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P r e f a c e  

Currently, database management is receiving wide interest in both academic and 
industrial worlds. New application areas such as CAD/CAM, Geographic Infor- 
mation Systems, and Multimedia are emerging. The needs of these application 
areas are far more complex than those of conventional business applications. 

The purpose of this book is to bring together a set of current research is- 
sues that addresses a broad spectrum of topics related to database systems and 
applications. 

The book is divided into four parts. Part I includes seven chapters that focus 
on object-oriented databases, Chapters included in Part II address issues related 
to temporal/historical database systems. Part III addresses query processing in 
database and is made up of four chapters. The last part of the book includes five 
chapters that discuss heterogeneity/interoperability/open system architectures 
and multimedia. 

We would like to express our gratitude to the reviewers for their valuable 
comments. 
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Chapter 1 

COMPOSE: A System For Composite Specification And 
Detection 

Narain Gehani*, H. V. Jagadish ?, O. Shmuefi ~ 

1.1 I n t r o d u c t i o n  

An "event" is a happening of interest. Events can be simple such as, the stock 
price going above a certain price, the beginning of a transaction, the update of 
an object, or the temperature going above a specified limit. New events can 
also be formed as a combination of other events, for example, three successive 
discount rate cuts without an intervening increase, all withdrawals following a 

'large deposit, and the temperature going above a specified limit and staying 
there for more than some time period. We call such events "composite events". 

We have developed a model for specifying composite events [216, 215]. We 
were motivated to explore the specification of composite events as part of an 
effort to design "trigger" facilities for the Ode object database [7,217]. Triggers 
are the key facility that distinguishes active databases [138,524, 40,378,556,395] 
from passive databases. A trigger consists of an event-action pair. When an 
event is detected, the associated action is executed. 

The use of triggers moves code from the application to the database. This 
simplifies application writing because the application now does not have to check 
for the conditions specified by the triggers. Triggers also eliminate duplicate code 
since the same conditions may have to be checked in multiple applications. 

A trigger facility in which triggers fire on the occurrence of composite events 
is more powerful than one in which triggers fire on the occurrence of simple events 
because it allows users to write triggers that  could not be easily expressed before. 
Composite event specification is useful for many application domains besides 
databases: 

1. Financial Applications: Trades can be executed in response to an observed 
pattern of (trading) events in a stock market. 

*AT&T Belt Laboratories 
t AT&T Bell Laboratories 
*AT&T Bell Laboratories and Technion -Israel Institute of Technology 
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2. Fraud Detection: Particular sequences of credit card purchases may point 
to fraudulent use. 

3. Production Management: Particular sequences of defects could indicate 
difficulties that must be brought to the attention of a supervisor. 

Composite events are specified as event expressions. Our basic notation for 
specifying composite events has the same expressive power as regular expressions. 
Thus the occurrence of a composite event is detected by a finite automaton that 
implements the event expression. Despite the equivalence of expressive power, 
our notation is speciMly suited for specifying composite events. For example, 
it allows for the easy specification of composite events whose components can 
overlap and allows uninteresting events to be screened out. 

We extend our basic notation with "masks", correlation variables, and pa- 
rameters, thereby stepping beyond the domain of regular expressions. However, 
we can still implement event expressions that use these facilities by using au- 
tomata  augmented with "mask" events and by using "generic" automata. This 
allows us to use finite au tomata  optimization techniques to generate efficient 
implementations for recognizing the occurrence of composite events. 

We have built a prototype system, COMPOSE, for specifying and detecting 
composite events. A real-time stock trade feed is used to experiment with specifying 
and detecting stock market related events. 

In this chapter, we describe how composite events axe specified, illustrate composite 
event specification, give an overview of COMPOSE, and describe the construction of 
the finite automata. 

1.2 Event Expressions 
Primitive events are events that are known to or supported by the database system. 
Examples of some primitive events, in object-oriented databases [215], are object ma- 
nipulation actions such as creation, deletion, and update or access by an object method 
(member function). Events can be specified to happen just prior to or just after the 
above actions. In addition, events can be associated with transactions and specified 
to happen immediately after a transaction begins, immediately before a transaction 
attempts to commit, immediately after a transaction commits, immediately before a 
transaction aborts, and immediately after a transaction aborts. Examples of other 
events are time events such as clock ticks, the passage of a day, an hour, a second, or 
some other time unit. Finally, stock trades and the raising or lowering of interest rates 
are examples of financial events, and company announcements are examples of news 
events. 

Composite events a~e specified as event expressions. An event expression can be 
NULL,  any primitive event a, or an expression formed using the basic operators A, ! 
(not), relative and relative+. 

Formally, event expressions are mappings from histories (sequences of primitive 
events) to histories: 

E : histories --+ histories 

The result of applying an expression E to a history h, which is also a history, is denoted 
by E[h]. 
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Here are the semantics of some simple event expressions: 

1. E[null] = null for any event E, where null is the empty history. 

2. NULL[h] = null. 

3. a[h], where a is a primitive event, is the maximal subset of h composed of all 
event occurrences of the symbol a. 

1 . 2 . 1  Basic Opera to rs  

Let E and F denote event expressions and h, hi, h2 denote event histories. Here are 
the semantics of expressions formed using the basic operators: 

1. (E  n F)[h] = h l n h 2  whereh~ = E[h]andh2 = F[h]. 

2. (!E)[h] = ( h -  E[h]). 

3. relative(E, F)[h] are the event occurrences in h at which F is satisfied assuming 
that  the history started immediately following some event occurrence in h at 
which E takes place. 

Formally, relative(E, F)[h] is defined as follows. Let Ei[h] be the i *h event 
occurrences in E[h]; let hi be obtained from h by deleting all event occurrences 

II/~[h] F[h~]. before Ei[h]. Then relative(E, F)[h] = ~i=1 
OO 4. relative + (E)[h] = ~Ji=l relativei(E)[ hI where relativel(E) = E and 

relative'(E) = relative(relative i-~(E), E). 

1 . 2 . 2  Addi t iona l  Opera tors  

Besides the basic operators, we provide some additional operators that  make composite 
events easier to specify. These operators do not add to the expressive power provided by 
the basic operators. Consequently, they can be defined in terms of the basic operators. 

Let h denote a non-null history, and E, F,  and Ei denote event expressions. The 
new operators are 

1. E v F = ! ( ! E A ! F ) .  

2. any denotes the disjunction of all the primitive events. 

3. prior(E, F)  specifies that  an event F that  takes place after an event E has taken 
p~ace. E and F may overlap. Form~Uy, prior(E, F) = relative(E, any) A F. 

4. prior(El,  ..., Em) specifies occurrences, in order, of the events El ,  E2 ,..., Era. 
prior(El,  ..., Era)= prior((prior(E~, ..., E m -  1), E,~). 

5. sequence(El,. . . ,  Em) specifies immediately successive occurrences of the events 
El ,  E2 ,..., Era: 

(a) sequence(S1 ..... Era) = sequence((sequence(E1, ..., E , ~ -  1), Era). 

(b) sequence(El, E 2 ) =  relative(El,!(relative(any, any))) A E2. 
The first operand of the conjunction specifies the first event following event 
E l .  The second operand specifies that  the event specified by the complete 
event expression must satisfy E2. 

6. f i r s t  identifies the first event in a history. 
f i r s t  = !relative(any, any). 
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7. (E[F)[h] = FIE[h]]; i.e., F applied to the history produced by E on h. Operator 
[ is called pipe, with obvious similarity to the UNIX w pipe operator. 

8. (< n > E) specifies the n *h occurrence of event E. Formally, 
(< n > E) = ((E[seq(anyl, any2,..., anyn))[first) ,  
where each any~ is simply any. 

9. (every < n > E) specifies the n th, 2n th, ..., occurrences of event E. Formally, 
(every < n > E) = (EIrelative + (< n > any)). 

10. (F / E)[ h ]  = F[ h ' ]  where h ' i s  null if Elk] = null and otherwise h ' i s  
the history obtained from h by eliminating all the event occurrences before and 
including (< 1 > E)[h]. Formally, F / E  = relative((!prior(E, any) A E), F), 
equivalently, F / E -= relative( ( EI f i r  st ), F ). 

11. Suppose that E takes place m times in h. F / +  E [ h ] = (_JmlF [ h' ,]. 
h~, 1 <--  i < m - 1, is obtained from h by eliminating all event occurrences 
before and including event (< i > E)[h] and all event occurrences including 
and following (< i + 1 > E)[h]. h~ is obtained from h by eliminating all event 
occurrences before and including event (< m > E)[h]. 
E is used to delimit sub-histories of h, where the "delimiter" are event occur- 
rences at which E takes place. F is applied to each such sub-history, and the 
results of these applications are combined (unioned) to form a single history. 

12. f i r s t A f t e r ( E ~ ,  E2, F)[h] specifies events E2 that take place relative to the last 
preceding occurrence of E1 without an intervening occurrence of F relative to 
the same El.  Formally, 

f i r s t A f t e r ( E 1 ,  E2, F) = (E2 A !prior(F, a n y ) ) / +  E1 

13. before(E) = prior(E,  any). 

14. happened(E) = E V prior(E, any). 

15. p r e f i x ( E )  [hi is satisfied by each event occurrence e such that there exists a 
history h' identical to h up to event occurrence e, and E is satisfied in h ~ at 
some event occurrence following e. In other words, pre f i x (E)  is recognized at 
each event occurrence as long as a possibility exists that an E event will be 
recognized eventually. This operator is normally used in the form !pref ix(E) ,  
which occurs as soon as we can be sure that E cannot occur. 

16. E * T is a series of zero or more E events followed by a T event. 
E * T -= T A !prior(!E, T). 

1.2.3 Regular Expressions 
Regular expressions are widely used for specifying sequences. The above event expres- 
sion language (basic operators with or without the additional operators) has the same 
expressive power as regular expressions [216]. It can be shown that the operators A, 
!, relative, and relative+ consti tute a minimal operator set; reducing it will make the 
expressive power less than that of regular expressions. 

COMPOSE event expressions differ from regular expressions in that the focus on 
ordered sets rather than strings. We believe that our event expression operators are 
more suitable for specifying composite events. However, since our event expressions 
are equivalent to regular expressions we can implement them efficiently using finite 
automata. 

~UNIX is a trademark of USL 
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1 . 3  Examples 
We now show how composite events are specified by means of examples. 

1.3.1 Simple  Examples 
1. All occurrences of an event a :  

a 

2. The 5 th occurrence of event depos i t :  
(<5>deposit) 

3. A deposit event fo]lowed immediately by a withdraw event: 
sequence (deposit, withdraw) 

4. A deposit event followed eventually by a withdraw event: 

prior(deposit, withdraw) 

5. A deposit event followed eventually by withdraw with no intervening interest: 
relative(deposit, !before(interest)) &R withdraw 

6. Event expression that is satisfied when an E occurs provided there is no "non E" 
event before it. We are essentia/ly recognizing a series of E events: 
E R~ !prior(!E, E) 

1.3.2 Discount  Rate  Cut 

The United State Federal Reserve Board r~ises and lowers a key interest rate, called 
the discount rate, to control inflation and economic growth. Three or more successive 
discount rate cuts (D) without an intervening discount rate increase (I) is a rare phe- 
nomenon and i s  of interest to the financial community. Many other events can occur, 
for example, the prime rate may be cut and the stock market can crash, but these 
events do not interest us here. Our problem is to write an event expression that is 
satisfied by such cuts in the discount rate. 

Here is an example history with the dots marking the events in the history with the 
discount rate cut events labeled by D (decrease) and increases labeled by I (increase): 

The composite event of interest occurs at the last two D events (marked with # ) .  

Let us create an event expression that specifies a composite event satisfied when 
three or more successive discount rate cut events D take place without an intervening 

rate increase event I. We specify this composite event in steps. First, the event ex- 
pression 

prior(I, D) 
specifies D events that are preceded by an I event. Expression 

!prior(I, D) 

specifies all events except the occurrences of D that are preceded by I. Expression 

!prior(I, D) &~ D 

specifies D events that are not preceded by an I event. 
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O I D D D #  D #  I 
I I I  J I t I t I I I I I I I 

Figure 1.1: Discount  rate cut 

The expression 
r e l a t i v e ( D ,  ! p r i o r ( I ,  D) && D) 

specifies a D event followed eventually by another D event with no intervening I 
events. This expression gives us a pair of D events with no intervening I events. Note 
that in this case, the r e l a t i v e  operator is used to look at the history starting after a 
D event. 

Finally, the event that we are interested in can be specified as 

relative (relative (D, !prior(I, D) &~ D), !prior(I, D) ~& D) 

The outermost r e l a t i v e  finds another D without a preceding I giving us three D 
events without an  intervening I event. 

Using the pipe operator, we can write the composite event for the three successive 
discount rate cuts simply as 

(I  ]] D) I sequence(D, D, D) 

1.3.3 Attr ibutes  and Masks 

Primitive events can have attributes. These could be associated with the event itself, 
such as the user id, transaction id, parameters to a function invocation (if the event 
is the function invocation). Event attributes can also be determined from the state of 
the world at the time the event occurred, such as by reading the system clock or by 
performing a database query. 

Arbitrary predicates can be defined on these attributes and, when false, these 
predicates "mask" the occurrence of the corresponding event. 

As an example of an event with attributes, consider stock trade events which have 
the form 
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stock-symbol(current price, intra-day-low, intra-day-high, volume) 

Suppose we are interested in a stock trade in which the price of Apple Computer 
(stock symbol AAPL) has risen by 10% or more compared to it 's low of the day. Such 
a composite event can be written as 

AAPL(current, low, high, volume) & current > low*l.l 

where & is the m~sk operator. 

As an other example, define the event "large withdrawal" as the basic event "ex- 
ecution of the method withdrawal" qualified with the mask "withdrawal amount > 
1000". 

withdraw(Item, int q) & q > I000 

It is commonly the case in a database that an integrity constraint is to be checked 
immediately after an update (or creation) of an object. This constraint can be written 
as a Boolean expression, and used as a mask: 

( a f t e r  update  I a f t e r  c r e a t e )  & 

Boolean-expression-specifying-integrity-constraint 

1.3.4 Parameters  

Some or all of the attribute can be designated as parameters. Our terminology is 
that  attributes are immediate, referring only to the current primitive event, while 
parameters are attributes that have been saved over one or more event occurrences. 
While logically there may be little difference between the two, as we shall see in the 
next section, there is a world of a difference in terms of implementation effort. We have 
chosen to make this difference evident to the user in the interface that we provide. The 
implementation difference arises from the fact that non parameter attribute values 
need only be accessible with the occurrence of the current event while parameter and 
attribute values, in the worst case, must be available from the "beginning of history". 

Once parameters are available, one common requirement is equality between pa- 
rameter values in two different events in an event expression. Rather than move the 
automaton and check for equality as a distinct predicate, it is more efficient to perform 
the equality check immediately and the (second) move as a function of the equality 
test result. 

In the following example, the attribute I is declared as a parameter. The first 
deposit of an item after a large withdrawal ca~ be written as: 

first (deposit(Item I, int amt)) /+ withdraw(Item I, int q) & q > I000 

The use of the common parameter I indicates that the item withdrawn and de- 
posited must be the same. 
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1.3.5 Correlation Variables 

Correlation variables are used to refer to the same event in the history in different 
parts  of an event expression. Consider the following event expression E that  contains 
the correlat ion variable x: 

E = 3 x p r i o r ( b = x ,  e) ^ !tel.rive(x, prior(a, e)) ^ rel~tive(~, prior(d, c)) 

Consider the following histories (hi is a prefix of h2 which is a prefix of hs): 

hl = e b a c  

h 2 = e b a e d b c  

h 3 = e b a c d b c d b c  

We want to de termine  ff E can be satisfied (will trigger) at the last event, a c event, 
in the  above histories. When determining the points at which E can be satisfied in the 
above histories, the correlation variable x will be associated with a specific b event in 
each history. In case of h i ,  x must  be associated with the only b present; E will not  
tr igger at c because ]relative(x, prior(a, e)) is not satisfied. In case of h2, there are 
two b events. The  first has the same problem as in hi .  If  we associate x with the second 
b in h2, then relative(x, prior(d, c)) is not  satisfied. In case of h3, there are three 
choices of b with which to associate x. If we choose the first, !relative(x,prior(a, c)) is 
not  satisfied. If we choose the third, relative(x, prior(d, c)) is not satisfied. However, 
if we choose to associate x with the second b, then E will trigger at the last c. 

To appreciate  the role played by x, consider the event expression E ' ,  given below, 
which is the same as E except  tha t  the last occurrence of x has been replaced by b. 

E' ---- 3 x prior(b---X, c) A !relative(x, prior(a, e)) A relative(b, prior(d, c)) 

E ~ triggers on h3 in the same way as E.  However, it also triggers on h2, where z is 
associated with the second b. relative(b, prior(d, c)) is satisfied now on account of the 
first b, which does not  have to be associated with x. 

Finally, the event  expression E ' ,  wi thout  correlation variables, given below, does 
not  tr igger on hi ,  h2, h3, or any other  history of which hi is a prefix. The  reason is that  
h~ has in it the  sequence b a c guaranteeing tha t  the clause !relative(b, prior(a, c)) 
can never be satisfied~ 

E" = prlor(b, c) ^ !relative(b, prior(a, e)) ^ relative(b, prior(d, e)) 

1 . 4  C o m p o s i t e  E v e n t  D e t e c t i o n  

We detect  composi te  events by implement ing the event expressions as finite automata .  
These a u t o m a t a  are fed as input  the primitive events tha t  make up the event expression. 
The  composi te  event  associated with an au tomaton  is said to occur When the au tomaton  
reaches an accepting state.  

A u t o m a t a  construct ion is by inductive composit ion of au tomata  for sub-expressions. 
Pr imit ive  events are expressed in terms of a simple 3 state automaton,  one of which 
is the s tar t  s ta te  and another  the accepting state.  From all states, the transi t ion on 
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event a, the event to be recognized, the transition is to the accepting state. On all 
other events, the transition is to the non-accepting (non-start) state. 

Composition rules are specified for each of the basic event expression operators. 
These rules are used to compose the automaton for an expression from its sub-expressions. 
By and large, the additional operators described are rewritten, by compiler transforma- 
tion, into basic operators. However, specific direct composition rules were developed 
for a few key additional operators, such as prefix. 

1.4.1 
1. 

3. 

4. 

5. 

Design  Decis ions  
Automata are kept deterministic at all stages of the construction. Non deter- 
ministic automata require that we keep track of the various states computation 
threads are in, and so are inefficient at run time. Moreover, negation is a problem 
for non deterministic automata. 

Rea~hability analysis is used to eliminate unreachable states in the automaton. 

The number of states in the automaton is minimized by merging equivalent 
states. Reachability analysis and state minimization is performed after each stage 
of the construction so that we always have a minimal deterministic automaton 
for the sub-expression at hand. 

Most event symbols are ignored in most states: the number of transitions to 
be stored explicitly is minimized by explicitly recording only those that cause a 
transition out of a state, and letting a "self-loop transition" be the default. 

We may have a large number of events in our system. Individual automata may 
be interested in small subsets of these events. Letting each automaton "work" 
on the whole event set is wasteful. So, we have the concept of loealevents specific 
to an automaton. With each automaton we associate an array lnames with as 
many entries as there are global system wide events. Entry lnames[i] contains 
the local name of the global event i. If the automaton is not "interested" in global 
event i then lname[i] contains otherwise, where otherwise is a local alphabet 
symbol denoting "all other events". 

1.4.2 Masks 

A mask predicate is treated like any other operator in terms of automaton construction. 
Any mask M associated with an event expression E is implemented by modifying the 
automaton A that implements event expression E. For each accepting state, F,  of the 
automaton A: 

1. Two new states MTrueF and MFalse• are created. 

2. Any transitions from F to other states are copied to MTrueF and MFalset;. 
These transitions are deleted from F. 

3. F is changed from an accepting state to a non-accepting state and MTrueF is 
made an accepting state. 

4. Transitions from F to MTrueF on event ETrueM and from F to MFalseF on 
event EFalseM are added. 

Conceptually, after each event symbol is input, every mask predicate is evaluated, 
and a pseudo-event ETruei or EFalsel is generated for each mask predicate. Except 
in a state where this mask is to be. ewluated to determine further transition, these 



12 CHAPTER 1. COMPOSE: A SYS. FOR COMPOSITE SPECIFICATION 

events are ignored. Moreover, the order in which these mask predicates are evaluated 
is immaterial. 

Practically speaking, of course, every mask predicate cannot be evaluated after 
every event. Instead, we mark states that have outgoing transitions on such pseudo- 
events. When the automaton reaches such a state, it evaluates the corresponding 
predicate and makes the necessary transition. The effect obtained is the same as in 
the conceptual scheme of the previous paragraph. 

1.4.3 Generic Automaton For Implementing Events With 
Parameters 

Event expressions with parameters can be thought as representing the union under 
all possible assignments of values to parameters of the expressions with those values 
substituted. This definition is used to implement such expressions as follows 

1. Given an expression E, convert it to a finite set of expressions El, ...,Ek whose 
union is equivalent to E, such that all variables occurring (as parameters) in any 
Ei can be assumed to represent distinct values different than any constant  men- 
tioned in the expression (i.e. if X and Y are variables and C a constant in some 
Ei, then X and Y are never suppose to represent the same value or the value C). 
This is done by rewriting. Thus an expression of the form relative(F(X), F(4)) 
becomes the union of relative(F(4), F(4)) and relative(F(X'), F(4)), X'! = 4. 

2. Each Ei is now handled separately by associating a deterministic minimal size 
automaton with E~, viewing all symbols (such as F(50), F(X), or b) as ordinary 
alphabet symbols. 

3. To handle Ei we keep track separately of each combination of values for pa- 
rameters in El and the state the automaton denoted by this combination is in. 
We index these automata by the state they are in. We can efficiently perform 
state transitions in "groups" for all automata in the same state seeing the same 
symbol. 

4. In general, there may be infinitely many sets of values associated with the pa- 
rameters of an expression E. At any point in time however, we are exposed to 
finitely many such sets of values as the sequence of events up to this point is 
finite. So, we handle copies for values combinations we have seen thus far and 
retain a state for combinations we have not yet seen in a generic way. Specifi- 
cally, suppose there are two parameters X and Y. If we have only seen X = 4 
but no Y values yet, we keep the state assodated with 4, * where * denotes "any 
domain values not yet seen". We also maintain ,, �9 in that case where *! = 4 is 
assumed. When new domain values are encountered some generic automata are 
"instantiated" to those values and continue as "independent copies~'; the generic 
copy continues as well under the assumption that the values denoted by a * in 
a generic automaton is different than all domain values seen for that parameter 
so far. 

1.5 C o m p o s e  S y s t e m  

A prototype COMPOSE system has been written in Concurrent C / C + +  [213], which 
is a parallel version of C [316] and C + +  [563]. The event stream fed to the system 
consists of real-time stock trades. 
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The prototype COMPOSE system is structured as follows: 

F igure  1.2: The  C O M P O S E  Sys t em 

The circles represent processes. The event manager process accepts composite 
event specifications from the user, and the events that  occur are fed to i t  by the event 
stream processes (one for each event stream). The trigger firing process and the event 
manager processes share a common data  structure which contains the triggers. The 
event manager constructs and stores the finite automata  implementing the triggers and 
the global event mappings in the shared da ta  structure. The trigger firing process takes 
the events it receives from the event stream processes and looks for active triggers in 
the shared da ta  structure and then "feeds" them the events after translating events 
into numbers using the global mapping. To be precise, the global event numbers are 
mapped to local event numbers using the local mapping table associated with each 
automaton.  

Since the event manager and trigger firing processes can be simultaneously accessing 
the shared data,  accesses to the shared da ta  are serialized by implemented the shared 
da ta  structure as a "capsule" [214]. 

The trigger firing process reports triggers that  fire to the user process which is the 
COMPOSE system's interface to the user. 

1.6 Examples  of A u t o m a t a  Generated  by Com- 
pose  

The composite event expression for the discount rate cut example shown earher was 
( I  I[ D) [ sequence(D, D, D) 

We now show the finite automaton for the above event expression. First,  here is 
the automaton for the event expression I [ I D, which is the first operand of the pipe 
operator  I (Figure 3): 

The automaton for the second operand of the pipe operator, i.e., sequence(D, D, 
D), is (Figure 4) 
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D 

Figure 1.3: Automaton for ( I  I I D) 

The above two automata are combined to form the automaton for the complete 
expression ( I  11 D) I sequence(D, D, D). The resulting automaton is (Figure 5) 

1.7 Conc lus ion  
Our base event language has the same expressive power as regular expressions, or 
propositional temporal logic with quantifiers (QPLTL or SOLLO) (see [180]). However, 
our event specification language is more suitable to specifying trigger events because of 
its algebraic nature which enables free composition of events into more complex ones. 

We implement our event expressions by using finite automata. These automata 
take as input, on a continuous basis, simple events. Their current state represents a 
partial (complete) detection of the associated composite event. 

Masks and parameters extend our base language to a fragment of temporal logic 
whose expressive power is beyond that of regular expressions. We implement a mask by 
adding two additional states to the corresponding automaton without a mask. Tran- 
sitions to these states take place based on whether the mask predicate is true or false. 
Evaluation of the mask takes us beyond finite automata. We implement parameters 
using generic automata. These automata are used to instantiate ordinary automata for 
each combination of new parameter values. We are currently investigating techniques 
for optimizing such finite automata [421]. 

In a distributed database, there may not be a well-defined unique system history. In 
[287] we discuss how to coordinate the different ~'views" of the history seen at different 
sites. 

As mentioned earlier, the motivation behind our work was the design of "trigger" 
facilities for the Ode object database [7, 217]. 

We plan to integrate the COMPOSE event specification facilities into the Ode 
trigger facility. 
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Figure 1.4: Automaton for sequence(D, D, D) 

Figure 1.5: Automaton for (I  i l D) ] sequence(D, D, D) 



Chapter 2 

A c c e s s  C o n t r o l s  in O b j e c t - O r i e n t e d  D a t a b a s e  S y s t e m s  - 
S o m e  A p p r o a c h e s  and  I s sues  

Elisa Bertino*, Sushfl Jajodia ~, Pierangela Samarati  $ 

2.1 I n t r o d u c t i o n  

Object-oriented database management systems (OODBMSs) today represent one of 
the most active areas in both academic and industrial worlds. OODBMSs combine 
object-oriented programming technology with database technology, thus combining 
the strengths of both. The need for these systems has been driven by several advanced 
applications, such as CAD/CAM,  cartography, multimedia, for which relational sys- 
tems have been proved inadequate. A serious problem with these systems is that  they 
do not provide adequate access control mechanisms to prevent unauthorized disclosure 
of information. They do not provide for the mandatory security [146] and, in most 
cases, do not even provide adequate discretionary authorization facilities (a notable 
exception is presented by the ORION/ITASCA system [460]). We can expect, how- 
ever, that  the broadening of application scope of these systems will require them to 
enforce both mandatory and discretionary security. 

Mandatory security policies govern access to information by individuals on the basis 
of the classifications of subjects and objects in the system. Objects are passive entities 
storing information, such as da ta  files, records, field in records, etc. Subjects are active 
entities that  access the objects. Generally, a subject is considered to be an active 
process operating on behalf of a user. Access classes are associated with every subject 
and object in the system, and the access of a subject to an object is granted iff some 
relationship, depending on the access mode, is satisfied between the classifications of 
the subject and the object. 

An access class consists of two components: a security level and a set of categories. 
The security level is an element of a hierarchically ordered set. The hierarchical set 
generally considered consists of Top Secret (TS), Secret (S), Confidential (C) and 
Unclassified (U), where TS > S > C > U. The set of categories is an unordered set 
(e.g., NATO, Nuclear, Army, etc.). All access classes are partially ordered as follows: 

*Dipartimento di Informatica e Scienze dell'Infoiznazione, Universits di Genova, Via L.B. 
Alberti 4, 16132 Genova, Italy. 

tCenter for Secure Information Systems and Department of Information and Software Sys- 
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SDipartimento dl Scienze dell'Informazlone, Universits degli Studl di Milano, Via Comelico 
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An access class cl dominates  (~ )  an access class c2 iff the security level of ct is greater  
than  or equal  to tha t  of c2 and the categories of cl include those of c2. Two classes cl 
and c2 are said to be incomparable  if neither cl _ c2 nor c2 _ cl holds. 

An access class is assigned to every object  and every subject  in the system. The 
security level of the access class associated with an object  reflects the sensitivity of the 
informat ion contained in the object,  i.e, the  potential  damage which could result from 
unauthor ized disclosure of the information.  The  security level of the access class associ- 
ated with a user, also called clearance, reflects the user 's  t rustworthiness not to disclose 
Sensitive informat ion to users, not  cleared to see it. Categories are used to provide finer 
grained security classifications of subjects  and objects than classifications provided by 
security levels alone, and are the basis for enforcing need-to-know restrictions. 

Access control in manda tory  protect ion system is based on two principles that  were 
formulated by Bell and LaPadula  [43] and tha t  are followed by all models enforcing a 
manda to ry  security policy. They  are: 

Simple Security Property: A subject  is allowed a read access to an object  only if the 
clearance of the subject  dominates  the access class of the object .  

*-Property: A subject  is allowed a write access to an object  only if clearance of the 
subject  is dominated  by the access of the object.  

These  principles, also known as "no-read-up" and '~no-write-down," prevent in- 
format ion to flow directly from high level subjects to subjects at lower levels. High 
assurance systems must  additionally protect  against illegal indirect information flows 
through covert or signaling channels [146]. 

Discret ionary protect ion policies govern the access of users to the information on 

the  basis of the  users 's identi ty and the rules that  specify, for any user and any object  
in the system, the types of accesses (e.g., read, write, or execute) the user is allowed 
on the object .  The  request  of a user to access an object  is therefore checked against 
the specified authorizat ions;  if there exists an authorizat ion stat ing tha t  the user can 
access the object  in the specific mode,  the access is granted, otherwise it is denied. This 
type of access control is sometimes called a closed policy in that  a user is not allowed an 
access unless he or she has been explicitly so authorized. Alternatively, an open policy 
could be applied where all accesses to be denied have to be fully specified, and users 
are allowed all those accesses for which they have not been explicitly denied. More 
recent models combine the two policies, allowing to explicitly specify both the accesses 
to be authorized as well as the accesses to be denied by the users. The  resulting access 
control takes into considerat ion both authorizations and negations in order to decide 
whether  a request  of a user to access an object  should be granted.  

Discret ionary protect ion models generally allow users to grant other  users autho- 
rizations to access the objects.  There  are many policies that  can be applied for the 
adminis t ra t ion of authorizat ions in systems enforcing discretionary protection. Some 
examples are: centralized administration where only some privileged user is allowed to 
grant  and revoke authorizations,  ownership where the creator of an object  is allowed to 
grant  and revoke other  users accesses on the object  created, and decentralized admin- 
istration where other  users can be allowed, at the discretion of the owner of an object,  
to grant  and revoke authorizat ions on the object.  

Some discretionary models also admit  the possibility of defining groups of users 
and specifying access authorizat ions for the groups. Authorizat ions specified for a 
group can be used by any user belonging to the group. Sometimes predicates can 
also be associated with authorizations,  specifying conditions to be satisfied for an 
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authorizations to be considered valid. These conditions can be defined, for example, 
in terms of the time an access can be executed or in terms of the content of the object 
to be accessed. 

Mandatory as  well as discretionary security models have been formalized for the 
protection of information in operating systems and database systems. However, the 
characteristics of object-oriented da ta  models introduce new protection requirements 
that  make the existing security models not sufficiently adequate for ensuring security 
of the information. 

In particular, applying the Bell-LaPadula paradigm to object-oriented data  models 
is not straightforward for two reasons. First,  while this paradigm has proven to be quite 
effective for modeling security in operating systems, as well as relational databases, it 
appears somewhat forced when applied to object- oriented systems [288]. The problem 
is that  the notion of an object in the object-oriented data  model does not correspond to 
the Bell-LaPadula notion of an object. The former combines the properties of a passive 
information repository, represented by attributes and their values, with the properties 
of a~ active entity, represented by methods and their invocations. Thus, the object of 
the object-oriented da ta  model can be thought of as the object and the subject of the 
Bell-LaPadula paradigm fused into one. The second reason is the increased complexity 
of the object-oriented da ta  models. An object-oriented data  model includes notions 
such as complex objects and inheritance hierarchies, that  must be accounted for when 
designing a secure object-oriented database model. As for the discretionary policy, the 
policy has to be extended to take into consideration the characteristics of the object 
oriented systems such as subtyping, aggregation, and versioning. 

In spite of this complexity, the use of an object-oriented approach offers several 
advantages from the security perspective [397]. The notion of encapsulation, which 
was originally introduced in object-oriented systems to faci~tate modular design, can 
be used to express security requirements in a way that  is comprehensible to the users. 
Moreover, the notion of information flow in security has a direct and natural  representa- 
tion in terms of message exchanges; messages and their replies are the only instruments 
of information flow in OODBMSs. The conceptual clarity and simplicity of the model 
translates into simplicity of design of security mechanisms. 

In this chapter we will review the current state of the art in both mandatory and 
discretionary access controls in OODBMSs. We will also point out some open problems 
in the field and outline current research directions. The chapter is organized as follows. 
Section 2.2 summarizes the main concepts of object-oriented da ta  models. Section 2.3 
discusses mandatory access control by presenting in detail the message filter model 
proposed recently by Jajodia and Kogan [288], followed by a review of other mandatory 
access control models. Section 2.4 presents some models for enforcing discretionary 
access control. Sections 2.5 and 2.6 list some research issues related to mandatory and 
discretionary protection in OODBMSs. Finally, Section 2.7 draws some conclusions. 

2.2 Objec t -or i en ted  Data  Mode l  
An object-oriented model can be characterized by a number of concepts [55]: 

�9 Each real-world entity is modeled by an object. Each object is associated with a 
unique identifier (called OID) that  makes the object distinguishable from other 
objects. 

�9 Each object has a set of attributes (properties) and methods (operations). The 
value of an at t r ibute can be an object or a set of objects. The set of at tr ibutes 
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together with the set of methods represent the object structure and behavior, 
respectively. 

�9 The attribute values represent the object's status. This status is accessed or 
modified by sending messages to the object to invoke the corresponding methods. 
The set of messages that can be sent to an object is the object interface. 

�9 Objects sharing the same structure and behavior are grouped into classes. A class 
represents a template for a set of similar objects. Each object is an instance of 
some class. 

�9 A class can be defined as a specialization of one or more classes. A class defined 
as specialization is called a subclass and inherits attributes and methods from 
its superclass(es). 

There are many variations with respect to the basic concepts, especially when 
comparing OODBMSs and object-oriented programming languages (OOPLs). The 
concepts that we have chosen to include are used mainly as a basis for our discussion; 
we do not claim them to be a definition of the object-oriented paradigm. However, 
despite all differences, it has been widely recognized that this paradigm offers several 
advantages. First of all, the separation between an object's status and interfaces allows 
clients to use the services provided by an object without knowing how the services are 
implemented (information hiding). Therefore, an objecffs implementation may change 
without impacting other objects or applications using the services provided by the 
object. The inheritance mechanism favors re-usability of both object interfaces and 
implementations. Moreover, in most models, a subclass may override the definition of 
inherited methods and attributes. Therefore, inheritance lets a class specialize another 
class by additions and substitutions. 

In the database field, the object-oriented paradigm brings other important advan- 
tages. First, it allows complex objects to be directly represented by the model, without 
having to flatten them into tuples, as in the case of relational systems. Second, a tra- 
ditional DBMS only centralizes data; high-level semantic operations on data are still 
dispersed among application programs. By contrast, a portion of the high-level seman- 
tic operations in an object-oriented database is also centralized. As a consequence, the 
application programming in object-oriented systems is simplified, since it often consists 
of invoking and assembling predefined operations - the methods. 

The information hiding capability offers, in addition to the previously mentioned 
advantages, a great potential for data security. Surrounding an object by methods 
makes it possible to interpose an additional layer between the object and its users. 
Therefore, arbitrary complex content-based access rules can also be supported. w Many 
aspects and issues in exploiting the object-oriented approach for security will be dis- 
cussed in the following sections. 

In addition to the basic concepts listed above, OODBMSs often provide additional 
semantic concepts, such as composite objects and versions, that we will briefly discuss 
in the following. The reason for including those additional concepts is to illustrate 
their impact on the definition of a discretionary authorization model. 

C o m p o s i t e  o b j e c t s  

w common distinction found in authorization models is between content-independent ac- 
cess rules, whose enforcement depends only on the object names~ and content-dependent access 
rules, whose enforcements depends on the object infol~nation content. 
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For composite objects we will use the same model as the one given in [320], since 
this model is quite general. The model distinguishes between two types of references 
among objects: general, and composite. The latter is used to model the fact that a 
referenced object is actually a part of (or a component of) a given object. An object 
and all its components constitute a composite object. Composite references axe further 
refined into shared/exclusive and dependent/independent. A shared composite refer- 
ence allows the referenced object to be shared among several composite objects, while 
an exclusive composite reference constrains an object to be component of at most one 
composite object at a time. A dependent (independent) composite reference models 
the fact that a component object is dependent (independent) on the existence of the 
composite object(s) of which it is a part. Since these two dimensions can be combined, 
four different types of composite references are possible. 

Ve r s loned  o b j e c t s  
Several versioning models have been proposed in the literature [310]. Here, we 

present some basic aspects of versioning mechanisms that should be sufficient for dis- 
cussing the authorization model. In general, a versioned object can be seen as a hier- 
archy of objects, called version hierarchy. Each object in a version hierarchy (except 
for the root object) is derived from another object in the hierarchy by changing the 
values of one or more attributes of the latter object. Objects in a version hierarchy 
are first-class objects. Therefore, they have their own object-identifier (OIDs). Infor- 
mation about the version hierarchy is often stored as part of the root object, called 
generic object. Two types of object references are supported in most version models 
to denote objects within a version hierarchy. The first, called dynamic reference, is a 
reference to the generic version of a version hierarchy. It is used by users who do not 
require any specific version. The system selects a version (default version) to return to 
users. The default version is in most cases the most recent stable version. Commands 
are usually available that allow users to change the default version. The second type 
of reference, called static, is a reference to a specific version within the version hier- 
archy. Another important aspect cor, cerns stability of versions in version hierarchies. 
In most cases, versioned objects are shared among several users. Mechanisms should 
be provided so that users receive consistent and stable versions. Most version models 
distinguish between transient and stable versions. A transient version can be modified 
or deleted. However, no versions can be derived from a transient version. A transient 
version must first be promoted to a stable version before new versions can be derived 
from it. By contrast, a stable version cannot be modified. However, it can be used to 
generate new versions. 

2.3 Mandatory  Access  Control  

In this section we present an approach to mandatory access control based on the 
message filter model proposed recently by Jajodia and Kogan [288]. The message filter 
model is an information flow model whose main elements are objects and messages. 
The chief advantages of this model are its compatibility with the object-oriented data 
model and the simplicity with which security policies can be stated and enforced. 

In the message filter model [288,289,487], each object is viewed as a unit of security 
and, therefore, it is assigned a unique classification. Objects can communicate (and 
exchange information) only by means of sending messages among themselves. Even a 
basic object activity such as access to internal attributes, object creation, or invocation 
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of local methods  are to be implemented by having an object send messages to itself; 
these messages are considered to be primitive messages. �82 This makes the information 
flow explicit in the form of message exchange among objects and, therefore, easy to 
control. 

Therefore,  in the message filter model  security is achieved through checking message 
exchanges among objects.  The  basic idea of the approach is that  information flow 
control can be achieved by mediating the flow of messages among objects. Indeed, in 
object-or iented systems all information flows are through message exchanges. This 
approach is very simple, in tha t  it requires the security mechanism to deal only with 
two elements:  objects  and messages. It  is based on two basic principles governing 
message exchanges among objects  in the system 

1. if the sender of the  message is at a strictly higher level than the receiver's level, 
the  me thod  is executed by the receiver in restr icted mode ( that  is, no updates 
can be performed) 

2. if the sender of the message is at a strictly lower level than the receiver's level, 
the me thod  is executed by the receiver in normal  mode, but  the re turned value 
is nil. 

The  first principle ensures tha t  no write downs occur, whereas the second one ensures 
tha t  no read ups occur. 

The  message filter uses the filtering algori thm given in Figure 1 to mediate  mes- 
sages [487]. We assume tha t  ol and o2 are sender and receiver objects, respectively. 
Also, let t l  be the me thod  invocation in Ol tha t  sent the message gl,  and t2 the method  
invocation in o2 on receipt of gl .  The  two major  cases of the algorithm correspond to 
whether  or not  91 is a primit ive message. 

Cases (1) through (4) in Figure 1 deal with non-primit ive messages sent between 
two objects,  say ol and 02. In case (1), the sender and the receiver are at the same 
level. The  message and the reply are allowed to pass. The  rlevel of t2 will be the same 
as tha t  of t l .  Note tha t  rlevel is a property of a method  invocation, rather  than a 
proper ty  of an object .  We will explain the significance of rlevel shortly. In case (2), the 
levels of Ol and o2 are incomparable,  and thus the message is blocked and a nil reply 
re turned to me thod  t l .  In case (3), the receiver is at a higher level than the sender. 
The  message is passed through; but  a nil reply is re turned to t l ,  while the actual reply 
from t2 is discarded, thus effectively cut t ing off the backward flow. For case (4), the 
receiver is at a lower level than the sender. The  message and the reply are allowed 
to pass. However, the rlevel of t2 (in the receiver object)  is set in such a manner  as 
to prevent  illegal flows. In other  words Mthough a message is allowed to pass from 
a high-level sender to a low-level receiver, it cannot cause a "write-down '~ violation 
because the me thod  invocation in the receiver is restricted from modifying the s ta te  
of the object  or creating a new object  (i.e., the  method  invocation is "memoryless") .  
Moreover,  this restriction is propagated along with further  messages sent out by this 
me thod  invocat ion to other  objects,  as far as is needed for security purposes. 

The  intuit ive significance of rlevel is that  it keeps track of the least upper bound 
of all objects  encountered in a chain of method  invocations, going back to the user 
object  at the root  of the chain. We can show this by induction on the length of the 
me thod  invocation chain. To do so, it is also useful to show the related proper ty  that  

�82 is important to note that the message filter model is a conceptual model telling us 
what needs to be done, rather than how it is to be implemented. Reference [487] contains an 
implementation in which primitive messages do not require any messages. 
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let gl = (h l , (P l  . . . . .  Pk),r)  be the message sen t f rom el to 02 

if  oi r 02 V hi ~ {READ, WRITE,  CREATE} t h e n  ease  
% i.e., gl is a non-primitive message 

(1) L(oi )  = L(o2) : % let gl pass, let reply pass 
invoke  t2 w i t h  rlevel(t2) ~ rlevel(t i);  
r ~-- reply from t2; r e t u r n  r t o  tl; 

(2) L(oi )  < >  L(o2) : % block gi,  inject NIL reply 
r *-- NIL; r e t u r n  r to  t i ;  

(3) L(Ol) < L(o2) : % let gl pass, inject NIL  reply, ignore actual reply 
r ~-- NIL; r e t u r n  r to  t l ;  
invoke t2 w i t h  rlevel(t2) ~ lub[L(o2),rlevel(ti)]; 
% where lub denotes least upper bound 
d i s ca rd  reply from t2; 

(4) L(oi )  > L(o2) : % let gi pass, let reply pass 
invoke t2 w i t h  rlevel(tz) ~ rlevel(t i);  
r 4-- reply from t2; r e t u r n  r to  tl;  

e n d  case;  

if  oi = o2 ^ hi E {READ, WRITE,  CREATE} t h e n  case  
% i.e., gl" is a primitive message 

(5) #l = ( R E A D , ( a j ) , r )  : % allow unconditionally 
r *-- value o f a j ;  r e t u r n  r t o  t i ;  

(6) gi = ( W R I T E , ( a j , v j ) , r )  : % allow if status of t l  is unrestricted 
if  r le~et( t l )  = L(o l )  

t h e n  [aj *-- vj; r 4- SUCCESS] 
else r *-- FAILURE; 

r e t u r n  r to  t l ;  

(7) gl = (CREATE,(v l  . . . . .  v h , $ j ) , r )  : % allow if status of t l  is unrestricted relative to Sj  
if  rlevel(t l  ) < Sj  

t h e n  [CREATE i w i t h  values v l , . . . ,  v~ and L(i) ~-- Sj; r *-- i] 
else r *-- FAILURE; 

r e t u r n  r to  t l ;  
e n d  case;  

Figure 2.1: Message filtering algorithm 
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rlevel(t~) > L(o , ) .  For the basis case we assume that the spontaneous method 
invocation in the root user object has its rlevel set to the level of the user object. 
The induction step follows by inspection of cases (1), (3) and (4) of Figure 1. The 
use of least upper bound is explicit in case (3). In cases (1) and (4), because of the 
induction hypothesis, and the relative levels of ol and o2, the assignment of rlevel can 
be equivalently written as in case (3). 

We say that a method invocation t~ has restricted status if rlevel(t~) > L(oi) .  
In such cases ti is not allowed to write to o~ (case (6) of Figure 1), or to create an 
object with security level below rlevel(t~) (case (7) of Figure 1). A key element of the 
message filter algorithm is that the rest.ricted status is propagated along with further 
messages sent out by a method invocation to other objects (exactly so far as is needed 
for security purposes). This is critical in preventing indirect information flows. 

To understand how the message filter algorithm propagates the restricted status 
on method invocations, it is useful to visualize the generation of a tree of method invo- 
cations. The root to is a "spontaneous" method invocation by a user. The restricted 
method invocations are shown within shaded regions. Suppose tk is a method for ob- 
ject ok, and tn a method for object o~ which resulted due to a message sent from tk 
to o,~. The method t~ has a restricted status because L(on)  < L(ok).  The children 
and descendants of tn will continue to have a restricted status until t~ is reached. The 
method ts is no longer restricted because L(o~) > L(Ok), and a write by t~ to the 
state of o, no longer constitutes a write-down. This is accounted for in the assignment 
to rlevel(t2) in case (3) of Figure 1. 

The variable rlevel clearly plays a critical role in determining whether or not the 
child of a restricted method should itself be restricted. A method invocation potentially 
obtains information from security levels at or below its own rlevel. It follows that a 
method invocation should only be allowed to record information labeled at levels which 
dominate its own rlevel. For example, consider a message sent from a Secret object to 
a Confidential one (where Secret > Confidential). The rlevel derived for the method 
invocation at the receiver object will be Secret. 

We now discuss the security mediation of primitive messages. Read operations 
(case (5)) never fail due to security reasons because read-up operations cannot occur. 
This is because read operations are confined to an object's methods, and their results 
can only be exported by messages or replies which are filtered by the message filter. 
Write operations (case (6)) will succeed only if the status of the method invoking the 
operations is unrestricted. Finally, create operations (case (7)) will succeed only if the 
rlevel of the method invoking the operation is dominated by the level of the created 
object. If a write or create operation fails, a failure message is sent to the sender. This 
failure message does not violate security since information flows upwards in level. 

There has been relatively little additional work on mandatory security related is- 
sues in the object-oriented databases, although some work does exist. Meadows and 
Landwehr [397] are the first to model mandatory access controls using object-oriented 
approach, however, their effort is limited to considering the Military Message System. 
Spooner in [539] takes a preliminary look at the mandatory access control and raises 
several important concerns. In [313, 312, 582, 583], objects can be multilevel. This 
means, for example, that an object~s attributes can belong to different security levels, 
which in turn means that the security system must monitor all methods within an 
object. We consider this to be contrary to the spirit of the object-oriented paradigm. 
Finally, Millen and Lunt in [397] mention some problems associated with having mul- 
tilevel objects. In their model, only single-level objects are permitted; however, the 
notion of subjects is still retained, and subjects are assigned security levels. 
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2.4 Discretionary Access Control 
In this section we present an authorization model for discretionary access control that 
has been proposed by Rabitti et al. in the ORION/ITASCA framework [460], followed 
by the extensions to this model that have then been proposed by Bertino and Weigand 
in [57]. We also illustrate how the authorization models proposed in [53] and [8] ex- 
ploit the object-oriented approach in the development of a discretionary access control 
mechanism. 

2.4.1 The ORION Authorization Model  

This model enforces a discretionary protection policy which takes into consideration 
the relationships existing among the database objects, the access modes through which 
objects can be accessed, and the subjects which can access the objects. In particu- 
lar these relationships are used to derive new authorizations from the authorizations 
specified by the users. Moreover, the model takes into consideration characteristics of 
object-oriented systems such as inheritance, composite objects, and versioned objects. 

S u b j e c t s  
The model considers, as subjects, groups of users (roles) into which users are or- 

ganized on the basis of the activities they execute in the olganization. A user may 
belong to more than one role. Roles are related by meaaas of an implication relation- 
ship. A role R1 is in implication relationship with another role R2 if and only if the 
authorizations associated with role R1 subsume the authorizations associated with role 
R2. In particular, this corresponds to saying that all users belonging to role R1 also 
belong to role R2. For example, an implication rink between the role "accountant" 
and the role "employee" indicates that accountants are also employees and therefore 
all authorization specified for the role "employee" are considered valid also for the 
rote "accountant." According to the implication relationship, the set of roles forms a 
lattice, called a role lattice. An example of a role lattice is shown in Figure 2.2. 

An arc directed from role R1 to role R2 indicates that role Ra is in implication 
relationship with role R2. T h e  root of the lattice (topmost role) corresponds to a role 
which has the authorizations of any other role in the system. The bottom most role 
corresponds to a role which has a set of base authorizations executable by any role. On 
the basis of the implication relationship, and therefore of the role lattice, a partially 
ordered relationship (>) is defined on all subjects as follows: 

Given two subjects s~ and s j ,  s~ > sj if an impfication rink exists directed from si 
to sj  in the role lattice; si > sj  if s~ = sj or si :> s 3 or there exist subjects sl,  s~ , . . ,  sn 
such that si > sl > 82 > . . .  > sn > sj .  

For the role lattice shown in Figure 2.2, we have Super_user > Chief_accountant > 
Accountant > Employee. 

O b j e c t s  
The ORION authorization model considers the following objects as objects to be 

protected: databases, classes in the database, instances of classes and their components 
(attributes, values, and methods). The model also considers sets of objects of the same 
type that have a common root (e.g., the set of instances of a class or the set of values of 
an attribute) as objects to be protected. In this way authorizations can be specified on 
the set of objects contained in a given object using the same access modes specified for 
the object itself, without the need of introducing further access modes. For example, 
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Superalser 

Chief.accountant Manager 

Accountant Consultant Permanent 

Employee 

F i g u r e  2.2: A n  e x a m p l e  o f  a role  l a t t i ce  

it is not  necessary to use two different access modes to refer to the read privilege on 
a class definition and the  renal privilege on the instances of the class. The  meaning of 
the access mode,  and therefore of the authorization, will depend on the type of object  
to which the  authorizat ion is referred. 

Like the subjects,  objects  are also related by means of an implication relationship. 
An implication link from object  ol to object  02 indicates that  the authorizations spec- 
ified on ol can also be used on o2. On the basis of the implication relationship two 
structures  are defined: an authorization object schema (AOS),  defining the implication 
links between object  types, and an authorization object lattice (A OL), defining the re- 
lat ionships between the instances of the authorizat ion objects.  An AOL is therefore an 
instance of an AOS for a given system. Every authorizat ion object  in the AOL is an 
instance of only one object  type indicated in the AOS. Examples of an authorizat ion 
object  schema II and an authorizat ion object  lat t ice are shown in Figures 2.3 and 2.4, 
respectively. 

On the basis of the AOL, a partially ordered relationship (>)  exists among all 
objects:  

Given two objects  oi and oj, oi > oj if an impfication link exists directed from oi 
to oj in the authorizat ion object  lattich; oi > oi if oi = oi or oi > oj or there exist 
objects  o l , o 2 , . . . o n  such tha t  oi > ol > o2 > . . .  > on > oj. 

A c c e s s  m o d e s  
The  model  considers the following access modes: 

�9 Write ( W )  to write to an object.  

�9 Wri te_Any ( W A )  it is analogous to the Write access mode. It  allows writes to an 

II The nodes shown in italics correspond to authorization objects representing a set of objects 
of the next lower level. 
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System 

l 
Database 

Class 

1 
Set@instances 

Instance 

Seto]-Attribute- Values 

1 
Attribute-Value 

F i g u r e  2,3: A n  e x a m p l e  of  an  a u t h o r i z a t i o n  o b j e c t  s c h e m a  

object.  It  is considered for completeness purposes in the implication rules based 
on access modes. 

�9 Read (R) to read an object.  When referred to a method indicates tha t  the 
me thod  can be executed. 

�9 Generate (G) to create instances of an object.  

�9 Read_Definition (RD) to read the definition of an object.  

The  model  does not consider administrat ive privileges. Any subject  tha t  has spe- 
cific privileges can grant  or revoke these privileges of other  subjects.  Therefore,  the 
authorizat ion for an access implies the authorizat ion to administer (grant and revoke) 
the  access. 

Not  all access modes are meaningful  for every object.  In particular,  the access 
modes executable  on an object  depend on the object  type. Given the access modes 
in t roduced earlier, an access authorization matrix (AAM) states, for every object  type 
and access mode,  whether  the access mode is executable on objects of tha t  type. An 
example  of an A A M  is given in Figure 2.5. 

Access modes  are related by means of an implication relationship. An impfication 
rink f rom access mode al to access mode a2 indicates that  the access mode al on a given 
object  implies the access mode a2 on the same object.  For example, the impfication 
rink between the  access mode "write" and "read" indicates tha t  the authorizat ion to 
wri te  an object  impfies the authorizat ion to read the same object.  On the basis of the 
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J 
J 

class[Contract] 

System 

~ese~ch] ~t~s~[~D] . . . . . .  

class[~ .eport] class~roject]  . . . . . .  

se tof - ins ta~ 

instance[l] instance[2] instance[3] 

1 
attribute-value[authors] attribute-value[object] . . . . . .  

Figure  2.4: An  example  of an au thor iza t ion  object  lat t ice 

implication relationship, access modes form a lattice named author iza t ion  type lattice 
( A T L ) .  This lattice is shown in Figure 2.6. 

A link directed from node ai to node aj indicates that access mode ai implies access 
mode aj .  A partially ordered relationship (~) is therefore defined on the access modes: 
Given two access modes a~ and a j:  a~ > aj  if an implication link exists directed from 
ai to aj  in the access mode lattice; ai ~ aj if ai = aj or ai > aj or there exist access 
modes al ,  a 2 , . . ,  an such that ai > al > a2 > . . .  > an > aj .  

Access modes are grouped into three classes: A.up,  containing all access modes 
which axe propagated from low objects to higher objects in the AOL; A.down,  contain- 
ing all access modes which are propagated from high objects to lower objects in the 
AOL; and A.ni l ,  containing all access modes which are not propagated. These groups 
are as follows: 

A . u p  --- { WA,  RD} .  For example, the authorization for the RD mode on the instances 
of a class, which permits reading of their definition, implies the authorization 
for the RD mode on the class itself. Analogously, the authorization for the RD 
mode on a class implies the authorization for the RD mode on the database to 
which the class belongs. 
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W W A  R G R D  
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F igu re  2.5: A n  e x a m p l e  of  an au tho r i za t ion  assoc ia t ion  m a t r i x  
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RD 

F igure  2.6: An example  of  an au tho r i za t ion  type  la t t i ce  

A . d o w n  = { W, R}. For example, the authorization for the R mode on a class, which 
allows reading of the class information, implies the authorization for the R mode, 
meaning reading, on the instances of the class. 

A . n i l  = { G}. The authorization to create objects cannot be propagated among objects 
related in the AOL. 

I m p l i c i t  a n d  E x p l i c i t  A u t h o r i z a t i o n s  

The ORION authorization model allows the derivation of new authorizations from those 
specified by the users. The derivation of new authorizations is based on the implication 
relationships existing among subjects (e.g., a manager can access the information his 
employees can access), among objects (e.g., the authorization to read a class implies 
the authorization to read all instances of the class), and aznong access modes (e.g., 
the authorization to write an object implies the authorization to read the object), as 
expressed in the respective lattices. 
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Authorizations specified by users are called explicit, whereas authorizations derived 
by the system are called implicit. Beside this classification, two other orthogonM classi- 
fications are introduced. These concern the distinction between positive authorizations, 
stating access privileges, and negative authorizations, stating denim of privileges, and 
between strong authorizations which cannot be overwritten by other authorizations 
and weak authorizations which can be overwritten by other authorizations. 

Authorizations are grouped into two sets: an authorization base (AB) grouping 
all strong authorizations, both positive and negative, and a weak authorization base 
(WAB) grouping all weak authorizations, both positive and negative. In the following, 
strong authorizations will be indicated by listing them between round brackets ( ) ,  
whereas weak authorizations will be indicated by listing them between square brackets 
[]. 

A positive strong authorization is described as a triple (s,o,a) indicating that 
subject s can access object o in access mode a. A negative authorization is described 
as a triple (s, o, -~a) indicating that subject s cannot access object o in access mode a. 

The system ensures that the set AB, consisting of strong authorizations, is free 
of (1) inconsistency, i.e., there do not exist two authorizations such that both are 
derivable from the authorizations in AB and one is the negation of the other, and (2) 
redundancy, i.e., an authorization should not be in AB if it can be derived from other 
authorizations already present in the AB. 

The set WAB, consisting of all weak authorizations, groups all authorizations, 
positive and negative, which are classified as weak, i.e., which can be overwritten 
by strong authorizations. A weak positive authorization is characterized by a triple 
Is, o, a] stating that subject s can execute access mode a on object 0. A weak negative 
authorization is characterized by a triple [s, o, -~a] stating that subject s cannot execute 
access mode a on object o. 

To avoid having an access request for which neither a positive authorization nor a 
negative authorization is derivable from the system, the system ensures the complete- 
ness of the authorization bases, i.e., for any possible access that users can request, the 
corresponding negative or positive authorization can be derived from the authorization 
bases. Moreover the system ensures that the set of weak authorizations is free of any 
inconsistency, i.e., an authorization and its negation cannot be both derivable at the 
same time from the set of weak authorizations. 

Unlike AB, redundancy is allowed in WAB, i.e., an authorization can exists in 
WAB even if it is impfied by existing authorizations. Therefore, an authorization 
already implied by some authorizations in WAB can be inserted in WAB. 

A further property, required on the union of WAB and AB, is that a weak autho- 
rization must not be present, either as impficit or explicit, as a strong authorization 
as well. Since weak authorizations are used to complement strong authorizations, the 
system avoids insertion of those weak authorizations that are Mready present, either 
explicitly or implicitly, in the strong authorization base. 

R u l e s  f o r  t h e  D e r i v a t i o n  o f  I m p l i c i t  A u t h o r i z a t i o n s  a n d  A c c e s s  C o n -  
t r o l  

Implication rules determine how new authorizations, called implicit, are derived from 
the authorizations explicitly defined by the users. These rules are based on the rela- 
tionships existing among subjects, objects, and authorization types. 

Implication rules, summarized in Figure 2.7, are defined for strong authorizations. 
Implication rules for weak authorizations are derived from the implication rules defined 
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for strong authorizations. Authorizations derived from strong (weak) authorizations 
are also considered as strong (weak). The implication relationship among strong autho- 
rizations is denoted by --~. The implication relationship between weak authorizations 
is denoted by ~--~. 

Rule 1 

Rule 2 

Rule 3 

Rule 4 

Rule 5 

Rule 6 

Vsz,sk E S, oi,oj E O,a~ 
Sk > 8l~Oi > o j , a n  >_ am 

Vsl, sk 6 S, ol, oj E O, an 
sk ~ sl,oi ~ oj~an > am 

Vsl,sk E S~Oi,Oj 60, an 
Sk >_ Sl,Oi : oj,an >_ am 

Vsl, sk 6 S, o{, oj E O, a~ 
Sk ~ SllOi > o j , a n  ~_ am 

Vsl,sk 6 S,o{,oj 60, an 
Sk > Sl,Oi >> oj~an >~ am 

Vsl,sk E S, oi,o i 60, an 
sk >_ st, oi = oj,an >_ am 

E A.down, a m  E A : 
( s .  o;, a~) -~  (s~,  o~, a~)  

E A, a m  E A.up : 
(s~, o~, a~) -~ (s~, o~, a~0 

E A.nil, a,~ E A : 
(~,, oj, no) -~  ( ~ ,  o,, a~)  

E A.down, am G A : 

EA,  a m E A . u p :  
(sk, o., ~a~)  ~ (s~. oj, -~a~) 

E A.nil, a,~ E A : 
(sk, o .  ~am) -~ ( s .  o3, ~a~) 

Figure 2.7: Impl ica t ion  rules for strong author iza t ions  

The implication rules for the derivation of strong positive authorizations can be 
summarized as follows: 

i Authorizations with access mode belonging to A.down are propagated]or subjects 
at higher levels, and ]or objects and access modes at lower levels as described 
in the corresponding lattices (Rule 1). Since every subject, object, and access 
mode is > and <_ itself, this rule allows the derivation of, from an authorization, 
authorizations involving the same or different subject, object, and access mode. 

�9 Authorizations with access mode belonging to A.up are propagated for subjects 
and objects at lower levels, and for access modes at higher levels as described in 
the corresponding lattices (Rule 2). Again, since any subject, object, and access 
mode is > and < itself, this rule allows us to derive, from an authorization, 
authorizations involving the same or different subject, object, and access mode. 

�9 Authorizations with access mode belonging to A.ail, therefore not propagatable 
in the authorization object lattice, are propagated ]or subjects at higher level 
and ]or access modes at lower level as described in the corresponding lattices 
(Rule 3). Therefore, starting from an authorization, new authorizations on the 
same object, with the same or different user and access mode can be derived. 

From these implication rules, according to the property that given two predicates 
p and q: p ~ q r -~q --* -~p, analogous implication rules for negative authorizations 
are defined. 
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The implication rules for weak authorizations are the same as those for strong au- 
thorizations. The only difference is that,  since weak authorizations can be overwritten, 
the derivation of authorizations from an explicit weak authorization stops where an- 
other more specific explicit authorization starts. 

A c c e s s  c o n t r o l  
Derivation of authorization is used in the access control as follows. Given a re- 

quest of a subject to exercise an access mode on an object the strong authorizations 
are examined. If there exist a strong authorization, either explicit or implicit, which 
authorizes, or denies, the access, then the access is authorized, or denied, respectively. 
If there does not exist any strong authorization for the access, the weak authorizations 
are examined, and the access is either granted or denied based of the outcome. 

To illustrate how the implication of authorizations work, consider the role lattice 
shown in Figure 2.2, the AOS shown in Figure 2.3, and the ATL shown in Figure 2.6, 
and suppose that  the strong authorization base contains the authorization (Permanent, 
database[Research], W). Suppose now that  the authorization (Manager, instance[I] 
of class[Report], R) needs to be checked. Along the subject domain, we have that  
Manager > Permanent. Along the objects domain we have that  database[Research] 
> class[Report] > instance[I]. Finally, along the authorization type domain we have 
W > R, with W E A.down. Therefore, by applying Rule 1 we have that (Permanent, 
database[Research], W) --+ (Manager, instance[l] of class[Report], R). Therefore, the 
authorization is satisfied. 

I n h e r i t a n c e  H i e r a r c h i e s ,  C o m p o s i t e  O b j e c t s ,  a n d  V e r s i o n s  

In this section, we illustrate how the ORION authorization model takes into consid- 
eration characteristics of the object oriented systems such as inheritance hierarchy, 
composite objects, and version. 

Inheritance hierarchies 
When a class is defined as subclass of another class, there are two approaches which 

can be taken concerning authorization on instances of the subclass. 
The first approach is that  the creator of a class should have no implicit authorization 

on the instance of the subclasses derived from his class by some other user. For example, 
in reference to the AOL shown in Figure 2.4, if class Technical_Report is defined as 
a specialization of class Report, the creator of class Report should not be able to 
read or update the instances of class Technical_Report, unless explicitly authorized 
for that  from the creator of class Technical_Report (or other authorized user). This 
approach allows users to reuse existing classes without compromising the protection of 
the subclasses generated. 

A second approach is that  the creator of a class should have implicit authoriza- 
tions on instances of a subclass. For instance, in the above example, the creator of 
class Report will be implicitly authorized to update and read instances of class Tech- 
nical_Report. 

With  respect to query processing, the first approach implies that  an access whose 
scope is a class and its subclasses will be evaluated only against those classes for which 
the user issuing the query has the read authorization, whereas in the second approach, 
it would be evaluated against the class and all its subclasses. 

The ORION authorization model adopts the first approach as default, and supports 
the second as a user option. This choice is motivated by the reason that  under the 
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second approach, a user wishing to derive a class from another class would not have 
any privacy on the instances of the subclass (which are readable by the creator of the 
superclass). Therefore, users could be discouraged from reusing existing classes not 
taking advantage of the characteristic of inheritance. 

When multiple inheritance is allowed, implicit authorizations along the class hier- 
archy may give rise to conflicts. Conflicts are handled by rejecting insertion of new 
authorizations when it conflicts with some other authorization already present in the 
system. 

To allow authorizations for generating subclasses, the access mode subclass-generate 
(SG) is added to the set of access modes. If a user is authorized for the SG access mode 
on some class, the user can define subclasses on it. Access mode SG belongs to the set 
A.nil, i.e., it is not propagated in the AOL. Moreover, the following relationships hold: 
W > SG > RD. Given these relationships, authorization along the specialization hier- 
archy can be derived according to the rules given in the previous section. For example, 
if a user has the write authorization on a class, the user is implicitly authorized to 
generate subclasses from the class; if a user has the SG authorization on a class, then 
the user has implicitly the RD authorization on the class. Indeed, a user, in order to 
create a subclass from a class C, must be able to read the definition of C. Therefore, 
the authorization to generate a class from a given class C implies the authorization to 
read the definition of C. 

C o m p o s i t e  o b j e c t s  
Composite objects are taken into account in the model by considering a composite 

as an authorization unit. This "allow a single authorization granted on the root of a 
composite object to be propagated to all components without any additionM explicit 
authorization. This can simply be enforced by representing the composite relationship 
among objects in the authorization object lattice. The defined implication rules can 
therefore be used to derive authorizations across composite objects. For example, if 
a user can read a composite object, then the user is automatically authorized to read 
the objects which compose it. It should be noticed that the implicit authorization only 
holds for the objects which belong to the composite object. For example, suppose a 
class C is defined on class C1 and C2. Access authorization to C's instances implies 
the authorizations on the instances of C1 and C2 which compose some object of C. No 
authorizations for instances of C1 and C2 which do not compose any object of C are 
derived. 

In this context, negative authorization may give rise to conflicts in the autho- 
rization of implicit authorizations. Therefore, care must be taken that authorization 
conflicts will not arise. For example, the positive authorization to read a composite 
and the negative authorization to read one of its component cannot be present at the 
same time, unless the authorization on the component is a weak authorization and can 
therefore be overwritten. As in the case of inheritance hierarchy conflicts are avoided 
by accepting insertion of a new authorization only in case it does not conflict with 
authorizations already specified. 

V e r s i o n s  
Authorizations can also be specified on a versioned object and on individual versions 

of the object. To represent version hierarchy and enforce derivation of authorization 
along the hierarchy~ the model extends the authorization objects to include generic 
instances and versions. An implication llnk is therefore defined between the generic 
instance of an object and the set of versions of the objects. The implication rules can 
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then be used to derive new authorizations. For example, a read authorization an a 
generic instance of an object implies the same authorization on all the versions of the 
object; a write authorization on the set of versions of an object imphes the same au- 
thorization on the versions described by the generic instance. The write authorization 
on the set of versions of an object is also the authorization to create a new version 
from a working version of the instance. The write authorization on a generic instance 
allows the user to modify the generic instance (e.g., by changing the default version) 
and imphes the write authorization on the version objects described by the generic 
instance. 

2.4.2 Content-dependent A u t h o r i z a t i o n s  

The ORION authorization model has been extended in [53]. In [53] different access 
modes have been introduced in reference to different object types, and some implication 
rules for the derivation of implicit authorizations have been revised. 

An important extension introduced in [53] is the consideration of content-dependent 
authorizations, i.e., authorization depending on some properties of the objects to be 
accessed. Indeed, in [460] a user is either authorized or denied for an access on an object. 
Instead, in [53] it is possible to specify that a user is allowed (denied) for an access on 
an object if some conditions on the object are satisfied. Therefore, authorizations are 
extended to the consideration of conditions which must be verified for the authorization 
to hold. Conditions can be put on any of the objects' attributes. In particular, they 
may involve class-attributes, e.g., attributes that characterize the classes themselves 
and are not inherited by instances, or instance attributes. 

For example, consider the AOL shown in Figure 2.4 and suppose that attribute 
status is added to the attributes of instances of class Report. An authorization could 
be specified by stating that Employee can read only instances of class Report which 
have status "released". 

The implication rules defined in [460] are applied also to content-dependent autho- 
rizations, Authorizations derived from content-dependent authorizations inherit also 
the conditions upon which the access has to be controlled. For example, it is possi- 
ble to specify content-dependent authorizations on a class to be evaluated against the 
instances of the class and to specify content dependent authorizations on a versioned 
object to be evaluated against all versions of the object. 

In the case of composite objects, the situation is a little different. Indeed, composite 
objects can have components of different classes and their types may be different. 
Therefore, conditions may not be evaluable on all the components. In this case the 
conditions are considered only in reference to the component against which they can 
be applied. 

A main issue when dealing with content-dependent authorizations is how to effi- 
ciently evaluate conditions associated with authorizations. Since conditions have to 
be evaluated over object's attributes, which can change over time, conditions have 
necessarily to be evaluated at run-time, therefore necessarily increasing the response 
time of the system. In particular, enforcing satisfaction of the conditions expressed 
in the authorizations by filtering the data prior to the user access, would require a 
double access to the objects (one to evaluate the conditions and the other to satisfy 
the user query). The solution considered in relational database system is to simply 
add conditions expressed in the authorization to the user query. This approach, known 
as query modification mechanism has the advantage of ensuring the satisfaction of the 
protection requirements and not overloading the access control. 
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In object-oriented databases, where objects are accessed through methods, which 
can be nested, implementation of content-dependent condition is not straightforward. 
A possible solution would be incorporating conditions in the method. This approach 
has the drawback of having method specification to be dependent on authorizations, 
therefore a change in the authorizations would require to change specification of meth- 
ods. 

A further aspect that must be taken into consideration when considering content- 
dependent authorization is that since satisfaction of the conditions in the authorizations 
depends on the values of the objects' attributes and can therefore change over the time 
is more difficult to ensure the consistency and completeness of the authorizations. For 
example, consider the class Documents having as attributes date and status. Suppose 
then that subject Employee has to be authorized at the same time for both the positive 
authorization to read all documents with date later than "March 3, 1992" and the 
negative authorization to read all objects with status "protected". If no object exist 
with status protected and date later than "March 3,1992", the authorization state 
is consistent. However, since attribute values can change and new objects can be 
added authorizations may become inconsistent. Consistency and completeness criteria 
and mechanism to satisfy them have therefore to be extended to the consideration of 
content-dependent authorizations. 

2.4.3 Accessing Objects Through Methods 
The model presented in [460] and extended in [56] takes into consideration many of the 
characteristics of object-oriented data models such as inheritance hierarchy, versions 
and composite objects. However, it does not exploit the potential of encapsulation 
typical of the object-oriented approach. In fact, all accesses made during a method 
execution are further checked against the user who invoked (directly or indirectly) 
the methods. For example, if during the execution of a method invoked by a user, 
an attempt is made to modify the attribute of an instance, the authorization for the 
user to update the attribute must be checked. In some cases, where encapsulation is 
meant to provide protection, it is desirable not to give the users the authorization to 
execute some accesses directly but allow at the same time the accesses to the users 
through the execution of some method. For example, users may not be authorized to 
write an attribute of an object but can be authorized to run a method which, during 
its execution, modifies the attribute. Therefore, since users should not be directly 
authorized for the access, no authorization for the users to execute the access executed 
by the method should be provided. An authorization model which takes into account 
this principle has been presented in [57]. 

According to many object-oriented languages, the model distinguishes between 
public and private methods. Private methods of an object can be invoked only by other 
methods of the same object, whereas public methods can also be invoked directly by the 
users of the object (i.e., end- users, application programs, other objects). That  previous 
notion of public/private methods has been further refined by allowing methods to be 
defined public with respect to some other methods, of the same or different objects. The 
method is then considered private for all methods for which it has not been explicitly 
defined as public. In this way, it is possible to specify that some methods cannot be 
invoked directly by the users of the object but can be invoked during the execution of 
some other methods. The declaration of the methods for which a specific method is 
public is provided as part of the class definition to which the method belongs. The set 
of methods for which a specific method is public is called the invocation scope of the 
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method .  
T h e  mode l  is based  on au thor i za t ions  for users to execute  m e t h o d s  on objects .  

A u t h o r i z a t i o n s  specify, for each user, t he  set of m e t h o d s  the  user can invoke on which 
objec ts .  Therefore ,  au tho r i za t ions  have the  form < o, u, m >,  where  o is an object ,  u 

is a user, m is a me t hod .  Such a tuple  specifies t h a t  user u is au thor ized  to execute  
m e t h o d  m on ob jec t  o. A u t ho r i za t i ons  can be specified only on public  me thods ,  i.e., 
on m e t h o d s  di rect ly  invokable  by end-users .  In order  for a user to  execute  a me thod ,  
the  m e t h o d  mus t  be  public  for the  end-users  and  the  user mus t  have the  au thor i za t ion  
to execute  t he  m e t h o d .  If  b o t h  these  condi t ions  are satisfied, the  user can  execute  the  
m e t h o d .  However,  t he  fact  t h a t  the  user  is au thor ized  to r un  a m e t h o d  does not  imply 
t h a t  t he  user  will be  able to  always execute  all act ions t h a t  are pa r t  of the  me thod .  
Indeed,  o t h e r  m e t h o d s  can  be invoked dur ing  execut ion of the  m e t h o d  called by t he  
user,  and,  therefore ,  several  access controls  m a y  be  pe r fo rmed  dur ing  the  execution.  
In par t icu la r ,  if dur ing  the  execut ion  of a m e t h o d  m ano the r  m e t h o d  m j is invoked, 
the  invoca t ion  is allowed if  e i ther  m ~ is public for end-users  and  the  user has  the  
au tho r i za t i on  for it or m ~ is p r iva te  for end-users  and  m belongs to the  invocat ion  

scope of m ~. 
T h e  mode l  allows users to  g ran t  o ther  users au thor iza t ions  to  execute  methods .  

A user can  g ran t  such au tho r i za t ions  on an ob jec t  if the  user is the  c rea to r  or one of 
t he  owners  of the  objec t .  Each  ob jec t  is wssociated wi th  a creator ,  i.e., t he  user Who 
c rea ted  the  objec t ,  and  some owners.  T he  c rea tor  of an  ob jec t  is always unique  bu t  
can  change  dur ing  the  l ife-t ime of the  objec t .  In  fact,  i t  is allowed for the  c rea to r  of an  
ob jec t  to  give the  privilege of be ing  c rea to r  to  some o ther  user. Since the  c rea to r  mus t  
be  unique,  so doing the  first user  looses the  c rea to r  privilege on the  object ,  which is 
passed  to  t h e  o the r  user.  T h e  c rea to r  can  also add  and  delete  owners  for the  objec t .  

Any  owner  of an  ob jec t  can g ran t  and  revoke au thor iza t ions  to execute  me thods  on 
the  ob jec t  to  o the r  users. A user can revoke only au thor iza t ions  t h a t  he gran ted .  

T h e  model  in t roduces  also the  not ion  of protection mode for m e t h o d  execut ion 

au thor i za t ions .  If  user  u g ran t s  user  u' t he  au thor i za t ion  to execute  m e t h o d  m in 
p ro t ec t i on  mode,  t h e n  when  u ~ executes  m,  all invocat ions  of m e t h o d s  public for end- 
users  m a d e  by m are checked for au tho r i za t ions  not  against  u ' ,  who called the  me thod ,  

b u t  aga ins t  u, i.e., agMnst  the  user who g ran ted  u ~ the  au thor i za t ion  on the  method**.  
In th i s  way users  can  g ran t  o the r  users the  privilege of execut ing some m e t h o d s  on an  
ob jec t  no t  directly, bu t  by using some o the r  me thods .  

A model  apply ing  a s imilar  approach  hws been  proposed in the  contex t  of the  Iris 
D B M S  [8]. There ,  ob jec t s  ( and  the i r  da t a )  are encapsu la ted  by a set  of funct ions ,  
i.e., to  access an  ob jec t ,  users call t he  appropr i a t e  funct ions  t t  Au thor i za t ions  specify 
for every user,  t he  set  of func t ions  the  user  is allowed to call. Au thor i za t ions  can be  
referred to single users  as well to  groups  of users. A user can belong to zero or more  
groups,  and  groups  can  be  nested.  

T h e  model  s u p p o r t s  the  concept  of ownership,  in par t icular ,  the  user  who creates  
a func t ion  is cons idered  the  owner of the  func t ion  and  can gran t  o ther  users the  au- 
t ho r i za t i on  to call t he  funct ion.  Th i s  au thor i za t ion  can also be  given wi th  the  g ran t  
opt ion.  If  a user  has  the  g ran t  opt ion  on the  au thor i za t ion  to call a funct ion,  the  user  
can  g ran t  o the r  users  the  au tho r i za t ion  to call t he  funct ion  and  the  g ran t  opt ion  on 

**The concept of protect ion mode is very similar to the set user-id on execution concept 
considered in the Unix operat ing system. 

ti'lax the Iris da ta  model b o t h  a t t r ibutes  and methods are represented as functions. In 
part icular ,  a t t r ibu tes  are defined as stored functions, while methods are defined as derived 
functions.  
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it. The grant privilege is also enforced as a function: the authorization for the grant 
privilege on a function f is represented by the authorization to call the grant function 

with f as argument. 
Functions can be defined on other functions. Authorizations on derived functions 

can be defined as static or dynamic. If a user has the dynamic authorization on a 
derived function, in order for the user to successfully call the function, the user must 
have the call privilege on all the underlying functions. By contrast, in order to call 
a derived function on which he has the a static authorization, a user does not need 
to have the call authorization to the underlying functions. The concepts of static and 
dynamic authorizations correspond to the concepts of protection and non-protection 
execution modes for methods discussed earlier [57]. 

When a user creates a derived function, the user must specify whether the autho- 
rizations on the defining functions must be checked statically or dynamically. In either 
case, the creator of the derived function must have the call authority on all the under- 
lying functions. If the creator specifies that the function must have dynamic authoriza- 
tion, the user can grant other users the authorization to call the function. By contrast, 
if the function is specified to have static authorizations, the user can grant other users 
the authorization to call the derived function only if he has the grant privilege on all the 
underlying functions. Derived functions can also be used to support content-dependent 
authorizations. In this case, users are not authorized directly for a function, but on a 
function derived from it which enforce some constraints. For example, suppose to have 
an class Employee storing information about the employees and a function "Salary", 
defined on it, returning the salary. Thought some employees can be authorized to read 
the salary of everybody, some employees could be restricted to see their own salary. 
This condition can easily be enforced by defining a derived function "Self_Salary" which 
takes into consideration the caller of the function and calls function "Salary" to return 
the user's salary. Since users cannot be authorized to call directly function "Salary", 
the authorization to be specified on function "Self_Salary" is a static one. However, 
the application of derived function to enforce content-dependent authorizations has 
the drawback of embedding authorizations in the function implementation, therefore a 
change of authorizations would imply a change in the implementation of some derived 
function. 

The authorization model takes also into consideration the characteristic of poly- 
morphism of object-oriented systems. Polymorphism allows to specify functions, called 
generic functions which have associated a set of specific functions that are defined on 
different types tt. When a generic function is called, a specific function is selected 
for invocation (late binding). Authorizations can be specified on generic or on specific 
functions. A user authorized to call a generic function is automatically authorized to 
call all specific functions of that generic function. When a user calls a generic function, 
the corresponding specific function is selected and the user is allowed for it only if he 
has the authorization on the specific function. The specific function can be selected 
regardless of the user's authorizations (authorization-independent resolution)or by tak- 
ing into account the user's authorizations (authorization-dependent resolution). The 
authorization-dependent resolution has the disadvantage that the query semantics is 
in this case dependent on the authorization-policies. 

