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: REVIEW QUESTIONS

ity 9 9 ; j
= LRI Lol gl = 30.41 MPa Write short notes on the following :
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Cldama . v el (i) Neutral axis
| i1
M, = +21.8275 kN-m 1
; ¥ (ii7) Centroidal Principal Axes

M, = +1.3375 kNem
~21.8275x10° x 10 1.3375x 7.5 10° NUMERICAL FROBLEMS

Gcr= 5562.67 ™ 113567 = -30.40 MPa 1. Ifthe maximum bending stress allowed in the cross-section of the beam
' : shown in Fig. is 15 MPa, determine the value of P.

For point D, wup= 7.5 cm, vp = 10-em [Ans. P = 5.63 kN]
M, = -21.8275 kN-m . -
M, = —1.3375 kN-m N 10 cm
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5 2. Calculate the stresses at point 4, B and C of the cross section of the
beam shown in Fig. given below. [Ans. 396, —172.5, 160.6 MPa]
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4. An I-beam section is loaded as shown in figure. Determine the stress
at 4. Also locate the position of the neutral axis.

[Ans. 385.4 MPa, 83°.23" clockwise form x axis]

3 ]

P=8kN P=5kN
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Shear Centre

11.1 INTRODUCTION

Most examples of beam bending involve beams with the symmetric cross
sections. However, there is an ever increasing number of cases where the cross
section of a beam is not symmetric about any axis.
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Loading

Fig. 11.1

Referring to Fig. 11.1, when a load is applied to a beam along an axis of
symmetry, the displacement of the beam is directly down. No twisting takes
place. In this case the flexural formula can be used to calculate stresses at any
point in the beam.

If the cross section of a beam does not have a plane of symmetry, the
displacements get increasingly complicated. Fig. 11.2 shows different possible
loading situations for a non-symmetrical beam. In case 1 the load is applied
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to the left of the beam. In this case the displacement consists of both a
translation down and also a counter-clockwise twist.

4

| Position ’
I hefore
loading
Case 1 Case 2
- oy ~N
B - \\ " ~ -3
- =3 R i
- - \\ ~
i = v e ~ b,
i A Position 5 ~
\ o3 \ A \ / )
\v/’ N i aﬂer /l PR
>
e loading L
AL ’ ¢
\\ \ ’1 “>
\\ \\ ,’ /h\ s
7
e G
v i)
~
Fig. 11.2

[n case 2, the load is applied to the right of the beam. This produces a
displacement that contains both a translation down and a clockwise twist.
Somewhere between these two extremes we would expect a point that we could
apply the load and produce only a displacement without twisting. This point
is called the shear centre of a beam.

There are several advantages to loading a beam at the shear centre. First,
the path of any deflection is more obvious so that clearance problems can be
avoided, the beam translates only straight downward. Second, the standard
deflection formulas can be used to calculate the amount of deflection. Third,
the flexural formula can be used to calculate the stress in the beam.

The simple flexure formula 6 = My// is valid only if the transverse loads
which give rise to bending act in a plane of syminetry of beam cross section.

~ In this type of loading there is obviously no torsion of the beam. However,
in more general cases the beam cross section will have no axes of symmetry

and the problem of where to apply transverse loads so that the action is entirely
bending with no torsion arises. Every elastic beam cross section has a point
through which transverse forces may be applied so as to produce bending only
with no torsion of the beam. The point is called the shear centre or centre of

flexure.
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The shear centre for any transverse section of the beam is the point of
intersection of the bending axis and the plane of the transverse section. Shear
centre is also called the centre of twist. If a beam has two axes of symmetry,
then shear centre coincides with the centroid. If a load passes through the shear
centre then there will be only bending in the cross-section and no twisting.

11.2 FLEXURAL AXIS OR BENDING AXIS

Flexural axis of a beam is the longitudinal axis through which the transverse
bending loads must pass in order that the bending of the beam shall not be
accompanied by twisting of the beam.

In Fig. 11.3, ABCD is a plane containing the principal centroidal axes of
inertia and plane 4B'C’p is the plane containing the loads. These loads will
cause unsymmetrical bending.

In figure 11.3 4D is the flexural axis.

C
Cl
A
; B r B' jl 7
7 : .
~ /
Z i
; 1 ',a” D
] =
; el
Z . e R
- / "’."" "
; 4 4 et
3 ! G
Z & e
; A Moy o
“ e
s i
7 a2 e
Fig. 11.3
11.3 SHEAR CENTRE FOR CHANNEL SECTION
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Consider a beam having the cross section of a channel. Bending of this
channel takes place around the horizontal axis. By taking an arbitrary cut at

C-CinFig. 11.4(a), g and T may be found. The variation of qand 7 is parabolic
along the web. [Fig. 11.4(5)] s

The average shear stress ta/2 multiplied by the areas of the flanges gives
a force Fy = (ta/2)bt, and the sum of the vertical shear stresses over the

area of the web is

These shear forces acting in the plane of cross section are shown in Fig.
11.4(c) and indicate that a force 3 and a couple F 4 are developed at the section
through the channel.

Physically, there is a tendency for the channel to twist around some
longitudinal axis. To prevent twisting the externally applied forces must be
applied in such a manner so as to balance the internal couple Fh.

Consider a vertical force F applied parallel to the web at a distance e from
the web’s centre line [Fig. 11.4(c)]. To maintain this applied force in equilibrium,
an equal and opposite shear force F3 must be developed in the web. Likewise,
to cause no twisting of the channel, couple Fe must be equal to couple F,A.

Eyh = Fe ) aldsdF= F3

1

F F 2F It
_ byh Bbi(h/2)  bEn?
s 1 Mgl by

= T O U iy 0 a
I= Lyep+ ﬂange—ﬁtg +2 12 1"+ ot 5

~ T]E:h2(6b+h) (neglecting #%)

3 prdss shy

6bth , I

3bt

So finally, e=

e is independent of the magnitude of applied force Fas well as of its location
along the beam. The distance e is a property of section and is measured outward
from the centre of the web of the applied force.
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The shear centre for any cross section lies on a longitudinal line parallel to
the axis of the beam. Any transverse force applied through the shear centre
causes no torsion of the beam. When a member of any cross sectional area
is- twisted, the twist takes place around the shear centre, which remains fixed.
For this reason, the shear centre is sometimes called the centre of twist.

For the cross sectional areas having one axis of symmetry, the shear centre
is always located on the axis of symmetry. For those that have two axes of
symmetry the shear centre coincides with the centroid of the cross sectional
area (case of I-beam).

The usual procedure of locating the shear centre consists of determining
the shear forces, as F; and F, at a section and then finding the location of
the external force necessary to keep these forces in equilibrium.

11.4 SHEAR CENTRE FOR I-SECTION
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Fig. 11.5

Let us assume an I-section with dimensions shown in Fig. 11.5. This cross
section has a horizontal axis of symmetry and the shear centre is located on
it, where it is located remains to be found.

Applied force F causes bending and shear stresses only in the flanges. Let
the shear force resisted by the left flange of the beam be F,, and by the right
flange, F,.

For equilibrium

Fi+ F,=F
Likewise, to have no twist of the section,
From =M, | =0 :
Fe| =JF5h
= Fey, = Fih
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Thus only F, remains to be determined to solve the problem. This may be
done by noting that the right flange is actually an ordinary rectangular beam.
The shear stress in such a beam is distributed parabolically.

Since the area of a parabola is 2/3 of the base times the maxjmum altitude

2

FZ 7 gbz (qZ)max
Since V="F G
2l

Wik e

where Q is the statical moment of the upper half of the right hand flange
and 7 is the moment of inertia of the whole section. Hence

; %hszQ

max 7

2050 2hby byt by

o B T e
h 1,63 _hl)
T 421 Tok

where /, is moment of inertia of the right hand flange around the neutral
axis.

=igh

€2

where 7, is moment of inertia of left hand flange.

Example 11.1 A beam of channel section carries a vertical load and is supported
so that two flanges are horizontal. The flanges and the web (D) and the width

of the flanges (B). Show that the shear centre is at a distance 3B2 /6B +D
from the web.

Solution.

B
@
o

«—B ——»

Fig. 11.6
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In article 11.3, we have proved that

b
h

Pl
3b

Replacing b, by B and % by D, we get

=
6B+ D

Example 11.2 Explain, why a single channel section with its web vertical
subjected to vertical loading as beam, will be in torsion unless the load is applied
through a point outside the section known as the shear centre.

Find its approximate position for a channel section 6 cm by 6 cm outside
by 0.5 cm thick.

Solution. For a channel section with the loading parallel to the web, the total
shearing force carried by the web must equal F'and that in the flanges produces
two equal and opposite horizontal forces. For equilibrium, the applied loads
causing /' must lie in a plane outside the channel.

0.5% 63 5.5(0.5)°
Here, « ~ [g= 1; +2{ (]2)

+5.5%0.5x 2.752]

I

50.7 cm®

F 4 «—— 7 ——p

2 i

Fig. 11.7
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FAp _ F(2)2.75

e e 0054] Fr
force R = J“Etdz
575 +
0.0543 [ z2
= —Fl5| =0448F
2 2l

For equilibrium #2 = R x 5.5

0.448F x 5.5

=% h= H_F—: 2.47 cm

Example 11.3 Determine the shear centre of the channel section shown in
Fig. 11.8.

<+————10cm _\L
T e e t=1cm
T

w=1cm

¥
1

Fa
F—e“‘% 4
e ——— t=1cm
< 10 cm o T
Fig. 11.8
: : by
Solution. e =
wh
&t
3bt
Here by=10-1=9cm
h=15-1=14cm
w=1cm
t= Fcm
~1~><9
el= PR s Minien =-3.57
I T T
bbb X
6  9%xl
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Example 11.4 Locate the shear centre of the cross section shown in Fig. 11.9.

H, s ’ 2cm
7 "l 1em T
— s
,,,,,, & A DA 15 cm
-« e —>
Fq: ; _L
He=—x .= Hy |-2cm

e cm—-—-l-}-—a cm—bT

Fig, 11.9
Solution. H, = J“CdA
FAy Prs
= | ——dd=— | AydA
Jh uj ?
F 3
e A 5 23_x 6.5 dex
£ fya-4)(69
= 1w 26 Bk
21
2)
= i 3x—x—-
2 0
Sy
R
Fogd
I = 5702(4—x)x6.5x2dx
2
= Lg e S
i/ 2 5
_104F
=

Taking moments about point D, we get
FR (25 Z(Hl —H2)6S

= 2(104—58.5)6.5><§
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Now FR =0
_ 2x455x65 5915
= gi= 7 = 7
5 3
T W AR o) LES
12 12

= 2[4.667+591.5]+110.917

= 1303.251 em?

-84y 0.454 cm A

T BEnr . CienAL

B T T T T e e e o |
| USEFUL RESULTS |
| 1. For channel section |
I o A I
| LR e |
| 24— 2420 |
I 3b, 36yt l
| 2. For unequal /-section |
| _ M |
| L ke A Ay |
e T e %, L W N WP oY SN |

EXPECTED DERIVATIONS/EXPLANATIONS
1. A channel section has a web /4 deep and w thickness and flanges b,
wide and t unit thick. Used as a horizontal cantilever with the web in
a vertical plane, it carries an end load #. Determine the position of ¥

relative to the web in order that the cantilever shall not be subjected to
torsion.

4

1
— b,

1 wh
1+ —-——
6 bt

2. Explain, why a single channel section with its web vertical subjected
to vertical loading as a beam, will be in tension unless the load is applied
through a point outside the section known as the shear centre.

Hint : Derive ¢ =

REVIEW QUESITONS
Write short notes on the following

(i) Shear Centre
(ii) Flexural Axis

i
i

SHEAR CENTRE s
NUMERICAL PROBLEMS
1. Locate the shear centre of the section shown in figure.

[Ans. 1.37 cm]
3 i
g > ;
1cem I
T |
i 1¢m !
1
R Y i
oo nE L TRt 1__| 6em
4 cm “':" """" T
1
! 1
! T !
| :
i Tem:—s o jem
: :’
; 1

l
|

2. Locate the shear centre O for the unbalanced /-section shown in figure,
for simple bending in the plane of the web. [Ans. ¢ = 1.02 cm]

3. Calculate the distance e from the plane of the web to the shear centre
O of the channel section shown in Figure below.

h—b—ﬂi

ol

h\2

|
|
|
I
I

Given / = 23.59 cm, b = 7.64 cm, ¢ = 1.41 cm, I = 3828.4 cm?
[Ans. e = 2.99 cm]
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Rotating Discs and Cylinders

12.1 INTRODUCTION

Stresses are set up in circular discs and cylinders on account of rotation about
their axis of symmetry. The analysis of the stresses set up in a rotating cylinder
or circular disc can be made on the basis of certain simplified assumptions.

12.2 ROTATING DISC

Let a thin circular disc be rotating at an angular speed ® rad/sec about its central
axis, normal to the plane of rotation. It is assumed that the thickness ‘¢’ of
the disc is uniform and very small as compared to the radius. Since the faces
normal to z-axis are free, there will be no shear stress on them. The flat faces
for disc will be principal planes of zero principal stresses. The radial and hoop
stresses on any element (Fig. 15) will also be principal stresses.

