed
out of most games using GOB (including The Sims, a great example of the limitations
of the AI technique guiding level design), but it is easy to think of a simple scenario
where they are significant.

Let’s imagine a fantasy RPG, where a magic-using character has five fresh energy
crystals in their wand. Powerful spells take multiple crystals of energy. The character is
in desperate need of healing and would also like to fend off the large Ogre descending
on her. The motives and possible actions are shown in the figure.

Goal: Heal = 4

Goal: Kill-Ogre = 3

Action: Fireball (Kill-Ogre − 2) 3 energy-slots

Action: Lesser-Healing (Heal − 2) 2 energy-slots

Action: Greater-Healing (Heal − 4) 3 energy-slots

The best combination is to cast the “lesser-healing” spell, followed by the “fire-
ball” spell, using the five magic slots exactly. Following the algorithm so far, how-
ever, the mage will choose the spell that gives the best result. Clearly, casting “lesser-
healing” leaves her in a worse health position than “greater-healing,” so she chooses
the latter. Now, unfortunately, she hasn’t enough juice left in the wand and ends up as
Ogre fodder. In this example, we could include the magic in the wand as part of the
motives (we are trying to minimize the number of slots used), but in a game where
there may be many hundreds of permanent effects (doors opening, traps sprung,
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routes guarded, enemies alerted), we might need many thousands of additional mo-
tives.

To allow the character to properly anticipate the effects and take advantage of
sequences of actions, a level of planning must be introduced. Goal-oriented action
planning (GOAP) extends the basic decision making process. It allows characters to
plan detailed sequences of actions that provide the overall optimum fulfillment of
their goals.

5.6.5 OVERALL UTILITY GOAP

The utility-based GOB scheme considers the effects of a single action. The action gives
an indication of how it will change each of the goal values, and the decision maker
uses that information to predict what the complete set of values, and therefore the
total discontentment, will be afterward.

We can extend this to more than one action in a series. Suppose we want to find
out the best sequence of four actions. We can consider all combinations of four ac-
tions and predict the discontentment value after all are completed. The lowest dis-
contentment value indicates the sequence of actions that should be preferred, and we
can immediately execute the first of them.

This is basically the structure for GOAP: we consider multiple actions in sequence
and try to the find the sequence that best meets the character’s goals in the long term.
In this case we are using the discontentment value to indicate whether the goals are
being met. This is a flexible approach and leads to a simple but fairly inefficient al-
gorithm. In the next section we’ll also look at a GOAP algorithm that tries to plan
actions to meet a single goal.

There are two complications that make GOAP difficult. First, there is the sheer
number of available combinations of actions. The original GOB algorithm was
O(nm) in time, but for k steps, a naive GOAP implementation would be O(nmk) in
time. For reasonable numbers of actions (remember The Sims may have hundreds of
possibilities), and a reasonable number of steps to look ahead, this will be unaccept-
ably long. We need to use either small numbers of goals and actions or some method
to cut down some of this complexity.

Second, by combining available actions into sequences, we have not solved the
problem of actions being enabled or disabled. Not only do we need to know what the
goals will be like after an action is complete, we also need to know what actions will
then be available. We can’t look for a sequence of four actions from the current set,
because by the time we come to carry out the fourth action, it might not be available
to us.

To support GOAP, we need to be able to work out the future state of the world
and use that to generate the action possibilities that will be present. When we predict
the outcome of an action, it needs to predict all the effects, not just the change in a
character’s goals.

To accomplish this, we use a model of the world: a representation of the state of
the world that can be easily changed and manipulated without changing the actual
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game state. For our purposes this can be an accurate model of the game world. It is
also possible to model the beliefs and knowledge of a character by deliberately limiting
what is allowed in its model. A character that doesn’t know about a troll under the
bridge shouldn’t have it in its model. Without modelling the belief, the character’s
GOAP algorithm would find the existence of the troll and take account of it in its
planning. That may look odd, but normally isn’t noticeable.

To store a complete copy of the game state for each character is likely to be overkill.
Unless your game state is very simple, there will typically be many hundreds to tens
of thousands of items of data to keep track of. Instead, world models can be imple-
mented as a list of differences: the model only stores information when it is different
from the actual game data. This way if an algorithm needs to find out some piece of
data in the model, it first looks in the difference list. If the data isn’t contained there,
then it knows that it is unchanged from the game state and retrieves it from there.

The Algorithm

We’ve described a relatively simple problem for GOAP. There are a number of dif-
ferent academic approaches to GOAP, and they allow much more complicated prob-
lem domains. Features such as constraints (things about the world that must not be
changed during a sequence of actions), partial ordering (sequences of actions, or ac-
tion groups, that can be performed in any order), and uncertainty (not knowing what
the exact outcome of an action will be) all add complexity that we don’t need in most
games. The algorithm I’m going to give is about as simple as GOAP can be, but in my
experience it is fine for normal game applications.

We start with a world model (it can match the current state of the world or repre-
sent the character’s beliefs). From this model we should be able to get a list of available
actions for the character, and we should be able to simply take a copy of the model.
The planning is controlled by a maximum depth parameter that indicates how many
moves to look ahead.

The algorithm creates an array of world models, with one more element than
value of the depth parameter. These will be used to store the intermediate states of
the world as the algorithm progresses. The first world model is set to the current
world model. It keeps a record of the current depth of its planning, initially zero. It
also keeps a track of the best sequence of actions so far and the discomfort value it
leads to.

The algorithm works iteratively, processing a single world model in an iteration.
If the current depth is equal to the maximum depth, the algorithm calculates the
discomfort value and checks it against the best so far. If the new sequence is the best,
it is stored.

If the current depth is less than the maximum depth, then the algorithm finds
the next unconsidered action available on the current world model. It sets the next
world model in the array to be the result of applying the action to the current world
model and increases its current depth. If there are no more actions available, then the
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current world model has been completed, and the algorithm decreases the current
depth by one. When the current depth eventually returns to zero, the search is over.

This is a typical depth-first search technique, implemented without recursion.
The algorithm will examine all possible sequences of actions down to our greatest
depth. As we mentioned above, this is wasteful and may take too long to complete
for even modest problems. Unfortunately, it is the only way to guarantee that we get
the best of all possible action sequences. If we are prepared to sacrifice that guaran-
tee for reasonably good results in most situations, we can reduce the execution time
dramatically.

To speed up the algorithm we can use a heuristic: we demand that we never con-
sider actions that lead to higher discomfort values. This is a reasonable assumption
in most cases, although there are many cases where it breaks down. Human beings
often settle for momentary discomfort because it will bring them greater happiness
in the long run. Nobody enjoys job interviews, for example, but it is worth it for the
job afterward (or so you’d hope).

On the other hand, this approach does help avoid some nasty situations occur-
ring in the middle of the plan. Recall the bathroom-or-soda dilemma earlier. If we
don’t look at the intermediate discomfort values, we might have a plan that takes the
soda, has an embarrassing moment, changes clothes, and ends up with a reasonable
discomfort level. Human beings wouldn’t do this; they’d go for a plan that avoided
the accident.

To implement this heuristic we need to calculate the discomfort value at every
iteration and store it. If the discomfort value is higher than that at the previous depth,
then the current model can be ignored, and we can immediately decrease the current
depth and try another action.

In the prototypes I built when writing this book, this leads to around a 100-fold
increase in speed in a Sims-like environment with a maximum depth of 4 and a choice
of around 50 actions per stage. Even a maximum depth of 2 makes a big difference in
the way characters choose actions (and increasing depth brings decreasing returns in
believability each time).

Pseudo-Code

We can implement depth-first GOAP in the following way:

1 def planAction(worldModel, maxDepth):
2 # Create storage for world models at each depth, and
3 # actions that correspond to them
4 models = new WorldModel[maxDepth+1]
5 actions = new Action[maxDepth]
6

7 # Set up the initial data
8 models[0] = worldModel
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9 currentDepth = 0
10

11 # Keep track of the best action
12 bestAction = None
13 bestValue = infinity
14

15 # Iterate until we have completed all actions at depth
16 # zero.
17 while currentDepth >= 0:
18

19 # Calculate the discontentment value, we’ll need it
20 # in all cases
21 currentValue =
22 models[currentDepth].calculateDiscontentment()
23

24 # Check if we’re at maximum depth
25 if currentDepth >= maxDepth:
26

27 # If the current value is the best, store it
28 if currentValue < bestValue:
29 bestValue = currentValue
30 bestAction = actions[0]
31

32 # We’re done at this depth, so drop back
33 currentDepth -= 1
34

35 # Jump to the next iteration
36 continue
37

38 # Otherwise, we need to try the next action
39 nextAction = models[currentDepth].nextAction()
40 if nextAction:
41

42 # We have an action to apply, copy the current model
43 models[currentDepth+1] = models[currentDepth]
44

45 # and apply the action to the copy
46 actions[currentDepth] = nextAction
47 models[currentDepth+1].applyAction(nextAction)
48

49 # and process it on the next iteration
50 currentDepth += 1
51

52 # Otherwise we have no action to try, so we’re
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53 # done at this level
54 else:
55

56 # Drop back to the next highest level
57 currentDepth -= 1
58

59 # We’ve finished iterating, so return the result
60 return bestAction

The assignment between WorldModel instances in the models array,

1 models[currentDepth+1] = models[currentDepth]

assumes that this kind of assignment is performed by copy. If you are using references,
then the models will point to the same data, the applyAction method will apply the
action to both, and the algorithm will not work.

Data Structures and Interfaces

The algorithm uses two data structures: Action and WorldModel. Actions can be im-
plemented as before. The WorldModel structure has the following format:

1 class WorldModel:
2 def calculateDiscontentment()
3 def nextAction()
4 def applyAction(action)

The calculateDiscontentment method should return the total discontentment
associated with the state of the world, as given in the model. This can be implemented
using the same goal value totalling method we used before.

The applyAction method takes an action and applies it to the world model. It pre-
dicts what effect the action would have on the world model and updates its contents
appropriately.

The nextAction method iterates through each of the valid actions that can be
applied, in turn. When an action is applied to the model (i.e., the model is changed),
the iterator resets and begins to return the actions available from the new state of the
world. If there are no more actions to return, it should return a null value.

Implementation Notes

This implementation can be converted into a class, and the algorithm can be split into
a setup routine and a method to perform a single iteration. The contents of the while
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loop in the function can then be called any number of times by a scheduling sys-
tem (see Chapter 9 on execution management for a suitable algorithm). Particularly
for large problems, this is essential to allow decent planning without compromising
frame rates.

Notice in the algorithm that we’re only keeping track of and returning the next
action to take. To return the whole plan, we need to expand bestAction to hold a
whole sequence. Then it can be assigned all the actions in the actions array, rather
than just the first element.

Performance

Depth-first GOAP is O(k) in memory and O(nmk) in time, where k is the maximum
depth, n is the number of goals (used to calculate the discontentment value), and m
is the mean number of actions available.

The addition of the heuristic can dramatically reduce the actual execution time
(it has no effect on the memory use), but the order of scaling is still the same.

If most actions do not change the value of most goals, we can get to O(nm) in time
by only recalculating the discontentment contribution of goals that actually change.
In practice this isn’t a major improvement, since the addition code needed to check
for changes will slow down the implementation anyway. In my experiments it pro-
vided a small speed up on some complex problems and worse performance on simple
ones.

Weaknesses

Although the technique is simple to implement, algorithmically this still feels like very
brute force. Throughout the book I’ve stressed that as game developers we’re allowed
to do what works. But when I came to build a GOAP system myself, I felt that the
depth-first search was a little naive (not to mention poor for my reputation as an AI
guy), so I succumbed to a more complicated approach. In hindsight, the algorithm
was overkill for the application, and I should have stuck to the simple version. In
fact, for this form of GOAP, there is no better solution than the depth-first search.
Heuristics, as we’ve seen, can bring some speed ups by pruning unhelpful options,
but overall there is no better approach.

All this presumes that we want to use the overall discontentment value to guide
our planning. At the start of the section we looked at an algorithm that chose a single
goal to fulfil (based on its insistence) and then chose appropriate actions to fulfil it.
If we abandon discontentment and return to this problem, then the A* algorithm we
met in pathfinding becomes dominant.
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5.6.6 GOAP WITH IDA*

Our problem domain consists of a set of goals and actions. Goals have varying insis-
tence levels that allow us to select a single goal to pursue. Actions tell us which goals
they fulfil.

In the previous section we did not have a single goal; we were trying to find the
best of all possible action sequences. Now we have a single goal, and we are interested
in the best action sequence that leads to our goal. We need to constrain our problem
to look for actions that completely fulfil a goal. In contrast to previous approaches
that try to reduce as much insistence as possible (with complete fulfillment being the
special case of removing it all), we now need to have a single distinct goal to aim at,
otherwise A* can’t work its magic.

We also need to define “best” in this case. Ideally, we’d like a sequence that is as
short as possible. This could be short in terms of the number of actions or in terms of
the total duration of actions. If some resource other than time is used in each action
(such as magic power, money, or ammo), then we could factor this in also. In the same
way as for pathfinding, the length of a plan may be a combination of many factors, as
long as it can be represented as a single value. We will call the final measure the cost
of the plan. We would ideally like to find the plan with the lowest cost.

With a single goal to achieve and a cost measurement to try and minimize, we can
use A* to drive our planner. A* is used in its basic form in many GOAP applications,
and modifications of it are found in most of the rest. I’ve already covered A* in minute
detail in Chapter 4, so I’ll avoid going into too much detail on how it works here. You
can go to Chapter 4 for a more intricate, step-by-step analysis of why this algorithm
works.

IDA*

The number of possible actions is likely to be large, and therefore, the number of
sequences is huge. Because goals may often be unachievable, we need to add a limit
to the number of actions allowed in a sequence. This is equivalent to the maximum
depth in the depth-first search approach. When using A* for pathfinding, we assume
that there will be at least one valid route to the goal, and so we allow A* to search as
deeply as it likes to find a solution. Eventually, the pathfinder will run out of locations
to consider and will terminate.

In GOAP the same thing probably won’t happen. There are always actions to be
taken, and the computer can’t tell if a goal is unreachable other than by trying every
possible combination of actions. If the goal is unreachable, the algorithm will never
terminate, but will happily use ever-increasing amounts of memory. We add a maxi-
mum depth to curb this. Adding this depth limit makes our algorithm an ideal can-
didate for using the iterative deepening version of A*.

Many of the A* variations we discussed in Chapter 4 work for GOAP. You can use
the full A* implementation, node array A*, or even simplified memory-bounded A*
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(SMA*). In my experience, however, IDA* (iterative deepening A*) is often the best
choice. It handles huge numbers of actions without swamping memory and allows us
to easily limit the depth of the search. In the context of this chapter, it also has the
advantage of being similar to the previous depth-first algorithm.

The Heuristic

All A* algorithms require a heuristic function. The heuristic estimates how far away
a goal is. It allows the algorithm to preferentially consider actions close to the goal.

We will need a heuristic function that estimates how far a given world model is
from having the goal fulfilled. This can be a difficult thing to estimate, especially when
long sequences of coordinated actions are required. It may appear that no progress is
being made, even though it is. If a heuristic is completely impossible to create, then
we can use a null heuristic (i.e., one that always returns an estimate of zero). As in
pathfinding, this makes A* behave in the same way as Dijkstra’s algorithm: checking
all possible sequences.

The Algorithm

IDA* starts by calling the heuristic function on the starting world model. The value
is stored as the current search cut-off.

IDA* then runs a series of depth-first searches. Each depth-first search continues
until either it finds a sequence that fulfils its goal or it exhausts all possible sequences.
The search is limited by both the maximum search depth and the cut-off value. If the
total cost of a sequence of actions is greater than the cut-off value, then the action is
ignored.

If a depth-first search reaches a goal, then the algorithm returns the resulting plan.
If the search fails to get there, then the cut-off value is increased slightly and another
depth-first search is begun.

The cut-off value is increased to be the smallest total plan cost greater than the
cut-off that was found in the previous search.

With no OPEN and CLOSED lists in IDA*, we aren’t keeping track of whether we
find a duplicate world state at different points in the search. GOAP applications tend
to have a huge number of such duplications; sequences of actions in different orders,
for example, often have the same result.

We want to avoid searching the same set of actions over and over in each depth-
first search. We can use a transposition table to help do this. Transposition tables are
commonly used in AI for board games, and we’ll return to them in some length in
Chapter 8 on board game AI.

For IDA*, the transposition table is a simple hash. Each world model must be
capable of generating a good hash value for its contents. At each stage of the depth-
first search, the algorithm hashes the world model and checks if it is already in the
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Figure 5.29 Why to replace transposition entries lower down

transposition table. If it is, then it is left there and the search doesn’t process it. If not,
then it is added, along with the number of actions in the sequence used to get there.

This is a little different from a normal hash table, with multiple entries per hash
key. A regular hash table can take unlimited items of data, but gradually gets slower
as you load it up. In our case we can store just one item per hash key. If another world
model comes along with the same hash key, then we can either process it fully without
storing it or we can boot out the world model that’s in its spot. This way we keep the
speed of the algorithm high, without bloating the memory use. To decide whether
to boot the existing entry, we use a simple rule of thumb: we replace an entry if the
current entry has a smaller number of moves associated with it.

Figure 5.29 shows why this works. World models A and B are different, but both
have exactly the same hash value. Unlabelled world models have their own unique
hash values. The world model A appears twice. If we can avoid considering the second
version, we can save a lot of duplication. The world model B is found first, however,
and also appears twice. Its second appearance occurs later on, with fewer subsequent
moves to process. If it was a choice between not processing the second A or the sec-
ond B, we’d like to avoid processing A, because that would do more to reduce our
overall effort.

By using this heuristic, where clashing hash values are resolved in favor of the
higher level world state, we get exactly the right behavior in our example.

Pseudo-Code

The main algorithm for IDA* looks like the following:

1 def planAction(worldModel, goal, heuristic, maxDepth):
2

3 # Initial cutoff is the heuristic from the start model
4 cutoff = heuristic.estimate(worldModel)
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5

6 # Create a transposition table
7 transpositionTable = new TranspositionTable()
8

9 # Iterate the depth first search until we have a valid
10 # plan, or until we know there is none possible
11 while cutoff >= 0:
12

13 # Get the new cutoff, or best action from the search
14 cutoff, action = doDepthFirst(worldModel, goal,
15 transpositionTable, heuristic, maxDepth, cutoff)
16

17 # If we have an action, return it
18 if bestAction: return action

Most of the work is done in the doDepthFirst function, which is very similar to
the depth-first GOAP algorithm we looked at previously:

1 def doDepthFirst(worldModel, goal, heuristic,
2 transpositionTable, maxDepth, cutoff):
3

4 # Create storage for world models at each depth, and
5 # actions that correspond to them, with their cost
6 models = new WorldModel[maxDepth+1]
7 actions = new Action[maxDepth]
8 costs = new float[maxDepth]
9

10 # Set up the initial data
11 models[0] = worldModel
12 currentDepth = 0
13

14 # Keep track of the smallest pruned cutoff
15 smallestCutoff = infinity
16

17 # Iterate until we have completed all actions at depth
18 # zero.
19 while currentDepth >= 0:
20

21 # Check if we have a goal
22 if goal.isFulfilled(models[currentDepth]):
23

24 # We can return from the depth first search
25 # immediately with the result
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26 return cutoff, actions[0]
27

28 # Check if we’re at maximum depth
29 if currentDepth >= maxDepth:
30

31 # We’re done at this depth, so drop back
32 currentDepth -= 1
33

34 # Jump to the next iteration
35 continue
36

37 # Calculate the total cost of the plan, we’ll need it
38 # in all other cases
39 cost = heuristic.estimate(models[currentDepth]) +
40 costs[currentDepth]
41

42 # Check if we need to prune based on the cost
43 if cost > cutoff:
44

45 # Check if this is the lowest prune
46 if cutoff < smallestCutoff: smallestCutoff = cutoff
47

48 # We’re done at this depth, so drop back
49 currentDepth -= 1
50

51 # Jump to the next iteration
52 continue
53

54 # Otherwise, we need to try the next action
55 nextAction = models[currentDepth].nextAction()
56 if nextAction:
57

58 # We have an action to apply, copy the current model
59 models[currentDepth+1] = models[currentDepth]
60

61 # and apply the action to the copy
62 actions[currentDepth] = nextAction
63 models[currentDepth+1].applyAction(nextAction)
64 costs[currentDepth+1] = costs[currentDepth] +
65 nextAction.getCost()
66

67 # Check if we’ve already seen this state
68 if not transitionTable.has(models[currentDepth+1]):
69
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70 # Process the new state on the next iteration
71 currentDepth += 1
72

73 # Otherwise, we don’t bother processing it, since
74 # we have seen it before.
75

76 # Set the new model in the transition table
77 transitionTable.add(models[currentDepth+1],
78 currentDepth)
79

80 # Otherwise we have no action to try, so we’re
81 # done at this level
82 else:
83

84 # Drop back to the next highest level
85 currentDepth -= 1
86

87 # We’ve finished iterating, and didn’t find an action,
88 # return the smallest cutoff
89 return smallestCutoff, None

Data Structures and Interfaces

The world model is exactly the same as before. The Action class now requires a get-
Cost, which can be the same as the getDuration method used previously, if costs are
controlled solely by time.

We have added an isFulfilled method to the goal class. When given a world
model, it returns true if the goal is fulfilled in the world model.

The heuristic object has one method, estimate, which returns an estimate of the
cost of reaching the goal from the given world model.

We have added a TranspositionTable data structure with the following interface:

1 class TranspositionTable:
2 def has(worldModel)
3 def add(worldModel, depth)

Assuming we have a hash function that can generate a hash integer from a world
model, we can implement the transition table in the following way:

1 class TranspositionTable:
2

3 # Holds a single table entry
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4 struct Entry:
5

6 # Holds the world model for the entry, all entries
7 # are initially empty
8 worldModel = None
9

10 # Holds the depth that the world model was found at.
11 # This is initially infinity, because the replacement
12 # strategy we use in the add method can then treat
13 # entries the same way whether they are empty or not.
14 depth = infinity
15

16 # A fixed size array of entries
17 entries
18

19 # The number of entries in the array
20 size
21

22 def has(worldModel):
23 # Get the hash value
24 hashValue = hash(worldModel)
25

26 # Find the entry
27 entry = entries[hashValue % size]
28

29 # Check if is the right one
30 return entry.worldModel == worldModel
31

32 def add(worldModel, depth)
33 # Get the hash value
34 hashValue = hash(worldModel)
35

36 # Find the entry
37 entry = entries[hashValue % size]
38

39 # Check if it is the right world model
40 if entry.worldModel == worldModel:
41

42 # If we have a lower depth, use the new one
43 if depth < entry.depth: entry.depth = depth
44

45 # Otherwise we have a clash (or an empty slot)
46 else:
47
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48 # Replace the slot if our new depth is lower
49 if depth < entry.depth:
50 entry.worldModel = worldModel
51 entry.depth = depth

The transition table typically doesn’t need to be very large. In a problem with
10 actions at a time and a depth of 10, for example, we might only use a 1000-element
transition table. As always, experimentation and profiling are the key to getting your
perfect trade-off between speed and memory use.

Implementation Notes

The doDepthFirst function returns two items of data: the smallest cost that was cut
off and the action to try. In a language such as C++, where multiple returns are in-
convenient, the cut-off value is normally passed by reference, so it can be altered in
place. This is the approach taken by the source code on the CD.

Performance

IDA* is O(t) in memory, where t is the number of entries in the transition table. It is
O(nd) in time, where n is the number of possible actions at each world model, and d

LIBRARY

is the maximum depth. This appears to have the same time as an exhaustive search of
all possible alternatives. In fact, the extensive pruning of branches in the search means
we will gain a great deal of speed from using IDA*. But in the worst case (when there
is no valid plan, for example, or when the only correct plan is the most expensive of
all), we will need to do almost as much work as an exhaustive search.

5.6.7 SMELLY GOB

An interesting approach for making believable GOB is related to the sensory percep-
tion simulation discussed in Section 10.5.

In this model, each motive that a character can have (such as “eat” or “find infor-
mation”) is represented as a kind of smell; it gradually diffuses through the game level.
Objects that have actions associated with them give out a cocktail of such “smells,” one
for each of the motives that its action affects. An oven, for example, may give out the
“I can provide food” smell, while a bed might give out the “I can give you rest” smell.

Goal-oriented behavior can be implemented by having a character follow the
smell for the motive it is most concerned with fulfilling. A character that is extremely
hungry, for example, would follow the “I can provide food” smell and find its way to
the cooker.
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This approach reduces the need for complex pathfinding in the game. If the
character has three possible sources of food, then conventional GOB would use a
pathfinder to see how difficult each source of food was to get to. The character would
then select the source that was the most convenient.

The smell approach diffuses out from the location of the food. It takes time to
move around corners, it cannot move through walls, and it naturally finds a route
through complicated levels. It may also include the intensity of the signal: the smell is
greatest at the food source and gets fainter the farther away you get.

To avoid pathfinding, the character can move in the direction of the greatest con-
centration of smell at each frame. This will naturally be the opposite direction to
the path the smell has taken to reach the character: it follows its nose right to its goal.
Similarly, because the intensity of the smell dies out, the character will naturally move
toward the source that is the easiest to get to.

This can be extended by allowing different sources to emit different intensities.
Junk food, for example, can emit a small amount of signal, and a hearty meal can
emit more. This way the character will favor less nutritious meals that are really con-
venient, while still making an effort to cook a balanced meal. Without this extension
the character would always seek out junk food in the kitchen.

This “smell” approach was used in The Sims to guide characters to suitable ac-
tions. It is relatively simple to implement (you can use the sense management al-
gorithms provided in Chapter 10, World Interfacing) and provides a good deal of
realistic behavior. It has some limitations, however, and requires modification before
it can be relied upon in a game.

Compound Actions

Many actions require multiple steps. Cooking a meal, for example, requires finding
some raw food, cooking it, and then eating it. Food can also be found that does not
require cooking. There is no point in having a cooker that emits the “I can provide
food” signal if the character walks over to it and cannot cook anything (because it
isn’t carrying any raw food).

Significant titles in this genre have typically combined elements of two different
solutions to this problem: allowing a richer vocabulary of signals and making the
emission of these signals depend on the state of characters in the game.

Action-Based Signals

The number of “smells” in the game can be increased to allow different action nu-
ances to be captured. A different smell could be had for an object that provides raw
food against cooked food. This reduces the elegance of the solution: characters can
no longer easily follow the trail for the particular motive they are seeking. Instead of
the diffusing signals representing motives, they are now, effectively, representing in-
dividual actions. There is an “I can cook raw food” signal, rather than an “I can feed
you” signal.
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This means that characters need to perform the normal GOB decision making
step of working out which action to carry out in order to best fulfil their current goals.
Their choice of action should depend not only on the actions they know are available,
but also the pattern of action signals they can detect at their current location.

On the other hand, the technique supports a huge range of possible actions and
can be easily extended as new sets of objects are created.

Character-Specific Signals

Another solution is to make sure that objects only emit signals if they are capable of
being used by the character at that specific time. A character carrying a piece of raw
food, for example, may be attracted by an oven (the oven is now giving out “I can give
you food” signals). If the same character was not carrying any raw food, then it would
be the fridge sending out “I can give you food” signals, and the oven would not emit
anything.

This approach is very flexible and can dramatically reduce the amount of planning
needed to achieve complex sequences of actions.

It has the significant drawback that the signals diffusing around the game are now
dependent on one particular character. Two characters are unlikely to be carrying
exactly the same object or capable of exactly the same set of actions. This means that
there needs to be a separate sensory simulation for each character. When there are
a handful of slow-moving characters in the game, this is not a problem (characters
make decisions only every few hundred frames, and sensory simulation can easily be
split over many frames). For larger or faster simulations, this would not be practical.

5.7 RULE-BASED SYSTEMS

Rule-based systems were at the vanguard of AI research through the 1970s and early
1980s. Many of the most famous AI programs were built with them; and in their
“expert system” incarnation, they are the best known AI technique. They have been
used off and on in games for at least 15 years, despite having a reputation for being
inefficient and difficult to implement. They remain a fairly uncommon approach,
partly because similar behaviors can almost always be achieved in a simpler way using
decision trees or state machines.

They do have their strengths, however, especially when characters need to reason
about the world in ways that can’t easily be anticipated by a designer and encoded
into a decision tree.

Rule-based systems have a common structure consisting of two parts: a database
containing knowledge available to the AI and a set of if–then rules.

Rules can examine the database to determine if their “if” condition is met. Rules
that have their conditions met are said to trigger. A triggered rule may be selected to
fire, whereupon its “then” component is executed (Figure 5.30).
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Figure 5.30 Schematic of a rule-based system

This is the same nomenclature that we used in state machine transitions. In this
case, however, the rules trigger based on the contents of the database, and their effects
can be more general than causing a state transition.

Many rule-based systems also add a third component: an arbiter that gets to de-
cide which triggered rule gets to fire. We’ll look at a simple rule-based system first,
along with a common optimization, and return to arbiters later in the section.

5.7.1 THE PROBLEM

We’ll build a rule-based decision making system with many of the features typical
of rule-based systems in traditional AI. My specification is quite complex and likely
to be more flexible than is required for many games. Any simpler, however, and it is
likely that state machines or decision trees would be a simpler way to achieve the same
effect.

In this section I’ll survey some of the properties shared by many rule-based system
implementations. Each property will be supported in the following algorithm. I’m
going to introduce the contents of the database and rules using a very loose syntax. It
is intended to illustrate the principles only. The following sections suggest a structure
for each component that can be implemented.

Database Matching

The “if” condition of the rule is matched against the database; a successful match
triggers the rule. The condition, normally called a pattern, typically consists of facts
identical to those in the database, combined with Boolean operators such as AND,
OR, and NOT.

Suppose we have a database containing information about the health of the sol-
diers in a fire team, for example. At one point in time the database contains the fol-
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lowing information:

Captain’s health is 51

Johnson’s health is 38

Sale’s health is 42

Whisker’s health is 15

Whisker, the communications specialist, needs to be relieved of her radio when
her health drops to zero. We might use a rule that triggers when it sees a pattern such
as

Whisker: health = 0

Of course, the rule should only trigger if Whisker still has the radio. So first we
need to add the appropriate information to the database. The database now contains
the following information:

Captain’s health is 51

Johnson’s health is 38

Sale’s health is 42

Whisker’s health is 15

Radio is held by Whisker

Now our rule can use a Boolean operator. The pattern becomes

Whisker’s health is 0 AND Radio is held by Whisker

In practice we’d want more flexibility with the patterns that we can match. In our
example, we want to relieve Whisker if she is very hurt, not just if she’s dead. So the
pattern should match a range:

Whisker’s health < 15 AND Radio is held by Whisker

So far we’re on familiar ground. It is similar to the kind of tests we made for
triggering a state transition or for making a decision in a decision tree.

To improve the flexibility of the system, it would be useful to add wild cards to
the matching. We would like to be able to say, for example,

Anyone’s health < 15

and have this match if there was anyone in the database with health less than 15.
Similarly, we could say,

Anyone’s health < 15 AND Anyone’s health > 45
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to make sure there was also someone who is healthy (maybe we want the healthy
person to carry the weak one, for example).

Many rule-based systems use a more advanced type of wild card pattern matching,
called unification, which can include wild cards. We’ll return to unification later in
this section, after introducing the main algorithm.

Condition–Action Rules

A condition–action rule causes a character to carry out some action as a result of
finding a match in the database. The action will normally be run outside of the rule-
based system, although rules can be written that directly modify the state of the game.

Continuing our fire team example, we could have a rule that states

IF Whisker’s health is 0 AND Radio is held by Whisker

THEN Sale: pick up the radio

If the pattern matches, and the rule fires, then the rule-based system tells the game
that Sale should pick up the radio.

This doesn’t directly change the information in the database. We can’t assume that
Sale can actually pick up the radio. Whisker may have fallen from a cliff with no way
to get down. Sale’s action can fail in many different ways, and the database should
only contain knowledge about the state of the game. (In practice, it is sometimes
beneficial to let the database contain the beliefs of the AI, in which case resulting
actions are more likely to fail.)

Picking up the radio is a game action: the rule-based system acting as a decision
maker chooses to carry out the action. The game gets to decide whether the action
succeeds, and updates the database if it does.

Database Rewriting Rules

There are other situations in which the results of a rule can be incorporated directly
into the database.

In the AI for a fighter pilot, we might have a database with the following contents:

1500 kg fuel remaining

100 km from base

enemies sighted: Enemy 42, Enemy 21

currently patrolling

The first three elements, fuel, distance to base, and sighted enemies, are all con-
trolled by the game code. They refer to properties of the state of the game and can only
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be changed by the AI scheduling actions. The last two items, however, are specific to
the AI and don’t have any meaning to the rest of the game.

Suppose we want a rule that changes the goal of the pilot from “patrol-zone” to
“attack” if an enemy is sighted. In this case we don’t need to ask the game code to
schedule a “change goal” action; we could use a rule that says something like:

IF number of sighted enemies > 0 and currently patrolling

THEN

remove(currently patrolling)

add(attack first sighted enemy)

The remove function removes a piece data from the database, and the add function
adds a new one. If we didn’t remove the first piece of data, we would be left with a
database containing both patrol-zone and attack goals. In some cases this might be
the right thing to do (so the pilot can go back to patrolling when the intruder is
destroyed, for example).

We would like to be able to combine both kinds of effects: those that request ac-
tions to be carried out by the game and those that manipulate the database. We would
also like to execute arbitrary code as the result of a rule firing, for extra flexibility.

Forward and Backward Chaining

The rule-based system I’ve described so far, and the only one I’ve seen used in produc-
tion code for games, is known as “forward chaining.” It starts with a known database
of information and repeatedly applies rules that change the database contents (either
directly or by changing the state of the game through character action).

Discussions of rule-based systems in other areas of AI will mention backward
chaining. Backward chaining starts with a given piece of knowledge, the kind that
might be found in the database. This piece of data is the goal. The system then tries
to work out a series of rule firings that would lead from the current database contents
to the goal. It typically does this by working backward, looking at the THEN compo-
nents of rules to see if any could generate the goal. If it finds rules that can generate
the goal, it then tries to work out how the conditions of those rules might be met,
which might involve looking at the THEN component of other rules, and so on, until
all the conditions are found in the database.

While backward chaining is a very important technique in many areas (such as
theorem proving and planning), I have not come across any production AI code using
it for games. I could visualize some contrived situations where it might be useful in a
game, but for the purpose of this book, I’ll ignore it.
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Format of Data in the Database

The database contains the knowledge of a character. It must be able to contain any
kind of game-relevant data, and each item of data should be identified. If we want to
store the character’s health in the database, we need both the health value and some
identifier that indicates what the value means. The value on its own is not sufficient.

If we are interested in storing a Boolean value, then the identifier on its own is
enough. If the Boolean value is true, then the identifier is placed in the database; if it
is false, then the identifier is not included.

Fuel = 1500 kg

patrol-zone

In this example the patrol-zone goal is such an identifier. It is an identifier with
no value, and we can assume it is a Boolean with a value of true. The other example
database entries had both identifier (e.g., “fuel”) and a value (1500). Let’s define a
Datum as a single item in the database. It consists of an identifier and a value. The
value might not be needed (if it is a Boolean with the value of true), but we’ll assume
it is explicit, for convenience’s sake.

A database containing only this kind of Datum object is inconvenient. In a game
where a character’s knowledge encompasses a whole fire team, we could have

Captain’s-weapon = rifle

Johnson’s-weapon = machine-gun

Captain’s-rifle’s-ammo = 36

Johnson’s-machine-gun’s-ammo = 229

This nesting could go very deep. If we are trying to find the captain’s ammo, we
might have to check several possible identifiers to see if any are present: Captain’s-
rifle’s-ammo, Captain’s-rpg’s-ammo, Captain’s-machine-gun’s-ammo, and so on.

Instead, we would like to use a hierarchical format for our data. We expand our
Datum so that it either holds a value or it holds a set of Datum objects. Each of these
Datum objects can likewise contain either a value or further lists. The data is nested
to any depth.

Note that a Datum object can contain multiple Datum objects, but only one value.
The value may be any type that the game understands, however, including structures
containing many different variables or even function pointers, if required. The data-
base treats all values as opaque types it doesn’t understand, including built-in types.

Symbolically, I will represent one Datum in the database as

1 (identifier content)
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where content is either a value or a list of Datum objects. We can represent the previ-
ous database as

1 (Captain’s-weapon (Rifle (Ammo 36)))
2 (Johnson’s weapon (Machine-Gun (Ammo 229)))

This database has two Datum objects. Both contain one Datum object (the
weapon type). Each weapon, in turn, contains one more Datum (ammo), in this case
the nesting stops, the ammo has a value only.

We could expand this hierarchy to hold all the data for one person in one identi-
fier:

1 (
2 Captain (Weapon (Rifle (Ammo 36) (Clips 2)))
3 (Health 65)
4 (Position [21, 46, 92])
5 )

Having this database structure will give us flexibility to implement more sophis-
ticated rule matching algorithms, which in turn will allow us to implement more
powerful AI.

Notation of Wild Cards

The notation I have used is LISP-like, and because LISP was overwhelmingly the lan-
guage of choice for AI up until the 1990s, it will be familiar if you read any papers or
books on rule-based systems. It is a simplified version for our needs. In this syntax
wild cards are normally written as

1 (?anyone (Health 0-15))

and are often called variables.

5.7.2 THE ALGORITHM

We start with a database containing data. Some external set of functions needs to
transfer data from the current state of the game into the database. Additional data
may be kept in the database (such as the current internal state of the character using
the rule-based system). These functions are not part of this algorithm.

A set of rules is also provided. The IF-clause of the rule contains items of data to
match in the database joined by any Boolean operator (AND, OR, NOT, XOR, etc.).
We will assume matching is by absolute value for any value or by less-than, greater-
than, or within-range operators for numeric types.
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We will assume that rules are condition–action rules: they always call some func-
tion. It is easy to implement database rewriting rules in this framework by changing
the values in the database within the action. This reflects the bias that rule-based
systems used in games tend to contain more condition–action rules than database
rewrites, unlike many industrial AI systems.

The rule-based system applies rules in iterations, and any number of iterations
can be run consecutively. The database can be changed between each iteration, either
by the fired rule or because other code updates its contents.

The rule-based system simply checks each of its rules to see if they trigger on the
current database. The first rule that triggers is fired, and the action associated with
the rule is run.

This is the naive algorithm for matching: it simply tries every possibility to see if
any works. For all but the simplest systems, it is probably better to use a more efficient
matching algorithm. The naive algorithm is one of the stepping stones I mentioned
in the introduction to the book, probably not useful on its own, but essential for
understanding how the basics work before going on to a more complete system. Later
in the section I will introduce Rete, an industry standard for faster matching.

5.7.3 PSEUDO-CODE

The rule-based system has an extremely simple algorithm of the following form:

1 def ruleBasedIteration(database, rules):
2

3 # Check each rule in turn
4 for rule in rules:
5

6 # Create the empty set of bindings
7 bindings = []
8

9 # Check for triggering
10 if rule.ifClause.matches(database, bindings):
11

12 # Fire the rule
13 rule.action(bindings)
14

15 # And exit: we’re done for this iteration
16 return
17

18 # If we get here, we’ve had no match, we could use
19 # a fallback action, or simply do nothing
20 return
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The matches function of the rule’s IF-clause checks through the database to make
sure the clause matches.

5.7.4 DATA STRUCTURES AND INTERFACES

With an algorithm so simple, it is hardly surprising that most of the work is being
done in the data structures. In particular, the matches function is taking the main
burden. Before giving the pseudo-code for rule matching, we need to look at how the
database is implemented and how IF-clauses of rules can operate on it.

The Database

The database can simply be a list or array of data items, represented by the DataNode
class. DataGroups in the database hold additional data nodes, so overall the database
becomes a tree of information.

Each node in the tree has the following base structure:

1 struct DataNode:
2 identifier

Non-leaf nodes correspond to data groups in the data and have the following
form:

1 struct DataGroup (DataNode):
2 children

Leaves in the tree contain actual values and have the following form:

1 struct Datum (DataNode):
2 value

The children of a data group can be any data node: either another data group or
a datum. We will assume some form of polymorphism for clarity, although in reality
it is often better to implement this as a single structure combining the data members
of all three structures (see Section 5.7.5, Implementation Notes).

Rules

Rules have the following structure:
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1 class Rule:
2 ifClause
3 def action(bindings)

The ifClause is used to match against the database and is described below. The
action function can perform any action required, including changing the database
contents. It takes a list of bindings which is filled with the items in the database that
match any wild cards in the IF-clause.

IF-Clauses

IF-clauses consist of a set of data items, in a similar format to those in the database,
joined by Boolean operators. They need to be able to match the database, so we use a
general data structure as the base class of elements in an IF-clause:

1 class Match:
2 def matches(database, bindings)

The bindings parameter is both input and output, so it can be passed by reference
in languages that support it. It initially should be an empty list (this is initialized in
the ruleBasedIteration driver function above). When part of the IF-clause matches
a “don’t care” value (a wild card), it is added to the bindings.

The data items in the IF-clause are similar to those in the database. We need two
additional refinements, however. First, we need to be able to specify a “don’t care”
value for an identifier to implement wild cards. This can simply be a pre-arranged
identifier reserved for this purpose.

Second, we need to be able to specify a match of a range of values. Matching
a single value, using a less-than operator or using a greater-than operator, can be
performed by matching a range: for a single value the range is zero width and for
less-than or greater-than is has one of its bounds at infinity. We can use a range as the
most general match.

The Datum structure at the leaf of the tree is therefore replaced by a DatumMatch
structure with the following form:

1 struct DatumMatch(Match):
2 identifier
3 minValue
4 maxValue

Boolean operators are represented in the same way as with state machines; we use
a polymorphic set of classes:
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1 class And (Match):
2 match1
3 match2
4 def matches(database, bindings):
5 # True if we match both sub-matches
6 return match1.matches(database, bindings) and
7 match2.matches(database, bindings)
8

9 class Not (Match):
10 match
11 def matches(database, bindings):
12 # True if we don’t match our submatch. Note we pass in
13 # new bindings list, because we’re not interested in
14 # anything found: we’re making sure there are no
15 # matches.
16 return not match.matches(database, [])

and so on for other operators. Note that the same implementation caveats apply as
for the polymorphic Boolean operators we covered in Section 5.3 on state machines.
The same solutions can also be applied to optimizing the code.

Finally, we need to be able to match a data group. We need to support “don’t care”
values for the identifier, but we don’t need any additional data in the basic data group
structure. We have a data group match that looks like the following:

1 struct DataGroupMatch(Match):
2 identifier
3 children

Item Matching

This structure allows us to easily combine matches on data items together. We are
now ready to look at how matching is performed on the data items themselves.

The basic technique is to match the data item from the rule (called the test item)
with any item in the database (called the database item). Because data items are
nested, we will use a recursive procedure that acts differently for a data group and
a datum.

In either case, if the test data group or test datum is the root of the data item (i.e.,
it isn’t contained in another data group), then it can match any item in the database;
we will check through each database item in turn. If it is not the root, then it will be
limited to matching only a specific database item.

The matches function can be implemented in the base class, Match, only. It simply
tries to match each individual item in the database one at a time. It has the following
algorithm:
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1 struct Match:
2

3 # ... Member data as before
4

5 def matches(database, bindings):
6

7 # Go through each item in the database
8 for item in database:
9

10 # We’ve matched if we match any item
11 if matchesItem(item, bindings): return true
12

13 # We’ve failed to match all of them
14 return false

This simply tries each individual item in the database against a matchesItem
method. The matchesItem method should check a specific data node for matching.
The whole match succeeds if any item in the database matches.

Datum Matching

A test datum will match if the database item has the same identifier and has a value
within its bounds. It has the simple form:

1 struct DatumMatch(DataNodeMatch):
2

3 # ... Member data as before
4

5 def matchesItem(item, bindings):
6

7 # Is the item of the same type?
8 if not item insistence Datum: return false
9

10 # Does the identifier match?
11 if identifier.isWildcard() and
12 identifier != item.identifier: return false
13

14 # Does the value fit?
15 if minValue <= item.value <= maxValue:
16

17 # Do we need to add to the bindings list?
18 if identifier.isWildcard():
19
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20 # Add the binding
21 bindings.appendBinding(identifier, item)
22

23 # Return true, since we matched
24 return true
25 else: return false

The isWildcard method should return true if the identifier is a wild card. If you
used strings as identifiers and wanted to use LISP-style wild card names, you could
check that the first character is a question mark, for example. The implementation

LIBRARY

on the CD uses a 4-byte number as an identifier and reserves the first bit to indicate
if the identifier is a wild card. The isWildcard method simply checks this bit.

The bindings list has been given an appendBinding method that adds an identifier
(which is always a wild card) and the database item it was matched to. If we are using
an STL list in C++, for example, we could have it be a list of pair templates and
append a new identifier, item pair. Alternatively, we could use a hash table indexed by
identifier.

Data Group Matching

A test data group will match a database data group if its identifier matches and if all
its children match at least one child of the database data group. Not all the children
of the database data group need to be matched to something.

For example, if we are searching for a match to

1 (?anyone (Health 0-54))

we would like it to match

1 (Captain (Health 43) (Ammo 140))

even though ammo isn’t mentioned in the test data group.
The matchesItem function for data groups has the following form:

1 struct DataGroupMatch(DataNodeMatch):
2

3 # ... Member data as before
4

5 def matchesItem(item, bindings):
6

7 # Is the item of the same type?
8 if not item insistence DataGroup: return false
9
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10 # Does the identifier match?
11 if identifier != WILDCARD and
12 identifier != item.identifier: return false
13

14 # Is every child present
15 for child in self.children:
16

17 # Use the children of the item as if it were a
18 # database and call matches recursively
19 if not child.matches(item.children):
20 return false
21

22 # We must have matched all children
23

24 # Do we need to add to the bindings list?
25 if identifier.isWildcard():
26

27 # Add the binding
28 bindings.appendBinding(identifier, item)
29

30 return true

Summary

Figure 5.31 shows all our classes and interfaces in one diagram.
The figure is in standard UML class diagram form. I hope it is relatively obvious

even if you’re not a UML expert. Refer to Pilone [2005] for more information on
UML.

5.7.5 IMPLEMENTATION NOTES

In the listing above I used a list to hold all the children of a data group. In C or C++
this isn’t the best data structure to hold such a tree. In the code on the CD I have used

LIBRARY
a first-child/next-sibling binary tree to represent data items (also called a filial-heir
chain or doubly chained tree). In this kind of binary tree every node points to two
others: the first is its first child and the second is its next sibling. This format of tree
allows us to represent hierarchical structures where a node can have any number of
children. It has the advantage of not requiring a variable number of children stored
in each node, making it more efficient to use.
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Figure 5.31 UML of the matching system
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5.7.6 RULE ARBITRATION

Several rules may trigger on the database at the same time. Each rule is applicable,
but only one can fire. In the algorithm described above we assumed that the first
triggered rule is allowed to fire and no other rules are considered. This is a simple
rule arbitration algorithm: “first applicable.” It works fine as long as our rules are
arranged in order of priority.

In general, an arbiter in a rule-based system is a chunk of code that decides which
rules fire when more than one rule triggers. There are a number of common ap-
proaches to arbitration, each with their own characteristics.

First Applicable

This is the algorithm used so far. The rules are provided in a fixed order, and the first
rule in the list that triggers gets to fire. The ordering enforces strict priority: rules
earlier in the list have priority over later rules.

A serious problem often occurs with this arbitration strategy, however. If the rule
does not change the content of the database, and if no external changes are imposed,
then the same rule will continue to fire every time the system is run. This might be
what is required (if the rule indicates what action to take based on the content of the
database, for example), but it can often cause problems with endless repetition.

There is a simple extension used to reduce the severity of this issue. Rules that
shouldn’t endlessly repeat are suspended as soon as they fire. Their suspension is only
lifted when the contents of the database change. This involves keeping track of the
suspended state of each rule and clearing it when the database is modified.

Unfortunately, clearing the suspension whenever the database is modified can still
allow the same situation to occur. If some content in the database is constantly chang-
ing (and it usually will, if information from the game world is being written into it
each frame), but the items of data causing the problem rule to trigger are stable, then
the rule will continue to fire. Some implementations keep track of the individual
items of data that the rule is triggering on and suspend a fired rule until those partic-
ular items change.

Least Recently Used

A linked list holds all the rules in the system. The list is considered in order, just as
before, and the first triggered rule in the list gets to fire. When a rule fires, it is removed
from its position in the list and added to the end. After a while, the list contains rules
in reverse order of use, and so picking the first triggered rule is akin to picking the
least recently used rule.

This approach specifically combats the looping issue. It makes sure that opportu-
nities for firing are distributed as much as possible over all rules.
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Random Rule

If multiple rules trigger, then one rule is selected at random and allowed to fire.
Unlike the previous algorithms, this kind of arbiter needs to check every rule and

get a list of all triggered rules. With such a list it can pick one member and fire it. Pre-
vious algorithms have only worked through the list until they found the first triggered
rule. This arbitration scheme is correspondingly less efficient.

Most Specific Conditions

If the conditions for a rule are very easy to meet, and the database regularly triggers
it, then it is likely to be a general rule useful in lots of situations, but not specialized.
On the other hand, if a rule has difficult conditions to fulfil, and the system finds that
it triggers, then it is likely to be very specific to the current situation. More specific
rules should therefore be preferred over more general rules.

In a rule-based system where conditions are expressed as Boolean combined
clauses, the number of clauses is a good indicator of the specificity of the rule.

Specificity can be judged based on the structure of the rules only. The priority
order can be calculated before the system is used, and the rules can be arranged in
order. The arbiter implementation is exactly the same, therefore, as the first applicable
method. We only need to add an offline step to automatically adjust the rule order
based on the number of clauses in the condition.

Dynamic Priority Arbitration

Any system of numerical priorities is identical to the first applicable method, if those
priorities do not change when the system is running. We can simply arrange the
rules in order of decreasing priority and run the first one that triggers. You will find
some articles and books that misunderstand priority-based arbitration and uselessly
describe a priority arbitration algorithm for static priorities, when a simple first-
applicable approach would be identical in practice. Priorities can be useful, however,
if they are dynamic.

Dynamic priorities can be returned by each rule based on how important its ac-
tion might be in the current situation. Suppose we have a rule that matches “no more
health packs” and schedules an action to find health packs, for example. When the
character’s health is high, the rule may return a very low priority. If there are any
other rules that trigger, it will be ignored. So the character will get on with what it
is doing and only go hunting for health packs if it cannot think of an alternative.
When the character is close to death, however, the rule returns a very high priority:
the character will stop what it is doing and go to find health packs in order to stay
alive.



420 Chapter 5 Decision Making

We could implement dynamic priorities using several rules (one for “no more
health packs AND low health” and one for “no more health packs AND high health,”
for example). Using dynamic priorities, however, allows the rule to gradually get more
important, rather than suddenly becoming the top priority.

The arbiter checks all the rules and compiles a list of those that trigger. It requests
the priority from each rule in the list and selects the highest value to fire.

Just like for random rule selection, this approach involves searching all possible
rules before deciding which to trigger. It also adds a method call, which may involve
the rule searching the database for information to guide its priority calculating. This
is the most flexible, but by far the most time-consuming arbitration algorithm of the
five described here.

5.7.7 UNIFICATION

Suppose in our earlier example Whisker, the communications specialist, ended up dy-
ing. Her colleague Sale takes over carrying the radio. Now suppose that Sale is severely
hurt; somebody else needs to take the radio. We could simply have a rule for each per-
son that matches when they are hurt and carrying the radio.

We could instead introduce a rule whose pattern contains wild cards:

1 (?person (health 0-15))
2 AND
3 (Radio (held-by ?person))

The ?person name matches any person. These wild cards act slightly differently to
conventional wild cards (the kind we introduced in the section on matching above).
If they were normal wild cards, then the rule would match the database:

1 (Johnson (health 38))
2 (Sale (health 15))
3 (Whisker (health 25))
4 (Radio (held-by Whisker))

The first ?person would match Sale, while the second would match Whisker. This
is not what we want; we want the same person for both.

In unification, a set of wild cards are matched so that they all refer to the same
thing. In our case the rule would not match the above database, but it would match
the following:

1 (Johnson (health 38))
2 (Sale (health 42))
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3 (Whisker (health 15))
4 (Radio (held-by Whisker))

where both wild cards match the same thing: Whisker.
If we wanted to match different people with each wild card, we could request that

by giving different names to each wild card. For example, we could use a pattern of
the following form:

1 (?person-1 (health 0-15))
2 AND
3 (Radio (held-by ?person-2))

Unification is significant because it makes rule matching a great deal more pow-
erful. To get the same effect without unification would require four rules in our ex-
ample. There are other situations, such as the following pattern:

1 (Johnson (health ?value-1))
2 AND
3 (Sale (health ?value-2))
4 AND
5 ?value-1 < ?value-2

where an almost infinite number of regular rules would be required if unification
wasn’t available (assuming that the health values are floating point numbers, it would
require a little less than 232 rules, certainly too many to be practical).

To take advantage of this extra power, we’d like our rule-based system to support
pattern matching with unification.

Performance

Unfortunately, unification has a downside: the most obvious implementation is com-
putationally complex to process. To match a pattern such as

1 (Whisker (health 0))
2 AND
3 (Radio (held-by Whisker))

we can split the pattern into two parts, known as clauses. Each clause can individually
be checked against the database. If both clauses find a match, then the whole pattern
matches.

Each part of the expression requires at most an O(n) search, where n is the num-
ber of items in the database. So a pattern with m clauses is, at worst, an O(nm) process.
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I say at worst because, as we saw with decision trees, we might be able to avoid having
to test the same thing multiple times and arrive at an O(m log2 n) process.

In a pattern with connected wild cards, such as

1 (?person (health < 15))
2 AND
3 (Radio (held-by ?person))

we can’t split the two clauses up. The results from the first clause directly affect the
pattern in the second clause. So if matching the first clause comes back

1 ?person = Whisker

then the second clause is a search for

1 (Radio (held-by Whisker))

The first clause might potentially match several items in the database, each of
which needs to be tried with the second clause.

Using this approach, a two-clause search could take O(n2) time, and a pattern
with m clauses could take O(nm) time. This is a dramatic increase from O(nm) for
the original pattern. Although there are O(nm) linear algorithms for unification (at
least the kind of unification we are doing here), they are considerably more complex
than the simple divide and conquer approach used in patterns without wild cards.

We will not take the time to go through a stand-alone unification algorithm here.
They are not often used for this kind of rule-based system. Instead, we can take ad-
vantage of a different approach to matching altogether, which allows us to perform
unification at the same time as speeding up the firing of all rules. This method is Rete.

5.7.8 RETE

The Rete algorithm is an AI industry standard for matching rules against a database.
It is not the fastest algorithm around; there are several papers detailing faster ap-
proaches. But because expert systems are commercially valuable, they don’t tend to
give full implementation details.1

Most commercial expert systems are based on Rete, and some of the more com-
plex rule-based systems I’ve seen in games use the Rete matching algorithm. It is a
relatively simple algorithm that provides the basic starting point for more complex
optimizations.

1. You should also be careful of proprietary algorithms because many are patented. Just because an algorithm
is published doesn’t mean it isn’t patented. You could end up having to pay a licence fee for your implemen-
tation, even if you wrote the source code from scratch. I’m no lawyer, so I’d advise you to see an intellectual
property attorney if you have any doubts.
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The Algorithm

The algorithm works by representing the patterns for all rules in a single data struc-
ture: the Rete. The Rete is a directed acyclic graph2 (see Chapter 4, Section 4.1 on
the pathfinding graph for a complete description of this structure). Each node in the
graph represents a single pattern in one or more rules. Each path through the graph
represents the complete set of patterns for one rule. At each node we also store a
complete list of all the facts in the database that match that pattern.

Figure 5.32 shows a simple example of a Rete for the following rules:

1 Swap Radio Rule:
2 IF
3 (?person-1 (health < 15))
4 AND
5 (radio (held-by ?person-1))
6 AND
7 (?person-2 (health > 45))
8 THEN
9 remove(radio (held-by ?person-1))

10 add(radio (held-by ?person-2))
11

12 Change Backup Rule:
13 IF
14 (?person-1 (health < 15))
15 AND
16 (?person-2 (health > 45))
17 AND
18 (?person-2 (is-covering ?person-1))
19 THEN
20 remove(?person-2 (is-covering ?person-1))
21 add(?person-1 (is-covering ?person-2))

The first rule is as before: if there is someone close to death, and they’re carrying
the radio, then give the radio to someone who is relatively healthy. The second rule is
similar: if a soldier is close to death, and they’re leading a buddy-pair, then swap them
around, and make their buddy take the lead (if you’re feeling callous you could argue
the opposite, I suppose: the weak guy should be sent out in front).

There are three kinds of nodes in our Rete diagram. At the top of the network
are nodes that represent individual clauses in a rule (known as pattern nodes). These
are combined nodes representing the AND operation (called join nodes). Finally, the
bottom nodes represent rules that can be fired: many texts on Rete do not include

2. Rete is simply a fancy anatomical name for a network.
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Figure 5.32 A Rete

these rule nodes in the network, although they must exist in your implementation.
Notice that the clauses

1 (?person-1 (health < 15))

and

1 (?person-2 (health > 45))

are shared between both rules. This is one of the key speed features of the Rete algo-
rithm; it doesn’t duplicate matching effort.

Matching the Database

Conceptually, the database is fed into the top of the network. The pattern nodes try to
find a match in the database. They find all the facts that match and pass them down
to the join nodes. If the facts contain wild cards, the node will also pass down the
variable bindings. So if
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1 (?person (health < 15))

matches

1 (Whisker (health 12))

then the pattern node will pass on the variable binding

1 ?person = Whisker

The pattern nodes also keep a record of the matching facts they are given to allow
incremental updating, discussed later in the section.

Notice that rather than finding any match, we now find all matches. If there are
wild cards in the pattern, we don’t just pass down one binding, but all sets of bindings.

For example, if we have a fact

1 (?person (health < 15))

and a database containing the facts

1 (Whisker (health 12))
2 (Captain (health 9))

then there are two possible sets of bindings:

1 ?person = Whisker

and

1 ?person = Captain

Both can’t be true at the same time, of course, but we don’t yet know which will
be useful, so we pass down both. If the pattern contains no wild cards, then we are
only interested in whether it matches anything or not. In this case we can move on
as soon as we find the first match because we won’t be passing on a list of bind-
ings.

The join node makes sure that both of its inputs have matched and any variables
agree.

Figure 5.33 shows three situations. In the first situation there are different vari-
ables in each input pattern node. Both pattern nodes match and pass in their matches.
The join node passes out its output.
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Bindings:
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Figure 5.33 A join node with variable clash, and two others without

In the second situation the join node receives matches from both its inputs, as
before, but the variable bindings clash, so it does not generate an output. In the third
situation the same variable is found in both patterns, but there is one set of matches
that doesn’t clash, and the join node can output this.

The join node generates its own match list that contains the matching input facts
it receives and a list of variable bindings. It passes this down the Rete to other join
nodes, or to a rule node.

If the join node receives multiple possible bindings from its input, then it needs to
work out all possible combinations of bindings that may be correct. Take the previous
example, let’s imagine we are processing the AND join in

1 (?person (health < 15))
2 AND
3 (?radio (held-by ?person))

against the database

1 (Whisker (health 12))
2 (Captain (health 9))
3 (radio-1 (held-by Whisker))
4 (radio-2 (held-by Sale))
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The

1 (?person (health < 15))

pattern has two possible matches:

1 ?person = Whisker

and

1 ?person = Captain

The

1 (radio (held-by ?person-1))

pattern also has two possible matches:

1 ?person = Whisker, ?radio = radio-1

and

1 ?person = Sale, ?radio = radio-2

The join node therefore has two sets of two possible bindings, and there are four
possible combinations, but only one is valid, that is

1 ?person = Whisker, ?radio = radio-1

So this is the only one it passes down. If there were multiple combinations that
were valid, then it would pass down multiple bindings.

If your system doesn’t need to support unification, then the join node can be
much simpler: variable bindings never need to be passed in, and an AND join node
will always output if it receives two inputs.

We don’t have to limit ourselves to AND join nodes. We can use additional types
of join nodes for different Boolean operators. Some of them (like AND and XOR)
require additional matching to support unification, but others (like OR) do not and
have a simple implementation whether unification is used or not. Alternatively, these
operators can be implemented in the structure of the Rete, and AND join nodes are
sufficient to represent them. This is exactly the same as we saw in decision trees.

Eventually, the descending data will stop (when no more join nodes or pattern
nodes have output to send), or it will reach one or more rules. All the rules that receive
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input are triggered. We keep a list of rules that are currently triggered, along with the
variable bindings and facts that triggered it. We call this a trigger record. A rule may
have multiple trigger records, with different variable bindings, if it received multiple
valid variable bindings from a join node or pattern.

Some kind of rule arbitration system needs to determine which triggered rule will
go on to fire. (This isn’t part of the Rete algorithm; it can be handled as before.)

An Example

Let’s apply our initial Rete example to the following database:

1 (Captain (health 57) (is-covering Johnson))
2 (Johnson (health 38))
3 (Sale (health 42))
4 (Whisker (health 15) (is-covering Sale))
5 (Radio (held-by Whisker))

Figure 5.34 shows the network with the data stored at each node.
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Figure 5.34 The Rete with data
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Notice that each pattern node is passing down all of the data that it matches. Each
join node is acting as a filter. With this database, only the Swap Radio Rule is active;
the Change Backup Rule doesn’t get triggered because the join node immediately
above it doesn’t have a clash-free set of inputs. The Swap Radio Rule gets a complete
set of variable bindings and is told to fire.

We can use Rete by plugging in the complete database each time and seeing which
rules fire. This is a simple approach, but in many applications data doesn’t change
much from iteration to iteration.

Rete is designed to keep hold of data and only update those nodes that need it.
Each node keeps a list of the database facts that it matches or that it can join suc-
cessfully. At successive iterations, only the data that has changed is processed, and
knock-on effects are handled by walking down the Rete.

The update process consists of an algorithm to remove a database fact and another
algorithm to add one (if a value has changed, then the database fact will be removed
and then added back with the correct value).

Removing a Fact

To remove a fact, a removal request is sent to each pattern node. The request identifies
the fact that has been removed. If the pattern node has a stored match on the fact, then
the match is removed, and the removal request is sent down its outputs to any join
nodes.

When a join node receives a removal request, it looks at its list of matches. If there
are any entries that use the removed fact, it deletes them from its list and passes the
removal request on down.

If a rule node receives a removal request, it removes any of its trigger records from
the triggered list which contains the removed fact.

If any node doesn’t have the given fact in its storage, then it needs to do nothing;
it doesn’t pass the request on down.

Adding a Fact

Adding a fact is very similar to removing one. Each pattern node is sent an addition
request containing the new fact. Patterns that match the fact add it to their list and
pass a notification of the new match down the Rete.

When a join node receives a new match, it checks if there are any new sets of
non-clashing inputs that it can make, using the new fact. If there are, it adds them to
its match list and sends the notification of the new match down. Notice that, unlike
removal requests, the notification it sends down is different from the one it received.
It is sending down notification of one or more whole new matches: a full set of inputs
and variable bindings, involving the new fact.

If a rule node receives a notification, it adds one or more trigger records to the
trigger list, containing the new input it received.
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Once again, if the fact doesn’t update the node, then there is no need to pass the
addition request on.

Managing the Update

Each iteration, the update routine sends the appropriate series of add and remove re-
quests to the pattern nodes. It doesn’t check if rules are triggered during this process,
but allows them all to process. In general, it is more efficient to perform all the re-
movals first and then all the new additions.

After all the updates have been performed, the triggered list contains all the rules
that could be fired (along with the variable bindings that cause them to trigger). The
rule arbiter can decide which rule should fire.

An Update Example

We’ll use our previous example to illustrate the update procedure. Let’s say that, since
the last update, Whisker has used a med-pack and Sale has been hit by enemy fire. We
have four changes to make: two additions and two removals.

1 remove (Whisker (health 12))
2 add (Whisker (health 62))
3 remove (Sale (health 42))
4 add (Sale (health 5))

First, the removal requests are given to all the patterns. The check for low health
used to have only Whisker in its match list. This is deleted, and the removal request is
passed on. The join node A receives the request, removes the match involving Whisker
from its match list, and passes on the request. The join node B does the same. The rule
node now receives the removal request and removes the corresponding entry from the
triggered list. The same process occurs for removing Sale’s health, leaving the Rete as
shown in Figure 5.35.

Now we can add the new data. First, Whisker’s new health is added. This matches
the

1 (?person (health > 45))

pattern, which duly outputs notification of its new match. The join node A receives
the notification, but can find no new matches, so the update stops there. Second, we
add Sale’s new health. The

1 (?person (health < 15))

pattern matches and sends notification down to join node A. Now join node A does
have a valid match, and it sends notification on down the Rete. Join node B can’t



5.7 Rule-Based Systems 431

Swap radio rule Change backup rule

(ra
dio

 (h
eld

-b
y ?

pe
rs

on
-1

))

(?
pe

rs
on

-1
 (h

ea
lth

 <
15

))
(?

pe
rs

on
-2

 (h
ea

lth
 >

45
))

(?
pe

rs
on

-2
 (i

s-
co

ve
rin

g 
?p

er
so

n-
1)

)

Bindings:
None Bindings:

None

Bindings:
None

Bindings:
?person-2 = Captain

Bindings:
None

Bindings:
?person-1 = Whisker

Bindings:
(?person-1 = Johnson,
 ?person-2 = Captain) OR
(?person-1 = Sale,
 ?person-2 = Whisker)

A

B C

Figure 5.35 Rete in mid-update

make a match, but join node C, previously inactive, now can make a match. It sends
notification on to the Change Backup Rule, which adds its newly triggered state to the
triggered list. The final situation is shown in Figure 5.36.

The update management algorithm can now select one triggered rule from the list
to fire. In our case there is only one to choose, so it is fired.

On the CD

The pseudo-code of Rete is many pages long and doesn’t make the algorithm any
clearer for its complexity. I decided not to include it here and waste several pages with

LIBRARY

difficult-to-follow code. There is a full source code implementation provided on the
CD, with lots of comments, that I’d recommend you work through.

The Rule-Based System program on the CD allows you to play with a simple rule-
based system and database. It is a command line program that allows you to add facts
to the database using the simple LISP syntax shown above. You can run a rule set
against it to see how matches are processed. The Rete can be viewed at any time, and
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Figure 5.36 Rete after-update

the program gives lots of feedback on which nodes in the Rete are being processed
and the variable bindings they are passing on.

Performance

Rete approaches O(nmp) in time, where n is the number of rules, m is the number
of clauses per rule, and p is the number of facts in the database. If there are a large
number of possible wild card matches, then the process of unifying the bindings in
the join node can take over the performance. In most practical systems, however, this
isn’t a major issue.

Rete is O(nmq) in memory, where q is the number of different wild card matches
per pattern. This is significantly higher than the basic rule matching system we de-
veloped first. In addition, in order to take advantage of the fast update, we need to
keep this data between iterations. It is this high memory usage that gives the speed
advantage.
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5.7.9 EXTENSIONS

The ubiquity of rule-based systems in early AI research led to a whole host of dif-
ferent extensions, modifications, and optimizations. Each area in which a rule-based
system was applied (such as language understanding, controlling industrial processes,
diagnosing faults in machinery, and many others) has its own set of common tricks.

Very few of these are directly usable in games development. Given that rule-based
systems are only needed in a minority of AI scenarios, we’ll safely ignore most of
them here. I’d recommend “Expert Systems: Principles and Programming” for more
background on industrial uses. Its comes with a copy of CLIPS, a reasonably general
expert system shell.

There are two extensions that are widespread enough to be worth mentioning.
The first manages huge rule-based systems and is of direct use to games developers.
The second is justification, widely used in expert systems and is useful to game devel-
opers when debugging their AI code.

I could fill a whole book on algorithms for rule-based systems. Given their niche
status in game development, I will limit this section to a brief overview of each exten-
sion.

Managing Large Rule Sets

One developer I know has used a rule-based system to control the team AI in a series
of two-dimensional (2D) turn-based war games. Their rule set was huge, and as each
game in the series was released, they added a large number of new rules. Some new
rules allowed the AI to cope with new weapons and power-ups, and other new rules
were created as a result of player feedback from previous releases. Over the course of
developing each title, bug reports from the QA department would lead to even more
rules being added. After several iterations of the product, the set of rules was huge
and difficult to manage. It also had serious implications for performance: with such
a large rule set, even the Rete matching algorithm is too slow.

The solution was to group rules together. Each rule set could be switched on and
off as it was needed. Only rules in active sets would be considered for triggering. Rules
in disabled sets were never given the chance to trigger. This took the system down
from several thousand rules to no more than a hundred active rules at any time.

This is a technique used in many large rule-based systems.
The rule-based system contains a single rule set which is always switched on. In-

side this rule set are any number of rules and any number of other rule sets. Rule
sets at this level or below can be switched on or off. This switching can be performed
directly by the game code or in the THEN action of another rule.

Typically, each high-level rule set contains several rules and a few rule sets. The
rules are only used to switch on and off the contained sets. This is arranged in a
hierarchy, with the sets at the lowest level containing the useful rules that do the work.
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Figure 5.37 Schematic of the rule sets in the game

At each iteration of the rule-based system, the top-level set is asked to provide
one triggered rule that should be fired. This set looks through all its constituent rules,
searching for triggers in the normal way. It also delegates the same query to any sets
it contains: provide one triggered rule that should be fired. Each set uses one of the
arbitration algorithms to decide which rule to return for firing.

In our implementation of this process, shown in Figure 5.37, a different arbitra-
tion routine could be set for each set in the hierarchy. In the end, this flexibility wasn’t
used, and all sets ran on a most specific strategy.

The hierarchy of sets allows a great deal of flexibility. At one point in the hierarchy,
we used a rule set for all the rules corresponding to the peculiarities of each weapon
in the game. Only one of these sets was enabled at any time: the set corresponding to
the weapon held by the character. The enabling of the appropriate set was handled by
the game code.

At another point in the hierarchy, there were sets containing rules for moving in
the presence of enemies or moving freely. Because information about nearby enemies
was being added to the database anyway, we switched between these two sets using
five rules placed in the set that contained them.

An overview schematic of the rule sets is shown in Figure 5.37.
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Justification in Expert Systems

Most generally, an expert system is any AI that encodes the knowledge from a human
expert and performs that expert’s job. Most expert systems are implemented using
rule-based systems. Strictly, the expert system is the end product: the combination of
the algorithm and rules that encodes the expert’s knowledge. The algorithm itself is
the rule-based system, also known as an “expert system shell” or sometimes a “pro-
duction system” (the term production refers to the forward chaining nature of the
algorithm: it produces new knowledge from existing data).

A common extension to the basic rule-based system has been incorporated in
many expert system shells: an audit trail of how knowledge came to be added.

When the rule-based system fires a database rewrite rule, any data added has ad-
ditional information stored with it. The rule that created it, the items of data in the
database that the rule matched, the current values of these items, and a time stamp
are all commonly retained. Let’s call this the firing information. Similarly, when an
item of data is removed, it is retained in a “deleted” list, accompanied by the same fir-
ing information. Finally, if an item of data is modified, its old value is retained along
with the firing information.

In a game context, the data in the database can also be added or modified directly
by the game. Similar auditing information is also retained, with an indication that the
data was altered by an external process, rather than by the firing of a rule. Obviously,
if a piece of data is changing every frame, it may not be sensible to keep a complete
record of every value it has ever taken.

Any piece of data in the database can then be queried, and the expert system shell
will return the audit trail of how the data got there and how its current value came to
be set. This information can be recursive. If the data we are interested in came from
a rule, we can ask where the matches came from that triggered that rule. This process
can continue until we are left with just the items of data that were added by the game
(or were there from the start).

In an expert system this is used to justify the decisions that the system makes. If
the expert system is controlling a factory and chooses to shut down a production line,
then the justification system can give the reasons for its decision.

In a game context, we don’t need to justify decisions to the player. But during
testing, it is often very useful to have a mechanism for justifying the behavior of a
character. Rule-based systems can be so much more complicated than the previous
decision making techniques in this chapter. Finding out the detailed and long-term
causes of a strange looking behavior can save days of debugging.

I’ve built an expert system shell specifically for inclusion in a game. I added a jus-
tification system late in the development cycle after a bout of hair-pulling problems.
The difference in debugging power was dramatic. A sample portion of the output
is shown below (the full output was around 200 lines long). Unfortunately, because
the code was developed commercially, I am not able to include this application on
the CD.
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1 Carnage XS. V104 2002-9-12.
2 JUSTIFICATION FOR <Action: Grenade (2.2,0.5,2.1)>
3

4 <Action: grenade ?target>
5 FROM RULE: flush-nest
6 BINDINGS: target = (2.2,0.5,2.1)
7 CONDITIONS:
8

9 <Visible: heavy-weapon <ptr008F8850> at (2.2,0.5,2.1)>
10 FROM RULE: covered-by-heavy-weapon
11 BINDINGS: ?weapon = <ptr008F8850>
12 CONDITIONS:
13 <Ontology: machine-gun <ptr008F8850>>
14 FROM FACT: <Ontology: machine-gun <ptr008F8850>>
15 <Location: <ptr008F8850> at (312.23, 0.54, 12.10)>
16 FROM FACT: <Location: <ptr008F8850> at (2.2,0.5,2.1)>
17

18 <Visible: enemy-units in group>
19 ...

To make sure the final game wasn’t using lots of memory to store the firing data,
the justification code was conditionally compiled so that it didn’t end up in the final
product.

5.7.10 WHERE NEXT

The rule-based systems in this section represent the most complex non-learning de-
cision makers we’ll cover in this book. A full Rete-implementation with justification
and rule set support is a formidable programming task that can support incredi-
ble sophistication of behavior. It can support more advanced AI than any seen in
current-generation games (providing that someone was capable of writing enough
good rules). Likewise, GOAP is well ahead of the current state of the art and is the
cutting edge of AI being explored in several big studios.

The remainder of this chapter looks at the problem of making decisions from
some different angles, examining ways to combine different decision makers together,
to script behaviors directly from code, and to execute actions that are requested from
any decision making algorithm.

5.8 BLACKBOARD ARCHITECTURES

A blackboard system isn’t a decision making tool in its own right. It is a mechanism
for coordinating the actions of several decision makers.
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The individual decision making systems can be implemented in any way: from
a decision tree to an expert system or even to learning tools such as the neural net-
works we’ll meet in Chapter 7. It is this flexibility that makes blackboard architectures
appealing.

In the AI literature, blackboard systems are often large and unwieldy, requiring
lots of management code and complicated data structures. For this reason they have
something of a bad reputation among game AI programmers. At the same time, many
developers implement AI systems that use the same techniques without associating
them with the term “blackboard architecture.”

5.8.1 THE PROBLEM

We would like to be able to coordinate the decision making of several different tech-
niques. Each technique may be able to make suggestions as to what to do next, but
the final decision can only be made if they cooperate.

We may have a decision making technique specializing in targeting enemy tanks,
for example. It can’t do its stuff until a tank has been selected to fire at. A different
kind of AI is used to select a firing target, but that bit of AI can’t do the firing itself.
Similarly, even when the target tank is selected, we may not be in a position where
firing is possible. The targeting AI needs to wait until a route planning AI can move
to a suitable firing point.

We could simply put each bit of AI in a chain. The target selector AI chooses a
target, the movement AI moves into a firing position, and the ballistics AI calculates
the firing solution. This approach is very common, but doesn’t allow for information
to pass in the opposite direction. If the ballistics AI calculates that it cannot make
an accurate shot, then the targeting AI may need to calculate a new solution. On
the other hand, if the ballistic AI can work out a shot, then there is no need to even
consider the movement AI. Obviously, whatever objects are in the way do not affect
the shell’s trajectory.

We would like a mechanism whereby each AI can communicate freely without
requiring all the communication channels to be set up explicitly.

5.8.2 THE ALGORITHM

The basic structure of a blackboard system has three parts: a set of different decision
making tools (called “experts” in blackboard-speak), a blackboard, and an arbiter.
This is illustrated in Figure 5.38.

The blackboard is an area of memory that any expert may use to read from and
write to. Each expert needs to read and write in roughly the same language, although
there will usually be messages on the blackboard that not everyone can understand.

Each expert looks at the blackboard and decides if there’s anything on it that they
can use. If there is, they ask to be allowed to have the chalk and board eraser for a
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Figure 5.38 Blackboard architecture

while. When they get control they can do some thinking, remove information from
the blackboard, and write new information, as they see fit. After a short time, the
expert will relinquish control and allow other experts to have a go.

The arbiter picks which expert gets control at each go. Experts need to have some
mechanism of indicating that they have something interesting to say. The arbiter
chooses one at a time and gives it control. Often, there are none or only one expert
who wants to take control, and the arbiter is not required.

The algorithm works in iterations.

1. Experts look at the board and indicate their interest.

2. The arbiter selects an expert to have control.

3. The expert does some work, possibly modifying the blackboard.

4. The expert voluntarily relinquishes control.

The algorithm used by the arbiter can vary from implementation to implementa-
tion. The simple and common approach we will use asks each expert to indicate how
useful they think they can be in the form of a numeric insistence value. The arbiter
can then simply pick the expert with the highest insistence value. In the case of a tie,
a random expert is selected.
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Extracting an Action

Suggested actions can be written to the blackboard by experts in the same way that
they write any other information. At the end of an iteration (or multiple iterations if
the system is running for longer), actions placed on the blackboard can be removed
and carried out using the action execution techniques at the end of this chapter.

Often, an action can be suggested on the blackboard before it has been properly
thought through. In our tank example, the targeting expert may post a “fire at tank
15” action on the board. If the algorithm stopped at that point, the action would be
carried out without the ballistic and movement experts having had a chance to agree.

A simple solution is to store the potential action along with a set of agreement
flags. An action on the blackboard is only carried out if all relevant experts have
agreed to it. This does not have to be every expert in the system, just those who would
be capable of finding a reason not to carry the action out.

In our example the “fire at tank 15” action would have one agreement slot: that
of the ballistic expert. Only if the ballistic expert has given the go ahead would the
action be carried out. The ballistic expert may refuse to give the go ahead and instead
either delete the action or add a new action “move into firing position for tank 15.”
With the “fire at tank 15” action still on the blackboard, the ballistic expert can wait
to agree to it until the firing position is reached.

5.8.3 PSEUDO-CODE

The blackboardIteration function below takes as input a blackboard and a set of
experts. It returns a list of actions on the blackboard that have been passed for execu-
tion. The function acts as the arbiter, following the highest insistence algorithm given
above.

1 def blackboardIteration(blackboard, experts):
2

3 # Go through each expert for their insistence
4 bestExpert = None
5 highestInsistence = 0
6 for expert in experts:
7 # Ask for the expert’s insistence
8 insistence = expert.getInsistence(blackboard)
9

10 # Check against the highest value so far
11 if insistence > highestInsistence:
12 highestInsistence = insistence
13 bestExpert = expert
14

15 # Make sure somebody insisted
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16 if bestExpert:
17

18 # Give control to the most insistent expert
19 bestExpert.run(blackboard)
20

21 # Return all passed actions from the blackboard
22 return blackboard.passedActions

5.8.4 DATA STRUCTURES AND INTERFACES

The blackboardIteration function relies on three data structures: a blackboard con-
sisting of entries and a list of experts.

The Blackboard has the following structure:

1 class Blackboard:
2 entries
3 passedActions

It has two components: a list of blackboard entries and a list of ready to execute
actions. The list of blackboard entries isn’t used in the arbitration code above and
is discussed in more detail later in the section on blackboard language. The actions
list contains actions which are ready to execute (i.e., they have been agreed upon by
every expert whose permission is required). It can be seen as a special section of the
blackboard: a to-do list where only agreed actions are placed.

More complex blackboard systems also add meta-data to the blackboard that con-
trols its execution, keeps track of performance, or provides debugging information.
Just as for rule-based systems, we can also add data to hold an audit trail for entries:
which expert added them and when.

Other blackboard systems hold actions as just another entry on the blackboard
itself, without a special section. For simplicity, I’ve elected to use a separate list; it is
the responsibility of each expert to write to the “actions” section when an action is
ready to be executed and to keep unconfirmed actions off the list. This makes it much
faster to execute actions. We can simply work through this list rather than searching
the main blackboard for items that represent confirmed actions.

Experts can be implemented in any way required. For the purpose of being man-
aged by the arbiter in our code, they need to conform to the following interface:

1 class Expert:
2 def getInsistence(blackboard)
3 def run(blackboard)

The getInsistence function returns an insistence value (greater than zero) if the
expert thinks it can do something with the blackboard. In order to decide on this,
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it will usually need to have a look at the contents of the blackboard. Because this
function is called for each expert, the blackboard should not be changed at all from
this function. It would be possible, for example, for an expert to return some instance,
only to have the interesting stuff removed from the blackboard by another expert.
When the original expert is given control, it has nothing to do.

The getInsistence function should also run as quickly as possible. If the expert
takes a long time to decide if it can be useful, then it should always claim to be useful.
It can spend the time working out the details when it gets control. In our tanks ex-
ample, the firing solution expert may take a while to decide if there is a way to fire. In
this case the expert simply looks on the blackboard for a target, and if it sees one, it
claims to be useful. It may turn out later that there is no way to actually hit this target,
but that processing is best done in the run function when the expert has control.

The run function is called when the arbiter gives the expert control. It should
carry out the processing it needs, read and write to the blackboard as it sees fit, and
return. In general, it is better for an expert to take as little time as possible to run.
If an expert requires lots of time, then it can benefit from stopping in the middle of
its calculations and returning a very high insistence on the next iteration. This way
the expert gets its time split into slices, allowing the rest of the game to be processed.
Chapter 9 has more details on this kind of scheduling and time-slicing.

The Blackboard Language

So far we haven’t paid any attention to the structure of data on the blackboard. More
so than any of the other techniques in this chapter, the format of the blackboard will
depend on the application. Blackboard architectures can be used for steering charac-
ters, for example, in which case the blackboard will contain three-dimensional (3D)
locations, combinations of maneuvers, or animations. Used as a decision making ar-
chitecture, it might contain information about the game state, the position of enemies
or resources, and the internal state of a character.

There are general features to bear in mind, however, that go some way toward a
generic blackboard language. Because the aim is to allow different bits of code to talk
to each other seamlessly, information on the blackboard needs at least three compo-
nents: value, type identification, and semantic identification.

The value of a piece of data is self-explanatory. The blackboard will typically have
to cope with a wide range of different data types, however, including structures. It
might contain health values expressed as an integer and positions expressed as a 3D
vector, for example.

Because the data can be in a range of types, its content needs to be identified. This
can be a simple type code. It is designed to allow an expert to use the appropriate
type for the data (in C/C++ this is normally done by typecasting the value to the
appropriate type). Blackboard entries could achieve this by being polymorphic: using
a generic Datum base class with sub-classes for FloatDatum, Vector3DDatum, and so on.
With run time type information (RTTI) in a language such as C++, or the sub-classes



442 Chapter 5 Decision Making

containing a type identifier. It is more common, however, to explicitly create a set of
type codes to identify the data, whether or not RTTI is used.

The type identifier tells an expert what format the data is in, but it doesn’t help
the expert understand what to do with it. Some kind of semantic identification is also
needed. The semantic identifier tells each expert what the value means. In production
blackboard systems this is commonly implemented as a string (representing the name
of the data). In a game, using lots of string comparisons can slow down execution, so
some kind of magic number is often used.

A blackboard item may therefore look like the following:

1 struct BlackboardDatum:
2 id
3 type
4 value

The whole blackboard consists of a list of such instances.
In this approach complex data structures are represented in the same way as built-

in types. All the data for a character (its health, ammo, weapon, equipment, and so
on) could be represented in one entry on the blackboard or as a whole set of indepen-
dent values.

We could make the system more general by adopting an approach similar to the
one we used in the rule-based system. Adopting a hierarchical data representation
allows us to effectively expand complex data types and allows experts to understand
parts of them without having to be hard-coded to manipulate the type. In languages
such as Java, where code can examine the structure of a type, this would be less impor-
tant. In C++ it can provide a lot of flexibility. An expert could look for just the infor-
mation on a weapon, for example, without caring if the weapon was on the ground,
in a character’s hand, or currently being constructed.

While many blackboard architectures in non-game AI follow this approach, using
nested data to represent their content, I have not seen it used in games. I personally
associate hierarchical data with rule-based systems and flat lists of labelled data with
blackboard systems (although the two approaches overlap, as we’ll see below).

5.8.5 PERFORMANCE

The blackboard arbiter uses no memory and runs in O(n) time, where n is the num-
ber of experts. Often, each expert needs to scan through the blackboard to find an
entry that it might be interested in. If the list of entries is stored as a simple list, this
takes O(m) time for each expert, where m is the number of entries in the blackboard.
This can be reduced to almost O(1) time if the blackboard entries are stored in some
kind of hash. The hash must support lookup based on the semantics of the data, so
an expert can quickly tell if something interesting is present.
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The majority of the time spent in the blackboardIteration function should be
spent in the run function of the expert who gains control. Unless a huge number
of experts are used (or they are searching through a large linear blackboard), the
performance of each run function is the most important factor in the overall efficiency
of the algorithm.

5.8.6 OTHER THINGS ARE BLACKBOARD SYSTEMS

When I described the blackboard system, I said it had three parts: a blackboard con-
taining data, a set of experts (implemented in any way) which read and write to the
blackboard, and an arbiter to control which expert gets control.

It is not alone in having these components, however.

Rule-Based Systems

Rule-based systems have each of these three elements: their database contains data,
each rule is like an expert—it can read from and write to the database, and there is an
arbiter that controls which rule gets to fire. The triggering of rules is akin to experts
registering their interest, and the arbiter will then work in the same way in both cases.

This similarity is no coincidence. Blackboard architectures were first put forward
as a kind of generalization of rule-based systems: a generalization in which the rules
could have any kind of trigger and any kind of rule.

A side effect of this is that if you intend to use both a blackboard system and a
rule-based system in your game, you may need to only implement the blackboard
system. You can then create “experts” that are simply rules: the blackboard system
will be able to manage them.

The blackboard language will have to be able to support the kind of rule-based
matching you intend to perform, of course. But if you are planning to implement
the data format needed in the rule-based system I discussed earlier, then it will be
available for use in more flexible blackboard applications.

If your rule-based system is likely to be fairly stable, and you are using the Rete
matching algorithm, then the correspondence will break down. Because the black-
board architecture is a super-set of the rule-based system, it cannot benefit from op-
timizations specific to rule handling.

Finite State Machines

Less obviously, finite state machines are also a subset of the blackboard architecture
(actually they are a subset of a rule-based system and, therefore, of a blackboard ar-
chitecture). The blackboard is replaced by the single state. Experts are replaced by
transitions, determining whether to act based on external factors, and rewriting the
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sole item on the blackboard when they do. In the state machines in this chapter we
have not mentioned an arbiter. We simply assumed that the first triggered transition
would fire. This is simply the first-applicable arbitration algorithm.

Other arbitration strategies are possible in any state machine. We can use dynamic
priorities, randomized algorithms, or any kind of ordering. They aren’t normally used
because the state machine is designed to be simple; if a state machine doesn’t support
the behavior you are looking for, it is unlikely that arbitration will be the problem.

State machines, rule-based systems, and blackboard architectures form a hierar-
chy of increasing representational power and sophistication. State machines are fast,
easy to implement, and restrictive, while blackboard architectures can often appear
far too general to be practical. The general rule, as we saw in the introduction, is to
use the simplest technique that supports the behavior you are looking for.