Functions can also be specified as having a guard function. If a function has a guard 
function associated with it, the function can be executed only if the guard function 

$$The concept of type in the Iris data model is equivalent to the concept of class in discussed 
in Section 2. 
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returns value "true". Guard functions can therefore be used to specify conditions 
which have to be satisfied for the users to execute some function. Since guards enforce 
conditions by evaluating them prior to the execution of the function they control, they 
are really useful for evaluating preconditions, i.e., conditions independent on the values 
returned by the controlled function. Indeed, in order to enforce conditions on values 
returned by the controlled function, the controlled function itself should be called and 
its results evaluated by the guard. 

Another concept introduced by the model is that  of proxy functions. Proxy func- 
tions provide different implementations of specific functions for different users. A func- 
tion may have associated several proxy functions. When a user calls a function, the 
appropriate proxy is executed in place of the original function. Therefore, the result 
of a function may change depending on the user calling it. Proxy functions have the 
advantage of allowing to enforce constraints on function execution by users without 
any impact on the function implementation. 

2.5 R e s e a r c h  Issues  in M a n d a t o r y  A c c e s s  Con-  
trol  

We now discuss ongoing research aiming at extending in various directions the message 
filter model presented in Section 2.3. 

2.5.1 Model ing  Multi level  Entities as Single-level Objects 
In the message filter model, all objects are single-level in that  a unique classification 
is associated with the entire object. This constraint is essential in order to make the 
security monitor small enough so that  it can be easily verified. However, entities in 
real world are often multilevel: some entities may have attributes of different levels 
of security. Much modeling flexibility would be lost if multilevel entities could not be 
represented in the database. 

A preliminary approach that  maps multilevel entities in terms of single-level ob- 
jects is given in [288]. It is based on using inheritance hierarchies. Unfortunately, this 
approach suffers from several problems. First, it leads to a replication of information. 
Since a multilevel entity is modeled as several single-level objects in a class hierarchy, 
some at tr ibutes of high level objects are replicas of attributes of low level objects (be- 
cause of inheritance). Second, if not carefully monitored, updates may lead to mutual 
inconsistency of replicated data. To illustrate, suppose that  an update is performed 
on an at t r ibute  of a low level object. This update cannot be propagated to the corre- 
sponding at t r ibute  of the high level object because the low level object does not store 
any reference to the high level object. (Note that  although writing up is permitted 
under the Bell-LaPadula paradigm, an important  requirement is that  the existence of 
high level objects must be hidden from low level objects. Therefore, low levels objects 
cannot have references to high level objects.) The third problem with this approach is 
that  the notion of inheritance hierarchy becomes overloaded since it is used both for 
conceptual specialization and for supporting multilevel entities. 

To solve the above problems, a different approach based on composite objects and 
delegation has been recently proposed by Bertino and Jajodia [54]. The notion of 
composite object is a modeling construct that  allows to consider an object and a set 
of component objects as a single object [320]. Delegation allows an object to perform 
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some of its functions by simply delegating their executions to other objects. In this 
approach, an entity E, with at tr ibutes of n, different levels of security, is modeled by 
a number nz of single-level objects. An object Oz~ would contain all at tr ibutes having 
security level l~. Moreover an object OL~ would contain a composite at t r ibute whose 
value is the object O,i_ 1 . Thus, a multilevel entity would be decomposed in several 
single-level objects such that  an object at a level Iz has as component objects the objects 
whose security levels are lower than l~. Whenever an object needs to retrieve values of 
at t r ibutes  of lower level objects, this object can delegate the appropriate component 
object  the execution of the retrieval operations. An attractive aspect of this approach is 
that  it  allows the same object interfaces. An interface of an object is the set of messages 
that  are defined for the object, to be provided to users as if multilevel objects were 
directly provided, while retaining at the same time the simplicity of the message filter 
approach and of the single- level objects. 

There are several aspects of composite references that  have been refined to take 
into account security requirements. As previously discussed, different types of com- 
posite references have been identified by Kim, Bertino, and Garza [320]. They can be 
categorized as follows: 

1. exclusive dependent reference 
if an object O is component of an object O ~, it cannot be component of another 
object; moreover if O I is removed, O is also removed 

2. exclusive independent reference 
if an object O is component of an object 0 I, it cannot be component of another 
object; the deletion of O'  does not imply the deletion of O 

3. shared dependent reference 
an object O can be component of several objects; O is removed when all parents 
objects, on which O depends for existence, are removed 

4. shared independent reference 
an object O can be component of several objects; the deletion of the parent 
object  does not imply the deletion of O. 

Some of these categories may result in violations of security requirements. For 
example, the exclusivity constrains can be used by a low user to infer the existence of 
a high object. To overcome this problem, two additional forms of exclusive composite 
references have been introduced. The first form consists of a composite reference which 
is exclusive with respect to a class. That  is, no two instances of the same class may 
share a component, however, there could be instances of other classes with references 
to tha t  component. The second form is similar to the first, with the difference that  the 
exclusivity constraint is with respect to a class hierarchy. That  is, no two members of 
the same class can share a reference to the same component. (The members of a class 
are the instances of the class and the instances of all its subclasses.) The motivation 
for introducing those additional form of exclusivity constraints is to support some form 
of semantic integrity for composite objects. The approach proposed by Bertino and 
Jajodia  [54] also covers multilevel entity types that  are organized in specialization 
hierarchies, including the case of multiple direct supertypes. 

Finally, it is important  to note that  while the use of composite objects combined 
with inheritance hierarchies allow to model a large variety of application entities, when 
dealing with real applications the number of entity types and specialization hierarchies 
among them can be quite large. Therefore, it is crucial that  the process of generating 
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an object-oriented schema be supported by some automatic tool. A security specifi- 
cation language has been proposed by Bertino and Jajodia [54] whose purpose is to 
describe the entity types and the specialization hierarchies together with their security 
requirements. Those specification can then be translated in terms of an object-oriented 
schema through a set of translation rules, based on the approach we have previously 
discussed. 

2.5.2 Object Updates and Secure Garbage Collection Mech- 
anisms 

Under the approach described in the previous subsection, updates do not pose any 
obstacles to security. If an object o is part  of some composite object, any updates to 
the at t r ibutes  of o are directly visible to the composite object. 

By contrast, the delete problem is more difficult to deal with. There are basically 
two ways in which the delete operations have been implemented in various OODBMSs: 
systems allowing users to perform explicit delete operations (like ORION [319], and Iris 
[189]), and systems using a garbage collection mechanism to remove objects that  are 
no longer reachable from other objects (like GemStone [79] and 02 [150]). In systems 
belonging to the second category, an explicit delete operation is not av~dlable to the 
u s e r s .  

Systems with explicit delete operations allow an object to be deleted even if there 
are references to it. If a message is sent to a deleted object, the system returns a 
notification to the invoker object. Therefore, the invoker object must be ready to deal 
with the exception arising from a dangling reference. This approach is used by the 
ORION system, and it is also suggested by Zdonik [642]. Note that  in those systems, 
OIDs of deleted objects are not re-used. This approach works well with the composite 
object approach. For example, consider objects ol and 02, such that  o2 is a component 
of ol. If object o~ (a component of object ol) is removed, the next time a message is 
send from object ol to object 02, object ol will be notified that  the referenced object 
does not exist. 

The above approach has been refined in two directions. The first, called upward 
cascading delete, is similar to the approach proposed by Jajodia and Sandhu [292] 
for the delete operations in the multilevel relational secure model. In that  approach, 
each time a tuple t of a given security level l is removed, all polyinstatiated tuples 
corresponding to t and having a security level greater than 1 are also removed. In our 
framework, this approach means that  the deletion of a component should cause the 
deletion of its parent object. For example, if object o2 (a component of object ol) is 
removed, then also object ol should be removed. Note, however, that  object o2 does 
not know the OID of object ol (because o2 is an object whose security level is lower 
than the one of ol). Therefore this approach cannot be implemented by simply having 
object o2 sending a delete message to object ol. 

The second approach, called here conservative delete, is the opposite of the previ- 
ous one, in that  it aims at preserving information for high level objects. Under this 
approach, the low level object would still be deleted; however, a new corresponding 
high level object would be created. For example, if object o2 (a component of object 
ol) is removed, then a new object 02, is created having the same at tr ibute values as 
o2 but  having the same security level as ol. Note that  ol will still be notified that  o2 
has been removed. However, all information contained in o2 will be still available to 
object ol. 
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The  approach for support ing both the previous delete modalit ies is based on using 
the message filter as an active component;  it will need to notify objects at high levels 
tha t  events have occurred concerning related objects at low levels. 

In systems based on garbage collection an object  is automatical ly removed by the 
system when it is no longer referenced by any other  object.  This  approach, if not  
properly modified, would cause some problems in a secure environment.  Indeed, a 
low object  would not be removed if a reference exists from a high object  to this low 
object .  Therefore,  a low user may infer the existence of a high object  referencing the 
low object .  Note  tha t  even though the low user will not  be able to infer the OID of 
the high object ,  a signaling channel could be established. Another  serious drawback 
is tha t  the garbage collector would have to access objects at various levels of security. 
This  would require the garbage collector to be a t rusted component .  

We are invest igat ing a different approach which does not require the garbage col- 
lector  to be trusted.  The  approach requires a garbage collector for each security level. 
The  garbage collector associated with a level I removes an object  at level I only if all 
references from other  objects at level l have been removed. Since the garbage collector 
at level l does not  see references from objects  at levels higher than 1 (because it does 
not  see those objects  at all), it will remove an object  o at level 1 as soon as all references 
f rom objects  at the same level as o have been removed. Note tha t  removing a reference 
f rom a high object  to a lower object  cannot  cause the low object  to be removed. Indeed, 
suppose tha t  removing a reference from a high object  o to a low object  o ~ causes o j to 
be removed.  This  means tha t  the reference from 0 to o' is the last existing reference 
to o'. However,  this s i tuation cannot  arise because the garbage collector at the level 
of o' would remove o ~ as soon as the last reference to o ~ from an object  at the same 
level has been removed. Therefore,  if a reference from a high object  to a low object  is 
removed,  we have two cases: (i) the low object  has already been removed; (ii) the low 
object  has another  reference from its same level and then it is not removed. In both  
cases, the removal  of the reference from the high object  does not  cause any change in 
the  s ta tus  of the low object .  It  is impor tan t  to point out  tha t  information needed by 
the garbage collectors are also par t i t ioned on the basis of security. This means  tha t  the 
informat ion tha t  a high object  has a reference to a low object  is kept at high level. This  
is automat ical ly  achieved because put t ing a reference from an object  o to an object  o', 
where the level of o is greater  than  the level of o ~ can only be executed by a subject  
with the same level at o. Therefore,  all information generated as side-effects of this 
upda te  (such as the  information for garbage collection) are classified at the same level 
of o. 

Note  tha t  this approach causes the problem of dangling references. Indeed, a low 
object  can be removed even if it has some references from high level objects.  One 
possibility is to allow dangling references and to return a notification, whenever an 
object  sends a message to a low removed component  which has been removed, as in 
the  case of explicit delete. Another  possibility is to use the approaches of upward 
cascading delete and conservative delete. Both those approaches, however, require 
tha t  all deletions issued by the garbage collector pass through the message filter. This  
is automat ical ly  achieved if the garbage collector internally uses messages. 

2.5.3 Poly instant iat ion 

The  problem of polyins tant ia t ion has been studied in the framework of multi level 
relat ional  da t a  model  [292]. A multilevel relation is a relation containing tuples tha t  
have different security levels. Polyinstant iat ion arises when there are two or more 
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tuples in a multilevel relation having the same value for the primary key. Enforcing 
the uniqueness of key value in multilevel relations would lead to a covert channel. A 
possible solution consists of requiring that  the key be unique not with respect to the 
entire relation, but with respect to the set of tuples having the same security levels. 

As discussed by Jajodia and Sandhu [292] tuples at different levels in a multilevel 
relation are related. Indeed, each instance at an access class c represents the version 
of reality appropriate for the access class c. It is important  to note that  a user with 
clearance for a given level may see all tuples of levels equal or lower. One problem is 
therefore that  the user mus t  understand which low level information are correct and 
which one have been inserted to provide a cover story, and thus may be discarded. 
A consequence of this fact is that  discrimination of correct information against cover 
information is left to the application programming. 

We are currently investigating approaches to this problem in the framework of 
object-oriented da ta  models. In particular, we are investigating the use of methods as 
a way to embed and centralize the appropriate knowledge for distinguishing between 
correct information and cover stories. As an example consider an entity type 'Employee' 
with at tr ibutes Name, Skill, Salary, and Age. Furthermore suppose that  Name and Age 
are unclassified, while Salary is classified. Moreover, suppose that  Skill is a multivalued 
attr ibutes.  Remember that  in object-oriented data  models multivalued attr ibutes can 
be directly represented, without any need for normalization, that  can assume both 
classified and unclassified values (for example, the fact that  an employee has certain 
skills is secret, while employee's other skills are not). A possible design for the entity 
type 'Employee'  in terms of single-level object would be by defining two objects. A 
first object o, whose level is unclassified, would contain the attr ibutes Name, Age, and 
Skill. The Skill value for the unclassified object will contain only those skills that  do not 
need to be kept secret. A second object o', whose level is classified, would contain as 
at tr ibutes Salary and Skill, and in addition a composite at tr ibute containing a reference 
to object o (according to the composite object model defined in the first subsection). 
Note that  the Skill a t t r ibute  in the classified object (i.e. o') would only contain the 
skills that  must be kept secret. Now suppose that  the unclassified skills are not a cover 
story. In this case, whenever the values of the at tr ibute Skills must be retrieved from 
the classified object (i.e. o~), the method retrieving the skills must retrieve the values 
of the a t t r ibute  Skills from the unclassified object and unioning them with the values of 
the at t r ibute Skills from the classified object. By contrast, if the classified skills are a 
cover story, the method retrieving the skills from the classified object will only need to 
retrieve the values of the a t t r ibute  Skills from the classified object. This example shows 
that  the encapsulation feature of object-oriented da ta  model actually allows to shield 
the applications from having to deal with discriminating correct information against 
cover information. This discrimination is embedded into the methods encapsulating 
the object. Note that  this solution can be improved by also considering methods 
expressed in a declarative language. This makes it easier to formulate, understand, 
and manipulate the discrimination criteria for cover information. 

2.5.4 Comparison W i t h  Relevant  Work 
The problem of security in object-oriented databases has been previously addressed by 
Millen and Lunt [397] and by Thuraisingham [583]. The approach of Millen and Lunt 
[397] is based on single-level objects. The strategy proposed by Millen and Lunt for 
handling multi-level entities is based on using references to relate objects corresponding 
to the same entity. Our approach is based on composite objects, and therefore is simi- 
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lar, since composite objects are obtained by imposing the part-of semantics on normal 
references [320]. However, our approach differs in several aspects. First, we make full 
use of the features of object-oriented data  models by showing how, through the use of 
methods, it is possible to define objects which, even though they are single-levels, are 
able to provide the same interfaces, as if multi-level objects were directly supported. 
Moreover, we have introduced some extensions to the composite object model to bet ter  
modeling the notion of exclusive references, so that  no security breaks are introduced. 
Then, we have provided an extensive analysis of the use of composite objects when 
multi-level entities axe organized in type hierarchies, taking into account also the case 
of multiple direct supertypes. Moreover, we have investigated the object delete prob- 
lem. The approach proposed by Thuraisingham [583] mainly discusses rules stating 
the security policy that  must hold among the various objects in an object-oriented 
database,  such as for example that  the security level of a subclass must dominate the 
security levels of its superclasses. However, no discussion is presented on the additional 
complexity of the security monitor due to the enforcement of the security policy rules. 
Moreover, [583] does not discuss the problem of handling multi-level entities. 

2.6 Research Issues in Discretionary Access Con 
trol 

An important  research issue is whether the content-dependent authorization mecha- 
nism, illustrated in Subsection 4.2, is redundant when user-defined methods imple- 
ment authorization rules as part of their execution. A main difference is that  content- 
dependent authorization rules defined by a constraint language, like one mentioned in 
Subsection 4.2, are declarative, while authorization rules defined as part of methods 
are expressed in an imperative language. The usage of the constraint language sim- 
plifies the definition of authorization rules by users, and saves the users from writing 
several methods. However, the expressive power of the constraint language is limited 
with respect to the expressive power of a general programming language. Therefore, 
both declarative content-dependent and procedural content-dependent authorizations 
seem to be useful. However, more investigations are needed on this question. In 
particular,  there is the need of a comprehensive formal model of discretionary au- 
thorization for object-oriented databases encompassing both content-independent and 
content-dependent authorizations. The model should also address administration and 
ownership issues that  are not addressed in the model defined for the ORION system 
[460]. Related to this there is the definition of methodological guidances supporting 
the authorization administrators and database designers in the task of designing the 
proper authorization rules for a given database. 

Another relevant problem with the discretionary authorization models previously 
discussed, as well as other discretionary authorization models defined for relational 
systems, is that  their implementations do not provide assurance against Trojan horses. 
As discussed in [308], Trojan horses require relatively simple mechanisms to subvert the 
discretionary protection mechanisms. For example, a malicious user wishing to illicitly 
access some data  offers an attractive program to a user who is authorized to access 
these data.  The program contains some code that  performs the advertised service for 
the second user, while simultaneously performing the illegal action wished by the first 
user. The program could for example copy the da ta  into a file to which the first user 
is authorized to read. 
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We are currently looking at ways of providing protection from Trojan horse attacks 
in mechanisms meant for discretionary access controls. The approach we are inves- 
tigating is based on keeping for each object an access list and on using the message 
filter as a trusted agent able to verify that  information flows among the objects in the 
system are legal. Since in object-oriented systems all exchanges of information among 
objects is based on messages, it should be possible to determine whether illicit trans- 
mission of information is about to take place. It is also important  to note that  in an 
object-oriented database system some of the high-level semantic operations are stored 
into the database as methods, instead of being dispersed into the application programs. 
By making formal verifications of some of these methods~ it should be possible to rely 
on some trusted methods, that  is, on methods that  actually perform the advertised 
services. Note that  the verification of some of the methods represents a compromise 
between the verification of the entire collection of application programs as well as of all 
the methods and no verification at all. While verifying all application programs and 
all methods is not feasible because the code to verify would be too large, the option of 
no verification at all may lead to severe restrictions in the possible computations that  
can occur in the system. The possibility of relying on trusted methods will allow us 
to relax some of the restrictions that  must be placed in a system in which all methods 
are assumed to potentially contain Trojan Horses. 

2.7 Conclus ion  

Access control is a crucial functionality for any data  management system. It is not 
sufficient that  a system makes information available to users. The system has also to 
ensure that  the information is protected from unauthorized accesses and modifications. 
Many security models have been proposed for conventional da ta  models. By contrast, 
security in object-oriented database systems still presents several open issues. Features 
of object-oriented da ta  models and languages, such as inheritance, subtyping, and en- 
capsulation, bring new protection requirements which make the existing security rood= 
els not adequate. Protection of information must be provided without compromising 
the advantages provided by the object-oriented approach over conventional systems. 
A model is yet to emerge that  satisfactorily covers all protection aspects related to 
object-oriented database systems, and many problems still remain to be solved. How- 
ever some interesting, but not complete, approaches have been investigated addressing 
the development of security models specifically targeted to object-oriented database 
systems. 

In this chapter we have illustrated the protection problems in object-oriented 
database systems and reviewed some security models recently proposed. We have 
discussed both mandatory as well as discretionary security issues. In the presentation 
of the models, we have stressed how some features of the object-oriented paradigm, 
which automatically provide some form of protection, can be exploited for security 
purposes. Finally, we have outlined some open problems in the field and illustrated 
current researches aimed at their resolution. 



Chapter 3 

The Decomposition Property of Non-Deterministic 
Databases 

Kumar Vadaparty*,Shamim Naqvi l 

3.1 I n t r o d u c t i o n  

Motivated by the need for increased modeling power for advanced appfications involv- 
ing design, scheduling, planning, etc., a number of at tempts have been made to extend 
database technology [188, 339,351, 33, 7, 3,600,264]. Indeed a major selling point for 
the newly emerging area of object-oriented databases is the increased modefing power 
provided by such systems. Although well motivated, such increased modeling power 
comes with a price: query evaluation is more expensive in the database programming 
languages (DBPLs) associated with these extended models. Traditionally, database 
technology has striven to develop declarative query languages in which the user speci- 
fies the query ~nd the system evaluates the query in the best possible way. However, 
implicit in this evaluation is a guaranteed upper bound on time (performance guar- 
antees). Obviously, such a goal can not be reached if the DBPLs are extended from 
restricted languages (relational algebra, Datalog, etc.) to full-fledged programming 
languages (such as C + +  ). Thus, we are faced with two competing goals: increase 
the modeling power of declarative query languages, and performance guarantees for 
DBPLs. 

One approach to deal with these competing goals is to extend the modeling power 
incrementally (accounting for the most important  needs first), and see if query lan- 
guages maintaining performance guarantees can be built for these extensions. One 
such extension to modeling power was described in [274, 597, 408] wherein it is shown 
that  dealing with choices enables us to model more expressive domains. For exam- 
ple, in design situations we can state that  the implementation medium of a certain 
part  can be chosen from the set [Cobalt, Nickel]. Such a set of choices is called an 
OR-object .  A database with OR-objects corresponds to several possible worlds; for 
instance,  the previous database fact corresponds to two possible worlds: " P a r t # l  can 
be implemented using Cobalt" and " P a r t # l  can be implemented using Nickel". In 
[274] OR-objects model da ta  involving choices, e.g., the above choices can be stored 
as Implement(Part#l,o) where Dora(o) = {nickel, cobalt} gives the domain of the 
OR-object  o. The two possible worlds corresponding to the choices can be obtained by 
replacing the OR-object  with a member of its domain: Implement(Part#l ,  Cobalt) 
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and Implement(Part~l, Nickel). Such a refinement is the database analog of making 
a choice. Note that  OR-objects encapsulate a specific kind of disjunction, namely, dis- 
junction in one or more at tr ibutes of the predicate. Thus, a disjunction such as P(a) V 
Q(b) can not be captured by OR-objects. However, it was observed in [274, 275, 597] 
that  even this restricted disjunction can improve modeling power considerably. How- 
ever, utility aside, such an extension of the relational model with OR-objects, increases 
the da ta  complexity of conjunctive queries to coNP-complete[276, 277]. This exacer- 
bates the second of our two competing goals, namely the problem of performance 
guarantees. 

Combinatorial optimization applications (such as scheduling) also consider choices 
in data,  and consequently address the issue of attacking intractable queries. One useful 
method of at tack is to use domain specific heuristics to prune the search space. The 
question at hand, thus, is how can the idea of heuristics be exploited in the context of 
databases with OR-objects? In other words, if we assume that  our users are domain 
specialists and have considerable knowledge about the domain of application, can we 
provide formal tools to operationalize their domain heuristics? An important property 
of any such tool is that the tool itself should be domain independent. This chapter 
addresses precisely this issue and provides some solutions. 

A notable step in this direction is the work of [273] who consider the following 
question. Given a query ~, can we determine values for certain design parameters 
such that,  as long as databases conform to these values of the parameters, ~Ii can be 
evaluated in PTIME (i.e., what values of the design parameters force �9 to be tractable)? 
The queries are limited to positive existential conjunctive queries with no predicate 
occurring more than once in the query. Two design parameters were identified for this 
purpose: 

1. the typing function, and 

2. the degree of co-referencing. 

For the class of databases that  satisfy certain conditions imposed on these two design 
parameters,  �9 is guaranteed to have polynomial data  complexity. However, if these 
conditions are violated, then �9 is guaranteed to become intractable (coNP-complete). 
In other words, the conditions on the design parameters are maximal (assuming P 
NP) for maintaining tractabil i ty of 4.  Informally, the typing function specifies which 
at tr ibutes are allowed to have OR-objects. The degree of co-referencing is a measure 
of the inter-relationships of the elements of the OR-object.  The values of both design 
parameters  can be set by a user who is familiar with the underlying semantics of 
the. application domain. For example consider the query �9 --- 3x[Inexpensive(x)A 
Researchy(x)] where the two predicates specify properties of universities. Note that  
one can have choices of universities in either of the predicates. In [273] it is shown that  

has PTIME complexity if at most one of the two predicates contains choices, and has 
coNP-complete complexity otherwise. Thus, database designers may disallow choices in 
one of the two predicates by an appropriate change in the typing function. In this way, 
heuristics of the application domain can be operationalized in the database system. The 
particular predicate in which OR-objects are disallowed is determined by the designer, 
using the domain knowledge (thus operatlionalizing the domain knowledge). 

However, the approach of [273] has some limitations: it applies only to proper 
queries, i.e., queries in which a predicate does not appear more than once, and, more 
importantly,  it  does not address the issue of what to do if we are confronted by a 
coNP-complete query and a fixed typing function. For instance, suppose both the 
predicates in the above example are required to have choices in the data  because of 
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lack of complete information. Then, for this class l) of databases that allow choices 
in both predicates, [273] simply declares that the query is coNP-complete. Can we do 
anything more? 

Note that even though the data complexity of + for :D is coNP-complete, there 
may exist subclasses of :D for which + can be evaluated in PTIME. The questions we 
address in this chapter are: can we guarantee PTIME behavior for the coNP-complete 
query + for certain subclasses of / )?  What kind of approaches can we expect to use in 
order to obtain such subclasses? Are those approaches domain-independent? In other 
words, can the same approaches be used on any other query + '  and class of databases 
l) (where + '  is coNP-complete for l))? 

It is important to understand the domain independent nature of the heuristic sup- 
port that we desire. A central assumption in databases is that the data in a database 
is uninterpreted. It has no inherent semantics. It is only through interactions with 
a query that data acquires a meaning. Thus, when we seek tractable subclasses of 7) 
we would like to respect this central assumption. Our techniques that identify such 
tractable subclasses are independent of the' query so that they will work for any query 
and class of databases. 

We believe that this chapter makes some initial progress towards obtaining answers 
to the above questions. Our methodology works as follows. We identify a property 
called "decomposition property" and show that the classes of databases satisfying this 
property enable polynomial time query evaluation. This property can be defined as 
follows. A class of databases 7) has decomposition property for a query +, if for any 
D E / ) ,  it is the case that D ~ �9 can be determined by first determining if Di ~ + for 
every 1 < i < m, where D - D1 U . . .  U Din. We refer to Di's as modules or "clumps". 
These modules depend on the query + and also on the database D. Thus, the problem 
of evaluating the query in the entire database can then be reduced to evaluating it for 
each of the modules. Interestingly, it seems that there is a strong relation between 
the decomposition property and locality of choices. Because choices occur naturally in 
many situations, our approach seems to have practical impact as well. 

E x a m p l e  3.1.1 ( A n  E x a m p l e )  
Suppose that a database has facts such as fl = Inexpens ive (u l )  V Inexpensive(u2) ,  
f2 = Researchy(u3) V Rescarchy(u2) V Researchy(u4),  i.e., there is choice data in both 
the predicates. Suppose that a domain specialist knows that the choices are localized: 
that is we may have [acts such as f3 = Inezpens ive (ru tgers )VInexpens ive (  Princcton)  
where both rutgers and Princeton are in N J, but we do not have facts such as 
Inexpeus ive(ru tgers )  V Inezpens ive(S taudford)  where the universities involved are 
far apart (across several state boundaries). Thus, the domain expert predicts that facts 
over choices are localized at the state level, with a few facts containing choices stradling 
state boundaries. Such localized information gives rise to "clumps" or "modules". 

We can depict the clumpiness of  data by constructing a database-graph, as fo]Jows: 
facts such as f l ,  f2 can be represented by nodes of  a graph with an edge between two 
nodes i f  the corresponding facts have a possible world that entails the query. In our 
example above, the nodes corresponding to fz and f2 will have an edge because the 
set {Inexpensive(u2) ,  Researchy(u2)} is a possible world of  the facts, and entails 
the query 3x[Inexpens ive(x)  A Researchy(u2)]. Figure 3.1 shows such a graph for an 
example database. There are seven facts f l ,  .. . , f7 that constitute "clump1", and nine 
facts f6, fs ,  . . . , f15 constituting "clump2". 

In this chapter we formally define the notion of a clump, show the allowed inter- 
actions between clumps, and show how to determine D ~ ~ by composing the results 
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CIL 

Figure 3.1: An  example  of "clumpiness". 

of entailments of the query on each of the clumps of D. Clearly, in such an analysis 
the time spent is bound by the number of clumps and the processing time per clump. 
Assuming that a domain specialist can make a prediction a priori about the size k of 
the largest clump (size is the number of disjunctive facts within a clump), our anal- 
ysis enables one to identify a class Da of databases for which (I) is tractable (O(nk)). 
Note that a domain specialist often can determine such k's. In the above example, a 
specialist who knows about universities can predict that no more than 10 such facts 
(nodes) may lie in a given "clump". Thus, our analysis enables one to evaluate the 
query 3x[Inexpensive(x)AResearchy(x)] in polynomial time using this heuristic (even 
though it is coNP-complete in general). 

Note that such clumps occur very commonly in many domains where locality is a 
common factor: in testing of circuits, one can localize the mistake to a particular zone. 
Thus a disjunctive fact such as Wrongoutput(nodel) V Wrongoutput(node2) will have 
both of the nodes nodel and node2 from the same zone or PCB. In scheduling problems, 
one can localize the machines to be assigned to a task t by their capabilities: thus, 
Assignedto(t, cpul ) V Assignedto(t, cpu2) would involve cpul and cpu2 that belong to 
the same class of machines (comparable FLOPs, frequency, etc.) 

We would like to emphasize that our approach depends crucially on the presence 
of locality in choice data. Thus, it can be used in those places where this locality plays 
an important role. We would like to caution the reader that there exist queries in 
which locality does not work. For example, consider the database to represent cities 
in India, a country with dense cities; suppose that the query involved population: 
3xy[City(x) A City(y)A Population(x, y, 10)] asking if there are two cities with total 
population more than 10 million. In this case, almost any two (distant) cities could 
participate in the graph and clearly, we can not hope to obtain clumps (or, in other 
words, the clumps will be very large). 
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An interesting approach is that this locality principle can be used retroactively in 
designing the circuit or plan so that it may be possible to diagnose or understand the 
design in an incremental fashion. Indeed it may be argued that in order to facilitate 
understanding of the application, we must design the database in sucha way that most 
of the complexity is localized rather than spread throughout the database. Consider 
a database representing a complex piece of software or circuit design and that we are 
interested in understanding or diagnosing the design, i.e., we know the sorts of queries 
that users will be asking. If the complex behaviors of the design are a function of the 
entire design then a query may not be evaluable in any semantic subset of the database. 
However, i f  complex behaviors were localized, we may be able to isolate semantic 
modules of the database that could be responsible for that complex behavior. In such 
a case, the modules can be evaluated incrementally, yielding a PTIME evaluation of an 
otherwise intractable query. One factor that causes complexity in design and planning 
situations is the set of available choices for a task at hand. The locality principle then 
suggests that facts about choices be localized. 

This chapter is organized as follows. Section 3.2 motivates the need for data com- 
plexity, and provides the required background results. Section 3.3 defines the notions 
of size, density and witness of a query, and shows the use of these notions. Section 3.4 
develops the modulewise evaluation strategy by proving the decomposability results 
for a number  of classes of databases. Section 3.5 gives the possible future extensions. 

3.2 Bas ic  N o t i o n s  

In this section we motivate the need for considering data complexity, OR-databases, and 
show how the data complexity jumps from PTIME to coNP-comptete in the context of 
OR-databases. This discussion is intended to provide the desired background for the 
discussions in succeeding sections. 

3.2.1 Entai lment ,  and Data Complexity 

By a query we mean a closed conjunctive formula in First Order Logic, with existential 
quantifiers only. Such formulae capture simple boolean queries. For example, consider 
the boolean query ~' Q = Is John the manager of some department manufacturing 
Toys?". Let 

D ==. {Manager(John, depl), Manufaeturer(depl,'  toys'), Manager(Jacob, dep2)} 

Then clearly, the answer to the query is ~:yes." Consider the formula 

�9 =_ 3d [Manager('John', d) A Manufacturer(d,' toys')] 

We say that the formula �9 is true in D (D entails ~) iff there is a mapping /z for 
the variables in ~P such that when # is applied to ~, we get a subset of the database. 
This notion of entailment is denoted by D ~ ~ (standard notion of entailment). The 
above database D entails the formula �9 through the mapping (d/'depl'~. It is easy to 
see that D ~ ~ if[ the query Q is true in D. We say that ~ captures Q and refer to 

as a query. Thus, in the rest of the discussion, "formulae" and "queries" are used 
interchangeably. 

We will be interested in Data Complexity [598, 95] of queries. Given a query ~ and 
a denumerable set :D of databases, the data complexity of r with respect to I) is the 
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complexity of 

{ D I D E I )  and D ~ ~} 

The motivation for da ta  complexity is as follows: suppose we are given a database D 
and a query evaluation algorithm for evaluating a query in D. It is natural  to expect 
that  the query evaluation algorithm works correctly even if the database is updated. 
In fact, we expect that  the algorithm is invariant under all or some updates. This 
notion can be made precise as follows: suppose [D] + denotes the closure of D under a 
set of pre-specified update operations. Then, we expect the algorithm evaluating ff to 
evaluate it correctly for any da tabase  in [D] +. The complexity of any such algorithm 
is bounded from below by the complexity of the set 

{ D [ D E [ D ]  + a n d D ~ f f }  

which is the da ta  complexity of ff with respect to [D] +. Thus, data  complexity provides 
a lower bound on any algorithm that  we can hope to design for evaluating queries in an 
update  transparent  manner. The data  complexity of positive conjunctive existential 
queries for relational databases (closed under the update operations of D E L E T E  a 
tuple and I N S E R T  a tuple) is in PTIME (actually in LOGSPACE) [598, 95]. The 
following observation reconstructs this result. 

Observation 3.2.1 ([598, 95]) 
Let �9 be a positive conjunctive existential query. Then the complexity of 

{ D D conforms to the arities of relations in �9 and D ~ �9 } 

is in PTIME.  

P r o o f :  The idea is as follows: let k be the number of variables in ff and let M be the 
set of all domain constants in any database D. Then, D ~ r iff there exists a mapping 
# from the variables in {I} to the constants M such that  #({I}) is a subset of D. Clearly, 
the number of possible mappings is a fixed polynomial i n the size of M and hence even 
the straightforward approach of testing these mappings one by one gives polynomial 
t ime complexity. �9 

However, unfortunately, when we allow disjunctive information in databases, this 
nice tractable property no longer holds. In fact, it was shown in [276, 272] that  the 
da ta  complexity of simple conjunctive queries is in coNP-complete even if we allow 
restricted disjunctive information denoted by "OR-objects". 

3.2.2 Choices  and Data  Complex i ty  

It was observed in [274] that  choices in the form of "OR-objects" plays an important  
role in scheduling, planning, and design applications. We illustrate this here and show 
how the issues of entailment and da ta  complexity can be discussed in the context of 
databases with OR-objects  (called OR-databases).  In the following the table TRAVEL 
shows a travel schedule for various employees of a company. The objects oa and oz 
denote OR-objects,  and their domains are shown next to the table. The first entry, 
specifies that  "John has a choice of going to CA or NJ." The second entry has a similar 
meazting. The third entry involves a complete specification: "James goes to CA." 
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T r a v e l  
Employee Place 

John ol 
Jack o2 

James CA 

A possible World of T rave l  
D o m a i n s  Employee Place 

Dom(ol) = {N J, CA} John N J  
Dom(oj) = {MA, CA} Jack MA 

James CA 

The table TRAVEL has several possible worlds, each obtained by substituting the 
OR-objects by a value from their respective domains, i.e., by making a choice from an 
OR-object.  One such possible world is shown in the adjoining figure. In general, then, 
a database containing choice da ta  represents a set of possible final instances or worlds. 
These possible worlds are also referred to as models. 

We say that  a query is true in an OR-database if it is true in every possible world of 
that  database.  To illustrate the notion of entailment in disjunctive tuples, consider the 
database D _= {P(o), Q(a), Q(b)} with domain(o) = {a, b} and the query 3x [P (x )A 
Q(x)]. The database corresponds to two possible worlds, each corresponding to a 
particular choice of the OR-object,  o. It can be observed that  in each of the possible 
worlds, the query is true; hence we say that  the query is entailed by the database. 

The following observation proves that  indeed there exist queries whose da ta  com- 
plexity is coNP-complete in the context of disjunctive information. 

Observation 3.2.2 ([276, 272]) 
There exist queries that have coNP-complete data complexity in the context of databases 
with disjunctive in]ormation. 

P r o o f :  
Conside~ any graph G(V, E) with V as vertices and E as edges. Let {R, G, B} indicate 
three colors. We say that  the graph G is colorable if there is a mapping from the 
vertices to the colors such that  no two endpoints of an edge are colored by the same 
color. 

The following set is known to be coNP-Complete [212]: 

{ G I G is not colorable } 

In other words, the problem of determining if for any coloring scheme, it is the case 
that  at least two vertices connected by an edge are colored by the same color is coNP- 
complete. We use this problem to show that  the data  complexity of a particular query is 
coNP-complete. Suppose that  from the graph G we construct a database D(G) consist- 
ing of two relations Vertex and Edge such that  Vertex -~ { v I v is a vertex of G} and 
Edge = { (i, j)  ] (i, j )  is an edge of G}. Also we construct a relation with OR-objects 
as follows: 

Color 
vertex possible colors T h e  d o m a i n s  

vl ol Dom(ol) = {R, G, B} 

Dom(o~) = {R, G, B} 
Vn On 
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Clearly, the query 

=_ 3~yz [Vertex(x) A Vertex(y) A Edge(x, y) A Color(z, z) A Color(y, z)] 

is true in every possible world of the database D(G) iff G is not colorable. This shows 
that the data complexity of �9 is coNP-complete. �9 

Thus, in genera], the complexity of evaluating queries in OR-databases is coNP- 
complete. In [273] data complexity of a particular class of positive existential conjunc- 
tive queries was analyzed: this class is called proper queries. In a proper query, no two 
titerals have the same predicate. The results of [273] can be summarized as follows: 
first identify two design parameters called (i) typing function and (ii) degree of corefer- 
ence; typing function specifies whether a particular column can take OR-objects, while 
the degree of coreferencing restricts the extent to which OR-objects can appear repeat- 
edly. Now, given any proper query ~, the analysis of [273] enables us to determine 
the values of the design parameters such that for the class of databases conforming to 
these parameters, the data complexity of the given proper query is in PTIME. Thus, 
for example, consider the query ~ ~- 3xP(x) A Q(x). Then the analysis of[273] states 
that the data complexity of r is in PTIME if either P or Q is restricted not to take any 
OR-objects, and OR-objects can repeat in the column that they are allowed to occur. 
The interesting aspect of [273] is that if the restrictions stipulated are not con]ormed 
to, there is a guarantee that the data complexity of that query will be coNP-complete. 
Thus, we obtain what is called complete syntactic characterization. This approach was 
called complexity tailored design in [273]. 

However, the above approach has some limitations: if a query ~ is found to have 
coNP-complete data complexity for a class T) of databases, then, [273] does not provide 
a way to deal with it any further. This chapter addresses the issue of identifying subsets 
of 1) such that for those the data complexity of �9 is in PTIME. 

3.3 S ize  and  D e n s i t y  o f  a W i t n e s s  

As stated earlier, our aim is to identify tractable subclasses of I) for the query ~, where 
it is known that �9 has coNP-complete data complexity for 1). We identify such classes 
for any conjunctive query �9 and any class of databases 9 that has distinct OR-objects. 
Thus, the queries we consider need not be proper, unlike [273]. However, we assume 
that the OR-objects are distinct ~, and each predicate has at most one OR-argument. 
The latter is not a serious restriction because, a large class of queries with more than 
one OR-argument in their predicates can be split (using a join attribute) into predicates 
with at most one OR-argument[273]. 

Our methodology works as follows. We identify classes of databases that satisfy 
a property called "decomposition property", defined as follows. A class of databases 

has the decomposition property for a query ~, if every D E 9 can be written as 
a union of D~ for 1 < i < m such that the following holds: whether or not D ~ 
can be determined by composing the results of Di ~ ff for every 1 < i < m, where 
D ----- D1 U. . .  U Din. We refer to Di's as modules. These modules depend on the query 

~Two OR-objects are distinct if there is no constraint that relates the choice over their 
elements. For example, let ol and 02 be two OR-objects that contain choices of courses for 
John and Mary. Consider the constraint that John and Mary choose the same course. Such a 
constraint relates the choices over ol and 02 and are natural in many applications. We disallow 
such constraints in this chapter. 
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(I) and also on the database D. The decomposition property immediately guarantees 
that  the da ta  complexity of q) for D is determined by the size of the modules of D. If 
k is the largest cycle (as we define later) in a module, then the da ta  complexity of 
is given by O(2 k x D querySize x modulesize (q~r~ze+k) x number of modules) time 
to determine if the module entails the query (here k is a fixed-constant, specifying the 
size of maximal cycle in the module, as described later). Thus, the data  complexity of 
(I) with respect to the class of databases T) is a polynomial in the size of the database 
(D). We identify different such classes / ) 0 , . . . ,  Ok , . . .  for different parametric values 
of k. Note that  this situation of assigning a maximal size of the module arises very 
often in practice as described in Section 3.1. 

Thus, there are two issues: modules and their inter-connections. Having agreed 
to pay a fixed time (parametric in k) 0(2  k x modulesizeq~e~"~z~), to determine if a 
module entails the query, we expect the modules to be as "big" and as "dense" as 
possible (trying to get the maximum out of what we are willing to pay). 

In this section, we first define a notion of "size of a witness of a query" and show 
that  in the case of OR-databases,  this size is not bounded, whereas in the case of re- 
lational databases,  this is bounded. We show that  bounded size of the witness yields 
(a straight forward) proof of the polynomial time evaluation of queries in relational 
databases,  whereas the unboundedness of the witness makes that. straightforward al- 
gorithm exponential. We show that  although size is an important  aspect, it alone is 
not sufficient for our purposes. We next introduce a notion of density of a witness. It 
is this notion that  is used in the next section to develop the module-wise evaluation. 

3.3.1 S i z e  o f  a W i t n e s s  

We first define the notion of a witness which is often used in the logic programming 
and database terminology, although not always explicitly. 

Definition 3.3.1 (Witness) 
Let q~ be a closed conjunctive query, D a database, and it a mapping yrom the variables 
o] the query to the constants of the databaseD. We call a set S C D to be a witness 
of (p in D if every ground atom corresponding to applying it to the literals of q) is a 
member orS.  Clearly, S ~ d2. S is minimal if for no subse ts  I o ] S  is a witness of ~ 
in D. 

Suppose that  the size of the minimal witness is bounded by the size of the query 
(denoted by ]~]). Then, clearly, evaluating if the query �9 is true in D is in polynomial 
t ime in the size of the database: basically, consider all subsets of D of size ](I)] and see 
if any subset of atoms enta]ls the query +. Fortunately, the following ensures that  if 
D is indeed a set of atoms, then it is the case that  any minimal witness is bounded by 
the size of the query. 

O b s e r v a t i o n  3.3.1 I] D is a set of positive atoms and q~ a positive conjunctive closed 
query, then the size o] the minimal witness of q~ is bounded by the number of literals 
in ~.  

The proof of the above observation follows easily from the definition of a witness. 
Note that  the largest size of any mapping is bound by the number of ]iterals in the 
query. 

However, the above observation does not hold if we allow OR-objects in the database. 
First  we would like to make the notion of minimal witness precise in the context of 
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OR-objects. We assume throughout the chapter that OR-objects are distinct. Thus, 
given a database D with OR-objects , it can be re-written as a First Order Theory by 
expanding the disjunctions implied by the OR-objects. From our definition of OR- 
objects, it is clear that this theory is in a special conjunctive normal form: each of the 
disjuncts are formed from the same predicate symbol. Clearly, D can be viewed as a 
set of clauses. 

Now, a witness S to a query �9 in a database D with OR-objects can be defined as 
follows: S C D is a witness of r in D iff every possible world (see Section 3.2.2) of S 
entails {IL We call S minimal, if for no subset S' of S the above holds. The following 
lemma shows that the size of a minimal witness is not bounded by the number of 
literals in a query in the context of OR-databases. In fact, it shows a stronger result. 

L e m m a  3.3.2 There exists a query q? such that for any natural number i E A f  there 
exists a database Di such that the minimal witness o] ~) in Di is larger than i. 

Ske tch  of  Proof :  
Consider the query �9 _-- 3x [P(x) A Q(x)]. 

For the case of 1, the desired database is D1 --- {P(a), Q(a)} 
For the case of i, consider the database D2 --- {P(al)V. . .VP(a{) ,  Q(a l ) , . . . ,  Q(a{)}. 

Note that Di constitutes minimal witnesses. �9 
Thus, a straightforward approach of testing a fixed number of tuples of the database 

to see if they entail the query does not work in the case of databases with OR-objects. 
Since the size of the minimum witness can be as large as the database itself, it follows 
that a straightforward approach leads to an exponential algorithm. The following 
lemma, however, shows that an unbounded witness does not necessarily mean coNP- 
completeness. 

L e m m a  3.3,3 ( U n b o u n d e d  w i t n e s s  does  no t  i m p l y  c o N P - C o m p l e t e n e s s )  
There exists a query q? and a class 7) of databases such that the size of witnesses for 

in 7) is unbounded but still the data complexity of �9 for D is in PTIME 

Sketch  of  Proof :  
Consider the query �9 -- 3x[P(x)A Q(x)] as before, and D the desired class of databases 
to be the class of databases in which OR-objects do not occur in the relation Q. From 
the previous lemma it follows that r does not have a bounded witness for this class. 

We show that the data complexity of ~b for 1) is still in PTIME. Consider a clause 
c of P. Clearly, c is of the form P(al)  V . . .  P(ak). We see if the relation Q has tuples 
of the form Q(a~) , . . . ,  Q(ak): Note that Q has no disjunctions. If there are no such 
tuples in Q, then we conclude that the clause c does not contribute to the minimal 
witness, and take the next clause of P. If there is at least one clause of P that satisfies 
this requirement, then we conclude that D ~ r else we conclude that D ~ ~. Clearly, 
the above algorithm is in PTIME (O(n2)). �9 

Thus, the query r -- 3x[P(x) A Q(x)] does not have bounded witness even for the 
class of databases in which only P is allowed to have OR-objects. But still, (b could be 
evaluated in PTIME for that class. Thus, bounded witness is only a sufficient condition 
for tractability. 

We now develop a notion of density of a witness. In the previous example, the 
following holds: 

{ P ( ~ )  v . . .  v P(a~), q(a~)} I= P(a~) v . . .  v e(a~_~) v �9 
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Thus, in order to construct a countermodel (i.e., a possible world that  does not entail 
the query), we need to consider only the first k - 1  disjunctions of P ( a l ) V . . . V P ( a k ) .  In 
other words, for the purpose of constructing a counter-model, we might  as well remove 
the disjunct P(ak)  from P(al )  V . . .  V P(ak) to form P(al )  V . . .  V P(ak-1).  

Thus, using the above stepwise refinement, the new clause has only k - 1 disjuncts. 
Arguing similarly with the other definite tuples of Q, one at a time, we conclude that  
there is no counter-model for �9 (we eventually conclude that  any such counter-model 
will have zero disjuncts of P - a contradiction). 

We call the above database a "low density" database because one can use a ,s tep- 
wise" or incremental reasoning to determine if the query is entailed by the database. 
The following example shows that  this limited or incremental reasoning can be appfied 
to databases which axe not necessarily as restricted as above. 

E x a m p l e  3.3.1 ( s t e p w i s e  p r o c e d u r e  a p p l i e s  to  m o r e  c o m p l e x  d a t a b a s e s )  
Consider the same query q~ ~ 3x[P(x)  A Q(x)] and the database shown in Figure 3.2. 
The database D ---- {Q(a), Q(e), P([a, b]), P([d, el), Q([b, d])}. (The square brackets de- 
note choice data, e.g., P([a, b]) denotes P(o) where o is an OR-object whose domain is 
{a, b}. This notation is used only as a shorthand.) This database is constructed in the 
form of  a tree. Note that the vertices are essentiafly the clauses of  the database, and 
two vertices are connected by an edge if  they together have a possible world in which 
the query is entailed. 

Q([b,d]) 

) 

Q(a) Q(e) 

Figu re  3.2: A "t~ree like" d a t a b a s e  enabl ing  stepwise reasoning.  

Note that one can perform a bottom-up stepwise refinement in the above database 
instance as follows: starting with the left most child, one can conclude from Q(a) and 
P([a, b]) that the only counter-model, i f  there is any, for the query should be the one 
in which a is removed from P([a, hi). Similar stepwise reasoning yields that e can be 
removed from P([d, e]). Continuing this further, we conclude that at the root we do 
not have any choices left for Q([b, d]) from whence it can be concluded that there is no 
counter-model for the above database. 
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Note that  the above database D constitutes a minimal witness of ~. Thus, the above 
tree-structure and the associated stepwise refinement indicate that  even though the size 
of a witness is unbounded, what is more important  is the ability to apply the stepwise 
refinement. We call a database dense if stepwise refinement can not be performed 
directly on it to determine if it entails a query. By stepwise refinement we mean, a 
procedure that  uses only bounded set of tuples to conclude if a particulax choice can 
be removed, for the purpose of computing a counter-model (the bound is the number 
of liter~ls in the query). This stepwise refinement is analogous to, but different from 
the extended Chase-mechanism discussed in [271]. 

The next subsection identifies "dense" instances which can not be evaluated in a 
stepwise manner. 

3.3.2 Density of Witnesses  

We say that  a database D has density property for a query ~,  if stepwise reasoning 
is not applicable to determine if D ~ ~.  We illustrated in the previous subsection 
that  "tree like" databases do not have the density property (see Figure 3.2). In the 
following we show that  database with "cycles" satisfy the property of being "dense". 
To understand the notion of cycle, consider the following example: 

E x a m p l e  3.3.2 ( W h y  cyc l e s? )  
Consider the query r - 3xy[H(x,  y) A H(y,  x)] where the second argument of H is an 
OR-object. Consider the database 

D = {H(a, [e, e]), H(e, [a, f]),  H(c, [a, f]),  g ( f ,  [e, a]), H(f ,  [c, el), g(a ,  [b, f])} 

See Figure 3.3 in which this database is represented as a graph using the same approach 
as in the previous example: i f  two nodes have a possible world that entails the query, 
then put  an edge between them. 

It is easy to see that the above database does not support stepwise refinement. 
In fact, we need to look at a// possible worlds of the entire database before we make 
any decision. More precisely, D ~ H(a, b) V q~, and for the purpose of constructing 
counter-models, we can delete the choice f from the choices of the tuple H(a, [b, f]). 
Thus, in order to perform the refinement (i.e., reducing the size of an OR-object), we 
need to consider the entire database, not a bounded set of tuples. 

Thus, modules with cycles seem to capture the interesting property that  the mod- 
ule as a whole needs to be considered for refinement. In other words, a cycle can not be 
further broken into smaller components for the purposes of refinement. Consequently, 
any straightforward aigorithm needs to reason with the entire module (of size k) re- 
quiring O(2 k) time. Thus, we choose components with maximal cycle size as k as the 
desired "clumps" or "modules" for constructing l)k. We would like to remark that  we 
do not claim that  cycles imply an exponential lower bound. We use modules consisting 
of cycles as units because they are amenable to stepwise evaluation. 

3.4 M o d u l e w i s e  Eva lua t ion  

Recall that  our methodology is to define "decomposition property" and use it to identify 
subclasses P ~ , . . . ,  :/)1r that  enable polynomial time evaluation for a given query ~; 
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c,[a,f]) 

H(e,[a,f]) 

H(f,[e,a]) ..~H(f,[c,a]) 

Figure 3.3: A "cycle" like database that does not enable stepwise reasoning. 

here the subclasses are subsets of 79~ for which ff is known to have coNP-complete 
data complexity. 

A class of databases 79 has decomposition property for a query ~, if for any D E 1), 
it is the case that D ~ �9 can be determined by determining D, ~ �9 for every 
1 < i < m, where D ___ D1 O . . . U D m .  We refer to Di's  as modules. There are 
two issues: the kind of modules, and the kind of "connection" or interface between 
modules in a given database D of a given class 79k. 

In the previous section we showed that the modules are collections of nodes that 
have a maximal cycle of size k where k is a pre-fixed parameter as discussed in Sec- 
tion 3.1. The next question is how do we expect to break the database into components. 
In other words, how do we decompose a database into modules? We define what is 
called "acyclic" collection of components. In other words, D E 79k iff D can be broken 
into an "~cyclic collection" of components or modules of size k. Then we prove that 
indeed D ~ �9 can be determined by reasoning with only the components. 

This section formalizes the notions of database graphs, nodes, edges, cycles, mod- 
ules, and finally, estabfishes the desired d~composition property. 

D e f i n i t i o n  3.4.1 Given a database D and a query q~, we construct a hyper-graph 
G(D,  q?), called instance-graph as follows. The nodes of G are the atomic formulae of 
D.  { f l  . . . .  , fk}  is an arc of G if] it has a poss ib le  wor ld  that entails the query ~.  

I f  the graph happens to be a multi-graph, we expect the nodes to be numbered (in 
some lexicographic order) so that distinct edges are maintained. 

D e f i n i t i o n  3.4.2 Degree of a node in a hyper-graph is the number of arcs incident 
at that node. A path (simple) is a sequence (vl,  A 1 , . . . ,  vp, Ap) such that all vi are 
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the vertices of  the hyper-graph, and all Ai are the arcs of the hypergraph; furthermore, 
2 <_ j <_ p, vj E A j - 1 .  

Henceforth, we assume that  the instance graph is connected. Otherwise, we can 
apply our analysis to each unconnected component of the graph. 

D e f i n i t i o n  3.4.3 A path is a cycle if  vl = Vp. A hyper-graph is acyclic if  it has no 
cycles. Every acyclic hyper-graph corresponds to a "tree" in a natural sense. The 
degree of an arc is the number of other arcs that share its nodes. A leaf are is one 
whose nodes are shared by exactly one other arc. The arc that is connected to a leaf 
arc is called its parent arc. The node(s) shared by a leaf arc and its parent are called 
%ridge" nodes. 

See Figure 3.5 for an illustration of these notions. 

O b s e r v a t i o n  3.4.1 No two arcs in an acyclic hyper-graph share more than one node. 
Otherwise it becomes a cycle. See Figure 3.4. 

P r o o f i  

Arc A1 Arc A 2 
\ / A1 = {vl, v'2, v3, v4, vb} 

Vl ~ ~ . . ~ =  {V4, V5, v6, V7, V8, V9} 

V5 
v 2 v7 

v8 

v3 

v9 

Figure  3.4: I f  two or more  nodes  are shared  by two arcs, then  there  is a cycle. 

Note that  the desired cycle is (vb, A1, v4, As, vb). �9 

D e f i n i t i o n  3.4.4 A query is singly-matching if for any set of tuples, there is at most 
one possible world that entails the query. 

For example, the query 3x[P(x)  A Q(x)] is not a singly matching query because 
P([a, b]), Q([a, b]) entails the query in two possible worlds. However, it can be proved 
that  the query 3xy[P(x ,  y)/x Q(y, x)] restricted so that  the second argument of P and 
the first argument of Q are allowed to take OR-objects, is a singly matching query, 
and yet has eoNP-complete da ta  complexity. 

Now, we prove that  for any singly-matching query r and the class of acyclic 
databases 7~o = { D I G ( D , ~ )  acycllc}, it is the case that  the data  complexity of 

is in PTIME.  In order to prove this fact we first show that  this class of databases 
satisfies the decomposition property on its modules. 
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D e f i n i t i o n  3.4.5 ( d e c o m p o s i t i o n  p r o p e r t y )  
For a given query (P, a class of databases I) + has decomposition property, if there is a 
k such that the following holds for every D E 7 )+ : D can be decomposed into databases 

m D ---- U~=~ Di and ]D~ I < k and the problem o l d  ~ d2 can be determined by composing 
the results of Di ~ q~. 

Note that the decomposition property immediately establishes the PTIME property 
of @ for O +. 

T h e o r e m  3.4.2 For any given query q~, the class 1)+o has decomposition property. 

Proof." 
Let G(D, 02) be the instance graph. We show that D has the decomposition property 
where the desired modules of D are the arcs of the instance graph. The desired constant 
of the decomposition property is the size of any arc of G(D, ~), which in turn is bound 
by the size of (h. 

We use induction on the number of/arcs in G to show this result. Base case: G has 
at most one arc. TriviM. 

Assume that the induction hypothesis holds for every database with the number of 
arcs of at most ra. Consider a database with m + 1 arcs. We show how to decompose 
this database. Let 1 be a leaf arc of D. Let p be the bridge of I. Let l = {Vl,.. .  ,vk}. 
There are the following cases: 

�9 all nodes of ll are definite. Then D trivially entails (I). 

�9 At least one vertex of 1 (other than the bridge) is an OR-formula. Call it v. 

�9 All but the bridge of 1 is an OR-formula. 

See Figure 3.5. 
Case:  A t  least  one  ve r t ex  o the r  t h a n  t he  b r i d g e  of  l is a n  O R - f o r m u l a :  

Let v E l be an OR-formula H([a l , . . . ,  aj], b). Let ml be the model of l such that 
ml ~ (I). Let a~ of H correspond to the model ml.  Choose another a~ # a~ and 

a~ E {al, . . . .  aj} and construct ral = ral - {H(ai, b)} U {H(a~, g)}. Note that ml ~: (I). 
This is because ~ is singly matching. 

Consider the graph G' obtained from G by deleting all the vertices but the bridge 
of l and deleting the leaf-arc. Let D'  be the database corresponding to G'. We show 
below that D ~ �9 iff D'  ~ ~. Thus, whether D ~ ~) can be determined by de- 
composing D into D'  and the are l. Since G(D', (1)) has fewer arcs than G(D, ~), the 
induction hypothesis guarantees that it can be decomposed into modules satisfying the 
decomposition property. Hence the theorem will follow if we prove that D ~ ~ if[ 
D '  ~ q). 

Suppose D'  ~ (I) for every possible world. Since D'  C D, the desired result follows. 
Suppose that D'  V= (I). Then, let m'  be the counter model of D' i.e., m'  ~: (I). Now 
consider the database m = m'Um'l.  Clearly, m'  is a model of D. Furthermore, m ~ (~. 
For, suppose m models @. Then, since neither m'  nor m~ model r  it must be that 
some tuples of m~ and some other tuples of m~ together model (I). In other words, 
the arc I is not connected to just one arc, bu~ two. Thus, there is a cycle in G, a 
contradiction. 

Case  2: T h e  b r i d g e  p is an  O R - f o r m u l a ,  a n d  every  o t he r  n o d e  of  1 is 
de f in i t e :  
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Rest of the graph 

P 

/ 
Leaf-arc 

V \ 
Leaf-arc 

Figure 3.5: A graph corresponding to a database. 
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Let p be denoted by H([al , . . . ,  ap], b). Let rnl be the model of I containing It(hi, b~). 
Then m~ = ml - {H(ai, b')}. Clearly, m~ is a set of all definite formulae that exist 
in every model of D. This is because all the formulae of l except p are definite. Let 
p' = H([al , . . . ,  a~_~, a~+~,.. . ,  ap], b). In other words, p' is obtained from p by deleting 
a, from the OR-object of p. Let G' be the graph obtained by deleting the leaf arc 1 
from G and deleting all the nodes associated with 1 from G, and adding the new node 
p'. Let D'  be the database corresponding to G'. We show that D ~ �9 iff D'  ~ ~. 
This will in turn prove, as in the previous case, the theorem. 

Suppose that D'  ~ r Then we need to show that D ~ r Note that D' ~ D. In 
fact, all formulae of D'  are in D except for p'. Instead ofp' ,  D has the formula p. Thus, 
to show that D ~ ~, we should consider also those models of D in which p is entailed 
by Hi(hi, b). Since p' does not have ai in its OR-object, Hi(hi, b) is not in any model 

of D'.  However, in any model of D that contains Hi(hi,b),  m~ 0 {Hi(hi, b')} entails 
the query ~, because it constitutes the model of l. Thus every model of D entails ~. 

Suppose D'  ~ ~. Then, there is a model m'  of D'  such that m'  ~: ~. Then, the 
database m2 = m'  U m~ is such that m2 is a model of D and m2 ~= r Thus, D ~ r 
as desired. �9 

In other words, the above theorem proves that if D is acyclic, and r is singly 
matching, we can determine if D ~ r by considering the ~rcs of G(D, ~) one at a 
time, in a modular manner. The PTIME characterization of ~0 ~ follows immediately, 
as the theorem below records the result. 

T h e o r e m  3.4.3 The data complexity o] any query �9 ]or :19"o is in PTIME. 

We extend the above result in two ways, (i) the case when there are cycles in 
G(D, ~), and (ii) when the query is not singly matching. 

In the case of multiply-matching queries, each arc can have more than one model 
that entails the query. Hence, we can not extend the above proof directly to multiply- 
matching queries. 

If the graph has cycles, we can divide it into components such that each component 
has at most a k-size cycle. Thus when we collapse each component containing a max- 
imal cycle of size k into a single arc (called "super arc"), the original graph becomes 
acyclic in these super-arcs. If a database is such that its instance graph is acyclic in 
k-sized cycles, then we say that D is in ~k. Note that since each super-arc can have 
multiple models that entail the query, in this case also, we can not extend the above 
proof directly. 

Thus in both the cases we need to account for multiple models of a (super) arc 
entailing the query. The same approach can be used in both the cases, and the following 
theorem establishes the first result. 

T h e o r e m  3.4.4 Let ~2 be a multiply-matching query, and 

9Vo = { D I G(D,r  is acyclic} 

Then, D~ has the decomposition property for ~. 

Proof." As in the previous theorem, there are essentially two cases: (i) the parent of a 
leaf arc is an OR-formula, (ii) the parent of a leaf arc is a definite formula but there 
is some other node in the leaf-arc that is an OR-formula. Let l be a leaf-arc, and p be 
its parent. 
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C a s e  (i): 
Let l = { A 1 , . . . , A k }  where A/ 's  are the arcs of the leaf-arc l, and V = LJA,EIAi 
denote the set of all nodes in the leaf-arc I. Recall that  each arc is a set of nodes. 
Let p = Hl(Ol,  b) be the parent  of the leaf-arc 1 where the domain of ol is given by 
Dom(ol = { a l , . . . ,  am}. Let l '  = l - {p}; thus, l '  is the set of all nodes of the leaf-arc 
except the parent .  Let 

S = { a I a E Dom(o) and ( { H ( a , b ) ) t o m )  ~(I)  for every m o d e l m o f l ' }  

Thus,  S C Dora(o) is such that  for any model of l involving a E S subst i tut ing o in 1 

entails the query ~. Let pt be the new parent  node defined as follows: H(o ~, b) where 
Dom(o') = Dora(o) - S. 

Consider the new graph G'(V', A') obtained from G(v, A) as follows: to obtain V' 
from V, delete all the nodes of 1 and add p~; to get A ~ from A, delete the arc l from 
A. Thus,  A ~ = A - l, and V ~ = V - l U {p~}. Let D j be the database corresponding to 
G(V', A'). We show that  D ~ ~ iff D '  ~ ti. As in the previous theorem, this would 
prove that  D satisfies the decomposition property. 

Suppose that  D '  ~ (I). Every model m I of D ~ entails (I). We need to show that  every 
model of D also entails r Consider any model m of D. It  either contains a model of D '  
in which case it entails ~,  or it does not  contain a model of D j. Therefore, consider the 
la t ter  case: from construct ion of D '  it follows that  m is of the form m '  U {H(a, b*)} tO l~ 
where m '  is a model of D', H(a, b) is a model ofp  the parent  of the leaf-arc, and finally, 
l~ is a model of I', the leaf-arc except the parent  p. Since m is not  a superset of m' ,  
it follows that  H(a, b) is such that  a ~ o'. Therefore, from construction of o' from o, 
it follows that  a E S where S is as defined before. From the definition of S it follows 
that  {H(a, 5)} to l~ ~ {I}. }Ience, clearly, m models �9 because {H(a, 5)} U 1~ C_ m. 

Now suppose that  D ~ ~: ~.  We show that  there is a model of D such that  it does 
not  entail  ~}. Since D I ~= ~,  there exists a model m p of D / such that  m I ~= ~.  gFrom the 

construct ion of D ' ,  it follows that  the model m '  can be wri t ten as m '  = ml' to {H(a, b)} 
for some a E Dom(o'). This is because, D' is obtained from D by removing all the 

nodes of I and adding p '  = H(o', b). Thus a E Dom(o') = Dora(o)-  S. Now consider a 

model  l~ of l '  such that  l~ t3 {H(a, b)} does not  entail ~. From the construction of o' it 
follows that  such a model of l '  exists. Now, we claim that  m" = m~ to l~ to {H(a, b)} is 

such that  m "  is a model  of D and m"  ~= r  Since m~ ~ r and (l~ to {H(a,  b')}) ~: ~), it 
follows that  for m"  to entail  r  it must  be the case that  some nodes of l~ together with 
some nodes of m~ entail (0. Then,  this contradicts the assumption that  I is a leaf-arc 
(and in tu rn  contradict ing the assumption that  G is acyclic). Hence, it must  be the 
case tha t  m u ~ ti. 
C a s e  ( i i) :  
In  this case p is a definite formula. The proof of this case is analogous to the corre- 
sponding case of the previous theorem. [] 

Next, we extend the above two theorems for graphs involving cycles. As stated 
earlier, graphs with cycles are viewed as acyclic graphs with "super-arcs ' .  A super-arc 
is, essentially, a maximal  component  of the graph with a cycle of size k. The set /)k + 
is defined as the set of all databases whose instance graphs (with respect to tiP) can be 
viewed as acyclic when each maximal  component  containing k-sized cycle is collapsed 
into a single "super arc". The  proof of the following theorem is analogous to that  of 
the previous theorem (with the obvious and minor modifications). 

T h e o r e m  3.4 .5  For a query ~ (singly or multiply matching), the class I)~ has de- 
composition property. 
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3.5 Future  E x t e n s i o n s  

We are current ly working in a number  of directions. 

�9 First  note  tha t  our characterizat ion works only when the OR-objec ts  are distinct.  
An immedia te  extension is to see how to extend this for multiply occurring OR- 
objects.  This  will be useful because we would like to capture  natural  constraints 
over choices such as "John and Mary would like to choose the same course." 

�9 Our character izat ion of acyclic graphs prohibits more than one Rode of sharing 
between one leaf arc and a parent  arc. However, in the context  of hyper-graphs,  
more than  one node sharing should be allowed, at the same t ime disallowing 
arbi t rary sharing. We have some ideas on how to restrict this sharing. We 
would like to work in this direction so that  we can capture  bigger classes of 
t rac table  databases.  

�9 We would like to see how to perform this characterizat ion in the context  of 
queries with choices. 



Chapter 4 

The  Archi tec ture  of an Object  Base Environment  for 
Simulat ion 

Phillip C-Y. Sheu*,Larry J. Peterson t 

4 . 1  I n t r o d u c t i o n  

Object-oriented computation in the broad sense is computation described as a sequence 
of requests to objects through a single access method such as message passing. I t  is 
generally accepted that  object-based systems such as Smalltalk have provided a simple 
and elegant paradigm for general-purpose programming which can be meshed well with 
da ta  models. In brief, the class/method mechanism handles well the requirements for 
type definition and information hiding. The message protocol provides a useful way 
of controlling the updates that  can be performed on a da ta  object. In addition, the 
inheritance mechanism makes database schemas easy to modify, and new variants can 
be constructed easily as subclasses. 

The above features naturally lead to the use of the object-oriented paradigm in 
instrumenting and supporting simulation activities. On the other hand, the nature 
of object-oriented representations suggests that  an object-oriented simulation program 
can be executed in parallel. To our knowledge, more than a dozen object-oriented 
simulation languages/systems have been developed; some have considered parallel pro- 
cessing. A survey of such systems/languages can be found in [572] [200]. Most of such 
systems/languages extend an object-oriented programming language with the necessary 
constructs for simulation, in particular "...the notion of simulation time and mecha- 
nisms for entities in the language to manipulate simulation time." [326]. However, the 
issues of object management and object retrieval have not been fully addressed. As 
for parallel processing, focus has been placed on developing efficient algorithms which 
allow events be processed para]]elly to the maximal extent. 

This chapter describes the design of a parallel object-oriented simulation environ- 
ment. An object base is defined to be a system which contains a large set of active 
as well as passive objects. For active objects, not only the data  portion, but also 
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the control and knowledge portions of an object are stored and managed. Parallel 
evaluation of simulation programs is accomplished by compiling objects into sets and 
production rules so that they can be evaluated with parallel, set-oriented operations 
which effectively utilize the capacity of parallel processors with minimal communica- 
tion overhead. It is organized into the following sections: Survey of Related Work, 
Object Representation, Management of Active Objects, Simulation, and Conclusion. 

4.2 R e l a t e d  Work 

Work related to the simulation environment described in this chapter can be classified 
into three categories: parallel simulation systems, object-oriented databases, and active 
databases. 

P a r a l l e l  S i m u l a t i o n  S y s t e m s  The problem of parallel processing of simulation 
systems has attracted much attention recently. A number of parallel computation mod- 
els and their associated problems have been investigated [200] [326]. The models can 
be classified into two categories: synchronous and asynchronous. In a synchronous, 
parallel simulation system, processes and events are scheduled and executed by the 
simulator with a globM clock. On the contrary, each process in an asynchronous, 
parallel simulation system maintains its own clock; in addition, processes and events 
are scheduled and executed in a fully distributed fashion. This means there exists 
no scheduler to synchronize the events globally. According to [200], "...few simulator 
events occur~t  any single point in simulated time; therefore parallelization techniques 
based on locl~2step execution using a global simulation clock perform poorly or require 
assumptions in the timing model that may compromise the fidelity of the simulation". 
Accordingly, "Concurrent execution of events at different points in simulated time is 
required, but ..., this introduces interesting synchronization problems...". Most of such 
synchronization problems are resulted from data dependencies among different pro- 
cesses which run under different speeds. Approaches to the synchronization problems 
can be in turn classified into two categories: conservative and optimistic. A conserva- 
tion approach prevents any synchronization problem from happening, but it degrades 
performance. An optimistic approach allows synchronization problems to occur, and 
rollbacks are often necessary once these problems are detected. 

O b j e c t - O r i e n t e d  D a t a b a s e s  In the past, several object-oriented databases have 
been proposed. In brief, researchers and developers have approached object-oriented 
database implementation along two directions: extending the relational model (e.g., 
POSTGRES [384] [342], GENESIS [164], Iris [134], and PROBE [592]) or applying the 
ideas of object-oriented programming to permanent storage (e.g., GemStone [135]). 
Most of the systems in the first category have been designed to simulate semantic data 
models by including mechanisms such as abstract data types, procedural attributes, 
inheritance, union type attributes, and shared subobjects. Most of the systems in 
the second category extend an object-oriented programming language with persistent 
objects and some degree of declarative object retrieval. 

Both approaches have drawbacks in processing a large number of active objects. 
The first gpproach suffers from the unstability problem resulting from the separation 
of control and data. The second approach, on the other hand, loses the advantages 
provided by fact-oriented database operations. 
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A c t i v e  D a t a b a s e  S y s t e m s  The idea of incorporating rules into a database system 
has exist as integrity constraints and triggers as early as in CODASYL, in the form 
of ON conditions. More recently, the idea of combining rules and da ta  has received 
much serious consideration. The term "active database" has been used frequently in 
referencing such database. For example, rules has been built into POSTGRES [342]: 
there is no difference between constraints and triggers; all are implemented as a single 
rules mechanism. In addition, POSTGRES allows queries be stored as a da ta  field 
so that  it is evaluated whenever the field is retrieved. In HiPAC [138], the concept 
of Event-Condition_Action (ECA) rules was proposed. When an event occurs, the 
condition is evaluated; if the condition is satisfied, the action is executed. It can be 
shown that  ECA rules can be used to realize integrity constraints, alters, and other 
facilities. Rules have also been included in the context of object-oriented databases. 
In Starburst  [285], for example, rules can be used to enforce integrity constraints and 
to trigger consequent actions. In Iris [134], a query can be monitored by first defining 
it as a function and later creating a monitor for the function. 

On the other hand, there has been a growing interest in building large production 
systems that  run in a database environment. The motivations are derived from two 
areas. First,  expert systems have made an entry into the commercial world. This has 
brought forth the need for knowledge sharing and knowledge persistence. These are 
features found in current databases. Secondly, many emerging database applications 
have shown the need for some kind of rule-based reasoning. This is one of the principal 
features of expert systems. Production systems is a commonly used paradigm for the 
implementation of expert systems. The confluence of needs from the areas of AI and 
database has made the study of database productions very important.  

Traditionally production systems have been used in AI, where data  are stored 
in main memory. Various needs, as mentioned above, have lead production systems 
designers to use databases for data  storage. We refer to these as database production 
systems (DPS). Commercial DBMS's do not have the necessary mechanisms to provide 
full support  for such systems. Views can be used in lieu of rules, but only in a limited 
way. Recent work has produced more powerful mechanisms to handle a large class of 
rules [31] [93]. However, the focus has been on retrieval, especially evaluating recursive 
predicates, and proposed approaches do not handle updates as in systems like OPS5 
and HEARSAY-II.  Recent efforts by [571] [341] [375] [84] have addressed this issue, and 
much attention has been placed on parallehzing the evaluation of production systems 
(see, e.g., [234] [283]). To our knowledge, little effort has been made for production 
systems that  work on objects or distributed evaluation of production systems. 

4.3 Object Representation 
To illustrate the concept of object base for simulation, we have chosen to extend C + +  
as the object representation language. It is chosen based on the observation that  C + +  
has acquired enough attention and acceptance ~ the object-oriented language in the 
computer  community. These extensions are described in the following subsections. 

4.3.1 Complex Objects 
A complex object is an object consisting of a set of (possibly complex) objects in the 
sense that  (1) The domain of an at t r ibute can be any class; and (2) The value of an 
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a t t r ibu te  can be a set of objects.  A complex object  is an abstraction of its compo- 
nent  objects.  Consequently,  a me thod  associated with a complex object  implements  
a funct ion of its component  objects  as a whole; so are the a t t r ibutes  of the complex 
object .  Non-complex objects  are called simple objects.  To realize the concept of com- 
plex object ,  i t  is necessary to explicitly incorporate  the notion of "set" in the object  
language: 

? 

S e t  C l a s s e s  Given a class cr, the  class of all possible ordered sets which can be 
derived f rom instances of a is declared as: " 

class set_of_cx { 
o . .  

methods 
. o o  

} 

The  following declaration defines a set a of class c~: 

set_of_ce a; 

S e t  P r o j e c t i o n  Given a set or an object  a of class ~, the following notat ion desig- 
nates  the  project ion of a on a t t r ibutes  A1, . . . ,  An: 

aIA1, ..., AN 

. I 

4.3 .2  A c t i v e  Objects and Models 
T h e  const ructs  provided in C + +  are sufficient to describe passive objects,  i.e., objects  
whose activities are tr iggered when a method  associated with the object  is called. In 
real apphcations,  a special class of objects  need to be defined in order to describe 
objects  which are continuously active according to some control mechanism. Such 
objects  are called active objects  [85]. 

C o n t r o l  An active object  can be characterized by a set of states and a set of s tate 
t ransi t ion rules. In the extended language, a class of active objects is declared as a 
subclass of the class active, for which any at t r ibute ,  once defined, can be declared to 
be a s ta te  as follows: 

state attribute,...,attribute; 

The  control  por t ion of an active object  is expressed as a set of product ion rules, 
which is designated as the a t t r ibute  control (whose domain is set-of-production) of the 
object .  A product ion is asserted in the following form: 

condition =~ statement; 

where condition is any logical expression over states and inputs, and can include 
any quantifier over sets: 
Universal Quantifier 
A variable in a logical expression can be universally quantified by the quantifier: 

(forall < variable_id> in < set_id> ) 
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Existential Quantifier 
A variable in a logical expression can be existentially quantified by the quantifier: 

(exist < variable_id> in < set_id> ) 

Membership 
The  following function returns 1 if <variable_id> is an element of <set_id>: 

< set_id> :member(< variable_id>); 

Similar to complex objects,  we can define a complex active object to be a set of 
(possibly complex) active objects.  Wi th  this definition, a complex active object  can be 
regarded as a concurrent production system ~ 

C o m m u n i c a t i o n  For a complex active object ,  we classify the styles of communica-  
tions among its component  objects into two categories: synchronous and asynchronous. 
Communica t ion  between two objects  is defined to be synchronous if: 

1. The  calling object  suspends its execution after a message is sent to the other  
object ;  and 

2. The  calling object  resumes execution immediate ly  after a reply is received from 
the called object .  

Communica t ion  between two objects  is said to be asynchronous if the calling object  
continues its execution after a call is made. Asynchronous communicat ion is achieved 
in the  extended language via messages. The  class message is defined as follows: 

class message { 
public: 

time time-stamp, reference; 
object Sender, recipient; 
set-of-object arguments; 
void send(); 
boolean receiveO ; 
}; 

An asynchronous call to me thod  a associated with object  c with arguments  is 
made  by first creating a message object ,  assigning appropriate values to its at tr ibutes,  
followed by sending the message with the send operation: 

&send(); 

where 8 is the message jus t  created. On the other  hand, any message sent to an object  
is picked up by the boolean function receive, which is called in the form of: 

m.receive(); 

~Briefly, a production system consists of a set of rules, or "productions", which is of the 
form (condition) --* (action), a database or "context", which maintains the s ta te /data  of the 
system, and a rule interpreter. The condition portion of each rule (LHS) is composed of some 
logical combination of the results obtained from comparing some "state variable(s)" to a fixed 
value(s) or to some other state variable(s). They are tested continuously, ff the condition is 
true, the consequent action (RHS) of the rule is executed. 
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The function returns true if a message has been received; in this case m is instantiated 
to the message received. It returns false otherwise. A message m is regarded as the 
reply to a previously sent message 5 if: 

re.reference = 5.time-stamp 
m.sender = 5.recipient 
m.recipient = &sender 

According to the above, an ordinary C + +  function call c.a(xl,. . . ,  x,~) implements 
a synchronous communication session; it is equivalent to a send operation followed 
immediately by a receive operation. 

I n p u t s ,  O u t p u t s ,  a n d  L i n k s  In the extended language, some attributes of an 
active object can be chosen to be the inputs and outputs of the object as follows: 

classifier attribute,...,attribute; 

where class i f ier  can either be the keyword input or the keyword output. The assign- 
ment of inputs and outputs allows different objects be connected directly in order to 
form an interconnected complex object. A linkage between two objects can be estab- 
fished by the operation link: 

link(a, r, c. s) 

This operation connects a.r, presumably to be an output of object a, to c.s, presum- 
ably to be an input of object b, so that any assignment to a.r is made to b.s as well 
instantaneously. 

C l o c k  a n d  M o d e l  To support simulations, the attribute clock is associated with 
each active object, and a set of methods is available to manipulate the clock. Finally, 
any subclass of the class active is called a model. 

C l a s s  T e m p l a t e  In summary, the general form of the class declaration for an active 
object class is: 

class < class_id> { 
< class_id> < variable_id> ,[...< variableJd> ]; 

< class_id> < method_id> (parameter_l:domain_l,..., 
parameter_n: domain_n ) ; 

classifier attribute, ..., attribute; 

int clock; 
set-of-production control = { 
<logical-expression> =~ actions; 

} 
} 

In the above, a classifier can be one of the following keywords: state, input, and 
output. 
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A s s o c i a t i v e  O b j e c t  R e t r i e v a l  The  availability of sets as described in the above 
also allows objects  be retr ieved in an associative fashion. It  is assumed that  the fol- 
lowing func t ions / s ta tements  axe used to access the elements in a set: 

1. < set_id> :insert(< variable_id> ) ; 

2. < set_id> :delete(< variable_id> ); 

3. (]oreach < variable_id> in < set_id> ) statement; 

4.4 Management of Active Objects 
Given a set of active objects,  the problem of object  management  is concerned with the 
impact  created by any change made to the system. It  is desirable that  adjustments  can 
be made  automat ical ly  according to any change so that  the system is always consistent. 

4.4.1 State Space and Cr i te r ia  

Given an active object  P with n states sa,...,sn, we define the state space of the object  
to be Domain(s1) x Domain(s2) x . . .  • Domain(sn).  Among the states,  we assume 
tha t  one is chosen as the initial s ta te  and a number  of them are chosen as the final 
states.  We define the set of reachable states of P to be the set of all possible states which 
can be reached, either directly or indirectly, from the initial state.  For the purpose of 
discussion, the following criteria are chosen as the constraints when an active object  is 
updated:  

L i v e n e s s  An active object  should have no s ta te  which is a dead-end state,  where a 
dead-end s ta te  is a s ta te  from which no further  s tate transi t ion can occur and it 
is not  a final state.  