(o,+do,)/
Y A ’
: Cp Y
; D\ 2
; \
\
1 ;7 \
] \
| \ |
| \
! \\ d
e \(-\,
s \ .rl
i Al
|y Y
(0]
(@) (&)

Fig. 12.1

In Fig. 1(b) free body diagram of an element ABCD is shown, such that
the radius of the face DC is r and that of 4B (» + dr) and the element is bounded
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within radial lines 40 and BO subtending a small angle df at centre O. The
hoop and radial stresses at radius » are represented by ¢, and o, N/m?2. Let
the radial stress at radius (r + dr) be (o, +do, ). Let p be the density of the
material in kg/m?, then F; N/m, the centrifugal force on the element due to
rotation will be equal to the product of the mass of the element and the centripetal
acceleration.

Considering the equilibrium of the element and resolving the forces along
the radial line, we have

F,+(0, +doc,)(r+dr)dot - o, (rddt)2c, (dr1) sin? =0

Neglecting the product of the two small quantities and substituting the value
of F; and also assuming that

9 do

(prd@drt) o’r +[c,dr +rds, - o,dr|tdd =0

2+c,.+r@ D)

= 2
= gy = gner 3

12.2.1 Strain Considerations
When the disc starts rotating, due to centrifugal force on each and every
element, it will tend to expand.

On account of rotation let » becomes » + uw and » + dr becomes
r + dr + du, then radial strain

' (dr+du)-dr du i
e e )
Hoop strain at radius » -

2n(r +u)-2nr y
Cp= S -3
Now E. = @:i(gr _Vo'h) 4)
# 7 i O
and € = E:i(ch_"c ) (5)
e e L :
Solving the Eqn. (4) and (5),
O CAYEY T
o= Al ) «©)
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= i(mﬁq '
Gy 1-ve\p dr (7)

Putting Eqn. (6) and (7) in Eqn. (1)

d’u du u w2
r._+___ = ey et 2 2 ’
dr* dr r P E (] V )r
d’u ldu u w? .
or Tt = —p—(1-2
er rodr ',,2 P E (] Y )F (8)
Complementary function of differential Eqn. (8) is
dfteywsl du
—_— =
ar?  rdr 2
p Pu d (o
dr? dr\y) =0

which on integration gives

o e

o e AHO)
where 24 is a constant of integration.

Equation (9) can be rewritten as

p Sy
Gy e
o 24r
J ’
= e —
% (ur) = 24r
On integration, we get ur = Ar? + B
u
0, .87 Bl
3 A+ <% ..(10)

r
where B is another constant from Eqn. (9) and (10), we get

di o pisan
dr o A_‘Z (11)

¥
For finding the particular integral of Eqn. (8) assume

Tt
U =acy il 2))

where ¢ is a constant.

ﬁ
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u
or : —fx o2
{3
By differentiating Eqn. (12)
du
AT 3er?
d*u
T =6cr, w13

Substituting Eqn. (12) through Eqn. (13) in Eqgn. (8)

— 6cr+%3cr2 —cr = p%(l—vz)r
2
or G _%(]_Vg)

Thus from equation the complete solution is

U B pw 23 2
;—A+r—2‘——SE—(I—V)r (]4)
du B 3pm2 75 )

Putting these Eqn. (14) and (15) in Eqns. (6) and (7), we get the radial
and hoop stresses as

E B w?
G, = (]ﬂvz){(l+V)A»(lwv)r—2~(3+v)pg—E(l-y2)r2} (16)
o, = £ [(HV)A+(1—v)—%—(l+3v)@;—l—(l~v2)rz} 1
A Y r? 8E

The values of the constants 4 and B will depend upon the end conditions.

12.3 HOLLOW DISC (DISC WITH A CENTRAL HOLE)

Let R, be the outer radius of the disc and R, the radius of the central hole.
The radial stresses at these radii will be zero. These conditions will help to find
the values of constants of integration 4 and B.

From Eqn. (16_)

B 2
(]+V)A—(1—V)-§Ii- = (3+v)%(l—v2)R]2 - {18)
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B 2
and (I+V)A—(1—v)—— S pw 2\ p2
B (3+v)—8-E—(I-v ) B3 2419)
Solving the Eqn. (18) and (19), we get
2
A= (B+v)(1-)E2 (p2 | p2 4
(B+v)(1-v) o (RF + R3) (20)
b
A= 3+l Liskuif, SN
(B+v)(1+v) 5 (R~ R3) (21
Putting these values in Eqn. (16) and (17), we get
3 _
_ po o e RS
‘cr - (3+v){R, +R§ - ;e -2 .(22)
&, pwz (3+V)(R2 R2 RIZR% 2
h —8 T 45 5 2)+7—"—(1+3V)r ,__(23)
(7) For maximum value of (o
dbse
dr
) p(l)z (3—!—\/) 2R1 R2
d Tk i)
= r= JRR, .(24)

2
() max = -‘%(H V) (R - R,)?

(if) Maximum value of oy, will occur at » = Ry

(cr,;,)matx = ~m;)—2[(3+v)R12 +(1—V)R22}

12.4 SOLID DISC
In this case,

At = R]’ Gr = O
and at r=0,

By Eqgn. (14), we have

a

__ﬁ
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Egn. (14) with condition at » = 0, u = 0 gives B = 0.
With the help of first condition (at » = R}, o, = 0), we have from Eqn.

(16) for a solid disc

EO—Z—(%- v)(1-v) R}

= 25)
B=0
Thus from Eqgns. (25), (16) and (17), we have
= pml 3 RZ W
g B (26)
pw? 2 5
W <ig/ (B+v)Ry —(1+3v)r AT
Now, o, will be maximum at centre
-
2
po
— (op) ety (3+v) R ..(28)
o, will be maximum at» =0
pn? 5
- (Chdiax g P EUR (29)

12.5 DISC OF UNIFORM STRENGTH

A disc of uniform strength is the one in which the values of radial and
circumferential (hoop) stresses are equal in magnitude at all points in the disc,
hence

G, = O, =0 =constant

Consider the equilibrium of the element ABCD of the disc shown in
Fig. 12.2. Let ¢ be the thickness of the disc at radius » and ; + A; at radius

r+ Ar , outward radial force acting on face BC
= ot +Ar)(r+ Ar)A0

= G(Ir + AL+ IAr) AB

Centrifugal force acting on the element ABCD is
= p(radAr t)mz,i-

Inward radial force acting on face 4D = otrAB
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Inward radial force due to component of forces acting on faces 4B
and CD

= otArAD

I
\
I
\
!
|
|

|
1—toi—-—-—--»;.
1
I
T
[
I
|
|
|
|

'

Fig. 12.2
For equilibrium of the element,

Total inward radial force = Total outward radial force
CirAD+ ot ArAB = ot +rAt + tAr) AB + p(rAd Art)o?r

orAtAD + pABAriwZr? =0

At g)2
T TR RAL
4 C
dt 2

=, =2 —pm—rdr
¢ c

Integrating we get

&

I ¢ pm2r2+l 4
= T n
O,

where’ E)Jn 4 is a constant of integration.

L el
& 2c
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Let t =1y at r = r|, then

which gives the thickness of disc at any radius.

12.6 ROTATING CYLINDER
Stresses are set up in a circular cylinder on account of rotation about its axis

of symmetry.
Consider a circular cylinder of inside radius 7, and outside r, rotating at speed
o (Fig. 12.3).

= I 7

/ s i 7 // g . /‘/ ; 4 I_/ ,_(/

oo L0 B L

/ L 7 / // /
e e L e i T Al s s g e e et | 5
o] z

: / /
Fig. 12.3

Assume that plane sections of the cylinder remain plane during rotation.

The axial strain along the z-axis will be independent of the radius r of the
cylinder and will be constant.

1 du

Radial strain €, = —[0, ~ V(S0 + S .(30)
1 u

Hoop strain g, = E[Gh —v{og+ G:)] S (B1)
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1
Axial strain ¢, = E[Gz ~v{o Gh)]

From Eqn. (31), we have

Ey = F[Gh = V(Ur +Gz)]

Differentiating with respect to r,

Edu

ar dr

= o, -v(o, +a,)
By Eqn. (30),

(ol o jflev) r[d"h . v(“’“r x "’"zﬂ

ar dr ar
From Egn. (32),

Ee, = 0,-v(o, +5,) = constant = C,

6, = Ci+v(o, +0,)

Differentiating with respect to #,

5. vl:dcr +d0'h}

dr ar dr
Substituting in Eqn. (33), we get

: dc do do, do
(o, —o,)(1+v) = r[ drh _V{ di‘r +V( ar 5 drh JH

= r[(l—vz)a:—h—v(] A v)do’]

2 dr

d o
O, -0j = r[(l—v)jj;h——v—;—”]

i ch—v(o,+0:)+r[d—0’i—v(ﬂ—&

dr

)

(329

..(33)

(34)

Also considering the equilibrium of an element of the cylinder between
angular positions 9 and 0 + 40" and radii » and r + dr, we can get as in the

case of rotating disc,

dc
O, =0 = —[r drr +pm2r2]

(35)

k.
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Comparing equations (34) and (35)

r[(l—v)dch —v@] = —{%1"—+pm2rJ

dr dr 1
dGe dG,. dGr_ 2 )
= = = = +pwor
L [ S
do, do, 5
(I—V)d—r"i'(l V)? = —pO°r
do, do, :
—v)| —L—+—=2| =
(1 v)|: drisadr J el
do, doy, Lo _ P ey,
dri | dr (1-v)
d bl 2
AR R T L
Integrating,
202
g0 5
2 e
G, +0y (17 V) 2 2
where C, is a constant of integration.
Adding equation (35) and (36),
do'f' 2 Z:I p (‘Ozrz al
= - +pwers (- ———
<< I:r gk T e

. -2
26, +ra;i = —szrz{ S 2 ]+Cz
[

2.3
: ® 3-2v
2r0,+r2di’ = - 2r (1_v]+rC2
2,3
473 S+ Latre (13— 2 S
R L s

199

...(36)
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5=
W (3=2VNE, G,
G, = - B g 5 L
£ Rokg ( l—VJ 2 A5 @7

Substituting in equation

O'h=—|3

Firdls :
s  E) G #
( "]+—2 B3 .(38)

8 I-v 2.y
Equations (37) and (38) are the governing equations for a rotating cylinder.

12.7 SOLID CYLINDER

From Equation (37) and (38)

&5 qCy - m2r2(3+2v
Ty = ey | e g A

Cr —Cy— w?r? (1+2VJ

Qg ot i e

r

Constant C; must be zero, since the stress remains finite at » = 0.

. 1(3+2
2 [ i V]pwzrz

T TR B Ty
ey S5 D
Vol a0
e B 8(1—»:)’) ’

For a solid cylinder with a free surface at » = r,.

G =
o= %(3112VV)P(92[r22 —r2] {39)
= %(31‘_2V"]pm2[r§—[;j‘\j)rl} .(40)

The maximum stresses occur at the centre of the cylinder,
At centre, ¥ = 0

1{3-2v
(Gr)max = (Gh)max =§( 1—v ]pm2r22 ..(41)

b
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12.8 HOLLOW CYLINDER
From equation (37)

C_2+§;_l[3‘zvj Suirs

U"ZZ re SE\I=

6, =0 oty = rilandn=n

C C; 1(3-2v
0:__2“'__217_( ] 20

Solving for €, and Cj,

D3

2158

o l(3—2\f]pmz(rlz+r22) | LISRARY, GUDLAVALLE

|' Call No: Gezo. 12
a AccNo: 19791

1({3-2v R by
i [V el
C3 8[ l—va e

? 1
i Gudlavalleru Fngs, Colles
U

=

e B

|
|
é
|

..(42)

Ll 3=2V b=t 5 r12r22 (1+2v] 2
= O+ 1y r
o 5= 8[ P )p I:] 2 }'2 3= 9y (43)

Gy, is maximum at » = r,
I 3e2uiNa% 1-2v\rd
(Gh)max = Z[ Ve ]p(&) 15} |:1+(3—2v g (44)

I"]
Lat 0 then
L)

Q
£
I
00'.—-
e
| &2
| |
(8]
55
Rt ciE
o
e
(%}
o = a
~
[ve]
+
~
[ye]
|
[o*]
[ 3%)
|
o
X U

{3203
7y e gl (45)

Comparing equations (41) and (45), we can observe that (Gh)max in a

cylinder with a small hole at the centre is twice that of (o, )max inasolid cylinder

For o, to be maximum,
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2.2
= _2r'+'—-—2ri 2r2 — 0
i
= r=\rr ...(46)
$
1({3-2v e 1
‘ (e e g(ﬁJsz(f'z =5 -.(47)

Example 12.1 A hollow cylinder of 40 cm external diameter and 20 cm internal
diameter is rotating at 3000 rpm. Determine the distribution of radial and
hoop stresses in the cylinder. Density of the cylinder material = 7800 kg/m?,
V=i

Solution. For hollow cylinder

_ If3=2v 2 2. o ritrf 2
S g[ lu-v]pm (?‘! S ’,2 e F

2
: 1[3—0.6JX i X(Qn x 3000)