5.9 SCRIPTING

A significant proportion of the decision making in games uses none of the techniques
described so far in this chapter. In the early and mid-1990s, most AI was hard-coded
using custom written code to make decisions. This is fast and works well for small
development teams when the programmer is also likely to be designing the behav-
iors for game characters. It is still the dominant model for platforms with modest
development needs (i.e., last-generation, handheld consoles prior to PSP, PDAs, and
mobile phones).

As production became more complex, there was a need to separate the content
(the behavior designs) from the engine. Level designers were empowered to design the
broad behaviors of characters. Many developers moved to use the other techniques in
this chapter. Others continued to program their behaviors in a full programming lan-
guage, but moved to a scripting language separate from the main game code. Scripts
can be treated as data files, and if the scripting language is simple enough, level de-
signers or technical artists can create the behaviors.

An unexpected side effect of scripting language support is the ability for players to
create their own character behavior and to extend the game. Modding is an important
financial force in PC games (it can extend their full-price shelf life beyond the 8 weeks
typical of other titles), so much so that most triple-A titles have some kind of scripting
system included. On consoles the economics is less clear-cut. Most of the companies
I worked with, who had their own internal games engine, had some form of scripting
language support.

While I am unconvinced about the use of scripts to run top-notch character AI,
they have several important applications: in scripting the triggers and behavior of
game levels (which keys open which doors, for example), for programming the user
interface, and for rapidly prototyping character AI.

This section provides a brief primer for supporting a scripting language powerful
enough to run AI in your game. It is intentionally shallow and designed to give you
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enough information to either get started or decide it isn’t worth the effort. Several
excellent websites are available comparing existing languages, and there are a handful
of texts which cover implementing your own language from scratch.

5.9.1 LANGUAGE FACILITIES

There are a few facilities that a game will always require of its scripting language. The
choice of language often boils down to trade-offs between these concerns.

Speed

Scripting languages for games need to run as quickly as possible. If you intend to use
a lot of scripts for character behaviors and events in the game level, then the scripts
will need to execute as part of the main game loop. This means that slow-running
scripts will eat into the time you need to render the scene, run the physics engine, or
prepare audio.

Most languages can be anytime algorithms, running over multiple frames (see
Chapter 9 for details). This takes the pressure off the speed to some extent, but it can’t
solve the problem entirely.

Compilation and Interpretation

Scripting languages are broadly either interpreted, byte-compiled, or fully compiled,
although there are many flavors of each technique.

Interpreted languages are taken in as text. The interpreter looks at each line, works
out what it means, and carries out the action it specifies.

Byte-compiled languages are converted from text to an internal format, called
byte code. This byte code is typically much more compact than the text format. Be-
cause the byte code is in a format optimized for execution, it can be run much faster.

Byte-compiled languages need a compilation step; they take longer to get started,
but then run faster. The more expensive compilation step can be performed as the
level loads, but is usually performed before the game ships.

The most common game scripting languages are all byte-compiled. Some, like
Lua, offer the ability to detach the compiler and not distribute it with the final game.
In this way all the scripts can be compiled before the game goes to master, and only
the compiled versions need to sit on the CD. This removes the ability for users to
write their own script, however.

Fully compiled languages create machine code. This normally has to be linked
into the main game code, which can defeat the point of having a separate scripting
language. I do know of one developer, however, with a very neat run time-linking
system that can compile and link machine code from scripts at run time. In general,
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however, the scope for massive problems with this approach is huge. I’d advise you to
save your hair and go for something more tried and tested.

Extensibility and Integration

Your scripting language needs to have access to significant functions in your game.
A script that controls a character, for example, needs to be able to interrogate the
game to find out what it can see and then let the game know what it wants to do as a
result.

The set of functions it needs to access is rarely known when the scripting lan-
guage is implemented or chosen. It is important to have a language that can easily call
functions or use classes in your main game code. Equally, it is important for the pro-
grammers to be able to expose new functions or classes easily when the script authors
request it.

Some languages (Lua being the best example) put a very thin layer between the
script and the rest of the program. This makes it very easy to manipulate game data
from within scripts, without having a whole set of complicated translation.

Re-Entrancy

It is often useful for scripts to be re-entrant. They can run for a while, and when their
time budget runs out they can be put on hold. When a script next gets some time to
run, it can pick up where it left off.

It is often helpful to let the script yield control when it reaches a natural lull. Then
a scheduling algorithm can give it more time, if it has it available, or else it moves on.
A script controlling a character, for example, might have five different stages (examine
situation, check health, decide movement, plan route, and execute movement). These
can all be put in one script that yields between each section. Then each will get run
every five frames, and the burden of the AI is distributed.

Not all scripts should be interrupted and resumed. A script that monitors a
rapidly changing game event may need to run from its start at every frame (other-
wise, it may be working on incorrect information). More sophisticated re-entrancy
should allow the script writer to mark sections as uninterruptible.

These subtleties are not present in most off-the-shelf languages, but can be a mas-
sive boon if you decide to write your own.

5.9.2 EMBEDDING

Embedding is related to extensibility. An embedded language is designed to be incor-
porated into another program. When you run a scripting language from your work-
station, you normally run a dedicated program to interpret the source code file. In
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a game, the scripting system needs to be controlled from within the main program.
The game decides which scripts need to be run and should be able to tell the scripting
language to process them.

5.9.3 CHOOSING A LANGUAGE

There is a huge range of scripting languages available, and many of them are released
under licences that are suitable for inclusion in a game. Traditionally, most scripting
languages in games have been created by developers specifically for their needs. In the
last few years there has been a growing interest in off-the-shelf languages.

Some commercial game engines include scripting language support (Unreal and
Quake [id Software], for example). Other than these complete solutions, most exist-
ing languages used in games were not originally designed for this purpose. They have
associated advantages and disadvantages that need to be evaluated before you make a
choice.

Advantages

Off-the-shelf languages tend to be more complete and robust than a language you
write yourself. If you choose a fairly mature language, like those described below, you
are benefiting from a lot of development time, debugging effort, and optimization
that has been done by other people.

When you have deployed an off-the-shelf language, the development doesn’t stop.
A community of developers are likely to be continuing work on the language, improv-
ing it and removing bugs. Many open source languages provide web forums where
problems can be discussed, bugs can be reported, and code samples can be down-
loaded. This ongoing support can be invaluable in making sure your scripting system
is robust and as bug-free as possible.

Many games, especially on the PC, are written with the intention of allowing con-
sumers to edit their behavior. Customers building new objects, levels, or whole mods
can prolong a game’s shelf life. Using a scripting language that is common allows
users to learn the language easily using tutorials, sample code, and command line in-
terpreters that can be downloaded from the web. Most languages have newsgroups
or web forums where customers can get advice without calling your publisher’s help
line.

Disadvantages

When you create your own scripting language, you can make sure it does exactly what
you want it to. Because games are sensitive to memory and speed limitations, you can
put only the features you need into the language. As we’ve seen with re-entrancy, you
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can also add features that are specific to game applications and that wouldn’t normally
be included in a general purpose language.

By the same token, when things go wrong with the language, your staff knows
how it is built and can usually find the bug and create a workaround faster.

Whenever you include third party code into your game, you are losing some con-
trol over it. In most cases the advantages outweigh the lack of flexibility, but for some
projects, control is a must.

Open Source Languages

Many popular game scripting languages are released under open source licences.
Open source software is released under a licence that gives the user rights to in-

clude it in their own software without paying a fee. Some open source licences require
that the user release the newly created product open source. These are obviously not
suitable for commercial games.

Open source software, as its name suggests, also allows access to see and change
the source code. This makes it easy to attract studios by giving you the freedom to
pull out any extraneous or inefficient code. Some open source licences, even those
that allow you to use the language in commercial products, require that you release
any modifications to the language itself. This may be an issue for your project.

Whether or not a scripting language is open source, there are legal implications of
using the language in your project. Before using any outside technology in a product
you intend to distribute (whether commercial or not), you should always consult a
good intellectual property lawyer. This book cannot properly advise you on the legal
implications of using a third party language. The following comments are intended as
an indication of the kinds of things that might cause concern. There are many others.

With nobody selling you the software, nobody is responsible if the software goes
wrong. This could be a minor annoyance if a difficult-to-find bug arises during de-
velopment. It could be a major legal problem, however, if your software causes your
customer’s PC to wipe its hard drive. With most open source software, you are re-
sponsible for the behavior of the product.

When you licence technology from a company, the company normally acts as an
insulation layer between you and being sued for breach of copyright or breach of
patent. If a researcher, for example, develops and patents a new technique, they have
rights to its commercialization. If the same technique is implemented in a piece of
software, without their permission, they may have cause to take legal action. When
you buy software from a company, it takes responsibility for the software’s content.
So if the researcher comes after you, the company that sold you the software is usually
liable for the breach (it depends on the contract you sign).

When you use open source software, there is nobody licencing the software to
you, and because you didn’t write it, you don’t know if part of it was stolen or copied.
Unless you are very careful, you will not know if it breaks any patents or other intel-
lectual property rights. The upshot is that you could be liable for the breach.
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You need to make sure you understand the legal implications of using “free” soft-
ware. It is not always the cheapest or best choice, even though the up-front costs are
very low. Consult a lawyer before you make the commitment.

5.9.4 A LANGUAGE SELECTION

Everyone has their favorite language, and trying to back a single pre-built scripting
language is impossible. Read any programming language newsgroup to find endless
“my language is better than yours” flame wars.

Even so, it is a good idea to understand which languages are the usual suspects
and what their strengths and weaknesses are. Bear in mind that it is usually possible
to hack, restructure, or rewrite existing languages to get around their obvious failings.
Many (probably most) commercial games developers using scripting languages do
this. The languages described below are discussed in their out-of-the-box forms.

I’ll look at three languages in the order I would personally recommend them: Lua,
Scheme, and Python.

Lua

Lua is a simple procedural language built from the ground up as an embedding lan-
guage. The design of the language was motivated by extensibility. Unlike most em-
bedded languages, this isn’t limited to adding new functions or data types in C or
C++. The way the Lua language works can also be tweaked.

Lua has a small number of core libraries that provide basic functionality. Its rela-
tively featureless core is part of the attraction, however. In games you are unlikely to
need libraries to process anything but maths and logic. The small core is easy to learn
and very flexible.

Lua does not support re-entrant functions. The whole interpreter (strictly the
“state” object, which encapsulates the state of the interpreter) is a C++ object and
is completely re-entrant. Using multiple state objects can provide some re-entrancy
support, at the cost of memory and lack of communication between them.

Lua has the notion of “events” and “tags.” Events occur at certain points in a
script’s execution: when two values are added together, when a function is called,
when a hash table is queried, or when the garbage collector is run, for example. Rou-
tines in C++ or Lua can be registered against these events. These “tag” routines are
called when the event occurs, allowing the default behavior of Lua to be changed. This
deep level of behavior modification makes Lua one of the most adjustable languages
you can find.

The event and tag mechanism is used to provide rudimentary object-oriented
support (Lua isn’t strictly object oriented, but you can adjust its behavior to get as
close as you like to it), but it can also be used to expose complex C++ types to Lua or
for tersely implementing memory management.
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Another Lua feature beloved by C++ programmers is the “userdata” data type.
Lua supports common data types, such as floats, ints, and strings. In addition, it sup-
ports a generic “userdata” with an associated sub-type (the “tag”). By default Lua
doesn’t know how to do anything with userdata, but by using tag methods, any de-
sired behavior can be added. Userdata is commonly used to hold a C++ instance
pointer. This native handling of pointers can cause problems, but often means that
there is far less interface code needed to make Lua work with game objects.

For a scripting language, Lua is at the fast end of the scale. It has a very simple
execution model that at peak is fast. Combined with the ability to call C or C++
functions without lots of interface code, this means that real-world performance is
impressive.

The syntax for Lua is recognizable for C and Pascal programmers. It is not the
easiest language to learn for artists and level designers, but its relative lack of syntax
features means it is achievable for keen employees.

Despite documentation being poorer than the other two main languages here,
Lua is the most widely used pre-built scripting language in games. The high-profile
switch of Lucas Arts from its internal SCUMM language to Lua motivated a swathe
of developers to investigate its capabilities.

To find out more, the best source of information is the Lua book “Programming
in Lua” [Ierusalimschy, 2003], which is also available free online.

I am a relatively new convert to the world of Lua, but it is easy to see why it is
rapidly becoming the de facto standard for game scripting. The only project I’ve used
it in to date suffered from some problems debugging the Lua scripts, but aside from
that the language performed superbly.

Scheme and Variations

Scheme is a scripting language derived from LISP, an old language that was used to
build most of the classic AI systems prior to the 1990s (and many since, but without
the same dominance).

The first thing to notice about Scheme is its syntax. For programmers not used to
LISP, Scheme can be difficult to understand.

Brackets enclose function calls (and almost everything is a function call) and all
other code blocks. This means that they can become very nested. Good code inden-
tation helps, but an editor that can check enclosing brackets is a must for serious
development. For each set of brackets, the first element defines what the block does;
it may be an arithmetic function,

1 (+ a 0.5)

or a flow control statement,

1 (if (> a 1.0) (set! a 1.0))
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This is easy for the computer to understand, but runs counter to our natural lan-
guage. Non-programmers, and those used to C-like languages, can find it hard to
think in Scheme for a while.

Unlike Lua and Python, there are literally hundreds of versions of Scheme, not to
mention other LISP variants suitable for use as an embedded language. Each variant
has its own trade-offs, which make it difficult to make generalizations about speed
or memory use. At their best, however (minischeme and tinyscheme come to mind),
they can be very very small (minischeme is less than 2500 lines of C code for the
complete system, although it lacks some of the more exotic features of a full scheme
implementation) and superbly easy to tweak. The fastest implementations can be as
fast as any other scripting language, and compilation can typically be much more
efficient than other languages (because the LISP syntax was originally designed for
easy parsing).

Where Scheme really shines, however, is its flexibility. There is no distinction
in the language between code and data, which makes it easy to pass around scripts
within scheme, modify them, and then execute them later. It is no coincidence that
most notable AI programs using the techniques in this book were originally written
in LISP.

Personally, I have used Scheme a lot, enough to be able to see past its awkward
syntax (I had to learn LISP as an AI undergraduate). Professionally, I have never used
Scheme unmodified in a game (although I know at least one studio that has), but I
have built more languages based on Scheme than on any other language (six to date
and one more on the way). If you plan to roll your own language, I would strongly
recommend you first learn Scheme and read through a couple of simple implemen-
tations. It will probably open your eyes as to how easy a language can be to create.

Python

Python is an easy to learn, object-oriented scripting language with excellent exten-
sibility and embedding support. It provides excellent support for mixed language
programming, including the ability to transparently call C and C++ from Python.
Python has support for re-entrant functions as part of the core language from ver-
sion 2.2 onward (called Generators).

Python has a huge range of libraries available for it and has a very large base
of users. Python users have a reputation for helpfulness, and the comp.lang.python
newsgroup is an excellent source of troubleshooting and advice.

Python’s major disadvantages are speed and size. Although significant advances
in execution speed have been made over the last few years, it can still be slow. Python
relies on hash table lookup (by string) for many of its fundamental operations (func-
tion calls, variable access, object-oriented programming). This adds lots of overhead.

While good programming practice can alleviate much of the speed problem,
Python also has a reputation for being large. Because it has much more functionality
than Lua, it is larger when linked into the game executable.
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Python 2.0 and further Python 2.X releases added a lot of functionality to the
language. Each additional release fulfilled more of Python’s promise as a software en-
gineering tool, but by the same token made it less attractive as an embedded language
for games. Earlier versions of Python were much better in this regard, and developers
working with Python often prefer previous releases.

Python often appears strange to C or C++ programmers, because it uses indenta-
tion to group statements, just like the pseudo-code in this book.

This same feature makes it easier to learn for non-programmers who don’t have
brackets to forget and who don’t go through the normal learning phase of not indent-
ing their code.

Python is renowned for being a very readable language. Even relatively novice
programmers can quickly see what a script does. More recent additions to the Python
syntax have damaged this reputation greatly, but it still seems to be somewhat above
its competitors.

Of the scripting languages I have worked with, Python has been the easiest for
level designers and artists to learn. On a previous project we needed to use this feature,
but were frustrated by the speed and size issues. Our solution was to roll our own
language (see the section below), but use Python syntax.

Other Options

There are a whole host of other possible languages. In my experience each is either
completely unused in games (to the best of my knowledge) or has significant weak-
nesses that make it a difficult choice over its competitors. To my knowledge, none
of the languages in this section have seen commercial use as an in-game scripting
tool. As usual, however, a team with a specific bias and a passion for one particular
language can work around these limitations and get a usable result.

Tcl

Tcl is a very well-used embeddable language. It was designed to be an integration
language, linking multiple systems written in different languages. Tcl stands for Tool
Control Language.

Most of Tcl’s processing is based on strings, which can make execution very slow.
Another major drawback is its bizarre syntax, which takes some getting used to, and
unlike Scheme, it doesn’t hold the promise of extra functionality in the end. A number
of inconsistencies in the syntax (such as argument passing by value or by name) are
more serious flaws for the casual learner.

Java

Java is becoming ubiquitous in many programming domains. Because it is a compiled
language, however, its use as a scripting language is restricted. By the same token,
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however, it can be fast. Using JIT compiling (the byte code gets turned into native
machine code before execution), it can approach C++ for speed. The execution envi-
ronment is very large, however, and there is a sizeable memory footprint.

It is the integration issues that are most serious, however. The Java Native In-
terface (that links Java and C++ code) was designed for extending Java, rather than
embedding it. It can therefore be difficult to manage.

Javascript

Javascript is a scripting language designed for web pages. It really has nothing to do
with Java, other than its C++-like syntax.

There isn’t one standard Javascript implementation, so developers who claim to
use Javascript are most likely rolling their own language based on the Javascript syn-
tax.

The major advantage of Javascript is that it is known by many designers who
have worked on the web. Although its syntax loses lots of the elegance of Java, it is
reasonably usable.

Ruby

Ruby is a very modern language with the same elegance of design found in Python,
but its support for object-oriented idioms is more ingrained. It has some neat features
that make it able to manipulate its own code very efficiently. This can be helpful when
scripts have to call and modify the behavior of other scripts. It is not highly re-entrant
from the C++ side, but it is very easy to create sophisticated re-entrancy from within
Ruby.

It is very easy to integrate with C code (not as easy as Lua, but easier than Python,
for example). Ruby is only beginning to take off, however, and hasn’t reached the
audience of the other languages in this chapter. It hasn’t been used (modified or oth-
erwise) in any game I have heard about. One weakness is its lack of documentation,
although that may change rapidly as it gains wider use. It’s a language I have resolved
to keep my eye on for the next few years.

5.9.5 ROLLING YOUR OWN

Most game scripting languages are custom written for the job at hand. While this is a
long and complex procedure for a single game, the added control can be beneficial in
the long run. Studios developing a whole series of games using the same engine will
effectively spread the development effort and cost over multiple titles.

Regardless of the look and capabilities of the final language, scripts will pass
through the same process on their way to being executed: all scripting languages must
provide the same basic set of elements. Because these elements are so ubiquitous, tools
have been developed and refined to make it easy to build them.



454 Chapter 5 Decision Making

There is no way I can give a complete guide to building your own scripting lan-
guage in this book. There are many other books on language construction (although,
surprisingly, there aren’t any good books I know of on creating a scripting, rather
than a fully compiled, language). This section looks at the elements of scripting lan-
guage construction from a very high level, as an aid to understanding rather than
implementation.

The Stages of Language Processing

Starting out as text in a text file, a script typically passes through four stages: tokeniza-
tion, parsing, compiling, and interpretation.

The four stages form a pipeline, each modifying its input to convert it into a for-
mat more easily manipulated. The stages may not happen one after another. All steps
can be interlinked, or sets of stages can form separate phases. The script may be tok-
enized, parsed, and compiled offline, for example, for interpretation later.

Tokenizing

Tokenizing identifies elements in the text. A text file is just a sequence of characters
(in the sense of ascii characters!) The tokenizer works out which bytes belong together
and what kind of group they form.

A string of the form

1 a = 3.2;

can be split into six tokens:

a text

<space> whitespace

= equality operator

<space> whitespace

3.2 floating point number

; end of statement identifier

Notice that the tokenizer doesn’t work out how these fit together into meaningful
chunks; that is the job of the parser.

The input to the tokenizer is a sequence of characters. The output is a sequence of
tokens.
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Parsing

The meaning of a program is very hierarchical: a variable name may be found in-
side an assignment statement, found inside an if-statement, which is inside a func-
tion body, inside a class definition, inside a namespace declaration, for example. The
parser takes the sequence of tokens, identifies the role each plays in the program, and
identifies the overall hierarchical structure of the program.

The line of code

1 if (a < b) return;

converted into the token sequence

1 keyword(if), whitespace, open-brackets, name(a), operator(<),
2 name(b), close-brackets, whitespace, keyword(return),
3 end-of-statement

is converted by the parser into a structure such as that shown in Figure 5.39.
This hierarchical structure is known as the parse tree, or sometimes a syntax

tree or abstract syntax tree (AST for short). Parse trees in a full language may be
more complex, adding additional layers for different types of symbol or for group-
ing statements together. Typically, the parser will output additional data along with

Statement

If

Bracketed expression Return

<

a b

Figure 5.39 A parse tree
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the tree, most notably, a symbol table that identifies what variable or function names
have been used in the code. This is not essential. Some languages look up variable
names dynamically when they run in the interpreter (Python does this, for exam-
ple).

Syntax errors in the code show up during parsing because they make it impossible
for the parser to build an output.

The parser doesn’t work out how the program should be run; that is the job of the
compiler.

Compiling

The compiler turns the parse tree into byte code that can be run by the interpreter.
Byte code is typically sequential binary data.

Non-optimizing compilers typically output byte code as a literal translation of the
parse tree. So a code such as

1 a = 3;
2 if (a < 0) return 1;
3 else return 0;

could get compiled into

1 load 3
2 set-value-of a
3 get-value-of a
4 compare-with-zero
5 if-greater-jump-to LABEL
6 load 1
7 return
8 LABEL:
9 load 0

10 return

Optimizing compilers try to understand the program and make use of prior
knowledge to make the generated code faster. An optimizing compiler may notice
that a must be 3 when the if-statement above is encountered. It can therefore gener-
ate

1 load 3
2 set-value-of a
3 load 0
4 return
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Building an efficient compiler is well beyond the scope of this book. Simple com-
pilers are not difficult to build, but don’t underestimate the effort and experience
needed to build a good solution. There are many hundreds of home-brewed lan-
guages out there with pathetic compilers. I’ve seen it very many times.

Tokenizing, parsing, and compiling are often done offline and are usually called
“compiling,” even though it contains all three stages. The generated byte code can
then be stored and interpreted at run time. The parser and compiler can be large, and
it makes sense not to have the overhead of these modules in the final game.

Interpreting

The final stage of the pipeline runs the byte code. In a compiler for a language such
as C or C++, the final product will be machine instructions that can be directly run
by the processor. In a scripting language, you often need to provide services (such as
re-entrancy and secure execution) that are not easily achieved with machine language.

The final byte code is run on a “virtual machine.” This is effectively an emulator
for a machine that has never existed in hardware.

You decide the instructions that the machine can execute, and these are the byte
code instructions. In the previous example,

1 load <value>
2 set-value-of <variable>
3 get-value-of <variable>
4 compare-with-zero
5 if-greater-jump-to <location>
6 return

are all byte codes.
Your byte code instructions don’t have to be limited to those that might be seen in

real hardware, either. For example, there may be a byte code for “turn this data into a
set of game coordinates”: the kind of instruction that makes your compiler easier to
create, but that no real hardware would ever need.

Most virtual machines consist of a big switch statement in C: each byte code has a
short bit of C code that gets executed when the byte code is reached in the interpreter.
So the “add” byte code has a bit of C/C++ code that performs the addition operation.
Our conversion example may have two or three lines of C++ to perform the required
conversion and copy the results back into the appropriate place.

Just-in-Time Compiling

Because of the highly sequential nature of byte code, it is possible to write a virtual
machine that is very fast at running it. Even though it is still interpreted, it is many
times faster than interpreting the source language a line at a time.



458 Chapter 5 Decision Making

It is possible to remove the interpretation step entirely, however, by adding an
additional compilation step. Some byte code can be compiled into the machine lan-
guage of the target hardware. When this is done in the virtual machine, just before
execution, it is called just-in-time compiling. This is not common in game scripting
languages, but is a mainstay of languages such as Java and Microsoft’s .NET byte code.

Tools: A Quick Look at Lex and Yacc

Lex and Yacc are the two principal tools used in building tokenizers and parsers, re-
spectively. Each has many different implementations and is provided with most UNIX
distributions (versions are available for other platforms too). The Linux variants I
have most often used are called “Flex” and “Bison.”

To create a tokenizer with Lex, you tell it what makes up different tokens in your
language. What constitutes a number, for example (even this differs from language
to language: compare 0.4f to 1.2e−9). It produces C code that will convert the text
stream from your program into a stream of token codes and token data. The software
it generates is almost certainly better and faster than that you could write yourself.

Yacc builds parsers. It takes a representation of the grammar of your language:
what tokens make sense together and what large structures can be made up of smaller
ones, for example. This grammar is given in a set of rules that show how larger struc-
tures are made from simpler ones or from tokens, for example,

1 assignment: NAME ‘=’ expression;

This rule tells Yacc that when it finds a NAME token, followed by an equals sign,
followed by a structure it knows as an expression (for which there will be a recognizer
rule elsewhere), then it knows it has an assignment.

Yacc also generates C code. In most cases the resulting software is as good as
or better than you would create manually, unless you are experienced with writing
parsers. Unlike Lex, the final code can often be further optimized if speed is absolutely
critical. Fortunately, for game scripting the code can usually be compiled when the
game is not being played, so the slight inefficiency is not important.

Both Lex and Yacc allow you to add your own C code to the tokenizing or parsing
software. There isn’t a de facto standard tool for doing the compiling, however. De-
pending on the way the language will behave, this will vary widely. It is very common
to have Yacc build an AST for the compiler to work on, however, and there are various
tools to do this, each with their own particular output format.

Many Yacc-based compilers don’t need to create a syntax tree. They can create
byte code output from within the rules using C code written into the Yacc file. As
soon as an assignment is found, for example, its byte code is output. It is very dif-
ficult to create optimizing compilers this way, however. So if you intend to create a
professional solution, it is worth heading directly for a parse tree of some kind.
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5.9.6 SCRIPTING LANGUAGES AND OTHER AI

If you make the effort to build a scripting language into your game, chances are it will
run most of your AI. Most of the other techniques in this book will not need to be
coded into your game. This can seem appealing at first, but have a general purpose
language take the heavy lifting.

It is a successful approach taken by many commercial studios. Typically, some
extra AI is provided (normally a pathfinding engine, for example) for very processor
intensive needs.

But in my opinion it misses the point of established AI techniques. They exist
because they are elegant solutions to behavior problems, not because programming
in C++ is inconvenient. Even if you go to a scripting language, you have to think
about the algorithms used in the character scripts. Writing ad hoc code in scripts
can rapidly become as difficult to debug as writing it in C++ (more so in fact, since
scripting languages often have much less mature debugging tools).

Several developers I know have fallen into this trap, assuming that a scripting
language means they don’t need to think about the way characters are implemented.
Even if you are using a scripting language, I’d advise you to think about the architec-
ture and algorithms you use in those scripts. It may be that the script can implement
one of the other techniques in this chapter, or it may be that a separate dedicated
C++ implementation would be more practical alongside or instead of the scripting
language.

5.10 ACTION EXECUTION

Throughout this chapter I’ve talked about actions as if it were clear what they were.
Everything from the decision trees to rule-based systems generates actions, and I’ve
avoided being clear on what format they might take.

Many developers don’t work with actions as a distinct concept. The result of each
decision making technique is simply a snippet of code that calls some function, tweaks
some state variable, or asks a different bit of the game (AI, physics, rendering, what-
ever) to perform some task.

On the other hand, it can be beneficial to handle a character’s actions through
a central piece of code. It makes the capabilities of a character explicit, makes the
game more flexible (you can add and remove new types of action easily), and can aid
hugely in debugging the AI. This calls for a distinct concept for actions, with a distinct
algorithm to manage and run them.

This section looks at actions in general and how they can be scheduled and ex-
ecuted through a general action manager. The discussion about how different types
of actions are executed is relevant, even to projects that don’t use a central execution
manager.
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5.10.1 TYPES OF ACTION

We can divide the kind of actions that result from AI decisions into four flavors: state
change actions, animations, movement, and AI requests.

State change actions are the simplest kind of action, simply changing some piece
of the game state. It is often not directly visible to the player. A character may change
the firing mode of its weapon, for example, or use one of its health packs. In most
games these changes only have associated animations or visual feedback when the
player carries them out. For other characters, they simply involve a change in a vari-
able somewhere in the game’s state.

Animations are the most primitive kind of visual feedback. This might be a par-
ticle effect when a character casts a spell or a quick shuffle of the hands to indicate
a weapon reload. Often, combat is simply a matter of animation, whether it be the
recoil from a gun, sheltering behind a raised shield, or a lengthy combo sword attack.

Animations may be more spectacular. We might request an in-engine cutscene,
sending the camera along some predefined track and coordinating the movement of
many characters.

Actions may also require the character to make some movement through the
game level. Although it isn’t always clear where an animation leaves off and move-
ment begins, I am thinking about larger scale movement here. A decision maker that
tells a character to run for cover, to collect a nearby power-up, or to chase after an
enemy is producing a movement action.

In Chapter 3 on movement algorithms we saw the kind of AI that converts this
kind of high-level movement request (sometimes called staging) into primitive ac-
tions. These primitive actions (e.g., apply such-and-such a force in such-and-such
a direction) can then be passed to the game physics, or an animation controller, to
execute.

Although these movement algorithms are typically considered part of AI, I’m
treating them here as if they are just a single action that can be executed. In a game,
they will be executed by calling the appropriate algorithms and passing the results
onto the physics or animation layer. In other words, they will usually be implemented
in terms of the next type of action.

In AI requests for complex characters, a high-level decision maker may be tasked
with deciding which lower level decision maker to use. The AI controlling one team in
a real-time strategy game, for example, may decide that it is time to build. A different
AI may actually decide which building gets to be constructed. In squad-based games,
several tiers of AI are possible, with the output from one level guiding the next level
(we will cover specific tactical and strategic AI techniques in Chapter 6).

A Single Action

The action that is output from a decision making tool may combine any or all of these
flavors. In fact, most actions have at least two of these components to them.
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Figure 5.40 State machine with transition states

Reloading a weapon involves both a state change (replenishing ammo in the gun
from the overall total belonging to the character) and an animation (the hand shuf-
fle). Running for cover may involve an AI request (to a pathfinder), movement (fol-
lowing the path), and animation (waving hands over head in panic). Deciding to
build something may involve more AI (choosing what to build) and animation (the
construction yard’s chimney starts smoking).

Actions involving any animation or movement take time. State changes may be
immediate, and an AI request can be honored straight away, but most actions will
take some time to complete.

A general action manager will need to cope with actions that take time; we can’t
simply complete the action in an instant.

Many developers engineer their AI so that the decision maker keeps scheduling
the same action every frame (or every time it is called) until the action is completed.
This has the advantage that the action can be interrupted at any time (see the next
section), but it means that the decision making system is being constantly processed
and may have to be more complex than necessary.

Take, for example, a state machine with a sleeping and on-guard state. When the
character wakes up, it will need to carry out a “wake-up” action, probably involving
an animation and maybe some movement. Similarly, when a character decides to take
a nap, it will need a “go-to-sleep” action. If we need to continually wake-up or go-to-
sleep every frame, then the state machine will actually require four states, shown in
Figure 5.40.

This isn’t a problem when we only have 2 states to transition between, but allow-
ing transitions between 5 states would involve 40 additional transition states. It soon
scales out of control.

If we can support actions with some duration, then the wake-up action will simply
be requested on exiting the sleep state. The go-to-sleep action will likewise be carried
out when entering the sleep state. In this case, the state machine doesn’t need contin-
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ual processing. After it signals that it is waking up, we can wait until the character has
played its waking animation before moving onto the next thing.

Interrupting Actions

Because actions take time, they may start off being sensible things to do, but may end
up being stupid long before the action is complete. If a character is sent wandering
off toward a power-up, it will appear silly if it carries on toward the power-up after a
squad of enemy units spring their ambush: it’s time to stop going after the power-up
and run away.

If a decision making system decides that an important action is needed, then it
should be able to trump other actions currently being carried out. Most games al-
low such emergencies to even break the consistency of animation. While in normal
circumstances a whole animation is played, if the character needs to do a rapid volte-
face, the animation can be interrupted for another (possibly with a couple of frames
of blending between them to avoid a distinct jump).

Our action manager should allow actions with higher importance to interrupt the
execution of others.

Compound Actions

It is rare for a character in a game to be doing only one thing at a time. The action
of a character is typically layered. They might be playing a “make-obscene-gesture”
animation, while moving around the level, while pursuing an enemy, while using a
health pack.

It is a common implementation strategy to split these actions up so that they are
generated by different decision making processes. We might use one simple decision
maker to monitor health levels and schedule the use of a health pack when things look
dangerous. We might use another decision maker to choose which enemy to pursue.
This could then hand-off to a pathfinding routine to work out a pursuit route. In turn,
this might use some other AI to work out how to follow the route, and yet another
piece of code to schedule the correct animations.

In this scenario, each decision making system is outputting one action of a very
particular form. The action manager needs to accumulate all these actions and deter-
mine which ones can be layered.

An alternative is to have decision makers that output compound actions. In a
strategy game, for example, we may need to coordinate several actions in order to
be successful. The decision making system might decide to launch a small attack at a
strong point in the enemy defense, while making a full-strength flanking assault. Both
actions need to be carried out together. It would be difficult to coordinate separate
decision making routines to get this effect.
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In these cases the action returned from a decision making system will need to
be made up of several atomic actions, all of which are to be executed at the same
time.

This is an obvious requirement, but one close to my heart. One AI system I
worked on ignored the need for compound actions until late in the development
schedule. Eventually, the decision making tool (including its loading and saving for-
mats, the connections into the rest of the game code, and the bindings to the script-
ing language and other tools) needed rewriting, a major headache I could have
avoided.

Scripted Actions

Developers and (more commonly) games journalists occasionally talk about “scripted
AI” in a way that has nothing to do with scripting languages. Scripted AI in this con-
text usually means a set of pre-programmed actions that will always be carried out
in sequence by a character. There is no decision making involved; the script is always
run from the start.

For example, a scientist character may be placed in a room. When the player enters
the room, the script starts running. The character rushes to a computer bank, starts
the self-destruct sequence, and then runs for the door and escapes.

Scripting the behavior in this way allows developers to give the impression of
better AI than would be possible if the character needed to make its own decisions.
A character can be scripted to act spitefully, recklessly, or secretly, all without any AI
effort.

This kind of scripted behavior is less common in current games because the player
often has the potential to disrupt the action. In our example, if the player imme-
diately runs for the door and stands there, the scientist may not be able to escape,
but the script won’t allow the scientist to react sensibly to the blockage. For this rea-
son, these kinds of scripted actions are often limited to in-game cutscenes in recent
games.

Scripted behavior has been used for many years in a different guise without re-
moving the need for decision making.

Primitive actions (such as move-to-a-point, play-an-animation, or shoot) can be
combined into short scripts which can then be treated as a single action. A decision
making system can decide to carry out a decision script that will then sequence a
number of primitive actions.

For example, it is common in shooters for enemy characters to use cover correctly
in a firefight. A character may lay down a burst of suppressing fire before rolling out
of cover and running for its next cover point. This script (fire, roll, run) can be treated
as a whole, and the decision making system can request the whole sequence.

The sequence of actions becomes a single action as far as the decision making
technique is concerned. It doesn’t need to request each component in turn. The “run
to new cover” action will contain each element.
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This approach gives some of the advantages of the scripted AI approach, while not
putting the character at the mercy of a changing game environment. If the character
gets blocked or thwarted in the middle of its script, it can always use its decision
making algorithms to choose another course of action.

Scripted actions are similar to compound actions, but their elements are executed
in sequence. If we allow compound actions to be part of the sequence, then the char-
acter can perform any number of actions at the same time and any number of actions
in sequence. This gives us a powerful mechanism.

We will return to scripted actions in Chapter 6. When it comes to co-ordinating
the actions of several characters at the same time, scripted actions can be a crucial
technology, but they need to have several characteristics that we’ll discuss in Sec-
tion 6.4.3.

An Aside on Scripts

In my opinion, this kind of action script is an essential element of modern game AI
development. I may seem like I’m belaboring an obvious point here, but the industry
has known about scripts for a long time. They aren’t new and they aren’t clever, so
what’s all the fuss about?

My experience has shown that developers regularly get caught up in researching
new technologies to provide results that would be more cheaply and reliably achieved
with this “low-tech” approach. A number of developers I’ve seen have experimented
with higher level decision making techniques intended to give the illusion of a deeper
intelligence (such as neural networks and emotional and cognitive modelling), none
of which give convincing results at the current state of the art.

Companies such as Valve and EA have realized that most of the effect can be
achieved without the technical headaches and for a fraction of the cost using deci-
sion scripts of this kind.

While they could be seen as a “hacked” approach, it is difficult to overestimate
their practical value, especially considering how easy they are to implement. Too often
they are dismissed because of the bad reputation of scripted AI. My advice is to use
them freely, but don’t brag about it on the box!

5.10.2 THE ALGORITHM

We will deal with three different types of action. Primitive actions represent state
changes, animations, movement, and AI requests. In this implementation the action
is responsible for carrying out its effect. The implementation notes discussed later
cover this assumption in more detail. In addition to primitive actions, we will support
compound actions of two types: action combinations and action sequences.

Action combinations provide any set of actions that should be carried out to-
gether. A reload action, for example, may consist of one animation action (play the
shuffle-hands animation, for example) and a state change action (reset the ammo in
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the current weapon). We assume that all actions in a combination can be executed at
the same time.

Action sequences are identical in structure to action combinations, but are treated
as a sequential set of actions to carry out, one after another. The sequence waits un-
til its first action is complete before going on to another. Action sequences can be
used for actions such as “pull-door-lever,” which involves movement (go to the lever)
followed by animation (pull the lever) followed by a state change (change the door’s
locked status). The actions in an action sequence can be action combinations (i.e.,
carry out a bunch of actions all together, then another bunch, and so on), and vice
versa. Compound actions can be nested in any combination to any depth.

Every action (primitive or compound) has an expiry time and a priority. The
expiry time controls how long the action should be queued before it is discarded,
and the priority controls whether an action has priority over another. In addition,
it has methods that we can use to check if it has completed, if it can be executed at
the same time as another action, or if it should interrupt currently executing actions.
Action sequences keep track of their component action that is currently active and
are responsible for updating this record as each subsequent action completes.

The action manager contains two groups of actions: the queue is where actions
are initially placed and wait until they can be executed; and the active set is a group
of actions that are currently being executed.

Actions from any source are passed to the action manager where they join the
queue. The queue is processed, and high-priority actions are moved to the active set,
as many as can be executed at the same time, in decreasing order of priority. At each
frame, the active actions are executed, and if they complete, they are removed from
the set.

If an item is added to the queue and wants to interrupt the currently executing
actions, then it is checked for priority. If it has higher priority than the currently
executing actions, then it is allowed to interrupt and is placed in the active set.

If there are no currently executing actions (they have been completed), then the
highest priority action is moved out of the queue into the active set. Then the manager
adds the next highest priority action if it can be simultaneously executed, and so on
until no more actions can be added to the currently active set.

5.10.3 PSEUDO-CODE

The action manager implementation looks like the following:

1 class ActionManager:
2

3 # Holds the queue of pending actions
4 queue
5

6 # The currently executing actions
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7 active
8

9 # The current time, a simple counter in this case
10 currentTime
11

12 # Adds an action to the queue
13 def scheduleAction(action):
14

15 # Add it to the queue.
16 queue += action
17

18 # Processes the manager.
19 def execute():
20

21 # Update the time
22 currentTime += 1
23

24 # Go through the queue to find interrupters
25 for action in queue:
26

27 # If we drop below active priority, give up
28 if action.priority <= active.getHighestPriority():
29 break
30

31 # If we have an interrupter, interrupt
32 if action.canInterrupt():
33 active.clear()
34 active = [action]
35

36 # Try to add as many actions to active set as possible
37 for action in copy(queue):
38

39 # Check if the action has timed out
40 if action.expiryTime < currentTime:
41

42 # Remove it from the queue
43 queue -= action
44

45 # Check if we can combine
46 for activeAction in active:
47 if not action.canDoBoth(activeAction):
48 break continue # i.e., go to next action in queue
49

50 # Move the action to the active set
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51 queue -= action
52 active += action
53

54 # Process the active set
55 for activeAction in copy(active):
56

57 # Remove completed actions
58 if activeAction.isComplete():
59 active -= activeAction
60

61 # Execute others
62 else:
63 activeAction.execute()

The execute function performs all the scheduling, queue processing, and ac-
tion execution. The scheduleAction function simply adds a new action to the
queue.

The copy function creates a copy of a list of actions (either the queue or the active
set). This is needed in both top-level loops in the process function because items may
be removed from the list within the loop.

5.10.4 DATA STRUCTURES AND INTERFACES

The action manager relies on a general action structure with the following interface:

1 struct Action:
2 expiryTime
3 priority
4 def canInterrupt()
5 def canDoBoth(otherAction)
6 def isComplete()

Fundamental actions will have different implementations for each method. The
compound actions can be implemented as sub-classes of this base Action.

Action combinations can be implemented as

1 struct ActionCombination (Action):
2

3 # Holds the sub-actions
4 actions
5

6 def canInterrupt():
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7 # We can interrupt if any of our sub-actions can
8 for action in actions:
9 if action.canInterrupt(): return true

10 return false
11

12 def canDoBoth(otherAction):
13 # We can do both if all of our sub-actions can
14 for action in actions:
15 if not action.canDoBoth(otherAction): return false
16 return true
17

18 def isComplete():
19 # We are complete if all of our sub-actions are
20 for action in actions:
21 if not action.isComplete(): return false
22 return true
23

24 def execute():
25 # Execute all of our sub-actions
26 for action in actions: action.execute()

Action sequences are just as simple. They only expose one sub-action at a time.
They can be implemented as

1 struct ActionSequence (Action):
2

3 # Holds the sub-actions
4 actions
5

6 # Holds the index of the currently executing sub-action
7 activeIndex = 0
8

9 def canInterrupt():
10 # We can interrupt if our first sub-actions can
11 return actions[0].canInterrupt()
12

13 def canDoBoth(otherAction):
14 # We can do both if all of our sub-actions can
15 # If we only tested the first one, we’d be in danger
16 # of suddenly finding ourselves incompatible
17 # mid-sequence
18 for action in actions:
19 if not action.canDoBoth(otherAction): return false
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20 return true
21

22 def isComplete():
23 # We are complete if all of our sub-actions are
24 return activeIndex >= len(actions)
25

26 def execute()
27

28 # Execute our current action
29 actions[activeIndex].execute()
30

31 # If our current action is complete, go to the next
32 if actions[activeIndex].isComplete():
33 activeIndex += 1

In addition to the action structures, the manager algorithm has two list struc-
tures: active and queue, both of which keep their component actions in decreasing
priority order at all times. For actions with identical priority values, the order is un-
defined. Marginally better performance can be gained by ordering identical priorities
by increasing expiry time (i.e., those closer to expiring are nearer the front of the list).

In addition to its list-like behavior (adding and removing items, the clear
method), the active list has one method: getHighestPriority returns the priority of
the highest priority action (i.e., the first in the list).

5.10.5 IMPLEMENTATION NOTES

The active and queue lists should be implemented as priority heaps: data structures
that always retain their content in priority order. Priority heaps are a standard data
structure detailed in any algorithms text. They are discussed in more detail in Chap-
ter 4.

We have assumed in this algorithm that actions can be executed by calling
their execute method. This follows the polymorphic structure used for algorithms
throughout the book. It may seem odd to have created an action manager so that
decision makers weren’t running arbitrary bits of code, only to then have the actions
call an opaque method.

As we saw at the start of this section, actions typically come in four flavors. A full
implementation, such as the one given on the CD, has four types of action, one for

LIBRARY

each flavor. Each type of action is executed in a different way by the game: state
changes are simply applied to the game state; animations are handled by an animation
controller; movement is handled by movement algorithms found later in this book;
and AI requests can be processed by any other decision maker. The code on the CD
uses only four classes, one for each action. Parameters within each of those classes
determine how the action is executed.
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Debugging

One major advantage with channelling all character actions through a central point is
the ability to add simple reporting and logging for debugging. In the execute method
of each action class we can add code that outputs logging data: the action can carry
with it any information that might help debugging (e.g., the decision maker that gave
rise to the action, the time it was added to the queue, whether it is complete or not,
and so on).

My experience in trying to debug decentralized AI has led me to come back to a
centralized action system on many occasions. I personally feel that debugging is the
best reason to always use some kind of centralized approach, whether it is as complete
as the one above or is a simple first-in first-out queue.

5.10.6 PERFORMANCE

The algorithm is O(n) in memory, where n is the maximum number of actions in the
queue. The algorithm assumes that action producers will behave nicely. If an action
producer dumps an action in the queue every frame, then the queue can rapidly grow
unwieldy. The expiry time mechanism will help, but probably not fast enough. The
best solution is to make sure contributors to the manager do not flood it. In an envi-
ronment where that can’t be guaranteed (when the manager is receiving actions from
user scripts, for example), a limit can be placed on the size of the queue. When a new
action is added to a full queue, the lowest priority element is removed.

The algorithm is O(mh) in time, where m is the number of actions in the active
set, including sub-actions of compound action; and h is the number of actions in the
queue, again including sub-actions (n in the last paragraph refers to actions in the
queue excluding sub-actions). This timing is due to the canDoBoth test, which tries all
combinations of items in the queue with those in the active set. When there are lots
of actions in both lists, then this can become a major issue.

In this case we can make the algorithm less flexible. The ability to combine actions
in the active list can easily be removed, and we can enforce that all simultaneous ac-
tions be explicitly requested by embedding them in an action combination structure.
This reduces the algorithm to O(h) in time.

Typically, however, only a few actions are present in the manager at any one time,
and the checks do not pose a significant problem.

5.10.7 PUTTING IT ALL TOGETHER

Figure 5.41 shows a complete AI structure using the action manager.
An alarm mechanism is updated every frame and can schedule emergency actions

if needed. The queue of actions is then queued. There is a single decision making
system, which is called whenever the action queue is empty (it may be made up of
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Figure 5.41 The action manager in context

many component decision making tools). When a valid action is in the queue, it is
sent to be executed. The execution may be performed by sending requests to either the
game state, the animation controller, the movement AI, or some subsidiary decision
maker. If the system runs out of processing time before an action is added to the
queue, then it simply returns having done nothing.

This structure represents a comprehensive architecture for building a sophisti-
cated character. It may be overkill for simple, quick to implement AI for subsidiary
characters. The flexibility it provides can be very useful during AI development, as
characters inevitably require more complex behaviors.

On the CD

The Action Manager program on the CD allows you to manually schedule new actions

PROGRAM

and to see the current state of the queue and active set change. Actions can be added
with different priorities, different expiry times, and different abilities to interrupt.

Compound actions can also be added and introduced into the queue. Because of
the user-interface complexity it would require, the program does not allow you to nest
compound actions. The source code is fully general, however, and you are welcome
to modify the program to experiment with deeper hierarchies.
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6
TACTICAL AND

STRATEGIC AI

he decision making techniques we looked at in the last chapter have two im-
T portant limitations: they are intended for use by a single character; and they
don’t try to infer from the knowledge they have to build up a prediction of the whole
situation.

Each of these limitations is broadly in the category of tactics and strategy. This
chapter looks at techniques that provide a framework for tactical and strategic reason-
ing in characters. It includes methods to deduce the tactical situation from sketchy in-
formation, to use the tactical situation to make decisions, and to coordinate between
multiple characters.

In the model of AI we’ve been using so far, this provides the third layer of our
system, as shown in Figure 6.1.

It is worth remembering again that not all parts of the model are needed in every
game. Tactical and strategic AI, in particular, is simply not needed in many game
genres. Where players expect to see predictable behavior (in a two-dimensional (2D)
shooter or a platform game, for example), it may simply frustrate them to face more
complex behaviors.

Looking at the developments being made in game AI, it is clear to me that tactical
and strategic AI is one of the key fields for the next 5 years. We have seen a rapid
increase in the tactical capabilities of AI-controlled characters over the last 5 years,
and given the techniques I know are being researched at the moment, I think we’ll see
that trend continue.

6.1 WAYPOINT TACTICS

A waypoint is a single position in the game level. We met waypoints in Chapter 4,
although there they were called “nodes” or “representative points.” Pathfinding uses
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nodes as intermediate points along a route through the level. This was the original
use of waypoints, and the techniques in this section grew naturally from extending
the data needed for pathfinding to allow other kinds of decision making.

When we used waypoints in pathfinding, they represented nodes in the pathfind-
ing graph, along with associated data the algorithm required: connections, quantiza-
tion regions, costs, and so on. To use waypoints tactically, we need to add more data
to the nodes, and the data we store will depend on what we are using the waypoints
for.

In this section we’ll look at using waypoints to represent positions in the level with
unusual tactical features, so a character occupying that position will take advantage of
the tactical feature. Initially, we will consider waypoints that have their position and
tactical information set by the game designer. Then, we will look at ways to deduce
first the tactical information and then the position automatically.

6.1.1 TACTICAL LOCATIONS

Waypoints used to describe tactical locations are sometimes called “rally points.” One
of their early uses in simulations (in particular military simulation) was to mark a
fixed safe location that a character in a losing firefight could retreat to. The same
principle is used in real-world military planning, when a platoon engages the enemy,
it will have at least one pre-determined safe withdrawal point that it can retreat to if
the tactical situation warrants it. In this way a lost battle doesn’t always lead to a rout.

More common in games is the use of tactical locations to represent defensive lo-
cations, or cover points. In a static area of the game, the designer will typically mark
locations behind barrels or protruding walls as being good cover points. When a char-
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acter engages the enemy, it will move to the nearest cover point in order to provide
itself with some shelter.

There are other popular kinds of tactical locations. Sniper locations are particu-
larly important in squad-based shooters. The level designer marks locations as being
suitable for snipers, and then characters with long-range weapons can head there to
find both cover and access to the enemy.

In stealth games, characters that also move secretly need to be given a set of lo-
cations where there are intense shadows. Their movement can then be controlled by
moving between shadow regions, as long as enemy sight cones are diverted (imple-
menting sensory perception is covered in Chapter 10, World Interfacing).

There are unlimited different ways to use waypoints to represent tactical informa-
tion. We could mark fire points where a large arc of fire can be achieved, power-up
points where power-ups are likely to respawn, reconnaissance points where a large
area can be viewed easily, quick exit points where characters can hide with many es-
cape options if they are found, and so on. Tactical points can even be locations to
avoid, such as ambush hotspots, exposed areas, or sinking sand.

Depending on the type of game you are creating, there will be several kinds of
tactics that your characters can follow. For each of these tactics, there are likely to be
corresponding tactical locations in the game, either positive (locations that help the
tactic) or negative (locations that hamper it).

A Set of Locations

Most games that use tactical locations don’t limit themselves to one type or another.
The game level contains a large set of waypoints, each labelled with its tactical quali-
ties. If the waypoints are also used for pathfinding, then they will also have pathfind-
ing data such as connections and regions attached.

In practice, locations for cover and sniper fire are not very useful as part of a
pathfinding graph. Figure 6.2 illustrates this situation. Although it is most common
to combine the two sets of waypoints, it may provide more efficient pathfinding to
have a separate pathfinding graph and tactical location set. You would have to do
this, of course, if you were using a different method for representing the pathfinding
graph, such as navigation meshes or a tile-based world.

We will assume for most of this section that the locations we are interested in
are not necessarily part of the pathfinding graph. Later, we’ll see some situations in
which merging the two together can provide very powerful behavior with almost no
additional effort. In general, however, there is no reason to link the two techniques.

Figure 6.2 shows a typical set of tactical locations for an area of a game level. It
combines three types of tactical locations: cover points, shadow points, and sniping
points. Some points have more than one tactical property. Most of the shadow points
are also cover points, for example. There is only one tactical location at each of these
locations, but it has both properties.
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Figure 6.2 Tactical points are not the best pathfinding graph

Marking all useful locations can produce a large number of waypoints in the level.
To get very good quality behavior, this is necessary, but time-consuming for the level
designer. Later in the section we’ll look at some methods of automatically generating
the waypoint data.

Primitive and Compound Tactics

In most games, having a set of pre-defined tactical qualities (such as sniper, shadow,
cover, etc.) is sufficient to support interesting and intelligent tactical behavior. The
algorithms we’ll look at later in this section make decisions based on these fixed cate-
gories.

We can make the model more sophisticated, however. When we looked at sniper
locations, I mentioned that a sniper location would have good cover and provide
a wide view of the enemy. We can decompose this into two separate requirements:
cover and view of the enemy. If I support both cover points and high visibility points
in my game, I have no need to specify good sniper locations. I can simply say the
sniper locations are those points that are both cover points and reconnaissance points.
Sniper locations have a compound tactical quality; they are made up of two more
primitive tactics.

We don’t need to limit ourselves to a single location with both properties, either.
When a character is on the offensive in a firefight, it needs to find a good cover point
very near to a location that provides clear fire. The character can duck into the cover
point to reload or when incoming fire is particularly dense and then pop out into
the fire point to attack the enemy. We can specify that a defensive cover point is a
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Figure 6.3 Ambush points derived from other locations

cover point with a fire point very near (often within the radius of a sideways roll: the
stereotypical animation for getting in and out of cover).

In the same way, if we are looking for good locations to mount an ambush, we
could look for exposed locations with good hiding places nearby. The “good hiding
places” are compound tactics in their own right, combining locations with good cover
and shadow.

Figure 6.3 shows an example. In the corridor, cover points, shadow points, and ex-
posed points are marked. We decide that a good ambush point is one with both cover
and shadow, next to an exposed point. If the enemy moves into the exposed point,
with a character in shadow, then it will be susceptible to attack. The good ambush
points are marked in the figure.

We can take advantage of these compound tactics by storing only the primitive
qualities. In the example above, we stored three tactical qualities: cover, shadow, and
exposure. From these we could calculate the best places to lay or avoid an ambush.
By limiting the number of different tactical qualities, we can support a huge number
of different tactics without making the level designer’s job impossible or flooding the
memory with waypoint data that is rarely needed. On the other hand, what we gain
in memory, we lose in speed. To work out the nearest ambush point, we would need
to look for cover points in shadow and then check each nearby exposed point to make
sure it was within the radius we were looking for.

In the vast majority of cases this extra processing isn’t important. If a character
needs to find an ambush location, for example, then it is likely to be able to think for
several frames. Decision making based on tactical locations isn’t something a charac-
ter needs to do every frame, and so for a reasonable number of characters, time isn’t
of the essence.
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For lots of characters or if the set of conditions are very complex, however, the
waypoint sets can be pre-processed offline, and all the compound qualities can be
identified. This doesn’t save memory when the game is running, but it removes the
need for the level designer to specify all the qualities of every location. This can be
taken further, and we can use algorithms to detect even the primitive qualities. We
will return to algorithms for automatically detecting primitive qualities later in this
section.

Waypoint Graphs and Topological Analysis

The waypoints we have looked at so far are separate, isolated locations. There is no
information as to whether one waypoint can be reached from another. I mentioned
at the start of this section the similarity of waypoints to nodes in a pathfinding graph.
We can certainly use nodes in a pathfinding graph as tactical locations (although they
aren’t always the best suited, as we’ll see later in Section 6.3 on tactical pathfinding).

But even if we aren’t using a pathfinding graph, we can link together tactical loca-
tions to give access to more sophisticated compound tactics.

Let’s suppose that we’re looking for somewhere that provides a good location to
mount a hit and run attack. The set of waypoints in Figure 6.4 shows part of a level to
consider. Waypoints are connected when one can be reached from the other directly.
There are no connections through the wall, for example. In the balcony we have a
location (A) with good visibility of the room, a candidate for an attack spot. Similarly,
there is one other location in a small anteroom (B) that might be useful.

The balcony is obviously better than the anteroom because it has three exits, only
one of which leads into the room. If are looking to perform a hit and run attack, then
we need to find locations with good visibility, but lots of exit routes.

Stairs

A

B

C

Figure 6.4 Topological analysis of a waypoint graph
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This is a topological analysis. It reasons about the structure of the level by looking
at the properties of the waypoint graph. It is a kind of compound tactic, but one
that uses the connections between waypoints as well as their tactical qualities and
positions.

Topological analysis can be performed using the pathfinding graph, or it can be
performed on basic tactical waypoints. It does require connections between way-
points, however. Without these connections, we wouldn’t know whether the nearby
waypoints constitute exit routes or whether there was a wall between them.

Unfortunately, this kind of topological analysis can rapidly get complicated. It is
extremely sensitive to the density of waypoints. Take location C in Figure 6.4. Once
again the shooting position has three exit routes. In this case, however, they all lead
to locations in the same vicinity with immediate escape. The character looking for
a good hit and run location based on the number of exits alone might mistakenly
mount its attack in the middle of the room.

Of course, we can make the topological analysis algorithm more sophisticated. We
could look not just at the number of connections, but also where those connections
lead, and so on.

In my experience the complexity of this kind of analysis is formidable and beyond
what most developers want to spend time implementing and tweaking. In my opin-
ion there isn’t a dilemma between developing a comprehensive topological analysis
system and having a level designer simply specify the appropriate tactical locations.
For all but the simplest analysis, the level designer gets the job every time.

Automatic topological analysis comes up from time to time in books and papers.
My advice would be to treat it with caution, unless you can spare a couple of months
of playing to get it right. The manual way is often less painful in the long run.

Continuous Tactics

To support more complicated compound tactics, we can move away from simple
Boolean states. Rather than marking a location as being “cover” or “shadow,” for ex-
ample, we can provide a numerical value for each. A waypoint will have a value for
“cover” and a different value for “shadow.”

The meaning of these values will depend on the game, and they can have any
range that is convenient. For the purpose of clarity, however, let’s assume the values
are floating point in the range (0,1), where a value of 1 indicates that the waypoint
has the maximum amount of a property (a maximum amount of cover or shadow, for
example). The value doesn’t have to be floating point. If we were developing a game
for a memory-limited platform or a game without optimized floating point hardware,
we could as easily use an integer in the range (0,255).

On its own we can use this information to simply compare the quality of a way-
point. If a character is trying to find cover, and it has equally achievable options be-
tween a waypoint with cover = 0.9 and another with cover = 0.6, it should head for
the waypoint with cover = 0.9.
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We can also interpret these values as a degree of membership of a fuzzy set (we
looked at the basics of fuzzy logic in Chapter 5, Decision Making). A waypoint with a
“cover” value of 0.9 has a high degree of membership in the set of cover locations.

Interpreting the values as degrees of membership allows us to produce values for
compound tactics using the fuzzy logic rule. Recall that we defined a sniper location
as a waypoint that had both a view of the enemy and good cover. In other words,

sniper = cover AND visibility

If we have a waypoint with cover = 0.9 and visibility = 0.7, we can use the fuzzy
rule:

m(A AND B) = min(mA,mB),

where mA and mB are the degrees of membership of A and B. Adding in our data, we
get

msniper = min(mcover,mvisibility)

= min(0.9,0.7)

= 0.7.

So we can derive the quality of a sniper location and use that as the basis of a
character’s tactical actions. This example is very simple, using just AND to combine
its components. As we saw in the previous section, we can devise considerably more
complex conditions for compound tactics. Interpreting the values as degrees of mem-
bership in fuzzy states allows us to work with even the most complex definitions made
up of lots of clauses. It provides a tried and tested mechanism for ending up with a
dependable value.

The disadvantage of using this approach is that each waypoint needs to have a
complete set of values stored for it. If we are keeping track of five different tactical
properties, then for the non-numeric situation we only need to keep a list of way-
points in each set. There is no wasted storage. On the other hand, if we store a numeric
value for each, then there will be five numbers for each waypoint.

We can slightly reduce the need for storage by not storing zero values, although
this makes things more complex because we need a reliable way to store both the value
and the meaning of that value (if we always store the five numbers, then we can tell
what each number means by its position in the array).

For large outdoor worlds, such as those used in RTS or massively multi-player
games, we might be driven to save memory. In most shooters, however, the extra
memory is unlikely to cause problems.
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Context Sensitivity

However, there is still a problem with marking tactical locations in the way I’ve de-
scribed so far. The tactical properties of a location are almost always sensitive to ac-
tions of the character or the current state of the game.

Hiding behind a barrel, for example, might produce cover only if the character is
crouched. If the character stands behind the barrel, it is a sitting duck for incoming
fire. Likewise, hiding behind a protruding rock is of no use if the enemy is behind
you. The aim is to put the rock between the character and the incoming fire.

This problem isn’t limited to just cover points. Any of the tactical locations in
this section may be invalid in certain circumstances. If the enemy manages to mount
a flank attack, then there is no use heading for a withdrawal location which is now
behind enemy lines.

Some tactical locations have an even more complicated context. A sniper point is
likely to be useless if everyone knows the sniper is camped there. Unless it happens to
be an impenetrable hideout (which is a sign of faulty level design, I would suggest),
then sniper positions depend to some extent on secrecy.

There are two options for implementing context sensitivity. First, we could store
multiple values for each node. A cover waypoint, for example, might have four differ-
ent directions. For any given cover point, only some of those directions are covered.
We call these four directions the states of the waypoint. For cover, we have four states,
and each of these may have a completely independent value for the quality of the cover
(or just a different yes/no value if we aren’t using continuous tactic values). We could
use any number of different states. We might have an additional state that dictates
whether the character needs to be ducking to receive cover, for example, or additional
states for different enemy weapons; a location that provides cover from small arms
fire might not protect its inhabitant from an RPG.

For tactics where the set of states is fairly obvious, such as cover or firing points
(we can use the four directions again as firing arcs), this is a good solution. For other
types of context sensitivities, such as the withdrawal location example, it is difficult
to come up with a sensible set of different states for the territory controlled by the
enemy, for example.

The second approach is to use only one state per waypoint, as we have seen
throughout this section. Rather than treating this value as the final truth about the
tactical quality of a waypoint, we add an extra step to check if it is appropriate. This
checking step can consist of any check against the game state. In the cover example
we might check for line of sight with our enemies. In the withdrawal example we
might check on an influence map (see Section 6.2.2 on influence mapping later in
this chapter) to see if the location is currently under enemy control.

In the sniper example we could simply keep a list of Boolean flags to track if the
enemy has fired toward a sniper location (a simple heuristic to approximate if the
enemy knows the location is there). This post-processing step has similarities to the
processing used to automatically generate the tactical properties of a waypoint. We’ll
return to these techniques later.
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Figure 6.5 A character selecting a cover point in two different ways

As an example of each approach, consider a character that needs to choose a cover
point to reload during a firefight. There are two cover points nearby that it can select
from, as shown in Figure 6.5.

In the diagram on the left of Figure 6.5 the cover points are shown with their
quality of cover in each of the four directions. The character works out the direction
to each enemy and determines that it needs cover from the south and east directions.
So the character checks for a cover point that provides that. Cover point B does, and
it selects that point.

In the diagram on the right of Figure 6.5 we use a post-processing step. The char-
acter checks the line of sight from both cover points to both enemies. It determines
that cover point B does not have a line of sight to either, so it is preferable to cover
point A that has a line of sight to one enemy.

The trade-off between these two methods is between quality, memory, and execu-
tion speed. Using multiple states per waypoint makes decision making fast. We don’t
need to perform any tactical calculations during the game. We just need to work out
which states we are interested in. On the other hand, to get very high-quality tactics
we may need a huge number of states. If we need cover in 4 directions, both standing
and crouched, against any of 5 different types of weapons, we’d need 40 states for a
cover waypoint. Clearly, this can very quickly become too much.

Performing a post-processing step gives us much more flexibility. It allows the
character to take advantage of quirks in the environment. A cover point may not
provide cover to the north except for attacks from a particular walkway (the position
of a roof girder provides cover there, for example). If the enemy is on that walkway,
then the cover point is valid. Using a simple state for the cover from northerly attacks
would not allow the character to take advantage of this.
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On the other hand, post-processing takes time, especially if we are doing lots of
line of sight checks through the level geometry. In several games I’ve seen, tactical
line of sight checks have taken up the majority of all the AI time used in the game,
over 30% of the total processor time in some cases. If you have a lot of characters that
have to react quickly to changing tactical situations, this may be unacceptable. If the
characters can afford to take a couple of seconds to weigh up their options, then it is
unlikely to be a problem.

In my opinion, the games that really benefit from good tactical play, such as
squad-based shooters, need the post-processing approach. For other games where
tactics aren’t the focus, a small number of states will be sufficient. I know of one
developer who combined both approaches in the same game, with a good deal of
success: the multiple states provided a filtering mechanism that reduced the number
of different cover waypoints that needed line of sight checks.

Putting It Together

We’ve considered a range of complexities for tactical waypoints, from a simple label
for the tactical quality of a location through to compound, context-sensitive tactics
based on fuzzy logic. In practice, most games don’t need to go the whole way.

Many games can get away with simple tactical labels. If this produces odd behav-
ior, then the next stage to implement is context sensitivity, which provides a huge
increase in the competency of the AI.

Next, I would advise trying to add continuous tactical values and allow characters
to make decisions based on the quality of a waypoint.

For highly tactical games where the quality of the tactical play is a selling point for
the game, using compound tactics (with fuzzy logic) then allows you to support new
tactics without adding or changing the information that the level designer needs to
create. So far I haven’t worked on a game that has gone this far, although it isn’t new
in the field of military simulation.

6.1.2 USING TACTICAL LOCATIONS

So far we’ve looked at how a game level can be augmented with tactical waypoints.
However, on their own they are just values. We need some mechanism to include their
data into decision making.

We’ll look at three approaches. The first is a very simple process for controlling
tactical movement. The second incorporates tactical information into the decision
making process. The third uses tactical information during pathfinding to produce
character motion that is always tactically aware. None of these three approaches are
new algorithms or techniques. They are simply ways in which to bring the tactical
information into the algorithms we looked at in previous chapters.
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For now, I’ll limit my focus to decision making for a single character. Later in
Section 6.4, we’ll return to the task of coordinating the actions of several characters,
while making sure they remain tactically aware.

Simple Tactical Movement

In most cases a character’s decision making process implies what kind of tactical lo-
cation it needs. For example, we might have a decision tree that looks at the current
state of the character, its health and ammo supply, and the current position of the
enemy. The decision tree is run, and the character decides that it needs to reload its
weapon.

The action generated by the decision making system is “reload.” This could be
achieved simply by playing the reload animation and updating the number of rounds
in the character’s weapon. Alternatively, and more tactically, we can choose to find a
suitable place to reload, under cover.

This is simply achieved by querying the tactical waypoints in the immediate vicin-
ity. Suitable waypoints (in our case, waypoints providing cover) are found, and any
post-processing steps are taken to ensure that they are suitable for the current context.

The character then chooses a suitable location and uses it as the target of its move-
ment. The choice can be simply “the nearest suitable location,” in which case the
character can begin with the nearest waypoint and check them in order of increas-
ing distance until a match is found. Alternatively, we can use some kind of numeric
measure of how good a location is. If we are using continuous values for the quality
of a waypoint, this might be what we need. We are not necessarily interested in se-
lecting the best node in the whole level, however. There is no point in running all the
way across the map just to find a really secure location to reload. Instead, we need to
balance distance and quality.

This approach makes the action decision first, independent of the tactical infor-
mation, and then applies tactical information to achieve its decision. It is a powerful
technique on its own and forms the basis of most squad-based AI. It is the bread and
butter of shooters right through to present titles.

It does have a significant limitation, however. Because the tactical information
isn’t used in the decision making process, we may end up discovering the decision is
foolish only after the decision has been made. We might find, for example, that after
making a decision to reload, we can’t find anywhere safe nearby to do so. A person in
this situation would try something different. For example, they may run away. If the
character is committed to the decision, however, then it will be stuck.

Games rarely allow the AI to detect this and go back and reconsider the decision,
so it can cause problems.

In most games this isn’t a significant problem in practice, particularly if the level
designer is clued up. Every area in the game usually has several tactical points of each
type (with the exception of sniping points, perhaps; but we normally don’t mind if
characters go wandering off a long way to find these).
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When it is an issue, however, we need to take account of the tactical information
in the original decision making process.

Using Tactical Information like Any Other Data

The simplest way to bring tactical information into the decision making process is to
give the decision maker access to it in the same way as it has access to other informa-
tion about the game world.

If we want to use a decision tree, for example, we could allow decisions to be made
based on the tactical context of the character. We might make a decision based on the
nearest cover point, as Figure 6.6 shows. The character in this case will not decide to
head for cover and then find there is no suitable cover. The decision to move to cover
takes into account the availability of cover points to move to.

Similarly, if we are using a state machine we might only trigger certain transitions
based on the availability of waypoints.

In both of these cases we should keep track of any suitable waypoints we find
during decision making so that we can use them after the decision has been made. If
the decision tree in the first example ends up suggesting the “take cover” action, then
we will need to work out which cover point to take cover in.

This involves the same search for nearby decision points that we had using the
simple tactical movement approach previously. To avoid a duplication of effort, we
cache the cover point that is found during the decision tree processing. We then use
that target in the movement AI and move directly toward it without further search.

Do I have ammo?

No

No No

Yes

Yes Yes

NoYes

Is there cover nearby?

Is there
cover nearby?

Can I see an enemy?

Hunt
enemy

Take
cover

Attack
Take
cover

Reload

Figure 6.6 Tactical information in a decision tree
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Tactical Information in Fuzzy Logic Decision Making

For both decision trees and state machines, we can use tactical information as a yes
or no condition, either at a decision node in the decision tree or as a condition of
making a state transition.

In both cases we are interested in finding a tactical location where some condition
is met (it might be to find a tactical location where the character can take cover, for
example). We aren’t interested in the quality of the tactical location.

We can go one stage further and allow the decision making to take account of the
quality of a tactical location as it makes a decision. Imagine a character is weighing
up two strategies. It might camp out behind cover and provide suppression fire, or it
might take up a position in shadow ready to lay an ambush to unwary enemies passing
by. We are using continuous tactical data for each location, and the cover quality is
0.7 while the shadow quality is 0.9.

Using a decision tree, we would simply check if there is a cover point, and upon
finding that there is, the character would follow the suppression fire strategy. There is
no sense in weighing up the pros and cons of each option.

If we use a fuzzy decision making system, however, we can use the quality values
directly in the decision making process. Recall from Chapter 5 that a fuzzy decision
making system has a set of fuzzy rules. These rules combine the degrees of member-
ship of several fuzzy sets into values that indicate which action is preferred.

We can incorporate our tactical values directly into this method, as another degree
of membership value.

For example, we might have the following rules:

IF cover-point THEN lay-suppression-fire

IF shadow-point THEN lay-ambush

For the tactical values given above, we get the following result:

lay-suppression-fire: membership = 0.7

lay-ambush: membership = 0.9

If the two values are independent (i.e., if it is impossible to do both at once, which
we’ll assume it is), then we choose lay-ambush as the action to take.

The rules can be significantly more complex, however:

IF cover-point AND friend-moving THEN lay-suppression-fire

IF shadow-point AND no-visible-enemies THEN lay-ambush

Now if we have the memberships values

friend-moving = 0.9

no-visible-enemies = 0.5
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we would end up with the results

lay-suppression-fire: membership = min(0.7,0.9) = 0.7

lay-ambush: membership = min(0.9,0.5) = 0.5

and the correct action is to lay suppression fire.
There are no doubt numerous other ways to include the tactical values into a

decision making process. We can use them to calculate priorities for rules in a rule-
based system, or we can include them in the input state for a learning algorithm. This
approach, using the rule-based fuzzy logic system, provides a simple to implement
extension that gives very powerful results. It is not a well-used technique, however.
Most games rely on a much simpler use of tactical information in decision making.

Generating Nearby Waypoints

If we use any of these approaches, we will need a fast method of generating nearby
waypoints. Given the location of a character, we ideally need a list of suitable way-
points in order of distance.

Most game engines provide a mechanism to rapidly work out what objects are
nearby. Spatial data structures such as quad-trees or binary space partitions (BSPs)
are often used for collision detection. Other spatial data structures such as multi-
resolution maps (a tile-based approach with a hierarchy of different tile sizes) are also
suitable. For tile-based worlds, I have also used stored patterns of tiles for different
radii, simply superimposed the pattern on the character’s tile, and looked up the tiles
within that pattern for suitable waypoints.

As I said in Chapter 3, spatial data structures for proximity and collision detection
are beyond the scope of this book. There is another book in this series [Ericson, 2005]
that covers the topic. The references appendix lists this and other suitable resources.

Distance isn’t the only thing to take into account, however. Figure 6.7 shows a
character in a corridor. The nearest waypoint is in an adjacent room and is completely

Best
cover
point

Character

Closest
cover
point

Figure 6.7 Distance problems with cover selection
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impractical as a cover point. If we simply selected the cover point based on distance,
we’d see the character run into a different room to reload, rather than use the crate
near the end of the corridor.

We can minimize this problem with careful level design. It is often a sensible idea
not to use thin walls in game level. As we saw in Chapter 4, this can also confuse the
quantization algorithm. Sometimes, however, it is unavoidable, and a better solution
is required.

Another approach would be to determine how close each tactical waypoint is by
performing a pathfinding step to generate the distance. This then takes into account
the structure of the level, rather than using a simple Euclidean distance. We can in-
terrupt the pathfinding when we realize that it will be a longer path than the path to
the nearest waypoint we’ve found so far. Even with such optimizations, this adds a
significant amount of processing overhead.

Fortunately, we can perform the pathfinding and the search for the nearest target
in one step. This also solves the problem of confusion by thin walls and of finding
nearby waypoints. It also has an additional benefit: the route it returns can be used to
make characters move, while constantly taking into account their tactical situation.

Tactical Pathfinding

Tactical waypoints can also be used for tactical pathfinding. Tactical pathfinding is a
hot topic in game AI, but is a relatively simple extension of the basic A* pathfinding
algorithm. Rather than finding the shortest or quickest route, however, it takes into
account the tactical situation of the game.

Tactical pathfinding is more commonly associated with tactical analyses, however,
so we’ll return to a full discussion in Section 6.3 later in the chapter.

6.1.3 GENERATING THE TACTICAL PROPERTIES OF A WAYPOINT

So far we have assumed that all the waypoints for our game have been created, and
each has been given its appropriate properties: a set of labels for the tactical features
of its location and possibly additional data for the quality of the tactical location, or
context-sensitive information.

In the simplest case these are often created by the level designer. The level designer
can place cover points, shadow points, locations with high visibility, and excellent
sniper locations. As long as there are only a few hundred cover points, this task isn’t
onerous. It is the approach used in a large number of shooters. Beyond the simplest
games, however, the effort may increase dramatically.

If the level designer has to place context-sensitive information or set the tactical
quality of a location, then their job becomes very difficult, and the tools needed to
support them have to be significantly more complicated. For context-sensitive, con-
tinuous valued tactical waypoints, we may need to set up different context states and
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be able to enter numeric values for each. To make sure the values are sensible, there
will need to be some kind of visualization.

While it is possible for the designer to place the waypoints, all the extra burden
makes it unlikely that the level designer will be tasked with setting the tactical infor-
mation unless it is of the simplest Boolean kind.

For other games we may not need to have the locations placed manually; they
may arise naturally from the structure of the game. If the game relies on a tile-based
grid, for example, then locations in the game are often positioned at corresponding
tiles. While we know where the locations are, we don’t know the tactical properties
of each one. If the game level is built up from pre-fabricated sections, then we could
have tactical locations placed in the pre-fabs.

In both cases we need some mechanism for calculating the tactical properties of
each waypoint automatically.

This is usually performed using an offline pre-processing step, although it can
also be performed as it is needed during the game. The latter approach allows us to
generate the tactical properties of a waypoint in the current game context, which in
turn can support more subtle tactical behavior. As we saw in the section on context
sensitivity above, however, this has a significant impact on performance, especially if
there are a large number of waypoints to consider.

The algorithm for calculating a tactical quality depends on the type of tactic we
are interested in. There are as many calculations as there are types of tactics. We will
look at the types of waypoints we’ve used so far in the chapter to give a feel for the
types of processing involved. Other tactics will tend to be similar to these types, but
may need some modification.

Cover Points

The quality of a cover point is calculated by testing how many different incoming
attacks might succeed. We run many different simulated attacks and see how many
get through.

We can run a complete simulated attack, but this takes time. It is normally easier
to approximate an attack by a line of sight test: a ray cast through the level geometry.

For each attack we start by selecting a location in the vicinity of the candidate
cover point. This location will usually be in the same or an adjoining room to the
cover point. We can test from everywhere in the level, of course, but that is wasteful
as most attacks will not succeed. In outdoor levels we may have to check everywhere
within weapons range, which is potentially a time-consuming process.

One way to do this is to check attacks at regular angles around the point. We need
to first make sure that the location we are checking is in the same room or area as the
point it is trying to attack. A point in the middle of a corridor, for example, can be
hit from anywhere in the corridor. If the corridor is thin, however, using all the angles
around will give a high cover value: most of the angles are covered by the corridor



490 Chapter 6 Tactical and Strategic AI

walls. Testing nearby locations that can be occupied, however, will show correctly
that the point is 100% exposed.

Being too regular, however, can also lead to problems. If we test just locations
around the point at the same height as the point, we might get the wrong value.
A character standing behind an oil can, for example, can be covered from the ground
level, but would be exposed from a gun at shoulder height. We can solve this prob-
lem by checking each angle several times, with small random offsets, and at different
heights.

From the location we select, a ray is cast toward the candidate cover point. Cru-
cially, the ray is cast toward a random point in a person-sized volume at the candidate
point. If we aim toward just the point, we may be checking if a small point on the floor
is covered, rather than the area a character would occupy.

This process is repeated many times from different locations. We keep track of the
proportion of rays that hits the volume.

The pseudo-code to perform these checks looks like the following:

1 def getCoverQuality(location, iterations, characterSize):
2

3 # Set up the initial angle
4 theta = 0
5

6 # We start with no hits
7 hits = 0
8

9 for i in 0..iterations:
10

11 # Create the from location
12 from = location
13 from.x += RADIUS * cos(theta) + randomBinomial() * RANDOM_RADIUS
14 from.y += rand() * 2 * RANDOM_RADIUS
15 from.z += RADIUS * sin(theta) + randomBinomial() * RANDOM_RADIUS
16

17 # Check for a valid from location
18 if not inSameRoom(from, location): break
19

20 # Create the to location
21 to = location
22 to.x += randomBinomial() * characterSize.x
23 to.y += rand() * characterSize.y
24 to.z += randomBinomial() * characterSize.z
25

26 # Do the check
27 if doesRayCollide(from, to): hits++
28
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29 # Update the angle
30 theta += ANGLE
31

32 return float(hits) / float(iterations)

In this code, I have used a doesRayCollide function to perform the actual ray
cast. rand returns a random number from 0 to 1, and randomBinomial creates a bi-
nomially distributed random number from −1 to 1, as before. inSameRoom checks if
two locations are in the same room. This can be done very easily with a hierarchical
pathfinding graph, for example, or can be calculated using a pathfinder.

There are a number of constants in the function. The RADIUS constant controls
how far from the point to begin the attack. This should be far enough so that the
attack isn’t trivially easy, but not so far that the attack is guaranteed to be in another
room. It depends on the scale of your level geometry. The RANDOM_RADIUS constant
controls how much randomness is added to the from location. This should be smaller
than RADIUS * sin(ANGLE) otherwise, we will be moving it further than it will move
to check the next angle, and we’ll not cover all the angles correctly. The ANGLE constant
controls how many samples around the point are considered. It should be set so that
each angle is considered many times (i.e., the smaller the number of iterations, the
larger the ANGLE should be).

Context-sensitive values can be calculated in the same way as above. Rather than
lumping all the results together, we need to calculate the proportion of ray casts that
hits coming from each direction or the proportion that hits a crouched or standing
character volume, depending on the contexts we are interested in.

If we are running the processing during the game, then there is no reason to
choose random directions to test. Instead, we use the enemy characters that the AI
is trying to find cover from to check the possibility of hitting the cover point. It is still
a good idea to repeat the test several times with different random offsets, however.
If time is a critical issue, we can skip this and only check a direct line of sight. This
makes the algorithm faster, but it can be foiled by thin structures that happen to block
the only ray tested.

Visibility Points

Visibility points are calculated in a similar way to cover points, using many line of
sight tests. For each ray cast, we select a location in the vicinity of the cover point.
This time we shoot rays out from the waypoint (actually from the position of the
character’s eyes if it was occupying the waypoint). There is no random component
needed around the waypoint. We can use their eye location directly.

The quality of visibility for the waypoint is related to the average length of the rays
sent out (i.e., the distance they travel before they hit an object). Because the rays are
being shot out, we are approximating the volume of the level that can be seen from
the waypoint: a measure of how good the location is for viewing or targeting enemies.
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Figure 6.8 Good cover and visibility

Context-sensitive values can be generated in the same way by grouping the ray
tests into a number of different states.

At first glance it might seem like visibility and cover are merely opposites. If a
location is a good cover point, then it is a poor visibility point. Because of the way the
ray tests are performed, this isn’t the case. Figure 6.8 shows a point which has both
good cover and reasonable visibility. It’s the same logic that has people spying through
keyholes: they can see a good amount while maintaining low visibility themselves.

Shadow Points

Shadow points need to be calculated based on the lighting model for a level. Most stu-
dios now use some kind of global illumination (radiosity) lighting as a pre-processing
step to calculate light maps for in-game use. For titles that involve a great deal of
stealth, a dynamic shadow model is used at run time to render cast shadows from
static and moving lights.

To determine the quality of a shadow point, several samples are taken from a
character-sized volume around the waypoint. For each sample, the amount of light at
the point is tested. This might involve ray casts to nearby light sources to determine if
the point is in shadow, or it may involve looking up data from the global illumination
model to check the strength of indirect illumination.

Because the aim of a shadow point is to conceal, we take the maximum lightness
found in the sampling. If we took the average, then the character would prefer a spot
where its body was in very dark shadow, but its head was in direct light, over a location
where all its body was in moderate shadow. The quality of a hiding position is related
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to the visibility of the most visible part of the character, not its average visibility as a
whole.

For games with dynamic lighting, the shadow calculations need to be performed
at run time. Global illumination is a very slow process, however, and is best performed
offline. Combining the two can be problematic. Developers are only just beginning
to get simple global illumination models running at interactive frame rates in next-
generation hardware. We are a couple of years away from general solutions for real-
time rendering.

Fortunately, in many current-generation stealth games, no global illumination
is used at run time. The environments are simply lit by direct line, and the global
illumination is handled with static texture maps. In this case the shadow calculations
can be performed over several frames without a severe slowdown.

Compound Tactics

As we saw earlier, a compound tactic is one that can be assessed by combining a set
of primitive tactics. A sniper location might be one that has both cover and good
visibility of the level.

If compound tactics are needed in the game, we may be able to generate them as
part of a pre-processing step, using the output results of the primitive calculations
above. The results can then be stored as an additional channel of tactical information
for appropriate waypoints. This only works if the tactics they are using are also avail-
able at this time. You can’t pre-process a compound tactic based on information that
changes during the game.

Alternatively, we can calculate the compound tactical information dynamically
during the game by combining the tactical data of nearby waypoints on the fly.

Generating Tactical Properties and Tactical Analysis

Generating the tactical properties of waypoints in this way brings us very close to a
technique we’ll cover in the next section. Tactical analysis works in a similar way: we
try to find the tactical and strategic properties of regions in a game level by combining
different concerns together.

Taking tactical waypoints to the extreme, using automatic identification of the
tactical properties of a location, would be akin to performing a tactical analysis on a
game level. Tactical analysis tends to use larger scale properties, for example, balance
of power or influence, rather than the amount of cover.

It is not common to recognize the similarity, however. As fairly new techniques in
game AI, they both tend to have their own devotees and advocates. It is worth recog-
nizing the similarity and even combining the best of both approaches, as required by
your game design.
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6.1.4 AUTOMATICALLY GENERATING THE WAYPOINTS

In most games waypoints are specified by the level designer. Cover points, areas that
are prone to ambush, and dark corners are all more easily identified by a human being
than by an algorithm.

Some developers have experimented with the automatic placement of waypoints.
The most promising approaches I have seen are similar to those used in automatically
marking up a level for pathfinding.

Watching Human Players

If your game engine supports it, keeping records of the way human players act can
provide good information on tactically significant locations. The position of each
character is stored at each frame or every few frames. If the character remains in
roughly the same location for several samples in a row, or if the same location is used
by several characters repeatedly over the course of the game, then it is likely that the
location is significant tactically.

With a set of candidate positions, we can then assess their tactical qualities, using
the algorithms to assess the tactical quality we saw in the previous section. Locations
with sufficient quality are retained as the waypoints to be stored for use in the AI.

It is worth generating far more candidate locations than you will end up using.
The assessment of the tactical quality can then filter out the best waypoints from the
rest. You do need to be careful in choosing just the best 50 waypoints, for example,
because they may be concentrated in one part of the level, leaving no tactical locations
in more tactically tight areas (where, conversely, they are probably more important).

A better approach is to make sure the best few locations for each type of tactic in
a specific area are kept. This can be achieved using the condensation algorithm (see
Section 6.1.5), a technique that can also be used on its own without generating the
candidate locations by watching human players.

Condensing a Waypoint Grid

Rather than trying to anticipate the best locations in the game level, we can instead
test (almost) every possible location in the level and choose the best.

This is usually done by applying a dense grid to all floor areas in the level and
testing each one. First, the locations are tested to make sure they are a valid location
for the character to occupy. Locations too close to the walls or underneath obstacles
are discarded.

Valid locations are then assessed for tactical qualities in the same way as we saw
in the previous section. In order to perform the condensation step, we need to work
with real-valued tactical qualities. A simple Boolean value will not suffice.
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Normally, we keep a set of threshold values for each tactical property. If a location
doesn’t make the grade for any property, then it can be immediately discarded. This
makes the condensation step much faster.

The threshold levels should be low enough so that many more locations pass than
could possibly be needed. This is to avoid discarding locations that are significant, but
only marginally. In a room where there is virtually no cover, a location with even very
poor cover might be the best place to defend from.

The remaining locations then enter into a condensation algorithm, which ends
with only a small number of significant locations in each area of the level for each
tactical property. If we used the “watching player actions” technique above, then the
tactical locations that resulted could be condensed in the same way as the remaining
locations from a grid. Because it is useful in several contexts, it is worth taking a look
at the condensation algorithm in more detail.

6.1.5 THE CONDENSATION ALGORITHM

The condensation algorithm works by having tactical locations compete against one
another for inclusion into the final set. We would like to keep locations that are either
very high quality or a long distance from any other waypoint of the same type.

For each pair of locations, we first check that a character can move between the
locations easily. This is almost always done using a line of sight test, although it would
be better to allow slight deviations. If the movement check fails, then the locations
can’t compete with one another. Including this check makes sure that we don’t remove
a waypoint on one side of a wall, for example, because there is a better location on the
other side.

If the movement check succeeds, then the quality values for each location are
compared. If the difference between the values is greater than a weighted distance be-
tween the locations, then the location with the lower value is discarded. There are no
hard and fast rules for the weight value to use. It depends on the size of the level, the
complexity of the level geometry, and the scale and distribution of quality values for
the tactical property. The weight should be selected so that it gives the right number
of output waypoints, and that means tweaking by hand so that it looks right. If you
use a lower weight value, the difference in quality will be more important, leaving
fewer waypoints. Higher weights similarly produce more waypoints.