C o n s i s t e n c e  An active object  should be consistent in the sense that ,  in any state,  
there exist no conflicting actions, where two actions conflict each other  if their 
effects logically violate each other. 

Other  criteria, such as teachabili ty and deadlock-freeness, can be considered in a 
similar way. 

4.4.2 Adding  and Removing A State 

If  an active object  is live and consistent, these two operat ions are processed as follows: 

A d d i n g  A S t a t e  Assuming s~+l is added to object  P and the object  becomes P ' ,  
the  s ta te  space of P is enlarged to Domain(s1) • Domain(s2) • . . .  • Domaiu(sn) • 
Domain(an+l). Any s ta te  v in the  original s ta te  space now corresponds to Domain(sn+] ) 
s ta tes  (v,ua) ..... (v,u~), where r = Domain(sn+~) and the set of ui ' s  spans all possible 
values of sn+l .  Let us assume that  v is not  a final state.  Since v is not  a dead-end 
s ta te  in P ,  there must  exist a rule in P for which v satisfies its left hand side. Clearly, 
in P~, each of (v,ul) ..... (v,ur) still satisfies the LHS of the same rule. Consequently, P~ 
remains to be five. On the other  hand, since no new rules (and actions) are added to 
P~, no conflicting actions may be taken in each of the new states.  In summary, adding 
a s ta te  variable to a live and consistent object  does not  damage such properties.  
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D e l e t i n g  A S t a t e  Deleting a state is more complicated than adding a state. As- 
suming si is removed from object P and the object becomes P ' ,  the state space of P is 
shrunk to Domain(s1) • . . .  • Domain(si-1) • Domain(si+l) • . . .  • Domain(s~). 
Domain(si) states (v,ul) ..... (v,u,), where R -- Domain(si) and the set of ui's spans 
all possible values of si, now converge to a single state v. Since none of the original 
states (v,ul) ..... (v,ur), where R --- Domain(si), is a dead-end state, it is clear that v 
is not a dead-end state. Consequently, P remains to be live after si is deleted. 

Deleting a state is complicated due to the requirement of consistence. The compli- 
cation arises from the fact that the left hand side of some rules may include conditions 
on si.Simply dropping such conditions from those rules can create the following prob- 
lems: (a) An updated rule can violate the intention of the user; (b) Actions which used 
to be taken in states (v,ul) ..... (v,ur) are now collectively taken in the state v; and some 
of them may be conflicting. Instead of inspecting every state for possibly conflicting ac- 
tions, the following procedure can be taken: For each pair of conflicting actions ai and 
aj,  identify couditions(a~) and conditions(a j). In the above, conditions(ai) designates 
the set of LHS's of those rules whose actions include a~; conditions(ai) can be defined 
in a similar way. The intersection of conditions(a~) and conditions(a j) identifies the 
states in which conflicting actions ai and aj can be taken at the same time. Due to 
these factors, the user is consulted when a state is deleted and some rules are affected 
by this change. The conflicting actions are reported in the mean time, assuming all 
conditions including the deleted state are dropped. Subsequent actions from the user 
are handled according to the procedures for adding rules and deleting rules (see below). 

4 .4 .3  Adding and Removing A R u l e  

If an active object is live and consistent, these two operations are processed as follows: 

A d d i n g  A R u l e  Assume a rule R of the form CR =~ AR is added to object P. 
The state space clearly remains to be the same. Let states(R) be the set of states in 
which CR can be satisfied. It is possible that executing R from a state in states(R) can 
result in a state v from which no rule is applicable: a dead-end state. Such states can 
be detected by identifying all the states which may be directly reached from the states 
in states(R) and followed by inspecting each of such states and looking for applicable 
rules. If a dead-end state can be discovered, the addition of R is not safe. 

The addition of R may as well create conflicting actions, since the actions associated 
w i t h  R may be in conflict with actions of some rules which are applicable in a state of 
states(R). The procedure described in the section "Deleting A State" can be applied 
to detect such states. 

D e l e t i n g  A R u l e  Assume a rule R of the form CR ~ An is removed from object 
P. The state space clearly remains to be the same. Let states(R) be the set of states 
in which CR can be satisfied. It is possible that removing R can result in a state which 
used to be directly reachable from a state in states(R) no longer satisfies the LHS of 
any remaining rules: a dead-end state. Such states can be detected by identifying all 
the states which may be directly reached from the states in states(R) and followed by 
inspecting each of such states and looking for applicable rules. If a dead-end state can 
be discovered, the removal of R is not safe. 

On the other hand, the removal of R from P causes no problem as far as consistence 
is concerned. This is because each state v of the original state space is consistent, and 
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the removal of R does not create any new action in v. 

4.4.4 Adding and Removing An At t r ibute  
If an active object is live and consistent, these two operations are processed as follows: 

A ~ d i n g  A n  A t t r i b u t e  Adding an attribute of a class in an object causes no 
problem since the states and the rules of the object remain intact. 

D e l e t i n g  A n  A t t r i b u t e  Deleting an attribute from a class of an object has no 
impact on the liveness of the object. Since some actions of the rules may include the 
attribute to be deleted, the removal of the attribute may make the action part of such 
rules incomplete. Simply dropping such updates from such rules may create problem 
as the updated rules may violate the intented semantics of the object, although the 
object remains consistent (as no new actions are taken). User involvement is required 
in this case. 

4.4.5 Adding and Removing  A Method  or A Class 
Adding a method is like adding an attribute; and deleting a method is like deleting an 
attribute. Adding a class is equivalent to adding a set of states, attributes, methods, 
and rules. Deleting a class is equivalent to deleting a set of states, attributes, methods, 
and rules. 

4.5 S i m u l a t i o n  

As discussed in Section 2, most of the existing object-oriented simulation systems pro- 
vide an object-oriented user interface so that a simulation program can be described 
in an easy and friendly fashion. Execution of an object-oriented simulation program 
can be completely sequential or fully distributed as the program specifies. Although 
looks attractive, executing a simulation program as a fully distributed, object-o~iented 
system could be inefficient due to the shortage of physical resources and the overhead 
associated with process management. Bearing this in mind, our approach compiles 
an object-oriented simulation program, in which each active object is represented as 
a production system, into a (production) rule network. Treating each active object 
as a passive object, each node of the network corresponds to a set-oriented operation. 
The compiled network (or the set of operations of the network) is evaluated in par- 
allel. Changes to objects are generated at the terminals of the network. The overall 
architecture of the object-oriented simulator is shown in Figure 4.1. 

4.5.1 Rule  Process ing  

In general, processing of production rules or integrity constraints can become a serious 
performance bottleneck when a large number of objects and rules are integrated. Since 
multiple instances of the same class share the same copy of production rules, it is viable 
to compile a set of rules into one system in which some set-oriented operations can be 
employed to process the data (treated as sets) collectively. Furthermore, given a set 
of rules, it is viable to merge those expressions that are common to more than one 
rule so that duplicated effort can be avoided. We take a network approach for this 
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Rule Network 
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Figure 4.1: Simulator Architecture 
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purpose, which is similar to the RETE algorithm ([235] [340]) but is more general in 
treating logical formu!as and structured objects. Although integrity constraints and 
production rules are treated shghtly differently, both are processed based on a network 
that is compiled from a set of logical formulas. 

P r o c e s s i n g  I n t e g r i t y  C o n s t r a i n t s  Given a set of constraints {f~ ~ rl . . . .  , f~ 
rn}, we can first convert each constraint fi --+ ri into the form fi A ,-~ r~(i.e., the 

negation of the original rule). Subsequently, all the converted rules qan be compiled 
into a network (see below), where each rule corresponds to a a terminal at the bottom 
of the network, and there is no violation of the rule if no results can "flow" out from 
that terminal. 

P r o c e s s i n g  P r o d u c t i o n  R u l e s  Given a set of productions {fl =~ ra, . . . ,  fn ::~ 
r=}, we can first compile all the left-hand-side formulas {f~, . . . ,  fn} into a network (see 
below), where each formula corresponds to a a terminal at the bottom of the network. 
Subsequently, each ri (created as an action node) is connected to the corresponding 
terminal, and all the qualified objects for each production will "flow" into the action 
node. 

C o m p i l i n g  L o g i c a l  F o r m u l a s  Given a set of logical formulas, a conjunct may 
be used in different formulas and those conjuncts having the same head and the same 
arguments can share the set of instantiations once they are computed; also, we can 
produce the result for a conjunct from the result of another conjunct if the first conjunct 
is more "general" than the second one. Here we define a conjunct P to be more general 
than another conjunct Q if 

1. P and Q have the same head, 

2. all the constants in P can be matched with those in Q, and 

3. all the variables in P can be consistently unified by the variables or the constants 
in Q. 

Now we define a rule network as a directed graph, where each node represents 
a conjunctive formula. A rule network consists of a set of nodes, each is labeled by 
a logical formula and corresponds to a set of objects. If a set of nodes nl,...,nk are 
connected to a node n, each with an out-going arc, it means the sets produced at the 
n~'s are input to n so that n can produce a set that corresponds to the logical formula 
it carries. A node without any input arc is called an input node; typically it is a class. 
A node which does not have any output arc is called a terminal node. A rule network 
can be constructed with the following procedure: 

C o n s t r u c t i n g  R u l e  Networks  
Input: A set of conjunctive formulas Q1,Q2,...,Qn for which each element corre- 

sponds to the LHS of a production rule. 

Output: A rule network 

Step 1 
For each Qi, identify the set of predicates which correspond to classes, i.e., those 

predicates which are class names. Create a node n, called a join node, for the predicate 
set if it has not been created; otherwise identify the node that has been created (by 
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some Qj, j < i) and call the node n. Create another node and label the node with 
the other predicates, which is collectively called a modifier, and establish an arc from 
n to the newly created node. The arc goes from n to the modifier node since the 
outputs produced by n should be processed, and selected, by the modifier node; any 
output produced by the modifier node naturally corresponds to a tuple (of objects) 
that satisfies the LttS of the rule. This step basically eliminates any duplicated effort 
of creating a natural join of object classes among the rules. 

Step 2 

For any pair of join nodes nl  and n2, if the set of predicates carried by nl  is a 
superset of that of n2, establish an arc from n2 to nl .  This step guarantees that the 
set produced by n2 can be used by nl .  Since subsets may overlap, a join node can 
choose, among different combinations, the best input sets to combine. 

Step 3 
At the end of step 1, a number of nodes that perform natural joins should have 

been created. In the mean time, each rule corresponds to a modifier that selects from 
the corresponding natural join those qualified objects. Consequently each join node is 
connected to a number of modifiers. If there exists any predicate p which is common to 
more than one modifier, a new node, called a common factor node, is created so that it 
contains the MGP among such p's; an arc is created from n to the common factor node. 
Finally, the modifier node corresponding to each rule connects itself to those common 
factor nodes whose corresponding predicate subsumes one of its predicates. If after this 
a modifier m is connected to a set of common factor nodes cl,...,ck, the intersection of 
the outputs produced by c~'s is taken before the final selection is performed. 

As an example, given the following formulas, the resulting rule network is shown 
in Figure 4.2. 

class_l(X) 8z& class_2(V) ~:~ pI(X,Y) &L: p2(Y) 
class_l(X) && class_2(V) && p2(Y) 
class_2(Y) p3(Y) 

The procedure described above cannot guarantee that the computational effort 
resulted from combining duplicated formulas be the minimum; even for the case of 
relational databases it has been proved to be difficult. It does, however, guarantee 
that no formula that is duplicated among several rules be evaluated more than once. 
Once a network is built, it is evaluated incrementally. Specifically, each operation is 
evaluated once based on the initial state of the system. In the mean time, for each 
operation, the results are stored. Subsequently, as the state of the system is changed, 
only those rules which are affected by a changed object need to be evaluated during 
each iteration. When an update of the database is made, operations are performed 
from the bottom of the network. Only those nodes containing the corresponding class 
predicate as the updated fact and whose arguments can be unified by the arguments of 
the updated fact are activated. After the common factors and modifiers are activated, 
the operations associated with the qualified rules are performed. For each join, common 
factor, or modifier node, the content of the stored result is changed according to the 
change(s) in its input set(s). 
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pl(X, Y) I 

p2(Y) I 

, 

class_l(X), class_2(Y) I ..... 
, ) 

class_l(X) [ ] class_2(Y) 

Figure 4.2: A l~ule Network 
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4.5.2 Logic of The Simulator 

As described, our approach merges a set of active objects into a (much) smaller set of 
operation processes. Simulation can be performed synchronously or asynchronously. 
In the synchronous mode, a global clock is employed so that each active object is 
synchronized with respect to the global clock; the system proceeds according to the 
discrete events produced. In the asynchronous mode, each active object proceeds at 
its own speed. In this case, joins in the rule network have to be performed on objects 
with different clock values. Consider a decision ~ which has to be made based on the 
states of two objects a and b, and a runs faster than b (i.e., clock(a) > clock(b)). If 

is a decision for b (i.e., if the associated production is evaluated for b), clearly a 
previous state of a has to be used in making the decision. On the other hand, if a is 
a decision for a, and since in this case the "current state" for b is not available, a may 
assume that the state of b will not change during the period (clock(a),clock(b)) and 
use the most recent state of b in making the decision so that in the worst case, it can 
roll back to this decision point if the relevant states of b are indeed changed once it 
catches up. The same reasoning can be extended and applied to decisions which have 
to be made based on more than two objects. Each node in the rule network has to 
use the correct versions of the objects in the computation. Even if the simulator runs 
in the synchronous mode, it is required that the states of each object be recorded and 
rollbacks be performed whenever causality errors are detected. It is necessary since 
messages may be rots-ordered. Based on the above, the simulator executes a loop with 
the following steps: 

E v e n t  E x e c u t i o n  In the case of synchronous simulation, the events with the small- 
est scheduled time with respect to the global clock are executed; in the mean time the 
global clock is adjusted to the events' scheduled time. In the case of asynchronous 
simulation, the events with the smallest scheduled time with respect to each object are 
executed; in the mean time the logical clock associated with the object is adjusted to 
the events' scheduled time. 

O b j e c t  S e l e c t i o n  The rule network is evaluated. At the terminals of the network, 
actions are generated. This step basically selects those objects which have one or more 
productions eligible for firing based on their current states. As discussed earlier, in 
the case of asynchronous simulation, each join node of the network need to select an 
appropriate version of the object states for each object to join due to speed mismatches. 
To be specific, assume a join node ~ joins n classes of objects cl, ...,c,~. Also assume 
at one instance of time an object r, which is an instance of class ci, changes state 
(i.e., an updated r comes into a), with a new clock value T. Since the join should 
be incremental, r should be joined with cl (r) , . . . ,ci-l(r),  ci+l(r),...,c,~(r), where c~(r), 
j # i, consists of every instance of class cj whose logical clock value is the maximal 
possible one which is smaller than T in its history. Each tuple (of objects) produced, 
say, (sl,...,s,O, should be labeled by the augmented tuple ((sl,T1),..., (s~,T~)), where 
Ti is the clock value of object si chosen to be joined, so that it becomes the "cause" 
for the tuple produced. 

P r o d u c t i o n  F i r i n g  For each object selected, the actions associated with each 
firable production rule are taken. Such an action could be an operation which changes 
the value of an object, a communication operation (send and/or receive), or an event 
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(which will be executed in the future). If necessary, the value of the clock associated 
with the object is updated based on the operation(s). 

D e t e c t i o n  a n d  P e r f o r m i n g  R o l l b a c k s  In a simulation program, rollbacks are 
required when some causality errors - usually due to speed mismatches in al/ asyn- 
chronous environment - are detected. The term "rollback" implies that  each active 
object  should maintain the history of itself so that  it can go back from its current 
s tate to some previous state if necessary. Specifically, an active object need to record 
its s tate transitions. For any causality error detected, it need to locate the state in 
which a previously received message took effect, go back to that  state, and undo any 
intermediate actions. More importantly, it should "unsend" any message that  was sent 
in a state along the rollback state chain; this may cause cascading rollbacks take place 
on other objects. 

Let us assume that  each operation or event a is labeled by (P, T, ((sl ,  T1),..., (sn, 
T~)), s), where P is the production that  triggered the action/event, T is the logical 
clock value of the target object (of the operation/event) at which it should take place, 
each (si,T/) designates the state of object ci and its time base on which the production 
was fired, and s is the state of the target object after the operation/event was taken. 
Clearly, a need to be undone if each of ci, 1 < i < n, for which Ti < T, is advanced 
to a logical clock value that  is greater than T, and if Si designates the state of ci 
just  right before T, all together S1,...,Sn does not satisfy the LHS of P.  Cascading 
roUbacks (backward in time) with respect to the target object are possible since all the 
relevant objects have caught up. This means a fast object may become a-slower ob j ec t  
after rollbacks. Since rollbacks for an object never occur until all the relevant "slower" 
objects have caught up, rolling back an object should not affect those objects which are 
faster than itself for which some operations/events were produced based on its current 
state; those obj~ects may need to be rolled back once the currently-being-rolled-back 
object  catches up later. 

Since our object model allows objects be shared among different processes (al- 
though they are accessed through messages), it is important  that  serializability [442] 
be maintained all the time. This means the effects created by multiple processes which 
are executed concurrently should be the same as those created by a (any) serial sched- 
ule among the processes. To assure this, our design employs the two-phase locking 
protocol, which requires all objects accessed by a process be locked before accessed, 
all locks be acquired before any unlock, and all objects be unlocked before the process 
terminates.  Clearly, two-phase locking cannot be implemented at the method level, as 
two consecutive method calls can violate the two phase requirement. Consequently, we 
require each method lock any object it may access but not unlock it. The list of locked 
objects should be returned to the calling process so that  the process can unlock the 
locked objects before it terminates. 

4.5.3 Parallel Processing 

The following approaches can be taken in order to evaluate a rule network, depending 
on how logical objects are packed into physical objects: 



80 C H A P T E R  4. A R C H I T E C T U R E  OF A N  O B J E C T  B A S E  E N V I R O N .  

C l a s s - L e v e l  P a r a l l e l i s m  In this approach, each node of the network is imple- 
mented as a physical object, where each input node is a class object and each internal 
node is an operation object. The network is evaluated as an active network, operating 
in a pipelined fashion. SpecificaJly, each operation object retrieves inputs from its in- 
put object(s) and produces the outputs, which are available to the operation object(s) 
at the next higher level. Unlike operation nodes, each class object func~tions as a data 
store from which data can be retrieved by operation objects. 

S e t - L e v e l  P a r a l l e l i s m  In this approach, each terminal node is implemented as a 
set of objects, where each of them corresponds to a subset of a class. The network 
is transformed into an equivalent one in which each terminal node corresponds to a 
subclass object. The transformation can be done in a straight-forward fashion based 
on the following principles: 

2. (R = R1 U R2) =~ selects(R) = selectF(R1) U selectF(R2) 

Clearly, this approach can achieve a higher degree of parallelism; however it is more 
complicated to implement. In addition, the number of operator objects can grow 
exponentially as each class is split into smaller and smaller subsets. 

4.5.4 Example 
This example consists of a number of divisions divided into two sides: blue and red. 
The divisions are initially located on the border of a battlefield which is modeled as a 
square of grid tiles. The scenario is set up so that all the red divisions are spread on 
the east border of the battlefield and the blue divisions are spread on the west side. 
Once initiated, the blhe divisions march to the west and the red divisions march to 
the east, during which each division is characterized by its strength, speed, direction 
of movement, and its location. When two divisions of opposite sides encounter each 
other, the strength of the weaker is reduced to zero; in the mean time the strength of 
the stronger is reduced by the that of the weaker. Any division whose strength is 0 
is removed from the system. At any instance of time, the number of divisions in each 
grid tile cannot exceed two. 

The system as described can be expressed as a production system as follows. For 
simplicity, locking and unlocking operations for shared resources are not included in 
the rules. 

division(d) && (d.color = red) && grid(g) &~c neighbor(d,g) && (g.capacity 
< 2) :el march_left(d), (d.clock -~ clock + 2), (g.capacity = g.capacity + 
1) (Rule 1) 

division(d) && (d.color = blue) gz~c grid(g) && neighbor(d,g) && (g.capacity 
< 2) ~ march_right(d), (d.clock = clock + 2), (g.capacity = g.eapacity + 
1) (Rule e) 
division(d) && (d.color = red) && division(e) && (e.color = blue) && 
same_grid(d,e) && (d.strength leq e.strength) =r (d.strength = d.strength 
- e.strength), (e.strength = O) (Rule 3) 
division(d) ~& (d.color = red) && division(e) && (e.color = blue) && 
same_grid(d,e) && (d.strength < e.strength) =~ (e.strength = e.strength - 
d.strength), (d.strength = O) (Rule 4) 
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division(d) && (d.strength = O) && grid(g) && in_grid(d,g) ~ d.delete 0 
~:& (g.eapacity = g.capacity- 1) (Rule 5) 

The rule network constructed for the above network is shown in Figure 4.3. As shown, 
after Rule 1 and Rule 2 are evaluated, all divisions which can move are scheduled to 
move into their new locations after two time units. After Rules 3 and 4 are evaluated, 
the strength of any moved division is adjusted; and those with 0 strength are removed 
after Rule 5 is evaluated. As can be observed, in the rule network, each rule is evaluated 
for those objects whose states are just changed by the other rules. In other words, the 
focus can always be placed on those objects whose states were just changed. This 
is different from the fully object-oriented approach. If the simulation system is fully 
distributed and object-oriented, each of the above rules need to be evaluated by each 
active object during each cycle, even if the object is not qualified to move. 

4.6 Objec t -Or iented  Evaluat ion  of Rule  Net -  
works 

This section presents an object-oriented approach to rule processing. It is "object- 
oriented" since each entity in the system is an active object, which acts with its own 
dedicated control sequences according to its functionality (e.g., constant nodes, predi- 
cate nodes, variable nodes). Upon receiving a message from another object, it executes 
its dedicated control sequence which may return a result or initiate an operation of 
other objects for further processing. All operations in objects are proceeded asyn- 
chronously. Since no object has global knowledge about the database, cooperation 
among objects is necessary in interpreting a production. Compared to the fully object- 
oriented approach, each object in this approach is much simpler in the sense that it 
does not need to evaluate a production system as required by the fully object-oriented 
approach. It does, however, have the minimal intelligence to participate and contribute 
to the rule evaluation process. 

4.6.1 Structures of Extensional  Databases and Query Net-  
works 

In order to store an object (which is represented as a predicate), three types of nodes 
are employed: object constant nodes, object predicate nodes, and object attribute 
position (OAP) nodes. Specifically, an object of class p with attributes al,...,a~ is 
stored as an object predicate node p, a set of object constant nodes ai,...,a~, and a 
set of OAP nodes pl,...,pn. For each class p, the set of objects of p, designated as pc, 
is collectively stored as an interconnected network, which consists of the following: an 
object constant node for each distinct constant which may appear as an attribute of 
an instance of p, n OAP nodes pl ,...,pn, and [pc [ object predicate nodes so that for 
each object of Pc, assuming its attributes are al,...,an, the object constant node a~, 1 
< i < n, is connected to an object predicate node (which stores the predicate symbol 
p) and each a~ is connected to the OAP node p~. 

It is assumed that each object constant node knows the addresses of those ob- 
ject predicate nodes and OAP nodes which are connected to it. Similarly, each OAP 
node and each object predicate node know the addresses of its associated attributes. 
Inside an object constant node, the set of addresses to its connected object predicate 
nodes are grouped based on attribute positions; these groups are called address groups. 
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Consequently, an OAP node is used to interface the object network and the external 
environment. It acts as a buffer node which gets a message from the outside of the 
network and regenerates the same message to the connected nodes in the network. It 
also combines the replies from the connected nodes in the network and sends a reply to 
the outside of the network. With OAP nodes, we can hide the actual fact network from 
the outside of the network. Conceptually, the use of OAP nodes employs an indirect 
addressing mode in order to avoid the establishment of connections to object constant 
nodes whenever a rule is evaluated. Consequently, when an operation is evaluated, 
only the connections from each predicate argument nodes in the operation network 
(see below) to the OAP nodes in the object network need to be established. Within 
each node, it stores the identity (node type) of the node, its value (if it is an object 
constant node), some dedicated control sequences, and the addresses of the nodes it 
is connected to. Inside an object constant node~ the addresses of its connected object 
predicate nodes are recorded and grouped according to their positions. Note that each 
distinct object is uniquely stored. 

On top of the objects, a join operation f -~ fl A ... A fn is built as an operation 
network, where each f i  denotes an operation predicate node which is connected to a set 
of operation argument nodes (where each of them could be an operation constant node 
or an operation variable node). A logical expression can be associated with each vari- 
able argument node which designates any select criteria for the argument. Depending 
on its position in the argument list, is connected to an appropriate OAP node, which 
should exist in the object network already. We shall assume that a controller exists on 
top of all the objects and each object knows the address of the controller. However, the 
controller only knows the address of each operation predicate node when an operation 
network is constructed. 

4~ Object-Oriented Rule Evaluation 
Consider an operation and an object of class p with attributes al,...,an. If the object 
knows the structure of the operation, we can have the following observations: 

1. For each constant a, note that a can be an attribute of more than one object, 
assume we know which variables of which operation predicate nodes can be 
instantiated by a. The object predicate p(al,...,an) can instantiate the operation 
predicate node p(xl , . . . ,xn),  where each of xi, 1 < i < n, is a constant or a 
variable, and el is the select criteria associated with zi if it is a variable, if for 
each i, 1 < i < n, the following conditions are held: 

(a) ai -- x~, if x~ is a constant; 

(b) ci(ai) is true, i.e., ai can instantiate xi, if xi is a variable. 

Furthermore, for any xi and zk, 1 _< j , k  < n, j ~ k, ff x j  = V and xk = V for 
some variable V, we say there is an intra-predicate tupling condition between xj 
and x~. Clearly, for any intra-predlcate tupling condition between xj  and ~k, 
aj should be equal to ak. In this case, we say aj satisfies all the intra-predicate 
tupling conditions for p. 

The above implies that each object predicate object, which is connected to its 
attributes, can determine if it can instantiate a predicate of the operation. This 
is because (1) Each of its attributes knows which variable instances of the pred- 
icate can be instantiated by itself, and such knowledge can be collected at the 
object predicate object; (2) The object knows the structure of the operation, 
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and therefore knows which variable instances are associated with, and in what  
order in, each predicate node of the operation. 

2. For each constant  a, note tha t  a can be an a t t r ibute  of more than one object,  
assume we know which variables of which predicates of an operation can be 
ins tan t ia ted  by a and group all such (variable ins tant iated - variable) pairs 
into a set B V I S a ,  where B V I S  stands for Binding Variable Instances Set. For 
an object  predicate p(al,...,a,~), it can satisfy the operation f = f l  A ... A f,~ 
through a predicate p(xl , . . . ,x~) if the following conditions are held: 

(a) p(al .... ,an) can ins tant ia te  p(xl,... ,x,O; 

(b) For any variable V, if xj  = V,  and there exists another predicate g(yl . . . .  ,Yr) 
where yk = V,  we say there is an inter-predicate tupling condition between 
xj and yk. Clearly, for any inter-predicate tupllng condition between ~j 
and Yk, where z j  = V and yk = V, then both (a j ,x j )  and (aj,yk) should be 
contained in B V I S ~ j .  In other words, aj should ins tant ia te  both  xj  and 
yk. 

The above impfies tha t  each object,  which is connected to its at tr ibutes,  can 
determine if each of its a t t r ibutes  can satisfy all the inter-predicate tupfing con- 
ditions for an operation. (1). Each of i ts  a t t r ibutes  knows which variable instances 
of the operat ion can be ins tant ia ted  by itself, and such knowledge can be collected 
at the object  predicate node; (2) The object predicate node knows the s tructure 
of the operation, and therefore knows which variable instances are associated 
with, and in what  order in, each predicate node of the operation. 

3. A partial solution for an operation B can be formed in an object  predicate p, 
whose a t t r ibutes  are assumed to be al ,...,an, through a predicate node p(xl , . . . ,x ,  0, 
if each ai can satisfy the inter-predicate tupling conditions. Note that  if a par- 
tial solution can be formed for B, it is not  guaranteed that  a complete solution 
exists, where a complete solution is a partial  solution in which all variables are 
ins tant ia ted.  A part ial  solution of B can be expressed as aa,...,c~,~, where a~, 1 < 
i < n, is either a subs t i tu t ion  (expressed in the form of a / V ,  meaning a constant  
a ins tant ia tes  a variable V) or a variable. Two partial  solutions a~, . . . ,an and 
fla,...,fl~ for B can be merged into another,  yet more complete, part ial  solution 
ra, . . . , rn such that  

(a) ri = ai, if ~ is a subst i tu t ion and ~i is a variable; 

(b) r~ = fli, if fli is a subst i tu t ion and ai  is a variable; 

(c) ri = ~ (or fl~), if both a i  and fli are subst i tut ions or variables (Note tha t  
in this case ai and fli have to be equal). 

Two part ial  solutions for B are incompatible if they cannot  be combined. 

4. Based on 2 and 3, each object  predicate node can form a partial  solution, if 
exists, for an operation. Consider an operation B = pl , . . . ,pm where (1) Each pi 
has arguments  (xil .... ,x~u(i)); and (2) p~ and Pi+~ share at least one variable. A 
complete solution for B can be formed aa follows: 

(a) Each object  predicate node whose predicate symbol is pl determines a par- 
t ial  solution, if exists, for B. If the part ial  solution is a complete solution, 
stop. 
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(b) Each object predicate node whose predicate symbol is pl which has a par- 
tial solution for B passes the partial solution to each object predicate node 
whose predicate symbol is p2 which is connected to it through the common 
constant(s) and asks each connected object predicate object whose predi- 
cate symbol is p2 to expand the partial solution. This can be done in each 
of the object predicate nodes whose predicate symbol is p2 by combining 
the passed partial solution and the partial solution determined by itself. If 
they are not compatible, stop; if the combined partial solution is complete, 
stop. 

(c) Each object predicate node whose predicate symbol is p2 which has a partial 
solution for B passes the partial solution to each object predicate node 
whose predicate symbol is p3 which is connected to it through the common 
constant(s) and asks each connected object predicate node whose predicate 
symbol is p3 to expand the partial solution. This can be done in each of 
the object predicate nodes whose predicate symbol is p3 by combining the 
passed partial solution and the partial solution determined by itself. If 
they are not compatible, stop; if the combined partial solution is complete, 
stop. This process is repeated until each of the object predicate nodes 
whose predicate symbol is p,~ is processed. 

4.7 Conc lus ion  

In this chapter, we have presented the design of a parallel object-oriented simulation 
environment. The environment provides an object-oriented interface that allows the 
control and the communication aspects of active objects be easily specified. It also 
allows complex objects be composed easily. Representing the control of each active 
object as a production system, the environment considers the state space of each object 
in determining the impact of any change made to the object. 

While the idea of rule-based simulation is not new (see, e.g., [282] [387] [608]), our 
approach converts a large number of active objects into a much smaller set of oper- 
ations applying to sets of passive objects. As a consequence, common computations 
can be shared among different objects. Compared to a fully distributed, asynchronous 
approach, it avoids the problem of managing a large number of active objects when 
the available physical resources are limited. An alternative object-oriented rule evalu- 
ation approach has been also proposed for parallel environments which contain a large 
number of relatively simple processing elements. 
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5.1 Modeling Complex Data 
Emerging "next generation" applications such as multimedia, engineering(CAD/CAE), 
and geographic information systems require managing databases that  are more com- 
plex than those in applications such as banks and airhne reservation systems. Cur- 
rent RDBMS (Relational Database Management Systems) are limited in their support 
for these applications. The limitations typically include lack of support for complex 
da ta  structures and operations, integrity checking, and triggers, etc. They are con- 
fined to simple, predefined alphanumeric types. On the other hand, OOPLs (Object- 
Oriented Programming Languages) and OODBMS (Object-Oriented Database Man- 
agement Systems) allow developers to define their own ob jec t /da ta  types. These user- 
defined types are indistinguishable from the pre-existing types from the system view 
point. 

Modeling hierarchical da ta  (composite object) in RDBMS is cumbersome. The 
developer has to create numerous tables to model the complex data. When being 
requested to retrieve da ta  in the composite object, the system has to join many of 
these tables on the fly which is a time-consuming job. 

In OODBMS, an object can consist of a collection of other objects by two ways. 
One way is through embedded objects. That  is, aat object is stored directly in another 
object as one of its fields. The other is through pointer~ or object referencing. In this 
case, the address of an object is stored in another object as a field. Because there 
are object identifier to each object including composite object, explicit links between 
objects and information to cluster data, the performance is improved when such objects 
are stored in an OODBMS. The time-consuming join operations in RDBMS is saved 
by direct object referencing in OODBMS. 

Aimed at supporting the new applications, researchers have adopted two different 
ways. One is to build OODBMS from ground up (revolutionary approach). Such 
systems include O2 [151], ObjectStore [347] and GemStone [83]. The other is to 
extend an existing RDBMS to support abstract da ta  types (evolutionary approach). 
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Such systems include P O S T G R E S  [557], Starburst [379] and O - Raid [153]. Both 
ways have been successful and have their advantages and disadvantages. While the 
revolutionary approach is focused on supporting abstract types from ground up and 
allows the system to be finely tuned, the development cost and time is relatively great. 
On the other hand evolutionary approach allows reuse of RDBMS software which is 
cost-effective and could shorten the developing time of the software significantly. The 
flexibility of the design and implementation in this approach is restricted and the 
performance is bounded by the underlying system. In the following discussion we will 
be focused on the evolutionary approach. We start  on surveys of systems using this 
approach and focus on the O-Raid system we developed at Purdue University. 

5.2 Survey of Extended Relational Systems 

P O S T G R E S  In addition to business applications, POSTGRES expands to sup- 
ports  object management and knowledge management. Object management entails 
storing and manipulating nontraditional da ta  types such as bitmaps, icons, text and 
polygons. Knowledge management includes the ability to store and enforce a set of rules 
that  are part  of the semantics of a application. Such rules enforce integrity constraints 
and allow the derivation of data  that  is not directly stored in the database [557]. 

It also supports class, class inheritance and user-defined functions in the DBMS. In 
the POSTGRES approach, Classes are modeled by relations. A tuple within a relation 
represents a class instance. The attr ibutes define the instance variables. A relation 
may inherit the at tr ibutes and the functions defined for another relation. POSTGRES 
defines a relation called superclass relation. This has three attributes, class, superclass 
and seqnum. The class and superclassattributes store the class name and the superclass 
name respectively. The seqnum at tr ibute stores a number, used for resolving conflicts. 

Object  referencing in POSTGRES is realized through storing procedure valued at- 
tributes in a relation. Such at tr ibutes can contain a QUEL query to retrieve tuples 
from other relations. Accessing the procedure valued attr ibute automatically executes 
the query, retrieving the desired data. The procedure valued attr ibute thus serves as 
a pointer to another object. 

Starburst  Starburst  supports user-defined types through extending a relational 
DBMS. Its goal is to provide the desirable features of object-oriented, logic, deduc- 
tive and other DBMS technologies, while still retaining all the strength of a relational 
DBMS [379]. I t  supports  user-defined production rules. These rules could form a for- 
ward chain that  enforce da ta  constraints through performing actions when predefined 
conditions are satisfied (triggered). 

Starburst  supports user-defined types and functions. The user-defined functions 
must be statically linked with the rest of the Starburst  system. Dynamically linking a 
user-defined function with the system is underdevelopment [379]. There two ways of 
storing complex objects in Starburst.  One is to store the entire object in a 'long field'. 
This means that  the system has minimal ability to apply selection predicates based on 
the contents of this 'long field' in a query. The other is to store the components of an 
object as rows in a table. This allows objects to constructed by composing these rows 
using different relational views. Similar to POSTGRES, Starburst  supports object 
referencing by embedding queries in da ta  fields. These queries defined the da ta  objects 
to be constructed. 
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Figure 5.1: O-Raid System Layout 

O - R a l d  O-Raid extends in layers the implementation of an existing distributed re- 
lational system called RAID [61] (See Figure 5.1). O-Raid integrates the relational 
and object models. As a result it retains the simplicity of the relational model while 
providing the functionality of the object model. Specifically, the relations in O-Raid 
dan contain attributes of user-defined types, i.e., the tables can contain objects in their 
columns. The user-defined types are generally classes. A class is a set of objects having 
common features. In the class definition, the common features of objects are defined 
by instance variables (members) and methods (functions). The state of an object, i.e., 
the values of the instance variables in the object, can only be changed though the 
execution of methods defined in the class. 

O-Raid supports both inter-object referencing (or pointer referencing) and intra- 
object referencing (or embedded object referencing, where an object is stored within 
another object). In queries persistent pointers to user defined types in attributes of 
a relation is allowed. A persistent pointer in O-Raid is represented by three integers, 
object identifier (OID), relation identifier (RID), and a offset (OFFSET) [420] that 
uniquely identify the object and its class. Objects, classes, and inheritance are sup- 
ported together with a predicate-based relational query language. O-Raid objects are 
compatible with C++ objects and may be read and manipulated by a C++ program 
without any '~impedance mismatch". 
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Figure 5.2: Query Language (RAID vs. O-Raid) 

5.3 O-Raid System Design and Implementation 
In O-Raid [153, 60] we are exploring the extensions to the relational system to imple- 
ment an object-oriented system. 

5 . 3 . 1  Expand Query Language 
We have extended the standard SQL query language called SQLq-+, to support queries 
involving objects [420]. Figure 5.2 compares the features of the query languages sup- 
ported in RAID and O-Raid. 

In queries the objects are manipulated (retrieved or updated) using methods defined 
in the object class in Cq-+. O-Raid [153] is built on top of the RAID [61] distributed 
relational database system. An O-Raid relation needs to be mapped to a RAID relation. 
Specifically, a relation involving user-defined types has to be transformed to a new 
relation with attributes of simple types. The object-relation data model poses new 
requirements for the schema specification facility, also referred to as Data Definition 
Language (DDL) facility: 

�9 Relation containing objects: To support an extensible collection of data types, a 
facility for registering classes (user-defined types) is essential. The structure and 
methods for complex objects needs to be registered with the database. 

�9 Dynamic loading and execution of methods In O-Raid the methods used for ma- 
nipulating the objects are dynamically loaded and executed. The facility for 
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dynamic loading and execution of method needs method symbol name as op- 
posed to method signature. Thus when a class is registered we need to generate 
a table mapping all its method signatures to corresponding method symbols. 

Schema for databases spanning multiple sites In O-Raid the relations can be 
replicated at all database sites (]ull replication), or the relation can be replicated 
at selected set of database sites (partial replication). The replication of selected 
fragments of a composite objects is also supported. 

5.3.2 E xtend  Data  Definit ion Facility 
To create a database, users must specify the schema on which the structures of the 
database is built. A schema specification facility called dbedit is developed for spec- 
ifying database schemas and to generate the corresponding meta information in the 
database.  Classes are defined using C + +  [560] programming language and they specify 
the structure as well as the methods that  manipulate the data. The extensions to the 
tradit ional  DDL include: 

�9 Registerclass-name. This allows a user to store new user-defined types in to a da- 
tabase including the code that  defines and implements the classes and functions 
(methods). 

�9 Create table table-name ... 

This allows users to create a table with its column to be of user-defined types 
and to be able to invoke new functions in order to construct objects and filter 
da ta  in the queries. 

�9 Distribute table table-name. This could specify a table to be replicated over 
multiple sites. It could be used for selective replication of data. 

We will illustrate the schema specification facility of O-Raid system through an 
example. Suppose we want to creat a two-site document database: 

�9 The Document contains 4 sections, namely introduction, indexing, replication and 
conclu'sion. 

�9 Since 2 users from 2 different sites (raid9 and raid11) have different access pat- 
terns, it requires that  introduction and conclusion sections be fully replicated, 
section indexing is only created at raid9 site, and section replication only at 
raid11 site (See Figures 5.3). 

The Document and Section classes could be defined in C + +  as follows (see Fig- 
ure 5.4 and 5.5): 

The above user-defined classes can be registered to the system by the command: 

R E G I S T E R _ C L A S S  Document; 

The components of REGISTER_CLASS are shown in Figure 5.6, in more details: 

�9 C-{--]-_Parser: Input: C + +  programs; Output: Class information, including 
class name, class size, superclass, member types and their size in bytes. 

�9 Gen_. I t e la t ion :  Input: the output of the last step; Action: generate metadata  
files to store the class relation and class at tr ibute information. 

e.g. A tuple 4 0 1 "Document" "pintro_sec" 7 9 1 "Section" in the CLASSAT- 
TRIBUTE means that  at tr ibute pintro_sec belongs to relation Document, is of 
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Site raid9 

_1 
-q Introduction [ 

. . . . . .  i   ii::oil] ) 
-]-I Conclusion ] 

Site raidl 1 

F igure  5.3: A 2-si te Documen t  Da tabase .  Ident ica l  copies of  sect ions are con- 
nec ted  by  l ines wi th  arrows. Site r a id9 ' s  view of  the  documen t s  enclosed in the  
d o t t e d  bounda ry .  

type class Section spanning column 7 to 9 and is a pointer to object (The ] after 
9; if 0, it  means embedded object). 4 0 1 says that  tuple id is 4, version is 0 and 
1 means the tuple is used. 

�9 G e n _ g e t h o d _ g a p :  Action: Compile the C + +  file and generate the corre- 
sponding object file (. o). Generate a table mapping all its method signatures to 
corresponding method symbol names. 

e.g. Document::Docurnent(char *, char *) is a method signature, and 

___SDocumentPcT1 is a method symbol name, which dynamic loader can use 
directly to execute the constructor method Document(). 

�9 U p d a t e _ C l a s s _ M e t h o d :  Action: The object files and method signature tables 
created in the previous step are stored in the database. The table is stored in a 
metada ta  file called CLASSMETHOD. 

S u p p o r t  D y n a m i c  L o a d i n g  a n d  E x e c u t i o n  o f  M e t h o d s :  When user in- 
vokes a function (method) in her query, the method signature is directly available from 
the query. But the dynamic loader  needs the method symbol name of the precompfled 
method code for execution. Thus the Method Signature Table is consulted to convert 
method signature to method symbol name before being able to dynamically execute a 
method during query processing. The table is generated as follows: 

�9 invoke the UNIX command nm on the class object file (. o) and select the mangled 
names for the methods. 

�9 process them with a demanglerprogram and build the desired table. The deman- 
gler program generates the method signature from a mangler method symbol. 

A method signature table of our example Document class is shown in Figure 5.9. 

S c h e m a  S p e c i f i c a t i o n  The procedure of specifying the database schema of our 
example to the O-R~id database system is shown as follows: 
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// Document.h 
class Section { // both raid9 and raidll 
public: 

char heading[TITLE_LEN]; 
char text[MAX_TEXT]; 

Section(char*t); 

void printobj(); 
}; 

class Section9 { // for raid9 site 

}; 

c l a s s  S e c t i o n l l  { / /  f o r  r a i d l l  
. . .  

}; 

class Document { // both raid9 and raidll 

public: 
char name[MAX_NAME]; 
char title[TITLE_LEN]; 
class Section *pintrosec; 

class Section9 *pindex sec; 
class Sectionll *preplic_sec; 
class Section *pconclsec; 
Document(char *n, char *t); 
void printobj(); 

}; 

Figure 5.4: Header file Document.h for definition of class Document 
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/ /  Document.cc 
/ /  Constructor  and Methods d e f i n i t i o n s  
Sec t ion : :Sec t ion(char  *t) { 

s t rcpy(heading,  t )  ; 
s t r c p y ( t e x t ,  ">>") ; 

} 
void Section::printobjO { 

if(this!=NULL) { 
printf("Heading: Zs\n", heading); 

} 
} 

// Similarly for Section9 and Section11 
// For class Document 
Document::Document(char *n, char *t) { 

strcpy(name, n); 
strcpy(title, t); 
pintro_sec = NULL; 
pindex_sec = NULL; 
preplic_sec = NULL; 
pconcl_sec = NULL; 

} 

void Document : :printobj () { 
printf("Name: ~s\n", name) ; 
printf("Title: Zskn", title); 
pintro_sec->printobj(); 
pindex_sec->printobj(); 
preplic_sec->printobj(); 
pconcl_sec->printobj(); 

Figure 5.5: Source file Document.cc for Constructor and Method code. 
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Register Class 

C + +  Pa r se r  

I e n _ R e l a t i o n  

I e n _ M e t h o d  M a p  

I update-r176 I 
Proces s  o rde r  

Figure 5.6: Th e components of REGISTER_CLASS command. 

0 0 I "Section" "s" 5 6 0 "Section" 

. . o  

3 0 I "Document" "d" 5 18 0 "Document" 

4 0 i "Document" "pintro_ser 7 9 I "Section" 

7 0 1 "Document" "pconcl_sec" 16 18 I "Section" 

8 0 I "documents" "d" 3 16 0 "Document" 

Note: From left to right, column by column it is "tuple id", "version", "used flag", 
"relation name", "attribute name", "start column", "end column", "level of object 
indirection", "class name". 

Figure 5.7: Metadata file: CLASSATTRIBUTE 
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0 0 1 "Section" I0 640 "Document.o" 

I 0 1 "Section9" II 640 "Document.o" 

2 0 1 "Sectionll" 19 640 "Document.o" 

3 0 1 "Document" 13 208 "Document.o" 

Note: In the last row "Document" is a class relation; 13 is the class id for that relation; 
208 is the number of bytes for that class; "Document.o" is the name of the object file 
in which the class is implemented. 

Figure 5.8: Metadata  file: CLASSRELATION 

0 0 1 "___7SectionPc" " S e c t i o n : : S e c t i o n ( c h a r  *)" 
I 0 I "___8DocumentPcTl" "Document::Document(char *, 

char *)" 

4 0 1 "_printobj__TSection .... Section: :printobj()" 

5 0 I " printobj_ 8Document .... Document: :printobj()" 

Note: Columns left to right are "tuple id", "version", "used flag", "method symbol 
name", "method signature". 

Figure 5.9: Method Signature Table: CLASSMETHOD 
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Invoke dbedit on a database name (dbed i t  C o m p )  
with the following DDL commands: 
install ;  {* initialize database directory *} 
config(raid9.cs.purdue.edu /uraid9/databases); 
{* declare raid9 and its directory as one site 
Similarly for raidl l  *} 

reg is te rc lass  Document; 
{* Register classes defined in Document.cc 
into the database Comp *} 
c lassread;  {* Reread the existed classes *} 

{* A table with an attribute of type Document *} 
c rea t e  t ab le  documents(Document d); 

{* 2-site replicated tables *} 
d i s t r i b u t e  t ab le  documents, Document, Section 
(raid9.cs.purdue.edu/uraid9/databases); 
d i s t r i b u t e  t ab le  documents, Document, Section 
(r aid] 1.cs.purdue.edu /uraidll /databases);  

{* Single site tables *} 
d i s t r i b u t e  t ab le  Section11(raid11.cs.purdue.edu 
/uraid11/databases); 
d i s t r i b u t e  t ab le  Section9(raid9.cs.purdue.edu 
/uraid9/databases); 

repl ica te ;  {* Action *} 
qui t ;  

Note: The comments of each command (in bo ld  face) are put in between {* and *}. 

5.3.3 Data Manipulation Language (DML) 
Users interact with the database directly through DML facility by submitting queries. 
Extensions to the queries include: 

�9 Insert  into table-name: <attributes>. Here the attributes could be a simple 
type value, e.g. integer or a constructor method (function) call with arguments. 

�9 Select * from table-names where predicate. In the "where" clause, the predicate 
can not only be simple attribute such as name = "John" but also involve filtering 
functions supplied by users such as contain_key("database"). 

�9 Introduce variables that allow users to store, retrieve and update intermediate 
results by other queries. For example, assign to variable: select query; update 
variable set statement. 

Two kinds of variables are supported in O-Raid user interface. One is the tem- 
porary variable whose life time is the login session of the user. The other is the 
global variable whose life time is permanent. The global variable has the same 
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effect as a relation. Compared with the global variable, temporary variable has 
much less overheads in execution of queries. 

I n s t a n t i a t e  t h e  D a t a b a s e  We continue with~ our example. The database is in- 
stantiated by submitting queries to the user interface as follows: 

�9 Invoke RAID servers and UI process on the database 

/uraidg/ databases/ Comp. 

�9 Input  the following DML commands to UI: 

i n s e r t  i n t o  documents:<Document("ind_rep",  
"Indexing and Replication Experiments")>; 

/ 

c r e a t e  v a r i a b l e  @s: &Section("Introduction"); 
u p d a t e  documents se t  d.pintro_sec = @s; 

c r e a t e  v a r i a b l e  @s: &Section9("Indexing"); 
u p d a t e  documents se t  d.pindex_see = @s; 

c r e a t e  v a r i a b l e  @s: &Section11("Replieation"); 
u p d a t e  documents se t  d.preplic_sec = @s; 

c r e a t e  v a r i a b l e  @s: &Sect ion( 'Conehsion");  
u p d a t e  documents se t  d.pconcl_see = @s; 

The i n s e r t  i n t o  command constructs an in-memory object through constructor 
method Document() defined in Figure 5.5. The object is converted into tuple and 
inserted into relation documents. 

The command c r e a t e  v a r i a b l e  @s: &Section( ' Introduction") first construct an 
in-memory object through constructor method Section()defined in Figure 5.5. The 
address of the object is assigned to temporary variable s (denoted by prefixing character 
@). 

The command u p d a t e  documents set  d.pintro_sec = @s sets the attribute d.pintro_sec 
of the relation documents to point to what the variable s is pointing to, which is the 
object created in the previous command. 

Q u e r y  E x e c u t i o n  i n  O - R a i d  After a user query is parsed, related relations are 
brought into the memory. The attr ibutes of the relations involved in the query are 
checked to see if they are of user-defined types, for example, Seminar is a user-defined 
type. For at t r ibutes of user-defined types, e.g. the at tr ibute s in the example s e l e c t  
query, an object is constructed for each tuple in the relation c o l l o q u i a .  Here each 
tuple contains an entry for a seminar. The query predicate is then evaluated on the 
constructed object and depending upon the true/false value the object is selected or 
rejected. 

If the user-defined methods are involved in the predicate, the methods signa- 
tures are mapped to the methods symbol names. For example, the method sig- 
nature Keys: : con t a in_key (cha r  *) in the sample s e l e c t  query is mapped to the 
method symbol name _contain_key_4geysPc via the methods symbol table created 
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when r e g i s t e r _ c l a s s  command is invoked. Bazed on the symbol names, the pre- 
compiled method code is then loaded and linked dynamically with the process that  is 
handling the user query and the method is executed. For update queries in the end 
of query processing, a translation from objects to tuples of the relation (reverse con- 
version) takes place before writing relations to the database. O-Raid interact with the 
underlying RAID system through Read/Write  operations and lair_transaction, com- 
mit_transaction primitives provided by the RAID system. 

G r a p h i c a l  U s e r  I n t e r f a c e  A graphical user interface called O-UI has been en- 
gineered using Suite system [152] to allow access and direct manipulation of O-Raid 
database relations and objects [434] (Figure 5.10). This interface facilitates the users 
in composing their queries to an extent that  parts of the user queries are provided 
automatically. 

Earlier, we had built a simple teletype interface for O-Raid called S-UI, which 
accepted a query typed by the user and displayed the query result (if any) in a tabular 
form. The interface was simple and portable but had several limitations. The display of 
relations with a large number of tuples or at tr ibutes was difficult to view. The tabular 
display of da ta  was awkward for relations containing objects. A flexible mechanism for 
display of objects was desired. We wanted to display objects through a special display 
method defined for that  class, which specifies how the objects of that  class should be 
displayed[6]: Another limitation was that  the query result could not be reused for 
a subsequent query. This increased the effort required to obtain desired information 
through a series of steps (query refinement). Also, the manipulation of relations could 
only be done by specifying update queries. 

To overcome these limitations we embarked on building the O-UI graphical inter- 
face. We wanted to build the graphical interface based on the direct manipulation 
paradigm [521], with features such as mouse based interactions, pop-up menus, win- 
dows, icons, and graphical display of data. Another goal was to minimize the amount 
of information the user has to know (such as query language syntax, etc.) and reduce 
the da ta  that  needs to be typed. 

5.4 P e r f o r m a n c e  Studies  

We have conducted experiments on O-Raid to identify the overheads involved in ex- 
ecuting S Q L + +  queries [540]. This allows us to assess the effort required to extend 
a relational system with objects, evaluate the efficiency and usability of some of the 
design and implementation decisions we have taken, and gain experience in using data- 
base objects. We found that  about 15% overheads incur on the response time of query 
processing.. We consider this reasonable as O-Raid provides more expressive power and 
convenience to the users than its relational counterpart. 

For replicated database, we build a two-site database, using Read-One-Write-All 
(ROWA) replication control algorithm. Table 5.1 and 5.2 show the comparison of the 
overheads under local, remote and full replication access for s e l e c t  and i n s e r t  queries 
respectively. The' full replication scheme has the benefit of lowest cost for local read 
access, but h ~  the highest cost for write. 

Based on this observation, a selective replication scheme for composite object is 
proposed in [541]. The composite object called document is created with four s e c t i o n  
subobjects. Two users are simulated to access the document object. The access prob- 
ability for the two user sites is shown in Table 5.3. 
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I d m :  O b j e c t  w i n d o w  f o r  r B l a U o n _ d i s p l a y - O  
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Figure 5.10: Query Interface and Relation Display Window 

Query 
Type 
local 

remote 

full 
replic [125,126] 

T r a n s -  

l a t i o n  Read Writes TOTAL 
132 318 121 589 

[131,132] [317,319] [118,123] [585,592] 
133 354 167 673 

[131,135] [352,357] [164,171] [668,677] 
125 321 

[320,322] 
120 

[116,123] 
585 

[581,5881 

Table 5.1: Comparison of processing time (in ms) for select queries with objects 
on 25 'tuples 
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Query SQL Trans- 
Type parsing lation 
Local 10 7 
Insert [9,10] [7,7] 
Remote 10 7 
Insert [10,11] [7,7] 
Two-site 10 7 
Insert [9,10] [7,7] 

Writes TOTAL 
172 193 

[167,176] [189,197] 
232 255 

[226,239] [248,2611 
242 263 

[234,250] [255,271] 

Tab le  5.2: C o m p a r i s o n  of  process ing t ime  (in ms) for insert  queries wi th  ob jec t s  

Section Name sitel  site2 
"introduction" 0.25 0.25 
"indexing" 0.375 0.125 
"replication" 0.125 0.375 
"conclusion" 0.25 0.25 

Table  5.3: Access p robab i l i t i e s  by site1 and site2 users 

Table 5.4 and 5.5 contain the response time for s e l e c t  query and upda te  query 
under three replication schemes, namely full replication, selective replication and no 
replication. In the selective replication scheme, the sections "introduction" and "con- 
clusion" are fully replicated on the two sites. However, only a single copy of the "in- 
dexing" and "replication" sections is maintained at si tel  and site2 respectively. The 
two sites can both be on a LAN, or one at local and the other across the Internet. 

From the above da ta  we could see that  the selective replication scheme shows strong 
benefits over the fully replicated and the single copy schemes in the WAN as well as 
in the LAN environment, considering the combination of retrieve and update opera- 
tions [540]. The selective replication scheme allows users to fine tune the replication 
and achieve high performance. 

Emulated full replic seletive replic no replic 
Host site1 site2 site1 site2 site1 site2 
LAN 238 233 249 253 236 299 

ecn.purdue 252 240 256 260 257 360 
uiuc 256 256 278 299 248 552 
uta  252 247 293 342 247 806 

helsinki.fi 251 239 341 431 245 1534 

Table  5.4: Select query response t ime  (ms) 
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Emulated full replic seletive rephc no replic 
Host sitel site2 sitel site2 sitel site2 
LAN 331 335 321 322 279 353 

ecn.purdue 371 375 348 350 295 420 
uiuc 438 452 392 353 287 604 
uta 527 526 440 476 288 861 

helsinki.fi 812 814 '703 707 301 1619 

Table 5.5: Update  query response t ime (ms) 

5.5 R e s e a r c h  Issues  

We are currently investigating several issues including indexing of relations containing 
objects [295], selective rephcation of parts of composite objects [59], providing inte- 
grated access to a variety of data sources through the federated objects [585], and 
supporting transactions on fragmented composite objects [584]. 

R e p l i c a t i o n  The traditional scheme of replicating an object in its entirety, for in- 
creasing the availability, would incur high performance and storage overheads when 
applied to composite objects such as multimedia documents and large pieces of soft- 
ware. Our extension allows a replication scheme, which allows replication of selected 
parts (subobjects) of the composite object. Such composite objevt replication can be 
used to tune the replication granularity to meet both the availability and performance 
requirements of distributed applications, and at the same time minimize the storage 
costs. For example, a "document" object may be a composite object consisting of 
pointers to four section objects, namely the "introduction", "indexing", "replication", 
and "conclusion". Each of these sections can be independently distributed and repli- 
cated by choice. 

I n d e x i n g  We are extending O-Raid to support path indices [58, 295]. Path indices 
allow efficient selection of composite objects based on the nested member attribute 
values. The goa] is to identify the cost of creating and maintaining indices and the 
performance benefits resulting from path indices. The study will help us develop poli- 
cies regarding use of path indices for different applications. We are considering support 
of indexing on methods that represent derived attributes. For methods with no argu- 
ments, indices will be built after the method values are precomputed. This technique 
of precomputation cannot be used for methods with arguments. In general, for these 
methods there inay not be any efficient strategy for maintaining indices. However, we 
are looking for a partial solution. We plan to identify characteristics of the commonly 
occurring methods (with arguments) and develop suitable index structures for them. 

F r a g m e n t a t i o n  We use object fragmentation as the basis for the transaction pro- 
cessing mechanism, which to a great extent avoids intersite communications and block- 
ing delays [584]. In this approach much of the transaction processing is handled at the 
locM participant database level. This makes the scheme especially appealing in the 
presence of local autonomy requirements. As opposed to the static fragmentation 
schemes, this approach is based on a demand-driven dynamic reconfiguration of object 
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fragments. The reconfiguration is supported by two mechanisms: object reincarnations 
and negotiation protocols. Object reincarnation models situations such as cyclic con- 
sumption of resources where the object fragment values have to be reset after a certain 
time interval. The negotiation protocol reconfigures the object fragments in a given 
time interval to meet the varying demand for resources. We have developed a formal 
model for different fragmentation schemes and designed constructs for specifying frag- 
ment distribution. We have also designed scheme for supporting object reincarnations 
and negotiation protocols in a distributed database system. 

C o m p o s i t e / F e d e r a t e d  O b j e c t  We model existing related distributed da ta  by 
a composite object, where each da ta  source is treated as a fragment of the composite 
object. A collection of methods are defined to Mlow manipulation of the related dis- 
t r ibuted da ta  in a controlled and consistent manner. The composite object so created, 
referred to as federated object, is a pragmatic approach to da ta  integration. Unlike, 
heterogeneous database systems, in this approach each da ta  source is not required 
to have full database system capabilities. Instead, the da ta  sources can be simple 
files, or application generated binary files. Federated objects are especially suitable for 
computer-support-cooperative work (CSCW), where coordination and communication 
among a group of people is required, and the type of collaboration is dynamic in na- 
ture. A dynamic data reconfiguration mechanism is proposed to allow efficient access 
of data. Federated objects are constructed from existing da ta  resources using a C + +  
class library, which provides the mechanisms needed for access and manipulation. The 
toolkit approach provides flexibility of adding application-specific mechanisms during 
the da ta  integration process. 



Chapter 6 

An Object-Oriented Knowledge Model for 
KBMS-supported Evolutionary Prototyping of Software 
Systems 

Stanley Y. W. Su*, Yuh-Ming Shyy t 

6.1 I n t r o d u c t i o n  

6.1.1 Motivation 
The development of complex software systems is a costly endeavor. If prototypes can be 
rapidly constructed to test the structural and behavioral properties of these systems as 
the developers gain more knowledge about their requirements, ,then complex systems 
can evolve from a series of prototyping efforts [28, 29]. In this chapter, we take a 
knowledge base modeling approach to evolutionary prototyping of software systems by 
treating each prototype system as a high-level executable model of the target system, 
which defines the structural and behavioral properties of the target system at any level 
of abstraction (from a large program module to a single program statement) as desired 
by the prototyper. The executable model evolves gradually through a series of schema 
modifications and refinements to provide more and more details about the requirements 
and implementations of the target system. At each stage of evolution, the model (i.e., 
the prototype) can be executed to test its functionalities and performance. All the 
debugging, modification, and maintenance can therefore be performed directly against 
the executable model throughout the software lifecycle as shown in Figure 6.1. 

As we all know, all software systems are computer programs and, based on Wirth 
[618] and Kowalski [332], we have the following formula: " P r o g r a m  = D a t a  S t ruc -  
t u r e  + Logic + Con t ro l " .  If a knowledge model can uniformly model all types of 
software systems in terms of their (i) structural properties (corresponding to the data 
structure aspect of a program and the control structure among program segments), 
(ii) operations/methods (corresponding to the procedural semantics of program al- 
gorithms), and (iii) knowledge rules (corresponding to the declarative semantics of 
program logic and control), then any software system in the traditionM concept can be 
evolutionary modeled by this knowledge model throughout its software lifecycle. Note 
that, although the semantics represented by rules can be implemented in methods, 
high- level declarative rules make it much easier for a prototyper to clearly specify the 
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semantics instead of burying the semantics in application codes and thus simplify the 
tasks of testing, modification, debugging, and maintenance. It is not necessary to make 
the traditional distinction among software systems (e.g., application systems, operat- 
ing system, and data base management system) because all of them are executable 
models of the underlying object-oriented knowledge base as shown in Figure 6.2. The 
structuraJ and behavioral properties of all object classes which model programs and 
application domain objects are stored in an object-oriented knowledge base under the 
management of a Knowledge Base Management System (KBMS) and can be shared 
and reused among the users of various application domains. 

We have extended an object-oriented semantic association model OSAM* [564, 565, 
634] with reflexivity and control associations as an extensible framework for KBMS- 
supported evolutionary prototyping described above. The advantages of this approach 
are three-fold. First, by using a single unified knowledge model and schema notation, 
we eliminate the mismatch between the traditional data-oriented models [108, 266] 
and the process-oriented models [142, 426, 452, 406] to support both structural and 
behavioral prototyping within an object-oriented framework. Secondly, all types of 
software systems, application domain objects that these systems deal with, and related 
meta information can be uniformly modeled by the knowledge model and managed 
aJad processed by an underlying KBMS, or the so-called "Next-Generation Database 
Management System" [196, 4], which uses this knowledge model as its underlying 
model. Thirdly, instead of serving as throw-aways or being limited to conceptual 
design, the model of a target system can evolve from specification to implementation 
throughout the software lifecycle as shown in Figure 6.1. We have also developed a 
knowledge base programming language cMled K as a high-level interface to define, 
query, and manipulate the knowledge base as well as to code methods [522, 523]. In 
this chapter, we shall concentrate on the knowledge model itself and its application in 
evolutionary software development. 

6.1 .2  R e l a t e d  W o r k s  

As an extension to relational, semantic, and object-oriented data models, knowledge 
rules have been incorporated into many research works in next-generation database 
systems such as HiPAC [92], ODE [7], OSAM* [564], Postgres [377], and Starburst 
[378]. However, these models do not provide facilities for explicitly modeling method 
implementations. 

Object-Oriented data model provides a uniform framework by encapsulating both 
the structural properties and part of the behavioral properties (in terms of signature 
specifications of methods) of a target system into object classes. Nevertheless, the 
implementation part of each method is still left as a blackbox and cannot be further 
modeled. Because the specification of methods does not carry enough behavioral infor- 
mation, the implementation is often prone to errors. Several research works have been 
done in an effort to provide an integrated diagram notation for static and dynamic 
aspects of software systems. Both Kung [338] and Markowitz [389] tried to combine 
ER data model and data flow oriented process specification as a single graphic design 
tool for conceptual mddeling. However, they do not explicitly model process imple- 
mentations and therefore cannot support evolutionary prototyping of software systems 
throughout their entire lifecycles. Besides, as behavior properties (processes) are not 
incorporated into an object-oriented framework, they cannot take advantage of object- 
oriented paradigm such as inheritance and object-oriented database system support. 

Brodie and Ridjanovic [80] proposed ACM/PCM (Active and Passive Component 
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Modeling) methodology for structural and behavioral modeling of database applica- 
tions using an integrated object/behavior schema. Three types of control abstractions 
(sequence/parallel, choice, and repetition) are used to represent the behavioral relation- 
ships between an operation and its constituent operations. Since behavioral properties 
are explicitly modeled only at a gross level of detail by relating operations to form 
high-level, composite operations, there is not enough information for the behavioral 
schema to be executable and evolve into the target system at the implementation level. 

Kappel and Schrefl [307] proposed object/behavior diagrams as a uniform graphic 
representation of object structure and behavior based on a semantic data model and 
petri-nets. Behavior diagrams are split into (i) life-cycle diagrams which identity pos- 
sible update operations and their possible execution sequences with synchronization 
constraints, (ii) activity specification diagrams which represent method specifications, 
and (iii) activity realization diagrams which represent method implementations at any 
level of details. Though closely related to our work, object/behavioral diagram is more 
of a graphic design tool than a formal knowledge model. Because there is no kernel 
model to model object/behavior diagrams themselves, software systems represented by 
these diagrams cannot be uniformly modeled and managed by some underlying KBMS. 
For example, a user will not be able to inquire about the structural and behavioral 
properties of objects. 

The rest of this chapter is organized as follows. In Section 6.2, we give an overview 
of the knowledge model. Structural and behavioral abstraction mechanisms of the 
knowledge model are described ill Section 6.3 and 6.4, respectively. Section 6.5 
summarizes this research work and gives our conclusions. 

6.2 Knowledge Model  Overview 

6.2.1 Classes 

We use classes as the knowledge definition facilities to classify objects by their common 
structural and behavioral properties in an integrated fashion. Classes are categorized 
as entity classes (E_Class) and domain classes (D_Class). The sole function of a domain 
class (e.g., integer, real, and string) is to form a domain of possible values from which 
descriptive attributes of objects draw their values. An entity class, on the other hand, 
forms a domain of objects which occur in an application's world and can be physical 
entities, abstract things, functions, events, processes, and relationships. The struc- 
tural properties of each object class (called the defining class) and thus its instances 
are uniformly defined in terms of its structural associations (e.g., aggregation and gen- 
eraJization [527]) with other object classes (called the constituent classes). Each type of 
structural association represents a set of rules that govern the knowledge base.manip- 
ulation operations on the instances of those classes that are defined by the association 
types. Functional associations between object classes can also be specified by such 
association types as "friend" [561] and "using" [71] to facilitate programming in the 
large as will be described in Section 6.3.1. Manipulation of the structural properties 
of an object instance is done through methods, and the execution of methods is auto- 
matically governed by rules to maintain the system in a consistent state or to trigger 
some pre-defined actions when certain conditions become true. In other words, the 
behavioral properties of each object class are defined as methods and rules applicable 
to the instances of this class. The procedural information (algorithm) of methods can 
be explicitly modeled using control associations as will be described in Section 6.4.1. 
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Since rules applicable to the instances of a class are defined with the class, rules rele- 
vant to these instances are naturally distributed and available for use when instances 
are processed. Structural  associations, functional associations, and control associations 
are all called "class associations" as each of them specify an association between the 
defining class and the constituent classes. A schema is defined as a set of class associa- 
tions, which corresponds to a real world application. A sample entity class definition of 
Student is given in Figure 6.3 to illustrate the skeleton of a class definition. A detailed 
description will be given in the lat ter  sections. 

6.2 .2  Objec ts  and Ins tances  

Objects are categorized as domain class objects (D_Class_Object) and entity class ob- 
jects (E_Class_Object). Domain class objects are self-named objects which are referred 
to by their values. Entity class objects are system-named objects each of which is 
given a unique object identifier (oid). We adopt a distributed view of objects to sup- 
port  generalization and inheritance as in [345, 634] by visualizing an instance of class 
'X'  as the representation (or view) of some object in class 'X'. Each object can be 
instantiated (as an instance) in different classes with different representations but with 
the same oid. Each instance is identified by a unique instance identifier (lid) which is 
the concatenation of cid and oid, where cid is a unique number assigned for each class 
in the system. Each entity class object (and therefore all its corresponding instances 
in different classes with the same oid) can be either persistent or transient. After a 
user session ends, all the transient objects created in this session are deleted and all 
the persistent objects are stored back into the database. A detailed discussion of per- 
sistence can be found in [522]. Each entity class is associated with an extension which 
is the set of all its instances. 

6.3 S truc tura l  A b s t r a c t i o n  

Structural  properties of objects are modeled by using various structural association 
types. In Section 6.3.1, we give a brief description of the kernel association types 
"aggregation" and "generalization". A three-level information hiding mechanism is 
described in Section 6.3.2. As each class can be thought of as a reusable software 
module in object-oriented software development, two types of functional associations 
are provided to facilitate programming in the large. The introduction of the "friend" 
and "using" associations also illustrates the extensibility of the knowledge model. In 
Section 6.3.3, We illustrate the model reflexivity and the structural schema notation. 
A brief description of structural  association patterns is given in Section 6.3.4. 

6.3 .1  S t r u c t u r a l  A s s o c i a t i o n  D e f i n i t i o n s  

Aggregation. For each object class, one can define a set of at tr ibutes (which are also 
expressed as da ta  members or instance variables in other object-oriented programming 
languages) to describe the state of its instances in terms of their associations with 
other classes by using the aggregation (A) association type. Each at t r ibute specifica- 
tion corresponds to an instance of class "Aggregation" and also a named aggregation 
association (A-link) from the defining class to the constituent class. The name of an 
at t r ibute  must be unique within the defining class. An aggregation association defines 
either (i) a value at t r ibute  if its constituent class is a domain class, or (ii) a reference 
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at t r ibute  if its constituent class is an entity class. Multi-valued at tr ibutes are speci- 
fied using the constructors "set", "list", and "array [size]". Note that  an aggregation 
association between two entity classes is interpreted as a bi-directional link to support 
bi-directional navigation and to maintain the referential integrity of the knowledge 
base. For example, before deleting a Department instance, the system can follow the 
"major" link of Student in the reverse direction to identify those students who ma- 
jor  in this department  and remove their "major:' links to this particular Department 
instance. 

Generalization. For each object class, one can use generalization (G) association 
to specify its immediate superclass or subclass. Class 'B'  is said to be a subclass or 
specialization of class 'A ~ (i.e., there is a generalization association from 'A '  to 'B')  if 
for each object which has an instance in class 'B' ,  it also has an instance in class 'A' .  
Both instances have the same old and are conceptually connected by a generalization 
association (G-link). 

6.3.2 Encapsulation and Inheritance 

We adopt the C + +  three-level information hiding mechanism [561] by classifying ag* 
gregation associations and methods as either "public", "private", or "protected". Note 
that  all the rules are treated as "protected" by definition. At the class level, all the 
(i) public/protected aggregation associations and other types of associations, (il) pub~ 
l ie /protected methods, and (iii) rules defined by a class are inherited by its subclasses. 
At the instance level, an instance of class 'A '  stores only the at tr ibutes defined for 
'A ~, and it inherits all the public/protected attr ibutes from its corresponding instances 
(with the same oid) of all the superclasses of 'A' .  Name conflict in multiple inheritance 
is resolved by requiring the user to explicitly specify from which superclass a particular 
property is inherited. 

Friend: This association type is used to support the three-level information hiding 
mechanism described above. A "friend" (F) association specifies that  all the constituent 
classes are "friends" of the defining class and thus authorizes them to access the private 
and protected properties of the defining class. 

Using: Similar to the "~include" macro in C + + ,  a "using" (U) association speci- 
fies that  all the public interfaces defined by the constituent classes will be available to 
the defining class (client- server relationship). Note that  though this information has 
been implicitly captured in paraaneter specifications and method invocations, we in- 
clude it at the class level for bet ter  readability and maintainability of complex software 
systems. For example, a user can easily capture the overall structural  and functional re- 
lationships among system modules by just  reading the association definition or graphic 
display of the system schema rather than going into the detailed codes of each method. 
Besides, the compiler can make use o f  the semantic information provided by the "us- 
ing" associations in a system schema to automatically include all the necessary classes 
for compilation. Note that  the "using" association provides a modular mechanism at 
a larger granularity than ordinary classes as one can either (i) functionally compose 
many classes into a big module structure or (ii) functionally decompose a big module 
into smMler modules. 

6.3.3 Extensible  Kernel  Model  

Model extensibility is achieved via a reflexive kernel model shown in Figure 6.5 in which 
all the da ta  model constructs described above such as classes, associations, methods, 
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and rules are modeled as first- class objects. One can extend the data  model by modi- 
fying this set of meta  classes. This kernel model also serves as the data  dictionary as all 
the object classes in the system are mapped into this class structure. One can therefore 
browse and query any user-defined schema as well as the dictionary uniformly. Note 
that  Figure 6.4 illustrates the overall generalization lattice, and Figure 6.5 shows the 
detailed structural  relationships among those kernel object classes as we will describe in 
the following sections. In our structural  schema notation, (i) entity classes and domain 
classes are represented as rectangular nodes and circular nodes, respectively: (ii) a gen- 
eralization association is represented by a "G" link from a superclass to a subclass, and 
(iii) an aggregation association is represented by an "A" link from the defining class 
to a constituent class. Note that  the root class "Object" is represented by a special 
notation because i t  is neither an entity class nor a domain class. The sole function 
of class "Object" is to serve as the collection of all the objects in the system. After 
compilation, any user-defined class (e.g., "Person" and "Student" in Figure 6.4 will 
be added to the class structure as an immediate or non-immediate subclass of either 
"E_Class_Object" or "D_Class_Object", while at the same time the objects correspond- 
ing to the class definition, associations, methods, and rules of the defining class will be 
created as instances of the system-defined entity classes named "Class", "Association", 
"Method", and "Rule", respectively. Note that  this class structure is reflexive in the 
sense that  we use the model to model itself. For example, while any user-defined or 
system-defined entity class is a subclass of "E_Class_Object", "E_Ctass_Object" itself is 
also an entity class (represented by a rectangular node). Similarly, "D_Class_Object" 
itself is also a domain class. 

As any application domain (including the model itself) is uniformly modeled and 
mapped into the kernel model, the class structure can be further extended at any 
level of abstraction. For example, one can use the kernel model to incrementally 
extend the model itself by either (i) adding new structural association types or intro- 
ducing subtypes of existing association types (e.g., "Interaction", "Composition", and 
"Crossproduct" [564]) by specifying their structural properties (in terms of existing 
structural  association types) and behavioral properties (in terms of rules which govern 
the knowledge base manipulation operations on the instances of those classes defined 
by the association types) or (ii) extending the definition of existing association types 
(e.g., add new at t r ibutes  "default_value", "null_value", "optional", "unchangeable", 
and "dependent" [523], as well as their corresponding rules for association type "Ag- 
gregation") so that  more semantics can be captured in the schema and maintained 
by the KBMS instead of being buried in application codes. Once a new association 
type is defined, it  becomes a semantic construct of the extended da ta  model and can 
be used in the definition of any object classes (including any other new association 
type). In such a way, the da ta  model itself can be incrementally extended to meet the 
requirements of various application domains. 

6.3 .4  Structura l  A s s o c i a t i o n  Pat t erns  

Since the development and execution of all software systems using the evolutionary pro- 
totyping approach are supported by a KBMS, any program execution would generally 
involve the processing of a persistent knowledge base. For knowledge base retrieval and 
manipulation, a knowledge base programming language should include some knowledge 
manipulation constructs in addition to general programming constructs. In our work 
on K [522, 523], we use pattern-based querying constructs for this purpose. We modify 
the context expression of OQL [11,233] as the primitive construct for specifying struc- 
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tural association patterns based on which the system can identify the corresponding 
contexts (sub-knowledge-bases) that satisfy the intentional patterns. In general, each 
association pattern can be defined as 

class_l ' [' <intra-class selection condition> '] ' 

<op> <direction> ' ['<association-name> '] ' 

class_2 ' [ ' <intra-class selection condition> '] ' 

<op> <direction> ' [~ <association-name> '] ' . . . 

where <op> could be either an "associate" ("*") or a "non-associate" (" !") operator 
and <di rec t ion>can  be either ">" or "<" so that the defining class of <association-name> 
is a/ways at the open side, i.e., the left-hand-side of ">" or the right-hand-side of "<". 
One can also explicitly specify a range variable over a class in the association pat- 
tern as "<vat> : <class>". For example, "g : Grad [maj or. name=' ' CIS ' ' ] *> [advisor ]  
p : P r o f e s s o r  !< [ i n s t r u c t o r ]  Course '~ specifies a sub-knowledge-base that contains 
all the graduate students of CIS department who has an advisor (i.e., there is an %d- 
visor" link connecting this student with a professor) who does not teach any course 
(i.e., this professor is not connected through the "instructor" association with any 
course instance), as well as their advisors and those courses which these advisors do 
not teach. Here, g and p are variables that represent the graduate students and pro- 
fessors satisfying the association pattern specification, respectively. Instead of using 
a class notation, one can also directly designate objects by replacing class name with 
any user- defined variable. For example, " t h i s  *>[advisor]  Professor"  specifies a 
context which consists of the particular student denoted by "this" and his/her advisor. 
A context can be thought of as a normalized relation whose columns are defined over 
the participating classes and each of its tuples represents an extensional pattern of rids 
that satisfy the intentional pattern. A detailed description of more complex associa- 
tion patterns and the use of association patterns to express universal and existential 
quantifiers can be found in [522]. 

After a context is identified, one can use the context looping statement provided 
by the system to manipulate objects over each extensional pattern. One  can use range 
variables to implicitly project over only those columns which he/she is interested and 
eliminate the resulting redundant tuples. For example, the following statement will 
print the name of each student who takes any CIS course. Note that we use range 
variable s to do a projection over Student column and remove the redundant tuples so 
that each qualified student will appear only once even if this student takes more than 
one CIS courses. 

con tex t  s : S t u d e n t  * > [ e n r o l l ]  Course[of~ered \_by .name="CIS ' s ]  
do s . n a m e . d i s p l a y ( ) ;  

end \_con t ex t ;  

6 .4  B e h a v i o r a l  A b s t r a c t i o n  

Behavioral properties of objects are modeled by methods and rules. In the tradi- 
tionaJ object-oriented programming, a method consists of a signature which specifies 
the name of method, parameters, and the data type of a returned value (if a vaJue is 
to be returned) and the actual program codes that implement the method. However, 
in the prototyping of a complex system, the prototyper may want to avoid the actual 
coding of a method at a particular point in time and use instead some simpler table 
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lookup codes to simulate the function of the method (i.e., given some legitimate input 
data, produce some legitimate output value by a table lookup). Or the prototyper may 
feel that  the method is still too complicated to code directly and wants to decompose 
its implementation into program segments interconnected by a control structure. In 
this case, the method implementation can be represented by a control structure of 
its program segments which are modeled as object classes with their own methods to 
define their functionalities. In other words, each program segment (whose size could 
vary from thousands of statements to a single statement) can be modeled as an object 
class along with a method (the default method name is "main") to represent the func- 
tionality of this segment. To activate a program segment, one just  sends a message to 
an instance of the corresponding object class to invoke the proper method. Through 
this decomposition process and, at each step, each method associated with an object 
class is either represented by an actual or simulated program, or by a control structure 
of program segments that  model the method. Each control structure can be used by 
the prototyping system for automatically generatblg the corresponding codes. As each 
method is executable, the model of the entire software system is executable and can 
gradually evolve into the target system by modifying and refining the executable model. 
Thus, procedural abstraction and functional decomposition are also incorporated into 
the proposed object-oriented framework. For the above reason, the meta model of the 
"Method" class shown in Figure 6.5 consists of an execution mode and a signature of 
its method name, parameter  declarations, and the return type. Based on the execution 
mode which is either "model" or "operational", the system can choose one of the fol- 
lowing to execute: (i) a method_model object which is the prototype model (schema) 
of a method implementation, and (ii) a piece of simulated codes or actual implemen- 
tation of the method in some programming language. In Sections 6.4.1 and 6.4.2, we 
describe the modeling of method implementation in terms of control associations and 
method_model objects, respectively. A description of rules is given in Section 6.4.3. 