8.1-03 60

J:]Oz +202 _M_erX]O4

e

= 0.329927 x 10‘4(500 5 @ = rz]
X
(0,.)max alri= ,,‘rl 15}
=L r= J10x20 = 14.142 ¢m
r cm 10 14.142 15 20
o, MPa 0 3.299 3.207 0
e O+ +—— ¥
Oh 8(1*\!}3 [‘ T2 Akl h,
= 0.329927 x 10~ [500 i slli e 0.6667r2]
3
r cm 10 15 20
o, MPa 27.493 17.41 10.997
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The variation of stresses is shown below :

30

27.493
] 20 Sn
< 10.997
=3
(7]
3 10
7]
3.299 s,
T L I T
0
125 14142 15 §75 ut

r(cm) ————»
Fig. 12.4

Example 12.2 A turbine rotor, 0.4 m external diar
diameter is revolving at 1000 rpm. Taking the weight 0" ;
and Poisson’s ratio 0.3, find the maximum hoop and padiak Stressesassuming

peter and 0.2 m internal
f rotor as 7700 kg/m3

(i) rotor to be a thin disc
(if) rotor to be a long cylinder
(iii) rotor to be a solid disc
(iv) rotor to be a solid cylinder
Solution. (i)‘ For thin disc

21N g 27 x 1000 10472 rad/sec

w =

60 60
pw? 2
(Gf‘)max ke g (3+V)(R1—R2)
2
4.72)".
= 7700><(;0 72) (3.3)(0.1)3 N/m2

0.3475 MPa

2

(6 )ess = %[(3“) RZ +(1-V) R3]

2
- T0XOAT  5y2 4 07(0.0°] i

= 2.93 MPa
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(i) For long cylinder 5 ‘ 2
T . " (3+0'28Jx7800x[—————2n 23400) %252 x 107
(Gr)mﬂx = 8 ( l—V](R]_RZ)
= 12.625 MPa
7700 % (104.72) (2.4] (0.1)? ¥ e o
=8 8 a7 Ve 3+v =5
%7 (Gr)max = ( 8 )pmz(rz _rl)
= 0.3619 MPa
) 3+0.28 2 2 &
080 o 2 2 =[ Jx7800>< 80m)”“ (25-5)° x 1074
(o4)... = 4(17\/)[(3;2\»)121 +(1-2v) R3] (80m)"(25-5)
- = 8.08 MPa
7700 x (104.72) [ ) 2 ;
- 2.4(0.2)> +0.4(0.1) ] N/m? ' S T R )
; = W+
4x0.7 (Gh)max = i po S Fo+ T
= 3.0157 MPa
(iii) For thin solid disc i
il 0‘28) x 7800 x (807) x (i 028]25%25 g0
P> 4 3+0.28
= = 2
(c‘")max e (Gh)max o 457 (3+ V)Rl = 25.472 MPa
2 Example 12.4 A thin uniform steel disc of 25 cm diameter with a central hole
2 7700 x (104.72) (3.3) (0_2)2 L2 of 5 cm diameter, runs at 10000 rpm. Calculate the maximum principal stresses
% and the maximum shearing stress in the disc. v = 0.3, density = 7700 kg/m?>.
= 1. 390db Solution. The maximum principal stress for thin disc
(iv) For long solid cylinder 5
cw ) 2
' max (Gh )max = Rj 7
8 1-v 2
7700 %(1047) g 7720 (1000:(; 2'“] (0.7%0.0252 +3.3x0.125%) N/m?
8 ' 2
0 =110 N/mm
= [ﬁ) (0_2)2 N/m?2 The maximum shearing stress at any radius is given by
e ! I
= 1.4475 MPa et 5(c;l -6,) = 5(0,, -0,)
Example 12.3 A disc of 50 cm diameter and uniform thickness is rotating
at 2400 rpm. Determine the maximum stress induced in the disc. If a hole po? R RS 5
of 10 cm diameter is drilled at the centre of the disc, determine the maximum = (3 it V) 72 j (] K V)’p
intensities of radial and hoop stresses induced. Take v = 028, P = i
7800 kg/m?. ‘ The greatest stress difference will occur at r = R,
Solution. For the solid disc s 2
0. 12
. Prove TP [10000 2 2“] 3 g R i : 2 0.7x0.0252 | N/m?
= 3+vY 33 ha e 60 0.025
(0 s = () =  Jo0? =
=55 N/mm?
e e
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Example 12.5 A solid rotor of a turbine is 0.6 m in diameter at the blade ring.
It is keyed to a 50 mm diameter shaft. If the minimum thickness is 9.5 mm,
what should be the thickness at the shaft for a uniform stress of 200 N/mm?
at 10000 rpm ? Take density = 7700 kg/m>,

#
_prie?
Solution. = de 2o
Atr=03m '
_po?x0.09
=05 =i =20
At r=0.025m

_po)sz.OOE
t= Ae 2o

_po’x 0.0894

FH)NSe 20
I iy 0[10007[)2 0.0894
1 = 95¢ 30 2x200x10°
| ; =095 pl.89
| [}

= 63 mm

Example 12.6 A turbine rotor is 15 cm diameter below the blade ring and
2 cm thick. The turbine is running at 36000 rpm. The allowable stress is
150 MPa. What is the thickness of the rotor at a radius of 5 cm, and at the
centre. Assume uniform strength. p = 7800 kg/m3.

_Pﬁ p o d
Solution. e T (r 5 )
At = 5 cm
___ 7800 2136000 y
1= g 2x150x10° "( 60“77) (25-56.25)x 1074
= 2144 =15 3 R yaa—dtaidd e
Atr=20

7800 x[_ZJt x36000

2
T 3%150x106 = -4
t = 2¢ 3x150x10° 60 ) (-56.25)x10

= 2407854 = 2 x 79928 = 15.985 cm
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Example 12.7 A grinding wheel is 300 mm diameter with the bore at the centre
25 mm diameter. If the thickness of the wheel at the outer radius is 25 mm,
what should be the thickness at the bore diameter for a uniform allowable stress
of 10 MPa at 2800 rpm ? Take density of the wheel material as 2700 kg/m’.

27
Solution. W = 6—0X2800 = 293.215 rad/sec
c = 107 N/m?

p = 2700 kg/m?
ri=0.15m, 7, = 00125 ¢ = 0025 m, 1, = ?

2
_porf
[l = de 20

{ 2700x(293 215)° x(0.15)°
= Ae

= 0.025 o
= A = 0.025¢7926115 metre
= 32.46 mm
por
Iz = Ae 2o

—2700x(293.215) (0.0125)*
= 32.46e 2x107

=il 466—() 0018135

= 32.40 mm

EXPECTED DERIVATIONS
1. For a rotating disc with a central hole, show that the maximum value
of radial stress is found at a distance m from the centre of disc,
where R| and R, are the inner and outer radii of the disc respectively.
(UPTU 2001-02)

2. Starting from the basic principles, derive an expression for the thickness
of a solid rotor of uniform strength. (UPTU 2001-02)

pwz(rz )
= e
Hint : Show thatf =f5e 20 '°

3. Prove that the maximum circumferential stress in a rotating disc
with a central pin hole is twice the value for a solid disc of the same
dimension. (UPTU 2002-03)
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USEFUL RESULTS
. For thin disc
pw? 2
(G")max = T(B E V)(RI = R2)
po? 2 5
(O8) ax = : [(3+ V) R; +(]—V)R2]

. For long cylinder

2,
pom-(3-2v 2
(G")max = ( J(Rl ) R2)

§ L 1-v

pw?

(Uh)max =4_(m[(3_2\’) R12 +(1 ——2V)R§]

. For thin solid disc

2
(57 ) max = () = Tg=(3+ V) RE

. For long solid cylinder

2
Ly poaf 3=2y
(Gr)rnax 3 (Gh)[nax Ty 8 ( 1 I JRlz

. For hollow disc

(97 ) uax :(3+ v): po? (12 *"1)2

[==]

2
_pr—(u
5 = Ae 20

Lo
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NUMERICAL PROBLEMS

. The rotor of a steam turbine is a solid disc of uniform strength and is

20 cm diameter at the blade ring and 2.5 cm thick at the centre. It is
running at a constant speed of 30000 rpm. Calculate the thickness of
the rotor at a radius of 5 cm. The material density is 7470 kg/m? and
the maximum allowable stress in the rotor is 145 MPa.

[Ans. 16.83 cm]

. A thin uniform disc of 25 cm diameter with a central hole of 5 ¢cm

diameter runs at 10000 rpm. Calculate the maximum principal stresses
and the maximum shearing stress in the disc. v = 0.3 and p = 7470
kg/m>. [Ans. 33.79, 106.49, 36.35 MPa]

. A thin solid disc of 75 ¢m diameter is to rotate at 3000 rpm. The material

density is 7600 kg/m® and Poisson’s ratio is 0.28. Plot the variation of
radial and hoop stresses in the disc.
[Ans. 43.25 to zero MPa, 43.25 to 18.98 MPa]

. A long hollow cylinder is of 20 cm external diameter and is 5 cm thick.

It is revolving at a constant speed of 2400 rpm. Calculate the maximum
radial and hoop stresses induced in the cylinder.p = 7600 kg/m?, 1 =
0.30. [Ans. 0.514 MPa, 4.286 MPa]

. A solid cylinder of 25 cm diameter is rotating at 1500 rpm. Determine

the maximum hoop stress induced in the cylinder if its material density
is 7800 kg/m?. Poisson’s ratio is 0.28. Also draw the variations of radial
and hoop stresses in the cylinder.

[Ans. 1.274 to zero MPa, 1.274 to 0.459 MPa]

. A disc of turbine rotor is 0.5 m diameter. At the blade ring its thickness

is 55 cm. It is keyed to a shaft of 50 mm diameter. If the uniform stress
in the rotor disc is limited to 200 MPa at 9000 rpm, find the thickness
of the disc at the shaft. Density of the rotor material is 7700 kg/m3.

[Ans. 158.43 mm]

. Determine the greatest values of radial and hoop stresses for a rotating

disc in which the outer and inner radii are 0.3m and 0.15 m. The angular
speed is 150 rad/sec. Take Poisson’s ratio as 0.304 and density
7700 kg/m?. [Ans. 1.6 MPa, 13.6 MPa]
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' Springs

13.1 INTRODUCTION
Springs are elastic bodies or resilient members which are used to absorb energy
and to release it as and when required.

Various types of springs can be designed for different purposes and places,

but depending upon the type of resilience, springs may be broadly divided into
two categories,

(7) Bending springs
(i7) Torsion springs.
The types of springs, which are subjected to bending only (and the resilience

occurs due to this) are called bending springs. Examples : Laminated springs
and leaf springs.

The types of springs, which are subjected to a torsion (and resilience occurs
due to this) are called torsion springs. Example : Helical springs.

13.2 HELICAL SPRING
A Helical spring is a piece of wire coiled in the form of helix. If the slope of
the helix of the coil is so small, that the bending effects can be neglected, then

the spring is called a close-coiled spring. In such a spring only torsional shear
stresses are introduced.

If the slope of the helix of the coil is quite appreciable, then both bending
as well as torsional shear stresses are introduced in the spring and such type
of spring is called an open-coiled spring.

13.3 CLOSED COIL HELICAL SPRING

A coil spring is formed by bending a wire in the form of a helix. If the coils |

are in close contact with each other, the spring thus formed is called a closed
coil spring. In the case of closed coil spring, the helix angle will be very small.
Helix angle is defined as the angle which the centre line of the wire makes with

210
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; : g e
the plane normal to the axis of the spring. Its value is given by tan™" - where

p is called the pitch which is the distance between the similar points on the
adjacent coils of the spring. D is called the mean coil diameter, which is the
diameter of an imaginary cylinder, which contains the centre line of the wire
that has been wound to form a spring.

13.4 CLOSED COIL HELICAL SPRING UNDER AXIAL LOAD
Considera closed coil helical spring as shown in Figure 13.1(a) under the action
of axial load.
Let W = axialload
D = mean coil diameter
d = diameter of spring wire
§ = axial deflection
G = modulus of rigidity

6 = angular deflection
n = number of active coils
1t = maximum shearing stress

induced
Torque on the spring acting about the axis
of the spring
WD
B
At any radius x from the centre O of the
wire, the shearing stress is
2%
= —.1
d
The torque d7 taken up by a ring of width

dx at a radius x will be [See Fig. 13.1(5)]

Fig. 13.1(a)

Fig. 13.1(b)
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2
dT = (27cx-dx)-(—£—}’c)-x =dnx’ r%

dj2

3 adx

Total torque, T = J 4mx 1‘7
0

de haT 6

df2
WD 4| x? Az d4_n‘:d3
o T :

8WD
nd?

=2 ik e (1)

To calculate rotation and deflection of the spring, consider an element ab
on the surface of the bar and parallel to axis as shown in Figure 13.2. After
deformation, this element will rotate through a small angle ¥ to the position
ac.

