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By Castigliano’s theorem
gt e e

dx 48E] A8ET
2 P
0 e
: BB+ a3 ’

Example 4.4 Three bars each of length / and pinned at their ends are arranged
in a vertical plane. (Fig. 4.8).

Fig. 4.8 :
The vertical bar has a cross sectional area 4 and each inclined bar has a
cross sectional area 4. The vertical load P acts at joint C and it is desired

to find the ratio 4;/A to make the tension in DC numerically equal to the
compressive forces in AC and BC.

Solution. Let X represent the tensile force in DC, chosen as the redundant

bar. The compressive force in each inclined bar will be (P- X)/+2 . Thus
the strain energy of the system

S )T
24E° 24

In this case, the end D of the vertical bar must have a displacement equal
to zero, hence from the Castigliano’s theorem,

ool S b 1645 X )l
dXs = AEsico 4E
S
= 7 s5(1)
4=
A
The statement of the problem requires that
¥ P-X @)
JE e
Eliminating X between Eqn. (1) and 2),
4

s T
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Example 4.5 A continuous beam of two equal spans L is unifqrmly loac?ed
over its entire length. Find the magnitude R of the middle reaction by using

the Castigliano’s theorem.

A w/unit length C
LN,

e X > B
fe—— ——— | —>
R R

w _B... WL—?

Fig. 4.9
Solution. Let R be the redundant reaction at B.
5]

2
E_Ufr_czle iy i)
&R TR oR

.
The reactions at 4 and C = (WL'7) each.

At any point distant x from 4

I R +wx2
= — -—— |x
M W > >

oM X
_ = 44—
OR 2

Substituting the values in Eqn. (1),

l T;
I R x3+ﬂ_x_4_
or s R =0
wl* RE  wl i
= ialeast 12 \16
5
or R= —wL Ans.
4
REVIEW QUESTIONS

Write short notes on the following :
(/) Energy Method
(if) Use of Energy Method to solve indeterminate beam problems

(iii) Castigliano’s theorem
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NUMERICAL PROBLEMS
1. A cantilever beam of stepwise constant cross section (see figure below),
is loaded by a concentrated force at its tip. Determine the deflection
under the point of application of the force by using Castigliano’s

theorem.
=]
= 7 IIT_X _-:r N4
L
Shesaiin - - el L 8 e
2 2
L2 b g
Px)xd Px)xd 3
Hint. A = J ( x)x x+ J- ( x)x - Ans. il
] EI i E(21,) 48 El,

2. Use Castigliano’s theorem to determine the deflection at the tip of a
cantilever beam subjected to a uniformly distributed load of w per unit
length.

W Q

r

LLLLLE

L 1

. L[Qx+(wx2/2)]xdx w I
Hint. A=£ T |:Ans. SEI}

where Q is auxiliary force, Put Q = 0]

3. A structure is in the form of one quadrant of a thin circular ring of radius
R. One end is clamped and the other end is loaded by a vertical force
P. Determine the vertical displacement under the point of application
of the force P. Consider only strain energy of bending.

l'P

' 3
Ans. S
4ET

/2 M(OM/OP)RA® J-n/Z (PRcosB)(R cosB)Rd@}

Hint. A =
0 El 0 El
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4. A thin semicircular ring is hinged at each end and located by a central
concentrated force P. Determine the horizontal reaction at each hinge.

]

——R —
[Hint : Bending moment in the right half of the ring

T g(R—Rcose)—HRsine

o M[§M) Rd0
SH

AH £
0

S. In Problem 4, determine the vertical displacement under the point of

application of the central force P.
3
Ans. & 3—75 + ot 1
Flih 8 0

o) n/2 M [g%]kde
Hint A=—=2 | ——————
oP FI-
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6. The beam shown below is supported at the left end, clamped at the right
end and subjected to a concentrated load. Determine, the reaction at
the left support by Castigliano’s theorem.

[Ans' PbA(2L+ a)j|

213

7. A cantilever beam is loaded by a moment M, applied at the tip. Determine
by Castigliano’s theorem the deflection of the tip.

\'I Jw

L

L

Deflection of Beams by
Integration Method

5.1 INTRODUCTION

Materials used for beams are elastic and hence under the action of loads the
beam axes deflect. A designer has to decide about beam dimensions not only
based on strength requirement but also from the consideration of deflections
which should be within the prescribed limits.

In mechanical components excessive deflection may cause mis-alignment
and non-performance of the machine. In buildings excessive deformation gives
rise to psychological unrest and sometimes to breaking of flooring, ceiling or
roofing materials. Deflection calculations are also required to impose
consistency conditions in the analysis of indeterminate structures. Hence it is
necessary to calculate the beam deflections. i

There are various methods for calculating beam deflection. The scope of
this chapter is restricted only to double integration/direct integration method.
The double integration method is quite simple for determinate beams. Another
advantage of this method is, it gives values for all points of the structure and
hence the deflected shape (elastic curve) of the beam can be drawn.

5.2 DIFFERENTIAL EQUATION FOR DEFLECTION

Consider an elemental length 4B = ds as shown in Fig. 5.1. Let tangents drawn
at 4 and B make angles 8 and © + 40 with x-axis and intersect it at D and E.

Let M be intersection point of these two tangents.
ZDME = 48

Also we note that
ZDME + ZAMB = 180°

But LAMB. £1A4A4CB. = 36051908 90° = 1802
i ZLAMB + ZACB = DME + AMB
74|
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ACB = DME = d8
ds = RDO o)
yh »
0 X
Fig. 5.1
Since ds is an elemental length, treating ABF as a triangle
e .
T Sec 1.42)
W eaincs | |
and o tan L03)
1 1 M
From Eqn. (1) ROGUI o (4)

Differentiating Eqn. (3) with respect to x, we get

d2
;{;—;i = seczf)fﬁ
Lo s
ds dx

= sec?@ lsecG
R

= sn:c36><l
R

1 d?y/dx?
= i %Lw. since sec20=1+tan20
(1+tan2 9)
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dzy

In beams, deflections are small and hence, slope dy/dx is small. Therefore,
in this theory, which may be called small deflection theory, (dy/dx)2 is
neglected compared to unity and hence,

1 d?y
Bachit a’x_z 5.00)

From the bending equation of beam, we know

or i

Al

Hence e

gl Blxeele

or El—- =M ..(8)

This equation is called differential equation for deflection. Note that the
following sign conventions are used in deriving Eqn. (8)

(i) The y-axis is upward.

(ii) Curvature is concave towards the positive y-axis.

(#if) This type of curvature occurs in the beam due to the sagging moment.
Hence, the sagging moment is to be considered as the positive moment.

d2
In some text books, El'dx—g} = —M is taken to get downward deflection

positive when the sagging moment is taken as positive. In this book, the upward
deflection and the sagging moments are taken as positive and hence, the
equation used is

The term EJ is called flexural rigidity.

5.3 OTHER USEFUL EQUATIONS

The differential relations relating to load, shear and moments [Eqns. (1) and
(2)] can be clubbed with Eqn. (8) to get other useful differential equations
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Deflection = y
Slope 6 = =
d2
Moment M = EI %2
dx?
daM d3 ¥
Shear force F = e L _Egaii
p dF d*y
Load density g = o _EIE
5.4 INTEGRATION METHOD

In this method, the moment M, at any distance x from one of the supports
(usually left hand support) is written with the sagging moment as positive.

Then from Eqgn. (8), we have
dZ
o
dx?

X
E]d_y jde+Cl
0

X

and EIY = J J‘MdHClHCz

The constants C; and C, are found by making use of boundary conditions.
Useful conditions are listed below.

(a) At simply supported/roller ends
. deflection y = 0
(b) At fixed ends

dy
deflection y = 0 and slope E 0

ay
(c) At point of symmetry T

5.5 A FEW GENERAL CASES

5.5.1 Cantilever Subjected to Moment at Free End
YA
i

i
1M
)

& | E y

e - e
< = L
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Figure 5.2 shows a cantilever beam of span L, flexural rigidity £7, subjected
to hogging moment M. Taking origin O at free end, moment at distance x is
given by

M.=-M w1
dZ
ie. EIEX% =M
dy
E[d_x': -Mx+C, <2
. Mx?
and Ely = —T+C1X+C2 ...(3)
The boundary conditions available are :
Atx=1L L =0 -
: tx= o ()
and P=0) = (5
From boundary condition (4) and Eqn. (2), we get
0= -ML+C,
or C, =ML 10)
From boundary condition (5) and Eqn. (3), we get

2
0= —%'FC]L-FCZ

Substituting the value of C| and re-arranging

ML2

M
Cy=13p - MI* =

&2,
From Eqgn. (2) and (3), we get

d
Efdxy = ~Mx+ ML= M(L-x)
: Mx? ML
and Ely =2 _ M oo

At freeend, x =10

d _ 1y M

e LR WiE]
' e 2 M2
d = —M===|=-
= il ( 2] 2E1
: e e 5
ie. y= Sz downwar
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5.5.2 Cantilever Subjected to Concentrated Load at Free End At free end x = 0
W dyo - W) wi
1 : 2 d om0 2Er
o [
T ; | . E(wE)__we
s ; ot L YT Trl W) SEI
Fig. 5.3
o 2 . - 2 WL3
Referring to Fig. 5.3 and taking hogging moment negative. i Aowniard:
M, = -Wx 3E]
d?y 5.5.3 A Cantilever Subjected to Uniformly Distributed Load
ie. S s i [ L
dx V‘,‘
dy W2 i wi/unit length v
i e ::QQQ_/ESFQQQQQMME 5
-« X E X
dy o L
A x =1, = =0 !
dx Fig. 5.4
Wiz Referring to Fig. 5.4 and taking hogging moment negative
0=-———+C
2 s ;)
4% m A
= GiE¥r = e weg
Fl-—P=ctns
E]@i Lk Wx? " Wi dx 2
Hi ¥ OSIOVhieg atp X d 3
_ I 4 [ BT
W)L3 WL2 dx 6
Integrating Ehasi s p + > x+Cy =
=Nk Atx =1L, S
The boundary condition is, dx
Atx =1, il s
¥ 0= ———+C
wp  wi?
0= ——+—x+G,
6 2 5 i
= =it
il &
= Cz = =WL 5— g ; ;
E]Q e +,‘f’:{’__
w3 ; dx 6 6
=B ' | Integrating again, we get
3 2 3 4 L3
EIy=—Wx WL xWWL E1y=—wx T x+c2

+
6 2 3 t 24 - 6
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Atx =1L, Sl

wlt  wi?
0= i + i +C5
or Cosw —ﬂ-*-ﬂ
¢ G |24
WL4 ¥
g
ol 3 wx? 5 wlx - wi?
24 6 8
At free end where x = 0, we get
dy wi?
dc  6EI
and Y= L[—Iﬁ]:—ﬂ
El 8 8EI
4
= i SEl downward.

5.5.4 A Cantilever Subjected to have Varying Linearly from Zero at Free
End to w/unit Length at Fixed End

E

w/unit length
12

L >

oi s
XA&

A A
x
i

Fig. 5.5

Consider a section at distance x from free end as shown in Fig. 5.5. Here
intensity of loading is wx/L and its C.G. is at x/3 from the section.

T ' o X Wx X wx3
ence Ry e
AL DL 3 6L
wha wx?
€. El— = ———
o di? 61
Integrating with respect to x, we get
d xd
g, L vy
dx 241
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The boundary condition is at x = L

dy
dx g
wit
= -——+C
R o e
s wi3
01 ] 24
4 3
EIEJJ—} _o_wx wil,

 — + —_—
dx 24L 24
Integrating again, we get

wx>  wlx

e g Wi
: ik et e e
The boundary condition is at x = L
Joi=All
, 044)M5+wﬁL+C
e 120Zat 24 1°°
wid wit  wl? wlt
Ca'= 7 e (ladl=mr
1200 24— =120 30
- —wx? - wil? 7y wit
Y 0Lt 30

At free end where x = 0, we get

“ar’)i ot B e T

i) T BB T

v _l_ el = —wil?
S SpIl 30 ) 30E!
wit
ie. Ay 30E] downward

5.5.5 Simply Supported Beam Subjected to a Central Concentrated Load

Consider the simply supported beam AB of span L carrying central
concentrated load W at C, the centre of its span. (Fig. 5.6)

W
A Ve :
e ] T
W2 L W2
Fig. 5.6
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Reaction R, = % ‘ Slope at support is obtained by putting x = 0 in slope equation
| £ (dyJ I ( WLz}
-'. A = TR = | e e—
Mx: RAJC:& dx ,Xzo El 16
f
# o WP
2 2 . =
or EI%% - W% 16E1
~ ‘ 5.5.6 Simply Supported Beam Subjected to Uniformly Distributed Load
£l dy  Wx? Let AB be the simply supported beam of span L, subjected to uniformly
e W Eh distributed load w/unit length through out as shown in Fig. 5.7.
Due to symmetry slope at x = L/2 is zero - wiunit length
C A be— X ——+I C ‘B
e w(L/2)" 3 e L i
d 2 , , = 2
‘ Fig. 5.7
. w2 ‘ .
= e — ")
e L “#€%6 Ry= Rp===
2
d 2 %
g W WP, . e PL
dx 4 16 = 4 - i 5
= 0
At x =0, Y . - ; o a2 WLx a2
T i dx? 2 2

%) 3
Hence Ely= —~——x ; g% o whxt wx® g
: L2 16 ; a2 e A p |
i
. : 'S =4l . d L
Deflection at mid span i.e. at x = 5 s ) Due to symmetry Ey =0atx= 5
Liw(Ly w1 WL DYl DY
Yo B) T 16 2 LR R i Bl
0 E‘E L__l_ or Gii'= 11/L3[—i+—1—}:_14£
1 iEE ] 961532 16 48 24
P WL3 ’ i E‘[@ = W_sz_ﬂ}_x3._w_['3
| 48E] e 4 6 24
' 4 Integrating both sides with respect to x, we get
WL ;
Y. = ——= downward ! wi w wi?
48E1 } Ly S BN
; Ely ) > X o x+C,
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Atx =0, =30
; £ i;*C : E]dzy 5 lex 1 wx3
] B a6 6 L
H E[ 7W_Lx3_l1}_x4_ﬂ‘ix d 4
ERCE T 24 24 720 g C +LwLx2 ki
_ T dx 12 M,
. Maximum deflection y, which occurs at centre C is obtained by
substituting x = L/2 in the above equation. 5
g / , [ and Ely= () +C1x+§1—6wlx3—$%
1| wL LT w( LY wL3{L)
e e [ e | el e L e
Ye o w2 2sp dbpada hansidal Atx =0, y=0
0= C2
:u_l_qu‘l indeh S . Atix =1, y=0
EI 96 384 48 : :
0= S L4 —— W 4
_ wIA[4-1-8]_ 5 wi! S Bigpal e S
ToBr o sRd - [Coamd g
1 s
Ty . i i T ST
or Ye= g4 gy downward. |
i 3
Stopeatend 04 ol in — |
ope at en 4 ). o] 360 ,
g 3 3 5
5.5.7 A Simply Supported Beam Subjected to a Load Varying Linearly Ely= - Twi 7 wix _owx
from Zero at One End to w/unit Length at Other End 360 36 1201
aixdy 7 wix?  wx?
d El= = —— w3+ =
5 G dc_ 360 [ 220
w/unit length
: : 2y
At the point of maximum deflection e T 0
o ———— X =i
& > ; 2 4
o2 —LWL3+WLx _owx
Fig. 5.8 360 18 S04}
Referring to Fig. 5.8
or W24 h =0
1 . I 15
= —wl—
RyL= 7wl |
1 ' 21+ 4L —74:57 5
6 . 2
1 wxx ' 2
M. = Rjx——x—= Zhils;
2F W= o = 2(1x1-7/15)
+
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= 0.2697 L[?
or x=10.5193 L
wilt L% 0.51933 0.5193°
Jo i x0.5193 + -
EI |360 36 120,
ST
= 0.006523 0L
El

Thus the maximum deflection occurs at a distance 0.5193 L from the end
wi?
with load intensity zero and its value is 0.006523 B3 downward.