6.4.1 M e t h o d  Model  and Control Associat ions 

It is shown in [137] that  three forms of control structures (sequence/parallel, choice, 
and repetition) can be used to define all partial  recursive (i.e., computable) functions. 
As mentioned in Section 6.3.3, one of the advantages of the extensible kernel model 
is that  we can extend the model itself by introducing new association types to carry 
whatever information we need in association links. In order to explicitly model method 
implementations in an object-oriented framework, we define a class called "Control" as 
a subclass of "Association" to model the control relationships among program segments 
that  implement the method. Control associations are categorized as "Sequential" (S), 
"Parallel" ( P ) ,  "Synchronization" (Y), "Testing" (T), and "Context_Looping" ( L ) a s  
shown in Figure 6.4. A method model is defined as a class schema in which one uses 
object classes to model prograxa segments and control associations among these object 
classes to model the control structure of these program segments that  implement a 
part icular method. 

Figure 6.6 represents some program segments with basic control constructs using 
control associations. Each rectangular node shown in Figure 6.6 is an entity class which 
models a program segment that  constitutes a method implementation, and each control 
association in our model represents a possible control flow in terms of message passing 
between these object classes. A Context-Looping association is used to model the con- 
text looping statement  in which the system (i) first establishes a relation representing a 
sub-knowledge-base satisfying the intentional association pattern which is modeled by 
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the first class in Figure 6.6(8), and (ii) performs certain operation for each tuple of the 
relation as described in Section 6.3.4. To sum up, each program segment in a method 
model can be described by a triplet (C, M, P) where 'C '  is an object cl~s,  'M'  is the 
"mMn" method of 'C '  that  performs the functionality of the program segment being 
modeled, and 'P '  is a message passed to a specific instance of 'C'  to invoke method 
'M'.  In other words, 'C '  and 'M'  can be thought of as the object-oriented procedural 
abstraction of the program segment being modeled, and 'P '  represents the activation of 
this particular program segment. Through an iterative process, any complex software 
system can be modeled to any level of details at which point the prototyper can begin 
to write actual codes in the target language. 

The advantages of using method models are four-fold. First,  instead of visualizing 
each method as a black box, a method model provides a graphic representation of 
method implementation to capture the behavior properties of a method. Secondly, the 
method associated with a class that  models a program segment can be further modeled 
by another method model. The process can be repeated to any level of abstraction as 
desired by the prototyper,  and the lowest level of abstraction is each individual program 
statement.  Thirdly, a KBMS can use method models for an automatic generation of 
codes in the target language where each program segment modeled by (C,M,P) will 
be replaced by the actual codes of 'M'  or the actual codes recursively generated from 
the method model of 'M'. The resulting codes can then be compiled by the compiler 
of the target  language for execution. Fourthly, a KBMS can directly execute a method 
model by using an interpreter to dynamically activate each program segment in a 
control structure following the control association finks. Since all the structural  and 
behavioral information needed for execution are stored in the control association links, 
the execution of a method model can be thought of as the processing of the set of 
control association links which constitute the method model. 

Structurally, each control association link can carry different behavior information 
as defined by the following attr ibutes where (1) "context_branch" and "sub_kb" are 
defined by "Context_Looping", and (2) "test_branch" is defined by "Testing" as shown 
in Figure 6.5. 

(1) context_branch and sub_kb: a Context_Looping association can be specified by 
a context_branch at t r ibute whose value could be either "next" or "exit" to represent 
the iteration or exit of the looping, respectively). Note that  the defining class of a Con- 
text_Looping association corresponds to the program segment which, when activated, 
will generate a relation representing the sub-knowledge-base satisfying an intentional 
association pattern.  During the execution of a Context_Looping association, the sys- 
tem will also keep a pointer to the relation (the value of "sub_kb") over which the 
context looping is performed. 

(2) test_branch: a Testing association can be specified by a test_branch at t r ibute 
whose value could be either "true", "false" (for modeling the "if-then-else" statement),  
"otherwise", or any other value (for modeling the "case" statement) as shown in Figure 
6.6. The defining class of a Testing association corresponds to the program segment 
which can be activated to generate the proper value of "test_branch" based on which 
the system can choose one of the possible control flows to follow during the execution 
time. 

The behavioral properties of each control association type are described by the 
following algorithm of execution. We assume that  for each process (in the case of 
concurrent system) created by a user session, there is a "wait_set" for recording those 
control association links which are waiting for synchronization. We also assume that  
each entity class which models a program segment defines a method called "main" to 
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represent the functionality of this program segment. To activate a program segment 
modeled by class 'X',  we create a transient instance of class 'X'  and apply the "main" 
method of class 'X'  to this instance. 

Case 1. There is a Sequential (S) association link L1 between class 'A '  and class 
'B' .  We activate the program segment modeled by class 'A' .  Then, if there is no con- 
trol association link start ing from class 'B' ,  then we activate class 'B'  and terminate. 
Otherwise, we continue to process the next control association link(s) from class 'B'  
(i.e., those control association objects whose defining class is class 'B').  

Case 2. There is a list of Parallel (P) association links between class 'A '  and class 
'BI ' ,  'B2',...,  and ~Bn'. We first activate the program segment modeled by class 'A' .  
Then, we fork n new processes in paralIel, one for each class 'Bi' .  For each class 
'Bi' ,  if there is no control association link starting from 'Bi', then we activate 'Bi '  and 
terminate the process. Otherwise, we continue to process the control association link(s) 
starting from class 'Bi ~. 

Case 3. There is a Synchronization (Y) association link between class 'B'  and class 
'AI ' .  There is also a set of Synchronization association links from class B to classes 
'A2' ,  'A3',...,'An'. Let L1, L2,...,Ln represent these Synchronization association links, 
respectively. We first activate the program segment modeled by class 'A' .  Then, if 
"wait_set" already contains L2 to Ln, then the synchronization condition is met and 
we do the following: (1) remove L2 to Ln from the "wait_set", (2) if there is no control 
association link start ing from class 'B' ,  then activate the program segment modeled by 
class 'B';  otherwise, continue to process the control association link(s) starting from 
class 'B' .  Otherwise ("wait_set" does not contain all L2 to Ln), we terminate the process 
which currently executes L1, and add L1 into the ~'wait_set". 

Case 4. There is a list of Testing (T) association links between class 'A '  and class 
'BI ' ,  'B2',..., and 'Bn'.  We first activate the program segment modeled by class 'A '  and, 
based on the returned value, the system will choose one Testing association link whose 
"test_branch" at t r ibute  value is equal to either (i) the returned value, or (ii) "otherwise" 
if none of the test_branch values matches the returned value. Assume this chosen 
association link is defined from class 'A '  to class 'Bi'. If there is no control association 
link start ing from class 'Bi', then we activate the program segment modeled by class 
'Bi' and terminate.  Otherwise, we continue to process the next control association 
link(s) start ing from class 'Bi'. 

Case 5. There are two Context_Looping (L) association links between class 'A '  
and class ' B I '  and 'B2'. Let L1 represent the association link whose "context_branch" 
at t r ibute value is "next" (and assume which is defined from 'A '  to 'BI ' ) ,  ~nd L2 
represent the association link whose "context_branch" at tr ibute value is "exit" (and 
which is defined from 'A '  to 'B2'). If ~'Ll.sub_kb" is null, then we activate the program 
segment modeled by class 'A '  and return a pointer to a relation representing the sub- 
knowledge-base over which the looping will be performed. The "sub_kb" at t r ibute of 
L1 will be set to this pointer. If %l.sub_kb" points to an empty relation or all the 
tuples have been processed, then we do the following: (1) delete the relation, (2) set 
"Ll.sub_kb" to null, (3) if there is no control association link starting from 'B2', we 
activate the program segment modeled by 'B2' and terminate; otherwise, we process 
the next control association link(s) starting from 'B2'. Otherwise (i.e., there are more 
tuples to be processed), we get the next tuple and continue to process the next control 
association link(s) start ing from 'BI'. 
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6.4.2 Method_xnodel Object and Evolutionary Prototyp- 
ing 

As shown in Figure 6.4, "Method_model" is a subclass of the class "Schema". Each 
method_model object represents the executable model of a method and is described by 
(i) a set of class association objects (inherited from class "Schema"), (ii) a starting point 
which is a control association object in (i), and (iii) a set of local variable declarations. 
Note that  in order to unambiguously preserve the semantics of the order of execution 
(control flow) when a method model is mapped into a set of association objects, each 
class which appears in more than one places in the method model must be recorded 
by using alias names internally. An alias name is formed by appending an underscore 
and an integer to the class name, e.g., Sort_l and Sort_2. Note that  without using 
alias names, the system will not be able to restore the model correctly. For example, 
the control structure restored from three consecutive ~'Sequential" associations A-B, 
B-C, and C-A will form an infinite loop instead of a sequence if no distinction is 
made between these two appearances of class 'A' .  Besides, each method_model object 
must know which association object is the "starting point" of execution. From the 
start ing point, the method model can be restored and processed by following the control 
associations. 

In the following, we illustrate the concept of evolutionary prototyping and the use 
of all types of control associations by developing "eval_GPA0" which is a method of 
Student as shown in Figure 2.1. Note that  although "eval_GPA0" is a rather simple 
method which normally could have been directly coded, the technique illustrated by this 
example can be applied to the modeling of complex methods of a large software system 
to any level of details. Assume we have defined Transcript as an entity class whose 
each instance represents the grade point of a particular student for a particular course, 
and we need a program to compute the GPA of a given student. For this example, 
it is obvious to model this program as a method of class Student with the signature 
"eval_GPA 0 : GPA_Value". In the beginning, one might just write a simple piece of 
simulated codes to generate some legitimate GPA_Value from some given legitimate 
student instance as the receiver of this method by either performing some table lookup 
or inquiring the user interactively so that  this method can be executable (in operational 
mode). 

Later on, one may decide to model the detail of this method by decomposing its 
functionality into five consecutive program segments: (1) compute the total  grade 
points of this student and assign this value to a local variable~ (2) compute the total  
credit hours of this student and assign this value to a local variable, (3) get the GPA 
by dividing results from (1) and (2), (4) print a message if the GPA is below 2.0, and 
(5) return the GPA. Each program segment can be modeled as an entity class with a 
"main" method to represent its functionality, and each "main" method can be given 
simulated or actual codes or recursively modeled as described in Section 6.4.1. Note 
that  for this example, both segment (1) and segment (2) can be further decomposed 
as Context_Looping control structures, and the computations can be performed over 
the same context concurrently. Therefore, we combine them together to illustrate 
the Context_Looping, Parallel, and Synchronization associations. A method model 
at a particular stage of decomposition is shown in Figure 6.7. We first declare local 
variables sl ,  s2, and GPA to hold the accumulated grade points, accumulated credit 
hours, and G P A  value, respectively. The receiver of this method is denoted by the 
pseudo variable "this". We first use a Context_Looping association to i terate over 
the context specified by "ths *< [ s t u d e n t ]  t : T r a n s c r i p t  *> [course]  c : Course" to 
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evaluate the accumulated grade points and credit hours of this student in parallel. Note 
that  the updates of s l  and s2 are performed in parallel and must be synchronized before 
the execution can be continued. After the looping is finished, we get the GPA value 
by dividing s l  by s2. A message is printed if this student has a GPA lower than 2.0. 
Finally, we return the GPA value. Note that  in some cases it is necessary to introduce 
entity classes which model null program segments in a control structure. For example, 
the classes "null_l" and "null_2" in Figure 6.7 model the null program segments which 
serve as the "fork" and "join" points of control flows, respectively. This example 
shows that  it is possible to model a method recursively to such a detailed level that  
each program segment contains only a single statement. Naturally, the segment size 
(i.e., the level of detail) in a model will be determined by the prototyper.  By using a 
graphic user interface as part  of a prototyping environment, a prototyper can click the 
mouse but ton to select any class in a method model and view the program segment 
it represents as shown in Figure 6.7. A control structure of the kind shown in Figure 
6.7 can be used by a KBMS to dynamically execute a method model or automatically 
generate the proper executable code that  implements the method as shown in Figure 
6.3. 

6 .4 .3  R u l e  D e f i n i t i o n  

Rules serve as a high-level mechanism for specifying declarative knowledge that  governs 
the behavior of methods. We modified and extended the rule language of [12, 566] so 
that  it can be seamlessly incorporated into the knowledge base programming language 
K [522]. Each rule is specified by a set of trigger conditions and a rule body. Each 
trigger condition consists of two parts: (1) timing specification or coupling mode, 
which can be either "be fore" ,  " a f t e r " ,  " immedia te_af ter" ,  or " i n _ p a r a l l e l ' , a n d  (2) 
event specification, which can be a KBMS operation or user-defined method. The rule 
body consists of (i) "condition" clause which is a guard expression, and (ii) "action", 
and "otherwise" clauses, both of which can be simple or compound statement.  Each 
guard expression is in the form " ( g u a r d l ,  g u a r d 2 , . . .  ,guardN I t a r g e t ) "  and the 
evaluation of a guard expression can return either (i) true: if all the guards and the 
target  (all of which are boolean expressions by themselves) are true, (fi) skip: if any of 
the guards is false when they are evaluated from left to right, (hi) false: if all the guards 
are true but the target is fMse. All the rules are assumed to be active when a user 
session begins. However, during the execution of a user program, one can explicitly 
activate or deactivate any particular rule by sending the "activate()" or "deactivate()" 
messages to a specific rule object, respectively. 

Each active rule of class X will be checked (i.e., the evaluation of the rule body) 
according to the coupling mode at either (i) before the triggering event, (ii) immedi- 
ately after the triggering event, (hi) in parallel with the triggering event, or (iv) not 
immediately after the triggering event, but at the end of the parent event which causes 
the triggering event. The rule body of each rule is evaluated as follows: (i) if the 
condition-clause returns true, then the action-clause (if provided) is executed, (ii) if 
the condition-clause returns skip, then do- nothing, and (hi) if the condition-clause 
returns false, then the otherwise-clause (if provided) is executed. For example, the rule 
CIS_.rulel specified in Figure 6.3 will be executed at the end of those methods which 
are applied to a student instance and update the major of this particular student. The 
otherwise-clause will be executed if this particular student is a CIS major (guard is 
true) and his/her GPA is not greater than 3.0 (target condition is false). Similarly, 
General_rule1 will be checked after the method "suspend". 
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6.5 Conc lus ions  

In this chapter, we take a knowledge base modeling approach to evolutionary prototyp- 
ing of software systems by introducing a unified and reflexive object-oriented knowledge 
model as an extensible framework for (i) capturing both the structural and behavioral 
properties of any target system at any level of details, and (ii) reflexively modeling 
the knowledge model itself as a kernel model so that all the meta information (struc- 
tural and behavioral properties of objects) can also be modeled as object classes. Five 
types of control associations (sequential, parallel, synchronization, testing, and con- 
text_looping) are introduced for explicitly modeling the behavior properties of methods 
in terms of control flow and message passing relationships between object classes. We 
have developed a prototype of the knowledge base programming language K [522,523] 
on top of ONTOS 2.1 [278] as the first step toward a full-fledged KBMS-supported 
software development environment for supporting evolutionary prototyping. We are 
currently extending the graphic user interface of OSAM*.KBMS [346] to support the 
definition and processing of control associations. Any user-defined structural/behavior 
schema will be translated into K code for execution and also mapped into the kernel 
model for storage. A prototype processor which can dynamically interpret K code 
and control association objects is also under development at the Database Systems 
Research and Development Center of the University of Florida. 

A c k n o w l e d g e m e n t  - This research is supported by National Science Foundation 
under grant ~CCR-9200756. The development of an executable KBMS and the trans- 
lator of K is supported by the Florida High Technology and Industry Council under 
grant ~UPN900978. 
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Figure 6.1: An Overview of a KBMS-supported Evolutionary Prototyping Pro- 
cess 
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Figure 6.2: A Universal KBMS-Supported Software Development System 
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- , a t i t y . c 1 ~ 1  Student i s  
~ssociations: 

a" ~pecialization of Person;/* Student is a subclass of Person */ 
friend of Faculty; /* authorize Faculty to access the private and 

~protected properties */ 
aggregation of 
public: /8 definition of public attributes */ 
enroll: set of Course; /a a studen~ can enroll in a set of courses 
*/ 

college.report: array [4] of GPA_Value; /* annual report of every 
college year */ 
major: Department; 
protected: /* definition of protected attributes */ 

S~: $#_Value; 
methods: /~ the  s igna tu re  of methods */  
public: 
method eval_GPA() : GPA_Value; 
private: 
method suspend() : void; /* no return value */ 
me~hod inform_all_instructor() : void; 
rules: 
rule CS_rulel is 
/* after updating the major of a student, if the hey major is "CZS" 
then ~he GPA of this student must be greater than 3.0, 

otherwise we suspend this student */ 
triggered after update major 
condition (%his.major.name = "CIS" I this.eval_GPA() > 3.0) /* 

guarded condition */ 
othermise this.suspend() 
end CS.rulel; 

rule Studen~::General.rulel is 
/* after suspendin E a student, if this s~udent enrolls in any 

cours � 9  
then inform all the instructors of this s~udent */ 

~riggered after suspend() 
condition this.enroll != NULL 
action ~his.inform.all_instructor() 
end General_rulel; 
implementations: /* actual coding of me~hods */ 
method eval_GPA() : GPA_Value is 
local sl, s2 : real := O; GPA : GPA_Value; /, local variable 

declarations */ 
begin 
context this *<[student] t:Tr~nscrip~ *>[course] c:Collrse 
/* looping over a con~ex~ */ 
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do parbegin /, for each <this,t,c> tuple, do the following ,/ 
sl :: sl + c.credits " t.grade.point; 

/s calculate the accumulated grade points */ 

s2 :: s2 + c.credits; /* calculate the accumulated credit hours e/ 
pa.r end; 
end_context; /* end of contex~ looping */ 

GPA :: s l /s2;  
if GPA < 2.0 
then "GPI Belou 2.0".display(); 
end.if ; 
re~urn GPA; 
end ava1.GPA; 
end Student ; 

Figure 6.3: The Class Definition of Entity Cl~s Student in K 
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i ~ ~Sel+EList,EArray, 

_ ~  . . . . .  "1 ..... ~ ~ ~ - ~ ~ ~  
I ~ e ~ . - z ~ ! t  / Model J I -- l I Ass,~l i ion I 

Figure 6.4: Class Generalization Lattice of the Extensible Kernel Model 
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S t u d e n t  :: e v a i _ G P A 0 :  G P A  V a l u e  

i i i 

loca l  s l ,  s2  : r e a l  :=  0;  

G P A  : G P A _ V a l u e ;  

I 

L 

G P A  := s l J s 2  ~'.-:::::e~.>:~.~#~l 
:.'.~:~'~-~..~'~:~:~;~'r'2~ 

:::::::::::::::::::::::::::::::: "::.-:~ ~::;~:':$~, ~:.....~, ,!::~-:.~ ~ 
! 

] S ]  m a i n  0 p 

::.::~::::.':::!.:'~:':/'.:.,.::::: ~:& 

Figure 6.7: The Method Model of "eval-GPA 0 



Chapter 7 

Applying OOAD in the Design and Implementation of an 
Intelligent Geographic Information System 

Ramesh Subramanian*,Nabfl R. Adam t 

7.1 I n t r o d u c t i o n  

Object-oriented Analysis and Design (OOAD) is currently an active area of research, 
and several OOAD techniques have been suggested for the Object-oriented design of 
computer-based applications (e.g. [124, 141,147,148,184, 296,356,357, 358,355,359, 
400,405,435,468,532,615]). Notable among the suggested techniques are: the method 
of Coad and Yourdon [124], the approach by Meyer [400], the Respons!bility-Driven Ap- 
proach by Rebecca Wirfs-Brock from Tektronix [616,617,615], Ensembles, which is on- 
going work at ttewlett Packard led by Dennis de Champeaux [141], the Object-oriented 
Role Analysis, Synthesis and Structuring method (OORASS) by Trygve Reenskaug at 
the Seater for Industriforskning in Oslo, Norway [468], Frameworks by Johnson at 
Urbana-Champaign [296] and the Demeter method developed by Karl Lieberherr at 
Northeastern University [356,357, 358, 355, 359]. 

Recently, some studies that survey, compare and contrast the various OOAD ap- 
proaches and techniques have appeared in the literature (e.g., see [617, 413, 187]). 
These studies seek to categorize the various approaches by identifying their capabili- 
ties, and their focus is towards identifying the particular effectiveness of one approach 
over the other. In one particular study, Wirfs-Broek and Johnson [617] view the above 
approaches as complementing each other. To our knowledge, there has been no study 
that tests the efficacy of the approaches by applying them to actual, complex and real- 
life modeling problems. This situation places the practitioners in a difficult position, 
since nobody wants to commit scarce time and resources towards adopting a particular 
approach that has not been adequately tested on industry-sized problems. 

Adopting approaches that have been inadequately tested could also cause other 
problems, since in practice, the analysis and design stages have important ramifica- 
tions on the implementation stage. For instance, (as explained in [248, page 147]), 
a "disjoint mapping" would result, if an OO design is implemented in a non-object- 
oriented language. One of the strengths of the OO approach is the use of the same 
language environment for the analysis, design, and implementation phases [26, 74]. 
That is, the analysis is done in terms of the objects that make up the actual system. 

*CIOS Department, School of Business, University of Alaska-Anchorage, Anchorage, AK 
99508, Email: afrs@acad2.alaska.edu 

tMS/CIS Department, G S M ,  Rutgers University, Newark, NJ 07102, 
adam@adain.rut gers.edu 
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The results of the analysis are transformed into a software design that  is expressed 
in terms of objects. Finally, the design is implemented also in terms of objects. This 
consistency throughout the analysis, design, and implementation phases avoids the po- 
tential mismatch that  could result during the transition from one phase to the other. 
Maintaining this consistency also requires that  the OOAD used to carry out first steps, 
namely analysis and design, be adequately tested for its real life application. 

In this chapter we detail a modeling study that  seeks to address the above issue. 
Namely, we detail  a real-life, complex modeling problem, and illustrate, step by step, 
how to analyze the problem domain and design a model using one of the OOAD 
approaches, namely the Responsibility-Driven Approach. We consider this study to 
be a first step towards a practical analysis of the suitability of the various OOAD 
approaches for modeling specific problems domains. 

The chapter is organized as follows: in Section 7.2 we detail the characteristics of 
the geographic database application that  we model. In Sections 7.3 and 7.4 we discuss 
the methodology that  we adopt to develop our model~ and describe the Responsibility- 
Driven Approach. In Section 7.5 we detail, step by step, our approach to developing 
the geographic da ta  model. In that  section we also detail how our model acquires 
and handles knowledge about spatial contexts and user perspective. In Section 7.6 we 
briefly touch upon the implementation of our Model, and show how the various features 
of our Model and Query Processing System are used to process certain imprecise queries 
by using an actual query processing scenario. We present our conclusions in Section 
11.6. 

7.2 Geographic Databases: Modeling & Query 
Processing 

There exists a large number of potential applications related to Geographic Infor- 
mation Systems (GISs). Examples include: applications concerned with storing and 
manipulating the characteristics of politicalspatial entities such as states, counties and 
towns; those that  are concerned with storing and manipulating information pertaining 
to certain naturally occurring geographical features such as lakes, rivers, mountains 
and oceans; others that  deal with the mapping of population distributions, land re- 
source utilization, the spread of vegetation and certain special districts such as electoral 
districts, water pumping districts, and school districts. 

Geographic da ta  modeling requires the definition of high-level objects such as coun- 
ties, towns, and districts from low level da ta  dements such as points and lines [5]. Fur- 
thermore, spatial  objects possess certain unique characteristics - -  for instance, even 
though the state of a spatial object may remain unchanged, its representation and re- 
lationships with other objects may be perceived differently in different contexts or user 
perspectives. Thus, if a country level perspective is assumed then the representation 
of the cities can be considered as points. If a city level perspective is assumed, then 
a city and its components can be considered as polygons. In the same fashion, at a 
particular perspective level, a bridge can be considered to be a line, but at a higher 
level of perspective, it could be assumed to have a point representation. 

Thus, depending upon user perspective, the assumed representation of spatial ob- 
jects could change. This can impact the results of a query such as "What is the 
distance between X and Y?" - -  depending upon the perspective of the user, the rep- 
resentation of the objects under consideration m a y  change, thereby impacting the 



7.2. MODELING ~ Q U E R Y  PROCESSING 129 

results produced. This example shows that  implementing even a semantically well- 
defined operator such as "distance" could become a complex exercise, if we try to 
incorporate the notion of user perspective and object representations in relation to 
the perspective. Examples of other semantically well-defined operators include "in- 
tersect" and "area". While several spatial database researchers have defined and 
implemented such semantically well-defined spatial operators, very few of the im- 
plementations incorporate the notion of dynamically deriving different user perspec- 
tives and object representations. For details of previous work in spatial databases see 
[223, 424, 101, 102, 36, 474, 249, 438, 237, 485,486,229]. 

In addition to semantically well-defined operators, we were interested in another 
class of operators that  are actively being studied in the literature. These are the ill- 
defined or relativistic spatial operators. One prominent example of this is the study of 
the operator "near" by Robinson [472], in which he developed a C program that  uses 
fuzzy logic and human machine interaction to derive an approximation of "near". 

"Near" (or "close-to"), "between" and "adjacent-to" are examples of semantically 
ill-defined spatial  operators. Such operators do not have a precise definition in the 
literature. Also, their interpretations change with user perspective. Thus, two towns, 
for example, may be considered to be close to each other at one perspective, but  not 
so at another perspective. Similarly, two streets may be considered to be adjacent to 
each other even though there may be a building block between them. 

From the above discussion, it can be seen that  spatial (geographic) databases differ 
in character from conventional databases in the representation of inter-object relation- 
ships. In conventional database applications, relationships among data  objects are all 
known beforehandand can therefore be represented explicitly in the database. In spatial 
databases, on the other hand, numerous implicit relationships may exist among spatial 
objects, and it is impractical to represent all of the relationships explicitly. Therefore, 
several such relationships need to be derived dynamically. This necessitates the devel- 
opment of new models and query processing strategies for efficient representation and 
manipulation of spatial data. 

In our study we develop a model that  supports the following: 

�9 Defining high-level spatial objects from low-level da ta  elements. 

�9 Facilitating the explicit representation of certain naturally occurring relation- 
ships among spatial objects (e. g. the containment hierarchy that  is exhibited 
by most spatial  objects) and at the same time providing adequate facilities for 
deriving, on a dynamic basis, the many and complex relationships that  exist 
among objects. 

�9 Incorporating the notion of user perspective and different object representations 
in relation to perspective. 

�9 Facilitating the implementation of a class of semantically ill-defined (hereafter 
will be referred to as imprecise) spatial operators such as "close-to", "between" 
and "adjacent- to ' .  Here, the user must have the flexibility to specify his/her 
own operational parameters for processing the operators. 

�9 Facilitating application flexibility i. e. , the ability to extend the model and its 
implementation to other similar applications. 

�9 Encapsulating deductive reasoning that  facilitates spatial query processing per- 
talning to the imprecise query operators. 

We are interested in applying our model to such application areas as districting 
(electoral and water), and public utilities maintenance management. Districting is the 
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process by which a certain area of land is divided into several pieces, in order to satisfy 
certain requirements and needs. For example, an electoral district may be drawn based 
on the population size, composition of the population and other constraints such as 
compactness ~ and contiguity ~ of the district. A pumping district may be allocated 
based on the current population and expected growth of the proposed district as well 
as the availability and ease of access to a water supply facility such as storage tank or 
pumping station. 

A system such as the one developed in this study would provide the tools required 
for making the districting process easier. That  is, the new geographic data modeling 
and query processing techniques would provide the means for "interactive districting". 
We are particularly interested in using our model and implementation for answering 
the following types of queries: 

�9 Is polling-center y close.to every sub-area of voting district X? 

�9 What are the towns and counties which lie between districts X and Y? 

�9 What are the counties adjacent-to pumping district X? 

�9 What are the districts that are close-to the water source X? 

�9 Retrieve aJ1 the towns whose populations (each) exceeds 75,000 and which lie 
between the pumping district X and town Y. 

Given the above general requirements of our geographic apphcation, we illustrate 
in the next few sections how we proceeded to design and implement the model. 

7.3 Spatial Data Modeling 

7.3.1  The Design Methodology 

In [616], Wirfs-Brock classifies OO design methodologies into DataDriven Approaches 
and Responsibility-Driven Approaches and argues in favor of the latter approach. The 
latter approach intuitively seems to have certain merits over the former approach since 
it provides a convenient way of designing objects and the methods ~ncapsulated within 
them. This is achieved by focusing on the objects' " '" responslbihtms rather than the 
detailed description of the objects, at the start of the design process. 

Our application domain deals with queries about geographic data and their topo- 
logical inter-relationships. Geographic data are complex in nature, and ~.he possible 
inter-object relationships among them are numerous. In such a problem domain, the 
model design process could be made efficient by focusing on the functions that the var- 
ious objects must perform (i.e., their responsibilities) rather than trying to define all 
the attributes of each individual object. This corresponds to the Responsibility-Driven 
Approach. We use the Responsibility-Driven Approach for designing our model. First, 
we provide below, brief presentation of the Responsibility-Driven Approach. 

$Compactness can be defined (on a scale from 0 to 1) as the ratio of the area of a district 
to the area of the smallest circumscribing circle [422] 

w district must be connected in some sense, so that it cazmot be defined as an arbitrary 
collection of smaller areas [422]. 
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7.4 The Responsibility-Driven Approach 
The Responsibihty-Driven Approach seeks to improve encapsulation by viewing objects 
in terms of the client/server model. According to this model, a client makes a request 
to a server, who provides the service requested. Both the client and the server can be 
classes or instances of classes. The exact way in which a client and a server can interact 
are described by a contract. A contract is a list of requests that a client can make to a 
server. The client is not concerned with the exact details of the actions taken by the 
server to provide the service requested. Thus, the focus in this approach is not on how 
a server performs an action requested from it, but what are the services that it can 
provide. 

When applying this design approach, the designer is concerned more with the 
behavior and the responsibilities of the objects rather than their structural details. 
The structural specification of an object is focused on, only at the implementation 
stage. The responsibilities of an object are: the knowledge that an object maintains, 
and the actions an object can perform. The actions that are performed by an object 
are either performed individually, or by collaborating with other objects. 

The Responsibihty-Driven Design process is divided into two phases - -  the Ex- 
ploratory phase and the Analysis phase. (This discussion is adapted from [617].) 

The e x p l o r a t o r y  phase consists of the following tasks: 

1. Identify Classes: The classes required to model the application are identified. 
Classes identified may be of two types: Abstract Classes that are designed to be 
inherited, and Concrete Classes that are designed to be instantiated. Abstract 
Classes are similar to type definitions. 

2. Identify Responsibilities: Here the overall responsibilities of the system are iden- 
tified, then the responsibilities of the individual classes are derived. 

3. Identify Collaborations: If a class collaborates with another class in performing 
its responsibilities, such collaborations are identified during this task. 

The ana ly s i s  phase consists of the following tasks: 

1. Analyze Hierarchies: The classes are organized in the form of a hierarchy. Such 
a hierarchy will be useful in finding classes that are reusable. An is-a hierarchy 
specializes the classes from top-down, and generalizes the classes from bottom- 
up. Wixfs-Brock and Johnson suggest that inheritance hierarchies must model 
the is-kind-of relationship. That  is, "every class should be a specific kind of 
its superclasses" ([617, pll0]) .  The is-kind-of relationship is similar to the is-a 
relationship. 

2. Analyze Subsystems: A subsystem is a set of classes that fulfills some particular 
purpose in conjunction with other classes in the system. Thus, acting as a 
group, a subsystem of classes cooperate to fulfill a role. For instance, a graphical 
appheation may have a printing subsystem which may consist of a printer, which 
may be further specialized into hne printer and laser printer [617, p l l l ] .  One 
way to determine if a group of classes form a subsystem is to try to name the 
group [617]. If we succeed in naming the group, then we automatically determine 
the responsibility or role of the subsystem. 

3. Create Protocols: This final task in the design phase involves the implementation 
of the abstract classes and their behavior, by specifying actual protocols between 
the classes in the form of methods. Methods are used to describe contracts among 
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classes. A base method is one that is described in a superclass and is inherited 
down the hierarchy by the subclass. Another method which is inherited down 
the hierarchy, is known as abstract method. Such a method is reimplemented in 
the subclass in order to reflect a different (as compared to its superclass) and 
more specialized processing action between the subclass and its collaborator. In 
C ++ such a method is also called a virtual function. A third type of method 
is called template method which serves the purpose of providing an abstract 
definition of an algorithm. Here the algorithm is made up of steps and each step 
is implemented as an abstract or base method. For more details see [617, p112]. 
A fourth type of method, which is not explicitly discussed in [617], is one where 
different responsibilities of the same class can be carried out, depending upon the 
particular parameters passed to it. For example, consider the transactions that 
have to be processed in a bank on a typical day. The transactions occur in serial 
order, and may be a deposit, withdrawal, or transfer. If the bank has a method 
process, then different actions could be defined within the method, depending 
upon the type of transaction processed. Such a type of method definition is 
termed function overloading, and is useful in describing a class of actions that 
can be performed by asking the same request, but with different parameters. 

In the next section we detail the development of our Spatial Model, using the 
Responsibility-Driven Approach. 

7.5 Developing the Data Model  

7.5.1 The Exploratory Phase 

In this phase, we identify the main classes that are required to model our geographic 
application, their responsibilities and their collaborations. We detail our work on the 
different tasks below. 

C l a s s e s  

We identify the following classes. 

Spa t l a l_Fea tu re .  This is an abstract class that represents a template for a 
spatial feature. The responsibilities specified in this class are inherited by ab- 
stract as well as concrete subclasses that may be identified and added to the 
model at a later stage in the design process. Concrete subclasses that may be �9 
added through this process are instantiated with such high-level spatial features 
as "New York" state, or 1-95. 

L ine_Segmen t .  This is a concrete class that represents a low-level spatial ob- 
ject. This class can be instantiated with the line segments from a geographic 
fine segment file. 

It should be noted that in addition to the above Classes, we identify more Classes 
at a later stage in the Exploratory phase. This is detailed in later sections. 

Our next task in the design process is to identify the overall responsibilities of the 
system, as well as the responsibilities of individuals classes. 
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R e s p o n s i b i l i t i e s  

�9 T h e  r e s p o n s i b i l i t i e s  o f  t h e  s y s t e m  as  a w h o l e  are: 

1. Populate the geographic da ta  model with data  pertaining to the United 
States. This requires the system to have certain features whereby the raw 
da ta  (line segments) are first loaded into the model. These would then 
be processed to build other high-level spatial features such as States and 
Counties. 

2. Derive dynamically the user perspective and the object representations of 
the spatial  features in the model in relation to user perspective. 

3. Process queries pertaining to the spatial features in the model which involve 
imprecise operators such as "close-to", %etween" and "adjacent-to". 

Analysis of these responsibilities reveals that  most queries pertaining to our 
application would be asked with reference to certain wen understood spatial 
features in our model, such as Country, State, County, and Town. Examples of 
such queries include: Is County X close_to County Y?; What  are the Counties 
adjacent_to State X?; What  are the highways that  run between Town X and Town 
Y?. Country, State, County, and Town are container objects that  contain other 
container as well as non-container objects in the model. Highways and Rivers 
are examples of non-container objects. 

We thus notice that  the geographic features in our application can be broadly 
divided into container features which contain other features and non-container 
features which do not contain any other feature. Queries will be posed with 
reference to the container features. Due to this fact, we define two additional ab- 
stract  classes, to represent the containerfeatures and the non-containerfeatures: 
R e f e r e n c e _ S p a t i a l . _ F e a t u r e  and Non_Refe rence_Spa t i a l . _Fea tu re ,  respec- 
tively. 

We notice here that,  R e f e r e n c e . S p a t i a l _ F e a t u r e  and Non___P~eference_Spatlal- 
. .Fea tu re  are specializations of spatial features. Therefore, they are subclasses 
of Spatial_Feature, and inherit any responsibility that  may be specified in the 
Spatial_Feature class. This leads to an inheritance hierarchy that  is analyzed in 
detail  in Section 7.5.2. As noted earlier, Reference_Spatial_Features are container 
features that  are used as reference features in most spatial queries. 

Re fe rence_Spa t i a l__Fea tu re  and Non-P~eference_Spat ia l__Feature  are A- 
bstract  Classes whose characteristics are inherited down the hierarchy by its 
subclasses. In order to add real life spatial objects such as States, Towns and 
Highways into the model, we define Concrete Subclasses of R e f e r e n c e _ S p a t i a l -  
_ F e a t u r e  and N o n _ R e f e r e n c e . S p a t i a l _ _ F e a t u r e .  Examples of the Concrete 
Subclasses of Reference_Spatial_Features are Country, State, County and Town. 
Interstate Highways, Railroads, Large Rivers, State Highways, County Roads, 
and Small Rivers are examples of the Concrete Subclasses of Non_Reference- 
_Spatial_Features. 

These spatial features are arranged in a containment hierarchy, with Country 
containing States, Interstate Highways and Large Rivers, etc., and States con- 
taining Counties, State Highways, Small Rivers, etc., and Counties containing 
Towns, County Roads, etc. More details of the containment hierarchy are dis- 
cussed in Section 7.5.2. 
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At this stage in the design process we notice that  even though the Reference Fea- 
ture subclass such as Country contain Non Reference Feature subclasses such as 
Interstate Highways, Railroads and Rivers, some of these Non Reference Fea- 
tures can be divided into composite segments. The segments are part-of such 
Non Reference Features. Thus, 

- Non References Features such as Interstate Highways and Rivers are com- 
posed o~ 

* State-Segments which are contained entirely by States. 

* County-Segments which are contained entirely by Counties. 

. Town-Segments which are contained entirely by Towns. 

- Non References Features such as State Highways composed o~. 

* County-Segments which are contained entirely by Counties. 

. Town-Segments which are contained entirely by Towns. 

This composite arrangement pertaining to the real world requires that  we de- 
fine additional Concrete subclasses of Non_Reference_Spatial_Feature. These 
are S t a t e _ I - H w y _ S e g m e n t ,  C o u n t y _ I - H w y _ S e g m e n t ,  Town_I -Hwy_Seg-  
m e a t ,  S t a t e _ R i v e r _ S e g m e n t ,  C o u n t y A Z i v e r _ S e g m e n t ,  Town_River_Seg-  
m e n t ,  etc. The spatial  features pertaining to these subclasses are further sub- 
divided into a composite arrangement, using the part-ofrelationship. The part-of 
hierarchy is given below. 

Each State_I-Hwy_Segment is a part-ofsubclass Interstate Highway. Each County- 
_I-Hwy_Segment is a part-ofsubclass State__I-Hwy_Segment. Each Town_I-Hwy- 
_Segment is a part-of subclass County_I-Hwy_Segment. In the same way, each 
State_River_Segment is a part-ofsubclass River, and each County_River_Segment 
is a part-of subclass State_River_Segment and each Town_River_Segment is a 
part-of subclass County_River_Segment. 

Other subclasses similar to the above, pertaining to the different levels of the 
containment hierarchy are also identified and represented. 

T h e  R u l e  C las s :  a r e s u l t  o f  i d e n t i f y i n g  r e s p o n s i b i l i t i e s  o f  t h e  s y s t e m  
Another result that  is derived from identifying the responsibilities of the system 
is that ,  in order to process imprecise queries, it is necessary to incorporate into 
the system a body of knowledge about contexts or user perspectives. In addition, 
depending upon the problem domain, it may be required to store in the system 
other problem-specific knowledge. For example, in an electoral districting ap- 
plication, it may be required to store rules such as: All districts must have the 
same population, and must have the same racial mix; the component regions of 
an electoral district must be contiguous. We therefore, define another abstract  
class: R u l e .  In this class, we instantiate and maintain rules that  are required 
for the problem domain in question. Examples of such rules are "ancestors-rule" 
(for reasoning about all the ancestors of a given object) and "perspective-rule" 
(for reasoning about the correct context of a given query). We elaborate more 
on these rules as well as other such rules later in this section, where we discuss 
the responsibilities of individual classes. 
The function and use of the R u l e  class in our model is worthy of further dis- 
cussion. The incorporation of rules in a spatial da ta  model to reason about 
the objects and their relationships within the context of a database is, to our 
knowledge, not available in currently existing spatial models. 
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Rules, in addition to methods offer a powerful construct for introducing behavior 
into the da ta  model. In our model, the function of a rule is different from the 
function of a method. A method is a piece of procedural code that  is embedded 
within an object in order to perform certain actions on the database. The method 
may be invoked by passing a message to the object. A ru/e, however, is created 
separately and is not attached to any particular spatial object in the database. 
Rules may be added or removed without interfering with any spatial object. 

Rules play an important  role in processing imprecise spatial operators. Rules 
for determining the user's perspective and the appropriate object representation 
in relation to the perspective while processing ill-defined spatial operators are 
incorporated into the model. Furthermore, the Rule class also provides sup- 
port  to incorporate specific constraints that  must be satisfied in certain problem 
domains. 

To illustrate, consider a districting problem, where it is required to interactively 
create districts from a geographic database of the United States. In addition, 
these districts must confirm to certain conditions. Assume that  the geographic 
database consists of States, Counties and Towns. Districts are to be created 
by combining certain counties together.  The database contains information per- 
taining to each county's population, number of schools available, number of fire 
stations available, number of community buses available, number of drivers avail- 
able and number of physicians available. 

Let us assume that  the following are the conditions that  must be met while 
creating districts: 
- If the population of the district is between 100,000 and 120,000, then the 
number of schools required is 3. 
- If the population of the district is between 180,000 and 220,000, then the 
number of schools required is 5. 
- If the number of schools is 5, then the number of buses required is 15. 
- If the number of schools is < 5 , then the number of buses required is 10. 
- If the number of school buses is between 5 and 10, then the number of drivers 
required is 8. 

- If the population is between 150,000 and 200,000, then the number of fire 
stations required is 4. 
- For each school, the number of physicians required is 2. 
- If the population is between 150,000 and 200,000, then the number of physicians 
required is 10. 

- The district must be made up of contiguous counties. 

There may be several more conditions that  are required for this districting pro- 
cess. An important  fact to be noted here is that  the conditions may change 
periodically. 

The query that  pertains to this application is: Is the combination of County X, 
Y and Z an acceptable district? 

In order to process this query, first the data  pertaining to counties X, Y and Z 
are retrieved from the database. The combination of their characteristics is then 
tested against each of the conditions. If the conditions are satisfied, the district 
is acceptable. 

There are two possible ways of representing the numerous conditions in the 
model. One way is to write procedural code in which all the conditions are 
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This poses a problem, because a particular combination of conditions may require 
other particular combinations of conditions to be satisfied. Thus, in the above 
example, the population affects the number of schools required, and the specific 
number of schools affects the number of buses required and the number of drivers 
required. The number of schools as well as the population of the district affect 
the number of physicians required. 

Thus, the specification of such procedural code will have to be very detailed. All 
the possible rules and conditions, along with the procedures to actually construct 
the districts that  meet the conditions will have to be incorporated. A change in 
one condition would affect several conditions, thus requiring changes to be made 
at several parts of the code. Furthermore, if the same type of query is repeatedly 
issued, the same set of procedural operations will have to be repeatedlyperformed, 
by the methods, which raises the cost of query processing. 

All alternative to this approach is to store much of the conditions in declarative 
form as a set of rules that is not part of a particular spatial object but is incor- 
porated within the model as instances of Rule. It is less complicated to use logic 
rules to specify recursive dependencies and other complex conditions, and they 
are also easier to understand and maintain [88, p70]. If a condition changes, only 
that specific rule will have to be changed, without worrying about the rest of 
the rules. The addition of a new rule or the deletion of an existing rule can be 
accomplished without disrupting the rest of the model. 

Another advantage of using rules to specify and store conditions, pertains to 
queries which are applied repeatedly. In a rule based approach, some of the 
conditions and the intermediate results of prior queries may be saved and used 
by a subsequent query thus, improving the efficiency of the query processing [88, 
084]. 

Given the above advantages, we incorporate Rule as an abstract class within our 
model. 

We continue with the design process, by identifying the responsibilities of the 
individual classes, below. 

T h e  respons ib i l i t i e s  o f  t he  i nd iv idua l  classes are: 

1. Every Spatial_.Feature class has the following responsibilities: 

(a) Identifies and stores boundaries of itself. 

(b) Provides(requests) static characteristics, such as name and boundaries 
of itself(another spatial feature). 

(c) Provides distance information between itself and another spatial fea- 
ture. 

(d) Provides(requests) point representation of itself(another spatial fea- 
ture). 

(e) Provides(requests) the minimum and maximum x and y coordinates 
of itself(another spatial feature). 

(f) Provides the perspective when the query object is itself, or when the 
query objects are itself and another spatial feature. 

(g) Provides(requests) ancestors of itself(another spatial feature). 
(h) Provides(requests) spatial features close_to itself(another spatial fea- 

ture). 
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(i) Provides spatial features between itseff and another spatial feature. 

(j) Provides(requests) spatial features adjacent_to itself(another spatial 
feature). 

2. The responsibilities of class Line Segment are as follows: 

(a) Provides start-point and end-point of itself in terms of latitude and 
longitude. 

(b) Provides a line-id which is a unique identification of itself. 

(c) Constructs high-level Reference_Spatial_Feature such as State. (This 
responsibility is required in order to build the high-level object State 
from the low-level line segments. Once the State is created, then it is 
possible to construct objects that are contained by the State). 

3. The responsibilities of class Reference_Spatial_Feature are as follows: 

(a) Provides(requests) all the classes of Reference SpatiaJ Features it- 
(another spatial feature) contains. 

(b) Provides(requests) all the classes of Non Reference Spatial Features 
it(another spatial feature) contains. 

(c) Provides(requests) the Reference_Spatial_Feature(s) containing 
itself(another spatial feature). 

The responsibilities of class Reference_Spatial_Feature are inherited by ab- 
stract as well as concrete subclasses that may be identified and added to 
the model at a later stage in the design process. Concrete subclasses that 
may be added through this process are instantiated with Reference_Spatial- 
_Features. 

We notice at this stage in the design process that the possible subclasses of 
Reference_Spatial_Feature are Country, State, County and Town. These are 
concrete subclasses which can be instantiated with spatial features such as 
"USA" and "New Jersey" state. Thus, these above subclasses are identified 
and added to the model. 

Reference_Spatial_Feature's responsibilities are inherited by its subclasses 
Country, State, County and Town. However, the implementation of the 
methods corresponding to the responsibilities may differ depending on the 
specific subclass. Consider for example, the method 
Make_Reference_Spatial_Features_within, that corresponds to the responsi- 
bility: "Construct Reference_Spatial_Features it contains". The Country 
implementation of this method constructs the States that are contained 
within that country. Whereas, the same method implemented for ~ County 
constructs the Towns within the County. 

We also notice that in addition to inherited responsibilities and thus meth- 
ods, depending on the problem domain, each subclass may also contain 
specific methods which are unique to that particular subclass. For ex- 
ample, in an electoral districting problem, the subclass State may have 
a specific method Get_districts_contained, which retrieves all the electoral 
districts that are defined within that state. On the other hand, the subclass 
Town may have a specific method Get_district_containing, which retrieves 
those districts that the town is part of. 

4. The responsibilities of class Non_Reference_Spatial_Feature are as follows: 
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5. 

(a) Provides(requests) the Spatial Feature(s) containing it(another spatial 
feature). 

(b) Provides(requests) the line segments that i t(another spatial feature) is 
composed of. 

Similar to Reference_Spatial_Feature, the responsibilities of 
Non_Reference_Spatial_Feature are inherited by its abstract and concrete 
subclasses, which may be identified later in the design process. Examples 
of concrete subclasses are: Interstate Highways, State Highways, County 
Roads and Rivers. These subclasses are instautiated with actual Road 
features and Highway features. 
In addition to methods that  correspond to the inherited responsibilities, 
each subclass may contain methods that  apply to that  specific subclass 
only, depending upon the specific problem domain. 

The responsibilities of the class Rule are as follows: 

(a) Provides static characteristics, such as its name and its description. 

(b) Performs rule processing on the (spatial feature) arguments provided, 
and returns the results. 

The responsibilities of the Rule class are eventually inherited by all its 
concrete subclasses, which are then instantiated with rules. 
We notice at this stage of the design process that  possible subclasses of the 
Rule class, given our problem domain, are: Container_Rule, ~neestor_Rule 
and Object_Representation_Rule. These concrete subclasses can be instan- 
tinted with rules that  fit into the category of each subclass. The above 
subclasses are identified and added to the model. 

Within our problem domain, the subclasses of Rule have the following 
additional responsibilities: 

(a) The Container_Rule: reasons and provides the container of a given 
Reference or Non Reference Spatial feature by reasoning over the ap- 
propriate instance of Container_Rule. 

(b) The Ancestor_Rule: reasons and provides the ancestors of a given Ref- 
erence o r  Non Reference Spatial feature. 

(c) The Object_Representation_Rule: reasons and provides the object rep- 
resentation of a given Reference or Non Reference Spatial Feature. 

(d) The Adjacency_Rule: reasons and determines if two given Reference or 
Non Reference Spatial Feature(s) satisfy the conditions for adjacency. 

Clearly, more subclasses of the Rule superclass can be added, depending 
upon the requirements of the problem domain. 

C o l l a b o r a t i o n s  

In our model the following categories of collaborations are identified. 

�9 Collaborations between Reference_Spatial_Features and Line Segments - to es- 
tablish boundaries of the reference spatial features, and to determine the fines 
within the spatial features. 

�9 Collaborations between Non_Reference_Spatial_Features and Line Segments - to 
establish boundaries of the Non Reference Spatial Features, and to determine 
the lines within the spatial features. 
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�9 Collaborations between Reference_Spatial_Features and Rules - to reason about 
notions such aS contexts and object representations. 

�9 Collaborations between Non_Reference_Spatial_Features and Rules - to reason 
about notions such as contexts and object  representations. 

�9 Collaborations between Reference and Non Reference Spatial Features - to de- 
termine the Reference Spatial Feature that  contains the Non Reference Spatial 
Feature, and to determine imprecise spatial relationships between them by im- 
plementing.operators such as "close-to", "between" and "adjacent- to" .  

7.5.2 The Analysis Phase 

A n a l y z e  H i e r a r c h i e s  

In Section 7.5.1, we observe that  Reference_Spatial_Features contain  other Reference 
as well as Non Reference Features, whereas Non_Reference_Spatial_Features do not 
contain any other features. Analysis of the "Identify Responsibilities" and "Identify 
Collaborations" phases reveals that  the classes Reference_Spatial_Feature and Non- 
.Reference_Spatial_Feature are specializations of the more general Spatial_Feature class, 
and inherit its responsibilities. 

We also identified concrete subclasses of Reference_Spatial_Feature and 
Non_Reference_Spatial_Feature. Subclasses of the former are Country, State, County 
and Town. Subclasses of the lat ter  are Interstate Highway, River, Lake, Railroad, State 
I-Hwy Segment, County I-Hwy Segment, Town I-t twy Segment, State River Segment, 
County River Segment, Town River Segment, State Railroad Segment, County Railroad 
Segment, Town Railroad Segment, State Highway, County St-hwy Segment, Town St- 
hwy Segment, County Road, Town Cty-Rd Segment and Town Street. 

The hierarchy that  exists at this stage of the design process is given in Figure 7.1. 
We notice, however, that  the hierarchy in Figure 7.1 does not reveal any information 

on how the geographic objects are organized in the real world, and the relationships 
among them. That  is, there is no notion of the different perspective levels that  are 
inherent among geographic objects. All the concrete subclasses of Reference_Spatial- 
_Feature are organized into one group, and all the concrete subclasses of Non_Reference- 
_Spatial_Feature are organized into another separate group. The inter-relationships 
between these two groups are not apparent. 

An analysis of the organization of geographic objects in the real world reveals 
that  objects exhibit a natural  hierarchical ordering. Thus, each Country contains 
Reference_Spatiai_Features such as States, and Non_Reference_Spatial_Features such as 
Interstate  Highways, and large Hydrographic Features (e.g. Large Lakes and Rivers); 
each State, in turn, contains Reference_Spatial_Features such ms Counties and Non- 
_Reference_Spatial_Features such as State Highways. Each County contains Reference 
Features such as Towns, and Non Reference Features such as County Roads; each Town 
contafins Reference Features such as Neighborhoods, and Non Reference Features such 
as Town Streets. 

Further, at any level in the hierarchy, there exists only  one particular type of sub- 
class of Reference_Spatial_Feature. This subclass contains not more than one other 
type of subclass of Reference_Spatial_Feature, and one or more types of subclasses of 
Non_Reference_Spatial_Feature. For example, the class Country (a Reference_Spatial- 
_Feature) contains one type of subclass of Reference_Spatial_Feature, the class State, 
and one or more types of subclasses of Non_Reference_Spatial_Feature, such as class 
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Abstract class Spatial_Feature. 

Abstract class Reference_Spatial_Feature supvrclass Spatial_Feature. 
Concrete class Country superclass Reference_Spatial_Feature. 
Concrete class State superclass Reference_Spatial_Feature. 
Concrete class County superclass Reference_Spatial_Feature. 
Concrete class Town superclass Reference_Spatial_Feature. 

Abstract class Non_Reference_Spatial_Feature superclass Spatial_Feature. 
Concrete class Interstate Highway superclass Non_Reference_Spatial_Feature. 
Concrete class 
Concrete class 
Concrete class 
Concrete class 
Concrete class 
Concrete class 
Concrete class 
Concrete class 
Concrete class 
Concrete class 
Concrete class 
Concrete class 
Concrete class 
Concrete class 
Concrete class 
Concrete class 
Concrete class 
Concrete class 

River superclass Non_Reference_Spatial_Feature. 
Railroad superclass Non_Reference_Spatial_Feature. 
Lake superelass Non_Reference_Spatial_Feature. 
State Highway superclass Non_Reference_Spatial_Feature. 
State I-Hwy Segment superclass Non_Reference_Spatial_Feature. 
State River Segment superclass Non_Reference_Spatial_Feature. 
State Railroad Segment superclass Non_Reference_Spatial_Feature. 
County Road superclass Non_Reference_Spatial_Feature. 
County I-Hwy Segment superclass Non_Reference_Spatial_Feature. 
County River Segment superclass Non_Reference_Spatial_Feature. 
County Railroad Segment superclas s Non_Reference_Spatial_Feature. 
County St-hwy Segment superclass Non_Reference_Spatial_Feature. 
Town Street superclass Non_Reference_Spatial_Feature. 
Town I-ttwy Segment superclass Non_Reference_Spatial_Feature. 
Town River Segment superclass Non_Reference_Spatial_Feature. 
Town Railroad Segment superclass Non_Reference_Spatial_Feature. 
Town St-hwy Segment superclass Non_Reference_Spatial_Feature. 
Town Cty-Rd Segment superclass Non_Reference_Spatial_Feature. 

Figure 7.1: Preliminary geographic-objects hierarchy 
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Interstate  Highway, class River and class Railroad. In the same way, the class State (a 
Reference_Spatial_Feature) contains one type of subclass of Reference_Spatial_Feature, 
the class County, and one or more types of subclasses of Non_Reference_Spatial_Feature, 
such as class State Highway, State I-Hwy Segment and State River Segment. This 
ordering proves to be very useful in describing perspective l e v e l s -  each level in the 
containment hierarchy represents a single perspective level, such as Country level, State 
level, County level and Town level. 

We incorporate this view of the real world containment hierarchy explicitly in our 
model by specifying that:  

�9 A Reference_Spatial_Feature at a particular level in the hierarchy can contain 
not more than one other Reference_Spatial_Feature, and the contained Reference: 
_Spatial_Feature must be of a different type (subclass) than the container Reference- 
_Spatial_Feature. 

* A Reference_Spatial_Feature at a particular level in the hierarchy can contain one 
or more Non_Reference_Spatial_Features, and the contained features may belong 
to different types of subclasses as long as those subclasses are not also contained 
by any other Reference_Spatial_Feature. 

A n a l y z e  S u b s y s t e m s  

The following subsystems are identified. 
The collaborations between Reference_Spatial_Feature, Non_Reference_Spatial_Feature, 

Line_Segments and Rules indicate the existence of a subsystem which is comprised of: 
Spatial_Feature, its subclasses Reference_Spatial_Feature and Non_Reference_Spatial- 
_Feature, and their respective subclasses such as Country and State. Thus, if at a 
later stage a new subclass, such as "Neighborhood" is to be added to the model, this 
could be accomphshed by extending this subsystem, without disrupting the rest of the 
apphcation. 

In addition to the Spatial_Feature subsystem, we also identified another subsys- 
tem that  results from the collaboration between class Reference_Spatial_Feature and 
class Rule, and class Non_Reference_Spatial_Feature and class Rule. This subsys- 
tem is comprised of: Rule and its subclasses such as 'r and "Object- 
Representation_Rule". The advantage of having such a subsystem is that  the addition 
of a new class of rules at a later stage could be accomplished without affecting any of 
the other classes in the model. 

C r e a t e  P r o t o c o l s  

This task involves specifying the implementation of the abstract  classes and their be- 
havior which is specified in the form of methods. The base classes as identified above 
are: Spatial Feature and Line Segment. 

The base and abstract  methods for each of the classes so far identified are discussed 
below. 

* Base  M e t h o d s .  

The following base methods are specified for the base classes: 

1. Base methods of class Spatial_Feature: 

(a) Get_boundary- provides the boundaries of the spatial feature by col- 
laborat ing with the class Line Segment. 
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(b) Get_distance_between- provides the distance between itself and another 
spatial feature. 

(c) Find_perspective- determines the perspective of a query by identifying 
the spatial features that  are addressed in the query, and then collabo- 
rating with the Rule classes. 

(d) Get_max-x_and_min-x- computes the maximum and minimum x coor- 
dinate values of spatial feature by collaborating with Line Segment. 

(e) Get_max-y_and_min-y- computes the maximum and minimum y coor- 
dinate values of spatial feature by collaborating with Line Segment. 

2. Base methods of class Line_Segment: 

(a) Make_Reference_Spatial_Features- constructs spatial features by grou- 
ping the fine segments belonging to a a given spatial feature. 

�9 A b s t r a c t  M e t h o d s .  
These methods are defined when it is required to have a particular method be 
inherited down a hierarchy with each subclass having a different implementation 
of the method. 
In our application, an abstract method Make_boundaryis described in the super- 
class Spatial_Feature. This method is inherited down the hierarchy by the sub- 
classes Reference_Spatial_Feature and Non_Reference_Spatial_Feature, and fur- 
ther down, by their subclasses Country, State, County and Town~ and Inter- 
state_Highway, State_Highway, County_Road and Town_Street. Here, Country, 
State, etc., are each subclass of Reference_Spatial_Feature existing at the same 
level of the hierarchy. As noted earlier in Section 7.5.1, the implementation of 
the methods corresponding to the responsibilities may differ depending on the 
specific subclass. Thus, the State implementation of the method Make_boundary 
determines those line segments that  form the boundaries of States (i.e., those line 
segments which have two different States lying on each of their sides), and then 
builds the boundaries of the States. Whereas, the same method implemented 
for a County determines the line segments that  form the boundaries of Counties, 
and then builds the boundaries of the Counties. 

We emphasize this point by giving another example: Consider, the method 
Make_Reference_Spatial_Features_within, that  corresponds to the responsibility: 
"Construct Reference_Spatial_Features it contains". The Country implementa- 
tion of this method constructs the States that  are contained within that country. 
Whereas, the same method implemented for a County constructs the Towns 
within the County. 

We list the abstract  methods in our application, in Appendix 7.7. 

�9 O v e r l o a d e d  m e t h o d s .  

In addition to the Base Method, which is inherited down a hierarchy without any 
change in its implementation, and the Abstract Method, in which the implemen- 
tation may change down the hierarchy, we use another type of method, referred 
to as Overloaded Method. 
An Overloaded method is inherited from the Base Class down the hierarchy. In 
an Overloaded Method, different implementations of the same method can be 
described for the same class, by providing the method with different kinds of 
information, in the form of parameters. This functionality is useful in our ap- 
plication. For example, a spatial feature such as County may have a method 
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Figure 7.2: The  Spat ial  Da ta  Model 

Find_object_close_to. We mentioned in Section 7.2 that close_to is a notion that 
may have different interpretations depending upon the user perspective or con- 
text. Now if we invoke the method Find_object_close_to on a particular instance 
of County without giving any further information about the user perspective, 
the method may carry out a default implementation. If, on the other hand, we 
provide the method with additional information about the perspective, such as 
perspective = Country level, or perspective = State level, the method will carry 
out different implementations, depending upon the perspective provided. 

Overloaded methods help us achieve better encapsulation. Had the Overloaded 
Method functionality not been available, we would have had to provide the dif- 
ferent perspective-varying implementations by using a series of "if-then-else" 
Statements which would have limited the program reusability and understand- 
ing. The Overloaded Methods identified in our model are listed in Appendix 
7.7. 

This completes our discussion of the Spatial Data Model. The components of the 
model, and the geographic containment hierarchy that we model, are summarized in 
Figure 7 .2 .  
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7.6 Implementation 

The model was implemented using LAURE which is an object-oriented language de- 
veloped at Bellcore by Caseau [88]. LAURE is a powerful knowledge representation 
language based on sets. It is both an interpreted and a compiled language, and can be 
used easily in both modes. This feature is especially useful during the system develop- 
ment and testing stages by providing a fast prototyping functionality. LAURE supports 
large programs, provides efficiency similar to C ++ , and offers a clean interface with C. 
In addition, LAURE provides a deductive system with sound, efficient and complete 
resolution of deductive rules, a feature that  is very useful in our application' to reason 
about user perspectives and object representation in relation to user perspectives, and 
to process imprecise queries. 

We give below, only brief details of our LAURE implementation, since a comprehen- 
sive discussion is beyond the scope of this chapter. For a comprehensive discussion of 
our implementation, please see [567]. A description of the class Spatial_Feature, along 
with some sample queries and answers in LAURE syntax, is presented in Appendix 
7.6. The class Spatial_Feature described in the appendix contains method-templates 
(the actual code is not included here, since it is beyond the scope of this discussion) for 
determining imprecise relationships such as "close_to", "between", and "adjacent_to". 

For the purposes of our implementation, we used "raw" geographic line segment 
da ta  from the U.S. Bureau of Census' T IGER file [595]. The line segments that  we 
used pertained to the state of Rhode Island, U.S.A. Approximately 1500 low-level line 
segments that  covered a cross section of all the counties, towns, state highways, county 
roads and town streets were loaded into the model, and then queries were posed to the 
geographic database. 

The queries that  we posed consisted of both precise as well as imprecise topological 
operators. Some query examples (in English) are given below. The actual query syntax 
can be found in Appendix 7.6. 

Q1. Add the boundary of "Bristol" county to State boundary. 
Comment: Evaluates to "true" implying that  the request was accomplished success- 
fully. 

Q2. Get the names of the counties contained by Rhode Island. 
result: returns Bristol, Kent, Newport, Providence, Washington. 

Q3. Get all the Non-reference-feature-contained of State Rhode Island. 
Comment: returns Summit Greene Road, Plainfield Pike, Wallum Lake Road. 

Q4. Is Providence town Close_to? Bristol town? 
Comment: Here close_to? is an imprecise operator. Since an explicit perspective is not 
provided, the system determines the possible perspective, using the embedded rules, 
and then affirms that  perspective with the user. Based on the user's response, addi- 
tional information is assumed or computed. Then the result to the query is computed 
and returned. 

Qs. Get all the Towns that  are Close_to~ Providence town. 
Comment: The processing is similar to query Q4. 

In addition to the above queries, it is also possible to combine query operators 
to form conjunctive queries such as: "Get all the Towns that  are close_to Providence 
A N D  lie between Cumberland and Cranston O R  are adjacent_to Bristol". In all of 
these cases, our implementation proved to successful and thus robust. 
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7.7 Conc lus ion  

In this chapter we presented our experience in applying the Responsibility-Driven Ap- 
proach to the design and implementation of a complex, real-life geographic application. 
The approach's emphasis on identifying and designing object-classes based on respon- 
sibilities rather than their characteristics proved to be very effective in achieving a 
robust design and implementation that  is close to user requirement and at the same 
time enhancing the application's extensibility and maintMnability. 

Future work includes investigating the applicability of our geographic model to a 
varied set of problem domMns such as electoral districting and public utilities manage- 
ment. 
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A P P E N D I X  

A.1 List of  Abstrac t  M e t h o d s  

1. Abstract Methods of class Spatial_Feature. 

(a) Get_point_representation with null implementation. 
("Null implementation" means that the method defined for the object in 
question does not have any implementation. It exists as a template which 
is inherited by the subclasses of the object. A method inherited in such 
a manner by a subclass may have a real (non-null) implementation, corre- 
sponding to the responsibilities of the subclass). 

(b) Make_boundary with null implementation. 

(c) Make_point_representation with null implementation. 

(d) Make_min-max-x with null implementation. 

(e) Make_min-max-y with null implementation. 

2. Abstract Methods of class Reference_Spatial_Feature (superclass Spatial_Feat- 
ure). 

(a) Get_point_representation with implementation to get point representation 
of Reference_Spatial_Feature. 

(b) Make_boundary with null implementation. 

(e) Make_point_representation with null implementation. 

(d) Make_min-max-x with null implementation. 

(e) Make_min-max-y with null implementation. 

(f) Make_Re]erence_Spatial_Features_within with null implementation. 

(g) Make_Non_Reference_Spatial_Features_within with null implementation. 

3. Abstract Methods of class Non_Reference_Spatial_Feature (superclass Spatial_Feature). 

(a) Get_point_representation with implementation to get point representation 
of 
Non_Reference_Spatial_Feature. 

(b) Make_boundary with null implementation. 

(c) Make_point_representation with null implementation. 

(d) Make_min-max-x with null implementation. 

(e) Make_min-max-y with null implementation. 

It is worth noting that we make use of the Abstract Methods for such imple- 
mentation details as loading the raw data which is originally at a low-level (fine 
segments), and then constructing high-level objects such as States, Counties, 
Towns and Roads from the low-level objects. This is a very useful and im- 
portant functionality of our model because it proved to us that the model was 
capable of ref lec t ive  capabilities i.e., the model's components themselves could 
be used for loading the raw data, and deriving high-level data and populating 
the various classes that are described in the model. 
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We continue our discussion of Abstract Methods by listing those which pertain to 
the high level objects Country, State, County and Town. The Abstract Methods 
listed below are used to get the reflective functionality discussed above. 

4. Abstract Methods of class Country (superclass Reference_Spatial_Feature). 
It should be noted that the Abstract Methods encapsulated by subclasses such as 
Country have specific implementations corresponding to their responsibilities). 

(a) Make_boundarywith implementation to construct Country from Line_Segment. 

(b) Make_point_representationwith implementation to compute point represen- 
tation of Country. 

(c) Make_min-max-x with implementation to compute the maximum and min- 
imum x coordinate values of Country. 

(d) Make_min-max-y with implementation to compute the maximum and min- 
imum y coordinate values of Country. 

(e) Make_Reference_Spatial-Features_within with implementation to construct 
States contained by Country, in collaboration with Line_Segment. 

(f) Make_Non_Reference._Spatial_Features_within with implementation to con- 
struct Non_Reference_Spatial_Features at the State level that is contained 
by Country, in collaboration with Line_Segment. 

5. Abstract Methods of class State (superclass Reference_Spatial_Feature). 

(a) Make_boundary with implementation to construct State from Line_Segme- 
nt. 

(b) Make_point_representationwith implementation to compute point represen- 
tation of State. 

(c) Make_min-max-x with implementation to compute the maximum and min- 
imum x coordinate values of State. 

(d) Make_min-max-y with implementation to compute the maximum and min- 
imum y coordinate values of State. 

(e) Make_Reference_Spatial_Features_within with implementation to construct 
Counties contained by State, in collaboration with Line_Segment. 

(f) Make_Non_Reference__Spatial-Features_within with implementation to con- 
struct Non_Reference_Spatial_Features at the County level that is contained 
by State, in collaboration with Line_Segment. 

6. Abstract Methods of class County (superclass Reference_Spatial_Feature). 

(a) Make_boundarywith implementation to construct County from Line_Segment. 

(b) Make_point_representationwith implementation to compute point represen- 
tation of County. 

(c) Make_min-max-x with implementation to compute the maximum and min- 
imum x coordinate values of County. 

(d) Make_min-max-y with implementation to compute the maximum and min- 
imum y coordinate values of County. 

(e) Make_Reference_Spatial_Features_within with implementation to construct 
Towns contained by County, in collaboration with Line_Segment. 
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(f) Make_Non_Reference_Spatial_Features_within with implementation to con- 
struct Non_Reference_Spatial_Features at the Town level that is contained 
by County, in collaboration with Line_Segment. 

7. Abstract Methods of class Town (superelass Reference_Spatial_Feature). 

(a) Make_boundary with implementation to construct Town from Line_Segme- 
nt. 

(b) Make_point_representationwith implementation to compute point represen- 
tation of Town. 

(c) Make_rain-max-x with implementation to compute the maximum and min- 
imum x coordinate values of Town. 

(d) Make_min-max-y with implementation to compute the maximum and min- 
imum y coordinate values of Town. 

(e) Make_Reference_Spatial_Features_within with null implementation since in 
our appfication the Town class does not contain any Reference_Spatial- 
_Feature. 

(f) Make_Non_Reference.Spatial_Features_within with implementation to con- 
struct Non_Reference_Spatial_Features below the Town level that is con- 
tained by Town, in collaboration with Line_Segment. 

8. Abstract Methods of subclasses of Non_Reference_Spatial_Feature. 

The classes Interstate_Highways, State_Highways, Rivers, Railroads, County- 
_Roads and Town_Streets fall under this category. These are linear objects which 
do not contain any other object. In order to avoid the repetition of ideas, we 
provide specifications of the Abstract Methods for only one representative class 
of such objects here. 

(a) Make_boundarywith implementation to group the component llne segments 
which make up the concerned object. 

(b) Make_point_representation with null implementation. 

(c) Make_min-max-x with implementation to compute the values of the maxi- 
mum and minimum x coordinate values of the concerned object. 

(d) Make_rain-max-y with implementation to compute the values of the maxi- 
mum and minimum y coordinate values of the concerned object. 

A.2  List of  O v e r l o a d e d  M e t h o d s  

1. Overloaded Methods of Spatial_Feature: 
In the following, "X", "Y" and "Z" represent spatial features. 

(a) X close_to? Y. 
Determines if X is close to Y. 

(b) close_tol X. 
Determines the spatial features that are close to X. 

(c) Z b e t w e e n ?  X, Y. 
Determines if Z lies between X and Y. 
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(d) X be tween!  Y. 
Determines the spatial features between X and Y. 

(e) X ad jacen t_ to?  Y. 
Determines if X and Y are adjacent to each other. 

(f) ad jacen t_ to!  X. 
Determines the spatial features adjacent to X. 

A.3 I m p l e m e n t a t i o n  notes in L A U R E  syntax 

A . 3 . 1  The Spat ial_feature class 

[ spatial_feat :: union superset (named_object) 
comment "represents high level spatial objects, e.g. State" 
with 

(slot name -> string) ; i.d. code 
(multi_slot boundary -> line_seg) 
(slot elevation-> number) 

(multi_slot lines_within -> line_seg) 
(method point_reprn -> point) 

=> [the implementation code goes here] ) 
(multi_method adjacent_to -> spatial_feat 

comment "finds features adjacent to itself" 

=> [the implementation code goes here] ) 
(method adjacent_to? (x:spatial_feat) -> boolean 

comment "finds if x is adjacent to oself" 
=> [the implementation code goes here] ) 

(multi_method between (b:spatial_feat) -> spatial_feat 

comment "finds objects between oself and b" 

=> [pers as nil [ pers <- [[[[ancestors(oself) find] 
intersect [ancestors(b) find]] nth ] owner] ]] 
[if [and [rep(oself) = "poly"] [rep(b) = "poly"]] 

[the implementation code goes here] 
else_if [and [rep(oself) ="point"] [rep(b)="point"]] 

[the implementation code goes here] 
else [the implementation code goes here] 
]) 

(method between? (x:spatial_feat y:spatial_feat 
perspective:string) -> boolean 

comment "finds if y is between oself and x" 
=> [the implementation code goes here] ) 

(multi_method close_to (perspective:string) -> spatial_feat 
comment "finds features close to itself" 
=> [the implementation code goes here] ) 

(method close_to?(x:spatial_feat perspective:string)->boolean 
comment "finds if x is close to it" 
=> [the implementation code goes here] ) ] 

NOTE: ~pers'' denotes the perspective, and '~rep'' denotes the 
object representation. 
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A.3.2 Sample Q u e r i e s -  (in LAURE syntax) 

QI. Add boundary of "Bristol" county to State boundary 

laure> [y all [x select State [[x name] = "RI"]] [[y boundary] 
add ["Bristol" get_boundary "RI"]]] 

eval> t ; ; ;returns ~true' indicating successful completion of 
query 

Q2. Get the names of the counties contained by a State RI 

laure> [y all [Ix get_all State [[x R_feat_contained] ?]] nth I] 
["~A~~, '' printf [y name]]] 

eval> Bristol 
Kent 
Newport 
Providence 
Washington 

Q3. Get all NR_feat_contained of State RI 

laure> [y all Ix all State [[x NR_feat_contained] return]] 

["~A~Y, '' printf [y name]]] 

eval> Summit Greene Road 

Plainfield Pike 

Wallum Lake Road 

Q4. Is Providence Town close to Narragansett? 

laure> [[Ix select Town [[x name] = "Providence"]] nth i] 
close_to? 
[[x select Town [[x name] = "Narragansett"]] nth I] 

{} geometric] 

eval> (determines user perspective, computes and returns true or 
false) 

Q5. What are the towns close to Providence Town? 

laure> [[Ix select Town [[x name] = "Providence"]] nth i] 
close_to] 

eval> (determines user perspective, computes and returns all towns 
close to Providence) ' 



Chapter 8 

Indexical  Databases 

James Clifford* 

8.1 M o t i v a t i o n  

The "three great da ta  models" [594] were created in response to a set of needs arising 
in certain tradit ional da ta  management and processing environments, and to a large 
extent they have been successful in meeting those needs. Today, however, the expanded 
use of. and familiarity with, a variety of computers and software systems are generating 
more sophisticated da ta  management and processing needs. Today's sophisticated 
users are running into a kind of "brick wall" in the current generation of Database 
Management Systems (DBMS), nearly all of which are based on one of these three da ta  
models. This phenomenon is, to be sure, not unique to the database arena; by and 
large a~l areas of computer usage are experiencing the limits of today's  software. The 
growing revolution in expert systems, decision support systems, etc., all of which are 
a t tempts  to tackle ever more sophisticated problems for which traditional programming 
languages and software development methodologies are largely inadequate, at tests to 
this fact. 

Simply put, today 's  data  models and DBMS's were largely designed for storing and 
retrieving facts. (Recent work in the area of "object-oriented database systems" does 
not seem to have digressed from this overall perspective.) While this functionality is 
sufficient for many, if not most, of the applications and functions which the corporate 
DBMS is intended to service, a growing segment of the DBMS user community, having 
become comfortable, in many cases proficient, with the "just the facts, please..." mode 
of use is now interested in having the system support much more of their needs. Among 
the kinds of information needed are the following: opinions, expectations, judgments, 
personal observations, histories, predictions, expert advice, hypothesized scenarios, 
design versions, locations in space/time, simulations, sources of data, model or software 
used to compute the data, etc. 

Certainly most, ff not all, of these functions can be met by some combination of 
the DBMS and a host programming language. But by and large the advantage of 
a DBMS has been the accessibility of the information and the functionality of the 
system to end users through an interactive query language. The "Host language ~- 
DML" approach has, of course, always supported the transaction processing and report 
production component of da ta  processing, but the interactive query language mode is 
what has made a DBMS so attractive, because, by abstracting the general functions of 

*Department of Information Systems, Leonard N. Stern School of Business, New York 
University, New York, New York 10012-1126. 
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database querying into a general purpose set of querying functions, it allows access to 
the contents of the database without the need ]or programming. 

Today there are many research efforts underway to expand the data structuring and 
data processing functionality of a DBMS to meet these expanding needs. The economic 
realities of today's world would seem to doom most of these to failure, however, for two 
major reasons. One is that each such effort has targeted, by and large, only one facet 
of the problem, one potential user community, if you will, and the other is the growing 
commercial success of today's relational systems and the SQL language in particular. 

This chapter is an attempt to generalize the notion of an extended relational model. 
Building upon the author's experience in one particular type of relational extension, 
namely an extension to capture the semantics of the temporal dimension of data at the 
model level ([116], [117], [123], [122],[119], [120]), this chapter investigates a model to 
encapsulate a wide class of such extensions into the notion of a generalized functional 
data type. 

The basic model for the semantics of this expanded model, called the I nde x i c a l  
D a t a  M o d e l  ( I D M ) ,  is borrowed from intensional logic, an attempt to formalize 
the pragmatic component of linguistic theory. An intensional logic looks at the phe- 
nomenon of context as a major contributing component to defining the interpretation 
of a language. As described by Pdchard Montague [414]: 

In interpreting a pragmatic language L we shall have to take into ac- 
count the possible contexts of use. It is not necessary to consider them in 
their full complexity; we may instead confine our attention to those among 
their features which are relevant to the discourse in question. Thus it will 
suffice to specify the set of all complexes of relevant aspects of intended 
possible contexts of use. We may call such complexes indices, or to borrow 
Dana Scott's term, points of reference. For instance, if the only indexical 
feature of L were the occurrence of tense operators,* then the points of 
reference might naturally be chosen as moments of time, regarded as pos- 
sible moments of utterance. On the other hand, if L contained in addition 
the first person pronoun T ... two aspects of the context of use would 
become relevant, the speaker as well as the moment of utterance; and a 
point of reference might naturally be chosen as an ordered pair consisting 
of a person and a moment of time. 

The I n d e x i c a l  D a t a  Mode l ,  therefore, apphes the same notion of indexical se- 
mantics to the realm of relationM databases, in recognition of the need for potentially 
many points of reference in increasingly complex database applications. Moreover, fol- 
lowing the guidelines proposed in [118], the model to be proposed will be a consistent 
extension, not only of the Historical Relational Data Model (HRDM) [119], but more 
importantly of the underlying relational data model itself. In this way we believe that 
there is some hope that commercial systems, built upon the model, have a chance of 
success - because the model is a consistent relational extension, a DBMS built upon 
the system has some chance of being truly "upwardly compatible" with existing DBMS 
such as DB2 or Ingres. 

lit  was precisely consideration of such a situation that informed the development of the 
Historical Relational Data Model (HRDM) [119]. 
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8.2 The  Indexica l  Database  Mode l  

In this section we present an overview of the Indexical Database Model. We begin 
with a presentation of the structures of the model - indexical relations - which will be 
seen as a general extensi~ to ordinary relations. We then provide an overview of a 
relational algebra for the model, focusing on those operators which take advantage of 
the expanded representational capability of the indexical relations. 

8 . 2 . 1  The  S t ruc tu res  

Let UVD = {VD1, VD2 . . . ,  VD,~a } be a (universal) set of va lue  d o m a i n s  where for 
each i, VDi ~ 0. Each value domain VDi is analogous to the traditional notion of a 
domain in that  it is a set of atomic (non-decomposable) values. 

(For example, an example application might have VDi = {Management, Finance, 
Accounting}.) 

Let UA = {Aa ,A2 , . . . ,A ,~}  be a (universal) set of a t t r i b u t e s .  Each at tr ibute 
names some property of interest in the application area. 

(For example, we might have Aa = D E P A R T M E N T . )  
Let UID = {IDa, ID2, . . . ,  ID,~a} be a (universal) set of i n d e x  d o m a i n s ,  where 

for each i, I D i r  ~, and the cardinality of each IDi is at most countably infinite. 
(For example, we might have IDa = {Halderman, Ehrlichman, Mitchell}, and 

ID2 = { . . . ,  to, t l ,  . . . } . )  
Let UI = {la, I2 , . . . ,  1~ } be a (universal) set of ind ices .  Each index I~ represents 

a "contextual coordinate"[354] which contributes to the context in which a particular 
fact is to be interpreted. 

(For example, we might have I1 = V A L I D T I M E ,  and I2 = O B S E R V E R S . )  
The sets UVD, UA, UID and UI are all pairwise disjoint. ID O M : UI -~ UID is 

a function which associates with each index I in UI its i n d e x  d o m a i n  ID in UID. We 
denote the index domain of index I by IDOM(I) .  In order to give a uniform meaning 
to each index I the function IDOM is defined at the database scheme level, and not 
at the relation scheme level. 