If there are a large number of waypoints, then there will be a huge number of
pairs to consider. Because the final check depends on distance, we can speed this up
significantly by only considering pairs of locations that are fairly close together. If we
are using a grid representation, this is fairly simple; otherwise, we may have to rely on
some other spatial data structure to provide sensible pairs to test.

This condensation algorithm is highly dependent on the order in which pairs of
locations are considered. Figure 6.9 shows three locations. If we perform a competi-
tion between locations A and B, then A is discarded. B is then checked against C. In
this case C wins. We end up with only location C. If we first check B and C, however,
then C wins. A is now too far from C for C to beat it, so both C and A remain.
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Figure 6.9 Order dependence in condensation checks

To avoid removing a series of waypoints in this way, we start with the strongest
waypoints and work down to the weakest. For each of these waypoints, we perform
the competition against other waypoints working from the weakest to the strongest.
The first waypoint check, therefore, is between the strongest and the weakest. Because
we will only consider pairs of waypoints fairly close to one another, the first check is
likely to be between the overall strongest waypoint and the weakest nearby waypoint.

The condensation phase should be carried out for each different tactical property.
There is no use discarding a cover point because there is a good nearby ambush loca-
tion, for example. The tactical locations that make it through the algorithm are those
that are left in any property after condensation.

Pseudo-Code

The algorithm can be implemented in the following way:

1 def condenseWaypoints(waypoints, distanceWeight):
2

3 # We only ever need this squared, so do it now
4 distanceWeight *= distanceWeight
5

6 # Sort the list in decreasing order
7 waypoints.sortReversed()
8
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9 # Loop through
10 while current:
11

12 # Get the next waypoint
13 current = waypoints.next()
14

15 # Find and sort its neighbors
16 neighbors = waypoints.getNearby(current)
17 neighbors.sort()
18

19 # Check each in turn
20 while neighbors:
21

22 target = neighbors.next()
23

24 # If the target’s value is higher than
25 # ours, then we’ve already performed this
26 # check (when the target was the current) and
27 # all subsequent checks on the neighbors
28 if target.value > current.value:
29 break
30

31 # Check for easy movement
32 if not canMove(current, target):
33 continue
34

35 # Perform competition calculations
36 deltaPos = current.position - target.position
37 deltaPos *= deltaPos * deltaWeight
38 deltaVal = current.value - target.value
39 deltaVal *= deltaVal
40

41 # Check if the difference is value is significant
42 if deltaPos < deltaVal:
43

44 # They are close enough so the target loses
45 neighbors.remove(target)
46 waypoints.remove(target)

Data Structures and Interfaces

The algorithm assumes we can get position and value from the waypoints. They
should have the following structure:
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1 struct Waypoint:
2 # Holds the position of the waypoint
3 position
4

5 # Holds the value of the waypoint for the tactic we are
6 # currently condensing
7 value

The waypoints are presented in a data structure in a way that allows the algorithm
to extract the elements in sequence and to perform a spatial query to get the nearby
waypoints to any given waypoint. The order of elements is set by a call to either sort
or sortReversed, which orders the elements either by increasing or decreasing value,
respectively. The interface looks like the following:

1 class WaypointList:
2

3 # Initializes the iterator to move in order of
4 # increasing value
5 def sort()
6

7 # Initializes the iterator to move in order of
8 # decreasing value
9 def sortReversed()

10

11 # Returns a new waypoint list containing those waypoints
12 # that are near to the given one.
13 def getNearby(waypoint)
14

15 # Returns the next waypoint in the iteration. Iterations
16 # are initialized by a call to one of the sort functions.
17 # Note that this function must work in such a way that
18 # remove() can be called between calls to next() without
19 # causing problems.
20 def next()
21

22 # Removes the given waypoint from the list
23 def remove(waypoint)

The Trade-Off

Watching player actions produces better quality tactical waypoints than simply con-
densing a grid. On the other hand, it requires additional infrastructure to capture
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player actions and a lot of playing time by testers. To get a similar quality using con-
densation, we need to start with an exceptionally dense grid (in the order of every 10
centimeters of game space for average human-sized characters). This also has time
implications. For a reasonably sized level, there could be billions of candidate loca-
tions to check. This can take many minutes or hours, depending on the complexity
of the tactical assessment algorithms being used.

The results from these algorithms are less robust than the automatic generation
of pathfinding meshes (which have been used without human supervision), because
the tactical properties of a location apply to such a small area. Automatic generation
of waypoints involves generating locations and testing them for tactical properties. If
the generated location is even slightly out, its tactical properties can be very different.
A location slightly to the side of a pillar, for example, has no cover, whereas it might
provide perfect cover if it were immediately behind the pillar.

When we generate pathfinding graphs, the same kind of small error rarely makes
any difference.

Because of this, I’m not aware of anyone reliably using automatic tactical way-
point generation without some degree of human supervision. Automatic algorithms
can provide a useful initial guess at tactical locations, but you will probably need to
add facilities into your level design tool to allow the locations to be tweaked by the
level designer.

Before you embark on implementing an automatic system, make sure you work
out whether the implementation effort will be worth it for time saved in level design.
If you are designing huge, tactically complex levels, it may be so. If there will only be
a few tens of waypoints of each kind in a level, then it is probably better to go the
manual route.

6.2 TACTICAL ANALYSES

Tactical analyses of all kinds are sometimes known as influence maps. Influence map-
ping is a technique pioneered and widely applied in real-time strategy games, where
the AI keeps track of the areas of military influence for both sides. Similar techniques
have also made inroads into squad-based shooters and massively multi-player games.
For this chapter, I’ll refer to the general approach as tactical analysis to emphasize that
military influence is only one thing we might base our tactics on.

In military simulation an almost identical approach is commonly called terrain
analysis (a phrase also used in game AI), although again that also more properly refers
to just one type of tactical analysis. We’ll look at both influence mapping and terrain
analysis in this section, as well as general tactical analysis architectures.

There is not much difference between tactical waypoint approaches and tactical
analyses. By and large, papers and talks on AI have treated them as separate beasts,
and admittedly the technical problems are different depending on the genre of game
being implemented. The general theory is remarkably similar, however, and the con-
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straints in some games (in shooters, particularly) mean that implementing the two
approaches would give pretty much the same structure.

6.2.1 REPRESENTING THE GAME LEVEL

For tactical analysis we need to split the game level into chunks. The areas contained
in each chunk should have roughly the same properties for any tactics we are inter-
ested in. If we are interested in shadows, for example, then all locations within a chunk
should have roughly the same amount of illumination.

There are lots of different ways to split a level. The problem is exactly the same as
for pathfinding (in pathfinding we are interested in chunks with the same movement
characteristics), and all the same approaches can be used: Dirichlet domains, floor
polygons, and so on.

Because of the ancestry of tactical analysis in RTS games, the overwhelming ma-
jority of current implementations is based on a tile-based grid. This may change over
the coming years, as the technique is applied to more indoor games, but most current
papers and books talk exclusively about tile-based representations.

This does not mean that the level itself has to be tile based, of course. Very few RTS
games are purely tile based anymore, although the outdoor sections of RTS, shooters
and other genres, normally use a grid-based height field for rendering terrain. For
a non-tile-based level, we can impose a grid over the geometry and use the grid for
tactical analysis.

I haven’t been involved in a game that used Dirichlet domains for tactical analy-
sis, but my understanding is that several developers have experimented with this ap-
proach and received some success. The disadvantage of having a more complex level
representation is balanced against having fewer, more homogeneous, regions.

My advice would be to use a grid representation initially, for ease of implementa-
tion and debugging, and then experiment with other representations when you have
the core code robust.

6.2.2 SIMPLE INFLUENCE MAPS

An influence map keeps track of the current balance of military influence at each
location in the level. There are many factors that might affect military influence: the
proximity of a military unit, the proximity of a well-defended base, the duration since
a unit last occupied a location, the surrounding terrain, the current financial state of
each military power, the weather, and so on.

There is scope to take advantage of a huge range of different factors when creating
a tactical or strategic AI. Most factors only have a small effect, however. Rainfall is
unlikely to dramatically affect the balance of power in a game (although it often has
a surprisingly significant effect in real-world conflict). We can build up complex in-
fluence maps, as well as other tactical analyses, from many different factors, and we’ll
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return to this combination process later in the section. For now, let’s focus on the
simplest influence maps, responsible for (I estimate) 90% of the influence mapping
in games.

Most games make influence mapping easier by applying a simplifying assump-
tion: military influence is primarily a factor of the proximity of enemy units and bases
and their relative military power.

Simple Influence

If four infantry soldiers in a fire team are camped out in a field, then the field is
certainly under their influence, but probably not very strongly. Even a modest force
(such as a single platoon) would be able to take it easily. If we instead have a helicopter
gunship hovering over the same corner, then the field is considerably more under
their control. If the corner of the field is occupied by an anti-aircraft battery, then
the influence may be somewhere between the two (anti-aircraft guns aren’t so useful
against a ground-based force, for example).

Influence is taken to drop off with distance. The fire team’s decisive influence
doesn’t significantly extend beyond the hedgerow of the next field. The apache gun-
ship is mobile and can respond to a wide area, but when stationed in one place its
influence is only decisive for a mile or so. The gun battery may have a larger radius of
influence.

If we think of power as a numeric quantity, then the power value drops off with
distance: the farther from the unit, the smaller the value of their influence. Eventually,
their influence will be so small that it is no longer felt.

We can use a linear drop off to model this: double the distance and we get half the
influence. The influence is given by

Id = I0

1 + d
,

where Id is the influence at a given distance, d; and I0 is the influence at a distance of
zero. This is equivalent to the intrinsic military power of the unit. We could instead
use a more rapid initial drop off, but with a longer range of influence, such as

Id = I0√
1 + d

,

for example. Or we could use something that plateaus first before rapidly tailing off
at a distance.

Id = I0

(1 + d)2

has this format. It is also possible to use different drop off equations for different
units. In practice, however, the linear drop off is perfectly reasonable and gives good
results. It is also faster to process.
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In order for this analysis to work, we need to assign each unit in the game a single
military influence value. This might not be the same as the unit’s offensive or defen-
sive strength: a reconnaissance unit might have a large influence (it can command
artillery strikes, for example) with minimal combat strength.

The values should usually be set by the game designers. Because they can affect
the AI considerably, some tuning is almost always required to get the balance right.
During this process it is often useful to be able to visualize the influence map, as a
graphical overlay into the game, to make sure that areas clearly under a unit’s influ-
ence are being picked up by the tactical analysis.

Given the falloff formula for the influence at a distance and the intrinsic power of
each unit, we can work out the influence of each side on each location in the game:
who has control there and by how much. The influence of one unit on one location is
given by the falloff formula above. The influence for a whole side is found by simply
summing the influence of each unit belonging to that side.

The side with the greatest influence on a location can be considered to have con-
trol over it, and the degree of control is the difference between its winning influence
value and the influence of the second placed side. If this difference is very large, then
the location is said to be secure.

The final result is an influence map: a set of values showing both the control-
ling side and the degree of influence (and optionally the degree of security) for each
location in the game.

Figure 6.10 shows an influence map calculated for all locations on a tiny RTS
map. There are two sides, white and black, with a few units on each side. The military
influence of each unit is shown as a number. The border between the areas that each
side controls is also shown.

Calculating the Influence

To calculate the map we need to consider each unit in the game for each location in
the level. This is obviously a huge task for anything but the smallest levels. With a
thousand units and a million locations (well within the range of current RTS games),
a billion calculations would be needed. In fact, execution time is O(nm), and memory
is O(m), where m is the number of locations in the level, and n is the number of units.

There are three approaches we can use to improve matters: limited radius of effect,
convolution filters, and map flooding.

Limited Radius of Effect

The first approach is to limit the radius of effect for each unit. Along with a basic
influence, each unit has a maximum radius. Beyond this radius the unit cannot exert
influence, no matter how weak. The maximum radius might be manually set for each
unit, or we could use a threshold. If we use the linear drop off formula for influence,
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Figure 6.10 An example influence map

and if we have a threshold influence (beyond which influence is considered to be
zero), then the radius of influence is given by

r = I0

It − 1
,

where It is the threshold value for influence.
This approach allows us to pass through each unit in the game, adding its contri-

bution to only those locations within its radius. We end up with O(nr) in time and
O(m) in memory, where r is the number of locations within the average radius of a
unit. Because r is going to be much smaller than m (the number of locations in the
level), this is a significant reduction in execution time.
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The disadvantage of this approach is that small influences don’t add up over large
distances. Three infantry units could together contribute a reasonable amount of in-
fluence to a location between them, although individually they have very little. If a
radius is used and the location is outside this influence, it would have no influence
even though it is surrounded by troops who could take it at will.

Convolution Filters

The second approach applies techniques more common in computer graphics. We
start with the influence map where the only values marked are those where the units
are actually located. You can imagine these as spots of influence in the midst of a level
with no influence. Then the algorithm works through each location and changes its
value so it incorporates not only its own value, but the values of its neighbors. This
has the effect of blurring out the initial spots so that they form gradients reaching out.
Higher initial values get blurred out further.

This approach uses a filter: a rule that says how a location’s value is affected by
its neighbors. Depending on the filter, we can get different kinds of blurring. The
most common filter is called a Gaussian, and it is useful because it has mathematical
properties that make it even easier to calculate.

To perform filtering, each location in the map needs to be updated using this rule.
To make sure the influence spreads to the limits of the map, we need to then repeat
the whole update several times again. If there are significantly fewer units in the game
than there are locations in the map (I can’t imagine a game when this wouldn’t be
true), then this approach is more expensive than even our initial naive algorithm.
Because it is a graphics algorithm, however, it is easy to implement using graphical
techniques.

We’ll return to filtering, including a full algorithm, later in this chapter.

Map Flooding

The last approach uses an even more dramatic simplifying assumption: the influence
of each location is equal to the largest influence contributed by any unit. In this as-
sumption if a tank is covering a street, then the influence on that street is the same
even if 20 solders arrive to also cover the street. Clearly, this approach may lead to
some errors: the AI assumes that a huge number of weak troops can be overpowered
by a single strong unit (a very dangerous assumption).

On the other hand, there exists a very fast algorithm to calculate the influence
values, based on the Dijkstra algorithm we saw in Chapter 4. The algorithm floods the
map with values, starting from each unit in the game and propagating its influence
out.

Map flooding can usually perform in around O(min[nr,m]) time and can exceed
O(nr) time if many locations are within the radius of influence of several units (it
is O(m) in memory, once again). Because it is so easy to implement and is fast in
operation, several developers favor this approach. The algorithm is useful beyond
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simple influence mapping and can also incorporate terrain analysis while performing
its calculations. We’ll analyze it in more depth in Section 6.2.6.

Whatever algorithm is used for calculating the influence map, it will still take a
while. The balance of power on a level rarely changes dramatically from frame to
frame, so it is normal for the influence mapping algorithm to run over the course of
many frames. All the algorithms can be easily interrupted. While the current influ-
ence map may never be completely up to date, even at a rate of one pass through the
algorithm every 10 seconds, the data is usually sufficiently recent for character AI to
look sensible.

We’ll also return to this algorithm later in the chapter, after we have looked at
other kinds of tactical analyses besides influence mapping.

Applications

An influence map allows the AI to see which areas of the game are safe (those that are
very secure), which areas to avoid, and where the border between the teams is weakest
(i.e., where there is little difference between the influence of the two sides).

Figure 6.11 shows the security for each location in the same map as we looked at
previously. Look at the region marked. You can see that although A has the advantage
in this area, its border is less secure. The region near to B’s unit has a higher security
(paler color) than the area immediately over the border. This would be a good point
to mount an attack, since A’s border is much weaker than B’s border at this point.

The influence map can be used to plan attack locations or to guide movement.
A decision making system that decides to “attack enemy territory,” for example, might
look at the current influence map and consider every location on the border that is
controlled by the enemy. The location with the smallest security value is often a good
place to launch an attack. A more sophisticated test might look for a connected se-
quence of such weak points to indicate a weak area in the enemy defense. A (usually
beneficial) feature of this approach is that flanks often show up as weak spots in this
analysis. An AI that attacks the weakest spots will tend naturally to prefer flank at-
tacks.

The influence map is also perfectly suited for tactical pathfinding (explored in
detail later in this chapter). It can also be made considerably more sophisticated, when
needed, by combining its results with other kinds of tactical analyses, as we’ll see later.

Dealing with Unknowns

If we do a tactical analysis on the units we can see, then we run the risk of underesti-
mating the enemy forces. Typically, games don’t allow players to see all of the units in
the game. In indoor environments we may be only able to see characters in direct line
of sight. In outdoor environments units typically have a maximum distance they can
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Figure 6.11 The security level of the influence map

see, and their vision may be additionally limited by hills or other terrain features. This
is often called “fog-of-war” (but isn’t the same thing as fog-of-war in military-speak).

The influence map on the left of Figure 6.12 shows only the units visible to the
white side. The squares containing a question mark show the regions that the white
team cannot see. The influence map made from the white team’s perspective shows
(incorrectly) that they control a large proportion of the map. If we knew the full story,
the influence map on the right would be created.

The second issue with lack of knowledge is that each side has a different subset of
the whole knowledge. In the example above, the units that the white team is aware of
are very different from the units that the black team is aware of. They both create very
different influence maps. With partial information, we need to have one set of tactical
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Figure 6.12 Influence map problems with lack of knowledge

analyses per side in the game. For terrain analysis and many other tactical analyses,
each side has the same information, and we can get away with only a single set of data.

Some games solve this problem by allowing all of the AI players to know every-
thing. This allows the AI to build only one influence map, which is accurate and cor-
rect for all sides. The AI will not underestimate the opponent’s military might. This
is widely viewed as cheating, however, because the AI has access to information that
a human player would not have. It can be quite oblivious. If a player secretly builds
a very powerful unit in a well-hidden region of the level, they would be frustrated if
the AI launched a massive attack aimed directly at the hidden super-weapon, obvi-
ously knowing full well that it was there. In response to cries of foul, developers have
recently stayed away from building a single influence map based on the correct game
situation.

When human beings see only partial information, they make force estimations
based on a prediction of what units they can’t see. If you see a row of pike men on
a medieval battlefield, you may assume there is a row of archers somewhere behind,
for example. Unfortunately, it is very difficult to create AI that can accurately predict
the forces it can’t see. One approach is to use neural networks with Hebbian learning.
A detailed run-through of this example is given in Chapter 7.
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6.2.3 TERRAIN ANALYSIS

Behind influence mapping, the next most common form of tactical analysis deals with
the properties of the game terrain. Although it doesn’t necessarily need to work with
outdoor environments, the techniques in this section originated for outdoor simula-
tions and games, so the “terrain analysis” name fits. Earlier in the chapter we looked
at waypoint tactics in depth. These are more common for indoor environments, al-
though in practice there is almost no difference between the two.

Terrain analysis tries to extract useful data from the structure of the landscape.
The most common data to extract are the difficulty of the terrain (used for pathfind-
ing or other movement) and the visibility of each location (used to find good attack-
ing locations and to avoid being seen). In addition, other data, such as the degree of
shadow, cover, or the ease of escape, can be performed in the same way.

Unlike influence mapping, most terrain analyses will always be calculated on
a location-by-location basis. For military influence we can use optimizations that
spread the influence out starting from the original units, allowing us to use the map
flooding techniques later in the chapter. For terrain analysis this doesn’t normally
apply.

The algorithm simply visits each location in the map and runs an analysis algo-
rithm for each one. The analysis algorithm depends on the type of information we
are trying to extract.

Terrain Difficulty

Perhaps the simplest useful information to extract is the difficulty of the terrain at a
location. Many games have different terrain types at different locations in the game.
This may include rivers, swampland, grassland, mountains, or forests. Each unit in
the game will face a different level of difficulty moving through each terrain type. We
can use this difficulty directly; it doesn’t qualify as a terrain analysis because there’s
no analysis to do.

In addition to the terrain type, it is often important to take account of the rugged-
ness of the location. If the location is grassland at a one in four gradient, then it will
be considerably more difficult to navigate than a flat pasture.

If the location corresponds to a single height sample in a height field (a very com-
mon approach for outdoor levels), the gradient can easily be calculated by comparing
the height of location with the height of neighboring locations. If the location covers
a relatively large amount of the level (a room indoors, for example), then its gradi-
ent can be estimated by making a series of random height tests within the location.
The difference between the highest and the lowest sample provides an approximation
to the ruggedness of the location. You could also calculate the variance of the height
samples, which may also be faster if well optimized.

Whichever gradient calculation method we use, the algorithm for each location
takes constant time (assuming a constant number of height checks per location, if we
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use that technique). This is relatively fast for a terrain analysis algorithm, and com-
bined with the ability to run terrain analyses offline (as long as the terrain doesn’t
change), it makes terrain difficulty an easy technique to use without heavily optimiz-
ing the code.

With a base value for the type of terrain and an additional value for the gradient
of the location, we can calculate a final terrain difficulty. The combination may use
any kind of function, a weighted linear sum, for example, or a product of the base and
gradient values. This is equivalent to having two different analyses: the base difficulty
and the gradient, and applying a multi-tiered analysis approach. We’ll look at more
issues in combining analyses later in the section on multi-tiered analysis.

There is nothing to stop us from including additional factors into the calculation
of terrain difficulty. If the game supports break-downs of equipment, we might add
a factor for how punishing the terrain is. For example, a desert may be easy to move
across, but it might take its toll on machinery. The possibilities are bounded only by
what kinds of features you want to implement in your game design.

Visibility Map

The second most common terrain analysis I have worked with is a visibility map.
There are many kinds of tactics that require some estimation of how exposed a loca-
tion is. If the AI is controlling a reconnaissance unit, it needs to know locations that
can see a long way. If it is trying to move without being seen by the enemy, then it
needs to use locations that are well hidden instead.

The visibility map is calculated in the same way as we calculated visibility for
waypoint tactics: we check the line of sight between the location and other significant
locations in the level.

An exhaustive test will test the visibility between the location and all other lo-
cations in the level. This is very time-consuming, however, and for very large levels
it can take many minutes. There are algorithms intended for rendering large land-
scapes that can perform some important optimizations, culling large areas of the level
that couldn’t possibly be seen. Indoors, the situation is typically better still, with even
more comprehensive tools for culling locations that couldn’t possibly be seen. The
algorithms are beyond the scope of this book, but are covered in most texts on pro-
gramming rendering engines.

Another approach is to use only a subset of locations. We can use a random selec-
tion of locations, as long as we select enough samples to give a good approximation
of the correct result.

We could also use a set of “important” locations. This is normally only done when
the terrain analysis is being performed online during the game’s execution. Here, the
important locations can be key strategic locations (as decided by the influence map,
perhaps) or the location of enemy forces.

Finally, we could start at the location we are testing, shoot out rays at a fixed angu-
lar interval, and test the distance they travel, as we saw for waypoint visibility checks.
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This is a good solution for indoor levels, but doesn’t work well outdoors because it is
not easy to account for hills and valleys without shooting a very large number of rays.

Regardless of the method chosen, the end point will be an estimate of how visible
the map is from the location. This will usually be the number of locations that can be
seen, but may be an average ray length if we are shooting out rays at fixed angles.

6.2.4 LEARNING WITH TACTICAL ANALYSES

So far we have looked at analyses that involve finding information about the game
level. The values in the resulting map are calculated by analyzing the game level and
its contents.

A slightly different approach has been used successfully to support learning in
tactical AI. We start with a blank tactical analysis and perform no calculations to set
its values. During the game, whenever an interesting event happens, we change the
values of some locations in the map.

For example, suppose we are trying to avoid our character falling into the same
trap repeatedly by being ambushed. We would like to know where the player is most
likely to lay a trap and where it is best to avoid. While we can perform analysis for
cover locations, or ambush waypoints, the human player is often more ingenious than
our algorithms and can find creative ways to lay an ambush.

To solve the problem we create a “frag-map.” This initially consists of an analysis
where each location gets a zero. Each time the AI sees a character get hit (including
itself), it subtracts a number from the location in the map corresponding to the vic-
tim. The number to subtract could be proportional to the amount of hit points lost.
In most implementations, developers simply use a fixed value each time a character is
killed (after all the player doesn’t normally know the amount of hit points lost when
another player is hit, so it would be cheating to give the AI that information). We
could alternatively use a smaller value for non-fatal hits.

Similarly, if the character sees a character hit another character, it increases the
value of the location corresponding to the attacker. The increase can again be propor-
tional to the damage, or it may be a single value for a kill or non-fatal hit.

Over time we will build up a picture of the locations in the game where it is dan-
gerous to hang about (those with negative values) and where it is useful to stand to
pick off enemies (those with positive values). The frag-map is independent of any
analysis. It is a set of data learned from experience.

For a very detailed map, it can take a lot of time to build up an accurate picture
of the best and worst places. We only find a reasonable value for a location if we have
several experiences of combat at that location. We can use filtering (see later in this
section) to take the values we do know and expand them out to form estimates for
locations we have no experience of.

Frag-maps are suitable for offline learning. They can be compiled during testing
to build up a good approximation of the potential for a level. In the final game they
will be fixed.
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Figure 6.13 Learning a frag-map

Alternatively, they can be learned online during the game execution. In this case
it is usually common to take a pre-learned version as the basis to avoid having to
learn really obvious things from scratch. It is also common, in this case, to gradually
move all the values in the map toward zero. This effectively “unlearns” the tactical
information in the frag-map over time. This is done to make sure that the character
adapts to the player’s playing style.

Initially, the character will have a good idea where the hot and dangerous locations
are from the pre-compiled version of the map. The player is likely to react to this
knowledge, trying to set up attacks that expose the vulnerabilities of the hot locations.
If the starting values for these hot locations are too high, then it will take a huge
number of failures before the AI realizes that the location isn’t worth using. This can
look stupid to the player: the AI repeatedly using a tactic that obviously fails.

If we gradually reduce all the values back toward zero, then after a while all the
character’s knowledge will be based on information learned from the player, and so
the character will be tougher to beat.

Figure 6.13 shows this in action. In the first diagram we see a small section of
a level with the danger values created from play testing. Note the best location to
ambush from, A, is exposed from two directions (locations B and C). I have assumed
that the AI character gets killed ten times in location A by five attacks from B and C.
The second map shows the values that would result if there was no unlearning: A is
still the best location to occupy. A frag provides +1 point to the attacker’s location
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and −1 point to that of the victim; it will take another ten frags before the character
learns its lesson. The third map shows the values that would result if all the values are
multiplied by 0.9 before each new frag is logged. In this case location A will no longer
be used by the AI; it has learned from its mistakes. In a real game it may be beneficial
to forget even more quickly: the player may find it frustrating that it takes even five
frags for the AI to learn that a location is vulnerable.

If we are learning online, and gradually unlearning at the same time, then it be-
comes crucial to try to generalize from what it does know into areas that the character
has no experience of. The filtering technique later in the section gives more informa-
tion on how to do this.

6.2.5 A STRUCTURE FOR TACTICAL ANALYSES

So far we’ve looked at the two most common kinds of tactical analyses: influence
mapping (determining military influence at each location) and terrain analysis (de-
termining the effect of terrain features at each location).

Tactical analysis isn’t limited to these concerns, however. Just as we saw for tactical
waypoints, there may be any number of different pieces of tactical information that
we might want to base our decisions on. We may be interested in building a map
of regions with lots of natural resources to focus an RTS side’s harvesting/mining
activities. We may be interested in the same kind of concerns we saw for waypoints:
tracking the areas of shadow in the game to help a character move in stealth. The
possibilities are endless.

We can distinguish different types of tactical analyses based on the when and how
they need to be updated. Figure 6.14 illustrates the differences.

In the first category are those analyses that calculate unchanging properties of the
level. These analyses can be performed offline before the game begins. The gradients
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in an outdoor landscape will not change, unless the landscape can be altered (some
RTS games do allow the landscape to be altered). If the lighting in a level is constant
(i.e., you can’t shoot out the lights or switch them off), then shadow areas can often
be calculated offline. If your game supports dynamic shadows from movable objects,
then this will not be possible.

In the second category are those analyses that change slowly during the course
of the game. These analyses can be performed using updates that work very slowly,
perhaps only reconsidering a handful of locations at each frame. Military influence
in an RTS can often be handled in this way. The coverage of fire and police in a city
simulation game could also change quite slowly.

In the third category are properties of the game that change very quickly. To keep
up, almost the whole level will need to be updated every frame. These analyses are
typically not suited for the algorithms in this chapter. We’ll need to handle rapidly
changing tactical information slightly differently.

Updating almost any tactical analysis for the whole level at each frame is too time-
consuming. For even modestly sized levels it can be noticeable. For RTS games with
their larger level sizes, it will often be impossible to recalculate all the levels within
one frame’s processing time. No optimization can get around this; it is a fundamental
limitation of the approach.

To make some progress, however, we can limit the recalculation to those areas that
we are planning to use. Rather than recalculate the whole level, we simply recalculate
those areas that are most important. This is an ad hoc solution: we defer working any
data out until we know it is needed. Deciding which locations are important depends
on how the tactical analysis system is being used.

The simplest way to determine importance is the neighborhood of the AI-
controlled characters. If the AI is seeking a defensive location away from the enemy’s
line of sight (which is changing rapidly as the enemy move in and out of cover), then
we only need to recalculate those areas that are potential movement sites for the char-
acters. If the tactical quality of potential locations is changing fast enough, then we
need to limit the search to only nearby locations (otherwise, the target location may
end up being in line of sight by the time we get there). This limits the area we need to
recalculate to just a handful of neighboring locations.

Another approach to determine the most important locations is to use a second-
level tactical analysis, one that can be updated gradually and that will give an approx-
imation to the third-level analysis. The areas of interest from the approximation can
then be examined in more depth to make a final decision.

For example, in an RTS, we may be looking for a good location to keep a super-
unit concealed. Enemy reconnaissance flights can expose a secret very easily. A general
analysis can keep track of good hiding locations. This could be a second-level analysis
that takes into account the current position of enemy armor and radar towers (things
that don’t move often) or a first-level analysis that simply uses the topography of the
level to calculate low-visibility spots. At any time, the game can examine the candidate
locations from the lower level analysis and run a more complete hiding analysis that
takes into account the current motion of recon flights.
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Multi-Layer Analyses

For each tactical analysis the end result is a set of data on a per-location basis: the
influence map provides an influence level, side, and optionally a security level (one or
two floating point numbers and an integer representing the side); the shadow analy-
sis provides shadow intensity at each location (a single floating point number); the
gradient analysis provides a value that indicates the difficulty of moving through a
location (again, a single floating point number).

In Section 6.1 we looked at combining simple tactics into more complex tactical
information. The same process can be done for tactical analyses. This is sometimes
called multi-layer analysis, and I’ve shown it on the schematic for tactical analyses
(Figure 6.14) as spanning all three categories: any kind of input tactical analysis can
be used to create the compound information.

Imagine we have an RTS game where the placement of radar towers is critical to
success. Individual units can’t see very far alone. To get a good situational awareness
we need to build long-distance radar. We need a good method for working out the
best locations for placing the radar towers.

Let’s say, for example, that the best radar tower locations are those with the fol-
lowing properties:

� Wide range of visibility (to get the maximum information)

� In a well-secured location (towers are typically easy to destroy)

� Far from other radar towers (no point duplicating effort)

In practice, there may be other concerns also, but we’ll stick with these for now.
Each of these three properties is the subject of its own tactical analysis. The visibility
tactic is a kind of terrain analysis, and the security is based on a regular influence map.

The distance from other towers is also a kind of influence map. We create a map
where the value of a location is given by the distance to other towers. This could be
just the distance to the nearest tower, or it might be some kind of weighted value
from several towers. We can simply use the influence map function covered earlier to
combine the influence of several radar positions.

The three base tactical analyses are finally combined into a single value that
demonstrates how good a location is for a radar base.

The combination might be of the form

Quality = Security × Visibility × Distance,

where “Security” is a value for how secure a location is. If the location is controlled
by another side, this should be zero. “Visibility” is a measure of how much of the map
can be seen from the location, and “Distance” is the distance from the nearest tower.
If we use the influence formula to calculate the influence of nearby towers, rather than
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the distance to them, then the formula may be of the form

Quality = Security × Visibility

Tower Influence
,

although we need to make sure the influence value is never zero.
Figure 6.15 shows the three separate analyses and the way they have been com-

bined into a single value for the location of a radar tower. Even though the level is
quite small, we can see that there is a clear winner for the location of the next radar
tower.

There is nothing special in the way I’ve combined the three terms. There may be
better ways to put them together, using a weighted sum, for example (although then
care needs to be taken not to try to build on another side’s territory). The formula for
combining the layers needs to be created by the developer, and in a real game, it will
involve fine tuning and tweaking.

I have found throughout AI that whenever something needs tweaking, it is almost
essential to be able to visualize it in the game. In this case I would support a mode
where the tower-placement value can be displayed in the game at any time (this would
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only be part of the debug version, not the final distribution) so that I could see the
results of combining each feature.

When to Combine Things

Combining tactical analyses is exactly the same as using compound tactics with way-
points: we can choose when to perform the combination step.

If the base analyses are all calculated offline, then we have the option of perform-
ing the combination offline also and simply storing its results. This might be the best
option for a tactical analysis of terrain difficulty: combining gradient, terrain type,
and exposure to enemy fire, for example.

If any of the base analyses are changed during the game, then the combined value
needs to be recalculated. In our example above, both the security level and distance
to other towers change over the course of the game, so the whole analysis needs to be
recalculated during the game also.

Considering the hierarchy of tactical analyses I introduced earlier, the combined
analysis will be in the same category as the highest base analysis it relies on. If all the
base analyses are in category one, then the combined value will also be in category
one. If we have one base analysis in category one and two base analyses in category
two (as in our radar example), then the overall analysis will also be in category two.
We’ll need to update it during the game, but not very rapidly.

For analyses that aren’t used very often, we could also calculate values only when
needed. If the base analyses are readily available, we can query a value and have it
created on the fly. This works well when the AI is using the analysis a location at a
time, for example, for tactical pathfinding. If the AI needs to consider all the locations
at the same time (to find the highest scoring location in the whole graph), then it
may take too long to perform all the calculations on the fly. In this case it is better to
have the calculations being performed in the background (possibly taking hundreds
of frames to completely update) so that a complete set of values is available when
needed.

Building a Tactical Analysis Server

If your game relies heavily on tactical analyses, then it is worth investing the imple-
mentation time in building a tactical analysis server that can cope with each different
category of analysis. Personally, I have only needed to do this once, but building a
common API that allowed any kind of analysis (as a plug-in module), along with any
kind of combination, really helped speed up the addition of new tactical concerns
and made debugging problems with tactics much easier. Unlike the example I gave
earlier, in this system only weighted linear combinations of analyses were supported.
This made it easier to build a simple data file format that showed how to combine
primitive analyses into compound values.
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The server should support distributing updates over many frames, calculating
some values offline (or during loading of the level) and calculating values only when
they are needed. This can easily be based on the time-slicing and resource manage-
ment systems discussed in Chapter 9, Execution Management (this was my approach,
and it worked well).

I also found it very useful to build a common debugging interface that allowed
me to select any of the currently registered analyses to be displayed as an overlay on
the game level.

6.2.6 MAP FLOODING

The techniques developed in Chapter 4 are used to split the game level into regions.
In particular, Dirichlet domains are very widely used. They are regions closer to one
of a set of characteristic points than any other.

The same techniques can be used to calculate Dirichlet domains in influence
maps. When we have a tile-based level, however, these two different sets of regions can
be difficult to reconcile. Fortunately, there is a technique for calculating the Dirich-
let domains on tile-based levels. This is map flooding, and it can be used to work
out which tile locations are closer to a given location than any other. Beyond Dirich-
let domains, it can be used to move properties around the map, so the properties of
intermediate locations can be calculated.

Starting from a set of locations with some known property (such as the set of
locations where there is a unit), we’d like to calculate the properties of every other
location. As a concrete example we’ll consider an influence map for a strategy game:
a location in the game belongs to the player who has the nearest city to that location.
This would be an easy task for a map flooding algorithm. To show off a little more of
what the algorithm can do, we can make things harder by adding some complications:

� Each city has a strength, and stronger cities tend to have larger areas of influence
than weaker ones.

� The region of a city’s influence should extend out from the city in a continuous
area. It can’t be split into multiple regions.

� Cities have a maximum radius of influence that depends on the city’s strength.

We’d like to calculate the territories for the map. For each location we need to
know the city that it belongs to (if any).

The Algorithm

We will use a variation of the Dijkstra algorithm we saw in Chapter 4.
The algorithm starts with the set of city locations. We’ll call this the open list.

Internally, we keep track of the controlling city and strength of influence for each
location in the level.
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At each iteration the algorithm takes the location with the greatest strength and
processes it. We’ll call this the current location. Processing the current location in-
volves looking at the location’s neighbors and calculating the strength of influence for
each location for just the city recorded in the current node.

This strength is calculated using an arbitrary algorithm (i.e., we will not care how
it is calculated). In most cases it will be the kind of falloff equation we saw earlier in
the chapter, but it could also be generated by taking the distance between the current
and neighboring locations into account. If the neighboring location is beyond the
radius of influence of the city (normally implemented by checking if the strength is
below some minimum threshold), then it is ignored and not processed further.

If a neighboring location already has a different city registered for it, then the cur-
rently recorded strength is compared with the strength of influence from the current
location’s city. The highest strength wins, and the city and strength are set accord-
ingly. If it has no existing city recorded, then the current location’s city is recorded,
along with its influence strength.

Once the current location is processed, it is placed on a new list called the closed
list. When a neighboring node has its city and strength set, it is placed on the open
list. If it was already on the closed list, it is first removed from there. Unlike for the
pathfinding version of the algorithm, we cannot guarantee that an updating location
will not be on the closed list, so we have to make allowances for removing it. This is
because we are using an arbitrary algorithm for the strength of influence.

Pseudo-Code

Other than changes in nomenclature, the algorithm is very similar to the pathfinding
Dijkstra algorithm.

1 def mapfloodDijkstra(map, cities, strengthThreshold,
2 strengthFunction):
3

4 # This structure is used to keep track of the
5 # information we need for each location
6 struct LocationRecord:
7 location
8 nearestCity
9 strength

10

11 # Initialize the open and closed lists
12 open = PathfindingList()
13 closed = PathfindingList()
14

15 # Initialize the record for the start nodes
16 for city in cities:
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17 startRecord = new LocationRecord()
18 startRecord.location = city.getLocation()
19 startRecord.city = city
20 startRecord.strength = city.getStrength()
21 open += startRecord
22

23 # Iterate through processing each node
24 while length(open) > 0:
25

26 # Find the largest element in the open list
27 current = open.largestElement()
28

29 # Get its neighboring locations
30 locations = map.getNeighbors(current.location)
31

32 # Loop through each location in turn
33 for location in locations:
34

35 # Get the strength for the end node
36 strength = strengthFunction(current.city,
37 location)
38

39 # Skip if the strength is too low
40 if strength < strengthThreshold: continue
41

42 # .. or if it is closed and we’ve found a worse
43 # route
44 else if closed.contains(location):
45

46 # Find the record in the closed list
47 neighborRecord = closed.find(location)
48 if neighborRecord.city != current.city and
49 neighborRecord.strength < strength:
50 continue
51

52 # We’re going to change the city, so
53

54 # .. or if it is open and we’ve found a worse
55 # route
56 else if open.contains(location):
57

58 # Find the record in the open list
59 neighborRecord = open.find(location)
60 if neighborRecord.strength < strength:
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61 continue
62

63 # Otherwise we know we’ve got an unvisited
64 # node, so make a record for it
65 else:
66 neighborRecord = new NodeRecord()
67 neighborRecord.location = location
68

69 # We’re here if we need to update the node
70 # Update the cost and connection
71 neighborRecord.city = current.city
72 neighborRecord.strength = strength
73

74 # And add it to the open list
75 if not open.contains(location):
76 open += neighborRecord
77

78 # We’ve finished looking at the neighbors for
79 # the current node, so add it to the closed list
80 # and remove it from the open list
81 open -= current
82 closed += current
83

84 # The closed list now contains all the locations
85 # that belong to any city, along with the city they
86 # belong to.
87 return

Data Structures and Interfaces

This version of Dijkstra takes as input a map that is capable of generating the neigh-
boring locations of any location given. It should be of the following form:

1 class Map:
2 # Returns a list of neighbors for a given location
3 def getNeighbors(location)

In the most common case where the map is grid based, this is a trivial algorithm
to implement and can even be included directly in the Dijkstra implementation for
speed.

The algorithm needs to be able to find the position and strength of influence of
each of the cities passed in. For simplicity, I’ve assumed each city is an instance of
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some city class that is capable of providing this information directly. The class has the
following format:

1 class City:
2 # The location of the city
3 def getLocation()
4 # The strength of influence imposed by the city
5 def getStrength()

Finally, both the open and closed lists behave just like they did when we used them
for pathfinding. Refer to Chapter 4, Section 4.2 for a complete rundown of their struc-
ture. The only difference is that we’ve replaced the smallestElement method with a
largestElement. In the pathfinding case we were interested in the location with the
smallest path-so-far (i.e., the location closest to the start). This time we are interested
in the location with the largest strength of influence (which is also a location closest
to one of the start positions: the cities).

Performance

Just like the pathfinding Dijkstra, this algorithm on its own is O(nm) in time, where n
is the number of locations that belong to any city, and m is the number of neighbors
for each location. Unlike before, the worst case memory requirement is O(n) only,
because we ignore any location not within the radius of influence of any city.

Just like in the pathfinding version, however, the data structures use algorithms
that are non-trivial. See Chapter 4, Section 4.3 for more information on the perfor-
mance and optimization of the list data structures.

6.2.7 CONVOLUTION FILTERS

Image blur algorithms are a very popular way to update analyses that involve spread-
ing values out from their source. Influence maps in particular have this characteristic,
but so do other proximity measures. Terrain analyses can sometimes benefit, but they
typically don’t need the spreading-out behavior.

Similar algorithms are used outside of games also. They are used in physics to
simulate the behavior of many different kinds of fields and form the basis of models
of heat transfer around physical components.

The blur effect inside your favorite image editing package is one of a family called
convolution filters. Convolution is a mathematical operation that we will not need to
consider in this book. For more information on the mathematics behind filters, I’d
recommend “Digital Image Processing” [Gonzalez and Woods, 2002]. Convolution
filters go by a variety of other names too, depending on the field you are most familiar
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with: kernel filters, impulse response filters, finite element simulation,1 and various
others.

The Algorithm

All convolution filters have the same basic structure: we define an update matrix to
tell us how the value of one location in the map gets updated based on its own value
and that of its neighbors. For a square tile-based level, we might have a matrix that
looks like the following:

M = 1

16

⎡
⎢⎣

1 2 1

2 4 2

1 2 1

⎤
⎥⎦ .

We interpret this by taking the central element in the matrix (which, therefore,
must have an odd number of rows and columns) as referring to the tile we are inter-
ested in. Starting with the current value of that location and its surrounding tiles, we
can work out the new value by multiplying each value in the map by the correspond-
ing value in the matrix and summing the results. The size of the filter is the number
of neighbors in each direction. In the example above we have a filter size of one.

So if we have a section of the map that looks like the following:

5 6 2

1 4 2

6 3 3

and we are trying to work out a new value for the tile that currently has the value 4
(let’s call it v), we perform the calculation:

v =
⎛
⎜⎝

5 × 1
16 + 6 × 2

16 + 2 × 1
16 +

1 × 2
16 + 4 × 4

16 + 2 × 2
16 +

6 × 1
16 + 3 × 2

16 + 3 × 1
16

⎞
⎟⎠ = 3.5.

We repeat this process for each location in the map, applying the matrix and cal-
culating a new value. We need to be careful, however. If we just start at the top left
corner of the map and work our way through in reading order (i.e., left to right, then
top to bottom), we will be consistently using the new value for the map locations to
the left, above, and diagonally above and left, but the old values for the remaining
locations. This asymmetry can be acceptable, but very rarely. It is better to treat all
values the same.

1. Convolution filters are strictly only one technique used in finite element simulation.
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To do this we have two copies of the map. The first is our source copy. It contains
the old values, and we only read from it. As we calculate each new value, it is written
to the new destination copy of the map. At the end of the process the destination copy
contains an accurate update of the values. In our example, the values will be

3.875 4.25 3.813

3.188 3.5 3.438

3.625 3.625 3.438

rounded to three decimal places.
To make sure the influence propagates from a location to all the other locations

in the map, we need to repeat this process many times. Before each repeat, we set the
influence value of each location where there is a unit.

If there are n tiles in each direction on the map (assuming a square tile-based
map), then we need up to n passes through the filter to make sure all values are cor-
rect. If the source values are in the middle of the map, we may only need half this
number.

If the sum total of all the elements in our matrix is one, then the values in the map
will eventually settle down and not change over additional iterations. As soon as the
values settle down, we need no more iterations.

In a game, where time is of the essence, we don’t want to spend a long time repeat-
edly applying the filter to get a correct result. We can limit the number of iterations
through the filter. Often, you can get away with applying one pass through the fil-
ter each frame and using the values from previous frames. In this way the blurring is
spread over multiple frames. If you have fast-moving characters on the map, however,
you may still be blurring their old location long after they have moved, which may
cause problems. It is worth experimenting with, however. Most developers I know
who use filters only apply one pass at a time.

Boundaries

Before we implement the algorithm, we need to consider what happens at the edges
of the map. Here we are no longer able to apply the matrix because some of the neigh-
bors for the edge tile do not exist.

There are two approaches to this problem: to modify the matrix or to modify the
map.

We could modify the matrix at the edges so that it only includes the neighbors
that exist. At the top left-hand corner, for example, our blur matrix becomes

1

9

[
4 2

2 1

]
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and

1

12

[
1 2 1

2 4 2

]

on the bottom edge.
This approach is the most correct and will give good results. Unfortunately, it

involves working with nine different matrices and switching between them at the
correct time. The regular convolution algorithm given below can be very compre-
hensively optimized to take advantage of single instruction multiple data (SIMD),
processing several locations at the same time. If we need to keep switching matri-
ces, these optimizations are no longer easy to achieve, and we lose a good deal of the
speed (in my basic experimentation for this book, the matrix-switching version can
take 1.5–5 times as long).

The second alternative is to modify the map. We do this by adding a border
around the game locations and clamping their values (i.e., they are never processed
during the convolution algorithm; therefore, they will never change their value). The
locations in the map can then use the regular algorithm and draw data from tiles that
only exist in this border.

This is a fast and practical solution, but it can produce edge artifacts. Because we
have no way of knowing what the border values should be set at, we choose some
arbitrary value (say zero). The locations that neighbor the border will consistently
have a contribution of this arbitrary value added to them. If the border is all set to
zero, for example, and a high-influence character is next to it, its influence will be
pulled down because the edge locations will be receiving zero-valued contributions
from the invisible border.

This is a common artifact to see. If you visualize the influence map as color den-
sity, it appears to have a paler color halo around the edge. The same thing will occur
regardless of the value chosen for the border. It can be alleviated by increasing the size
of the border and allowing some of the border values to be updated normally (even
though they aren’t part of the game level). This doesn’t solve the problem, but can
make it less visible.

Pseudo-Code

The convolution algorithm can be implemented in the following way:

1 # Performs a convolution of the matrix on the source
2 def convolve(matrix, source, destination):
3

4 # Find the size of the matrix
5 matrixLength = matrix.length()
6 size = (wm-1)/2
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7

8 # Find the dimensions of the source
9 height = source.length()

10 width = source[0].length()
11

12 # Go through each destination node, missing
13 # out a border equal to the size of the matrix.
14 for i in size..(width-size):
15 for j in size..(height-size):
16

17 # Start with zero in the destination
18 destination[i][j] = 0
19

20 # Go through each entry in the matrix
21 for k in 0..matrixLength:
22 for m in 0..matrixLength:
23

24 # Add the component
25 destination[i][j] +=
26 source[i+k-size][j+m-size] *
27 matrix[k][m]

To apply multiple iterations of this algorithm, we can use a driver function that
looks like the following:

1 def convolveDriver(matrix, source,
2 destination, iterations):
3

4 # Assign the source and destination to
5 # swappable variables (by reference, not
6 # by value).
7 if iterations % 2 > 0:
8 map1 = source
9 map2 = destination

10 else:
11 # Copy source data into destination
12 # so we end up with the destination data
13 # in the destination array after an even
14 # number of convolutions.
15 destination = source
16 map1 = destination
17 map2 = source
18
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19 # Loop through the iterations
20 for i in 0..iterations:
21

22 # Run the convolution
23 convolve(matrix, map1, map2)
24

25 # Swap the variables
26 map1, map2 = map2, map1

although, as we’ve already seen, this is not commonly used.

Data Structures and Interfaces

This code uses no peculiar data structures or interfaces. It requires both the matrix
and the source data as a rectangular array of arrays (containing numbers, of whatever
type you need). The matrix parameter needs to be a square matrix, but the source
matrix can be of whatever size. A destination matrix of the same size as the source
matrix is also passed in, and its contents are altered.

Implementation Notes

The algorithm is a prime candidate for optimizing using SIMD hardware. We are per-
forming the same calculation on different data, and this can be parallelized. A good
optimizing compiler that can take advantage of SIMD processing is likely to automat-
ically optimize these inner loops for you.

Performance

The algorithm is O(whs2) in time, where w is the width of the source data, h is its
height, and s is the size of the convolution matrix. It is O(wh) in memory, because it
requires a copy of the source data in which to write updated values.

If memory is a problem, it is possible to split this down and use a smaller tem-
porary storage array, calculating the convolution one chunk of the source data at a
time. This approach involves revisiting certain calculations, thus decreasing execu-
tion speed.

Filters

So far we’ve only seen one possible filter matrix. In image processing there is a whole
wealth of different effects that can be achieved through different filters. Most of them
are not useful in tactical analyses.
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We’ll look at two in this section that have practical use: the Gaussian blur and the
sharpening filter. Gonzalez and Woods [2002] contain many more examples, along
with comprehensive mathematical explanations of how and why certain matrices cre-
ate certain effects.

Gaussian Blur

The blur filter we looked at earlier is one of a family called Gaussian filters. They
blur values, spreading them around the level. As such they are ideal for spreading out
influence in an influence map.

For any size of filter, there is one Gaussian blur filter. The values for the matrix
can be found by taking two vectors made up of elements of the binomial series; for
the first few values these are

[ 1 2 1 ]

[ 1 4 6 4 1 ]

[ 1 6 15 20 15 6 1 ]

[ 1 8 28 56 70 56 28 8 1 ]

and calculating their outer product. So for the Gaussian filter of size two, we get

⎡
⎢⎢⎢⎢⎢⎢⎣

1

4

6

4

1

⎤
⎥⎥⎥⎥⎥⎥⎦

× [ 1 4 6 4 1 ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

We could use this as our matrix, but the values in the map would increase dra-
matically each time through. To keep them at the same average level, and to ensure
that the values settle down, we divide through by the sum of all the elements. In our
case this is 256:

M = 1

256

⎡
⎢⎢⎢⎢⎢⎢⎣

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

If we run this filter over and over on an unchanging set of unit influences, we will
end up with the whole level at the same influence value (which will be low). The blur
acts to smooth out differences, until eventually there will be no difference left.
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Figure 6.16 Screenshot of a Gaussian blur on an influence map

We could add in the influence of each unit each time through the algorithm. This
would have a similar problem: the influence values would increase at each iteration
until the whole level had the same influence value as the units being added.

To solve these problems we normally introduce a bias: the equivalent of the un-
learning parameter we used for frag-maps earlier. At each iteration we add the influ-
ence of the units we know about and then remove a small amount of influence from
all locations. The total removed influence should be the same as the total influence
added. This ensures that there is no net gain or loss over the whole level, but that the
influence spreads correctly and settles down to a steady-state value.

Figure 6.16 shows the effect of our size-two Gaussian blur filter on an influence
map. The algorithm ran repeatedly (adding the unit influences each time and remov-
ing a small amount) until the values settled down.

Separable Filters

The Gaussian filter has an important property that we can use to speed up the algo-
rithm. When we created the filter matrix, we did so using the outer product of two
identical vectors:
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⎡
⎢⎢⎢⎢⎢⎢⎣

1

4

6

4

1

⎤
⎥⎥⎥⎥⎥⎥⎦

× [ 1 4 6 4 1 ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

This means that, during an update, the values for locations in the map are being
calculated by the combined action of a set of vertical calculations and horizontal cal-
culations. What is more, the vertical and horizontal calculations are the same. We can
separate them out into two steps: first an update based on neighboring vertical values
and second using neighboring horizontal values.

For example, let’s return to our original example. We have part of the map that
looks like the following:

5 6 2

1 4 2

6 3 3

and, what we now know is a Gaussian blur, with the matrix

M = 1

16

⎡
⎢⎣

1 2 1

2 4 2

1 2 1

⎤
⎥⎦ = 1

4

⎡
⎢⎣

1

2

1

⎤
⎥⎦ × 1

4
[ 1 2 1 ].

We replace the original updated algorithm with a two-step process. First, we work
through each column and apply just the vertical vector, using the components to
multiply and sum the values in the table just as before. So if the 1 value in our example
is called w, then the new value for w is given by

v =
5 × 1

4+
1 × 2

4+
6 × 1

4

= 3.25

We repeat this process for the whole map, just as if we had a whole filter matrix.
After this update we end up with

5.000 4.750 3.500

1.750 2.750 3.500

4.250 3.750 3.250
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After this is complete, we then go through again performing the horizontal equiv-
alent (i.e., using the matrix [ 1 2 1 ]). We end up with

3.875 4.25 3.813

3.188 3.5 3.438

3.625 3.625 3.438

exactly as before.
The pseudo-code for this algorithm looks like the following:

1 # Performs a convolution of a matrix that is the outer
2 # product of the given vectors, on the given source
3 def separableConvolve(hvector, vvector,
4 source, temp, destination):
5

6 # Find the size of the vectors
7 vectorLength = hvector.length()
8 size = (wm-1)/2
9

10 # Find the dimensions of the source
11 height = source.length()
12 width = source[0].length()
13

14 # Go through each destination node, missing
15 # out a border equal to the size of the vector.
16 for i in size..(width-size):
17 for j in size..(height-size):
18

19 # Start with zero in the temp array
20 temp[i][j] = 0
21

22 # Go through each entry in the vector
23 for k in 0..vectorLength:
24

25 # Add the component
26 temp[i][j] +=
27 source[i][j+k-size] *
28 vvector[k]
29

30 # Go through each destination node again.
31 for i in size..(width-size):
32 for j in size..(height-size):
33
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34 # Start with zero in the destination
35 destination[i][j] = 0
36

37 # Go through each entry in the vector
38 for k in 0..vectorLength:
39

40 # Add the component (taking data
41 # from the temp array, rather than
42 # the source)
43 destination[i][j] +=
44 temp[i+k-size][j] *
45 hvector[k]
46

We are passing in two vectors, the two vectors whose outer product gives the con-
volution matrix. In the examples above this has been the same vector for each direc-
tion, although it could just as well be different. We are also passing in another array
of arrays, called temp, again the same size as the source data. This will be used as
temporary storage in the middle of the update.

Rather than doing nine calculations (a multiplication and addition in each) for
each location in the map, we’ve done only six: three vertical and three horizontal. For
larger matrices the saving is even larger, a size 3 matrix would take 25 calculations
the long way or 10 if it were separable. It is therefore O(whs) in time, rather than the
O(whs2) of the previous version. It doubles the amount of temporary storage space
needed, however, although it is still O(wh).

In fact, if we are restricted to Gaussian blurs, there is a faster algorithm (called
SKIPSM, discussed in Waltz and Miller [1998]) that can be implemented in assembly
and run very quickly on the CPU. It is not designed to take full advantage of SIMD
hardware, however. So in practice a well-optimized version of the algorithm above
will perform almost as well and will be considerably more flexible.

It is not only Gaussian blurs that are separable, although most convolution ma-
trices are not. If you are writing a tactical analysis server that can be used as widely
as possible, then you should support both algorithms. The remaining filters in this
chapter are not separable, so they require the long version of the algorithm.

The Sharpening Filter

Rather than blur influence out, we might want to concentrate it in. If we need to
understand where the central hub of our influence is (to determine where to build
a base, for example), we could use a sharpening filter. Sharpening filters act in the
opposite way to blur filters: concentrating the values in the regions that already have
the most.
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Figure 6.17 Screenshot of a sharpening filter on an influence map

A matrix for the sharpening filter has a central positive value surrounded by neg-
ative values. For example,

1

2

⎡
⎢⎣

−1 −1 −1

−1 18 −1

−1 −1 −1

⎤
⎥⎦

and more generally, any matrix of the form

1

a

⎡
⎢⎣

−b −c −b

−c a(4b + 4c + 1) −c

−b −c −b

⎤
⎥⎦ ,

where a, b, and c are any positive real numbers and typically c < b.
In the same way as for the Gaussian blur, we can extend the same principle to

larger matrices. In each case, the central value will be positive, and those surrounding
it will be negative.

Figure 6.17 shows the effect of the first sharpening matrix shown above. In the
first part of the figure, an influence map has been sharpened once only.

Because the sharpening filter acts to reduce the distribution of influence, if we
run it multiple times we are likely to end up with an uninspiring result. In the second
part of the figure the algorithm has been run for more iterations (adding the unit
influences each time and removing a bias quantity) until the values settle down. You
can see that the only remaining locations with any influence are those with units in
them, i.e., those we already know the influence of.

Where sharpening filters can be useful for terrain analysis, they are usually applied
only a handful of times and are rarely run to a steady-state.
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6.2.8 CELLULAR AUTOMATA

Cellular automata are update rules that generate the value at one location in the map
based on the values of other surrounding locations. This is an iterative process: at
each iteration values are calculated based on the surrounding values at the previous
iteration. This makes it a dynamic process that is more flexible than map flooding
and can give rise to useful emergent effects.

In academia, cellular automata gained attention as a biologically plausible model
of computing (although many commentators have subsequently shown why they
aren’t that biologically plausible), but with little practical use.

They have been used in only a handful of games, to my knowledge, mostly city
simulation games, with the canonical example being Sim City. In Sim City they aren’t
used specifically for the AI; they are used to model changing patterns in the way the
city evolves. I have used a cellular automaton to identify tactical locations for snipers
in a small simulation, and I suspect they can be used more widely in tactical analysis.

Figure 6.18 shows one cell in a cellular automaton. It has a neighborhood of lo-
cations whose values it depends on. The update rule can be anything from a simple
mathematical function to a complex set of rules. The figure shows an intermediate
example.

Note, in particular, that if we are dealing with numeric values at each location,
and the update rules are a single mathematical function, then we have a convolution
filter, just as we saw in the previous section. In fact, convolution filters are just one
example of a cellular automaton. This is not widely recognized, and most people tend
to think of cellular automata solely in terms of discrete values at each location and
more complex update rules.
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Figure 6.18 A cellular automaton
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Typically, the values in each surrounding location are first split into discrete cat-
egories. They may be enumerated values to start with (the type of building in a city
simulation game, for example, or the type of terrain for an outdoor RTS). Alterna-
tively, we may have to split a real number into several categories (splitting a gradient
into categories for “flat,” “gentle,” “steep,” and “precipitous,” for example).

Given a map where each location is labelled with one category from our set, we
can apply an update rule on each location to give the category for the next iteration.
The update for one location depends only on the value of locations at the previous
iteration. This means the algorithm can update locations in any order.

Cellular Automata Rules

The most well-known variety of cellular automata has an update rule that gives an
output category, based on the numbers of its neighbors in each location. Figure 6.18
shows such a rule for just two categories. In the rule, it states that a location that
borders at least four secure locations should be treated as secure.

Running the same rule over all the locations in a map allows us to turn an irregular
zone of security (where the AI may mistakenly send units into the folds, only to have
the enemy easily flank them) into a more convex pattern.

Cellular automaton rules could be created to take account of any information
available to the AI. They are designed to be very local, however. A simple rule decides
the characteristic of a location based only on its immediate neighbors. The complex-
ity and dynamics of the whole automaton arise from the way these local rules inter-
act. If two neighboring locations change their category based on each other, then the
changes can oscillate backward and forward. In many cellular automata, even more
complex behaviors can arise, including never-ending sequences that involve changes
to the whole map.

Most cellular automata are not directional; they don’t treat one neighbor any dif-
ferently from any other. If a location in a city game has three neighboring high-crime
areas, we might have a rule that says the location is also a high-crime zone. In this
case, it doesn’t matter which of the location’s neighbors are high crime as long as the
numbers add up. This enables the rule to be used in any location on the map.

Edges can pose a problem, however. In academic cellular automata, the map is
considered to be either infinite or toroidal (i.e., the top and the bottom are joined, as
are the left and right edges). Either approach gives a map where every location has the
same number of neighbors. In a real game this will not be the case. In fact, many times
we will not be working on a grid-based map at all, and so the number of neighbors
might change from location to location.

To avoid having different behavior at different locations, we can use rules that are
based on larger neighborhoods (not just locations that touch the location in question)
and proportions rather than absolute numbers. We might have a rule that says if at
least 25% of neighboring locations are high-crime areas then a location is also high
crime, for example.
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Running a Cellular Automaton

We need two copies of the tactical analysis to allow the cellular automaton to update.
One copy stores the values at the previous iteration, and the other copy stores the
updated values. We can alternate which copy is which and repeatedly use the same
memory.

Each location is considered in sequence (in any order, as we’ve seen), taking its
input from its neighboring location and placing its output in the new copy of the
analysis.

If we need to split a real-valued analysis into categories, this is often done as a
pre-processing step first. A third copy of the map is kept, containing integers that
represent the enumerated categories. The correct category is filled in each from the
real-numbered source data. Finally, the cellular automaton update rule runs as nor-
mal, converting its category output into a real number for writing into the destination
map. This process is shown in Figure 6.19.

If the update function is a simple mathematical function of its inputs, without
branches, then it can often be written as parallel code that can be run on either the
graphics card or a specialized vector mathematics unit. This can speed up the execu-
tion dramatically, as long as there is some headroom on those chips (if the graphics
processing is taking every ounce of their power, then you may as well run the simula-
tion on the CPU, of course).

In most cases, however, update functions of cellular automata tend to be heav-
ily branched; they consist of lots of switch- or if-statements. This kind of processing
isn’t as easily parallelized, and so it is often performed in series on the main CPU, with
a corresponding performance decrease. Some cellular automata rule sets (in particu-
lar, Conway’s “The Game of Life”: the most famous set of rules, but practically useless
in a game application) can be easily rewritten without branches and have been imple-
mented in a highly efficient parallel manner. Unfortunately, it is not always sensible
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Figure 6.19 Updating a cellular automaton
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to do so because the rewrites can take longer to run than a good branched implemen-
tation.

The Complexity of Cellular Automata

The behavior of a cellular automaton can be extremely complex. In fact, for some
rules the behavior is so complex that the patterns of values become a programmable
computer. This is part of the attraction of using the method: we can create sets of
rules that produce almost any kind of pattern we like.

Unfortunately, because the behavior is so complex, there is no way we can accu-
rately predict what we are going to see for any given rule set. For some simple rules it
may be obvious. However, even very simple rules can lead to extraordinarily complex
behaviors. The rule for the famous “The Game of Life” is very simple, yet produces
completely unpredictable patterns.2

In game applications we don’t need this kind of sophistication. For tactical analy-
ses we are only interested in generating properties of one location from that of neigh-
boring locations. We would like the resulting analysis to be stable. After a while, if the
base data (like the positions of units or the layout of the level) stays the same, then
the values in the map should settle down to a consistent pattern.

Although there are no guaranteed methods for creating rules that settle in this
way, I have found that a simple rule of thumb is to set only one threshold in rules.
In Conway’s “The Game of Life,” for example, a location can be on or off. It comes
on if it has three on neighbors, and it goes off if it has fewer than two or more than
four (there are eight neighbors for each cell in the grid). It is this “band” of two
to three neighbors that causes the complex and unpredictable behavior. If the rules
simply made locations switch on when they had three or more neighbors, then the
whole map would rapidly fill up (for most starting configurations) and would be
quite stable.

Bear in mind that you don’t need to introduce the dynamism into the game
through complex rules. The game situation will be changing as the player affects it.
Often, you just want fairly simple rules for the cellular automaton: rules that would
lead to boring behavior if the automaton was the only thing running in the game.

Applications and Rules

Cellular automata are a broad topic, and their flexibility induces option paralysis. It
is worth looking through a few of their applications and the rules that support them.

2. These are literally unpredictable in the sense that the only way to find out what will happen is to run the
cellular automaton.
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Area of Security

Earlier in the chapter we looked at a set of cellular automata rules that expand an area
of security to give a smoother profile, less prone to obvious mistakes in unit place-
ment. It is not suitable for use on the defending side’s area of control, but is useful for
the attacking side because it avoids falling foul of a number of simple counterattack
tactics.

The rule is simple:

A location is secure if at least four of its eight neighbors (or 50% for edges)
are secure.

Building a City

Sim City uses a cellular automaton to work out the way buildings change depending
on their neighborhood. A residential building in the middle of a run-down area will
not prosper and may fall derelict, for example. Sim City’s urban model is complex
and highly proprietary. While I can guess some of the rules, I have no idea of their
exact implementation.

A less well-known game, Otostaz [Sony Computer Entertainment, 2002], uses
exactly the same principle, but its rules are simpler. In the game a building appears
on an empty patch of land when it has one square containing water and one square
containing trees. This is a level one building. Taller buildings come into being on
squares that border two buildings of the next smaller size, or three buildings of one
size smaller, or four buildings of one size smaller still.

So a level two building appears on a patch of land when it has two neighboring
level one buildings. A level three building needs two level two buildings or three level
one buildings, and so on. An existing building doesn’t ever degrade on its own (al-
though the player can remove it), even if the buildings that caused it to generate are
removed. This provides the stability to avoid unstable patterns on the map.

This is a gameplay, rather than an AI use of the game, but the same thing can be
implemented to build a base in an RTS. Typically, an RTS has a flow of resources: raw
materials need to be collected, and there needs to be a balance of defensive locations,
manufacturing plants, and research facilities.

We could use a set of rules such as

A location near to raw materials can be used to build a defensive building.
A location bordered by two defensive positions may be used to build a ba-
sic building of any type (training, research, and manufacturing). A location
bounded by two basic buildings may become an advanced building of a dif-
ferent type (so we don’t put all the same types of technology in one place,
vulnerable to a single attack). Very valuable facilities should be bordered by
two advanced buildings.
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6.3 TACTICAL PATHFINDING

Tactical pathfinding is a hot topic in current game development. It can provide quite
impressive results when characters in the game move, taking account of their tactical
surroundings, staying in cover, and avoiding enemy lines of fire and common ambush
points.

Tactical pathfinding is sometimes talked about as if it is significantly more com-
plex or sophisticated than regular pathfinding. This is unfortunate because it is no
different at all from regular pathfinding. The same pathfinding algorithms are used
on the same kind of graph representation. The only modification is that the cost func-
tion is extended to include tactical information as well as distance or time.

6.3.1 THE COST FUNCTION

The cost for moving along a connection in the graph should be based on both dis-
tance/time (otherwise, we might embark on exceptionally long routes) and how tac-
tically sensible the maneuver is. The cost of a connection is given by a formula of the
following type:

C = D +
∑

i

wiTi,

where D is the distance of the connection (or time or other non-tactical cost function:
we will refer to this as the base cost of the connection); wi is a weighting factor for
each tactic supported in the game; Ti is the tactical quality for the connection, again
for each tactic; and i is the number of tactics being supported. We’ll return to the
choice of the weighting factors below.

The only complication in this is the way tactical information is stored in a game.
As we have seen so far in this chapter, tactical information is normally stored on a
per-location basis. We might use tactical waypoints or a tactical analysis, but in either
case the tactical quality is held for each location.

To convert location-based information into connection-based costs, we normally
average the tactical quality of each of the locations that the connection connects. This
works on the assumption that the character will spend half of its time in each region
and so should benefit or suffer half of the tactical properties of each.

This assumption is good enough for most games, although it sometimes produces
quite poor results. Figure 6.20 shows a connection between two locations with good
cover. The connection, however, is very exposed, and the longer route around is likely
to be much better in practice.

6.3.2 TACTIC WEIGHTS AND CONCERN BLENDING

In the equation for the cost of a connection, the real-valued quality for each tactic is
multiplied by a weighting factor before being summed into the final cost value. The
choice of weighting factors controls the kinds of routes taken by the character.
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Figure 6.20 Averaging the connection cost sometimes causes problems

We could also use a weighting factor for the base cost, but this would be equivalent
to changing the weighting factors for each of the tactics. A 0.5 weight for the base cost
can be achieved by multiplying each of the tactic weights by 2, for example. We will
not use a separate weight for the base cost in this chapter, but you may find it more
convenient to have one in your implementation.

If a tactic has a high weight, then locations with that tactical property will be
avoided by the character. This might be the case for ambush locations or difficult
terrain, for example. Conversely, if the weight is a large negative value, then the char-
acter will favor locations with a high value for that property. This would be sensible
for cover locations or areas under friendly control, for example.

Care needs to be taken to make sure that no possible connection in the graph can
have a negative overall weight. If a tactic has a large negative weight and a connection
has a small base cost with a high value for the tactic, then the resulting overall cost
may be negative. As we saw in Chapter 4, negative costs are not supported by normal
pathfinding algorithms such as A∗. Weights can be chosen so that no negative value
can occur, although that is often easier said than done. As a safety net, we can also
specifically limit the cost value returned so that it is always positive. This adds ad-
ditional processing time and can also lose lots of tactical information. If the weights
are badly chosen, many different connections might be mapped to negative values:
simply limiting them so they give a positive result loses any information on which
connections are better than the others (they all appear to have the same cost).

Speaking from bitter personal experience, I would advise you at the very least to
include an assert or other debugging message to tell you if a connection arises with
a negative cost. A bug resulting from a negative weight can be tough to track down
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(it normally results in the pathfinding never returning a result, but it can cause much
more subtle bugs too).

We can calculate the costs for each connection in advance and store them with
the pathfinding graph. There will be one set of connection costs for each set of tactic
weights.

This works okay for static features of the game such as terrain and visibility. It
cannot take into account the dynamic features of the tactical situation: the balance of
military influence, cover from known enemies, and so on. To do this we need to apply
the cost function each time the connection cost is requested (we can cache the cost
value for multiple queries in the same frame, of course).

Performing the cost calculations when they are needed slows down pathfind-
ing significantly. The cost calculation for a connection is in the lowest loop of the
pathfinding algorithm, and any slowdown is usually quite noticeable. There is a trade-
off. Is the advantage of better tactical routes for your characters outweighed by the
extra time they need to plan the route in the first place?

As well as responding to changing tactical situations, performing the cost calcula-
tions for each frame allows great flexibility to model different personalities in different
characters.

In a real-time strategy game, for example, we might have reconnaissance units,
light infantry, and heavy artillery. A tactical analysis of the game map might provide
information on difficulty of terrain, visibility, and the proximity of enemy units.

The reconnaissance units can move fairly efficiently over any kind of terrain, so
they weight the difficulty of terrain with a small positive weight. They are keen to
avoid enemy units, so they weight the proximity of enemy units with a large positive
value. Finally, they need to find locations with large visibility, so they weight this with
a large negative value.

The light infantry units have slightly more difficultly with tough terrain, so their
weight is a small positive value, higher than that of the reconnaissance units. Their
purpose is to engage the enemy. However, they would rather avoid unnecessary en-
gagements, so they use a small positive weight for enemy proximity (if they were
actively seeking combat, they’d use a negative value here). They would rather move
without being seen, so they use a small positive weight for visibility.

Heavy artillery units have a different set of weights again. They cannot cope with
tough terrain, so they use a large positive weight for difficult areas of the map. They
also are not good in close encounters, so they have large positive weights for enemy
proximity. When exposed, they are a prime target and should move without being
seen (they can attack from behind a hill quite successfully), so they also use a large
positive weight for visibility.

These three routes are shown in Figure 6.21, a screenshot for a three-dimensional
(3D) level. The black dots in the screenshot show the location of enemy units.

The weights don’t need to be static for each unit type. We could tailor the weights
to a unit’s aggression. An infantry unit might not mind enemy contact if it is healthy,
but might increase the weight for proximity when it is damaged. That way if the player



6.3 Tactical Pathfinding 541

Figure 6.21 Screenshot of the planning system showing tactical pathfinding

orders a unit back to base to be healed, the unit will naturally take a more conservative
route home.

Using the same source data, the same tactical analyses, the same pathfinding al-
gorithm, but different weights, we can produce completely different styles of tactical
motion that display clear differences in priority between characters.

6.3.3 MODIFYING THE PATHFINDING HEURISTIC

If we are adding and subtracting modifiers to the connection cost, then we are in
danger of making the heuristic invalid. Recall that the heuristic is used to estimate the
length of the shortest path between two points. It should always return less than the
actual shortest path length. Otherwise, the pathfinding algorithm might settle for a
sub-optimal path.

We ensured that the heuristic was valid by using a Euclidean distance between two
points: any actual path will be at least as long as the Euclidean distance and will usually
be longer. With tactical pathfinding we are no longer using the distance as the cost of
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moving along a connection: subtracting the tactical quality of a connection may bring
the cost of the connection below its distance. In this case a Euclidean heuristic will not
work.

In practice, I have only come across this problem once. In most cases the addi-
tions to the cost outweigh the subtractions for the majority of connections (you can
certainly engineer the weights so that this is true). The pathfinder will disproportion-
ately tend to avoid the areas where the additions don’t outweigh the subtractions.
These areas are associated with very good tactical areas, and it has the effect of down-
grading the tendency of a character to use them. Because the areas are likely to be
exceptionally good tactically, the fact that the character treats them as only very good
(not exceptionally good) is usually not obvious to the player.

The case where I have found problems was in a character that weighted most of
the tactical concerns with a fairly large negative weight. The character seemed to miss
obviously good tactical locations and to settle for mediocre locations.

In this case I used a scaled Euclidean distance for the heuristic, simply multiplying
it by 0.5. This produced slightly more fill (see Chapter 4 for more information about
fill), but it resolved the issue with missing good positions.

6.3.4 TACTICAL GRAPHS FOR PATHFINDING

Influence maps (or any other kind of tactical analysis) are ideal for guiding tactical
pathfinding. The locations in a tactical analysis form a natural representation of the
game level, especially in outdoor levels. In indoor levels, or for games without tactical
analyses, we can use the waypoint tactics covered at the start of this chapter.

In either case the locations alone are not sufficient for pathfinding. We also need
a record of the connections between them. For waypoint tactics that include topolog-
ical tactics, we may have these already. For regular waypoint tactics and most tactical
analyses, we are unlikely to have a set of connections.

We can generate connections by running movement checks or line of sight checks
between waypoints or map locations. Locations that can be simply moved between
are candidates for maneuvers in a planned route. Chapter 4 has more details about
the automatic construction of connections between sets of locations.

The most common graph for tactical pathfinding is the grid-based graph used in
RTS games. In this case the connections can be generated very simply: a connection
exists between two locations if the locations are adjacent. This may be modified by
not allowing connections between locations when the gradient is steeper than some
threshold or if either location is occupied by an obstacle. More information on grid-
based pathfinding graphs can also be found in Chapter 4.

6.3.5 USING TACTICAL WAYPOINTS

Tactical waypoints, unlike tactical analysis maps, have tactical properties that refer to
a very small area of the game level. As we saw in the section on automatically plac-
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Figure 6.22 Adding waypoints that are not tactically sensible

ing tactical waypoints, a small movement from a waypoint may produce a dramatic
change in the tactical quality of the location.

To make sensible pathfinding graphs it is almost always necessary to add addi-
tional waypoints at locations that do not have peculiar tactical properties. Figure 6.22
shows a set of tactical locations in part of a level; none of these can be easily reached
from any of the others. The second part of the figure shows the additional waypoints
needed to connect the tactical locations and to form a sensible graph for pathfinding.

The simplest way to achieve this is to superimpose the tactical waypoints onto a
regular pathfinding graph. The tactical locations need to be linked into their adjacent
pathfinding nodes, but the basic graph provides the ability to move easily between
different areas of the level.

The developers I have seen using indoor tactical pathfinding have all included the
placement of tactical waypoints into the same level design process used to place nodes
for the pathfinding (normally using Dirichlet domains for quantization). By allowing
the level designer the ability to mark pathfinding nodes with tactical information,
the resulting graph can be used for both simple tactical decision making and for full-
blown tactical pathfinding.

6.4 COORDINATED ACTION

So far in this book we’ve looked at techniques in the context of controlling a single
character. Increasingly, we are seeing games where multiple characters have to co-
operate together to get their job done. This can be anything from a whole side in a
real-time strategy game to squads or pairs of individuals in a shooter.
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Another change happening as we speak is the ability of AI to cooperate with the
player. It is no longer enough to have a squad of enemy characters working as a team.
Many games now need AI characters to act in a squad led by the player. Up to now this
has been mostly done by giving the player the ability to issue orders. An RTS game,
for example, sees the player control many characters on their own team. The player
gives an order and some lower level AI works out how to carry it out.

Increasingly, we are seeing games in which the cooperation needs to occur without
any explicit orders being given. Characters need to detect the player’s intent and act to
support it. This is a much more difficult problem than simple cooperation. A group
of AI characters can tell each other exactly what they are planning (through some
kind of messaging system, for example). A player can only indicate his intent through
his actions, which then need to be understood by the AI.

This change in gameplay emphasis has placed increased burdens on game AI. This
section will look at a range of approaches that can be used on their own or in concert
to get more believable team behaviors.

6.4.1 MULTI-TIER AI

A multi-tier AI approach has behaviors at multiple levels. Each character will have its
own AI, squads of characters together will have a different set of AI algorithms as a
whole, and there may be additional levels for groups of squads or even whole teams.
Figure 6.23 shows a sample AI hierarchy for a typical squad-based shooter.

We’ve assumed this kind of format in earlier parts of this chapter looking at way-
point tactics and tactical analysis. Here the tactical algorithms are generally shared
between multiple characters; they seek to understand the game situation and allow
large-scale decisions to be made. Later, individual characters can make their own spe-
cific decisions based on this overview.

There is a spectrum of ways in which the multi-tier AI might function. At one
extreme, the highest level AI makes a decision, passes it down to the next level, which
then uses the instruction to make its own decision, and so on down to the lowest
level. This is called a top–down approach. At the other extreme, the lowest level AI
algorithms take their own initiative, using the higher level algorithms to provide in-
formation on which to base their action. This is a bottom–up approach.

A military hierarchy is nearly a top–down approach: orders are given by politi-
cians to generals, who turn them into military orders which are passed down the
ranks, being interpreted and amplified at each stage until they reach the soldiers on
the ground. There is some information flowing up the levels also, which in turn mod-
erates the decisions that can be made. A single soldier might spy a heavy weapon
(a weapon of mass destruction, let’s say) on the theater of battle, which would then
cause the squad to act differently and when bubbled back up the hierarchy could
change political policy at an international level.

A completely bottom–up approach would involve autonomous decision making
by individual characters, with a set of higher level algorithms providing interpreta-
tion of the current game state. This extreme is common in a large number of strategy
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Figure 6.23 An example of multi-tier AI

games, but isn’t what developers normally mean by multi-tier AI. It has more simi-
larities to emergent cooperation, and we’ll return to this later in this section.

Completely top–down approaches are often used and show the descending levels
of decision making characteristic of multi-tier AI.

At different levels in the hierarchy we see the different aspects of AI seen in our
AI model. This was illustrated in Figure 6.1. At the higher levels we have decision
making or tactical tools. Lower down we have pathfinding and movement behaviors
that carry out the high-level orders.

Group Decisions

The decision making tools used are just the same as those we saw in Chapter 5. There
are no special needs for a group decision making algorithm. It takes input about the
world and comes up with an action, just as we saw for individual characters.

At the highest level it is often some kind of strategic reasoning system. This might
involve decision making algorithms such as expert systems or state machines, but of-
ten also involves tactical analyses or waypoint tactic algorithms. These decision tools
can determine the best places to move, apply cover, or stay undetected. Other deci-
sion making tools then have to decide whether moving, being in cover, or remaining
undetected are things that are sensible in the current situation.
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The difference is in the way its actions are carried out. Rather than being sched-
uled for execution by the character, they typically take the form of orders that are
passed down to lower levels in the hierarchy. A decision making tool at a middle level
takes input from both the game state and the order it was given from above, but again
the decision making algorithm is typically standard.

Group Movement

In Chapter 3 we looked at motion systems capable of moving several characters at
once, using either emergent steering, such as flocking, or in an intentional formation
steering system.

The formation steering system we looked at in Chapter 3, Section 3.7 is multi-
tiered. At the higher levels the system steers the whole squad or even groups of squads.
At the lowest level individual characters move in order to stay with their formation,
while avoiding local obstacles and taking into account their environment.

While formation motion is becoming more widespread, it has been more com-
mon to have no movement algorithms at higher levels of the hierarchy. At the lowest
level the decisions are turned into movement instructions. If this is the approach you
select, be careful to make sure that problems achieving the lower level movement
cannot cause the whole AI to fall over. If a high-level AI decides to attack a particular
location, but the movement algorithms cannot reach that point from their current
position, then there may be a stalemate.

In this case it is worth having some feedback from the movement algorithm that
the decision making system can take account of. This can be a simple “stuck” alarm
message (see Chapter 10 for details on messaging algorithms) that can be incorpo-
rated into any kind of decision making tool.

Group Pathfinding

Pathfinding for a group is typically no more difficult than for an individual character.
Most games are designed so that the areas through which a character can pass are
large enough for several characters not to get stuck together. Look at the width of
most corridors in the squad-based games you own, for example. They are typically
significantly larger than the width of one character.

When using tactical pathfinding, it is common to have a range of different units
in a squad. As a whole they will need to have a different blend of tactical concerns
for pathfinding than any individual would have alone. This can be approximated in
most cases by the heuristic of the weakest character: the whole squad should use the
tactical concerns of their weakest member. If there are multiple categories of strength
or weakness, then the new blend will be the worst in all categories.
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Terrain Multiplier Recon Unit Heavy Weapon Infantry Squad

Gradient 0.1 1.4 0.3 1.4

Proximity 1.0 0.6 0.5 1.0

This table shows an example. We have a recon unit, a heavy weapon unit, and
a regular soldier unit in a squad. The recon unit tries to avoid enemy contact, but
can move over any terrain. The heavy weapon unit tries to avoid rough terrain, but
doesn’t try to avoid engagement. To make sure the whole squad is safe, we try to find
routes that avoid both enemies and rough terrain.

Alternatively, we could use some kind of blending weights allowing the whole
squad to move through areas that had modestly rough terrain and were fairly distant
from enemies. This is fine when constraints are preferences, but in many cases they
are hard constraints (an artillery unit cannot move through woodland, for example),
so the weakest member heuristic is usually safest.

On occasion the whole squad will have different pathfinding constraints to those
of any individual. This is most commonly seen in terms of space. A large squad of
characters may not be able to move through a narrow area that any of the members
could easily move through alone. In this case we need to implement some rules for de-
termining the blend of tactical considerations that a squad has based on its members.
This will typically be a dedicated chunk of code, but could also consist of a decision
tree, expert system, or other decision making technology. The content of this algo-
rithm completely depends on the effects you are trying to achieve in your game and
what kinds of constraints you are working with.

Including the Player

While multi-tier AI designs are excellent for most squad- and team-based games, they
do not cope well when the player is part of the team. Figure 6.24 shows a situation in
which the high-level decision making has made a decision that the player accidentally
subverts. In this case the action of the other teammates is likely to be noticeably poor
to the player. After all, the player’s decision is sensible and would be anticipated by any
sensible person. It is the multi-tiered architecture of the AI that causes the problems
in this situation.

In general, the player will always make the decisions for the whole team. The game
design may involve giving the player orders, but ultimately it is the player who is re-
sponsible for determining how to carry them out. If the player has to follow a set route
through a level, then they are likely to find the game frustrating: early on they might
not have the competence to follow the route, and later they will find the linearity re-
stricting. Game designers usually get around this difficulty by forcing restrictions on
the player in the level design. By making it clear which is the best route, the player can
be channelled into the right locations at the right time. If this is done too strongly,
then it still makes for a poor play experience.
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Figure 6.24 Multi-tiered AI and the player don’t mix well

Moment to moment in the game there should be no higher decision making than
the player. If we place the player into the hierarchy at the top, then the other char-
acters will base their actions purely on what they think the player wants, not on the
desire of a higher decision making layer. This is not to say that they will be able to
understand what the player wants, of course, just that their actions will not conflict
with the player. Figure 6.25 shows an architecture for a multi-tier AI involving the
player in a squad-based shooter.

Notice that there are still intermediate layers of the AI between the player and
the other squad members. The first task for the AI is to interpret what the player
will be doing. This might be as simple as looking at the player’s current location and
direction of movement. If they are moving down a corridor, for example, then the AI
can assume that they will continue to move down the corridor.

At the next layer, the AI needs to decide on an overall strategy for the whole squad
that can support the player in their desired action. If the player is moving down the
corridor, then the squad might decide that it is best to cover the player from behind.
As the player comes toward a junction in the corridor, squad members might also
decide to cover the side passages. When the player moves into a large room, the squad
members might cover the player’s flanks or secure the exits from the room. This level
of decision making can be achieved with any decision making tool from Chapter 5.
A decision tree would be ample for the example here.

From this overall strategy, the individual characters make their movement deci-
sions. They might walk backward behind the player covering their back or find the
quickest route across a room to an exit they wish to cover. The algorithms at this level
are usually pathfinding or steering behaviors of some kind.
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Figure 6.25 A multi-tier AI involving the player

Explicit Player Orders

A different approach to including the player in a multi-tiered AI is to give them the
ability to schedule specific orders. This is the way that an RTS game works. On the
player’s side, the player is the top level of AI. They get to decide the orders that each
character will carry out. Lower levels of AI then take this order and work out how best
to achieve it.

A unit might be told to attack an enemy location, for example. A lower level de-
cision making system works out which weapon to use and what range to close to
in order to perform the attack. A lower level takes this information and then uses a
pathfinding algorithm to provide a route, which can then be followed by a steering
system. This is multi-tiered AI with the player at the top giving specific orders. The
player isn’t represented in the game by any character. They exist purely as a general,
giving the orders.

Shooters typically put the player in the thick of the action, however. Here
also, there is the possibility of incorporating player orders. Squad-based games like
SOCOM: U.S. Navy SEALS [Zipper Interactive, 2002] allow the player to issue gen-
eral orders that give information about their intent. This might be as simple as re-
questing the defense of a particular location in the game level, covering fire, or an all
out onslaught. Here the characters still need to do a good deal of interpretation in
order to act sensibly (and in that game they often fail to do so convincingly).
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A different balance point is seen in Full Spectrum Warrior [Pandemic Studios,
2004], where RTS-style orders make up the bulk of the gameplay, but the individual
actions of characters can also be directly controlled in some circumstances.

The intent-identification problem is so difficult that it is worth seeing if you can
incorporate some kind of explicit player orders into your squad-based games, espe-
cially if you are finding it difficult to make the squad work well with the player.

Structuring Multi-Tier AI

Multi-tier AI needs two infrastructure components in order to work well:

� A communication mechanism that can transfer orders from higher layers in the
hierarchy downward. This needs to include information about the overall strat-
egy, targets for individual characters, and typically other information (such as
which areas to avoid because other characters will be there, or even complete
routes to take).

� A hierarchical scheduling system that can execute the correct behaviors at the
right time, in the right order, and only when they are required.