Example 5.1 A cantilever beam of span L is subjected to a concentrated load
W at a distance *«’ from fixed end. Find the deflection of free end.

Fig. 5.9

Solution. Let AC be the cantilever subjected to load W at B as shown in Fig.
5.9. Let 4B,C, be the deflected shape.

Now, deflection at B, »p= ~W-a3—
3EI
and slope at B Op — A
2EI

Since the portion BC is not subjected to any moment, it remains straight
and its slope is Oz .

Deflection at C = Deflection at B + (L — a) slope at B

=5 +(L‘a)93
Wa3 Wa?
= BEL 19 2E]

DEFLECTION OF BEAMS BY INTEGRATION METHOD 85

Example 5.2 Find the displacement at free end of the cantilever shown in
Fig. 5.10. Find its numerical value if L =3 m, a =2m, W, =20 kN, W, =
30 kN, E = 2 x 105 N/mm?, 7 = 2 x 108 mm*.

W, Wo
N
: e
Y— a ple L-a —>
e L <
Fig. 5.10
. ' W
Solution. Deflection at free end due to W, = 3EI
\ection:at fresianiaie 1o e W‘a}—Jr(ﬂ—a)W’a2
Deflection at free end due to W 3E] 2El
ﬂ - f d,,_ ma3+(L_a)_Wl_ai+M
Total deflection at free end = 3T 2E] 3E]

 Deflection at free end in given problem

1 '20x23'+ (3-2)x20x22 +30><33
Er 3 2 3

363.333
m
El
To get the numerical value correctly consistency of units should be used.
If ‘W is in kN, ‘@’ and ‘L’ are in metres, ‘E’ and ‘I’ are also to be used in
kN and m units.

E =2 x 10° N/mm?
=2 x 10®* mm*
EI=2x10% x 2 x 10% N-mm?
= 4 x 10'3 N-mm?
=4 x 108 x 107 kN-m? = 4 x 10* kN-m?
Note when E and 7 both are in N and mm units, £/ is in N-mm? unit. To
convert it to kN-m? unit multiplying factor is 107°.

363.333
et 11}
4x104

= 0.009083 m
= 9.083 mm

Deflection at free end =

i
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Example 5.3 Find the deflection at free end in the cantilever beam, shown in
Fig. 5.11.

w/unit length

i s v
w
2
/é+
==}
@
= 1
3—.
==
‘m
&

Fig. 5.11
Solution. Let ABC be the beam as shown in Fig. 5.11
Now ye= yp+(L-a)0p
-Since BC remains straight with slope 64
Wa* Wa®
= +(L—-a)—
ve= gar =g

Example 5.4 Find the displacement of free end of cantilever beam shown in
Fig. 5.12. Take £ = 2 x 105 N/mm?, J = 180 x 10° mm*

:20 KN/m 120 kN

—2 M
< 3m

LLLLL

Fig. 5.12

Solution. Displacement of free end due to 20 kN concentrated load at free
end.

_ WP _20x3% 180

3EI  3EI < El
Displacement of free end due to u.d.l.

Wa* Wa3
Lol RN
SERAT A

1]20x24 (3—2)><20><23]

] i 6

1
= —x066.6
Zl X 667

Since loads are taken in kN, and a, L are taken in m units, £/ is to be taken
in kN-m? unit to get displacement in m units
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EI=2x10% x 180 x 10% x 1072
= 36000 kN-m?

1
Deflection at free end = E(180+66.667)

246.667
m
36000
0.00672 m = 6.52 mm
Example 5.5 A cantilever of span L carries a uniformly distributed load
w/unit length over a distance ‘@’ from free end. Find the expression for
displacement of free end. :

wiunit length
N gk X bl
A iﬁ “p a -
+ i &
{a)

R eV a VeV Vo Vo Vo
Y« L —
(b)

3
:4—-—-—1_—a =<t a =
()
Fig. 5.13

Solution. Such a beam is shown in Fig. 5.13. This system is same as
combination of loadings shown in (b) and (¢)

deflection at free end of beam in Fig. 5.13(a) , M

= Downward deflection at free end in beam shown in Fig. 5.13(b)
minus upward deflection at free end in beam shown in Fig. 5.13(c).

_wil 2 w(L—a)4 g w(L—a)3 >
8E/ 8EI 6El

Example 5.6 A cantilever beam is subjected to linearly varying load as shown
in Fig. 5.14(a). Find the expression for deflection at free end.

Solution. This problem may be considered as combination of case (b) and
case (c) as shown in Fig: 5:14(b) and 5.14(c).

g 14
Downward deflection of free end in case B = l;ng
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w/unit length
7 L - 4
(a)
4 _wiunit length
2 T s e e e LR T e i 7
7
‘ (b)
/ w/unit length
/ x " _—
(el
Fig. 5.14
Upward deflection in case (C) 'ﬁlﬁ“
ik : 30E1
wit  wIf
Deflection in = T
eflection in case (a) 8EI 30EI
o owi15-47 11 wit
~ EI'| 120 | 120 EI

Example 5.7 A simply supported beam is subjected to uniformly distributed

load in one half portion as shown in Fig. 5.15(a). Find the displacement at the
centre of the span..

: w/unit length

e R T e oS |

Ve
(a)

g

Ye
(b)
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2y,
(©)
Fig. 5.15

Solution. Let the 'displacement for the given case be ¥, if other half is loaded
instead of first half, Fig. 5.15(b) then also displacement = y,.

.. when both halves are loaded as shown in Fig. 5.15(c) displacement should
be 2y,.. But for this case

: 5
Displacenient = m"’ﬂ
S,
e = Tga
>
= Ve = :’76—8WL4 Ans.

Example 5.8 The cantilever beam shown in Fig. 5.16 tapers from a diameter
D at free end to 2D at fixed end and is subjected to a concentrated load P at
free end. Find the deflection at free end and also find the equivalent beam of
uniform diameter such that the end deflections are the same.

Fig. 5.16

Solution. Let O be the origin as shown in Fig. 5.16. At any distance x, the
diameter of the beam.

& op.AEXp
SHE %

4 4
= 1(359] =8 SEaripge
64\ L 64 14
Moment at section x-x is

= -P(x-1) since it is hogging

ie. EI=—= = -P(x~L)
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4 2
: T t=ay aeee
ie. EZFD = -P(x-L)
diy | 641 x-1L
E = P
s dx? wDYgid x4 3
= —k(x’3—Lx“4) where K =
-3
gz = "'k -—l-x”z— +C|
dx - S
G T dy
Now, boundary condition is at x = 2L, 9% Ko 0
e e
e e e Sl e
¢ [ 2412 38L3] !
5 e
722
e 2 -3
Eidz:-k x +Lx douk
dx -2 3 § a2
-—x"‘ L x2
Ey= -k = - x+C
YDy 3=
The boundary condition is at x =2L, y = 0
' i Lo ey o S e 5
0= kL4 =Lt g
| 227 64L2] b
a ﬁ[l_L 11 3%
or L2 la <31 6linL
—k £-£x] __Ioc__ ;”.l‘.
Ey = 7 35 122 81
At free end where x = L -
‘ oy e
\ Ey = _k L S s 0 s M T
\ i [u 6L 171 8L]
I k k
1D ] R ) = e e
24L( ) 24L

\ :
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Substituting the value of &, we get deflection at free end

L S
G IR E R PT
__8.pp
3nD*E
£ it D d )
3 wDiE Downwar
If the diameter of equivalent beam of uniform section is d, then its downward
deflection.
3L prs
ok
ade b BE Ol FL 5
Mz 3 e (%)
64
From Eqn. (1) and (2), we get
8 7 aegOA
3p* 34t
= d= 48D
= d = 1.6818 D Ans.
e e e R S e e =~ e S e 1
I USEFUL RESULTS |
I &2 ; |
| L EIE?:- =M 2. Deflection =y |
I et
aM d
i 3. Slope 0:% 4. Shear force F = ———= —E‘I-d—xg‘Z :
4
| L dF _ Terdy, |
| 5. Load density Y e '
| ®- Integration Method |
I d’y !
El=——'=
I G i I
I x I
dy
| B - J’ Mdx +C I
| 0 I
| X x I
| and Ely= | [Max+cizscy |
I 0 0 I
L S ol g e R L g LI oo SIS S d
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REVIEW QUESTIONS
Write short notes on following :
(i) Derivation of differential equation of Deflection.
(ii) Deflection of Beams.
(iii) Double Integration Method.

NUMERICAL PROBLEMS

1. Determine the deflection at the point B of the beam shown in Fig. Take
E = 200 kN/mm? and 7 = 200 x 10 mm* [Ans. y; = 41.25 mm]
50 kN 100 kN

i 3L 8 B s

-:—-3m—>|<—3m—-l|-—-—-3m—-

2. A beam of uniform cross section and flexural rigidity 50 MN-m? is

hinged at A and rests on support B, 6 m from 4. clockwise moment

of 300 kN-m acts at C, 4 m from A. Determine the deflection at C
and also the maximum deflection and its position.

[Ans. yc = 5.333 mm, y,,, = 7.542 mm, at x = 2,/ m]

3. Determine the maximum deflection and its location in the beam shown
below. The beam has a rectangular cross section 50 mm wide and
100 mm deep. Take E = 200 kN/mm?2.

10 kN/m i
A WM . |B
; am % 2m ——n
[Ans. ypax = 20.16 mm, at 1.84 m from A]

4. Determine the maximum deflection and its location in the beam shown
below. The beam has a cross section 40 mm wide x 100 mm deep.
Take £ =2 x 10° N/mm?.

l :10 kN/m

¥ Y
<-0.5 m->«0.5 m"'l'—é—'s—r'r"'1 m ——0.5 m-l"'l

[Ans. Y.« = 23.03 mm, at 1.85 m from A]

5. Find the slope and deflection at the free and of the cantilever shown
below. Take E = 200 kN/mm?, I = 40 x 10° mm*,

10 kN 20 kN

l l 4 kN-m

fe———2 M ——she—1 M —pfe———2 m ——>
[Ans. Slope = 5.042 x 1073 rad, Deflection = 10.083 mm]

ALY
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6. Find the slopé and deflection at the free end of the cantilever shown
below. Take EJ = 10'® kN-mm?.

. L 3 kN ‘ : ‘

i e pelin

§;————3m—*—1 m—s—1 m—>|
[Ans. Slope = 44 x 1072 rad, deflection = 16.038 mm]

7. A beam of uniform cross section and flexural rigidity EI, length 3 L
is hinged at one end and rests on a support 2 L from the hinge. There
isa load W at the free end and a total Load W uniformly distributed over

the length between L and 2 L from the hinge. Determine the deflection

at the concentrated load point and also deﬂectlon at the mid-point of
the supports.

A8E T

8. Determine the slope and deflection at the force end of the cantilever
shown below. Take E = 200 GPa, I = 200 x 10% mm*,

3 3
Ans. AL £ downward, 1k upward
48E 1

20 kN/m
L s vy |
Ay B c 20 kNm E F

|#-0.5 m—>j-0.5 m->{«-0.5 m-»{«-0.5 m-<-0.5 m->{
[Ans. Slope = 1.573 x 1073 rad., deflection = 2.85 mm]
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Principle of Three Moments

6.1 INTRODUCTION -
Before knowing the principle it is useful to discuss where it is going to be
applied. Earlier, we have dealt those beam problems where the beam was
supported on two supports. It was easy to determine the reactions at the support
by using the normal equations of static equilibrium, since for two equations
there were two unknowns,

When a beam is supported on more than two supports, it is called continuous.
(Fig. 6.1)
wi/unit length

A B‘[ c'[ D‘[ e}
Fig. 6.1

If the moments over the intermediate supports of this continuous beam are
known, then the Bending Moment Diagram can be drawn easily. The moments
over the intermediate supports are determined by using the principle of three
moments or the ‘Clapeyron’s theorem of three moments.’

The Clapeyron’s theorem of three moments can be used to find the end
support moment and draw the S.F. and B.M. diagrams, for any type of
continuous beams. But we shall restrict our discussions only to the following
types of continuous beams

(i) Continuous beams with simply supported ends

(ii) Continuous beams with fixed end supports.

(iif) Continuous beams with end span(s) overhanging.

6.2 CLAYPEYRON’S THEOREM OF THREE MOMENTS

If BC and CD are any two consecutive spans of a continuous beam subjected
to an external loading, then the moments My, M- and Mp, at the supports B,
C and D are given by

94
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6a\x;  6a,x;
Mgl + 2M(L, + Ly) + MplL, = T"‘“L—;— sl L)
where L= Length of span BC
L,= Length of span CD
a;= Areas of B.M. diagram due to vertical loads on span BC
a,= Area of B.M. diagram due to vertical loads on span CD

X, = Distance of C.G. of the B.M. diagram due to vertical loads on

BC from B.
X, = Distance of C.G. of the B.M. diagram due to vertical loads on
CD from D.
The equation (1) is known as the equation of three moments or Claypeyron’s

equation.

Derivation : Figure 6.2 shows the length BCD (two consecutive spans) of
a continuous beams. :

sBl c DS

i L, L
(a) Loaded Beam.