N 1  8WD
0 = — = —
e T
Also bec = ydx

The elementary angle 40 through which
one cross-section rotates with respect to the

: dx
other will be equal to 2y T

Length of the spring wire
I S RaliB,

nnD

s J 2yddx'
0

-« gx —>

Fig. 13.2

anD
0

X

D

16w D 16wD
_[ L o
. nd G TG

*aq— 2:(2)

_—

SPRINGS

13.5 HELICAL SPRINGS OF NON CIRCULAR WIRE

The use of square or rectangular wire is not recommended for springs, unless
space limitations make it necessary. Square or rectangular wire is used to obtain
the greatest load capacity in the smallest space, but this means that these springs
are highly stressed. :

213

The non circular section of the wire is also used to provide for predetermined
altering of the spring rate by grinding off the outside of the coils. For grinding
off, the required calculations become very complicated for round wire springs,
but are relatively simple for square section wire. The stress in a square wire
spring, are based on St. Venant’s torsion theory for non circular bars, which
we shall discuss in the next chapter.

The main disadvantages of the non-circular wire section spring are :
1. Quality of the material used for springs is not so good.

2. The stress distribution is not as favourable as for circular wires, but
this effect is negligible, where loading is of static nature.

3. The shape of the wire does not remain square or rectangular while
forming helix, this results in trapezoidal cross-sections. It reduces the
energy absorbing capacity of the spring.

T T .00
A l
Tr WD d 32 8WD
ER Bt et Sannrd Sy
J 2 2 nd nd
Tl WDxnDnx32 16WD%n
and 0= a= =

2Gxnxdt Gd*

Deflection § = 95

2
8W D3n
8= "Gyl (3)
| w_Gd
Stiffness & = 5 8Dn ...(4)
4W
Direct shear stress ty = 72 ...(5)
8WD  4W
Maximum resultant shear stress = o x 52 «(6)
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Spring of Square Cross Section Wire
Above results have been derived for spring of circular cross section. However,
if the spring is made of square section wire, we have

6= wse b1 degrees
i

o 7.11W Rl

Nl; radians = "—"j\-[-bgt—- radial?s i ()

where b = length of each side of square

_T.1IWRI _44TWRn

5 = RO N i ..(8)
tiffness 5 A4InR : +(9)

13.6 CLOSED COIL HELICAL SPRING UNDER AXIAL TORQUE

Consider a closed coil helical spring subjected to an axial couple M as shown
in fig. 13.3. The couple M, produces bending in the coils of the spring. Due
to the couple the coils curvature changes.

Let R, = initial radius of curvature
R, = changed radius of curvature

ny, ny = initial and changed number of coils
respectively.

1
Change of curvature = — S = My
Now, I=2nRin=2nR,m,

The angle of twist in radians, i.e., wind up angle

¢ = 2n(n, —n)
ETl
-2

SPRINGS A

For a spring of round wire of diameter d, number of coils n, and mean coil
diameter D = 2R;, we get

64nDn MO
¢~ " Enat
64 Dn M, '
T T ...(10)
M
Also bending stress o, = ;,y
A
: 'MOE 32 7 . e (i
S nd* ndd :
64 ;
13.7 STRAIN ENERGY IN THE SPRING
(a) Under Axial Load :
1 4 16W D?n  4W*D%n
Strain energy, U = ET9='4_XDX AT
_ 8WD
Now =
e nd>t
iy
2
4D%n \[ nd’c
U={Ga" )| 5D
2
= E—.x—l—xDxnde x 12
G 16
. x(nDn)(—Edz)
4G 4
2
i Sl Volume of the spring
2
T i ik ]2
Resilience of the spring Ve . (12)
£ i . szax (13)
Proof Resilience Tl
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(6) Under Axial Twist :

ADVANCED STRENGTH OF MATERIALS

1
Strain energy U= > My

64 MyDn _32My*Dn

I
= "“"M X
v L Ed*

2

3
Now M, = 2342—0,,

2

32Dn ud3°_

U= 227|132 %
2 2

Gb Ttd

Sl e D

SE( 4 J(‘lr n)

sz

e x Volume of the spring

2

o o)
Resilience of spring = 3E ..(14)
Proof Resilience = (Gb)zmax 15
Y £15)

13.8 SPRINGS IN SERIES

When two springs of different stiffness are joined end to end to carry acommon
load W, they are said to be connected in series.

S W w
Total deflection, o ;‘;*’E
k ky
ky ky
= k= m ...(16)

where k is the combined stiffness,

13.9 SPRINGS IN PARALLEL

When two springs are joined in sucha way that they have a common deflection,
then they are said to be connected in parallel.

Total load W = W, + W,
Now common deflection
' ¥ _Bows
St R,

SPRINGS 14

W
W= 7(’!1 +ky)
or k= k] * kz ...(17)
13.10 SPRINGS UNDER IMPACT LOAD
Let a weight W falls on to a spring from a height h measured from the

uncompressed state of the spring. Let /W, be the equivalent static load and &
be the compression of the spring under load W,.

Work done by falling weight = W(h + §)

1
Work stored in the spring = EWIS

1
.8) = —W;8 ..(18
w(h+8) = M (18)
8, D%n
Now 8= G4t

Thus, we can determine W; and then § can be determined.

13.11 OPEN COILED HELICAL SPRING UNDER AXIAL LOAD
Consider an open-coiled helical spring as shown in Figure 13.4 under the action
of an axial load.

______

-
Lo
\
\
1
[

———————

— g ————
Y

o M = WR sinc.
'y :
1% H
| ™5 mnns l
pl i
I i 1
pralas
i : : <«—2zR—>
. i |
vi -
b o Rl y
{ Sreaade” ] T=WRcosa Yw
| i 'l
S i o
l'w
(a) (b) ()

Fig. 13.4 Open Coiled Helical Spring under axial load
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Fig. 13.4(a) shows the annular cylinder which contains the axis of the spring . Mot 0= Tl
wire. The radius of this cylinder will be equal to the mean coil radius of the ‘ GJ
spring. The axial load W can be considered as a direct load W acting on the i
spring at the mean radius R, together with a couple WR about O4 shown in where J= =
Fig. 13.4(b). - # -
Let o = constant helix angle which the coils make with planes | M_E
5 y . and R
perpendicular to the axis of the spring. . I
D = 2R = mean of diameter of the spring coil ' | l
i . Also e
n = number of open coils , R
p = pitch of coils ‘ i Z
W = axial load b
From Fig. 13.5 have tang = =—— I =
rom Fig. 13.5(c) we have tang = ek TRt
Length of spring wire Ml
TnR or =L
zb 8 A =2n Ruseca
cosa ; nd*
Take an axis OX tangential to the centre line of the open helix at O and QY ; where S 64
perpendicular t.o OX as shown in 13.§(b?. Also take OA4 perpendicular to the For equilibrium of the spring
axis of the spring. OX, OY and 04 lie in the same plane. :
: : External work done = strain energy stored
The couple acting on the spring due to load # is equal to WR and its axis ) 2
is along O4. The couple can be resolved into two components along OX and r Yo _ LR cosa) o (WRsina) ;
[0) 4 | 2 b I F - KT
Along OX, torque T = W Rcosa L “ WR? cos? o o WR2? sin? . ;
which at all sections produces torsion about the wire axis. 5& JG EI
| Along OY, bending moment i WR2cos?a  WRZsin2a,
= i 1 = + x 2m Rnseco
M= WRsma . n/32d* x G nd* /64 x E
which at all sections produces bending moment in the spring wire. ; .2
Let § = deflection of the spri 64WR3nseca.| cos?a  2sina
.gt 5 =de gctlon of the spring under the load = pr G + 7 ..(19)
‘. | A
The average external work done = EWS Note : For a close coiled helical spring, o =0
Also, combined strain energy stored in the spring under bending and 3
e 64WR’n
torsion 1s i
] ; Gd*
==T0+—-M I
i % 2 i 13.12 OPEN COILED HELICAL SPRING UNDER AXIAL TWIST
where @ = angle of twist due to twisting moment T (a) Axial Rotation :
¢ = angle subtended by the bent wire at the centre of curvature due Consider an open coiled helical ﬁmg Uﬂs:fsthﬁta?::t‘;“ t‘:: :’:;L:Ofclnl; :155 shown
to bending moment M. in Fig. 13.5. The axial torque M, can p po 5

SIS B — —_— — .
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- Component along OX )\ M2sin2a  M3cosla
3 { = + 5 27 Rn seca
. T= Mysina Gxnd*/64  Exnd*/64
|0‘:hi:::)l;' at all sections produces torsion in the spring wire component _ 64 M, Rnseca[sin?a # 2¢os? o (20}
along U1, - B = pT G z
M Moigosg ) If a~0 then
which at all sections produces be'nding moment in the spring wire and tends 64 My Rn ; 2| 128MyRn
to change the curvature of the coils. = T +“E‘ W EdS
o -:-'r-a""\ (b) Axial deflection
[{' ( \1 Let o = axial deflection
\ i -~ b4 ?
: b N Laan From Fig. 13.6, we get
| i 5 = ROcosa - Rfsina
| L-=~d)
t ey &4 = R cosa - R sina
I's S T GJ El
| “~ec-t” b
p | i { R
Lin - ; { « o ¢
J_{ mm——il "Ii RO cos « Resina
s ! S
{ ing. O350 _ <
r"-_ bt ‘1' RO sin a Ré co8 o
borie. O e el J Fig. 13.6
b : o
\\ : ’I
,__“_? _____ _ | Rx M, s;rnacosa _Rx M, c:sasma A Rhaitr
i —d* Ex—d*
Mot ) Tk 64
Fig. 13.5 Open coiled helical spring subjected to axial torque M, ¥ - 64M0R2n5iﬂ_0t l:__]___}_] 21
Let B = angle through which the free end rotates d* G E
l h = U, =
Work done by applied torque = '2-Moﬁ NS Ll
Strain energy stored in the spring 13.13 STRESSES IN THE SPRING WIRE
1 1 (a) Axial load
U= 579+-2—M¢ Torque T = WRcosa.
From above two equations, we get g Eefing momen M S Hising
1 3 1 _ 16T 16WRsina
EMOB = Em+5M¢ Shear stress <t gleo d}
T2 M2 ; E 2M \ 32WRsina
M = —+ Bending stress o nd’ =13

GJ  EI
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Principal stresses are

ADVANCED STRENGTH OF MATERIALS

1 X
0']_2 = 9"1‘5\}0’2 +4‘172

2

nd>

léWRsina+ 16WR

16WRsine.  |(32WRsino > { 16WRcosa )
+ +4 ‘

rall i
LA

d3 nd

T

al 2
s = e sin? &t + cos? o
e (sinat1)
53 sl 2]

Maximum shear stress

1
nax = 3(01762)

Il

16WR[(sina+ 1)~ (sinc - 1)]

nd? 2
_ 16WR
i Ty
(b) Axial Torque
Torque T = Mjsina
Bending moment M = M, cosa
16T 16 Mjsina
Sh t = =
ear stress t 3 o
: 32M 32 Mycosa
Bending st = F
ending stress ¢ e =

Principal stresses are
c

'5 \(0'2 +4T2

+

[

012 =

_ 16 M cosa o5l
i )

16 M cosa. 416 M,

32 M, sina]2.+ 4[ 16 My sina
nd3 nd>

cos? o + sin?

nd? ~ nd?
16 M,
= cosa 1
Maximum shear stress
16 M,
Tmax = 1l'd3

a

.(24)

(25)
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13.14 AXIAL LOAD AND TWISTING MOMENT ACTING
SIMULTANEOUSLY ON CIRCULAR CROSS SECTION

Fig. 13.7 Open coiled helical spring subjected to axial load
and twisting moment.

If an axial load # and a moment M, act simultaneously on the spring, then
T= Mgsino.+WRcosa,
M= Mycoso.—WRsina
Total strain energy stored in the spring becomes
MEl Tl
+

ST

M, cosa - WRsina)’l Mg sino — WRcosa 2
- +

2EI 2GJ
{ Using Castigliano’s theorem,
5 = g%r: f;“-f(MO coso. — WRsino)(~Rsinat)

+ _é]'(MU sinot + WRcosa)( R cosa)

< 2!;( M, cosasina, + WR cos? Ot)
GJ

~-1£-(M0 cosasino — WRsin? a)
El

' 2 2
= IR M, sinacosa(—*—l—— —]—J+ RS I
. GJ EI GJ El
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N 2nR2nsecaMosinacosa[ = L :l

1d*G  nd°E

2 3
+2nR3nsecaW[32cos o 64sin a]
¢

+.
d*G nd*E

_ 64 M0R2nsina[ 1 2]

d* G E

64 WR3nseca, [c{)s2 o 2sin? a]
+ +

o s qi
L S L R Py, e
o oM, EI( ocosa — WRsino)coso.

+z;[7(M0 sina.—WRcosa)sina

2 a2 ; -
= M| O sin"a ) e cosasing sina cosa

_ 64MyRnseca| 2cos? a : sinZa
a* E G

Y MWRznsina[ | R ]

P G E 27}
If the end is fixed against rotation, then
¢=20
WRsino cosa[é—- El-;—]
and My = ==
’ 2cos? o i sin? it#8)
E G

13.15 DEFLECTION OF SPRING BY ENERGY METHOD
(Use of Castigliano’s theorem) :

Let us find the axial deflection of the free end of an open coiled spring with
the help of Castigliano’s theorem in the following cases :
(a) when only an axial load W acts

(&) when only an axial moment M acts.