Communication mechanisms are discussed in more detail in Chapter 10. Multi-
tiered AI doesn’t need a sophisticated mechanism for communication. There will typ-
ically be only a handful of different possible messages that can be passed, and these
can simply be stored in a location that lower level behaviors can easily find. We could,
for example, simply make each behavior have an “in-tray” where some order can be
stored. The higher layer AI can then write its orders into the in-tray of each lower
layer behavior.

Scheduling is typically more complex. Chapter 9 looks at scheduling systems in
general, and Section 9.1.4 looks at combining these into a hierarchical scheduling
system. This is important because typically lower level behaviors have several different
algorithms they can run, depending on the orders they receive. If a high-level AI tells
the character to guard the player, they may use a formation motion steering system.
If the high-level AI wants the characters to explore, they may need pathfinding and
maybe a tactical analysis to determine where to look. Both sets of behaviors need to
be always available to the character, and we need some robust way of marshalling
the behaviors at the right time without causing frame rate blips and without getting
bogged down in hundreds of lines of special case code.

Figure 6.26 shows a hierarchical scheduling system that can run the squad-based
multi-tier AI we saw earlier in the section. See Chapter 9 for more information on
how the elements in the figure are implemented.
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Figure 6.26 A hierarchical scheduling system for multi-tier AI

6.4.2 EMERGENT COOPERATION

So far we’ve looked at cooperation mechanics where individual characters obey some
kind of guiding control. The control might be the player’s explicit orders, a tactical
decision making tool, or any other decision maker operating on behalf of the whole
group.

This is a powerful technique that naturally fits in with the way we think about the
goals of a group and the orders that carry them out. It has the weakness, however, of
relying on the quality of the high-level decision. If a character cannot obey the higher
level decision for some reason, then it is left without any ability to make progress.

We could instead use less centralized techniques to make a number of characters
appear to be working together. They do not need to coordinate in the same way as for
multi-tier AI, but by taking into account what each other is doing, they can appear to
act as a coherent whole. This is the approach taken in most squad-based games.

Each character has its own decision making, but the decision making takes into
account what other characters are doing. This may be as simple as moving toward
other characters (which has the effect that characters appear to stick together), or it
could be more complex such as choosing another character to protect and maneuver-
ing to keep them covered at all times.

Figure 6.27 shows an example finite state machine for four characters in a fire
team. Four characters with this finite state machine will act as a team, providing mu-
tual cover and appearing to be a coherent whole. There is no higher level guidance
being provided.
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Figure 6.27 State machines for emergent fire team behavior

If any member of the team is removed, the rest of the team will still behave rel-
atively efficiently, keeping themselves safe and providing offensive capability when
needed.

We could extend this and produce different state machines for each character,
adding their team specialty: the grenadier could be selected to fire on an enemy be-
hind light cover, a designated medic could act on fallen comrades, and the radio op-
erator could call in air strikes against heavy opposition. All this could be achieved
through individual state machines.

Scalability

As you add more characters to an emergently cooperating group, you will reach a
threshold of complexity. Beyond this point it will be difficult to control the behav-
ior of the group. The exact point that this occurs depends on the complexity of the
behaviors of each individual.

Reynold’s flocking algorithm, for example, can scale to hundreds of individuals
with only minor tweaks to the algorithm. The fire team behaviors earlier in the sec-
tion are fine up to six or seven characters, whereupon they become less useful. The
scalability seems to depend on the number of different behaviors each character can
display. As long as all the behaviors are relatively stable (such as in the flocking algo-
rithm), the whole group can settle into a reasonable stable behavior, even if it appears
to be highly complex. When each character can switch to different modes (as in the
finite state machine example), we end up rapidly getting into oscillations.
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Problems occur when one character changes behavior which forces another char-
acter to also change behavior and then a third, which then changes the behavior of
the first character again, and so on. Some level of hysteresis in the decision making
can help (i.e., a character keeps doing what it has been doing for a while, even if the
circumstances change), but it only buys us a little time and cannot solve the problem.

To solve this issue we have two choices. First, we can simplify the rules that each
character is following. This is appropriate for games where there are a lot of identical
characters. If, in a shooter, we are up against 1000 enemies, then it makes sense that
they are each fairly simple and that the challenge arises from their number rather than
their individual intelligence. On the other hand, if we are facing scalability problems
before we get into double figures of characters, then this is a more significant problem.

The best solution is to set up a multi-tiered AI with different levels of emergent
behavior. We could have a set of rules very similar to the state machine example,
where each individual is a whole squad rather than a single character. Then in each
squad the characters can respond to the orders given from the emergent level, either
directly obeying the order or including it as part of their decision making process for
a more emergent and adaptive feel.

This is something of a cheat, of course, if the aim is to be purely emergent. But if
the aim is to get great AI that is dynamic and challenging (which, let’s face it, it should
be), then it is often an excellent compromise.

In my experience many developers who have bought into the hype of emergent
behaviors have struck scalability problems quickly and ended up with some variation
on this more practical approach.

Predictability

A side effect of this kind of emergent behavior is that you often get group dynamics
that you didn’t explicitly design. This is a double-edged sword; it can be beneficial
to see emergent intelligence in the group, but this doesn’t happen very often (don’t
believe the hype you read about this stuff). The most likely outcome is that the group
starts to do something really annoying that looks unintelligent. It can be very difficult
to eradicate these dynamics by tweaking the individual character behaviors.

It is almost impossible to work out how to create individual behaviors that will
emerge into exactly the kind of group behavior you are looking for. In my experience
the best you can hope for is to try variations until you get a group behavior that is
reasonable and then tweak that. This may be exactly what you want.

If you are looking for highly intelligent high-level behavior, then you will always
end up implementing it explicitly. Emergent behavior is useful and can be fun to
implement, but it is certainly not a way of getting great AI with less effort.
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6.4.3 SCRIPTING GROUP ACTIONS

Making sure that all the members of a group work together is difficult to do from
first principles. A powerful tool is to use a script that shows what actions need to
be applied in what order and by which character. In Chapter 5 we looked at action
execution and scripted actions as a sequence of primitive actions that can be executed
one after another.

We can extend this to groups of characters, having a script per character. Unlike
for a single character, however, there are timing complications that make it difficult
to keep the illusion of cooperation among several characters. Figure 6.28 shows a
situation in football where two characters need to cooperate to score a touchdown. If
we use the simple action script shown, then the overall action will be a success in the
first instance, but a failure in the second instance.

QB

QB

DE

DB

Ball trajectory

End zone

WR

WR

Script is a
success

Ball trajectory

Script
fails

Quarterback (QB) script

1.  Select wide receiver
2.  Pass in front of their run

Wide receiver (WR) script

1.  Find clear air
2.  Receive pass
3.  Run for the end zone

Figure 6.28 An action sequence needing timing data
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To make cooperative scripts workable, we need to add the notion of interdepen-
dence of scripts. The actions that one character is carrying out need to be synchro-
nized with the actions of other characters.

We can achieve this most simply by using signals. In place of an action in the
sequence, we allow two new kinds of entity: signal and wait.

Signal: A signal has an identifier. It is a message sent to anyone else who is in-
terested. This is typically any other AI behavior, although it could also be sent
through an event or sense simulation mechanism from Chapter 10 if finer con-
trol is needed.

Wait: A wait also has an identifier. It stops any elements of the script from pro-
gressing unless it receives a matching signal.

We could go further and add additional programming language constructs, such
as branches, loops, and calculations. This would give us a scripting language capable
of any kind of logic, but not at the cost of significantly increased implementation
difficulty and a much bigger burden on the content creators who have to create the
scripts.

Adding just signals and waits allows us to use simple action sequences for collab-
orative actions between multiple characters.

In addition to these synchronization elements, some games also admit actions
that need more than one character to participate. Two soldiers in a squad-based
shooter might be needed to climb over a wall: one to climb and the other to provide a
leg-up. In these cases some of the actions in the sequence may be shared between mul-
tiple characters. The timing can be handled using waits, but the actions are usually
specially marked so each character is aware that it is performing the action together,
rather than independently.

Adding in the elements from Chapter 5, a collaborative action sequencer supports
the following primitives:

State Change Action: This is an action that changes some piece of game state
without requiring any specific activity from any character.

Animation Action: This is an action that plays an animation on the character and
updates the game state. This is usually independent of other actions in the game.
This is often the only kind of action that can be performed by more than one
character at the same time. This can be implemented using unique identifiers, so
different characters can understand when they need to perform an action together
and when they only need to perform the same action at the same time.

AI Action: This is an action that runs some other piece of AI. This is often a move-
ment action, which gets the character to adopt a particular steering behavior. This
behavior can be parameterized, for example, an arrive behavior having its target
set. It might also be used to get the character to look for firing targets or to plan a
route to its goal.
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Compound Action: This takes a group of actions and performs them at the same
time.

Action Sequence: This takes a group of actions and performs them in series.

Signal: This sends a signal to other characters.

Wait: This waits for a signal from other characters.

The implementation of the first five types were discussed in Chapter 5, including
pseudo-code for compound actions and action sequences. To make the action execu-
tion system support synchronized actions, we need to implement signals and waits.

Pseudo-Code

The wait action can be implemented in the following way:

1 struct Wait (Action):
2

3 # Holds the unique identifier for this wait
4 identifier
5

6 # Holds the action to carry out while waiting
7 whileWaiting
8

9 def canInterrupt():
10 # We can interrupt this action at any time
11 return true
12

13 def canDoBoth(otherAction):
14 # We can do no other action at the same time,
15 # otherwise later actions could be carried out
16 # despite the fact that we are waiting.
17 return false
18

19 def isComplete():
20 # Check if our identifier has been completed
21 if globalIdStore.hasIdentifier(identifier):
22 return true
23

24 def execute():
25 # Do our wait action
26 return whileWaiting.execute()
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Note that we don’t want the character to freeze while waiting. I have added a
waiting action to the class, which is carried out while the character waits.

A signal implementation is even simpler. It can be implemented in the following
way:

1 struct Signal (Action):
2

3 # Holds the unique identifier for this signal
4 identifier
5

6 # Checks if the signal has been delivered
7 delivered = false
8

9 def canInterrupt():
10 # We can interrupt this action at any time
11 return true
12

13 def canDoBoth(otherAction):
14 # We can do any other action at the same time
15 # as this one. We won’t be waiting on this
16 # action at all, and we shouldn’t wait another
17 # frame to carry on with our actions.
18 return true
19

20 def isComplete():
21 # This event is complete only after it has
22 # delivered its signal
23 return delivered
24

25 def execute():
26

27 # Deliver the signal
28 globalIdStore.setIdentifier(identifier)
29

30 # Record that we’ve delivered
31 delivered = true

Data Structures and Interfaces

We have assumed in this code that there is a central store of signal identifiers that can
be checked against, called globalIdStore. This can be a simple hash set, but should
probably be emptied of stale identifiers from time to time. It has the following inter-
face:
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1 class IdStore:
2 def setIdentifier(identifier)
3 def hasIdentifier(identifier)

Implementation Notes

Another complication with this approach is the confusion between different occur-
rences of a signal. If a set of characters perform the same script more than once, then
there will be an existing signal in the store from the previous time through. This may
mean that none of the waits actually wait.

For that reason it is wise to have a script remove all the signals it intends to use
from the global store before it runs. If there is more than one copy of a script running
simultaneously (e.g., if there are two squads both performing the same set of actions
at different locations), then the identifier will need to be disambiguated further. If this
situation could arise in your game, it may be worth moving to a more fine-grained
messaging technique among each squad, such as the message passing algorithm in
Chapter 10. Each squad then communicates signals only with others in the squad,
removing all ambiguity.

Performance

Both the signal and wait actions are O(1) in both time and memory. In the implemen-
tation above, the Wait class needs to access the IdStore interface to check for signals.
If the store is a hash set (which is its most likely implementation), then this will be an
O(n/b) process, where n is the number of signals in the store, and b is the buckets in
the hash set.

Although the wait action can cause the action manager to stop processing any
further actions, the algorithm will return in constant time each frame (assuming the
wait action is the only one being processed).

Creating Scripts

The infrastructure to run scripts is only half of the implementation task. In a full
engine we need some mechanism to allow level designers or character designers to
create the scripts.

Most commonly this is done using a simple text file with primitives that represent
each kind of action, signals, and waits. Chapter 5, Section 5.9 gives some high-level
information about how to create a parser to read and interpret text files of data. Al-
ternatively, some companies use visual tools to allow designers to build scripts out of
visual components. Chapter 11 has more information about incorporating AI editors
into the game production toolchain.
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The next section on military tactics provides an example set of scripts for a col-
laborative action used in a real game scenario.

6.4.4 MILITARY TACTICS

So far we have looked at general approaches for implementing tactical or strategic
AI. Most of the technology requirements can be fulfilled using common-sense appli-
cations of the techniques we’ve looked at throughout the book. To those, we add the
specific tactical reasoning algorithms to get a better idea of the overall situation facing
a group of characters.

As with all game development, we need both the technology to support a behavior
and the content for the behavior itself. Although this will dramatically vary depending
on the genre of game and the way the character is implemented, there are resources
available for tactical behaviors of a military unit.

In particular, there is a large body of freely available information on specific tactics
used by both the U.S. military and other NATO countries. This information is made
up of training manuals intended for use by regular forces.

The U.S. infantry training manuals, in particular, can be a valuable resource for
implementing military-style tactics in any genre of game from historical WWII games
through to far future science fiction or medieval fantasy. They contain information
for the sequences of events needed to accomplish a wide range of objectives, includ-
ing military operations in urban terrain (MOUT), moving through wilderness areas,
sniping, relationships with heavy weapons, clearing a room or a building, and setting
up defensive camps.

I have found that this kind of information is most suited to a cooperation script
approach, rather than open-ended multi-tier or emergent AI. A set of scripts can
be created that represent the individual stages of the operation, and these can then
be made into a higher level script that coordinates the lower level events. As in all
scripted behaviors, some feedback is needed to make sure the behaviors remain sen-
sible throughout the script execution. The end result can be deeply uncanny: seeing
characters move as a well-oiled fighting team and performing complex series of inter-
timed actions to achieve their goal.

As an example of the kinds of script needed in a typical situation, let’s look at
implementations for an indoor squad-based shooter.

Case Study: A Fire Team Takes a House

Let’s say that we have a game with a modern military setting where the AI team is a
squad of special forces soldiers specializing in anti-terrorism duties. This is based on
an actual game in production.3 Their aim is to take a house rapidly and with extreme

3. As of writing, this game is unannounced, so I can’t go into too much detail on the actual product, but it is
similar to many others that have been published.
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Figure 6.29 Taking a room

aggression to make sure the threat from its occupants is neutralized as fast as possible.
In this simulation the player was not a member of the team, but was a controlling
operator scheduling the activities of several such special forces units.

The source material for this project was the “U.S. Army field manual FM 3-06.11
Combined Arms Operations in Urban Terrain” [U.S. Army Infantry School, 2002].
This particular manual contains step-by-step diagrams for moving along corridors,
clearing rooms, moving across junctions, and general combat indoors.

Figure 6.29 shows the sequence for room clearing. First, the team assembles in
set format outside the doorway. Second, a grenade is thrown into the room (this will
be a stun grenade if the room might contain non-combatants and a lethal grenade
otherwise). The first soldier into the room moves along the near wall and takes up a
location in the corner, covering the room. The second soldier does the same to the
adjacent corner. The remaining soldiers cover the center of the room. Each soldier
shoots at any target he can see during this movement.

The game uses four scripts:

� Move into position outside the door.
� Throw in a grenade.



6.4 Coordinated Action 561

Figure 6.30 Taking various rooms

� Move into a corner of the room.
� Flank the inside of the doorway.

A top-level script coordinates these actions in turn. This script needs to first cal-
culate the two corners required for the clearance. These are the two corners closest to
the door, excluding corners that are too close to the door to allow a defensive position
to be occupied. In the implementation for this game, a waypoint tactics system had
already been used to identify all the corners in all the rooms in the game, along with
waypoints for the door and locations on either side of the door both inside and out.

Determining the nearest corners in this way allows for the same script to be used
on all kinds of shape buildings, as shown in Figure 6.30.

The interactions between the scripts (using the Signal and Wait instances we saw
earlier) allow the team to wait for the grenade to explode and to move in a coordinated
way to their target locations while maintaining cover over all of the room.

A different top-level script is used for two and three person room clearances (in
the case that one or more team members are eliminated), although the lower level
scripts are identical in each case. In the three person script, there is only one person
left by the door (the first two still take the corners). In the two person script, only the
corners are occupied, and the door is left.
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7
LEARNING

earning is a hot topic in games. In principle, learning AI has the potential to
L adapt to each player, learning their tricks and techniques and providing a con-
sistent challenge. It has the potential to produce more believable characters: charac-
ters that can learn about their environment and use it to the best effect. It also has the
potential to reduce the effort needed to create game-specific AI: characters should be
able to learn about their surroundings and the tactical options that they provide.

In practice, it hasn’t yet fulfilled its promise, and not for want of trying. Applying
learning to your game needs careful planning and an understanding of the pitfalls.
The hype is sometimes more attractive than the reality, but if you understand the
quirks of each technique and are realistic about how you apply them, there is no
reason why you can’t take advantage of learning in your game.

There is a whole range of different learning techniques, from very simple number
tweaking through to complex neural networks. Each has its own idiosyncrasies that
need to be understood before they can be used in real games.

7.1 LEARNING BASICS

We can classify learning techniques into several groups depending on when the learn-
ing occurs, what is being learned, and what effects the learning has on a character’s
behavior.

563
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7.1.1 ONLINE OR OFFLINE LEARNING

Learning can be performed during the game, while the player is playing. This is online
learning, and it allows the characters to adapt dynamically to the player’s style and
provides more consistent challenges. As a player plays more, their characteristic traits
can be better anticipated by the computer, and the behavior of characters can be tuned
to playing styles. This might be used to make enemies pose an ongoing challenge, or
it could be used to offer the player more story lines of the kind they enjoy playing.

Unfortunately, online learning also produces problems with predictability and
testing. If the game is constantly changing, it can be difficult to replicate bugs and
problems. If an enemy character decides that the best way to tackle the player is to
run into a wall, then it can be a nightmare to replicate the behavior (at worst you’d
have to play through the whole same sequence of games, doing exactly the same thing
each time, as the player). We’ll return to this issue later in this section.

The majority of learning in game AI is done offline, either between levels of the
game or more often at the development studio before the game leaves the building.
This is performed by processing data about real games and trying to calculate strate-
gies or parameters from them.

This allows more unpredictable learning algorithms to be tried out and their re-
sults to be tested exhaustively. The learning algorithms in games are usually applied
offline; it is rare to find games that use any kind of online learning. Learning algo-
rithms are increasingly being used offline to learn tactical features of multi-player
maps, to produce accurate pathfinding and movement data, and to bootstrap inter-
action with physics engines.

Applying learning between levels of the game is offline learning: characters aren’t
learning as they are acting. But it has many of the same downsides as online learning.
We need to keep it short (load times for levels are usually part of a publisher or console
manufacturer’s acceptance criteria for a game). We need to take care that bugs and
problems can be replicated without replaying tens of games. We need to make sure
that the data from the game is easily available in a suitable format (we can’t use long
post-processing steps to dig data out of a huge log file, for example).

Most of the techniques in this chapter can be applied either online or offline. They
aren’t limited to one or the other. If they are to be applied online, then the data they
will learn from is presented as it is generated by the game. If it is used offline, then the
data is stored and pulled in as a whole later.

7.1.2 INTRA-BEHAVIOR LEARNING

The simplest kinds of learning are those that change a small area of a character’s
behavior. They don’t change the whole quality of the behavior, but simply tweak it a
little. These intra-behavior learning techniques are easy to control and can be easy to
test.

Examples include learning to target correctly when projectiles are modelled by
accurate physics, learning the best patrol routes around a level, learning where cover
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points are in a room, and learning how to chase an evading character successfully.
Most of the learning examples in this chapter will illustrate intra-behavior learning.

An intra-behavior learning algorithm doesn’t help a character work out that it
needs to do something very different (if a character is trying to reach a high ledge by
learning to run and jump, it won’t tell the character to simply use the stairs instead,
for example).

7.1.3 INTER-BEHAVIOR LEARNING

The frontier for learning AI in games is learning of behavior. What I mean by behavior
is a qualitatively different mode of action, for example, a character that learns the best
way to kill an enemy is to lay an ambush or a character that learns to tie a rope across
a backstreet to stop an escaping motorbiker. Characters that can learn from scratch
how to act in the game provide a challenging opposition for even the best human
players.

Unfortunately, this kind of AI is almost pure fantasy.
Over time, an increasing amount of character behavior may be learned, either

online or offline. Some of this may be to learn how to choose between a range of dif-
ferent behaviors (although the atomic behaviors will still need to be implemented by
the developer). It is doubtful that it will be economical to learn everything. The basic
movement systems, decision making tools, suites of available behaviors, and high-
level decision making will almost certainly be easier and faster to implement directly.
They can then be augmented with intra-behavior learning to tweak parameters.

The frontier for learning AI is decision making. Developers are increasingly exper-
imenting with replacing the techniques discussed in Chapter 5 with learning systems.
This is the only kind of inter-behavior learning we will look at in this chapter: making
decisions between fixed sets of (possibly parameterized) behaviors.

7.1.4 A WARNING

In reality, learning is not as widely used as you might think. Some of this is due to
the relative complexity of learning techniques (in comparison with pathfinding and
movement algorithms, at least). But games developers master far more complex tech-
niques all the time, especially in developing geometry management algorithms. The
biggest problems with learning are those of reproducibility and quality control.

Imagine a game in which the enemy characters learn their environment and the
player’s actions over the course of several hours of gameplay. While playing one level,
the QA team notices that a group of enemies are stuck in one cavern, not moving
around the whole map. It is possible that this condition occurs only as a result of
the particular set of things they have learned. In this case finding the bug, and later
testing if it has been fixed, involves replaying the same learning experiences. This is
often impossible.
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It is this kind of unpredictability that is the most often cited reason for severely
curbing the learning ability of game characters. As companies developing industrial
learning AI have often found, it is impossible to avoid the AI learning the “wrong”
thing.

When you read hyped-up papers about learning and games, they often use dra-
matic scenarios to illustrate the potential of a learning character on gameplay. You
need to ask yourself, if the character can learn such dramatic changes of behavior,
then can it also learn dramatically poor behavior: behavior that might fulfil its own
goals, but will produce terrible gameplay. You can’t have your cake and eat it. The
more flexible your learning is, the less control you have on gameplay.

The normal solution to this problem is to constrain the kinds of things that can
be learned in a game. It is sensible to limit a particular learning system to working out
places to take cover, for example. This learning system can then be tested by making
sure that the cover points it is identifying look right. The learning will have difficulty
getting carried away; it has a single task that can be easily visualized and checked.

Under this modular approach there is nothing to stop several different learning
systems from being applied (one for cover points, another to learn accurate targeting,
and so on). Care must be taken to ensure that they can’t interact in nasty ways. The
targeting AI may learn to shoot in such a way that it often accidentally hits the cover
that the cover-learning AI is selecting, for example.

7.1.5 OVER-LEARNING

A common problem identified in much of the AI learning literature is over-fitting, or
over-learning. This means that if a learning AI is exposed to a number of experiences
and learns from them, it may learn the response to only those situations. We normally
want the learning AI to be able to generalize from the limited number of experiences
it has to be able to cope with a wide range of new situations.

Different algorithms have different susceptibilities to over-fitting. Neural net-
works particularly can over-fit during learning if they are wrongly parameterized or
if the network is too large for the learning task at hand. We’ll return to these issues as
we consider each learning algorithm in turn.

7.1.6 THE ZOO OF LEARNING ALGORITHMS

In this chapter we’ll look at learning algorithms that gradually increase in complexity
and sophistication. The most basic algorithms, such as the various parameter modi-
fication techniques in the next section, are often not thought of as learning at all.

At the other extreme we will look at reinforcement learning and neural networks,
both fields of active AI research that are huge in their own right. We’ll not be able
to do more than scratch the surface of each technique, but hopefully there will be
enough information to get the algorithms running. More importantly, it will be clear
why they are not useful in very many game AI applications.
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7.1.7 THE BALANCE OF EFFORT

The key thing to remember in all learning algorithms is the balance of effort. Learn-
ing algorithms are attractive because you can do less implementation work. You don’t
need to anticipate every eventuality or make the character AI particularly good. In-
stead, you create a general purpose learning tool and allow that to find the really tricky
solutions to the problem. The balance of effort should be that it is less work to get the
same result by creating a learning algorithm to do some of the work.

Unfortunately, it is often not possible. Learning algorithms can require a lot of
hand-holding: presenting data in the correct way, making sure their results are valid,
and testing them to avoid them learning the wrong thing.

I advise developers to consider carefully the balance of effort involved in learning.
If a technique is very tricky for a human being to solve and implement, then it is likely
to be tricky for the computer too. If a human being can’t reliably learn to keep a car
cornering on the limit of its tire’s grip, then a computer is unlikely to suddenly find
it easy when equipped with a vanilla learning algorithm. To get the result you likely
have to do a lot of additional work.

7.2 PARAMETER MODIFICATION

The simplest learning algorithms are those that calculate the value of one or more pa-
rameters. Numerical parameters are used throughout AI development: magic num-
bers that are used in steering calculations, cost functions for pathfinding, weights for
blending tactical concerns, probabilities in decision making, and many other areas.

These values can often have a large effect on the behavior of a character. A small
change in a decision making probability, for example, can lead an AI into a very dif-
ferent style of play.

Parameters such as these are good candidates for learning. Most commonly, this
is done offline, but can usually be controlled when performed online.

7.2.1 THE PARAMETER LANDSCAPE

A common way of understanding parameter learning is the “fitness landscape” or
“energy landscape.” Imagine the value of the parameter as specifying a location. In
the case of a single parameter this is a location somewhere along a line. For two para-
meters it is the location on a plane.

For each location (i.e., for each value of the parameter) there is some energy value.
This energy value (often called a “fitness value” in some learning techniques) repre-
sents how good the value of the parameter is for the game. You can think of it as a
score.

We can visualize the energy values by plotting them against the parameter values
(see Figure 7.1).
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Figure 7.1 The energy landscape of a one-dimensional problem

For many problems the crinkled nature of this graph is reminiscent of a land-
scape, especially when the problem has two parameters to optimize (i.e., it forms a
three-dimensional structure). For this reason it is usually called an energy or fitness
landscape.

The aim of a parameter learning system is to find the best values of the parameter.
The energy landscape model usually assumes that low energies are better, so we try to
find the valleys in the landscape. Fitness landscapes are usually the opposite, so they
try to find the peaks.

The difference between energy and fitness landscapes is a matter of terminology
only: the same techniques apply to both. You simply swap searching for maximum
(fitness) or minimum (energy). Often, you will find that different techniques favor
different terminologies. In this section, for example, hill climbing is usually discussed
in terms of fitness landscapes, and simulated annealing is discussed in terms of energy
landscapes.

Energy and Fitness Values

It is possible for the energy and fitness values to be generated from some function or
formula. If the formula is a simple mathematical formula, we may be able to differ-
entiate it. If the formula is differentiable, then its best values can be found explicitly.
In this case there is no need for parameter optimization. We can simply find and use
the best values.

In most cases, however, no such formula exists. The only way to find out the suit-
ability of a parameter value is to try it out in the game and see how well it performs.
In this case there needs to be some code that monitors the performance of the para-
meter and provides a fitness or energy score. The techniques in this section all rely on
having such an output value.
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If we are trying to generate the correct parameters for decision making probabil-
ities, for example, then we might have the character play a couple of games and see
how it scores. The fitness value would be the score, with a high score indicating a good
result.

In each technique we will look at, several different sets of parameters need to
be tried. If we have to have a 5-minute game for each set, then learning could take
too long. There usually has to be some mechanism for determining the value for
a set of parameters quickly. This might involve allowing the game to run at many
times normal speed, without rendering the screen, for example. Or we could use a
set of heuristics that generate a value based on some assessment criteria, without ever
running the game. If there is no way to perform the check other than running the
game with the player, then the techniques in this chapter are unlikely to be practical.

There is nothing to stop the energy or fitness value from changing over time or
containing some degree of guesswork. Often, the performance of the AI depends on
what the player is doing. For online learning, this is exactly what we want. The best
parameter value will change over time as the player behaves differently in the game.
The algorithms in this section cope well with this kind of uncertain and changing
fitness or energy score.

In all cases we will assume that we have some function that we can give a set of
parameter values and it will return the fitness or energy value for those parameters.
This might be a fast process (using heuristics) or it might involve running the game
and testing the result. For the sake of parameter modification algorithms, however, it
can be treated as a black box: in goes the parameters and out comes the score.

7.2.2 HILL CLIMBING

Initially, a guess is made as to the best parameter value. This can be completely ran-
dom; it can be based on the programmer’s intuition or even on the results from a
previous run of the algorithm. This parameter value is evaluated to get a score.

The algorithm then tries to work out in what direction to change the parameter in
order to improve its score. It does this by looking at nearby values for each parameter.
It changes each parameter in turn, keeping the others constant, and checks the score
for each one. If it sees that the score increases in one or more directions, then it moves
up the steepest gradient. Figure 7.2 shows the hill climbing algorithm scaling a fitness
landscape.

In the single parameter case, two neighboring values are sufficient, one on each
side of the current value. For two parameters four samples are used, although more
samples in a circle around the current value can provide better results at the cost of
more evaluation time.

Hill climbing is a very simple parametrical optimization technique. It is fast to
run and can often give very good results.
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Figure 7.2 Hill climbing ascends a fitness landscape

Pseudo-Code

One step of the algorithm can be run using the following implementation:

1 def optimizeParameters(parameters, function):
2

3 # Holds the best parameter change so far
4 bestParameterIndex = -1
5 bestTweak = 0
6

7 # The initial best value is the value of the current
8 # parameters, no point changing to a worse set.
9 bestValue = function(parameters)

10

11 # Loop through each parameter
12 for i in 0..parameters.size():
13

14 # Store the current parameter value
15 currentParameter = parameters[i].value
16

17 # Tweak it both up and down
18 for tweak in [-STEP, STEP]:
19

20 # Apply the tweak
21 parameters[i].value += tweak
22

23 # Get the value of the function
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24 value = function(parameters[i])
25

26 # Is it the best so far?
27 if value > bestValue:
28

29 # Store it
30 bestValue = value
31 bestParameterIndex = i
32 bestTweak = tweak
33

34 # Reset the parameter to its old value
35 parameters[i].value = currentParameter
36

37 # We’ve gone through each parameter, check if we
38 # have found a good set
39 if bestParameterIndex >= 0:
40

41 # Make the parameter change permanent
42 parameters[bestParameterIndex] += bestTweak
43

44 # Return the modified parameters, if we found a better
45 # set, or the parameters we started with otherwise
46 return parameters

The STEP constant in this function dictates the size of each tweak that can be
made. We could replace this with an array, with one value per parameter if parameters
required different step sizes.

The optimizeParameters function can then be called multiple times in a row to
give the hill climbing algorithm. At each iteration the parameters given are the results
from the previous call to optimizeParameters.

1 def hillClimb(initialParameters, steps, function):
2

3 # Set the initial parameter settings
4 parameters = initialParameters
5

6 # Find the initial value for the initial parameters
7 value = function(parameters)
8

9 # Go through a number of steps.
10 for i in 0..steps:
11

12 # Get the new parameter settings
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13 parameters = optimizeParameters(parameters, function)
14

15 # Get the new value
16 newValue = function(parameters)
17

18 # If we can’t improve, then end
19 if newValue <= value: break
20

21 # Store the new value for next iteration
22 value = newValue
23

24 # We’ve either run out of steps, or we can’t improve
25 return parameters

Data Structures and Interfaces

The list of parameters has its number of elements accessed with the size method.
Other than this, there are no special interfaces or data structures required.

Implementation Notes

In the implementation above we evaluate the function on the same set of parameters
inside both the driver and the optimization functions. This is wasteful, especially if
the evaluation function is complex or time-consuming.

We should allow the same value to be shared, either by caching it (so it isn’t re-
evaluated when the evaluation function is called again) or by passing both the value
and the parameters back from optimizeParameters.

Performance

Each iteration of the algorithm is O(n) in time, where n is the number of parameters.
It is O(1) in memory. The number of iterations is controlled by the steps parameter.
If the steps parameter is sufficiently large, then the algorithm will return when it has
found a solution (i.e., it has a set of parameters that it cannot improve further).

7.2.3 EXTENSIONS TO BASIC HILL CLIMBING

The hill climbing problem given in the algorithm description above is very easy to
solve. It has a single slope in each direction from the highest fitness value. Following
the slope will always lead you to the top. The fitness landscape in Figure 7.3 is more



7.2 Parameter Modification 573

Energy
(fitness

or score)

Parameter value

Optimized value

Initial value

Figure 7.3 Non-monotonic fitness landscape with sub-optimal hill climbing
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Figure 7.4 Random fitness landscape

complex. The hill climbing algorithm shows that the best parameter value is never
found. It gets stuck on a small sub-peak on the way to the main peak.

This sub-peak is called a local maximum (or a local minimum if we are using an
energy landscape). The more local maxima there are in a problem, the more difficult
it is for any algorithm to solve. At worst, every fitness or energy value could be random
and not correlated to the nearby values at all. This is shown in Figure 7.4, and in this
case, no systematic search mechanism will be able to solve the problem.

The basic hill climbing algorithm has several extensions that can be used to im-
prove performance when there are local maxima. None of them form a complete
solution, and none work when the landscape is near to random, but they can help if
the problem isn’t overwhelmed by sub-optima.
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Momentum

In the case of Figure 7.3 (and many others), we can solve the problem by introducing
momentum. If the search is consistently improving in one direction, then it should
continue in that direction for a little while, even when it seems that things aren’t
improving any more.

This can be implemented using a momentum term. When the hill climber moves
in a direction, it keeps a record of the score improvement it achieved at that step. At
the next step it adds a proportion of that improvement to the fitness score for moving
in the same direction again, which then biases the algorithm to move in the same
direction again.

This approach will deliberately overshoot the target, take a couple of steps to work
out that it is getting worse, and then reverse. Figure 7.5 shows the previous fitness
landscape with momentum in the hill climbing algorithm. Notice that it takes much
longer to reach the best parameter value, but it doesn’t get stuck so easily on the way
to the main peak.

Adaptive Resolution

So far we have assumed that the parameter is changed by the same amount at each
step of the algorithm. When the parameter is a long way from the best value, taking
small steps means that the learning is slow (especially if it takes a while to generate a
score by having the AI play the game). On the other hand, if the steps are large, then
the optimization may always overshoot and never reach the best value.

Adaptive resolution is often used to make long jumps early in the search and
smaller jumps later on. As long as the hill climbing algorithm is successfully improv-

Energy
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Initial value

Hill climbing

Hill climbing

Momentum
carries it on

Momentum
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past, then back

Figure 7.5 Non-monotonic fitness landscape solved by momentum hill climbing
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ing, it will increase the length of its jumps somewhat. When it stops improving, it
assumes that the jumps are overshooting the best value and reduces their size. This
approach can be combined with a momentum term or used on its own in a regular
hill climber.

Multiple Trials

Hill climbing is very much dependent on the initial guess. If the initial guess isn’t
on the slope toward the best parameter value, then the hill climber may move off
completely in the wrong direction and climb a smaller peak. Figure 7.6 shows this
situation.

Most hill climbing algorithms use multiple different start values distributed across
the whole landscape. In Figure 7.6, the correct optimum is found on the third at-
tempt.

In cases where the learning is being performed online and the player expects the
AI not to suddenly get worse (because it starts the hill climbing again with a new
parameter value), this may not be a suitable technique.

Finding the Global Optimum

So far I’ve talked as if the goal is to find the best possible solution. This is undoubtedly
our ultimate aspiration, but we are faced with a problem. In most problems we not
only have no idea what the best solution is, we can’t even recognize it when we find it.

Let’s say in an RTS game we are trying to optimize the best use of resources into
construction or research, for example. We may run 200 trials and find that one set
of parameters is clearly the best. We can’t guarantee it is the best of all possible sets,

Energy
(fitness

or score)

Parameter value

Sub-optimum

Second
initial
value

Third
initial
value

Sub-optimum

First
initial
value

Figure 7.6 Hill climbing multiple trials
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however. Even if the last 50 trials all come up with the same value, we can’t guarantee
that we won’t find a better set of parameters on the next go. There is no formula we
can work out that lets us tell if the solution we have is the best possible one.

Extensions to hill climbing such as momentum, adaptive resolution, and multiple
trials don’t guarantee that we get the best solution, but compared to the simple hill
climbing algorithm they will almost always find better solutions more quickly. In a
game we need to balance the time spent looking with the quality of solution. Eventu-
ally, the game needs to stop looking and conclude that the solution it has will be the
one it uses, regardless if there is a better one out there.

This is sometimes called “satisficing” (although that term has different meanings
for different people): we are optimizing to get a satisfactory result, rather than to find
the best result.

7.2.4 ANNEALING

Annealing is a physical process where the temperature of a molten metal is slowly re-
duced, allowing it to solidify in a highly ordered way. Reducing the temperature sud-
denly leads to internal stresses, weaknesses, and other undesired effects. Slow cooling
allows the metal to find its lowest energy configuration.

As a parameter optimization technique, annealing uses a random term to repre-
sent the temperature. Initially, it is high, making the behavior of the algorithm very
random. Over time it reduces, and the algorithm becomes more predictable.

It is based on the standard hill climbing algorithm, although it is customary to
think in terms of energy landscapes rather than fitness landscapes (hence hill climbing
becomes hill descent).

There are many ways to introduce the randomness into the hill descent algorithm.
The original method uses a calculated Boltzmann probability coefficient. We’ll look at
this later in this section. A simpler method is more commonly implemented, however,
for simple parameter learning applications.

Direct Method

At each hill climbing step, a random number is added to the evaluation for each
neighbor of the current value. In this way the best neighbor is still more likely to be
chosen, but it can be overridden by a large random number. The range of the random
number is initially large, but is reduced over time.

For example, the random range is ±10, the evaluation of the current value is 0,
and its neighbors have evaluations of 20 and 39. A random number is added from
the range ±10 to each evaluation. It is possible that the first value (scoring 20) will
be chosen over the second, but only if the first gets a random number of +10 and the
second gets a random number of −10. In the vast majority of cases, the second value
will be chosen.
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Several steps later, the random range might be ±1, in which case the first neighbor
could never be chosen. On the other hand, at the start of the annealing, the random
range might be ±100, where the first neighbor has a very good chance of being cho-
sen.

Pseudo-Code

We can apply this directly to our previous hill climbing algorithm. The optimizePa-
rameters function is replaced by annealParameters.

1 def annealParameters(parameters, function, temp):
2

3 # Holds the best parameter change so far
4 bestParameterIndex = -1
5 bestTweak = 0
6

7 # The initial best value is the value of the current
8 # parameters, no point changing to a worse set.
9 bestValue = function(parameters)

10

11 # Loop through each parameter
12 for i in 0..parameters.size():
13

14 # Store the current parameter value
15 currentParameter = parameters[i].value
16

17 # Tweak it both up and down
18 for tweak in [-STEP, STEP]:
19

20 # Apply the tweak
21 parameters[i].value += tweak
22

23 # Get the value of the function
24 value = function(parameters[i]) +
25 randomBinomial() * temp
26

27 # Is it the best so far?
28 # (Remember this is now hill-descent)
29 if value < bestValue:
30

31 # Store it
32 bestValue = value
33 bestParameterIndex = i
34 bestTweak = tweak
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35

36 # Reset the parameter to its old value
37 parameters[i].value = currentParameter
38

39 # We’ve gone through each parameter, check if we
40 # have found a good set
41 if bestParameterIndex >= 0:
42

43 # Make the parameter change permanent
44 parameters[bestParameterIndex] += bestTweak
45

46 # Return the modified parameters, if we found a better
47 # set, or the parameters we started with otherwise
48 return parameters

The randomBinomial function is implemented as

1 def randomBinomial():
2 return random() - random()

as in previous chapters.
The main hill climbing function should now call annealParameters rather than

optimizeParameters.

Implementation Notes

I have changed the direction of the comparison operation in the middle of the al-
gorithm. Because annealing algorithms are normally written based on energy land-
scapes, I have changed the implementation so that it now looks for a lower function
value.

Performance

The performance characteristics of the algorithm are as before: O(n) in time and O(1)
in memory.

Boltzmann Probabilities

Motivated by the physical annealing process, the original simulated annealing algo-
rithm used a more complex method of introducing the random factor to hill climb-
ing. It was based on a slightly less complex hill climbing algorithm.

In our hill climbing algorithm we evaluate all neighbors of the current value and
work out which is the best one to move to. This is often called “steepest gradient” hill
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climbing, because it moves in the direction that will bring the best results. A simpler
hill climbing algorithm will simply move as soon as it finds the first neighbor with
a better score. It may not be the best direction to move in, but is an improvement
nonetheless.

We combine annealing with this simpler hill climbing algorithm as follows. If we
find a neighbor that has a lower (better) score, we select it as normal. If the neighbor
has a worse score, then we calculate the energy we’ll be gaining by moving there, �E.
We make this move with a probability proportional to e−(�E/T), where T is the current
temperature of the simulation (corresponding to the amount of randomness). In the
same way as previously, the T value is lowered over the course of the process.

Pseudo-Code

We can implement a Boltzmann optimization step in the following way:

1 def boltzmannAnnealParameters(parameters, function, temp):
2

3 # Store the initial value
4 initialValue = function(parameters)
5

6 # Loop through each parameter
7 for i in 0..parameters.size():
8

9 # Store the current parameter value
10 currentParameter = parameters[i].value
11

12 # Tweak it both up and down
13 for tweak in [-STEP, STEP]:
14

15 # Apply the tweak
16 parameters[i].value += tweak
17

18 # Get the value of the function
19 value = function(parameters[i])
20

21 # Is it the best so far?
22 if value < initialValue:
23

24 # Return it
25 return parameters
26

27 # Otherwise check if we should do it anyway
28 else:
29
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30 # Calculate the energy gain and coefficient
31 energyGain = value - initialValue
32 boltzmannCoeff = exp(-energyGain / temp)
33

34 # Randomly decide whether to accept it
35 if random() < boltzmannCoeff:
36

37 # We’re going with the change, return it
38 return parameters
39

40 # Reset the parameter to its old value
41 parameters[i].value = currentParameter
42

43 # We found no better parameters, return the originals
44 return parameters

The exp function returns the value of e raised to the power of its argument. It is a
standard function in most math libraries.

The driver function is as before, but now calls boltzmannAnnealParameters rather
than optimizeParameters.

Performance

The performance characteristics of the algorithm are as before: O(n) in time and O(1)
in memory.

Optimizations

Just like regular hill climbing, annealing algorithms can be combined with momen-
tum and adaptive resolution techniques for further optimization. Combining all these
techniques is often a matter of trial and error, however. Tuning the amount of mo-
mentum, changing the step size, and annealing temperature so they work in harmony
can be tricky.

In my experience I’ve rarely been able to make reliable improvements to annealing
by adding in momentum, although adaptive step sizes are useful.

7.3 ACTION PREDICTION

It is often useful to be able to guess what the player is going to do next. Whether it
is guessing which passage they are going to take, which weapon they will select, or
which route they will attack from, a game that can predict the player’s actions can
mount a more challenging opposition.
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Humans are notoriously bad at behaving randomly. Psychological research has
been carried out over decades and shows that we cannot accurately randomize our
responses, even if we specifically try. Mind magicians and expert poker players make
use of this. They can often easily work out what we’ll do or think next based on a
relatively small amount of experience of what we’ve done in the past.

Often, it isn’t even necessary to observe the actions of the same player. We have
shared characteristics that run so deep that learning to anticipate one player’s actions
can often lead to better play against a completely different player.

7.3.1 LEFT OR RIGHT

A simple prediction game beloved of poker players is “left or right.” One person holds
a coin in either their left or their right hand. The other person then attempts to guess
which hand they have hidden it in.

Although there are complex physical giveaways (called “tells”) which indicate a
person’s choice, it turns out that a computer can score reasonably well at this game
also. We will use it as the prototype action prediction task.

In a game context, this may apply to the choice of any item from a set of options:
the choice of passageway, weapon, tactic, or cover point.

7.3.2 RAW PROBABILITY

The simplest way to predict the choice of a player is to keep a tally of the number of
times they choose each option. This will then form a raw probability of them choosing
that action again.

For example, after 20 times through a level, if the first passage has been chosen 72
times, and the second passage has been chosen 28 times, then the AI will be able to
predict that a player will choose the first route.

Of course, if the AI then always lays in wait for the player in the first route, the
player will very quickly learn to use the second route.

This kind of raw probability prediction is very easy to implement, but it gives a
lot of feedback to the player, who can use the feedback to make their decisions more
random.

In our example, the character is likely to position itself on the most likely route.
The player will only fall foul of this once and then will use the other route. The charac-
ter will continue standing where the player isn’t until the probabilities balance. Even-
tually, the player will learn to simply alternate different routes and always miss the
character.

When the choice is made only once, then this kind of prediction may be all that
is possible. If the probabilities are gained from many different players, then it can be
a good indicator of which way a new player will go.
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Often, there are a series of choices to be made, either repeats of the same choice
or a series of different choices. The early choices can have good predictive power over
the later choices. We can do much better than using raw probabilities.

7.3.3 STRING MATCHING

When a choice is repeated several times (the selection of cover points or weapons
when enemies attack, for example), a simple string matching algorithm can provide
good prediction.

The sequence of choices made is stored as a string (it can be a string of numbers or
objects, not just a string of characters). In the left-and-right game this may look like
“LRRLRLLLRRLRLRR,” for example. To predict the next choice, the last few choices
are searched for in the string, and the choice that normally follows is used as the
prediction.

In the example above the last two moves were “RR.” Looking back over the se-
quence, two right-hand choices are always followed by a left, so we predict that the
player will go for the left hand next time. In this case we have looked up the last two
moves. This is called the “window size”: we are using a window size of two.

7.3.4 N-GRAMS

The string matching technique is rarely implemented by matching against a string.
It is more common to use a set of probabilities similar to the raw probability in the
previous section. This is known as an N-Gram predictor (where N is one greater than
the window size parameter, so 3-Gram would be a predictor with a window size of
two).

In an N-Gram we keep a record of the probabilities of making each move given all
combinations of choices for previous N moves. So in a 3-Gram for the left-and-right
game we keep track of probability for left and right given four different sequences:
“LL,” “LR,” “RL,” and “RR.” That is eight probabilities in all, but each pair must add
up to one.

The sequence of moves above reduces to the following probabilities:

..R ..L

LL 1
2

1
2

LR 3
5

2
5

RL 3
4

1
4

RR 0
2

2
2

The raw probability method is equivalent to the string matching algorithm, with
a zero window size.
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N-Grams in Computer Science

N-Grams are used in various statistical analysis techniques and are not limited to
prediction. They have applications particularly in analysis of human languages.

Strictly, an N-Gram algorithm keeps track of the frequency of each sequence,
rather than the probability. In other words, a 3-Gram will keep track of the number
of times each sequence of three choices is seen. For prediction, the first two choices
form the window, and the probability is calculated by looking at the proportion of
times each option is taken for the third choice.

In our implementation we will follow this pattern by storing frequencies rather
than probabilities (they also have the advantage of being easier to update), although
we will optimize the data structures for prediction by allowing lookup using the win-
dow choices only.

Pseudo-Code

We can implement the N-Gram predictor in the following way:

1 class NGramPredictor:
2

3 # Holds the frequency data
4 data
5

6 # Holds the size of the window + 1
7 nValue
8

9 # Registers a set of actions with predictor, updating
10 # its data. We assume actions has exactly nValue
11 # elements in it.
12 def registerSequence(actions):
13

14 # Split the sequence into a key and value
15 key = actions[0:nValue]
16 value = actions[nValue]
17

18 # Make sure we’ve got storage
19 if not key in data:
20 data[key] = new KeyDataRecord()
21

22 # Get the correct data structure
23 keyData = data[key]
24

25 # Make sure we have a record for the follow on value
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26 if not value in keyData.counts:
27 keyData.counts[value] = 0
28

29 # Add to the total, and to the count for the value
30 keyData.counts[value] += 1
31 keyData.total += 1
32

33 # Gets the next action most likely from the given one.
34 # We assume actions has nValue - 1 elements in it (i.e.
35 # the size of the window).
36 def getMostLikely(actions):
37

38 # Get the key data
39 keyData = data[actions]
40

41 # Find the highest probability
42 highestValue = 0
43 bestAction = None
44

45 # Get the list of actions in the store
46 actions = keyData.counts.getKeys()
47

48 # Go through each
49 for action in actions:
50

51 # Check for the highest value
52 if keyData.counts[action] > highestValue:
53

54 # Store the action
55 highestValue = keyData.counts[action]
56 bestAction = action
57

58 # We’ve looked through all actions, if best action
59 # is still None, then its because we have no data
60 # on the given window. Otherwise we have the best
61 # action to take
62 return bestAction

Each time an action occurs, the game registers the last n actions using the regis-
terActions method. This updates the counts for the N-Gram. When the game needs
to predict what will happen next, it feeds only the window actions into the getMost-
Likely method, which returns the most likely action or none if no data has ever been
seen for the given action.
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Data Structures and Interfaces

We use a hash table to store count data in this example. Each entry in the data hash is
a key data record, which has the following structure:

1 struct KeyDataRecord:
2 # Holds the counts for each successor action
3 counts
4

5 # Holds the total number of times the window has
6 # been seen
7 total

There is one KeyDataRecord instance for each set of window actions. It contains
counts for how often each following action is seen and a total member that keeps
track of the total number of times the window has been seen.

We can calculate the probability of any following action by dividing its count
by the total. This isn’t used in the algorithm above, but it can be used to determine
how accurate the prediction is likely to be. A character may only lay an ambush in a
dangerous location, for example, if it is very sure the player will come its way.

Within the record, the counts member is also a hash table indexed by the predicted
action. In the getMostLikely function we need to be able to find all the keys in the
counts hash table. This is done using the getKeys method.

Implementation Notes

The implementation above will work with any window size and can support more
than two actions. It uses hash tables to avoid growing too large when most combina-
tions of actions are never seen.

If there are only a small number of actions, and all possible sequences can be
visited, then it will be more efficient to replace the nested hash tables with a single
array. As in the table example at the start of this section, the array is indexed by the
window actions and the predicted action. Values in the array initialized to zero are
simply incremented when a sequence is registered. One row of the array can then be
searched to find the highest value and, therefore, the most likely action.

Performance

Assuming that the hash tables are not full (i.e., that hash assignment and retrieval are
constant time processes), the registerActions function is O(1) in time. The getMost-
Likely function is O(m) in time, where m is the number of possible actions (since we
need to search each possible follow-on action to find the best). We can swap this over
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by keeping the counts hash table sorted by value. In this case, registerActions will
be O(m) and getMostLikely will be O(1).

In most cases, however, actions will need to be registered much more often than
they are predicted, so the balance as given is optimum.

The algorithm is O(mn) in memory, where n is the N value. The N value is the
number of actions in the window, plus one.

7.3.5 WINDOW SIZE

Increasing the window size initially increases the performance of the prediction algo-
rithm. For each additional action in the window, the improvement reduces until there
is no benefit to having a larger window, and eventually the prediction gets worse with
a larger window until we end up making worse predictions than we would if we sim-
ply guessed at random.

This is because, while our future actions are predicted by our preceding actions,
this is rarely a long causal process. We are drawn toward certain actions and short
sequences of actions, but longer sequences only occur because they are made up of
the shorter sequences. If there is a certain degree of randomness in our actions, then
a very long sequence will likely have a fair degree of randomness in it. The very large
window size is likely to include more randomness and, therefore, be a poor predictor.
There is a balance in having a large enough window to accurately capture the way
our actions influence each other, without being so long that it gets foiled by our ran-
domness. As the sequence of actions gets more random, the window size needs to be
reduced.

Figure 7.7 shows the accuracy of an N-Gram for different window sizes on a se-
quence of 1000 trials (for the “left-or-right” game). You’ll notice that we get greatest
predictive power in the 5-Gram, and higher window sizes provide worse performance.
But the majority of the power of the 5-Gram is present in the 3-Gram. If we use just
a 3-Gram, we’ll get almost optimum performance, and we won’t have to train on
so many samples. Once we get beyond the 10-Gram, prediction performance is very
poor. Even on this very predictable sequence, we get worse performance than we’d

LIBRARY

expect if we guessed at random. This graph was produced using the N-Gram imple-
mentation on the CD,which follows the algorithm given above.

In predictions where there are more than two possible choices, the minimum win-
dow size needs to be increased a little. Figure 7.8 shows results for the predictive power
in a five choice game. In this case the 3-Gram does have noticeably less power than
the 4-Gram.

We can also see in this example that the falloff is faster for higher window sizes:
large window sizes get poorer more quickly than before.

There are mathematical models that can tell you how well an N-Gram predictor
will predict a sequence. They are sometimes used to tune the optimal window size.
I’ve never seen this done in games, however, and because they rely on being able to
find certain inconvenient statistical properties of the input sequence, personally I tend
to start at a 4-Gram and use trial and error.



7.3 Action Prediction 587

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

2 3 4 5 6 7 8 9
N-Gram

10 11 12 13 14 15

Performance of purely
random guessing

Accuracy

Figure 7.7 Different window sizes
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Figure 7.8 Different windows in a five choice game

Memory Concerns

Counterbalanced against the improvement in predictive power are the memory and
data requirements of the algorithm. For the left-and-right game, each additional
move in the window doubles the number of probabilities that need to be stored (if
there are three choices rather than two it triples the number, and so on). This increase
in storage requirements can often get out of hand, although “sparse” data structures
such as a hash table (where not every value needs to have storage assigned) can help.

Sequence Length

The larger number of probabilities requires more sample data to fill. If most of the
sequences have never been seen before, then the predictor will not be very powerful.
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To reach the optimal prediction performance, all the likely window sequences need to
have been visited several times. This means that learning takes much longer, and the
performance of the predictor can appear quite poor. This final issue can be solved to
some extent using a variation on the N-Gram algorithm: hierarchical N-Grams.

7.3.6 HIERARCHICAL N-GRAMS

When an N-Gram algorithm is used for online learning, there is a balance between the
maximum predictive power and the performance of the algorithm during the initial
stages of learning. A larger window size may improve the potential performance, but
will mean that the algorithm takes longer to get to a reasonable performance level.

The hierarchical N-Gram algorithm effectively has several N-Gram algorithms
working in parallel, each with increasingly large window sizes. A hierarchical 3-Gram
will have regular 1-Gram (i.e., the raw probability approach), 2-Gram, and 3-Gram
algorithms working on the same data.

When a series of actions are provided, it is registered in all the N-Grams. A se-
quence of “LRR” passed to a hierarchical 3-Gram, for example, gets registered as nor-
mal in the 3-Gram, the “RR” portion gets registered in the 2-Gram, and “R” gets
registered in the 1-Gram.

When a prediction is requested, the algorithm first looks up the window actions
in the 3-Gram. If there have been sufficient examples of the window, then it uses the
3-Gram to generate its prediction. If there haven’t been enough, then it looks at the
2-Gram. If that likewise hasn’t had enough examples, then it takes its prediction from
the 1-Gram. If none of the N-Grams have sufficient examples, then the algorithm
returns no prediction or just a random prediction.

How many constitutes “enough” depends on the application. If a 3-Gram has only
one entry for the sequence “LRL,” for example, then it will not be confident in making
a prediction based on one occurrence. If the 2-Gram has four entries for the sequence
“RL,” then it may be more confident. The more possible actions there are, the more
examples are needed for an accurate prediction.

There is no single correct threshold value for the number of entries required for
confidence. To some extent it needs to be found by trial and error. In online learning,
however, it is common for the AI to make decisions based on very sketchy informa-
tion, so the confidence threshold can be small (3 or 4 say). In some of the literature on
N-Gram learning, confidence values are much higher. As in many areas of AI, game
AI can afford to take more risks.

Pseudo-Code

The hierarchical N-Gram system uses the original N-Gram predictor and can be im-
plemented like the following:
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1 class HierarchicalNGramPredictor:
2

3 # Holds an array of n-grams with increasing n values
4 ngrams
5

6 # Holds the maximum window size + 1
7 nValue
8

9 # Holds the minimum number of samples an n-gram must
10 # have before its allowed to predict
11 threshold
12

13 def HierarchicalNGramPredictor(n):
14

15 # Store the maximum n-gram size
16 nValue = n
17

18 # Create the array of n-grams
19 ngrams = new NGramPredictor[nValue]
20 for i in 0..nValue: ngrams[i].nValue = i+1
21

22 def registerSequence(actions):
23

24 # Go through each n-gram
25 for i in 0..nValue:
26

27 # Create the sub-list of actions and register it
28 subActions = actions[nValue-i:nValue]
29 ngrams[i].registerSequence(subActions)
30

31 def getMostLikely(actions):
32

33 # Go through each n-gram in descending order
34 for i in 0..nValue-1:
35

36 # Find the relevant n-gram
37 ngram = ngrams[nValue-i-1]
38

39 # Get the sub-list of window actions
40 subActions = actions[nValue-i-1:nValue-1]
41

42 # Check if we have enough entries
43 if subActions in ngram.data and
44 ngram.data[subActions].count > threshold:
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45

46 # Get the ngram to do the prediction
47 return ngram.getMostLikely(subActions)
48

49 # If we get here, it is because no n-gram is over
50 # the threshold: return no action
51 return None

I have added an explicit constructor in the algorithm to show how the array of
N-Grams is structured.

Data Structures and Implementation

The algorithm uses the same data structures as previously and has the same imple-
mentation caveats: its constituent N-Grams can be implemented in whatever way is
best for your application, as long as a count variable is available for each possible set
of window actions.

Performance

The algorithm is O(n) in memory and O(n) in time, where n is the highest numbered
N-Gram used.

The registerSequence method uses the O(1) registerSequence method of the
N-Gram class, so it is O(n) overall. The getMostLikely method uses the O(n) get-
MostLikely method of the N-Gram class once, so it is O(n) overall.

Confidence

We used the number of samples to guide us on whether to use one level of N-Gram
or to look at lower levels. While this gives good behavior in practice, it is strictly only
an approximation. What we are interested in is the confidence that an N-Gram has
in the prediction it will make. Confidence is a formal quantity defined in probability
theory, although it has several different versions with their own characteristics. The
number of samples is just one element that affects confidence.

In general, confidence measures the likelihood of a situation being arrived at by
chance. If the probability of a situation being arrived at by chance is low, then the
confidence is high.

For example, if we have four occurrences of “RL,” and all of them are followed by
“R,” then there is a good chance that RL is normally followed by R, and our confidence
in choosing R next is high. If we have 1000 “RL” occurrences followed always by “R,”
then the confidence in predicting an “R” would be much higher. If, on the other hand,
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the four occurrences are followed by “R” in two cases and by “L” in two cases, then
we’ll have no idea which one is more likely.

Actual confidence values are more complex than this. They need to take into ac-
count the probability that a smaller window size will have captured the correct data,
while the more accurate N-Gram will have been fooled by random variation.

The math involved in all this isn’t concise and doesn’t buy any performance in-
crease. I’ve only ever used a simple count cut-off in this kind of algorithm. In prepar-
ing for this book I experimented and changed my implementation to take into ac-
count more complex confidence values, and there was no measurable improvement
in its ability.

7.3.7 APPLICATION IN COMBAT

By far the most widespread application of N-Gram prediction is in combat games.
Beat-em-ups, sword combat games, and any other combo-based melee games involve
timed sequences of moves. Using an N-Gram predictor allows the AI to predict what
the player is trying to do as they start their sequence of moves. It can then select an
appropriate rebuttal.

This approach is so powerful, however, that it can provide unbeatable AI. A com-
mon requirement in this kind of game is to remove competency from the AI so that
the player has a sporting chance.

This application is so deeply associated with the technique that many developers
don’t give it a second thought in other situations. Predicting where players will be,
what weapons they will use, or how they will attack are all areas to which N-Gram
prediction can be applied. It is worth having an open mind.

7.4 DECISION LEARNING

So far we have looked at learning algorithms that operate on relatively restricted do-
mains: the value of a parameter and predicting a series of player choices from a limited
set of options.

To realize the potential of learning AI, we need to allow the AI to learn to make
decisions. Chapter 5 outlined several methods for making decisions; the following
sections look at decision makers that choose based on their experience.

These approaches cannot replace the basic decision making tools. State machines,
for example, explicitly limit the ability of a character to make decisions that are not
applicable in a situation (no point choosing to fire if your weapon has no ammo, for
example). Learning is probabilistic; you will usually have some probability (however
small) of carrying out each possible action. Learning hard constraints is notoriously
difficult to combine with learning general patterns of behavior suitable for outwitting
human opponents.
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7.4.1 STRUCTURE OF DECISION LEARNING

We can simplify the decision learning process into an easy to understand model. Our
learning character has some set of behavior options that it can choose from. These
may be steering behaviors, animations, or high-level strategies in a war game. In ad-
dition, it has some set of observable values that it can get from the game level. These
may include the distance to the nearest enemy, the amount of ammo left, the relative
size of each player’s army, and so on.

We need to learn to associate decisions (in the form of a single behavior option to
choose) with observations. Over time, the AI can learn which decisions fit with which
observations and can improve its performance.

Weak or Strong Supervision

In order to improve performance, we need to provide feedback to the learning algo-
rithm. This feedback is called “supervision,” and there are two varieties of supervision
used by different learning algorithms or by different flavors of the same algorithm.

Strong supervision takes the form of a set of correct answers. A series of obser-
vations are each associated with the behavior that should be chosen. The learning
algorithm learns to choose the correct behavior given the observation inputs. These
correct answers are often provided by a human player. The developer may play the
game for a while and have the AI watch. The AI keeps track of the sets of observations
and the decisions that the human player makes. It can then learn to act in the same
way.

Weak supervision doesn’t require a set of correct answers. Instead, some feedback
is given as to how good its action choices are. This can be feedback given by a de-
veloper, but more commonly it is provided by an algorithm that monitors the AI’s
performance in the game. If the AI gets shot, then the performance monitor will pro-
vide negative feedback. If the AI consistently beats its enemies, then feedback will be
positive.

Strong supervision is easier to implement and get right, but it is less flexible: it
requires somebody to teach the algorithm what is right and wrong. Weak supervision
can learn right and wrong for itself, but is much more difficult to get right.

Each of the remaining learning algorithms in this chapter works with this kind of
model. It has access to observations, and it returns a single action to take next. It is
supervised either weakly or strongly.

7.4.2 WHAT SHOULD YOU LEARN?

For any realistic size of game, the number of observable items of data will be huge
and the range of actions will normally be fairly restricted. It is possible to learn very
complex rules for actions in very specific circumstances.
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This detailed learning is required for characters to perform at a high level of com-
petency. It is characteristic of human behavior: a small change in our circumstances
can dramatically affect our actions. As an extreme example, it makes a lot of differ-
ence if a barricade is made out of solid steel or cardboard boxes if we are going to use
it as cover from incoming fire.

On the other hand, as we are in the process of learning, it will take a long time to
learn the nuances of every specific situation. We would like to lay down some general
rules for behavior fairly quickly. They will often be wrong (and we will need to be
more specific), but overall they will at least look sensible.

Especially for online learning, it is essential to use learning algorithms that work
from general principles to specifics, filling in the broad brush strokes of what is sensi-
ble before trying to be too clever. Often, the “clever” stage is so difficult to learn that
AI algorithms never get there. They will have to rely on the general behaviors.

7.4.3 THREE TECHNIQUES

We’ll look at three decision learning techniques in the remainder of this chapter. All
three have been used to some extent in games, but their adoption has not been over-
whelming. The first technique, decision tree learning, is the most practicable. The
later two techniques, reinforcement learning and neural networks, have some poten-
tial for game AI, but are huge fields that we’ll only be able to overview here.

7.5 DECISION TREE LEARNING

In Chapter 5 we looked at decision trees: a series of decisions that generate an action
to take based on a set of observations. At each branch of the tree some aspect of the
game world was considered and a different branch was chosen. Eventually, the series
of branches lead to an action (Figure 7.9).

Trees with many branch points can be very specific and make decisions based on
the intricate detail of their observations. Shallow trees, with only a few branches, give
broad and general behaviors.

Decision trees can be efficiently learned: constructed dynamically from sets of
observations and actions provided through strong supervision. The constructed trees
can then be used in the normal way to make decisions during gameplay.

There are a range of different decision tree learning algorithms used for classifi-
cation, prediction, and statistical analysis. Those used in game AI are typically based
on Quinlan’s ID3 algorithm, which we will examine in this section.
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Figure 7.9 A decision tree

7.5.1 ID3

Depending on who you believe, ID3 stands for “Inductive Decision tree algorithm 3”
or “Iterative Dichotomizer 3.” It is a simple to implement, relatively efficient decision
tree learning algorithm.

Like any other algorithm it has a whole host of optimizations useful in different
situations. It has been largely replaced in industrial AI use by optimized versions of
the algorithm: C4, C4.5, and C5. In this book we’ll concentrate on the basic ID3
algorithm, which provides the foundation for these optimizations.

Algorithm

The basic ID3 algorithm uses the set of observation-action examples. Observations
in ID3 are usually called “attributes.” It starts with a single leaf node in a decision tree
and assigns a set of examples to the leaf node.

It then splits its current node (initially the single start node) so that it divides
the examples into two groups. The division is chosen based on an attribute, and the
division chosen is the one that is likely to produce the most efficient tree. When the
division is made, each of the two new nodes is given the subset of examples that
applies to them, and the algorithm repeats for each of them.

This algorithm is recursive: starting from a single node it replaces them with de-
cisions until the whole decision tree has been created. At each branch creation it di-
vides up the set of examples among its daughters, until all the examples agree on the
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same action. At that point the action can be carried out; there is no need for further
branches.

The split process looks at each attribute in turn (i.e., each possible way to make a
decision) and calculates the information gain for each possible division. The division
with the highest information gain is chosen as the decision for this node. Information
gain is a mathematical property, which we’ll need to look at in a little depth.

Entropy and Information Gain

In order to work out which attribute should be considered at each step, ID3 uses the
entropy of the actions in the set. Entropy is a measure of the information in a set of
examples. In our case it measures the degree to which the actions in an example set
agree with each other. If all the examples have the same action, the entropy will be 0.
If the actions are distributed evenly, then the entropy will be 1. Information gain is
simply the reduction in overall entropy.

You can think of the information in a set as being the degree to which membership
of the set determines the output. If we have a set of examples with all different actions,
then being in the set doesn’t tell us much about what action to take. Ideally, we want
to reach a situation where being in a set tells us exactly which action to take.

This will be clearly demonstrated with an example. Let’s assume that we have
two possible actions: attack and defend. We have three attributes: health, cover, and
ammo. For simplicity, we’ll assume that we can divide each attribute into true or false:
healthy or hurt, in cover or exposed, and with ammo or an empty gun. We’ll return
later to situations with attributes that aren’t simply true or false.

Our set of examples might look like the following:

Healthy In Cover With Ammo Attack

Hurt In Cover With Ammo Attack

Healthy In Cover Empty Defend

Hurt In Cover Empty Defend

Hurt Exposed With Ammo Defend

For two possible outcomes, attack and defend, the entropy of a set of actions is
given by

E = −pA log2 pA − pD log2 pD,

where pA is the proportion of attack actions in the example set, and pD is the pro-
portion of defend actions. In our case, this means that the entropy of the whole set is
0.971.

At the first node the algorithm looks at each possible attribute in turn, divides the
example set, and calculates the entropy associated with each division.
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Divided by

Health Ehealthy = 1.000 Ehurt = 0.918

Cover Ecover = 1.000 Eexposed = 0.000

Ammo Eammo = 0.918 Eempty = 0.000

The information gain for each division is the reduction in entropy from the cur-
rent example set (0.971) to the entropies of the daughter sets. It is given by the formula

G = ES − p� ∗ E� − p⊥ ∗ E⊥,

where p� is the proportion of examples for which the attribute is true, and E� is the
entropy of those examples. Similarly, p⊥ and E⊥ refer to the examples for which the
attribute is false. The equation shows that the entropies are multiplied by the propor-
tion of examples in each category. This biases the search toward balanced branches
where a similar number of examples get moved into each category.

In our example we can now calculate the information gained by dividing by each
attribute:

Ghealth = 0.020,

Gcover = 0.171,

Gammo = 0.420.

So, of our three attributes, ammo is by far the best indicator of what action we
need to take (this makes sense, since we cannot possibly attack without ammo). By
the principle of learning the most general stuff first, we use ammo as our first branch
in the decision tree.

If we continue in this manner, we will build the decision tree shown in Figure 7.10.
Notice that the health of the character doesn’t feature at all in this tree; from the

examples we were given, it simply isn’t relevant to the decision. If we had more exam-
ples, then we might find situations in which it is relevant, and the decision tree would
use it.

More than Two Actions

The same process works with more than two actions. In this case the entropy calcula-
tion generalizes to

E = −
∑

i=1...n

pi log2 pi,

where n is the number of actions, and pi is the proportion of each action in the ex-
ample set.
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Figure 7.10 The decision tree constructed from a simple example

Most systems don’t have a dedicated base 2 logarithm. The logarithm for a par-
ticular base, logn x, is given by

logn x = log x

log n
,

where the logarithms can in any base (typically, base e is fastest, but maybe base
10 if you have an optimized implementation of that). So simply divide the result of
whichever log you use by log(2) to give the logarithm to base 2.

Non-Binary Discrete Attributes

When there are more than two categories, there will be more than two daughter nodes
for a decision.

The formula for information gained generalizes to

G = ES −
∑

i=1...n

|Si|/|S| ∗ ESi ,

where Si is the set of examples for each of the n values of an attribute.
The listing below handles this situation naturally. It makes no assumptions about

the number of values an attribute can have. Unfortunately, as we saw in Chapter 5,
the flexibility of having more than two branches per decision isn’t too useful.

This still does not cover the majority of applications, however. The majority of
attributes in a game either will be continuous or will have so many different possible
values that having a separate branch for each is wasteful. We’ll need to extend the basic
algorithm to cope with continuous attributes. We’ll return to this extension later in
the section.
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Pseudo-Code

The simplest implementation of makeTree is recursive. It performs a single split of a
set of examples and then applies itself on each of the subsets to form the branches.

1 def makeTree(examples, attributes, decisionNode):
2

3 # Calculate our initial entropy
4 initialEntropy = entropy(examples)
5

6 # If we have no entropy, we can’t divide further
7 if initialEntropy <= 0: return
8

9 # Find the number of examples
10 exampleCount = examples.length()
11

12 # Hold the best found split so far
13 bestInformationGain = 0
14 bestSplitAttribute
15 bestSets
16

17 # Go through each attribute
18 for attribute in attributes:
19

20 # Perform the split
21 sets = splitByAttribute(examples, attribute)
22

23 # Find overall entropy and information gain
24 overallEntropy = entropyOfSets(sets, exampleCount)
25 informationGain = initialEntropy - overallEntropy
26

27 # Check if we’ve got the best so far
28 if informationGain > bestInformationGain:
29 bestInformationGain = informationGain
30 bestSplitAttribute = attribute
31 bestSets = sets
32

33 # Set the decision node’s test
34 decisionNode.testValue = bestSplitAttribute
35

36 # The list of attributes to pass on down the tree should
37 # have the one we’re using removed
38 newAttributes = copy(attributes)
39 newAttributes -= bestSplitAttribute
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40

41 # Fill the daughter nodes
42 for set in bestSets:
43 # Find the value for the attribute in this set
44 attributeValue = set[0].getValue(bestSplitAttribute)
45

46 # Create a daughter node for the tree
47 daughter = new MultiDecision()
48

49 # Add it to the tree
50 decisionNode.daughterNodes[attributeValue] = daughter
51

52 # Recurse the algorithm
53 makeTree(set, newAttributes, daughter)

This pseudo-code relies on three key functions: splitByAttribute takes a list of
examples and an attribute and divides them up into several subsets so that each of
the examples in a subset share the same value for that attribute; entropy returns the
entropy of a list of examples; and entropyOfSets returns the entropy of a list of lists
(using the basic entropy function). The entropyOfSets method has the total number
of examples passed to it to avoid having to sum up the sizes of each list in the list of
lists. As we’ll see below, this makes implementation significantly easier.

Split By Attribute

The splitByAttribute function has the following form:

1 def splitByAttribute(examples, attribute):
2

3 # We create a set of lists, so we can access each list
4 # by the attribute value
5 sets
6

7 # Loop through each example
8 for example in examples:
9

10 # Assign it to the right set
11 sets[example.getValue(attribute)] += example
12

13 # Return the sets
14 sets
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This pseudo-code treats the sets variables as both a dictionary of lists (when it
adds examples based on their value) and a list of lists (when it returns the variable at
the end). When it is used as a dictionary, care needs to be taken to initialize previously
unused entries to be an empty list before trying to add the current example to it.

This duality is not a commonly supported requirement for a data structure, al-
though the need for it occurs quite regularly. It is fairly easy to implement, however.

Entropy

The entropy function has the following form:

1 def entropy(examples):
2

3 # Get the number of examples
4 exampleCount = examples.length()
5

6 # Check if we only have one: in that case entropy is 0
7 if exampleCount == 0: return 0
8

9 # Otherwise we need to keep a tally of how many of each
10 # different kind of action we have
11 actionTallies
12

13 # Go through each example
14 for example in examples:
15

16 # Increment the appropriate tally
17 actionTallies[example.action] ++
18

19 # We now have the counts for each action in the set
20 actionCount = actionTallies.length()
21

22 # If we have only one action then we have zero entropy
23 if actionCount == 0: return 0
24

25 # Start with zero entropy
26 entropy = 0
27

28 # Add in the contribution to entropy of each action
29 for actionTally in actionTallies:
30 proportion = actionTally / exampleCount
31 entropy -= proportion * log2(proportion)
32
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33 # Return the total entropy
34 return entropy

In this pseudo-code I have used the log2 function which gives the logarithm to
base 2. As we saw earlier, this can be implemented as

1 def log2(x):
2 return log(x) / log(2)

Although this is strictly correct, it isn’t necessary. We aren’t interested in finding
the exact information gain. We are only interested in finding the greatest information
gain. Because logarithms to any positive power retain the same order (i.e., if log2 x >

log2 y, then loge x > loge y), we can simply use the basic log in place of log2 and save
on the floating point division.

The actionTallies variable acts both as a dictionary indexed by the action (we
increment its values) and as a list (we iterate through its values). This can be imple-
mented as a basic hash map, although care needs to be taken to initialize a previously
unused entry to zero before trying to increment it.

Entropy of Sets

Finally, we can implement the function to find the entropy of a list of lists in the
following way:

1 def entropyOfSets(sets, exampleCount):
2

3 # Start with zero entropy
4 entropy = 0
5

6 # Get the entropy contribution of each set
7 for set in sets:
8

9 # Calculate the proportion of the whole in this set
10 proportion = set.length() / exampleCount
11

12 # Calculate the entropy contribution
13 entropy -= proportion * entropy(set)
14

15 # Return the total entropy.
16 return entropy
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Data Structures and Interfaces

In addition to the unusual data structures used to accumulate subsets and keep a
count of actions in the functions above, the algorithm only uses simple lists of ex-
amples. These do not change size after they have been created, so they can be imple-
mented as arrays. Additional sets are created as the examples are divided into smaller
groups. In C or C++, it is sensible to have the arrays refer by pointer to a single set of
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examples,rather than copying example data around constantly. The source code on
the CD demonstrates this approach.

The pseudo-code assumes that examples have the following interface:

1 class Example:
2 action
3 def getValue(attribute)

where getValue returns the value of a given attribute. The ID3 algorithm does not
depend on the number of attributes. action, not surprisingly, holds the action that
should be taken given the attribute values.

Starting the Algorithm

The algorithm begins with a set of examples. Before we can call makeTree, we need to
get a list of attributes and an initial decision tree node. The list of attributes is usually
consistent over all examples and fixed in advance (i.e., we’ll know the attributes we’ll
be choosing from); otherwise, we may need an additional application-dependent al-
gorithm to work out the attributes that are used.

The initial decision node can simply be created empty. So the call may look some-
thing like

1 makeTree(allExamples, allAttributes, new MultiDecision())

Performance

The algorithm is O(a logv n) in memory and O(avn logv n) in time, where a is the
number of attributes, v is the number of values for each attribute, and n is the number
of examples in the initial set.

7.5.2 ID3 WITH CONTINUOUS ATTRIBUTES

ID3-based algorithms cannot operate directly with continuous attributes, and they
are impractical when there are many possible values for each attribute. In either case
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the attribute values must be divided into a small number of discrete categories (usu-
ally two). This division can be performed automatically as an independent process,
and with the categories in place, the rest of the decision tree learning algorithm re-
mains identical.

Single Splits

Continuous attributes can be used as the basis of binary decisions by selecting a
threshold level. Values below the level are in one category, and values above the level
are in another category. A continuous health value, for example, can be split into
healthy and hurt categories with a single threshold value.

We can dynamically calculate the best threshold value to use with a process similar
to that used to determine which attribute to use in a branch.

We sort the examples using the attribute we are interested in. We place the first
element from the ordered list into category A and the remaining elements into cate-
gory B. We now have a division, so we can perform the split and calculate information
gained, as before.

We repeat the process by moving the lowest valued example from category B into
category A and calculating the information gained in the same way. Whichever di-
vision gave the greatest information gained is used as the division. To enable future
examples, not in the set, to be correctly classified by the resulting tree, we need a nu-
meric threshold value. This is calculated by finding the average of the highest value in
category A and the lowest value in category B.

This process works by trying every possible position to place the threshold that
will give different daughter sets of examples. It finds the split with the best informa-
tion gain and uses that.

The final step constructs a threshold value that would have correctly divided the
examples into its daughter sets. This value is required, because when the decision tree
is used to make decisions, we aren’t guaranteed to get the same values as we had in
our examples: the threshold is used to place all possible values into a category.

As an example, consider a similar situation to that in the previous section. We
have a health attribute, which can take any value between 0 and 200. We will ignore
other observations and consider a set of examples with just this attribute.

50 Defend

25 Defend

39 Attack

17 Defend

We start by ordering the examples, placing them into the two categories, and cal-
culating the information gained.
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Category Attribute Value Action Information Gain

A 17 Defend
– – – – – – – – – – – – – – – – – – – – – – – – –
B 25 Defend

39 Attack

50 Defend 0.12

Category Attribute Value Action Information Gain

A 17 Defend

25 Defend
– – – – – – – – – – – – – – – – – – – – – – – – –
B 39 Attack

50 Defend 0.31

Category Attribute Value Action Information Gain

A 17 Defend

25 Defend

39 Attack
– – – – – – – – – – – – – – – – – – – – – – – – –
B 50 Defend 0.12

We can see that the most information is gained if we put the threshold between
25 and 39. Midpoint between these values is 32, so 32 becomes our threshold value.

Notice that the threshold value depends on the examples in the set. Because the
set of examples gets smaller at each branch in the tree, we can get different threshold
values at different places in the tree. This means that there is no set dividing line. It
depends on the context. As more examples are available, the threshold value can be
fine-tuned and made more accurate.

Determining where to split a continuous attribute can be incorporated into the
entropy checks for determining which attribute to split on. In this form our algorithm
is very similar to the C4.5 decision tree algorithm.

Pseudo-Code

We can incorporate this threshold step in the splitByAttribute function from the
previous pseudo-code.

1 def splitByContinuousAttribute(examples, attribute):
2

3 # We create a set of lists, so we can access each list
4 # by the attribute value
5 bestGain = 0
6 bestSets



7.5 Decision Tree Learning 605

7

8 # Make sure the examples are sorted
9 setA = []

10 setB = sortReversed(examples, attribute)
11

12 # Work out the number of examples and initial entropy
13 exampleCount = len(examples)
14 initialEntropy = entropy(examples)
15

16 # Go through each but the last example,
17 # moving it to set A
18 while setB.length() > 1:
19

20 # Move the lowest example from A to B
21 setB.push(setA.pop())
22

23 # Find overall entropy and information gain
24 overallEntropy = entropyOfSets([setA, setB],
25 exampleCount)
26 informationGain = initialEntropy - overallEntropy
27

28 # Check if it is the best
29 if informationGain >= bestGain:
30 bestGain = informationGain
31 bestSets = [setA, setB]
32

33 # Calculate the threshold
34 setA = bestSets[0]
35 setB = bestSets[1]
36 threshold = setA[setA.length()-1].getValue(attribute)
37 threshold += setB[setB.length()-1].getValue(attribute)
38 threshold /= 2
39

40 # Return the sets
41 return bestSets, threshold

The sortReversed function takes a list of examples and returns a list of examples
in order of decreasing value for the given attribute.

In the framework we used previously for makeTree, there was no facility for using
a threshold value (it wasn’t appropriate if every different attribute value was sent to
a different branch). In this case we would need to extend makeTree so that it receives
the calculated threshold value and creates a decision node for the tree that could use
it. In Chapter 5 (decision tree section) we looked at a FloatDecision class that would
be suitable.
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Data Structures and Interfaces

We have used the list of examples as a stack in the code above. An object is removed
from one list and added to another list using push and pop. Many collection data struc-
tures have these fundamental operations. If you are implementing your own lists,
using a linked list, for example, this can be simply achieved by moving the “next”
pointer from one list to another.

Performance

The attribute splitting algorithm is O(n) in both memory and time, where n is the
number of examples. Note that this is O(n) per attribute. If you are using it within
ID3, it will be called once for each attribute.

On the CD

In this section we’ve looked at building a decision tree using either binary decisions
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(or at least those with a small number of branches) or threshold decisions.
In a real game, you are likely to need a combination of both binary decisions and

threshold decisions in the final tree. The makeTree algorithm needs to detect what
type best suits each algorithm and to call the correct version of splitByAttribute.
The result can then be compiled into either a MultiDecision node or a FloatDecision
node (or some other kind of decision nodes, if they are suitable, such as an integer
threshold). This selection depends on the attributes you will be working with in your
game.

The source code on the CD shows this kind of selection in operation and can form
the basis of a decision tree learning tool for your game.

Multiple Categories

Not every continuous value is best split into two categories based on a single threshold
value. For some attributes there are more than two clear regions that require different
decisions. A character who is only hurt, for example, will behave differently from one
who is almost dead.

A similar approach can be used to create more than one threshold value. As the
number of splits increases, there is an exponential increase in the number of different
scenarios that needs to have its information gain calculated.

There are several algorithms for multi-splitting input data for lowest entropy. In
general, the same thing can also be achieved using any classification algorithm, such
as a neural network.
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Health < 32?

Health > 45?

No

YesNo

Yes

Defend

DefendAttack

Figure 7.11 Two sequential decisions on the same attribute

In game applications, however, multi-splits are seldom necessary. As the ID3 al-
gorithm recurses through the tree, it can create several branching nodes based on the
same attribute value. Because these splits will have different example sets, the thresh-
olds will be placed at different locations. This allows the algorithm to effectively divide
the attribute into more than two categories over two or more branch nodes. The extra
branches will slow down the final decision tree a little, but since running a decision
tree is a very fast process, this will not generally be noticeable.

Figure 7.11 shows the decision tree created when the example data above is run
through two steps of the algorithm. Notice that the second branch is subdivided,
splitting the original attribute into three sections.

7.5.3 INCREMENTAL DECISION TREE LEARNING

So far we have looked at learning decision trees in a single process. A complete set
of examples is provided, and the algorithm returns a complete decision tree ready
for use. This is fine for offline learning, where a large number of observation-action
examples can be provided in one go. The learning algorithm can spend a short time
processing the example set to generate a decision tree.

When used online, however, new examples will be generated while the game is
running, and the decision tree should change over time to accommodate them. With
a small number of examples, only broad brush sweeps can be seen, and the tree will
typically need to be quite flat. With hundreds or thousands of examples, subtle inter-
actions between attributes and actions can be detected by the algorithm, and the tree
is likely to be more complex.

The simplest way to support this scaling is to re-run the algorithm each time
a new example is provided. This guarantees that the decision tree will be the best
possible at each moment. Unfortunately, we have seen that decision tree learning is a



608 Chapter 7 Learning

moderately inefficient process. With large databases of examples, this can prove very
time consuming.

Incremental algorithms update the decision tree based on the new information,
without requiring the whole tree to be rebuilt.

The simplest approach would be to take the new example and use its observations
to walk through the decision tree. When we reach a terminal node of the tree, we
compare the action there with the action in our example. If they match, then no
update is required, and the new example can simply be added to the example set at
that node. If the action does not match, then the node is converted into a decision
node using SPLIT_NODE in the normal way.

This approach is fine, as far as it goes, but it always adds further examples to the
end of a tree and can generate huge trees with many sequential branches. We ideally
would like to create trees that are as flat as possible, where the action to carry out can
be determined as quickly as possible.

The Algorithm

The simplest useful incremental algorithm is ID4. As its name suggests, it is related to
the basic ID3 algorithm.

We start with a decision tree, as created by the basic ID3 algorithm. Each node in
the decision tree also keeps a record of all the examples that reach that node. Examples
that would have passed down a different branch of the tree are stored elsewhere in the
tree. Figure 7.12 shows the ID4-ready tree for the example we introduced earlier.

Has ammo?

Is in cover?

Yes

YesNo

No

Defend

AttackDefend

Healthy, In cover, Empty: Defend
Hurt, In cover, Empty: Defend

Hurt, Exposed, With ammo: Defend Healthy, In cover, With ammo: Attack
Hurt, In cover, With ammo: Attack

Healthy, In cover, With ammo: Attack
Hurt, In cover, With ammo: Attack
Healthy, In cover, Empty: Defend
Hurt, In cover, Empty: Defend
Hurt, Exposed, With ammo: Defend

Healthy, In cover, With ammo: Attack
Hurt, In cover, With ammo: Attack
Hurt, Exposed, With ammo: Defend

Figure 7.12 The example tree in ID4 format
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In ID4 we are effectively combining the decision tree with the decision tree learn-
ing algorithm. To support incremental learning, we can ask any node in the tree to
update itself given a new example.

When asked to update itself, one of three things can happen:

1. If the node is a terminal node (i.e., it represents an action), and if the added exam-
ple also shares the same action, then the example is added to the list of examples
for that node.

2. If the node is a terminal node, but the example’s action does not match, then we
make the node into a decision and use the ID3 algorithm to determine the best
split to make.

3. If the node is not a terminal node, then it is already a decision. We determine the
best attribute to make the decision on, adding the new example to the current list.
The best attribute is determined using the information gain metric, as we saw in
ID3.

� If the attribute returned is the same as the current attribute for the decision
(and it will be most times), then we determine which of the daughter nodes the
new example gets mapped to, and we update that daughter node with the new
example.

� If the attribute returned is different, then it means the new example makes a
different decision optimal. If we change the decision at this point, then all of the
tree further down the current branch will be invalid. So we delete the whole tree
from the current decision down and perform the basic ID3 algorithm using the
current decision’s examples plus the new one.

Note that when we reconsider which attribute to make a decision on, several at-
tributes may provide the same information gain. If one of them is the attribute we are
currently using in the decision, then we favor that one to avoid unnecessary rebuild-
ing of the decision tree.

In summary, at each node in the tree, ID4 checks if the decision still provides the
best information gain in light of the new example. If it does, then the new example is
passed down to the appropriate daughter node. If it does not, then the whole tree is
recalculated from that point on. This ensures that the tree remains as flat as possible.