. dx c D

(c) B.M. diagram due to support movement.

) ¢ }
Mg M
vl ;
2 E .

(d) Resultant B.M. diagram.
Fig. 6.2
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Let Mp, MC and Mp, are the support moments at B, C and D respectively.
[ret:ic: = Length of span BC

L2= Length of span CD

= Area of B.M. diagram due to vertical loads on span BC
a= Area of B.M. diagram due to vertical loads on span CD.
a'y= Area of B.M. diagram due to support moments M and M-
a’,= Area of B.M. diagram due to support moments M, and M,
%, = Distance of C.G. of B.M. diagram due to vertical loads on BC

= Distance of C G. of BM. 'diagram due to vertical loads on CD

= Distanice of C G of B.M. diagram due to support moments

on BC

x', = Distance of C.G. of B.M. diagram due to support moments ‘

on CD

F:gure 6.2 (b) and (c) show the B.M. dlagrams due to vertlcaI loads and

due to- supports moments respectively
(i) Consider the span BC
Let  M;= B.M. due to vertical loads at a distance x from B (sagging)

M,'= B.M. due to support'momen'ts at a distance x from B (hogging)
Net B.M. at a distance x from B is given by,

dZ
Elz_f-;- M M'
Multlplymg by x to both sides
it
= Elx gl =xM, - xM,’
L 1 Ly
5 J‘Eix-d—-)zidxzj .Mx—J’xMx'dx
0 - 0 0
L
dy i
e Elx‘-&r—”_y = a]fl ——a"f'l ...(l)

(  Mdx = Area of B.M. diagram of length dx and xM,dx = Moment of area .

of B.M. diagram of length dx about B).
L

e Jx. Mdx=a,x and so on.
0
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Substituting the limits in L.H.S. of equation '(,1); we have

)~

= aX -a\ X
or El [(Ljic - yo) = (0 - yp)l = ay%; ~a'\ 5,
But deflection at B and C are zero
hence yp=0and jc =0
Hence above equation becomes as
[BIL; . ic] = %, —d'\ | - sty
But = Area of B.M. diagram due to supports moments

= Area of trapezmm BCKIJ -
= 5 (Mp + Mo) % L,

and %{ = Distance of C.G. of area BC KJ from B

Lyl - ol
\ MBL‘.—-z‘]*'i--Z-X(MC MB) Ll =
MB Ll +%(M oo MB).L} .

‘MB '%!""(MC_MB)X?"ELL

MB +(MC-MB)'

3Mp Ly +2L{(M¢ - Mp)

i 6
My i Mo M,
) Wb

%[3MB +2MC_2MB]

MB+MC

MB +2MC x"ﬂ
4 MB+MC 3
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Substituting the values of a and x| in equation (2), we get

) M, oMY L
EILy ic= % ~5(Mp + Mc) Ly [h“‘] ~
M. 8 ¥
= alx; “‘?(MB +‘2Mc)
6a X
or 6Eli = —L'-l—'-Ln(MB +2M¢) : -(3)

(if) Consider the span CD

Similarly considering the span CD and taking D as origin and x positive to
the left, it can be shown that

602)?2

6EI(~ ic) = =L (Mp +2M¢)

(we have put opposite sign with i~ because the direction of x from B for
the span BC is opposite to the direction of x from D for span CD).
6a,X,
Ly
Adding equation (3) and (4), we get

— 6Elip = - Ly (Mp+2Mc) (4)

0= 6a£lxl"L!(MB+2MC)+ ,

6aix; 6a,x
IXE Y05

602f2

- L, (Mp+2M¢)

B LNe S S M -2l M

B Bl
6alfl 6a2f2
=Myt LiMpr 2MoN By Ry S —
: L Ly
6alf| 6612.?2
= MBLI iy 2Mc(L1 5+ Lz) + MB L2 = 1 T_
1 2

6.3 APPLICATION OF CLAYPEYRON’S EQUATION OF THREE
MOMENTS TO CONTINUOUS BEAM WITH SIMPLY SUP-
PORTED ENDS

Let us find the end support moment and draw the S.F. and B.M. diagrams for

continuous beam with simply supported ends, by using equation of three
moments.

Example 6.1 A continuous beam ABC is of spans 4B = 6 m and BC = 8 m.
The span 4B carries a point load of 110 kN at 4 m from 4, while the span
BC carries a point load of 150 kN at 5 m from C.

If supports 4, B and C are simply supported, find the support moments
and reactions. Draw the S.F. and B.M. diagrams.
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Solution.
110 kN 150 kN
oL A BT 3 5m e
A ]
A? ; ? B E ?C
(a) Loaded Beam
281.3 kN-m

B D B E C

(b) Free B.M. Diagram

A 116.7 kN
iGN YEEE e Ty ' c
D B E 3AKN]}
103.84 kN
(c) S.F. Diagram

281.3 kN

A D B E c

(4) Resultant B.M. Diagram
Fig. 6.3

Given Length of span 4B, L; = 6 m.
Length of span BC, L, = § m
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The free B.M. diagrams for both the spans are triangular.
From span AB, max. free B.M., which is at D
_ 110x4x(6-4)
6
Similarly, from span BC, max. free B.M., which is at £

= 146,7 kNm

150x 5% (8= 5)
Sl v s = 281.3 kNm

The free B.M. diagram is shown in Fig. 6.3(b)
Now, area of free B.M. diagram for span AB

1
= ay= 5 XIORN 461/ MO kNm?

Centroidal distance of a, from end 4

Similarly, area of free BM. 'diagram_ for span BC

1
=a =75 x8x2813=1125 kNm?

Centroidal distance of a, from end C
g S+ 13
Brgeid 3.2 (
Considering M,, My and M to be the support moments at 4, B and C
respectively and applying Claypeyron’s three moments theorem, we get

; 6a|jc, 602X2
MALI 3 ZMB(Ll 2 Lz) G 2 McLz % T+——“__
i L,
_ 6><44()><E 6><]125x1—2—
S My x6+2M5 (6+8)+ Mo x 8= — e 3
— 6M, + 28Mp + 8Mp = 5123

Since ends A4 and C are simply supported,
M,=0and Mo =0

= 0+ 28Mp + 0 = 5123

= Mp =183 kKNm Ans.

Reactions. Considering R,, Rp and R, as the reactions at 4, B and C
respectively.
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BM. atB=-183=R,; x 6 - 110 x (6 — 4)
(for hogging B.M. at support, sign is —ve)
R, = 6.16 KN Ans.
Similarly, considering span BC and B.M. at B, we get
—183 = R *x 8 - 150 x 3
= R- = 33.34 KN Ans.
Ry = Total load - Ry — R
110 + 150 — 6.16 — 33.34 = 220.5 kN Ans.

Example 6.2 A continuous beam ABC is of span lengths 4B =4 m and BC
= 6 m. The portion 4B carries u.d.l. of 60 kN/m and the portion BC carries
a u.d.l. of 100 kN/m. If all the supports are simply supported, draw the S.F.
and B.M. diagrams.

Solution. The loaded beam is shown in figure 6.4(a).

60 kN/m 100 kN/m
B

f e Vi o
R, Tr,

(a) Loaded Beam

353 kN

ey l 5

40.5 kN

> =p

%
\ 1ng.5 kN \] 247 kN
| Y

(b) Shear force diagram

450 kN-m

B E«——13m——C

LIZRARY, GUDLAVALLERU

(80 dngrat | Gudlavallera Engg, College
1

Fig. 614 1 R
‘ | Call No: 62012

| Acc No: 19791
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Given length of span 4B, L; = 4 m
length of span BC, L, = 6 m
For span 4B, max. free B.M. which is at D

0x 42
=% ; = 120 kNm
¥4
For span BC, max. free B.M. which is at E
100 x 62
- g = 450 kNm

First, we draw the free B.M. diagram.
Now, area of the free B.M. diagram for span AB

2
ap = 3 % 4 x 120 = 320 KNm?

Centroidal distance of area a; from end A

:x1=5[‘]:§x4=2m

Similarly, area of the free B.M. diagram for span BC

2
= = x6x450 = 1800 kNm?

Centroidal distance of area a, from end C

Considering M,, Mz and M, as the support moments at A, B and C
respectively and applying Claypeyron’s theorem of three moments,

6a1x1 6(123(.'2
MLy + 2Mp(Ly + L) + MoL, = B - 7]

Since ends 4 and C are simply supported,
My=0and M,=0
6x320x2+ 6x1800x 3
4 6

0+2Mp(4 +6)+0 =

= My =318 kNm

Reactions. Let Ry, Ry and R are the reactions at supports 4, B and C
respectively,

Considering span 4B,

2
BM.at B =318 = R, x 4 - 304

(For hogging moment at supports, B.M. is —ve)
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Similarly considering span BC,

WIS e eIl e BN

Rp = Total Load — R, — R,
=60 x4+ 100 x 6 - 40.5 — 247 = 552.5 kN
Example 6.3 Draw the S.F. and B.M. diagrams of a continuous beam 4BC
having span lengths 4B =4 m and BC = 4 m. The span 4B is carrying a point

load of 20 kN at a distance of 1 m from support 4. The span BC carries a
u.d.l' of intensity of 8 kN/m.

Solution. The loaded beam is shown in figure 6.5(a).

20 kN 8 kN/m
“—1m
B o]
AL =
g g
Ry l R R¢
(a) Loaded Beam
19.2 kN
11.8 kN
v D B c
A
8.2 kN E
¢ 12.8 kN

(b) S.F. diagram

(c) B.M. diagram

Fig. 6.5
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Length of span 4B, L; = 4 m
Length of span BC, L, =4 m
For span 4B, Max. free B.M., which is at D
e ;
el i 15 kNm 3
For span BC, max. free B.M., which is at mid-span

Now, area of the free B.M. diagram for span AB

1
=gq = 5x4x15 = 30 kNm?

Centroidal distance of area a; from end 4

1+4 5
= ==—m,

o e
Similarly, area of the free B.M. diagram for span BC

2
2 = ~3—><4><16 = 42.7 kNm?

Centroidal distance of area a, from end C

.
X2 2 m
Considering M, Mg and M to be the support moments at 4, B and C
respectively and applying Claypeyron’s theorem of three moments
6
apXx 5 6a2x2
L L,

Since 4 and C are simply supported, M, = 0 and M. =0

MyLy + 2Mpg (L) + Ly) + McLy =

6x30x(53) 6x42.7x2
0+2My4 +4)+0= 4(/)+ X4x
= Mg = 12.7 kNm

Reactions. Let R,, Rz and R to be the reactions at supports 4, B and C
respectively,

Considering span 4B,
BM. at B=-127=R; x4 -20x(4-1)
= R,y= 118 kN
Similarly considering span BC, R = 12.8 kN
Ry = Total load — R, — R¢
=20+8x4-11.8-128=274kN
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Example 6.4 A continuous beam ABC is simply supported at 4, B and C. It
carries a central point load of 10 kN on the span 4B and a central clockwise
moment of 10 kNm at midspan BC. If AB =4 m and BC = 6 m, draw the
B.M. diagrams.

Solution.
10 kN
«2m «—— 3m ——» 10kN/m
AI B l/\ ]C
> D ok A
= 4m ot 6m >

(¢) Loaded Beam

11.8 kN 10 kN

2 i s
A D B eEI

(b) Free B.M.D. diagram

10 kN-m 10 kN-m

10 kN-m
(c) Resultant B.M. diagram
Fig. 6.6 '

Let M, My and M are fixing moments at supports 4, B and C respectively.
Since 4 and C are simply supported, M, = M= 0

First of all, the spans AB and BC are considered separately as simply
supported.




i06 = ADVANCED STRENGTH OF MATERIALS

10x 4
Free B.M. max. at D for span 4B = et 10 kNm

The free B.M. max. for span AB is triangular with ordinate of 10 kKNm
at D.

for the span BC,

Free BM. at 8 =0 (since B is assumed as simply supported)
Free B.M. at just left of £ = — 10 kNm
Free B.M. at just right of £ = 10 kNm

Free BM. at C =0 (since C is simpWy supported)
Area of the free B.M. diagram for span 4B

1
=g = EX4XI0 = 20 kNm?
1
Centroidal distance of a; from 4 = x, = 5 X4 =2 m
Area of the free B.M. diagram for span BC
1 1
=g, = =%x3x(-10)+—=x3x10=0
= o (-10) 2

Let x, = Centroidal distance of @, from C.
Applying three moments theorem for the spans AB and BC,

6x20x2
MAX4+2MB(4+6)+MCX6:_"4—+O
or 0x4+20M;+0=60
or Mp =3 kNm

6.4 APPLICATION OF CLAYPEYRON’S EQUATION OF THREE
MOMENTS TO CONTINUOUS BEAMS WITH FIXED ENDS
Often, a continuous beam may be fixed at one or both the ends. If the left
support is fixed, then an imaginary zero span is taken to the left of the support
and the Clapeyron’s theorem of three moments is applied as usual. Similarly,
if the right support is fixed, an imaginary zero span is taken after the support

and the theorem is applied. The support moments at these imaginary supports
are taken as zero.

Example 6.5 A continuous beam 4BC is fixed at 4 and simply supported at
B and C. Length of the spans are, 4B =4 m and BC =4 m. The beam carries
a u.d.l. of 2 kN/m over the span 4B and a point load of 8 kN is applied at
the midspan of BC. Draw the S.F. and B.M. diagram.

Solution. Given length of span 4B, Ly =4m

Length of span BC, L, =4 m

PRINCIPLE OF THREE MOMENTS 107

2 kN/m 8 kN

b

BULLRARAARANN

3

A

4m QB - v @C

() Loaded Beam

() Loaded beam with zero span

A A3 (i e 2m—-sR D G

(¢) Free B.M. diagram

4.18 kN : 4.96 kN
%
B
i 3.04 kN
3.82 kN
]
(d) S.F. diagram
4.57 kN-m 8 kN-m
4 kN-m
¥
A E B D c

(e) B.M. diagram
Fig. 6.7
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Since support A is fixed, consider an imaginary zero span A4y to the left
of end A, as shown in figure 6.7(b).

For span 4B, max. free B.M., which is at mid-span

2 x 42
=227 - 4 KNm
8 #
For span BC, max free B.M,, which is at D
L 8§ x4 P
=i i m ,

Now, area of free B.M. diagram for span 4pd = a, = 0
Area of free B.M. diagram for span 48
2 32
=g, = —x4x4=""KNm?
@53 3 Nm

Centroidal distance of area a, from end B

:x2:5=2m

Centroidal distance of area a, from end A

T

:x2*2=2m

Area of free B.M. diagram for span BC

1
e el kNm?