ADVANCED STRENGTH OF MATERIALS
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Case (a) In article 13.14 we have seen that total strain energy stored in the
spring becomes :

P (Mycosa - WRsina)zi (Mgsina + WRcosoc)21

+
2EI 2GJ
For axial load only, M; = 0
(o)
6 = \aw ),

E{;(—WRsina)(—-R sina) + a%(WRcosa)(Rcosa)

IWR? sin? o - IWR? cos? o

El GJ
_ WA cos? o # sin?
GJ El

Case (b) For axial moment only, W =0

oz
b = L oW Jyeo

= -;—I(Mo cosa) (—Rsina) + -éj(Mo sina)(Rcosa)

MRI . MyRI
= e sinoacosa + SINOLCosScL
MR fx Ty
— 2 o=t o e
2 “(GJ EI)

13.16 LEAF SPRING

The leaf spring is also called as carriage or laminated spring. This is made by
placing circularly bent spring steel strips or plates of same radius one over the
other. Each plate is free to slide relative to one over the other. Each plate is
free to slide relative to the adjacent plates.

A leaf spring is a beam of uniform strength supported at the centre and loaded
at the ends. It consists of a number of overlapping leaves each of the same
width and depth but varying in length. Each leaf is shorter than the one above
it by a constant amount, called the overlap. Each plate acts as a separate beam
as it is free to slide. Each plate has initially the same curvature.
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Consider a semi-elliptical leaf spring as shown in Fig. 13.8.

Fig. 13.8 Semi elliptical leaf spring
Let W= Load acting at mid point

n = Number of plates

a = Overlap at each end
! = Length of the spring
b = Width of plate

d = Depth of plate

Then I = 2an
o
4" Ba

Maximum bending moment
i Wi
nsom: ede

Bending moment for each plate

4
4n

M=

Now bending stress

_ M
B amig
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Wi ot = 35
S e . (29)
S 4nbd? 2 nbd? (
Change of curvature for each plate after loading
1 M- Wi X7 o 3wl
R El 4n Ebd® nEbd’
d?y
Now EIE;Z” =M
R 1
dv®  EI  nEbd?
Ay o 3wl
# '“. e o J-O -[0 nkbd? .
3wl Juz Wi~ B
= —_——— X e e
nEbd? o nEbd® 8
Deflection at the centre
3w
= «(30)
8 = S nEbd
Strain energy absorbed
M2
= —— x length of the beam
e 2EI =
ba? Y
s
= ————=—x Total length of all the leaves
2E e
i
bac?
- —SE 4 Total length of all the leaves
6E
o2 ’
= — x Volume of spring
5 .
(o]
ili =i e : w3
Resilience = == (31)
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Quarter Elliptic Leaf Spring
If we substitute W = 2W and / = 2 / in Eqns. (29) and (30), then we get the
expressions for a quarter elliptical spring.

32w 6wl

R e S — A e 32
C 7 2 nbd?  nbd? 2

_ 3wy’ ews

- & .(33)

5 8 nEbd® nEbd?

w 1‘”

’;‘: ! o 5 W : 4
- d
Z ; ] I L
- ]
Tt - b

Fig. 13.9 Quarter elliptic leaf spring

Example 13.1 A close coiled helical spring of 10 cm mean diameter is made
up of 1 cm diameter rod and has 20 turns. The spring carries an axial load
of 200 N. Determine the shearing stress. Taking the value of modulus of rigidity
= 8.4 x 10* N/mm?, determine the deflection when carrying this load. Also
calculate the stiffness of the spring and the frequency of free vibration for a
mass hanging from it.

' 8WD

Ttd3

8 x200 %100

= ———— = 50.93 N/mm’ Ans.
nx(10)

Solution. T =

- 8WD3n
Gd*

8 x 200 x (100)*20
(8.4 x104)(10)*

= 38.095 mm Ans.

Load on spring

Stiffness of spring Deflection of spring

200

m = 5.25 N/mm Ans.
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& = 38.095 = 3.8096 cm
L&
i 2n V&
= : ik = 2.55 -I / A
= 52\38005 & cycle/sec Ans.

Example 13.2 A close coiled helical spring consisting of 8 coils, each having
mean diameter 80 mm and wire diameter 10 mm. The spring is fixed at one
end and a twisting moment of 10 Nm is applied axially at the other end in such
a way that the spring tends to open. Determine : (a) the maximum bending
stress produced in the wire () the angle of twist (¢) the resilience and
(d) the number of turns after the applic,[ation of torque. £ =2 x 10° N/mm?2.

Solution. The maximum bending stress produced in the spring wire

d

M
My ( 2]_32M_32><10x103

2 it [1d4J nd® T mx103
64
= 101.85 N/mm?
Let angle of twist = ¢
' Ml

| Pk
M x2nRn| 128M Rn
E x vld’j"m Ed*

64

w7-é:re { = solid length

=5 ¢ =

128 x 10x 10% x 40 x 8 Lo
= = 0.20 radian
(2%10%) % (10)"
= 1°28' Ans.
Volume of the spring

V= a2 x2nkn
4
T2
= ZIO x2nx40x8 = 157914 mm3

o2 (101.85)% x 157914

Resilience = = = 1024 mm Ans.
8E 8x(2x10%) Bl
¢ = 2n(n-n')
: 020
== n = n—i=8—— = 7.97 turns Ans.
27 27
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Example 13.3 The stiffness of a close coiled helical spring is 1.5 N/mm of
compression under a maximum load of 60 N. The maximum shearing stress
~ produced in the wire of the spring is 125 N/mm?. The solid length of the spring
(when the coils are touching) is given as 5 cm. Find : (i) diameter of wire
(if) mean diameter of the coils and (m) number of coils reqmred Take G=
4.5 x 10* N/mm?.

e iesilion g lo (G (D = 2R)
Solution. Stiffness ; SDn
Gd*
T 64Rn
(45x10*)a*
= g g | |
= P LESAL i e e i )
. 8WD : :
©1 T
: : IGWR :
Yoit £ _'. nd>
g _,16.x60£R :
= R = 0.409064" i l(2)
By Eqn. (1) and (2) : :
' d* = 0.00014599 x &’
"—-h.._‘__ 1 1
St A
= &N = 5000145999 a2
Solid length = n x d
= 50 = nd
U %30
=2 HEL% .(4)
By Eqn. (3) and (4)
&5 x 2 ]

*4 000014599
= d=3.42 mm Ans.
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Substituting this value in Eqn. (4)
50

NE= e

3.42
2 = 14.62=15 Ans.
‘From Eqn. (2) |
R = 0.40906 x (3.42) = 16.36 mm
Mean dtameter of coil D = 2R
=2 %1636
=32.72 mm Ans.
Example 13.4 In a cross-coiled spring, the diameter of each coil is 10 times

- _that .of ‘wire of the spring. The maximum shear stress is not to exceed

60 N/mm?. Maximum permissible deflection under a load of 400 N is
10 cm. Determine the number of coils, the diameter of the coil and energy
stored in the coil. G = 9 x 10* N/mm?.

Solution. Let diameter of the wire = d

= 104
Load W will cause a twnstmg moment
: e WB
2
We know that twisting moment
T=—1xd?
W"Q o -T-t—TdS
2 16
D s
: 400= = —x60xd3
= 216 )
(10d) =
400~—* = —x60xd?
= 2, 616
=% d = 13.02 mm
. Diameter of the coil, D = 104 = 10 x 13.02 = 130.2 mm Ans.
_ 8WDn
Gd*

8x 400 % (130.2) x n
(9x10%) (13.02)*
= n'= 3661~37 Ans.

= 100 =
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Let energy stored = U

‘ 1
= —xWxd
U 2><

= = ‘;“X400>< 100°= 20000 Nmm Ans.

4,
Example 13.5 A railway wagon weighing 25 kN is moving at a speed of
3 kmph. How many springs each of 24 coils will be required in a buffer stop
to absorb the energy of motion during a compression of 200 mm ? The mean
diameter of coils is 240 mm and the diameter of steel rod comprising the coils
is 20 mm. G = 0.9 x 10° N/mm?, g = 9.8 m/sec?.
Solution. v = 3 km/hour = 83.4 cm/sec

1
Kinetic energy of the wagon = > X mv?

w

where m = mass of wagon =

s 1 25x1000x83.4
= ‘2T 9.8

0.8863 x 10° N-mm
If W is the axial load, for each spring for a compression of §,

= 0.8863 x 10° N-m

_ 8WD’n
Gd*

Gd*s _ 0.9x10° x (20)* (200)
8D gx(240)° x24

= Wi = 1085 N

1
Energy stored by one spring = EWS

1 :
= 1085x200=10.85%10* N-mm
Number of springs required

0.8863 x 10°
= e ST = 9 ARG,

10.85x 10%
Example 13.6 A weight of 200 N is dropped on to a closely coiled helical spring
made of 15 mm steel wire coiled to a mean diameter of 150 mm with 24 coils.
If the instantaneous compression is 100 mm. Calculate the height of drop.
G = 0.90 x 10° N/mm?
Solution. Let h be the height of drop, in mm

W = Gradually applied load in N to produce the same compression
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8WDn

Gd*
Ga*s  (0.90x10°%)(13)* (100)
8D%n 8(150)° (24)
Equating the energy supplied by the impact load to the energy stored,

= W= =707 N

1
P(h+8) = S

!
= 200(h+100) = 3 x 707100

=% h = 76.8 mm Ans.

Example 13.7 Two close coiled helical springs wound from the same wire,
but with different core radii having equal number of coils, are compressed

“between rigid plates at their ends. Calculate the maximum shear stress induced

in each spring, if the wire diameter is 10 mm and the load applied between
the rigid plates is 500 N. The core radii of the springs are 100 mm and
75 mm respectively.

Solution. n, = n,, d =10 mm
W= 500N
R, = Radius of outer spring = 100 mm
R, = Radius of inner spring = 75 mm
Let W, = Load shared by outer spring
W, = Load shared by inner spring

_ G4 Ry 64xIR(100)° Xy 6400Wim, :
‘ Gd* G(10)* G 4D

6475 Riny _ 64 xW4(75)° xny  27001yn, 5
Gd* B0 e -0 e

Similarly 8,

Since the springs are held between two rigid plates, deflections in both the
springs must be equal.

Equating Eqn. (1) and (2) gives,

270,
= S

Also W, + W,

1l

500 (%)
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By Eqn. (3) and (4),

Wy,=3516N
From relation of torque for outer spring,
$
- :
= —1,d°
WiRsGriglf !
n 3
= 148.4x100 = 72 * @1 %(10)
= 1, = 75.6 N/mm? Ans.
351.6x75x%16 >
Similarly, 1, = — 3 = 1343 N/mm* Ans.

x(10)°

Example 13.8 An open coiled helical spring consists of 10 coils, each of mean
diameter 5 cm, the wire forming the coils being 6 mm diameter, and making
a constant angle of 30° with planes perpendicular to the axis of the spring.
What load will cause the springto elongate 1.25 cm and what will be the bending
and shearing stresses due to this load ? Calculate the value
of axial twist which would cause a bending stress of 56 MPa in the coils.
E =210 GPa and G = 84 GPa.

Solution.

8WDnseca ( cos’ o 2sin?a
Sy 4 it
d G E

= 125 %102 =

81 x (0.05)° x 10 x sec30°[ cos? 30° . 2sin2 30°
(06x1072) 84x10°  210x10°
= W= 124.05 N

WD
Torque T = -—2—cosa
= 0241050 -g— x 1072 x cos30° = 2.6857 Nm

16T 16 x 2.6857

Shear stress © = 73 = 3 = 63.325 MPa
i nx(O.leO’-z) ' pe '
, WDsina .
Bending Moment M = G

= 124.05><%>< 10~2sin30° = 1.5506 N-m

i
Using Eqn. (20)
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32M  32x15506

e - =73.122 MPa

% (0.6 x1072)

Let - M, = axial torque

Bending stress ¢ =

Bending moment M = M cosa

T 32M6 cosa
Bending strress“o- % off), . 3L
32 My cos30°
= SeoMitSEr -
n(0.6x107?)
= My =1.371 N-m

Example 13.9 An open coiled helical spring of 5 cm mean diameter is made
of steel of 6 mm diameter. Calculate the number of turns required in the spring.
to give a deflection of 1.2 cm for an axial load of 250 N, if the angle of helix
is 30°. Calculate also the rotation of one end of the spring relative to the other
if it is subjected to an axial couple of 10 N-m. £ = 210 GPa, G = 84 GPa

; 8WD3nseca( coslo  2sin?a
Solution. 3= 4 G it 7

8 x (250)(0.5) nsec30° (cosz 30°  2sin? 30°)

= 12Zx16?= +
: ‘ (6x]0"3)4 84 x10°  210x10°

n=4776

64 M, Rnseca sin® o - 2cos” o
BT LI (s R

64x10x(2.5x 1072)(4.76)sec30° ( sin2 30° , 2c05230°
(6“0;3)4 84x10° 210x10°

0.687 radian

“Example 13.10 An open coiled helical spring is made having n turns wound

to a mean diameter d. The wire diameter is 4 and the coils make an angle of
o with a plane perpendicular to the axis of the coil. Prove that the angle of
rotation of free end will be given by :
$2 16WD%nsina (1 . 2
i d* G E

Solution. Total strain energy stored in the spring
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s pVE212: 9]

= Al i
o 2EF {2@&]

Putting T= Mysina + WRcosa
M= Mycosa — WRsina ¥

: (Mg cosa— WRsina)*l (M, sino + WRcose)’
We have, U= i ;
2EI 2GJ

au
o= (%)
0/ My=0

2[h(WR sin a)]cosal i 2 [WRcosa}sin ol

= o=
2E] 2GJ
: 1 1
= WRIsinocosol | — ——
G DR
Putti el fe) & Mgl
5 an T
of Be 32 64

o WRIsino coso x32( 1 2]

nd? E_E

{Wx (D/2) x (mDn/cosa) x sino.cosat 32:|( o] J

nd* G E

Il

16WD2nsin0L(l 2
G E

o G _E
Example 13.11 A leaf spring 100 cm in length is required to carry a central
load of 250 kg. If the central deflection is not to exceed 30 mm, determine
(@) thickness of plates (b) number of plates (c) the radius to which the plates

are to be bent. Bending stress is limited to 2000 kg/em?, E = 2 x 10° kg/cm?.
Width of each plate = 10 times its thickness.