(For example, we might have I D O M ( O B S E R V E R S )  = IDa, and 
I D O M ( V A L I D T I M E )  = ID2.) 

Let VC ---- { { ~ V D 1 , . . .  , (~)VDnd } be a set of value comparator sets, where e&ck 
6)VD, = {OVD~I,...,OvDi,} is a set of va lue  c o m p a r a t o r s  over VD~. More pre- 
cisely, each OvDi~ in | is a set of ordered pairs {< vj, vk > Ivj,vk 6 VD~ and 

vj OVD~3 vk}. Minimally, we require for each value domain VDi that  {=, r  C OVD,j, 
i.e:, that  all value domains support equality and inequality comparisons. 

Let IC = { 0 I D 1 , . . . ,  | } be a set of index comparator sets, where each (gID~ ----- 
{0iz~,~,...,/~XD~ } is a set of i n d e x  e o m p a r a t o r s  over IDj. More precisely, each OzD~i 
in OIDi is a set of ordered pairs {< idp, idq > lidp, idq C IDj  and id v OZDID j idq}. 
Minimally, we require for each index domain IDj that  {=, #}  C 0ID~j, i.e., that  all 
index domains support  equality and inequality comparisons. 

These preliminary definition serve, in effect, to define the basic vocabulary of our 
model. Armed with them, we can proceed to define an I n d e x i c a l  R e l a t i o n  s c h e m e  
t t  as a 5-tuple R = <  A, K, VDOM, IDOM, DOM > where: 

1. A C UA is the set of a t t r i b u t e s  of scheme R 

2. K C A is the d e s i g n a t e d  key  of scheme R. 
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3. V D O M  : A --+ U V D  is a function which gives the va lue  d o m a i n  of each 
attribute of scheme R; we denote the value domain of attribute Ai in scheme R 
by V D O M ( A i ,  R). 

4. I N D  : A --+ 2 tz~ is a function which gives the set of ind ices  of each attribute of 
scheme R; we denote the indices of attribute Ai in scheme R by IND(A~,  R). ~ 

5. The d o m a i n  of an attribute A~ in scheme R, denoted DOM(A~, R), is a function 

D O M  : A --+ V D O M ( A i ,  R) 2"rDOM(IND(Ai'R)) which gives the domain of each 

attribute of scheme R. Note that the domain of an attribute is the set of all 
possible functions from its I D O M  to its V D O M .  

A t u p l e  t on  s c h e m e  t t  is an ordered pair t = <  i, l > where 

1. t.i : A --* I -+ 21DOM(IND(Ai'R)) the i n d e x  l l f espan  of a t t r i b u t e  A in  t u p l e  

t, is a function that gives the i n d e x  l l f espan  of each attribute Ai E A. We 
denote the i n d e x  l l f e span  of  a t t r i b u t e  A~ in  t as t.l.Ai. 

2. t.v : A -+ T UD is a function that associates with each attribute A~ E A a 
temporal-based function from the a t t r i b u t e  i n d e x  l i f espan  t.l(Ai), to the 
domain assigned to attribute Ai. That is, t(A,) : t.l(A~) --+ DOM(A~) We 
denote the va lue  of  a t t r i b u t e  A~ in  t as t.v.A~. Note that t.v.Ai is subject to 
two constraints: 

(a) the d o m a i n  c o n s t r a i n t ,  namely, Yi[t(Ai) E DOM(Ai)],  and 

(b) the key c o n s t r a i n t ,  namely, for any two distinct tuples t i , t j ,  
t~(K) # t j ( g ) .  

In general, we would like to allow a tuple to be only partially defined; i.e., if the 
domain of an attribute Ai in relation R DOM(Ai ,  R) is the set of all functions in 
V D O M ( A i ,  R) IDOM(AI'R), at any given time the tuple instance will be only a partial 
function in this space. We omit the details of this point, but point out that it would be 
analogous to our treatment of li]espans in [119]. In other words, the following points 
would have to be addressed: 

1. A notion of index span, similar to that of a lifespan in historical databases, would 
need to be defined for each index 

2. The issue of the homogeneity ([202], [119]) of the tuple in each of the index 
dimensions would need to be addressed. In other words, proceeding from the 
most to the least general treatment, each attribute-value pair could have its own 
index span for each index, or each tuple could be homogeneous in all of its index 
dimensions, or each relation could be homogeneous in all of its index dimensions. 

Finally, we can define an i ndex i ca l  r e l a t i o n  r on  scheme  R as a finite set of 
tuples, r ---- { t l , t~ , . . . t~} ,  on scheme R. 

8.2 .2  D i s c u s s i o n  o f  the  S t ruc tu res  

As discussed in [120]), there have been two different strategies for incorporating a 
temporal dimension into the relational model in the literature. In one, the schema of 
the relation is expanded to include one or more distinguished temporal attributes (e.g., 

SNote that it is by allowhlg a different IDOM for each attribute of R that our model is 
inhomogeneous. 
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H alderman --~ 

Jan --~ 

Feb -~ 

Dec ~ 10000 
Jan ---* 20000 
Feb --* 30000 

Dec -+ 40000 
Jan ~ 50000 
Feb --* 60000 

Ehrlichman 

J a n  

Feb --* 

Dec --~ 60000 
Jan ---* 50000 
Feb --* 40000 

Dec --~ 30000 
Jan --~ 20000 
Feb ~ 10000 

Figure 8.1: A Complex  Funct ion  as an At t r ibu te  Value 

time, or START-TIME and END-TIME) to represent the period of time over which 
the fact represented by the tuple is to be considered valid. This approach has been 
referred to in the hterature as tuple time-stamping or as a first-normal form (1NF) 
model; in [120]) the term ungrouped is introduced for this type of approach. In the 
other approach, referred to as attribute time-stamping or as a non-first-normal form 
(NINF)  model, instead of adding additional attributes to the schema, the domain of 
each attribute is extended from simple values to complex values (functions, e.g.) which 
incorporate the temporal dimension. [120]) introduces the term grouped for this latter 
approach. 

In the ungrouped approach an "object's" entire history is represented within a 
single tuple, within which the time stamps are embedded as components of the values 
of each attribute. In the grouped models, by contrast, all of the information about an 
object is represented in a single tuple. [120] contrasts these two approaches and shows 
that temporally grouped models are more expressive than temporally ungrouped models. 
The Indexlc~l Data Model, then, is a grouped model in precisely the same sense or 
for precisely the same reasons. Thus, a value in the Indexical Database Model is not 
atomic, but rather a complex function, like the one in Figure 8.1. 

It is well known (see discussion in [112]) that any function of n arguments can be 
represented by an equivalent function of n - 1 arguments. We can therefore choose to 
represent n-place functions hi:e: 

~ e l , ~ e 2 ,  ~ . . . ~ r  ... ~ 

by their equivalent 1-place function: 

< { e l , e ~ , . . . , e n } , v  > 
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< Halderman, Jan, Dec > --* 10000 
< Halderman, Jan, Jan > --~ 20000 
< Halderman, Jan, Feb > -+ 30000 
< Halderman, Feb, Dec > --* 40000 
< Halderman, Feb, Jan > --~ 50000 
< Halderman, Feb, Feb > --~ 60000 
< Ehrlichman, Jan, Dec > --~ 60000 
< Ehrllchman, Jan, Jan > ~ 50000 
< Ehrlichman, Jan, Feb > --+ 40000 
< Ehrlichman, Feb, Dec > ~ 30000 
< Ehrlichman, Feb, Jan > -+ 20000 
< Ehrlichman, Feb, Feb> -+ 10000 

Figure 8.2: Example of Attribute Value as I-Place Function 

Thus, the  value in Figure 8.1 could equivalently be represented as in Figure 8.2. 
I D M  can make extensive use of this ability - -  at the definitional, operational,  or user 
levels - -  to view values in either of these two fashions. In addition, since the order of 
the indices is irrelevant in these functions, they can be viewed in whatever  order the 
user deems appropriate  to the task at hand. 

8.2.3 An Indexical Example: The Watergate Database 
In this section we give an example from the familiar world of politics, of an Indexical 
Database  with three index sets. These are used to represent answers to the familiar 
questions asked during the televised Senate Watergate Hearings, i.e. "What  did the 
President  know and when did he know it?".  We generalize slightly, and have an index 
set for each of these three points of reference: (i) "Who knew it" ,  (ii) "When was it 
known?" and (iii) "When was it  believed it to have occurred?" 

For our Watergate exaznple, we might  choose to define the following three index 
sets: 

11 = Observers = 
{ H alderman, Ehrlichman, Dean, N ixon, Mitchell, Colson, Liddy } 

I2 = Data_Time = {July, August, September, October} 
I3 = Rec_Time = {July, August, September, October, November} 

For simplicity, we will consider only a single relation on the following scheme: 

P R O J E C T S  = <  ApROJBCTS, KPROJECTS, VDOMpRoJECTS, IDOMPRoJECTS 
where: 

1. ApI~oJECTS = { P N A M E ,  A P P R O P R I A T I O N ,  A P P R O V E R }  

2. KPROJECTS = {PNAME} 

3. VDOMpI~OJECTS is as follows: 

VDOMPRoJECTs(PNAME) = {Watergate BreakIn, Watergate Coverup, 
Ellsberg BreakIn l 

V D O M P R o J E c T s ( A P P R O P R I A T I O N )  -- positive integers 
VDOMPRo JECTS ( A P P R O V E R )  
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{ N ixon, Mitchell, H alderman, Ehrlichman } 

4. IDOMpRoJ~cTS is as follows: 

IDOMpRojECTs(PNAME) -- 
IDOMp~oJ~cTs(APPROPRIATION) 
{Observers, Data_Time, Rec..Time} 
IDOMpRoJEcTs(APPROVER) = {Observers, Data_Time, Rec_Time} 

We can more simply view the structure of this relation as follows: 
PROJECTS(P_NAME, 

APPROPRIATION: <Observer, Rec_Time, Data_Time>, 
APPROVER: <Observer, Rec_Time, Data_Time> ) 

where each attribute is followed, where necessary, by the ordered list of its indices. 
Note that we have indicated that the attribute P_NAME is the key of this relation, 
and have decided that it is not indexical, i.e., it 's value is not a function from any of 
the indices in the model. 

In the rest of the chapter, in discussing examples of algebraic operators for the 
indexical data model, we will refer to the instance on this schema shown in Figure 8.3. 

Note that other applications would have an entirely different set of indices appro- 
priate to the application. Examples could include the following: 

�9 Sources of data, e.g. Harris, Gallup, TRW, etc. 

�9 Models, e.g. Lotus, Quattro, Excel, etc. 

�9 Versions of certain "objects", e.g. V1, V2, ... 

�9 Points in Time 

�9 Points in space 

�9 Coordinates in space and time 

�9 etc. 

8.2.4 The Operations 
In [122] we discussed some of the considerations that underlay the way in which we 
set about to define an algebra for historical relations. Chief among these was the 
notion of C'dimensional purity ~ for reduction operators. By this we mean that each 
of the dimensions of a multi-dimensional object should be accessible through its own 
reduction operator. The same consideration informs the shape of the algebra of I D M ;  
specifically, there will be operators to access the attribute dimension, the base value 
dimension, and the index dimension. In the rest of this section, we will outline the 
basic operators in an extended algebra for the Indexical Data Model as follows: 

1. the set theoretical operators: union (U), intersection (N), difference ( - ) ,  and 
Cartesian Product (x),  

2. extensions to the traditional relational operators: project (II), select (a), and 
join (~),  and 

3. new operators: function restriction(~), and drop index (6) 

This presentation is based upon the algebra of H R D M  [119]. 
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S e t  T h e o r e t i c  O p e r a t o r s  

Indexical relations, like regular relations, are sets of tuples, and so the s tandard  set- 
theoretic operations - U, N, - ,  and x are defined over them. However, as in the 
relational model, we restrict the application of these operators to u n i o n - c o m p a t i b l e  
relations. The not ion of union-compatibi l i ty  must  be expanded to encompass having 
the same number  of columns over the same complex domains. 

If r l  on R1 and r2 on R2 are union-compatible,  then 

1. r l  U r2 :-  {t on scheme R3[t E r l  or t E r2} 

where R3 - -<  A1, K1,VDOMI, IDOM1 > 

2. r l  N r2 = {t on scheme R3[t E rl and t E r2} 

where R3 = <  A1, h ' l ,  VDOM1, IDOM1 > 

3. r l  - r2 --- {t on scheme Rl[t C r l  A t r r2} 

As pointed out in [119], the result of these operations is, unfortunately,  often coun- 
terintuit ive.  The result, for example, of the union of two relations r l  and r2 will not  
automatical ly  "merge" tuples which refer to the same object during different, bu t  pos- 
sibly overlapping, indices. Following [119], we can define three object-based versions 
of union,  intersection, and difference, all of which rely on the concept of m e r g e a b l e  
t u p l e s .  

Two relations r l  and r2 on schemes R1 =< A1, K1, VDOM1, IDOM1 > and R2 = <  
A2, K2, VDOM2, IDOM2 > are m e r g e - c o m p a t i b l e  if and only if A1 = A2,/(1 = K2, 
, VDOM1 = VDOM2, and IDOM1 = IDOM2. 

Note that  merge-compatibil i ty requires tha t  the two referenced relations have the 
same key, and is therefore a stronger constraint  than union-compatibil i ty.  

Two tuples t l  and t2 on schemes R1 = <  A1,K1,VDOMI, IDOM1 > and R2 = <  
As, K2, VDOM~, IDOM2 > are m e r g e a b l e  if and only if 

1. R1 and R2 are merge-compatible 

2. their key value is the same over all indices, and 

3. if the tuples are defined over the same index spans, their values must  agree on 
these indices 

Condit ion 2 states tha t  the tuples have the same key value, and thus are assumed 
to denote the same object. Condit ion 3 states tha t  at all indices in the intersection of 
the index spans of the two tuples, each pair of corresponding at t r ibutes  have the same 
value. In other words, Condit ion 3 states that  the two tuples do not  contradict one 
another.  

The  merge of tl  and t2, (tl  + t2) is then defined a~ the tuple ta where: 

t3(A) = t l ( A ) u  t2(A) for all A e A1 

Given a tuple t and a set of tuples S, t is m a t c h e d  i n  S if there is some tuple 
t ~ C S such that  t is mergeable with t ' ;  otherwise t is n o t  m a t c h e d  in S. 

Wi th  these prel iminary definitions we can define more semantically-based set- 
theoretic operations, denoted tJo, no, and - o :  

For example, if relations r l  on R1 and r2 on R2 are merge-compatible, then: 
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r l  Uo r2 = {tit E r l  and t is not matched in r2 V 

t E r2 and t is not matched in r2 V 

3t~ E r~ 3t2 E r2[t = tl + t2]} 

C A R T E S I A N  P R O D U C T  The Cartesian Product of two relations r and s on 
Schemes R and S can be defined in the usual way as: 

r l  x r2 = 

where 

{t on scheme R313t1 E r l ,  3t2 E r2[ 

VA E Rl[ t . v (d)  = tl .v(A)] A 

VA E R2[t.v(A) = t2.v(d)]} 

R3 =< A1 U A2, IQ U K2, VDOM1 U V D O M 2 , I D O M I  U IDOM2 > 

As pointed out in [119], however, we note that this definition can result in inhomo- 
geneous tuples, because the index spans of the resulting tuple is not guaranteed to be 
uniform across the attributes. Various alternative definitions could certainly be given 
wherein the index spans of the resulting of the resulting tuple is adjusted in some way. 
Further research is needed to determine how best to handle the question of homogeneity 
or inhomogeneity in indexical databases. This and other problems with the Cartesian 
Product operator in temporal databases are well-known ([396]). 

E x t e n d e d  R e l a t i o n a l  O p e r a t o r s  

P R O J E C T  The project operator 7r when applied to a relation r removes from r 
all but a specified set of attributes; as such it reduces a relation along the attribute 
dimension. It does not change the values of any of the remaining attributes, or the 
combinations of attribute values in the tuples of the resulting relation. Let r be a 
relation over the set of attributes R and X C R. Then the p r o j e c t i o n  of  r o n t o  X 
is given by: ~'x(r) = { t (X) i t  E r} 
P r o j e c t i o n  E x a m p l e  

The query 7rpRoJECT(funding) 
would yield the relation in Figure 8.4 showing which Projects were currently recorded 
in the database. Similarly, the query 7rpI~OJECT, STATUS(funding) would yield the 
relation in Figure 8.5 showing what was thought by various observers and at various 
times about the approval of these projects. 

Note that because ~r does not specffically refer to the values in a database, it is 
virtually unaffected by the fact that I D M  relations are "grouped" (see [120]), (except 
that complex values might "collapse"). 

S E L E C T  In [119], we defined two versions of SELECT for historical databases, 
which can be viewed as Indexical Databases with a single index, representing the so- 
called "valid time" dimension of the data. We called these two operations SELECT-IF 
and SELECT-WHEN, and defined them as follows: 

a-IF(AO~,Q,L)(r) = {t E rlQ(s E (L n t.1))[t(A)sOa]} 
~r-WHENAoa(r)  = {ti3t' E r[t.l = {si t ' (n)(s)Oa } A t.v = t'.vi,.z]} 
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PNAME 

Water,ate Break-In 

Water,ate Coverup 

Ellsberg Break-In 

Figure 8.4: Projection Example 1 
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PNAME APPROVER: <Observer, Rec-Time, Data-Time> 

Watergate Break-In 

Watergate Coverup 

Ellsberg Break-In. 

H a l d e r m a n  -+  

E h r l i e h m a n  --+ 

" D e e  

I J a n  
J a n  -+ i F e b  

: D e e  

J a n  
F e b  --+ F e b  

--~ ~ l i t c h e l l  " 

--* M i t c h e l l  

--+ N i x o n  

--+ N i x o n  " 

- -*  N i x o n  

--+ N i x o n  

i D e c  -+ M i t c h e l l  " 

J a n  --* M i t c h e l l  

J a n  - ~  F e b  --+ M i t c h e l l  

= D e e  -+ M i t c h e l l  : 

J a n  --+ M i t c h e l l  

F e b  --+ F e b  --+ M i t c h e l l  

H a l d e r m a n  --* 

E h r l i c h m a n  --* 

J a n  --+ 

F e b  --+ 

J a n  

F e b  ---* 

- D e c  

J a n  

F e b  

: D e c  

J a n  

F e b  

" D e e  

J a n  

F e b  

: D e e  

J a n  

F e b  

--* M i t c h e l l  " 

--* M i t c h e l l  

--* N i x o n  

- *  N i x o n  " 

--+ N i x o n  

- *  N i x o n  

-+ M i t c h e l l  " 

--+ M i t c h e l l  

--* M i t c h e l l  

--* M i t c h e l l  : 

--~ M i t e h e l l ~  

-+ M i t c h e l l  

H a l d e r m a n  -+ 

E h r l i c h r n a n  - -+ 

J a n  

F e b  

J ct n - -+ 

F e b  

" D e c  

J a n  

F e b  

" D e e  

J a n  

F e b  

" D e c  

J a n  

F e b  

: D e e  

J a n  

F e b  

-+ M i t c h e l l  " 

--* M i t c h e l l  

-+ N i x o n  

-+ N i x o n  - 

N i x o n  

N i x o n  

- ~  M i t c h e l l  " = 

-+ M i t c h e l l  

-+ M i t c h e l l  

--+ M i t c h e l l  : 

--+ M i t c h e l l  

- *  M i t c h e l l  

Figure 8.5: Projection Example 2 
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We omit the definition of the analogous operators for the generalized indexical 
database model. Suffice it to say that analogs of both of these operators could be 
defined, and that they would take the following parameters: 

�9 an attribute A 

�9 a set of < index, index_value > pairs 

�9 a value (i.e., a traditional, atomic value) 

For example, the following query makes use of the a- IF  operator: 
a - I F ( A P P R O P R I A T I O N = 6 0 0 0 0 , 3  Observer ,3  i~ec_Time,3 D a f a J i m e  E { F e b } )  

(PROJECTS) 
would yield a relation that shows which projects were thought, by anybody (the 
Observer), at any time (the Rec_Time), to have had an appropriation of 500000 some- 
time in February (the Data_time). For the example data the Watergate Breakin sat- 
isfies this query (both Halderman and Ehrlichman believed this in February) as does 
the Ellsberg Brealdn (Halderman believed this in February). The result of this query 
is therefore the relation in Figure 8.6. 

The a - W H E N  operator is illustrated by the following query: 
a-WHENApPRovER=Nixo ,~ (PROJECTS)  

which results in a relation showing PROJECTS ever recorded, by any observer, to 
have ever been approved by Nixon, and it will only show those "perceptions" about 
the PROJECTS. 

N e w  O p e r a t o r s  

F U N C T I O N  R E S T R I C T I O N  This operator is intended to generalize the 
Time-Slice operator that has been defined in temporal database models. Function 
Restriction, symbolized by ,, evaluates the i-th index of an attribute A in relation r at 
a specified value i. 

~ : r x A x I x i  

In general, if r is a relation on scheme R, A is an attribute in R and I is an index 
of A in R, then 

,A.,i,(r) = {t]3 t, C r[t(R - A) = t , (R - A) A t(A) = t,(A)(I)]i]} 

F u n c t i o n  R e s t r i c t i o n  E x a m p l e  

The following query illustrates the use of function restriction: 

t A P P R O P R l A T I O N . R e c _ T i m e ] d a n  ( funding) 

This query would yield the relation in Figure 8.7, showing what was recorded about 
the appropriations for the projects as of January. 

As is usuaJly done with a, we can generalize this operator to apply to multiple 
attributes and indices, as well as to sets of index values rather than a single value. 
Thus if r is a relation on scheme R, A is an attribute in R and/1  . . .  I,~ are indices of 
A in R, then 

$ A ' I l l { i l  1 ..... i l  m } . . . . .  A'Ia]{ in  1 ..... into} ( r )  = 

{t13 t, ~ r[t(R - A) = t,(R - A) A t(A) = tt(A)(I1)l~lA 
. . .  A t( A ) = t'(d)(I~)l~n]} 
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= =  , _ . . . . .  
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Figure 8.7: Iota Example  1 
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For example, Figure 8.8 show the result of the following query: 

LAPPROPRIATION.Observer[Hald~rman ( 
gAPPROPRIATION.Data_Tirne[{ 3an,Feb} ( 
$(APPROV ER.Observcr[Ha|derman ( 
t AP P ROV En.Dat~-T'rneI{ j~ ,F,b}  ( f und ing ) ) ) )  

which restricts the relation to Halderman's view of things, and further only to his view 
of the Appropriations in January and February, and the Approvers in January and 
February. 

D R O P - I N D E X  Drop-Index, symbolized by 6, drops an index from a specified 
attribute or attributes in a relation. In effect, this operation evaluates an index at ~ 
some specified value i, and therefore transforms an n-value into an n-l-value. Its 
analog in temporal databases is to evaluate the database as of some specified value, 
e.g., now. Note that 6, like 7r, changes the scheme of the resulting relation. 

If r is a relation on scheme R, A is an attribute in R and 1 is an index of A in R, 
then 

6A.I=,(r) = {tl 3 t '  e r [ t ( R -  A) = * , ( R -  A)A t l ( d ) ( I )  = i]} 

D r o p - I n d e x  E x a m p l e  

6APPROPRIATION.Rec--Time=Feb ( f u n d i n g )  

would yield the relation in Figure 8.9 showing the Appropriations as they were recorded 
in the database as of February. 

Again, extending the operator to multiple attributes and indices, Thus if r is a 
relation on scheme R, A is an attribute in R and I1 . . .  I,~ are indices of A in R, then 

6A.*rl =il,...,A-I~ =in (r) = {t]~ 't! e r [ t ( R - A )  = t I (R -A)A t I (A ) ( I1 )  = il A . . .A t l (A) ( In)  = in]} 

The query: 
6APPROPRIATION.Rea--Tirne=Feb, APPROVER.Ob . . . . . . .  EhrIichman(funding) 

would yield the relation in Figure 8.10 showing the Appropriations as they were 
recorded in the database as of February, and the Approvers as seen by Ehrllchman. 

8.2 .5  P a r t i a l  F u n c t i o n s  

In an ideal world our information is perfect, i.e., for each index (and combination of 
indices) associated with an attribute the database records a corresponding value. In 
this case there is no problem with any of the operations we would like to perform. 
In a database with a complex indexical structure, however, it is likely that not all of 
the data will be known or even existent. For example, data for certain moments in 
time, or representing the point of view of some particular observer, or derived using a 
particular model, may in certain cases be unavailable. This situation - which should 
be understood as essentially different from the issue of "null values" which has a long 
history of study in the context of the relational data model - has been recognized as a 
problem in the special case of historical databases. In the Historical Relational Data 
Model of [119] the solution of tuple "hfespans" was adopted to handle this problem. 
Other researchers have employed similar techniques. 

Within the context of the Indexical Data Model, the problem arises when attempt- 
ing to evaluate a function at a point where it is undefined. AnMogous to the notion 
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PNAME i APPROPRIATION: <Oblerver,  Data-Time> 

Halderman - -  

Watergate Break-In i 

Ehrlichman - -  

! 

! 

' Dec --  40000 
Jan 5(3000 
Feb 60000 

r Dec - 3oooo 
L Jan 50000 

Feb 60000 

Waterg~tte Coverup 

Dee - -  20000 
Jan ~ 20000 

Halderman ~ Feb ~ 20000 

Dec ~ 300(30 
Jan --  40000 

Ehrllchman ~ Feb --  40000 

EUsberg Break-In 

I Dec --  30000 ] 
t talderman --  Jan 30000 

Feb 60000 

Jan --  50000 
Ehrlichman ~ Feb - -  50000 

APPROVER:  <Obterver,  Rec-Time. Data-Time> 

Jan --  

Halderman - -  

Feb --  

Jan 

Ehrllchman - -  

Feb --  

�9 Dec 
Jan 
Feb 

: Dec 
Jan 
Feb 

�9 Dec 
Jan 
Feb 

: Dec 
JQr; 
Feb 

Mitchell ' 
- -  Mitchell 

Nizon 

Nizon I - N i x ~  
-- Nizon 

- -  Mitchell 
- -  Mitchell 

Mitchell 

Mitchell 
Mitchell 
Mitchell 

Jan 

Halderman 

Feb 

Jan ~ 

Ehrlichman 

Feb - -  

�9 Dec 
Jan 
Feb 

: Dee 
Jan 
Feb 

Dee 

Feb 

D,c 
Jan 
Feb 

- -  Mitchell 
- -  Mite3tell 
- -  N ixmt  

-- N ixon  
- -  N ~ o n  

Ni ton  

- -  Mitchell 
Mitchell 
Mitchell 

Mitchell 
- -  Mitchell 
- -  Mitchell 

Halderman 

Ehrl ichman 

Jan 

Feb 

J a n  - -  

Feb - -  

I 
Dea 

Jan 
Feb 

F~.b 

Dec 
./an 
Feb 

I Der 
Ja.n 
Feb 

Mitchell ] 
Mi tchdl  

- -  Ni.~on 

Nizo~ ] 
N izon 
N ixon 

- -  Mitchell ] 
Mitchell 
Mitchell 

- -  Mitchell ] 
Mitchell | 
Mitchell J 

: . ~ 

i ! 

Figure 8.9: Drop-Index Example 
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of "lifespans" in H R D M  ([119]), we can define for each Index, at either the attribute 
level, the tuple level, or even the relation level, the concept of index spans to handle 
this problem. 

8.3 I n s t a n c e s  of  t he  Index ica l  D a t a b a s e  M o d e l  

The Indexical Database Model is a general model which, we claim, generalizes many of 
the notions found in a number of other proposals which have appeared in the literature. 
For example, the Historical Relational Data Model (HRDM) [119] is an extension of 
the relational data model with a single time index to represent the so-called "valid 
time" of the data it manages. In IDM this would be a homogeneous indexical model 
with a single index. In this section we recast the model of HRDM as an indexical 
database model. 

8 . 3 . 1  H R D M  

In this section we recast the Historical Relational Data Model H R D M  ([119]) as an 
instance of an IDM: 

�9 UDH = {D1, D2..., Dn~ } is the (universal) set of va lue  doma ins .  

�9 UAH = {A1, A2 .... ,A~, } is the (universal) set of a t t r i b u t e s .  

�9 UIH = {11 } = T = { . . . ,  to, t l , . . . } ,  i.e., there is only one indexl the set of t imes .  

�9 UDH, UA~I, and UIH are all pairwise disjoint. 

�9 V C  = {OD1, . . . ,OD,a} ,  the set of value comparator sets, is application- 
dependent. (Again, minimally each value domain must support equality and 
inequality comparisons. 

�9 I c  = { o x l }  = { 0 2 }  = {=,#,<,>,<,>}. 
A 

Historical Relation Scheme RH is a 4-tuple RH = <  AH, KH, V D O M H , I D O M H  > 
where: 

1. A~I C UA~t is the set of a t t r i b u t e s  of scheme RH 

2. h ~  C AH is the key of scheme RH 

3. V D O M H  : A n  --+ UDH gives the va lue  d o m a i n  of each attribute of scheme 
R/-/. 

4. I D O M H  : AH -~ 2 v1 specifies the i n d e x  d o m a i n  of each attribute An;  in this 
case, for all attributes AH of scheme RH, I D O M ( A H )  = T. 

A t u p l e  t on  s c h e m e  R is an ordered pair, t - -<  v, 1 >, where 

1. t.1, the l i f e span  of  t u p l e  t, is any subset of UIH 

2. t.v, the va lue  of  t he  t u p l e  is a mapping such that for all attributes A E R, 
t .v (A)  is a mapping of the type t.1 --* D O M ( A ) .  

Note that it is condition 2 in H R D M  which stipulates that the values of each 
attribute in a tuple t are partial functions, and that the domain of these functions is 
the lifespan which is defined in condition 1. 

A r e l a t i o n  r on  R is a finite set of tuples t on scheme R such that if tl and t2 are 
in r, for all indices in the index spans of the two tuples, tl and t2 disaglee for those 
indices on the value of the key. 
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8.3.2 Bitemporal  Database Models 
The notion of a bitemporal database - a database which records not only the valid time 
of the data but also the transaction time when the data was stored in the database 
- is a case of an IDM with two indices. Snodgrass' Temporal Database TQuel [528], 
and Ariav's model [21] could equally well be cast as instances of an IDM database. We 
believe that  the various models for version control ([310] provides a good overview) 
could also be expressed as specific instances of an IDM database. In [121] we discuss 
the issue of a uniform treatment of the valid and transaction times in bitemporal data 
models. 

8 .4  Summary and C o n c l u s i o n s  

The modeling capability of today's DBMS's will need to be expanded if they are to 
serve the needs of tomorrow computing problems. Numerous research proposals have 
appeared to extend this functionality for a wider array of application areas. Among 
these proposals have been a plethora of suggestions for historical databases, rollback 
databases, and bitemporal databases. 

We have described the I n d e x i c a l  D a t a b a s e  M o d e l  ( I D M )  as a generalization of 
the work done in these and related areas. In this chapter We have provided an overview 
of the structures of this model and the operators in its algebra, and shown how one of 
these models - the historical relational data model (HRDM) - can be seen as a variety 
of I D M .  

We have illustrated the power of the model by means of a few example queries 
expressed in an relational algebra extended to handle indexical relations. The algebra 
was chosen because its gives a better "flavor" of how you can cut and paste tables 
together. In fact, we can also define a multi-sorted calculus, similar to the language 
Lh discussed in [120], with variables over ordinary domains as well as over each type 
of index. Since Lh is shown in [120] to be more powerful than any ungroupedlanguage 
for historical databases, it is reasonable to base our indexical calculus on the same 
framework. However, as [120] also points out, since there is as yet no known historical 
algebra equivalent in power to Lh the issue of the completeness of an indexical algebra 
remains an open one as well. 



Chapter 9 

A TEMPORAL QUERY LANGUAGE FOR A 
CONCEPTUAL MODEL 

Ramez Elmasri*,Vram Kouramajian t 

9 .1  I n t r o d u c t i o n  

This chapter is a summary of our work in temporal conceptual models and query 
languages [173, 178, 174, 179]. Most previous work in temporal database models and 
query languages has been mainly in the context of the relational model of da ta  [528,201, 
429, 293]; and to a lesser extent, in conceptual data  models [508, 178, 632]. However, 
these approaches have a fundamental pitfall, in that  they fail to consider the semantics 
associated with time. In this chapter, we describe a Semantic Temporal model based 
on the Extended Entity-Relationship model (STEER), which distinguishes between 
conceptual and temporal  objects. A conceptual object, once it is created, can always 
be referenced at any future time, whereas a temporal object, which we call an entity role, 
has a specific existence lifespan. For example, information concerning a STUDENT 
conceptual object can be referenced even after the student has completed his studies. 
However, the role of that  entity as an ENROLLED-STUDENT has specific s tart  and 
end times that  define its lifespan. (STUDENT is the owner entity of ENROLLED- 
STUDENT role.) 

The STEER model characterizes the properties of entities (conceptual objects), en- 
t i ty roles ( temporal  objects), and (temporal and non-temporal) attributes. I t  also de- 
fines temporal  constraints among entity roles, differentiates between temporal  and con- 
ceptual relationships, and provides rules for preserving temporal integrity constraints. 

We complement our model by providing temporal query language constructs. The 
query language is a temporal extension of GORDAS [I77, 176], which is a formal, high- 
level and user-friendly query language for the Extended Entity-Relationship model. 
The temporal  query language distinguishes between temporal and conceptual ob- 
jects/relationships.  It Mlows selection conditions to retrieve attr ibutes and relation- 
ships of a role or an entity type, since attr ibutes and relationships of a role type and 
its owner entity type are public to each other and can be inherited. It also provides 
natural  and high level temporal  element constructor operators that  simplify tempo- 
ral query expressions. Finally, it supports temporal version restriction operators and 
allows multiple temporal  scopes in a temporal projection. 

* Computer Science Engineering Department, The University of Texas at Arlington, Arling- 
ton, Texas 76019-0015, U.S.A., elmasri@cse.uta.edu 

t Computer Science Engineering Department, The University of Texas at Arlington, Arling- 
ton, Texas 76019-0015, U.S.A., kom.amaj~cse.uta.edu 
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The remainder of this chapter is organized as follows. Section 9.2 describes the 
representation of t ime we use. Section 9.3 discusses the STEER data  model. Section 9.4 
presents constructs for temporal  boolean expressions, temporal selection and temporal 
projection. Section 9.5 describes the temporal query language. Finally, section 9.6 
contains a conclusion and planned future work. 

9.2 Represent ing  T i m e  

Let T be a countably infinite set of totally ordered discrete chronons (time points), 
where T is denoted as T = {to,t1,. . .  ,t . . . .  tno~+l,...}. We use NULL to represent 
unknown chronons, and t,~o~0 to represent the current chronon which is continuously 
increasing. We define a time interval, denoted by [tl,t~], to be a set of consecutive 
equidistant t ime instants; that  is, the totally ordered set { t t , t z + l , . . . , t ~ - l ,  t~} C T, 
where t~ is the first element or s tart  point of the time interval and tu is the last element 
or end point. 

The distance between two consecutive time instances, ti and t i+l ,  represents the 
granularity of the application; and can be adjusted to be equal to months, days, hours, 
minutes, seconds, or any other suitable time unit. A single discrete time point t is 
easily represented as an interval [t, t], which we will denote simply as It]. 

Since interval representation is not closed under set operations, [201] suggested the 
concept of temporal  element. A temporal element is a finite union of time intervals, 
denoted by { I1 ,12 , . . . ,  I,~} where h is an interval in T. Notice that  union, intersection 
and difference operations on temporal elements are easily defined. In addition, set 
comparison predicates of two temporal  elements using =,  5 ,  D, and _ can also defined. 

In temporal  databases, it is customary to include a number of different time di- 
mensions. The most common kinds of time are: valid time, transaction time and 
user-defined time [530]. Valid time is the time that  an event happened in the real 
world. It gives queries the capabilities to refer to past and future states of the data- 
base. The main difference between future time and historical time is that  the lat ter  
refers to state changes that  have already occurred, and thus are known to have hap- 
pened, while future time refers to state changes that  are planned to occur but may 
or may not happen according to the plan. Transaction time is the registration time; 
that  is, the time when da ta  is recorded in the database. User defined-time is provided 
and supported by the user of the database; its semantics are left to each application. 
Because of space hmitations, we will consider only valid time in this chapter. 

9.3 The  Temporal  Data  Model  
We will assume that  the reader is familiar with the basic concepts of the ER model 
and ER diagrams [108], as well as its semantic extensions [175], and hence present only 
the main features of the STEER model. 

9.3.1 Conceptual Objects: Enti t ies  

Our goal is to define guidelines for determining the basic aspects of an object life 
time. The conceptual existence of an object does not directly correspond to the birth, 
death, and change of the object. Objects need to be modeled in a mini-world when they 
become of interest. For example, employees exist in the real world as persons. However, 
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they become objects of interest to a company only when the company wants to hire 
them. At this point, the company may still want to record previous information about 
these persons. If an employee leaves the company, the employee remains an object of 
interest as long as the company still wishes. 

Each conceptual entity e has an existence time, denoted by ET, which is unrelated 
to the concept of lifespan. The start time point S T  of the existence time refers to 
the time the concept of the entity is materialized. There is no end time point of an 
existence time. The end time can be considered to be infinity in our model, because a 
concept (an entity) once realized never ceases to exist. The only time that characterizes 
an entity is the start time of its existence. Hence, E T  = [ST, ~ ) .  (We also use the 
notation T(e) to refer to the existence time of an entity e.) 

There are two important ramifications in associating existence time with entities: 

1. We can define and treat future planning concepts using similar mechanisms to 
those used for historical concepts. 

2. We can enhance the power of query languages and simplify their constructs while 
dealing with conceptual objects, by using start time point of existence time as 
the earliest possible time the entity can be referenced. 

An entity type is a set of entities of the same type; that is, entities that share the 
same properties. An entity type is diagrammatically represented by a rectangular box 
(see Figure 9.1). 

9.3.2 Temporal Objects: Roles 
Entities describe one aspect of the real world, the conceptual one. The other aspect is 
captured by temporal objects. The classification of objects as temporal and conceptual 
gives our model the capability to faithfully represent the way people perceive the real 
world. Temporal objects materialize the active role that conceptual objects play in the 
temporal dimension. 

We call a temporal object an entity role, since it represents the time that the entity 
is participating in that role. A role type is a set of entity roles of the same type; that is, 
roles that share the same properties. Each role type is associated with a single entity 
type called its owner entity. Hence, owner(entity role) = entity r role(entity) = 
entity role. A role type is diagrammatically represented by a dotted rectangular box, 
and connected to an owner entity (see Figure 9.1). Each entity role ro of a role type 
RO is associated with a temporal element T(ro) C [to, oo) which gives the lifespan LS 
of the role. 

The following general set of rules must hold on roles: 

1. Start time of the lifespan of an entity role must be greater or equal to the start 
time of the existence time of the (conceptual) owner entity. This implies a top- 
down approach in creation of role types; that is, before a role is created its 
corresponding (owner) entity must exist. 

2. A role type is restricted exactly to one owner entity type. 

3. A role type can have only temporal attributes. 

4. (Temporal) attributes of a role type are public to the owner entity type; that is, 
an owner entity refers to these attributes as though they are attributes of the 
owner entity. 
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5. Similarly, ( temporal  and non-temporal) at tr ibutes of an entity type are public 
to all associated role types. 

6. A role can access all relationship instances for relationship types in which the 
owner entity participates. 

7. Similarly, an entity can access all relationship instances for relationship types in 
which the associated role participates. 

9.3.3 Temporal Constraints among Roles 

Our model enforces two temporal  constraints among roles: 

1. Existence Constraint: A sup-existence/sub-existence constraint, denoted by 
ROi/ROj, holds between two role types ROi and ROj iff the following holds: 
{V rojk E ROj, 3 roi~ E ROi such that rojk -- roi~}; that  is, every entity role 
ROj represents the same entity role in ROi. The existence constraint implies a 
top-down approach in the creation of roles. A member role of a sub-existence 
represents the same real world entity as some member of the sup-existence. An 
entity role cannot exist in the database merely by being a member of a sub- 
existence; it must be also a member of the sup-existence. 

2. Li]espan Constraint: A sup-lifespan/sub-lifespan constraint, denoted by 
ROi/ROj, holds between two role types RO~ and ROj iff the lifespan of any 
entity role rojk E ROj is a subset of the lifespan of the entity role roiz E ROi 
where roj~ - toil; that  is, T(rojk) C T(roil) .  Notice that  the lifespan constraint 
implies the existence constraint, but not vice versa. 

9.3.4 Non-Temporal A t t r i b u t e s  

Attr ibutes  are properties of objects. Non-temporal at tr ibutes can be only properties of 
conceptual entity types but not of role types. The value of a non-temporal at tr ibute of 
an entity holds over the entire existence time of the entity. We assume that  the reader 
is familiar with the properties of non-temporal at tr ibutes of the ER model [175], and 
discuss only the properties of temporal at tr ibutes below. 

9.3.5 Temporal A t t r i b u t e s  

Each entity type E~ (role type RO~) may have a set of basic temporal at tr ibutes TAil, 
TAil, ..., TAin, and each temporal at t r ibute TAr is associated with a domain of 
values dom(TAij). For example, a temporai at tr ibutes of the PERSON entity type is 
Name,, and a non-temporal  at t r ibute is SSN (see Figure 9.1). 

The following definitions are similar to those given in [178]. For roles, the temporal 
value of each at t r ibute  TAi of ro, which we refer to as TAi(ro), is a partial  function 
TAi(ro) : T(ro) --+ dom(TAi). The subset of T(ro) in which Tdi(ro) is defined is 
denoted by T(TA~(~o)). It is assumed that  TA~ has a NULL (or UNKNOWN) 
value during the intervals T(ro) - T(TA~ (ro)). 

In the case of entities, the temporal value of each at tr ibute TA~ of e, which we 
refer to as TAi(e), is a part ial  function TAi(e) : ET(e) --+ dom(TA~). The subset of 
ET(e) in which TA~(e) is defined is denoted by T(TA~(e)). It is assumed that  TA~ 
has a NULL (or UNKNOWN) value during the intervals T(e) - T(TA, (e)). 
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The partial function that describes the values of a temporal attribute is also called 
a temporal assignment [201, 179]. The subset of chronons during which a temporal 
attribute is defined is called the temporal element of the temporal assignment. 

Several types of temporal attributes exist: 

1. A temporal single-valued attributes has at most a single atomic value for each 
entity (role) at each time instant [t]. 

2. A temporal multi-valued attribute can have more than one value for an entity (a 
role) at a given time instant [t]; hence, its domain is the power set P(V) of some 
simple domain V. 

3. A temporal composite attribute is a list of several component temporal attributes, 
and its value for each entity at time instant It] is a concatenation of the values of 
its components. The temporal element of a temporal assignment of a composite 
attribute is the union of the temporal elements of the temporal assignments of 
its components. 

In our model, each entity will be associated with a system-defined non-temporal 
SURROGATE attribute whose value is unique for every entity in the database. The 
value of this attribute is not visible to users, and is never altered. 

9.3.6 Classes and Superclass/Subclass Relationships 
Our data model supports the concepts of (conceptual) subclasses and superclasses and 
their related concepts of specialization and generalization. A class is any set of entities; 
hence, an entity type is also a class. Additional groupings of entities that are subclasses 
(subsets) of the entities in another class are often needed. A superclass/subclass re- 
lationship is implicitly defined for each subclass. Subclasses can be used to represent 
generalization and specialization hierarchies and lattices. A more complete discussion 
of subclasses in the EER model is given in [175]. 

A member entity of a subclass represents the same real world entity as some member 
of the superclass. An entity cannot exist in the database merely by being a member of 
a subclass; it must also be a member of the superclass. An entity that is a member of a 
subclass will have the same existence time as the corresponding entity in its superclass 
because the entity in the subclass represents the same real world entity as the one in 
the superclass. An important concept associated with the subclass is that of attribute 
inheritance. An entity that is a member of a subclass inherits all (temporal and non- 
temporal) attributes of the corresponding entity in its superclass. Note that since 
(temporal) attributes and relationships of a role type are public to an owner entity 
type, they become public to all subclasses of the owner superclass; and thus any query 
over a subclass can access those public (temporal) attributes. An entity also inherits 
all relationship instances for relationship types in which the superclass participates. 

9.3.7 Conceptual Relationships 
A conceptual relationship type R of degree n has n participating entity types El ,  E2, 
. . .  ,En.  Each relationship instance r in R is an n-tuple r = <  e l , e2 , . . .  ,en :> where 
each e~ E E i .  Each relationship instance r in R has an existence time ET. The 
start time of the existence time of a relationship instance must be greater or equal 
to the start time of the existence time of each of the participating entities; that is, 
ST(r) > ST(e~) for each e, ~ E, (i = 1, 2 , . . . ,  n). 
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9.3.8 Temporal Relationships 
Our model supports temporal relationships. A temporal relationship type T R  of degree 
n has n participating entity types (role types) O1, O2 , . . . ,  On where Oi is either an 
entity type (Oi -- Ei) or a role type (Oi -- ROi). Each temporal relationship instance 
tr in T R  is an n-tuple tr = <  ol, o2 , . . . , on  > where oi is either an entity (oi - ei, 
ei E Ei) or an entity role (oi - roi, roi E ROi). 

Each temporal relationship instance tr in T R  is associated with a temporal element 
T(tr)  which gives the lifespan of the temporal relationship instance. If all participating 
objects are entity roles, then the lifespan of the temporal relationship instance must be 
a subset of the intersection of the lifespans of the roles; and if all participating objects 
are entities, then the start time of the lifespan of the temporal relationship instance 
must be greater or equal to the start times of all existence times of the entities. 

9.3.9 Temporal C o n s t r a i n t s  a m o n g  Relationships 
Our model enforces two constraints on temporal and conceptual relationships: 

1. R-existence Constraint: A sup-R-existence/sub-R-existence constraint, denoted 
by R / T R ,  holds between a conceptual relationship R and a temporal rela- 
tionship T R  where all participating object types are role types iff Y tri = 
(rot, ro2, . . . ,  to=) E T R  the following two conditions must be satisfied: 

(a) 3 r~ = (e l , e2 , . . . , e=)  E R, such that owner(roj) = ej, for j -- 1,2 . . . .  , n. 

(b) The start time of the llfespan of the temporal relationship instance tri must 
be greater or equal to the start time of the existence time of the conceptual 
relationship ri. 

2. R-li]espan (time order) Constraint: A sup-R-llfespan/sub-R-lifespan constraint, 
denoted by T R / R  holds between a temporal relationship T R  and a conceptual 
relationship R where all participating object types are role types iff V ri -- 
(el, e2 , . . . ,  en) E R the following two conditions must be satisfied: 

(a) 3 tr~ = ( r o l , r o ~ , . . . , r o ~ )  E TR, such that o~ne~(ro~) = e~ for all j = 
1 , 2 , . . . , n .  

(b) The start time of the existence time of the conceptual relationship instance 
ri must be greater or equal to the start time of the lifespan of the temporal 
relationship try. 

The R-existence and R-lifespan constraints are denoted diagrammatically in a sim- 
ilar way to existence and lifespan constraints for role types. Notice that the R-lifespan 
constraint is, in some sense, the reverse constraint of the lifespan constraint on role 
types. It is used to model the cases where a conceptual relationship cannot exist until 
after a temporal relationship has started. For example, students cannot get transcript 
entry for courses until alter they have been enrolled. 

9.3.10 An Example 
Consider the example database schema in Figure 9.1, which describes a simplified orga- 
nization for part of a UNIVERSITYdatabase.  The database includes the (conceptual) 
entity types PERSON, STUDENT,  FACULTY, COURSE, and SECTION. Any entity 
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instance that is a member of any of these entity types is associated with an existence 
time. The entity types S T U D E N T  and FACULTY are subtypes of the entity type PER- 
SON. The role types are diagrammatically represented by a dotted rectangular box, 
and connected to their owner entity types. The role types and their owner entities a r e :  

owner(LIVING-PERSON)  = PERSON 
owner(ENROLLED-STUDENT)  = S T U D E N T  
owner(CURRENT-FACULTY)  = FACULTY 
owner(VA LID-CO URSE) = CO URSE 
owner(ACTIVE-SECTION)  = SECTION 

The conceptual relationship types are: 

CS between COURSE and SECTION 
TAUGHT between FACULTY and SECTION 
T R A N S C R I P T  between S T U D E N T  and SECTION 

The temporal relationship types are: 

A CTIVE-CS  between VALID-COURSE and A C T I V E - S E C T I O N  
IS -TEA CHING between C URRENT-FA C ULTY and A CTIVE-SECTION 
ENROLLED between E N R O L L E D - S T U D E N T  and A C T I V E - S E C T I O N  

9.4 Temporal Query Language Constructs 
In non-temporal databases, a typical query will select certain entities based on boolean 
predicates that involve attribute values of an entity (and of related entities). Following 
that, certain attributes or relationships of each of the selected entities are displayed. 
Other queries involve aggregate functions on groups of entities or their attributes. In 
a temporal database, selection criteria may be based not only on attribute values but 
also on temporal conditions. In addition, once an entity is selected, the user may be 
interested in displaying the complete history of some of its attributes or relationships, or 
to limit the displayed values to a certain time interval. To allow for temporal constructs 
in queries, we will use the concepts of temporal boolean expressions, temporal selection 
conditions (or temporal predicates), and temporal projection [179]. 

A (temporal) boolean expression is a conditional expression on the attributes and 
relationships of an entity (or an entity role). For example, a boolean expression can 
be Classification = 'Senior'. The boolean condition when applied to one entity e (or 
one entity role to), evaluates to a function from T(e) (or T(ro)) to { TRUE, FALSE, 
U N K N O W N  }. We call this function a temporal assignment. 

The true_time of a boolean expression, c, denoted by [c], evaluates to a temporal 
element for each entity e (or each entity role ro). The temporal element is the time 
for which the condition is T R U E  for e (or to). As an example, the boolean condition 
Classification = 'Senior', when applied to an E N R O L L E D - S T U D E N T  ro (Figure 9.1), 
returns a function from T(ro) to { TRUE, FALSE, UNKNOWN }. If T(ro) is equal to 
[9/1/83, 8/31/87], and the student classification was senior during [9/1/86, 8/31/87], 
the temporal assignment result would be: 

{ [9/1/83, 8/31/86]--+ F A L S E ,  [9/1/86, 8131187]--+ ~ n u E  }. 
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active-sec ~ @ ~  course 
e-students 

act-sections 

section 

sections sec-course 

faculties 

Figure 9.1: A Temporal EER Schema for part of a University Database 
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The value for the true_time [ Classification = 'Senior'] would be [911/86 , 8/31/87]. 
Next we define a (temporal) selection condition, which compares two temporal  

elements using the set comparison operators =,  5 ,  _D, aatd C. When applied to an 
entity type (or class), it evaluates to those entities that  satisfy the temporal selection 
condition. For example, consider the following temporal selection condition applied to 
the ENROLLED-STUDENT entity role type of Figure 9.1: 

Classification = 'Senior' ] D [9/1/86, 5/31/87] 

This selects all ENROLLED-STUDENT entity roles whose classification was 'Se- 
nior' during the period [9/1/86, 5/31/87]. The condition is evaluated for each 
ENROLLED-STUDENT entity role individually, and returns either a Y E S  or NO 
answer. All entity roles for which the answer is Y E S  are selected. 

We also define temporal projection. This is applied to a temporal entity and restricts 
all temporal  assignments (at tr ibutes and relationships) for that  entity to a specific time 
period specified by a temporal element T. 

Temporal  selection conditions are used to select particular entities based on tem- 
poral  conditions, whereas temporal  projections are used to limit the data  displayed 
for the selected entities to specific time periods. Temporal boolean conditions may 
be used as components in the expressions for both temporal selections and temporal 
projections. 

9.5 The Temporal Query Language 
Much of the flexibility and power provided by a query language is dependent on the 
da ta  model. Our temporal  query language derives its simplicity and expressiveness 
from the STEER data  model; in particular from the distinction between temporal  
and conceptual objects, and temporal and conceptual relationships. The query lan- 
guage used is a temporal  extension of GORDAS [177, 176, 179]. We briefly recall that  
GORDAS is a functional query language with two clauses: GET and WHERE. The 
WHERE-clause specifies conditions for the selection of entities from a root entity type, 
while the GET-clause specifies the information to be retrieved for each selected entity. 
For example, consider the following (non-temporal) GORDAS query specified on the 
database of Figure 9.1: 

QI:  G E T  < Name, SSN, < CName o f  see-course, Semester, Year > 
o f  sections > o f  STUDENT 

W H E R E  Address o f  STUDENT = 'Arlington'  

Here, the root entity type, specified at the end of the GET-clause, is STUDENT. 
The WHERE-clause is evaluated individually for each entity in the root entity type, 
and selects each entity that  satisfies the WHERE-dause. In this query, each STU- 
DENT entity who lives in 'Arlington' is selected. (Note that  the Address attr ibute is 
visible to STUDENT by being inherited from LIVING-PERSONvia PERSON as we 
will describe in section 9.5.1.) The o] STUDENT in the WHERE-clause is optional, 
and can be left out. For each selected entity, the GET-clause retrieves the student 
Name, SSN (both inherited from PERSON) and sections, and for each of the student 's  
sections the CName, Semester and Year are retrieved. The connection names such as 
see-course and sections are used to specify related entities of the root entity type in a 
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functional way as though they were attr ibutes of root entities. Hence, the path sec- 
tions of STUDENT specifies the SECTION entities related to each STUDENT entity 
via the TRANSCRIPT relationship. A full discussion of non-temporal GORDAS is 
outside the scope of this work, and is given in [177, 176]. 

In temporal  GORDAS, we will adopt the philosophy that  a non-temporal GORDAS 
query is also valid, and will default to the current database state. Hence, if a temporal 
GORDAS query is specified with no temporal selections or projections, we will assume 
that  a snapshot of the database is taken at the time instant tno~ when the query is 
evaluated, and the query is processed using this database state. This will make it 
possible to specify both temporal and non-temporal queries on the database within 
the same framework. 

In section 9.5.1 we discuss temporal projection and introduce additional temporal 
element constructor operators. Section 9.5.2 presents temporal selection. Section 9.5.3 
describes temporal  version restriction operators. Finally, section 9.5.4 introduces op- 
erators that  allow multiple temporal  scopes in a temporal projection. 

9.5.1 Temporal Projection 
A temporal  query may involve a temporal selection condition or a temporal projection 
condition or both. The general philosophy of GORDAS is to maintain a clean separa- 
tion between the specification of conditions for selection of entities (in the WHERE- 
clause) and the specification of information to be displayed (in the GET-clause).  To 
maintain this philosophy, we will specify a temporal projection on the data  to be dis- 
played at the end of the GET-clause, as in [179]. For example, consider the query 
to retrieve the history of the Address and PhoneNumber of 'John Smith' during the 
period 1985 to 1990: 

Q2: G E T  < Address, PhoneNumber > o f  PERSON : [1/1/1985, 12/31/1990] 
W H E R E  Name = 'John Smith'  

The term PERSON: [1/1/1985, 12/31/1990] at the end of the GET-clause specifies 
that  the temporal  assignment for 'John Smith' is to be retrieved during the period 
[1/1/1985, 12/31/1990]. On the other hand, the next query is non-temporal, and 
displays the current (at time instant tno~) Address and PhoneNumber of 'John Smith': 

Q3: G E T  < Address, PhoneNumber > o f  PERSON 
W H E R E  Name = 'John Smith'  

As seen from query Q2, the temporal projection of selected entities is specified by 
a temporal  element at the end of the GET-clause. The temporal element may be 
a time period (as in Q2) or may itself be derived from the database for each entity 
(as in Q4 below). For example, suppose we want the full history of the Address and 
PhoneNumber of 'John Smith': 

Q4: G E T  < Address, PhoneNumber > o f  PERSON : ET 
W H E R E  Name = 'John Smith'  

This retrieves the values of address and phone number over the whole existence 
time (ET) of the entity. If :ETis left out, only the current Address and PhoneNumber 
(at time instant tno~) are retrieved. 
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Temporal attributes of a role type are public to the owner entity type; that is, 
an owner entity can refer to these attributes (through inheritance) as though they 
are attributes of the owner entity. Similarly, (temporal and non-temporal) attributes 
of an entity type are public to all associated role types. The definition of attributes 
and relationships of a role type and its owner entity type as public to each other 
gives queries the flexibility to specify selection conditions and to retrieve information 
involving attributes of a role or an entity type by referring to each other's attributes. 
For example, in queries Q2, Q3 and Q~, the entity PERSON is able to refer to the 
attributes Address and PhoneNumber of the entity role LIVING-PERSON since the 
owner of LIVING-PERSONis  the entity PERSON. Notice that we can specify similar 
queries to the queries Q2, Q3 and Q~ by referring to LIVING-PERSON explicitly, as 
in Q5, Q6 and Q7, since they only display temporal attributes: 

Q5: G E T  < Address, PhoneNumber > of  LIVING-PERSON 
: [1/1/1985, 12/31/1990] 

W H E R E  Name = 'John Smith' 

Q6: G E T  < Address, PhoneNumber > of LIVING-PERSON 
W H E R E  Name = 'John Smith' 

Q7: G E T  < Address, PhoneNumber > of  LIVING-PERSON : LS 
W H E R E  Name = 'John Smith' 

However, Q6 and Q7will only retrieve entities that are LIVING-PERSONs at time 
t . . . .  whereas Q3 and Q4 may retrieve deceased persons (since conceptual entities have 
no end time) but then find that their attributes may be NULL at time t,~o~. 

The projection of (temporal) attributes over a lifespan displays information about 
a conceptual entity during the time period it participates as a particular entity role. 
For example, in the next query, the history of the Address and PhoneNumber of 'John 
Smith'is retrieved, during the time he was an enrolled student: 

Q8: G E T  < Address, PhoneNumber > of ENROLLED-STUDENT : LS 
W H E R E  Name = 'John Smith' 

Here, the Address and PhoneNumber history are retrieved only during the lifespan 
(LS) that 'John Smith ' exists in the ENROLLED-STUDENT entity role. If :LSis left 
out, the current Address and PhoneNumber are retrieved if end time ET(LS)  > t~o~; if 
ET(LS)  < t~ow, the entity will not be selected since it is not valid as an ENROLLED- 
STUDENT any more. 

The next query retrieves all sections that 'John Smith'has completed: 

Q9: G E T  < CName of sec-course, Semester, Year > of SECTION 
W H E R E  Name of students of SECTION __D {'John Smith'} 

In this query, there is no need to project the query result over a time period since 
the attributes Semester and Year, and the relationship CS (specified by see-course) 
are non-temporal attributes and relationship of SECTION, and hence always exist. It 
is this type of query that becomes cumbersome to specify when no distinction is made 
between temporal and conceptual objects, as in [179]. For instance, if the root entity 
SECTION of query Q9 is replaced by A CTIVE-SECTION, we get all sections that 
'John Smith'is currently enrolled in: 
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Q10: G E T  < CName of see-course, Semester, Year > o f  ACTIVE-SECTION 
W H E R E  Name o f  e-students  o f  ACTIVE-SECTION _D {'John Smith'} 

This query is implicitly temporal since it refers to the temporal entity role 
ACTIVE-SECTION. The query displays the current (at time instant t~o~) sections 
that  'John Smith'is enrolled in. The capability to express such temporal queries by 
referring to an entity role without explicit reference to time is one of the advantages 
of this model. 

A temporal  query may explicitly specify a temporal projection that  is derived from 
a temporal  boolean expression. For example, suppose we want the history of Name, 
Office and Salaryof each CURRENT-FACULTYentity role only when the value of its 
at t r ibute Rank was either 'Assistant Pro]' or 'Associate Prof ': 

Ql1: G E T  < Name, Office, Salary > o f  CURRENT-FACULTY 
: [ ( Rank = 'Assistant Prof '  ) O R  ( Rank = 'Associate ProP) ]] 

In this case, a different time projection is applied to each selected entity role based 
upon the time that  entity was an assistant or associate professor; that  is, the time 
restriction is correlated to each individual entity role. 

When we deal with temporal intervals and elements in STEER, we need additional 
functionalities that  are not needed in other temporal query languages [178]. For in- 
stance, [entity : ET] - [role : LS~ returns the time period (temporal element) when 
an entity does not participate in a specific role. Hence, to retrieve the Name, SSN~ 
and Salaryof each faculty during the time period she/he is not CURRENT-FACULTY 
(e.g. on sabbatical or working for industry), we write: 

Q12: G E T  < Name, SSN, Salary > o f  FACULTY 
: [ FACULTY : ET ~ - [ CURRENT-FACULTY : LS ] 

Here, the Name, SSN, and Salary of a faculty are retrieved only during the period 
[ FACULTY : ET ~ - [ CURRENT-FACULTY : LS ], which is different for each 
selected entity. Note the difference between the temporal expression in queries Qll  
and Q12. In both queries Qll  and Q12, temporal element constructor operators are 
used to define temporal  elements at the end of the GET-clause. However, in query 
Qll, the boolean condition c = (( ( R a n k  = 'Assistant Pro]') O R  (Rank =- 'Associate 
Pro]' ) ) is based on a boolean predicate that  involves at tr ibute values of an entity 
role, whereas in query Q12, the boolean condition refers only to the existence time 
of FACULTY and the lifespan of CURRENT-FACULTY. In query Qll, the temporal 
element at the end of the GET-clause is the true_time of a boolean condition, whereas 
in query Q12, the temporal element is the difference between two true_times, namely 
the existence time of a FACULTYentity and its lifespan as a CURRENT-FACULTY 
entity role. 

The next query retrieves the history of the Name, Address and PhoneNumber of 
living persons during the period they were not enrolled students: 

Q13: G E T  < Name, Address, PhoneNumber > o f  PERSON 
: [ LIVING-PERSON : LS ] - [ ENROLLED-STUDENT : LS ] 

The usual set theoretic operations of UNION, INTERSECTION, DIFFERENCE 
and COMPLEMENT can be combined with temporal element constructor operators. 
Both previous queries Q12 and Q13 use the DIFFERENCE operator. The next query 
uses the COMPLEMENT operator to retrieve the history of the Name, Address and 
PhoneNumber of persons before they become faculty members: 



9.5. T HE T E M P O R A L  Q U E R Y  L A N G U A G E  187 

Q14: G E T  < Name, Address, PhoneNumber > o f  PERSON 
: C O M P L E M E N T  [[ FACULTY : ET ] 

The idea of applying a temporal  boolean condition to entity roles and entities can 
be extended to temporal attributes. The true_time of a boolean condition reduced to 
a temporal  at t r ibute name is represented as [[ temporal_attribute : time_period 7" This 
corresponds to the true_time of the temporal_attribute during time_period. For example, 
the next query retrieves the history of the Name, StudentNo, CName, Semester and 
Year of enrolled students during the period they had a valid Classification (that is, a 
Classification value that  is not NULL): 

Q15: G E T  < Name, StudentNo, < CNazne o f  sec-course, Semester, Year > 
o f  sections > o f  ENROLLED-STUDENT : [ Classification : LS 

9.5.2 Temporal Selection 
Next, consider the specification of temporal  conditions to select entities. These will 
usually involve the specification of temporal selection predicates in the WHERE-clause. 
For example, consider the query to retrieve the Name and PhoneNumberof all persons 
who lived in 'Arlington' on 3/30/1992: 

Q16: G E T  < Name, PhoneNumber > o f  LIVING-PERSON : [3/30/1992] 
W H E R E  ~ Address = 'Arlington' ] 2 [3/30/1992] 

In query Q16, the WHERE-clause is a temporal selection condition. For each 
LIVING-PERSONentity role, it first calculates the temporal boolean expression c = 
( Address = 'Arlington'); if the true_time ~c] 2 [3/30/1992], the temporal selection 
condition evaluates to Y E S  and the LIVING-PERSONentity role is selected by the 
WHERE-clause. Note that  it  is still necessary to specify the temporal projection 
[3/30/1992] again in the GET-clause since leaving it out would retrieve the current 
Name and PhoneNumber of each selected entity rather than those on 3/30/1992. 

The next query retrieves the SectionNumber and ClassRoom of all active sections 
that  were held in room 'EB119'during the period 1990-1991: 

Q17: G E T  < SectionNumber, ClassRoom > o f  ACTIVE-SECTION 
W H E R E  (I ClassRoom = 'EB119' ] n [1/1/1990, 1/12/1991]) r 0 

When we de~l with time periods, we sometimes need to access the first and last 
t ime points of temporal  elements. For example, to retrieve the Name, SSN and Address 
of all current students who lived in 'Arlington' when they first enrolled as a student, 
we w r i t e :  

Q18: G E T  < Name, SSN, Address > o f  ENROLLED-STUDENT 
W H E R E  [ Address = 'Arlington'  ~ D ST(LS) 

Here, the temporal  selection condition evaluates to TRUE ff [[ci 3 ST(LS),  where 
c = ( Address = 'Arlington'). The term ST(LS) means the start  time point of a 
lifespan. Note that  ST(LS)  is implicitly applied to ENROLLED-STUDENT since it 
is the root entity role. This can also be written as ST(~ ENROLLED-STUDENT : LS 
1). 



188 C H A P T E R  9. A T E M P O R A L  Q U E R Y  L A N G U A G E  

The lifespan of an entity role can be a continuous time period. This may happen 
if either an entity role has come into existence in the mini-world and never ceased 
to exist, or an entity role has come into existence for a while then has ceased to 
exist and has never reexisted in the mini-world. In order to support the concept of 
continuous and discontinued lifespans in our query language, we introduce the keywords 
CONTINUOUS and DISCONTINUED. For example, suppose we want to display the 
courses that have been continuously taught every semester: 

Q19: G E T  < Cname, CNumber, Dept > of  VALID-COURSE 
W H E R E  C O N T I N U O U S  LS 

This is similar to the temporal A L W A Y S  SINCE operator in temporal logic [542]. 
As a final example, note that a name related with any lifespan besides the root 

entity mast be explicitly specified in a temporal query. For instance, the next query 
explicitly specifies the lifespan of attribute Address in the WHERE-clause , and re- 
trieves the Name, SSN and Address of all current students whose initial Address value 
was 'Arlington': 

Q20: G E T  < Name, SSN, Address > of  ENROLLED-STUDENT 
W H E R E  [ Address = 'Arlington' ] _D ST([ Address: LS ~) 

9.5.3 Temporal Version Restriction Operators 
In the STEER data model, the complete history of an entity (or an entity role) is 
kept. The temporal versions of an entity (or an entity role) are ordered and queries 
may be restricted to specific versions of an entity (or an entity rote). A temporal 
version restriction operator may be specified in the GETor WHERE clause of temporal 
GORDAS queries. The syntax of our version restriction operator is: 

: ( [ N A M E  ]] : I N T E R V A L  < I N D E X > )  

where the term [ N A M E  ]: is optional and the term I N T E R V A L  < I N D E X  > 
is required. The term [ N A M E  ~ is a true_time, where N A M E  may be either a 
boolean condition, or may be reduced to an entity name, an entity role name, or a 
temporal attribute. The term I N T E R V A L  < I N D E X  > indicates a projection 
either over a single interval if < I N D E X  > is an integer or over a range of intervals 
if ~: I N D E X  > is an integer range. (Note that we assume that the intervals of a 
temporal element are disjoint and in the canonical temporal element representation.) 
As an example, the version restriction operator :( INTERVAL 1 ), when applied to 
a C U R R E N T - F A C U L T Y e n t i t y  role ro (Figure 9.1) restricts the temporal element to 
the first interval of its lifespan. In this case, the term [ N A M E  ]: is not used in the 
version restriction operator :( INTERVAL 1 ). However, if the term [ N A M E  ~: is 
used in the version restriction operator such as :( ~ Address ~ : INTERVAL 1 ), then 
when it is applied to a C U R R E N T - F A C U L T Y  entity role ro (Figure 9.1) it restricts 
the temporal element to the first interval of the lifespan of attribute Address. 

The next query retrieves the Name and the first three Salary values for each faculty: 

Q21: G E T  < Name, Salary : ( I N T E R V A L  1 to 3 ) > of FACULTY 
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The term :( INTERVAL 1 to 3 ) in the GET-clause specifies that  the projection 
displays the first three Salary values for each FACULTY. Notice that  once a temporal  
version restriction operator appears in either the GET or WHERE clause of a query, we 
immediately deal with the full temporal  entity in that  clause, rather than the current 
entity version only. 

TemporM operators may be nested and are evaluated from left to right. For ex- 
ample, suppose we want to display the Name, SSN and the current Address for each 
person whose first Address was 'Houston' and third Address was 'Arlington': 

Q22: G E T  < Name, SSN, Address > o f  PERSON 
W H E R E  ( Address :  ( I N T E R V A L  1 ) = 'Hous ton ' )  A N D  

( Address :  ( I N T E R V A L  3 ) = 'Ar l ing ton ' )  

The term Address : ( INTERVAL 1 ) = 'Houston'in the WHERE-clause means 
that  we first apply the temporal ordering restriction operator :( INTERVAL 1 ) and 
then comlbare it with = 'Houston'. Similarly, the term Address : ( INTERVAL 3 ) 
= 'Arlington'in the WHERE-clause means that  we first apply the temporal ordering 
restriction operator :( INTERVAL 3 ) and then compare it with = 'Arlington'. 

As seen from queries Q21 and Q22, if the term [ N A M E  ~: is omitted from the 
version restriction operators, then the term I N T E R V A L  < 1 N D E X  > is applied to 
the specific at tr ibute.  However, if we would like to display the Name and PhoneNumber 
of a person during the time period she/he first lived in 'Arlington', we could write: 

Q23: G E T  < Name, PhoneNumber : ( [ Address A 'Arlington' 
: I N T E R V A L  1 ) > o f  PERSON 

In this case, the true_time of the boolean expression c = ( Address = 'Arlington' 
) is evaluated for each entity and then the temporal element is assigned to the first 
interval of each true_time. Note that  the projection over PhoneNumber may result with 
multiple values. However, we could even further restrict the previous query, Q23, by 
displaying only the first value of the PhoneNumber: 

Q24: G E T  < Name, PhoneNumber : ( [ Address --- 'Arlington'  
: I N T E R V A L  1 ) : ( I N T E R V A L  1 ) > o f  PERSON 

Temporal version restriction operators are not limited to attributes; they may be 
applied to entities and therefore restrict queries to a specific range of lifespans. For 
example, the next query displays the Name, SSN, Address, PhoneNumber, CName, 
Semester, Year during the second interval of the lifespan of each ENROLLED-  
S T U D E N T  who currently lives in 'Arlington': 

Q25: G E T  < Name, SSN, Address, PhoneNumber, < CName of  course, 
Semester, Year > o f  a-sections > o f  ENROLLED-STUDENT 
: ( I N T E R V A L  2 ) 

W H E R E  Address = 'Arlington'  

As a final example, note that  any restriction condition specified on an entity is 
applied before any other restriction operator is applied to its attributes. Hence, if we 
would like to display for current full professors, their Name, and the initial Salary as 
associate professors, we could wIite: 

Q26: G E T  < Name, Salary : ( INTERVAL 1 ) > o f  CURRENT-FACULTY 
: [ Rank = 'Associate Prof '  ] 

p W H E R E  Rank = 'Full Prof '  
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9.5.4 Temporal Scope Operators 
In the GORDAS language, one can reference the attributes of an entity related to the 
root entity by using a connection name. In the temporal GORDAS, related entities 
must be projected over the temporal elements of connection names. To generalize our 
temporal projection capabilities, we introduce the scope operator, denoted by SCOPE, 
which overwrites the temporal projection of a root entity (or related entities). For 
example, if we would like to retrieve the Name and Rank attribute values of each 
current faculty during their LAST - 1 interval but we would like to retrieve their 
initial Salary, we could write: 

Q27: G E T  < Name, Rank, Salary : S C O P E (  I N T E R V A L  1 ) > 
o f  CURRENT-FACULTY : ( I N T E R V A L  LAST - 1 ) 

In this case, the SCOPE operator at the end of Salary attribute overwrites the 
temporal projection at the end of the GET-clause. 

9.6 Conc lus ions  

This chapter was a summary of our work in temporal conceptual models and query lan- 
guages [173, 178, 174,179]. Our model distinguishes between conceptual and temporal 
objects, and characterizes the properties of entities (conceptual objects), entity roles 
(temporal objects), and (temporal and non-temporal) attributes. It also defines tem- 
poral constraints among entity roles, differentiates between temporal and conceptual 
relationships, and provides rules for preserving temporal integrity constraints. 

The query language is a temporal extension of GORDAS [177, 176, 178]. The 
temporal query language derives its power from the distinction between temporal and 
conceptual objects/relationships. It provides natural and high level temporal element 
constructor operators that simplify temporal query expressions. These operators utilize 
the entity existence times and the role lifespans in query formulations, without having 
to refer explicitly to time wlues. They also use the concepts of boolean conditions, 
true_times, and temporal projections [178]. 

Our query language allows temporal element constructor operators to be defined 
over entities, entity roles and temporal attributes. It supports temporal version re- 
striction operators and allows multiple temporal scopes in a temporal projection. In 
addition, the concept of CONTINUOUS and DISCONTINUED temporal elements can 
be used to specify conditions such as ALWA YS and SOMETIME from temporal logic. 



Chapter 10 

A Data  Mode l  for Time-Series  Analysis  

Arie Segev *, Rakesh Chandra t 

10.1 I n t r o d u c t i o n  

Researchers in the field of survey statistics often deal with observations of individual 
units at a single point in time. This type of da ta  is called cross-sectional data. On the 
other hand, in the field of econometrics, researchers use time series data. Time series 
da ta  are series of observations of a single unit over several points in time. Often da ta  
analysts come across da ta  that  is a combination of cross-sectional and time-series data. 
This type of da ta  is known as pooled data  [159]. 

For example, pooled da ta  would refer to any database describing every individual 
of a group across a sequence of time periods. In the domain of finance, the description 
of a market  database is an example of pooled data. This database may contain the 
end-of-day closing prices of all securities t raded on the stock exchange. Like cross- 
sectional data,  this database contains observations on several securities and like time 
series data,  it contains observations over different periods of time. Thus, pooled da ta  
is important  to a da ta  analyst because it contains both intertemporal dynamics as well 
as individual information. 

The broad goals of a da ta  analyst studying pooled da ta  are: 

1. Study of an individual da ta  unit over time 

2. Study of samples of da ta  units by summarizing data  and drawing inferences from 
these summary statistics. 

Analysis of pooled data  presents unique problems. The main problem encountered 
when analyzing time series da ta  is the autocorrelation of error terms, while non- 
constant variance is a problem when analyzing cross-sectional data. In pooled da ta  
the analyst faces these problems simultaneously. In addition, there is the problem of 
finding correlations between cross-sectional disturbances of different individual units. 
[328] has also pointed out the following difficulty. The relationship between dependent 
and independent variables may be different for different individuals. It has also been 
observed that  the regression coefficients in time series equations change over time (ei- 
ther systematically or randomly). A proposed da ta  model for pooled da ta  must give 
analysts the capability of handling these errors. 
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In this chapter, we propose a da ta  model for time-series and pooled data  analysis. 
This model incorporates features for tempor~al and statistical data  management. In 
addition, the model provides an interactive environment for data  analysis and a query 
language that  incorporates frequently used statistical operators. We also discuss da ta  
models for temporal and statistical databases proposed in the literature and explain 
why no existing da ta  model completely captures the complexity of time series and 
pooled data.  

10.2 M a i n  Features  of  T h e  D a t a  M o d e l  

The main features of the da ta  model, developed for the analysis of pooled and time- 
series data,  are briefly discussed below. Each point is discussed in detail later with 
relevant examples. The da ta  model for pooled data  features: 

1. A variable vector based da ta  model that  conforms to the way da ta  analysts 
visualize their problem. Data need not be fitted in the rigid framework of rows 
and columns. Instead da ta  should be represented as vectors, with individual 
da ta  items in a time series conforming to a user specified frequency. Each vector 
has a function that  specifies the value of the time series for time points that  
haven' t  been recorded and some user-defined information associated with it, 
e.g., lifespan, granularity. 

2. Collections of these vectors are organized into semantic units termed Concepts. 
Different Concepts can be brought together to form a hierarchy of Concepts. 
Descendants of a Concept in the hierarchy would inherit the user-defined in- 
formation from their ancestors. Descendants would also be allowed to override 
the inherited information with user-specified values. (We note that the word 
Concept is used in the singular and plural form throughout the text.) 

3. Rules necessary to maintain semantic information, constraints and to trigger 
actions based on conditions. 

4. Built-in calendars which implicitly understands the date associated with each 
da ta  item in a time series and the capability of defining other calendars. Data 
manipulation routines work in close association with the calendar. 

5. Uniform treatment  of the different notions of time. One notion of time is a 
linearly ordered sequence of points or intervals along the time line. Another 
notion is the set of topological relationships between events (event X before 
event Y or version 1, version 2 etc.). Both these notions of time are manipulated 
in a uniform manner. 

The da ta  model also supports two different timelines. Each element of a time 
sequence is associated with a valid time and a transaction time. Valid time is 
defined in [294] as "the time when the fact is true in modeled reality". Valid 
time is used in Evenr Construction (explained later in the chapter). Transaction 
time [294] of a database fact is the time when the fact is stored in the database. 
Transaction time is used in creating a Concept_History and to allow the database 
to rollback to a previous state (also discussed later in the chapter). 

6. Version Management capability to account for da ta  and forecast revisions. 

7. The capability of transforming da ta  of a particular frequency to a different fre- 
quency. 
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8. The feature that constructs pooled data from time-series data. This is called 
Event Construction. Different time-series can be "joined" together to create a 
combination of cross-sectional and time-series data. 

9. Sophisticated interpretation and handling of missing values in the data. 

10. An interactive environment which gives the data analyst the following features: 

�9 freedom to create and store temporary data sets as versions of the original 
dataset. 

�9 ability to store the steps used for data analysis 

�9 ability to backtrack during the analysis phase without much overhead 

�9 fast and efficient concurrent data access 

�9 a sophisticated graphical or icon-based user-interface. 

11. A database query language which supports operators used frequently in data 
analysis and metadata manipulation. 

12. An interface to external mathematical and statistical routines. 

The following section presents data models for temporal and statistical databases 
that have been proposed in the literature. We discuss models which support a subset of 
the features mentioned above. We also explain why no existing data model completely 
captures the complexity of time series and pooled data and the rationale for proposing 
this data model. 

10.2.1 R e l e v a n t  Research  

[508] define "Time Sequences" as "sequence of values in the time domain for a single 
entity instance". This definition accurately describes time-series data. Their represen- 
tation of a time sequence as < s, (t, a)* > is similar to the variable vector representation 
for time-series data that is proposed in this chapter. Here s is the surrogate, t is a 
time point or interval and a is an attribute or vector of attributes. (t, a)* represents 
the variable vector for the surrogate s. Their data model, TDM, also defines the type 
of a time sequence as the information that determines the "value of the time sequence 
for time points that do not have explicit data values." 

A relational representation of TDM [509] includes the "family" construct as a 
collection of First Normal Form (FNF) temporal and non-temporal relations with the 
same surrogate type. The following section, discusses how the notion of Concepts 
is an extension of the idea of "families" and illustrates its usefulness in representing 
time-series and pooled data. 

Clifford uses a Non-First Normal Form(NFNF) to represent temporal relations 
[122]. Their representation suppresses surrogate repetition and lists the time-value 
pairs of each temporal attribute in successive tuples. This is similar to the vector 
representation of time-series data, proposed in this chapter. 

The design and implementation of rules in databases were discussed in [554]. Tem- 
poral Rules are discussed in [183] and [566]. In this chapter, rules are used to trigger 
transactions (updates, modifications, numerical computations) based on clock triggered 
events and/or database changes. The following sections describe the utility of rules in 
data analysis, Concept Materialization and maintaining database consistency. 

Temporal data models assume the association of "transaction time" or "valid time" 
[530] with every tuple in a temporal relation. The proposed model associates every 
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time-series with a "Calendar" and every element of the time-series with parts of that  
calendar .  Each element in the time-series would have a transaction time - the time 
it enters the database and a valid time - the time that  reflects when the fact actually 
occurred. This is i l lustrated in the following section. Coupling da ta  manipulation 
routines to the appropriate calendar is necessary and could possibly require the knowl- 
edge of the relationship between two different calendars. Implementation of multiple 
calendars in a temporal  database have been described in [535]. 