Centroidal distance of area a3 from end C

=x3=5=2m .

Let My, M, Mg and M be the support moments at A, A, B and C
respectively.

Since support C is simply supported, M = 0

Now applying Claypeyron’s theorem of three moments for the two spans
Agd and AB;
602X72

L
or -8M,; + 4Mp = 32 (1)
Again applying Claypeyron’s theorem for spans 4B and BC,
6a,x5 W 6asx3

My > 0+ 2M 0+ L)+ Myx L =0+

MyLy + 2My(Ly + Ly) + McLy

L Ly
6x2 %2 6l G
= My % 4+ 2My(4 +4) +0 = i e
L 4MA =k ]6MB = 80 .(2)

Solving equations (1) and (2), M, = 4.57 kNm and My = 3.86 kKNm

Reactions. Let R,, Rz and R, be the reactions at supports 4, B and C
respectively. Considering the span BC,
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4
B.M.atB=—3.86:RC><4f8><5
or R = 3.04 kN

4 4
Also BM. at A ==4.57=3.04 x (4 + 4) — 8 x (5+4)*2><4><"2~

=+ RB x 4
or Ry = 8.78 kN
R, = Total load - Ry — R-=8 +2 x4 - 878 —3.04
= 4.18 kN

With the known values of support reactions S.F. diagram is drawn. Similarly,
with the known values of support moments, the resultant B.M. diagram is
drawn. :

Example 6.6 A continuous beam ABC is fixed at 4 and C and simply supported
at B. The span lengths are AB = 4 m and BC = 6 m. The span 4B carries
a point load 10 kN at 1 m away from end 4. The span BC carries a u.d.l. of
intensity 4 kN/m. Draw the S.F. and B.M. diagrams of the beam.

Solution.
LU 4 kN-m
im \
3
A4 e
Qe
4 4m Pt 6m N
(a) Loaded Beam
1okl 4 kN/m
Ao_ A l B c G,
o T S
R R Re 4
Zero : : ) &ero
span span

(b) Loaded beam with zero span

Se 105 kTN
6.2 kNI ) \
38 kNI \ T
13.5 kN
{c) SFD v

18 kN-m
=t 14 KN-m
2.6 kN-m 2T KN Ve )
K60 B E c
{d)BMD
Fig. 6.8
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Given, length of span 4B, L; =4 m
Length of span BC, I, = 6 m
Ends 4 and C are fixed, so, consider an imaginary zero span AAy to the
left of end 4 and another imaginary zero span CCy to the right of end C,

For span 4B, max free B.M., which is at D f

1051 x (4~ 1)
4
For span BC, max free B.M., which is at £

= 7.5 kNm

C4x6?

i
Now, area of free B.M. diagram for imaginary span Ad, = a; =0
Area of the free B.M. diagram for span AB

= 18 kNm

I
S = S XARTS = 15 00m?

Centroidal distance of area a, from end B

Centroidal distance of area a, from end 4

s 1+4 5
e e L

Area of free B.M. diagram for span BC
2
=gy = 5><6><18 = 72 kNm?

Centroidal distance of area a3 from end B

6

Centroidal distance of area a3 frem end C

6
=x3'=5=3m

Area of the free B.M. diagram for imaginary span CCy=ay=0

Let Mg, My, My, M, and Mc, be the support moments at Ay, A, B,
C and Cj respectively.
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Applying Claypeyron’s theorem for spans 4,4 and AB,
S&%
L
or 8M, + 4My = 52.5 Sl
Applying Clapeyron’s theorem for spans 4B and BC,

MAOxO+2MA(0+Li)+MBrxL]:0+

6a,x) 6ayx)
MLy + 2My(Ly + Ly) + McL, = i

L Ly
5
e B0 s
or Myx4+2Mp(4+6)+M-x6= 2 * s6
or, 2M, + 10Mp + 3M- = 126.75 sifi2))
Again applying Claypeyron’s theorem for spans BC and (668
603X3
MpLy + 2Mc(Ly + 0) + Mgy x 0 = —L;—+0
6x72x3
=5 MB><6+2MC(6+O)+0=—-—~—6 +0
= My + 2M- = 36 -.(3)
Solving equation (1), (2) and (3)
My = 2.6 kNm, Mg = 7.95 kNm, My = 14 KNm

Reactions Let R,, Rz and R be the reactions at supports 4, B and C
respectively. Considering span 4B,

BM.atB=-795=-26+R;x4-10x(4-1)
or R, = 6.2 kN
Similarly considering span BC, R- = 13.5 kN
Rp = Total load - R, ~ R
=10+4x6-62-135=143 kN °

6.5 APPLICATION OF CLAYPEYRON’S EQUATION OF THREE
MOMENTS TO CONTINUOUS BEAM WITH ORVERHANGING
END SPAN

If the end span(s) of a continuous beam is overhanging, this overhanging span

behaves as a cantilever. The moment at the end supports can be found out

by considering the cantilever action. Then using Claypeyron’s theorem of three
moments, the other support moments can be determined as usual,
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Example 6.7 Using Clapeyron’s theorem of three moments, draw the S.F. and
B.M. diagrams of the continuous beam ABCD, simply supported at 4, B and
C and the end D is free. The span lengths are, AB = 4 m, BC = 4 m and
CD =2 m. The span 48 carries a point load of 5 kN at the midspan. The span
BC carries a u.d.l. of 3 kN/m. The span CD carries another point load of
2 kN at the free end D. #

Solution. Given, length of span 4B, L; = 4m
Length of span BC, L, = 4 m.

5kN 2kN

3 kN/m
/\/\A/d\N\M/\C

-2 M—»

AI A e )
Pt e 10 BRSL 10 s
B 4m 2o <<t am 2 m—
]RA | RB TRC
5.97 kN
1.53kNil —I¢2KN
e kf 6.03 kN

Fig. 6.9

For span 4B, max. free B.M., which is at the mid span

I K
e 5 kNm
For span BC, max. free B.M., which is at F
3x 42
= 5 =6 kNm
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Now, area of free B.M. diagram for span AB

1
=a, = 5X4><5 = 10 kNm?
Centroidal distance of area a; from end 4

=2m

SIES

Area of the free B.M. diagram for span BC
2
=ay = -3“><4><6 = 16 kNm?

4
Centroidal distance of area a, from end B = s 2m

Let M,, My and M be the support moments at A, B and C respectively.
Since end A is simply supported, M, = 0
Due to cantilever action , Mo =2 x 2 = 4 kNm
Applying Claypeyron’s theorem of three moments for spans AB and BC,
6ajx;  6ayx;
MLy + 2My(Ly + L) + McLy = =7 = 7
6x10x2 6x16x2
= 0x Ly +2Mp(4+4)+4x4= 4 i ”
or My =3.875 KNm
Reactions. Let R, Ry and R, be the reactions at supports A, B and C
respectively.

Considering span 4B,

B.M. at B =" 3875=Ry*x4-35 x2

= . R, =453 kN

Similarly considering span BC, R = 8.03 kN

i Rp = Total load — R, — R¢

=5+3x4+2-153-803=9.44kN.

Example 6.8 A continuous beam ABCDE has its ends 4 and E free, and simply
supported at B, C and D. The span lengths are AB = 1 m, BC = Ay, G =
6 m and DE = 1 m. Two point loads of 2 kN each are applied each at ends
A and E. The span BC carries a central point load of 6 kN and the span ED
carries a u.d.l. of 3 kN/m. Draw the S.F. and B.M. diagrams of the beam using
Claypeyron’s theorem of three moments.

Solution. Given, Length of overhung 4B, L; = 1 m
Length of span BC, L, =4 m
For span BC, max. free B.M., which is at F/

—6X4—6kN
et s
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For span CD, max. free B.M. which is at G

3x 62
8

= 13.5 kNm

#
2 kN SlkN 3 kN/m 2 kN

(@)

10.1 kN

1akng[  + 1 ; ﬁ@sz
2kNI & 4.?{N '[

Fig. 6.10
Now, area of the free B.M., diagram for span BC

1
=qp = §x4><6 = 12 kNm?
Centroidal distance of area a; from end B
4

=x;'=5=2m

Area of the free B.M. diagram for span BC
2
=a,= §><6>< 13.5 = 54 kNm?

Centroidal distance of area a, from end D

L,
2

=5 = =3 m

PRINCIPLE OF THREE MOMENTS 115

Let My, M- and Mp, be the support moments at 2, C and D respectively.
Considering cantilever action for span 4B, Mz =2 x 1 = 2 kNm
Considering cantilever action for span DE, M;y=2 x1=2kNm
Applying Clapeyron’s theorem of three moments for spans BC and CD,

6a]-x| 602)52
MBLl &8 21MC(L! 2 Lz) =k MCLZ o R TR

L Ly
6x12%x2 6x54x3
or 2x4+2M-(4+6)+2x6= - % G
or M- = 8.9 kNm

Reactions. Let R, R; and R be the reactions at supports A, B and C
respectively.

Considering span BC
BM atC=-89=-2x54Ryx4_6x2

= Rp=33 kN
Similarly considering CD, R, = R, = 9.9 kN
R = Total load — Ry — R
=2+6+3x6+ 2 — 38090 = 148 kN

SUMMARY
1. A beam supported on more than two supports is called a continuous
beam.”In this case the B.M. diagram is sagging (+) at mid-span but
hogging () over the intermediate supports.
2. The B.M. diagram of a continuous beam may be drawn by superimposing
the free B.M. diagram and the support moment diagram.

3. The support moments of a continuous beam may be found out by using
the Clapeyron’s theorem of three moments. The theorem states that,
for any two consecutive spans 4B and BC of a continuous beam,

60].\5] G 6021’2
L Ly

MLy + 2My(L) + L)) + McL, =

where, M, = Support moment at 4
M = Support moment at B
M = Support moment at C
Ly = Length of span 48
L, = Length of span BC
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a, = Area of the free B.M. diagram for span AR
a, = Area of the free B.M. diagram for span BC

x, = Centroidal distance fro the free B.M. diagram for span
AB from support 4

x5 = Centroidal distance of the free B.M. diagrap for span
BC from support C.

For a continuous beam with its ends simply supported, the moment at
end supports are zero. The beam can be analysed by using this boundary
condition and the Three Moments Theorem.

To apply the Three Moments Theorem for a continuous beam fixed at
ends, an imaginary zero span should be introduced beyond the fixed
ends.

For a continuous beam with overhanging ends, the moments at the end
supports can be obtained by considering the cantilever action of the
orverhanging portion. Then by applying Clapeyron’s theorem of three
moments, the beam can be easily analysed.

REVIEW QUESTIONS

Write short notes on the following :

(@)
)
(iii)

Principle of three moments
Claypeyron’s Theorem
Continuous Beam.

NUMERICAL PROBLEMS
A continuous beam consists of three successive spans of 8 m, 10m

“and 6 m and carries loads of 6 kN/m and 8 kN/m respectively on the

spans. Determine the bending moments and reactions at the supports.
[Ans. (i) My = My = 0, My = 32.2 kN-m, My = 40.16 kNm,

(if) Ry = 18.98 kN, Rz = 49.82 kN, R = 48.57 kN, R, = 18.63 kN]

. Draw the S.F. and B.M. diagram of a continuous beam 4BC of length

10 m which is fixed at 4 and is supported on Band C. The beam carries

a u.d.l. of 2 kN/m length over the entire length. The spans 4B and BC
are equal to 5 m each.

[Ans. (i) M, = 3.57 kNm, My = 5.357 kNm, M = 0,

(i) Ry = 5.357 kN, Rp = 8.571 kN, R = 6.071]

. A simply supported two span continuous beam 4BC having span length

AB = BC = 3 m carries a central point load of 10 kN at both the spans.
Find the reactions and bending moments at the supports. Also draw the
S.F. and B.M. diagrams. (Ans. Ry = R- =5 kN, Rg = 10 kN,

M, =M =0, My = 5.6 KNm)
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4. A continuous beam ABC is simply supported at 4, B and C and having

AB = 6 m, BC = 4 m. The span AB carries a point load of 3 kN at
2 m away from the support 4. The span BC is carrying a u.d.l. of
1 kN/m. Find the reactions and bending moments at shpports A, B and
C. Also draw the S.F. and B.M. diagrams. - ’

(Ans. Ry = 1.6 kN, Rz = 4 kN, Rz = 1.4 kN, My = — 2.4 kNm)

. A continuous beam ABCDE is simply supported at B, C, D and E. The

span AB = 1.5 m, BC = CD = DE = 3 m. A point load of 20 kN is
placed at free end 4. The spans BC, CD and DE carry u.d.l. of intensities
40 kN/m, 30 kN/m and 50 kN/m respectively. Find the reactions and
moments at the supports. Hence draw the S.F. and B.M. diagrams.

(Ans. Rp = 82.67 kN, R. = 96.49 kN, Rp, = 39.01 kN,
Rg = 61.83 kN, My = — 30 kN-m, M = — 220 kNm,
Mp =~ 39.5 kNm, M = 0)
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Redundant Frames

7.1 INTRODUCTION

What are frames ? A frame is an assemblage of a number of members, which
resist geometrical distortion under any applied system of loading. Frames are
used in the roofs of sheds at railway platforms, workshops, bridges and
industrial buildings etc. For a number of given loading forces, the members
of the frame are determined and then the members are designed to carry the
required forces.

Before we discuss about redundant frames, let us know that frames are
classified into

(i) Statically determinate frames and
(i) Statically indeterminate frames.

Statically determinate frames are those frames which can be analysed with
the help of equations of statics alone.

Redundant frames are statically indeterminant. As the name suggests, these
frames have more members than it requires to be perfect. The frame which
is composed of such members, which are just sufficient to keep the frame
in equilibrium, when the frame is supporting an external load, is known as a
perfect frame. The simplest perfect frame is a triangle which consists three
members and three joints. The three members are 4B, BC and AC where as
the three joints are 4, B and C. This frame can be easily analysed by the condition
of equilibrium (Fig. 7.1).

c

Fig. 7.1
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Let the two members CD and BD and a joint D are added to the triangular
frame ABC. Now, we get a frame 4ABCD as shown in Fig. 7.2

ENLTAN N\

Fig. 7.2 Fig 7.3

This frame can also be analysed by the conditions of equilibrium. This frame
is also known as perfect frame.