Solution. Let thickness of the plate = ¢
Width of the plate = 10 ¢

cl?
4Ed
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2000 x 1002
= R L
4 x2x10% x¢
= t=0.83 cm = 8.3 mm
Let number of plates = n
£1741
. 2nbd?
3x250x%100
= AW0GE Se
= pi— L2

~ 4 number
Radius of the plates

he
=
il 2% 10° % 0.83 WE,
iy 2 % 2000 >Rl

Example 13.12 A leaf spring has 12 plates, each 50 mm wide and 5 mm
thick, the longest plate being 600 mm long. The greatest bending stress is not
to exceed 180 N/mm? and the central deflection is 15 mm. Estimate the
magnitude of the greatest central load that can be applied to the spring. £ =
0.206 x 10® N/mm?.

Solution. (i) From deflection consideration

33
SnEbt3

86Enbi> _ 8x15x0.206% 106 x 12 x 50(5)°
317 3% (600)°
= 2860 N

(if) From stress consideration

= W=

3l
2nbi?

G

2onbt2 2% 180x12x50x(15)°
defigfied s 3 x 600
= 3000 N
Since 2860 < 3000
Allowable load = 2860 N

=> W=
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Example 13.13 A laminated spring, simply supported at the ends and centrally
loaded with a span of 75 cm is required to carry a proof load as 7.5 kN and
the central deflection is not to exceed 50 mm. The bending stress must not
be greater than 400 N/mm?. Plates are available in multiple of 1 mm for
thickness and in multiples of 3 ' mm for width.

Determine suitable values for thickness, width, number of pfates and the
radius to which the plates should be formed. Assume the width to be twelve
times the thickness. £ = 2 x 10° N/mm2.

Solution. 3= —1@3—
8nEbd?
3
= ' nbp = % : ' ()
; 3wl :
AISU agiin b G = '—'—'—2nbd2 .
SR 3 £A.
= SRy nbt = g : = =2
Dividing Eqn. (2) by (1), '
:> 3 sk 1 L . t‘= ng
4Ed

Pﬁtting t_he vaiu’es. _
; oy (750)* % 400

4 (2% 10%)(50)
Plates will be available in 1 mm, 2 mm, ..., 6 mm etc. thickness

* Nearest available thickness = 6 mm
Given, b= 12 ¢ '

= 5.63 mm

b=12%x6=72mm
From Eqn. (2) | =
ST - 350051507 -
A= 2ab L awap0x T2 x(6p T DI d
Let number of plates = 9 i ' :
From Eqn. (2), the modified value of bénding stress is given by
_ 3w 3x7500%750: -

3T ]
2 nbr? 2x9x72x(6)2

S BTN

Vil o o =+ 10 (BY
Radius of the plates R = ——
20

(2x10°)(6)

s R=
: 2x361.7

= 1660 mm,
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Example 13.14 A quarter elliptic leaf spring 800 mm long is subjected to a
point load of 10 kN. If the bending stress and deflection is not to exceed
320 MPa and 80 mm respectively. Find the suitable size and number of plates
required by taking the width as 8 times the thickness. Take E = 200 GPa.

Solution. We know that for a quarter elliptic spring,

6wi3
d = Ebd’ sl
6l
and 0= ain w2y

~ Dividing (2) by Eqn. (1), we have

Thickness d = i,
ICKNESS ES

320 x (800)°
(200 x 10%)(80)

= 12.8 = 13 mm
Width of the plate b = 8¢ = 8 x 13 = 104 mm Ans.
From Eqgn. (1)

6x(10><103)x800
i M><104><(l3)2
=5 n=285=9 Ans.

- Example 13.15 A quarter elliptic leaf spring has a length of 50 mm and consists

of plates each 5 cm wide and 6 mm thick. Find the least number of plates which
can be used, if the deflection under a gradually applied load of 2 kN is not to
exceed 7 cm. :

If instead of being gradually applied the load of 2 kN falls from distance
of 6 mm on the undeflected spring, find the maximum deflection and stress
produced. E =200 GPa.

b 7 ol
nEbd?

Solution.
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6x(2x10%)(0.5)°
7% (200x10%) (5% 102)(6 x 103

=5 0.07 =

B n=992=10 :

Let W, be the equivalent gradually applied load which would pfoduce the
same deflection as is caused by the impact load.

6w, I3
61 =% 3
nEbd
3
61, x (0.5)
10 x (200 x 109)'>< (5x1072)(6 10'3)3
= W, =288 x 10®8; N
Work done by the falling weight on spring

= W(h+38))

: 1
Strain energy absorbed by spring = EW; S
1
W(h+8,) = W8

2

1
= 2x103(6x103+3;) = 5><(28.8x10361)81
= 87-0.1395, - 0.83x10-3=0

Solving for &, we get,

3

W, = 28.8 x 10° x 144,65 x 10 = 4.166 kN
Maximum stress produced

144.65 mm

A
MaxX b2

6 (4.166x 10°) x 0.5«
- 10><(5><10‘2)><(6><10‘3)2
= 694.32 MPa
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EXPECTED DERIVATIONS

1. A closely coiled helical spring with D as diameter of the coil and d as
diameter of the wire is subjected to an axial load . Prove that the

maximum shear stress produced is SWD/ nd? .
2. Derive an equation for the deflection of an open coiled helical spring.

3. Deduce an expression for the extension of an open coiled helical spring
carrying an axial load W. Take o as the inclination of the coils, d the
diameter of the wire and R the mean radius of the coils:

4. Derive from first principles, making usual assumptions the:formula for
the maximum bending stress and for the central deflection of a leaf
spring consisting of n leaves and subjected to a central load.

5. Prove that the deflection of a close-coiled helical spring at the centre
due to axial load W is given by & = 64WRn/Gd*

All symbols are used in their usual meanings.

6. Find an expression for the strain energy stored by the close-coiled helical
spring when subjected to axial load W.

7. An open coiled spring carries an axial load W. Derive expression for
displacement and angular twist of the free end.

8. Derive an expression for the axial extension of an open coiled helical
spririg produced by an axial twisting couple. (UPTU 2001-02)

9. Derive an expression for the axial extension of an open coiled helical
spring produced by an axial load. (UPTU 2002-03)

10. Prove that in an open coiled helical spring, subjected to an axial load,
the value of the maximum shear stress is the same as in a close-coiled
spring of the same dimensions.

11. Prove that the central deflection of the leaf spring (laminated spring)
is given by

w3

S = SnEbd’

12. An open coiled helical spring is made having » turns wound to a mean
diameter D. The wire diameter is d and the coils make an angle of ¢
with a plane perpendicular to the axis of the coil. Prove that the angle
of rotation of free end will be given by

16WD2nsingL( o ]

d* G E
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Writé short notes on the following :
(i) Laminated spring
(i7) Helical spring

(b) Open Coiled Springs
15. Deflection under axial load or axial extension

(iii) Leaf spring

3 8WDnseca.( cos® a ¥ 2sin’ o
d* G E
16. Angle of rotation of free end

(iv) Open coiled helical spring
(v) Closed coil helical spring
(vi) Carriage spring
(vii) Deflection of spring by energy method

T et ke e~ LTI T T Tk Y DD & R = g e e e e T 1

| USEFUL RESULTS I | WD WD |

| (a) Closed coil spring | | 17. Torque T = —E—COSCI 151 P=nSTHSUNE |

I I ‘ ‘ ; I

B 1:=——~8W13) 2. 6=8WD:" I ! I 19. o= 32M |

| nd 7 Gd . | ‘ " i e i I

Y 4 a
} 3, K= E = Gd3 4. Stiffness = Load.pn 5P mg. : I e 64M0Rnseca sin? o i 2cos o I
& 8D°n Deflection of spring | 20. B=; 74 G E |

s j w .

| 5. Ga* I I(C) Semi elliptic leaf spring I

| 6. Angle of twist ¢ =2m(n, —n) I £ o e e I

: 21.
: _ Ml Mx2nRn : = SnEbd®> 4Ed %
" El E(nd? . : !
i E(nd*/64) , i | o biig 314;}12 i, oo I
l 7. Work done by the fallmg weight on spring = weight falling (h+8)- l : : 2t ! :
: e
i 6 :

I = EWIS =W(h+08) : : 24. Resilience = _6E :

I ‘  lgive | I o2 1 : I

| 8. En_ergy stored in the spring = —2~W6 I A 25, Stram energy absorbed = i X vqlume of spring |

I 9. Total length of the wire L = Length of one coil x number of coils = I Bt . |
- 2mRn ' I ioe. Radms of the pIates Ri= 2—0__ where ¢ is thickness I

| 10. Total gap in coils = Gap between two adjacent coils x number of turn d | : I

b , ] I | (d) Quarter elliptic leaf sprmg |

I 11. Frequency of free vibration ¢ = E-T;J% - I 6w A : I

27. —— . o=
; . : B 2
| 12. Solid length = length of spring when fully compressed = nd | ”Ebd bd |
I s | g E |
. Bl s oo i, Y
I 13. Volume of spring V = 4d x 21Rn | 29. 357 J
Powoios SLI0 NeWERRaw BNs YU MO WV AT O e e

: 14. Resilience = ?I_c? x Volume of spring REVIEW QUESTIONS

|

I

I

I

I

|

I

I

I

b 16WD*nsina ('l” o 3_)

(viii) Helical spring of non-circular wire

I'____-..______._..__..___.._......___.__

— — —— — — — — — —— — — — — — — — Dt — — it
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NUMERICAL PROBLMES

. A close coiled helical spring is to have a stiffness of 70 kN/m and to

exert a force of 2.25 kN. If the mean diameter of the coils is to be 90
mm and the working stress 230 MPa, find the required number of coils
and the diameter of the steel rod from which the spring should be made.
Take modulus of rigidity as 80 GPa.  [Ans : 6.58, 81,43.08 mm]

. A closed coil spring is to have a stiffness of | kN/m of compression,

a maximum load of 50 N and a maximum shearing stress of 120 MPa.
The solid length of the spring is to be 45 mm. Find the diameter of the
wire, the mean diameter of the coils and the number of coils required.
G = 50 GPa. [Ans. 0.0034 m, .0436 m, 12.54]

. An open coiled spring of 125 mm mean diameter has 10 coils of 12

mm diameter wire, at a slope of 30° to the horizontal when the coil axis
is vertical. Find the expressions for the longitudinal extension and the
rotation for the joint application of an axial load ¥ and an axial torque
T. Hence find the axial load and torque necessary to extend the spring
5 mm, if rotation is prevented. £ = 200 GPa, G = 80 GPa.

[Ans. 48.9 N, 0.312 Nm]

A laminated spring made of 12 steel plates, is 0.9 m long. The maximum
central load is 7.2 kN. If the maximum allowable stress in steel is 230
MPa and maximum deflection is approximately 38 mm, calculate the
width and thickness of the plates. £ = 200 GPa.

[Ans. 93.8 mm, 6.13 rad]

- Deduce an expression for the resilience of a loaded carriage spring, the

maximum bending stress is given. A carriage spring 1.35 m long has
leaves of 100 x 12.5 mm section. The maximum bending stress is

150 MPa and the spring must absorb 125 J when straightened.

Calculated the number of leaves and their initial curvature. £ =200 GPa.

[Ans. 8, 8.43 m]
A leaf spring spans 1 m and is supported at each end. It carries two
concentrated loads of 180 kg each at points 0.3 m from each end. It
is made from leaves 5 cm wide and 6.3 mm thick.