Version Management and Change databases have been described in [428]. Though 
temporal  databases and change databases have traditionally been considered separately 
in the literature, we adopt the viewpoint of [632]. They define a data type that  "carries 
the most generic semantics of time". This data type is used to develop a uniform 
treatment  of time. 

Operations common in Relational Databases like Join and Select [126] have been 
extended to deal with temporal  data, e.g., [119], [528]. In addition, researchers have 
extended the standard query languages (SQL, QUEL) to include temporal operators 
[528] [488] [427]. [428] have described additional temporal operators like Time-Slice 
and Moving Window. Aggregate and statistical operators have been described in [531]. 
These extensions to the standard query languages are further enhanced by including 
sampling operators [436], event construction (similar to the event-join described in 
[507]) and operators to handle missing values and transformations (changing from one 
frequency to another). In addition, the query language should also be used to create 
complex operators based on pre-defined and built-in operators (in the sense of abstract 
da ta  types [552]) and have an interface to mathematical  and statistical routines written 
in other languages. 

Data  analysis is similar to engineering design where users have private copies of 
data,  which is analyzed externally. Analysts typically create different versions of the 
data,  making their own conclusions and storing them. [311] and [97] have described 
a database environment for engineering analysis. We adopt their ideas to the domain 
of complex da ta  analysis. Data analysis should also be tightly coupled with a so- 
phisticated graphical user interface. [10] describe a graphical interface for temporal 
summary management and [89] describe a graphical system for statistical databases. 
We build on this research by defining a graphical user interface which includes the da ta  
manipulation operators described below. 

Even though the above research contains many elements necessary in our work, no 
da ta  model captures the entire scope of features required for pooled da ta  representa- 
tion and manipulation. Furthermore, no da ta  model for temporal databases captures 
the essential features necessary for statistical analysis of time-series data. Models for 
statistical and scientific da ta  management do not incorporate the environment required 
for da ta  analysis and provide weak support for temporal data  management. 

Time-series and pooled da ta  analysis is an integral part  of empirical finance, mar- 
keting, economics and scientific research. Thus, there is an imperative need to design 
and implement a database model which incorporates the entire complement of features 
discussed above. In the following sections, the important  aspects of the proposed da ta  
model are discussed in greater detail. 

10.3  V e c t o r  B a s e d  D a t a  M o d e l  

Each time series is essentially an n-ary vector and is associated with a set of user- 
defined information. This information (M) is classified into (a) information that  must 
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be present with every time-series (M~) (if not supplied by the user, appropriate defaults 
are used) and (b) Information optionally supplied by the user (M~). M8 consists of: 

1. Name : The identifier of the time series to be used in data retrieval and data 
manipulation routines. 

2. Calendar/Granularity : a set of pre-defined time points. This item specifies the 
calendar with which the time-series is associated. For example, the time-series 
IBM-DAILY-CLOSING would be associated with the calendar AMERICAN- 
BUSINESS-DAYS. This means that on every day in the calendar AMERICAN- 
BUSINESS-DAYS, the time-series should have a value. Granularity is a speci- 
fication of the points in time in the defined calendar that can potentially have 
data values [508]. The defined calendar will thus determine the granularity of the 
time-series. The advantage of associating a time-series with a calendar is that 
there is no need to physically store the individual time points with the values of 
the time-series. When the time-series is retrieved due to a query, the individual 
time points can be generated using the specification of the calendar. This is 
especially advantageous for time-series with large lifespans. Since the individual 
time points are not saved on disk, there are large savings in disk space utiliza- 
tion. Thus, all time points of the time-series are physically stored only when the 
calendar cannot be pre-defined. This is possible in the case of randomly updated 
time-series like tick-by-tick stock prices. 

3. Exception-Set: is a set of time points (within the calendar) on which values of the 
time-series are not recorded. For example, even though IBM-DAILY-CLOSING 
should be recorded on every day in the calendar AMERICAN-BUSINESS-DAYS, 
there may be an important announcement on a particular day that stops trading 
in the stock. Thus the value of the time-series is not recorded on that day. 
The exception-set will include such time points. Thus, the actual calendar for a 
time-series is the set difference of Calendar and Exception-Set. 

4. Lifespan : This indicates the start time and end time of the time-series. The 
end time can be specified to be co. The lifespan is used in conjunction with 
the calendar and exception-set to generate the set of time points for which the 
time-series has values. 

5. Update Mode : This indicates whether the time-series is derived from another 
time-series(s) or is base data. If the series is derived, the rule for update is 
specified here. Time-series are allowed to have a hybrid update mode. For 
example, a time-series recording the value of an option will change whenever the 
price of the underlying 

6. Frequency : This specifies the frequency with which the time-series is updated. 
The time of update refers to the valid time. Valid time is defined in [294] as "the 
time when the fact is true in modeled reality". Frequency is always specified with 
respect to the calendar with which the time-series is associated and may be a non- 
trivial function on the set of time points in this calendar. For example, suppose 
EMP, a time-series which records the level of employment in the country, has the 
Calendar~Granularity: "the last day of the month unless the day is a holiday in 
which case it is the preceding business day". The frequency of EMP would be 
monthly. If a time-series is derived from other time-series, the frequency would 
be the frequency of the base data or some function of it. For example, consider 
the time-series DJIA and DJIAHILO. DJIA, the Dow Jones Industrial Average, 
is a weighted average of the price of a given set of stocks. It is computed every 
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time the price of a component stock changes. Thus, it is a derived time-series 
with the same frequency of update as the set of underlying stocks. DJIAHILO, 
is a time-series that contains the daily high and low values of the DJIA. Thus, 
DJIAHILO has a daily frequency which is different from the frequency of DJIA, 
even though DJIAHILO is derived from DJIA. 

It is important to stress the difference between frequency and granularity. A 
time-series is said to be "regular" [508], If it contains a value for each time point 
in the time-series lifespan. In a regular time-series, the granularity is the same 
as the frequency. In this case, the exception-set is a null set. 

7. Time-series type [508]: The type of a time-series determines the value of the 
time-series at time points where the value isn't  explicitly specified. It falls into 
one of the following categories: 

. Step-wise constant: if (Ti, A~) and (Tk, Ak) are two consecutive pafirs in the 
time-series such that Ti < Tk, then Aj = Ai for Ti < Tj < Tk. 

�9 Continuous : a continuous function is assumed between (T~,Ai) and 
(Tk,Ai) which assigns Aj to To, Ti <_ Tj < Tk based on a curve-fitting 
function. 

�9 Discrete : each value (Ai) is the time-series is not related to other v~l- 
ues. Consequently missing values cannot be interpolated. We take the 
interpretation of not available for any analysis based on these values. 

�9 User defined type : missing values in the time-series can be computed based 
on a user defined interpolation function. 

An example of a one-dimensional time-series vector with the associated user-defined 
information is shown in Table 1. 

The table shows observations of a country's Gross National Product (GNP) and its 
associated user-defined information. The calendar associated with GNP is a function 
of "American Business Days" calendar. GNP is not derived from any other time-series 
and thus its update mode is "Base Data". The frequency of update is specified as 
quarterly and reflects the dollar value of the sum total of economic activity in the 
quarter. The frequency of the time-series refers to the valid time of update. The 
transaction time of the update is "the last day of the month succeeding the month in 
which the quarter ends." For example, in Table 1 an entry for GNP with the valid 
time of update as March 31 ** (end of first quarter) has transaction time of update as 
April 30 *h (the month succeeding the first quarter). The type of the time-series GNP 
is user-defined. This means that user-defined functions will be used to determine the 
value of GNP at time points where it has not been explicitly recorded. For example, 
the GNP on April 30 th (valid time) is not recorded in the time-series. This could be 
derived by a function which uses the previous values of GNP as parameters or through 
a function which uses other economic indicators. Rules (discussed below) can be used 
to define the type of a time-series and build in the desired level of complexity. The 
item "Forecast Source" is part of the user-defined information, Mu, optionally supplied 
by the user. It is a list of sources used to obtain forecasts for the time-series GNP. 
Table 1 fists these sources as the Wall Street Journal (WSJ) and the Federal Reserve 
Board (FRB). 

Now consider the case of a 2~ary vector such as the Dollar price on the Foreign 
Currency exchange market. 

The two dimensions of the 2-cry vector are bid-price and ask-price, which represent 
traders' spreads in foreign currency markets. In this example, the transaction time of 
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GNP in Trillions 
valid time trans time 
o3/31/91 
o6/3o/91 
o9/3o/91 

vMue 
04/30/91 1.6 
07/31/91 1.5 
10/31/91 1.4 

M 
Mr 
N a m e  GNP 
C a l e n d a r / G r a n u l a r l t y  AMERICAN-BUSINESS-DAYS 
U p d a t e  Mode  Base Data 
Frequency  Last day of quarter. If holiday, then 

next business day 
T y p e  User-Defined 
Lifespan start- 1923 ; end- oo 
M~ 
Forecas t -Source  WSJ; FRB 

Table 10.1: GNP Time-series 
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an element in the time-series is the same as the valid time of that element. Since 
the time-series is updated every time there is a trade, e.g., buy/sell of the currency, 
the frequency is specified to be "on-event". The type of the time-series is Step-Wise 
Constant since the price remains the same between events aad every time there is an 
event, the price is updated. For time-series Ask-price and Bid-price, the M~ part of 
the user-defined information is the same and thus they can form a 2-ary vector. 

The main advantage of the vector representation is that it reflects the way data 
analysts perceive data. It also facilitates direct translation from vector manipulation 
routines to actual database operations. 

The representation of time-series vectors is different from the way time sequences 
are represented in [508]. There, time sequences are defined as sequences of values 
in the time domain for a single entity instance. Thus, time sequences are of the form 
< S, (A, T)* > where S is the surrogate, A the attribute and T the time point associated 
with A. In the proposed model, a time-series is in the form < (A, %)* >. The name 
of the time-series is part of the user-defined information associated with it. 

In the case of a 2-ary time-series, the representation is < (A1, A2, %)* >, where A1 
and A2 are the two attributes which have the same M~. Note that M~ can be different 
for components of an n-ary vector. However, two vectors with different frequency 
cannot be dimensions of a 2-ary vector. For example, if the frequency of GNP is 
quarterly and the frequency of EMP is monthly, they must be defined as separate 1- 
ary vectors. Since there is a need to group these vectors in spite of the difference in 
frequency, the idea of Concepts is introduced in the next section. 

10.4 Concepts 
Ideas similar to Concepts have been discussed previously in the literature. [509] define 
a "family" as a collection of First-Normal Form (FNF) temporal and non-temporal 
relations that have the same surrogate type. Concepts can be thought of as a collection 
of relations but the definition presented below also allows the construction of a complex 
hierarchy of Concepts with inheritance. Thus,;5~Concepts can be considered an object- 
oriented extension of the idea of "families". 

More formally, a Concept can be defined as a collection of n-ary vectors grouped 
together to represent a semantic unit. These Concepts are called Basic Concepts. 
Basic Concepts are Time-Series also and can be grouped together in a hierarchy to 
form other Concepts. These Concepts are called Complex Concepts, and a hierarchy 
of Complex Concepts is a concept tree. This is illustrated in Figure 1. 

Figure 1 shows the Complex Concept ECONOMIC-ACTIVITY. This is a collec- 
tion of Concepts describing different economic activity. The solid links in the hierarchy 
describe an "is-a" link while the dotted links describe a "derived-by" link or a depen- 
dency between two time-series. Concepts are shown in ovals while time-series vectors 
are shown in rectangles. 

The Concept ECONOMIC-ACTIVITY is described by the Concept US- 
INSTRUMENTS, a collection of financial investment instruments, and USA-ECON- 
IND, a collection of indicators of economic activity. The time-series GNP, INF 
and EMP are the economic indicators recorded for USA-ECON-IND. The Concepts 
DERIVATIVES and EQUITIES are types of the Concept US-INSTRUMENTS. Con- 
cepts OPTIONS and FUTURES are types of the Concept DERIVATIVES while 
STOCKA and STOCKB form the Basic Concept EQUITIES. Time'-series vectors 
STOCKA and STOCKB are time series which record the price of the respective stocks 
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over time. These time-series also form the Basic Concept NYSE-STOCKS. As shown 
by Figure 1, the data model allows a time-series vector to be a part of one or more 
Concepts. The time-series STOCKA-MAR93 records the price of a European option 
on STOCKA which expires in March 1993. This time-series is a derived time-series 
since its value at any point in time is a function of several variables including the value 
of the time-series STOCKA. STOCKB-JAN93 is a similar time-series. The time-series 
STOCKA-MAR93 and STOCKB-JAN93 form the Basic Concept OPTIONS. As in the 
case of time-series vectors, user-defined information (M,) is also associated with Con- 
cepts. Concepts in the concept-tree hierarchy inherit M,  from their ancestors. Only 
the Name and Lifespan elements of Ms are specified for Concepts. The Update Mode, 
Type, Calendar and Frequency are not specified since the time-series that constitute 
the Basic Concepts in the concept tree may have different M~ and the semantics of 
inheritance are ambiguous. 

Part of the example in Figure 1 is used to illustrate the idea of Concepts and 
describe the data model in greater detail. 

There are several economic indicators watched by economists to track the state of 
the economy. As shown in Figure 1, among these economic indicators are the monthly 
inflation figures (INF), the monthly employment figures (EMP) and the quarterly GNP 
numbers. If the nations' Economic Indicators were to be recorded over time, the 
individual indicators must be recorded separately and there must be a way to group 
them together. 

In the proposed data model, individual indicators (INF, EMP and GNP) are rep- 
resented as sequences of values in the time domain (since the observations of each 
indicator over time is a unary vector). These time series are then grouped together by 
the Concept USA-ECON-IND. The linkage between time-series GNP, INF and EMP 
to Concept USA-ECON-IND is shown in Figure 1. 

Economists could use USA-ECON-IND to see how the economy has performed 
over a period of time. A snapshot of the economy would be given by the 
Current_Value (CV), which is a cross-section of the economic indicators today. Each 
Concept also has a Most_Recent_Value (MRV). MRV is a cross-section of the most 
recent values of each time-series vector in the Concept. In the context of the example, 
CV is determined by using the MRV and the type of the time-series. However, in 
general, CV need not be a function of MRV. It is possible for the CV to be derived 
from values of several periods in the past. For example, a time-series with type "Step- 
Wise Constant" will have the same MRV and CV. However, a time-series whose type 
is determined by a rule may have a different CV than the MRV. When any of the 
components of the Concept change (a more recent observation is added), the MRV of 
the Concept changes. At these time points the MRV _= CV. But at any other point in 
the future the CV may be different from the MRV. 

Logically, the Concept is an extension of a relational database view which" joins 
all the component vectors of the Concept. To define USA-ECON-IND, it would seem 
that GNP, EMP and INF should be joined. But, economic indicators are not always 
recorded at the same points in time. For example, the GNP of the United States is 
reported every quarter while figures for employment and inflation are reported monthly. 
This is in contrast to interest rates which are recorded daily and the buy/sell price of 
the US Dollar which is recorded almost every second ! 

The presence of time in the vectors and the fact that the time-series may be asso- 
ciated with different calendars and have different frequencies baded on these calendars 
complicates the join.. We refer to this type of join as an Event Construction and it is 
discussed later in the chapter. Concepts can be difficult or impossible to express in a 
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temporal relational language like TQUEL [528]. This is discussed in a later section. 
Table 2(a) shows the component time-series of the Concept "USA-ECON-IND" 

and the MRV. The type of INF is defined by a rule. This rule states that the CV is the 
sum of the MRV and the average inflation over the last twelve periods multiplied by the 
difference between the present time and the valid time of the MRV. This is illustrated 
in Table 2(b). Note that INF(- i )  in Table 2(b) refers to the inflation in the ith 
period before the current one. Table 2(c) shows the Concept "USA-ECON-IND" as a 
time-series. The time-series is derived by Event-Construction. 

Forecasts and predictions must also be accommodated by the data model. 
Economists make predictions/forecasts of several economic indicators and collect fore- 
casts from several different sources. It is useful to assess the accuracy of these predic- 
tions/forecasts as time-series reveal themselves over time. 

Time-series are represented as < (A, T)* > where A is the value of the time-series 
at a particular point in time, T. If A is considered a vector of the actual value (A,) 
and the forecasted value (Af) or a set of forecasted values (from different sources), the 
forecasts/predictions can be stored. The a,ccuracy of these forecasts can be evaluated 
when the actual values are revealed. For example, consider the case where there is just 
one source of forecast for the GNP. At any point of time the GNP time-series would 
have values of Au and A, for all time points from [time-start,valid-time-of-most-recent- 
update] and A from [valid-time-of-next-update,time-end]. Here time - end is the time 
till which forecasts are provided. There are three constraints on the forecast and actual 
values. These constraints are necessary because the model supports only transaction 
time and valid time. 

1. As, transaction-time < A,, valid time. The forecast must be entered before the 
actual event occurs in the modeled reality. 

2. Af , transaction-time < A f ,  valid time. Forecasts describe an event in the future 

3. A,, transaction-time 2 A,, valid time. Actual values enter the database as soon 
as or after the event in modeled reality. 

The data model must also be capable of dealing with revisions of existing data. 
Most often, economists receive preliminary estimates of time-series data which are then 
refined and revised over time. It is useful to retain the preliminary data in addition to 
the revised data because it helps in: 

1. assessing the impact of errors in prediction using the preliminary data. 

2. assessing the quality of information of a particular source of information. 

3. assessing the magnitude and number of revisions in the data 13491. 

In the data model, revisions and preliminary data are considered versions. But, 
versions can be thought of as topological relationships between events, which is just 
another notion of time. The data structure Concept has been defined as a logical 
grouping of several time-series. This notion is extended to accommodate relationships 
between different versions of data. This is explained with an example below. The 
Concept USA-ECON-IND is generated by the data in the time-series GNP, INF and 
EMP shown in Table 3. If GNP were revised once (Table 3(a)), INF revised twice 
(Table 3(b)) and EMP figures were never revised, the Concept would have a "history" 
of its own (different values at different points in time). A part of this Concept-History 
(upto valid time 4) is shown in Table 3(c). This history is constructed by using the 
transaction times of the entries in t,he time-series. An additional advantage of the 
Concept-History is that it allows rollback to any previous state of the database. 
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GNP 
v time 

"12/31 
03/31 
06/30 

t time 
EMP INF 

vMue v time t time v~ue v time 
1.6 01/15 102 01/30 
1.6 02/14 103.1 02/28 
1.5 03/15 101.1 oa/al 

t time value 
101.1 
101.3 
101.5 

12/31 x 1.81 12/14 y 102.1 12/31 

(~) 

101.5 

M 
Ms 
N a m e  
T y p e  

INF 
User-Defined 
: CV = MRV +E~2=IINF(-i)/12,  
( N O W  - ttime M R V )  

(b) 

v time GNP EMP INF 
01/31 1.6 102 101.i 
02/28 1.6 103.1 101.3 

12/31 1.81 102.1 101.5 

(c) 

Table  10.2: Concep t  U S A - E C O N - I N D  @ t r a n s - t i m e  x; v t ime:  val id  t ime,  t t ime  
= t r ans  t i m e  
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GNP 
t rans  t ime valid t ime 

1 0 

4 3 

7 6 

10 9 

val.ue 

d 
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b 

C 

Revised G N P  

t rans  t ime valid t ime 

1 0 

11 3 

11 6 

10 9 

(a) 

value 

d 
a I 

( 

C 

INF 1 ~t Revision 2 "a Revision 
t time v time value t time v time value t time v time value 

2 1 p 7 1 p' 10 1 p" 
t t  

3 2 q 7 2 q 10 2 q 
4 3 r 7 3 r 7 3 r 

5 4 t 7 4 t ' 10 4 t" 

(b) 

Concept  @ t rans - t ime  

valid t ime G N P  

1 d 

2 d 

3 a 

4 a 

Concep t  @ t r ans - t ime  

valid t ime G N P  

1 d 

2 d 

3 a 

4 a 

5 

INF 

P 
q 

r 

t 

Concept  @ t rans- t ime  

valid t ime G N P  

1 d 

2 d 

3 a 

4 a 

Concept  ~ t rans- t ime 
valid t ime GNP 

1 d 

2 d 

3 a ~ 
4 a r 

10 

INF 
i i  

P 
I t  

q 
t 

(c) 

T a b l e  10.3: C o n c e p t - H i s t o r y  (does  n o t  s h o w  E M P )  
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INF 
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i !  
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The query language would always access the "most-recent" version in the Concept- 
History by default. Versions are Step-Wise Constant, and thus the Current version is 
always the same as the Most-Recent version . Additional operators to allow access to 
other entries in the Concept-History are required in the query language. 

10.5 R u l e s  

Rules have been shown to be powerful in maintaining views, integrity constraints and 
versioning in relational databases [554]. In the context of a relational database, time- 
~series vectors could be thought of as relations and the Concept as a view. Rules provide 
a natural  way to maintain the Concept, MRV and CV. These rules can be either da ta  
rules or action rules [510]. Thus, they are of the form "if Condition then Action" or "on 
Update  do Action". Consider the case where a Concept is to be materialized every time 
a component vector is updated.  To do this, when the Concept is defined, the database 
system would create a rule for every component in the Concept. This rule would specify 
that  an update  to a component time-series would update the Concept. In the context 
of our example, the rules defined by the database system would ensure that  whenever 
a component in the Concept USA-ECON-IND is updated, e.g., new monthly figures 
for EMP are recorded, the rule would modify the MRV of USA-ECON-IND with t h e  
new value. Note that  an appropriate strategy for the materialization of Concepts and 
Concept Histories has not been discussed. This will be addressed in a later chapter. 

It has been assumed for most part  of the discussion that  the da ta  is append only. 
But often, statistics are revised. For example, Base Years of indexes are changed 
frequently. This may lead to changes in time-series that  are dependent on the original 
base year and in any conclusions drawn from these time-series. Rules can be used to 
handle the semantics of a change in historical data. An extensive discussion of the 
issues involved in retroactive changes to a database is provided in [183] 

Rules can also be used to describe the finks between different time-series. These 
finks are essentially mathematical  transformations applied to one or more time-series 
to genera te /update  other time-series. Rules would store the finks and the conditions 
under which the mathematical  transformations defined by these hnks are to be apphed. 
This point is i l lustrated with an example from the financial domain. The example is 
shown in Figure 2. 

In the foreign exchange market, currency traders quote the bid price and ask price 
for spot rates and forward rates of different currencies. Concept FOREX-MRKT is 
defined to capture this data. FOREX-MRKT is made up of the daily, weekly and 3- 
month ask price and bid price of the currencies, US Dollar (USD), French Franc (FFr),  
German Mark (DM) and Pound Sterling (Stg). Figure 2 shows only the USD Daily 
(USD.DY), USD Weekly (USD.WK) and the USD 3-Month time-series (USD.3MTH). 
These time-series are of type "Step-Wise Constant" and thus MRV = CV. The trans- 
action time of any entry to the database is also assumed to be the same as the valid 
time. The later assumption is realistic in currency markets. 

Assume we also need to maintain the value of a derivative instrument, the US 
Dollar currency option over time. The Concept, CURRENCY-OPTION-MRKT is 
defined as a grouping of the time-series, OPT-DOLLAR-DM, OPT-DOLLAR-FR and 
OPT-DOLLAR-STG.  These time-series record the value of options on the mark/dollar ,  
franc/dollar  and dol lar /pound exchange rate respectively. Thus, CURRENCY- 
O P T I O N - M R K T  will contain the historical and current values of the above options. 
One of the determinants of the value of an option at any point in time is the current 
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price of the underlying asset, in this case, the US Dollar as quoted on the foreign 
exchange market,  e.g., USD.DY, USD.WK, USD-3MTH. Thus, the time-series OPT- 
DOLLAR-DM, OPT-DOLLAR-FR and OPT-DOLLAR-STG are updated: 

1. when the option is traded over the counter or on the market. In this case the 
value is just  the price at which the option changed hands. 

2. when there is a change in the value (price) of the underlying asset. When the 
price of the US Dollar changes, the option must be revalued by an appropriate 
valuation scheme [399] [263]. The value obtained from the computation is then 
stored in the time-series. This in turn will update the MRV of CURRENCY- 
OPTION-MRKT.  

Thus, a change in one time series (e.g., USD.DY) causes a non-trivial series of 
updates in other time-series. Rules provide a way to implement this schema. The 
following rule system will accomplish the series of updates described above. 

On update to USD.DY.ASKPRICE do update OPT-DOLLAR-DM.MRV 
= proc-for-valuing-options (other parameters, USD.DY.ASKPRICE) 

0n update to 0PT-DOLLAR-DM.MRV do update CURRENCY-OPTION-MARKET.MRV 
= proc-for-maintaining-MRV(0PT-DOLLAR-DM.MRV, 0PT-DOLLAR-FR.MRV, 

OPT-DOLLAR-STG.MRV) 

This example shows that  even a simple dependence between time-series can involve 
many computations. A more realistic model of the financial trading market would have 
more relationships and links between different time-series. Modeling these interactions 
and implementing the rule wake-up and update scheme without seriously impairing 
performance are implementation issues to be dealt with in the future. 

10.6 Calendar  

A calendar can be thought of as a set of time points. A built-in calendar is provided 
by the system and users can define their own calendars. When a time-series is defined, 
the user must specify the calendar and frequency of update. By default, the frequency 
will be on event. On-event means that  the frequency is not fixed by a function on the 
calendar. Instead, the update is a random event with a certain distribution (which is 
not necessarily known). Updates are captured by the database in a predictable (deter- 
ministic) amount of time, T where T is small enough for any element of an on-event 
time-series to have its transaction time approximately equal to its valid time. When a 
frequency is specified, the database implicitly knows the dates and times of all elements 
in the time-series. These dates needn' t  be specified by the user. In sAdition, once a cal- 
endar has been established as the frame of reference for a particular time-series, other 
calendars can be defined on this base calendar. For example, suppose the calendar 
associated with time-series IBM-STOCK is "American-business-days". Calendars like 
"Holidays" and "Business-Hours" can be defined as a function of ':American-business- 
days". Given the additional calendars, rules can be used to specify constraints for 
real-world facts, e.g., IBM-STOCK will only have values in "Business-Hours" during 
"American-Business-Days" excluding "Holidays". 
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10.7 Temporal Query Language 
The query language must be able to support temporal representation and reasoning. 
It must also be able to recognize natural  language expressions referring to collections 
of t ime intervals. The following section discusses the m~in features of the temporal  
query language. 

1. Support  for Calendar operations: As described in the previous section, a Calen- 
dar is a collection of an infinite sequence of intervals that  span the timellne. The 
query language allows definition of a calendar based on primitive time units and 
also on previously defined calendars. The first interval in the calendar (the first 
time we recognize) should be specified but there is no theoretical last interval in 
the calendar because the timeline is an infinite set. 

2. Support  for operations on the time-line, e.g., Overlaps, When, Meets, Between, 
Contains [528] [427] [488]. 

3. Support  for New Operators : Two new operators are defined on the calendar 
(based on [350]). 

(a) Division: This operator provides a way of dividing a time interval into 
smaller intervals. The operator takes time intervals as arguments and gen- 
erates a collection of time intervals. It is always used in conjunction with 
the temporal  operators discussed above. For example, if we wanted to 
find the Weeks that  overlapped with the month of December in 1991, the 
division operator (:), could be used as: 

(WEEKS : overlaps : Dec-91) = 

Collection of weeks that overlap Dec-91. 

In the above example, WEEKS is the collection of weeks in 1991 and Dec-91 
is the collection of days in the month of December in 1991. 

We note that  the division operator has a strict and relaxed interpretation. 
In tile strict interpretation (:), the above query would generate only those 
weeks or parts  of weeks that  strictly overlapped with December in 1991. 
On the other hand, the relaxed interpretation (.), would generate all weeks 
which had some overlap with December 1991. Thus, in the relaxed inter- 
pretation, we could get parts of weeks that  overlapped with Jan'92 and 
Nov'91. 

(b) Selection : This operator selects a time interval from a collection of time 
intervals. For example, 1 /WEEKS selects the first Week from the collection 
of WEEKS.  

The query language, allows the construction of computer understandable expressions 
corresponding to natural  language expressions used in reasoning about time. A few 
examples are given below. 

1. First Day of every month ~ 1/DAYS:during:MONTHS 

Assume the reference year is 1992. Then, DAYS and MONTHS are two self- 
explanatory collections of time points. Each month in the collection MONTHS 
is divided into days by the division operator, in conjunction with the during 
operator.  The select operator then selects the first day from this collection of 
days. 
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2. First Week of the month = 1/WEEKS.overlaps.MONTHS 
In the above expression, WEEKS refers to the collection of weeks in the year 
1992. Each month in the collection MONTHS, is divided into weeks based on 
the divis ion operator in conjunction with the overlaps operator. From this 
collection of weeks, the select operator chooses the first. 

10.8 Special Operators for Time-Series Data- 
base 

1. Moving-Average Operator: MA(X,n). This operator performs the operation 

i+n--1 

M A ( X , n )  = {Uilyi = E x j / n }  
j=i 

where X is the time-series and n is the number of time-periods for which the 
moving-average is required. 

2. Autoregression Operator : AR(X, n), The regression of time-series X against its 
lags u p t o n  periods. 

3. LAG operator: This operator does the following operation on the vector X: 

Yi = X i + l  - X i ,  Vi = 1, n - 1 

where X is the time series, X i  indicates the i th element of X, Y is the one-lag 
time-series derived from X and n is the size of X. The lag operator also takes 
a parameter(h) of type integer and of size (< n). This lag parameter indicates 
the number of lags required. With the lag parameter, the lagged formula is: 

L A G ( X , )  0 = X~+a - X~, Vi = 1, n - A 

The operators LAG and AR are used for Vector Autoregression. Vector Au- 
toregression has proven to be a successful technique for forecasting systems of 
interrelated time series variables. Vector Autoregression is also used for analyz- 
ing the dynamic impact of different types of random disturbances and controls 
on systems of variables. It involves a system of equations that make each endoge- 
nous variable a function of its own past (LAGS) and the past of other endogenous 
variables in the system. 

4. Aggregation Operators fike MAX, MIN, AVG, MED, frequency distribution cal- 
culation. Extensions to TQUEL to incorporate aggregates and their semantics 
have been proposed by [531]. Aggregates in time-series databases must incorpo- 
rate three distinct semantic interpretations: 

�9 aggregate on time-series, e.g., average stock price over the time period 
[0, T]. 

�9 aggregate on cross-sectional data, e.g., the average salary of all employees 
now.  

�9 aggregate on the time-series of aggregations on the cross-section, e.g., av- 
erage stock price of computer industry stocks over the time period [0, T]. 
This would involve computing the average stock price of the computer in- 
dustry at each time point between 0 and T and then averaging over these 
va lues .  
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5. Matrix Manipulation Operators: These operators include 

(a) Matrix Addition, Subtraction, Multiplication: useful in constructing time- 
series vectors from other ~ime-series vectors. 

(b) Matrix Inversion: Used in computing regression coefficients. 

(c) Computat ion of Eigen Values. 

(d) Special Algorithms to deal with Sparse Matrices: Useful in recording time- 
series that  are irregular. 

(e) Solving a system of linear and non-linear equations or generically if f : 
R ~ ~-* R n, we would want an efficient algorithm to solve the system of 
equations f(x) = 0. These algorithms are useful for regression analysis 
especially when performance is an issue. 

6. Transformation 

This operator is used to convert from one time frequency to another. Conversions 
from a lower frequency to a higher frequency are allowed only if the semantics 
of the transformation are clear. For example, conversion of a time series with 
weekly frequency to a time series with a monthly frequency is permitted, but 
conversion of the same time-series to a daily frequency is not permitted since the 
semantics are not clear. The transformation operator must be able to interact 
with the calendar and transform data, accounting for the calendar associated 
with the time-series. 

7. Event Construction This operation is used to construct cross-sectional and 
pooled da ta  from the underlying time-series data  in the database. Semanti- 
cally, event construction is similar to the event join described in [507]. One 
could think of this operator as similar to a join in a relational database (with 
the join performed over dates). Problems arise when joining over dates because 
of the different frequencies of time-series data. Even when the frequency of two 
time-series is the same, they could be based on different calendars. For example, 
if the application required the weekly closing prices of IBM-Japan and IBM- 
USA, joining the prices on Friday for each week may not necessarily give the 
correct result. I t  is possible that  in some weeks Fridays are holidays in Japan 
and working days in the US and vice versa. In these weeks the closing price 
on Thursday defines the weekly closing price for IBM-Japan while the weekly 
closing price for IBM-USA is the closing price on Friday. Equi-Join over dates 
would give incorrect results because matches may never be found. 

Event Construction has two interpretations: 

(a) perform an event-join over the t ime-attribute.  

(b) transform all the da ta  to a common frequency and then perform the event 
join. 

Users must be able to choose the relevant interpretation. Event-join processing 
strategies have been outlined in [507] but  they must be modified to account for 
the proposed da ta  model. One area of difference is that  they assume t ime-start  
and time-end at tr ibutes exist for the data, while we store only the t ime-start  
at t r ibute.  

Addit ional  problems that  the Event Construction operator must be able to solve 
a r e :  
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If time-series have different calendars, the time values must be converted to 
a common base. This assumes that the relation between different calendars 
a r e  k n o w n .  

Handling of missing values. 

If the lifespans of time-series are different, the operator must know how to 
handle the Event Construction tuples that have missing values. 

Forecasts and revisions are not used in the Event Construction unless spec- 
ified in the query. When revision is specified the operator must reconstruct 
the Concept and if necessary the Concept-History. When forecasts are nec- 
essary, the operator must use the forecasts when joining and also know 
what to do when different time-series have forecasts for different horizons 
in the future. 

Event construction is an extremely important part of data analysis because 
it must always be done before any meaningful regression analysis. We 
emphasize that event construction is only meaningful within a Concept. 
Query optimization of the Event construction operator is to be discussed 
in a later chapter. 

10.9 Handling of Missing Values 
There are several reasons why users often encounter missing values in observational 
cross-sectional and time-series data. We attach four different interpretations to missing 
va lues :  

1. indeterminate 

2. not applicable 

3. not available 

4. actually zero but not explicitly mentioned in the database 

The latter case is the easiest to handle and the indeterminate case can be clubbed with 
the interpretation of "not available at this time". The problem of handling missing 
data has been researched extensively in the database literature. [125] describes an 
algebra for handling null values while [599] and [365] have a detailed treatment of 
the "not applicable" and "not available" interpretations. The database will assign 
a value of "NA" in cases where the value is not applicable. In a time-series with 
the calendar "American-Business-Days', Saturdays, Sundays and specific holidays will 
have the value "NA". Thus, once a calendar has been specified for a time-series, the 
database will assign "NA" at appropriate time points. Users may define the value of 
the time-series to be "NULL" or "0". "NULL" has the interpretation of indeterminate 
or not available. 

10.10 User Environment 
The underlying data in this kind of database is rarely (if ever) updated by users. Data 
is obtained through real-time data feeds (e.g., Reuters) or batch loading of the data. 
In any case, users aren't  expected to enter data on their own or modify and delete 
tuples from the database. A typical user session is an interactive and iterative process 
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of model selection, parameter estimation and error analysis. 
envisaged as one in which: 

1. 

2. 

3. 

A typical user session is 

Users copy relevant time-periods of data into their own "work area". The work 
area is a private sub-directory which is maintained by the database. 

Users "refine" the data, by removing outliers, transforming the data using oper- 
ators like lags, mathematical transformations (logs) or event-constructions. 

Users construct scripts which are essentially strategies for data analysis. These 
scripts would typically be composed of declarative statements in the query lan- 
guage aa-ld would contain the logic and methodology for data analysis. For ex- 
ample, these scripts would normally contain commands for regressions, error 
analysis or diagnostics. 

4. Since this is an interactive session, users will store temporary files. These files 
would normally contain results of the data analysis and temporary data files. In 
addition to the data files, users are expected to store the sequence of commands 
that they used to get the results. 

5. Users interface with graphical software in order to see diagrams like histograms, 
residual plots or boxplots. 

6. Users construct their own data analysis procedures using existing primitive build- 
ing blocks or through the use of an external language. 

7. Users interface with sophisticated mathematical and statistical libraries available 
on the computer system. 

Given the sophisticated environment required for data analysis, the database must 
provide the following features: 

1. A transaction management scheme that allows users to work on the same dataset 
at the same time in private work areas, check-in and check-out datasets from the 
main database and save and recover the temporary data files they create as well 
as the scripts used for analyzing the data files. 

2. Support for statistical, temporal and the operators outlined in this chapter. 

3. Support for creation of scripts using the query language which can be augmented 
by an interface to external mathematical libraries and graphical routines. 

4. Support for the creation of complex operators in the query language based on 
the primitive database operators, as described in [417]. 

10.11 Conclus ion 

In this chapter, we have defined the requirements of a database model meant for the 
analysis of time-series data. We treat time-series as n-ary vectors and introduce Con- 
cepts to logically group these vectors together. Different time-lines, transaction time 
and valid time are supported in the model and different notions of time, e.g., versions, 
time points on different calendars, are treated uniformly. The importance of Rules 
have been discussed to maintain semantic integrity, derive time-series based on other 
time-series or database transactions, for implementation of operators like Transforma- 
tion and Event Construction and for uniform management of the different notions of 
time. We provide an interactive environment that helps users perform data analysis. 
The environment accounts for the fact that data is never updated by users and that 
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users keep copies of parts of the da ta  in their private workspaces along with da ta  ma- 
nipulation routines. A query language that  incorporates frequently used statistical and 
temporal  operators is provided. This includes the capability of creating new operators 
based on the primitive ones and an interface to mathematical  and statistical routines. 

An extremely important  issue that  we do not raise in this chapter is : How far 
should we go in building in extra functionality in the database to accommodate different 
da ta  environments ? Building in extra functionality means bulkier database code and 
high overhead. Also, the data  model is not independent of the application. On the 
other hand, not building in functionality, forces users to couple database systems with 
external programs. This can be highly inefficient because optimizers aren' t  able to 
optimize the external code. Also, users tend to be impatient with systems that  must 
be customized before use. 

Our future research plans are briefly outlined below. 

�9 Materialization : We briefly described an immediate update strategy for Con- 
cepts and Concept Histories. The cost analysis for different materialization 
strategies is important  for performance. A cost analysis of the strategies of im- 
mediate update,  deferred update, random update and hybrids, would determine 
the appropriate strategy given the characteristics of the database. By character- 
istics, we refer to the number and size of time-series vectors, the rate of update of 
vectors and the frequency of queries on Concepts and their component vectors. 

�9 Query Optimizer : We have briefly discussed the optimizer in the context of 
da ta  analysis procedures. But we have not specified the exact scope and role of 
the optimizer with respect to the database environment proposed in the chapter. 
Efficient Sampling of data, indexes for temporal da ta  to facilitate efficient search 
and retrieval and stochastic modeling of the temporal data  process to obtain 
selectivity estimates are problems that  must be addressed. 

�9 Indexing and Access Methods: Conventional access methods (B-trees) aren' t  of 
much help because the da ta  is sequential. Also, unlike other database applica- 
tions, sequential "browsing" is not a major issue. We believe the access methods 
must reflect operations that  are frequent and important  in statistical data  anal- 
ysis. A more thorough analysis of da ta  analysis procedures will give us a better  
idea of what access methods are appropriate. 
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Chapter 11 

A Relational Model and SQL-like Query Language for 
Spatial Databases 

Shashi K. Gadia*, Vimal Chopra t 

11.1 Introduct ion  
Spatial databases have experienced enormous growth in application environments, such 
as agriculture, environmental studies, geography, geology, city-planning, aero- 
space industry etc. More recently spatial databases have attracted attention in the 
database community. A considerable research has been done in physical implementa- 
tion of spatial databases. This is particularly true of access methods for spatial data 
[238, 483, 512, 230, 231, 39, 506]. On the other hand, abstract modeling and query- 
ing of spatial data have received relatively less attention. The need for such a study 
becomes even more important because of diverse techniques proposed for representing 
spatial regions. 

Like [440] we favor that the logical view and the physical implementation of spatial 
data should be considered orthogonal issues. The users should be given a simple view 
of data and freed of the worry of how it is physically represented. This is even more 
important because physical implementation will continue to be a topic of study for 
quite some time to come. Conventional database techniques are inadequate in spatial 
databases because of the spatial structure implicit in spatial querying. We present 
a model and an SQL-like query language called SpaSQL (read space-Q-L) for spatial 
data. Without tying ourselves down to a choice of representation of spatial regions, we 
propose certain desirable closure properties for them to make SpaSQL seamless. 

11.1.1 Related Works  

Several techniques of physical representation spatial regions have emerged. One way to 
represent a region is to lay it on a fine grid, and approximate the region by the set of grid 
elements covered by the region. Another technique is to describe a region by a chain of 
arcs, and associating a biLt with each arc to encode whether the region being specified 
is on the right or left of the arc. A third way is to view a region as a hyper plane in an n- 
dimensional space, and use techniques of computational geometry to manipulate them. 

*Department of Computer Science, Iowa State University, Ames, IA 50011-1040, U.S.A. 
tThis work was done while the second author was at Iowa State University. His current 

address is: Geoquest, Data Management Division, 5725 Paradise Drive, 100, Corte Madera, 
CA 94925 
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The representation of spatial regions is a challenging and enormous problem by itself, 
and we feel it will be investigated for several years before it is completely understood. 
It is quite possible that  different problem domains would require different techniques. 
[232, 441,230,231,562] detail several techniques for physical representation of spatial 
regions. 

At  the user interface level, Scholl and Voisard [499] define elementary regions as 
lines, polygons etc. A region is defined either as an elementary region or as a set of 
elementary regions. They treat  maps as relations and introduce operations like projec- 
tion, cover, map overlay, superimposition, selection windowing and clipping over the 
relation (map). Guting [237] identifies several different types of spatial domains e.g. 
point type, line type (curves), polygon type etc. He also introduces some basic oper- 
ations like inside, outside, intersection, diameter, length etc. over these domains. He 
uses strong da ta  typing. Orenstein and Manola [441] view spatial regions as mathemat-  
ical abstractions called point sets. They introduce interesting algorithms to implement 
spatial overlay, union, intersection, difference and joins. [20] covers SQL-type querying, 
but their main focus is on architecture for spatial data. Additional papers on relational 
approach relevant to our work include [98, 99, 100, 473, 299,438]. There is also a trend 
in spatial  databases toward object orientation [439, 411,388,567, 5]. 

An important  objective of a query language is to provide a natural  interface to 
a user. As stated above, in this chapter we present a model and an SQL-like query 
language SpaSQL to achieve this objective. Now we discuss features of our approach. 

11.1.2 Our Concept of A Spatial Region 
We assume that  we are given some universal region 7r A user views 7~ as a set of points. 
Every region that  the user or the system encounters will be some subset of TO. It  is not 
possible to have a tractable or finite description of all possible subsets of 7~. However, all 
possible subsets of ~ are not of interest to us either~ We postulate that  the set of subsets 
of Tr that  the user is interested in, is denoted REG. A particular implementation may 
implement REG in any convenient way so long as the following closure properties 
are satisfied: if reg, regland reg2 are regions in REG, then regl tA reg,, regl N reg2, 
regl - reg2 and ~reg (complement of reg) are regions in REG. 

There are important  potential advantages of our concept of a region as introduced 
above. At the model level, the closure properties make it possible to store a single 
object in a single tuple. At the query language level, one may use U, N and -- to 
capture the booleans or, and and not of English in a seamless way. Our model and 
SpaSQL incorporate these ideas and eliminate the boolean seams. Justification for 
these claims will be given in Section 11.4. In that  section we will compare PSQL of 
[440] with SpaSQL. Even though [440] assume the closure properties for spatial regions, 
PSQL is not as seamless as SpaSQL. This is because in PSQL the at tr ibute values are 
not modeled as functions of time, but rather region is used as an at tr ibute at the 
tuple level. The boolean seams in their model stem from the fact that  they split the 
description of a single object in several tuples. 

Note that  Scholl and Voisard [499] define a region to be a set of (elementary) 
subregions, whereas we view a region as a union of subregions. We feel a union is a 
bet ter  abstraction, because a given region can have many different representations as 
a set of subregions, whereas a union has a canonical representation. A user can view 
our region as a flat object, a set of points having no seams, rather than as a set of 
set of points as in [499]. Our regions simplify the semantics of algebraic operators in 
spatial  databases. Also, unlike [499], we do not have any inherent distinction between 
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elementary regions and regions. We suggest only regions of type REG as an abstraction 
of all spatial regions. We emphasize that at the implementation level, a region may be 
a mixture of finitely many elementary types, such as points, fines, curves, polygons. 
The idea is to free the user from seams arising from strong data typing of regions. 
At the same time, to facilitate navigation, we favor that the user be supplied with 
functions to determine the type of a region, e.g. IsPoint(reg). 

11.1.3 Weak Data T y p i n g  

Unlike [237] discussed above, we favor weak data typing of operations on regions. The 
reason for this is to avoid unnecessary run time errors. For example consider the 
construct Interior(regl n reg2), where regt and reg2 are regions (of type REG). The 
construct Interior(reg) returns the interior of reg, after removing its boundary. For 
most tuples regl N reg2 may be a region but for some it may degenerate into a curve or 
a point if regl and reg2 are merely touching each other. In such degenerate cases we 
want Interior to return an empty region (denoted r rather than an error. In relational 
systems such constructs are mainly used in selection; the problem becomes more serious 
when such a selection is nested inside another query and an error at the inner level 
could abort a computation unnecessarily. 

11.1.4 Uniformity of Attribute Values 

Roussopoulos et al [440] add region as an attribute to a relation in order to deal with 
spatial information. In our model the spatial aspect is incorporated at the level of an 
attribute value which is defined as a function of time. For example consider the data 
value taken by the attribute cRoP in Figure 11.1. The semantics of this data is "the 
value of cRoP is wheat in the region cregl and it is CORN in the region creg2. 

CROP 
cregl wheat 
creg2 corn 

Figure 11.1: A data value 

11.1.5 Experience From Temporal Databases 

[203] introduced a temporal element as a finite union of intervals. Temporal elements are 
closed under U, f3 and complementation, and their use as timestamps hides the seams 
arising from and, or and not appearing in English queries. In temporal databases the 
issue of interval v/s temporal elements as timestamps has been debated for sometime. 
The basis for this debate is that interval timestamps make it possible to have fixed 
length tuples, and this brings temporal databases within the realm of first normal 
form. On the other hand use of intervals alone causes history of an object to split over 
several tuples, leading to query languages which are complex from the point of view of 
users [205]. 

Like spatial databases a temporal database can have more than one dimension. 
However, even in higher dimensions unions of rectangles suffice. The reason for this 
is perhaps that the time changes linearly along every axis giving rise to a rectangular 
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granule. This is not  the s i tuat ion in spatial databases where the whole space is there, 
all at once. 

The remainder  of this chapter is organized as follow. Our model for the spatial 
database is presented in Section 11.2. In Section 11.3 we present our query language 
SpaSQL and some exaznple queries. We have taken [440, 499] as samples of works 
on querying in spatial  databases. In Section 11.4 we discuss [440] in detail; we show 
how our queries remove boolean seams arising from and, or and not, mentioned above. 
The operators from [499] are expressed in SpaSQL in Section 11.5. We are able to 
express all the queries given in [440, 499] with some minor exceptions. The chapter is 
concluded in Section 11.6. 

11.2 Our M o d e l  

In this section we informally introduce our model for spatial da ta  along the lines 
discussed in the introduct ion.  Querying in our model is covered in the next section. 

11.2.1 Spatial Regions 
As stated in Section 11.1, we assume an underlying universal region ~ .  The user views 
it as a set of points. We have also postulated a set REG consisting of subsets of 
which are of interest  to users, and that  REG is closed under  union (U), intersection 
(N), subtract ion (-) and complementat ion (-1). Throughout  this chapter by the term 
region S we mean an element of REG. 

Note that  we do not  make specific assumptions about  the const i tut ion of 7~. ~ can 
be an n-dimensional  Euclidean space, surface of a sphere, portion of a plane, a curve 
and so on. We do not  assume that  Tr is discrete or continuous. Our main hypothesis 
is tha t  the regions in REG should have some reasonable description. Note that  a set 
may be infinite, but  its description may be finite. For example suppose ~ is the 2- 
dimensional  Euclidean plane {(x, y) : x and y are real numbers}.  We may describe the 
upper  half plane simply as y > 0, and the right half plane as x > 0. Although the two 
half planes are infinite, their intersection is easily computed as x _> 0 A y > 0. The 
union of the two half planes is described as x _> 0 V y > 0. Complement  of this union 
may simply be described a s - - ( x  > 0 V y  > 0), or x < 0 A y  < 0. (We do not imply 
that  the system should reduce such a description immediately when it is encountered; 
we consider this as an implementa t ion  issue.) In the above notat ion there is no need 
to describe ~ itself in a complicated manner;  it is described by the constant  predicate 
TRUE. 

11.2.2 Attribute Values 
As stated in Section 11.1, to capture the value of an at tr ibute,  we introduce the notion 
of a spatial  assignment which would be a function from a spatial region into dom(A),  the 
domain  of A. We are not  interested in allowing an arbitrary function to be considered 
a spatial  assignment.  The  following example illustrates this point and motivates the 
formal definition of a spatial assignment.  

E x a m p l e  11.2 .1  Suppose Tr is the interval [0, 1] = {x : 0 < x < 1, x is a real number}.  
We define a function X on ~Z as follows. X(x) = 0 if x is a rational real number  (a 

Sin our more recent papers [109, 204] we use the term spatial eIemenl for a region in REG 
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fraction), and X(x)  = 1 if x is an irrational real number. Although X takes only two 
values, its description is very complex. This may be because the set of rational points 
in [0,1] is difficult to describe and we may not want to consider it a region in REG.  Note 
that in functional notation X - l ( a )  denotes the inverse image of a under the function 
X. Thus X -~ (0) is the set of rationals in [0,1] and X -1 (1) is the set of irrational in [0,1]. 
We want all inverse images to be regions in REG. Thus we may not wish to consider 
X to be an spatial assignment. 

The above example motivates the following definition of a spatial assignment. A 
spatial assignment (or simply assignment) ~ to an attribute A is a function from some 
region reg in R E G  into domain of A, such that (i) ~ takes only finitely many values, 
and (ii) inverse image of every value taken by ~ is a region in REG. This allows us to 
represent a spatial assignment as (regl al,  reg2 a2, . . . ,  reg,~ am), where regl,  reg2, . . . ,  
regm are regions in REG,  and for each i~ 1 < i < m, ai is the value of the assignment at 
every point in regi. Figure 11.1 is an example of a spatial assignment to the attribute 
cRoP, which can also be represented as (regl wheat, reg~ corn). 

The domain of an assignment is called its spatial domain. The operator [.~ denotes 
the spatial domain of a spatial assignment. Thus ~(rega wheat, reg2 corn)] = reg~ U 
regz. The restriction of a spatial assignment ~ as a function to the spatial region reg 
is denoted ~[reg. 

11.2.3 Value Navigation 
We assume that certain binary operators such as =, < etc. are available. In classical 
databases these operators allow us to make comparisons, such as 2 < 4, which evaluates 
to TRUE, and 5 < 3 which evaluates to FALSE. Syntactically, this leads to boolean 
expressions of the form AOB where A and B are attributes. Such boolean expressions 
are used in selection operators. In the spatial context we need a way of comparing 
spatial assignments, i.e., compare functions of space. Clearly, such a comparison does 
not make sense at points where one or both of the assignments are not defined. Also 
it may happen that at some points the comparison returns TRUE and at other points 
it returns FALSE. Thus  it is not useful to view the overall result of AOB as a TRUE or 
FALSE value. In fact it should yield the set of points where the comparison of their 
values returns TRUE 

More formally if ~1 and ~2 are spatial assignments then we define [~10~2~ = {x : 
~1 and ~2 are defined at x and ~l(x)O~2(x) is TRUE}. The construct ~10~2~ is of 
fundamental importance in spatial databases. As stated above, it evaluates to the set 
of points where ~ is in 0 relationship with ~2 and its value lies between r and [~]N[~2~. 
The value is r if the spatial assignments are never related. 

It is natural  to expect [~10~2] to be a region. To see this suppose ~1 is (regl al, 
reg2 a s , . . . ,  regm am) and 52 is (reg~ bl, reg~ b2, . . . ,  reg~ b~), where reg~ and reg~ 
are regions in REG.  Clearly, [~0~2] = U{reg~ fq reg'j : 1 < i < m, 1 <_ j <<_ n and aiObj 
holds}, which is a region in R E G  because R E G  is closed under t_J and n.  

11.2.4 Spatial Tuples 
A tuple is a concatenation of spatial assignments whose spatial domains are the same. 
The spatial domain of a tuple r, denoted lit]I, is simply the spatial domain of any of 
its spatial assignments. The assumption that all spatial assignments in a tuple have 
the same domain is called the homogenei ty  assumption [203]. The restriction of a tuple 
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r to a spatial region reg, denoted r[reg,  is the tuple obtained by restricting every 
assignment in r to reg. 

A literal implementation of a tuple may have substantial redundancy, as the un- 
derlying region is repeated from one attribute to another. We assume that a clever 
implementation attempts to minimize such redundancy. Note that in spatial databases 
inconsistency between different data layers (attribute values) is a common place due to 
complexity of mapping spatial regions [227]. It is a nontrivial problem, and introduces 
errors in spatial data. We feel that expert techniques for reconciling different attribute 
values should be incorporated at the implementation level. When several techniques 
for reconciling are available the choices should be made available to the user at a high 
interface level. 

11.2.5 Spatial Relations 

A spatial relation r over R, with k C R as its key, is a finite set of non-empty tuples, 
such that no key attribute value of a tuple changes from one spatial point to another, 
and no two tuples agree on all their key attributes. Figure 11.2 shows a county relation 
with the schema CNA1VIE CROP. We designate CNAME as its key; this satisfies both the 
requirements of a key: within the same county the CNAME of a county does not change 
from one place (point) to another, and no two counties have the same CNAME. The 
figure also shows a state relation with the schema SNAME CNAME, with SNAME aS its 
key. Note that the key attributes are underscored. 

CNAME CROP 
eregl U creg2 story cregl wheat 

creg~ corn 
creg3 (3 creg4 U creg5 orange creg3 wheat 

creg4 barley 
creg5 rice 

cregs polk creg6 wheat 

The county relation with CNAME as its key 

SNAME CNAME 
cregl U creg2 U creg6 IA cregl U creg2 story 

creg6 polk 
creg3 U creg4 U creg5 C A  cregz U creg4 O creg5 orange 

The state relation with SNAME a~ its key 

Figure 11.2: An  example database  

If r is a spatial relation over R, then the spatial domain of r, denoted [[r]], is the 
union of the spatial domains of all its tuples. From closure properties of REG,  [r]] is 
clearly seen to be a region. For example, for the state of the county relation shown in 
Figure 11.2, [[county]] = cregl U creg2 U creg3 U creg4 U creg5 U cregs. The restriction of a 
relation r to a spatial region reg, denoted r [reg, is the relation obtained by restricting 
every tuple of r to the spatial region reg. 
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11.2.6 Weak E q u a l i t y  a n d  R e s t r u c t u r i n g  

Suppose r and s are relations over the same scheme and have the same key. Then we 
say that r is weakly equal to s, provided at every point p in the spatial universe, the 
restrictions of r and s to {p} are the same (i.e. for every point p, r[{p} - s[{p}). 
Two weakly equal relations differ in structure, but in some sense they have the same 
information content. Sometimes in forming a query, it is necessary to view the relation 
to have a different key. This is achieved by computing a weakly equal relation with 
the desired key. The following theorem tells us when this is possible. 

T h e o r e m  1 Suppose r is a relation with K as its key, and K '  is such that K '  is a key 
of r[{p} for every point p in the spatial universe. Then there exists a unique relation 
s, such that r and s are weakly equal, and K ~ is the key of s. 

Example 11.2.2 Suppose for the county relation, instead of CNAME we want to use 
CRoP as the key. This is achieved by restructuring the county relation to obtain the 
county ~ relation as shown in Figure 11.3. 

CNAME CROP 
cregl story cregl kJ creg3 U creg6 wheat 
creg3 orange 
creg6 polk 
cregz story creg2 corn 
creg4 orange creg4 barley 
creg5 orange creg5 rice 

Figure 11.3: The county ~ relation with CROP aS key 

11.3 Querying in The Mode l  
In this section we introduce the SQL-like query language SpaSQL. At the end of this 
section we will give several interesting example of queries. 

We assume that a database consisting of spatial relations is given. The set of 
all SpaSQL expressions can be divided into three mutually exclusive groups: spatial 
expressions, boolean expressions and relational expressions. Note that we want to allow 
constructs like SNAME = C A  in the queries. This causes a technical problem: SNAME 
evaluates to a spatial assignment during query evaluation, but CA is a constant. This 
difficulty is easily removed by identifying a constant c with the spatial assignment 
which is a constant function over the universe ~ of space. 

11.3.1 Spatial  E x p r e s s i o n s  

Spatial expressions, the syntactic counterpart of spatial regions, are formed from ~A~, 
~r]], [AOB], [AOb~, U, N, and -,. Additional spatial expressions axe formed using built- 
in functions such as Point(x,y),  Circle(center,radius), Window(x • a, y • b), Bound- 
ary(reg), Interior(reg) and Exterior(reg). 

If # is a spatial expression, and 7- is a tuple, then /~(r), the result of substituting 
r in /~, is defined in a natural manner. Instead of giving a formal definition of tuple 
substitution, we illustrate it by an example. 
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Example 11.3.1 Let us consider the county relation of Figure 11.2. [cRoP -~ wheat]] 
is a spatial expression. Suppose v denotes story county's tuple. Then [cRoP -- 
whea t , ( r )  is cre91. The result of substituting r in the spatial expression [CNAME~ 
is cregl U creg2. 

11.3.2 Boolean Expressions 
Boolean expressions are formed from TRUE, FALSE, regl C_ reg2, A, V and -~. Additional 
boolean expressions are formed using built-in functions such as IsPoint(reg), IsLine(reg) 
IsPolygon(reg), regl Equal reg,, regl Inside reg2, regl Outside r eg2 and regl Intersects 
reg2. 

11.3.3 Relational  Expressions 
Relational expressions in SpaSQL are the syntactic counterparts of spatial relations. 
Now we introduce relational expressions. 

U n i o n  a n d  D i f f e r e n c e  

Suppose r and s are spatial relations with the same schema and key. To arrive at r 
union s we first compute the union of r and s treating them as sets, and then collapse 
each pair of tuples of r and s which agree on all key attributes, into a single tuple. 
Computat ion of r difference s is similar; in union non-overlapping part is added while 
in difference overlapping part  is removed from a tuple of r. 

The Select Statement  

The select s tatement of SQL is important  and it is the counterpart of SPJ-expressions 
of an algebra. (SPJ stands for select project join). In SpaSQL, the select statement is 
of the form 

select at tr ibute-l ist  
restricted_to spatial:expression 
from relation-list 
where boolean-expression 

The semantics of the above select statement is as follows. A tuple r is formed 
by selecting tuples from each relation in the relation-list. For this tuple r ,  boolean- 
expression is verified. If r does not satisfy boolean-expression, it is rejected. If r 
satisfies boolean-expression, then spatial-expression is evaluated for this tuple. This 
gives us the portion of domain of r,  which is of interest to us. The tuple r is now 
restricted to this domain. The tuple r is made homogeneous, if necessary. If its domain 
becomes empty, it is rejected; otherwise its at tr ibute values specified by attribute-list  
are retrieved. 

Like the classical SQL, the where clause is optional; when omitted, it defaults to 
TRUE. This amounts to qualifying aJ1 tuples for retrieval. The restricted_to clause is 
also optional. When omitted, it defaults to 7~, meaning no part  of a qualifying tuple is 
removed. A detailed discussion of key is omitted. It is clear that  the boolean-expression 
and spatial-expression are both recursive as they can involve relational expressions. 
This makes the select statement of SpaSQL is very powerful. 
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11.3.4 Examples 
We assume that our database consists of the relations as shown in Figure 11.4. Al- 
though the spatial domain of each of the relations is of type REG, underlying assump- 
tion is that in the implementation city is represented as point, highway as a curve, and 
county and state as polygons. 

counties (COUNTY, STATE, CROP) 
cities (CITY, COUNTY, POP) 
hwys (HWY) 
states (STATE, TIME-ZONE) 

Figure 11.4: An example database 

E x a m p l e  11.3.2 The query for the highways which pass thru L4, find the portion 
which is inside MN is expressed in SpaSQL as follows. 

select * 
restricted-to [select * from states where STATE ~- MN~ 
from hwys  
where ~HWY] Intersect ~select * from states where STATE = IA] 

E x a m p l e  11.3.3 The query find all states whose boundary length is more than 2000 
miles is expressed in SpaSQL as follows. 

select STATE 

from states 

where Boundary([[STATE]) > 2000 

E x a m p l e  11.3.4 The query find all the cities along with their population (POP), which 
are within 200 miles of Chicago is expressed in SpaSQL as follows. 

select CITY, POP 

from cities 
where [ClTY~ Inside Circle([select * from cities where CITY = Chiago~, 200) 

E x a m p l e  11.3.5 The query find all the counties in IA which grow wheat in a total of 
more than 1000 square miles is expressed in SpaSQL as follows. 

select COUNTY 

from counties 
where Area([select * restricted_to [cRoP = wheat~ where STATE = IA]) > 100 

E x a m p l e  11.3.6 The query find all the counties in central time zone is expressed as 
follows. (Note that a state can be in more than one time zone.) 
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select COUNTY 
from counties 
where [COUNTY] Inside [select * 

restricted_to [TIME-ZONE = central~ 
from states] 

E x a m p l e  11.3.7 The query find the cities which are in the central time zone and 
within 50 miles from the intersection of two highways and rice is grown in that area 
can be expressed as follows. (Note that  "from hwys H1 H2" is meant to create two 
aliases H1 and H2 of hwys.) 

select CITY 
restricted_to [[select * restricted_to [[cRoP = rice~ from counties] 
from cities 
where [CITY] __ [select * restricted_to [TIME-ZONE = central] from states 

and (Distance(IclTY], 
[select * restricted_to [H1] N [H2] from hwys H1 tt2]]) _< 50) 

11.4 Seamlessness  of SpaSQL 

tn this section we justify our claims of boolean seamlessness of SpaSQL. We say that  
a query system does not have a boolean seam if it handles and, or and not of natural  
languages symmetrically. Instead of formalizing this idea into a more precise notion, we 
illustrate it through examples. We consider the above constructs of natural languages 
and show how they are handled in PSQL of [440] and SpaSQL. 

CNAME CROP CREGION 
story wheat cregl 
story corn creg2 
orange whealt creg3 

orange barley creg4 
orange rice creg5 
polk wheat creg6 

Figure  11.5: The  county  re la t ion  of  F igure  in P S Q L  f ramework  

We consider the county(CNAME,CROP) relation of Figure 11.2. In the PSQL frame- 
work, this relation would be represented as county(CNAME,CROP,CREGION), and it is 
shown in Figure 11.5. Note that  the tuple of story county in Figure 11.2 has now split 
into two tuples. In general a tuple for SpaSQL would split into an unbounded num- 
ber of tuples for PSQL. We explain the adverse implications of phenomenon through 
severa] examples. 

E x a m p l e  11.4.1 First  we consider the query retrieve complete information about 
counties which grow wheat or corn. In SpaSQL this query is expressed as follows. 
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SpaSQL: select * 
from county 
where IcrtoP = wheat~ # r or ~cRoP = corn] r ~. 

To express this query in PSQL we need two variables x and y. The variable x 
is needed to make sure that the crop is wheat, and y is needed to make sure that 
the county is same as that in x. Note that the from clause "from county x y" in the 
following expression is meant to create two aliases of the county relation. The PSQL 
expression is as follows. 

PSQL: select x. ,  
from county x y 
wher~ ( x . C R O P  = wheat or x . C R O P  ~--- c o r n )  

and x . C N A M E  = y . C N A M E  

E x a m p l e  11.4.2 As our next example, we change or to and in the English query of 
Example 11.4.1. The resulting query is retrieve complete information about counties 
which grow wheat and corn. This is expressed in SpaSQL simply by replacing or in 
~cRoP = wheat~ ~ ~ or ]cRoP = corn] r r by and. Thus the SpaSQL expression is as 
follows. 

SpaSQL: select * 
from county 
where ] C R O P  = wheat] # r and ]CROP = corn~ # r 

The corresponding transformation does not work in PSQL. To express the new 
query in PSQL, we need three independent variables, and it is expressed as follows. 

PSQL: select z.* 
from county x y z 
where (x.CROP -~ wheat and y.CROP = corn) 

and x . C N A M E  -~- y . C N A M E  a n d  x . C N A M E  = z . C N A M E  

Note that for every occurrence of and in an English query of the form given above, 
we need an additional variable in the PSQL query. Thus if there axe n properties to be 
checked for a given county, we need n ~ 1 variables in PSQL leading to an (n + 1)-way 
join; in SpaSQL simply one variable suffices. 

E x a m p l e  11.4.3 Now we consider not of natural languages. First consider the query 
retrieve information about counties that grow wheat. In SpaSQL and PSQL it is ex- 
pressed as follows. 

SpaSQL: select * 
from county 
where ]CROP = wheat] 5~ r 

PSQL: select x.* 
from county x y 
where x . C R O P  = wheat and X.NAME = y . C N A M E  

Now we insert a not in the English query. The new query is retrieve information 
about counties that do not grow wheat. In SpaSQL it is simply expressed by replacing 
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[cRoP ---- wheat~ • r by --[CROP ---- wheat~ # r or equivalently, by [CROP : wheat]] ---- 
r But it is more complex in PSQL. It needs the difference operator to express it. 

SpaSQL: select * 
from county 
where [CROP -~- wheat~ ---- r 

PSQL: (select * 
from county) 
difference 
(select x.* 
from county x y 
where x.CROP -~ wheat and x.CNAME = y.CNAME) 

Thus we see that the complexity of a PSQL expression increases with every occur- 
rence of and and not in the given natural language query. 

11.5 Algebraic  Nature  of SpaSQL 
SpaSQL is algebraic in nature. In this section we show how the counterparts of usual 
operators of the classical relational model can be captured as additional operators in 
SpaSQL. Then we show how operators in [499] can be expressed in our model. 

We note that we have already introduced (i) union and (ii) difference operators. 
(iii) Projection ] Ix(r)  is equivalent to the select statement "select X from r." (iv) Our 
selection is of the form ~r(r; f ;  reg) and it is equivalent to the select statement "select. 
* from r restricted_to reg where f." (v) The join r(AB)>~s(BC) is equivalent to the 
select statement "select ABC from r, s restricted to [r.B = s.B]]." 

Scholl and Voisard [499] introduce some interesting operators for handling spatial 
data. Without going into considerable details we show how these operators may be 
expressed i n  SpaSQL. 

1. Projection. is the usual projection operator, and it is covered above. 

2. Cover. Their cover(r) is our It]], where r is a spatial relation. 

3. Map overlay. Their r x a s is a homogeneous cross product. Assuming that the 
schemes of r and s are R and S, respectively, and that R and S are disjoint, this 
operator is expressed in SpaSQL as "select R, S from r, s." 

4. Selection, clipping and window. Their selection, clipping, and window operators 
are incorporated in our selection operator given above. 

5. Superimposition. The effect of r superimpose s is similar to our (r - s) U s, if 
r and s have the same scheme. However, the superimpose operator of [499] can 
be used in more complex ways. For example, superimposition can be used to 
caption a relation (map) r with a set of labels s. 

11.6 Conclus ion 
In this chapter we have presented a model and a query language for spatial data. The 
query language is perhaps as seamless as possible. SpaSQL can serve as a powerful 
query language for retrieval of spatial data. In our model we used some ideas from 
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temporal  databases. We feel that  the work presented here only serves as a starting 
point, because spatial databases are far more complex than temporal databases. This 
complexity basically arises from the underlying spatial domains. The implementation 
of spatial databases is truly a challenging problem. It should be noted that  the im- 
plementation of a spatial relation can be different from its logical representation. It is 
possible, for example to implement our logical spatial relations as the spatial relations 
used by PSQL. We hope that  this model will serve as a basis for further research. 
There is considerable similarity between spatial and temporal data. Perhaps a more 
appropr ia te  term for all these forms of data  is parametric data. Parametric da ta  have 
the notion of an underlying parameter space. In case of spatial and temporal  data, the 
parametric  spaces consist of spatial points, and time instants, respectively. The model 
and SpaSQL presented in this chapter have been generafized to parametric databases 
in [204]. We have also given an object oriented model for parametric databases in [109]. 



Chapter 12 

Parallel Query Processing 

P. S. Yu*, M.-S. Chen t, J. L.Wolf $, J. Turek ~ 

12.1 I n t r o d u c t i o n  

With the advent of inexpensive microprocessors and high bandwidth interconnects, 
coupling a large number of processors to form a highly parallel system has become 
an increasingly popular method for improving the cost-performance ratio of computer 
systems [129, 130, 353, 380, 577]. Recent work has shown that  this method is also 
applicable to database systems with increasing benefits as the queries become larger 
and more complex. The objective of this chapter is to examine the various issues 
encountered in parallel query processing as well as the techniques that  are available for 
addressing these issues. 

Research on parallel processing over the last two decades has mainly focused on 
scientific applications. In the past  few years, there has been a growing interest in 
applying general purpose parallel machines to database applications [94, 104, 260, 
360, 361, 469]. Several research systems have also been developed to explore this 
trend, including GAMMA [155], XPRS [555], DBS3 [46], and BUBBA [72]. Relational 
databases have a certain natural  affinity to parallelism. Relational operations are 
set oriented and this provides the query optimizer lots of flexibility in selecting the 
parallelizable access path. (This is in contrast to navigational type databases such 
as those using the hierarchical and network paradigm.) Also, the parallelism tends 
to be coarse grained, i.e., each task will involve a lot of I /O  and processing, with 
a well-defined and, in general, infrequent communication pat tern between the tasks. 
The difficulties associated with query parallelism arise because of the less than perfect 
predictabil i ty of task times (primarily due to a dependency on the da ta  itself) and the 
enormous search space that  the query optimizer needs to consider in order to make its 
access plan selection. 

As pointed out in [498], the methods for exploiting parallelism in a database en- 
vironment can be divided into three categories: namely intra-operator, inter-operator, 
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and inter-query parallelism. First of all, parallehsm can occur in each operator within 
a query in such a way that  multiple processors work concurrently on a single database 
operation. Here we will be concentrating on the join operations, as they are the most 
expensive operations to execute, and also the most difficult to parallehze properly. In 
intra-operator parallelism the major issue is task creation, and the objective is to split 
an operation into tasks in a manner such that  the load can be spread evenly across a 
given number of processors. The second form of parallehsm is termed inter-operator 
parallelism, meaning that  several operators within a query can be executed in paral- 
lel. This can be achieved either through parallel execution of independent operations 
or through pipehnlng, �82 where multiple joins are pipehned so that  the early resulting 
tuples from a join can be sent to the next join for processing simultaneously. In ei- 
ther case, the major  issues are the join sequence selection and processor allocation for 
each operation. Join sequence selection, which is also called query plan generation, 
determines the precedence relations among the operations. Thirdly, parallehsm can be 
achieved by executing multiple queries simultaneously within a multiprocessor system. 
This is termed inter-query parallelism. For inter-query parallelism, the issue again is 
processor allocation, but among the multiple queries. 

Various techniques to address each of these issues have been proposed in the lit- 
erature, albeit under different assumptions and generally with a focus on only one of 
the issues. In this chapter, we explore the query parallelism based on a hierarchical 
approach and a unified framework, so that  the potential integration of the techniques 
used to address each type of parallehsm can be illustrated. Both sort-merge joins and 
hash joins are considered. 

Due to the complexity of the problem, join sequence selection is still mainly based 
on heuristics [105, 107], and there is generally no formal analysis (such as worst case 
bounds) on the suboptimali ty of these heuristics. However, given a join sequence, the 
processor allocation problem can generally be formulated as an optimization problem 
[376,628], which can often be solved by the use of resource allocation problem methods 
[270] (which we note in passing also have a wide range of apphcability to various prob- 
lems in computer science [284, 549, 574, 626]). Generating the optimal join sequence 
and processor allocation together through exhaustive search can be prohibitively ex- 
pensive for complex queries, due to the enormously large design space. This is generally 
not a t tempted  in the l i terature even for the sake of validating the optimality of the 
heuristics. 

Preliminaries are given in Section 12.2. The various issues encountered in paral- 
lehzing query processing are presented in Section 12.3. In Section 12.4, we discuss the 
implication of the different parallel processing architectures. The various techniques 
to address intra-operator,  inter-operator, and inter-query parallelism are then consid- 
ered. Section 12.5 addresses the issue of da ta  skew on intra-operator parallelism. We 
then consider parallelism for multi-join queries in Section 12.6. Parallelism in a mul- 
tiple query environment is explored in Section 12.7. Finally, Section 12.8 provides a 
summary. 

12.2  P r e l i m i n a r i e s  

In this chapter, we assume that  a query takes the form of conjunctions of equi-join 
predicates. A join query graph can be denoted by a graph G = (V, E), where V is the 

�82 is also referred to as data-flow scheduling [614]. 
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Figure 12.1: Illustration of different query trees. 

set of vertices and E is the set of edges. Each vertex in a join query graph represents a 
relation. Two vertices axe connected by an edge if there exists a join predicate on some 
at t r ibute  of the two corresponding relations. We use IRil to denote the cardinality of a 
relation Ri and I.AI to denote the cardinality of the underlying domain of an at t r ibute 
.4. 

The execution of a query can be denoted by a query execution tree, which is 
determined by the join sequence selected by the query optimizer. Three forms of query 
execution trees are explored in the literatures: left-deep trees, right-deep trees, and 
bushy trees. We note that  left-deep trees and right-deep trees are sometimes referred 
to as linear trees as they can be represented by a permutation of the vertices. In a 
query tree, a leaf vertex represents an input relation, an internal vertex represents the 
relation resulting from joining the two relations representing its child vertices, and the 
query tree is executed in a bot tom up manner. Conventionally, the left and right child 
vertices of an internal vertex denote, respectively, the inner and outer relations of a join 
[497]. In the context of hash joins (as explained in Section 12.2), the inner relation is 
the relation used to build the hash table and the outer relation is the one whose tuples 
are applied to probe the hash table. Examples of the three forms of query trees are 
shown in Figure 12.1, where the inner and outer relations are indicated for illustration. 

12.3 I s sues  

We next examine the issues encountered in applying the three types of parallelism. In 
later sections, some techniques to address these issues are presented. 
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12.3.1 Intra-operator Parallelism 

Exploiting intra-operator  parallelism requires that  the join operations be divided into 
multiple subtasks that  can be run simultaneously on the various processors. The ef- 
fectiveness of such an approach depends upon the ability to equally divide the load 
among the processors while simultaneously minimizing the coordination and synchro- 
nization overhead. A factor which can impair the ability to parallelize join operations 
successfully is the amount of skew present in the data  to be joined. 

In real databases it is Often found that  certain values for a given at tr ibute occur 
more frequently than other values [63, 111,259, 415]. [63] notes, for example, that  for 
many textual  databases the da ta  distribution follows a variant of Zipf's Law [646], and 
can thus be characterized as Zip]-like [329]. This nonuniformity is referred to as data 
skew [344]. It is inherent in the data  itself and does not depend on the access pattern. 
Since identical values always are hashed to the same hash bucket, this problem cannot 
be remedied by an appropriate choice of hash function. Similarly, although they are 
important  concepts, neither bucket tuning [324] nor bit filters [596] will help with this 
part icular problem. 

The problem is exacerbated for join operations as opposed to sorts because corre- 
lation in the da ta  skew of each relation results in a join output that  is quadratic in 
nature. Previous studies on join performance have largely ignored this phenomenon 
and assumed uniform distribution of data, thus overestimating the potential benefit 
of parallel query processing using conventional join algorithms. Lakshmi and Yu [344] 
were the first to observe that  in the presence of da ta  skew the speedup from conven- 
tional join algorithms can be very limited. This is because the data  skew can result 
in some processors being overutilized while others are underutilized. Even one fre- 
quently occurring (or large skew) value can cause the processor to which it is assigned 
to become overloaded. In [498] some aspects of da ta  skew on parallel join methods are 
considered. However, in their study the case where both relations to be joined have 
da ta  skew (double skew) was explicitly not examined. Some examples of skew in the 
distribution of join column values from real workloads can ~lso be found in [624]. 

12.3.2 Inter-operator Parallelism 

Effective exploitation of inter-operator parMlelism for the execution of a multi-join 
query depends primarily on the following two major issues: (i) join sequence selection, 
i.e., schedufing the execution sequence of joins in the query, and (ii) processor alloca- 
tion, i.e., determining the number of processors for each join obtained in (i) so that  the 
execution time required for the query can be minimized. Note that  different execution 
sequences of joins in a query will result in different execution costs [511], and some 
sequences may be more parallelizable than others. Also, in a multiprocessor system 
the execution time of each join strongly depends on the number of processors allocated 
and the way intra-operator  parMlelism is handled. 

Note that  in the study of intra-operator parallelism, the objective is usually to 
determine the processor allocation which achieves the minimum execution time of a 
single join operation. Such a selection is referred to as operationalpoint selection. In 
exploiting inter-operator parallelism, we are, in contrast, dealing with the execution of 
a complex query consisting of multiple joins, where different joins are allowed to be exe- 
cuted in parallel in different clusters of processors. To minimize the execution time of a 
multi-join query, one needs to take into consideration not only the operational point se- 
lection (as in the study of intra-operator  parallelism), but also factors such as execution 
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dependency and system fragmentation. Execution dependency means that  some joins 
cannot be performed until their operands generated by prior joins are available. Also, 
after a sequence of processor allocations and releases, there might be a few processors 
left idle since they do not form a cluster large enough to execute any remaining join 
efficiently. This phenomenon is termed system fragmentation [106]. Clearly, execution 
dependency and system fragmentation as well as the operational point selection have 
to be taken into account for a better  processor allocation efficiency, thus complicating 
the minimization procedure for the query execution time. 

Depending upon the join methods selected, different types of inter-operator paral- 
lelism can be explored. With  hash joins, an additional form of inter-operator paral- 
lelism, pipelining, can be used, while with sort-merge joins, only parallelism of inde- 
pendent join operations can be employed. 

The execution of a hash join consists of two phases: the table-building phase and 
the tuple-probing phase. In the table-building phase the hash table of the inner relation 
is built according to the hash function of the join attribute,  and in the tuple-probing 
phase the hash function is applied to each tuple of the outer relation and the resulting 
hash value is used to probe the hash table of the inner relation for matches. Recall that  
in the context of hash joins, the left and right child vertices of an internal vertex in a 
query execution tree denote, respectively, the inner and outer relations of a join. It can 
be seen that  in a left-deep tree, the result of a join is used to build the hash table for 
the next join, and all hash joins thus need to be executed sequentially. In contrast, in 
a right deep tree all the hash tables are built from the original input relations, and the 
resulting relation of a join is input into the next join as an outer relation. The tuples of 
the outer relation can thus be pipelined through the entire right-deep tree. Clearly to 
maximize the throughput of the pipeline execution, we need to allocate the processors 
so that  all stages in the pipeline can proceed at the same pace: There should be no 
bottleneck stages. 

The bushy tree, on the other hand, is not restricted to a linear form, meaning that  
the resulting relation of a join in the bushy tree does not need to be immediately used 
in the next join. The resulting relation of a join can in fact be used as either an inner 
or an outer relation for subsequent joins. This further complicates the problem and is 
explored in Section 12.6. 

12.3.3 Inter-query Parallelism 
The basic issue is how to schedule the multiple queries. Each query can involve multi- 
ple joins and take any number of processors to execute. There has been very little work 
done on this subject. An exception is [628], where various approaches to inter-query 
parallelism are studied. One of the suggested approaches is to first allocate the pro- 
cessors at the query level and then devise a sub-schedule for inter-operator parallelism 
to allocate these processors among the different operations within the query. This is 
essentially a hierarchical approach. Since each operation, and hence each query, has 
different operating effieiencies depending on the number of processors allocated, the 
operational point selection and system fragmentation have to be taken into account in 
processor allocation at the query level. This is similar to inter-operator parallelism. 
However, in contrast to the case of inter-operator parallelism, there is no execution 
dependency or precedence relations among the queries. This type of processor allo- 
cation algorithms corresponds to a malleable task scheduling problem [588, 589], an 
extension to the classical multiple processor scheduling problem [27, 127] with the ad- 
ditional twist that  the number of processor allocated to each task is now a variable to 
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be optimized. We will discuss this in Section 12.7 together with other variations on 
hierarchical approaches to inter-query parallelism. 