Suppose we add a set of two members and a joint again, we get a perfect
frame as shown in Fig. 7.3. Hence for a perfect frame, the number of joints
and number of members are given by

n=2-3
where #n = number of members

J = number of joints

For Fig. 7.1

n=3, i 2

n=2-3
—% 3=2x3-3
= B 3
Condition is satisfied.
Fot Fig.. 72

n=ast j=4
= 5=2x4-3
= Si=5
Condition is satisfied.
For Fig. 7.3

=TS NG

- n=12j-3 gives

e 7=2x5-3
= =17

Condition is satisfied.

When the members are less than that required by equation » = 2j — 3 then
frame is called as imperfect frame. Such frame can not resist geometrical

_distortion under the action of loads.
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C
7.2 REDUNDANT FRAMES
If the number of members are more than that required by equation n = 2j — B ¢ D
3, then such frames will be called as redundant frames.
= E D
+ %
A E A B
: F vt s
(c) ()
A B £ E SANA 5
Fig. 7.4
Here ni= 1125 iz
n = 2j — 3 gives :
12 =2'x79—3 D B
=3 12 =1l
Condition is not satisfied.
Hence the frame is redundant.
| Veced
7.3 DEGREE OF REDUNDANCY ; o7 D c B
. The total degree of redundancy or indeterminancy of a frame is equal to the (e) 0]
1 number by which the unknown reaction components exceed the conditon - EIg S
1| . equations of equilibrium. The excess members are called as redundants. (a) The total number of reaction components
Total degree of redundancy is given by : RPNy O
T=m-@2j-R) 1 (Two for hinge support and one for roller).

Total, number of joints = 5

(4, B, C, D and E are the 5 joints)

Total number of member = §

(4B, BC, CD, DE, EA, BE, CE and AC are the different members)

where m = total number of members
j = total number of joints
R = total number of reaction components

-3

Reaction components are counted one for a roller, two for a hinge and three

for a fixed support. Hence T =m—(2j — R) gives
E z T - T=8-(2x5-3)
xample 7.1 Find the degree of redundancy of the frame shown in Fig. 7.5.
Solution. ' rid
B c Hence the frame is indeterminate to single degree.
8 c (b) Here R =241y =13
j=4
X m=6
T=m-(2j-R)
= T=6-(2x%x4-3)
A E D A o :

The frame is redundant to single ciegree.
(a) (b)
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(¢) Here R=@2+1)=3
j=6
m =11

T=m- (2j - R) gives
T=11-2x%x6-3)

5 #
The frame is redundant to second degree. It has two redundant members.
(d) Here e (2 +1)=3 ;
j=4
HiT 0
T=m— (2j — R) gives
=6-(2x%x4-3)
]
Hence the frame is redundant to single degree.
(e) In this case R=3
j=4
. m=6
T'=m-(2j-R)
=6-(2x4-3)

=il
Hence the frame is redundant to single degree.
(f) Here R =6, as for stability of the frame there are three hinged supports.
il e Lo
T=3-2x4-6)=1
Hence the frame is redundant to single degree.

7.4 ANALYSIS OF REDUNDANT FRAMES
To find the forces in the members of a loaded frame Castigliano’s theorem
of minimum strain energy is used.

If an elastic structure (frame) is subjected to forces and it is in a state of
equilibrium, then the work stored is the smallest amount possible.
To use this method, the redundant members are replaced by the unknown

forces (T, T, etc.) acting at the joints. Then Castigliano’s theorem of
minimum strain energy is applied to get

ou U
o, =10 or, =) etcs

where Uis the total strain energy (indusive of that in the redundant members)
of the frame.
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The simultaneous solution of these equations gives the value of the redundant
forces T, and 7, etc. If the value comes out to be negative, the actual force
in the redundant member will be of the opposite nature i.e. if the original
assumption is a tensile force, then it will be a compressive force.

. : p e 25
Strain energy in any member EYTH i
i P2]
AE
Z _L_
: AE

Example 7.2 Find the force in the member AC of the loaded frame shown
in Fig. 7.6. The cross sectional area is same for all the members.

B C
S o A
10 kN )
3m
A ;] 3] "D
<t 4m

Fig. 7.6
Solution. The frame is redundant to single degree since
T=m—-(2/-R)=6-(2x4-3)=]
Let us treat AC as the redundant member. Assuming that AC carries a tensile
force T, we apply forces T at joints 4 and C and remove the member

sing = 7=0.6

=028

| W

cos =

Let us find the forces in various members
At C, resolving vertically,

Prp= TsinB=06T (compressive)
Resolving horizontally

Pcg= Tcos®=08T (compressive)
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At A, resolving horizontally,

IO—PBcz PBDCOSB

, (10-0.87) _
= Ppp = Tog s (12.5-T) (compressive)
#
Resolving vertically
PBA =i PBD sin®
=0.6(125-T)
=75~-06T (Tension)
Resolving horizontally at D,
: PAD 7 PBD COSB
=(125-T7) % 0.8
= 10 — 0.8T
The values of ptit OP Can be presented in following table
oR
oP opr
= P10
Member Length 72 o ar
BC 4 -0.8T7 -0.8 +2.56T
AD 4 10 - 087 | —0.8 23 + 2.56T
CcD 23 -0.6T ~0.6 +1.08T
BA 3 7.5 06T 5 =00 -13.5 + 1.08T
CA 5 = +1.0 +5T
BD 5 Fil 2.5 Pl b0 -62.5 + 5T
—-108 + 17.28T

Since 4 and £ are same, these terms are not used as they, being same for
all the members cancel out

ou ' & 8P L ;

or E eV 8
. -108+17.287 =0
= T = +6.25 kN (Tension)

Hence force in the member AC is 6.25 kN (Tensile).
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Example 7.3 A loaded frame work is shown in Fig. 7.7. At point B, a load
of 10 kN is applied horizontally. Find the force in the member DB. The cross
sectional area of members BC, CA4 and AB is 2a, while the members DC, D4
and DB have area of cross section ‘a’

B
4—
10 kN k&
3m
45° o
A Y i 4}(.; =
}: 2m »|
Fig. 7.7

Solution. Here m = 6,j =4, R =3

: TOme 2 -BDg6-C <4351 11

The frame is redundant to single degree. Let us treat BD as redundant
member. We can replace it by a tensile force T at the joints B and D.

6P »li
= 0 W
aT Z T AE-_
Since E is same for all members
n
Z PBP L ~0
3 oT A
Let us find the forces in various members.
At the joint D, resolving horizontally,

P,p cosd5° = Pp~ cos45°
= Pyp=Ppc
Resolving vertically,

PAD sin 45 + PDCsin 45° =T

r
= Pypp=Ppc= E (Tension)
At the joint B, resolving vertically, :
Py, sin® = T+ Pposin® BT )
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Resolving horizontally,

Pp4c0s6 + Pp-cosB = 10 D)

Putting the values of sin0 = % and cosO = ﬁ in equation (1) and (2)
and solving together, #
Ppy=0.527T+1585 (compressive)
Ppc= 1585 - 0.527 T (Tension)
Resolving horizontally at 4, we get

PAC= PBACOSG—PADCOS45°

I

: s i
05277 £ 15.85) = DL
( )Jlo V2.2

—0.334 T + 5 (tension)

oP
The values of P and = can be presented in the following table : V

oT

| Member| L h| A P 6_}’ PB_PL
- ember| Lengt rea o7 T

I BA 17306 2a |- (05277 +15.85) |'~0527 | 0:436T + 1372
AC gzt 200 | 20| -03347% 571 0334820112167
BCiH 316 | 20 |l 15.85930527P0 . —0.527 | =132 20430r

T 1
AD J2 a +_2 5 | t0.707T
, S
ot N
CD V2 a 5 7 | t07077
BOS 3605 |7 4 T 6] 08 e

Total | 4.404T — 1.6T

I

n
5
=
= T= 0379 kN (Tengion)
Hence force in the member BD is 0.379 kN (Tension)

—L‘ZO*'I 4.404T - 1.6
A _;( _‘7)

=~
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______________________ x
USEFUL RESULTS |
n=2-3 2. T=m—-(2j-R) |
l

) n
L 4 Qﬂ 2 Zp FL_ sl
U= &4k 9T <" oT AE |
______________________ |

REVIEW QUESTIONS

Write short notes on the following :
(i) Redundant Frame.
(ii) Degree of Redundancy.
(iii) Statically Indeterminate Frame.
(iv) Analysis of Redundant Frames.

2.

NUMERICAL PROBLEMS
. The material and cross sectional area of the bars of the frame shown
in Figure below are same. Show that force in 4D is 0.707 W tensile.

A!“_ L B
[
|
C lD

Determine the forces in the members of the frame work shown in figure
below. The quantity AE is constant for all the members.

W

w

XA

90
B : 30°~\C
Ay

(Ans. Pyc =+ 2.5 mN, Pye =+ 3.33 kN, Py = + 5.83 kN)
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. Determine the forces in the members of the frame shown in figure

below, which is pinned to supports 4 and D and carries loads of W and
2W at B and C respectively. The members 4B and CD are ‘3a’ and the
remainder have ‘a’ cross sectional area.

v
w 2W

[Ans. Pug = Py == 0.535 W, Py = + 033 W,
‘-PBD=PAD=PCD:_O‘O7 W)

Bending of Beams with Large
Initial Curvature

8.1 INTRODUCTION

. M -
The result of simple bending i.e. T i % can be applied to the beams

having small initial curvature, but for curved beams for which the radius of
curvature is more than 5 times the beam depth, this straight beam formula is
not applicable.

Consider a portion of a beam, initially curved in its unstrained state as shown
in Fig. 8.1.

Fig. 8.1

Let R, be the initial (unstrained) radius of curvature of the neutral surface
and R is the radius of curvature under the action of a bending moment M.
o = E x strain =~E2Q-'+~

PQ
129
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5 pinbyAd

(Ro+)8 il
where y is the distance from the neutral axis

Total normal force on cross section = 0 for pure bending. .4

EAB ¢ ydA

= jcd4= Ol iy ' w2
M= jcydA

_ EAQ [ ydd

E3 e R0+y ...(3)
2dA +Ry)-R
S yid J[y(y 0) oy]dA
Ry +y Ry+y
Ro+y

= Ae — 0 [from Eqn. (2)]
where e is the distance between the neutral axis and the principal axis through

the centroid (e being positive for the neutral axis to be on the same side of
the centroid as the centre of curvature).

Putting the value in Eqn. (3)

- (2)e
Ry+y
= G—(HQ;—)AE from Eqn. (1)
My
- C = Ae(Ry +y) 5

8.2 THE WINKLER-BACH THEORY
This theory is used to determine the stresses in a curved beam.
The following assumptions are made in this analysis :
(7) Plane transverse sections before bending remain plane after bending.
(i7) Limit of proportionality is not exceeded.
(iif) Radial strain is negligible.

(iv) The material considered is isotropic and obeys Hooke’s law.
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Consider a portion of a beam ABCD initially curved in its unstrained state
as shown in Fig. 8.2

Fig. 8.2
Let, R = Radius of curvature of the centroidal axis GH

y = Distance of a fiber EF from GH
Let ABC'D' be the strained position of the beam.
R, = Radius of curvature of GH'
Vi Distance between EF' and GH' after straining

M = Uniform bending moment applied to the beam, assumed positive
when tending to increase the curvature.

¢ = Original angle subtended by the centroidal axis GH at its centre
of curvature O.

0 = Angle subtended by GH' (after bending) at the centre of curvature

(@
Let breadth of the beam section perpendicular to y be z, and let 4 be the
constant area of cross-section i.e. £84 = Zzdy, where §4 is an element of

area.

Now GH = R¢
#EF = (R+y)b
EF = (R +»)8
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Circumferential strain in EF,
EF'—EF (R +y)0 o
B ERE s  .F “{2)

whereg = bending stress in EF

Let €y = strain in GH when it increases to Gg’ 5
GH'-GH R
€5 = T e
0 GH R
(1+e0)Re = Rid
E R(] J 50)
or 5 T R \ : 2x(3)
Substituting (3) in (2), we get
(Ri+») R(1+gg)
g = X =

R+y Rl

i (1-+‘ %’J -

Acc;ording to assumption of Winkler-Back Theory radial strain is zero,
; B ' |

1+l]—+80+'80£1_—]—-—

R, R, R

i
R

Adding and subtracting EOE in the numerator, we get

e (4)
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The tensile stress in gg* becomes,

o= Ee=E|egg+ Yy -.(5)
L5
R
The total longitudinal force on the cross section at gr’ becomes,
F= JO’dA = EJ.EdA
(treo)| 2= |7
R R
= E| [eoda+| dA
142
R
1 yadA
= Eggd+E(l+gy)| ———= || —— ..(6
0 (14 0)[R1 RJJHX (6)

The resisting moment at an axis through the centroid is,

M= chAy =_[ EeydA

Now _[ydA = 0, since y is measured from an axis through the centroid.