In fact, the tree generated by ID4 will always be the same as that generated by ID3
for the same input examples. At worst, ID4 will have to do the same work as ID3 to
update the tree. At best, it is as efficient as the simple update procedure. In practice,
for sensible sets of examples, ID4 is considerably faster than repeatedly calling ID3
each time and will be faster in the long run than the simple update procedure (because
it is producing flatter trees).
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Walk Through

It is difficult to visualize how ID4 works from the algorithm description alone, so let’s
work through an example.

We have seven examples. The first five are similar to those used before:

Healthy Exposed Empty Run

Healthy In Cover With Ammo Attack

Hurt In Cover With Ammo Attack

Healthy In Cover Empty Defend

Hurt In Cover Empty Defend

We use these to create our initial decision tree. The decision tree looks like that shown
in Figure 7.13.

We now add two new examples, one at a time, using ID4:

Hurt Exposed With Ammo Defend

Healthy Exposed With Ammo Run

The first example enters at the first decision node. ID4 uses the new example,
along with the five existing examples, to determine that ammo is the best attribute to
use for the decision. This matches the current decision, so the example is sent to the
appropriate daughter node.

Currently, the daughter node is an action: attack. The action doesn’t match, so we
need to create a new decision here. Using the basic ID3 algorithm, we decide to make
the decision based on cover. Each of the daughters of this new decision have only one
example and are therefore action nodes.

The current decision tree is then as shown in Figure 7.14.

Has ammo?

Is in cover?

No

YesNo

Yes

Attack

DefendRun

Figure 7.13 Decision tree before ID4
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Has ammo?

Is in cover?

No

YesNo

Yes

DefendRun

Is in cover?

YesNo

AttackDefend

Figure 7.14 Decision tree mid-ID4

Is in cover?

Is healthy?

No

YesNo

Yes

RunDefend

Has ammo?

YesNo

AttackDefend

Figure 7.15 Decision tree after ID4

Now we add our second example, again entering at the root node. ID4 determines
that this time ammo can’t be used, so cover is the best attribute to use in this decision.

So we throw away the sub-tree from this point down (which is the whole tree,
since we’re at the first decision) and run an ID3 algorithm with all the examples. The
ID3 algorithm runs in the normal way and leaves the tree complete. It is shown in
Figure 7.15.

Problems with ID4

ID4 and similar algorithms can be very effective in creating optimal decision trees.
As the first few examples come in, the tree will be largely rebuilt at each step. As the
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database of examples grows, the changes to the tree often decrease in size, keeping the
execution speed high.

It is possible, however, to have sets of examples for which the order of attribute
tests in the tree is pathological: the tree continues to be rebuilt at almost every step.
This can end up being slower than simply running ID3 each step. ID4 is sometimes
said to be incapable of learning certain concepts. This doesn’t mean that it generates
invalid trees (it generates the same trees as ID3), it just means that the tree isn’t stable
as new examples are provided.

In practice, however, I haven’t suffered from this problem with ID4. Real data does
tend to stabilize quite rapidly, and ID4 ends up significantly faster than rebuilding the
tree with ID3 each time.

Other incremental learning algorithms, such as ID5, ITI, and their relatives, all
use this kind of transposition, statistical records at each decision node, or additional
tree restructuring operations to help avoid repeated rebuilding of the tree.

Heuristic Algorithms

Strictly speaking, ID3 is a heuristic algorithm: the information gain value is a good
estimate of the utility of the branch in the decision tree, but it may not be the best.
Other methods have been used to determine which attributes to use in a branch. One
of the most common, the gain-ratio, was suggested by Qinlan, the original inventor
of ID3.

Often, the mathematics is significantly more complex than that in ID3, and while
improvements have been made, the results are often highly domain-specific. Because
the cost of running a decision tree in game AI is so small, it is rarely worth the addi-
tional effort. I know of no developers who have invested in developing anything more
than simple optimizations of the ID3 scheme.

More significant speed ups can be achieved in incremental update algorithms
when doing online learning. Heuristics can also be used to improve the speed and ef-
ficiency of incremental algorithms. This approach is used in algorithms such as SITI
and other more exotic versions of decision tree learning.

7.6 REINFORCEMENT LEARNING

Reinforcement learning is the name given to a range of techniques for learning based
on experience. In its most general form a reinforcement learning algorithm has three
components: an exploration strategy for trying out different actions in the game, a re-
inforcement function that gives feedback on how good each action is, and a learning
rule that links the two together. Each element has several different implementations
and optimizations, depending on the application.

Reinforcement learning is a hot topic in game AI, with more than one new AI
middleware vendor using it as a key technology to enable next-generation gameplay.
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Later in this section we’ll look briefly at a range of reinforcement learning tech-
niques. In game applications, however, a good starting point is the Q-learning al-
gorithm. Q-learning is simple to implement, has been widely tested on non-game
applications, and can be tuned without a deep understanding of its theoretical prop-
erties.

7.6.1 THE PROBLEM

We would like a game character to select better actions over time. What makes a good
action may be difficult to anticipate by the designers. It may depend on the way the
player acts, or it may depend on the structure of random maps that can’t be designed
for.

We would like to be able to give a character free choice of any action in any cir-
cumstance and for it to work out which actions are best for any given situation.

Unfortunately, the quality of an action isn’t normally clear at the time the action
is made. It is relatively easy to write an algorithm that gives good feedback when the
character collects a power-up or kills an enemy. But the actual killing action may have
been only 1 out of 100 actions that led to the result, with each one of which needing
to be correctly placed in series.

Therefore, we would like to be able to give very patchy information: to be able to
give feedback only when something significant happens. The character should learn
that all the actions leading up to the event are also good things to do, even though no
feedback was given while it was doing them.

7.6.2 THE ALGORITHM

Q-learning relies on having the problem represented in a particular way. With this
representation in place, it can store and update relevant information as it explores the
possible actions it can take. We’ll look at the representation first.

Q-Learning’s Representation of the World

Q-learning treats the game world as a state machine. At any point in time, the al-
gorithm is in some state. The state should encode all the relevant details about the
character’s environment and internal data.

So if the health of the character is significant to learning, and if the character finds
itself in two identical situations with two different health levels, then it will consider
them to be different states. Anything not included in the state cannot be learned. If
we didn’t include the health value as part of the state, then we couldn’t possibly learn
to take health into consideration in the decision making.

In a game the states are made up of many factors: position, proximity of the en-
emy, health level, and so on. Q-learning doesn’t need to understand the components
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of a state. As far as the algorithm is concerned they can just be an integer value: the
state number.

The game, on the other hand, needs to be able to translate the current state of
the game into a single state number for the learning algorithm to use. Fortunately,
the algorithm never requires the opposite: we don’t have to translate the state number
back into game terms (as we did in the pathfinding algorithm, for example).

Q-learning is known as a model-free algorithm because it doesn’t try to build a
model of how the world works. It simply treats everything as states. Algorithms that
are not model-free try to reconstruct what is happening in the game from the states
that it visits. Model-free algorithms, such as Q-learning, tend to be significantly easier
to implement.

For each state, the algorithm needs to understand the actions that are available
to it. In many games all actions are available at all times. For more complex environ-
ments, however, some actions may only be available when the character is in a partic-
ular place (e.g., pulling a lever), when they have a particular object (e.g., unlocking a
door with a key), or when other actions have been properly carried out before (e.g.,
walking through the unlocked door).

After the character carries out one action in the current state, the reinforcement
function should give it feedback. Feedback can be positive or negative and is often
zero if there is no clear indication as to how good the action was. Although there are
no limits on the values that the function can return, it is common to assume they will
be in the range [−1,1].

There is no requirement for the reinforcement value to be the same every time an
action is carried out in a particular state. There may be other contextual information
not used to create the algorithm’s state. As we saw previously, the algorithm cannot
learn to take advantage of that context if it isn’t part of its state, but it will tolerate its
effects and learn about the overall success of an action, rather than its success on just
one attempt.

After carrying out an action, the character is likely to enter a new state. Carrying
out the same action in exactly the same state may not always lead to the same state of
the game. Other characters and the player are also influencing the state of the game.

For example, a character in an FPS is trying to find a health pack and avoid getting
into a fight. The character is ducking behind a pillar. On the other side of the room,
an enemy character is standing in the doorway looking around. So the current state
of the character may correspond to in-room1, hidden, enemy-near, near-death. They
chose the “hide” action to continue ducking. The enemy stays put, so the “hide” ac-
tion leads back to the same state. So they chose the same action again. This time the
enemy leaves, so the “hide” action now leads to another state, corresponding to in-
room1, hidden, no-enemy, near-death.

One of the powerful features of the Q-learning algorithm (and most other rein-
forcement algorithms) is that it can cope with this kind of uncertainty.

These four elements—the start state, the action taken, the reinforcement value,
and the resulting state—are called the experience tuple, often written as 〈s,a, r, s′〉.
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Doing Learning

Q-learning is named for the set of quality information (Q-values) it holds about each
possible state and action. The algorithm keeps a value for every state and action it has
tried. The Q-value represents how good it thinks that action is to take when in that
state.

The experience tuple is split into two sections. The first two elements (the state
and action) are used to look up a Q-value in the store. The second two elements (the
reinforcement value and the new state) are used to update the Q-value based on how
good the action was and how good it will be in the next state.

The update is handled by the Q-learning rule:

Q(s,a) = (1 − α)Q(s,a) + α
(
r + γ max

(
Q(s′,a′)

))
,

where α is the learning rate, and γ is the discount rate. Both are parameters of the
algorithm. The rule is sometimes written in a slightly different form, with the (1 −α)

multiplied out.

How It Works

The Q-learning rule blends together two components using the learning rate parame-
ter to control the linear blend. The learning rate parameter, used to control the blend,
is in the range [0,1].

The first component Q(s,a) is simply the current Q-value for the state and action.
Keeping part of the current value in this way means we never throw away information
we have previously discovered.

The second component has two elements of its own. The r value is the new rein-
forcement from the experience tuple. If the reinforcement rule was

Q(s,a) = (1 − α)Q(s,a) + αr

then it would be blending the old Q-value with the new feedback on the action.
The second element, γ max(Q(s′,a′)), looks at the new state from the experience

tuple. It looks at all possible actions that could be taken from that state and chooses
the highest corresponding Q-value. This helps bring the success (i.e., the Q-value) of
a later action back to earlier actions: if the next state is a good one, then this state
should share some of its glory.

The discount parameter controls how much the Q-value of the current state and
action depends on the Q-value of the state it leads to. A very high discount will be a
large attraction to good states, and a very low discount will only give value to states
that are near to success. Discount rates should be in the range [0,1]. A value greater
than 1 can lead to ever-growing Q-values, and the learning algorithm will never con-
verge on the best solution.
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So, in summary, the Q-value is a blend between its current value and a new value,
which combines the reinforcement for the action and the quality of the state the ac-
tion led to.

Exploration Strategy

So far we’ve covered the reinforcement function, the learning rule, and the internal
structure of the algorithm. We know how to update the learning from experience
tuples and how to generate those experience tuples from states and actions. Rein-
forcement learning systems also require an exploration strategy: a policy for selecting
which actions to take in any given state. It is often simply called the policy.

The exploration strategy isn’t strictly part of the Q-learning algorithm. Although
the strategy outlined below is very commonly used in Q-learning, there are others
with their own strengths and weaknesses. In game, a powerful alternative technique
is to incorporate the actions of a player, generating experience tuples based on their
play. I’ll return to this idea later in the section.

The basic Q-learning exploration strategy is partially random. Most of the time,
the algorithm will select the action with the highest Q-value from the current state.
The remainder, the algorithm will select a random action. The degree of randomness
can be controlled by a parameter.

Convergence and Ending

If the problem always stays the same, and rewards are consistent (which they often
aren’t if they rely on random events in the game), then the Q-values will eventu-
ally converge. Further running of the learning algorithm will not change any of the
Q-values. At this point the algorithm has learned the problem completely.

For very small toy problems this is achievable in a few thousand iterations, but
in real problems it can take a vast number of iterations. In a practical application of
Q-learning, there won’t be nearly enough time to reach convergence, so the Q-values
will be used before they have settled down. It is common to begin acting under the
influence of the learned values before learning is complete.

On the CD

To clarify how Q-learning works, it is worth looking at the algorithm in opera-
tion. The Simple Q Learning program on the CD lets you step through Q-learning,

PROGRAM

providing the reinforcement values and watching the Q-values change at each
step.

There are only four states in this sample, and each has only two actions available
to it. At each iteration the algorithm will select an action and ask you to provide a
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reinforcement value and a destination state to end in. Alternatively, you can allow
the program to run on its own using pre-determined (but partially random) feed-
back.

As you run the code, you will see that high Q-values are propagated back gradu-
ally, so whole chains of actions receive increasing Q-values, leading to the larger goal.

7.6.3 PSEUDO-CODE

A general Q-learning system has the following structure:

1 # Holds the store for Q-values, we use this to make
2 # decisions based on the learning
3 store = new QValueStore()
4

5 # Updates the store by investigating the problem
6 def QLearning(problem, iterations, alpha, gamma, rho, nu):
7

8 # Get a starting state
9 state = problem.getRandomState()

10

11 # Repeat a number of times
12 for i in 0..iterations:
13

14 # Pick a new state every once in a while
15 if random() < nu: state = problem.getRandomState()
16

17 # Get the list of available actions
18 actions = problem.getAvailableActions(state)
19

20 # Should we use a random action this time?
21 if random() < rho:
22 action = oneOf(actions)
23

24 # Otherwise pick the best action
25 else:
26 action = store.getBestAction(state)
27

28 # Carry out the action and retrieve the reward and
29 # new state
30 reward, newState = problem.takeAction(state, action)
31

32 # Get the current q from the store
33 Q = store.getQValue(state, action)



618 Chapter 7 Learning

34

35 # Get the q of the best action from the new state
36 maxQ = store.getQValue(newState,
37 store.getBestAction(newState))
38

39 # Perform the q learning
40 Q = (1 - alpha) * Q + alpha * (reward + gamma * maxQ)
41

42 # Store the new Q-value
43 store.storeQValue(state, action, Q)
44

45 # And update the state
46 state = newState

We assume that the random function returns a floating point number between zero
and one. The oneOf function picks an item from a list at random.

7.6.4 DATA STRUCTURES AND INTERFACES

The algorithm needs to understand the problem: what state it is in, what actions it can
take, and after taking an action it needs to access the appropriate experience tuple.
The code above does this through an interface of the following form:

1 class ReinforcementProblem:
2 # Choose a random starting state for the problem
3 def getRandomState()
4

5 # Gets the available actions for the given state
6 def getAvailableActions(state)
7

8 # Takes the given action and state, and returns
9 # a pair consisting of the reward and the new state.

10 def takeAction(state, action)

In addition, the Q-values are stored in a data structure that is indexed by both
state and action. This has the following form in our example:

1 class QValueStore:
2 def getQValue(state, action)
3 def getBestAction(state)
4 def storeQValue(state, action, value)
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The getBestAction function returns the action with the highest Q-value for the
given state. The highest Q-value (needed in the learning rule) can be found by calling
getQValue with the result from getBestAction.

7.6.5 IMPLEMENTATION NOTES

If the Q-learning system is designed to operate online, then the Q-learning function
should be rewritten so that it only performs one iteration at a time and keeps track of
its current state and Q-values in a data structure.

The store can be implemented as a hash table indexed by an action-state pair.
Only action-state pairs that have been stored with a value are contained in the data
structure. All other indices have an implicit value of zero. So getQValue will return
zero if the given state–action pair is not in the hash. This is a simple implementation
that can be useful for doing brief bouts of learning. It suffers from the problem that
getBestAction will not always return the best action. If all the visited actions from the
given state have negative Q-values and not all actions have been visited, then it will
pick the highest negative value, rather than the zero value from one of the non-visited
actions in that state.

Q-learning is designed to run through all possible states and actions, probably
several times (we’ll come back to the practicality of this below). In this case, the hash
table will be a waste of time (literally). A better solution is an array indexed by the
state. Each element in this array is an array of Q-values, indexed by action. All the
arrays are initialized to have zero Q-values. Q-values can now be looked up immedi-
ately, as they are all stored.

7.6.6 PERFORMANCE

The algorithm’s performance scales based on the number of states and actions, and
the number of iterations of the algorithm. It is preferable to run the algorithm so that
it visits all of the states and actions several times. In this case it is O(i) in time, where i
is the number of iterations of learning. It is O(as) in memory, where a is the number
of actions, and s is the number of states per action. We are assuming that arrays are
used to store Q-values in this case.

If O(i) is very much less than O(as), then it might be more efficient to use a hash
table; however, this has corresponding increases in the expected execution time.

7.6.7 TAILORING PARAMETERS

The algorithm has four parameters with the variable names alpha, gamma, rho, and nu
in the pseudo-code above. The first two correspond to the α and γ parameters in the
Q-learning rule. Each has a different effect on the outcome of the algorithm and is
worth looking at in detail.
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Alpha: The Learning Rate

The learning rate controls how much influence the current feedback value has over
the stored Q-value. It is in the range [0,1].

A value of zero would give an algorithm that does not learn: the Q-values stored
are fixed and no new information can alter them. A value of one would give no cre-
dence to any previous experience. Any time an experience tuple is generated, that
alone is used to update the Q-value.

From my experience and experimentation, I have found that a value of 0.3 is a
sensible initial guess, although tuning is needed. In general, a high degree of random-
ness in your state transitions (i.e., if the reward or end state reached by taking an
action is dramatically different each time) requires a lower alpha value. On the other
hand, the fewer iterations the algorithm will be allowed to perform, the higher the
alpha value will be.

Learning rate parameters in many machine learning algorithms benefit from be-
ing changed over time. Initially, the learning rate parameter can be relatively high
(0.7, say). Over time, the value can be gradually reduced until it reaches a lower than
normal value (0.1, for example). This allows the learning to rapidly change Q-values
when there is little information stored in them, but protects hard-won learning later
on.

Gamma: The Discount Rate

The discount rate controls how much an action’s Q-value depends on the Q-value at
the state (or states) it leads to. It is in the range [0,1].

A value of zero would rate every action only in terms of the reward it directly
provides. The algorithm would learn no long-term strategies involving a sequence
of actions. A value of one would rate the reward for the current action as equally
important as the quality of the state it leads to.

Higher values favor longer sequences of actions, but take correspondingly longer
to learn. Lower values stabilize faster, but usually support relatively short sequences.
It is possible to select the way rewards are provided to increase the sequence length
(see the later section on reward values), but again this makes learning take longer.

A value of 0.75 is a good initial value to try, again based on my experience and
experimentation. With this value, an action with a reward of 1 will contribute 0.05 to
the Q-value of an action ten steps earlier in the sequence.

Rho: Randomness for Exploration

This parameter controls how often the algorithm will take a random action, rather
than the best action it knows so far. It is in the range [0,1].
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A value of zero would give a pure exploitation strategy: the algorithm would ex-
ploit its current learning, reinforcing what it already knows. A value of one would give
a pure exploration strategy: the algorithm would always be trying new things, never
benefiting from its existing knowledge.

This is a classic trade-off in learning algorithms: to what extent should we try to
learn new things (which may be much worse than the things we know are good), and
to what extent should we exploit the knowledge we have gained. The biggest factor in
selecting a value is whether the learning is performed online or offline.

If learning is being performed online, then the player will want to see some kind
of intelligent behavior. The learning algorithm should be exploiting its knowledge. If
a value of one was used, then the algorithm would never use its learned knowledge
and would always appear to be making decisions at random (it is doing so, in fact).
Online learning demands a low value (0.1 or less should be fine).

For offline learning, however, we simply want to learn as much as possible. Al-
though a higher value is preferred, there is still a trade-off to be made.

Often, if one state and action is excellent (has a high Q-value), then other similar
states and actions will also be good. If we have learned a high Q-value for killing an
enemy character, for example, we will probably have high Q-values for bringing the
character close to death. So heading toward known high Q-values is often a good
strategy for finding other state–action pairs with good Q-values.

If you run the Simple Q Learning program on the CD, you will see that it takes

PROGRAM

several iterations for a high Q-value to propagate back along the sequence of actions.
To distribute Q-values so that there is a sequence of actions to follow, there needs to
be several iterations of the algorithm in the same region.

Following actions known to be good helps both of these issues. A good starting
point for this parameter, in offline learning, is 0.2. This value is once again my favorite
initial guess from previous experience.

Nu: The Length of Walk

The length of walk controls the number of iterations that will be carried out in a
sequence of connected actions. It is in the range [0,1].

A value of zero would mean the algorithm always uses the state it reached in the
previous iteration as the starting state for the next iteration. This has the benefit of the
algorithm seeing through sequences of actions that might eventually lead to success.
It has the disadvantage of allowing the algorithm to get caught in a relatively small
number of states from which there is no escape or an escape only by a sequence of
actions with low Q-values (which are therefore unlikely to be selected).

A value of one would mean that every iteration starts from a random state. If all
states and all actions are equally likely, then this is the optimal strategy: it covers the
widest possible range of states and actions in the smallest possible time. In reality,
however, some states and actions are far more prevalent. Some states act as attractors,
to which a large number of different action sequences lead. These states should be ex-



622 Chapter 7 Learning

plored in preference to others, and allowing the algorithm to wander along sequences
of actions accomplishes this.

Many exploration policies used in reinforcement learning do not have this pa-
rameter and assume that it has the value zero. They always wander in a connected
sequence of actions. In online learning, the state used by the algorithm is directly
controlled by the state of the game, so it is impossible to move to a new random state.
In this case a value of zero is enforced.

In my experimentation with reinforcement learning, especially in applications
where only a limited number of iterations are possible, values of around 0.1 are suit-
able. This produces sequences of about nine actions in a row, on average.

Choosing Rewards

Reinforcement learning algorithms are very sensitive to the reward values used to
guide them. It is important to take into account how the reward values will be used
when you use the algorithm.

Typically, rewards are provided for two reasons: for reaching the goal and for per-
forming some other beneficial action. Similarly, negative reinforcement values are
given for “losing” the game (e.g., dying) or for taking some undesired action. This
may seem a contrived distinction. After all, reaching the goal is just a (very) beneficial
action, and a character should find its own death undesirable.

Much of the literature on reinforcement learning assumes that the problem has a
solution and that reaching the goal state is a well-defined action. In games (and sev-
eral other applications) this isn’t the case. There may be many different solutions, of
different qualities, and there may be no final solutions at all, but hundreds or thou-
sands of different actions that are beneficial or problematic.

In a reinforcement learning algorithm with a single solution, we can give a large
reward (let’s say 1) to the action that leads to the solution and no reward to any other
action. After enough iterations, there will be a trail of Q-values that leads to the solu-
tion. Figure 7.16 shows Q-values labelled on a small problem (represented as a state
machine diagram). The Q-learning algorithm has been run a huge number of times,
so the Q-values have converged and will not change with additional execution.

Starting at node A, we can simply follow the trail of increasing Q-values to get to
the solution. In the language of search (described earlier), we are hill climbing. Far
from the solution the Q-values are quite small, but this is not an issue because the
largest of these values still points in the right direction.

If we add additional rewards, the situation may change. Figure 7.17 shows the
results of another learning exercise.

If we start at state A, we will get to state B, whereupon we can get a small re-
ward from the action that leads to C. At C, however, we are far enough from the
solution that the best action to take is to go back to B and get the small reward again.
Hill climbing in this situation leads us to a sub-optimal strategy: constantly taking the
small reward rather than heading for the solution. The problem is said to be unimodal
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Figure 7.17 A learned machine with additional rewards

if there is only one hill and multi-modal if there are multiple hills. Hill climbing al-
gorithms don’t do well on multi-modal problems, and Q-learning is no exception.

The situation is made worse with multiple solutions or lots of reward points. Al-
though adding rewards can speed up learning (you can guide the learning toward the
solution by rewarding it along the way), it often causes learning to fail completely.
There is a fine balance to achieve. Using very small values for non-solution rewards
helps, but cannot completely eliminate the problem.

As a rule of thumb, try to simplify the learning task so that there is only one
solution and so you don’t give any non-solution rewards. Add in other solutions and
small rewards only if the learning takes too long or gives poor results.

7.6.8 WEAKNESSES AND REALISTIC APPLICATIONS

Reinforcement learning has not been widely used in game development. It is one of a
new batch of promising techniques that is receiving significant interest. Several com-
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panies have invested in researching reinforcement learning, and at least one major
developer has built a production system based on the technology.

Like many of these new technologies, the practicality doesn’t match some of the
hype. Game development websites and articles written by those outside the industry
can appear effusive. It is worth taking a dispassionate look at their real applicability.

Limits of the Algorithm

Q-learning requires the game to be represented as a set of states linked by actions.
The algorithm is very sensitive in its memory requirements to the number of states
and actions. The state of a game is typically very complex. If the position of characters
is represented as a three-dimensional (3D) vector, then there are an effectively infi-
nite number of states. Clearly, we need to group sets of states together to send to the
Q-learning algorithm.

Just like for pathfinding, we can divide up areas of the game level. We can also
quantize health values, ammo levels, and other bits of state so that they can be repre-
sented with a handful of different discrete values. Similarly, we can represent flexible
actions (such as movement in two dimensions) with discrete approximations.

The game state consists of a combination of all these elements, however, produc-
ing a huge problem. If there are 100 locations in the game and 20 characters, each
with 4 possible health levels, 5 possible weapons, and 4 possible ammo levels, then
there will be (100 ∗ 4 ∗ 4 ∗ 5)10 states, roughly 1050. Clearly, no algorithm that is O(as)
in memory will be viable.

Even if we dramatically slash the number of states so that they can be fit in mem-
ory, we have an additional problem. The algorithm needs to run long enough so that
it tries out each action at each state several times. In fact, the quality of the algorithm
can only be proved in convergence: it will eventually end up learning the right thing.
But the eventually could hide many hundreds of visits to each state.

In reality, we can often get by with tweaking the learning rate parameter, using
additional rewards to guide learning and applying dramatically fewer iterations.

After a bit of experimentation, I estimate that the technique is practically limited
to around 100,000 states, with 10 actions per state. We can run around 5,000,000
iterations of the algorithm to get workable (but not great) results, and this can be
done in reasonable time scales (a few minutes) and with reasonable memory (about
10Mb). Obviously, solving a problem once offline with a dedicated or mainframe
machine could increase the size somewhat, but it will still only buy us an extra order
of magnitude or so.

Online learning should probably be limited to problems with less than 100 states,
given that the rate that states can be explored is so limited.
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Applications

Reinforcement learning is most suitable for offline learning. It works well for prob-
lems with lots of different interacting components, such as optimizing the behavior
of a group of characters or finding sequences of order-dependent actions. Its main
strength is its ability to seamlessly handle uncertainty. This allows us to simplify the
states exposed to it; we don’t have to tell the algorithm everything.

It is not suitable for problems where there is an easy way to see how close a so-
lution is (we can use some kind of planning here), where there are too many states,
or where the strategies that are successful change over time (i.e., it requires a good
degree of stability to work).

It can be applied to choosing tactics based on knowledge of enemy actions (see
below), for bootstrapping a whole character AI for a simple character (we simply give
it a goal and a range of actions), for limited control over character or vehicle move-
ment, for learning how to interact socially in multi-player games, for determining
how and when to apply one specific behavior (such as learning to jump accurately or
learning to fire a weapon), and for many other real-time applications.

It has proven particularly strong in board game AI, evaluating the benefit of a
board position. By extension, it has a strong role to play in strategy setting in turn-
based games and other slow-moving strategic titles.

It can be used to learn the way a player plays and to mimic the player’s style,
making it one choice for implementing a dynamic demo mode.

Case Study: Choosing Tactical Defense Locations

Suppose we have a level in which a sentry team of three characters is defending the en-
trance to a military facility. There are a range of defensive locations that the team can
occupy (15 in all). Each character can move to any empty location at will, although
we will try to avoid everyone moving at the same time. We would like to determine
the best strategy for character movement to avoid the player getting to the entrance
safely.

The state of the problem can be represented by the defensive location occupied
by each character (or no location if it is in motion), whether each character is still
alive, and a flag to say if any of the characters can see the player. We therefore have
17 possible positional states per character (15 + in motion + dead) and 2 sighting
states (player is either visible or not). Thus, there are 34 states per player, for a total of
40,000 states overall.

At each state, if no character is in motion, then one may change location. In this
case there are 56 possible actions, and there are no possible actions when any charac-
ter is in motion.

A reward function is provided if the player dies (characters are assumed to shoot
on sight). A negative reward is given if any character is killed or if the player makes it
to the entrance. Notice we aren’t representing where the player is when seen. Although
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it matters a great deal where the player is, the negative reward when the player makes
it through means the strategy should learn that a sighting close to the entrance is
more risky.

The reinforcement learning algorithm can be run on this problem. The game
models a simple player behavior (random routes to the entrance, for example) and
creates states for the algorithm based on the current game situation.

With no graphics to render, a single run of the scenario can be performed quickly.
We use the 0.3 alpha, 0.7 gamma, and 0.3 rho values suggested previously. Because

the state is linked to an active game state, nu will be 0 (we can’t restart from a random
state, and we’ll always restart from the same state and only when the player is dead or
has reached the entrance).

On the CD

The Full Q-Learning program on the CD shows this scenario in operation. You can

PROGRAM

run anynumber of fast iterations without display or select to display an iteration. Run
enough iterations (20,000 or so should do) and you should see noticeably competent
tactics.

The guard characters move to appropriate defensive locations. Initially, they take
up positions further from the entrance, but fall back when the player is sighted.

7.6.9 OTHER IDEAS IN REINFORCEMENT LEARNING

Reinforcement learning is a big topic, and one that we couldn’t possibly exhaust here.
Because there has been such minor use of reinforcement learning in games, it is diffi-
cult to say what the most significant variations will be.

Q-learning is a well-established standard in reinforcement learning and has been
applied to a huge range of problems. The remainder of this section provides a quick
overview of other algorithms and applications.

TD

Q-learning is one of a family of reinforcement learning techniques called Temporal
Difference algorithms (TD for short). TD algorithms have learning rules that update
their value based on the reinforcement signal and on previous experience at the same
state.

The basic TD algorithm stores values on a per-state basis, rather than using state–
action pairs. They can therefore be significantly lighter on memory use, if there are
many actions per state.

Because we are not storing actions as well as states, the algorithm is more reliant
on actions leading to a definite next state. Q-learning can handle a much greater de-
gree of randomness in the transition between states than vanilla TD.
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Aside from these features, TD is very similar to Q-learning. It has a very similar
learning rule, has both alpha and beta parameters, and responds similarly to their
adjustment.

Off-Policy and On-Policy Algorithms

Q-learning is an off-policy algorithm. The policy for selecting the action to take isn’t
a core part of the algorithm. Alternative strategies can be used, and as long as they
eventually visit all possible states, the algorithm is still valid.

On-policy algorithms have their exploration strategy as part of their learning. If a
different policy is used, the algorithm might not reach a reasonable solution. Original
versions of TD had this property. Their policy (choose the action that is most likely
to head to a state with a high value) is intrinsically linked to their operation.

TD in Board Game AI

A simplified version of TD was used in Samuel’s checkers playing program, one of the
most famous programs in AI history. Although it omitted some of the later advances
in reinforcement learning which make up a regular TD algorithm, it had the same
approach.

Another modified version of the TD was used in the famous Backgammon play-
ing program devised by Gerry Tesauro. It succeeded in reaching international-level
play and contributed insights to Backgammon theory used by expert players. Tesauro
combined the reinforcement learning algorithm with a neural network.

Neural Networks for Storage

As we have seen, memory is a significant limiting factor to the size of reinforcement
learning problems that can be tackled. It is possible to use a neural network to act as a
storage medium for Q-values (or state values, called V, in the regular TD algorithm).

Neural networks (as we will see in the next section) also have the ability to gen-
eralize and find patterns in data. Previously, I mentioned that reinforcement learning
cannot generalize from its experience: if it works out that shooting a guard in one
situation is a good thing, it will not immediately assume that shooting a guard in an-
other situation is good. Using neural networks can allow the reinforcement learning
algorithm to perform this kind of generalization. If the neural network is told that
shooting an enemy in several situations has a high Q-value, it is likely to generalize
and assume that shooting an enemy in other situations is also a good thing to do.

On the downside, neural networks are unlikely to return the same Q-value that
was given to them. The Q-value for a state–action pair will fluctuate over the course
of learning, even when it is not being updated (particularly if it is not, in fact). The
Q-learning algorithm is therefore not guaranteed to come to a sensible result. The
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neural network tends to make the problem more multi-modal. As we saw in the pre-
vious section, multi-modal problems tend to produce sub-optimal character behav-
ior.

So far I am not aware of any developers who have used this combination success-
fully, although its success in the TD gammon program suggests that its complexities
can be tamed.

Actor–Critic

The actor–critic algorithm keeps two separate data structures: one of values used in
the learning rule (Q-values, or V-values, depending on the flavor of learning) and
another set that is used in the policy.

The eponymous actor is the exploration strategy; the policy that controls which
actions are selected. This policy receives its own set of feedback from the critic, which
is the usual learning algorithm. So as rewards are given to the algorithm, they are used
to guide learning in the critic, which then passes on a signal (called a critique) to the
actor, which uses it to guide a simpler form of learning.

The actor can be implemented in more than one way. There are strong candidates
for policies that support criticism. The critic is usually implemented using the basic
TD algorithm, although Q-learning is also suitable.

Actor–critic methods have been suggested for use in games by several developers.
Their separation of learning and action theoretically provides greater control over
decision making. In practice, I feel that the benefit is marginal at best. But I wait to
be proved wrong by a developer with a particularly successful implementation.

7.7 ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANN, or just neural networks for short) were at the van-
guard of the new “biologically inspired” computing techniques of the 1970s. They are
a widely used technique suitable for a good range of applications.

Like many biologically inspired techniques, collectively called Natural Computing
(NC), they have been the subject of a great deal of unreasonable hype. In games, they
attract a vocal following of pundits, particularly on websites and forums, who see
them as a kind of panacea for the problems in AI.

Developers who have experimented with neural networks for large-scale behavior
control have been left in no doubt of the approaches weaknesses. The combined hype
and disappointment has clouded the issue. AI-savvy hobbyists can’t understand why
the industry isn’t using them more widely, and developers often see them as being
useless and a dead end.

Personally, I’ve never used a neural network in a game. I have built neural net-
work prototypes for a couple of AI projects, but none made it through to playable
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code. I can see, however, that they are a useful technique in the developer’s armory. In
particular, I would strongly consider using them as a classification technique, which
is their primary strength.

In this section I can’t possibly hope to cover more than the basics of neural net-
works. It is a huge subject, full of different kinds of network and learning algorithms
specialized for very small sets of task. Very little neural network theory is applicable
to games, however. So I’ll stick to the basic technique with the widest usefulness. The
references in Appendix A give a good list of introductory texts for neural networks.

Neural Network Zoology

There is a bewildering array of different neural networks. They have evolved for spe-
cialized use, giving a branching family tree of intimidating depth. Practically every-
thing I can think of to say about neural networks has exceptions. There are few things
you can say about a neural network that is true of all of them.

So I’m going to steer a sensible course. I’m going to focus on a particular neural
network in more detail: the multi-layer perceptron. I’ll describe one particular learn-
ing rule: the backpropagation algorithm (backprop for short). I’ll describe other tech-
niques in passing.

It is an open question as to whether multi-player perceptrons are the most suited
to game applications. They are the most common form of ANN, however. Until de-
velopers find an application that is obviously “killer apps” for neural networks, I think
it is probably best to start with the most widespread technique.

7.7.1 OVERVIEW

Neural networks consist of a large number of relatively simple nodes, each running
the same algorithm. These nodes are the artificial neurons, originally intended to sim-
ulate the operation of a single brain cell. Each neuron communicates with a subset of
the other artificial neurons in the network. They are connected in patterns character-
istic of the neural network type. The pattern is called the neural network’s architecture
or topology.

Architecture

Figure 7.18 shows a typical architecture for a multi-layer perceptron (MLP) network.
Perceptrons (the specific type of artificial neuron used) are arranged in layers, where
each perceptron is connected to all those in the layers immediately in front of and
behind it.

The architecture on the right shows a different type of neural network: a Hopfield
network. Here the neurons are arranged in a grid, and connections are made between
neighboring points in the grid.
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Figure 7.18 ANN architectures (MLP and Hopfield)

Feedforward and Recurrence

In many types of neural networks, some connections are specifically inputs and the
others are outputs. The multi-layer perceptron takes inputs from all the nodes in the
preceding layer and sends its single output value to all the nodes in the next layer. It is
known as a feedforward network for this reason. The leftmost layer (called the input
layer) is provided input by the programmer, and the output from the rightmost layer
(called the output layer) is the output finally used to do something useful.

Feedforward networks can have loops: connections that lead from a later layer
back to earlier layers. This architecture is known as a recurrent network. Recurrent
networks can have very complex and unstable behavior and are typically much more
difficult to control.

Other neural networks have no specific input and output. Each connection is both
input and output at the same time.

Neuron Algorithm

As well as architecture, neural networks specify an algorithm. At any time the neuron
has some state; you can think of it as an output value from the neuron (it is normally
represented as a floating point number).

The algorithm controls how a neuron should generate its state based on its inputs.
In a multi-layer perceptron network, the state is passed as an output to the next layer.
In networks without specific inputs and outputs, the algorithm generates a state based
on the states of connected neurons.

The algorithm is run by each neuron in parallel. For game machines that don’t
have parallel capabilities (at least not of the right kind), the parallelism is simulated by
getting each neuron to carry out the algorithm in turn. It is possible, but not common,
to make different neurons have completely different algorithms.
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Figure 7.19 Perceptron algorithm

We can treat each neuron as an individual entity running its algorithm. The per-
ceptron algorithm is shown figuratively in Figure 7.19.

Each input has an associated weight. The input values (we’re assuming that they’re
zero or one here) are multiplied by the corresponding weight. An additional bias
weight is added (it is equivalent to another input whose input value is always one).
The final sum is then passed through a threshold function. If the sum is less than zero,
then the neuron will be off (have a value of zero); otherwise, it will be on (have a value
of one).

The threshold function turns an input weight sum into an output value. We’ve
used a hard step function (i.e., it jumps right from output = 0 to output = 1), but
there are a large number of different functions in use. In order to make learning pos-
sible, the multi-layer perceptron algorithm uses slightly smoother functions, where
values close to the step get mapped to intermediate output values. We’ll return to this
in the next section.

Learning Rule

So far we haven’t talked about learning. Neural networks differ in the way they im-
plement learning. For some networks learning is so closely entwined with the neuron
algorithm that they can’t be separated. In most cases, however, the two are quite sep-
arate.

Multi-layer perceptrons can operate in two modes. The normal perceptron al-
gorithm, described in the previous section, is used to put the network to use. The
network is provided with input in its input layer; each of the neurons does its stuff,
and then the output is read from the output layer. This is typically a very fast process
and involves no learning. The same input will always give the same output (this isn’t
the case for recurrent networks, but we’ll ignore these for now).

To learn, the multi-layer perceptron network is put in a specific learning mode.
Here another algorithm applies: the learning rule. Although the learning rule uses the
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original perceptron algorithm, it is more complex. The most common algorithm used
in multi-layer perceptron networks is backpropagation. Where the network normally
feedsforward, with each layer generating its output from the previous layer, back-
propagation works in the opposite direction; working backward from the output.

At the end of this section, we’ll look at Hebbian learning: a completely different
learning rule that may be useful in games. For now, we’ll stick with backpropagation
and work through the multi-layer perceptron algorithm.

7.7.2 THE PROBLEM

We’d like to group a set of input values (such as distances to enemies, health values for
friendly units, or ammo levels) together so that we can act differently for each group.
For example, we might have a group of “safe” situations, where health and ammo
is high and enemies are a long way off. Our AI can go looking for power-ups or lay
a trap in this situation. Another group might represent life-threatening situations
where ammo is spent, health is perilously low, and enemies are bearing down. This
might be a good time to run away in blind panic. So far, this is simple (and a decision
tree would suffice). But say we also wanted a “fight-valiantly” group. If the character
was healthy, with ammo and enemies nearby, it would naturally do its stuff. But it
might do the same if it was on the verge of death, but had ammo, and it might do
the same even in improbable odds to altruistically allow a squad member to escape.
It may be a last stand, but the results are the same.

As these situations become more complex, and the interactions get more involved,
it can become difficult to create the rules for a decision tree or fuzzy state machine.

We would like a method that learns from example (just like decision tree learn-
ing), allowing us to give a few tens of examples. The algorithm should generalize from
examples to cover all eventualities. It should also allow us to add new examples during
the game so that we can learn from mistakes.

What about Decision Tree Learning?

We could use decision tree learning to solve this problem: the output values corre-
spond to the leaves of the decision tree, and the input values are used in the decision
tree tests. If we used an incremental algorithm (such as ID4), we would also be able
to learn from our mistakes during the game. For classification problems like this, de-
cision tree learning and neural networks are viable alternatives.

Decision trees are accurate. They give a tree that correctly classifies from the given
examples. To do this, they make hard and fast decisions. When they see a situation
which wasn’t represented in their examples, they will make a decision based on it.
Because their decision making is so hard and fast, they aren’t so good at generalizing
into grey areas between examples. Neural networks are not so accurate. They may
even give the wrong responses for the examples provided. They are better, however,
at generalizing sensibly into those grey areas.
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This trade-off between accuracy and generalization is the basis of the decision you
must make when considering which technique to use. In my work, I’ve come down
on the side of accuracy, but every application has its own peculiarities.

7.7.3 THE ALGORITHM

As an example for the algorithm, we will use a variation of the tactical situation we
looked at previously. An AI-controlled character makes use of 19 input values: the
distance to the nearest 5 enemies, the distance to the nearest 4 friends along with
their health and ammo values, and the health and ammo of the AI. We will assume
that there are five different output behaviors: run-away, fight-valiantly, heal-friend,
hunt-enemy, and find-power-up. We assume that we have an initial set of 20–100
scenarios, each one a set of inputs with the output we’d like to see.

We use a network with three layers: input layer and output layer, as previously
discussed, plus an intermediate (called a hidden) layer. The input layer has the same
number of nodes as there are values in our problem: 19. The output layer has the
same number of nodes as there are possible outputs: 5. Hidden layers are typically
at least as large as the input layer and often much larger. The structure is shown in
Figure 7.20, with some of the nodes omitted for clarity.

Each perceptron has a set of weights for each of the neurons in the previous layer.
It also holds a bias weight. Input layer neurons do not have any weights. Their value
is simply set by the corresponding values in the game.

We split our scenarios into two groups: a training set (used to do the learning) and
a testing set (used to check on how learning is going). Ten training and ten testing
examples would be an absolute minimum for this problem. Fifty of each would be
much better.

Initial Setup and Framework

We start by initializing all the weights in the network to small random values.
We perform a number of iterations of the learning algorithm (typically hundreds

or thousands). For each iteration we select an example scenario from the training set.
Usually, the examples are chosen in turn, looping back to the first example after all of
them have been used.

At each iteration we perform two steps. Feedforward takes the inputs and guesses
an output, and backpropagation modifies the network based on the real output and
the guess.

After the iterations are complete, and the network has learned, we can test if the
learning was successful. We do this by running the feedforward process on the test set
of examples. If the guessed output matches the output we were looking for, then it is
a good sign that the neural network has learned properly. If it hasn’t, then we can run
some more algorithms.
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Figure 7.20 Multi-layer perceptron architecture

If the network continually gets the test set wrong, then it is an indication that
there aren’t enough examples in the training set or that they aren’t similar enough to
the test examples. We should give it more varied training examples.

Feedforward

First, we need to generate an output from the input values in the normal feedforward
manner. We set the states of the input layer neurons directly. Then for each neuron
in the hidden layer, we get it to perform its neuron algorithm: summing the weighted
inputs, applying a threshold function, and generating its output. We can then do the
same thing for each of the output layer neurons.

We need to use a slightly different threshold function from that described in the
introduction. It is called the sigmoid function, and it is shown in Figure 7.21. For
input values far from zero, it acts just like the step function. For input values near to
zero, it is smoother, giving us intermediate values. We’ll use this property to perform
learning. The equation of the function is

f (x) = 1

1 + e−hx
,
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Figure 7.21 The sigmoid threshold function

where h is a tweakable parameter that controls the shape of the function. The larger
the value of h, the nearer to the step function this becomes. The best value of h de-
pends on the number of neurons per layer and the size of the weights in the network.
Both factors tend to lower the h value. Many texts recommend you try a value of 1,
although I tend to find higher values (even as high as 10) are okay for the small net-
works used in games.

Backpropagation

To learn, we compare the state of the output nodes with the current pattern. The de-
sired output is zero for all output nodes, except the one corresponding to our desired
action. We work backward, a layer at a time, from the output layer, updating all the
weights.

Let the set of neuron states be oj, where j is the neuron, and wij is the weight
between neurons i and j. The equation for the updated weight value is

w′
ij = wij + ηδjoi,

where η is a gain term, and δj is an error term (both of which we’ll discuss below).
The equation says that we calculate the error in the current output for a neuron,

and we update its weights based on which neurons affected it. So if a neuron comes
up with a bad result (i.e., we have a negative error term), we go back and look at
all its inputs. For those inputs that contributed to the bad output, we tone down
the weights. On the other hand, if the result was very good (positive error term),
we go back and strengthen weights from neurons that helped it. If the error term is
somewhere in the middle (around zero), we make very little change to the weight.

The Error Term

The error term, δj, is calculated slightly differently depending on whether we are con-
sidering an output node (for which our pattern gives the output we want) and hidden
nodes (where we have to deduce the error).
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For the output nodes, the error term is given by

δj = oj(1 − oj)(tj − oj),

where tj is the target output for node j. For hidden nodes, the error term relates the
errors at the next layer up:

δj = oj(1 − oj)
∑

k

wjkδk,

where k is the set of nodes in the next layer up. This formula says that the error for a
neuron is equal to the total error it contributes to the next layer. The error contributed
to another node is wkjδk, the weight to that node multiplied by the error of that node.

For example, let’s say that neuron A is on. It contributes strongly to neuron B
which is also on. We find that neuron B has a high error, so neuron A has to take
responsibility for influencing B to make that error. The weight between A and B is
therefore weakened.

The Gain

The gain term, η, controls how fast learning progresses. If it is close to zero, then the
new weight will be very similar to the old weight. If weights are changing slowly, then
learning is correspondingly slow. If η is a larger value (it is rarely greater than one,
although it could be), then weights are changed at a greater rate.

Low-gain terms produce relatively stable learning. In the long run they produce
better results. The network won’t be so twitchy when learning and won’t make major
adjustments in reaction to a single example. Over many iterations the network will
adjust to errors it sees many times. Single error values have only a minor effect.

A high-gain term gives you faster learning and can be perfectly useable. It has the
risk of continually making large changes to weights based on a single input–output
example.

An initial gain of 0.3 serves as a starting point.
Another good compromise is to use a high gain initially (0.7, say) to get weights

into the right vicinity. Gradually, the gain is reduced (down to 0.1, for example) to
provide fine tuning and stability.

7.7.4 PSEUDO-CODE

We can implement a backpropagation algorithm for multi-layer perceptrons in the
following form:

1 class MLPNetwork:
2
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3 # Holds input perceptrons
4 inputPerceptrons
5

6 # Holds hidden layer perceptrons
7 hiddenPerceptrons
8

9 # Holds output layer perceptrons
10 outputPerceptrons
11

12 # Learns to generate the given output for the
13 # given input
14 def learnPattern(input, output):
15

16 # Generate the unlearned output
17 generateOutput(input)
18

19 # Perform the backpropagation
20 backprop(output)
21

22 # Generates outputs for the given set of inputs
23 def generateOutput(input):
24

25 # Go through each input perceptron and set its state.
26 for index in 0..inputPerceptrons.length():
27 inputPerceptrons[index].setState(input[index])
28

29 # Go through each hidden perceptron and feedforward
30 for perceptron in hiddenPerceptrons:
31 perceptron.feedforward()
32

33 # And do the same for output perceptrons
34 for perceptron in outputPerceptrons:
35 perceptron.feedforward()
36

37 # Runs the backpropagation learning algorithm. We
38 # assume that the inputs have already been presented
39 # and the feedforward step is complete.
40 def backprop(output):
41

42 # Go through each output perceptron
43 for index in 0..outputPerceptrons.length():
44

45 # Find its generated state
46 perceptron = outputPerceptrons[index]
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47 state = perceptron.getState()
48

49 # Calculate its error term
50 error = state * (1-state) * (output[index]-state)
51

52 # Get the perceptron to adjust its weights
53 perceptron.adjustWeights(error)
54

55 # Go through each hidden perceptron
56 for index in 0..hiddenPerceptrons.length():
57

58 # Find its generated state
59 perceptron = outputPerceptrons[index]
60 state = perceptron.getState()
61

62 # Calculate its error term
63 sum = 0
64 for output in outputs:
65 sum += output.getIncomingWeight(perceptron) *
66 output.getError()
67 error = state * (1-state) * sum
68

69 # Get the perceptron to adjust its weights
70 perceptron.adjustWeights(error)

7.7.5 DATA STRUCTURES AND INTERFACES

The code above wraps the operation of a single neuron into a Perceptron class and
gets the perceptron to update its own data. The class can be implemented in the fol-
lowing way:

1 class Perceptron:
2

3 # Each input into the perceptron requires two bits of
4 # data, held in this structure
5 struct Input:
6

7 # The perceptron that the input arrived from
8 inputPerceptron
9

10 # The input weight, initialized to a small random
11 # value
12 weight
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13

14 # Holds a list of inputs for the perceptron
15 inputs
16

17 # Holds the current output state of the perceptron
18 state
19

20 # Holds the current error in the perceptron’s output
21 error
22

23 # Performs the feedforward algorithm
24 def feedforward():
25

26 # Go through each input and sum its contribution
27 sum = 0
28 for input in inputs:
29 sum += input.inputPerceptron.getState() *
30 input.weight
31

32 # Apply the thresholding function
33 self.state = threshold(sum)
34

35 # Performs the update in the backpropagation algorithm
36 def adjustWeights(currentError):
37

38 # Go through each input
39 for input in inputs:
40

41 # Find the change in weight required
42 deltaWeight = gain * currentError *
43 input.inputPerceptron.getState()
44

45 # Apply it
46 input.weight += deltaWeight
47

48 # Store the error, perceptrons in preceding layers
49 # will need it
50 error = currentError
51

52 # Finds the weight of the input that arrived from the
53 # given perceptron. This is used in hidden layers to
54 # calculate the outgoing error contribution.
55 def getIncomingWeight(perceptron):
56
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57 # Find the first matching perceptron in the inputs
58 for input in inputs:
59 if input.inputPerceptron == perceptron:
60 return input.weight
61

62 # Otherwise we have no weight
63 return 0
64

65 # Gets and sets the current state and gets the error
66 def getState(): return state
67 def setState(newState): state = newState
68 def getError(): return error

In this code I’ve assumed the existence of a threshold() function that can perform
the thresholding. This can be a simple sigmoid function, implemented as

1 def threshold(input):
2 return 1.0 / (1.0 + pow(e, -width, x))

where width is the degree to which the threshold is sharp, as discussed previously.
To support other kinds of thresholding (such as the radial basis function described
later), we can replace this with a different formula.

The code also makes reference to a gain variable, which is the global gain term for
the network.

7.7.6 IMPLEMENTATION CAVEATS

In a production system,it would be inadvisable to implement getIncomingWeight as
a sequential search through each input. Most times connection weights arearranged
in a data array. Neurons are numbered, and weights can be directly accessed from

LIBRARY

the array by index. This is the approach used on the CD. However, the direct array
accessing makes the overall flow of the algorithm more complex. The pseudo-code
illustrates what is happening at each stage. The pseudo-code also doesn’t assume any
particular architecture. Each perceptron makes no requirements of which perceptrons
form its inputs.

Beyond optimizing the data structures, neural networks are intended to be paral-
lel. We can make huge time savings by changing our implementation style. By repre-
senting the neuron states and weights in separate arrays, we can write both the feed-
forward and backpropagation steps using single instruction multiple data (SIMD)
operations. Not only are we working on four neurons at a time, but we are also mak-
ing sure that the relevant data is stored in a cache. In experiments, I get almost an
order of magnitude speed up on larger networks.
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On the CD

The code on the CD provides a generic multi-layer perceptron implementation suit-

PROGRAM

able for experimenting with. There are a handful of optimizations, such as the use of
SIMD, which I would use in production code, but which reduces the flexibility of the
implementation for general use.

The Neural Network program on the CD allows you to see learning in progress
for a small network. You can add new training examples and give it test input.

7.7.7 PERFORMANCE

The algorithm is O(nw) in memory, where n is the number of perceptrons, and w is
the number of inputs per perceptron. In time, the performance is also O(nw) for both
feedforward (generateOutputs()) and backpropagation (backprop()). I have ignored
the use of a search in the getIncomingWeights method of the perceptron class, as given
in the pseudo-code. As we saw in the implementation caveats, this chunk of the code
will normally be optimized out.

7.7.8 OTHER APPROACHES

I could fill a sizeable book with neural network theory, but most of it would be of only
marginal use to games. By way of a round up and pointers to other fields, I think it is
worth talking about three other techniques: radial basis functions, weakly supervised
learning, and Hebbian learning. The first two I’ve used in practice, and the third is a
technique beloved of a former colleague of mine.

Radial Basis Function

The threshold function we used earlier is called the sigmoid basis function. A basis
function is simply a function used as the basis of an artificial neuron’s behavior.

The action of a sigmoid basis function is to split its input into two categories. High
values are given a high output, and low values are given a low output. The dividing
line between the two categories is always at zero. The function is performing a simple
categorization. It distinguishes high from low values.

So far we’ve included the bias weight as part of the sum before thresholding. This
is sensible from an implementation point of view. But we can also view the bias as
changing where the dividing line is situated. For example, let’s take a since perceptron
with a single input. Figure 7.22 (left) shows the output from the perceptron when
the bias is zero. Figure 7.22 (right) shows the same output from the same perceptron
when the bias is one. Because the bias is always added to the weighted inputs, it skews
the results.
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Figure 7.23 The radial basis function

This is deliberate, of course. You can think of each neuron as something like a de-
cision node in a decision tree: it looks at an input and decides which of two categories
the input is in. It makes no sense, then, to always split the decision at zero. We might
want 0.5 to be in one category and 0.9 in another. The bias allows us to divide the
input at any point.

But categorizations can’t always be made at a single point. Often, it is a range of
inputs that we need to treat differently. Only values within the range should have an
output of one; higher or lower values should get zero output. A big enough neural
network can always cope with this situation. One neuron acts as the low bound, and
another neuron acts as the high bound. But it does mean you need all those extra
neurons.

Radial basis functions address this issue by using the basis function shown in
Figure 7.23.

Here the range is explicit. The neuron controls the range, as before, using the
bias weight. The spread (the distance between the minimum and maximum input for
which the output is >0.5) is controlled by the overall size of the weights. If the input
weights are all high, then the range will be squashed. If the weights are low, then the
range will be widened. By altering the weights alone (including the bias weight), any
minimum and maximum values can be learned.
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Radial basis functions are more complex than the sigmoid basis function. Rather
than a single function, you use a family of them, with an additional weighting pa-
rameter for each. Refer to the references in Appendix A for a complete treatment of
radial basis networks.

Weakly Supervised Learning

The algorithm above relies on having a set of examples. The examples can be hand
built or generated from experience during the game.

Examples are used in the backpropagation step to generate the error term. The
error term then controls the learning process. This is called supervised learning: we
are providing correct answers for the algorithm.

An alternative approach used in online learning is weakly supervised learning
(sometimes called unsupervised learning, although strictly that is something else
again). Weakly supervised learning doesn’t require a set of examples. It replaces them
with an algorithm that directly calculates the error term for the output layer.

For instance, consider the tactical neural network example again. The character is
moving around the level, making decisions based on its nearby friends and enemies.
Sometimes the decisions it makes will be poor: it might be trying to heal a friend when
suddenly an enemy attack is launched, or it might try to find pick-ups and wander
right into an ambush. A supervised learning approach would try to calculate what the
character should have done in each situation and then would update the network by
learning this example, along with all previous examples.

A weakly supervised learning approach recognizes that it isn’t easy to say what
the character should have done, but it is easy to say that what the character did do
was wrong. Rather than come up with a solution, it calculates an error term based on
how badly the AI was punished. If the AI and all its friends are killed, for example,
the error will be very high. If it only suffered a couple of hits, then the error will be
small. We can do the same thing for successes, giving positive feedback for successful
choices.

The learning algorithm works the same way as before, but uses the generated error
term for the output layer rather than one calculated from examples. The error terms
for hidden layers remain the same as before.

I have used weakly supervised learning to control characters in a game prototype
(aimed at simulation for military training). It proved to be a simple way to bootstrap
character behavior and get some interesting variations without needing to write a
large library of behaviors.

Weakly supervised learning has the potential to learn things that the developer
doesn’t know. This potential is exciting admittedly, but it has an evil twin. The neural
network can easily learn things that the developer doesn’t want it to know—things
that the developer can plainly see are wrong. In particular, it can learn to play in a
boring and predictable way. Earlier I mentioned the prospect of a character making
a last stand when the odds were poor for its survival. This is an enjoyable AI to play
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against, one with personality. If the character was learning solely based on results,
however, it would never learn to do this; it would run away. In this case (as with the
vast majority of others) the game designer knows best.

Hebbian Learning

Hebbian learning is an unsupervised technique. It requires neither examples nor any
generated error values. It tries to categorize its inputs based only on patterns it sees
there.

Although it can be used in any network, Hebbian learning is most commonly
used with a grid architecture, where each node is connected to its neighbors (see
Figure 7.24).

Neurons have the same non-learning algorithm as previously. They sum a set of
weighted inputs and decide their state based on a threshold function. In this case they
are taking input from their neighbors rather than from the neurons in the preceding
layer.

Hebb’s learning rule says that if a node tends to have the same state as a neighbor,
then the weight between those two nodes should be increased. If it tends to have a
different state, then the weight should be decreased.

The logic is simple. If two neighboring nodes are often having the same state
(either both on or both off), then it stands to reason that they are correlated. If one
neuron is on, we should increase the chance that the other is on also by increasing
the weight. If there is no correlation, then the neurons will have the same state about
as often as not, and their connection weight will be increased about as often as it is
decreased. There will be no overall strengthening or weakening of the connection.

Donald Hebb suggested his learning rule based on the study of real neural activity
(well before ANN were invented), and it is considered one of the most biologically
plausible neural network techniques.

Hebbian learning is used to find patterns and correlations in data, rather than to
generate output. It can be used to regenerate gaps in data.

Figure 7.24 Grid architecture for Hebbian learning
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Figure 7.25 Influence mapping with Hebbian learning

For example, Figure 7.25 shows a side in an RTS with a patchy understanding of
the structure of enemy forces (because of fog-of-war). We can use a grid-based neural
network with Hebbian learning. The grid represents the game map. If the game is tile
based, it might use 1, 4, or 9 tiles per node.

The state of each neuron indicates whether the corresponding location in the
game is safe or not. With full knowledge of many games, the network can be trained
by giving a complete set of safe and dangerous tiles each turn (generated by influence
mapping, for example—see Chapter 6, Tactical and Strategic AI).

After a large number of games, the network can be used to predict the pattern
of safety. The AI sets the safety of the tiles it can see as state values in the grid of
neurons. These values are clamped and are not allowed to change. The rest of the
network is then allowed to follow its normal sum-and-threshold algorithm. This may
take a while to settle down to a stable pattern, but the result indicates which of the
non-visible areas are likely to be safe and which should be avoided.
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8
BOARD GAMES

The earliest application of AI to computer games was as opponents in simulated ver-
sions of common board games. In the West, Chess is the archetypal board game, and
the last 40 years has seen a dramatic increase in the capabilities of Chess-playing com-
puters.

In the same time frame, other games such as Tic-Tac-Toe, Connect Four, Reversi
(Othello), and Go have been studied, and AI of various qualities has been created.

The AI techniques needed to make a computer play board games are very different
to the others in this book. For the real-time games that dominate the charts, this kind
of AI only has limited applicability. It is occasionally used as a strategic layer, making
long-term decisions in war games.

The best AI opponents for Chess, Draughts, Backgammon, and Reversi all use
dedicated hardware, algorithms, or optimizations devised specifically for the nuances
of their strategy. They can compete successfully with the best players in the world.

The basic underlying algorithms are shared in common, however, and can find
application in any board game. In this chapter we will look at the minimax family of
algorithms, the most popular board game AI techniques. Recently, a new family of
algorithms has proven to be superior in many applications: the memory-enhanced
test driver (MTD) algorithms. Both minimax and MTD are tree-search algorithms:
they require a special tree representation of the game.

These algorithms are perfect for implementing the AI in board games. The final
part of this chapter looks at why commercial turn-based strategy games are often too
complex to take advantage of this AI; they require other techniques from the rest of
this book.

If you’re not interested in board game AI, you can safely skip this chapter.

647
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8.1 GAME THEORY

Game theory is a mathematical discipline concerned with the study of abstracted,
idealized games. It has only a very weak application to real-time computer games,
but the terminology used in turn-based games is derived from it. This section will
introduce enough game theory to allow you to understand and implement a turn-
based AI, without getting bogged down in the finer mathematical points.

8.1.1 TYPES OF GAMES

Game theory classifies games according to the number of players, the kinds of goal
those players have, and the information each player has about the game.

Number of Players

The board games that inspired turn-based AI algorithms almost all have two players.
Most of the popular algorithms are therefore limited to two players in their most
basic form. They can be adapted for use with larger numbers, but it is rare to find
descriptions of the algorithms for anything other than two players.

In addition, most of the optimizations for these algorithms assume that there are
only two players. While the basic algorithms are adaptable, most of the optimizations
can’t be used as easily.

Plies, Moves, and Turns

It is common in game theory to refer to one player’s turn as a “ply” of the game. One
round of all the players’ turns is called a “move.”

This originates in Chess, where one move consists of each player taking one turn.
Because most turn-based AI is based on Chess-playing programs, the word “move” is
often used in this context.

There are many more games, however, that treat each player’s turn as a separate
move, and this is the terminology normally used in turn-based strategy games. This
chapter uses the words “turn” and “move” interchangeably and doesn’t use “ply” at
all. You may need to watch for the usage in other books or papers.

The Goal of the Game

In most strategy games the aim is to win. As a player, you win if all your opponents
lose. This is known as a zero-sum game: your win is your opponent’s loss. If you
scored 1 point for winning, then it would be equivalent to scoring −1 for losing. This
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wouldn’t be the case, for example, in a casino game, when you might all come out
worse off.

In a zero-sum game it doesn’t matter if you try to win or if you try to make your
opponent lose; the outcome is the same. For a non-zero-sum game, where you could
all win or all lose, you’d want to focus on your own winning, rather than your oppo-
nent losing (unless you are very selfish, that is).

For games with more than two players, things are more complex. Even in a zero-
sum game, the best strategy is not always to make each opponent lose. It may be better
to gang up on the strongest opponent, benefiting the weaker opponents, and hoping
to pick them off later.

Information

In games like Chess, Draughts, Go, and Reversi, both players know everything there
is to know about the state of the game. They know what the result of every move will
be and what the options will be for the next move. They know all this from the start
of the game. This kind of game is called “perfect information.” Although you don’t
know which move your opponent will choose to make, you have complete knowledge
of every move your opponent could possibly make and the effects it would have.

In a game such as Backgammon, there is a random element. You don’t know in
advance of your dice roll what moves you will be allowed to make. Similarly, you can’t
know what moves your opponent can play, because you can’t predict your opponent’s
dice roll. This kind of game is called “imperfect information.”

Most turn-based strategy games are imperfect information; there is some ran-
dom element to carrying out actions (a skill check or randomness in combat, for
example). Perfect information games are often easier to analyze, however. Many of
the algorithms and techniques for turn-based AI assume that there is perfect infor-
mation. They can be adapted for other types of game, but they often perform more
poorly as a result.

Applying Algorithms

The best known and most advanced algorithms for turn-based games are designed to
work with two-player, zero-sum, perfect information games.

If you are writing a Chess-playing AI, then this is exactly the implementation you
need. But many turn-based computer games are more complicated, involving more
players and imperfect information.

This chapter introduces algorithms in their most common form: for two-player,
perfect information games. As we’ll see, they will need to be adapted for other kinds
of games.
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8.1.2 THE GAME TREE

Any turn-based game can be represented as a game tree. Figure 8.1 shows part of the
tree for a game of Tic-Tac-Toe. Each node in the tree represents a board position, and
each branch represents one possible move. Moves lead from one board position to
another.

Each player gets to move at alternating levels of the tree. Because the game is turn
based, the board only changes when one player makes a move.

The number of branches from each board is equal to the number of possible
moves that the player can make. In Tic-Tac-Toe this number is nine on the first
player’s turn, then eight, and so on. In many games there can be hundreds or even
thousands of possible moves each player can make.

Some board positions don’t have any possible moves. These are called terminal
positions, and they represent the end of the game. For each terminal position, a final
score is given to each player. This can be as simple as +1 for a win and −1 for a loss,
or it can reflect the size of the win. Draws are also allowed, scoring 0. In a zero-sum
game, the final scores for each player will add up to zero. In a non-zero-sum game,
the scores will reflect the size of each player’s personal win or loss.

Most commonly, the game tree is represented in the abstract without board dia-
grams, but showing the final scores. Figure 8.2 assumes the game is zero sum, so it
only shows scores for player one.

Branching Factor and Depth

The number of branches at each branching point in the tree is called the branching
factor, and it is a good indicator of how difficult a computer will find it to play the
game.

Indicates that
other unshown
options exist

...

.........

Figure 8.1 Tic-Tac-Toe game tree
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Figure 8.2 Abstract game tree showing terminal and players’ moves

Different games also have different depths of tree: a different maximum number
of turns. In Tic-Tac-Toe each player takes turns to add their symbol to the board.
There are nine spaces on the board, so there are a maximum of nine turns. The same
thing happens in Reversi, which is played on an eight-by-eight board. In Reversi,
four pieces are on the board at the start of the game, so there can be a maximum
of 60 turns. Games like Chess can have an almost infinite number of turns (the 50-
move rule in competition Chess limits this). The game tree for a game such as this
would be immensely deep, even if the branching factor was relatively small.

Computers find it easier to play games with a small branching factor and deep
tree than games with a shallow tree but a huge branching factor.

Transposition

In many games it is possible to arrive at the same board position several times in a
game. In many more games it is possible to arrive at the same position by different
combinations of moves.

Having the same board position from different sequences of moves is called trans-
position. This means that in most games the game tree isn’t a tree at all, branches can
merge as well as split.

Split-Nim, a variation of the Chinese game of Nim, starts with a single pile of
coins. At each turn, alternating players have to split one pile of coins into two non-
equal piles. The last player to be able to make a move wins. Figure 8.3 shows a com-
plete game tree for the game of 7-Split-Nim (starting with 7 coins in the pile). You
can see that there are a large number of different merging branches.

Minimax-based algorithms (those we’ll look at in the next section) are designed
to work with pure trees. They can work with merging branches, but they duplicate
their work for each merging branch. They need to be extended with transition tables
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Figure 8.3 The game tree of 7-Split-Nim

to avoid duplicating work when branches merge. The second set of key algorithms in
this chapter, MTD, is designed with transposition in mind.

8.2 MINIMAXING

A computer plays a turn-based game by looking at the actions available to it this move
and selecting one of them. In order to select one of the moves, it needs to know what
moves are better than others. This knowledge is provided to the computer by the
programmer using a heuristic called the static evaluation function.

8.2.1 THE STATIC EVALUATION FUNCTION

In a turn-based game, the job of the static evaluation function is to look at the current
state of the board and score it from the point of view of one player.

If the board is a terminal position in the tree, then this score will be the final score
for the game. So if the board is showing checkmate to black, then its score will be +1
to black (or whatever the winning score is set to be), while white’s score will be −1. It
is easy to score a winning position: one side will have the highest possible score and
the other side will have the lowest possible score.

In the middle of the game, it is much harder to score. The score should reflect how
likely a player is to win the game from that board position. So if the board is showing
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an overwhelming advantage to one player, then that player should receive a score very
close to the winning score. In most cases the balance of winning or losing may not be
clear.

In the game of Reversi, for example, the player ending up with the most counters
of their color wins. But midway through the game, the best strategy is often to have
the least number of counters, because that gives you control of the initiative in the
game.

This is where knowledge of how to play the game is important. The game-playing
algorithms we will look at do not take into account any strategy. All the strategic
information, in the form of what kinds of positions to prefer, needs to be included in
the static evaluation function.

In Reversi, for example, if we want to prefer positions with fewer counters in the
middle-game, then the static evaluation function should return a higher score for this
kind of situation.

Range of the Function

In principle, the evaluation function can return any kind of number of any size. In
most implementations, however, it returns a signed integer. Several of the most com-
mon algorithms in this chapter rely on the evaluation function being an integer. In ad-
dition, integer arithmetic is faster than floating point arithmetic on most machines.

The range of possible values isn’t too important. Some algorithms work better
when the range of values is small (−100 to +100, for example), while some prefer
larger ranges. Much of the work on turn-based AI has resulted from Chess programs.
The scores in Chess are often given in terms of the “value” of a pawn. A common
scale is ±1000 for a win or loss, based on 10 points for the value of a pawn. This
allows strategic scoring to the level of one tenth the value of a pawn.

The range of scores returned should be less than the scores for winning or losing.
If a static evaluation function returns +1000 for a position that is very close to win-
ning, but only +100 for a win, then the AI will try not to win the game because being
close seems much more attractive.

Combining Scoring Functions

There can be any number of different scoring mechanisms all working at the same
time. Each can look for different strategic features of the game. One scoring mecha-
nism may look at the number of units each side controls, another may look at patterns
for territory control, and yet another might look for specific traps and danger areas.
There can be tens of scoring mechanisms in complex games.

Each separate scoring mechanism is then combined into one overall score. This
can be as simple as adding the scores together with a fixed weight for each. Samuel’s
Checkers program, a famous milestone in AI, used a weighted sum to combine its
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1 7 3

Figure 8.4 A one-ply decision making process

scoring mechanisms and then added a simple learning algorithm that could change
the weights based on its experience. Many games use different combinations of scores
at different stages of the game. It is customary in Chess, for example, to pay more
attention to the number of squares controlled at the start of the game than at the end
of the game.

In this sense, scoring functions are like the tactical analyses in Chapter 6: primitive
tactics are combined into a more sophisticated view of the quality of the situation.

Simple Move Choice

With a good static evaluation function, the computer can select a move by scoring the
positions that will result after making each possible move and choosing the highest
score. Figure 8.4 shows the possible moves for a player, scored with an evaluation
function. It is clear that making the second move will give the best board position, so
this is the move to be chosen.

Given a perfect evaluation function, this is all that the AI would need to do: look
at the result of each possible move and pick the highest score. Unfortunately, a perfect
evaluation function is pure fantasy; even the best real evaluation functions play poorly
when used this way. The computer needs to search, looking at the other player’s pos-
sible responses, responses to those responses, and so on.

This is the same process that human players carry out when they look ahead one
or more moves. Unlike human players, who have an intuitive sense of who is win-
ning, computer heuristics are usually fairly narrow, limited, and poor. The computer,
therefore, needs to look ahead many more moves than a person can.

The most famous search algorithm for games is minimax. In various forms it
dominated turn-based AI up to the last decade or so.

8.2.2 MINIMAXING

If I choose a move, I am likely to choose a move that produces a good position. We
can assume that I will choose the move which leads to the best position available to
me. In other words, on my moves I am trying to maximize my score (Figure 8.5).
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When my opponent moves, however, I assume they will choose the move that
leaves me in the worst available position. My opponent is trying to minimize my
score (Figure 8.6).

When I search for my opponent’s responses to my responses, I need to remember
that I am maximizing my score, while my opponent is minimizing my score. This
changing between maximizing and minimizing, as we search the game tree, is called
minimaxing.

The game trees in Figures 8.5 and 8.6 are only one move deep. In order to work
out what my best possible move is, I also need to consider my opponent’s responses.

In Figure 8.7, the scores for each board position are shown after two moves. If I
make move one, I am at a situation where I could end up with a board scoring 10. But
I have to assume that my opponent won’t let me have that and will make the move
that leaves me with 2. So the score of move one for me is 2; it is all I can expect to end
up with if I make that move. On the other hand, if I made move two, I’d have no hope
of scoring 10. But regardless of what my opponent does, I’d end up with at least 4. So
I can expect to get 4 from move two. Move two is therefore my best option.

Starting from the bottom of the tree, scores are bubbled up according to the min-
imax rule: on my turn, I bubble up the highest score; on my opponent’s turn, I bubble
up the lowest score. Eventually, we have accurate scores for the results of each available
move, and we simply choose the best of these.

This process of bubbling scores up the tree is what the minimaxing algorithm
does. To determine how good a move is, it searches for responses, and responses to
those responses, until it can search no further. At that point it relies on the static eval-
uation function. It then bubbles these scores back up to get a score for the each of its
available moves. Even for searches that only look ahead a couple of moves, minimax-
ing provides much better results than just relying on a heuristic alone.

1 7 3

Figure 8.5 One-ply tree, my move

4 8 1

Figure 8.6 One-ply tree, opponent’s move
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Figure 8.7 The two-ply game tree

8.2.3 THE MINIMAXING ALGORITHM

The minimax algorithm we’ll look at here is recursive. At each recursion it tries to
calculate the correct value of the current board position.

It does this by looking at each possible move from the current board position. For
each move it calculates the resulting board position and recurses to find the value of
that position.

To stop the search from going on forever (in the case where the tree is very deep),
the algorithm has a maximum search depth. If the current board position is at the
maximum depth, then it calls the static evaluation function and returns the result.

If the algorithm is considering a position where the current player is to move, then
it returns the highest value it has seen; otherwise, it returns the lowest. This alternates
between the minimization and maximization steps.

If the search depth is zero, then it also stores the best move found. This will be the
move to make.

Pseudo-Code

We can implement the minimax algorithm in the following way:

1 def minimax(board, player, maxDepth, currentDepth):
2

3 # Check if we’re done recursing
4 if board.isGameOver() or currentDepth == maxDepth:
5 return board.evaluate(player), None
6

7 # Otherwise bubble up values from below
8

9 bestMove = None
10 if board.currentPlayer() == player: bestScore = -INFINITY
11 else: bestScore = INFINITY
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12

13 # Go through each move
14 for move in board.getMoves():
15

16 newBoard = board.makeMove(move)
17

18 # Recurse
19 currentScore, currentMove = minimax(newBoard, player,
20 maxDepth, currentDepth+1)
21

22 # Update the best score
23 if board.currentPlayer() == player:
24 if currentScore > bestScore:
25 bestScore = currentScore
26 bestMove = move
27 else:
28 if currentScore < bestScore:
29 bestScore = currentScore
30 bestMove = move
31

32 # Return the score and the best move
33 return bestScore, bestMove

In this code I’ve assumed that the minimax function can return two things: a best
move and its score. For languages that can only return a single item, the move can be
passed back through a pointer or by returning a structure.

The INFINITY constant should be larger than anything returned by the board.
evaluate function. It is used to make sure that there will always be a best move found,
no matter how poor it might be.

The minimax function can be driven from a simpler function that just returns the
best move.

1 def getBestMove(board, player, maxDepth):
2

3 # Get the result of a minimax run and return the move
4 score, move = minimax(board, player, maxDepth, 0)
5 return move

Data Structures and Interfaces

The code above gets the board to do the work of calculating allowable moves and
applying them. An instance of the Board class represents one position in the game.
The class should have the following form:
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1 class Board:
2 def getMoves()
3 def makeMove(move)
4 def evaluate(player)
5 def currentPlayer()
6 def isGameOver()

where getMoves returns a list of move objects (which can have any format, it isn’t
important for the algorithm) that corresponds to the moves that can be made from
the board position. The makeMove method takes one move instance and returns a com-
pletely new board object that represents the position after the move is made. evaluate
is the static evaluation function. It returns the score for the current position from the
point of view of the given player. currentPlayer returns the player whose turn it is to
play on the current board. This may be different from the player whose best move we
are trying to work out. Finally, isGameOver returns true if the position of the board is
terminal.

This structure applies to any two-player perfect information games, from Tic-Tac-
Toe to Chess.

More than Two Players

We can extend the same algorithm to handle three or more players. Rather than al-
ternating minimization and maximization, we perform a minimization at any move
when we’re not a player and a maximization on our move. The code above handles
this normally. If there are three players, then

1 board.currentPlayer() == player

will be true one step in three, so we will get one maximization step followed by two
minimization steps.

Performance

The algorithm is O(d) in memory, where d is the maximum depth of the search (or
the maximum depth of the tree if that is smaller).

It is O(nd) in time, where n is the number of possible moves at each board po-
sition. With a wide and deep tree, this can be incredibly inefficient. Throughout the
rest of this section we’ll look at ways to optimize its performance.
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8.2.4 NEGAMAXING

The minimax routine consistently scores moves based on one player’s point of view. It
involves special code to track whose move it is and whether the scores should therefore
be maximized or minimized to bubble up. For some kinds of games this flexibility is
needed, but in certain cases we can improve things.

For games that are two player and zero sum, we know that one player’s gain is the
other player’s loss. If one player scores a board at −1, then the opponent should score
it at +1. We can use this fact to simplify the minimax algorithm.

At each stage of bubbling up, rather than choosing either the smallest or largest,
all the scores from the previous level have their signs changed. The scores are then
correct for the player at that move (i.e., they no longer represent the correct scores for
the player doing the search). Because each player will try to maximize their scores, the
largest of these values can be chosen each time.

Because at each bubbling up we invert the scores and choose the maximum, the
algorithm is known as “negamax.” It gives the same results as the minimax algorithm,
but each level of bubbling is identical. There is no need to track whose move it is and
act differently.

Figure 8.8 shows the bubbling up at each level in a game tree. Notice that at each
stage the value of the inverted scores is largest at the next level down.

Negamax and the Static Evaluation Function

The static evaluation function scores a board according to one player’s point of view.
At each level of the basic minimax algorithm, the same point of view is used to cal-
culate scores. To implement this, the scoring function needs to accept a player whose
point of view is to be considered.

Because negamax alternates viewpoints between players at each turn, the evalua-
tion function always needs to score from the point of view of the player whose move
it is on that board. So the point of view alternates between players at each move. To
implement this, the evaluation function no longer needs to accept a point of view as
input. It can simply look at whose turn it is to play.

2 3 2 4

3

3 2

2

6 5 2

5

2

Figure 8.8 Negamax values bubbled up a tree
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Pseudo-Code

The modified algorithm for negamaxing looks like the following:

1 def negamax(board, maxDepth, currentDepth):
2

3 # Check if we’re done recursing
4 if board.isGameOver() or currentDepth == maxDepth:
5 return board.evaluate(), None
6

7 # Otherwise bubble up values from below
8

9 bestMove = None
10 bestScore = -INFINITY
11

12 # Go through each move
13 for move in board.getMoves():
14

15 newBoard = board.makeMove(move)
16

17 # Recurse
18 recursedScore, currentMove = negamax(newBoard,
19 maxDepth, currentDepth+1)
20 currentScore = -recursedScore
21

22 # Update the best score
23 if currentScore > bestScore:
24 bestScore = currentScore
25 bestMove = move
26

27 # Return the score and the best move
28 return bestScore, bestMove

Note that, because we no longer have to pass it to the evaluate method, we don’t
need the player parameter at all.

Data Structures and Interfaces

Because we don’t have to pass the player into the Board.evaluate method, the Board
interface now looks like the following:

1 class Board:
2 def getMoves()



8.2 Minimaxing 661

3 def makeMove(move)
4 def evaluate()
5 def currentPlayer()
6 def isGameOver()

Performance

The negamax algorithm is identical to the minimax algorithm for performance char-
acteristics. It is also O(d) in memory, where d is the maximum depth of the search,
and O(nd) in time, where n is the number of moves at each board position.

Despite being simpler to implement and faster to execute, it scales in the same
way with large trees.

Implementation Notes

Most of the optimizations that can be applied to negamaxing can be made to work
with a strict minimaxing approach. The optimizations in this chapter will be intro-
duced in terms of negamax, since that is much more widely used in practice.

When developers talk about minimaxing, they often use a negamax-based al-
gorithm in practice. Minimax is often used as a generic term to include a whole
raft of optimizations. In particular, if you read “minimax” in a book describing a
game-playing AI, it is mostly likely to refer to a negamax optimization called “alpha–
beta (AB) negamax.” We’ll look at the AB optimization next.

8.2.5 AB PRUNING

The negamaxing algorithm is efficient, but examines more board positions than nec-
essary. AB pruning allows the algorithm to ignore sections of the tree that cannot
possibly contain the best move. It is made up of two kinds of pruning: alpha and beta.

Alpha Pruning

Figure 8.9 shows a game tree before any bubbling up has been done. To more eas-
ily see how the scores are being processed, we’ll use the minimax algorithm for this
illustration.

We start the bubbling up process in the same way as before. If player one makes
move A, then their opponent will respond with move C, giving the player a score of 5.
So we bubble up the 5. Now the algorithm looks at move B. It sees the first response
to B is E, which scores 4. It doesn’t matter what the value of F is now, because the
opponent can always force a value of 4. Even without considering F, player one knows
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Figure 8.9 An optimizable branch

that making move B is wrong; it can get 5 from move A, and it will get a maximum
of 4 from move B, possibly even less.

To prune in this way, we need to keep track of the best score we know we can
achieve. In fact, this value forms a lower limit on the score we can achieve. We might
find a better sequence of moves later in the search, but we’ll never accept a sequence
of moves that gives us a lower score. This lower bound is called the alpha value (some-
times, but rarely, written as the Greek letter α), and pruning is called alpha pruning.

By keeping track of the alpha value, we can avoid considering any move where the
opponent has the opportunity to make it worse. We don’t need to worry about how
much worse the opponent could make it; we already know that we won’t be giving
them the opportunity.

Beta Pruning

Beta pruning works in the same way. The beta value (again, rarely written β) keeps
track of an upper limit on what we can hope to score. We update the beta value when
we find a sequence of moves that the opponent can force us into.

At that point we know there is no way to score more than the beta value, but there
may be more sequences yet to find that the opponent can use to limit us even further.
If we find a sequence of moves that scores greater than the beta value, then we can
disregard it, because we know we’ll never be given the opportunity to make them.

Together alpha and beta values provide a window of possible scores. We will never
choose to make moves that score less than alpha, and our opponent will never let us
make moves scoring more than beta. The score we finally achieve must lie between
the two. As the tree is searched, the alpha and beta values are updated. If a branch of
the tree is found which is outside these values, then the branch can be pruned.

Because of the alternation between minimizing and maximizing for each player,
only one value needs to be checked at each board position. At a board position where
it is the opponent’s turn to play, we minimize the scores, so only the minimum score
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Figure 8.10 AB negamax calls on a game tree

can change and we only need to check against alpha. If it is our turn to play, we are
maximizing the scores, and so only the beta check is required.

AB Negamax

Although it is simpler to see the difference between alpha and beta prunes in the
minimax algorithm, they are most commonly used with negamax. Rather than alter-
nating checks against alpha and beta at each successive turn, the AB negamax swaps
and inverts the alpha and beta values (in the same way that it inverts the scores from
the next level). It checks and prunes against just the beta value.

Using AB pruning with negamaxing, we have the simplest, practical board game
AI algorithm. It will form the basis for all further optimizations in this section.

Figure 8.10 shows the alpha and beta parameters passed to the negamax algorithm
at each node in a game tree and the result that the algorithm produces. You can see
that as the algorithm searches from left to right in the tree, the alpha and beta values
get closer together, limiting the search. You can also see the way in which the alpha
and beta values change signs and swap places at each level of the tree.

Pseudo-Code

The AB negamax algorithm is structured like the following:

1 def abNegamax(board, maxDepth, currentDepth, alpha, beta):
2

3 # Check if we’re done recursing
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4 if board.isGameOver() or currentDepth == maxDepth:
5 return board.evaluate(player), None
6

7 # Otherwise bubble up values from below
8

9 bestMove = None
10 bestScore = -INFINITY
11

12 # Go through each move
13 for move in board.getMoves():
14

15 newBoard = board.makeMove(move)
16

17 # Recurse
18 recursedScore, currentMove = abNegamax(newBoard,
19 maxDepth,
20 currentDepth+1
21 -beta,
22 -max(alpha, bestScore))
23 currentScore = -recursedScore
24

25 # Update the best score
26 if currentScore > bestScore:
27 bestScore = currentScore
28 bestMove = move
29

30 # If we’re outside the bounds, then prune: exit immediately
31 if bestScore >= beta:
32 return bestScore, bestMove
33

34 return bestScore, bestMove

This can be driven from a function of the form

1 def getBestMove(board, maxDepth):
2

3 # Get the result of a minimax run and return the move
4 score, move = abNegamax(board, maxDepth, 0, -INFINITY, INFINITY)
5 return move

Data Structures and Interfaces

This implementation relies on the same game board class as for regular negamax.
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Performance

Once again, the algorithm is O(d) in memory, where d is the maximum depth of the
search, and order O(nd) in time, where n is the number of possible moves at each
board position.

So why the optimization if we get the same performance?
The order of the performance may be the same, but AB negamax will outperform

regular negamax in almost all cases. The only situation in which it will not is if the
moves are ordered so that no pruning is possible. In this case the algorithm will have
an extra comparison that is never true and therefore will be slower.

This situation would only be likely to occur if the moves were ordered deliberately
to exploit it. In the vast majority of cases the performance is very much better than
the basic algorithm.

8.2.6 THE AB SEARCH WINDOW

The interval between the alpha and beta values in an AB algorithm is called the search
window. Only new move sequences with scores in this window are considered. All
others are pruned.

The smaller the search window, the more likely a branch is to be pruned. Ini-
tially, AB algorithms are called with an infinitely large search window: (−∞,+∞).
As they work, the search window is contracted. Anything that can make the search
window smaller, as fast as possible, will increase the number of prunes and speed up
the algorithm.

Move Order

If the most likely moves are considered first, then the search window will contract
more quickly. The less likely moves will be considered later and are more likely to be
pruned.

Determining which moves are better, of course, is the whole point of the AI. If
we knew the best moves, then we wouldn’t need to run the algorithm. So there is a
trade-off between being able to do less search (by knowing in advance which moves
are best) and having to possess less knowledge (and having to search more).

In the simplest case it is possible to use the static evaluation function on the moves
to determine the correct order. Because the evaluation function gives an approximate
indication of how good a board position is, it can be effective in reducing the size of
the search through AB pruning. It is often the case, however, that repeatedly calling
the evaluation function in this way slows down the algorithm.

An even more effective ordering technique, however, is to use the results of pre-
vious minimax searches. It can be the results from searches at previous depths when
using an iterative deepening algorithm, or it can be the results from minimax searches
on previous turns.
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The memory-enhanced test family of algorithms explicitly uses this approach to
order moves before they are considered. Some form of move ordering can also be
added to any AB minimax algorithm.

Even without any form of move ordering, the performance of the AB algorithm
can be ten times better than minimax alone. With excellent move ordering, it can be
more than 10 times faster again, which is 100 times faster than regular minimax. This
is often the difference between searching the tree to a couple of extra turns in depth.

Aspiration Search

Having a small search window is such a massive speed up that it can be worth-
while artificially limiting the window. Instead of calling the algorithm with a range
of (−∞,+∞), it can be called with an estimated range. This range is called an aspi-
ration, and the AB algorithm called in this way is sometimes called aspiration search.

This smaller range will cause many more branches to be pruned, speeding up the
algorithm. On the other hand, there may be no suitable move sequences within the
given range of values. In this case the algorithm will return with failure: no best move
will be found. The search can then be repeated with a wider window.

The aspiration for the search is often based on the results of a previous search. If
during a previous search a board is scored at 5, then when the player finds itself at
that board, it will perform an aspiration search using (5 − window size, 5 + window
size). The window size depends on the range of scores that can be returned by the
evaluation function.