Design the number and length of the leaves in order that the maximum
stress in the material shall not exceed 280 N/mm?2,

(Ans. 6 leaves, lengths 50, 60, 70, 80, 90 and 100 cm)

Determine the weight of a close -coiled helical spring to carry a load
of 5000 N with a deflection of 5 cm and a maximum shearing stress
of 400 N/mm? If the number of active coils is 8, determine
the wire diameter and mean coil diameter. G = 83000 N/mm?, p=

7700 kg/m?. (Ans. 2 kg, 13.6 mm, 75 mm)

14

Torsion of Non Circular and
Hollow Sections

14.1 INTRODUCTION
The ordinary theory of torsion, which you have gone through in III sexpester
is true only for circular sections. For other sections, this theory is notapplicable.
In developing the theory of torsion of circular shafts we had assume.d th.at the
plane sections normal to the axis remain plane even after the apphcat;()l? of
torque. However, for shafts of non-circular sections, it is no longer poss1b!e
to prove that the plane normal cross-sections remain plane or they remain
undistorted in their own plane. |

The detailed analysis of the torsion of non circular sections which includes
the warping of sections is beyond the scope of this text. However, we present
some of the formulae, without proof, for calculating maximum shear stress
and angle of twist for important non-circular sections.

14.2 RECTANGULAR SECTIONS
For rectangular shafts with longer side a and shorter side b, the maximum shear
stress when subjected to a torque 1 occurs at centre of the longer side and

is given by

T 1
T max i ;Cldbz (1)
where k, is a constant depending on the ratio d/b.
The angle of twist per unit length is given by
Yot e
! hdb’ G

where k, is another constant depending on the d/b ratio,
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Equation (1) and (2) may be approximated by the following equations

/&
T = W(Bdﬁ' 181)) (3)
42 LS
where Ji= Eﬁi(szrdz)
12

For narrow rectangular sections, i.e. when the rectangular section becomes
longer and thinner, the values of constants k; and &, approach 0.333.

Therefore for all practical purposes when d/b > 10,
both %; and &, may be taken to be equal to 1/3.
Equation (1) and (2) reduce to

3T

v i 0rS))
gl 3w 25 y
711 s ..(6)

14.3 EQUILATERAL TREANGULAR SECTION

For an equilateral triangular section shaft of side 24, the maximum shear stress
occurs at the middle of each side and is given by

e
Tmax — aB (7)
and the angle of twist per unit length
0 ST
" B -

14.4 ELLIPTICAL SECTIONS

For an elliptical shaft of major axis 2a and minor axis 24, the maximum shear
stress occurs at the end of the minor axis,

i.er, y = b and is given by
IR
Tmax n ol .=(9)

The angle of twist per unit length is given by

0 (az+bz)T
[ = ﬁaBb:;G (10)
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14.5 SAINT-VENANT’S THEORY OF TWISTING OF NON-CIRCULAR
SHAFTS

Saint Venant made following assumptions for the development of this theory:
(i) The stresses are within elastic limit and Hooke’s law holds good.

(ii) Twist of any cross-section is proportional to its distance from the fixed
end, which is taken as the reference plane.

(iii) Plane cross-sections turn bodily about the centre without distortion in
the plane. However, a cross-section warps in the longitudinal direction -
and this warping is different for different points of the section. It is
further assumed that all cross-sections warp in the same manner.

(iv) There is no longitudinal load acting on the shaft.

14.6 TORSION OF THIN TUBULAR SECTION
Let us consider a closed tube of small thicknes< acted upon by a torque 7' in
a transverse plane (Fig. 14.1).

Fig. 14.1
If it is assumed that the shear stress ¢ at point P where the thickness is
t is constant across the tube wall, then if t' is the shear stress at O and ¢

the thickness, then from the equilibrium of the complimentary shear stresses
on PS and OR

tf & PASK (1)

If dz is an element round the circumference, then the force on this element
will be (t¢-dz)

Taking moments about O,
T= Jr‘c-t-dz-rsind)
L k_[h-dz

where /4 is the perpendicular distanee from O on to ¢, hence
T = 2kd 12)
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where A = Area enclosed by the mean circumference.
The strain energy of length / of tube is

2
15
E= Jﬁltdz

= —|t.d i
e z from equation (11)

[

1
=.— 0
But U i
kil
Hence o= (_TG]J.T dz

! J‘c dz fi ;
] 2G A rom equation (12)

where @ is the angle of twist,

If t is constant

# Itz
0-=<it s : (13)

LT=

A from equation (12)

This theory is known as Bredt-Batho Theory.

14.7 TORSION OF THIN-WALLED CELLULAR SECTIONS

Let us consider a twin-celled section (Fig. 14.2). The mean area of the two
cells being 4, and A4,.

P -V e
T P T
N R S T -
: D i 5
! ( ! (/” T : =

‘ | Bk o 2 *

I A1 R J|’ Ag ]

t, : t ] [
e e :
1 | I

1 :
i ' Y
? _k | / — | e— 1,

1 1 T3 4
e J :(C s

A | ’

o e - — B e L —— -
e i

A
Fig. 14.2
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If the length ABC is of uniform thickness t; and stress 1,, CDA4 of thickness
t, and stress t,, and CA of thickness #; and stress t;.

Then from the equilibrium of complimentary shear stresses on a longitudinal
section through POR

Tlfl ) [2 +1313 : (13)

The total torque on the section by using equation (12) and adding for the
two cells,

T 2(11[1 A1+T2 fz Az) ..(14)
Applying equation (13) to each cell in turn,
2G0O = o s
/ 4
ey s
4

where z, z, and z; are the mean perimeters ABC, CDA and CA respectively,
the negative sign indicates a traverse against the direction of stress.

Example 14.1 For the cellular section shown in Fig. 14.3.
Ay = 20 mm x 40 mm,
A, = 40 mm x 40 mm
tHy=2mm, & = 1.5 mm, & = 2.5 mm

If the torque on the section is 300 N-m, determine the maximum shear stress
and the angle of twist per unit length. G = 30 GN/m?.

l 4 / . l te T2

B e e Ao

— 1,

l
— F
1

-+
!

l

Fig. 14.3
Solution. 2T 1.5% +2:51; ()
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300 = 2(t; x 2 x 1073 % 20 x 40 % 10°¢ = T
x 1.5 x 107 x 40 x 40 x 1076)

3=132x 10797 + 48 x 10791, N
1 =3 ’ e
2% 30 % 10° x 8 = —————[1,(40+2x20)107 + 13 % 40x 10
20x 40 % 10 -
(21 +13)
= e T T
o
- 12 % 10%9 = 27; + 15 :3)

2 x 30 x 10 x g = ©3(40x2+40)107 — 73 x 40 x 107]

40><40x10‘6[

1

= ———(31,-1
40><10“3( 2= %3)
— 24 x 1089 = 31, — 15 Sy
From Eqns. (3) and (4)
41y = 31, 314 :(5)

Solving equation (1) with (5) gives,

3T2
T o (6}

SubStituting in equation (2), we get
1, = 41.67 MPa
Tje= 31225 MPa
- Substituting in equation (1), we get
T3 = 0.598 MPa
From equation (3), we have

12 x 108 x g = (2 x 31.25 x 0.598) 106

_ 63.098x10% 180

12 x 108 n
3.013 deg/m.

|
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Example 14.2 A thin walled section is shown in Fig. 14.4. It has a constant
wall thickness ¢ and one compartment is slit open. Find the stiffness of the
section and value of maximum shear stress for a given torque.

D t A
A ‘I' E

L Open
a_,l 85, g - _.‘_/ slit

‘! 5
* B ¥ G
% a L ) a —
Fig. 14.4

Solution. (@) Let T be the total torque on the section for which 6 is the twist
per unit length. Let T be the torque taken by the closed cell 4BCD. Suppose
the slit up box carries the torque 75
Tiw Ty 005
For the closed cell portion
A=ad*and L = 4a

i
e
T 4G A%
and i =
0, L
where 0 is the twist of the whole section per unit length.
4G A%10,
T, = ———L
L
4Ga't, 5
= ——t——=Ggth
da
For the slit up cell
Lo Gbty’
0 3

b=AE + EF + FG + GB

=7 q .4

= a+5+5+a = 3q
and ty =1t

G(3a)1%0,
Tz =5 _““—**—( a)r : :Gat'j’e]

,_M
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F =it el b Solution. (a) =6 mm
o Ga3t9] +Gar381 A =300 % 300 =9 x 10* mm?
B
s ) e U
= Gat(a +t )91 et
IE ]
ErE o ‘ 600 x 1000
= oy Gaz(a et ) 2 = = (156 N mmE
e ) : 2 X' P06
which is the stiffness of the section : i
(&) (i) For slit up cell , (h) g = "2
4G At
v e 0 600 = 1000 x 1200
= Gt = = I 4x80000x9% x 108 x6

Gat(a® +12 ala® +t2
( ) ( ) ; = 4.63 x 1078 radian/mm.
3 Example 14.4 A thin walled member I m long has the cross section shown
: ) 2G04, . 2G0a in Fig. 14.6. Determine the maximum torque which can be carried by a section
Sy L 4a ; if the angle of twist is limited to 10°. What will be the maximum shear stress
when this maximum torque is applied ? G = 80 GPa.

(ii) For closed cell

Ga i
sy Gat(a2+t2) ¥ 1mm
734 ¥
T T
= " i ) U g e L P
i et o :
Tmax — TI‘I‘.l\':l)';l = 2[(@'2 +2‘2) 4 .
Example 14.3 A closed cellular square section is subjected to a torque : [« 30 mm >
600 Nm. Find the maximum shear stress and the twist per unit length, neglect
stress concentration. G = 8 x 10* MPa Fig. 14.6
Solution.Perimeter z = (2 x 30 + 2¢ x 10) = 122.83 mm
g ; Area enclosed 4 = (20 x 30 + ¢ x 10%) = 914.16 mm?
B 3
T o ol
442 Gt
300 mm
B b il s S 10xm Tx1x12283x1073
180 4(914.16)° 10712 x80x 10° x [ x 1073
l t L
¥ = T=380 N m
“«— 300 mm ——> t=6mm _mrehbet 380
M T 24 2914161070 x Ix 107
Fig. 14.5 = 207.84 MPa
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Example. 14.5 A 300 x 300 mm { section with flanges and web 12 mm thick .

is subjected to a torque of 615 N m. Find the maximum shear stress and the
twist per unit length, neglecting the stress concentration.

(Take : G = 80000 MN/m?) (UPTU 2001-02)
Solution. The total length of equivalent rectangular section
d = 300 + 300 + 276 = 876 mm
Thickness b = 12 mm

3T
Tmax de

; il
: 12 mm :
e _ 300 mm
12 mm 12 mm ;
g e — | e
: ¥
fe————— 300 MM ———»|
Fig. 14.7
3(615x1000) s
e St e 14.63 N/mm
876 x(12)
B a7 o 3F |
Il _dbc FHTIpt GB
0 1
= _[ZTmﬂx a
g—1463><——r— d/
= / 0000 R

Il

0.015 rad/m.
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Example 14.6 An open rectangular section is acted upon by twisting moment
such that the shear stress induced in it is 6 MPa. Find the value of the twisting
moment.

"f A ;
i TE mm i
i !
! i
: i
| i)
100 mm)| |
i ]
1 1
il 2mm t {2 mm
i l :
i i
D e —
T?_ mm
Fig. 14.8

Solution. Since it is an open section, it can be replaced by a rectangular section
of thickness 2 mm of total breadth d given by total length

d=2 (100 + 70) = 340 mm

e 2
TRt o 6 N/mm

. 2
- T=-3M£§££-=%x6x340x4::ZHObme

IMPORTANT DERIVATIONS

1. What do you understand by Bredt-Batho Theory ? Consider a cellular

section under torsion shown in Fig. 14.2. Find the angle of twist per
unit length.

- e_TIZI'i‘TzZZ—TEZz*TSZ}
Hmt:Showthat,I* 4G = BT

2. A closed tube of small thickness shown in Fig. 14.1 is acted upon by

atorque T in a transverse plane. Show that angle of twist per unit length
will be given by

0 JE)

I 4G4%
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e e e e e e e e = 1
| USEFUL RESULTS |
| . & JE P Al |
| Eegmlad v e oo r |
I 3T : I
: Tmax = 77 Rectangular Section 5 :
I 4 : Rect lar Secti l
ey ectangular Section
l £~ dp i |
L o e e e e el o s g v e e o -

REVIEW QUESTIONS
Write short notes on the following

(i) Torsion of non circular sections
(i7) Torsion of cellular sections

(iif) Saint Venant’s theory.

NUMERICAL PROBLEMS

1. A built-up steel plate girder has the section shown in Fig. The thickness

of the plate is 12 mm all round. If the maximum allowable shear stress
in the material is 65 MPa. Find

(i) the maximum allowable torque,
(i7) the angle of twist per metre length due to this torque,
(iil) the shear stress in the central limb of the section,
Take G = 8 x 10* MPa.

|<— 125 mm —-|<— 125lmm ——

=
T 12mm
125 mm ol e 1ouim
l12 mm
-

1
[Ans. (i) 4062.5 Nm (ii) 8.12 x 107* rad/m (iii) zero]
2. A 30cm /beam with flanges and with a web 1.25 cm thick, is subjected

to a torque 7'= 4900 Nm. Find the maximum shear stress and the angle
of twist per unit length.

[Ans. 63602 kPa = 1503/G radians per cm length]
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3. Thecross section of an aeroplane elevator is shown in Fig. [f the elevator
is 2 m long and constructed from aluminium alloy with G = 30 GPa,
Calculate the total angle of twist of the section and the magnitude of
the shear stress in each part for an applied torque of 40 Nm.

|<———— 600 mm———-[

2 mm

75 mm
radius

[Ans. .017 degree, 343.14 kN/m?, 258 kN/m2, 115.24 kN/m?]