: 1 1) ¢ y2a4
M= E(l+gy)| ——— o
( 0)[}(,1 R]JH},‘ (7
R
204 ]
Let [25 = an (8)
e
; R
where A% = a constant for the cross section of the beam
1 1
M= E(l+g,)| —=—| 4h? .9
( o)(Rl R) ©)
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Now consider
ydA RydA =k 24 * I L '
[ = | EAR " E4k*\1+y/R
147 R+y _
: M M ( y
2 2 # T AR AR*\1+y/R
E j{y_ Ry+y]dA=JyM—j; i
+ ‘ 2
2 g = AR h2 R ...(14)
s il 22 +y
R L% : On the other side of GH, y will be negative, and stress will be compressive
R
AT R2 Y
ydA | J'ysz | 3 o B il oo S B
J F i = 2 .(10) o O = UR|  m\R%yp =12
144 fipy M R ;
v 2 If the bending moment is applied in such a manner that it tends to decrease
Hence equation (6) becomes the curvature of the beam, then Eqn. (14) will give compressive stress and
2 } Eqn. (15) will give tensile stress.
F= EEOA—E(HSO)(—I———L]L}I sl B
| B g R 8.3 POSITION OF NEUTRAL AXIS
’ Since transverse plane sections before bending remain plane after bending, | Neutral axis of a beam is the axis at which the bending stress is zero.
hence S At the neutral axis ¢ = 0
'|| E=0
I ' M Ry
11 4n? _]+_2[R J 3.0
or 0= Fegd-E(l+gy)| —-—|— - AR h +y
R )
& Rz y
Ve = —2[ } =_1
go = (TFeg)—== =L R\ R+y
T o)[Rl R] - 12
Also from equation (9), we have 1 RYy= - RR2 —h?y
el M 2 bopNaiitiy 52
Il - 72 o= /A i
Substituting in Eqn. (12), we have R’
e ey L6
= M e : R2+h2 ( )
¢ +(13)
Hence the neutral axis is located below the centroidal axis
e ; 8.4 VALUES OF i?
0 R X
Thus o= Elen,+ !
0 y e 1 yZdA
1+ = Now Rt ==
R AT
+ —
R
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1) 3
B 2o Rpyida - e R_ln(2R+ D}—R2 o
A R+y BD \2R-D
; R[ R2dA ! 8.6 BEAMS OF TRAPEZOIDAL CROSS SECTION
i jydA —J-RdA +j For the trapezoidal cross-section shown in Fig. 8.4, letz=R + y
A Y+R ¥
i : Ay
rl 2
2 et g +j &add
4 L y+ R
R d4 1
T i R
: y+R

8.5 BEAMS WITH RECTANGULAR CROSS-SECTION

|

H >
_______ o_ i SRR, SRR, (U L ST S e
Fig. 8.3
Consider an elementary strip of width B and depth dy at a distance y from Fig. 8.4
the centroid axis of a rectangular beam as shown in Fig. 8.3. '
. = 3 (R, B-C)
A=BD, dd=Bdy . Bl ! LY
ht= — C+—F=(Ry-z)|—=R
A J'R] d] +d2( 2 ) Z
5 | Reur‘ald Fo
h* = - +R_R gives g
y e R3 J‘Rszz_i_(B—C)‘[Rz Bz |
= — e Zale
- R3 J+D’/2 de 5 + A R| L dl +d2 RI 7z
= — ek o
ol & BD/-D2R+y -
‘ R3 R B-C
= —|C|inz| 2 + |Ryinz—2|? |- R?
R3 +DJ2 By - { ) : .
2. N By, A ! +d2
or h = In(R+y) |_D/2 R L
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3 R
= & lents ) 2uC Rzlnﬁ?-m—(kz—Rl) - R?
A Rl d]+d2 R]

Izz=§[Cln(§+in+(B;C](R+dz)ln[ﬁ+d2]—(8—’6‘)}—R2

—d, —d;

B+C
where A=( )d
2
A gi B+2C]
L™ 3\ €
dy =d - d,

Example 8.1 A curved beam of rectangular cross-section is subjected to pure
bending with couple of 400 N-m. The beam has width of 20 mm, depth of
40 mm and is curved in a plane parallel to the depth. The mean radius of
curvature is 5 cm. Find the position of neutral axis and the ratio of the maximum
to the minimum stress.

Solution. M = 400 N-m = 4 x 10* N-cm
A=2x4=8cm? D=4cm
R=5 d, = Dhi 2
3
K2 = R;ln(ZR+DJ—R2
D \2R-D
L
5 2
= Q!n[ x5+4 _(5)2
4 2x5-4
= 1,478
Location of neutral axis is given by
[ ory RN
X R? + 2
L S,
25+1478 —0. cm Ans.

(i.e. towards the centre of curvature)
Bending stress at the inside face will be maximum

MRl s B,
SR A2 R
G |

fr—
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L oAx108 (o2 ( 2 )
TOESHs E 1TBR5 -0

~10276.46 N/em? = 102.8 N/mm? (compressive)
Similarly, minimum bending stress will occur at the outside face.

_i{_ ]+R_2 d2

20 T He Rlaer
_4><104 e 25 [ 2
8x5 1.478\5+2

5832.7 N/cm?
58.3 N/mm? (tensile)

Il

Il

o 102.8

—L = 2 =176 Ans.

O min 58.3
Example 8.2 Determine the ratio of maximum and minimum values of stresses
for a curved bar of rectangular section in pure bending. Radius of curvature
is 8 cm and depth of beam 6 cm. Locate the neutral axis.

(UPTU 2001-02)

Solution. R=28
D
D=6 d=dy=—7=3
2
3
s R—l [2R+D _R2
D 2R-D
83 116y 5
= —In —-64 =
6 (16—6] 228
Location of neutral axis,
Rh? 8x3.28
= S hteaems WaRs da e o= (139 Ans,
Y= TRuR 64+3.28 i

M '1 R 4,
Omx = TR R\ R-4

M| R 4
Omin, =T e ]+_2 B
AR W2 \'R+d,
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< 60 3
Omic LS A2BNERG ] SNaT07 )i |
Qo S GIE R 63 ;
3.28\8+3) '

—ve sign shows that o, iS compressive

Smax = 169 Ans
S min

Example 8.3 A curved bar of square section, 3 cm sides and mean radius of
curvature 4.5 cm is initially unstressed. If a bending moment of 300 N-m is
applied to the bar tending to straighten it, find the stresses at the inner and outer
faces.

Solution. Given R = 4.5 d=dy= Df2 =15cm

D=3 cm M =3 x 10* N-cm
A=3%3=9cm?

; 3
ot R_]n(2R+DJ_R2

D 2R=D

4,57 (943
——In| —=|-4.52 =
3 (9 3} 0.803

Fie ﬂ 1_33, _d_lk :
Omax ~ AR W R-d,
J3xa0t 4.52( 1.5
9%x4.5 0.803\4.5-1.5
= 8599 N/cm? = 86 N/mm? (Tensile)
O = By I+R—2 i
ok AR| W\ R+d,

_3x10 ]+(4.5)2[ L5
9x4.5|  0.803\45+1.5

Il

5410 N/em? = —54.10 N/mm? (compressive)
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Example 8.4 A curved beam, trapezoidal in cross section is subjected to pure
bending with couple of 400 N-m. The mean radius of curvature is 50 mm.
Find the position of the neutral axis and the ratio of the maximum to the
minimum stress.

40 mm

e mmmemd -

<20 mm—>
Solution. Given C = 20 mm B =30 mm
d=40 mm R =50 mm

i(mzc)’_i{g(muo
53\ Bwie )T I8 0R 20
dy=d-d, =40 - 18.67 = 21.33 mm

= (B;C)a=(30;20)40: 1000 mm?

o ﬁ[éln(R+d2]+[B;C)(R+d2)-]n(R+d2);(B;C)]—R2

4 R R-d,

3 =
50 20|n(50+21.33)+(30 20)(50”]_33)
1000 50 - 18.67 40

) = 18.67 mm

Il

lrl(50 +21.33
50 -18.67

)—(30—20)—502]

= 140
Location of neutral axis,

_CORR% L =50%140 0
"RZ +h% 2500+ 140

Cre Mk B ot
e el

Vi= —2.65 mm
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Il

~ 400 x 10’ ]_392_[ 18.67 )
1000 50| 140150 -18.67

~77.1 N/mm? (compressive)

Ml R d, =
Omine | o 1+M?
AR h= \ R+d,

__400x10° 1+502( 21.33
1000 x50 140150+ 21.33

+50.7 N/mm? (Tensile)

— — — — — — — — — — — S — — — — — — —

IMPORTANT RESULTS

2
. G:ﬂ]_,._}i)_ Y
AR| -~ K2 \R+y

At the neutral axis 0, which gives Ri?
. G = L] SO T
& 4 R? + K2
R D
; g = -~ B2
. For rectangular section, A D (2 o D]

. For trapezoidal section, 4* =

%;[C_‘ln(itj?}+(B;C)(R+d2)ln(§ijf)_(3—c)}_122

B+C J d{ B+2C
where 4 = 5 , i T mLr e d, =d - d,
My
e e
Ae(Ry +)

REVIEW QUESTIONS

. Write short notes on the following :

(/) Curved beam with large initial curvature
(i7) Winkler Bach theory for curved beam
(7ii) Assumptions of the theory for curved beam.
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2,

‘compressive stresses.

Derive an expression for stress distribution in case of beam with large
initial curvature.

[Hint : Derive Eqn (14) and (15)]

Find the stress o at a distance y from the centroidal axis of curved
beam subjected to a bending moment M. Area of cross-section of beam
is A, e is the distance of the neutral axis from the centroidal axis and
R is the radius of curvature of the curved beam. Assume that y is positive,
if measured towards the centre of curvature of the beam.

Hint : Prove that o = ﬂ——
Ae(R+y)
NUMERICAL PROBLEMS

Determine the maximum tensile and maximum compressive stresses
across the section A4 of the member loaded, as shown in figure. Load

P = 19620 N. (Ans. 12642 kPa, 20482 kPa)
e ——n .
|
~a=8cm
A .........
s ;
4 o™ 60‘“\‘(

A bar of rectangular cross-section with a width of 60 mm and a
thickness of 40 mm is bent in the shape of a horse shoe having a mean
radius of 70 mm. Two equal and opposite forces of 10 kN each are
applied at a distance of 12 cm from the centre line of the middle section.
So that they tend to straighten the rod. find the maximum tensile and
[Ans. 74.69 MPa, — 33.4 MPa]

. A curved beam shown in Fig. has a 30 mm square cross-section and

a radius of curvature R = 65:mm. The beam is made of steel for which
E =200 GPa and v = 0.30. If P = 6 kN, determine the component
of deflection of free end of other curved beam in the direction of P.

[Ans. 1.107 mm]
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. A curved bar of rectangular section 38 mm wide by 50 mm deep and

of mean radius of curvature 100 mm is subjected to a bending moment
of 1.5 kNm tending to straighten the bar. Find the position of the neutral
axis and the magnitudes of the greatest bending stresses.

[Ans. e = 2.1 mm, 115.81 N/mm?)

A curved beam with a circular centreline has the trapezoidal cross
section shown in figure and is subjected to pure bending in its plane

of symmetry. The face b, is the concave side of the beam. If hil=

10 cm, 2 =10 cm, and @ = 10 cm, find the value of b, to make extreme
fibre stresses in tension and compression numerically equal.

[Ans. b, = 1.62 cm]

Determine the numerical value of the ratio O nax /O min for the case of

pure bending of a curvature beam having a 2.5 cm x 2.5 cm

square cross section if the radius of curvature of the centroidal axis
ISYRE=EINTSIER : [Ans. 1.59]

9

Stresses in Crane Hook, Circular
' 'Rings and Chain Links

9.1 INTRODUCTION

In real life the machine members subjected to bending are not always straight,
before a bending moment is applied. Crane hooks, chain links and circular rings
are such cases which have small radius of curvature. In all these cases the
stress at any point on a cross section is the algebraic sum of the direct stress
and the stress due to bending.

9.2 CRANE HOOK

The hook is a curved bar subjected to direct and bending stresses. Since crane
hook is a curved beam, the neutral axis of its section is shifted towards the
centre of curvature of the section and is nearer to the centre of curvature.

!
|

fmm———————

s et

[e—d, 5 g l‘—

Fig. 9.1

For the crane hook shown in fig. 9.1, O is the centre of curvature and the
load line passes through O). The radius of curvature of the centroid is R,

Bending moment about the centroid G is
M= Wx

145
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This bending moment is such that it is tending to decrease the curvature,
i.e. this is a negative bending moment. Therefore, bending stresses at point
x; and x, are respectively,

2
Gijjs ATl S e —1; (tensile) i
AR | h2 | R-d,
3 Fx 1+R—2 ) (compressive)
°2 " R} T\ R+ d; B

/4
Direct stresso,; = i (tensile)

!

Resultant stress at x; = o +0y

9.3 STRESSES IN A RING

ro|=

Fig. 9.2

Consider a circular ring loaded as shown in Fig. 9.2. Let M, be the bending
moment at any section x,-x, inclined at angle 8 with the line of action of the

STRESSES IN CRANE HOOK, CIRCULAR RINGS AND CHAIN LINKS 147

applied load W. The portion x; DF x, of the rings is in equilibrium under the

action of M) at DF, pull W/2 at DF and the moment M, at x|-X, along with
pull 7" at x;-x;.

we get, My = M, +%R(l—sin9) : C)

1 1
Also M, = E(l+¢ wer— 2 A2
2= E( U)X[R] R) (b)

Comparing Eqns. (a) and (&), we get,
I 4 5 '
E(l+gy)| ——-— | 4h2 = M|+ —R(1-sin®
( 0)(R1 R] i+ R( ) @)

Multiplying both sides by Rd® and integrating from 0 to 7/2, we have,

/2 B
EJO (1+50)(J—Q]~—E}Ah RdO

/2 W
0 (125

e 4 E‘[ﬂ/2 R(1+80)

i e 2
) TR And EJ’O (1+ &) AR2d0

i

: /2 2
j“ M, R0 +j“/ ¥ R2(1—sing)db
0 0 =2

Now Ry = R(l+¢g)
2 R(1+gq) b
j 2 R( O)de R
0 R, 2
T T T WR?
. —EAR® - ZEAh?(1 = — MR+ ® 21
e e (T SR 1
or 7 > Eo TN5 2 12 )
; W
Now T= '2—5”19 ...(e)

{
l
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Lsaiibrlifis W,
Edleg =(1+ep)| —==1—| & —s5in0
{0 ( ())(Rl R)R} 2 )]
From Eqn. (¢), we have :
2 M, W
fed 1 R R ;
Substituting in Eqn. (), we get
W, My W : W M
Edggy = ?s.ne_+—ﬁl—+?(1—s1ne)=w+}¢‘
Bl
®0 7 2F4 " EAR +(8)
Putting in Eqn. (d), we get
wr[2( R '
i M=ol 1
| 1 ) R[Rz ‘*‘th :| (h)

i " Substituting in Eqn. (a), we get

f v R ord Y :
Z 2 1n\ R? + K2 =old)

M, will be maximum at g =0° and 180°

‘ Mypax = ﬂ__ ()
; n(R" +h2)

| M, will be zero, then

‘ﬂ 2R?

f sinQ = m (k)

. Thus bending moment and bending stress is zero at four points, one in each
I quadrant. Substituting the value of M; in Eqn. (g) from (/), we get

| e B e
‘. 0" 4E|x(R2 1) k)

sl

and o Ee

O
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From Eqn. (&), we have

A M WR
1 ———] = = 1—si
( +EO)(R1 RJ 2w zapg S0

M, WR

— R
= gg+ + ———(1 - sin0
ng &4 {EAhz 24 E )}{m )

= Wi RE My i AON
AE n(R2+;,2) 2 | nl R? + 42

'x%+ﬁ—~(l%sin9) Ly
EAR?  24R’E R+y

W

R? WR 2R?