12.3 .4  R e m a r k s  

We take a hierarchical approach on addressing the various issues on query parallelism. 
The inter-operator parallelism needs to address the join sequence selection and pro- 
cessor allocation issues. This can be built on top of the algorithm for intra-operator 
parallelism, which focuses on balancing the load across the multiple processors allo- 
cated to each join operation. As discussed in the previous subsection on inter-query 
parallelism, alternative ways can be devised to exploit the algorithms on inter-operator 
para/lelism and decide the processor allocation among the queries. 

Finally, we comment on the CPU vs. IO requirements for parallelism. So far we 
have used the term load in a loosely defined fashion so that it can either mean CPU 
load or IO load. Most prior work assumes that the complex queries are CPU-bound 
and the focus is on balancing the CPU load. However, this can be regarded essentially 
as an issue of objective function selection. By properly defining the objective function 
to be IO load for IO-bound cases and CPU load for CPU-bound cases, the algorithms 
described in this chapter will work in either situation. For the case where some of the 
queries are CPU-bound and some are IO-bound, a composite objective function can 
also be devised [254, 255]. 

12.4 Sys tem Architectures 
Here we examine different processor coupling architectures. In database environments, 
it is customary to classify the architectures according to the level of tile memory hier- 
archy being shared. 

In the shared everything (SE) architecture [62], which is also referred to as the 
tightly coupled processor architecture, all processors share a common main memory 
under a single copy of the operating system. 

In the data sharing architecture, each node runs an independent operating system 
and all the processing nodes have direct access to all granules in the database. There 
are two variations. One is the shared disk (SD) architecture [410, 559, 641], where all 
disks are shared. The other vaxiation is to have a shared intermediate level of memory 
between the main memory and disks. This is referred to as the shared intermediate 
memory (SIM) architecture [158, 323, 462, 639, 640]. The basic structure of SIM is 
otherwise the same as the SD architecture. 

Finally, there is a shared nothing (SN) architecture [551]. Under this approach, the 
database is partitioned among multiple nodes, and can only be accessed directly by 
the owning node. This is in sharp contrast to the data sharing approach. A high speed 
interconnect is generally provided to facilitate message and data exchanges between 
the nodes. 

In the rest of the chapter, we will assume an SD architecture when presenting the 
various parallel join algorithms. We briefly comment the general implications if other 
architectures are used and some additional comments are given in the later sections 
where appropriate. In the SN environment, there is an additional issue of data to pro- 
cessor affinity. If a task is not scheduled on the processor where the input data resides, 
an additional data transfer phase is required. This is in contrast to the SD architecture, 
where all disks are equally accessible by any processors, and hence there is no data to 
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processor affinity. This affinity issue is generally not pursued in the literature, even 
when assuming an SN architecture. Ignoring this issue, parallel join algorithms based 
on SD architectures are directly applicable to SN. The SE architecture offers more flex- 
ibility for dynamic load balancing or task scheduling than the SD architecture, since 
all processors share a common task queue. The SIM architecture, to a lesser extent, 
also provides flexibility in task scheduling. Aside from this additional flexibility, the 
parallel join algorithms for SD architectures are again applicable. 

There is an additional issue involving the structure of inter-processor connections. 
In a symmetric structure, the communication delays between the various pairs of pro- 
cessors are roughly the same, as is the overhead. In an asymmetric structure, these 
delays and overheads can be different for different pairs. For example, in a hypercube 
like structure, it may be preferable to schedule the tasks related to the same database 
operation or the same query in the same low dimensional sub-cube so that  the commu- 
nication penalty is minimized [37, 197, 437]. However, with the advent of high speed 
interconnects and the communication processors to route data  blocks, the difference 
between single hop and multiple hop communication becomes less significant. In this 
chapter,  we will assume a symmetric structure. 

12.5 D a t a  Skew and Intra-operator  Paral le l i sm 

Examples of relational database operations include joins of two relations, and scans or 
sorts of a single relation. Typically such operations are performed in several phases, 
even in uniprocessor environments. For example, a sort merge join might consist of 
a sort phase, in which sorted runs of each of the relations are generated, followed by 
a join phase in which the sorted runs are merged and joined. Similarly, a hash join 
might consist of hash and join phases. A sort might consist of sort and merge phases. 
Of these operations, only a scan can generally be performed in a single phase. 

Effectively, all phases associated with a database operation must be performed in 
sequence, since one phase has precedence over the next. In a parallel environment, 
therefore, a reasonable goal is to parti t ion the total  work associated with each of 
the phases into subtasks in such a way that  the processors complete their respective 
subtasks in approximately the same amount of time. This is called load balancing. For 
all practical purposes, balancing the load is equivalent to minimizing the makespan 
of the phase, namely the total  processing time of the last processor to complete its 
assigned subtasks. 

In this section we shall discuss several approaches to handling the problem of load 
balancing in the join phase of a single parallel join of two relations. These approaches 
span the spectrum in terms of sophistication, and in terms of their ability to handle 
the da ta  skew problem. We focus on joins in general, and the join phase in particular, 
because this phase is the most difficult one as far as the load balancing in the presence of 
da ta  skew is concerned. However, the algorithms presented have natural  (and simpler) 
analogues to other phases of joins and other operations, and we shall point these out 
where they are interesting. Similarly, we shall concentrate on sort merge joins rather 
than hash joins: Again, analogous algorithms exist for hash joins, and we will point 
them out where appropriate.  Finally, different architectures can also be handled within 
the general context of these algorithms. Much of the work in the literature has focused 
on the SN rather than the SD architecture. In an SN architecture, tuples may need to 
be physically moved from the disks of one processor to those of another, in order to be 
in the proper place for the next phase. Thus, for SN environments, a so-called transfer 
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phase may also be required. In an SD environment, however, which we are assuming 
in this chapter, this is obviously not necessary. 

Suppose we wish to perform an equijoin two relations R1 and R2, and suppose the 
join column attributes are from some common underlying domain. The first approach, 
which we will call a conventional join, ignores the data skew problem completely. This 
algorithm partitions the join phase work into subtasks based on the underlying domain 
only, and the number of subtasks is equal to the number P of processors employed. 
The second approach, which we will call dynamic, is a bit more sophisticated. It 
also partitions the join phase work based on underlying domain considerations, but 
more than P subtasks are created in an attempt to balance the load. Finally, the 
most sophisticated algorithms employ an additional phase of some kind, in an attempt 
to gather statistical information about the relations themselves. Said differently, these 
algorithms are therefore capable of partitioning the join phase work based on estimates 
of the number of tuples rather than just  the number of distinct values in the underlying 
domain. Accordingly, they are able to achieve consistently better load balancing in the 
presence of data skew. 

In order to be as concrete as possible, we shall now introduce a simple example 
of the join of two relations. The same example will be used throughout this section 
in order to illustrate the approach and performance of the various join algorithms. 
Consider Table 12.1. There are 12 distinct values in the underlying domain of the join 
columns of the two relations R1 and R2. These values are labeled A through L. Table 
12.1 shows the tuple count for each value and each relation. Notice, for example, that 
value G occurs 10 times in R1 and 2 times in R2. Similarly, the value B occurs 0 times 
in R1 and 1 time in R2. Again, the nonuniform distribution of tuple cardinalities is 
known as data skew. (Since this nonuniformity occurs in both relations, we call this 
an instance of double data skew.) For simplicity , we shall assume that there are no 
predicates involved in this join. Table 12.1 also shows the tuple count for each value 
in the joined relation R1 ~ R2. Notice that the values G and B occur 20 and 0 times, 
respectively. In [623, 624] a formula is given which accurately measures the amount 
of join phase work (time) associated with each distinct value in either a CPU- or IO- 
bound environment, but for the sake of exposition here we shall content ourselves with 
a very elementary approximation: Specifically, let us assume that the amount of work 
associated with a value v is given by TIME~ = cv,1 + c~,2 + cv,lev,2, where cv,1 is 
the number of tuples taking on value v in R] and c~,2 is the number of tuples taking 
on value v in R2. (The first two summands provide a simple measure of work done 
on input, while the last summand provides a measure of work done on output.) Thus 
TIMEG = 10 + 2 + 1 0 . 2  = 32, while TIMEB = 0 + 1 + 0* 1 = 1, as is indicated 
in Table 12.1. (Ordering the values by this measure of work, we wilt call G the largest 
skew value in this example, and B the smallest.) 

In our example, the sort merge join of R1 and R2 will be performed by P = 4 
processors. In the sort phase, each processor will generate sorted runs of portions of 
both relations. Load balancing of this phase will ensure that the processors complete 
at roughly the same time. (In an SD environment, effective load balancing of the sort 
phase is quite easy to achieve: We will comment a bit more on this issue shortly.) 
Figure 12.2 shows a possible outcome of the sort phase. There are 4 sorted runs for 
R1, each created by one of the processors, each of approximately the same size. A 
similar statement holds for R2. 

Our example gives an indication of just how serious the data skew problem is for 
joins: Notice from Table 12.1 that the join phase work associated with value G is 
more than a quarter of the total amount of join phase work. Given P = 4 processors, 
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effective load balancing will not be easy. Obviously, the problem grows with the number 
of processors and the degree of data skew. The problem is particularly exacerbated for 
joins, because of the quadratic nature of the join output size. 

12.5 .1  C o n v e n t i o n a l  Algorithm 
A conventional sort merge join algorithm attempts to balance the load across the 
processors for the join phase by an elementary range partitioning algorithm. For this 
example, since there are 12 distinct values and 4 processors, the algorithm might simply 
assign the first three values (A,B,C) to processor 1, the next three (D,E,F) to processor 
2, the next three (G,H,I) to processor 3, and the final three (J,K,L) to processor 4. 
Unfortunately, though the number of distinct values is precisely balanced, that number 
is not a good measure of the join phase work. This is shown in the left third of Figure 
12.3. We note that the makespan for the join phase is 32§ corresponding 
to processor 3. Note how unbalanced the processors are: While processor 3 is heavily 
overutilized, processor 2 (with 11 units of work) is heavily underutilized. Processor 
1 (23 units) is also somewhat underutilizcd, since a properly load balanced processor 
would perform (23+11+49+28)/4=27.75 units of work. Only processor-4 (28 units) is 
more or less properly utilized. The poor load balancing is directly due to the data skew 
in the relations. In fact, as previously indicated, any processor handling the value G 
would automatically become overloaded. 

There exists a corresponding conventional parallel hash algorithm, and it suffers 
from exactly the same problem. See [624] for details. 
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12.5.2 Dynamic Algorithms 
Notice that  the assignment of a single subta~k to each processor in the conventional 
algorithm is highly inflexible, in that  each processor is staticaUycommitted to perform 
a fixed unit of work. This observation suggests a relatively simple fix: Namely, create 
more than P subtasks, and assign new subtasks to processors dynamically as they 
complete their previously assigned subtask. This idea is originally due to [323, 325] 
in the context of a parallel hash join, and it obviously works especially well in an SD 
environment. 

In its simplest variant, the underlying concept of the dynamic algorithm is to 
part i t ion the join phase work into N > P subtasks, each with the same number of 
values in the underlying domain. (In [325] the choice is based on the expectation that  
the tuples associated with each subtask should fit in processor memory, obviously a 
good idea.) The subtasks are then placed in an ordered list. The ordering of this list 
is not important ,  since the expected amount of work associated with each subtask will 
be the same. The first P subtasks on the list are initially assigned to each of the P 
processors. Subsequently, as each processor completes a subtask, it is assigned the 
next subtask on the list. Eventually, the list becomes empty, and the join phase is 
completed. 

A refinement of this approach appears in [627]. The idea is to parti t ion the join 
phase work into KP subtasks having purposely non-equal subtask work estimates. 
(Here K is some relatively small integer greater than 1.) For example, a reasonable 
approach would be to s tar t  with the range partitioning described in the conventional 
join algorithm, and further partit ion each of the original ranges into K new ranges 
with the property that  the kth such range has approximately half the number of un- 
derlying domain values as the (k - 1)st such range. The list of KP subtasks is now 
ordered according to the number of values in the underlying domain, from largest to 
smallest, and the algorithm proceeds as before. Effectively, this algorithm is a dynamic 
version of the standard longest processing time first algorithm [228]. We therefore call 
it DLPT. (LPT is itself an algorithm for heuristically solving the optimization problem 
known as the minimum makespan or multiproeessor schedulingproblem, so its use here 
should not be surprising.) Although the subtask times have not been estimated with 
perfect precision, the ordering of the subtasks and the flexibility inherent in a dynamic 
algorithm help to limit the join phase load imbalance. 

We illustrate the DLPT sort merge join algorithm via our running example. Here, 
we choose K = 2, and we create 4 subtasks with two values each, and 4 more with 1 
value each. The ordered list is ({A,B},{D,E},{G,H},{J,K},{C},{F}, {I},{L}). See the 
middle third of Figure 12.3. The first 4 of these are assigned to processors 1 through 4. 
Processor 2 is the earliest to complete, and it is therefore assigned the subtask associ- 
ated with~value C. Processor 1 completes next, and is assigned the subtask associated 
with value F. Processor 1 completes next again, and is assigned the subtask associated 
with value I. Finally, processor 4 completes, and is assigned the subtask associated 
with value L. The join phase makespan using this dynamic algorithm is 32+3=35, as- 
sociated with processor 3. This processor has worked only on the subtask associated 
with values G and H, one of which, not surprisingly, is the largest skew value. Still this 
makespan compares favorably with that  (49) using the conventionM algorithm, and the 
load balancing is also correspondingly more uniform. 

Obviously, the same underlying problem remains: The subtask associated with 
the value G will automatically cause the processor to which it is assigned to become 
overutilized. Fixing this problem requires more sophistication, and that  is the subject 
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of the next subsection. 
We should point out that  the dynamic algorithm described above is really a special 

case of a very generic algorithm: The reader can easily imagine how such an algo- 
ri thm could be applied to load balance the first phase of a join, sort or scan. In fact, 
[268] recently described the same basic algorithm for an entirely different application, 
scientific as opposed to database. They call their algorithm factoring. 

12.5.3 Sophisticated Algorithms 
We shall now give an overview of an algorithm we call SMJ* [623]. In an SD en- 
vironment this algorithm adds a scheduling phase between the sort and join phases. 
The scheduling phase creates an ordered list of join phase subtasks, in an a t tempt  to 
balance the load for that  phase. 

In order to do a good jo b of load balancing, R1 and R2 are partitioned into some 
number of regions, typically larger than P.  Each region will correspond either to a 
contiguous multiple range of values (which we will call a type 1 region), or a single 
value (which we will call a type P region). We have already commented that  even a 
single large skew value can cause a processor to become overloaded. If we can identify 
and isolate such a type 2 region, we can give it special treatment:  Specifically, we can 
assign it to an optima] number of processors. (One approach to joining a single value 
across M processors would be to parti t ion the tuples with this value in R] into M equal 
size pieces, shipping each such piece to one of the M processors. The tuples with this 
value in R2 would then be shipped to allof the M processors, this redundancy incurring 
some additional overhead, and the join would be completed correctly. Alternatively, 
we could swap the roles of -R1 and R2.) Thus, associated with any type 2 region will 
be some currently optimal number of subtasks. This number, called the multiplicity of 
the type 2 region, will be less than or equal to P,  but possibly greater than 1. Type 1 
regions will always be assigned to a single processor, will correspond to a single subtask, 
and will be said to have multiplicity 1. The total  number of subtasks N created over 
all the regions will be the sum across all of the regions of their associated multiplicities. 

SMJ* will perform something of a juggling act. The initial step is the creation of 
a single region, corresponding to all possible values in the range of both relations, and 
presumably of type 1. From then on, the algorithm consists of the iterative application 
of the following 3 step process: 

�9 computing good subtask time estimates and determining optimal multiplicities 
for the type 2 regions, 

�9 generating an assignment of subtasks to processors in a way which achieves 
satisfactory join phase load balancing, if possible, and 

�9 if the load balancing is unsatisfactory, partitioning the type 1 region with the 
largest subtask time estimate into (2 to 3) new regions, at least one of which will 
be of type 2, and repeating the 3 steps. (We hope to identify the largest type 2 
regions during the repeated execution of this last step.) 

It is the last two steps which form the mathematical foundation of SMJ*. In particular, 
step 2 is accomplished using LPT [228]. Step 3 is accomplished using a variant of a 
somewhat less well-known algorithm, which  we will dub GM in honor of Galil and 
Megiddo [206]. The original version of this algorithm was designed by these authors 
to solve a special case of the so-called selection problem. 

The selection problem solved by GM finds the j t h  smallest element in a matrix 
whose columns are monotone non-decreasing. What  is the connection between our 
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problem and this selection problem? The idea is simply this: We wish, in step 3 of 
SMJ*, to spilt the largest remaining type 1 region up into smMler pieces, hopefully 
identifying a large type 2 region in the process, t t  would also be a good idea to make 
this split as even as possible with respect to estimated subtask times. Our approach 
is to determine the median value of the 2P sets of tuples in the largest type 1 region. 
(There is one set of tuples for each processor and each relation.) But, because the tuples 
are sorted, a selection problem algorithm applies, with a few minor modifications. The 
GM Mgorithm has two very nice properties: First, GM automatically identifies, by 
binary searches in the algorithm itself, the set of all tuples whose value equals the 
median value. This set becomes the new type 2 region. Secondly, GM paralleilzes 
quite naturally, each processor handling 2 sets of tuples. Now the tuples in the original 
type 1 region have values which are either... 

�9 Less than the median value, 

�9 Equal to the median value (the new type 2 region), or 

�9 Greater than the median value. 

The original type 1 region is partit ioned into 3 sets according to the above alternatives. 
The first of these sets may or may not exist. If it does, it will most likely correspond 
to a type 1 region. The same comments apply to the last of these sets. However, since 
the original region was of type 1, either one or the other of these regions must exist. 
Probably, both exist, and are of roughly equal size. Figure 12.4 presents a 'snapshot '  of 
the GM algorithm of SMJ* at work. (Figure 12.2 can be thought of as representing the 
initial type 1 region.) In Figure 12.4, GM has determined the type 2 region (associated 
with the value G) corresponding to the median element. The area above the Gs is 
a type 1 region, as is the area below. The lat ter  is the larger of the two. Hence, in 
the next i teration (not shown), GM will subdivide it and identify the type 2 region 
associated with the value J, and two new type 1 regions ({H,I}, {K,L}). One more 
i teration (also not shown) will partition the other original type 1 region, identifying the 
type 2 region associated with value C, and two new type 2 regions ({A,B}, {E,F}). At 
this i teration there are 7 regions in all, 3 of which are of type 2. In general the process 
will continue, identifying the largest skew values (among others) with high probability 
as it goes. 
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The right third of Figure 12.3 shows the performance of the SMJ* algorithm, under 
the assumption of three GM iterations and the creation of a single multiplicity 2 region 
(associated with the largest skew value G). In this case it is better  to split the 10 tuples 
in R1 with value G into two sets of 5 tuples each, shipping the 2 tuples in R2 with 
value G to both processors. The cost for each subtask will then be 5+2+5"2=17,  not 
quite as efficient as performing a single subtask of cost 30, b u t  better  than performing 
two subtasks of cost 10+1+10"1=21, as would be the case if the roles of R1 and R2 
were swapped. The two subtasks are labeled G1 and G2 in Figure 12.3. Note that  
the makespan is 17+12=29, associated with subtasks {G1} and {A,B} on processor 2. 
Also note how close to perfect the load balancing has become. 

For further details on SMJ*, including various technical improvements to the base 
algorithm, see [623]. A hash join variant (called H J*) also exists [624], and both 
algorithms are compared in [625]. 

Recently, [157] has introduced yet another hash join algorithm of comparable so- 
phistication for dealing with da ta  skew. The basic approach is to introduce an initial 
sampling phase to the hash join. This sampling phase estimates the degree of skew in 
the two relations, and thus serves the same role as the scheduling phase in the SMJ* or 
H J* algorithm. [623] contains a few remarks on the relative merits of these two basic 
approaches. 

There also exist algorithms to handle load balancing in the merge phase of a sort 
on a single relation. For example, [284] is philosophically similar to SMJ*, employing 
a variant of a selection problem algorithm. (In general, the load balancing problem 
is technically easier for sorts than for joins, and the consequences of imperfect load 
balancing less severe.) Similarly, [156] employs a sampling phase for sorts comparable 
to that  of [157] for joins. Each of these algorithms is quite effective at balancing the 
load. 

12.6 Complex Multi-join Query 
Recall that  inter-operator parallelism means that  different operators within a query 
can be executed in parallel by different clusters of processors. This implies that  two 
opportunit ies for parallelism exist in executing a multi-join query: Not only can each 
join be implemented by many processors, but also several joins can be executed con- 
currently. Note that  different execution sequences of joins in a query will result in 
different execution costs in terms of the amount of CPU and IO processing. Also, the 
execution time of a join closely depends on the number of processors allocated for the 
execution of that  join. Thus, the subject of exploiting inter-operator parallelism for 
the execution of a multi-join query consists of the two major issues: (i) join sequence 
scheduling (or query plan generation), i.e., scheduling the execution sequence of joins 
in the query, and (ii) processor allocation, i.e., determining the number of processors 
to execute each join obtained in (i) so that  the execution time required for the query 
can be minimized. 

The join method can affect the optimization procedure to exploit parallelism. Un- 
der hash joins, we have the opportunity of using pipelining to improve the performance 
[154, 219]. On the other hand, the pipelining approach is not applicable when a join 
method like sort-merge is used. Note that  pipelining causes the effects on join sequence 
scheduling and processor allocation to be entangled. As a result, join methods without 
and with pipelining will be discussed separately in this section. 
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12.6.1 Join Methods without Pipelining 
Here we consider join methods without pipelining. The emphasis is to exploit inter- 
operator parallelism. We first present some heuristics for generating join sequences, 
including those for linear join sequences and for bushy trees. The issue of processor 
allocation will then be discussed. The results on join sequence scheduling and processor 
allocation caz~ be combined to form a final schedule to perform a multi-join query. 

J o i n  S e q u e n c e  S c h e d u l i n g  

L i n e a r  j o i n  s e q u e n c e  

We first consider linear join sequence which does not allow for the exploitation of inter- 
operator  parallelism. In this case, the join operations must be executed in sequential 
order, although intra-operator parallelism can be applied to speedup each join opera- 
tion. A significant amount of research effort has been spent in developing linear join 
sequences to improve the query execution time, with the focus mainly on uniprocessor 
environments. The work reported in [511] was among the first to explore linear join 
sequences for left-deep trees, and sparked many subsequent studies. Generally speak- 
ing, the linear join sequences can be obtained by the following two methods: (1) the 
greedy method, denoted by SGD, and (2) the optimal permutation, denoted by SOpT. 
(Here, the subscripts correspond to the methods used.) The greedy scheme SG• can 
be outlined as follows. First,  the scheme finds the join which requires the minimal 
execution cost. It then tries to join the composite with the relation which has the 
minimal-cost join with the existing composite. The above step is repeated until all 
joins are finished. It can be seen that  the complexity of Saz) is O(IV[2). Heuristics 
other than minimal-cost can also be used in Saz~ to derive linear join sequences. A 
sophisticated scheme (referred to as the KBZ heuristic) to optimize multi-join queries 
with an enlarged search space was proposed in [334]. The KBZ scheme can be viewed 
as consisting of a 3-level hierarchy, where the top level picks a spanning tree from the 
join graph, the next level selects an optimal root for a given tree through iteration and 
the bot tom level generates the join sequence for a given rooted tree with the root as 
the first relation in the sequence. The resulting query plan is derived by employing the 
three respective algorithms. Furthermore, the benefit of using optimization techniques 
such simulated annealing and iterative improvement (by moving to a better  performing 
neighboring state or join sequence iteratively until no improvement can be made) to 
tackle large search space for query optimization was studied in [570]. The work in [570] 
was further extended in [569], where three heuristic methods, namely the augmenta- 
tion heuristic, the KBZ heuristic and local improvement, were evaluated comparatively. 
The augmentation heuristic is mainly a general version of SaD with various alternative 
heuristics to choose the next join. Local improvement means that  a solution sequence 
is improved by an exhaustive search in a small solution space, e.g. permutation of 
a subset or a smM1 cluster of  the relations in the linear join sequence. It was found 
in [569] that  a simple method such as the augmentation heuristic can perform very 
effectively, whereas more elaborate techniques such as simulated annealing do not fare 
well. It  was then speculated that  until significant new insights into the characteristics 
of the search space are obtained, it will not be profitable to experiment with com- 
plex methods for optimization. Stonebraker et. al. proposed a two-step approach in 
[255] to optimize sequential or linear join plans, with the emphasis on exploiting intra- 
operator parallelism in each operator. In [255] a collection of good sequential plans 
was first obtained based on buffer space considerations, and then parallelization of this 
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collection of plans was explored. In [107] the optimal linear join sequence, SOPT, was 
implemented by a dynamic programming technique for comparison purposes. It was 
reported that  simple heuristics for linear join sequences have performance fairly close 
to SOPT, agreeing with the remark made in [569]. 

B u s h y  t r e e  j o i n  s e q u e n c e  

Bushy tree join sequences have not at t racted as much attention as the hnear ones in 
the last decade. This can be  explained in part by the observation that  in the past 
the power and size of a multiprocessor system was limited, and that  the query struc- 
tures were too simple. It is noted, however, that  these two limiting factors have been 
largely negated by the rapid increase in the capacity of multiprocessors and the trend 
for queries to become more complicated [638]. This justifies the necessity of exploiting 
bushy trees. 

Recently, the use of bushy trees for parallel query processing has at tracted increas- 
ing attention. For illustrative purposes, a heuristic implemented in [107] based on 
executing the minimal-resulting-relatio n join to form a bushy tree is outlined below. 

Scheme GMt~: /* A scheme to execute the join with the minimal resulting relation. */ 
b e g i n  
1. 
2. 
3. 

4. 
5. 
6. 
e n d  

r e p e a t  u n t i l  IV[ = 1 
b e g i n  

Choose the join Ri ~ Rj from G=(V,E)  such that  
IRi >~ Rj] = minvR,,,nq~v{[Rp ~ Rq[}. 
Perform Ri ~ Rj. 
Merge Ri and Rj to R,nm(i,)). Update the profile accordingly. 

e n d  

(In the GMR scheme, the subscript MR stands for a cost function selecting "the 
join with minimal resulting relation".) Clearly this heuristic is greedy in that  only 
"local optimality" is considered, and thus need not lead to the minimal cost join se- 
quence. Note that  GMR is of complexity O(]V[]E[) < O(]V]3), rather close to O([V[ 2) 
required by SOD. From the simulation in [107], GMR, despite its simplicity, performs 
significantly bet ter  than SOD and SOPT, and results in join sequences whose execution 
costs are reasonably close to that  of the optimal one. 

As in the case for linear join sequences, there are many possible heuristics which 
can be used to generate bushy trees. Another approach dealing with inter-operator 
parallefism was presented in [381], where a greedy scheme taking various join methods 
(without pipelining) and their corresponding costs into consideration was proposed. 
The scheme in [381] is similar to GMR above in that  it has the nature of "query graph 
reduction", i.e., working in a cycle of selecting relations, joining and updating query 
graph, until all joins are completed. But it is different from the lat ter  in that  it tries 
to build a bushy tree level by level from a given query graph, where the level of an 
internal (join) vertex is computed a.s the longest path from a leaf vertex. At each step, 
the algorithm picks the maximum number of pairs of relations to fill up a level so that  
the cost function considered is minimized. Several relation selection heuristics based 
on different cost functions were proposed and evaluated in [381]. In addition, various 
query plans in processing multi-join queries in an SN architecture were investigated in 
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[497]. A combination of analytical and experimental results was given in [280] to shed 
some light on the complexity of choosing left-deep and bushy trees. 

P r o c e s s o r  A l l o c a t i o n  f o r  T h e  E x e c u t i o n  o f  E a c h  J o i n  

As pointed out earlier, to minimize the execution time of a multi-join query it is nec- 
essary to address the following three issues: operational point selection, execution 
dependency and system fragmentation. Note that  the execution time required for a 
join operation within a multiprocessor system depends on the number of processors 
allocated to perform the join, and their relationship can be modeled by an opera- 
tional curve, as evidenced in results on intra-operator parallelism [344, 622]. Basically, 
increasing the number of processors will reduce the execution time of a join until a sat- 
uration point is reached, above which point adding more processors to execute the join 
will, on the contrary, increase its execution time. This is mainly due to the combining 
effects of limited parallelism exploitable and excessive communication and coordination 
overhead over too many processors. An example of an operational curve for this phe- 
nomenon is shown in the solid curve in Figure 12.5, where a dotted (hyperbolic) curve 
xy = 30 is given for reference. (Note that  the curve is determined by the algorithm 
for intra-operator parallelism.) In such a curve, the operational point chosen from the 
curve is generally between the point which minimizes the execution time of the join, 
referred to as the minimum time point, denoted by p•, and the one which optimizes 
execution efficiency, i.e., minimizes the work which is the product of the number of 
processors and the execution time, referred to as the best efficiency point, PB. For 
example, pB-=5 and pM=16 for the operational curve in Figure 12.5. To improve the 
processor allocation efficiency, we not only have to utilize the information provided in 
the operational curve for the operational point selection, but are also required to com- 
ply with execution dependency and avoid system fragmentation as much as possible. 

To determine the number of processors allocated for the execution of each join, the 
heuristics proposed in the l i terature can be divided into two categories: (1) processor- 
allocation first (PAF) approaches, where the processor allocation at each join operation 
is determined prior to the join sequence selection, and (2) join-sequence-scheduling 
first (JSSF) approaches, which generates the bushy tree first and then determines the 
processor allocation based on a given bushy tree. 

T h e  P A F  A p p r o a c h  

The three heuristics described below were introduced in [107] to determine the processor 
allocation for each join operation belonging to this category. A join selection heuristic, 
such as the minimal-resulting-relation GMR, is used together to determine the next 
join when building a bushy tree. 

(a). Sequential execution (SE): This heuristic allocates all processors in the system 
to execute each join in the query sequentially. It can be seen that  inter-operator 
parallelism is absent when this heuristic is used, and the join sequence is the key factor 
in the performance in such a case. A variation of SE is to allocate a fixed number of 
processors for the execution of each join, to avoid system fragmentation. 

(b). Minimum time point (MT): This heuristic is based on the minimum time point in 
the operational curve, i.e., the number of processors used to execute the corresponding 
join operation is p ~ .  

(c). Time-efficiency point (TE): As can be seen in Figure 12.5, a scheme based on the 
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best efficiency point might suffer from execution dependency. This is because some 
join operating at its best efficiency point might take a long time to complete due to a 
small number of processors used to execute the operation, thus causing long waiting 
time for subsequent joins. On the other hand, a scheme based on MT may not use 
processors efficiently since it may require too many processors to reach the minimum 
time point. In view of this, a combination of the minimum time point and the best 
efficiency point, termed the time-efficiency point, is employed as a heuristic. In other 
words the number of processors a �9 PM + (1 -- o~) * pB is used to execute each join 
operation, where 0 < a < 1. 

Examples of SE and TE can be found in Figure 12.6a and Figure 12.6b, respectively. 
It can be seen that  when an execution tree is built using the above approaches, the 
following two constraints have to be followed: (1) execution dependency is observed, 
i.e., the operands of the join selected to be performed next do not depend on the 
resulting relation of any ongoing join, and (2) the processor requirement is satisfied 
according to the processor allocation heuristic employed, i.e., the number of processors 
required by that  join is not larger than the number of processors available then. Also, 
idleness of processors should be avoided. 

T h e  J S S F  A p p r o a c h  

Several schemes, categorized as the JSSF approaches, were proposed to alleviate the 
above two constraints [107, 254, 381,628]. In [381] a query tree is obtained first by the 
greedy method described earlier in Section 12.6.1. Then, processor allocation is done 
level by level via i terative refinements. Specifically, each join gets an initial processor 
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assignment. This assignment is then repeatedly adjusted by moving processors from 
less costly joins to more expensive ones to average the workload, until no further 
improvements can be made. 

In [107] the number of processors allocated to each join in a bushy tree is determined 
top down based on the concept of synchronous execution time. Clearly, all processors 
are allocated to the join associated with the root in the bushy tree since it is the 
last join to be performed. Then, the processors allocated to the join on the root are 
partitioned into two clusters which are assigned to execute the joins associated with 
the two child vertices of the root in the bushy tree in such a way that the two joins 
can be completed approximately the same time. (Note that this is in contrast to [381] 
which is synchronized at each level of the join tree.) The above step for partitioning the 
processors for the root is then applied to all internal vertices in the tree in a top down 
manner until each internal (join) vertex is allocated a number of processors. Note that 
when the number of processors passed to an internal vertex in a lower level of the tree 
is too few to be further partitioned for efficient execution of joins, sequential execution 
for the joins in its child vertices is employed for better performance. There are many 
different bushy execution trees for a query, and the concept of synchronous execution 
time can in fact be applied to the bushy trees obtained by different heuristics. In [107], 
the numbers of processors allocated under SE, TE and STsE are compared under 
the same query and relation specifications. Figure 12.6 shows an example allocation 
considered in [107]. The bushy tree and processor allocation using STsE that applies 
synchronous execution time to SE is shown in Figure 12.6c. In spite of the fact that the 
bushy tree in Figure 12.6c is the same as that in Figure 12.6a, the resulting execution 
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times differ due to the variation in processor allocation. It can be seen that  under 
STsE, processors are allocated to the execution of each join in such a way that two 
joins generating the two operands for a later join can be completed approximately 
the same time, thus alleviating execution dependency. Moreover, since the processors 
allocated to a vertex in a bushy tree are partitioned for the allocation to its child 
vertices, system fragmentation is eased. Among all the schemes evaluated in [107], 
the approach by STsE, which (1) first applies the join sequence heuristic to build a 
bushy tree to minimize the total  amount of work required as if under a single processor 
system, and then, (2) in light of the concept of synchronous execution time, allocates 
processors to the internal vertices of the bushy tree in a top down manner, is shown to 
be the best solution to minimize the query execution time. A variation of STsE based 
on dynamic programming is considered in [628]. 

In [628], several iterative processor allocation schemes are considered for a given 
bushy tree. Basically each join operation is first given an allocation corresponding 
to the best efficiency point. After the query tree is generated, some criterion is used 
to identify the join operation which is most likely to be the bottleneck stage and to 
allocate that  stage with more processors. Then the whole process repeats. Different 
criteria, dealing with the operation with the longest processing time and the one with 
the largest number of concurrent idle processors during its life time, are considered. 
This i terative approach is based on the algorithms studied in [589] for extending the 
scheduling algorithms for non-malleable tasks to those for malleable ones. Also, given 
the processor allocation, various scheduling heuristics with precedence constraints are 
explored in [628] to follow the precedence relations imposed by the bushy tree. 

As an extension to [255], where only optimizing the parallelization of sequential 
plans was addressed, an algorithm dealing with processor scheduling for a bushy tree 
was proposed in [254]. The inter-operator parallelism is achieved by properly select- 
ing the IO-bound and CPU-bound task mix to be executed concurrently and making 
processor allocation to reach the IO-CPU balance points. The algorithm matches up 
IO-bound and CPU-bound tasks with an appropriate degree of intra-operator paral- 
lelism so that  both processors and disks can operate as close to their full utilization as 
possible, thereby minimizing the elapsed time. In order to ensure an efficient solution, 
[254] only explored schemes that  execute at most two tasks at a time. The question of 
how to reach the IO-CPU balance point among more than two tasks appears to be a 
challenging problem. 

12.6.2 Join Methods  with Pipel ining 

A pipeline of hash joins is composed of several stages, each of which is associated 
with one join operation that  can be executed, in parallel, by several processors. For 
illustrative purposes, the execution of a pipeline segment is shown in Figure 12.7. Recall 
that  the hash join execution consists of two phases: the table-building phase and the 
tuple-probing phase. In the pipeline execution of a hash join, it is generally assumed 
that  these two phases are disjoint across stages in the sense that  all processing nodes 
will need to finish the table-building phase before the tuple-probing phase begins. 

It is known that  pipelining has the following two advantages. First, the IO cost is 
significantly reduced since the intermediate relations between stages in a segment need 
not be written back to disks, or even exist as whole tables in the memory. Second, 
the first tuples of the resulting relation of a pipeline segment can be produced earlier, 
not only reducing the perceived response time by an end user, but also enabling an 
application program to s tar t  processing the result earlier. To further improve the 
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Figure 12.7: Execution of One Pipeline Segment 

performance of pipelining, an algorithm using 2-way semijoins to pipeline multiple 
joins was proposed in [475]. In [614], an innovative approach based on using double 
hash tables was proposed to handle execution dependency. These methods are in fact 
applicable to both linear and bushy trees. (However, the focus of those works is not on 
join sequence selection or processor allocation.) In the following, we shall first discuss 
join sequence scheduling and then processor allocation for pipelined hash joins. 

J o i n  S e q u e n c e  S c h e d u l i n g  

R i g h t - d e e p  t r ee  

It can be seen that both right-deep and bushy trees allow the implementation of pipelin- 
ing. Schneider and DeWitt were among the first to study the effect of pipelining for 
hash joins [497, 498]. Their focus is on the use of right-deep trees, due mainly to sim- 
plicity and the uncertainty of the improvement achievable by using bushy trees. Clearly, 
for a given query~ the number of right-deep trees to be considered is significantly less 
than that of bushy trees, and simple heuristics can be applied with little overhead to 
generate a right-deep query plan. For example, a right-deep tree can be obtained by 
first constructing a left-deep tree by greedy methods and then taking a mirror image of 
the resulting left-deep tree [497]. However, right-deep trees suffer from the drawback 
of less flexibility in structure, which in turn implies a limitation on performance. 

Since the amount of memory is usually not enough to accommodate hash tables of 
all inner relations, provisions such as static right-deep scheduling and dynamic bottom- 
up scheduling [498] are needed. The static right-deep scheduling decomposes the right- 
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deep tree into segments off-line and loads hash tables of a segment into memory in 
parallel. The dynamic bottom-up scheduling, in contrast, loads one hash table into 
memory at a time and determines the break points of segments dynamically according 
to the memory constraint. In both scheduling methods, however, the execution of the 
whole query is implemented in one pipeline and is thus restricted to the structure of a 
right-deep tree. An example right-deep tree which is decomposed into three segments 
is shown in Figure 12.8a. Those joins whose resulting relations need to be written back 
to disks are marked black in Figure 12.8a. 

S e g m e n t e d  R i g h t - d e e p  t r e e  

The bushy tree, on the other hand, offers more flexibility in query plan generation 
at the cost of searching a larger design space. However, as far as the hash join is 
concerned, the scheduling for an execution plan of a bushy tree structure is much more 
complicated than that  of a right-deep tree structure. In particular, it is very difficult to 
achieve the synchronization required for the execution of bushy trees in such a way that  
the effect of pipelining can be fully utilized. To generate effective query plans that  fully 
exploit the advantage of pipelining while avoiding the above mentioned deficiencies of 
the bushy and right-deep trees, an approach based on segmented right-deep trees for 
the execution of pipelined hash joins was proposed in [105]. A segmented right-deep 
tree is a bushy tree which is composed of a set of right-deep subtrees. FormaJly, a 
segmented right-deep tree is defined recursively to be either (a) a right-deep tree, or 
(b) a right-deep tree with some of its leaf vertices replaced by segmented right-deep 
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trees. An example of a segmented right-deep tree of 3 pipeline segments can be found 
in Figure 12.8b. Some greedy schemes to deal with the relation selection for building a 
segmented right-deep tree were also proposed in [105]. As evaluated by the simulation 
in [105], the approach on segmented right-deep trees possesses more flexibility in query 
plan generation without incurring additional overhead on plan execution, and compares 
favorably with not only the right-deep trees generated by greedy methods but also the 
optimal right-deep tree that  has the shortest execution time among all right-deep trees. 
This suggests that  to efficiently execute pipelined hash joins in today's  environment, 
one should exploit methods utilizing the bushy trees instead of improving the heuristics 
on generating right-deep trees. 

P r o c e s s o r  A l l o c a t i o n  

While most prior work focused on query plan generation, there is relatively little lit- 
erature regarding optimizing processor allocation among the pipehne stages. One ap- 
proach to deal with processor allocation to explicitly avoid pipeline bottleneck while 
taking memory constraints into account is taken in [376]. As shown there, the character- 
istics of pipelined hash joins allow the processor allocation problem to be formulated as 
a two-phase mini-max optimization problem. Specifically, for a pipeline with k stages, 
the execution time of the pipeline, TS, can be expressed as 

W B~ W P, 
TS  = max - -  + max - - ,  (12.1) 

0_<i<k--I ni O~i~k--1 n i  

where WBi and WPi are, respectively, the workloads for the table-building and tuple- 
probing phases in stage i. Note that  the processing time of each phase is determined 
by the maximal execution time among all stages, and that  the same allocation of 
processors to a stage is retained across the table-building and tuple-probing phases. 
The execution time of a pipeline is thus the sum of two correlated maxima. Con- 
sequently, the processor allocation problem for pipelined hash joins can be stated as 
follows: Given WBi  and WPi, 0 < i < k - 1, determine the processor allocation 
(ni) = (no, n l , . . . ,  nk-a)  which minimizes TS  in Eq.(12.1), where n, is the number of 
processors allocated to stage i. 

For example, consider the workloads shown in Table 12.2 for a pipehne of five 
stages. First,  it is observed that  the workloads of stage 2 are less than those of stage 
3, suggesting that  stage 3 should be assigned more processors than stage 2. However, 
stage 3 has a heavier load in the table-building phase than stage 4, while the lat ter  
has a heavier load in the tuple-probing phase. In such a configuration, there is no 
obvious way to allocate processors to minimize the pipeline execution time specified in 
Eq.(12.1). For illustrative purposes, suppose the total number of processors available 
to execute the pipeline in Table 12.2 is 20. I t  can be seen that  the allocation (n l )=  (4, 

wPi wj___~,_ 1.5, maxvi - - -  1.2, and TS = 2.7, whereas the one 4, 4, 4, 4) leads t o m a x v i  nl - n~ - 

(n~)= (6, 3, 3, 6, 2), which is based on the workloads of the table-building phase, leads 
WP, to maxvi wB------x~--=i -- 1.0, maxvi ~ - - n i  -- 2.5, and TS = 3.5. Clearly, to develop an optimal 

processor allocation to minimize TS in Eq.(12.1) is in general a very difficult and 
important  problem. Since the table-building and tuple-probing phases are executed 
one after the other, we minimize the sum of two correlated maxima in Eq.(12.1). In 
view of this, the optimaJ processor allocation problem in Eq.(12.1) is termed the two- 
phase mini-max optimization problem. 

To develop the optima] processor allocation scheme for the two-phase mini-max 
optimization, the following three constraints were considered in [376]: (1) the total  
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H stage 0 1 2 3 4 II 

W B i  6 3 3 6 2 H 
WP~ 4 4 2 3 5 

Table  12.2: The Workloads in Two Phases of Each Stage 

number of processors available for allocation is fixed, (2) a lower bound is imposed on 
the number of processors required for each stage to meet the corresponding memory 
requirement, and (3) processors are available only in discrete units. By incrementally 
adding constraints to the optimization problem, solution schemes were derived. The 
effectiveness of the problem formulation and solution procedure was verified through a 
detailed simulation of pipelined hash joins. Simulation results show that these alloca- 
tion schemes lead to much shorter query execution times than conventional approaches. 

12.7 Scheduling Multiple Complex Queries 
So far our study of query parallelism has focused on optimizing the execution of a 
single query. While it is important to understand how to schedule a single query across 
several processors, one should keep in mind that queries are not always executed in 
isolation. Thus, in order to fully exploit the available parallelism from a system, one 
must consider the interactions among different queries submitted to the same machine. 
This section discusses some of the issues associated with optimizing the combined 
execution of multiple queries. 

In order to further motivate our discussion, consider the execution of two different 
queries, Q1 and Q2, submitted to the same parallel system consisting of P -= 6 proces- 
sors. Many of the systems that have been designed to date assume either that a fixed 
number of processors are available to a given query or that the query is subdivided into 
a fixed number of subtasks which are then distributed among the available processors. 
However, in practice the execution time of each of these queries can be optimized based 
on the number of available processors. As shown in Figure 12.9, the execution time of 
a particular query is actually a function of the number of processors allocated to  that 
query. We say that such a query is malleable [588]: This means that as the number of 
processors allocated to a query increases, the execution time of the query decreases. 

The problem occurs when one does not take advantage of the parallelizable nature 
of the queries. In particular, consider what happens if we statically assign m processors 
to any query in the system. Recall that the number of processors in the system is P -- 6. 
If m -- 6, then if both Q1 and Q2 in Figure 12.9 are submitted concurrently the total 
completion time of both queries will be 14. The optimal assignment in this case would 
have been to give Q1 4 processors and Q2 2 processors, resulting in a completion time 
of 10. Assume now, in an attempt to alleviate the problem described above, that we 
change m to 3. Then, if Q1 is the only query submitted to the system the completion 
time of the query will be 10. The optimal assignment in this case would have been to 
give Q1 6 processors, resulting in a completion time of 4. 

In the event that a larger number of tasks are submitted concurrently to the system, 
the above problem would be exacerbated. In general, we wish to allocate enough 
processors to each query so as to minimize the completion time of that query. On the 
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Figure 12.9: Query Execution Time as a Function of the Number of Processors 

other hand, we do not want to allocate so many processors to any single query so as 
to negatively impact the overall efficiency of the system. 

12 .7 .1  A H i e r a r c h i c a l  A p p r o a c h  t o  I n t e r - Q u e r y  P a r a l -  
l e l i s m  

Formally, the malleable scheduling problem can be defined as follows. Consider a mul- 
tiprocessor system consisting of P processors, and a set of N tasks which we wish to 
schedule on this system. We assume that each task j E {1,. . . ,N} can be allocated 
an arbitrary number of processors 3j E {1,.. . ,P}, and that its task execution time 
tj(~j) > 0 is a nonincreasing function of the number of allocated processors. All of the 
processors allocated to a task are required to execute that task in unison. That  is, these 
3j processors are all required to start task j at some starting time, say rj. They will 
then complete task j at some later completion time U §  The tasks are partially 
ordered by a precedence relation -~. A schedule will consist, for each task j E {1, ..., N}, 
of a processor allocation flj, and a starting time rj. A schedule is required to be legal 
in the following two senses: 

�9 For any time r, the number of active processors does not exceed the total number 
of processors. In other words, 

E 3s ~ P .  

�9 If one task j l  has precedence over another task j2, then the second task cannot 
begin until the first task completes. In other words, if j l  -~ j~, then Ux + 
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We seek an optimal schedule, one for which the overall makespan given by 

max {r: I_<,_<N + tJ(~')} 

is minimized. In other words, we wish to minimize the latest task completion time. II 
One reason this inter-query problem has not been extensively studied has to do 

with its inherent difficulty: As shown in [165], the malleable scheduling problem is 
NP-hard in the strong sense, even in the special case when there is no precedence. One 
is thus more or less forced to consider heuristic solutions. Typically, one would like to 
find algorithms having provable bounds on the suboptimality of a given schedule. That  
is, we would like to say that the makespan w, of the schedule given by our heuristic, 
is iv < k * w* where k is some known constant and w* is the makespan of the optimal 
schedule. 

Later we will present algorithms having suboptimality bounds for the special case 
where there are no precedence constraints between the tasks. (In practice, these al- 
gorithms usually find a schedule having a makespan that is very close to that of the 
optimal schedule.) Unfortunately, there has been relatively little success with estab- 
lishing such bounds for the general case of scheduling malleable tasks in the presence 
of precedence constraints. We know of only one result that addresses this issue [601]. 
This chapter deals only with the special case where the task execution time function is 
constrained to be inversely proportional to the number of processors allocated to the 
task up to some specified maximum degree of parallelism 0 < 6j < m for the task, and 
constant thereafter.** Formally, 

y_ flj < ~: 
ts(flj ) = ~] - (12.2) 

~-7 flJ> ~'  

Here tj denotes the task execution time on a single processor. The suboptimality bound 
given by the algorithms in both these papers is shown to be (3 - 2 , N)w . Of course, in 
practice, speedup curves of operators in a query are unlikely to be completely linear 
and the bounds given by these papers will fail to hold. 

Although there is a lack of heuristics with provable suboptimality bounds for prece- 
dence based scheduling, we have already seen that many heuristics for the scheduling 
of intra-query parallelism are in fact quite effective under varying system assumptions 
[107, 255, 334, 511, 569, 570]. One natural way, considered in [62S], of extending any 
of these heuristics to deal with inter-query parallelism is to add one or more dummy 
nodes, representing operators with 0 execution time, so as to combine all the queries 
into one large query. This approach is shown in Figure 12.10. Unfortunately, as shown 
in [628], this approach does not seem to work very well. Relationships that hold among 
the operators in a single query do not always hold across different queries, and thus 
heuristics that are effective in optimizing the performance of a single query do not 
easily extend to several queries. 

I1 The condition requiring that the task times t7 (/3j) be nouincreasing is not, in fact, restric- 
tive. One can always set t'j(flj) = minl<_Z<_& {tj(fl)}. The task times t '(flj) are nonlncreasing, 
and any extra, useless processors in the optimal solution can be left idle. 

�9 *In the absence of a specified maximum degree of parallelism for eac h task the problem 
with linear speedups becomes triviM. One merely needs to allocate m processors to each task 
and then schedule them in a batch fashion. 
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Figure 12.10: Combining Multiple Queries into One Query 

What  [628] did show, however, was that  a hierarchical approach to scheduling the 
queries was effective. The hierarchical approach proceeds in two phases: In phase 1 one 
of the single query optimization techniques is applied to each of the individual queries 
to be executed, generating composite task execution time functions for the queries 
themselves. Thus, one generates a query time execution curve based on the different 
potential number of processors a/located to the query. In phase 2 a different scheduling 
algorithm is applied to the composite query tasks, which have no precedence. In the 
remainder of this chapter we will refer to the problem of malleable task scheduling 
when there are no precedence constraints as problem MS.  This approach is outlined 
in Figure 12.11. Heuristics for handling the problem M S  is the topic of the rest of this 
section. 

12 .7 .2  Scheduling Independen t  Tasks 

Krishnamurti  and Ma [336] posed the problem M S  and solve what amounts to the 
special case of packing parallelizable tasks onto a single shelf. (This is, of course, 
feasible only when the number of tasks does not exceed the number of processors.) 
The solution proposed turns out to be optimal over all solutions requiring that  the 
all the tasks begin at time 0. Worst-case bounds on the makespan (with respect 
to the  makespan of the optimM schedule) are given under the condition that  the work 
performed by task T~, given by fljtj (flj), is a nondecreasing as a function of flj. Limiting 
the tasks to a single shelf, however, can be shown to yield arbitrarily bad schedules 
when the number of tasks approaches the number of processors. Furthermore, the 
algorithm does not address the question of how to handle the case where the number 
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Figure 12.11: A Hierarchical Approach to Inter-Query Scheduling 
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of tasks is greater than the number of processors. 

Turek, Wolf, Pattipati  and Yu [588] relaxed the constraint that the parallelizable 
tasks all start at the same time as well as the Condition that the work performed is a 
nondecreasing function, showing how to get an optimal K-shelf solution for any fixed 
number of shelves K. By varying K over all values from 1 to n one can show that 
the makespan of the schedule created using the algorithm in [588] will be no worse 
than 2.7 times the makespan of the optimal schedule. Unfortunately, the algorithm is 
exponential in K and, therefore, is not necessarily practical when large values of K need 
to be considered. (On the other hand, the algorithm /s polynomial for each specific 
value of K,  and an effective bounding argument given in [588] fimits the number of 
values of K that need to be considered for many examples.) 

Belkhale and Banerjee [41] gave an approximate algorithm with polynomial run- 
ning time for the problem MS (again) under the additional constraint that the work 
done by the tasks is nondecreasing in the number of processors. Under the stated con- 
dition, the suboptimality bounds on the makespan of the schedule produced by their 
algorithm will be no worse than 2. Turek, Wolf, and Yu [589] presented a technique 
does not constrain the execution time of the tasks in any way and in addition allows 
the additional constraint that cooperating processors may need to be physically adja- 
cent. The main contribution of their paper was a family of approximate solutions to 
the problem MS, using an extension of a technique frequently used to solve resource 
allocation problems [270]. In particular, they give an algorithm that selects candidate 

�9 numbers of processors to be allocated to each of the parallelizable tasks, so that one 
can then use as a subroutine any algorithm A that "solves" the easier multiprocessor 
scheduling problem in which the number of processors allocated to a task is known a 
priori. (This problem has been extensively studied in the literature. See [27, 68,127].) 
The algorithm has the property that for a large class of known algorithms their exten- 
sion will guarantee the same worst case suboptimality bounds as A while increasing tlie 
running time of A by at most an additive factor of O(nm). Applying their technique 
yields: 

�9 Assuming that processor addresses assigned to a task need not be contiguous 
one can use the algorithm specified in [211] to get an algorithm that generates 
a schedule with makespan w < 2w*, where w* is the makespan of the optimal 
schedule. 

�9 Assuming that processor addresses assigned to a task need to be contiguous one 
can use the algorithm specified in [526] to get an algorithm that generates a 
schedule with makespan w < 2.5w*. 

While our discussion has focused primarily on the execution of a set of known 
queries, we should not forget that the problem of scheduling the online arrival of tasks 
is an important component of any scheduling algorithm. One approach to this problem 
has been proposed by [520]. It consists effectively of scheduling all the tasks that have 
been submitted to the system at time r. Any new tasks that arrive will have to wait 
until the time when the last task scheduled at time r has staxted execution. This 
approach has the desirable qualities that (1) no task gets starved, and (2) it can be 
proven to affect the suboptimality bounds of batch scheduling algorithms by at most 
a factor of 2. 
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12.8 Summary  
In this chapter,  we have examined the various issues and techniques encountered in par- 
allel query processing. The methods used to exploit query parallehsm are divided into 
three categories: namely intra-operator, inter-operator, and inter-query parallelism. 
We have concentrated on join operations because they are the most expensive opera- 
tions to execute, especially with the increases in database size and query complexity. 
In intra-operator parallehsm, the major  issue is task creation, where the objective is to 
split a operation into tasks so that  the load can be spread evenly across a given number 
of processors. In the presence of da ta  skew in the join attribute,  naive range splitting or 
hashing does not suffice to balance the load. Inter-operator parallelism can be achieved 
either through parallel execution of independent operations or through pipelining. In 
either case, the major  issues are the join sequence selection and processor allocation 
for each operation. Join sequence selection determines the precedence relations among 
the operations. For inter-query parallelism, the issue again is processor allocation, but 
now among the multiple queries. We explored query parallelism based on a hierarchi- 
cal approach under a unified framework, so that  potential integration of the techniques 
used to address each type of parallelism could be illustrated. 



Chapter 13 

Towards Flexible  Dis tr ibuted  Information Retrieval  

David W. Flater*, Yelena Yesha *t 

13.1 I n t r o d u c t i o n  

Information Retrieval is the process of locating the data which are the best answer to a 
user's query. In the case of text retrieval, it is "leading the user to those documents that 
will best enable him/her to satisfy his/her need for information [42, 471]." Information 
Retrieval is part of every database, every catalog, and every file system. It is such an 
integral part of all of these things that it is seldom thought of as an independent 
process. 

This could soon change, however. The sharp increase in the amount of information 
available to the average user in recent years has drawn attention to the shortcomings of 
commonly used information retrieval systems. For years, very restrictive and inferior 
methods have been used to retrieve information. These methods often force the user 
to know the exact name or other identifier of the data to be retrieved. Sometimes 
one is lucky enough to be able to use regular expressions or keywords to locate data 
which cannot immediately be identified. Nevertheless, locating the desired information 
is often a frustrating, time-consuming, and even futile task. 

Fortunately, information retrieval techniques have been under investigation for 
years, and a vast improvement could be realized in current information systems merely 
by implementing known algorithms. Most established techniques are designed for han- 
dling textual data, which is in fact where the greatest amount of difficulty is being 
experienced, but encouraging results for non-textual data are already being reported. 
In theory, the task of easing the general burden of information retrieval on the user 
has been well undertaken. In practice, the systems which are widely used every day 
are still relatively primitive. 

If all information retrieval systems were upgraded overnight to use the best tech- 
niques available, finding information would be easier - but it would still not be trivial. 
There is another layer to the problem, which could humorously be called the network 
layer, but whose accepted name is the Resource Discovery Problem[503]. Proliferation 
of information is not the only difficulty. There is also a proliferation of information 
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bases. In an information retrieval system, one may start a serial search through the 
entire information base for a particular piece of information. One does not, however, 
have the option of starting a serial search over the entire Internet for a particular kind 
of database. In fact, even if one could connect to every site on the network, one would 
probably only be able to figure out how to access the available databases in the case 
of well-known archives and public catalogs. 

At first glance, it would appear that the problem of finding the information base 
which would contain the desired information is just another form of information re- 
trieval. One could establish a directory of information bases and use information 
retrieval techniques to find the correct information base. Later in this chapter, the 
reasons why this approach is inadequate will be presented. 

This chapter is organized as follows. Section 13.2 provides a classification of infor- 
mation retrieval techniques. Section 13.3 describes the construction and use of thesauri 
and dictionaries for information retrieval. Section 13.4 discusses existing IR techniques 
and the use of these techniques to achieve fuzzy retrieval. Section 13.5 investigates the 
difficulties of extending IR into the distributed domain, and Section 13.6 describes an 
information system architecture which handles some of those problems. 

13.2 In format ion  Retr ieval  Techniques  

IR techniques can be divided into three classes: tag-based retrieval, partial content- 
based retrieval, and full content-based retrieval. In tag-based retrieval, indices are 
painstakingly built by human beings, and the system uses more or less clever algorithms 
to search the index for relevant entries. (The term "index" is used loosely here to 
indicate any form of data keying, whether by means of inversion or signatures.) In 
partial content-based retrieval, indices are built automatically based on the content of 
data objects. In full content-based retrieval, queries are executed directly upon the 
data objects, and no index is required. 

13.2.1 Tag-Based Retrieval 

One of the simplest forms of IR is tag-based retrieval. When data objects are added 
to the information base, a human being has to provide meta-information, such as a 
subject classification or a set of keywords, for each data object. The information system 
then uses this meta-information as an index when it is called upon to retrieve data. 
The data objects themselves are never inspected by the information system; they are 
merely reproduced verbatim when their meta-information satisfies a user's query. 

This form of information retrieval is used today in many applications. In cases 
where qualified personnel are available to perform the indexing for an information 
base of limited scope, such as a library of legal documents, these systems can provide 
extremely efficient information retrieval. However, consider the case of a public library 
where information of all kinds needs to be indexed. The library workers have the 
task of maintaining an internally consistent general classification system in the face of 
a constant influx of new documents. As a result, they will probably not distinguish 
between, say, distributed databases and distributed information systems, causing a 
degradation of retrieval precision. The library would require a staff of experts from 
every field to properly maintain their subject hierarchy. 
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13.2.2 Partial Content-Based Retrieval 

Consider how much be t te r  the si tuation would be if the process of indexing an infor- 
mat ion base were automated.  In place of the staff of experts  needed to maintain  a 
generalized subject  hierarchy for a public library would be a library of software. Each 
program in the l ibrary would be maintained with assistance f rom field experts  to per- 
form accurate  classification within one particular field of interest.  In the best case one 
would also have a master  program which could automatical ly determine the field of 
interest  a document  belongs to and pass it on to the "expert" in tha t  field. The  same 
software could then be distr ibuted to all libraries, and the library workers would have 
a much simpler job. 

It  is on exactly this kind of technology that  most current research into Informat ion 
Retrieval  focuses. Unfortunately,  while there has been some success in the localized 
indexing problem for l imited domains[163,461], no one has yet succeeded in integrat ing 
many  "experts" with a main program capable of solving the higher-level classification 

problem. 

13.2.3 Full Content-Based Retrieval 

An index must  contain all the information which is required by the retrieval algorithm, 
including keyword frequencies or whatever  else the algorithm might  use. There  is thus 
a conflict between the desire for thorough information retrieval and the desire for tight, 
efficient access structures.  The  more one restricts oneself to a fixed set of at tr ibutes,  
the  more one is able to use opt imized methods  such as signature files[629]. The  less 
brute-force searching is done or the less overhead is accepted, the less effective is the 

informat ion retrieval.  
The  l imits of information retrieval are at ta ined by full content-based methods.  

These  methods  use no access s t ructures  whatsoever.  The  entirety of every da ta  object  
in the informat ion base is subject  to scrutiny. No information whatsoever  is omi t ted  
from the  search. The  benefits in terms of the system's  ability to handle queries on 
obscure topics are phenomenal  - but  so are the costs. To perform such a thorough 
search on a large l ibrary in a reasonable amount  of t ime would likely be beyond the 
ability of even the most  powerful parallel processing engines. However, it is possible 
tha t  these techniques could be used on small databases of l imited scope, provided tha t  
there  is still a global classifier capable of determining the appropriate  domain for a 

da t a  object  or  query. 

13.3 T h e s a u r i  and D i c t i onar i e s  

One of the most  common problems with text  retrieval systems is that  the user must  
often express the same query in many different ways until  he / she  stumbles onto some 
keywords tha t  are in the index. The  information systems are not sophisticated enough 
to map  an arbi t rary natura l  language t e rm onto the set of terms in their indices which 
have approximately  the same semantics, even if the natural  language term is an exact  
synonym of an index term.  Since users do not know the set of index terms, they are 
forced to use trial and error to f ind keywords that  trigger the retrieval of relevant 
documents .  The  usefulness of such a system will vary drastically from one user to the 
next,  depending on how close tha t  user 's  vocabulary is to the index vocabulary. To 
solve this problem, work is being done to find ways to build thesauri  and dictionaries 
which will enable efficient retr ieval  of text  from natural  language queries. 
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13.3.1 Thesauri  

A thesaurus is a mapping from terms to terms which are semantically close. It may be 
viewed as a graph where each node contains a term and has links to all of its synonyms. 
A text retrieval system which is faced with a query term which does not appear in its 
index should be able to use a thesaurus to try alternate terms in the order of decreasing 
semantic similarity. If a user specifies a synonym of an index term, the system should 
be able to determine the index term. On the other hand, if the information base has 
been indexed inconsistently, a thesaurus should help alleviate the problem by making 
some terms nearly equivalent. 

The popular information retrieval technique of indexing by word stems or 
trigrams[398] can be thought of as a heuristic for detecting synonyms in English text. 
The thesaurus which it implicitly generates is neither complete nor accurate. A com- 
plete and accurate thesaurus would be sufficient to maximize the efficiency of simple 
keyword-based retrieval systems. Where more complex retrieval methods are used, a 
dictionary may be needed to provide semantic information to the retrieval or query- 
parsing algorithms. 

The degree of closeness for each mapping from a term to a synonym must somehow 
be expressed by a thesaurus. To avoid the scenario where every possible combination 
of terms is assigned a similarity weight, thesauri should be built with the idea in mind 
that one may navigate more than one link away from the term one is examining if none 
of its immediate synonyms is satisfactory. To find the synonyms of a word in order of 
decreasing similarity, a breadth-first search of the graph is performed. If weights are 
assigned to the links, a more expensive best-first search must be used to insure perfect 
sorting~ but this may be more trouble than it is worth. 

Thesauri can be extended to convey more semantic information on how terms are 
related to each other[444]. For example, there can be a distinguished, directional link 
type which indicates that one term is a generalization of another. This link type 
allows an information system to generalize the terms of an overly specific query until 
some documents can be retrieved. However, it may be undecidable whether or not 
overspecification was responsible for a null response. 

Early attempts at building thesauri automatically using purely statistical meth- 
ods met with limited success. However, a recent attempt to improve the quality of 
automatic term association by using linguistic knowledge was successful[478]. Linguis- 
tic analysis could be used to improve the signal-to-noise ratio of statistical methods 
by transforming those sentence structures which cause unrelated terms to co-occur. 
While reliable parsing of English grammar is exceedingly difficult, a surprisingly high 
success rate can be achieved using simple methods if one only wishes to recognize a 
limited subset of the possible sentence structures[251]. It should therefore be possible 
to build sufficiently accurate thesauri using a combination of statistical methods and 
limited parsing. Another novel approach to automatic thesaurus construction uses the 
complete link clustering algorithm to cluster the document collection prior to the con- 
struction of the thesaurus[133]. This two-stage statistical approach, which has a strong 
theoretical basis, has also yielded promising results. 

The uncertain accuracy of the resulting thesauri is not the only disadvantage of 
automatic thesaurus construction. While several different kinds of relations between 
terms can be distinguished by automatic methods[478], it is usually the case that sta- 
tistical methods point out the existence of relationships without classifying them[444]. 
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This places a restriction on the kinds of retrieval algorithms that can be used with 
automatically generated thesauri. However, for the retrieval methods which are most 
commonly used, automatic thesaurus generation provides a way to rapidly create many 
domain-specific thesauri until more accurate thesauri become available. 

If one continues to build more and more semantic information into a thesaurus, 
at some point it ceases to be a thesaurus and becomes a dictionary. The essence of 
the distinction is that the possibilities for defining relationships between terms are 
exhausted and information related to the terms themselves, i.e. "definitions," begin to 
appear. 

13.3.2 Dictionaries  

When one crosses the line from text processing into text understanding, one also needs 
to trade in one's thesaurus for a dictionary. Any term-related information which would 
be useful during the retrieval process can be kept in a dictionary. This includes internal 
semantic representations that can be retrieved from the dictionary and used as building 
blocks for larger expressions. 

As of now, dictionaries are primarily being used in expert systems and knowledge 
bases. However, for years it has been asserted that large amounts of "world knowledge" 
are needed for effective natural language understanding. Dictionaries might therefore 
be needed when thesauri become inadequate to support natural language information 
retrieval. 

13.4 Fuzzy Retrieval 
Thesauri are one of the tools that are being used to enable fuzzy retrieval, the prob- 
abilistic retrieval of data objects based on an estimate of their relevance to a query. 
Fuzzy retrieval is made necessary by the inherent fimitations of non-fuzzy methods 
such as Boolean querying[482, 73]. Non-fuzzy methods are inflexible and require the 
user to have prior knowledge of the indexing scheme of the information base if efficient 
retrieval is to occur. 

Most fuzzy retrieval is built upon the notion of a relevance or similarity function. 
Given a query which is not satisfied by any object in the information base, the similarity 
function provides an estimate of how similar each object is to the hypothetical object 
described by the query. The program can then select a small number of objects which 
are considered to be most similar and list them for the user, along with their similarity 
(or relevance) estimates. 

Consider for example the case of retrieving abstracts with keyword queries. A 
direct keyword system returns only those abstracts in which every keyword appears 
at least once. In effect, a Boolean value is assigned (zero or one) to each term to 
indicate whether or not it appears in the abstract, and then the values are multiplied 
to determine the relevance of the abstract to the query. This system can be made 
nominally fuzzy by accumulating, rather than multiplying, the term values, so that the 
most relevant abstract is the one containing the largest number of query terms. While 
this nominally fuzzy approach is currently used in many on-line library catalogs, much 
better techniques are available. 

Given a thesaurus, one can immediately improve on the above similarity function 
by assigning a relevance value which is less than one but greater than zero for any 
term with a synonym in the document, but which does not appear itself. The value 
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assigned will depend on the thesaurai similarity of the term and its synonym. The 
relevance function will then be fuzzy along the semantic axis as well as the syntactic 
one, with the result that retrieval will be much more consistent across different query 
vocabularies. 

Even this similarity function is crude compared to many which appear in the lit- 
erature. For example, it makes no attempt to weight query terms based on how often 
they appear in a given document, or how often they appear in the document collec- 
tion as a whole. The best index terms are those which do not appear in so many 
documents as to be useless for retrieval, yet are not so infrequent that many relevant 
documents do not contain them. The tf-idf (term frequency - inverse document fre- 
quency) term weighting scheme is one way of biasing the search towards those terms 
which are most useful for retrievai[133, 482, 481]. Furthermore, accumulation is only 
one possible way of combining term coefficients into a document coefficient. It is com- 
mon practice to arrange term coefficients for queries and documents into vectors (the 
"vector space model" [482]) and use vector operations such as cosine to determine their 
similarity[133]. 

Similarity functions do not exist only for text retrieval. A great deal of work is 
currently being done to allow information retrieval using images. One recent work de- 
termines the similarity of images which are comprised of iconic objects[96]. Specialized 
techniques have also been developed for retrieving documented software[385]. However, 
it is the case that text retrieval has received vastly more attention than other kinds 
of retrieval, and until sufficient work has been done in this area, textual descriptions 
must be used to index non-textual data. 

One class of fuzzy retrieval algorithms which does not depend exclusively on a 
similarity function (but which nevertheless may use one) is based on the inference net 
model of information retrieval[42, 590]. Information retrieval systems which use these 
algorithms can look like a combination of hypertext and expert systems. They use 
Bayesian logic to reason about the properties of data objects and then decide which 
of them are most likely to satisfy the query. A Bayesian inference network[42, 450] 
is built for the object collection and for the query. The two are then connected so 
that the probability that each object satisfies the query can be computed. When 
feedback from the user causes changes in the subnet representing the user's query, the 
probabilities are recomputed and a new set of pertinent objects is returned. Instead of 
simply accumulating values, the inference net model deals in detail with the case where 
the probability that a given object is relevant to a query depends on multiple factors. 
However, the benefits of such a thorough analysis of relevance may not outweigh the 
additional complexity for many information retrieval applications. 

13.4.1 Part ia l  C o n t e n t - B a s e d  M e t h o d s  

The most direct way to adapt existing information retrieval systems to be partially 
content-based is to automate the process of indexing the data. Using this approach, 
the same old fuzzy retrieval mechanisms can be used to search the same kind of index. 
The only difference is that nobody had to go through the effort to build the index 
manually. 

Automatic indexing is most frequently done using methods such as tf-idf to de- 
cide which of the terms in a document or document collection would make the best 
index terms. An index can then be generated which contains only those terms, along 
with their frequencies in each document. Additional lexical association metrics are the 
signal-to-noise (concentration), the variance (concentration/diffusion), and the discrim- 
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ination values of terms[261]. The discrimination value of a term reflects the amount of 
difference it makes to the document similarity function if that  term is removed from 
consideration. 

If an information retrieval system uses summaries or abstracts to index data, all is 
not lost. Some researchers hope to find ways of piecing together entirely nonanaphoric 
sentences to form a reasonably informative "abstract" of a document using sophis- 
t icated linguistic analysis. An easier approach can be used if something is known 
about the structure of the documents, as is the case with an information system of 
limited scope. For example, if all the documents describe analytical experiments, one 
can search for phrases such as "we conclude" or "we have shown" which often co-occur 
with important  bits of summarized information. However, the problem in general is in- 
sidiously difficult, and simple-minded heuristics are unlikely to provide a solution[443]. 
One approach to automatic keyword indexing[163] employs techniques which have been 
used for automatic abstracting, but suggests that  the extracted phrases simply be used 
for keyword searches and not regarded as full summaries. 

Automatic  indexing of images[461] is also an immense challenge for researchers, 
but it is receiving more attention and is likely to reach maturi ty before automatic 
abstracting. The cited work points out that  "image retrieval by content cannot be 
a t tempted in general," but explains that ,  given a sufficient body of domain-specific 
pat terns  and rules for image analysis, one can identify the different objects in an image 
and build a representation of the image in terms of its objects, their number, their 
compositions, and their positions. The images themselves can then be indexed using 
these representations, and retrieval can be achieved by specifying the qualities to look 
for in the representations. 

Lastly, some similar techniques are being used in the realm of hypertext.  Attention 
is now being given to the use of text processing techniques to automatically build 
semantic network representations of input texts to facilitate hypertext browsing[394]. It 
is more difficult to automatically build a semantic network than to automatically index 
a da ta  set. For indexing, all the program has to do is extract the most significant terms 
from a da ta  object, or, depending on what sort of indexing is being used, determine 
which of a pre-selected list of index terms are descriptive of the datum. To build a 
semantic net, the program also has to add links connecting the important  components 
of the da tum to related concepts. The possible uses of semantic networks to enhance 
information retrieval capabilities are worthy of investigation. 

13.5 D i s t r ibuted  Approaches  to Info Retr ieval  

There have as of yet been few at tempts  to expand information retrieval into the world of 
networked and distributed computing. This is puzzling, considering the vast amount of 
attention that  has been given to distributed databases and client-server architectures in 
recent years. Somewhat more frequent are applications of parallel processing hardware 
to cut down on the amount of real time needed to perform searches[132]. While brute 
force can no doubt do wonders for the effectiveness of information retrieval algorithms, 
this is only really helpful when the information base is homogeneous. The larger 
problem of networked information retrieval remains. 

The most notable incursion of information retrieval into the networked computing 
domain is WAIS[305]. WAIS (Wide-Area Information Server) is technically a client- 
server system. However, it is the first a t tempt  to connect autonomous information 
bases over a wide-area network which has achieved a significant following. 
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server system. However, it is the first attempt to connect autonomous information 
bases over a wide-area network which has achieved a significant following. 

When performing a seaxch in WAIS, a user must select one or more servers from 
a list of servers which is provided. The user then enters a keyword query which is 
executed on the selected servers. A ranked list of matching data is shown when the 
search completes. The user may then select individual data to retrieve. WAIS has the 
ability to handle non-textual data, but this capacity is currently being used to a very 
limited extent. For example, some images can only be retrieved by providing the name 
of the file in which the image is stored as the search criteria[225]. 

Other distributed approaches to information retrieval[241] preserve the single ho- 
mogeneous information base flavor of existing information retrieval methods. This is 
in conflict with the rising trend of heterogeneous computing which is evident in the 
database community. 

13.5.1 Current  Research  Issues  

The first problem which must be solved to acquire information using FTP is finding 
the address of an archive site which has the right type of data. Similarly, the first 
problem which presents itself to a new user of WAIS is that he/she must scroll through 
a long fist of servers to locate a server which contains the desired kind of information. 
These are just two different manifestations of the Resource Discovery Problem[503], 
the fundamental problem which must be solved to truly achieve a global integration of 
information sources. 

T h e  R e s o u r c e  D i s c o v e r y  P r o b l e m  

The problem of locating information on a large network is known as the Resource 
Discovery Problem. Before a user can interact with a database or archive to retrieve 
Imeded information, the user must find out where such a database or archive exists. 

One approach to solving this problem is to accumulate information to help users 
find what they need. For this purpose, there currently are a number of on and off-line 
Internet directory services[149] which let skilled users perform keyword searches to find 
out which Internet sites have the information they want. Unfortunately, the off-line 
directories cannot remain up-to-date, and the on-line services have limited effectiveness 
since they can only handle so much information. They cannot keep track of enough 
attributes of the data being archived to support generai resource discovery. In many 
cases, one needs the name of the file which contains the desired information to find 
out the name of the site which owns it. There are also a variety of browsing and 
information-gathering tools[505, 467] which try to help the inexperienced user, but a 
browser also can only go so far to make a fragmented and heterogeneous set of resources 
appear to be unified. 

The University of Colorado's Networked Resource Discovery Project has concen- 
trated mainly on developing better directory services for the Internet; however, an 
early technical report describes their attempt to design a networked resource discov- 
ery system based on probabilistic multicasts and resource brokers[504]. More recently, 
Matsushita Information Technology Laboratory has begun working on an informa- 
tion system as part of the Gold project[35]. Its main improvement over [504] is that 
the functionality of the resource directories has been specified in greater detM1. T h e  
brokers, which are the maintainers of the resource directories, now use information 
retrieval techniques to classify queries and data in order to determine the location of 
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the database capable of answering a query. The system discussed in Section 13.6 is 
unique in its brokerless approach to query routing and resource discovery and in its 
use of cooperative caching. 

Large I n f o r m a t i o n  N e t w o r k s  

The proliferation of databases in government and industry has focused attention on 
the problem of integrating these databases. I t  is no longer practical for data  to be 
disseminated by manually exporting it from one database and importing it into another; 
neither is it  practical to call someone at a remote site each time a piece of information 
is needed. Since experience has shown that  a large, tightly-knit system is too inert 
and unmaintalnable to be a permanent solution[610], work is currently being done to 
find ways of solving the integration problem by building a system on top of the many 
databases which are already established. The terms heterogeneous database, federated 
database,  and mediated database all describe this kind of system. Different authors 
will assign different connotations to these terms, and precise definitions are difficult to 
achieve. As a group, however, they describe a particular class of systems whose goal 
is to unify existing databases. 

The techniques which are being suggested to allow integration of heterogeneous da- 
tabases may help to build an integrated information system. The notion of mediators, 
distinguished pieces of software whose job it is to allow a graceful interface between the 
outside world and an information base (or other mediators), can help solve the general 
heterogeneity problem in a modular fashion[610]. 

13.6 Arch i t ec ture  for an Integrated Informa- 
t ion  S y s t e m  

13.6.1 Prel iminaries  

T h e  authors have been working on an information system architecture which will elim- 
inate the need for directories of archives, servers, and databases and provide a truly 
general-purpose information retrieval service[191, 193, 194, 195, 192]. They assume 
that  individual sites will host information bases of limited scope - the sorts of archives 
that  existing information retrieval techniques can handle or will be able to handle with 
sufficient refinement. They then build a distributed information system architecture 
on top of these information bases to route general queries to the sites which can answer 
them and to cache replicas of frequently-used data  objects. 

A da ta  object is a document, an image, a piece of software, or any other self- 
contained unit which can serve as the answer to a query. For most types of da ta  it 
wilt be possible to assign a name, a summary, a list of keywords, or some other textual  
identifier which can be used by term similarity algorithms to determine whether cached 
objects are appropriate answers to queries which are received. Particularly strange 
types of da ta  might require a specialized descriptor which only certain "specialist" 
sites can interpret; the generic textual  descriptor of such data  would merely indicate 
that  the da ta  required special processing. For classes of data  which cannot be assigned 
any kind of identifier, all queries will have to be forwarded to the sites which host those 
classes of data,  and replicas will not be created. 

The information system is constructed by forming a virtual network of sites. The 
links in the virtual network are given time-varying costs which reflect the observed delay 
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on the underlying wide-area network, or any other costs which must be minimized. The 
sites in the virtual network do not all have to own archives; many of them can simply 
cache replicas of data whose authoritative copies are elsewhere. Each network site will: 

�9 Answer queries on data which are in its cache by sending a copy back towards 
the querying site; 

�9 Forward queries on other data over the link which is believed to lead to the 
nearest copy of the desired data; 

�9 Forward response messages along the least costly path to the querying site; 

�9 Cache replicas of data contained in response messages; 

�9 Replace older versions of data with newer versions when a response message is 
forwarded which contains a newer version of a datum in cache, or vice-versa; 

�9 Process queries on data for which this site owns an archive (if applicable). 

13.6.2 Query Routing 
In order to know where to send a query, the information system must be able to 
determine the class of data which would satisfy a query. For example, a query asking 
for PC software should be sent to a site which archives PC software, and a query asking 
about the Civil War should be sent to a site hosting historical documents. Thus, it 
is expected that the queries received will contain sufficient information to allow this 
classification. Having to type "US history Civil War" instead of just "Civil War" is 
the price of general-purpose information retrieval. "Civil War" is only really sufficient 
if the information base is already restricted to historical documents. Of course, one 
can always type "encyclopedia Civil War" to find out that the Civil War falls under 
the category of US history. This last command would access a site which contains the 
"encyclopedic" class of data, i.e. superficial text on a wide variety of topics. 

Queries are routed in a point-to-data fashion, rather than a point-to-point one. 
Instead of maintaining a routing table which tells which way to send a message bound 
for a particular site, a table is kept which is indexed by classes of data. Each row 
represents one class of data; each column represents one outbound link which could be 
used to forward the query. The entries themselves are values indicating the be]ieved 
usefulness of each link for locating the class of data in question. When  a response 
message passes through which contains a particular class of data, the row in the routing 
table for that class of data is usually updated to reflect the fact that a source of 
that data class can be reached in the direction from which the message arrived. In 
some cases, the row will be updated to point in the direction in which the message 
is forwarded with the belief that a cached replica of the data may be found in that 
direction. 

Each time a row in the routing table is updated, the existing values are "aged" so 
that the newer information takes precedence. However, if a query which is forwarded 
comes back "empty handed," the older information will be used as the next most likely 
alternative is tried. The old information also comes in handy if a query arrives over the 
link which was thought to lead to the desired information. Sites avoid sending queries 
back to sites which have already seen them. 