4. A 40 mm x 20 mm rectangular steel shaft is subjected to a torque of
1 kNm. What is the magnitude of the maximum shear stress set up in
the shaft and the corresponding angle of twist per unit length of the
shaft 2 G = 80 GN/m?, [Ans. 254 MPa, 9.77 deg/m]

5. A thin walled box shown in figure is subjected to a torque 7. Determine
the shear stresses in the walls and the angle of twist per unit length of
the box. '

(m+2)T 5t+8
Ans. g, = &= q,

¥ M=
a?(n? + 127 +16) 2 sn+l8

(2n+3)T
2G03t(n2 121+ 16)

e:

Lt »l
| 2a |

i t

|
J
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6. A mild steel built up section, shown in figure is acted upon by a twisting
moment so as to induce in it the maximum shear stress of 67 MPa. Find
the value of the twisting moment and the shear stress in various parts
of the section. Take G = 80000 MPa.

¥
le——— 50 mm ——e——— 50 mm —]
7 T
-» [<—6mm TS b
Slit
50 mm —»!  le—6mm =~ open
16 mm
e A
= 100 mm |

[Ans. 10074 Nm, 4.02 MPa, 33.5 MPa, 67 MPa]

Model Short Notes

1. Rotating Disc

Disc is a machine member which is of the rotating type. Due to rotation
centrifugal stresses are introduced in it.

Let us take the case of a circular disc rotating about its axis. It is assumed
that the disc is of uniform thickness and that the thickness is so small compared
with its diameter that there is no variation of stress along the thickness. At
the free flat surfaces there can be no stress normal to these faces and there
can be no shear stress on or perpendicular to these faces. Thus the direction
of axis is the direction of zero principal stress. The radial and circumferential
stresses represent the principal stresses.

Let us consider a flat rotating disc of uniform thickness ¢. Let r; and r, be
the inner and outer radii of the disc. The disc is rotating at o speed.

)

s

An element of the disc ABCD at radius 7 is acted upon by stresses o, and

0, + do, on faces AD and BC respectively and by stresses o, on the faces
AB and CD.

2. Rotating Cﬂinder
A cylinder may be defined as a disc of large thickness. Due to rotation,
centrifugal stresses are introduced into it.

Consider a circular cylinder of inside radius r| and outside radius r, rotating
at speed @. Assume that plane sections of the cylinder remain plane during
rotation, then the axial strain along the z-axis will be independent of the
radius r of the cylinder and will be constant.
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e,

1
Radial strain €, = -E_[G" -v(oy - Gz)]

Hoop strain g, = E[Gh -v{o, +Gz)]

Axial strain g, = E[Gz Eyvics Gh)]

3. Principal Stresses and Principal Planes

At any point within a stressed body, there always exist three mutually

perpendicular planes, on each of which the resultant stress is a normal stress.
These mutually perpendicular planes are called principal planes and the resultant
normal stresses acting on them are called principal stresses. In the case of two
dimensional problems, one of the principal stresses is zero and out of the other
two, one is the greatest and the other is the least stress.

Along the principal plane no shear stress exists. It may be stated that a.lt any
point in a strained material, there are three such planes mutually perpendicular
to each other carrying direct stresses only and no tangential stress. Out of the
three, the plane carrying the maximum normal stress is called the major pr?ncipal
plane and the stress is called the major principal stress. The plane carrying th.e
minimum normal stress is known as minor principal plane and the stress is
known as minor principal stress.

For a given set of stresses oy, O, and 1,, principal stresses are given by

)
= GX+G}’ e O'x—Gy +(T )2
Omax — > g

2

P 2
0,+0C @i =G 2
o x 3 ks X b Jr(,rxy)
min 2 2

s

—
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4, Castigliano’s Theorem

This theorem is extremely useful for finding displacements of elastic bodies
subjected to axial loads, torsion, bending or any combination of these loadings.

The theorem states that the partial derivative of the total internal strain energy
with respect to any externally applied force yields the displacement under the
point of application of that force in the direction of that force. The terms force
and displacement are used in generalised sense and could either indicate a usual
force and its linear displacement or a couple and the corresponding angular
displacement.

This theorem says that

- By

o) I
0P,

R

Castigliano’s theorem is extremely useful for determining the indeterminate
reactions. This theorem can be applied to each reaction and we can know the
displacement corresponding to each reaction before hand. In this manner it
is possible to establish as many equations as there are redundant reactions.

After the values of all reactions are found, the deflection at any desired point
can be found by direct use of Castigliano’s theorem.

5. Redundant Frames

The excess member or restraints in a frame or structure are described as
redundant, and such a frame is known as redundant frame. A frame is said
to be perfect if the number of unknown reactions or stress components are
equal to the number of condition equations available. The total degree of
redundancy of a frame is equal to the number by which the unknowns exceed
the condition equation of equilibrium.

Redundant frames are over stiff. A z

The total redundancy (7) of a
frame is given by

T=m—(2j-R)
where m = total number of
members :
J = total number of joints
C D E
R = total number of l
reaction components el
The frame in figure has
R=02+1)=3 _
M8 7 =5 ¢
T'=8-(2x5-3)

=
Thus the frame is redundant to single degree.
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6. Wiﬁkler-Bach Theory

This theory is used to determine the stresses in a curved beam. The following
assumptions are made in this analysis :
1. Plane transverse sections before bending remain plane after bending.
2. Limit of proportionality is not exceeded. i
3. Radial strain is negligible. ]
4. The material considered is isotropic and obeys Hooke’s law.

The bending stresses in a curved beam are given by the following equations

M| = R¥f=y
g =l tensile
AR h? R+y)
Lt i
)4 M A

where R is radius of curvature of the centroidal axis and y is distance of
fiber from the centroidal axis.

compressive

7. Shear Centre

Shear centre is a point in the cross section of every elastic beam, through which

transverse forces may be applied so as to produce bending only, with no torsion
of the beam. It is the point of intersection of the bending axis and the plane
of the transverse section. Shear centre is also called the centre of twist. If a
beam has two axes of symmetry, then shear centre coincides with the centroid.
For sections having one axis of symmetry, the shear centre does not coincide
with the centroid but lies on the axis of symmetry. If a load passes through
the shear centre then there will be only bending in the cross section and no
twisting.

There are Seve.raf advantages of loading a beam at the shear centre. First,
the path of deflection is more obvious so that clearance problems can be
avoided, as the beam translates only straight forward. Second, the standard
deflection formula can be used to calculate the amount of deflection. Third,
 the flexural formula can be used to calculate the stresses and stain in the beam.

' 8 Statlcally Indeterminate Beams
- Those beams in which the number of unknown reactions exceeds the number

ok ethbr;um equations available, are said to be statically indeterminate. In such
~ acase it is necessary to supplement the equilibrium equations with add1t1onal :
- equations evolved from the deformations of the beam.

In the case «of a beam fixed at one end and supported at the other we have
unknown: reac’t]ons Ry, Ry and M,. The two statics equations must be
i supplemented by one equatlon based upon deformation..

i
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The two statics equations are :

Il

ZMA M]"‘PG+R](G+b)

EF}; = R1+R2-P=0
These are two equations in the three unknowns R, R, and M.
Hence this is a statically indeterminate beam.

9. Curved Beam

Machine members and structures such as hooks, links and rings etc. which
have large initial curvature are known as curved beams. Occasionally initially
curved beams are encountered in machine design and other areas.

Unlike the initially straight beams, the simple bending formula is not
applicable for the curved beams as their neutral axis does not coincide with
the centroidal axis. Their neutral axis shifts towards the centre of curvature
of the beam by a distance y . The bending stress for a curved beam is given

by
ey
S Ap(r+y)
where M is the bending moment, 4 is the cross sectional area, r is the radius

of curvature of the neutral axis and y denotes the distance of any fiber from
the neutral axis.

Generally, Winkler Bach theory is used to determine the stresses in a curved
beam.

10. Unsymmetrical Bending

Bending caused by loads that do not lie in (or parallel to) a plane that contains
the principal centroidal axes of inertia of the cross section is called
unsymmetrical bending.

Frequently beams are of unsymmetric cross section or even if the cross-
section is symmetric the plane of the applied load may not be one of the planes

of symmetry. In either of these cases the expression o = My/I is not valid
for determination of the bending stress.
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_ Le.et us assume a plane 4BCD containing the principal centroidal axes of
Inertia and plane A4B'C'D, containing the loads. These loads will cause
unsymmetrical bending.

-
-
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Example of unsymmetrical bending are angle sections, F-section and channel
sections which are used as perlins in trusses. To determine the deflection of
a beam due to unsymmetrical bending the bending moment may be resolved
Into components parallel to the principal planes.

11. Leaf Spring

A leaf spring consists of number of parallel strips of metal of same width, placed
one above the other. The plates are bent to the same radius so that they contact
only at their edges. When the load ¥ is applied at the centre, the change of
curvature of each plate is uniform and the same forall the plates and the contact
will continue to be at the ends only.

w

Wr2

B~ ——
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A leafspring is a beam cf uniform strength supported at the centre and loaded
at the ends. It consists of a number of overlanping leaves. Each plate or leaf

is free to slide relative to its neighbour i.e. eact: plate will act as a separate

beam.

Figure shows a simply supported semi-elliptic leaf spring which is centrally
loaded with a load .

This type of spring is commonly used in carriages such as railway wagons,
cars etc.

12. Helical Spring
A helical spring is a piece of wire coiled in the form of helix. If the slope of
the helix of the coil is so small that the bending effects can be neglected, then
the spring is called a close coiled helical spring. In such a spring only torsional
shear stresses are introduced. On the other hand, if the slope of the helix of
the coil is quite appreciable, then both the bending as well as torsional shear
stresses are introduced in the spring and a spring of this type is called an open
coiled helicai spring.

Close coiled helical spring is so closely coiled that each turn is practically
a plane at right angle to the axis of the helix and the stresses upon the material
are almost of pure torsion.

In the case of open coiled helical spring, the coils are not close together.
The bending couple can not be considered negligible in compression with the
torsion couple.

13. Airy’s Stress Function

#

Let Bt 5

_ 8%
Ox?

_ %9
T i
: O xdy

Then these equations satisfy the equilibrium equations identically in the
absence of the body forces. ¢ is known as the Airy’s stress function.

The solution of a two dimensional problem of elasticity reduces to the
integration of the differential equations of equilibrium together with the
compatibility equation and the above three equations. It can be seen that Airy’s
stress function ¢ satisfies the equilibrium equations.
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14. Disc of Uniform Strength

A disc of uniform strength is the one in which the values of radial and hoop
stresses are equal in magnitude for all values of r.

Hence G, = 0, =0 = constant

This suggests that the disc of #
uniform strength must have a
varying thickness as shown in
figure. If ¢ be the thickness of such
disc at radius r, ¢ = f; at
Ki=an

0)2
then ¢ = toeipg(rﬂ_ﬁ?) R T bl ) RN ey

the thickness of disc at any radius.

15. Compatibility Equations

Therjc are six independent stress components acting at a point and the complete
solution of the problem requires the determination of these six stress
con?ponents. Thus there are six unknowns and only three equations of
equilibrium available. These equations of static equilibrium must be supplemented

with equations of compatibility of deformations to get the complete solution.
These equations are given by

%y 5 e e
oxdy oyt ax?

62')/yz 828 o 3282
Oyoz oz 2

azyxy azsx-+ 528
Oxdy dz2 ox?

2 - -_
2a€x = _6- _asz-'_anz aY.)Ly
Oyoz ox Ox oy oz

o? i 2
2 Ey i i T 3)( Xz, oy xy 5 oy yz
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16. Principle of Three Moments
If the moments over the intermediate supports of a continuous beams are
known then the bending moment diagram can be drawn easily. The moments
over the intermediate supports are determined by using principle of three
moments which is also known as Clapeyron’s theorem of three moments. It
states that if BC and CD are any two consecutive span of a continuous beam
subjected to an external loading, than the moments My, My and Mp, at the
supports B, C and D are given by
Myl +2Mc(L + L)+ MpL, = é‘%%éf’;fﬁ
1 2
where L, = Length of span BC
L, = Length of span CD
a, = area of B.M. diagram due to vertical loads on span BC
a, = area of B.M. diagram due to vertical loads on span CD.
= distance of C.G. of the bending moment diagram due to vertical
loads on BC from B.
X, = Distance of C.G. of the B.M. diagram due to vertical load on
CD from D.

X

17. Saint Venant’s Principle

This principle states that the stresses and strains at a point sufficiently away
from the applied load are not significantly changed if the load is replaced by
another statically equivalent load. We can also say that if the forces acting on
a small portion of the surface of an elastic body are repalced by a statically
equivalent load, the stresses developed may vary locally, but the stresses at
a distance sufficiently away from this area remain almost unchanged.

For example, the complex supporting force system exerted by the wall on
the cantilever beam can be replaced by a single force and a couple, to simplify
the computation of stresses and strains on the region towards the right end
of cantilever.
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In other words, it can be said that the manner of force applicaiton on stresses

is important only in the vicinity of the region where the force is applied,
elsewhere the average stress can be assumed to be constant. ‘