AR (I—sine)} 3.4
2.4h? R+y

w |
=]
(o8]
=y
[v%)
0]
=
[

W R? R? 2R? % Ry
_ — s —sinf p x
A| n(R?+#?) 2K | n(R? +h?) R+y
Wsin0
Direct stress, oy = 24

Resultant stress 6,= o;+0

)

o Eezj[n(m +1?) oan n(R2 + h2)

.
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...(m)

)

(i) Ona section taken along the line of action of W, § =0° and the stresses

become :
(a) At outside of ring

G, Fihens) 2 .
mA\ R* +h h“ \ R+ y,

and is tensile in nature.
(b) At inside of ring

_H_/ R? R_Z 4| =
Cr T md\ R2+n? )| B2\ R-y
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(i) On a section perpendicular to the line of action of W, § =90°, and the
stresses become
(a) At outside of ring

il R RY | 2R? [ ¥z w
O i ey —lpx| ——||+—
©T A n(R?+n?) 20% | n(R? +K2) R+yry| 24
and is compressive in nature.
(b) At inside of ring

w| R | 2R? : it b R? i
5w Ot AR Ll x
4|2k | n(R? +K?) R-y ) =n(R2+h?)| 24

and is tensile in nature.

9.4 STRESSES IN A CHAIN LINK

"
=

|
|
4o

- i
]
: i ! w2
a2 | ! | 5
1 : L}
' : :
ol | n : el ! |F
B -

e L e

Fig 9.3

Consider a chain link as shown in Fig. 9.3. Let R be the mean radius of the
semi circular ends and a the length of the straight sides. Consider the equilibrium
of the portion x;CDx; of the link. :

STRESSES IN CRANE HOOK, CIRCULAR RINGS AND CHAIN LINKS

My= M, +-”-;3(1_sane)

g My = E(1 +80)(i}— 5 %]Ahz
: 1

Hence by comparing Eqns. (a) and (), we gét
il WR ;
E(1+8:) ——= |4t "= Mi#++5(1 —sm0
(v o0){ - g Ja#2 = 445 -an0)

Multiplying both sides by Rd0 and integrate from 0 to /2

/2 : 5, R /2 5
Ejo (1+€)4h Ed@—EJ.O (14 £) x Ah*do

2 2 WR?
4 Mlee+_[“/ WR” (1~ sine)ao
0 gf 245
’ Ml 0/2
Slope of the tangent at L =
: EI
/2 R(l'f'go) i E_ Mla
Io R, 2 2kl
M
EAhz[E__l‘a)__E(mo)Ahzz
. RE] 2

2
EM]R.F_I,.VR_ E_]
2 201 \a2

2 WRZ
VRIS gt —(1“’3)—35,411230
ey 2 5102

Now 80 — _L_(E + ﬂl.
EA\ 2 R
Substituting Eqn. (31) in (d), we get

2 2 2
M, ER+Aah +£ﬁ—- = WR” [ =L 2
2 222 5 2] 4

Now I = Ak?
where k = radius of gyration. £

- P51

la)

..(b)

()

Ad)

A3 1)

——
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ome 2 2 s
WL g ol i
| 2820 2R
RZ 2p2 Ll Y,
1A e S flar
| &)
7 ah? W
Rep=— i =
nk? R
(R2 R2 hz]
e 2 &) WR. o
M 5 o +T(1‘5me) (33)
Rt it
nk? R

14102 182 2 2
= il 5 RS
gg = EdAl/2 W an e 61
k% . R
D 2 e
PR B e T L LB
2Ah? n(R2+;,2) R+y 24

Example 9.1 A central horizontal section of hook is a symmetrical trapezium
50 mm deep, the inner width being 60 mm and the outer width being 30 mm.
Calculate the extreme intensities of stress, when the hook carries a load of 30
kN, the load line passing 40 mm from the inside edge of the section and the
centre of curvature being in the load line. (UPTU 2002-03)

f=—50 mm ——»}

<

e 60 mm L gd LUEY el simidu

30 kN
Solution. Here B = 60 mm, C = 30 mm, d = 50 mm, ¥ = 30 kN, R, = Ox,
= 40 mm
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je—50 mm ——}

60 mm

Area of the cross section

60+ 30
( )x 50 = 2250 mm?

d(3+30)_g[60+60

di= 3\ B+c )" 360+30

ds. 5 ds dy 750 =20.22°=.21.78. mm
s Ri= Ry 4oy =40 +:22221 5 62.22 mm
Here x = R = 62.22 mm

R3 (F+d2) (B—’C) :
h? = —|Cln + (R +d,)
A[ R-d, d

.]n[itjﬂ—w—c)w}az}

62.223 62.22 +27.78 60— 30
L2 301In +

) = 22.22 mm

] (6222 +27.78)
2250 62.22-22.22 50

(62224 27.78
6222 =927

)— (60— 30)} _(6222)°

= 107.05530 In 2.25 + 54 In 2.25 - 30] - 3871.33

= 107.055[30 x 0.811+54 x 0.811-30]-3871.33
=210.03

Bending stresses are

W\ R (4 ) [
C1 7 AR| K2\ R-d,
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I

30x 10° x 62.22 62.222 22.22 ]A 1
2250x62.22 | 210.03\62.22-22.22

4

13.33[10.239 - 1]

123.18 MN/m? (tensile)

oWl B B
oy = ——|1+—| ==~
AR\ KW \R+d,

30x 103 x62.22 5 62.222 27.78
2250 x 62.22 210.03\62.22 -27.78

Il

89.186 MN/m? (compressive)

Direct stress Gy = — = = 13.33 MN/m?

Resultant stress on the inside fibres
= 6, +04=123.18+13.33 = 136.51 MN/m* Ans.
Resultant stress on the outside fibres
= 0, -0y =89.186-13.33 = 75.86 MN/m® Ans.

Example 9.2 The principal section of a hook is a symmetrical trapezium as
shown in figure. The centre of curvature of the centroidal axis, at the principal
section, is in the plane of the section and is 68 mm from the inside of it. The
load line passes 56 mm from the inner side of the section. If the maximum
allowable stress is 110 MN/m?, estimate the safe load for this hook.

A {of

2 25 mm— ——————————————————— ....?5 mm

17
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Solution.
le—d = 75 mm —>

Load line

HereB=75mm,C=25mm,d=75mm,R=56+d,

Area of cross section A

B+C T5+25
:( )d=( 2 }75=3750mm2

2
d(B+2C _E[7S+SO] |
ae S \Epe | T s

dy =75 -31.72 = 43.75 mm
R =68 +d; =68 + 3125 =9925 mm
., x =56 +d; =56 +31.25 = 87.25 mm.

3
e (99.25) 25]n[99.25+43.75)+(75—25}(99.25+43.75)
3750 ) -\ 99.25-31.25 75 .

ln(_._—-—gg'z-s > 43'75) —(75-25) |- (99:25)°
99.25-31.25

— 260.71 [25 In2.1029 +95.33 In 2.1029 - 50] - 9850.56

= 260.71 [25 x 0.7433+95.33 x 0.7433 - 50] - 9850.56

= 10283.38 — 9850.56 = 432.82
®  Let the allowable load on the hook be W Newton
then M= Wx
= 87.25 W N-mm
The maximum tensile stress will occur at points along DC
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Resultant stress along DC ¢ g1 51 81
3 =ibE st S e e =n0.5697 wem3
&R_z[ d, )_1}+W 16 28 (20x20)
~ AR | h* |\ R-d, 4 W{ R2 H“Rz[ J%: H
S o a e ST
(87.25) (99.25)2[ 31.25 ] LW s Bty
~ 3750x99.25 | 423.82 {99.25-31.25 3750 10t 108 x( 400 ) 400 ( 15 )
=2344 x 107 W+ 267 x 104 W nx7.065 \400x05697 0.5697 \ 20+1.5
=5014 x 107" w = 2.25 x 108 N/m? = 225 MPa (tensile)
Equating this to the allowable stress W R2 R )2
GC = — T—Z X 1+—2 -1
110 St nA\ R% + h n R~y
T e ¥
5014x10% — = i
4 4
Example 9.3 A ring made of 3.0 cm diameter steel bar carries a pull of .8 x( 100 )[ Y ( L )— 1}
10 kN. Calculate the maximum tensile and compressive stresses in the material mx7.065 1400x 05697 /| 0.5697 \20+1.5
of the ring. The mean radius of the ring is 20 cm. = 2.5175 x 108 N/m? = 251.75 MPa (compressive)
Solution. :
n10 KN _Hi _}i_ 2R2 | y2 e R2 1
%4 = 4|2k |n(R%+0?) R-y;) =(R?+n?)| 24
108 400 2x400 | ( I3 ]
~ 7.065| 2x0.5697 | 7(400.5697) 20-1,5
' 400 ] 108
n(4005697) | 2 x 7.065
= 1.58077 x 108 N/m? = 158.08 MPa (tensile)
i
w R2 R? e p2 W
cp = —— R -1 +—
A| n(R? +h?)  2h* | n(R? + h?) Ry il 2
_ % T1eE 400 400 ( 2 % 400 )
r 7.065 ﬂ(400.5697) 2 x0.5697\ n x 400.5697
N !
10 kN .
? [ 1.5 ) 108
5 T, iy +
Area of cross section 4 = -4—(3) = 7.065 & 20+1.5)| 2x7.065
=-2.179 x 108 N/m? = -217.9 MPa (compressive) -
g - D_2_|__1_D_4 . Maximum tensile stress = 225 MPa
16 128 R? Maximum compressive stress = 251.75 MPa
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Example 9.4 A steel ring of 22 cm mean diameter has a rectangular cross
section 5 cm in the radial direction and 3 cm perpendicular to the radial direction.
If the maximum tensile stress is limited to 150 MPa, determine the tensile load
that the ring can carry.

Solution. Area of cross section

A=5x%3=15cm? b ST
3
h2= i]n(M]_Rz
Do C2R=D
3
3 lln[z“5 “(ny?
Sle step9, 5

266.2 In 1.5882 — 121
= 266.2 x 0.4626 — 121 = 2.144 cm?
The maximum tensile stress occurs at 6 = 0° on the outside of the ring

2 2 :
Pl g (51 W v L 2P
nd\ R2+h? )| R\ R+»

W % 10* 121 321 2.5
150 x 106 = T e
nx15 \121+2.144 2.144\11+2.5

150 x 106 = 2.3889 x 10° W
or W= 62.79 x 10°
or W= 6279 kN
Example 9.5 A chain link is subjected to a pull of 20 kN. It is composed of
steel 2.5 cm diameter and has a mean radius of 3 cm. Its semicircular ends
are connected by straight pieces 2.5 cm long. Estimate maximum compressive
stress in the link and tensile stress at the same section. i

Solution. :
4 20kN

e e
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Now

Now

e %x(2.5)2 2191 G2
-D.'Z D4
h2 o T T e
16 128R?
(S
= & = 0.4245 cm?2
16  128x9
2 24 2
wl R
T % 2
Mo hla h*
R+_2_+,7
Mo
4
I= 491K2 :M

64
K? = 0.3905 cm?®

2010222 - 04245) 10
Gt 2

M= (0.4245 %25 (0.4245
3% +
7 x 0.3905 3

= -92.22 N-m

1 (W M,
Fo = il ol
EA\2 R

il [20>< 103

IR

92.218
E4.91

14.106 x 108
8

R, T 20 "HRT : Ry
o ok -sin0 | x
24h n(R2+h2) R+y

OF EE()+

) W sin@
.1,.

24

159

Compressive stress is maximum at § = 0° on the inside part of the link

3 3
Il

y=-125¢cm, 6 =0°

14.106 x 106 +

_3x1.25

20x103 x3%x108[2 9
e
2x4.91x0.4245 | 1 9.4245

14.106 + (—187.508) = —173.402 MPa Ans.

Il

|
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Tensile stress at this location (on the outside surface)

4 2 R
Al L e )2
24h% | @ (RZ +}72) R+y,

Q
Il

20x 103 x3x108( 2 9 3x1.25
= 14.106 + x
2x4.91x0.424513.14  9.4245 ) 4.25
=91.31 MPa Ans.
EXPECTED DERIVATIONS

(i) A chain link made of circular section has the dimensions shown. Prove
that if d, the diameter of the section, is assumed small compared with
R, then the maximum bending moment occurs at the point of application
of the load and is equal to

PR (I+2R)
2 I+wR
¥
d
1.
______ !!-....-..-..-..-....j;'.___________Zi_____ -
Fig. 9.4

(ii) For the crane hook shown in Fig. 9.1 O is the centre of curvature and
the load line passes through O;. The radius of curvature is R. Deduce
the expressions for bending stresses at point x; and x,.

(iif) Consider a circular ring loaded as shown in Fig. 9.2. Find the resultant
stresses at outside and inside of ring on a section taken along the line
of action of W. :

(iv) Consider a chain link as shown in Fig. 9.3. R is the mean radius of semi
circular ends and a is the length of the straight sides. Derive the
expressions for the stresses on the inside and outside surfaces.

NUMERICAL PROBLEMS

1. A crane hook is of trapezoidal cross section having inner side 80 mm,

outer side 300 mm and depth 120 mm. The radius of curvature of the
inner side is 80 mm. If a load of 100 kN is applied to the hook passing
through the centre of curvature, determine the maximum tensile and
compressive stresses at the critical cross section.

[Ans. 141.9 MPa, — 74.8 MPa]
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2. Determine the load carrying capacity of a hook of rectangular cross
section. The thickness of the hook is 75 mm, the radius of the inner
fibres is 150 mm, while that of the outer fibres is 250 mm. The line
of action of the forces passes at a distance of 75 mm from the inner
fibres. The allowable stress is 70 MPa. [Ans. 52.51 kN]

3. The section of a crane hook is a rectangle 6 cm x 4 cm. The centre
of curvature of the section is at a distance of 8 cm from the centroid
of the section. A load of 15 kN is acting through the centre of curvature.
Determine the maximum and minimum bending stresses induced in the
hook. [Ans. 66.92 MPa, — 39.51 MPa]

4. A circular ring is subjected to a pull of 15 kN. The ring is of T-section
as shown in figure and the internal radius is 10 cm. Determine the
maximum and minimum stresses in the ring.

[Ans. 7.36 MPa, — 5.26 MPa]

7 v
L2 12cm
2emy| - o
+

fe—— 10cm ——»l X
—

2cm

S. A chain link is subjected to a pull of 15 kN. It is composed of steel 2
c¢m diameter and has'a mean radius of 2.5 cm. Its semi circular ends
are connected by straight pieces 2.5 cm long. Estimate the maximum
compressive stress in the link and the tensile stress at the same section.

[Ans. — 207.95 MPa, 113.23 MPa]

6. A ring with a mean radius of curvature of 25 mm is subjected to a load
of 200 N as shown in figure. The ring is made of circular section of
10 mm radius. Calculate the circumferential stress on the inside of the
fibre of the ring at 4 and B.