A simple driver function that can perform the aspiration search would look like
the following:

1 def aspiration(board, maxDepth, previous):
2 alpha = previous - WINDOW_SIZE
3 beta = previous + WINDOW_SIZE
4

5 while True:
6

7 result, move = abNegamax(board, maxDepth, 0, alpha, beta);
8 if (result <= alpha) alpha = -NEAR_INFINITY;
9 else if (result >= beta) beta = NEAR_INFINITY;

10 else return move;

8.2.7 NEGASCOUT

Narrowing the search window can be taken to the extreme, having a search window
with a zero width. This search will prune almost all the branches from the tree, mak-
ing for a very fast search. Unfortunately, it will prune all the useful branches along
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with the useless ones. So unless you start the algorithm with the correct result, it will
fail. A zero window size can be seen as a test. It tests if the actual score is equal to the
guess. Unsurprisingly, in this form it is called “Test.”

The version of AB negamax we have considered so far is sometimes called the
“fail-soft” version. If it fails, then it returns the best result it had so far. The most
basic version of AB negamax will only return either alpha or beta as its score if it fails
(depending on whether it fails high or fails low). The extra information in the fail-soft
version can help find a solution. It allows us to move our initial guess and repeat the
search with a more sensible window. Without fail-soft, you would have no idea how
far to move your guess.

The original scout algorithm combined a minimax search (with AB pruning) with
calls to the zero-width test. Because it relies on a minimax search, it is not widely used.
The negascout algorithm uses the AB negamax algorithm to drive the test.

Negascout works by doing a full examination of the first move from each board
position. This is done with a wide search window so that the algorithm doesn’t fail.
Successive moves are examined using a scout pass with a window based on the score
from the first move. If this pass fails, then it is repeated with a full-width window (the
same as regular AB negamax).

The initial wide-window search from the first move establishes a good approxi-
mation for the scout test. This avoids too many failures and takes advantage of the
fact that the scout test prunes a large number of branches.

Pseudo-Code

Combining the aspiration search driver with the negascout algorithm produces a
powerful game-playing AI. Aspiration negascout is the algorithm at the heart of much
of the best game-playing software in the world, including Chess, Checkers, and Re-
versi programs that can beat champion players. The aspiration driver is the same as
was implemented previously.

1 def abNegascout(board, maxDepth, currentDepth, alpha, beta):
2

3 # Check if we’re done recursing
4 if board.isGameOver() or currentDepth == maxDepth:
5 return board.evaluate(player), None
6

7 # Otherwise bubble up values from below
8

9 bestMove = None
10 bestScore = -INFINITY
11

12 # Keep track of the Test window value.
13 adaptiveBeta = beta
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14

15 # Go through each move
16 for move in board.getMoves():
17

18 newBoard = board.makeMove(move)
19

20 # Recurse
21 recursedScore,
22 currentMove = abNegamax(newBoard,
23 maxDepth,
24 currentDepth+1,
25 -adaptiveBeta,
26 -max(alpha, bestScore))
27 currentScore = -recursedScore
28

29 # Update the best score
30 if currentScore > bestScore:
31

32 # If we are in ‘narrow-mode’ then widen and
33 # do a regular AB negamax search
34 if adaptiveBeta == beta || currentDepth >= maxDepth-2:
35 bestScore = currentScore
36 bestMove = move
37

38 # Otherwise we can do a Test
39 else:
40 negativeBestScore,
41 bestMove = abNegascout(newBoard,
42 maxDepth,
43 currentDepth,
44 -beta,
45 -currentMoveScore)
46 bestScore = -negativeBestScore
47

48 # If we’re outside the bounds, then prune: exit immediately
49 if bestScore >= beta:
50 return bestScore, bestMove
51

52 # Otherwise update the window location
53 adaptiveBeta = max(alpha, bestScore) + 1;
54

55 return bestScore, bestMove
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Figure 8.11 The game tree with negascout calls

Data Structures and Interfaces

This listing uses the same game Board interface as previously and can be applied to
any game.

Performance

Predictably, the algorithm is again O(d) in memory, where d is the maximum depth
of the search, and order O(nd) in time, where n is the number of possible moves at
each board position.

Figure 8.11 shows the game tree used to introduce AB negamax. The alpha and
beta values appear to jump around more than for negamax, but following the ne-
gascout algorithm eliminates an extra branch from the search. In general, negascout
dominates AB negamax; it always examines the same or fewer boards.

Until recently, aspiration negascout was the undisputed champion of game al-
gorithms. A handful of new algorithms based on the memory-enhanced test (MT)
approach have since proved to be better in many cases. Neither is theoretically bet-
ter, but significant speed ups have been reported with the MT approach. The MT
algorithms are described later in this chapter.

Move Ordering and Negascout

Negascout relies on the score of the first move from each board position to guide the
scout pass. For this reason it has even better speed ups than AB negamax when the
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moves are ordered. If the best sequence of moves is first, then the initial wide-window
pass will be very accurate, and the scout pass will fail less often.

In addition, because of the need to re-search parts of the game tree, the negascout
algorithm benefits greatly from a memory system (see the next section) that can recall
the results of previous searches.

Principal Variation Search

Negascout is closely related to an algorithm called Principal Variation Search (PVS).
When negascout fails on its scout pass, it repeats the search by calling itself with a
wider window. PVS uses an AB negamax call in this situation. PVS also has a number
of more minor differences to negamax, but by and large negascout performs better
in real applications. Often, the name PVS is incorrectly used to refer to the negascout
algorithm.

8.3 TRANSPOSITION TABLES AND MEMORY

So far the algorithms we have looked at assume that each move leads to a unique
board position. As we saw previously, the same board position can occur as a result of
different combinations of moves. In many games the same board position can even
occur multiple times within the same game.

To avoid doing extra work searching the same board position several times, algo-
rithms can make use of a transposition table.

Although the transposition table was designed to avoid duplicate work on trans-
positions, it has additional benefits. Several algorithms rely on the transposition table
as a working memory of board positions that have been considered. Techniques such
as the memory-enhanced test, iterative deepening, and thinking on your opponent’s
turn all use the same transposition table (and all are introduced in this chapter).

The transposition table keeps a record of board positions and the results of a
search from that position. When an algorithm is given a board position, it first checks
if the board is in the memory and uses the stored value if it is.

Comparing complete game states is an expensive procedure, since a game state
may contain tens or hundreds of items of information. Comparing these against
stored states in memory would take a long time. To speed up transposition table
checks, a hash value is used.

8.3.1 HASHING GAME STATES

Although in principle any hash algorithm will work, there are particular peculiarities
of hashing a game state for transposition tables. Most possible states of the board in
a board game are unlikely to ever occur. They represent the result of illegal or bizarre
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sequences of moves. A good hashing scheme will spread the likely positions as widely
as possible through the range of the hash value. In addition, because in most games
the board changes very little from move to move, it is useful to have hash values
that change widely when only a small change is made to the board. This reduces the
likelihood of two board positions clashing when they occur in the same search.

Zobrist Keys

There is a common algorithm for transition table hashing called Zobrist keys. A Zo-
brist key is a set of fixed-length random bit patterns stored for each possible state of
each possible location on the board. Chess has 64 squares, and each square can be
empty or have 1 of 6 different pieces on it, each of two possible colors. The Zobrist
key for a game of Chess needs to be 64 × 2 × 6 = 768 entries long.

For each non-empty square, the Zobrist key is looked up and XORed with a run-
ning hash total.

There may be additional Zobrist keys for different elements of the game state. The
state of the doubling-die in Backgammon, for example, would need a six-element
Zobrist key. A number of other Zobrist keys are required in Chess to represent the
triple repetition rule, the 50-move rule, and other subtleties. Some implementations
omit these additional keys on the expectation that they are needed so rarely that the
software will suffer the ambiguity between the occasional states for faster hashing in
the vast majority of cases. This and other issues with transposition tables are discussed
later.

Additional Zobrist keys are used in the same way: their values are looked up and
XORed with the running hash value. Eventually, a final hash value will be produced.

For implementation, the length of the hash value in the Zobrist key will depend
on the number of different states for the board. Chess games can make do with 32 bits,
but are best with a 64-bit key. Checkers works comfortably with 32 bits, where a more
complex turn-based game may require 128 bits.

The Zobrist keys need to be initialized with random bit-strings of the appropriate
size.

There are known issues with the C language rand function (which is often ex-
posed as the random function in many languages), and some developers have re-
ported problems when using it to initialize Zobrist keys. Other developers have re-
ported using rand successfully. Because problems with the quality of random number
generation are difficult to debug (they tend to give a reduction in performance that
is difficult to track down), it would probably be safer to use one of the many freely
available random number generators with better reliability than rand.

Hash Implementation

This implementation shows a trivial case of a Zobrist hash for Tic-Tac-Toe. Each of
the nine squares can be empty or have one of two pieces in it. There are therefore
9 × 2 = 18 elements in the array.
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1 # The Zobrist key.
2 zobristKey[9*2]
3

4 # Initialize the key.
5 def initZobristKey():
6 for i in 0..9*2:
7 zobristKey[i] = rand32()

On a 32-bit machine, this implementation uses 32-bit keys (16 bits would be
plenty big enough for Tic-Tac-Toe, but 32-bit arithmetic is usually faster). It relies
on a function rand32 which returns a random 32-bit value.

Once the key is set up, boards can be hashed. This implementation of the hash
function uses a board data structure containing a nine-element array representing
the contents of each square on the board.

1 # Calculate a hash value.
2 def hash(ticTacToeBoard):
3 # Start with a clear bitstring
4 result = 0
5

6 # XOR each occupied location in turn
7 for i in 0..9:
8 # Find what piece we have
9 piece = board.getPieceAtLocation(i)

10

11 # If its unoccupied, lookup the hash value and xor it
12 if piece != UNOCCUPIED:
13 result = result xor zobristKey[i*2+piece]
14

15 return result

Incremental Zobrist Hashing

One particularly nice feature of Zobrist keys is that they can be incrementally up-
dated. Because each element is XORed together, adding an element is as simple as
XORing another value. In the example above, adding a new piece is as simple as XOR-
ing the Zobrist key for that new piece.

In a game such as Chess, where a move consists of removing a piece from one
location and adding it to another, the reversible nature of the XOR operator means
the update can still be incremental. The Zobrist key for the piece and the old square
is XORed with the hash value, followed by the key for the piece and the new square.
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Incrementally hashing in this way can be much faster than calculating the hash
from first principles, especially in games with many tens or hundreds of pieces in play
at once.

The Game Class, Revisited

To support hashing, and in particular incremental Zobrist hashing, the Board class we
have been using can be extended to provide a general hash method.

1 class Board:
2 # Holds the current hash value for this board. This saves it
3 # being recalculated each time it is needed.
4 hashCache
5

6 def getMoves()
7 def makeMove(move)
8 def evaluate()
9 def currentPlayer()

10 def isGameOver()
11 def hashValue()

The hash value can now be stored in the class instance. When a move is carried
out (in the move method), the hash value can be incrementally updated without the
need for a full recalculation.

8.3.2 WHAT TO STORE IN THE TABLE

The hash table stores the value associated with a board position, so it does not need
to be recalculated. Because of the way the scores are bubbled up the tree in negamax
algorithms, we also know the best move from each board position (it is the one whose
resulting board has the highest inverse score). This move can also be stored, so we can
make the move directly if required.

The point of searching is to improve the accuracy of the static evaluation function.
A minimax value for a board will depend on the depth of search. If we are searching to
a depth of ten moves, then we will not be interested in a table entry that holds a value
calculated by searching only three moves ahead: it would not be accurate enough.
Along with the value for a table entry, we store the depth used to calculate that value.

When searching using AB pruning, we are not interested in calculating the exact
score for each board position. If the score is outside the search window, it is ignored.
When we store values in the transposition table we may be storing an accurate value,
or we may be storing “fail-soft” values that result from a branch being pruned. It is
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important to record whether the value is accurate, is a fail-low value (alpha pruned),
or is a fail-high value (beta pruned). This can be accomplished with a simple flag.

Each entry in the hash table looks something like the following:

1 struct TableEntry:
2

3 enum ScoreType:
4 ACCURATE
5 FAIL_LOW
6 FAIL_HIGH
7

8

9 # Holds the hash value for this entry
10 hashValue
11

12 # Holds the type of score stored
13 scoreType
14

15 # Holds the score value
16 score
17

18 # Holds the best move to make (as found on a previous
19 # calculation)
20 bestMove
21

22 # Holds the depth of calculation at which the score
23 # was found
24 depth

8.3.3 HASH TABLE IMPLEMENTATION

For speed, the hash table implementation used is often a hash array.
A general hash table has an array of lists; the arrays are often called “buckets.”

When an element is hashed, the hash value looks up the correct bucket. Each item
in the bucket is then examined to see if it matches the hash value. There are almost
always fewer buckets than there are possible keys. The key undergoes a modular mul-
tiplication by the number of buckets, and the new value is the index of the bucket to
examine.

Although a much more efficient hash table implementation can be found in any
C++ standard library, it has the general form

1 struct Bucket:
2
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3 # The table entry at this location
4 TableEntry entry;
5

6 # The next item in the bucket
7 Bucket *next;
8

9 # Returns a matching entry from this bucket, even
10 # if it comes further down the list
11 def getElement(hashValue):
12 if entry.hashValue == hashValue: return entry;
13 if next: return next->getElement(hashValue);
14 return None
15

16 class HashTable:
17 # Holds the contents of the table
18 buckets[MAX_BUCKETS]
19

20 # Finds the bucket in which the value is stored
21 def getBucket(hashValue):
22 return buckets[hashValue \% MAX_BUCKETS]
23

24 # Retrieves an entry from the table
25 def getEntry(hashValue):
26 return getBucket(hashValue).getElement(hashValue)

The aim is to have as many buckets as possible with exactly one entry in them.
If the buckets are too full, then it will slow down the lookup and indicate that more
buckets are needed. If the buckets are too empty, then there is room to spare, and
fewer buckets can be used.

In searching for moves, it is more important that the hash lookup is fast, rather
than guaranteeing that the contents of the hash table are permanent. There is no point
in storing positions in the hash table that are unlikely to ever be visited again.

For this reason a hash array implementation is used, where each bucket has a size
of one. This can be implemented as an array of records directly and simplifies the
above code to

1 class HashArray:
2 # Holds the entries
3 entries[MAX_BUCKETS]
4

5 # Retrieves an entry from the table
6 def getEntry(hashValue):
7 entry = entries[hashValue \% MAX_BUCKETS];
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8 if entry.hashValue == hashValue: return entry
9 else: return None

8.3.4 REPLACEMENT STRATEGIES

Since there can be only one stored entry for each bucket, there needs to be some
mechanism for deciding how and when to replace a stored value when a clash occurs.

The simplest technique is to always overwrite. The contents of a table entry are
replaced whenever a clashing entry wants to be stored. This is easy to implement and
is often perfectly sufficient.

Another common heuristic is to replace whenever the clashing node is for a later
move. So if a board at move 6 clashes with a board at move 10, the board at move 10
is used. This is based on the assumption that the board at move 10 will be useful for
longer than the board at move 6.

There are many more complex replacement strategies, but there is no general
agreement as to which is the best. It seems likely that different strategies will be opti-
mal for different games. Experimentation is probably required. Several programs have
had success by keeping multiple transposition tables using a range of strategies. Each
transposition table is checked in turn for a match. This seems to offset the weakness
of each approach against others.

8.3.5 A COMPLETE TRANSPOSITION TABLE

The pseudo-code for a complete transposition table looks like the following:

1 class TranspositionTable:
2

3 tableSize
4 entries[tableSize]
5

6 def getEntry(hashValue):
7 entry = entries[hashValue \% tableSize];
8 if entry.hashValue == hashValue: return entry
9 else: return None

10

11 def storeEntry(entry):
12 # Always replace the current entry
13 entries[entry.hashValue \% tableSize] = entry



8.3 Transposition Tables and Memory 677

Performance

The getEntry method and storeEntry method of the implementation above are O(1)
in both time and memory. In addition, the table itself is O(n) in memory, where n
is the number of entries in the table. This should be related to the branching factor
of the game and the maximum search depth being used. A large number of checked
board positions requires a large table.

Implementation Notes

If you implement this algorithm, I strongly recommend that you add some debug
data to it that measures the number of buckets used at any point in time, the number
of times something is overwritten, and the number of misses when getting an en-
try that has previously been added. This will allow you to understand how well the
transposition table is performing.

If you rarely find a useful entry in the table, then the table may be badly para-
meterized (the number of buckets may be too small, or the replacement strategy may
be unsuitable, for example). In my experience this kind of debugging information is
invaluable when your AI isn’t playing as well as you’d hoped.

8.3.6 TRANSPOSITION TABLE ISSUES

Transposition tables are an important tool in getting useable speed from a turn-
based AI. They are not a panacea, however, and can introduce their own problems.

Path Dependency

Some games need to have scores that depend on the sequence of moves. Repeating the
same set of board positions three times in Chess, for example, results in a draw. The
score of a board position will depend on whether it is the first or last time round such
a sequence. Holding transposition tables will mean that such repetitions will always
be scored identically. This can mean that the AI mistakenly throws away a winning
position by repeating the sequence.

In this instance the problem can be solved by incorporating a Zobrist key for
“number of repeats” in the hash function. In this way successive repeats have different
hash values and are recorded separately.

In general, however, games that require sequence-dependent scoring need to have
either more complex hashing or special code in the search algorithm to detect this
situation.
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Instability

A more difficult problem is instability: when the stored values fluctuate during the
same search. Because each table entry may be overwritten at different times, there is
no guarantee that the same value will be returned each time a position is looked up.

For example, the first time a node is considered in a search, it is found in the
transposition table, and its value is looked up. Later in the same search that location
in the table is overwritten by a new board position. Even later in the search the board
position is returned to (by a different sequence of moves or by re-searching in the
negascout algorithm). This time the value cannot be found in the table, and it is
calculated by searching. The value returned from this search could be different from
the looked up value.

Although it is very rare, it is possible to have a situation where the score for a
board oscillates between two values, causing some versions of a re-searching algo-
rithm (although not the basic negascout) to loop infinitely.

8.3.7 USING OPPONENT’S THINKING TIME

A transposition table can used to allow the AI to improve its searches while the human
player is thinking.

On the player’s turn, the computer can search for the move it would make if it
were playing. As results of this search are processed, they are stored in the transposi-
tion table. When the AI comes to take its turn, its searches will be faster because a lot
of the board positions will already be considered and stored.

Most commercial board game programs use the opponent’s thinking time to do
additional searching and store results in memory.

8.4 MEMORY-ENHANCED TEST ALGORITHMS

Memory-enhanced test (MT) algorithms rely on the existence of an efficient transpo-
sition table to act as the algorithms’ memory.

The MT is simply a zero-width AB negamax, using a transposition table to avoid
duplicate work. The existence of the memory allows the algorithm to jump around
the search tree looking at the most promising moves first. The recursive nature of the
negamax algorithm means that it cannot jump; it must bubble up and recurse down.

8.4.1 IMPLEMENTING TEST

Because the window size for Test is always zero, the test is often rewritten to accept
only one input value (the A and B values are the same). We’ll call this value “gamma.”
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The same test was used in the negamax algorithm, but in that case the negamax
algorithm was calling itself as a test, and as a regular negamax, so separate alpha and
beta parameters were needed.

Added to the simplified negamax algorithm is the transposition table access code.
In fact, a sizeable proportion of this code is simply memory access.

Pseudo-Code

The test function can be implemented in the following way:

1 int test(board, maxDepth, currentDepth, gamma):
2

3 if currentDepth > lowestDepth: lowestDepth = currentDepth
4

5 # Lookup the entry from the transposition table
6 entry = table.getEntry(board.hashValue())
7 if entry and entry.depth > maxDepth - currentDepth:
8

9 # Early outs for stored positions
10 if entry.minScore > gamma:
11 return entry.minScore, entry.bestMove
12 if entry.maxScore < gamma:
13 return entry.maxScore, entry.bestMove
14

15 else:
16

17 # We need to create the entry
18 entry.hashValue = board.hashValue()
19 entry.depth = maxDepth - currentDepth
20 entry.minScore = -INFINITY
21 entry.maxScore = INFINITY
22

23 # Now we have the entry, we can get on with the text
24

25

26 # Check if we’re done recursing
27 if board.isGameOver() or currentDepth == maxDepth:
28 entry.minScore = entry.maxScore = board.evaluate()
29 table.storeEntry(entry)
30 return entry.minScore, None
31

32 # Now go into bubbling up mode
33 bestMove = None
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34 bestScore = -INFINITY
35

36 for move in board.getMoves():
37

38 newBoard = board.makeMove(move)
39

40 # Recurse
41 recursedScore, currentMove = test(newBoard,
42 maxDepth,
43 currentDepth+1,
44 -gamma)
45 currentScore = -recursedScore
46

47 # Update the best score
48 if currentScore > bestScore:
49

50 # Track the current best move
51 entry.bestMove = move
52

53 bestScore = currentScore
54 bestMove = move
55

56 # If we pruned, then we have a min score, otherwise
57 # we have a max score.
58 if bestScore < gamma: entry.maxScore = bestScore
59 else: entry.minScore = bestScore
60

61 # Store the entry and return the best score and move.
62 table.storeEntry(entry)
63 return bestScore, bestMove

Transposition Table

This version of test needs to use a slightly different table entry data structure. Recall
that in a negamax framework the score of a table entry might be accurate, or it may be
a result of a “fail-soft” search. Because all searches in MT have a zero-width window,
we are unlikely to get an accurate score, but we may build up an idea of the possible
range of scores over several searches. The transposition table records both minimum
and maximum scores. These act in a similar way to alpha and beta values in the AB
pruning algorithm.

Because only these two values need to be stored, there is no need to store the score
type. The new table entry structure looks like the following:
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1 struct TableEntry:
2 hashValue
3 minScore
4 maxScore
5 bestMove
6 depth

8.4.2 THE MTD ALGORITHM

The MT routine is called repeatedly from a driver routine. It is a driver routine that
is responsible for repeatedly using MT to zoom in on a correct minimax value and
work out the next move in the process. Algorithms of this type are called memory-
enhanced test drivers, or MTD.

The first MTD algorithms were structured very differently, using complex sets of
special case code and search ordering logic. SSS* and DUAL*, the most famous, were
both shown to simplify to special cases of the MTD algorithm. The simplification
process also resolved some outstanding issues with the original algorithms.

The common MTD algorithm looks like the following:

� Keep track of an upper bound on the score value. Call this gamma (to avoid
confusion with alpha and beta).

� Let gamma be a first guess as to the score. This can be any fixed value, or it can
be derived from a previous run through the algorithm.

� Calculate another guess by calling Test on the current board position, the maxi-
mum depth, zero for the current depth, and the gamma value. (A value slightly
less than the gamma value is used normally: gamma − ε, where ε is smaller than
the smallest increment of the evaluation function. This allows the test routine to
avoid using the == operator, which causes asymmetries when the point of view
is flipped along with the signs of the scores during recursion.)

� If the guess isn’t the same as the gamma value, then go back to 3 again. This
confirms that the guess is now accurate. Occasionally, numerical instabilities can
cause this to never become true, and usually a limit is placed on the number of
iterations.

� Return the guess as the score; it is accurate.

MTD algorithms take a guess parameter. This is a first guess as to the minimax
value expected from the algorithm. The more accurate this guess is, the faster the
MTD algorithm will run.
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MTD Variations

The SSS* algorithm was shown to be related to MTD starting with a guess of infinity
(known as MT-SSS or MTD+∞). Similarly, the DUAL* algorithm can be emulated
by using minus infinity as an initial guess (MTD−∞). The most powerful general
MTD algorithm, MTD-f , uses a guess based on the results of a previous search.

There is an MTD variant, MTD-best, which doesn’t calculate accurate scores for
each board position, but can return the best move. It is marginally faster than MTD-f ,
but considerably more complex, and does not determine how good moves are. In
most turn-based games, it is important to know how good moves are, so MTD-best
is not as commonly used.

Memory Size

MTD relies on having a large memory. Its performance degrades badly when colli-
sions occur in the transposition table and different board positions are mapped to
the same table entry. In the worst case, the algorithm can be incapable of returning a
result if the storage it needs keeps being overwritten.

The size of table required depends on the branching factor, the search depth, and
the quality of the hashing scheme. For Chess-playing AI with deep search, tables of
the order of tens of megabytes are common (a few million table entries). Smaller
searches, or simpler games, may require a couple of orders of magnitude less.

As with all memory issues, care needs to be taken not to fall foul of memory per-
formance issues common with large data structures. It is difficult to properly manage
cache performance for a 32-bit PC using data structures over a megabyte in size.

8.4.3 PSEUDO-CODE

The pseudo-code for an MTD implementation that can be used with the test code
given previously looks like the following:

1 def mtd(board, maxDepth, guess):
2 for i in 0..MAX_ITERATIONS:
3

4 gamma = guess
5 guess, move = text(board, maxDepth, 0, gamma-1)
6

7 # If there’s no more improvement, stop looking
8 if gamma == guess: break
9

10 return move



8.5 Opening Books and Other Set Plays 683

In this form, an MTD can be called with infinity as a first guess (MT-SSS), or it
can be run as MTD-f with a guess based on a previous search. For this, the static move
evaluation can be used, or it can be driven as part of an iterative deepening algorithm
that keeps track of the guesses from search to search. Iterative deepening is discussed
more fully in Section 8.6.

Performance

The order of performance of this algorithm is still the same as previously for time
(O(nd), where n is the number of moves per board, and d is the depth of the tree). In
memory it is O(s), where s is the number of entries in the transposition table.

MTD-f rivals aspiration negascout as the fastest game tree search. Tests show that
MTD-f is often significantly faster, but there is still debate as to whether each algo-
rithm can be optimized further to improve its performance. Although many of the
top board game-playing programs use negascout, most modern AI now relies on an
MTD core.

As with all performance issues in AI, the only sure way to tell which will be faster
in your game is to try both and profile them. Fortunately, neither algorithm is com-
plex, and both can use the same underlying code (transposition tables, the AB nega-
max function, and the game class).

8.5 OPENING BOOKS AND OTHER SET PLAYS

In many games, over many years, expert players have built up a body of experience
about which moves are better than others at the start of the game. Nowhere is this
more obvious than in the opening book of Chess. Expert players study huge data-
bases of fixed opening combinations, learning the best responses to moves. It is not
uncommon for the first 20 to 30 moves of a Grandmaster Chess game to be planned
in advance.

An opening book is a list of move sequences, along with some indication of how
good the average outcome will be using those sequences. Using these sets of rules, the
computer does not need to search using minimaxing to work out what the best move
is to play. It can simply choose the next move from the sequence, as long as the end
point of the sequence is beneficial to it.

Opening book databases can be downloaded for several different games, and for
prominent games such as Chess, commercial databases are available for licencing into
a new game. For an original turn-based game, an opening book (if it is useful) needs
to be generated manually.
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8.5.1 IMPLEMENTING AN OPENING BOOK

Often, opening books are implemented as a hash table very similar to a transposition
table. Lists of move sequences can be imported into the software and converted so
that each intermediate position has an indication of the opening line it belongs to
and the strength of each line.

Notice that, unlike a regular transposition table, there may be more than one
recommended move from each board position. Board positions can often belong to
many different opening lines, and openings, like the rest of the game, branch out in
the form of a tree.

This implementation handles transpositions automatically: the AI looks up the
current board position in the opening book and finds a set of possible moves to make.

Opening Book in the Evaluation Function

In addition to using the opening book as a special tool, it can be incorporated into
a general purpose search algorithm. The opening book is often implemented as one
of the elements of the static evaluation function. If the current board position is part
of a recorded opening, then the static evaluation function weights its advice heavily.
When the game has progressed beyond the opening book, it is ignored, and other
elements of the function are used.

8.5.2 LEARNING FOR OPENING BOOKS

Some programs use an initial opening book library and add a learning layer. The
learning layer updates the scores assigned to each opening sequence so that better
openings can be selected.

This can be done in one of two ways. The most basic learning technique is to keep
a statistical record of the success a program has with each opening. If the opening is
listed as being good, but the program consistently loses with it, then it can change the
scoring so that it avoids that opening in the future.

A lot of processing, experience, and analysis goes into the scores assigned to each
opening line in a commercial database. Much of this scoring is based on long histo-
ries of international expert games. These are unlikely to be wrong, over all players.
But each game-playing AI will have different characteristics. An opening listed in a
database as good might end in a tight strategic situation that a human can play well,
but that the computer suffers lots of horizon effects. Including a statistical learning
layer allows the computer to play to its unique strengths.

Some games also learn the sequences themselves. Over many games (typically
many thousands) certain opening lines will occur over and over again. Initially, the
computer may have to rely on its search to score them, but over time these scores can
be averaged (along with information about their statistical likelihood of winning) and
recorded.
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The larger Chess opening databases, and most opening databases for less popu-
lar games, are generated in this way: a strong computer plays itself and records the
opening lines that are most favorable.

8.5.3 SET PLAY BOOKS

Although set move sequences are most common at the start of a game, they can also
apply later. Many games have set combinations of moves that occur during the game
and especially at the end of the game.

For almost all games, however, the range of possible board positions in the game
is staggering. It is unlikely that any particular board position will be exactly the same
as one in the database. More sophisticated pattern matching is required: looking for
particular patterns among the overall board structure.

The most common application of this type of database is for subsections of the
board. In Reversi, for example, strong play along each edge of the board is key. Many
Reversi programs have comprehensive databases of edge configurations, along with
scores as to how strong they are. The four edge configurations of a board can be easily
extracted and the database entry looked up. In the middle-game, these edge scorings
are weighted highly in the static evaluation function. Later in the game they are less
useful (most Reversi programs can completely search the last 10–15 moves or so of a
game, so no evaluation function is needed).

Several programs have experimented with sophisticated pattern recognition to
use set plays, particularly in the games of Go and Chess. So far no dominant methods
have emerged for general use in all board games.

Ending Database

Very late in some games (like Chess, Backgammon, or Checkers) the board simplifies
down. Often, it is possible to pick up an opening book-style lookup at this stage.

There are several commercial ending databases (often called tablebases) for Chess,
covering the best way to force mate with different combinations of material. These
are rarely required in expert games, however, when a player will resign when they are
heading for a known losing ending.

8.6 FURTHER OPTIMIZATIONS

Although the basic game-playing algorithms are each relatively simple, they have a
bewildering array of different optimizations. Some of these optimizations, like AB
pruning and transposition tables, are essential for good performance. Other opti-
mizations are useful for extracting every last bit of performance.
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This section looks at several other optimizations used for turn-based AI. There
is not enough room to cover implementation details for most of them. Appendix A
gives pointers to further information on implementing them. In addition, specific
optimizations used only in a relatively small number of board games are not included.
Chess, in particular, has a whole raft of specific optimizations that are only useful in
a small number of other scenarios.

8.6.1 ITERATIVE DEEPENING

The quality of the play from a search algorithm depends on the number of moves it
can look ahead. For games with a large branching factor, it can take a very long time to
look even a few moves ahead. Pruning cuts down a lot of the search, but most board
positions still need to be considered.

For most games the computer does not have the luxury of being able to think for
as long as it wants. Board games such as Chess use timing mechanisms, and modern
computer games may allow the player to play at their own speed. Because the mini-
maxing algorithms search to a fixed depth, there is no guarantee that the search will
be complete by the time the computer needs to make its move.

To avoid being caught without a move, a technique called iterative deepening can
be used. Iterative deepening minimax search performs a regular minimax with grad-
ually increasing depths. Initially, the algorithm searches one move ahead, then if it
has time it searches two moves ahead, and so on until its time runs out.

If time runs out before a search has been complete, it uses the result of the search
from the previous depth.

MTD Implementation

The MTD algorithm with iterative deepening, MTD-f , appears to be the fastest gen-
eral purpose algorithm for game search. The MTD implementation discussed previ-
ously can be called from the following iterative deepening framework:

1 def mtdf(board, maxDepth):
2 guess = 0
3

4 # Iteratively deepen the search
5 for depth in 2..maxDepth:
6

7 guess, move = mtd(b, depth, guess)
8

9 # Check if we need a result
10 if (outOfTime()) break
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11

12 return guess, move

The initial depth for the iterative deepening is two. An initial one level deep search
often has no speed advantage; there is little useful information at this level. In some
games with large branching factors or when time is short, however, the one level deep
search should be included. The function outOfTime returns true if the search should
not be continued.

History Heuristic

In algorithms that use transposition tables or other memory, iterative deepening can
be a positive advantage to an algorithm. Algorithms such as negascout and AB nega-
max can be dramatically improved by considering the best moves first. Iterative deep-
ening with memory allows a move to be quickly analyzed at a shallow level and later
returned to in more depth. The results of the shallow search can be used to order the
moves for the deeper search. This increases the number of prunes that can be made
and speeds up the algorithm.

Using the results of a previous iteration to order moves is called the history heuris-
tic. It is a heuristic because it relies on the rule of thumb that a previous iteration will
produce a good estimate as to the best move.

8.6.2 VARIABLE DEPTH APPROACHES

AB pruning is an example of a variable depth algorithm. Not all branches are searched
to the same depth. Some branches are pruned if the computer decides it no longer
needs to consider them.

In general, however, the searches are fixed depth. A condition in the search checks
if the maximum depth has been reached and terminates that part of the algorithm.

The algorithms can be altered to allow variable depth searches on any number of
grounds, and different techniques for pruning the search have different names. They
are not new algorithms, but simply guidelines for when to stop searching a branch.

Extensions

The major weakness of computer players for turn-based games is the horizon effect.
The horizon effect occurs when a fixed sequence of moves ends up with what appears
to be an excellent position, but one additional move will show that that position is, in
fact, terrible.

In Chess, for example, the computer may find a series of moves which allow it to
capture an enemy queen. Unfortunately, immediately after this capture the opposing
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player can immediately give checkmate. If the computer had searched at a slightly
greater depth, it would have seen this result and not selected the fatal move.

Regardless of how deep the computer looks, this effect may still be present. If the
search is very deep, however, the computer will have enough time to select a better
move when the trouble is eventually seen.

If the search cannot continue to a great depth because of high branching, and
if the horizon effect is noticeable, then the minimax algorithm can use a technique
called extensions.

Extensions are a variable depth technique, where the few most promising move
sequences are searched to a much greater depth. By only selecting the most likely
moves to consider at each turn, the extension can be many levels deep. It is not un-
common for extensions of 10–20 moves to be considered on a basic search depth of 8
or 9 moves.

Extensions are often searched using an iterative deepening approach, where only
the most promising moves from the previous iteration are extended further. While
this can often solve horizon effect problems, it relies heavily on the static evaluation
function, and poor evaluation can lead the computer to extend along a useless set of
options.

Quiescence Pruning

There are many games where the player who appears to be winning can change very
rapidly, even with each turn. In these games the horizon effect is very pronounced and
can make implementing a turn-based AI very difficult. Often, these frantic changes
of leadership are temporary and eventually give rise to stable board positions with a
clear leader.

When a period of relative calm occurs, searching deeper often provides no addi-
tional information. It may be better to use the computer time to search another area
of the tree or to search for extensions on the most promising lines. Pruning the search
based on the board’s stability is called quiescence pruning.

A branch will be pruned if its heuristic value does not change much over succes-
sive depths of search. This probably means that the heuristic value is accurate, and
there is little point in continuing to search there. Combined with extensions, quies-
cent pruning allows most of the search effort to be focussed on the areas of the tree
that are the most critical for good play. This produces a better computer opponent.

8.7 TURN-BASED STRATEGY GAMES

This chapter has focussed on board game AI. On the face of it, board game AI has
many similarities to turn-based strategy games. Commercial strategy games rarely
use the tree-search techniques in this chapter as their main AI tool, however. The
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complexity of these games means that the search algorithms are bogged down before
they are able to make any sensible decisions.

Most tree-search techniques are designed for two-player, zero-sum, perfect in-
formation games, and many of the best optimizations cannot be adapted for use in
general strategy games.

Some simple turn-based strategy games can benefit directly from the tree-search
algorithms in this chapter, however. Research and building construction, troop move-
ment, and military action can all form part of the set of possible moves. The board
position remains static during a turn. The game interface given above can, in theory,
be implemented to reflect the most complex turn-based game. This implemented in-
terface can then be used with the regular tree-search algorithms.

8.7.1 IMPOSSIBLE TREE SIZE

Unfortunately, for complex games the size of the tree becomes too huge.
For example, in a world-building strategy game imagine the player has 5 cities and

30 units of troops. Each city can change a handful of economic properties to a large
range of values (let’s say there are 5 properties, each of which can be set to 100 values;
that’s 500 different options per city, or 2500 in total). Each troop can move up to 5
or 6 spaces (around 500 possible moves each, for 15,000 different moves). Finally,
there are a set of possible moves for the whole side, such as what to research next,
nationwide tax levels, whether to change government, and so on. There may be 20,000
different possible moves.

But that’s only the start. In one turn a player may choose any combination of
moves for different units and cities. While not all of the 20,000 moves can be taken
at the same time, my back of the envelope calculation suggests that there would be
around 1090 different possible move combinations at each turn.

No computer will ever get near looking at even a single turn’s possibilities using
the normal minimax algorithm.

Divide and Conquer

Some progress can be made by grouping sets of possible moves together to reduce the
number of options at each turn.

General strategies can be considered in place of individual moves. A player might,
for example, choose to attack a neighboring nation. In this case the board game AI is
acting as the top level in a multi-tier AI.

To achieve the top-level action, a lower level AI may need to take 20 different
atomic actions; the high-level strategy dictates which moves it will make.

In this case the minimaxing algorithm works at the level of a strategy game tree
shown in Figure 8.12.

This approach is equally applicable to real-time games, by abstracting away from
the particular moves and looking at the ebb and flow of the game from an overview.



690 Chapter 8 Board Games

Attack

AttackRegroupRetreat

Counterattack

Research

Research

Figure 8.12 A game tree showing strategies

Heuristics

Even with aggressive divide and conquer, the problem remains huge. The strategy
game AI has to be heavily based on heuristics, so much so that developers often aban-
don using minimax to look ahead at all and just use the heuristics to guide the process.

Heuristics used might include territory controlled, the proximity to enemy forces,
technological superiority, population contentedness, and so on.

8.7.2 REAL-TIME AI IN A TURN-BASED GAME

It most cases turn-based strategy games have AI very similar to their RTS counterparts
(see Chapter 6 for more details).

Most of the algorithms in the RTS chapter are directly applicable to turn-based
games. In particular, systems like terrain analysis, influence mapping, strategy scripts,
and high-level planning are all applicable to turn-based games. Influence mapping
was originally used in turn-based games.
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Supporting Technologies
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9
EXECUTION

MANAGEMENT

here are only limited processor resources available to a game. Traditionally,
Tmost of these have been used to create great graphics: the primary driving
force in mass market games. The processor budget given to AI developers is growing
steadily as most of the graphics get passed on to the graphics card. It is not unheard
of for AI to have more than 50% of the processor time, although 5–25% is a more
common range.

Even with more execution time available, processor time can easily get eaten up
by pathfinding, complex decision making, and tactical analysis. AI is also inherently
inconsistent. Sometimes you need lots of time to make a decision (planning a route,
for example), and sometimes a tiny budget is enough (moving along the route). All
your characters may need to pathfind at the same time, or you may have hundreds of
frames where nothing much is happening to the AI.

A good AI system needs facilities that can make the best use of the limited process-
ing time available. There are three main elements to this: dividing up the execution
time among the AI that needs it; having algorithms that can work a bit at a time over
several frames; and, when resources are scarce, giving preferential treatment to im-
portant characters. This chapter looks at these performance management issues to
build up a comprehensive AI scheduling tool.

The solution is motivated by AI, and without complex AI it is rarely needed. But
developers with a good AI scheduling system tend to use it for many other purposes
too. I have seen a range of applications for the AI scheduling system: incremental
loading of new areas of the level, texture management, game logic, audio scheduling,
and physics updates all controlled by scheduling systems originally designed for AI.

693
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9.1 SCHEDULING

Lots of elements of a game change rapidly and have to be processed every frame.
Characters on-screen are usually animated, requiring the geometry to be updated for
display each frame. The position and motion of objects in the world are processed by
the physics system. This needs frequent updating to move objects correctly through
space and have them bounce and interact properly. For smooth gameplay, the user’s
inputs need to be processed quickly and feedback provided on-screen.

In contrast, the AI controlling some of the characters changes much less often. If
a military unit is moving across the whole game map, its route can be calculated once
and then the path followed until the goal is reached. In a dogfight, an AI plane may
have to always make complex motion calculations to stay in touch with its quarry.
But once the plane has decided who to go after, it doesn’t need to think tactically and
strategically as often.

A scheduling system manages which tasks get to run when. It copes with different
execution frequencies and different task durations. It should help smooth the execu-
tion profile of the game so that no big processing peaks occur. The scheduling system
we build in this section will be general enough for most game applications, AI and
otherwise.

A key feature for the design of the scheduler is speed. We don’t want to spend a lot
of time processing the scheduler code, especially as it is being constantly run, doing
tens if not hundreds or thousands of management tasks every frame.

9.1.1 THE SCHEDULER

Schedulers work by assigning a pot of execution time among a variety of tasks, based
on which ones need the time.

Different AI tasks can and should be run at different frequencies. We can simply
schedule some tasks to run every few frames and other tasks to run more frequently.
We are slicing up the overall AI and distributing it over time. It is a powerful technique
for making sure that the game doesn’t take too much AI time overall and that more
complex tasks can be run infrequently. It is shown diagrammatically in Figure 9.1.

This conforms to what we’d generally expect of intelligent characters. We make
simple split second decisions all the time, such as basic movement control. We take
a little longer to process sensory information (to react to an incoming projectile, for
example), but this processing takes a little longer to complete. Similarly, we only make
large-scale tactical and strategic decisions infrequently: every few seconds at the most.
These large-scale decisions are typically the most time consuming.

When there are lots of characters, each with their own AI, we can use the same
slicing technique to only execute a few of the characters on each frame. If there are
100 characters each needing to update their state every 30 frames (once a second),
then we can process 3 characters on each frame.
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Figure 9.1 AI slicing

Frequencies

The scheduler takes tasks, each one having an associated frequency that determines
when it should be run.

On each time frame, the scheduler is called to manage the whole AI budget. It
decides which behaviors need to be run and calls them.

This is done by keeping count of the number of frames passed. This is incre-
mented each time the scheduler is called. It is easy to test if each behavior should be
run by checking if the frame count is evenly divisible by the frequency. The modu-
lar division operation on integers (%) is very fast on all current-generation gaming
hardware, providing a simple and efficient solution.

On its own, this approach suffers from clumping: some frames with no tasks being
run, and other frames with several tasks sharing the budget.

In Figure 9.2 we see a problem with this, however. There are three behaviors with
frequencies of 2, 4, and 8. Whenever behavior B runs, A is always running. Similarly,
whenever behavior C runs, both B and A are running. If the aim is to spread out the
load, then this is a poor solution.

In this case the frequencies clash because they have a common divisor (a divisor
is a number that can be divided into another a whole number of times). So 1, 2, and 3
are the only divisors of 6. A common divisor is one that divides into a set of numbers.
So 8 and 12 have three common divisors: 1, 2, and 4. All numbers have 1 as a divisor,
but that is irrelevant here. It’s the higher numbers that cause the problems.

A first step to solving the problem is to try picking frequencies that are relatively
prime: those that do not have a number that divides into all of them (except 1, of
course).
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Figure 9.2 Behaviors in phase

1 2 3 4 5 6 7 8 9 17 18 1910 11 12 13 14 15 16 20Frame:
A B A C A

B
A
B

A
B

A
C

A B A
C

A B A
C

Figure 9.3 Relatively prime

In Figure 9.3 we’ve made both behaviors B and C more frequent, but we get fewer
clashing problems because they are relatively prime.

Phase

Even relatively prime frequencies still clash, however. The example shows three be-
haviors at frequencies of 2, 3, and 5. Every 6 frames, behaviors A and B clash, and
every 30 frames, all of them clash.

Making frequencies relatively prime makes the clash points less frequent, but
doesn’t eliminate them.

To solve the problem, we add an additional parameter to each behavior. This pa-
rameter, called phase, doesn’t change the frequency, but offsets when the behavior
will be called. Imagine three behaviors all with a frequency of 3. Under the original
scheduler, they will all run at the same time—every three frames. If we could offset
these, they could run on consecutive frames, so each frame would have one behavior
running, but all behaviors would run every three frames.

Pseudo-Code

We can implement a basic scheduler in the following way:

1 class FrequencyScheduler:
2

3 # Holds the data per behavior to schedule
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4 struct BehaviorRecord:
5 thingToRun
6 frequency
7 phase
8

9 # Holds the list of behavior records
10 behaviors
11

12 # Holds the current frame number
13 frame
14

15 # Adds a behavior to the list
16 def addBehavior(function, frequency, phase):
17

18 # Compile the record
19 record = new Record()
20 record.functionToCall = function
21 record.frequency = frequency
22 record.phase = phase
23

24 # Add it to the list
25 behaviors.append(record)
26

27 # Called once per frame
28 def run():
29

30 # Increment the frame number
31 frame += 1
32

33 # Go through each behavior
34 for behavior in behaviors:
35

36 # If it is due, run it
37 if behavior.frequency % (frame + behavior.phase):
38 behavior.thingToRun()

Implementation Notes

The phase value is added to the time value immediately before the modular division is
performed. This is the most efficient way of incorporating phase. It may seem clearer
to check something like the following:
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1 time % frequency == phase

Having a phase added, however, allows us to use phase values greater than the
frequency. If you need to schedule 100 agents to run every 10 frames, then you can do
the following:

1 for i in 1..100:
2 behavior[i].frequency = 10
3 behavior[i].phase = i

This is less error prone: if the developer changes the frequency but not the phase,
the behavior won’t suddenly stop being executed.

Performance

The scheduler is O(1) in memory and O(n) in time, where n is the number of behav-
iors being managed.

Direct Access

This algorithm is suitable for situations where there are a reasonable number of be-
haviors (tens or hundreds) and when frequencies are fairly small. Checking is needed
to make sure each behavior needs to be run. It may be that several behaviors always
run together (as in the 100 agents example in the previous implementation notes). In
this case, checking each of the 100 is probably wasteful.

If there are only a fixed number of characters in your game, and they all have the
same frequency, then you can simply set up an array with all the behaviors that will
be run together stored in a list in one element of the array. With a fixed frequency, the
element can be accessed directly, and all the behaviors run. This will then be O(m) in
time, where m is the number of behaviors to be run.

Pseudo-Code

This might look like the following:

1 class DirectAccessFrequencyScheduler:
2

3 # Holds the data for a set of behaviors with one
4 # frequency
5 struct BehaviorSet:
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6 functionLists
7 frequency
8

9 # Holds the multiple sets, one for each frequency needed
10 sets
11

12 # Holds the current frame number
13 frame
14

15 # Adds a behavior to the list
16 def addBehavior(function, frequency, phase):
17

18 # Find the correct set
19 set = sets[frequency]
20

21 # Add the function to the list
22 set.functionLists[phase].append(function)
23

24 # Called once per frame
25 def run():
26

27 # Increment the frame number
28 frame += 1
29

30 # Go through each frequency set
31 for set in sets:
32

33 # Calculate the phase for this frequency
34 phase = set.frequency % frame
35

36 # Run the behaviors in the appropriate location
37 # of the array
38 for entry in functionLists[phase]:
39 entry()

Data Structures and Interfaces

The sets data member holds instances of behavior set. In the original implementation
we used the “for ... in ...” operation to get the elements of the set, in any order.
In this implementation we also use the set as a hash table, looking up an entry by its
frequency value.

If there is a complete set of frequencies up to the maximum (e.g., if there is a
maximum frequency of 5, and there are BehaviorSet instances for frequencies of 4, 3,
and 2), then we can use an array lookup by frequency, rather than a hash table.
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Performance

This is O(fp) in time, where f is the number of different frequencies, and p is the
number of behaviors per phase value. If all the array elements have some content, i.e.,
all phases have corresponding behaviors, then this will be equal to O(m), as promised.

Storage is O(fFp), where F is the average frequency used.
For a fixed number of behaviors, this may be a good solution, but it is memory

hungry and doesn’t provide a good performance increase when there are lots of dif-
ferent frequencies and phase values being used.

In this case the original implementation, with some kind of hierarchical schedul-
ing (discussed later in the section), is probably optimal.

Phase Quality

Calculating good phase values to avoid spikes can be difficult. It is not intuitively clear
whether a particular set of frequency and phase values will lead to a regular spike or
not. It is naive to expect the developer who integrates the components of the game to
be able to set optimal phase values. The developer will generally have a better idea of
what the relative frequencies need to be, however.

We can create a metric that measures the amount of clumping that will occur in a
frequency and phase implementation. This gives feedback as to the expected quality
of the scheduler.

We simply sample a large number of different random time values and accumu-
late statistics for the number of behaviors that are being run. It will take only a couple
of seconds to sample millions of frames worth of scheduling for tens of tasks. We get
minimum, maximum, average, and distribution statistics. Optimal scheduling will
have a small distribution, with minimum and maximum values close to the average.

Automatic Phasing

Even with good quality feedback, changing phase values is not intuitive. It would be
better to take the burden of setting phases from the developer.

It is possible to calculate a good set of phases for a set of tasks with different
frequencies. This allows the scheduler to expose the original implementation, taking
a frequency only for each task.

Wright’s Method

Ian Wright, the first person to write about scheduling in some depth (although it had
been widely used by many developers in much the same form), provided a simple and
powerful phasing algorithm.

When a new behavior is added to the scheduler, with a frequency of f , we perform
a dry run of the scheduler for a fixed number of frames into the future. Rather than
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executing behaviors in this dry run, we simply count how many would be executed.
We find the frame with the least number of running behaviors. The phase value for
the behavior is set to the number of frames ahead this minimum occurs.

The fixed number of frames is normally a manually set figure found by experi-
mentation. Ideally, it would be the least common multiple (LCM) of all the frequency
values used in the scheduler. Typically, however, this is a large number and would
slow the algorithm unnecessarily (for frequencies of 2, 3, 5, 7, and 11, for example,
we have an LCM of 2310).

Figure 9.4 shows this in operation. The behavior is added with a frequency of five
frames. We can see that over the next ten frames (including the current one), frames
three and eight have the least number of combined behaviors. We can therefore use a
phase value of 3.

This approach is excellent in practice. It has a theoretical chance that it will still
produce heavy spikes, if the lookahead isn’t at least as large as the size of the LCM.

These problems can be alleviated by using an analytic method, although it pro-
duces very little benefit in practice.

Analytic Method

There is source code on the CD that calculates near-optimum phase values as be-

LIBRARY
haviors are added incrementally. It is based on code I wrote for a custom phased
scheduling system. As in Wright’s method, it never changes the phase of already added
behaviors, so the complete set is not optimum, but it is good enough in most cases.

It works by decomposing frequency values into their prime factors and checking
how many behaviors will clash on each. Unfortunately, the algorithm is complex,
and because it is not widely used, I’ve left it as a curiosity on the CD. In practice, it
performs only marginally better than Wright’s algorithm for most problems, but can
be significantly better when the frequencies in the algorithm have a very large LCM.

1 2 3 4 5 6 7 8 9 10Frame:

2 behaviors total

Figure 9.4 Wright’s phasing algorithm
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Single Task Spikes

Using relatively prime frequencies and calculated phase offsets, you can minimize the
number of frames that have spikes in AI time by distributing the hard work.

For most cases this approach is sufficient to schedule AI, and it can be very useful
for other elements of the game that only need to be performed occasionally. In some
circumstances, however, a piece of code is so expensive to run that it will cause a spike
all on its own if it is run within a frame.

More advanced schedulers need to allow processes to be run across multiple
frames. These are interruptible processes.

9.1.2 INTERRUPTIBLE PROCESSES

An interruptible process is one that can be paused and resumed when needed. Com-
plex algorithms such as pathfinding should ideally be run for just a short time on each
frame. After enough total time, a result will be available for use, but it won’t finish on
the same frame as it started. For many algorithms, the total time that the algorithm
uses is far too large for one frame, but in small bites it doesn’t jeopardize the budget.

Threads

There is already a general programming tool to implement any kind of interruptible
process. Threads are available on all game machines (with the exception of some vari-
eties of embedded processors with such limited capabilities it would be unlikely you’d
be able to run complex AI in any case). Threads allow chunks of code to be paused
and returned to at a later time.

Most threading systems switch between threads automatically using a mechanism
called preemptive multitasking. This is a mechanism where the code is paused, re-
gardless of what it is doing; all its settings are saved; and then another code is loaded
into the processor in its place. This facility is implemented at a hardware level and is
often managed by the operating system.

We could take advantage of threads by putting the time-consuming tasks in their
own thread. This way we would avoid using a special scheduling system. Unfortu-
nately, despite being simple to implement, this is not often a sensible solution.

Switching between threads involves unloading all the data for the exiting thread
and reloading all the data for the new thread. This adds significant time. Each switch
involves flushing memory caches and doing a lot of housekeeping. Many developers,
rightly so, have avoided using lots of threads. While a few tens of threads may not
cause noticeable performance drops on a PC, using a thread in an RTS game for each
character’s pathfinding algorithm would be excessive.
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Software Threads

For larger numbers of simultaneous behaviors, a manual scheduler is the most com-
mon solution. This requires behaviors to be written so that they return control after
processing for a short time. Whereas the hardware can manually muscle in and boot
out a threaded process, the scheduler relies on it behaving nicely and surrendering
control after a short bout of processing.

This has the advantage that the scheduler doesn’t need to manage the clean-up
and housekeeping for the change of thread; it assumes that the task saved all the data
it needed (and only the data it needed) before returning control.

This scheduling approach is called “software threads” or “lightweight threads”
(although the latter is also used to mean micro-threads, see below).

The scheduling system we’ve looked at so far can cope with interruptible processes
without modification. The difficulty is writing the behaviors to be scheduled. Behav-
iors scheduled with a frequency of 1 will get called each frame. If the code is written
in such a way that it only takes a short time to do a bit more processing and then
returns, the repeated calling will eventually provide it time to complete.

Micro-Threads

Although operating systems support threads, they often add a lot of extra processing
and overhead. This overhead allows them to better manage thread switching: to track
down errors or to support advanced memory management.

This overhead can be unnecessary in a game, and many developers have ex-
perimented with writing their own thread switching code, sometimes called micro-
threads (or lightweight threads, confusingly).

By trimming down the thread overhead, a relatively speedy threading implemen-
tation can be achieved. If the code in each thread is aware of the way threads are
switched, then it can avoid operations that expose the shortcuts made.

This approach produces very fast code, but can also be extremely difficult to debug
and develop. While it might be suitable for running a small number of key systems,
developing the whole game in this way can be a nightmare. Personally, I’ve always
stayed away from it, but I know a handful of AI developers who are quite comfort-
able with mixing the approach with some of the other scheduling techniques in this
section.

Hyper-Threads and Multiple Cores

On more recent PCs, a new approach to threading is being used. Modern CPUs have
a number of separate processing pipelines, each working at the same time. The lat-
est PCs (at the time of writing) and the current generation of games machines have
multiple cores: multiple complete CPUs on one sliver of silicon.
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In normal operation the CPU splits its execution task into chunks and sends a
chunk to each pipeline. It then takes the results and merges them together (some-
times realizing it needs to go back and do something again because the results of one
pipeline conflict with those of another).

Hyper-threading is a technology whereby these pipelines are given their own
thread to process; different threads literally run at the same time. On multi-core ma-
chines each processor can be given its own thread.

It seems clear that this parallel architecture will become increasingly ubiquitous
throughout PCs, consoles, and handheld games machines. It is potentially very fast.
Threads are still switched in the normal way, however. So for large numbers of threads
it still isn’t the most efficient solution.

Quality of Service

Console manufacturers have stringent sets of requirements that need to be fulfilled
before a game can be released on their platform. Frame rates are an obvious sign of
quality to gamers, and all console manufacturers specify that frame rates should be
steady. Frame rates of 30, 50, or 60 Hz are most common and require that all game
processing be done and dusted in 33, 20, or 16 milliseconds.

At 60 Hz, if the whole processing uses 16 milliseconds, then everything is fine. If
it gets done in 15 milliseconds, that’s fine too, but the console waits around for the
extra millisecond doing nothing. That is time that could be used to make the game
more impressive—an extra visual effect, a cloth simulation, or a few more bones in
the skeleton of the character.

For this reason, time budgets are usually pushed as close to the limit as possible.
To make sure the frame rate doesn’t drop, it is critical that limits be placed on how
long the graphics, physics, and AI will take. It is often more acceptable to have a long-
running component than a component that fluctuates wildly.

The scheduling system we’ve looked at so far expects behaviors to run for a short
time. It trusts that the fluctuations in running time will average out any differences
to give a steady AI time. In many cases this is just not good enough and more control
needs to be taken.

Threads can be difficult to synchronize. If a behavior is always being interrupted
(i.e., by a thread switch) before it can return a result, then its character might simply
stand still and do nothing. A tiny change in the amount of processing can often give
rise to this kind of problem, which is very difficult to debug and can be even harder
to correct. Ideally, we’d like a system that allows us to control total execution time,
while being able to guarantee that behaviors get run. We’d also like to be able to ac-
cess statistics that help us understand where processing time is being used and how
behaviors are taking their share of the pie.
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9.1.3 LOAD-BALANCING SCHEDULER

A load-balancing scheduler understands the time it has to run and distributes this
time among the behaviors that need to be run.

We can turn our existing scheduler into a load-balancing scheduler by adding
simple timing data.

The scheduler splits the time it is given according to the number of behaviors
that needs to be run on this frame. The behaviors that get called are passed timing
information, so they can decide when to stop running and return.

Because this is still a software threading model, there is nothing to stop a behavior
running for as long as it wants. The scheduler trusts that they will be well behaved.
To adjust for small errors in the running time of behaviors, the scheduler recalculates
the time it has left after each behavior is run. This way an overrunning behavior will
reduce the time that is given to others run in the same frame.

Pseudo-Code

1 class LoadBalancingScheduler:
2

3 # Holds the data per behavior to schedule
4 struct BehaviorRecord:
5 thingToRun
6 frequency
7 phase
8

9 # Holds the list of behavior records
10 behaviors
11

12 # Holds the current frame number
13 frame
14

15 # Adds a behavior to the list
16 def addBehavior(function, frequency, phase):
17

18 # Compile the record
19 record = new Record()
20 record.thingToRun = function
21 record.frequency = frequency
22 record.phase = phase
23

24 # Add it to the list
25 behaviors.append(record)
26



706 Chapter 9 Execution Management

27 # Called once per frame
28 def run(timeToRun):
29

30 # Increment the frame number
31 frame += 1
32

33 # Keep a list of behaviors to run
34 runThese = []
35

36 # Go through each behavior
37 for behavior in behaviors:
38

39 # If it is due, schedule it
40 if behavior.frequency % (frame + behavior.phase):
41 runThese.append(behavior)
42

43 # Keep track of the current time
44 lastTime = time()
45

46 # Find the number of behaviors we need to run
47 numToRun = runThese.length()
48

49 # Go through the behaviors to run
50 for i in 0..numToRun:
51

52 # Find the available time
53 currentTime = time()
54 timeToRun -= currentTime - lastTime
55 availableTime = timeToRun / (numToRun - i)
56

57 # Run the function
58 entry = runThese[i].thingToRun
59 entry(availableTime)
60

61 # Store the current time
62 lastTime = currentTime

Data Structures

The functions that we are registering should now take a time value, indicating the
maximum time they should run for.

We have assumed that the list of functions we want to run has a length method
that gets the number of elements.
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Performance

The algorithm remains O(n) in time (n is the total number of behaviors in the sched-
uler), but is now O(m) in memory, where m is the number of behaviors that will
be run. We cannot combine the two loops to give O(1) memory because we need to
know how many behaviors we will be running before we can calculate the allowed
time.

These values are excluding the processing time and memory of the behaviors. Our
whole aim with this algorithm is that the processing resources used by the scheduled
behaviors is much greater than those spent scheduling them.

9.1.4 HIERARCHICAL SCHEDULING

While a single scheduling system can control any number of behaviors, it is often
convenient to use multiple scheduling systems. A character may have a number of
different behaviors to execute, for example, pathfinding a route, updating its emo-
tional state, and making local steering decisions. It would be convenient if we could
run the character as a whole and have the individual components be scheduled and
allotted time. Then we can have a single top-level scheduler which gives time to each
character, and the time is then divided according to the character’s composition.

Hierarchical scheduling allows a scheduling system to be run as a behavior by
another scheduler. A scheduler can be assigned to run all the behaviors for one char-
acter, as in the previous example. Another scheduler can then allocate time on a per-
character basis. This makes it very easy to upgrade a character’s AI without unbalanc-
ing the timing of the whole game.

Team
scheduler

Character 4
scheduler

Character 1
scheduler

Team strategy
behavior

Pathfinding
behavior

Decision making
behavior

Movement
behavior

Time is divided among characters

Time is divided among behaviors

Figure 9.5 Behaviors in a hierarchical scheduling system
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With a hierarchical approach, there is no reason why the schedulers at different
levels should be of the same kind. It is possible to use a frequency-based scheduler for
the whole game and priority-based schedulers (described later) for individual char-
acters.

Data Structures and Interfaces

To support this, we can move from schedulers calling functions to a generic interface
for all behaviors:

1 class Behavior:
2 def run(time)

Anything that can be scheduled should expose this interface. If we want hierar-
chical scheduling, then the schedulers themselves also need to expose it (the load-
balancing scheduler above has the right method, it just needs to explicitly derive from
Behavior). We can make our schedulers work by modifying the LoadBalancingSched-
uler class in the following way:

1 class LoadBalancingScheduler (Behavior):
2 # ... All contents as before ...

Since behaviors are now classes rather than functions, we also need to change the
way they are called. Previously, we used a function call, and now we need to use a
method call, so

1 entry(availableTime)

becomes

1 entry.run(availableTime)

in the LoadBalancingScheduler class.

Behavior Selection

On its own there is nothing that hierarchical scheduling provides that a single sched-
uler cannot handle. It comes into its own when used in combination with level of de-
tail systems, described later. Level of detail systems are behavior selectors; they choose
only one behavior to run.



9.1 Scheduling 709

In a hierarchical structure this means that schedulers running the whole game
don’t need to know which behavior each character is running. A flat structure would
mean removing and registering behaviors with the main scheduler each time the se-
lection changed. This is prone to run time errors, memory leaks, and hard-to-trace
bugs.

9.1.5 PRIORITY SCHEDULING

There are a number of possible refinements to the frequency-based scheduling sys-
tem. The most obvious is to allow different behaviors to get a different share of the
available time. Assigning a priority to each behavior and allocating time based on this
is a good approach.

In practice, this bias (normally called priority) is just one of many time alloca-
tion policies that can be implemented. If we go a little further with priorities, we can
remove the need for frequencies entirely.

Each behavior receives a proportion of the AI time according to its priority.

Pseudo-Code

1 class PriorityScheduler:
2

3 # Holds the data per behavior to schedule
4 struct BehaviorRecord:
5 thingToRun
6 frequency
7 phase
8 priority
9

10 # Holds the list of behavior records
11 behaviors
12

13 # Holds the current frame number
14 frame
15

16 # Adds a behavior to the list
17 def addBehavior(function, frequency, phase, priority):
18

19 # Compile the record
20 record = new Record()
21 record.functionToCall = function
22 record.frequency = frequency
23 record.phase = phase
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24 record.priority = priority
25

26 # Add it to the list
27 behaviors.append(record)
28

29 # Called once per frame
30 def run(timeToRun):
31

32 # Increment the frame number
33 frame += 1
34

35 # Keep a list of behaviors to run, and their total
36 # priority
37 runThese = []
38 totalPriority = 0
39

40 # Go through each behavior
41 for behavior in behaviors:
42

43 # If it is due, schedule it
44 if behavior.frequency \% (frame + behavior.phase):
45 runThese.append(behavior)
46 totalPriority += behavior.priority
47

48 # Keep track of the current time
49 lastTime = time()
50

51 # Find the number of behaviors we need to run
52 numToRun = runThese.length()
53

54 # Go through the behaviors to run
55 for i in 0..numToRun:
56

57 # Find the available time
58 currentTime = time()
59 timeToRun -= currentTime - lastTime
60 availableTime = timeToRun * behavior.priority /
61 totalPriority
62

63 # Run the function
64 entry = runThese[i].thingToRun
65 entry(availableTime)
66
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67 # Store the current time
68 lastTime = currentTime

Performance

This algorithm has the same characteristics as the load-balancing scheduler: O(n) in
time and O(m) in memory, excluding the processing time and memory used by the
scheduled behaviors.

Other Policies

One priority-based scheduler I have worked with had no frequency data at all. It used
only the priorities to divide up time, and all behaviors were scheduled to run every
frame. The scheduler presumed that every behavior was interruptible and would con-
tinue its processing in the follow frame if it did not complete. In this case, having all
behaviors running, even for a short time, made sense.

Alternatively, we could also use a policy where each behavior asks for a certain
amount of time, and the scheduler splits up its available time so that behaviors get
what they ask for. If a behavior asks for more time than is available, it may have to wait
for another frame before getting its request. This is usually combined with some kind
of precedence order, so behaviors that are more important will be preferred when
allocating the budget.

Alternatively, we could distribute time according to bias, then work out the actual
length of time behaviors are taking, and change their bias. A behavior that always
overruns, for example, might be given less time to try to make sure it doesn’t squeeze
others.

The sky’s the limit, no doubt, but there are practical concerns too. If your game is
under high load, it may take some tweaking to find a perfect strategy for dividing up
time. I haven’t seen a complex game where the AI didn’t benefit from some kind of
scheduling (excluding games where the AI is so simple that it always runs everything
in a frame). The mechanism usually requires some tweaking.

Priority Problems

There are subtle issues with priority-based approaches: some behaviors need to run
regularly, while others don’t; some behaviors can be cut into small time sections, while
others require their time all at once; some behaviors can benefit from spare time,
while others will not improve. A hybrid approach between priority and frequency
scheduling can solve some of these issues, but not all.

The same issues arise for hardware and operating system developers who are im-
plementing threads. Threads can have priorities, different allocation policies, and dif-
ferent frequencies. Look for information on implementing threading if you need a
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really nuts-and-bolts scheduling approach. In my experience most games don’t need
complex scheduling. A simple approach, such as the frequency implementation ear-
lier in this section, is powerful enough.

9.2 ANYTIME ALGORITHMS

The problem with interruptible algorithms is that they can take a long time to com-
plete. Imagine a character trying to plan a route across a very large game level. At
the rate of a few hundred microseconds per frame, this could take several seconds to
complete.

The player will see the character stand still, doing nothing for several seconds,
before moving off with great purpose. If the perception window isn’t very large, this
will immediately alert the player, and the character will appear unintelligent. It is
ironic that the more complex the processing going on and the more sophisticated the
AI, the longer it will take, and the more likely the character is to look stupid.

When we do the same process, we often start acting before we have finished think-
ing. This interleaving of action and thinking relies on our ability to generate poor but
fast solutions and to refine them over time to get better solutions. We might move
off in the rough direction of our goal, for example. In the couple of seconds of ini-
tial movement, we have worked out the complete route. Chances are the initial guess
will be roughly okay, so nothing will be out of place. But on occasion we’ll remember
something key and have to double back (we’ll be halfway to the car and realize we’ve
forgotten the keys, for example).

AI algorithms that have this same property are called “anytime algorithms.” At
any time you can request the best idea so far, but leave the system to run longer and
the result will improve.

Putting an anytime algorithm into our existing scheduler requires no modifica-
tions. The behavior needs to be written in such a way that it always makes its best
guess available before returning control to the scheduler. That way another behavior
can start acting on the guess, while the anytime algorithm refines its solution.

The most common use of anytime algorithms is for movement or pathfinding.
This is usually the most time-consuming AI process. Certain variations of common
pathfinding techniques can be easily made into anytime algorithms. Other suitable
candidates are turn-based AI, learning, scripting language interpreters, and tactical
analysis.

9.3 LEVEL OF DETAIL

In Chapter 2 we looked at the perception window: the player’s attention that roams
selectively during gameplay. At any time the player is likely to be focussed on only a
small area of the game level. It makes sense to ensure that this area looks good and
contains realistic characters, even at the expense of the rest of the level.
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9.3.1 GRAPHICS LEVEL OF DETAIL

Level of detail (LOD) algorithms have been used for years in graphics programming.
The idea is to spend the most computational effort on areas of the game that are most
important to the player. Close-up, an object is drawn with more detail than it is at a
distance.

In most graphics LOD techniques, the detail is a function of the geometric com-
plexity: the number of polygons drawn in a model. At a distance even a few polygons
can give the impression of an object; closeup, the same object may require thousands
of polygons.

Another common approach is to use LOD for texture detail. This is supported in
hardware on most graphics cards. Textures are mipmapped; they are stored in mul-
tiple LODs, and distant objects use lower resolution versions. In addition to texture
and geometry, other visual artifacts can be simplified: special effects and animation
are both commonly reduced or removed for objects at a distance.

Levels of detail are usually based on distance, but not exclusively. In many terrain
rendering algorithms, for example, silhouettes of hills at a distance are drawn with
more detail than a piece of flat ground immediately next to the player. Both Sony and
Renderware engineers have told me that it is surprising how many developers simply
think of LOD as distance. In reality, anything that is more noticeable to the player
needs more detail.

The hemispherical headlight on an old motorbike, for example, jars the eye if it is
made of few polygons (human eyes detect corners easily). It may end up accounting
for 15% of the polygons in the whole bike, simply because we don’t expect to see
corners on a spherical object. In the guts of the bike, however, where there is more
detail in reality, we can use less polygons, because the eye is expecting to see corners
and a lack of smoothness.

There are two general principles here. First, spend the most effort on the things
that will be noticed, and second, spend effort on those things that cannot be approx-
imated easily.

9.3.2 AI LOD

Level of detail algorithms in AI are no different to those in graphics: they allocate
computer time in preference to those characters that are most important, or most
sensitive to error, from the player’s point of view.

Cars at a distance along the road, for example, don’t need to follow the rules of
the road correctly: players are unlikely to notice if they change lanes randomly. At
a very long distance, players are even unlikely to notice if a lot of cars are passing
right through one another. Similarly, if a character in the distance takes 10 seconds
to decide where to move to next, it will be less noticeable than if a nearby character
suddenly stops for the same duration.

Despite these examples, AI LOD is not primarily driven by distance. We can watch
a character from a distance and still have a good idea about what it is doing. Even if
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we can’t watch them, we expect characters to be acting all the time. If the AI applied
only when the character was on-screen, then it would look odd when we turn away
for a while and turn back to find the same character at exactly the same location, mid-
walk. As well as distance, we have to consider how likely it is that a player would watch
a character or look to see if it had moved. That depends on the role the character has
in the game.

Importance in AI is often dictated by the story of the game. Many game characters
are added for flavor; it doesn’t matter if they are always walking around the town in
a fixed pattern, because only a very few players will notice that. You might end up
with hard-core gamers on forums saying, “I followed the blacksmith around the city,
and he follows the same route, and never goes to sleep or pee.” But that is hardly
important to the majority of your players and isn’t likely to affect sales.

If a character who is central to the game’s story walks around in a circle in the
main square, most players will notice. It is worth letting the character have a bit more
variety. Of course, this has to be balanced against gameplay concerns. If the character
in question has important information for the player’s quest, then we don’t want the
player to have to search the whole city to track the character down and ask one more
question.

Importance Values

Throughout this section we will assume that importance is a single numerical value
that applies to each character in the game. Many factors can be combined to create
the importance value, as we have seen. An initial implementation can usually make
do with distance to start with, simply to make sure everything is up and running.

9.3.3 SCHEDULING LOD

A simple and effective LOD algorithm is based on the scheduling systems discussed
previously. Simply using a scheduling frequency based on the importance of a char-
acter provides an LOD system.

Important characters can receive more processing time than others by being
scheduled more frequently. If you are using a priority-based scheduling system, then
both frequency and priority can depend on importance.

This dependence may be by means of a function, where as importance increases,
the frequency value decreases, or it might be structured in categories, where a range
of importance values produces one frequency, and another range maps to a different
frequency. Frequencies, because they are integers, effectively use the latter approach
(although if there are hundreds of possible frequency values, it makes more sense to
think of it as a function). Priorities, on the other hand, can work in either way.

Under this scheme characters have the same behavior whether their importance
value is high or low. The reduced time available has different effects on the character
depending on whether a frequency or priority-based scheduler is used.
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Frequency Schedulers

In a frequency-based implementation, less important characters get to make decisions
less often.

Characters moving through a city, for example, may keep walking in a straight
line between calls to their AI. If the AI is called infrequently, they may overshoot their
target and have to double back occasionally. Alternatively, they may not be able to
react in time to a collision with another pedestrian.

Priority Schedulers

Priority-based implementations give more time to important behaviors. All behaviors
may be run every frame, but important ones can run for longer. We assume that
anytime algorithms are being used, so the character can begin to act before their AI
processing is complete.

Characters with a low importance will tend to make worse decisions than those
with a high importance. The characters above, for example, will not overshoot their
target, but they may elect to go a bizarre route to their destination, rather than a
seemingly obvious shortcut (i.e., their pathfinding algorithm may not have time to
get the best result). Alternatively, when avoiding another pedestrian, the behavior
may not have time to check if the new path is clear, causing the character to collide
with someone else.

Combined Scheduling

Combining frequency and priority scheduling can reduce the problems caused with
scheduling LOD. Priority scheduling allows AI to be run more often (reducing be-
havior lock-in such as overshooting), while frequency scheduling allows AI to be run
longer (providing better quality decisions).

It is not a silver bullet, however. In both the examples a low-importance character
may collide with other characters more often. Combining approaches will not get
around the fact that collision avoidance, essential for nearby characters, takes lots of
processing power. It is often better to change a character’s behavior entirely when its
importance drops.

9.3.4 BEHAVIORAL LOD

Behavioral LOD allows a character’s choice of behavior to depend on its importance.
The character selects one behavior at a time based on its current importance. As its
importance changes, the behavior may be changed for another. The aim is that be-
haviors associated with lower importance require fewer resources.
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For each possible importance value there is an associated behavior. At each time
step the behavior is selected based on the importance value.

A pedestrian in an RPG, for example, might have fairly complex collision detec-
tion, obstacle avoidance, and path following steering when it is important. Pedestri-
ans in the periphery of the action (such as those on a distant walkway or seen from
a bridge) can have their collision detection disabled completely. Passing through one
another freely isn’t nearly as noticeable as you would expect. It is certainly less no-
ticeable than frequent pinball-style collisions. This is because our optic apparatus is
tuned for detecting changes in motion more than smooth motion.

Entry and Exit Processing

Behaviors have memory requirements as well as processor load. For games with many
characters (such as role-playing games or strategy games), it is impossible to keep the
data for all possible behaviors of all characters in memory at one time. We want the
LOD mechanism to keep memory as well as execution time as low as possible.

To allow the data to be created and destroyed correctly, code is executed when a
behavior is entered and when it is exited. The exiting code can clean up any memory
used in the previous LOD, and the entry code can set up data correctly in the new
LOD ready to be processed.

To support this extra step, the LOD system needs to keep track of the behavior
it ran last time. If the behavior it intends to run is the same, then no entry or exit
processes are needed. If the behavior is different, then the current behavior’s exit rou-
tine is called, followed by the new behavior’s entry routine.

Behavior Compression

Low-detail behaviors are often approximations of high-detail behaviors. A pathfind-
ing system may give way to a simple “seek” behavior, for example. Information stored
in the high-detail behavior can be useful to the low-detail behavior.

To make sure the AI is memory efficient, we normally throw away the data as-
sociated with a behavior when it is switched off. At the entry or exit step, behavior
compression can retrieve the data that could be useful to the new LOD, convert it to
a correct format, and pass it along.

Imagine RPG characters in a market square with complex goal-driven decision
making systems. When they are important, they consider their needs and plan actions
to meet them. When they are less important, they move around between random
market stalls. Using behavior compression, the noticeable join between behaviors can
be reduced. When characters move from low to high importance, their plan is set so
that the stall they were heading to becomes the first item on the plan (to avoid them
turning in mid-stride and heading for a different target). When they move from high
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to low importance, they don’t immediately make a random choice; their target is set
from the first item on the plan.

Behavior compression provides low-importance behaviors with a lot more believ-
ability. High-importance behaviors can be run less often, and they can have a smaller
range of importance values for which they are active. The disadvantage is develop-
ment effort: custom routines need to be written for each pair of behaviors that is
likely to be used sequentially. Unless you can guarantee that importance will never
change rapidly, single entry and exit routines are not enough; transition routines are
required for each pair of behaviors.

Hysteresis

Imagine a character that switched between behaviors at a distance of 10 meters from
the player. Closer than this value, the character has a complex behavior, is more dis-
tant, and is dumber. If the player happens to be walking along behind the character,
they may continually be shifting across the 10-meter boundary.

The switching between behaviors, which may be unnoticeable if it happens oc-
casionally, will stand out if it is rapidly fluctuating. If either of the behaviors uses an
anytime algorithm, it is possible that the algorithm will never get enough time to gen-
erate sensible results; it will be continually switched out. If the behavior switch has an
associated entry or exit processing step, the fluctuation may cause the character to
have even less time than if it chose one level or the other.

As with any behavior switching process, it is a good idea to introduce hysteresis:
boundaries that are different depending on whether the underlying value (the impor-
tance in our case) is increasing or decreasing.

For LOD, each behavior is given an overlapping range of importance values where
it is valid. Each time the character is run, it checks if the current importance is within
the range of the current behavior. If it is, then the behavior is run. If it is not, then the
behavior is changed. If only one behavior is available, then it can be selected. If more
than one behavior is available, then we need an arbitration mechanism to choose
between them.

The most common arbitration techniques are discussed here.

Choose Any Available Behavior

This is the most efficient selection mechanism. We can find any available behavior by
making sure each is ordered by its range and performing a binary search.

The range is controlled by two values (maximum and minimum), but the order-
ing cannot take this into control, so the binary search may not give a correct result. We
need to look at the nearby ranges if the initial behavior is not available. The ordering
is most commonly performed by sorting in order of the mid-point of the range.
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Choose the First Available Behavior in the List

This is an efficient way of selecting a behavior, because we don’t need to check to see
how many behaviors are valid. As soon as we find one, we use it. As we saw in Chap-
ter 5, it can provide rudimentary priority control. By arranging possible behaviors in
order of priority, the highest priority behavior will be selected.

This approach is also the simplest to implement and will form the basis of the
pseudo-code below.

Select the Most Central Behavior

We select the available behavior where the importance value is nearest to the center
of its range. This heuristic tends to make the new behavior last longest before being
swapped out. This is useful when the entry and exit processing is costly.

Select the Available Behavior with the Smallest Range

This heuristic prefers the most specific behavior. It is assumed that if a behavior can
only run in a small range, then it should be run when it can because it is tuned for
that small set of importance values.

Fallback Behaviors

The second and fourth selection methods allow for a fallback behavior that is run
only when no other is available. Fallback behaviors should have ranges that cover all
possible importance values. In method two, the last behavior in the list will never be
run if another is available. In method four, the fallback’s huge range means that the
behavior will always be overruled by other behaviors.

Pseudo-Code

A behavioral LOD system can be implemented in the following way:

1 class BehavioralLOD (Behavior):
2

3 # Holds the list of behavior records
4 records
5

6 # Holds the current behavior
7 current = None
8

9 # Holds the current importance
10 importance
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11

12 # Finds the right record to run, and runs it
13 def run(time):
14

15 # Check if we need to find a new behavior
16 if not (current and current.isValid(importance)):
17

18 # Find a new behavior, by checking each in turn
19 next = None
20 for record in records:
21

22 # Check if the record is valid
23 if record.isValid(importance):
24

25 # If so, use it
26 next = record
27 break
28

29 # We’re leaving the current behavior, so notify
30 # it where we’re going
31 if current and current.exit:
32 current.exit(next.behavior)
33

34 # Likewise, notify our new behavior where we’re
35 # coming from
36 if next and next.enter:
37 next.enter(current.behavior)
38

39 # Set our current behavior to be that found
40 current = next
41

42 # We should have either decided to use the previous
43 # behavior, or else we have found a new one, either
44 # way it is stored in the current variable, so run it
45 current.behavior.run(time)

Data Structures and Interfaces

We have assumed that behaviors have the following structure:

1 class Behavior:
2 def run(time)
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exactly as before.
The algorithm manages behavior records, which add additional information to

the core behavior. Behavior records have the following structure:

1 # Holds the data for one possible behavior
2 struct BehaviorRecord:
3 behavior
4 minImportance
5 maxImportance
6 enter
7 exit
8

9 # Checks if the importance is in the correct range
10 def isValid(importance):
11 return minImportance >= importance >= maxImportance

The enter and exit members hold a function pointer (they could also be imple-
mented as methods to be overloaded, but then we’d be dealing with multiple sub-
classes of behavior record). If there is no setup or breakdown needed, then either can
be left unset.

The two functions are called when the corresponding behavior is entered or ex-
ited, respectively. They should have the following form:

1 def enterFunction(previousBehavior)
2 def exitFunction(nextBehavior)

They take the next or previous behavior as a parameter to allow them to support
behavior compression. In a behavior’s exit method, it can pass on the appropriate
data to the next behavior it has been given.

This is the preferred method, because it allows the exiting behavior to clear all its
data. If the enter function is used to try and interrogate the previous behavior for
data, then that data may have already been cleaned up. We could, of course, swap the
order of the two calls so that enter is called before exit. Unfortunately, this means that
the memory for both behaviors is active at the same time, which can cause memory
spikes. We err on the side of caution and have a short time when neither behavior is
fully set up.

Implementation Notes

The pseudo-code above is designed so that the behavior LOD can function as a be-
havior in its own right. This allows us to use it as part of a hierarchical scheduling
system, as discussed in the previous section.
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In a full implementation, such as that on the CD, we should also keep track of the
amount of time it takes to decide which behavior should be run and then subtract
that duration from the time we pass to the behavior. Although the LOD selection is
fast, we’d ideally like to keep the timing as accurate as possible.

Performance

The algorithm is O(1) in memory and O(n) in time, where n is the number of behav-
iors managed by the LOD. This is a function of the arbitration scheme we selected.
Using the “choose any available behavior” scheme can allow the algorithm to ap-
proach O(log n) in time. Because we typically deal with very few LODs per character
(typically, in my experience four is an absolute maximum), there is no need to worry
about O(n) time.

9.3.5 GROUP LOD

Even with the simplest behaviors, large numbers of characters require lots of process-
ing power. In a game world where there are thousands of characters, even simple
motion behaviors will be too much to process efficiently. It is possible to switch char-
acters off when they are not important, but this is easily spotted by the player.

A better solution is to add low levels of detail where groups of characters are
processed as a whole, rather than as individuals.

In a role-playing game set over four cities, for example, all the characters in a
distant city can be updated with a single behavior: changing an individual’s wealth,
creating children, killing various citizens, and moving treasure locations. The details
of each resident’s daily business is lost, such as a walk to the market to spend money,
buy items, take them home, pay taxes, catch plagues, and so on. But the overall sense
of an evolving community remains. This is exactly the approach used in Republic:
The Revolution [Elixir Studios Ltd.].

Switching to a group is easy to implement using a hierarchical scheduling sys-
tem. At the highest level, a behavior LOD component selects how to process a whole
city. It can use a single “economic” behavior or simulate the individual city blocks.
If it chooses the city block approach, it gives control to a scheduling system that dis-
tributes the processor time to a set of behavior LOD algorithms for each city block.
In turn, these can pass on their time to scheduling systems that control each char-
acter individually, possibly using another LOD algorithm. This case is illustrated in
Figure 9.6.

If the player is currently in one city block, then the individual behaviors for that
block will be running, the “block” behavior will be running for other blocks in the
same city, and the “economic” behavior will be running for other cities. This is shown
in Figure 9.7.

This combines seamlessly with other LOD or scheduling approaches. At the lowest
level of the hierarchy in our example, we could add a priority LOD algorithm that
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Figure 9.6 Hierarchical LOD algorithms

assigns processor time to individuals in the current city block, depending on how
close they are to the player.

Probability Distributions

The group LOD approach so far requires that some skeleton data be retained for
each character in the game. This can be as simple as age, wealth, and health val-
ues, or it can include a list of possessions, home and work locations, and mo-
tives.

With very large numbers of characters, even this modest storage becomes too
great. Recently, games have begun using a group LOD that merges character data
together. Rather than storing a set of values for each character, they store the number
of characters and the distributions for each value.

In Figure 9.8 each set of characters has a wealth value. When they are merged,
their individual wealth values are lost, but their distribution is kept. When the high-
importance LOD is needed, the compression routine can create the correct number
of new characters using the same distribution. The individuality of each character is
lost, but the overall structure of the community is the same.
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Figure 9.7 The behaviors being run in the hierarchical LOD
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Figure 9.10 Power law distribution

Many real-world quantities are distributed in a bell curve: the normal distribution
curve (Figure 9.9). This can be represented with two quantities: the mean (the average
value—at the highest point of the curve) and the standard deviation (representing
how flat the curve is).

Of those quantities that are not normally distributed, the power distribution is
usually the closest fit. The power distribution is used for quantities where lots of in-
dividuals score low, while a few score high. The distribution of money among peo-
ple, for example, follows a power law (Figure 9.10). The power law distribution can
be represented with a single value: the exponent (which also represents how flat the
curve is).

So with one or two items of data, it is possible to generate a realistic distribution
of values for a whole set of characters.

9.3.6 IN SUMMARY

In this chapter we looked at scheduling systems that execute behaviors at different
frequencies or that assign different processor resources to each. We looked at mecha-
nisms to change the frequency, the priority, or the whole behavior depending on how
important the character is to the player.

In most games the scheduling needs are fairly modest. In an action game there
may be 200 characters in a game level, and they are often either “off” or “on.” We
don’t need sophisticated scheduling to cope with this situation. We can simply use a
frequency-based scheduler for the currently “on” characters.
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At a slightly more tricky level, city simulations such as Grand Theft Auto 3 [DMA
Design, 2001] require simulation of a small number of characters out of a theoretical
population of thousands. The characters that are not on-screen do not have an iden-
tity (other than a handful of characters specific to the story). As the player moves, new
characters are spawned into existence based on the general properties of the area of
the city and the time of the day. This is a fairly basic use of the group LOD technique.

Countrywide strategy games, such as Republic, go further, requiring characters
with distinct identities. The group LOD algorithms we looked at in this chapter were
largely devised by Elixir Studios to cope with the huge scalability of that game. They
have since been used with variations in a number of real-time strategy games.
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10
WORLD

INTERFACING

ne of the most difficult things to get right as an AI developer is interaction
O between the AI and the game world. Events in the game world need to be
acted on correctly, and agents need to know what is happening to themselves and to
their colleagues and enemies.

In addition, some algorithms need to have the world represented in the correct
way for them to process correctly.

To build a general purpose AI system, we need to have some infrastructure that
makes it easy to get the right information to the right bits of AI code at the right
time. With a special purpose, single game AI, there may be no dividing line between
the world interface and the AI code. In a game engine including AI, it is essential for
stability and reusability to have a single central world interface system.

This chapter will look at building robust and reusable world interfaces using two
different techniques: event passing and polling. The event passing system will be ex-
tended to include simulation of sensory perception: a hot topic in current game AI.

10.1 COMMUNICATION

It is easy to implement a character that goes about its own business, oblivious to the
world around it and to other characters in the game: guards can follow patrol routes,
military units can move directly where they’re told, and non-player characters can
ignore the player.