[Ans. 64, =~ 19.9 N/mm?, 65 = 29.1 N/mm?]
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2kN :

S s e B o i

. A chain link as shown in figure is made of round steel rod of 6 mm

diameter. If R = 25 mm and / = 45 mm, calculate the ratio of the
maximurm tensile stress at the section where load is applied to that at
the section half way along the straight portion.

'

._‘_
I

]
|
e pe g

B e e E

'}
A

L
1
|
\\ 1

[Ans. 2.68]
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Unsymmetrical Bending

10.1 INTRODUCTION

Frequently beams are of unsymmetric cross section, or even if the cross section
is symmetric, the plane of the applied loads may not be the one of the planes
of symmetry. In either of these cases the expression ¢ = My/T is not valid
for determination of the bending stress. There are situations when the plane
of loading (plane of bending) does not lie in (or parallel to) a plane that contains
the principal “centroidal axes of the cross section, the bending is called
unsymmetrical bending.

10.2 UNSYMMETRICAL BENDING

Bending caused by loads that do not lie in (or parallel to) a plane that contains

the principal centroidal axes of inertia of the cross section is called
unsymmetrical bending.

Cf

Z T ?
22 B B, : - ’1’444'
= : H ’
4 ‘
:; i -
/ 1 /.—" D
“ T
4 S S
“ 7 3 T F - B
2 / _,.—""‘. it =
? ’ e e -
o A
A5t
7 A e A e

Fig. 10.1
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In Fig. 10.1, ABCD is the plane containing the principal centroidal axes of The centroidal principal axes of a section are defined as a pair of rectangular
inertia and plane 4’B’'C’'p is the plane containing the loads. These loads will axes through the centre of gravity of a plane area, such that the product of
cause unsymmetrical bending. inertia is zero.

Some cases of unsymmetrical bending are shown in Fig. 10.2.

\l\\ w

u

;‘l 1) (a) Rectangular section (6) I-section f

Y
Fig. 10.3
| Determination of Centroidal Principal Axes of a Section

f Let U-U, V-V are principal centroidal axes x-x and Y-y are any pair of centroidal
‘ rectangular axes. 0 is angle between U-U and x-x axes.

Let 6a is an elementary area. Its coordinates are x, ¥ with respect to
x-y axes and wu, v with respect to U-V axes.

Now Jeers Doa

XX

[yy = Ex26a
(c) l-section () Angle section 1= Exyda
b
! [-—%ig
Fig. 10.2 ) Wtk o VSO
’ ’ ]vv - X?JZSG
10.3 PROPERTIES OF BEAM CROSS-SECTION f
We have earlier mentioned that, if the plane of loading or that of bending does ' Ly = Zuvda
not lie in (or parallel to) a plane that contains the principal centroidal axes of Noi U = xC0s8+ ysin®

beam cross section, the bending is called unsymmetrical bending, In this article

|
. - . - ‘i
we shall discuss about the centroidal principal axes of a beam cross-section. ‘ v = ycosB +xsinf
!
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Ly = Zv¥a
=EF[yeosos xsin9)2 da
= cos? OZy28a + sin? OLx8a — 2 sinBcosBnySf
= Ly = Iipcos?0+1,,sin%0-1,,sin20 : =
I,, = Zu?8a = Z(xcosO + ysin 9)2 da
= sin? OZy23a + cos® OXx28a + 2sinB cosOTxyda

I, sin?0+1,, cos?0+1,,sin20 o0

e~
]

v

= Zuvda = X(xcosb + ysinB)(ycosd — xsin8)da

uy

cos? OZxyda — sin® OZxyda + sinO cos (Zyzéa - Exzé')a)

= 2 o) :
= cos“0 I,, —sin ley+sm9c056(1xx—]}y)

Since U-U and V-V are the principal axes

f,=90
s cos® 0 [, —sin?0 I, + sinecosze(ln. - fyy) =0
I -1
e {u] sin20 + 7,,c0s20 =0
2
2T,
e (3
= tan 20 Lp=1, ®)

Note : Adding Eqn. (1) and (2), we get
M et e e o (4)

iy uu

10.4 STRESSES DUE TO UNSYMMETRICAL BENDING

In the case of unsymmetrical bending, the bending stress at an point in the
beam can be determined by resolving the bending moment into two components
along principal axes.

Let the plane of bending (M) be inclined at an angle ¢ with one of the principal ‘

planes.

M can Be resolved in component A4 cos6 along plane V-V and M sinB along
the plane U-U.
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Once M is resolved in two components, the simple theory of bending can
be applied to bending occurring in the principal planes.

For the component M cos8, bending takes place about V-¥ for which

U-U becomes the neutral axis. For Msin®, bending takes place about U-U
axis for which V-V becomes the neutral axis.

Bending stress at point P(u,v)

M i
o cos¢v+Msm¢u

(5

Iyy Lyy

v

Fig. 10.4

10.5 LOCATION OF NEUTRAL AXIS

In the case of unsymmetrical bending, the neutral axis is neither perpendicular

to the plane of bending, nor perpendicular to any of the principal planes.
In Fig. 10.4,

¢

04

inclination of the plane of bending to V-V axis
inclination of the neutral axis with the [-1/ axis.
On any point (such as P) on neutral axis, bending stress ¢ will be zero.

Equating Eqn. (5) to zero,

M cos - Msi
4 ¢v+ sin ¢ b
Iyy Iyy

a5 0
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= v = —uiggtamb : ..(6)
Iyy
Eqn. (6) is the equation of the neutral axis N-N which is a straight line.

[t is clear that when v =0, then u = 0, hence the neutral axis passes through
the centroid of the section. Now from Fig. 10.4 24

v

FaRol s = gy ;

But from Eqn. (6)

Tyy
bl = I—tam{) D)
4%

Thus the neutral axis can be located from Eqn. (7).

10.6 DEFLECTION OF STRAIGHT BEAMS DUE TO UNSYMMETRICAL
BENDING

To determine the deflection of a beam due to unsymmetrical bendil-lg, _the

bending moment may be resolved into components parallel to the principal

planes and deflections caused by these components of the moment calculated

from the usual equations for deflection of symmetrically loaded beams.

The actual deflection of the beam is the vector sum of the deflections found
from the component moments as shown in Fig. 10.5.

PY,- V'
Fig. 10.5

It can be found that the direction of the deflection is always perpendicular
to the neutral axis.

g
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Fig. 10.5 shows a load W, acting along ¥¥' line, on a section of a beam.
Axes GUand GV are the principal axes of the section having G as the centroid.
The load I can be resolved into two components, (W cos6) along GV and
(W sinB) along G’ . The component (W cosB) will cause deflection 5, along
the line Gy due to bending about {/{/' axis and (Wsine) will deflect the

beam by &, along the line GU’ for its bending about /" axis. Depending
on the end conditions of the beam these deflection will be given by

o A(Wsing) 3
it (8
R F A(WcosB)? ©)

where ) is a constant depending on the end conditions of the beam and
position of the load with respect to the ends,

The resultant deflection & can then be found as follows
0 = 6@ +6;2/

W [sin?0  cos?@
ok 7He T 15
E\ Ipy = Iy

..(10)

The inclination B of the direction of §, with the line GV' is given by

Sy _ dyy

= tan 6
tanf} sl Eanl]

10.7 SHORT NOTE ON NEUTRAL AXIS

There always exists one surface in the beam containing fibres that do not
undergo any extension or compression, and thus are not subjected to any tensile
or compressive stress. This surface is called the neutral surface of the beam.
The intersection of the neutral surface with any cross section of the beam
perpendicular to its longitudinal axis is called the neutral axis. All fibers on one
side of the neutral axis are in a state of tension, while those on the opposite
side are in compression.

When all fibers in the beam act within elastic range, the neutral axis passes
through the centroid of the cross section.

Consider two sections mn and mn, at distance 8x apart and subjected to
bending moment A as shown in Fig. 10.6. The section m#n and myn; which
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were vertical and parallel before the application of the moment will rotate
through an angle § after deformation and will remain straight. The fiber ab
at the concave side of the beam shortens. Similarly the fiber cd on the concave
sitle shortens and the fiber nn; on the convex side elongates. Also there exists
one fiber such as ef the length of which remains unchanged and indicates that
this undergoes neither extension nor compression. The layer ef'is called the
neutral layer. The line of intersection of neutral layer with the plane of cross
section of the beam is called the neutral axis. {

N —— 8x——>1n,

Fig. 10.6

Example 10.1 A beam of rectangular section, 80 mm wide and 120 mm deep
is subjected to a bgnding moment of 12 kN-m. The trace of the plane of loading
is inclined 45° to the y-y axis of the section. Locate the neutral axis of the
section and calculate the maximum bending stress induced in the section.

(UPTU 2002-03)

Solution.

UNSYMMETRICAL BENDING
Letthe plane of loading be inclined atan angle 6 withy-y axis and the neutral
axis be inclined at B with the x-x axis.

=

0
M

tan 3

p

Il

45°

171

12000 x 1000 = 12 * 106 Nmm

=

I =

1

— X

12
o
12

X

80 x 1203 = 11.52 x 10® mm*

120 80% = 5.

11.52 x 108

12 x 10® mm*

Jitane e o EETS A an iy b=l Dy

v

66°

5.12 % 10°

This gives the location of the neutral axis.

Maximum stress will occur at point which is 1

B oriP.

where (x, y) are the

op = —

Cp

I

Example 10.2 A 5 cm

Msin@
Mcost+ sin®
IH [V

Msin®
Mc058y+ sind
i ji

coordinates of the point.
12 x 108cos45° 12 x 10°sin45°
2o pa el L e

11.52 x 108

nore distant from NA, either

x 40
5.l2><]06

~110.5 N/mm?  (tensile)

6 o
12 x 10%cos45 60

11.52 % 108
+110.5 N/mm? (compresswe)

by 3 cm by 0.5 cm angle
length 50 cm with 3 cm leg horizontal. A load of 10

end. Determine the position of the neutral axis.

Solution.

=

Il

12 % 10%sin45°

x 40
5.12x10°

is used as a cantilever of
00 N is applied at the free

(4.5%0.5) «0.25+(3x0.5)x15 _ w3k

(4.5%0.5) x 275+ (3% 0.5) x(0.25)

(4.5+3)x 0.5

(4.5+ 3)x 0.5

=175 cm -




X

12
9.44 cm?*
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5%4.5 3
= 9—5—><—~4r-((].5x41.5)>< (i

0.53

+(3>< 0.5) x1.5%

0.5x%33

+(0.5%3) % 0.75%

N
Ur
Fig. 10.8
3
1,= M+(4.5 % 0.5) % 0.5% +
12
=2.58 cm?
I, = (4.5%0.5)x (<0.5) x (~1)}+(3x 0.5)(0.75)(1.5)
= 2813 cm?
3 w2:813
o BT R
O S570520!
1 1
[” = E(Ix +IJ‘)+E(IX = [),) sec20
1
e 5(9.44 +2.58) + %(9.44 ~2.58) sec140°40’
=1.59 cm?
]v:1x+"5f_11t

=9.44 + 2.58 - 1.59 = 10.43 cm*
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M, = 500000 sin 70° 20’ = 470080 N-mm

M,, = 500000 cos 70° 20" = 160830 N-mm
7 M, u +1L/fﬁ
gy L
470080 160830
= o°= 104300 " ' 15900
=451 u+ 106 v (~- =0 at neutral axis)

£ 4.51lu + 10.6v =0
which is the equation for neutral axis.

This is a line through ‘O inclined at tan~'(-0.426)
or =23°4" to U

Example 10.3 A simply supported beam of T-section, 2.5 cm long carries a
central concentrated load inclined at 30° to the y-axis as shown in Fig.10.9.
If the maximum compressive and tensile stresses in bending are not to exceed
75 MPa and 35 MPa respectively, find the maximum load the beam can carry.

Mv
Y, v 30° P
N 1
B % ! A &
A < L > -
N 1 £
1 e : ¥ 2cm
N s
4 3 \ I ’
y 7 | i
\\ : r/
" /
e : b 15cm
\\ [l
At
¥ -t Mu
" J
] x, U
e
1
I N
I \\
i %
az ) : I b
1 2cm » X
] \\ i
1 5
|
1
[}
Y
Fig. 10.9
Solution. Total area = 46 cm?
T 20x1+26%x8.5 -
y =h—— e v 5030 gl

46
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2° . 2
i 10;‘2 +20%(4.239)% + 22137 6(8.5- 5.230)2
= 978.703 cm?
;oo 2x100 13x23 R 2
e g 12 A
I sl
=i, and o= 1,
Using tana = _Iiit&nd)
v
_ 978.703 X
= tana = memey X and0” = 32228
oS o = 72.76°
Pcos30°x2.5
Mh’ i 4
866 x 2.
i &16-?12_5:54.125“0-21)
M, = f—ﬁmjo—xz'szm.zsmo—zp

Max. compressive stress

ADVANCED STRENGTH OF MATERIALS

Mrva Mvu/{
o oo S s e
4 Iu Jfrv
54.12x 1072 x Px5.239 31.25x102 x Px5
== I5= +
978.703 175.334
= P =6351:14 N

Maximum tensile stress

M, xvp % M, xug
/9 i

Opii=
v

=5 35 = (-0.28973+8.89116) P x 102

= P =5819.46 N
Permissible load = 5819.46 N

—
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Example 10.4 A cantilever beam of I-section is used to support the loads
inclined to the P-axis as shown in Fig. 10.10. Calculate the stresses at the
corners 4, B, C and D. Also locate the neutral axis.

v

5 kN 0 kN
30°
Horgis M B
T = T
2cm i
T |
1
10 kN 5 kN i
. 1 : \:/ 20 cm
N I
R ; My ——--——---41-- G it it ot
R i !
Je——1.5m—fe— 1 m—> |
—= I bof—
! 2cm
J_ I
1
1
2cm : ¥
¥ e : D
< 15¢cm >
I
Fig. 10.10

Solution. M, = 10*cos30°x1.5+5x10%c0s45°x2.5 = 21.8275 kN-m

M, = 10%sin 30°x 1.5+ 5x 103sin 45°x2.5 = 1.3375 kN-m

15x20° 13x16’

L==5 o = 556267 cm?
Zx2x15 16527 g
I, = D e oo
c ih L) +' M, u
IZ! IV
For point 4, u, = 7.5 cm, V=10 cin
M, = +21.8275 kN-m
M, = 13375 kN-m
_ 218275x107 x10 ' 1.3375x7.5x10° e
Cd 5562.67 TR O e .

For peint B, up=T.55cm, vgp = 10 cm
M, = +21 8275 kN-m
M, = -1.3375 kN-m