727
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One of the most difficult things to get right is interaction between the AI and the
game world. Events in the game world need to be acted on correctly, and agents need
to know what is happening to themselves and to their colleagues and enemies.

Communication allows the right AI to know the right thing at the right time. It is
essential for even simple AI, but comes into its own when multiple characters need to
coordinate their behaviors.

In this section we’ll look at the two approaches for getting information to and
between characters in a game.

10.2 GETTING KNOWLEDGE EFFICIENTLY

The simplest way to get information from the game world is to look for it. If a char-
acter needs to know whether a nearby siren is sounding, the AI code for the character
can directly query the state of the siren and find out.

Similarly, if a character needs to know if it will collide with another character, it
can look at the positions of each character and calculate its trajectory. By comparing
this trajectory with its own, the character can determine when a collision will occur
and can take steps to avoid it.

10.2.1 POLLING

Looking for interesting information is called polling. The AI code polls various ele-
ments of the game state to determine if there is anything interesting that it needs to
act on.

This process is very fast and easy to implement. The AI knows exactly what it is
interested in and can find it out immediately. There is no special infrastructure or
algorithm between the data and the AI that needs it.

As the number of potentially interesting things grows, however, the AI will spend
most of its time making checks that return a negative result. For example, the siren
is likely to be off more than it is on, and a character is unlikely to be colliding with
more than one other character per frame. The polling can rapidly grow in processing
requirements through sheer numbers, even though each check may be very fast.

For checks that need to be made between a character and a lot of similar sources
of information, the time multiplies rapidly. For a level with a 100 characters, 10,000
trajectory checks would be needed to predict any collisions.

Because each character is requesting information as it needs it, polling can make
it difficult to track where information is passing through the game. Trying to debug a
game where information is arriving in many different locations can be challenging.
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Polling Stations

There are ways to help polling techniques become more maintainable. A polling sta-
tion can be used as a central place through which all checks are routed. This can be
used to track the requests and responses for debugging. It can also be used to cache
data, so complex checks don’t need to be repeated for each request. We’ll look at
polling stations in some depth later in the chapter.

10.2.2 EVENTS

There are many situations, like the single siren example, where the polling approach
may be optimal. In the collision example, however, there are much faster ways to
check, as long as we can do all the checking at once, rather than agent by agent.

In these cases we want a central checking system that can notify each charac-
ter when something important has happened. This is an event passing mechanism.
A central algorithm looks for interesting information and tells any bits of code that
might benefit from that knowledge when it finds something.

The event mechanism can be used in the siren example. In each frame when the
siren is sounding, the checking code passes an event to each character that is within
earshot. This approach is used when we want to simulate a character’s perception in
more detail, as we’ll see later in the chapter.

The event mechanism is no faster in principle than polling. Polling has a bad
reputation for speed, but in many cases event passing will be just as inefficient. To de-
termine if an event has occurred, checks need to be made. The event mechanism still
needs to do the checks, the same as for polling. In many cases the event mechanism
can reduce the effort by doing everybody’s checks at once. However, when there is no
way to share results, it will take the same time as each character checking for itself.
In fact, with its extra message passing code, the event management approach will be
slower.

Imagine the AI for the siren example. The event manager needs to know that the
character is interested in the siren. When the siren is ringing, the event manager sends
an event to the character. The character is probably not running the exact bit of code
that needs to know about the siren, so it stores the event. When it does reach the
crucial section, it finds the stored event and responds to it.

We have added lots of processing by sending an event. If the character polled the
siren, it would get the information it needed exactly when it needed it.

So when you can’t share the results of a check, event passing can be significantly
slower.

Event Managers

Event passing is usually managed by a simple set of routines that checks for events and
then processes and dispatches them. Event managers form a centralized mechanism
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through which all events pass. They keep track of characters’ interests (so they only get
events that are useful to them) and can queue events over multiple frames to smooth
processor use.

Centralized event passing has significant advantages in code modularity and de-
bugging. Because all conditions are being checked in a central location, it is easy to
store a log of the checks made and their results. The events passed to each charac-
ter can easily be displayed or recorded, making debugging complex decision making
much easier.

10.2.3 DETERMINING WHAT APPROACH TO USE

As in all things, there is a trade-off to be made here. On the one hand, polling can be
very fast, but doesn’t scale well. On the other hand, event passing has extra code to
write and is overkill in simple situations.

For sheer execution speed the approach that will give the best performance de-
pends on the application. It is difficult to anticipate in advance.

As a general rule of thumb, if many similar characters all need to know the same
piece of information, then it is often faster to use events. If characters only need to
know the information occasionally (when they are in a specific state, for example),
then it will be faster to poll.

While a combination of some polling and some event passing is often the fastest
solution, this has implications for developing the code: information is being gathered
and dispatched in multiple ways, and it can be difficult to work out what is being
done where.

Regardless of speed, some developers find that it is easier to manage the game
information only using events. You can, for example, print all the events to screen
and use them to debug. You can set up special key presses in the game to manually
fire events and check that the AI responds correctly. The extra flexibility, and the fact
that the code is often easier to change and upgrade, means events are often favored,
even when they aren’t the fastest approach.

In general, however, some polling is usually required to avoid jumping through
silly hoops to get information into the AI. If all remaining polling can be routed
through a polling station, then significant improvements in speed and debugging can
be gained.

10.3 EVENT MANAGERS

An event-based approach to communication is centralized. There is a central check-
ing mechanism, which notifies any number of characters when something interesting
occurs. The code that does this is called an event manager.

The event manager consists of four elements:



10.3 Event Managers 731

1. A checking engine (this may be optional)

2. An event queue

3. A registry of event recipients

4. An event dispatcher

The interested characters who want to receive events are often called “listeners”
because they are listening for an event to occur. This doesn’t mean that they are only
interested in simulated sounds. The events can represent sight, radio communication,
specific times (a character goes home at 5 PM, for example), or any other bit of game
data.

The checking engine needs to determine if anything has happened that one of its
listeners may be interested in.

It can simply check all the game states for things that might possibly interest any
character, but this may be too much work. More efficient checking engines take into
consideration the interests of its listeners.

A checking engine often has to liaise with other services provided by the game. If
a character needs to know if it has bumped into a wall, the checking engine may need
to use the physics’ engine or collision detector to get a result.

There are many possible things to check, and many of them are checked in dif-
ferent ways: a siren can be checked by looking at a single Boolean value (on or off);
collisions may need to be predicted by a geometric algorithm; and a speech recogni-
tion engine may need to scan a player’s voice input for commands. Because of this, it
is normal to have specialized event managers that only check certain types of infor-
mation (like collisions, sound, or the state of switches in the level). See the subsections
on narrowcasting and broadcasting in Section 10.3.2.

In many cases no checking needs to be done at all. In a military squad, for ex-
ample, characters may choose to tell each other when they are ready for battle. If the
characters are implemented using finite state machines, then their “battle-state” will
become active, and they can directly send a “ready-for-battle” event to the event man-
ager. These events are placed in the event queue and dispatched to the appropriate
listeners as usual.

It is also common to separate the checking mechanism from the event manager.
A separate piece of code does the checking every few frames, and if the check comes
up, it sends an event directly to an event manager. The event manager then processes
it as normal. This checking mechanism is polling the game state (in the same way
as a character might poll the game state) and sharing its results with any interested
characters.

The implementation of an event manager in Section 10.3.1 includes a method
that can be called to directly place an event in the event queue.

For the event queue, once an event is made known to the event manager (either
by being directly passed or through a check), it needs to be held until it can be directly
dispatched. The event will be represented as an Event data structure, and we’ll look at
its implementation below.
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A simple event manager will dispatch every event as it arises, leaving the event
listeners to respond appropriately. This is the approach most commonly used in event
managers: it has no storage overhead to keep a queue of events, and it requires no
complex queue management code.

More complex event managers may track events in a queue and dispatch them
to listeners at the best time. This enables the event manager to be run as an anytime
algorithm (see Chapter 9), sending out events only when the AI has time remaining in
its processing budget. This is particularly important when broadcasting lots of events
to lots of characters. If the notification cannot be split over multiple frames, then
some frames will have a much greater AI burden than others.

Time-based queuing of events can be very complex, having events with different
priorities and delivery deadlines. Notifying a character that a siren is sounding can be
delayed by a couple of seconds, but notifying a character that it has been shot should
be instantaneous (especially if the animation controller is relying on that event in
order to start the “die” animation).

The registry of listeners allows the event manager to pass the correct events on
to the correct listeners.

For event managers that have a specialized purpose (like determining collisions),
the listeners may be interested in any event that the manager is capable of generating.
For others (such as finding out when it is going home time), the listener may have a
specific interest (i.e., a specific time), and other events may be useless.

Soldiers, who need to know when it is time to leave for their barracks, aren’t inter-
ested in being told the time every frame (it’s 12:01, it’s 12:02. . . ). The registry can be
created to accept a description of a listener’s interests. This can allow the checker to
restrict what it looks for and can allow the dispatcher to only send appropriate events,
cutting down on the inefficiency of unnecessary checks and messages.

The format used to register interests can be as simple as a single event code. Char-
acters can register their interest in “explosion” events, for example. A finer degree of
control can be supported with characters being able to register more focussed inter-
ests, such as “explosions of grenades within 50 meters of my current position.”

More discriminating registration allows the checking engine to be more focussed
with what it looks for and reduces the number of unwanted events passed around. On
the other hand, it takes longer to decide if a registered listener should be notified or
not, and it makes the code more complex, more game specific (because the kinds of
things to be interested in often change from game to game), and less reusable between
games.

In general, most developers use a simple event code-based registration process
and then use some kind of narrowcasting approach (see Section 10.3.2) to limit un-
wanted notifications.

The event dispatcher sends notification to the appropriate listeners when an
event occurs.

If the registry includes information about each listener’s interests, the dispatcher
can check whether the listener needs to know about the event. This acts as a filter,
removing unwanted events and improving efficiency.
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The most common way for a listener to be notified of an event is for a function to
be called. In object-oriented languages, this is often a method of a class. The function
is called, and information about the event can be passed in its arguments.

In the event management systems that drive most operating systems, the event
object itself is often passed to the listener. A listener interface of the form

1 class Listener:
2 def notify(event)

is very common.

10.3.1 IMPLEMENTATION

We’re now ready to put together all the bits to get an event manager implementation.

Pseudo-Code

1 class EventManager:
2

3 # Holds data on one registered listener. The same
4 # listener may be registered multiple times.
5 struct ListenerRegistration:
6 interestCode
7 listener
8

9 # Holds the list of registered listeners.
10 listeners
11

12 # Holds the queue of pending events.
13 events
14

15

16 # Checks for new events, and adds them to the queue
17 def checkForEvents()
18

19 # Schedule an event to be dispatched as soon as possible.
20 def scheduleEvent(event):
21 events.push(e)
22

23 # Add a listener to the registry
24 def registerListener(listener, interestCode):
25 # Create the registration structure
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26 lr = new ListenerRegistration()
27 lr.listener = l
28 lr.code = code
29

30 # And store it
31 listeners.push(lr)
32

33 # Dispatch all pending events.
34 def dispatchEvents():
35

36 # Loop through all pending events
37 while (!events.empty()):
38

39 # Get the next event, and pop it from the queue.
40 Event* event = events.pop()
41

42 # Go through each listener
43 for listener in listeners:
44 # Notify if they are interested.
45 if listener.interestCode = event.code:
46 next->listener->notify(event)
47

48 # Call this function to run the manager (from a scheduler
49 # for example).
50 def run():
51 checkForEvents()
52 dispatchEvents()

Data Structures and Interfaces

Event listeners should implement the EventListener interface so that they can register
themselves with the event manager and be notified correctly.

Characters need information about an event that occurs. If a character reports an
enemy sighting to its team, the location and status of the enemy need to be included.

In the code above we’ve assumed that there is an Event structure. The basic Event
structure only needs to be able to identify itself. I have used a code data member for
this:

1 struct Event:
2 code

This is the mechanism used in many windowing toolkits to notify an application
of mouse, window, and key press messages.
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The Event class can be sub-classed to create a family of different event types with
their own additional data:

1 struct CollisionEvent:
2 code = 0x00001000
3 character1
4 character2
5 collisiontime
6

7 struct SirenEvent:
8 code = 0x00002000
9 sirenId

In a C-based event management system, the same effect can be achieved by in-
cluding a void* in the event data structure. This can then be used to pass a pointer to
any other data structure, as event-specific data.

1 typedef struct event_t
2 {
3 unsigned eventCode;
4 void *data;
5 } Event;

Performance

The event manager is O(nm) in time, where n is the number of events in the queue,
and m is the number of listeners registered. It is O(n + m) in memory. This doesn’t
take into account the time or memory required by the listener to handle the event.
Typically, processing in the listeners will dominate the time it takes to run this algo-
rithm.1

Implementation Notes

It is possible to make a number of refinements to this class. Most obviously, it would
be good to allow a listener to receive more than one event code. This can be done with
the above code by registering a listener several times with different codes. A more flex-
ible method might use event codes that are powers of two and interpret the listener’s
interest as a bit mask.

1. This isn’t the case with all event management algorithms. The sense management system we’ll meet later is
time consuming in its own right.
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10.3.2 EVENT CASTING

There are two different philosophies for applying event management. You can use a
few very general event managers, each sending lots of events to lots of listeners. The
listeners are responsible for working out whether or not they are interested in the
event.

Or you can use lots of specialized event managers. Each will only have a few lis-
teners, but these listeners are likely to be interested in more of the events it generates.
The listeners can still ignore some events, but more will be delivered correctly.

The scattergun approach is called broadcasting, and the targeted approach is
called narrowcasting.

Both approaches solve the problem of working out which agents to send which
events. Broadcasting solves the problem by sending them everything and letting them
work out what they need. Narrowcasting puts the responsibility on the programmer:
the AI needs to be registered with exactly the right set of relevant event managers.

Broadcasting

We looked at adding extra data in the registry so that behaviors could show what
their interests were. This isn’t a simple process to make general. It is difficult to design
a registration system that has enough detail so that listeners with very specific needs
can be identified.

For example, an AI may need to know when it hits walls made of one of a set
of bouncy materials. To support this, the registry would need to keep hold of all the
possible materials for all the objects in the game world and then check against the
valid material list for each impact.

It would be easier if the AI was told about all collisions, and it could filter out
those it wasn’t interested in.

This approach is called broadcasting. A broadcasting event manager sends lots of
events to its listeners. Typically, it is used to manage all kinds of events and, therefore,
also has lots of listeners.

Television programs are broadcast. They are sent through cable or radio signals,
regardless of whether anyone is interested in watching them or not. Your living room
is being bombarded with all this data all the time. You can choose to switch off the TV
and ignore it, or you can watch the program you want to see. Even if you are watching
TV, the vast majority of information reaching your TV set is not being displayed.

Broadcasting is a wasteful process, because lots of data is being passed around that
is useless to the recipients.

The advantage is flexibility. If a character is receiving and throwing away lots of
data, it can suddenly become interested and know that the correct data is available
immediately. This is especially important when the AI for a character is being run
by a script, where the original programmers aren’t aware what information the script
creator might want to use.
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Imagine we have a game character wandering round a mushroom patch picking
mushrooms. We are interested in having the character know if the player steals one
of its mushrooms. We aren’t interested in knowing whether doors have been opened
on the level. The character is developed so that it ignores all door-open events, but
responds to stolen-mushroom events.

Later in the development process, the level designer adds the mushroom picker’s
house to the level and wants to edit their AI script to react if the player enters their
house.

If the event manager broadcasts events, this wouldn’t be difficult. The script could
respond to door-open events. If the event manager used a narrowcast approach, the
level designer would have to enlist a programmer to register the character with the
door-open listener.

Of course, there are ways around this. For example, you could make the registra-
tion process part of the script (although you might be expecting too much of the level
designers to manipulate event channels). But flexibility will always be higher with a
broadcast approach.

Narrowcasting

Narrowcasting solves the difficulty of knowing which AI is interested in which events
by requiring the programmer to make lots of registrations to specialized event man-
agers.

If teams of units in an RTS game need to share information, they could each have
their own event manager. With one event manager per group, any events will go only
to the correct individuals. If there are hundreds of teams on the map, there needs to
be hundreds of event managers.

In addition, these teams may be organized in larger groups. These larger groups
have their own event managers, which share information around the battalion. Even-
tually, there is a single event manager per side, which is used to share information
globally.

Narrowcasting is a very efficient approach. There are few wasted events, and in-
formation is targeted at exactly the right individuals. There doesn’t need to be any
record of listener’s interests. Each event manager is so specialized that all listeners are
likely to be interested in all events. This improves speed again.

While the in-game speed is optimized using a narrowcasting approach, setting
up characters is much more complex. If there are hundreds of event managers, there
needs to be a substantial amount of setup code that determines which listeners need
to be wired to which event managers.

The situation is even more complex if the characters change over time. In the RTS
example, most of a team may get killed in battle. The remaining members need to be
placed into a new team. This means changing registrations dynamically. For a simple
hierarchy of event managers, this is still achievable. For more complex “soups” of
event managers, each controlling different sets of unrelated events, this may be more
effort than it is worth.
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Compromising

In reality, there is a compromise to be reached between event managers with complex
registration information and those with no explicit interests at all. Similarly, there is
a related compromise between narrowcasting and broadcasting.

In reality, developers tend to use simple interest information that can be very
quickly filtered. In the example implementation I used an event code. If an event’s
code matches the listener’s interest, then the listener is notified. The event code can
be used to represent any kind of interest information, without the event manager
needing to know what the code means in the game. This makes it possible to use the
same event manager implementation in any number of situations.

Compromising between broadcasting and narrowcasting depends more on the
application, particularly the number of events that are likely to be generated. Often,
there aren’t enough AI events to make broadcasting noticeably slow.

Based on my experience, I recommend you use a broadcasting approach when the
game is in development. This allows you to play with character behaviors more easily.
If you find the event system is slow as development moves on, it can be optimized
using multiple narrowcasting managers before release.

An exception to this rule of thumb is for event managers with very specific func-
tions. An event manager that notifies characters at a specific game time (to tell soldiers
when to clock-off, for example) would be difficult to incorporate into a broadcasting
manager alongside other kinds of event.

10.3.3 INTER-AGENT COMMUNICATION

While most of the information that an AI needs comes from the player’s actions and
the game environment, games are increasingly featuring characters that cooperate or
communicate with each other.

A squad of guards, for example, should work together to surround an intruder.
When the intruder’s location is known, the guards may cover all exits, waiting until
their teammates are in position before launching an attack.

The algorithms for coordinating this kind of action are discussed in Chapter 6.
But regardless of the techniques used, characters need to understand what others are
doing and what they intend to do. This could be achieved by allowing each character
to examine the internal state of other characters or by polling them for their inten-
tions. While this is fast, it is prone to errors and can require lots of rewriting for every
change in the character’s AI. A better solution is to use an event mechanism to al-
low each character to inform others of their intention. You can think of this event
manager as providing a secure radio link between members of an AI team.

The basic event mechanism in this chapter is enough to handle cooperative mes-
sage passing. Using a narrowcasting event manager for each squad ensures that the
data gets quickly to the right characters and doesn’t confuse members of a different
squad.
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10.4 POLLING STATIONS

There are situations where polling is obviously more efficient than events. A character
that needs to open a door moves toward it and checks if it is locked. It doesn’t make
any sense to have the door sending “I’m locked” messages every frame.

Sometimes the checks are time consuming, however. This is especially true when
the check involves the game level’s geometry. A patrolling guard may occasionally
check the status of a control panel from the doorway to the control room. If the player
pushes a box in front of the panel, the line of sight will be blocked. Calculating the line
of sight is expensive. If there is more than one guard, the extra calculation is wasted.

In an event-based system the check can be made once and for all. In a polling
system the check is made by each character individually.

Fortunately, there is a compromise. When polling is the best approach, but checks
are time consuming, we can use a structure called a polling station.

A polling station has two purposes. First, it is simply a cache of polling informa-
tion that can be used by multiple characters. Second, it acts as a go-between from the
AI to the game level. Because all requests pass through this one place, they can be
more easily monitored and the AI debugged.

Several caching mechanisms can be used to make sure the data is not recalculated
too often. The pseudo-code example uses a frame number counter to mark data stale.
Data is recalculated once each frame, if it is required. If the data is not requested in a
frame, it will not be recalculated.

10.4.1 PSEUDO-CODE

We can implement a specific polling station in the following way:

1 class PollingStation:
2

3 # Holds the cache for a boolean property of the game
4 struct BoolCache:
5 value
6 lastUpdated
7

8

9 # Holds the cache value for one topic
10 isFlagSafe[MAX_TEAMS]
11

12 # Updates the cache, when required
13 def updateIsFlagSafe(team)
14 isFlagSafe[team].value = # ... query game state ...
15 isFlagSafe[team].lastUpdated = getFrameNumber()
16
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17 # ... add other polling topics ...
18

19

20 # Query the cached topic.
21 def getIsFlagAtBase(team):
22 # Check if the topic needs updating.
23 if isFlagSafe[t].lastUpdated < getFrameNumber():
24 # Only update if the cache is stale.
25 updateIsFlagSafe(team)
26

27 # Either way, return its value
28 return isFlagSafe[team].value
29

30 # A polling topic without a cache.
31 def canSee(from, to):
32 return # ... always query game state ...

10.4.2 PERFORMANCE

The polling station is O(1) in both time and memory for each polling topic it sup-
ports. This excludes the performance of the polling activity itself.

10.4.3 IMPLEMENTATION NOTES

The implementation above is for a specific polling station, rather than a generic sys-
tem. It shows two different polling topics: getIsFlagAtBase and canSee. The former
shows the pattern of a cached result, and the latter is calculated each time it is needed.

The caching part of the code relies on the existence of a getFrameNumber function
to keep track of stale items. In a full implementation there would be several additional
cache classes similar to BoolCache for different sets of data types.

Often, the polling station simplifies the AI as well. In the above code, a character
only needs to call the polling station’s canSee function. It doesn’t need to implement
the check itself. In this case the function always recalculates the sight check; its value
is not cached.

The AI doesn’t care whether the result is stored from a previous call or whether it
needs to be recalculated. It also doesn’t care how the result is fetched. This allows the
programmers to change and optimize implementations later on without rewriting
lots of code.
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10.4.4 ABSTRACT POLLING

The listing above is the simplest form of polling station. Often, these kinds of methods
can be added to a game world class as a standard interface. They have the disadvantage
of being difficult to extend. Eventually, the polling station will be very large and hold
lots of data.

The polling station can be improved by adding a central request method where
all polls are directed. This request method takes a request code which signals which
check is needed. This abstract polling model enables the polling station to be extended
without changing its interface and without changing any other code that relies on it.
It also helps debugging and logging tools, because all polling requests are channelled
through a central method.

On the other hand, there is an extra translation step to work out which request is
being delivered, and that slows down execution.

This polling station implementation extends the idea one step further to allow
“pluggable” polling. Instances of a polling task can be registered with the station, with
each representing one possible piece of data that can be polled. The cache control
logic is the same for all topics (the same frame number-based caching as previously).

1 # Abstract class; the base for any pollable topic.
2 class PollingTask:
3 taskCode
4 value
5 lastUpdated
6

7 # Checks if the cache is out of date.
8 def isStale():
9 return lastUpdated < getFrameNumber()

10

11 # Updates the value in the cache - implement in
12 # subclasses.
13 def update()
14

15 # Gets the correct value for the polling task.
16 def getValue():
17 # Update the internal value, if required.
18 if isStale(): update()
19

20 # Return it.
21 return value
22

23

24 class AbstractPollingStation:
25
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26 # Keeps track of the tasks registered as a hash-table
27 # indexed by code
28 tasks
29

30 def registerTask(task):
31 tasks[task.code] = task
32

33 def poll(code):
34 return tasks[code].getValue()

At this point we are almost at the complexity of an event management system,
and the trade-off between the two becomes blurred. In practice, few developers rely
on polling stations of this complexity.

10.5 SENSE MANAGEMENT

So far we’ve covered techniques for getting appropriate knowledge into the hands
of characters that might be interested. Our concern has been to make sure that a
character gets the information it wants to be able to make appropriate decisions.

But as we all know, wanting something isn’t the same as getting it! We need to also
make sure that a character is able to acquire the knowledge it is interested in.

Game environments simulate the physical world, at least to some degree. A char-
acter gains information about its environment by using its senses. So it makes sense
to check if a character can physically sense information. If a loud noise is generated in
the game, we could determine which characters heard it: a character across the other
end of the level may not, neither would a character behind a soundproof window.

An enemy may be walking right across the middle of a room, but if the lights are
out or the character is facing in the wrong direction, the enemy will not be seen.

Up until the mid-1990s, simulating sensory perception was rare (at most, a ray
cast check was made to determine if line of sight existed). Since then, increasingly
sophisticated models of sensory perception have been developed. In games such as
Splinter Cell [UbiSoft Montreal Studios, 2002], Thief: The Dark Project [Looking
Glass Studios, Inc., 1998], and Metal Gear Solid [Konami Corporation, 1998], the
sensory ability of AI characters forms the basis of the gameplay.

Indications are that this trend will continue. AI software used in the film industry
(such as Weta’s Massive) and military simulation use comprehensive models of per-
ception to drive very sophisticated group behaviors.2 It seems clear that the sensory
revolution will become an integral part of real-time strategy games and platformers,
as well as the current vogue in third person action games.

2. Interestingly, the AI models in this kind of system are typically very simple.
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10.5.1 FAKING IT

Obviously, we try to take shortcuts whenever possible. There is no point in simulating
the way that sound travels from the headphones on a character’s head down its ear
canal. Some knowledge we can just give to the character.

Even when there is some doubt about knowledge getting through, we can use
the methods discussed earlier in the chapter: we could use an event manager per
room, for example. Sounds that occur in the room can be notified to all the char-
acters current in that room, registered to the event manager. Here we are using the
event manager in a slightly different way than that described earlier. Rather than us-
ing its distribution power, we are relying on the fact that information not given to
the event manager cannot be gained by its listeners. This is not necessarily the case if
characters are polling for data (although we can add filtering code to limit access to a
polling station for the same effect).

To make an event manager work for sound notification, we need to make sure
that characters swap event managers whenever they move between rooms. This may
work for specific situations, such as a particular style of game level or a very simple
game project. It falls short of being a realistic model, however: loud noises might be
heard down a corridor, but gentle noises might be inaudible 1 meter away. And what
do we do about other senses? Vision is often implemented using ray casts to check
line of sight. But this can rapidly get out of hand if there are lots of characters trying
to see lots of different things.

Eventually, we’ll need some dedicated sense simulation code.

10.5.2 WHAT DO I KNOW?

A character has access to different sources of knowledge in the game. We looked
briefly at knowledge at the start of Chapter 5, dividing knowledge into two categories:
internal knowledge and external knowledge.

A character’s internal knowledge tells it about itself: its current health, equipment,
state of mind, goals, and movement. External knowledge covers everything else in
the character’s environment: the position of enemies, whether doors are open, the
availability of power-ups, or the number of its squad members still alive.

Internal knowledge is essentially free, and the character should have direct and
unfettered access to it. External knowledge is delivered to the character based on the
state of the game. Many games allow characters to be omniscient; they always know
where the player is, for example. To simulate some degree of mystery, the behavior of
a character can be designed so that it appears not to have knowledge.

A character might be constantly looking at the position of the player, for exam-
ple. When the player gets near enough, the character suddenly engages its “chase”
action. It appears to the player as if the character couldn’t see the player until they got
close enough. This is a feature of the AI design, not of the way the character gains its
knowledge.
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A more sophisticated approach uses event managers or polling stations to only
grant access to the information that a real person in the game environment might
know. At the final extreme, there are sense managers distributing information based
on a physical simulation of the world.

Even in a game with sophisticated sense management, it makes sense to use a
blended approach. Internal knowledge is always available, but external knowledge
can be accessed in any of the following three ways: direct access to information, noti-
fication only of selected information, and perception simulation.

The remainder of this section will focus only on the last element: sense manage-
ment. The other elements have been covered so far in this chapter.

Polling and Notification Revisited

While it is theoretically possible to implement a sensory management system based on
polling, I have never seen it done in practice. We could, for example, test the sensory
process every time a polling state receives a request for information, only passing on
the data if the test passes. There is nothing intrinsically wrong with this approach, but
it isn’t the one I suggest you take.

Sensory perception feels more like an input process: a character discovers infor-
mation by perceiving it, rather than looking for everything and failing to perceive
most of it. Running sense management in a polling structure will mean that the vast
majority of polling requests fail—a big waste of performance.

We will exclusively use an event-based model for our sense management tools.
Knowledge from the game state is introduced into the sense manager, and those char-
acters who are capable of perceiving it will be notified. They can then take any appro-
priate action, such as storing it for later use or acting immediately.

10.5.3 SENSORY MODALITIES

There are four natural human senses suitable for use in a game: sight, touch, hearing,
and smell, in roughly decreasing order of use. Taste makes up the fifth human sense,
but I’ve yet to see (or even conceive of) a game where characters make use of taste to
gain knowledge about their world.

We’ll look at each sensory modality in turn. Their peculiarities form the basic
requirements of a sense manager.

Sight

Sight is the most obvious sense. Because it is so obvious, players can tell if it is being
simulated badly. This, in turn, means that we’ll need to work harder to develop a
convincing sight model. Among all the modalities we will support, sight requires the
most infrastructure.
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There are a whole range of factors that affect our ability to see something.

Speed

Light travels at almost 300 million ms−1. Unless your game involves very large dis-
tances through space, then light will travel across your game level in less than a frame.
We will treat vision as being instantaneous.

Sight Cone

First, we have a sight cone. Our vision is limited to a cone shape in front of us, as
shown in Figure 10.1.

If a person’s head is still, they have a sight cone with a vertical angle of around
120◦ and a horizontal angle of 220◦ or so. We are able to see in any direction 360◦ by
moving our neck and eyes, while keeping the rest of our body still. This is the possible
sight cone for a character who is looking for information.

People going about their normal business concentrate on a very small proportion
of their visual field. We are consciously able to monitor a cone of just a few degrees,
but eye movements sweep this cone rapidly to give the illusion of a wider field of view.

Psychological studies indicate that people are very poor at noticing things they
aren’t specifically looking for. In fact, we are worse at noticing things we are looking
for than you might imagine.

Figure 10.1 A set of sight cones
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One experiment involved a video of a basketball practice through which a man in
a fluffy animal costume walked. When asked to count the number of passes made by
the basketball players, most viewers did not notice the man in the costume standing
right in center court, waving his arms.

To get a flavor of these limits, a sight cone of around 60◦ is often used. It takes
into account normal eye movement, but effectively blinds the character to the large
area of space it can see, but is unlikely to pay any attention to.

Line of Sight

Vision’s most characteristic feature is its inability to go around corners. To see some-
thing, you need to have a direct line of sight with it.

While this is obvious, it isn’t strictly true. If a character stands at one end of a
doglegged, dark corridor, it will be unable to see the enemy at the other end. But as
soon as the enemy fires its rifle, the character will see the reflected muzzle flash. Events
that emit light behave differently from those that do not, as far as simulation goes. All
surfaces reflect light to some extent, allowing it to bounce around corners quite easily.

One sense management system I was involved with had this feature. Unfortu-
nately, the effect was so subtle that it wasn’t worth the processing effort to simulate
(it transpired that the publisher decided that the whole game wasn’t worth the effort,
and it was canned before publication). Despite its failings, the sense simulation in this
game was beyond anything else I have seen, and I will refer to several of its features
throughout the rest of this section.

For the purpose of this chapter, we will assume sight only happens in straight
lines. To simulate radiosity or effects like mirrors, you will need to extend the frame-
work we develop.

Distance

On the scales modelled in average game levels, human beings have no distance limi-
tation to their sight. Atmospheric effects and the curve of the earth limit our ability to
see very long distances (fog or haze, for example), but human beings have no problem
seeing for millions of light years if nothing is in the way.

There are countless games where distance is used as a limit on vision, however.
This is not always a bad thing. In a platform game, Jak and Daxter: The Precursor
Legacy [Naughty Dog, Inc., 2001], for example, we wouldn’t want to round every
corner to find that enemies from the other side of the clearing have seen us and are
incoming. Games often use a convention that enemies only notice the player when
the player gets within a certain distance. It deliberately gives characters worse sight
than they otherwise would have.

Games that do not adhere to this limitation, such as Tom Clancy’s Ghost Recon
[Red Storm Entertainment, Inc., 2001], require different play tactics, usually involv-
ing considerably more stealth.

Where distance is significant is in the size of the thing being viewed. All animals
can only resolve objects if they appear large enough (ignoring brightness and back-
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ground patterns for a while). At a human scale, for most game levels, this is not an
issue. We can resolve a human being at over half a mile distance, for example.

In the same way as for sight cones, there is a difference between ability and likeli-
hood. While we can resolve human beings hundreds of meters away, we are unlikely
to notice a person at that distance unless we are specifically tasked with looking for
them. Even in games that don’t limit the distance a character can see, some distance
threshold for noticing small objects is advisable.

Brightness

We rely on photons reaching our eye to see things. The light-sensitive cells in the eye
get excited when a photon hits them, and they gradually relax over the following few
milliseconds. If enough photons reach the cell before it relaxes, then it will get more
and more excited and eventually send its signal along to the brain.

We find it notoriously difficult to see in dim light. Splinter Cell uses this feature
of human vision to good effect by allowing the player to hide in shadows and avoid
detection by guards (even though the player’s character has three bright green torches
strapped to its forehead).

In reality, we are rarely in dark enough conditions so that the light sensitivity of
our eyes is the limiting factor in our vision. The vast majority of our problem with
seeing in low light isn’t a lack of photons, it is a problem of differentiation.

Differentiation

Human sight has evolved based on our survival needs. What we see in our mind’s
eye as a picture of the outside world is in fact an illusion reconstructed from lots of
different signals. When you tilt your head, for example, the image you see doesn’t tilt;
we have specialized cells in our visual system that are dedicated to finding vertical. All
the results from the rest of our visual system are then internally rotated back before
their output hits our conscious brain. Most of us physically can’t see tilted (one reason
why most driving games don’t tilt the camera as the car corners, even though most
drivers tilt their heads).

The adaptation that is most significant to sense management is our contrast de-
tectors. We have a whole range of cells dedicated to identifying areas where colors or
shades are changing. Some of these cells are dedicated to finding distinct lines at dif-
ferent angles, and others are dedicated to finding patches where there is a change in
contrast. In general, we find it difficult to see something without sufficient contrast
change. The contrast change can occur in just one color component. This is the basis
of those spotty color-blindness tests; if you can’t detect the difference between red and
green, you can’t detect a simultaneous but opposite change in red and green intensity
and therefore can’t see the number.

What this means is that we cannot see objects that do not contrast with their
backgrounds, and we are very good at seeing objects that do contrast. All camouflage
works on this principle; it tries to make sure that there is no contrast change between
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the edge of something and its background. The reason we can’t see things in dim
light is because there isn’t sufficient contrast to see it, not because the photons aren’t
reaching our eyes.

The Ghost Recon games have a good implementation of background camouflage.
If your squad is in military greens, lying among a thicket of foliage, enemy characters
would not see them. In the same uniform standing in front of a brick wall, they are
sitting ducks.

On the other hand, Splinter Cell, justifiably praised for its hiding-in-shadows
gameplay, does not take into account background. Sam Fischer (the character you
play) can be standing in a shadow halfway down a very brightly lit corridor, and an
enemy at one end of the corridor will not see him. In reality, of course, the enemy
would see a huge black silhouette against a bright background and Sam would be
rumbled. (To be fair, the level designers work hard to avoid this situation from occur-
ring too often).

Hearing

Hearing is not limited by straight lines. Sound travels as compression waves through
any physical medium. The wave takes time to move, and as it moves it spreads out
and is subject to friction. Both factors serve to diminish the intensity (volume) of the
sound with distance. Low pitched sounds suffer less friction (because their vibrations
are slower) and therefore travel farther than high pitched sounds.

Low pitched sounds are also able to bend around obstacles more easily. This is
why sound emanating from behind an obstacle sounds muddy and lower in pitch.
Elephants emit infrasound barks below the level of human hearing in order to com-
municate with other members of their herd several miles away through scrubland
foliage. By contrast, bats use high pitched sounds to perceive moths; low-frequency
sounds would simply bend around their prey.

These differences are probably too subtle for inclusion in the AI for a game. We
will treat all sounds alike: they uniformly reduce in volume over distance until they
pass below some threshold. We allow different characters to sense different volumes
of sound to simulate acute hearing or deafness resulting from a nearby bomb blast,
for example.

As far as AI goes, sound travels through air around corners without a prob-
lem, regardless of its pitch. Environmental audio technologies, used to prepare three-
dimensional (3D) audio for the player, have more comprehensive capabilities to simu-
late occlusion. When the player is listening, the effects are significant. However, when
determining if a character gets to know something, the effects are not significant.

In the real word, all materials transmit sound to some extent. Denser and stiffer
materials transmit sound faster. Steel transmits sound faster than water, and water
transmits sound faster than air, for example. For the same reason, air at a higher
temperature transmits sound faster.

The speed of sound in air is around 345 meters per second.
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In a game implementation, however, we typically divide all materials into two
categories: those that do not transmit sound, and those that do. Materials that do
transmit sound are all treated like air.

Because game levels tend to be quite small, the speed of sound is often fast enough
not to be noticed. Many games simulate sound by letting it behave like light, travelling
instantaneously. Metal Gear Solid, for example, has no discernable speed of sound,
whereas Conflict: Desert Storm [Pivotal Games Ltd., 2002] does.

If you do intend to use the speed of sound, then it may be worth slowing it down.
In a typical third or first person game, a speed of sound around 100 meters per second
gives a “realistic” and noticeable effect.

Touch

Touch is a sense that requires direct physical contact. It is best implemented in a game
using collision detection: a character is notified if it collides with another character.

In stealth games, this is part of the game. If you touch a character (or get within a
small fixed distance of it) then it feels you there, whether or not it can see or hear you
otherwise.

Because it is easy to implement touch using collision detection, the sense man-
agement system described here will not include touch. Collision detection is be-
yond the scope of this book. There are two books in this series [Ericson, 2005,
van den Bergen, 2003] with comprehensive details.

In a production system, it might be beneficial to incorporate touching into the
sense manager framework. When a collision is detected, a special touching event is
sent between the touching characters. Having this routed through the sense man-
ager allows a character to receive all of its sense information through one route, even
though touch is handled differently behind the scenes.

Smell

Smell is a relatively unexplored sense in games. Smells are caused by the diffusion
of gases through the air. This is a slow and distance-limited process. The speed of
diffusion makes wind effects appear more prominent. While sound can be carried by
wind, its fast motion means that we don’t notice that it travels downwind faster than
upwind. Downwind, smells are significantly more noticeable.

Typically, smells that are not associated with concentrated chemicals (such as the
scent of an enemy) travel only a few tens of feet. Animals with better sensitivity to
smell can detect human beings at significantly greater distances, given suitable wind
conditions. Hunting games are typically the only ones that model smells.

I have come across other potential uses for smell. The game I mentioned earlier
(that modelled radiosity for light transmission) used smell to represent the diffusion
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of poisonous gases. A gas grenade could be detonated outside a guard post, for exam-
ple. The sense manager signalled the guard characters when they could smell the gas.
In this case, they responded to the smell by dying.

One of the best uses of smell simulation is in Alien vs. Predator [Rebellion, 1994].
Here the aliens sense the presence of the player using smell. As the smell diffuses,
aliens follow the trail of increasing intensity to find the player’s location. This gives
rise to some neat tactics. If a character stands for a long time at a good ambush spot
and then quickly ducks behind cover, the aliens will follow the trail to the intense spot
of smell where it was previously standing, giving the player the initiative to attack.

Fantasy Modalities

In addition to sight, hearing, and smell, there are all sorts of uses you could put the
sense manager to. Although we will limit the simulation to these three modalities,
their associated parameters mean we can simulate other fictional senses.

Fantasy senses such as aura or magic can be represented using modified vision;
telepathy can be a modified version of hearing; and fear, reputation, or charm can
be a modified smell. A whole range of spell effects can be broadcast using the sense
manager: victims of the spell will be notified by the sense manager, removing the need
to run a whole batch of special tests in spell-specific code.

10.5.4 REGION SENSE MANAGER

We will look at two algorithms for sense management. The first is a simple technique
using a spherical region of influence, with fixed speeds for each modality.

A variation on this technique is used for the majority of games with sense simu-
lation. It is also the approach favored by simulation software for animation (such as
Massive) and the military.

The Algorithm

The algorithm works in three phases: potential sensors are found in the aggregation
phase; the potential sensors are checked to see if the signal got through, in the testing
phase; and signals that do get through are sent in the notification phase.

Characters register their interest with the sense manager along with their position,
orientation, and sensory capabilities. This is stored as a sensor: the equivalent to the
listener structure in the event manager.

In a practical implementation, position and orientation are usually provided as a
pointer to the character’s positional data, so the character doesn’t need to continually
update the sense manager as it moves. Sensory capabilities consist of a threshold value
for each modality that the character can sense.
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The sense manager can handle any number of modalities. Associated with each
modality is an attenuation factor, a maximum range, and an inverse transmission
speed.

The sense manager accepts signals: messages that indicate that something has oc-
curred in the game level (the equivalent to events in the event manager). Signals are
similar to events used in an event manager, but have three additional pieces of data:
the modality through which the signal should be sent, the intensity of the signal at its
source, and the position of the source.

The attenuation factor corresponding to each modality determines how the vol-
ume of a sound or the intensity of a smell drops over distance. For each unit of dis-
tance, the intensity of the signal is multiplied by the attenuation factor. The algorithm
stops processing the transmission beyond the maximum range.

Once the signal’s intensity drops below a character’s threshold value, the character
is unable to sense it. Obviously, the maximum range for a modality should be cho-
sen so that it is large enough to reach any characters that would be able to perceive
appropriate signals.

Figure 10.2 shows this process for a sound signal. The sense manager has a regis-
tered attenuation of 0.9 for sound. A signal of intensity 2 is emitted from the source
shown. At a distance of 1 unit from the source, the intensity of the sound is 1.8, at a

Threshold: 1
Intensity: 1.74

Threshold: 1.5
Intensity: 1.49

Figure 10.2 Attenuation in action
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distance of 2 units it is 1.62, and so on. Character A has a sound threshold of 1. At
a distance of 1.5 units, the sound has an intensity of around 1.7, and character A is
notified of the sound. Character B has a threshold of 1.5. At a distance of 2.8 units,
the sound has an intensity of 1.49, and character B is not notified.

The inverse transmission speed indicates how long it will take for the signal to
travel one unit of distance. We don’t use the un-inverted speed, because we want to
be able to handle the infinite speed associated with vision.

The basic algorithm works in the same way for each modality. When a signal is
introduced to the sense manager, it immediately finds all characters within the maxi-
mum radius of the corresponding modality (the aggregation phase). For each charac-
ter it calculates the intensity of the signal when it reaches the character and the time
when that will happen. If the intensity is below the character’s threshold, it is ignored.

If the intensity test passes, then the algorithm may perform additional tests, de-
pending on the type of modality. If all tests pass, then a request to notify the character
is posted in a queue. This is called the testing phase.

The queue records store the signal, the sensor to notify, the intensity, and the time
at which to deliver the message (calculated from the time the signal was emitted and
the time the signal takes to travel to the character). Each time the sense manager is
run, it checks the queue for messages whose time has passed and delivers them. This
is called the notification phase.

This algorithm unifies the way smells and sounds work (sounds are just fast-
moving smells). Neither of them require additional tests; the intensity test is suffi-
cient. Modalities based on vision do require two additional tests in the testing phase.

First, the source of the signal is tested to make sure it lies within the character’s
current sight cone. If this test passes, then a ray cast is performed to make sure line
of sight exists. If you wish to support camouflage or hiding in shadows you can add
extra tests here. These extensions are discussed after the main algorithm below.

Notice that this model allows us to have characters with fixed viewing distances:
we allow visual signals to attenuate over distance and give different characters differ-
ent thresholds. If the intensity of visual signal is always the same (a reasonable as-
sumption), then the threshold imposes a maximum viewing radius around the char-
acter.

Pseudo-Code

The sense manager can be implemented in the following way:

1 class RegionalSenseManager:
2

3 # Holds a record in the notification queue, ready to notify
4 # the sensor at the correct time.
5 struct Notification:
6 time
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7 sensor
8 signal
9

10 # Holds the list of sensors
11 sensors
12

13 # Holds a queue of notifications waiting to be honored
14 notificationQueue
15

16 # Introduces a signal into the game. This also calculates
17 # the notifications that this signal will be needed
18 def addSignal(self, signal):
19

20 # Aggregation phase
21 validSensors = []
22 for sensor in self.sensors:
23

24 # Testing phase
25

26 # Check the modality first
27 if not sensor.detectsModality(signal.modality): continue
28

29 # Find the distance of the signal and check range
30 distance = distance(signal.position, sensor.position)
31 if signal.modality.maximumRange < distance: continue
32

33 # Find the intensity of the signal and check threshold
34 intensity = signal.strength *
35 pow(signal.modality.attenuation, distance)
36 if intensity < sensor.threshold: continue
37

38 # Perform additional modality specific checks
39 if not signal.modality.extraChecks(signal, sensor):
40 continue
41

42 # We’re going to notify the sensor, work out when
43 time = getCurrentTime() +
44 distance * signal.modality.inverseTransmissionSpeed
45

46 # Create a notification record and add it to the queue
47 notification = new Notification()
48 notification.time = time
49 notification.sensor = sensor
50 notification.signal = signal
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51 notificationQueue.add(notification)
52

53 # Send signals, in case the current signal is ready to notify
54 # immediately.
55 sendSignals()
56

57 # Flushes notifications from the queue, up to the current time
58 def sendSignals(self):
59

60 # Notification Phase
61

62 currentTime = getCurrentTime()
63

64 while notificationQueue.hasEntries():
65 notification = notificationQueue.peek()
66

67 # Check if the notification is due
68 if notification.time < currentTime:
69 notification.sensor.notify(notification.signal)
70 notificationQueue.pop()
71

72 # If we are beyond the current time, then stop
73 # (the queue is sorted)
74 else: break

The code assumes a getCurrentTime function that returns the current game time.
It also assumes the existence of the pow mathematical function.

Note that the sendSignals function should be called each frame, whether or not
any signals have been introduced, to make sure that cached notifications are correctly
dispatched.

Data Structures and Interfaces

This code assumes an interface for modalities, sensors, and signals. Modalities con-
form to the interface

1 class Modality:
2 maximumRange
3 attenuation
4 inverseTransmissionSpeed
5

6 def extraChecks(signal, sensor)
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where extraChecks performs modality-specific checks in the testing phase. This will
be implemented differently for each specific modality. Some modalities may always
pass this test. For sight, we might have

1 class SightModality:
2 def extraChecks(signal, sensor):
3 if not checkSightCone(signal.position,
4 sensor.position,
5 sensor.orientation): continue
6 if not checkLineOfSight(signal.position,
7 sensor.position): continue

where checkSightCone and checkLineOfSight carry out the individual tests; both re-
turn true if they pass.

Sensors have the interface

1 class Sensor:
2 position
3 orientation
4

5 def detectsModality(modality)
6

7 def notify(signal)

where detectsModality returns true if the sensor can detect the given modality; the
modality is a modality instance. The notify method is just the same as we saw in
regular event management: it notifies the sensor of the signal.

Signals have the interface

1 class Signal:
2 strength
3 position
4 modality

In addition to these three interfaces, the code assumes that the notificationQueue
is always sorted in order of time. It has the structure

1 class NotificationQueue:
2 def add(notification)
3 def peek()
4 def pop()
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where the add method adds the given notification to the correct place in the queue.
This data structure is a priority queue, in order to time. Chapter 4 has lots of detail
on the efficient implementation of priority queues.

Performance

The regional sense manager is O(nm) in time, where n is the number of sensors reg-
istered, and m is the number of signals. It stores pending signals only, so it is O(p)
in memory, where p is the number of pending signals. Depending on the speed of
the signals, this may approach O(m) in memory, but most times will be very much
smaller.

Camouflage and Shadows

To support camouflage, we can add an additional test for visual modalities in the
SightModality class. After ray casting to check that the signal is in line of sight with
the character, we perform one or more additional ray casts out beyond the character.
We find the materials associated with the first object that each ray intersects.

Typically, the level designer marks up each material according to its type of pat-
tern. We might have ten pattern types, for example, including brick, foliage, stone,
grass, sky, and so on. Based on the material types of the background, an additional
attenuation factor is calculated. Suppose the character is wearing green camouflage.
The designer might decide that a foliage background gives an additional attenuation
of 0.1, while sky gives an additional attenuation of 1.5. The additional attenuation is
multiplied by the signal strength and passed on only if the result is higher than the
character’s threshold.

We can use a similar process to support hiding in shadows. An easier method
is simply to make the initial signal strength proportional to the light falling on its
emitter. If a character is in full light, then it will send high-strength “I’m here” signals
to the sense manager. If the character is in shadow, their signal strength will be lower,
and characters with a high-intensity threshold may not notice them.

Weaknesses

Figure 10.3 shows a situation where the simple sense manager implementation breaks
down. A sound emitted from character A is heard first by character C, even though
C is further from the source than character B. Transmission is always handled by
distance and doesn’t take level geometry into account, other than for line of sight
tests.

This slight timing discrepancy may not be too noticeable. Figure 10.4 shows
a more serious situation. Here, character B can hear the sound, even though B is
nowhere near the sound source and is insulated by a large barrier.
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Figure 10.3 Angled corridor and a sound transmission error

Figure 10.4 Transmission through walls
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Figure 10.5 Timing discrepancy for moving characters

We have also assumed that characters are always stationary. Take the case in Fig-
ure 10.5. Two characters both start at the same distance from a sound. One character
is moving quickly toward the source. Realistically, character A will hear the sound ear-
lier than character B at the point marked on the diagram. In our model, however, they
hear the sound together. This isn’t normally noticeable for sounds, since they tend to
move much faster than characters. For smells, however, it can be highly significant.

This algorithm for sense management is very simple, fast, and powerful. It is ex-
cellent for open air levels or for indoor environments where the thickness of walls is
greater than the distance a signal can travel. For the environments common in first
and third person action games, however, it can give unpleasant artifacts.

Many developers using these kinds of sense managers have extended them using
additional tests, code for special cases, and heuristics to give the impression of avoid-
ing the algorithm’s limitations.

Rather than spend time trying to patch the basic system (which is a valid plan, as
long as the patches don’t take too much implementation effort), we will look at a more
comprehensive solution. Bear in mind, however, that with increased sophistication
will come correspondingly greater processing requirements.

10.5.5 FINITE ELEMENT MODEL SENSE MANAGER

To accurately model vision, hearing and smell would require some serious develop-
ment effort. In the coding experiments done at my company, we looked at building
geometrically accurate sense simulation. The task is formidable, and I am reasonably
convinced that there is no practical way to do it for the next couple of generations of
hardware.

We devised a mechanism based on finite element models that works well and
can be reasonably efficient. I later found out that this was a technique independently
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devised by at least two other developers (not surprisingly, given its similarity to other
game algorithms in this book).

Finite Element Models

A finite element model (FEM) splits up a continuous problem into a finite number
of discrete elements. It replaces the difficulty of solving a problem for the infinite
number of locations in the continuous world with a problem for a finite number of
locations.

Although pathfinding does not strictly use an FEM, it uses a very similar ap-
proach. It splits up the continuous problem into finite elements, in very much the
same way as we will need to do for our algorithm. (It is not strictly an FEM because
it doesn’t apply an algorithm to each region in parallel; it applies a once-and-for-all
algorithm to the whole model.)

In dividing up the continuous problem into regions, simpler algorithms can be
applied. In pathfinding we swap the difficult problem of finding the fastest route
through arbitrary 3D geometry with the simpler problem of traversing a graph.

Whenever you use an FEM to solve a problem, you are making a simplifying ap-
proximation. By not solving the real problem, you run the risk of getting back only
an approximate solution. As long as the approximation is good, the model works.

We covered the approximation process for pathfinding in some depth, with tips
on how to split the level into regions so that the resulting paths are believable. Simi-
larly, when we use an FEM to model perception in a game, we need to choose regions
carefully to make sure the resulting pattern of character perception is believable.

The Sense Graph

In just the same way as for pathfinding, we transform the game level into a directed
acyclic graph for sense management.

Each node in the graph represents a region of the game level where signals can pass
around unhindered. For each smell-based modality, the node contains a dissipation
value that indicates how much of the smell will decay per second. A dissipation of 0.5,
for example, makes a smell lose half its intensity each second. For all modalities, the
node contains an attenuation value that indicates how a signal decays for each unit of
distance it travels.

Connections are made between pairs of nodes where one or more modalities can
pass between the corresponding regions.

Figure 10.6 shows an example. Two separate rooms are divided by a sound-proof,
one-way window. The sense graph contains two nodes, one for each room. Room A is
connected to Room B, because visual stimuli can pass in that direction, even though
sound and smell cannot. Room B is not connected to Room A, however, because no
stimuli can pass in that direction.
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Figure 10.6 Sense graph for one-way glass

For each modality, a connection has a corresponding attenuation factor and dis-
tance. This allows us to calculate the amount of signal that is passed. In the example
above, the connection will have attenuations of 0 for both smell and sound (it allows
neither through). It has an attenuation factor of 0.9 for vision, to simulate the fact
that the window is a darkly tinted. The distance along the connection is given as 1, for
simplicity (so the overall attenuation through the window will be 0.9). The main rea-
son for having both attenuation and distance is to allow slow-moving signals, namely,
smells, to take time to move along the connection.

Connections also have an associated 3D position for both their ends, shown in
Figure 10.7. The connection position is used to work out how a signal transmits across
a node from an incoming connection. Because nodes usually border each other, it is
common for the start and end points of a connection to be at the same position: the
algorithm will cope with this situation. The distance associated with the connection
doesn’t have to be the same as the 3D distance between its start and end points. They
are dealt with entirely separately by the algorithm.

There is no reason for connections to be limited to nearby regions of the level. Fig-
ure 10.8 illustrates a long-distance connection that allows only smell through. This is
an example from the ill-fated sense-based game I introduced earlier. The connection
represents an air conditioning duct, a critical puzzle in the game. The solution in-
volves detonating a poison gas grenade in Room A and letting it pass down the air
conditioning duct to kill the guard standing in Room B. The duct is the only connec-
tion between the two rooms.

Another case might be a control room with video links to several rooms in a level;
there could be visual links between the conference room and the surveyed areas, even
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Figure 10.7 Connection positions in a sense graph

Figure 10.8 Air conditioning in a sense graph

though they are at a distance. Guards in the control room would be notified and react
to events caught on camera.
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Sight

Sight warrants special mention here. A connection between two nodes should allow
sight signals to pass if any location in the destination node is visible from any location
in the source. In general, there will be many locations in the destination node that
cannot be viewed from many locations in the source. As we’ll see, these cases will be
trapped by the line of sight tests in the algorithm. But the line of sight tests won’t be
considered if the nodes aren’t connected. Figure 10.9 shows a connection between two
rooms, even though only a very small region of Room B can be seen from Room A,
and then only by shuffling into a corner of Room A.

Another consequence of the algorithm below is that all pairs of nodes that have
connected lines of sight must have a connection. Unlike for pathfinding, we cannot
rely on intermediate nodes to carry information through. This is not true for modal-
ities other than sight. Figure 10.10 shows a correct sense graph for a series of three
rooms. Note that there are sight connections between Rooms A and C, even though
Room B is in the way. There are no smell or sound connections between Rooms A
and C, however.

Sense managers I’ve worked with using this model have occasionally used a sepa-
rate graph for sight, since it is specialized. A particularly sound implementation uses
the potentially visible set (PVS) data from the rendering engine to calculate the sight

Figure 10.9 Line of sight in a sight-connected pair of nodes
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Figure 10.10 The sight sense graph

graph. Potentially visible set is the name given to a range of graphics techniques used
to cut down the amount of geometry that needs to be rendered each frame. It is a
standard feature of all modern rendering engines.

In the algorithm below we’ll use one graph for all senses, but since each sense is
handled slightly differently, it is a relatively simple process to replace the one graph
with two or more.

The Algorithm

The algorithm works in the same three phases as before: aggregating the sensors that
might get notified, testing them to check that they are valid, and notifying them of
the signal.

As before, the sense manager is notified of signals from external code (often some
polling mechanism) which isn’t part of the algorithm. The signals are provided along
with their location, their intensity, their modality, and any additional data that needs
to be passed on.

The sense manager also stores a list of sensors: event listeners capable of detect-
ing one or more modalities. Again, these provide a list of modalities and intensity
threshold values. They will be notified of any signal that they are capable of detecting.

The algorithm is also given the sense graph, along with some mechanism to quan-
tize locations in the game world into nodes in the sense graph. Both sensors and
signals need to be quantized into a node before the algorithm can work. This quan-
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tization can be performed exactly as for pathfinding quantization. See Chapter 4 on
pathfinding for more details. Internally, the sense manager stores sensors on a per-
node basis, so it can rapidly find which sensors are present in a given node.

Depending on the modality type, the algorithm behaves slightly differently. In
order of increasing complexity, sights, sounds, and smells are handled by different
sub-algorithms.

Sights

Sights are the simplest signals to handle. When a sight is introduced, the algorithm
gets a list of potential sensors: this is the aggregation phase. This list consists of all the
sensors in the same node as the signal and all the sensors in nodes that are connected
to that node. Only one set of connections are followed; we don’t allow visual signals to
carry on spreading around the level. If you need to simulate radiosity, as previously
mentioned, then two sets of connections can be followed if, and only if, the visual
signal emits light.

The algorithm then moves onto the testing phase. The potential sensors list is
tested exactly as in the region sense manager. They are checked to see if they are in-
terested in visual stimuli, whether the signal would have sufficient intensity, whether
the signal is in the sight cone, and whether it is in line of sight. Background contrast
can also be checked, exactly as before.

The timing and intensity data are calculated based on the position, transmission,
and distance data in each connection. This is the same for all three modalities and is
detailed below.

If the sensor passes all tests, then the manager works out when it needs to be
notified, based on its distance from the stimuli (calculated as a Euclidean distance in
three dimensions, unlike the other modalities below). The notification is then added
to a notification queue, exactly as before. If sight is always instant in your game, you
can skip this step and immediately notify the sensor.

Sound

Sound and smell are treated similarly, but with one major distinction. Smells linger
in a region over time. Sounds in our model do not (we’re not taking into account
echoes, for example, although they can be modelled by sending in fresh sounds every
few frames).

We treat sound as a wave, spreading out from its source and getting increasingly
faint. When it reaches its minimum intensity limit, it disappears forever. This means
that the sound can only be perceived as the wave passes you. If the sound wave has
reached the edge of the room, the sound is no longer audible within the room.

To model sounds we begin at the node where the sound source is located. The
algorithm looks up all sensors in this node. It marks the node as having been visited.
It then follows the connections marked for sound, decreasing the intensity by the
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amount the connection specifies. It continues this process as far as it can go, working
node to node via connections and marking each node it visits.

If it reaches a node where it has already been, it does not process the node again.
Nodes are processed in distance order (which is equal to time order if we assume that
sound travels at a constant speed). At each node visited, the list of potential sensors is
collected.

If the intensity of the sound is below the minimum intensity, then no more nodes
are processed. Intensity is calculated the same way for each modality and is described
below.

In the testing phase, intensity checks are made for each sensor: those that are
capable of receiving the signal have a notification request added to a queue ready for
the dispatching phase.

Smell

Smell behaves in a very similar way to sound. Sound keeps track of each node it
has passed through and refuses to process previous nodes. Smell replaces this with
a stored intensity and associated timing information. Each node can have any linger-
ing intensity of smell, so it stores an intensity value for the smell. To make sure this
value is accurately updated, a time value is also stored. The timing value indicates
when the intensity was last updated.

Each time the algorithm is run, it propagates its smells to neighbors based on the
transmission and distance of intervening connections. It does not propagate if either
the source or new destination intensities are below the minimum intensity threshold
or if the signal could not reach the destination in the length of time the sense manager
is simulating. This simulation time usually corresponds to the duration between sense
manager calls (a frame perhaps). Limiting it by time in this way stops the smell from
spreading faster through the sense graph than it would through the level.

The smell in a single node dies out based on the dissipation parameter of the
node.

To avoid updating a node multiple times per iteration of the sense manager, a time
stamp is stored. A node is only processed if its time stamp is smaller than the current
time.

At each iteration, it aggregates sensors from each node in which there is an inten-
sity greater than the minimum value. These are then tested in the testing phase for
interest in the modality and for intensity threshold. Notification requests are sched-
uled for those that pass in the normal way.

Calculating Intensity from Node to Node

To calculate the intensity and the journey time of a non-visual stimulus as it moves
from node to node, we split the journey into three sections: the journey from its
source to the start of the connection, the journey along the connection, and the jour-
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ney from the end of the connection to the sensor (or to the start of the next connec-
tion, if it’s travelling multiple steps).

The total length of time is given by the speed of modality divided by the total
distance: the distance from signal to the start of the connection (a 3D Euclidean dis-
tance), the distance along the connection (stored explicitly), and the distance to the
sensor (another 3D distance).

The total attenuation is given by the attenuation factor of each component: the
attenuation for the node that the source is in, the attenuation of the connection, and
the attenuation of the sensor’s node.

Iterative Algorithm

So far we’ve assumed that all the propagation for sight and sound is handled in one
run of the sense manager. Smell, because it creeps around and gradually diffuses,
needs to be handled iteratively. Sight works so fast that we need to process all its
effects immediately.

Sound may occupy a middle ground. If it travels slowly enough, then it may bene-
fit from being treated like smell: it is propagated by a few nodes and connections each
time the sense manager is run. The same time stamp used to update the smell can
be used for sound updating, as long as you aren’t looking for perfect accuracy with
the way the sound wave expands. (We’d ideally like to process nodes from the source
outward, but using only one time stamp means we can’t do that for every source.)

The sense manager I built using this algorithm allowed for slow-moving sound of
this kind. In practice, however, it was never needed. If sound was handled instanta-
neously it was equally believable.

Dispatching

Finally, the algorithm dispatches all stimulus events to the sensors that have been ag-
gregated and tested. It does this based on time, exactly as in the region sense manager.

For smells, or slow-moving sound, only the notifications for the immediate fu-
ture are generated. If sound is handled in one iteration, then the queue may hold a
notification for several milliseconds or seconds.

On the CD

The pseudo-code of the FEM sense manager is many pages long, and giving it in

LIBRARY

pseudo-code doesn’t make it much easier to understand. I decided not to include it
here and waste several pages with difficult-to-follow code. There is a full source code
implementation provided on the CD, with lots of comments, that I recommend you
work through.

PROGRAM

The Sense Management program on the CD shows the code in action. It gives
you a bird’s-eye view of how signals can propagate around a level. The program gives
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you a view from above of a two-dimensional (2D) level (this is for simplicity, the
algorithm works just as well in three dimensions). Nodes are represented by rooms,
and the connections between rooms are shown. You can click anywhere on the level
to introduce a stimulus at that point. The icons on the base of the screen allow you to
choose the modality and intensity of the signal.

Characters are shown as dots on the screen, and they will light up briefly if they
receive notification of a signal.

Experiment with the way signals are delayed and the way that the position of a
signal and a sensor within a node affects the notification.

Implementation Notes

If smells are excluded, this algorithm behaves in a similar way to the region-based
sense manager. Using the graph-based representation effectively speeds up detecting
candidate sensors (the aggregation phase) and stops additional cases where the orig-
inal algorithm gave wrong results (such as modalities passing through walls). It is
relatively state-free (only having to store which nodes have been checked for sound
transmission).

Adding smells in, or making sound checking split over many iterations, makes it
into a very different beast. There is a lot more state needed, and smells passing back-
ward and forward between nodes can dramatically increase the number of calcula-
tions needed. Although smell has its uses and can enable some great new gameplay,
I advise you to only implement it if you need it.

Weaknesses

When sound is processed all in one frame, the same weaknesses apply to this algo-
rithm as to the region sense manager: we can potentially be notified at the wrong
time. For very fast-moving characters this might be noticeable. This algorithm has
removed the problem for smell and can completely solve the problem if sound is
handled iteratively (at the cost of additional memory and time, of course).

Content Creation

This algorithm provides believable sense simulation and can cope with really inter-
esting level designs: one-way glass, air conditioning units, video cameras, windy cor-
ridors, and so on. FEM sense management, and algorithms like it, are state of the art
in sense simulation for games.

As throughout this book, state of the art is a byword for complex. The most dif-
ficult element of this algorithm is the source data; specifying the sense graphs accu-
rately requires dedicated tool support. The level designer needs to be able to mark
where different modalities can go. A coarse approximation can be made using the
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level geometry, by firing rays around, but this will not cope with special effects such
as glass windows, ducting, or closed-circuit TV.

For a while, sense simulation is a luxury, and if your game doesn’t make a feature
of it, then a simpler solution such as regional sense management or a vanilla event
manager is a better option. But the trend is for increasing ubiquity of sense simula-
tion in first and third person action games (they aren’t so important in less realistic
genres). I suspect it won’t be long before complex sense simulation is expected.



11
TOOLS AND

CONTENT CREATION

rogramming makes up a relatively small amount of the effort in a mass mar-
P ket game. Most of the development time goes into content creation, making
models, textures, environments, sounds, music, and animation; everything from the
concept art to the detailed level design.

Over the last decade developers have reduced the programming effort further by
reusing their technology on multiple titles: putting together a game engine on which
several titles can run. Adding a comprehensive suite of AI to the engine is only its
latest iteration.

Most developers aren’t content to stop there, however. Because the effort involved
in content creation is so great, the content creation process also needs to be stan-
dardized, and the run time tools need to be seamlessly integrated with development
tools. These complete toolchains are essential for development of large games and are
beginning to make inroads into the repertoire of smaller studios and hobbyists.

In fact, it is difficult to overstate the importance of the toolchain in modern game
development. The quality of the toolchain is now seen as a major deciding factor in
a publisher’s decisions to back a project. There are titles for which a major factor in
receiving a deal was the developer’s cutting-edge editing toolset: both Far Cry [Cry-
tek, 2004] and the earlier World Rally Championship raised the bar through tool
sophistication, rather than through engine features.

Middleware vendors have realized this also. All the major middleware vendors
have their own editing tools as part of their technology package. Renderware Stu-
dio is now heading Criterion’s middleware offering, promoted ahead of its graphics,
physics, audio, and AI technologies.

769
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11.0.1 TOOLCHAINS LIMIT AI

The importance of toolchains places limits on the AI. Advanced techniques such
as neural networks, genetic algorithms, and goal-oriented action planning (GOAP)
haven’t been widely used in commercial titles. To some degree this is because they are
naturally difficult to map into a level editing tool. They require specific programming
for a character, which limits the speed at which new levels can be created and the code
reuse between projects.

The majority of AI-specific design tools are concerned with the bread and butter
techniques: finite state machines, movement, and pathfinding. These approaches rely
on simple processes and significant knowledge. Toolchains are naturally better at al-
lowing designers to modify data rather than code, so use of these classic techniques is
being reinforced.

11.0.2 WHERE AI KNOWLEDGE COMES FROM

Good AI requires a lot of knowledge. As we’ve seen many times in this book, having
good and appropriate knowledge about the game environment saves a huge amount
of processing time. At run time, when the game has many things to keep track of,
processing time is a crucial resource.

The knowledge required by AI algorithms depends on the environment of the
game. A character moving around, for example, needs some knowledge of where and
how it is possible to move. This can be provided by the programmers, giving the AI
the data it needs directly.

When the game level changes, however, the programmer needs to provide new
sets of data. This does not promote reuse between multiple games and makes it dif-
ficult for simple changes to be made to levels. A toolchain approach to developing a
game puts the onus on the content creation team to provide the necessary AI knowl-
edge. This process can be aided by offline processing which automatically produces a
database of knowledge from the raw level information.

For years it has been common for the content creation team to provide the
AI knowledge for movement and pathfinding. More recently, decision making and
higher level AI functions have also been incorporated into the toolchain.

11.1 KNOWLEDGE FOR PATHFINDING AND WAYPOINT

TACTICS

Pathfinding algorithms work on a directed graph: a summary of the game level in a
form that is optimal for the pathfinding algorithm. Chapter 4 discussed a number of
ways in which the geometry of an indoor or outdoor environment could be broken
into regions for use in pathfinding. The same kind of data structure is used for some
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tactical AI. Fortunately, the same kinds of tool requirements for pathfinding apply for
waypoint tactics.

Breaking down the level geometry into nodes and connections can be done man-
ually by the level designer, or it can be done automatically in an offline process. Be-
cause manually creating a pathfinding graph can be a time-consuming process (and
one that needs to be redone each time the level geometry changes), many developers
have experimented with automatic processes. Results are typically mixed, with some
human supervision required for optimum results.

11.1.1 MANUALLY CREATING REGION DATA

There are three elements of a pathfinding graph that need to be created: the placement
of the graph nodes (and any associated localization information), the connections
between those nodes, and the costs associated with the connections.

The entire graph can be created in one go. But it is common for each element to
be created separately using different techniques. The level designer may place nodes
in the game level manually. The connections can then be calculated based on line of
sight information, and the costs can be calculated likewise algorithmically.

To some extent the cost and connections between nodes are easy to calculate algo-
rithmically. Placing nodes correctly involves understanding the structure of the level
and having an appreciation for the patterns of movement that are likely to occur. This
appreciation is much easier for a human operator than an algorithm.

This section looks at the issues involved with manually specifying graphs (mostly
the nodes of a graph). The following section examines automatic calculation of
graphs, including connections and costs.

To support the manual creation of graph nodes, the facilities of the level editing
tool depend on the world representation used.

Tile Graphs

Tile graphs do not normally require designers to manually specify any data in the
modelling tool. The layout of a level is normally fixed (an RTS game, for example,
typically is always based on a fixed grid, often of a limited number of different sizes).

The cost functions involved in pathfinding also need to be specified. Most cost
functions are based on distance and gradient, modified by parameters particular to a
given type of character. These values can usually be generated automatically (gradi-
ents can be calculated directly from the height values, for example). Character-specific
modifiers are usually provided in the character data. An artillery unit, for example,
might suffer ten times the gradient cost of a light reconnaissance unit.

Often, the level design tool for a tile-based game can include the AI data be-
hind the scenes. Placing a patch of forest, for example, can automatically increase the
movement cost through that tile. The level designer doesn’t need to make the change
in cost explicit or even need to know that AI data is being calculated.
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As a result, there is no extra infrastructure required to support pathfinding on tile-
based graphs. This is one reason why they have continued to be used so extensively
in the AI for games that require a lot of pathfinding (such as RTS), even when the
graphics have moved away from sprite tiles.

Dirichlet Domains

Dirichlet domains are the most common world representation in a range of genres.
They are applicable (in the form of waypoints) to everything from driving games to
shooters to strategy games.

The level editor needs only to place a set of points in the game level to specify the
nodes of the graph. The region associated with each point is the volume that is closest
to that point than to any other.

Most level editing tools, and all three-dimensional (3D) modelling tools, allow
the user to add an invisible helper object at a point. This can be suitably tagged and
used as a node in the graph.

As discussed in Chapter 4, Dirichlet domains have some problems associated with
them. Figure 11.1 shows two Dirichlet domains in two adjacent corridors. The regions
associated with each node are shown. Notice that the edge of one corridor is incor-
rectly grouped with the next corridor. A character that strays into this area will think
it is in a completely different area of the level. Therefore, its planned path will be
wrong.

Similar problems with region grouping occur vertically, where one route passes
over another. The problems are compounded when different “weights” can be asso-
ciated with each node (so a larger volume is attracted to one node than to another).
This is illustrated in Chapter 4.

Solving this kind of misclassification can involve lots of play testing and frustra-
tion on the part of the level designer. It is important, therefore, for tools to support

Figure 11.1 Dirichlet domains misclassifying a corridor



11.1 Knowledge for Pathfinding and Waypoint Tactics 773

visualization of the regions associated with each domain. If level designers are able to
see the set of locations associated with each node, they can anticipate and diagnose
problems more quickly.

Many problems can be avoided altogether by designing levels where navigable
regions are not adjacent. Levels with thin walls, walkways through rooms, and lots of
vertical movement are difficult to properly divide into Dirichlet domains. Obviously,
changing the feel of a game is not feasible simply for the sake of the AI mark-up tool.

Polygonal Meshes

The same polygon mesh used for rendering can be used for pathfinding. Each floor
polygon is a node in the graph, and the connectivity between nodes is given by the
connectivity between polygons.

This approach requires the level editor to specify polygons as being part of the
“floor.” This is most commonly achieved using materials: a certain set of materials are
considered to be floors. Every polygon to which one of these materials is applied is
part of the floor. Some 3D tools and level editors allow the user to associate additional
data with a polygon. This could also be used to manually flag each floor polygon.

In either case, it can be useful to implement a tool by which the level editor can
quickly see which polygons are part of the floor. A common problem is to have a set of
decorative textures in the middle of a room, which is wrongly marked as “non-floor”
and which makes the room unnavigable. This can be easily seen if the floor polygons
can be visualized easily.

Polygon meshes (sometimes called navigation meshes) have a reputation for be-
ing a reliable way of representing the world for pathfinding. Unfortunately, there are
significant problems (such as difficulty representing 3D movement and the relative
inconvenience of supporting jumping) which are limitations of the technique and
cannot easily be mitigated at the tool stage.

Bounded Regions

The most general form of pathfinding graph is one in which the level designer can
place arbitrary bounding structures to make up the nodes of the graph. The graph
can then be built up without being limited to the problems of Dirichlet domains or
the constraints of floor polygons.

Arbitrary bounding regions are complex to support in a level design or mod-
elling tool. This approach is therefore usually simplified to the placement of arbitrar-
ily aligned bounding boxes. The level designer can drag a bounding box over regions
of the game level to designate that the contents of that box should count as one node
in the planning graph. Nodes can then be linked together and their costs set manually
or generated from geometrical properties of the node boxes.
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11.1.2 AUTOMATIC GRAPH CREATION

With many of the previous approaches, an algorithm can be used to calculate the
costs associated with connections in the graph. Approaches based on manually spec-
ified points of visibility or Dirichlet domains also use algorithms to determine the
connectivity between nodes.

Automatically placing the nodes in the first place is considerably more difficult.
For general indoor levels, there is no single optimum technique. In my experience
developers who rely on automatic node place always have a mechanism for allowing
the level designer to exert some influence and manually improve the resulting graph.

Automatic node placement techniques can be split into two approaches: geomet-
ric analysis and data mining.

11.1.3 GEOMETRIC ANALYSIS

Geometric analysis techniques operate directly on the geometry of the game level.
They analyze the structure of the game level and calculate the appropriate elements
of the pathfinding graph. Geometric analysis is also used in other areas of game devel-
opment, such as calculating potentially visible geometry, performing global radiosity
calculations, and ensuring global rendering budgets are met.

Calculating Costs

For pathfinding data, most geometric analysis calculates the cost of connections be-
tween nodes. This is a relatively simple process, so much so that it is rare to find a
game whose graph costs have been set by hand.

Most connection costs are calculated by distance. Pathfinding is usually associated
with finding a short path, so distance is the natural metric. The distance between
two points can be trivially calculated. For representations where nodes are treated as
points, the distance of a connection can be taken as the distance between the two
points.

A polygon-mesh representation usually has connection costs based on the dis-
tance between the centers of adjoining triangles. Bounding region representations
can similarly use the center points of regions to calculate distances.

Calculating Connections

Calculating which nodes are connected is also a common application. This is most
commonly performed by line of sight checks between points.
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Point-Based Representations

Point-based node representations (such as Dirichlet domains and point-of-visibility
representations) associate each node with a single representative point. A line of sight
check can be made between each pair of such points. If there is a line of sight between
the points, then a connection is made between the nodes.

This approach can lead to vast numbers of connections in the graph. Figure 11.2
shows the dramatic complexity of a visibility-based graph for a relatively simple
room.

For this reason, AI programmers often voice concerns about the performance of
visibility-based graphs. But such concerns are curious, since a simple post-processing
step can easily rectify the situation and produce useable graphs:

1. Each connection is considered in turn.

2. The connection starts at one node and finishes at another. If the connection passes
through intermediate nodes on the way, then the connection is removed.

3. Only the remaining connections form part of the pathfinding graph.

This algorithm looks for pairs of nodes that are in line of sight, but where there
is no direct route between them. Because a character will have to pass through other
nodes on the way, there is no point in keeping the connection.

A B

Center of Dirichlet domain

Limit of domain

Connection between nodes

Figure 11.2 A visibility-based graph and its post-processed form
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The second part of Figure 11.2 shows the effect of applying the algorithm to the
original graph.

Arbitrary Bounding Regions

Arbitrary bounding regions are usually connected in a similar way to points. A selec-
tion of sample points are chosen within each pair of regions, and line of sight checks
are carried out. A connection is added when some proportion of the line of sight
checks passes. Other than using multiple checks for each pair of regions, the process
is the same as for a point representation.

Often, the proportion of required passes is set at zero; a connection is added if any
of the line of sight checks passes. In most cases, if any line of sight check passes, then
most of them will. As soon as one check passes, you can stop checking and simply add
the connection.

For regions that are a long way from each other, a few line of sight checks may
pass by squeezing through doorways, obtuse angled corners, up inclines, and so on.
These pairs of regions should not be connected. Increasing the proportion of required
passes can solve the problem, but can dramatically increase the time it takes for the
connection analysis.

Adding the post-processing algorithm above will eliminate almost all the erro-
neous connections, but will not eliminate false connections that don’t have an inter-
mediate set of navigable regions (such as when there is a large vertical gap between
regions). A combination of both solutions will improve the situation, but my experi-
ence has shown that there will still be problems that need to be solved by hand.

Limitations of Visibility Approaches

The primary problem with line of sight approaches is one of navigability. Just because
two regions in the level can be seen from one another, it doesn’t mean you can move
between them.

In general, there is no simple test to determine if you can move between two
locations in a game. For third person action adventure games, it may take a complex
combination of accurate moves to reach a particular location. Anticipating such move
sequences is difficult to do geometrically.

Fortunately, the AI characters in such games rarely have to carry out such action
sequences. They are normally limited to moving around easily navigable areas.

It is an open research question as to whether geometric analysis can produce ac-
curate graphs in complex environments. Those teams that have succeeded have done
so by limiting the navigability of the levels, rather than improving the sophistication
of the analysis algorithms.

Mesh representations avoid some of the problems, but introduce their own
(jumping, in particular, is difficult to incorporate). To date, data mining (see Sec-
tion 11.1.4) is the most promising approach for creating pathfinding graphs in levels
with complex navigability.
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Mesh Representations

Mesh representations explicitly provide the connection information required for
pathfinding.

A mesh representation based on triangles has each floor triangle associated with a
graph node. The triangle can be optionally connected along each of its three sides to
an adjacent floor triangle. There are therefore up to three connections for each node.
The connections can be easily enumerated from the geometry data: two triangles are
connected if they share two vertices, and both are marked as floor triangles.

It is also possible to connect triangles that meet at a point (i.e., that share only one
vertex). This reduces the amount of wiggle that a pathfinding character will display
when moving across a dense mesh, but can also introduce problems with characters
trying to cut corners.

Calculating Nodes

Calculating the placement and geometry of nodes by geometric analysis is very diffi-
cult. Most developers avoid it all together. So far the only (semi-) practical solution
has been to use graph reduction.

Graph reduction is a widely studied topic in mathematical graph theory. Starting
with a very complex graph with thousands or millions of nodes, a new graph is pro-
duced that captures the “essence” of the larger graph. In Chapter 4 we looked at the
process of creating a hierarchical graph.

To use this approach, the level geometry is flooded with millions of graph nodes.
This can often be done simply using a grid: graph nodes are placed every half-meter
throughout the level, for example. Nodes of the grid that are outside the playing area
(in a wall or unreachable from the ground) are removed. If the level is split into sec-
tions (which is common in engines that use portals for rendering efficiency), then the
grid nodes can be added on a section-by-section basis.

This graph is then connected and costed using the techniques we’ve looked at so
far. The graph at this stage is huge and very dense. An average level can have tens of
millions of nodes and hundreds of millions of connections. Typically, creating this
graph takes a very large amount of processing time and memory.

The graph can then be simplified to create a graph with a reasonable number of
nodes, for example, a few thousand. The structure of the level made explicit at the
high-detail level will be captured to some extent in the simplified graph.

Although it sounds simple enough, the graphs produced by this approach are
rarely satisfactory without tweaking. They often simplify away key information that a
human would find obvious. Research into better simplification techniques is ongoing,
but those teams that use this method in their toolchain invariably bank on having
someone go back, check, and tweak the resulting graphs.
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11.1.4 DATA MINING

Data mining approaches to graph creation find nodes by looking at movement data
for characters in the game world.

The game environment is built, and the level geometry is created. A character is
then placed into the level. The character can either be under player control or can
be automated. As the character moves around in the level, its position is constantly
being logged. The logged position data can then be mined for interesting data.

If the character has moved around enough, then the majority of legal locations in
the game level will be in the log file. Because the character in the game engine will be
able to use all of its possible moves (jumps, flying, and so on), there is no need for
complex calculations required to determine where the character could get to.

Calculating Nodes

Locations that the character is often near will probably consist of junctions and thor-
oughfares in the game level. These can be identified and set as nodes in the pathfind-
ing graph.

The log file is aggregated so nearby log points are merged into single locations.
This can be performed by the condensation algorithm from Chapter 4 or by keeping
track of the number of log points over each floor polygon and using the center point
of the polygon (i.e., using a polygon-based navigation mesh).

Although it can be used with navigation meshes, data mining is typically used in
combination with a Dirichlet domain representation of the level. In this case a node
can be placed in each peak area of movement density. Typically, the graphs have a
fixed size (the number of nodes for the graph is specified in advance). The algorithm
then picks the same number of peak density locations from the graph, such that no
two locations are too close together.

Calculating Connections

The graph can then be generated from these nodes using either a points-of-visibility
approach or further analysis of the log file data.

The point-of-visibility approach is fast to run, but there is no guarantee that the
nodes chosen will be in direct line of sight. Two high-density areas may occur around
a corner from each other. The line of sight approach will incorrectly surmise that
there is no connection between the two nodes.

A better approach is to use the connection data in the log file. The log file data can
be further analyzed, and routes between different nodes can be calculated. For each
entry in the log file, the corresponding node can be calculated (using normal local-
ization; see Chapter 4 for more details). Connections can be added between nodes if
the log file shows that the character moved directly between them. This produces a
robust set of connections for a graph.
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Character Movement

To implement a data mining algorithm, a mechanism is needed to move the character
around the game level. This can be as simple as having a human player controlling the
character or playing a beta version of the game.

In most cases, however, a fully automatic technique is needed. In this case the
character is controlled by AI. The simplest approach is to use a combination of steer-
ing behaviors to randomly wander around the map. This can be as simple as a “wan-
der” steering behavior, but usually includes additional obstacle and wall avoidance.

For characters that can jump or fly, the steering behaviors should allow the char-
acter to use its full range of movement options. Otherwise, the log file will be incom-
plete, and the pathfinding graph will not cover the whole level accurately. Creating an
exploring character of this kind is a challenging AI task in itself. Ideally, the character
will be able to explore all areas of the level, even those that are difficult to reach. In
reality, automatic exploring characters can often get stuck and repeatedly explore a
small area of the level.

Typically, automatic characters are only left to explore for a relatively short
amount of time (a couple of game minutes at the most). To build up an accurate
log of the level, the character is restarted from a random location each time. Errors
caused by a character getting stuck are minimized, and the combined log files are
more likely to cover the majority of the level.

Limitations

The downside with this approach is time. To make sure that no regions of the level are
accidentally left unexplored, and to make sure that all possible connections between
nodes are represented in the log file, the character will need to be moving around for
a very long time. This is particularly the case if the character is moving randomly or
if there are areas of the level that require fine sequences of jumps and other moves to
reach.

Typically, an average game level (that takes about 30 seconds to cross by a charac-
ter moving at full speed) will need millions of log points recorded.

Under player control, fewer samples are required. The player can make combina-
tions of moves accurately and exhaustively explore all areas of the level. Unfortunately,
this approach is limited by time: it takes a long time for a player to move through all
possible areas of a level in all combinations. While an automated character could do
this all night, if required (and it usually is), using a human player for this is wasteful.
It would be faster to manually create the pathfinding graph in the first place.

Some developers have experimented with a hybrid approach: having automatic
wandering for characters, combined with player-created log files for difficult areas.

An active area for research is to implement a wandering character that uses previ-
ous log file data to systematically explore poorly logged areas, trying novel combina-
tions of moves to reach locations not currently explored.
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Until reliable exploring AI is achieved, the limitations of this approach will mean
that hand-optimization will still be needed to consistently produce useable graphs.

Other Representations

So far we have looked at data mining with respect to point-based graph representa-
tions. Mesh-based representations do not require data mining approaches; the nodes
are explicitly defined as the polygons in the mesh.

It is an open question as to whether general bounding regions can be identified
using data mining. The problem of fitting a general region to a density map of log
data is certainly very difficult and may be impossible to perform within sensible time
scales. To date, the practical data mining tools I’m aware of have been based on point
representations.

11.2 KNOWLEDGE FOR MOVEMENT

While pathfinding and waypoint tactics form the most common and trickiest tool-
chain pressure, getting movement data comes in a close second.

11.2.1 OBSTACLES

Steering is a simple process when done on a flat empty plane. In indoor environments
there are typically many different constraints on character movement. An AI needs to
understand where constraints lie and be able to adjust its steering accordingly. It is
possible to calculate this information at run time by examining the level geometry. In
most cases this is wasteful, and a preprocessing step is required to build an AI-specific
representation for steering.

Walls

Predicting collisions with walls is not a trivial task. Steering behaviors treat charac-
ters as particles with no width, but characters inevitably need to behave as if they
were a solid object in the game. Collision calculations can be made by making mul-
tiple checks with the level geometry (checks from the right and left extremes of the
character, for example). But this can cause steering problems and stuck characters.

A solution is to use a separate AI geometry for the level shifted out from all walls
by the radius of the character (assuming the character can be represented as a sphere
or cylinder). This geometry allows collision detection to be calculated with point lo-
cations and helps make cheaper collision prediction and avoidance.



11.2 Knowledge for Movement 781

AI collision geometry

Figure 11.3 A crevice from automatic geometry widening

The calculation of this geometry is usually done automatically with a geometric
algorithm. Unfortunately, they often have the side effect of introducing very small
polygons in corners or crevices which can trap a character. Figure 11.3 shows a case
where the geometry can give rise to a fine crevice that is likely to cause problems for
an agent.

For very complex level geometries, an initial simplified collision geometry may
be required or support for visualization and modification of the AI geometry in the
modelling package.

Obstacle Representation

AI does not work efficiently with the raw polygon geometry of the level. Detecting
obstacles by searching for them geometrically is a time-consuming task that always
performs poorly.

Collision geometry is often a simplified version of the rendering geometry. Many
developers use AI that searches based on the collision geometry.

Often, additional AI geometry needs to be applied to the obstacle so that it can
be avoided cleanly. The complex contours of an object do not matter to a character
that is trying to avoid it all together. A bounding sphere around the whole would be
sufficient.

As the environment becomes more complex, the constraints on character move-
ment are increased. Whereas moving through a room containing one crate is easy (no
matter where the crate is), finding a path through a room strewn with crates is harder.
There may be routes through the geometry that are excluded because the bounding
spheres overlap. In this case more complex AI geometry is required.
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Figure 11.4 AI geometries: rendering, physics, and AI

11.2.2 HIGH-LEVEL STAGING

Although originally designed for use in the movie industry, AI staging is increasingly
being considered for game effects. Staging involves coordinating movement-based
game events.

Typically, the level designer places triggers in the game level that will switch on or
off certain characters. The character AI will then begin to make the characters act cor-
rectly. Historically, this has often been observable to the player (characters suddenly
coming to life when the player approaches), but now is generally better hidden from
sight.

Staging takes this one stage further and allows the level designer to set high-level
actions for the characters in response to triggers. Typically, this applies when there are
many different AI characters in the scene (such as a swarm of spiders or a squad of
soldiers).

The actions set in this way are overwhelmingly movement related. This is im-
plemented as a state in the character’s decision making tool where it will execute a
parametric movement (usually “move to this location,” with the location being the
parameter). This parameter can then be set in the staging tool, either directly or as a
result of a trigger during the game.

More sophisticated staging requires more complex sets of decisions. It can be sup-
ported with a more complete AI design tool, capable of modifying the decision mak-
ing of a character. Changes to the internal state of the character can then be requested
as a result of triggers in the level.
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11.3 KNOWLEDGE FOR DECISION MAKING

At the simplest level, decision making can be implemented entirely by polling the
game world for information. A character that needs to run away when faced with
danger, for example, can look around for danger at each frame and run if the check
comes back true. This level of decision making was common in games until the turn
of the century.

11.3.1 OBJECT TYPES

Most modern games use some kind of message passing system to moderate com-
munication. The character will stand around until it is told that it can see danger,
whereupon it will run away. In this case the decision as to “what is dangerous” doesn’t
depend on the character; it is a property of the game as a whole.

This allows the developer to design a level in which completely new objects are
created, marked as dangerous, and positioned. The character will correctly respond to
these objects and run away, without requiring additional programming. The message
passing algorithm and the character’s AI are constant.

The toolchain needs to support this kind of object-specific data. The level designer
will need to mark up different objects for the AI to understand their significance.
Often, this isn’t an AI-specific process. A power-up in a platform game, for example,
needs to be marked as collectable so that the game will correctly allow the player to
move into it (as opposed to making it inpenetrable and having the player bounce off
it). This “collectable” flag can be used by the AI: a character could be set so that it
defends any remaining collectables from the player.

Most toolchains are data driven: they allow users to add additional data to an
object’s definition. This data can be used for decision making.

11.3.2 CONCRETE ACTIONS

In a handful (but growing number) of games, the actions available to a player depend
on the objects in the player’s vicinity, for example, being able to push a button or pull
a lever. In games with more complex decision making, the character may be able to
use a range of gadgets, technologies, and everyday objects. A character may use a table
as a shield or a paperclip to open a lock, for example.

While most games still reserve this level of interaction for the player, people sim-
ulation games are leading a trend toward wider adoption of characters with broad
competencies.

To support this, objects need to notify the character what actions they are capable
of supporting. A button may only be pushed. A table may be climbed on, pushed
around, thrown, or stripped of its legs and used as a shield. At its simplest, this can be
achieved with additional data items: all objects can have a “can be pushed” flag, for
example. Then a character can simply check the flag.
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But this level of decision making is usually associated with goal-oriented behavior,
where actions are selected because the character believes they will help achieve a goal.
In this case, knowing that both buttons and tables can be pushed doesn’t help. The
character doesn’t understand what will happen when such an action is performed and
so can’t select an action to further its goals.

Pushing a button in an elevator does a very different thing than pushing a table
under a hole in the roof; they achieve very different goals. To support goal-oriented
behavior, or any kind of action planning, objects need to communicate the meaning
of an action along with the action itself. Most commonly, this meaning is simply a
list of goals that will be achieved (and those that will be compromised) if the action
is taken.

Toolchains for games with goal-oriented AI need to treat actions as concrete ob-
jects. An action, like a game object in a regular game, can have data associated with it.
This data includes the change in the state of the world that will result from carrying
out the action, along with prerequisites, timing information, and what animations to
play. The actions are then associated with objects in the level.

11.4 THE TOOLCHAIN

So far we have looked at the impact of AI on the design of various tools. This sec-
tion takes a brief walk through the AI-related elements of a complete toolchain, from
complete behavior editing tools to plug-ins for 3D modelling software.

11.4.1 DATA-DRIVEN EDITORS

AI isn’t the only area in which a huge amount of extra data is required for a game
level. Increasingly, the game logic, physics, networking, and audio require their own
set of data. Developers are moving increasingly to custom designed level editing tools
to be reused over all their games. Ownership of such a tool provides the flexibility to
implement complex editing functionality that would be difficult in a 3D package.

This kind of level editing package is often called “data driven” or “object oriented.”
Each object in the game world has a set of data associated with it. This set of data
controls the behavior of the object—the way in which it is treated by the game logic.

It is relatively easy to support the editing of AI data in this context. Often, it is
a matter of adding a handful of extra data types for each object (such as marking
certain objects as “to be avoided” and others objects as “to be collected”).

Creating tools of this kind is a major development project and is not an option
for small studios, self-publishing teams, or hobbyists. Even for teams with such a tool,
there are limitations to the data-driven approach. Creating a character’s AI is not just
a matter of setting a bunch of parameter values. Different characters require different
decision making logic and the ability to marshal several different behaviors to select
the right one at the right time. This requires a specific AI design tool (although such
tools are often integrated into the data-driven editor).
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11.4.2 AI DESIGN TOOLS

So far we have looked at tools that enable the AI to understand the game level better
and to get access to the information it needs to make sensible decisions.

As the sophistication of AI techniques increases, developers are looking at ways
to allow level designers to have access to the AI of characters they are placing. Level
designers creating an indoor lab scenario, for example, may need to create a number
of different guard characters. They will need to give them different patrol routes, dif-
ferent abilities to sense intruders, and different sets of behaviors when they do detect
the player.

Allowing the level designers to have this kind of control requires specialist AI
design tools. Without a tool, the designer has to rely on programmers to make AI
modifications and set up characters with their appropriate behaviors.

Scripting Tools

The first tools to support this kind of development were based on scripting lan-
guages. Scripts can be edited without recompilation and can often be easily tested.
Many game engines that support scripting provide mechanisms for editing, debug-
ging, and stepping through scripts. This has been primarily used to develop the game
level logic (such as doors opening in response to button presses, and so on). But as AI
has evolved from this level, scripting languages have been extended to support it.

Scripting languages suffer from the problem of being programming languages.
Non-technical level designers can have difficulty developing complex scripts to con-
trol character AI.

State Machine Designers

More recently, tools supporting the combination of pre-built behaviors have been
available. Some commercial middleware tools fall under this category, such as AI-
Implant and SimBionic, as well as several in-house tools created by large developers
and publishers. These tools allow a level designer to combine a palette of AI behaviors.

A character may need to patrol a route until it hears an alarm and investigates,
for example. The “patrol route” and “investigate” behaviors would be created by the
programming team and exposed to the AI tool. The level designer would then select
them and combine them with a decision making process that depends on the state of
the siren.

The actions selected by the level designer are often little more than steering be-
haviors. As discussed in Chapter 3, this is often all that is required for the majority of
game character behavior.

The decision making process overwhelmingly favored by this approach is state
machines. Although some developers have had success with decision trees, most favor
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Figure 11.5 The SimBionic editor screen

the flexibility of an FSM. Figure 11.5 shows a screenshot of such a tool, the SimBionic
middleware tool.

The best tools of this type have incorporated the debugging support of a scripting
language, allowing the level editors to step through the operation of the FSM, seeing
visually the current state of a character and being able to manually set their internal
properties.

11.4.3 REMOTE DEBUGGING

Getting information out of the game at run time is crucial for diagnosing the kind of
AI problem that doesn’t show in isolated tests. Typically, developers add debugging
code to report the internal state of the game as it is played. This can be displayed
on-screen or logged to file and analyzed for the source of errors.

When running on a PC, it is relatively easy to get inside the running game. De-
bugging tools can attach to the game and report details of its internal state. Similarly,
on console platforms, remote debugging tools exist to connect from the development
PC to the test hardware.
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While there is a lot that can be done with this kind of inspection, developers are
increasingly finding that more sophisticated debugging tools are required. Analyzing
memory locations or the value of variables is useful for some debugging tasks. But it
is difficult to work out how a complex state machine is responding and impossible to
understand the performance of a neural network.

A debugging tool can attach to a running game to read and write data for the AI
(and any other in-game activity, for that matter). One of the most common appli-
cations of remote debugging is the visualization of state machines. Often, combined
with a state machine editing tool, this allows the developer to see and set the state of
characters in the game and often to introduce specific events into an event manage-
ment mechanism.

Remote debugging requires a debugging application to be running on a PC, com-
municating over the network to the game; running on another PC or a console (or
sometimes the same PC). This network communication can cause problems with data
reliability and timing (the state of the game may have moved on from what the devel-
oper is looking at). In addition, certain consoles and many handheld devices do not
support general network communication suitable for this kind of tool.

Although not common at the moment, this kind of tool is becoming increasingly
important. As techniques increase in complexity, they cannot be easily understood by
looking at a handful of counters on-screen or by reading through log files.

11.4.4 PLUG-INS

Although custom level editing tools are becoming more common, 3D design, mod-
elling, and texturing are still overwhelmingly performed in a handful of high-end
modelling packages. Discreet’s 3D studio max, long the darling of game developers,
has recently seen significant competition from Alias Wavefront’s Maya and Softimage
XSI, both previously associated with the film animation and high-end rendering mar-
ket. There are a handful of less well-known and open source tools being used in small
teams and by hobbyists, with the most well known being the open source Blender.

Each of these tools has a programmer’s SDK that allows new functionality to be
implemented in the form of plug-in tools. This allows developers to add plug-in tools
for capturing AI data. Plug-ins written with the SDK are compiled into libraries and
are most commonly written in C/C++. In addition, each tool has a comprehensive
scripting language that can be used for simpler tools.

The internal operation of each software package puts significant constraints on
the architecture of plug-ins. It is challenging to integrate with the existing tools in the
application, the undo system, the software’s user interface, and the internal format of
its data. Because each tool is so radically different, and the SDKs each exposes have a
very different architecture, what you learn developing for one often will not translate.

For AI support, the candidates for plug-in development are the same as the func-
tionality required in a level editing tool. Because there has been such a substantial shift
toward separate level editing tools, there are fewer developers building AI plug-ins for
3D modelling software.
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PART IV

Designing Game AI
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12
DESIGNING

GAME AI

o far in this book we have built up a whole palette of AI techniques and the
S infrastructure to allow the AI to get on. I mentioned in Chapter 2 that game
AI development is a mixture of techniques and infrastructure with a generous dose of
ad hoc solutions, heuristics, and bits of code that look like hacks.

This chapter looks at how all the bits are applied to real games and how techniques
are applied to get the gameplay that developers want.

We will look on a genre-by-genre basis at the player expectations and pitfalls of a
game’s AI. No techniques are included here, just an illustration of how the techniques
elsewhere in the book are applied. My genre classification here is fairly high level and
loose, and some games might have different marketing classifications. But from an AI
point of view, there is a relatively limited set of things to achieve, and I have grouped
genres accordingly.

Before diving into each genre, it is worth looking at a general process for designing
the AI in your game.

12.1 THE DESIGN

Throughout this book, I’ve been working from the same model of game AI, repeated
once again in Figure 12.1. As well as mapping the possible techniques, this diagram
also provides a plan for the areas that need to be considered when designing your AI.

When I create the AI for a title, I tend to work from a set of behaviors gleaned
from the design document, trying to work out the simplest set of technologies that
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Figure 12.1 The AI model

will support them. Once I have convinced myself that I understand the requirements
that these behaviors impose on the game, I select technologies to implement them and
a basic approach for integrating the technologies together. Then I can start to build
the integration layer between my planned AI and the rest of the game engine. Initially,
I use placeholder behaviors for characters, but with the infrastructure in place, I start
to work on fleshing characters out.

This is, of course, an ideal, my plan of action if I had free reign over a project.
In reality, you will face constraints from lots of different directions that will affect
your plan of approach. In particular, publisher milestones mean that functionality
and behaviors need to be implemented early on in the development cycle. In many, if
not most, projects content like this is quickly implemented just for the milestone and
then removed and rewritten later on. In a worrying number of projects, the quick-
and-dirty code ends up getting patched and hacked so much that it ends up being
impossible to surgically remove and becomes the AI that gets shipped.

These kinds of hassles are normal and happen to everyone. You shouldn’t think of
yourself as a bad person just because you end up shipping hacked and half-baked AI
code in a couple of titles! On the other hand, you can do your career a great service if
you think ahead and get reliable and effective AI built.

12.1.1 EXAMPLE

In this section, we’ll walk through the two-stage design needs (the behaviors required
and technologies to achieve them) of a hypothetical game, by way of an example. The
game is simple from a gameplay slant, but the AI requirements are varied.

Our game is called “Haunted House,” and not surprisingly, it is set in a haunted
house. It is a well-known haunted house, and people from far and wide pay money
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to come and visit it. The player owns the house, and the player’s job is to keep the
customers paying by managing the frights in the house, making sure that visitors get
the spooks they are looking for.

Visitors arrive at the house, and the player’s aim is to send them fleeing in panic.
To do this, the player is given a selection of apparitions and mechanical tricks to apply
in the house. Previous visitors inevitably share their experiences, and others will come
seeking to debunk or mimic their frights.

The player must also try to keep the visitors from stumbling across the secrets of
the house, the tricks of the trade, one-way mirrors, smoke machines, and the ghost’s
common room.

A variant of this idea can be seen in Ghost Master [Sick Puppies Studio and Inter-
national Hobo Ltd., 2003], where a variety of houses are presented with different oc-
cupants. The occupants are not expecting to be scared and follow their own Sims-like
lives. It also has similarities to games such as Dungeon Keeper [Bullfrog Productions
Ltd., 1997] and Evil Genius [Elixir Studios, 2004].

12.1.2 EVALUATING THE BEHAVIORS

The first task is to design the behaviors that the characters in your game will display. If
you are working on your own game, this is probably part of your vision for the project.
If you are working in a development studio, it is likely to be the game designer’s job.

While the game’s designer will have set ideas about how the characters in the
game should act, in my experience these are rarely set in stone. Often, designers don’t
understand what seems trivial, but is truly difficult (and therefore should only be
included if it is a central point of the game) and the many seemingly difficult, but
simple additions that could be made to improve character behavior.

The behavior of characters in the game will naturally evolve as you implement and
try new things. This is not just true of hobbyist projects or games with long research
and development phases, it is also true of a development project with fixed ideas and
a tight time scale. With the best will in the world, you won’t completely understand
the AI needs of a game before you start to develop it. It is worth planning from the
outset for some degree of flexibility.

For example, creating an AI with a fixed set of inputs from the game is just asking
for late nights at the end of the project (they’ll happen anyway, so why ask for them?).
Inevitably, the designers will need some extra AI input at an inconvenient time, and
the AI code will need reworking. Because of this, I always tend to err on the side of
flexibility rather than raw speed in my initial designs. It is much easier to optimize
later on than to un-optimize tangled code to eke out flexibility at the last minute.

So, starting from the set of behaviors you want to see, you have some questions to
answer for each of the components of the AI model:

� Movement
— Will my characters be represented individually (as in most games), or will I

only see their group effects (as in city simulation games, for example)?
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— Will my characters need to move around their environment in a more or less
realistic manner? Or can I just place them where I want them to go (in a
tile-based, turn-based game, for example)?

— Will the characters’ motion need to be physically simulated, as in a car game,
for example? How realistic does the physics have to be (bearing in mind that
it is typically much harder to build movement algorithms to work with re-
alistic physics than it is to tweak the physics so it is less realistic for the AI
characters)?

— Will characters need to work out where to go? Can they get by just wandering,
following designer-set paths, staying only in one small area, or chasing other
characters? Or do I need the characters to be able to plan their route over the
whole level with a pathfinding system?

— Will the character’s motion need to be influenced by any other characters?
Will chasing/avoiding behaviors be enough to cope with this, or do the char-
acters need to coordinate or move in formations too?

� Decision making—This is typically the area in which AI designers get the most
carried away. It is common to see AI designs at the start of a game that involve
all kinds of exotic new techniques. More often than not, the final game ships
with state machines running all the important stuff. In my experience, the more
ambitious the AI at the start of the project, usually the more conventional it is at
the end of the project (with a few notable exceptions).
— What is the full range of different actions that your characters can carry out

in the game?
— How many distinct states will each of your characters have? In other words,

how are those actions grouped together to fulfil the goals of the character?
Note that I’m not assuming you are going to use either state machines or goal-
based behavior here. Whatever drives your characters they should appear to
have goals, and when acting to achieve one goal, they can be thought of as
being in one state.

— When will your character change its behavior, switch to another state, or
choose another goal to follow? What will cause these changes? What will it
need to know in order to change at the right time?

— Will characters need to look ahead in order to select the best decision? Will
they need to plan their actions or carry out actions that lead only indirectly to
their goals? Do these actions require action planning, or can a more complex
state-based or rule-based approach cover them?

— Will your character need to change the decisions it makes depending on how
the player acts? Will it need to respond based on a memory of player actions,
using some kind of learning?

� Tactical and strategic AI
— Do your characters need to understand large-scale properties of the game

level in order to make sensible decisions? Do you need to represent tactical or
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strategic situations to them in a way that enables them to select an appropri-
ate behavior?

— Do your characters need to work together? Do they need to carry out actions
in correct sequences, depending on each other’s timing?

— Can your characters think for themselves and still display the group behavior
you are looking for? Or do you need some decisions to be made for a group
of characters at a time?

Example

In the “Haunted House” example we get the following answers to our questions:

� Movement—Characters will be represented individually, moving around their
environment autonomously. We do not need realistic physical simulation. We
can get by with kinematic movement algorithms rather than full steering behav-
iors. Characters will often want to head for a specific location (the exit, for exam-
ple) which may require navigation through the house, so we’ll need pathfinding.

� Decision making—Characters have a small range of possible actions. They can
creep about, run, or stand still (petrified). They can examine objects or “act on
them”: each object has a maximum of one action that can be performed on it
(a light switch can be toggled, or a door can be opened, for example). They can
also console other people in the house.

Characters will have four broad types of behavior: scared behavior, in which
they will try to recover their wits; curious behavior, in which they will examine
objects and explore; social behavior, where they will attempt to keep the group
together and console concerned members; and bored behavior, where they head
for the customer service desk and a refund.

The characters will change their behavior based on levels of fear. Each character
has a fear level. When a character passes a threshold, it will enter scared behavior.
When a character is near another scared character, it will enter social behavior.
If a character’s fear level drops very low, it gets bored. Otherwise, it will be in
curious mode.

Characters will change their fear level by seeing, hearing, or smelling odd things.
Each spook and trick has an oddness intensity in each of these three senses.
Characters need to be informed when they can see, hear, or smell something
and how odd it seems.

The characters will seek to explore places they haven’t been before or will go back
to places they or others enjoyed before. They should keep track of visited places
and interesting places. Interesting places can be shared among many groups to
represent gossip about good frights.
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� Tactical and strategic AI—Characters need to avoid locations they know to be
scary when they are trying to recover their wits. Similarly, they will avoid the
boring areas when they are looking for action.

12.1.3 SELECTING TECHNIQUES

With answers to the behavior-based questions, you will have a good idea of how far
you need to go in the AI. You may have worked out whether you need pathfinding and
what kind of movement behaviors, for example, but not necessarily which pathfind-
ing algorithm or which steering arbitration system to use.

This is the next stage: building up a candidate set of technologies that you intend
to use.

In my experience most of this is fairly straightforward. If you have decided that
you need pathfinding, then A* is the obvious choice. If you know that characters
need to move in a formation, then you need a formation motion system. Some de-
cisions are a little more tricky, in particular, the decision making architecture causes
headaches.

As we saw in Chapter 5, there are no hard and fast rules for selecting a decision
making system. Most things you can do with one system, you can do with the others.
My recommendation would be to start with state machines, unless you know of a
specific thing you want to do that cannot be achieved with them. Their flexibility has
proven its worth so many times for me that I need to have a better reason than novelty
for doing something else.

I encourage you at this stage to avoid getting pulled back into the behaviors you
identified. It is tempting to think that if I used such-and-such an exotic technique,
then I could show such-and-such a cool behavior. It is important to blend the promise
of cool effects with the ability to get the other 95% of the AI working rock-solidly.

Example

In the “Haunted House” example we can fulfil the requirements of our behaviors with
the following suite of technologies from this book:

� Movement—Characters will move with kinematic movement algorithms. They
can select any direction to move in, at one of their two movement speeds.

In curious and scared modes, they will select their movement target as a room
and use A* to pathfind a route there. They will use a path following behavior
to follow the route. We will use a waypoint graph to fit in with the tactical and
strategic AI, below.

In social mode, they will head for scared characters they can see, using a kine-
matic seek behavior.
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� Decision making—Characters will use a finite state machine for their high-level
behavior. It has four states: scared, curious, social, and bored. Transitions are
purely based on the fear level of a character and the others in line of sight.

When in curious mode, and there are a range of actions available, the character
needs to select one. To enable this we will simply select an action at random,
keeping track of the object we used to make sure we don’t use it again.

� Tactical and strategic AI—To facilitate the learning of scary and safe locations,
we keep a waypoint map of the level. When characters change their scared state,
they record the event in the map. This is just the same process as creating a frag-
map from Chapter 6.

� World interface—Characters need to get information on the sights, smells, and
sounds of odd occurrences in the game. This should be handled by a sense man-
agement simulation (a region sense manager would be fine).

Characters also need information on the available actions to take when they are
in curious mode. The character can request a list of objects that it can interact
with, and we can provide this information from a database of objects in the
game. We do not need to simulate the character seeing and recognizing these
objects.

� Execution management—There are two technologies, pathfinding and sense
management. Both are time consuming.

With only a few rooms in the house, an individual’s pathfinding will not take
very long. However, there may be many characters in the house, so we can use a
pool of a few planners (one might do it) and queue pathfinding requests. When
a character asks for a path, it waits until there is a planner free and then gets its
path in one go. We don’t need anytime algorithms for pathfinding.

The sense management system gets called each frame and incrementally updates.
It is by design an anytime algorithm distributed over many frames.

There may be many characters (tens, let’s say) in the house at once. Each charac-
ter is acting relatively slowly; it does not need to process all of its AI each frame.
We can avoid using a complex hierarchical scheduling system and simply up-
date a different few characters each frame. With 5 characters per frame updated,
50 characters in the game, and 30 frames per second being rendered, a character
will have to wait less than half a second between updates. This delay may actu-
ally be useful; having characters wait for fractions of a second before reacting to
a fright simulates their reaction time.

We end up with only a handful of modules that need implementing for this game.
The sense management system is probably the most complex, and most are very stan-
dard and have simple components. I have even managed to include the random num-
ber generator: the first AI technique we met in Chapter 2.
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12.1.4 THE SCOPE OF ONE GAME

Given the range of technologies in this book, you might have expected me to make the
“Haunted House” more complex, relying on clever use of lots of different algorithms.
In the end, the only thing in my design that is slightly exotic is the sense management
system used to notify characters of odd events.

In reality, the AI in games works this way. Fairly simple techniques take the bulk
of the work. If there are specific AI-based gameplay effects you are looking for, then
one or two high-powered techniques can be applied. If you find yourself designing a
game with neural networks, sense management, steering pipelines, and a Rete-based
expert system, then it’s probably time to focus in on what is really important in your
game.

Each of the more unusual techniques in this book is crucial in some games and
can make the difference between a boring game and really neat character behavior.
But like a fine spice, if they aren’t used to sparingly add flavor, they can end up spoiling
the final product.

In the remainder of this chapter we’ll look at a range of commercial games in a
variety of genres. In each case I’ll try to focus on the techniques that make the genre
unusual: where new innovations can really make a difference.

I have limited this chapter to the most significant game genres, the bread and
butter for most AI developers. The final chapter of the book, Chapter 13, covers other
game genres where AI is specifically tasked with providing the gameplay. These are
not large genres with thousands of titles, but they are interesting for an AI developer
because they stretch AI in ways that common genres don’t.

12.2 SHOOTERS

First and third person shooters are the most financially significant genre and have
been in one form or another since the first video games were created.

With the arrival of Wolfenstein 3D [id Software, 1992] and Doom [id Software,
1993], the shooter genre has become synonymous with characters moving on foot
(possibly with jetpacks, as in Tribes II [Dynamix, 2001]) with a camera tied to the
player’s character. Enemies usually consist of a relatively small number of on-screen
characters. Many shooters have enemy characters represented as “bots”: computer-
controlled characters with similar physical capabilities to the player. Other games
provide cannon fodder, a larger number of less sophisticated enemies.

The most significant AI needs for the game are

1. Movement—control of the enemies

2. Firing—accurate fire control

3. Decision making—typically simple state machines

4. Perception—determining who to shoot and where they are
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Figure 12.2 AI architecture for a shooter

5. Pathfinding—often (but not always) used to allow characters to plan their route
through the level

6. Tactical AI—again, often used to allow characters to determine safe positions to
move, or for more advanced tactics such as ambush laying.

Of these, the first two are the key issues seen in all games of the genre. The later
needs are more frequently addressed in more sophisticated titles and are increasingly
becoming necessary for a good critical reception.

Figure 12.2 shows a basic AI architecture suited to a first or third person shooter.

12.2.1 MOVEMENT AND FIRING

Movement is the most visible part of character behavior, and second only to people
Sims, shooters have the most complex sets of animation around. It is not unusual
for characters to combine tens or hundreds of animation sequences, along with other
controllers such as inverse kinematics or ragdoll physics. A character in Doom 3 [id
Software, 2004] can be running, firing, and looking all at the same time. The first two
are animation channels, and the third is a procedural animation controlled by the
direction the character is looking (as is the direction, but not the overall movement,
of the firing arm).

In No One Lives Forever 2 [Monolith Productions, Inc., 2002] ninja characters
have sophisticated movement abilities that add to the difficulty of synchronizing
movement and animation. They can perform cartwheels, vault over obstacles, and
leap between buildings.
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Simple movement around the level becomes a challenge. The AI not only needs
to work out a route, but also needs to be able to break this motion into animations.
Most games separate the two parts: the AI decides where to move, and another chunk
of code turns this into animations. This allows the AI complete freedom of motion,
but has the disadvantage of allowing odd combinations of animation and movement
to occur, which can look jarring to the player. This difficulty has been tackled to date
by including a richer palette of animations, making it more likely that a reasonable
combination can be found.

Several games that use scripting languages to control their characters expose the
same controls to the AI as the player uses. Rather than output desired motion or
target locations, the AI needs to specify how fast it is moving forward or backward,
turning, changing weapons, and so on. This makes it very easy during development to
remove an AI character and replace it with a human being (playing over the network,
for example). Most titles, including those based on licencing the most famous game
engines, have macro commands, for example,

1 sleep 3
2 gotoactor PathNodeLoc1
3 gotoactor PathNodeLoc2
4 agentcall Event_U_Wave 1
5 sleep 2
6 gotoactor PathNodeLoc3
7 gotoactor PathNodeLoc0

is a typical script fragment from the Unreal engine.
Because of the constrained, indoor nature of the levels in many shooters, the char-

acters almost certainly need some kind of route finding. This may be as simple as the
gotoactor statements in the Unreal script above, or it might be a full pathfinding
system. Whatever form this takes (we’ll return to pathfinding considerations later),
the routes need to be followed. With a reasonably complicated route, the character
can simply follow the path. Unfortunately, the game level is likely to be dynamic.
The character should react properly to other characters moving about. This is most
commonly done using a simple repulsion force between all characters. If characters
approach too closely, then they will move apart. In Mace Griffin: Bounty Hunter
[Warthog Games, 2003], the same technique is used to avoid collisions between char-
acters on the ground and between combat spacecraft during the deep space sections
of the game. Indoors, pathfinding is used to create the routes. In space, a formation
motion system is used instead.

The flood in Halo [Bungie Software, 2001] and the aliens in Alien vs. Predator
[Rebellion, 1994]1 both move along walls and the ceiling as well as the floor. Neither
use a strictly 2 1

2 -dimensional (2 1
2 D) representation for character movement.

1. Not to be confused with Alien vs. Predator [Activision Publishing, Inc., 1993], the Arcade and SNES games
of the same name, both of which are sideways scrolling shooters.
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Firing AI is crucial in shooters (not surprisingly). The first two incarnations
of Doom were heavily criticized for unbelievably accurate shooting (the developers
slowed down incoming projectiles to allow the player to move out of the way; other-
wise, the accuracy would be overwhelming). More realistic games, such as Medal of
Honor: Allied Assault [2015, Inc., 2002] and Far Cry [Crytek, 2004] use firing mod-
els that allow characters to miss in exciting ways (i.e., they try to miss where the player
can see the bullet).

12.2.2 DECISION MAKING

Decision making is most commonly achieved using finite state machines. These can
be very simple with just “seen-player” and “not-seen-player” behaviors.

A very common approach to decision making in shooters is to develop a bot
scripting system. A script written in a game-specific scripting language (which in
some cases is JIT compiled for speed) is called. The script has a whole range of func-
tions exposed to it by which it can determine what the character can perceive. These
are usually implemented by directly polling the current game state. The script can
then request actions to be executed, including the playing of animations, movement,
and in some cases pathfinding requests. This scripting language is then made available
to users of the game to modify the AI or to create their own autonomous characters.
This is the approach used in Unreal II and successive games, and it is beginning to
be adopted in non-shooters such as Neverwinter Nights [Bioware Corporation] (as
a tool purely for level designers, when it is not available to end users, it is much more
common).

For Sniper Elite [Rebellion, 2005], Rebellion wanted to see emergent behavior
that was different on each play through. To achieve this they applied a range of state
machines, operating on waypoints in the game level. Many of the behaviors depended
on the actions of other characters or the changing tactical situation at nearby way-
points. A small amount of randomness in the decision making process allowed the
characters to behave differently each time and to act in apparent cooperation, with-
out needing any squad-based AI.

A slightly different approach to autonomous AI was created in No One Lives For-
ever 2 [Monolith Productions, Inc., 2002]. Monolith blended state machines with
goal-oriented behavior. Each character would have a pre-determined set of goals that
could influence its behavior. The characters would periodically evaluate their goals
and select the one that was most relevant for them at that time. That goal would then
take control of the character’s behavior. Inside each goal was a finite state machine
that was used to control the character until a different goal was selected.

The game uses waypoints (which they call nodes) to make sure characters are in
the correct position for behaviors such as rifling through filing cabinets, using com-
puters, and switching on lights. The presence of these waypoints in the vicinity of a
character allows the character to understand what actions are available.

Monolith’s AI engine continues to undergo development. In F.E.A.R. [Monolith
Productions, Inc., 2005], the same goal-oriented behavior is used, but the pre-built
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state machines are replaced by a planning engine that tries to combine available ac-
tions in such a way as to fulfil the goal. F.E.A.R. had one of the first full goal-oriented
action planning systems.

12.2.3 PERCEPTION

Perception is sometimes faked by placing a radius around each enemy character and
having that enemy “come to life” when the player is within it. This is the approach
taken by the original Doom. After the success of Goldeneye 007 [Rare Ltd., 1997],
however, more sophisticated perception simulation became expected. This doesn’t
necessarily mean a sense management system, but at the very least characters should
be informed of what is going on around them through some kind of messages.

In the Ghost Recon [Red Storm Entertainment, Inc., 2001] games, the percep-
tion simulation is considerably more complex. The sense management system that
provides information to AI characters takes into account the amount of broken cover
provided by bushes and tests the background behind characters to determine if their
camouflage matches. This is achieved by keeping a set of pattern ids for each material
in the game. The line of sight check passes through any partially transparent object
until it reaches the character being tested. It then continues beyond the character and
determines the next thing it collides with. The camouflage id and the background
material id are then checked for compatibility.

The Splinter Cell [UbiSoft Montreal Studios, 2002] games use a different tack.
Because there is only one player character (in Ghost Recon there are many), each AI
simply checks to see if it is visible. Each level can contain dynamic shadows, mist, and
other hiding effects. The player character is checked against each of these to determine
a concealment level. If this is below a certain threshold, then the enemy AI has spotted
the player character. The concealment level does not take into account background in
the way that the Ghost Recon games do; if the character is standing in a dark shadow
in the middle of a bright corridor, then it will not be seen, even though it would
appear to the guards as a big black figure on a bright background. The levels have
been designed to minimize the number of times this limitation is obvious.

The AIs in Splinter Cell also use a cone-of-sight for vision checks, and there is a
simple sound model where sound travels in the current room up to a certain radius
depending on the volume of the sound. Very similar techniques are used in the Metal
Gear Solid [Konami Corporation, 1998] series of games.

12.2.4 PATHFINDING AND TACTICAL AI

In Soldier of Fortune 2: Double Helix [Raven Software, 2002], links in the pathfind-
ing graph were marked with the type of action needed to traverse them. When a
character reached the corresponding link in the path, it could then change behavior
to appear to have knowledge of the terrain. The link might represent an obstacle to
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vault over, a door to open, a barrier to break through, or a wall to rappel down. The
AI team responsible, Christopher Reed and Ben Geisler, call this approach “embedded
navigation.”

It is becoming almost universal to incorporate some kind of waypoint tactics in
shooters. In Half-Life [Valve, 1998], the AI uses waypoints to work out how to sur-
round the player. A group of AIs will be coordinated so that they occupy a set of good
defensive positions that surround the player’s current location, if that is possible. In
the game an AI character will often make a desperate run past the player in order to
take up a flanking position.

Unless your enemy characters always rush the player, as in the original Doom,
you will probably need to implement a pathfinding layer. The indoor levels of most
shooters can be represented with relatively small pathfinding graphs that are quickly
searched. Rebellion used the same waypoint system for their pathfinding and tactical
AI in Sniper Elite, whereas Monolith created a completely different representation for
No One Lives Forever 2. In Monolith’s solution, the area that a character could move
to was represented by overlapping “AI Volumes,” which then formed the pathfinding
graph. The waypoints of its action system did not directly take part in pathfinding
(except as a goal for the pathfinder to plan to).

Many developers still use Dijkstra as a pathfinding engine, because it is simple
to program and has no heuristic to tune. Monolith’s volume-based pathfinding is a
good example. In larger levels, the fill associated with Dijkstra can cause serious speed
problems, so it is typical to see A* being used. As developers have time to tweak and
optimize A*, we are seeing Dijkstra use die out rapidly.

The biggest difference among developers for pathfinding is one of representation.
Each developer has a fixed idea about which is best, but they rarely agree. Naviga-
tion meshes, such as those used in Deus Ex [Ion Storm, 2000], are still widespread,
although the increased tactical possibilities of combining pathfinding and tactical
analysis are seeing many companies move back to waypoints. Monolith’s pathfind-
ing volumes are yet another approach, and many games set outdoors still rely on
grid-based pathfinding graphs.

Games set primarily indoors naturally break up their levels into sectors, often
separated by portals (a rendering optimization technology). These sectors can act
naturally as a higher level pathfinding graph for long-distance route planning. This is
the approach used in Mace Griffin: Bounty Hunter, where a hierarchical pathfinding
plans between sectors first and then drops down to a navigation mesh level.

12.2.5 SHOOTER-LIKE GAMES

A variety of games use a first or third person viewpoint with human-like characters.
The player directly controls one character, used as the viewpoint of the game, and
enemy characters typically have similar physical capabilities.

In combination with the natural conservatism of game settings, this means that
a number of genres that could not be described as shooters use very similar AI tech-
niques. They therefore tend to have the same basic architecture.
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Rather than cover the same ground again, we will consider these genres in terms
of what they add or remove from the basic shooter setup.

Platform and Adventure Games

Platform games are normally intended for a younger audience than first person
shooters. A major design goal is to make the enemy characters interesting, but fairly
predictable. It is common to see obvious patterns designed into a character’s behav-
ior. The player is rewarded for observing the action of the enemy and building up an
idea of how to exploit its weaknesses.

The same holds true for adventure games, in which enemies become another puz-
zle to be solved. In Beyond Good and Evil [UbiSoft Montpellioer Studios, 2003], the
Alpha Sections, an otherwise impervious enemy, lower their shields for a few seconds
after attacking, for example.

In both cases the AI will use similar, but simpler, techniques to those seen in
shooters. Movement will typically use the same approach, although platform games
often add flying enemies, which will need to be controlled with 2 1

2 D or three-
dimensional (3D) movement algorithms. Adventure games, in particular, place a
larger burden on animation to communicate character actions. A small number of
games allow their characters to pathfind. Jak and Daxter: The Precursor Legacy
[Naughty Dog, Inc., 2001], for example, use a navigation mesh representation to al-
low characters to move around intelligently. In the vast majority of games, however,
movement is purely local.

The state of the art in decision making is still the simplest techniques. Typically,
characters have two states: a “spotted the player” state and a “normal behavior” state.
Normal behaviors will often be limited to standing playing a selection of anima-
tions or fixed patrol routes. In Oddworld: Munch’s Oddysee [Oddworld Inhabitants,
1998], some animals move around randomly using a wander behavior until they spot
the protagonist.

When a character has spotted the player, it will typically home in on the player
with a seek or pursue behavior. In some games this homing is limited to aiming at the
player and moving forward. Other games extend the capabilities of the moving char-
acter. The human enemies in Tomb Raider III [Core Design Ltd., 1998], for example,
grab on and climb up onto blocks to get at Lara.

Obviously, variations on this exist: some characters might have a few more states,
they might call for help, there might be different close-quarters and long-distance
actions, and so on. But I can’t think of any game in these genres where the characters
use fundamentally more complex techniques such as goal-oriented behaviors, rule-
based systems, or waypoint tactics.

MMOG

Massively multi-player online games (MMOGs) usually involve a large number of
players in a persistent world. Technically, their most important feature is the separa-
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tion between the server on which the game is running and the machines on which the
player is playing.

A distinction between client and server is usually implemented in shooters (and
many other types of game) also to make multi-player modes easier to program. In
an MMOG, however, the server will never be running on the same machine as the
client; it will normally be running on a set of dedicated hardware. I can therefore use
more memory and processor resources.

Some massively multi-player games have only a marginal need for AI. The only
AI-controlled characters are animals or the odd monster. All characters in the game
are played by humans.

While this might be an ideal situation, it is not always practical. The game requires
some critical mass of players before it is worth anyone’s time playing. Most MMOGs
add some kind of AI-based challenge to the game, much like you’d see in any first or
third person adventure.

With such a huge game world, all the challenges to the AI developer arrive in terms
of scale. The technologies used are largely the same as for a shooter, but their imple-
mentation needs to be significantly different to cope with large numbers of characters
and a much larger world. Whereas a simple A* pathfinder can cope with a level in a
shooter and the 5–50 characters using it to plan routes, it will likely groan to a halt
when 1000 characters need to plan their way around a continent-sized world.

It is these large-scale technologies, particularly pathfinding and sensory percep-
tion, that need more scalable implementations. We have looked at some of these. In
pathfinding, for example, we can pool planners, use hierarchical pathfinding, or in-
stanced geometry.

12.3 DRIVING

Driving is one of the most specialized, genre-specific, AI tasks for a developer. Unlike
other genres, the crucial AI tasks are all focussed around movement. The task isn’t
to create realistic goal-seeking behavior, clever tactical reasoning, or route finding,
although all of these may occur in some driving games. The player will judge the
competency of the AI by how well it drives the car.

Figure 12.3 shows an AI architecture suited to a racetrack driving game, and Fig-
ure 12.4 expands this architecture for use in an urban driving title, where different
routes are possible and ambient vehicles share the road.

12.3.1 MOVEMENT

For racing games there are two options for a developer implementing the car motion.
The simplest approach is to allow the level designer to create one or more racing
lines, along which the vehicle can achieve its optimal speed. This racing line can then
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Figure 12.3 AI architecture for race driving
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Figure 12.4 AI architecture for urban driving

be followed rigidly. This may not even require steering at all. Computer-controlled
cars can simply move along the predefined path.

Typically, this kind of racing line is defined in terms of a spline: a mathematical
curve. Splines are defined in terms of curves in space, but they can also incorporate
additional data. Speed data incorporated into the spline allows the AI to look up
exactly the position and speed of a car at any time and render it accordingly. This
provides a very limited system: cars can’t easily overtake one another; they won’t avoid
crashes in front of them; and they won’t be deflected out of the way when colliding
with the player. To avoid these obvious limitations, additional code is added to make
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sure that if the car gets knocked out of position, a simple steering behavior can be
engaged to get it back onto the racing line. It is still characterized by the tendency of
cars to stream into a crashed car with naive abandon.

Most early driving games, such as Formula 1 [Bizarre Creations, 1996], used this
approach. It has also been used in many recent games for controlling cars that are
intended to be part of the “background,” for example, Grand Theft Auto 3 [DMA
Design, 2001].

The second approach, used overwhelmingly in recent titles, is to have the AI drive
the car—to apply control inputs into the physics simulation so that the car behaves
realistically. The degree to which the physics that the AI cars have to cope with is the
same as the physics that the player experiences is a critical issue. Typically, the player
has somewhat harder physics than the AI-controlled cars, although many games are
now giving the AI the same task as the player.

It is very common to still see racing lines being defined for this kind of game. The
AI-controlled car tries to follow the racing line by driving the car, rather than having
the racing line act as a rail for it to move along. This means that the AI often cannot
achieve its desired line, especially if it has been nudged by another car. This can cause
additional problems. In Gran Turismo [Polyphonic Digital, 1997], which used this
approach, a car could be knocked out of position by the player. At this point the car
would still try to drive its racing line, which would usually result in it outbreaking
itself on the next corner and ending up in the gravel trap.

To solve the problem of overtaking, when a slower moving vehicle sits on the
racing line, many developers add special steering behaviors: the car will wait until a
long straight and then pull out to overtake. This is characteristic overtaking behav-
ior seen in many driving games from Gran Turismo to Burnout [Criterion Software,
2001] and is a common overtaking ploy in real-world racing with medium- and low-
powered cars. Most of the overtaking in the world’s fastest racing series (such as For-
mula One) takes place under braking at corners, however. This can be accomplished
using an alternative racing line defined by the level designer. If a car wishes to over-
take, it takes up position on this line, which will ensure that it can break later and take
control of the exit of the corner. I’m not aware of anyone using AI to generate these
kinds of lines. To the best of my knowledge they are created manually.

A variation on this approach is used in many rally games, which is sometimes
called “chase the rabbit.” An invisible target (the eponymous rabbit) is moved along
the racing line using the direct position update method. The AI-controlled vehicle
then simply aims for the rabbit; it can be controlled using an “arrive” behavior, for
example. As the rabbit is always kept in front of the car, it begins to turn first, making
sure that the car steers at the right point. This is particularly suited to rally games,
because it makes implementing power slides quite natural. The car will automatically
begin steering well before the corner, and if the corner is severe it will steer heavily,
causing the physics simulation to allow the back end of the car to slip out a little.

Other developers have used decision making tools as part of the driving AI. The
Karting simulator Manic Karts [Manic Media Productions, 1995] used fuzzy decision
making in place of racing lines. It determined the left and right extent of the track a
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short distance in front of the vehicle, as well as any nearby karts, and then used a
hand-written Markov state machine to determine what to do next.

12.3.2 PATHFINDING AND TACTICAL AI

With Driver [Reflections Interactive, 1999], a new genre of driving game emerged.
Here there is no fixed track. The game is set on city streets, and the goal is to catch
or avoid other cars. A car can take any route it likes, and when running from the
police, the player will usually weave and double back. A single, fixed racetrack is not
applicable for this kind of game.

Many games in this genre have enemy AI following a set path when it is escaping
from the player or performing a simple homing-in algorithm when trying to catch
them. In Grand Theft Auto 3, cars are only created for the few blocks surrounding
the player’s position. When police home in on the player, they are gathered from this
area, and additional cars are injected at appropriate positions.

As this kind of game simulates a wider area, however, vehicles begin to need
pathfinding to find their route around, especially with a view to catching the player.

The same is true of the use of tactical analysis to work out likely escape routes and
block them. The driver uses a simple algorithm to try and surround the player. At
least one (unannounced) game that I know is currently in development performs a
tactical analysis based on the current direction the player is moving and asks police car
AI to intercept. The police cars then use tactical pathfinding to get to their positions
without crossing the player’s path (to avoid giving the game away).

12.3.3 DRIVING-LIKE GAMES

The basic approach used for driving games can apply to a number of other genres.
Some extreme sports games, such as SSX [Electronic Arts Canada, 2000] and

Downhill Domination [Incog, Inc Entertainment, 2003], have a racing game me-
chanic at their core. Overlaid onto the racing system (normally implemented using
the same racing line-based AI as for driving games) is commonly a “tricks” sub-game,
which involves scheduling animated trick actions during jumps. These can be added
at predefined points on the racing line (i.e., a marker that says, when the character
reaches this point, schedule a trick of a particular duration) or can be performed by a
decision making system that predicts the likely airtime that will result and schedules
a trick with an appropriate duration.

Futuristic racers, such as Wipeout [Psygnosis, 1995], are likewise based on the
same racing AI technology. It is common for this kind of game to include weapons.
To support this, additional AI architecture is needed to include targeting (often, this
isn’t a full firing solution, as the weapons home in) and decision making (the vehicle
may slow down to allow an enemy to overtake it in order to target them).
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12.4 REAL-TIME STRATEGY

With Dune II2 [Westwood Studios, 1992], Westwood created a new genre3 that has
become a mainstay of publishers’ portfolios. Although it accounts for a small propor-
tion of total game sales, the genre is one of the strongest on the PC platform.

Key AI requirements for real-time strategy games are

1. Pathfinding

2. Group movement

3. Tactical and strategic AI

4. Decision making

Figure 12.5 shows an AI architecture for an RTS game. This varies more from
game to game than previous genres, depending on the particular set of gameplay
elements being used. The model below should act as a useful starting point for your
own development.

Supporting technology

Decision making

Movement

Tactical/Strategic AI

Execution management

Tactical analysis

Rule-based system/custom code
(Strategic decisions)

FSM
(Per character behavior)

Pathfinding

Kinematic steering

Difficulty of found
paths may influence

decisions

Figure 12.5 AI architecture for RTS games

2. Not to be confused with the original Dune game [Cryo Interactive Entertainment, 1992], which was a fairly
nondescript graphical adventure.

3. Some games historians trace the genre back further to strategy hybrid games like Herzog Zwei [TechnoSoft,
1989], but for the purposes of AI styles, these earlier games are very different.
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12.4.1 PATHFINDING

Early real-time strategy games such as Warcraft: Orcs and Humans [Blizzard Enter-
tainment, 1994] and Command and Conquer [Westwood Studios, 1995] were syn-
onymous with pathfinding algorithms, because efficient pathfinding was the primary
technical challenge of the AI. With large grid-based levels (often encompassing tens
of thousands of individual tiles), long pathfinding problems (the player can send a
unit right across the map), and many tens of units, pathfinding speed is crucial.

Although most games no longer use tile-based graphics, the underlying represen-
tation is still grid based. Most games use a regular array of heights (called a height
field) to render the landscape. This same array is then used for pathfinding, giving a
regular grid-based structure. Some developers pre-compute route data for common
paths in each level. More recently, games such as Perimeter [K-D Lab Game Develop-
ment, 2004] have included deformable terrain, where pre-computation is impossible.

12.4.2 GROUP MOVEMENT

Games such as Kohan: Ahriman’s Gift [TimeGate Studios, 2001] and Warhammer:
Dark Omen4 [Mindscape, 1998] group individuals together as teams and have them
move as a whole. This is accomplished using a formation motion system with pre-
defined patterns.

In Homeworld [Relic Entertainment, 1999], formations are extended into three
dimensions, giving an impression of space flight despite keeping a strong up and
down direction.

Where Kohan’s formations have a limited size, in Homeworld any number of units
can participate. This requires scalable formations, with different slot positions for
different numbers of units.

The majority of RTS games now use formations of some kind. Almost all of them
define formations in terms of a fixed pattern (given a fixed set of characters in the for-
mation) that moves as a whole. In Full Spectrum Warrior [Pandemic Studios, 2004]
(another RTS-like game that describes itself otherwise), the formation depends on the
features of the level surrounding it. Next to a wall, the squad assumes a single line be-
hind an obstacle providing cover, they double up, and in the open they form a wedge.
The player has only indirect control over the shape of the formation. The player con-
trols where the squad moves to, and the AI determines the formation pattern to use.
The game is also unusual in that its formations only control the final location of char-
acters after they have moved. During movement, the units move independently and
can provide cover for each other if requested.

4. Warhammer describes itself as a role-playing game because of its character development aspects, but during
the levels it plays as an RTS.
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12.4.3 TACTICAL AND STRATEGIC AI

If early RTS games pioneered game AI by their use of pathfinding, then games in the
late 1990s did the same for tactical AI. Influence mapping was devised for use in RTS
games and has only recently begun to be interesting to other genres (normally in the
form of waypoint tactics).

So far the output of tactical and strategic AI has been mostly used to guide
pathfinding. In Total Annihilation [Cavedog Entertainment, 1997], units take into
account the complexity of the terrain when working out paths; they correctly move
around hills or other rocky formations. The same analysis is also used to guide the
strategic decisions in the game.

A second common application is in the selection of locations for construction.
With an influence map showing areas under control, it becomes much simpler to
safely locate an important construction facility. Whereas a single building occupies
only one location, walls are a common feature in many RTS games, and they are more
tricky to handle. The walls in Warcraft, for example, were constructed in advance
by the level designer. In Empire Earth, the AI was responsible for wall construction,
using a combination of influence mapping and spatial reasoning (the AI tried to place
walls between economically sensitive buildings and likely enemy positions).

There has been a lot of talk in game AI circles about using tactical analysis to
plan large-scale troop maneuvers, detecting weak points in the enemy formation, for
example, and deploying a whole side’s units to exploit this. To some extent this is done
in every RTS game: the AI will direct units toward where it thinks the enemy is, rather
than just sweep them up the map to a random location. It is taken further in games
such as Rome: Total War [The Creative Assembly Ltd., 2004], where the AI will try to
maneuver outside the range of missile weapons before launching attacks on multiple
flanks.

The potential is there to go even further and have the AI reason about possible
attack strategies in light of the tactical analysis and the routes that each unit would
need to take to exploit any weakness. I am so far unaware of any game that has gone
this far, although I am assured by developers who should know that such techniques
will be seeing the light of day not long after this book is published.

Because tactical analysis is so heavily tied to RTS games, the discussion in Chap-
ter 6 was geared toward this genre. What remains is to analyze the behavior that you
expect your computer-controlled side to display and to select an appropriate set of
analysis to perform.

12.4.4 DECISION MAKING

There are several levels at which decision making needs to occur in an RTS game, so
they almost always require a multi-tiered AI approach.

Some simple decision making is often carried out by individual characters. The
archers in Warcraft, for example, make their own decisions about whether to hold
their location or move forward to engage the enemy.
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At an intermediate level, a formation or group of characters may need to make
some decisions. In Full Spectrum Warrior, the whole squad can make a decision to
take cover when they are exposed to enemy fire. This decision then passes off to each
individual character to decide how best to take cover (to lie on the ground, for exam-
ple).

Most of the tricky decision making occurs at the level of a whole side in the game.
There will typically be many different things happening at the same time: correct
resources need collecting, research needs to be guided, construction should be sched-
uled, units need to be trained, and forces need to be marshalled for defense or offense.

For each of these requirements an AI component is created. The complexity of this
varies dramatically from game to game. To work out the research order, for example,
we could use a numerical score for each advance and choose the next advance with the
highest value. Alternatively, we could have a search algorithm such as Dijkstra to work
out the best path from the current set of known technologies to a goal technology.

In games such as Warcraft, each of these AI modules is largely independent. The
AI that schedules resource gathering doesn’t plan ahead to stockpile a certain resource
for later construction efforts. It simply assigns balanced effort to collect available re-
sources. The military command AI, likewise, waits until sufficient forces are amassed
before engaging the enemy. More recent games, such as Warcraft 3: Reign of Chaos
[Blizzard Entertainment, Inc., 2002], use a central controlling AI that can influence
some or all of the modules. In this case the overall AI can decide that it wants to play
an offensive game, and it will skew the construction effort, unit training, and military
command AI to that end.

In RTS games, the different levels of AI are often named for military ranks. A gen-
eral or a colonel will be in charge, and lower down we might have commanders or
lieutenants on down to individual soldiers. Although this naming is common, there
is almost no agreement about what each level should be called, which can be very
confusing. In one game the general AI might be controlling the whole show. In an-
other game it is merely the AI responsible for military action, under the guidance of
the king or president AI.

The choice of decision making technology mirrors that for other games. Typically,
most of the decision making is accomplished with simple techniques such as state ma-
chines and decision trees. Markov or other probabilistic methods are more common
in RTS games than in other genres. Decision making for the military deployment is
often a simple set of rules (sometimes a rule-based system, but commonly hard-coded
if–then statements) relying on the output of a tactical analysis engine.

12.5 SPORTS

Sports games can range from major league sports franchises such as Madden NFL
2005 [Electronic Arts Tiburon, 2004] to pool simulators such as World Champi-
onship Pool 2004 [Blade Interactive, 2004]. They have the advantage of having a huge
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body of readily available knowledge about good strategies: the professionals who play
the game. This knowledge isn’t always easy to encode into the game, however, and
they face the additional challenge of having players who expect to see human-level
competence.

For team sports the key challenge is having different characters react to the sit-
uation in a way that takes into account the rest of the team. Some sports, such as
baseball and football, have very strong team patterns. The baseball double play exam-
ple in Chapter 3 (Figure 3.62) is a case in point. The actual position of the fielders will
depend on where the ball was struck, but the overall pattern of movement is always
the same.

Sports games therefore typically use multi-tiered AI of some kind. There is high-
level AI making strategic decisions (often using some kind of parameter or action
learning to make sure it challenges the player). At a lower level there may be a coor-
dinated motion system that plays patterns in response to game events. At the lowest
level each individual player will have their own AI to determine how to vary behavior
within the overall strategy. Non-team sports, such as singles tennis, omit the middle
layer; there is no team to coordinate.

Figure 12.6 shows the architecture of a typical sports game AI.

12.5.1 PHYSICS PREDICTION

Many sports games involve balls moving at speed under the influence of physics. This
might be a tennis ball, a soccer ball, or a billiard ball. In each case, to allow the AI to
make decisions (to intercept the ball or to work out the side effects of a strike), we
need to be able to predict how it will behave.

Figure 12.6 AI architecture for sports games
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In games where the dynamics of the ball are complex and an integral part of the
game (cue-games, such as pool, and golf game genres, for example), the physics may
need to be run to predict the outcome.

For simpler dynamics, such as baseball or soccer, the trajectories of the ball can
be predicted.

In each case the process is the same as we saw for projectile prediction in Chap-
ter 3. The same firing solutions used for firearms can be used in sports games.

12.5.2 PLAYBOOKS AND CONTENT CREATION

Implementing robust playbooks is a common source of problems in team sports AI.
A playbook consists of a set of movement patterns that a team will use in some cir-
cumstance. Sometimes the playbook refers to the whole team (an offensive play at the
line of scrimmage in football, for example), but often it refers to a smaller group of
players (a pick-and-roll in basketball, for example). If your game doesn’t include tried
and tested plays like this, it will be obvious to fans of the real-world game who buy
your product.

The coordinated movement section of Chapter 3 included algorithms for making
sure that characters moved at the correct time. This typically needs to be combined
with the formation motion system of the same chapter to make sure that the team
members move in visually realistic patterns.

Aside from the technology to drive playbooks, care needs to be taken to allow the
plays to be authored in some way. There needs to be a good content creation path for
plays to get into the game. Typically, as a programmer you won’t know all the plays
that need to make it to the final game, and you don’t want the burden of having to
test each combination. Exposing formations and synchronized motion are the key to
allowing sport experts to create the patterns for the final game.

12.6 TURN-BASED STRATEGY GAMES

Turn-based strategy games often rely on the same AI techniques used in RTS games.
Early turn-based games were either variants of existing board games (3D Tic-Tac-Toe
[Atari, 1980], for example) or simplified tabletop war games (Computer Bismark
[Strategic Simulations, Inc., 1980] was one of my favorites). Both relied on the kind
of minimax techniques used to play board games (see Chapter 8).

As strategy games became more sophisticated, the number of possible moves at
each turn grew vastly. In recent games, such as Sid Meier’s Civilization III [Firaxis
Games, 2001], there are an almost unlimited number of possible moves open to the
player at each turn, even though each move is relatively discrete (i.e., a character
moves from one grid location to another). In games such as Worms 3D [Team 17,
2003], the situation is even more broad. During a player’s turn, they get to take con-
trol of each character and move them in a third person manner (for a limited distance
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Figure 12.7 AI architecture for turn-based strategy games

representing the amount of time available in one turn). In this case the character
could end up anywhere. No minimax technique can search a game tree of this size.

Instead, the techniques used tend to be very similar to those used in a real-time
strategy game. A turn-based game will often require the same kinds of character
movement AI. Turn-based games rarely need to use any kind of sophisticated move-
ment algorithms. Kinematic movement algorithms or even a direct position update
(just placing the character where it needs to be) is fine. At a higher level, the route
planning, decision making, and tactical and strategic AI use the same techniques and
have the same broad challenges.

Figure 12.7 shows an AI architecture for turn-based strategy games. Notice the
similarity between this and the RTS architecture in Figure 12.5.

12.6.1 TIMING

The most obvious difference between turn-based and real-time strategy games is the
amount of time that both the computer and the player have to take their turn.

Given that we aren’t trying to do a huge number of time-intensive things at the
same time (rendering, physics, networking, etc.), there is less need for an execu-
tion management system. It is common to use operating system threads to run AI
processes over several seconds.

This is not to say that timing issues don’t come into play, however. Players can
normally take an unlimited amount of time to consider their moves. If there are a



816 Chapter 12 Designing Game AI

large number of possible simultaneous moves (such as troop movements, economic
management, research, construction, and so on), then the player can spend time op-
timizing the combination to get the most of the turn. To compete with this level of
applied thinking, the AI has a tough job. Some of this can be achieved by game de-
sign: making decisions about the structure of the game that make it easier to create AI
tools: choosing physical properties of the level that are easy to tactically analyze, cre-
ating a research tree that can be easily searched, and using turn lengths that are small
enough so that the number of movement options for each character is manageable.
This will only get you so far, however. Some more substantial execution management
will eventually be needed.

Just like for an RTS game, there is typically a range of different decision mak-
ing tools operating on specific aspects of the game: an economics system, a research
system, and so on. In a turn-based game it is worth having these algorithms able to
return a result quickly. If additional time is available, they could be asked to process
further. This might be particularly useful for a tactical analysis system that can spend
longer performing its calculations.

12.6.2 HELPING THE PLAYER

Another function of the AI in turn-based games (which is also used in some RTS
games, but to a much smaller extent) is to help players automate decisions that they
don’t want to worry about.

In Master of Orion 3 [Quicksilver Software, Inc., 2003], the player can assign
a number of different decision making tasks to the AI. The AI then uses the same
decision making infrastructure it uses for enemy forces to assist the player.

Supporting assistive AI in this way involves building decision making tools that
have little or no strategic input from higher level decision making tools. If we have
an AI module for deciding on what planet to build a colony, for example, it could
make a better decision if it knew in which direction the side intended to expand first.
Without this decision, it might choose a currently safe location near to where war is
likely to break out.

With this input from high-level decision making in place, however, when the
module is used to assist the player, it needs to determine what the player’s strategy
will be. This is very difficult to do by observation. I am not aware of any games that
have tried to do this. Master of Orion 3 uses context-free decision making, so the
same module can be used for the player or an enemy side.
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AI-BASED GAME

GENRES

here is an interesting trend in basing gameplay on specific AI techniques. The
T challenge in these games comes from manipulating the mind of characters in
the game, rather than performing physical actions.

As yet, there have been relatively few examples based on a limited number of game
styles.

This chapter looks at horizons in AI-enabled gameplay. The genres described are
represented by only one or two high-selling titles. All indications suggest that more
games will be created that use similar techniques or that apply similar AI algorithms
directly to gameplay in more mainstream genres.

For each type of gameplay, I will describe a set of technologies that would support
the appropriate gameplay. Although some details of the specific games in each genre
are available in the public domain, the limited number of titles means it is difficult
to be general about what works and what doesn’t. Throughout this chapter I’ll try to
indicate alternatives.

13.1 TEACHING CHARACTERS

Teaching an inept character to act according to your will has been featured in a num-
ber of games. The original game of its kind, Creatures [Cyberlife Technology Ltd.,
1997], was released in 1996. Now the genre is best known for Black and White [Li-
onhead Studios Ltd., 2001].

A small number of characters (just one in Black and White) have a learning mech-
anism that learns to perform actions it has seen, under the supervision of the player’s

817
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feedback. The observational learning mechanism watches the actions of other char-
acters and the player and tries to replicate them. When it replicates the action, the
player can give positive or negative feedback (slaps and tickles usually) to encourage
or discourage the same action from being carried out again.

13.1.1 REPRESENTING ACTIONS

The basic requirement for observational learning is the ability to represent actions in
the game with a discrete combination of data. The character can then learn to mimic
these actions itself, possibly with slight variation.

Typically, the actions are represented with three items of data: the action itself, an
optional object of the action, and an optional indirect object. For example, the action
may be “fight,” “throw,” or “sleep”; the subject might be “an enemy” or “a rock”; and
the indirect object might be “a sword.” Not every action needs an object (sleep, for
example), and not every action that has a subject also has an indirect object (throw,
for example).

Some actions can come in multiple forms. It is possible, for example, to throw
a rock or to throw a rock at a particular person. The throw action, therefore, always
takes an object, but optionally can take an indirect object also.

In the implementation there is a database of actions available. For each type of
action, the game records if it requires an object or indirect object.

When a character does something, an action structure can be created to represent
it. The action structure consists of the type of action and details of things in the game
to act as the object and indirect object, if required.

1 Action(fight, enemy, sword)
2 Action(throw, rock)
3 Action(throw, enemy, rock)
4 Action(sleep)

This is the basic structure for representing actions. Different games may add dif-
ferent levels of sophistication to the action structure, representing more complicated
actions (that require a particular location as well as indirect object and object, for
example).

13.1.2 REPRESENTING THE WORLD

In addition to an action, characters need to be able to build up a picture of the world.
This allows them to associate actions with context. Learning to eat food is good, for
example, but not when you are being attacked by an enemy. That is the right time to
run away or fight.
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The context information that is presented is typically fairly narrow. Large
amounts of context information can improve performance, but they dramatically
reduce the speed of learning. Since the player is responsible for teaching the char-
acter, the player wants to see some obvious improvement in a relatively short space
of time. This means that learning needs to be as fast as possible without leading to
stupid behavior.

Typically, the internal state of the character is included in the context, along with
a handful of important external data. This may include the distance to the nearest
enemy, the distance to safety (home or other characters), the time of day, the number
of people watching, or any other game-dependent quantity.

In general, if the character isn’t provided with a piece of information, then it will
effectively disregard it when making decisions. This means that if a decision would
be inappropriate in certain conditions, those conditions must be represented to the
character.

The context information can be presented to the character in the form of a series
of parameter values (a very common technique) or in the form of a set of discrete
facts (much like the action representation).

13.1.3 LEARNING MECHANISM

A variety of learning mechanisms are possible for the character. To date, the majority
of titles have relied on neural networks; from this book, reinforcement learning would
also be a sensible technique to try.

For a neural network learning algorithm, there is a blend of two types of super-
vision: strong supervision from observation and weak supervision from player feed-
back.

Neural Network Architecture

While a range of different network architectures can be used for this type of game,
we will assume that a multi-layer perceptron network is being used, as shown in
Figure 13.1. This was implemented in Chapter 7 and can be applied with minimal
modification.

The input layer for the neural network takes the context information from the
game world (including the internal parameters of the character).

The output layer for the neural network consists of nodes controlling the type of
action and the object and indirect object of the action (plus any other information
required to create an action).

Independent of learning, the network can be used to make decisions for the char-
acter by giving the current context as an input and reading the action from the output.

Inevitably, most output actions will be illegal (there may be no such action possi-
ble at that time or no such object or indirect object available), but those that are legal
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Figure 13.1 Neural network architecture for creature-teaching games

are carried out. It is possible to try and discourage illegal actions by passing through
a weakly supervised learning step each time one is suggested. In practice, this may
improve performance in the short term, but can lead to problems with pathological
states (see Section 13.1.4) in the longer term.

Observational Learning

To learn by observation, the character records the actions of other characters or the
player. As long as these actions are within its vision, it uses them to learn.

First, the character needs to find a representation for the action it has seen and a
representation for the current context. It can then train the neural network with this
input–output pattern, either once or repeatedly until the network learns the correct
output for the input.

Making only one pass through the learning algorithm is likely to produce very lit-
tle difference in the character’s behavior. On the other hand, running many iterations
may cause the network to forget the useful behaviors it has already learned. It is im-
portant to find a sensible balance between speed of learning and speed of forgetting.
The players will be as frustrated with having to re-teach their creature as they will if it
is very slow to learn.

Mind-Reading for Observational Learning

One significant issue in learning by observation is determining the context informa-
tion to match with an observed action. If a character which is not hungry observes
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a hungry character eating, then it may learn to associate eating with not being hun-
gry. In other words, your own context information cannot be matched with someone
else’s actions.

In games where the player does most of the teaching, this problem does not arise.
Typically, the player is trying to show the character what to do next. The character’s
context information can be used.

In cases where the character is observing other characters, its own context infor-
mation is irrelevant. In the real word it is impossible to understand all the motives
and internal processes of someone else when we see their action. We would try to
guess, or mind-read, what they must be thinking in order to carry out that action.
In a game situation, we are able to use the observed characters’ context information
unchanged.

Although it is possible to add some uncertainty to represent the difficulty of
knowing another’s thoughts, in practice this does not make the character look more
believable and can dramatically slow down the learning rate.

Feedback Learning

To learn by feedback the character records a list of the outputs it has created for each
of its recent inputs. This list needs to stretch back several seconds, at a minimum.

When a feedback event arrives from the player (a slap or tickle, for example), there
is no way to know exactly which action the player was pleased or angry about. This
is the classic “credit assignment problem” in AI: in a series of actions, how do we tell
which actions helped and which didn’t?

By keeping a list of several seconds’ worth of input–output pairs, we assume that
the user’s feedback is related to a whole series of actions. When feedback arrives,
the neural network is trained (using the weakly supervised method) to strengthen
or weaken all the input–output pairs over that time.

It is often useful to gradually reduce the amount of feedback as the input–output
pairs are further back in time. If the character receives feedback, it is most likely to be
for an action carried out a second or so ago (any less time and the user would still be
dragging their cursor into place to slap or tickle).

13.1.4 PREDICTABLE MENTAL MODELS AND PATHOLOGICAL

STATES

There is a common problem in the AI for this kind of game: it is difficult to under-
stand what effect a player’s actions will have on the character. At one point in the game
it seems that the character is learning very easily, while at other points it seems to ig-
nore the player completely. The neural network running the character is too complex
to be properly understood by any player, and it often appears to be doing the wrong
thing.
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Player expectations are an essential part of making good AI. As discussed in Chap-
ter 2, a character can be doing something very intelligent, but if it isn’t what the player
expected to see, it will often look stupid.

In the algorithms above, feedback from the player is distributed over a number of
input–output actions. This is a common source of unexpected learning. When players
give feedback, they are unable to say which specific action, or part of an action, they
are judging.

If a character picks up a rock and tries to eat it, for example, the player slaps it
to teach it that rocks are bad to eat. A few moments later the character tries to eat a
poisonous toadstool. Again, the player slaps it. It seems logical to the player that they
are teaching the character what is good and bad to eat. The character, however, only
understands that “eating rocks” is bad and “eating toadstools” is bad. Because neural
networks largely learn by generalizing, the player has simply taught the character that
eating is bad. The creature slowly starves, never attempting to eat anything healthy. It
never gets the chance to be tickled by the player for eating the right thing.

These mixed messages are often the source of sudden and dramatic worsening
of the character’s behaviors. While a player would expect the character to get better
and better at behaving in the right way, often it rapidly reaches a plateau and can
occasionally seem to worsen.

There is no general procedure for solving these problems. To some extent it ap-
pears to be a weakness with the approach. It can be mitigated to some extent, however,
by using “instincts” (i.e., fixed default behaviors that perform fairly well) along with
the learning part of the brain.

Instincts

An instinct is a built-in behavior that may be useful in the game world. A character
can be given instincts to eat or sleep, for example. These are effectively prescribed
input–output pairs that can never be completely forgotten. They can be reinforced
at regular intervals by running through a supervised learning process, or they may
be independent of the neural network and used to generate the occasional behavior.
In either case, if the instinct is reinforced by the player, it will become part of the
character’s learned behaviors and will be carried out much more often.

The Brain Death of a Character

There are combinations of learning that will leave a neural network largely incapable
of doing anything sensible. In both Creatures and Black and White, it is possible to
render a taught character impotent.

Although it may be possible to rescue such a character, the gameplay involved is
unpredictable (because the player doesn’t know the real effect of their feedback) and
tedious. Because it seems to be an inevitable consequence of the AI used, it is worth
considering this outcome in the game design.
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13.2 FLOCKING AND HERDING GAMES

Simple herding simulators have been around since the 1980s, but recently a handful
of games have been released that have advanced the state of the art. These games in-
volve moving a group of characters through a (normally hostile) game world. Herdy
Gerdy [Core Design Ltd., 2002] is the most developed, although it did not fare well
commercially. Pikmin [Nintendo Entertainment, Analysis and Development, 2001],
Pikmin 2 [Nintendo Entertainment, Analysis and Development, 2004], and some lev-
els of Oddworld: Munch’s Oddysee [Oddworld Inhabitants, 1998] use similar tech-
niques.

A relatively large number of characters have simple individual behaviors that give
rise to larger scale emergence. A character will flock with others of its kind, especially
when exposed to danger, and respond in some way to the players (either running from
them, as if they were a predator, or following after them). Characters will react and
run from enemies and perform basic steering and obstacle avoidance. Different types
of characters are often set up in a food chain, or ecosystem, with the player trying to
keep safe one or more species of prey.

13.2.1 MAKING THE CREATURES

Each individual character or creature consists of a simple decision making framework
controlling a portfolio of steering behaviors. The decision making process needs to
respond to the game world in a very simple way: it can be implemented as a finite state
machine or even a decision tree. A finite state machine (FSM) for a simple sheep-like
creature is given in Figure 13.2.

Steering behaviors, similarly, can be relatively simple. Because games of this kind
are usually set outdoors in areas with few constraints, the steering behaviors can act
locally and be combined without complex arbitration. Figure 13.2 shows the steering
behaviors run as the name of each state in the FSM (graze could be implemented as a
slow wander, pausing to eat from time to time).

Apart from Graze, each steering behavior is either one of the basic goal-seeking
behaviors (flee, for example) or a simple sum of goal-seeking behaviors (such as
flock). See Chapter 3 on movement for more details.

It is rare to need sophisticated AI for creatures in a herding game, even for preda-
tors. Once a creature is able to navigate autonomously around the game world, it is
typically too smart to be easily manipulated by the player, and the point of the game
is compromised.

13.2.2 TUNING STEERING FOR INTERACTIVITY

In simulations for animation, or background effects in a game, fluid steering motion
adds to the believability. In an interactive context, however, the player often can’t react



824 Chapter 13 AI-Based Game Genres

Graze Flock

[Close to flock and calm]

[Too far from others / nervous]

Separate [Close to predator / scared]

[T
oo

 c
lo

se
 to

 o
th

er
s]

[C
lo

se
 to

 p
re

da
to

r 
/ s

ca
re

d][Far from
 others and calm

]

[Far from
 predator / nervous]

Flee

[Close to predator / scared]

Figure 13.2 A finite state machine for a simple creature

fast enough to the movement of a group. When a flock starts to separate, for example,
it is difficult to circle them with enough speed to bring them back together. Providing
the character with this kind of movement ability would compromise other aspects of
the game design.

To avoid this problem, the steering behaviors are typically parameterized to be
less fluid. Characters move in small spurts, and their desire to form cohesive groups
is increased.

Adding pauses to the motion of characters slows down their overall progress and
allows the player to circle them and manipulate their actions. This could be achieved
by reducing their movement rate, but this often looks artificial and doesn’t allow for
full-speed, continuous movement when they are directly being chased. Moving in
spurts also gives a creature the air of being furtive and nervous, which may be bene-
ficial.

In terms of both speed and cohesion, it is important to reduce the inertia of mov-
ing characters. While birds in flocking simulations typically have a lot of inertia (it
takes a lot of effort for them to change speed or direction), creatures that are being
manipulated by the player need to be allowed to stop suddenly and move off in a new
direction.

With high inertia, a decision that leads creatures to change direction will have
consequences for many frames and may affect the whole group’s motion. With low
inertia, the same decision is easily reversed, and the consequences are smaller. This
may give less believable behavior, but it is easier (and therefore less frustrating) for
the player to control.
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It is interesting to note that there are real-world international herding compe-
titions that require years of training. It is difficult to herd a handful of real sheep.
A game probably shouldn’t require the same level of skill for it to be playable.

13.2.3 STEERING BEHAVIOR STABILITY

As the decision making and steering behaviors of a group of creatures is made more
sophisticated, a point often arises when the group doesn’t seem to be able to act sen-
sibly on its own. This is often characterized by sudden changes in behavior and the
appearance of an unstable crowd. These instabilities are caused by propagation of
decisions through a group, often amplified at each step.

A group of sheep, for example, may be grazing quietly. One of them moves too
close to its neighbor, who moves out of the way, causing another to move, and so on.

As in all decision making, a degree of hysteresis is required to avoid instability.
A sheep may be quite content to have others very near to it, but it will only move
toward them (i.e., form a flock) if they move a long way away. This provides a range
of distances in which a sheep will not react at all to a neighbor.

There is, however, a kind of instability that arises in a group of different creatures
that cannot be solved simply with hysteresis in individual behaviors.

A group of creatures can exhibit oscillations as each causes a different group to
change behavior. A predator might chase a flock of prey, for example, until they are
out of range. The prey stop moving, they are safe, and there is a delay until the preda-
tor stops. The predator is now closer, and the prey start to move again. This kind of
oscillation can easily get out of hand and look artificial. Cycles that involve only two
species can be tweaked easily, but cycles that only show up when several species are
together are difficult to debug.

Most developers place different creatures a distance from each other in the game
level or only use a handful of species at a time to avoid the unpredictability when
many species come together at a time.

13.2.4 ECOSYSTEM DESIGN

Typically, there are more than one species of creature in a herding game, and it is the
interactions of all species that make the game world interesting for the player. As a
genre, it provides lots of room for interesting strategies: one species can be used to
influence another, which can lead to unexpected solutions to puzzles in the game. At
its most basic, the species can be arranged into a food chain, where the player often is
tasked with protecting a vulnerable group of creatures.

When designing the food chain or ecosystem of a game, unwanted, as well as posi-
tive but unexpected, effects can be introduced. To avoid a meltdown in the game level,
where all the creatures are rapidly eaten, some basic guidelines need to be followed.
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Size of the Food Chain

The food chain should have two levels above your primary creatures and possibly one
level below. Here, “primary creatures” refer to the creatures the player is normally
concerned with herding. Having two levels above the creatures allows for predators
to be countered by other predators (much as Jerry the mouse uses Spike the bulldog
to get out of scrapes with Tom the cat). Any more levels and there is the risk of the
“helpful predator” not being around to help.

Behavior Complexity

Creatures higher in the food chain should have simpler behavior. Because the player
is indirectly affecting the behavior of other creatures, it becomes more difficult to
control as the number of intermediates increases. Moving a flock of creatures is hard
enough. Using that flock to control the behavior of another creature is adding dif-
ficulty, and then in turn using that creature to affect yet another; that’s a really tall
order. By the time you reach the top of the food chain, the creatures need to have very
simple behaviors. Figure 13.3 shows a sample high-level behavior of a single predator.

Creatures higher in the food chain should not work in groups. This follows from
the previous guideline: groups of creatures working together will almost always have
more complicated behavior (even if individually they are quite simple). Although
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Figure 13.3 The simple behavior of a single predator
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many predators in Pikmin, for example, appear in groups, their behavior is rarely
coordinated. They act simply as individuals.

Sensory Limits

All creatures should have well-defined radii for noticing things. Fixing a limit for
a creature’s ability to notice allows the player to predict its actions better. Limiting
a predator’s field of view to 10 meters allows the player to take the flock past at a
distance of 11 meters. This predictability is important in complex ecosystems, because
being able to predict which creatures will react at what time is important for strategy.
It follows that realistic sense simulation is not normally appropriate for this kind of
game.

Movement Range

Creatures should not move very far on their own accord. The smaller the hinterland
of a creature, the better a level designer can put together a level. If a creature can
wander at random, then it is possible that it will find itself next to a predator before
the player arrives. The player will not appreciate arriving at a location to find the flock
has already been eaten. Limiting the range of creatures (at least until they have been
affected by the player) can also be accomplished by imposing game world boundaries
(such as fences, doors, or gates). Typically, however, the creatures simply sleep or
stand around when the player isn’t near.

Putting It All Together

As in all AI, the most important part of getting a playable game is to build and tweak
characters. The emergent nature of herding games means that it is impossible to pre-
dict the exact behavior until you can build and test it.

Providing a great game experience generally requires firm limits on the behavior
of creatures in the game, sacrificing some believability for playability.
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pseudo-code, 752–754
weaknesses, 756, 758

shooter game design, 802
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cones, 745–746
differentiation, 747–748
distance, 746–747
line of sight, 746
speed of light, 745

smell, 749–750
touch, 749
trends in games, 742
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attraction, 88
implementation notes, 87–88
independence, 88
overview, 85–86
performance, 88
pseudo-code, 86–87

Shadow point, generation, 492–493
Sid Meier’s Civilization III, 11, 814
Sight, see Sense management
Sim City, 537
SIMD, see Single instruction multiple data
Simplified memory-bounded A*, overview,

284–285
The Sims, 8, 25, 376
Single instruction multiple data, speed,

28–29
Slots, see Formation movement
SMA*, see Simplified memory-bounded A*
Smell, see Sense management
Sniper Elite, 801
Soldier of Fortune 2: Double Helix, 802
Space Invaders, 8
Splinter Cell, 10, 742, 802
SSX, 808
Star Wars: Episode 1 Racer, 25
State machine

algorithm, 320
data structures and interfaces, 321–322
decision machine combination

implementation, 343
overview, 341–342
pseudo-code, 342–343

finite state machines, 319–320, 443–444

fuzzy state machines
algorithm, 365–366
data structures and interfaces, 367–368
implementation notes, 368
multiple degrees of transition, 369
performance, 368
problem for solution, 364–365
pseudo-code, 366–367

hard-coded finite state machine
performance, 327
pseudo-code, 325–327
weaknesses, 327

hierarchical state machine
alarm behavior expression, 327–328,

330
algorithm, 331–333
examples, 333–335
implementation, 340
performance, 340
problem for solution, 331
pseudo-code, 335–339

implementation, 325
Markov state machine

algorithm, 365–366
data structures and interfaces, 367–368
implementation notes, 368
multiple degrees of transition, 369
performance, 368
problem for solution, 364–365
pseudo-code, 366–367

overview, 318–319
performance, 325
problem for solution, 320
pseudo-code, 320–321
toolchain designers, 785–786
transition implementation, 322–324
transition states, 461
weaknesses, 324

Steering behavior
align

implementation notes, 68–69
overview, 66–67
performance, 69
pseudo-code, 67–68

arrive and leave
implementation notes, 65
leave, 65
paths, 62–63
performance, 65
pseudo-code, 64–65

capability-sensitive steering, 183–184
classification, 99
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collision avoidance
cones, 88–90
performance, 93–94
pseudo-code, 92–93
time of closest approach calculation, 91

combining, see Arbitration; Blending
delegated behaviors, 70–71
face behavior, 74–75
flocking and herding games

interactivity tuning, 823–825
stability, 825

looking where you are going, 75–76
obstacle and wall avoidance

collision detection problems, 96–99
data structures and interfaces, 95–96
overview, 94
performance, 96
pseudo-code, 94–95

overview, 57–58
path following behavior

data structures and interfaces, 83–84
overview, 79–80
parameter tracking, 84–85
path types, 83–84
performance, 85
pseudo-code, 80–83

pursue and evade
evade, 74
implementation notes, 74
overshooting, 74
paths, 71–72
performance, 74
pseudo-code, 72–73

seek and flee
data structures and interfaces, 62
flee, 62
maximum speed, 59–60
performance, 62
pseudo-code, 60

separation behavior
attraction, 88
implementation notes, 87–88
independence, 88
overview, 85–86
performance, 88
pseudo-code, 86–87

three-dimensional conversion
angular steering behaviors, 189–190
linear steering behaviors, 189

two-level formation steering, see
Formation movement

variable matching, 58–59

velocity matching
performance, 70
pseudo-code, 69–70

wandering
data structures and interfaces, 79
overview, 76–77
performance, 79
pseudo-code, 78–79

Steering pipeline
algorithm

actuator, 117–118
constraints, 115–116
decomposers, 115
structure, 114
targeters, 114–115

data structures and interfaces
actuator, 120
constraint, 120
deadlock, 120
decomposer, 119–120
goal, 120–121
paths, 121
targeter, 119

efficiency, 16
examples

constraint, 123–125
decomposer, 123
targeter, 122–123

performance, 121–122
pseudo-code, 118–119

Strategic artificial intelligence, see Tactical
and strategic artificial intelligence

String matching, action prediction, 592
Super Mario Sunshine, 10
Swarming, see Flocking and swarming

T

Tablebase, ending databases for board games,
685

Tactical analyses
cellular automata

applications, 536–537
complexity of behavior, 536
overview, 533–534
rules, 534
running, 535–536

convolution filters
algorithm, 522–523
applications, 521–522
boundaries, 523–524
data structures and interfaces, 526
Gaussian blur, 527–528
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implementation notes, 526
performance, 526
pseudo-code, 524–526
separable filters, 528–531

game level representation, 500
learning in tactical artificial intelligence

with frag-maps, 510–512
map flooding

algorithm, 517–518
data structures and interfaces, 520–521
overview, 517
performance, 521
pseudo-code, 518–520

sharpening filters, 351–532
simple influence maps

applications, 505
influence calculations

convolution filters, 504
equations, 501–502
limited radius of effect, 502–504
map flooding, 504–505

lack of knowledge handling, 505–506
overview, 500–501

structure
combining analyses, 516
complexity levels, 512–513
multi-layer analysis, 514–516
server building, 516–517

terrain analysis
difficulty of terrain, 508–509
visibility map, 509–510

waypoint tactics similarity, 493, 499–500
Tactical and strategic artificial intelligence

coordinated action, see Coordinated action
evaluation in game design, 794–796
game artificial intelligence model, 11, 473
influence mapping, see Tactical analyses
real-time strategy game design, 811
waypoint tactics, see Waypoint tactics

Tactical movement
anchor point moderation, 179–180
bounding overwatch, 177, 179
cover points, 178–179

Tactical pathfinding
advantages, 538
cost function, 538
heuristic modification, 541–542
tactical graphs, 542
tactical weights and concern blending,

538–541
waypoints, 542–543

Targeter, steering pipeline, 114–115, 119,
122–123

Tcl, scripting of decision making, 452
TD algorithm, see Temporal difference

algorithm
Teaching characters

action representation, 818
brain death, 822
instincts, 822
learning mechanism

feedback learning, 821
mind-reading, 820–821
neural network architecture, 819–820
observational learning, 820–821

player expectations, 821–822
world representation, 818–819

Temporal difference algorithm
board game applications, 627
reinforcement learning, 626–627

Terrain analysis, tactical analyses
difficulty of terrain, 508–509
visibility map, 509–510

Thief: The Dark Project, 8, 742
Threads

hyper-threads, 703–704
interruptible process implementation, 702
micro-threads, 703
software threads, 703

Tic-Tac-Toe
artificial intelligence applications, 647
game tree, 650
3D Tic-Tac-Toe, 814

Tile graph
division scheme, 248
generation, 249
knowledge finding for pathfinding,

771–772
quantization and localization, 248–249
usefulness, 249
validity, 249

Tokenizing
language processing, 454
Lex, 458

Tom Clancy’s Ghost Recon, 746, 748
Tomb Raider III, 804
Toolchain

data-driven editors, 784
design tools for artificial intelligence

scripting tools, 785
state machine designers, 785–786

game development importance, 769
limitation on artificial intelligence, 770
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Total Annihilation, 811
Touch, see Sense management
Transposition table

functions, 670
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game class, 673
hash table implementation, 674–676
implementation, 671–672
incremental Zobrist hashing, 672–673
overview, 670–671
values stored in hash table, 673–674
Zobrist key, 671

implementation notes, 677
instability, 678
memory-enhanced test algorithms,

680–681
opponent thinking time utilization, 678
path dependency, 677
performance, 677
pseudo-code, 676
replacement strategies, 676

Tribes II, 798

U

Unification, see Rule-based decision making
Unreal, 447

V

Variable matching, steering behavior, 58–59
Velocity matching

performance, 70
pseudo-code, 69–70

Visibility point, generation, 491–494

W

Wall avoidance, see Obstacle and wall
avoidance

Wandering
kinematic movement algorithms

data structures, 57
implementation notes, 57
overview, 55–56
pseudo-code, 56–57

steering behavior
data structures and interfaces, 79
overview, 76–77
performance, 79
pseudo-code, 78–79

three-dimensional movement, 195–198
Warcraft, 8, 26
Warcraft: Orcs and Humans, 810
Warcraft 3: Reign of Chaos, 812
Warhammer: Dark Omen, 8, 810
Waypoint tactics

automatic generation
comparison of approaches, 498–499
watching human players, 494
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algorithm, 495–496
data structures and interfaces,
497–498
overview, 494–495
pseudo-code, 496–497

knowledge finding
automatic graph creation, 774
data mining

applications, 780
character movement, 779
connection calculation, 778
limitations, 779–780
node calculation, 778

geometric analysis
arbitrary bounding regions, 776
connection calculation, 774–777
cost calculation, 774
mesh representations, 777
node calculation, 777
point-based representations, 775–776
visibility approach limitations, 776

manual region data creation
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Dirichlet domains, 772–773
polygonal meshes, 773
tile graphs, 771–772

node pathfinding, 473–474
tactical information utilization

decision trees, 485
fuzzy logic decision making, 486–487
generating nearby waypoints, 487–488
pathfinding, 488
simple tactical movement, 484–485

tactical locations
complexity levels, 483
compound tactics, 477–478
context sensitivity, 481–483
continuous tactics, 479–480
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478–479
overview, 474–475
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primitive tactics, 476–477
sets, 476

tactical pathfinding, 542–543
tactical property generation

compound tactics, 493
cover points, 489–491
overview, 488–489
shadow points, 492–493
tactical analysis similarity, 493
visibility points, 491–494

Weighted blending, see Blending
Wipeout, 808
Wolfenstein 3D, 798
World Championship Pool 2004, 812
World interfacing

communication, 727–728
knowledge acquisition

event manager, see Event manager
events, 729–730
polling, 728
polling station, see Polling station
selection of technique, 730

sense management, see Sense management
World Rally Championship, 769

World representations
cost functions, 261–262
Dirichlet domains, 251–253
generation, 247
non-translational problems, 260–261
path smoothing, 262–264
points of visibility, 253–255
polygonal meshes, 255–260
quantization and localization, 246–247
teaching characters, 818–819
tile graphs, 248–250
validity, 247

Worms 3D, 814

Y

Yacc, parser building, 458

Z

Zelda, 11
Zobrist key, transition table hashing,
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