13.6.3 Cooperative Caching 
Cooperative caching is distinguished from "selfish" caching by the fact that sites will 
cache data which do not directly benefit those sites. If one particular site is generating 
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a huge volume of queries, the surrounding sites through which that site's queries are 
forwarded will accumulate copies of the data which that site is using. Idle sites donate 
their cache space to further the common good.  

It is not easy to arrange this kind of behavior in a fully distributed manner with- 
out resorting to expensive measures. However, it can be done inexpensively using a 
heuristic decision function that determines whether or not a site will cache a copy of 
a datum which it receives. By maintaining counters in response messages, the number 
of hops taken and the amount of link cost incurred by a response message between the 
last site which had a replica of the datum in the response and the current site can be 
determined. Similarly, it is possible to keep track of the amount of cache space owned 
by the intervening sites. Using this information along with the information available 
locally, i.e. the costs of the links attached to this site, the following decision function 
can be implemented: 

rnd < Hops so far • Running link cost • Running cache sum 
Hops so far + tcf tcf ~ neighboring link costs tcf 

"Rnd" represents a random number in the interval [0,1). Nondeterminism is used 
to prevent anomalies such as global looping behavior from persisting if they ever arise. 
"Tcf" is the Turnover Control Factor for the current site. Each site maintains its 
own tcf in an attempt to maintain a constant level of cache turnover. Turnover can 
be estimated as an incrementally smoothed function of the difference between the 
current time and the hint-adjusted timestamps of the items being relflaced in cache. 
If necessary, a different tcf can be used in each of the three factors in the decision 
function to provide more control. 

The first factor, hops over hops plus tcf, discourages the creating of replicas when 
the last observed replica is very close. The second factor, running link cost over tcf 
times the sum of the neighboring link costs, encourages replicas to be created when the 
cost of reaching existing replicas becomes great. The neighboring link costs are used 
to get an idea of how large the costs incurred by the response message are relative to 
an average link cost for the local area. The last factor, running cache sum over tcf, 
keeps a site from being stingy with its cache space when it has plenty of it. 

Cache replacement is done using a modified Least Recently Used scheme which 
allows cached replicas to have hint values[222] which are added to their last access 
times to bias the replacement. This feature is used to make it less likely that a replica 
of a datum which is expensive to requery will be replaced than a replica whose source 
is nearby. 

If the decision function is not triggered by a response message, all is not lost. If the 
site happens to have enough idle cache space to create a replica without replacing any 
existing replicas, it can create a replica with a low hint value. That way, all available 
cache space can be utilized without jeopardizing replicas which are more important. 
Naturally, if the new replica is reused, its hint value is upgraded. Note that idle cache 
space results from fragmentation since data objects are cached as atomic units. 

13.6 .4  S imula t ion  R e s u l t s  

The query routing and caching methods have been studied and developed with the aid 
of a simulation. The simulation has gone through several generations as the methods 
have been revised and assumptions have been generalized. Overall, the results indicate 
that an efficient distributed information system is feasible and could achieve a level of 
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Query pa th  from 16 (3.091741):  16 25 24 1 6 18 2 
Shor t e s t  from 2 to  16 (1.286241):  2 18 20 15 16 
Actual  from 2 to  16 (1.350579):  2 18 20 4 12 26 5 7 16 
Time is now 615 

Figure 13.1: Early Algorithm Development 

performance which averages around 40% of that which could be achieved optimally, 
where the distribution of data replicas would be perfect and every query would be 
routed directly to the nearest available replica. 

To give meaning to the results which follow, several terms must be defined. The 
term "link delay" will indicate the time consumed by transmitting a single message 
from one site to another over a link. The term "response delay" will indicate the total 
time consumed in the transmittal  of a query and its response through any number of 
links. The "connectivity" of a sub-network, or cluster, is defined as the number of links 
between nodes in the cluster divided by the number of links required for the cluster to 
be fully connected. 

First Generation 

In the first generation, a cluster of identical sites in which all links had costs in the same 
order of magnitude was simulated. A simple replica placement strategy was Used which 
depended only on the accumulated link cost since the last observed replica on the return 
path. All sites had the same size cache, and the set of primary copies did not grow 
once it was created. Data were classified statically based on the sites at which their 
primary copies lay. As was the case with all the simulations, the system was started 
with empty caches and empty routing tables, allowing them to self-stabilize over time. 
Network topologies were generated at random, testing everything from lines and trees 
to fully connected clusters. What happened was that the caching and routing heuristics 
interacted in such a way that a stable arrangement of data replicas was created, and 
correspondingly stable routing tables guaranteed that queries were routed to nearby 
replicas. As link cost were perturbed, the system made minor adaptations to continue 
using the minimal cost paths. 

The main focus of the first generation was to establish that routing and caching 
heuristics could be found which would achieve the authors' goals. Most of the data 
collected in this early simulation study consisted of traces of the routes taken by mes- 
sages and descriptions of the topologies through which the messages were being routed. 
A representative excerpt from such a trace is shown in Figure 13.1. The failure of the 
point-to-point router to use the shortest path (the path of least delay, to be precise) is 
a "feature" which was added later to generate more realistic results; an implemented 
router is only likely to approximate the shortest path since the actual delays will be 
constantly changing. 

S e c o n d  G e n e r a t i o n  

In the second generation the study began to concentrate on networks in which there 
were two classes of links, namely intereluster and intracluster links. A number of clus- 
ters connected by low-cost links were generated, then pairs of clusters were connected 
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by choosing random sites within each cluster to host the high-cost links. This topology 
has been investigated in detail firstly because it simulates the structure of real-world 
networks, and secondly because the first generation algorithms had the weakness of 
making too much use of expensive intercluster links. The second generation algo- 
ri thms made exceptions to deal with radically expensive links, and the result was that  
sites within a cluster succeeded in cooperatively caching all the information which was 
needed rather than repeatedly fetching it from overseas, as it were. 

The second generation simulation took the number of da ta  (primary copies), the 
minimum datum size, the maximum datum size, the mean datum size, the number of 
sites, the number of clusters, and the connectivity as inputs. The set of authoritative 
primary copies would be generated randomly at the start  of each run, but remain fixed 
thereafter.  The network topology was created in a similar manner, but intracluster 
link delays were perturbed during the run to simulate changing network conditions. 
Later  simulations would perturb all link delays. 

As has been the case with all the simulations, the sizes of da ta  were generated 
using a Poisson distribution. The actual average datum size is usually higher than the 
specified average due to the removal of da ta  of size 0 from the dist~ribution. Since the 
simulation does not t ry to estimate the overhead involved in caching data, each site 
could cache all the null da ta  without incurring any cost; it is therefore pointless to 
include them in the simulation. 

Figure 13.2 shows the results of increasing the number of da ta  in the system while 
keeping the number of nodes constant. The simulation reported periodically on the 
mean of the response delays taken over just those queries which were issued since the 
previous report. The curve labeled "Bound" is an optimistic lower bound on response 
delay. The authors were encouraged by the resemblance between the curves formed by 
the observed da ta  and the optimal bound. The response delays shown in the graph 
are the means of all the values which were reported after steady state was reached. A 
minimum connectivity of 0.4, an average datum size of 2, and a cache size of 10 were 
used. Intracluster links ranged in cost from 0 to 2; intercluster links ranged from 50 to 
2001191]. 

T h i r d  G e n e r a t i o n  

The third generation algorithms improved on the second generation algorithms to the 
extent that  most special case exceptions were removed. The simulation began growing 
the database dynamically over time and placing the primary copies of data  at random 
sites within the cluster designated as the home cluster for that  class of data. The 
static classification scheme induced by this arrangement is "lazier" than the previous 
scheme, which assigned a different class to data  with different primary sites, since it is 
coarser and provides less precise information to the query router. Furthermore, sites 
were allowed to have arbitrary sized caches, including null caches. The realization that  
it is necessary maintain a consistent level of cache turnover across sites for cooperative 
algorithms to be at their best was the main inspiration for this generation and is 
primarily responsible for the generalization of the model. A series of tests was run to 
t ry  to determine the best level of turnover to maintain, only to discover that  the effect 
of varying turnover on efficiency is partially periodic, making it difficult to analyze 
numerically. A theoretical analysis of this effect is on the agenda for future work. 

Using the new caching heuristic and the new "lazy" classification scheme, a study 
similar to the second generation study was performed. This time, the sizes of sites' 
caches were randomized as well. Data were Collected for a series of scenarios in which 
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Figure 13.2: Response Delay vs. Database Size 
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an ever increasing number of sites was arranged into ten clusters. Ten basic data classes 
were used, but their home cluster assignments were allowed to overlap. A minimum 
connectivity of 0.8, an average datum size of 5, and an average cache size of 25 (varying 
uniformly from 0 to 50) were used throughout. Intracluster finks ranged in cost from 0 
to 2; intercluster finks ranged from 50 to 200. All sites were configured to attempt to 
maintain turnover close to 600, meaning that the sites adjusted their caching to keep 
the average hint-adjusted age of data objects being uncached around 600 time units. 

Figure 13.3 shows that response delay decreases as nodes are added. The delays 
used were those experienced with a constant influx of new data. Figure 13.4 shows 
the progress of response delay as the database is created, the system stabilizes, and 
then the long onslaught of new data begins. Note how delay is initially high since 
routing tables and caches start out empty, rapidly attains its steady state minimum, 
then as new data are constantly introduced, again begins to level off. The noise on the 
right side of the graph results from there being less simulation runs which took that 
long to complete. Finally, Figure 13.5 shows that the performance remains constant 
as the network becomes larger[193]. Performance is the quotient of the calculated op- 
timal bound on response delay and the observed response delay; constant performance 
indicates that response delay changed at the same rate as the optimal bound. 

13.6.5 Implementation 

Using the methods developed during the simulation study, implementation of a net- 
worked information system will soon begin. The "prototype" will be constructed so 
that an incremental growth of the prototype will yield a fully implemented system for 
public use. 
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Figure  13.3: Sites vs. Response  Delay 
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F igure  13.4: T i m e  (DB Growth)  vs. Response  Delay 
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Although it will no9 take long to explain, the implementation of the system will 
require a significant ardount of work. The heterogeneity of the information bases will 
necessitate the construction of several mediators, not the least of which will be a 
package capable of automatically utilizing anonymous FTP to access known Internet 
archives. Until such archives "join" the information system themselves, a member site 
must act as surrogate owner of each archive. 

The information system will be built in two layers. The top layer will handle the 
routing of queries and the caching of data in a distributed manner. It will contain coarse 
grained classification software to determine the best way to route a query and general 
descriptor matching heuristics to decide when to try to answer a query with cached 
data. The bottom layer will consist of mediators and the local archive managers at 
each site owning an archive. It may be formed by an existing DBMS or by a specialized 
archive manager. Each will contain some combination of fine grained data classification, 
query processing, automatic indexing, and archive maintenance software. The bottom 
layer will be characterized more precisely in the following section. 

D a t a  T y p e s  a n d  C l a s s i f i c a t i o n  H e u r i s t i c s  

When the prototype comes on line, it should include at least the following in order to 
provide a demonstration of its capacity to handle heterogeneity: 

1. A corpus of ASCII text documents; 

2. a collection of source code in several different programming languages; 

3. a database of relational tables or other objects which is indirectly accessed 
through a DBMS; 

4. a collection of bitmapped images with differing formats; 

5. an FTP  archive containing executables and other data. 

Most of the workstations in the system should at least be able to determine which 
major data type a query requests. This coarse grained classification will be accom- 
plished by inspection of the query for key terms. For example, source code would be 
flagged by the presence of the names of one or more programming languages or the word 
"source" in a favorable context. To avoid repetition of coarse grained classification, 
the general data type required by a query will be coded by the client at the querying 
site whenever possible. The most common data types will be assigned special codes. 
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Queries which cannot be parsed in this way will be forwarded without the special type 
coding. 

Finer grMned classification for each major da ta  type will be accomplished as follows: 

1. WAIS should serve as the main textuM archive manager. Any additional text 
documents will be anMyzed and indexed using an existing text processing al- 
gorithm, and matches between queries and documents will be made using an 
existing fuzzy retrievM method. Boolean querying may Mso be supported. 

2. Source code will be classified by language and by purpose. The language is easily 
determined by scanning the file for constructs unique to different languages. 
The purpose of each source file will be kept in an index which is initially built 
automatically from comments found in the source, but modified as necessary 
by a human operator. Indexing solely by scanning comments is unreliable since 
commenting styles vary drastically from programmer to programmer, some of 
which may not comment at M1. Matches between queries and index entries will 
be done as before. 

3. When a DBMS is involved, an information system query might encapsulate a 
query to be presented to the DBMS or it might contain an unstructured question 
as usual. The encapsulated query case is trivial since it only needs to be identified 
as such; this is on the same level as determining the language of a source code 
file. However, unstructured questions must be translated into a query which is 
meaningful to the DBMS. Finding ways of translating arbitrary natural  language 
queries into a database query language is beyond the scope of this work, as 
research is still actively being done in this area. However, a simple system 
may be implemented by which a user may ask how to access on line help for 
the specific DBMS and for the names and attr ibutes of database objects which 
contain da ta  relevant to some topic. It should also be possible to create a simple 
macroscopic mapping of database objects onto information system objects, such 
as to consider an entire relational table to be a single object[190, 35]. This 
simplifies the interface enough that  the information system should be able to 
reliably construct queries for the desired objects and to cache replicas of them as 
usual. The drawback is that  the user must accept the object in its entirety and 
send an encapsulated query to the DBMS if more selectivity is desired - but the 
simplified system is much more likely to succeed than an a t tempt  to translate 
natural  language into arbitrarily complex queries. 

4. The format of an image can almost always be determined by scanning the be- 
ginning of the image file for signatures which are unique to different formats. As 
was discussed earlier, automatic determination of the content of images is just  
beginning to be actively researched and is in its extremely early stages. With 
the exception of automatically generated images such as satellite weather maps, 
the collections of images the system includes will almost certainly be manually 
indexed. 

5. Many F T P  archives provide informal indices for their available files. The system 
will interface with these archives by utilizing the existing textual indices and 
anonymous F T P  in a fully automatic manner. 

While it is small, this initial set of interfaces and data  managers will provide a 
demonstrat ion of the capabilities of the system. The FTP  interface alone will pro- 
vide a much needed service, removing the need to navigate unfamiliar file systems 
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and reducing the drain on central archive sites and the network through cooperative 
caching. 

13.7 Concluding Remarks 
While the information retrieval field was growing, the need for good information re- 
trieval techniques was growing even faster. Some good information retrieval techniques 
are now available for small domains - but the current information domain is vastly 
larger than any of these techniques can handle. Just as small-scale information systems 
are becoming capable of dealing with natural language queries, the major information 
networks h~ve grown so large that even a skilled user is sometimes unable to locate 
needed information. 

To find a desirable solution to the Resource Discovery Problem, it is necessary 
to adapt and integrate information retrieval techniques for the large network environ- 
ment. The fragmented and heterogeneous resources of the network must be used to 
support distributed information retrieval in a fair and efficient manner. Specialized in- 
formation retrieval techniques must be allowed to operate within limited domains while 
researchers work to solve the greater problem of generaJized retrieval. In this chapter, 
algorithms and architecture were presented for a distributed information system which 
can solve the following problems: 

�9 The Resource Discovery Problem. By automatically routing queries to the sites 
which can answer them, the system removes the burden of resource discovery 
from the user. 

�9 The heterogeneity problem. By treating all data as objects, it supports the 
integration of any information base whose data can be divided into units. By 
giving access to all these information bases simultaneously, a simplified global 
view is provided. 

�9 The retrieval problem. Information retrieval techniques and data classification 
can easily be used by the system to handle queries expressed in natural language. 
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Chapter 14 

Efficient Parallel Recovery in Replicated Databases 

Raj Tewari* 

14.1 I n t r o d u c t i o n  

Recovery in replicated databases is an important issues for fault-tolerant processing 
and non-stop computing. Recent database servers such as Oracle7 server are shipping 
with distributed and parallel options. The distributed option allows co-operative trans- 
action processing by allowing selective replication of files in read-only and read-write 
modes on multiple servers and transactions that can execute across multiple servers are 
then co-ordinated by the two-phase commit operation. Moreover, the Oracle7 server 
allows parallel processing on multiprocessor machines such as the Sequent, to execute 
operations in parallel. It is of primary importance that the recovery algorithm for a 
distributed and parallel database server incorporate parallel operations to allow faster 
and efficient recovery. In this chapter we propose such an algorithm. 

One way in which recovery can be facilitated is by using semantic knowledge of 
database operations to embed intelligence in the recovery algorithm. The idea of 
using semantic knowledge to increase concurrency was investigated by Garcia-Molina 
[208]. In an algorithm proposed in [208], transactions are divided into a collection 
of disjoint sets or classes, so that the transactions that belong to the same class are 
compatible. Transactions that are compatible can be allowed to interleave arbitrarily, 
whereas incompatible transactions (transactions that do not belong to the same class) 
are not allowed to interleave. 

Commutativity of database operations is an important property that can be uti- 
lized for enhancing concurrency within transactions [24,604]. In [24], a property known 
as recoverability, has been defined, which can be used to decrease the delay involved 
in processing non-commuting operations while avoiding cascading aborts. When an 
invoked operation is recoverable with respect to an uncommitted operation, the in- 
voked operation can be executed by forcing a commit-dependency between the invoked 
operation and the uncommitted operation. In this way the transaction invoking the 
operation will not have to wait for the uncommitted operation to abort or commit. 
To enforce the serializability of transactions, the recoverability relationship between 
transactions is constrained to be acyclic. 

A semantics based transaction management technique for managing replicated data 
was proposed in [337]. Conventional consistency control algorithms using one-copy se- 
rializability as the correctness criteria, are designed to deliver fast response times and 
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high availability for read-only transactions while sacrificing these goals for updates. 
They propose an approach that  works well for both retrieval and update environ- 
ments, by exploiting semantic properties of transactions. By subdividing transactions 
into various categories, and utilizing a commutativity property, they demonstrate that  
communication costs are minimized. 

The SHARD (System for Highly Available Replicated Data) approach, described 
in [489], [490], [491] and an associated protocol called the log transformations pro- 
tocol [67] are designed to support continued database operations in the event of site 
failures or network partitioning. To achieve this objective, SHARD sacrifices transac- 
tion serializability and uses t imestamp ordering to ensure eventual mutual consistency. 
New algorithms for robust update propagation and a mutual consistency mechanism 
for complex update types such as increment and decrement was developed in [489]. 
SHARD also provides a basis for triggering application-specific compensating actions 
in the event of an inconsistency, and provides mechanisms for implementing concur- 
rency controls that  can be used selectively to reduce the probability of inconsistency 
at the expense of a controlled increase in response time. Basically, SHARD utilizes an 
optimistic approach for maintaining mutual consistency of copies of database objects. 

We have previously proposed an approach for distributed databases on uni- 
processor machines in [580, 581], that  is intermediate between the mutual exclusion 
approach and the SHARD approach. Merging two partitions can be achieved by com- 
paring only one copy of a da ta  object in the first partition, with a copy in the second 
partit ion, together with the transaction history in both partitions containing all the 
transactions that  performed operations on the data  object. This information is suf- 
ficient to reconstruct the final value of the da ta  object, since the classification of the 
transactions results in a sequence of operations that  do not conflict with each other, 
hence they can be performed in parallel. 

When updates or reads are made in a partitioned state, it is possible that  non- 
serializable behavior may result. This can lead to inconsistent copies of the da ta  
object in different partitions. One suggested way to mitigate the effects of such in- 
consistency is through compensating transactions [490]. Compensating transactions 
depend on application semantics and would be determined by policy decisions for each 
organization. 

The rest of the chapter is organized as follows. In the next section we present a 
high-level overview of the proposed consistency control algorithm. Details of the basic 
merge protocol are presented in the next section. We then present extensions to the 
basic merge protocol to include parallelism in the operations if possible on the machine 
architecture. The next section evaluates performance of the merge protocol using a 
simulation model, and a comparative performance analysis is presented, comparing 
the performance of the merge protocol to the previously proposed log transformation 
protocol. 

14.2 Consistency Control Algorithm 
The algorithms proposed by us in this chapter have the objective of attaining even- 
tual consistency in the final database state, while sacrificing mutual consistency in 
intermediate states. We need to differentiate between consistent and correct data. A 
distributed database with multiple copies of da ta  objects preserves mutual consistency 
by ensuring that  all copies of a da ta  object have the same value. If strict consistency 
is to be preserved queries and updates can be allowed in only one partit ion if network 
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failures occur, and disallowed in other partitions. If a database sacrifices consistency, 
it needs to ensure that the results of read and write operations are correct, in the sense 
that they are equivalent to the results that would have been obtained had consistency 
been preserved. If the results are not correct subsequent compensating mechanisms 
have to be used to ensure correctness in the final state. 

A fully connected and operational distributed database system (DDBS) is non- 
partitioned. Due to site and/or communication link failures the system can be parti- 
tioned into two or more disjoint connected components. In general, a slow site or link 
is indistinguishable from a partition. A group of sites can determine autonomously 
whether there is a partitioning by polling the sites in the original configuration and us- 
ing timeouts to determine any non-responding site(s). This process can be repeated for 
any further partitions, provided each site in every partition maintains a configuration 
vector. 

The configuration vector maintains the set of sites that are in the same connected 
component and are reachable from the home site. The requirement of a configuration 
(or connection) vector is a common one in most systems with replicated data. The 
configuration vector may be updated when updates to data objects are propagated. 
For more details of the operation of the connection vector, please see [290, 291]. 

The rules for maintaining consistency of copies of data objects in a partition are 
read-one-write-all copies (ROWA). As long as all sites in the DDBS are operational and 
able to communicate with each other, the ROWA rule ensures data consistency. Notice 
that the ROWA rule by itself is not sufficient for maintaining seriaJizability [136]. An 
underlying concurrency control mechanism has to operate to ensure serializability of 
transactions within partitions. We assume that a strict two-phase (2PL) concurrency 
control protocol is used within all partitions. The 2PL protocol does not operate 
across partitions because there is no communication between different partitions. The 
consistency of the DDBS is maintained by a merge protocol at the time of merging 
partitions. 

If the database system partitions into two groups, then the effects of transactions 
in one partition will not be seen by the other partition. Within a partition, data ob- 
jects will be synchronized by the ROWA rule, but there may be inconsistency across 
partitions. The problem we are addressing is to merge all data objects in the parti- 
tions optimally. Thus we seek to find a merging process that yields an optimal set of 
transactions for merging utilizing semantic knowledge. 

14.3 Parallel Merge Protocol  
In this section we will describe an efficient merge protocol that merges two partitions 
after a communication link repair has connected the two partitions. We consider the 
simplest possible case of one data object and two partitions. This case can be extended 
to handle the general case of many data objects and n partitions as shown later in 
Section 4. 

We make the following assumptions: 

1. Each site maintains a local clock that tags each transaction with a unique times- 
tamp. 

2. Each site maintains independent backup logs that record the action of each 
transaction on each data object (i.e. the backup log records each operation and 
its associated time stamp). This is in contrast to the more common backup logs 
that maintain before and after values of each data object. 



280 C H A P T E R  14. E F F I C I E N T  P A R A L L E L  R E C O V E R Y  

3. The logical database schema remains unchanged during a partitioning. 

4. The replicated database system has a mechanism for implementing parallel op- 
erations, either by using specialized paraJ]el processing database machines, or by 
using software simulation of parallel operations. This assumption is easily real- 
ized in practice in modern high-performance databases that utilize parallelism 
for intra-query or inter-query operation speedup. For an excellent recent survey 
of parallelism in databases refer to [409]. 

The first assumption requires local clocks at each site (processor) which is common 
in distributed computing systems. A global order of transactions executed in each 
partition can then be determined, even when there is no globally synchronized clock as 
shown by Lamport in [348]. The second assumption says that the backup logs record 
operations performed by each transaction on every data object, instead of the before 
and after values of every data object. This can be accomplished without excessive 
additional processing. In fact, transactions were originally defined in the context of 

e n maintaining consistency by Eswaran et al. [182] as a sequence T = ((T~,ai, ~))i=1 of 
n steps where T is the transaction name, a~ is the action at step i and e~ is the entity 
acted upon at step i. This is just the information that we maintain in the logs. 

The following terminology will be used in the description of our protocol: 

Def in i t ion  14.3.1 A p a r t i t i o n  log is the sequence of locally ordered transactions 
that are executed site in a partition Pi. 

Def in i t ion  14.3.2 An in i t ia l  m e r g e  log is a sequence of transactions that must  be 
executed in a partition Pi to bring the database to a globally consistent state. 

Def in i t ion  14.3.3 A t a r g e t  log is a sequence of globally ordered transactions con- 
structed from the locally ordered transactions in the partition logs of each site. 

Def in i t ion  14.3.4 A m e r g e _ u n d o  t r a n s a c t i o n  is a transaction executed at merge 
time of partitions, to reverse the effects of an out of sequence transaction in the global 
ordering of transactions. The merge_undo transaction of a transaction T is denoted 
by T ' .  Further, the log (7, T ' )  = log ( T ' , T )  = null effect on the database. An  
m e r g e _ u n d o  t r a n s a c t i o n  log is a globally ordered sequence o] merge_undo trans- 
actions. 

Def in i t ion  14.3.5 A merge_ redo  t r a n s a c t i o n  is a transaction executed at merge 
time to achieve the effects of a transaction that was rolled back for  merging. Merge_redo 
transactions are the same as the original transactions, but they are scheduled for execu- 
tion at merge time o] partitions. A merge__redo t r a n s a c t i o n  log is a globally ordered 
sequence of  merge_redo transactions. 

Def in i t ion  14.3.6 A s e m a n t i c a l l y  equ iva len t  t r a n s a c t i o n  is a transaction that 
has the same effect on the database as a sequence of transactions. I f  (T1, T2 , . . . , Tn ) is 
a sequence of transactions, then the semantically equivalent transaction of this sequence 
is denoted by T1,2 ....... 

It should be noted that our definitions of merge_undo and merge_redo transactions 
and their associated transaction logs are different from the standard definitions of 
undo and redo[593]. The operation intended by the new merge_undo and merge_redo 
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transactions is very similar to that  intended by the original undo and redo defined 
in[593], but  has different semantics. 

The initial s tate upon partitioning of the DDBS into two partitions Pi and Pj is 
a consistent state. PLi and PL~ are parti t ion logs that  bring the two partit ions into 
inconsistent intermediate states S~ and Sj (there could be finitely many intermediate 
states; however, we concentrate only on the last inconsistent states S~ and Sj,  which 
are the states just  before the partitions are repaired). 

Our objective is to find optimal merge logs ML~ and MLj, which will run in 
part i t ion i and j respectively, and will result in a consistent state Sf in both partitions. 
We define initial merge logs IML~ and IMLj as: 

IML~ = (PL~, T) 

IMLj = (PL'j, T) 

where T is the target log defined by the global transaction ordering mechanism we have 
assumed. T contains all the merge_redo transactions, hence it is called the merge_redo 
partition log. PL~ and PL} are the merge_undo partition logs, consisting of the inverse 
transactions of all transactions in PLi and PLy. 

We will propose a protocol that  results in greater savings through more efficient 
processing than the log transformation technique [67]. The log transformation mecha- 
nism seeks to classify transactions into the following types: 

�9 Overwrite pairs 

�9 Commutative pairs 

�9 Conflicting pairs 

and then proceeds to simplify an initial merge log through successive log transforma- 
tions that  replace a pair of overwrite transactions by the overwriting transaction. Pairs 
of transactions that  are inverses of each other, and occur successively are canceled. 

We propose exploiting transaction semantics further to gain significant savings, 
that  are not possible using the log transformation technique. Properties of arithmetic 
operations such as associativity, and distributive laws can be utilized to obtain further 
reductions in the initial merge log. 

An example of a banking database will clarify our approach, and also point out 
situations where the log transformation approach will not ensure any savings, but our 
approach will achieve substantial savings in transaction processing. 

E x a m p l e :  Assume that  the database partitions into two partitions i and j. We will 
follow the transaction activity related to one data  object, say a checking account with 
an initial balance of $200 before partitioning. 

The transactions executed in the two partitions and the corresponding changes in 
the balances are shown in Table 14.1. For the duration of the partit ion transaction 
T1, T2, T4, T~, Ts and T10 were executed in partit ion i and transactions T3, T6, Tr, T9 
were executed in parti t ion j. The global balance is known to us from the history of the 
transactions but the global balance is not known to either of the two partitions. The 
objective of the merge protocol is to arrive at globally consistent (correct) database 
objects; in this case the account balance. Partitions i and j have inconsistent account 
balances. The balance in partit ion i is $650 before the merge, and the balance in 
part i t ion j is $100, whereas, the globally consistent balance that  we seek to arrive 
at is $545. This would be the balance if all the transactions were executed in their 
t imestamp order. The global balance is shown in Table 14.1 as G(b). 
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Table  14.1: P a r t i t i o n  Logs for Pa r t i t i ons  i and  j 
Parti t ion i Partition j G(b) 

Transactions Bal(i) Transactions BalO) 
T1 = deposit(200) 400 200 400 

T2 = query account 400 400 
T3 = withdraw(100) 100 300 

5OO 
4OO 

T6 = withdraw(50) 50 350 
T7 = deposit(100) 150 450 

495 
T9 = withdraw(50) 100 445 

545 

T4 = deposit(200) 600 
T5 = withdraw(100) 500 

Ts = addinterest(10%) 550 

T10 = deposit(100) 650 

We classify the operations of the transactions into the following types: 

�9 Collapsible 

- Associative 

- Distributive 

- Commutative 

- Other non-arithmetic 

�9 Non-collapsible 

Associative operations are those that  can be combined with each other into one 
semantically equivalent operation. If X, Y, Z are operations then the notion of associa- 
tivity that  we are using is: 

(X O ( Y e  Z))  = ((X e Y) e Z) 

The operator | stands for any associative operation. In the simplest case this operator 
could be the algebraic associative operation for arithmetic database objects. In more 
complex cases this operator could stand for associative operations on non-arithmetic 
database objects which could be combined using semantic information. If by the above 
manipulation, we can combine the operations X and Y into one operation, then we 
have achieved a reduction in the initial merge log. 

Similarly, distributive operations on X, Y, Z are: 

X |  e Z) = (X | Y) e ( X  | Z) 

The operators | and E3 could be algebraic in the simplest case or could be non-algebraic 
but distributive by other semantic knowledge. If we have database operations as de- 
picted by the right hand side of the above equation which cannot be reduced in that  
form, it is possible that  they could be reduced by converting them to the form of the 
left hand side. 

One of the key points in the above discussion is that  it is possible that  not all 
operations involve arithmetic operations. There could be non-arithmetic operations on 
the database that  could be combined by looking at their semantics. Thus, the category 
other non-arithmetic contains database operations that  are of non-arithmetic nature, 
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yet can be combined knowing their semantics by one of the associative, distributive, 
commutative or other semantic operators (which are application specific). An example 
of a non-arithmetic operation is the location of a vehicle in a car rental system. The 
car may be rented at one location and returned at another location, which may, at 
some instant of time, be isolated from the originating location. To reconcile the return 
of the car, and its location in the two partitions (the originating partit ion and the re- 
turning partit ion),  a non-arithmetic operation, namely updating the location variable, 
is required. 

Non-collapsible operations are those that  cannot be combined with other opera- 
tions based on their mathematical  properties and other available semantic information 
about them. The thrust of our protocol is that  if by using available mathematical  
and semantic information about database operations, we can collapse a sequence of 
operations in the initial merge log into one equivalent operation, we can perform the 
merge process more efficiently, by substituting one equivalent write on the database in 
place of each individual write operation corresponding to each merge operation. 

Operations of the type deposit, withdraw and query can be represented by functions 
of the form 

f : ( x )  = cl + x 

where cl is a constant. Hence these are associative and any number of deposits, with- 
drawal and queries appearing in the initial merge log can be collapsed into one equiv- 
alent operation. 

Operations of the type add interest can be represented by a function of the form 

f2(x) = c2 + czx 

These operations cannot be combined with other operations since they are not asso- 
ciative, distributive or commutative with deposit, withdrawal and query. 

The initial merge logs for the banking example will be defined for each partit ion i 
and j as: 

I M L, = [T~o, T~, T~, T~, T~, T~, T2 . . . .  ,T10] 

and 
I M L j = [T~, T~, Tg, T~, T~ , T2 . . . . .  T10] 

which reflects the brute force approach of undoing all transactions run in each partition, 
and then redoing all transactions in the globally serializable order, found by the global 
ordering algorithm. 

We will first use the log transformation protocol to get a transformed merge log for 
each partit ion, as depicted below: 

P a r t i t i o n  i 

ML~ = [T;o,Tg,T;,T;,TLT;,T~,T~,. . . ,T~o] 
= [ T ~ o , T i , T ~ , T ~ , T i , T 2  . . . .  ,T~0] 

= [TIo,T~,T~,T~,%,... ,Tlo] 

P a r t i t i o n  j 

M L j  = [Tg, T~,Tg,T~,T1,T2 . . . .  ,T10] 

The log transformation technique would result in 12 transactions in parti t ion i, and 
14 transactions in part i t ion j to bring both the partit ions to a consistent state, in the 
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first pass of the reduction process. In the first pass all reductions are made using the 
property of double node deletion. Further reductions are possible using the commu- 
tativity property and constructing merge graphs that identify further reductions. But 
this requires considerable computational effort. 

Our proposed parallel merge protocol utilizes the semantic information provided 
by the complete history of all transactions available to in the logs, as follows: 

1. Scan merge_undo transactions in reverse order till a non-collapsible transaction is 
encountered. Accumulate the effects of all the collapsible transactions (deposits 
and withdrawals) till this point in one semantically equivalent transaction. Con- 
tinue scanning in this manner until the next non-collapsible transaction and 
repeat the process of constructing another semantically equivalent transaction. 
This process is repeated until there are no more merge_undo transactions. 

2. Scan merge_redo transactions in order till a non-collapsible transaction is en- 
countered, and accumulate the effects in semantically equivalent transactions as 
in (1) above. Repeat this process till the list of transactions in the merge_redo 
log is exhausted. 

Continuing our example, we obtain the following reductions using our merge pro- 
tocol: 

P a r t i t i o n  i 

ML~ = [7;0, ~A 7L 7L T3, %,. . . ,  T10] 
[ ~o, T~, T;,4~ T3,4,s,~,~, Ts, T~,10] 

P a r t i t i o n  j 

rq~l T I rpI TI  ,-p ~ T10] M L  3 = LJ~9, 7 , - t6 ,  3 , ~ t l l J - 2 , . - - ,  

= [T9,7,6,3, T1,2,3,4,5,6,z, Ts,  T9,10] 

Here 7~,4 is the semantically equivalent transaction for T~ and T~, and its effect on 
the database is the same as a deposit of $100. Similarly, T3,4,~,6,z is the semantically 
equivalent transaction corresponding to transactions T~, T4, Ts, T6, T7, and its effect 
on the database is the same as a deposit of $50. We have reduced the IML~ with 
16 transactions to a semantically equivalent log with 5 transactions, whereas the log 
transformation approach was able to achieve only a reduction to 12 transactions. Using 
our merge protocol in partition j, we obtained an optimal merge log containing only 4 
transactions, as opposed to no possible reductions using log transformations for IML i 
in one pass. Note that these results are based on all reductions achieved in the first pass. 
The log transformation protocol will discover all the reductions possible eventually, but 
this will be at the expense of constructing merge logs and then reducing them. Each of 
the merge log graphs will contain as many nodes as the number of transactions in the 
merge log, and conceivably the log transformation approach will result in large graphs. 

The advantage of combining several transactions into one at merge time is that the 
final effect of the collapsed transactions is written and committed to the secondary 
storage only once. This is a significant benefit over writing and committing each 
traditional undo and redo transaction individually to the database, resulting in a large 
number of secondary storage accesses, that slow down database processing. Further, a 
sequence of semantically reduced transactions can be executed in parallel, since they 
are independent of each other. 
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It  should be noted that  our technique is different from the group commit technique. 
The group commit technique as described in [330] is performed at the time of regular 
transaction processing and not at the time of recovery. Moreover, the group commit 
technique does not take semantic knowledge of transactions into account when deciding 
which transactions make up the group to be committed. In contrast, our algorithm is 
executed at the time of recovery of sites or partitions, and takes semantic knowledge 
that  is available in the mergeAogs to decide which transactions can be grouped and 
then executed in parallel. 

14.4 E x t e n s i o n  of the  Parallel  Merge  Pro toco l  
to  the  General  Case 

We have focused on one da ta  object and two partitions for the sake of exposition. The 
general case of many objects and many partitions can be handled by our protocol. 
The extension of the merge protocol to the case of more than one data  objects and n 
parti t ions is described below. 

The final value of each da ta  object can be efficiently reconstructed using the merge 
protocol from the history of transaction operations available in the partition logs. Recall 
that  we maintain each operation on the data  objects, instead of before and after values. 
We can view the merge protocol as operating sequentially on each data  object in the 
database,  taking into account only those relevant transactions that  operated on that  
da ta  object. Thus the set of relevant transactions for merging may be different for 
different objects, the only requirement being a global ordering of transactions across 
all partitions. 

We consider only simple partitioning of the database at any instant of time, and 
exclude the possibility of byzantine failures. The merge protocol can then be applied 
successively to each binary partit ion to handle a general n-way partitioning. Thus any 
arbi trary partit ioning of the database can be described in terms of a finite sequence of 
binary partitionings that  can be linearly ordered in time. 

One important  question is that  of failure during recovery. Since our algorithm 
does not use a voting technique to maintain consistency, the algorithm holds even if 
there is a failure during recovery. At the time of performing the merge algorithm, if 
there is a new failure at the site where the merge algorithm is running, we can view 
the situation de novo, in the sense that  when recovery occurs again, the whole merge 
process s tar ts  again from scratch. In this respect, our algorithm is at least as good as 
other algorithms for recovery. 

14.5 Incorporat ing  Paral le l i sm in the  Merge  
Pro toco l  

Once the operations in the initial merge logs have been classified into collapsible and 
non-collapsible, the new proposed way of handling the merge processing is to use 
parallel execution of the operations in the final merge log, since the operations in the 
final merge log do not interfere with each other. However, this is possible only if the 
machine architecture or a software emulation allows parallel execution of operations 
in the final reduced merge logs. With parallel concurrent writes, there is reason to 



286 CHAPTER 14. EFFICIENT PARALLEL RECOVERY 

believe that  ths speedup obtained in merging and consequently in the recovery process 
can reach speeds approximating real-time operation. 

Parallelism is significantly faster in the case of operations involving multiple data  
objects, since frequently the processing involves join operations, which are costly in 
distributed databases. It is of great importance to utilize opportunities for parallel 
execution of recovery operations to speed up the recovery :process. 

14.6 Performance Analysis of the Parallel 
Merge Algorithm 

We compare the performance of the parallel merge protocol proposed by us with the 
log transformations protocol proposed in [67] using a simulation model. The objective 
of the performance analysis is to obtain the efficiency measure for both protocols. The 
efficiency measure is defined as the percentage reduction obtained in the initial merge 
logs using the protocol whose performance is being evaluated. 

Initial merge logs are generated containing on an average 10 to 90 percent non- 
collapsible transactions (correspondingly, 90 to 10 percent transactions are collapsible). 
Transactions are randomly classified into N (non-collapsible) or C (collapsible) and 
filed into the initial merge log. Once an initial merge log is generated, reductions 
are performed on it using our protocol and the log transformations protocol. Since 
our protocol is a one pass protocol, we simulate the reductions obtained by both the 
protocols in one pass. 

The implementation of the log transformations (LT) protocol requires a graph 
representation and operations on a graph that  will eventually discover most of the re- 
ductions obtained by us but at considerably greater expense, because of the complexity 
of their implementation. The implementation of the LT protocol results in a multi-pass 
approach, as is made evident by the examples presented in [136]. In order to perform 
a fair performance evaluation, we compare the performance of the two protocols using 
all reductions obtained in one pass only. 

For each level of NC (percentage of non-collapsible transactions in the initial merge 
log), varying from 10 to 90, and for each initial merge length (IML) varying from 10 
to 100, replications of the experiment are performed to achieve s*atistica]ly significant 
results (95 % confidence intervals) Thus, each of our point estimates for the proportion 
represents 385 replications. The computer programs were written in the C program- 
ming language. 

For ~ny given initial merge log length, the eff• of the both our merge protocol 
and the LT protocol increases as the value of NC decreases. This can be explained by 
the fact that  as the value of NC decreases, there are less non-collapsible transactions on 
an average in the initial merge log, and consequently greater reductions are possible. 

We performed the simulations for NC = 10 to NC = 90, since this spans the feasible 
region of transaction mixes. Here, we present the results for NC = 10 to NC = 40, since 
the reductions are more obvious. NC = 70 to NC = 90 follow the same pattern, but 
at a reduced level. The results from the simulation model indicate that  the reductions 
obtained using the parallel merge protocol are significantly higher than those obtained 
by the log transformation technique for NC = 10 to 40 level. 

The results obtained in the simulation were from randomly generated transaction 
streams. There are transaction streams that  could lead to worst case performance 
results. If we have a transaction stream that  alternates strictly between C and NC 
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transactions, then neither our merge protocol nor the LT protocol will be able to find 
any reductions thereby implying that  the worst case behavior of both the algorithms 
is the same. This is, however, true for any protocol utilizing semantic knowledge of 
transactions, when faced with a transaction stream that  strictly alternates between NC 
and C transactions. 

14.7 Conc lus ion  

In this chapter, we have proposed a new parallel recovery algorithm for rephcated data- 
bases that  axe subject to site failures and network partitioning. The recovery algorithm 
utilizes available semantic information about the operations of transactions to classify 
the operations into collapsible and non-collapsible operations. This classification allows 
us to obtain reductions in merge logs to speed the recovery process when partitions 
are repaired and merged together by exploiting parallehsm. The recovery algorithm 
proposed by us is also suitable for systems with long duration or nested transactions, 
such as C A D / C A M  databases and emerging multi-media apphcations. 

Our work is most closely related to the proposal for recovery in centralized data- 
bases in [331]. We have considered a rephcated database environment and performed 
simulation experiments to test the efficiency of our recovery protocol. Results of this 
performance evaluation indicate that  our recovery protocol provides improved perfor- 
mance than a previously proposed protocol based on the log transformation technique. 

One of the important  issues for future research is how to pre-classify operations 
of transactions and define compensating operations. Certainly an approach that  au- 
tomatically collects this information from the database system is preferable over one 
that  requires users to specify this information. However, it may not be possible to 
obtain the complete semantics of all operations automatically through the database 
system, because knowledge outside the appfication domain may be required to infer 
the semantics. 

Another significant research area is the investigation of parallel machine architec- 
tures and their influence on recovery strategies. It can be conjectured that  the parallel 
recovery algorithm will be different for a connection machine type of massively parallel 
architecture, than an algorithm for a Gray Y-MP type of vector processor architec- 
ture. The influence of architectures and support for parallel operations in databases of 
the future is key to handhng grand challenge apphcations such as the human genome 
project.  
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Document Allocation In Multiprocessor Information 
Retrieval Systems 

Hava T. Siegelmann* Ophir Frieder t 

1 5 . 1  I n t r o d u c t i o n  

The volume of data accessible online is steadfastly increasing. This growth will 
shortly render conventional information retrieval systems helpless in terms of respond- 
ing to users' queries within an acceptable period of time. The increase in the volume 
of data available online stems from improvements in data communication and storage 
technologies which in turn spurred an increase in the number of information providers, 
and the volume of data provided by each information source. 

To provide the computational demands needed to deliver acceptable response times 
in the wake of voluminous information retrieval databases, numerous large-scale (scal- 
able) multiprocessor information retrieval systems [1, 23, 131, 455, 454, 513, 545, 
546,544, 550] have been proposed. A scalable multiprocessor information retrieval sys- 
tem generally necessitates the exploitation of a distributed memory architecture as a 
large number of processors is currently not possible in a shared-memory configuration. 
A distributed memory system, however, introduces the problem of mapping the data 
onto the given architecture. (A poor document mapping onto an architecture results 
in high access and retrieval times.) We refer to this problem as the Multiprocessor 
Document Allocation Problem (MDAP), and develop a heuristic approach based on 
Genetic Algorithms which yields a near optimal mapping. 

Throughout this research, the term "document" is used generically to represent 
any datum to be accessed. That  is, a "document" may take various forms, ranging 
from simple text to highly detailed photographs to voice and animated video. For 
example, in a hospital setting, patient data includes EKG readings, blood sample mea- 
surements, x-rays, patient daily charts annotated in handwriting by the physician, 
patient history, and possibly, accounting information. Such a system must incorpo- 
rate pictures (x-rays), contiguous electronic signals (EKG readings), hand written free 
formatted annotations (doctors' notes), and formatted data such as billing. (For a 
detailed evaluation of the design issues of medical databases, see Allen and Frieder 
[14].) 
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We assume a clustered document database for the following reasons. First, in 
view of an appropriate data model, highly data intensive applications typically lend 
themselves to a clustered approach. In the medical arena, for example, a doctor may 
wish to capture: 

�9 the entire medical history for a given patient (clustering based on patient iden- 
tity); 

�9 information concerning a given disease (clustering based on the type of disease); 

�9 diseases exhibiting a given type of symptoms (clustering based on symptoms); 

�9 all available data regarding common ailments for a particular region of the world 
(clustering based on geographical location). 

Second from a standpoint of a compromise in terms of storage and processing 
times, a clustered approach reduces the storage overhead introduced by an indexed file 
organization. Haskin [243] proclaimed that an indexed file organization can introduce 
a storage overhead of up to roughly 300%. As compared to a full-text or signature 
analysis technique, a document clustering approach results in significantly lower search 
times. 

In the context of a clustered document database, a proper solution to MDAP is any 
mapping of the document onto the processors such that the average cluster diameter is 
kept to a minimum while still providing for an even document distribution across the 
nodes. An even document distribution is needed to provide an equal workload across 
the processors. As shown in Frieder and Baru [198], a low average cluster diameter 
increases the inter-query parallelism. (The distribution of clusters along large diameters 
introduces high traffic in the communications network, increasing the contention and 
reducing the system throughput - see Frieder, et al. [199].) Returning to the medical 
database example described above, a solution to MDAP may involve the mapping of 
patient records across the nodes of a given distributed multicomputer such that efficient 
retrieval is supported for all queries that view the database as being clustered based 
on each of the above four clustering views. 

The remainder of this chapter is organized as follows. Initially, a proof demon- 
strating that MDAP is NP-Complete is provided. The Mapping Problem and several 
of its derivatives are similar to MDAP, and hence, a brief review of solutions addressing 
these problems is provided in Section 3. Also provided in Section 3 is a brief discus- 
sion of prior relevant multiprocessor information retrieval systems. In Section 4, our 
genetic-based, document allocation algorithm is described. The theoretical foundation 
on which our approach is based, a proof of convergence of the derived allocations to 
a good mapping, is given in Section 5. An experimental evaluation of the proposed 
algorithm is presented in Section 6. We conclude in Section 7. 

15.2 M D A P  is N P - C o m p l e t e  

An instance of MDAP consists of a homogeneous distributed memory architecture 
with n nodes, Xi ,0  < i < n - 1, and partitions of the documents D~,0 < i < d - 1, 
called clusters, C. Each cluster C~, 0 < i < c -  1, represents a set of all the documents 
associated with it. The distance between a pair of nodes is defined as the cost of sending 
a packet from node i to node j and is represented by the internode communication 
cost matrix, Mij, 0 ~ i , j  _< n - 1. The diameter of a cluster is the maximum distance 
between any pair of nodes that contain documents belonging to the given cluster. 
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MDAP requires the documents to be evenly distributed across the nodes such that 
the sum over all cluster diameters is minimal. As the sum of the cluster diameters is 
reduced, the total communication traffic is minimized. An even distribution is required 
to achieve a balanced workload across the processors. 

Here, we show that MDAP is inherently hard. We do so by proving that it belongs 
to the class NP-complete. Problems including in this class are considered too hard to 
be solved in practice, even when allowing for much computation resources. Instances 
of such problems, hence, can at best only be solved approximately. 

(We provide in this paragraph a brief overview of the class NP-complete, a well 
studied issue in the field of computational complexity theory: NP is the class of deci- 
sion problems, for which affirmative solutions can be verified polynomially. This class 
includes for example the Satisfiability problem; i.e., given a Boolean formula, decide 
whether there is an assignment of the variables so that the formula yields the True 
value. Here, an assignment of the variables can be verified as satisfying in polyno- 
mial time. NP-complete is a class of "hard" problems. A problem is in the class 
NP-complete if it is in NP and is at least as hard as any other NP problem (i.e., the 
existence of a polynomial time algorithm solving it implies that all other NP prob- 
lems are solvable in polynomial time as well). Satisfiability is in this class, as well as 
the Traveling Salesman Problem, Multiprocessor Job Scheduling and many others. A 
detailed discussion about NP-completeness and many examples can be found in Gary 
and Johnson [212]. ) 

Here, we concentrate on the decision form of MDAP: Instead of finding an allo- 
cation that satisfies some constraints, we ask if such an allocation may at all exist. 
Formally, M D A P  is defined as follows: 

I N S T A N C E :  

�9 A distributed memory architecture with: 

- Nodes (PEs): X = {X~[0 < i < n - 1}; 

- Communication cost: Mij, (0 < i , j  < n - 1); 

�9 A clustered document domain with: 

- Documents: D = { D i [ 0 < i < d - 1 } ;  

- Clusters: C = { C i [ O < i < c - I ,  C i C D } ;  

�9 A real value bound: B. 

Q U E S T I O N :  

Decide whether there is an allocation map 

A : D ~ X  

of the documents to the processors that satisfies the following conditions: 

1. Let Xi be a node. Define the number of documents mapped onto this node by 
the allocation ~4 as 

~*A(X~) : I{Ds ~ D I A(D~) = X~}l. 

Then, for a/l i (0 < i < n - 1), #.a(X 0 < [~]. 
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2. Let Cj be a cluster of documents. Define the diameter of this cluster under a 
given allocation A as: 

Then, 

diameter ~t(Cj) = max{M.4(Dk).4(D,) I Dk, Dz E Cj} . 

a--1 

diameterA(C3) <_ B .  
j=o 

T h e o r e m  1. MDAP is NP-Complete. 
P roof :  

1. Assume an instance of MDAP together with an allocation map A that satisfies 
the required conditions. Then, A can be verified as an affirmative solution using 
a polynomial time algorithm. Therefore, MDAP is in NP. 

2. To prove that MDAP is complete in NP, we reduce the NP-Complete problem, 
Binary Quadratic Assignment Problem (BQAP), defined in Garey and Johnson 
[212] to MDAP in polynomial time. We show that a solution to an instance of 
BQAP exists if and only if there is a solution to the associated MDAP instance. 
This means that a polynomial algorithm to MDAP implies one for BQAP and, 
hence, for all of NP. Thus, MDAP is complete in NP. 

B i n a r y  Q u a d r a t i c  A s s i g n m e n t  P r o b l e m  ( B Q A P ) :  

I N S T A N C E :  

�9 Non-negative costs: bij E {0, 1}, bij = bji, 1 <_ i , j  <_ g; 

�9 Distances: mkz, 1 < k,l < h; 

�9 Abound :  Z E Z  +. 

Q U E S T I O N :  

Is there a one to one function f : {1, 2, 3, ...,g} --+ {1, 2, 3,...,h} such that 
~ r  b,j �9 rn$(Ql(j ) <_ Z ? 

Given an instance of the BQAP, define an associated instance of MDAP as 
follows: 

�9 An architecture with h processors; 

�9 A cost matrix Mkl = mkl, 1 <_ k, 1 <_ h; 

�9 A set of g documents; 

�9 A set C of two-document clusters, such that {D~,D~} ~ C if[ b~ i -- 1; 

�9 A b o u n d  B =  z ~-. 

This transformation takes polynomial time in the size of the input. It is easy to 
verify that an MDAP allocation exists to this instance if and only if there is a 
function f to the BQAP instance. Thus, MDAP is NP-Complete. �9 

15.3 R e l a t e d  Efforts  

A review of previous mapping algorithms (Section 3.1) and related multiprocessor 
information retrieval efforts (Section 3.2) is provided. 
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15.3.1 Previous  Approximations of the Mapping Problem 

The Mapping Problem and some of its derivatives are NP hard; therefore, heuris- 
tic algorithms that approximate optimal solutions were developed. Some of these 
approaches [69, 70, 352] dealt, in some manner, with the mapping of a communicat- 
ing set of processes onto an architecture with a fixed interconnection topology. This 
problem is similar to MDAP in that both problems must map a set of tasks (items) 
onto a given architecture. However, the goals of the above efforts differ from MDAP 
as MDAP does not aim to maximize the amount of concurrent interprocess communi- 
cation, but instead, aims at reducing the total communications diameter of its logical 
tasks (clusters). 

Bokhari [69] introduced a pairwise-exchange heuristic algorithm that accepted as 
input two adjacency matrices representing graphs G (set of communicating processes) 
and G' (target architecture). Using the cardinality of the number of communicating 
pairs that directly communicated with their neighbor as the objective function, Bokhari 
developed and evaluated an algorithm that mapped graph G onto graph G'. 

Lee and Agrawal [352] extended that Bokhari's effort by developing objective func- 
tions that more accurately quantified the communication overhead. Using a set of 
objective functions (parametric equations) that corresponded to the cost associated 
with the given mapping, Lee and Agrawal precisely measured the optimality of the 
derived mapping. The main limitation in their approach was that it only employed a 
fixed path routing scheme for the network traffic. 

Bollinger and Midkiff [70] used a two-phase simulated annealing algorithm to map a 
logical system onto a physical architecture. The first phase, process annealing, assigned 
the processes onto the physical nodes. The connection annealing phase mapped the 
logical connections onto the network data links so as to minimize communication link 
conflicts. This effort improved upon Lee and Agrawal [352] in that it utilized the 
information concerning the actual routing rules. 

Du and Maryanski [166] attacked a variation of the mapping problem. This vari- 
ation concerned the allocation of data in a dynamically reconfigurable environment. 
The allocation algorithm used a set of "benefit" functions azld a greedy search algo- 
rithm. The underlying execution architecture was based on a client/server model (a 
heterogeneous system). Although their problem more closely resembles MDAP, as the 
underlying architectural model significantly differs from the MDAP execution environ- 
ment, their assumptions are not relevant to MDAP. 

15.3.2 Related Information Retrieval Systems 

Distributed-memory information retrieval systems have been investigated as a 
mean of providing short response times to users' requests. Some of these systems 
include various efforts on the Connection Machine [23,545,546, 544], on the Distributed 
Array Processor (DAP) [455,454], on a network of Transputers [131], and on Hypercube 
systems [513]. Both the commentary on and the extensions of the Connection Machine 
efforts [23, 480, 546, 544, 550] as well as the hypercube [513], DAP [455, 454] and 
Transputer [131] efforts have all addressed the notion of data organization in the search 
and retrieval scheme employed. 

Stone [550] demonstrated analytically that, by indexing keywords, a uniprocessor 
system with comparable memory to that of the Connection Machine employed in the 
Stanfill and Kahle effort [545] can achieve similar user retrieval response times to those 
times reported in [545]. Via keyword indexing, the volume of data that had to be 
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searched was reduced, significantly reducing the total  I /O  processing time. A parallel 
index-based retrieval effort on the Connection Machine was later reported in Stanfill, 
Thou, and WMtz [546] and in Asokan, Ranka, and Frieder [23]. Additional parallel 
text retrieval search methods are described in Salton and Buckley [480]. 

Various descriptions of efforts that  focus on the organization of da ta  for the DAP 
system, appear in the literature. In Pogue and Willett  [455], an approach using text 
signatures is proposed and evaluated using three document databases comprising of 
roughly 11000, 17000, and 27000 documents. Pogue, Rasmussen, and Willett [454], 
describe several clustering techniques using the DAP. Both reports clearly demonstrate 
that  if a proper document mapping onto the individual Processing Elements (PEs) is 
established, the DAP system readily achieves a high search rate. However, an improper 
mapping results in a poor search rate stemming from the inability of the DAP system 
to access the documents. 

Cringean, et al., [131] describe early efforts aimed at developing a processor-pool 
based multicomputer system for information retrieval. The physical tested hardware 
consists of an Inmos Transputer  network. To reduce the volume of data  accessed and 
hence the total  query processing times, a two phase retrieval algorithm is proposed. 
The initial phase acts as a filter to retrieve all potentially relevant documents. By 
using text  signatures, the majori ty of the non-relevant documents are eliminated from 
further processing. This filtering of documents vastly reduces the volume of da ta  
processed in the compute-intensive second phase. (Some non-relevant documents are 
selected as a consequence of false-drops. False-drops are common to all text signature 
analysis approaches.) In the second phase, full text search is performed. The two 
phase algorithm is yet another example that  .'emphasizes the need for intelligence in 
the organization and retrieval of documents. 

Finally, Sharma [513] describes a hypercube-based information retrieval effort. The 
results presented are based on the timing equations provided. To reduce the volume of 
da ta  read, Sharma relies on the fact that  the documents are initially p~rtitioned into 
clusters, and only documents that  belong to "relevant" clusters are retrieved. As in 
our approach, Sharma does not address nor is dependent on any particular clustering 
technique. Sharma does require, however, that  the cluster scheme employed yield 
non-hierarchical clusters, whereas we do not impose such a restriction. Thus, all the 
clustering schemes, including the numerous schemes described in Willett [613] can also 
be employed in our setting. Sharma partit ions the clusters across the individual nodes 
according to an architectural topology-independent, best-fit heuristic. No evaluation 
of the document distribution algorithm is provided. 

We also rely on clustering, but use a genetic algorithm approach that  uses infor- 
mation about the underlying architecture to map the documents onto the nodes. As 
the actual dataset  used in the [Sha89] evaluation is not described, it is not possible 
to directly compare the results of our algorithm to the algorithm described in [513]. 
For tutorials on clustering and other information retrieval related topics, the reader is 
referred to [78, 482,613]. 

15.4 A Genet ic  Algor i thm for M D A P  

As MDAP is NP-Complete,  obtaining an optimal allocation of documents onto the 
nodes is not computationally feasible. The heuristic algorithm proposed here is based 
on Genetic Algorithms [224]. In our representation, the set of documents is represented 
by a document vector which is a sequence of integers 0 to d-1. A permutation of this 
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sequence defines an allocation Of the documents onto the nodes where a document Di 
found at position j is stored at node j modulus n. This representation scheme results 
in all nodes containing an equal number of documents, with the possible difference of 
a single document. Each allocation is evaluated as the sum of the cluster diameters it 
defines. The lower the sum, the bet ter  is the allocation. 

As with most genetic algorithms, the proposed algorithm comprises of initializa- 
tion, reproduction, crossover, and mutation. In the initialization phase, a set--cal led 
population--of random permutations of the document vectors is generated. Each ran- 
dom permutat ion represents a possible allocation of the documents onto the nodes. By 
repetitively modifying the permutations, a near optimal allocation is generated. The 
number of simultaneous permutations (population size) p is an experimental parameter  
that  is evaluated in Section 6. 

The reproduction phase replaces permutations that  represent poor mappings with 
those permutations that  are viewed as good. Using the sum of the cluster diameters as 
an objective function, the merit of each permutat ion is evMnated. A biased roulette 
wheel favoring the bet ter  permutations (allocations) is created. A random sampled 
value is obtained. Using the biased roulette wheel and the sampled value, a corre- 
sponding allocation is determined. Each selection corresponds to the birth of a new 
alloca*ion. The permutat ion that  is replaced by this new birth is deemed as deceased. 
Probabilistically, in this phase the poor allocations are killed, while additional copies 
of the good allocations are reborn. 

The crossover phase represents the cross-fertilization of permutations, similar to 
the composition of genes from both parents in a birth, and consists of a position- 
wise exchange of values between each randomly paired permutations. Two random 
numbers are chosen and serve as the bounds for the position-wise exchange. Each 
document of the first permutation that  falls within the determined bounds is swapped 
with the corresponding document of the second permutation, and likewise the second 
permutat ion with the first. 

Finally, to lower the probability of convergence of the allocation to local values 
that  are not a global minima, a mutation phase is incorporated into the algorithm. 
Periodically, with a low probability, a permutation is randomly modified. 

A L G O R I T H M :  

I n i t i a l i z a t i o n  P h a s e :  

1. Create a permutat ion matrix, Pi,j (0 < i < p -  1,0 _< j < d -  1). Every 
row of P, Pi, (0 < i < p - 1) is a complete permutation of ~11 documents D~, 
(0 < j _< d - 1). For exasnple, if p = 3 and d = 6, a possible permutation matrix 
is P .  

p =  

0 1 2 3 4 5 
0 1 0 2 5 3 
1 0 2 4 1 3 
2 4 5 3 2 1 

2. Define the document to node mapping function .4~ : D -+ X for any given row 
of P,  P,, (0 < i _< p - 1) as A~(Dk) = j rood n, where 3" is the index in row Pi 
of document Dk, (0 < k < d - 1). If ~ = 3,  r o w  P 0  implies that  documents 0 
through 5 are mapped to nodes 1, 0, 2, 1, 2, 0, respectively. 
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R e p r o d u c t i o n  Phase :  

3. Given the mapping function Jll for a given row Pi, (0 < i < p - 1), determine 
the cluster diameter, Ri,j, (0 < j _< c - 1) for each cluster association list array 
entry, Cj. R~ = Max{MA~(z~k),.ai(DD, where 0 < k,1 < d - 1  and Dk,Dz E Cj}.  
Then, if 

{0  1 2 c =  ~  a 4 
1 { 0 2 M =  0 [ 0  2 4 

1 { 2 0 1 
2 4 1 0 

4. 

5. 

then R is 
0 1 

R = 0 4 1 
1 4 2 
2 4 4 

Define an evaluation function, E. This function measures the "goodness" of the 
allocation defined by a row Pi, (0 < i < p - 1), and the corresponding mapping 
function A~. In our case, 

c - - 1  

E(P~) = Z Ri j O < i < p -  I 
j=0 

Create a biased roulette. Compute the reciprocal of each E(Pi),  (0 < i <_ p - 1). 
Call them E -1 (P~). Bias the roulette proportionally to E -1 (P~). Assign each 
allocation an interval on the unit vector 0 to 1 based on the corresponding biased 
probability. In the above example, E(Po) = 5, E(P1) = 6, and E(P2) = 8, 
resulting in the following roulette wheel. 

ii::-~ill 
ii:iii:~:i:;~ 

":.Z;': :::::::::::::::::::::::::::: 

[ ]  Alloc 0 - 0.20 

[ ]  AUoc 1- 0.17 
[ ]  A l l o c  2 - 0 .13  

Thus, permutations Po, P1, and P2, are weighted at a probability of 0.4, 0.34, 
and 0.26, and ate assigned the intervals [0.0, 0.4), [0.4, 0.74), [0.74, 1.0], respec- 
tively. 
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6. 

7. 

8. 

Replace the permutat ion matrix P.  Randomly choose p numbers from within the 
interval [0.0, 1.0]. For each of the p random values obtained, copy the allocation 
permutat ion whose assigned ir~terval corresponds to the random value generated 
into row Pi, (0 < i < p - 1). To insure the survival of successful document 
allocations (permutations), the lowest cost allocation is always kept. Therefore, 
if the permutat ion corresponding to the largest interval, say Pj, (0 < j < p - 1), 
is not selected within the first p - 1 selections, Pj is assigned to row Pp-1. In 
the example, if 0.23, 0.92, and 0.36 were the random numbers obtained, then P 
would be 

P = 

0 1 2 3 4 
0 1 0 2 5 3 
1 4 5 3 2 1 
2 1 0 2 5 3 

Crossover P h a s e :  

While maintaining a copy of the lowest-cost permutation, say P~, randomly 
pair up the rows in P.  If p is odd, ignore the unpaired row. For each pair of 
rows in P ,  say A and B, randomly generate two integer values, i and j ,  such 
that  0 < i < j < d -  1. Position-wise exchange Ai,Ai+I,A~+2,... ,Aj_I,Aa, 
with B~, B,+I, B;+2, ..., Bj-1, Bj, respectively within the two strings. Replace 

the highest cost permutation with P~. The replacement of the resulting highest 
cost permutat ion by Pt guarantees the survival of the "most-fit" parents. For 
example, A =/ )1 ,  B =/~ i = 3, j = 4, mapping string A to string B exchanges 
the 2 and 5 and the 1 and 3 in row B while mapping string B to string A swaps 
the 5 and 2 and 3 and 1 in row A. In this example, P0 is the minimum-cost 
permutation. The resulting P is 

0 1 2 3 4 5 
p = 0 1 0 2 5 3 4 

4 2 1 5 3 0 
3 0 5 2 1 4 

M u t a t i o n  P h a s e :  

Mutate  the permutat ion periodically to prevent premature loss of important no- 
tions [224]. Randomly choose a number from the interval [0, 1]. If the number 
falls outside the interval [1 - q, 1], where q is the probability of mutation, then 
terminate the mutation step. Otherwise, select a random number between 1 
and r, that  designates the number of mutations that  occur in the given step. 
For each of the mutations, select three random integer values i, j ,  k, such that  
0 < i _< p - 1, 0 < j ,  k _< d - 1 , j  - k, and position-wise exchange Pi,j with Pi,k. 
Given q = 0.01 and r = 1, a randomly generated value of 0.006, i -= 0 , j  ---- 1, 
and k = 5, then P would be 

P = 

0 
O' 1 
1 4 
2 3 

1 2 3 4 5 
4 2 5 3 0 

2 1 5 3 0 

0 5 2 1 4 
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9. 

C o n t r o l  S t r u c t u r e :  

Repeat steps 3 through 8. The precise number of iterations is dictated by an early 
termination condition (all allocations are identical) or by a maximum iteration 
count. Throughout the experimentation presented here, the maximum limit 
was set at 1000. In the future, an appropriate limit, possibly a percentage 
of the population size and/or  the number of documents, will be determined 
experimentally. Upon termination, evaluate the "goodness" of the allocation 
defined by a row Pi, (0 < i < p - 1), and the corresponding mapping function 
.Ai. Choose the best allocation. 

1 5 . 5  T h e o r e t i c a l  F o u n d a t i o n s  

As any other heuristic algorithm, the above algorithms is not assured to yield an 
opt imal  solution. However, we can still characterize its behavior. 

We define the function b(t), where t is a natural  number, to be the evaluation of 
the best string in the t *h population. This function is monotonically non-increasing. 
We say that  the algorithm converges to a value l, if 

nm 
t---* OO 

exists and is equal to 1. 
There have been a few independent efforts to analyze the behavior of the Genetic 

algorithm. All dealt  with the classical Genetic Algorithm operating on binary strings. 
The most significant of them was conducted by Goldberg [224]. Goldberg has charac- 
terized the convergence property of different sets of strings (which he calls schemata). 

Our algorithm operates on permutations rather than binary strings, and the oper- 
ators are more complex. We observe that  each of the phases has a specific role: The 
reproduction phase makes the population exponentially converge towards a minimal 
cluster diameter. The crossover and mutation phases guarantee that  a wide search 
space is investigated. In particular, the crossover phase searches inside some subset 
("span" [303]) of the permutat ion domain, while mutation allows for a search in the 
space of all possible permutations. The combination of these three results in a very 
efficient search procedure. 

' The "Fundamental  Theorem of Genetic Algorithms" [224] characterizes the behav- 
ior of classical Genetic Algorithms. Towards the development of this theorem, Goldberg 
defines the schema H E {0, 1, *}~ as a set of binary strings w E {0, 1} ~ that  satisfy 

Hi = 0 =~wi = 0, 

and 
H i - - - - l ~ w i = l .  

For example, the schema H -- '01 * , 1 1 . '  includes both '0111110' and '0101111'. Non- 
starred elements within H are called fixed positions of the schema. 

Go]dberg observed the following two determining features for any schema H: 

�9 o(H), the schema order: the number of fixed positions in the schema. 

�9 6(H), the schema length: the difference between the first and last fixed positions 
in the schema H. 
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Let re(H, t) be the number of strings in the population that  are included in H at 
time t. Given re(H, t), the Fundamental  Theorem of Genetic Algorithms derives the 
expected value of re(H, t + 1). Goldberg shows that  the appearance of a schema grows 
exponentially with its relative fitness, and decreases exponentially with o(H) and ~(H). 

T h e  F u n d a m e n t a l  T h e o r e m  F o r  t h e  P r o p o s e d  A l g o r i t h m  

We generalize the observations by Goldberg into our algorithm. Let the special symbol 
'* '  represent any of the missing values in ( 0 . . .  d - l ) ;  that  is, any value not appearing 
in any of the fixed positions. Let 

r(H) be number of consecutive stars starting at the right most location. 
(Starting with the left side is equally suitable.) 

For example, if H1 = ' 0 1 . . 1 1 . ' ,  H2 = ' 0 1 , * * * * ' ,  and H3 = ' 0 1 . * * . 1 1  , then 
r(H1) = 1, r(H2) = 5, and r(H~) = 0. 

We consider the effects of the reproduction, crossover, and mutation phases on 
the schemata implied by the population of permutations. The effects of reproduction 
precisely mimic the case of binary strings, as described in [224]. Let ft(H) be the 
average fitness of the strings representing schema H at time t. If ft is the average fitness 
over the population at time ~, then ~ is the relative fitness of the schema. After a 

reproduction step, roughly re(H, t + 1) = re(H, t ) .  ( ~ )  copies of schema H exist. If 

for all time t, f t(H) > (l+c)*ft, where c is a constant, then re(H, t) = re(H, 0)*(c+])  t. 
Thus, desirable schemata grow exponentially. 

In the crossover phase, two random numbers are chosen as the boundaries. A 
schema can be destroyed if the boundaries bound some of its fixed values. Therefore, 
the probabili ty of the survival of a schema H is: 

This probabili ty results in an increase of the number of copies of short schemata. 
Rabinovieh, Sinclair, and Wigderson [459] have showed that  had the Genetic algorithm 
operated on an infinite population, repetitive steps of one-bit crossover (or mutation) 
would have caused the population to converge to some distribution, depending on the 
initial population. A similar assertion seems to hold in the case of permutation-based 
population. 

The mutat ion phase modifies a schema H that  includes the permutat ion Pi(O < 
i < p - 1) if and only if: 

1. At least one of the two positions chosen are of the fixed part of the schema; (This 

occurs with the probability ~ - ( @ ) 2 )  

2. The positions do not designate the same processor. (This occurs with a proba- 
bility of ,~-1 --a-- ) 

During each mutation phase, i single mutations result, 1 < i < r. The probability 
of surviving a mutation is approximated by (assuming the independence of (1) and (2) 
above): 

r 

§ 2 1- ' 

i = l  
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where q is the probability that a mutation occurs. A schema with a small number of 
fixed positions is more likely to survive. 

Ignoring low order terms, we summarize the combined influence of the three oper- 
ations as: 

> m(H, t ) (  f (H) ) (1  2(r(H) -t-5(H)) r - 1  m ( H , t  + l) 
- d - q  r 

2o(H)q(n-1)~ 
rpnd 

This equation demonstrates that a schema grows exponentially according to its 
relative fitness in the current population and inversely to the number of fixed positions, 
the distance between the first and last fixed position within the schema, and the number 
of consecutive rightmost variable (starred) positions. 

R e p r e s e n t a t i o n  I n d e p e n d e n t  A n a l y s i s  

We continue further and analyze the behavior of a general Genetic Algorithm based 
heuristic for the MDAP problem for any possible encoding of the allocations. Doing 
so, we gain a general theoretical understanding of such an algorithm. 

Define Q as an equivalent, unique representation of the permutation matrix P as 
Qi[j] = k if and only if Pi[k] = j.  The permutation Qi(O < i <_ p - 1) is an allocation of 
the documents onto the processors, such that document Dj(0 < j < d - 1) is allocated 
on processor Xk(0 < k < n - 1) if and only if (Qi[j] rood n) = k. That is, position j 
in the permutation represents document j and the corresponding entry modulus n is 
the processor where the document is stored. For example, if P is: 

P = 

0 1 2 3 4 5 

0 1 0 2 5 3 
1 0 2 4 1 3 

2 4 5 3 2 1 

then the equivalent Q is: 

Q = 

0 
0 1 
1 0 
2 5 

1 2 3 4 5 
0 2 4 5 3 
3 1 4 2 5 
4 3 2 0 1 

Replacing each value Qij E Qi with (Q~j modulus n) results in a vectoi of length 
d with the values 0 to n - 1. We refer to this vector as the allocation vector s (or Si) 
of the permutation Pi and to Matrix S as the allocation matrix of P. Given n = 3, 
the equivalent allocation matrix for P is: 

S = 

0 
0 1 
1 0 
2 2 

1 2 3 4 5 
0 2 1 2 0 
0 1 1 2 2 
1 0 2 0 1 

Vector Si defines an allocation where each document Da is allocated to processor 
Si [j]. Every allocation is represented by a unique vector Si. Notice that the function 
AL : P --* S is not one to one. On the contrary, (gT) n different permutations map n r ~ ' +  
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to the same allocation. If the population size is p, then the probability that the 
initialization phase yields two or more permutations that define the same allocation is: 

p--1 
I _ H d ! - i x  d I ,~ 

d----U-.' w h e r e  x = 

i=0 

Define an s-schema of an allocation vector s as the vector itself, however, in some 
of the positions in s, instead of the actual value appearing, a special symbol & is 
present. This symbol designates any of the valid orderings of the values 0 to n - 1 .  For 
example, given the allocation vectors so and sl, so -- "1 0 2 1 2 0", sl ---- "0 0 1 1 2 2", 
s-schema H0 may be "& 0 & 1 2 &". Ho is an s-schema of both so and sl. Schema 
Ha = "1 0 & 1 2 &", however, is an s-schema of so but not of sa. Let # ( i )  designates 
the number of the fixed positions in a schema in which the value i appears. Then, 
either [d j  _ # ( i )  or V~] - # ( i )  of the appearances of the special symbol &, designate 
the value i. 

Similarly to the prior computation, we compute re(H, t + 1) given m(H,  t) for 
this representation-independent schema. The effects of the reproduction and muta- 
tion phases are similar to the case provided above. The main distinction between this 
representation-independent method and the representation-dependent scheme de- 
scribed above lies in the crossover phase. Here the effects of the crossover phase are 
exponentially decreasing in o(H), rather than in 6(H) and r(H). (These measurements 
are not defined for this case). 

We conclude that reproduction converges the population towards the best string 
that have already been found. Both crossover and mutation diminish the appearance 
of individual strings (or generally, high order schemata) and intensify that of low order 
schemata. That  is, these phases enlarge the domain of the explored solutions. 

15.6 Experimental  Evaluation of the Derived 
Algorithm 

To evaluate the described Mgorithm, a simulation was developed. Given a particu- 
lar multicomputer architecture (the number of nodes and a cost matrix specifying the 
internode communication topology) and a set of documents partitioned into clusters, 
the simulation derived a document allocation using the proposed genetic algorithm. 
The cost of the derived allocations over a magnitude of architectures and document 
distributions were used to evaluate the merit of the algorithm. 

Various partitioning schemes of the documents into clusters were considered. 
Sharma [513] stated that d-document collections form from v/-d to d/constant  clus- 
ters and assumed such a cluster organization in his evaluation. However, he did not 
mention what assumptions were made regarding the number of documents per cluster. 
In this study, we assumed V'-d clusters and varied the number of documents per cluster. 
That  is, the number of documents per cluster varied from a uniform distribution of 
documents to clusters to a partitioning in which 25 percent of the clusters contained 
50 percent of the documents. The behavior of the proposed algorithm was observed in 
terms of these varied allocations. 

Several multicomputer architectures were considered. These include a 16-node 
hypercube engine and three mesh configurations (1 by 16, 2 by 8, 4 by 4). 
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The effects of varying several parameters common to many genetic algorithms were 
studied. These parameters  include the size of the population (number of permuta- 
tions) and the probabili ty of mutation. Five population sizes ranging from 10 to 50 
permutat ions in increments of ten permutations were examined. The population sizes 
investigated were kept small to coincide with the size of the database modeled (64 
documents). Our intent was to evaluate the algorithm (proof of concept) and not to 
derive an allocation for an actual database. We intentionally, therefore, selected a small 
database to bet ter  understand and verify our findings. 

Figures 6.1 through 6.10 illustrate results for a 64 document database distributed 
over 16 node systems of varying interconnection topologies. The results for two different 
document to cluster parti t ioning are presented. Both document partitions employ 8 
clusters but the distribution of documents to clusters is varied. That  is, in the first 
distribution (figures 6.1, 6.3, 6.5, 6.7 and 6.9), all dusters  contain an equal (8) number 
of documents. 

4 -  Hyper 16 

85  " 1 [ I  - t -  H y p o r  1 6 M  
�9 15= M e s h  1 x 16 

�9 ~ "  M e s h  I x 1 6 M  

7 5  4 1 -  M ~ s h  2 x  8 

�9 I ~  M e s h 2 x  8 M  

�9 8 -  M e s h 4 x  4 M  

15 | - ~  - ,  - ,  - ,  - , -  ~  , - ,  - ~ - , - 

0 I00 200 300 400 500 600 700 800 900 I0001100 

Iteration 

Figure  15.1: Al l  a rch i tec tures  wi th in  an even d o c u m e n t  d i s t r ibu t ion  

In the second distribution, (figures 6.2, 6.4, 6.6, 6.8 and 6.10), 25 percent of the 
clusters contain 50 percent of the number of documents. For notational convenience, we 
describe a document partit ioning by a four-tuple (D, C, x, y), where D is the number 
documents, C is the number of clusters, and x and y represent the x percentage of 
clusters containing y percent of the documents. Therefore, (64, 8, 25, 50) refers to the 
la t ter  document distribution, while the even document partitioning is represented by 
(64, 8, x, x), for all values of x, 0 < x < 100. 

Figures 6.1 and 6.2 present the results for all the architectures considered. A point 
on any curve represents an iteration in which a better  allocation was derived. As shown, 
the number of points varies with the architecture considered. All runs terminated at 
either a point in which the entire population (document allocations), in this case 30, 
were identical or after 1000 iterations (premature termination), which ever came first. 
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Figure 15.2: All architectures within a (64, 8, 25, 50) document distribution 
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Figure 15.3: Without mutation on an even distribution 
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Figure 15.4: Without mutation on a (64, 8, 25, 50) distribution 
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Figure 15.5: With mutation on an even distribution 
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Figure 15.6: With mutation on a (64, 8, 25, 50) distribution 
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Figu re  15.10: Effects of  p o p u l a t i o n  size using a (64, 8, 25, 50) d i s t r i bu t ion  

A point at 1000 indicates that  premature termination occurred. As expected, the higher 
the communication diameter of the architecture, the greater was the improvement in 
the derived allocation. 

Figures 6.3 and 6.4 and 6.5 and 6.6 more clearly illustrate the behavior of the 
proposed algorithm in the case where no genetic mutations are possible and when a 
0.5 probabili ty of mutation exists, respectively. A 0.5 mutation implies that  with a 
probability of 0.5, a random number of pairs ranging from 1 to 10, will be exchanged. 
That  is, on average, 2.75 pairs will be exchanged per iteration. Figures 6.7 and 6.8 
illustrate the effects of mutation on the allocations derived for a hypercube and a 4-by-4 
mesh system. As seen, and in all runs performed, mutation results in bet ter  allocations. 
The bet ter  allocations result from the prevention of local minima interference. 

Finally, figures 6.9 and 6.10 demonstrate the effects of varying the population size 
from 10 to 50 allocations in increments of 10. When mutations are not possible, 
the performance consistently improves with the increase in the population size. The 
improved allocations result from the greater number of possibilities explored during 
each iteration. In the case where mutation is possible however, initially the performance 
is improved and then eventually deteriorates. The improvement, as in the case where 
mutat ions are not possible, is caused by the increase in the number of possibilities 
explored. Since s maximum number of mutations per iteration is kept constant 
throughout,  increasing the population size reduces the effects of mutation. Thus, the 
benefit derived from the mutation phase is diminished. Diminishing the effects of the 
mutat ion phase results in a derived allocation that  more closely resembles the case in 
which no mutation is possible. Hence, the performance degrades. 

An individual permutat ion p at a given generation t designates a sample point 
(p, t) wi th in  the total  search space. Therefore, given a fixed number of generations 
(iterations), it  is to be expected that  the larger the population, and hence the search 
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Mesh4  • 4 Mesh4 x 4 Mesh 16•  1 Mesh 1 6 z  1 
(mutation) (mutation) 

p = 10(1000) 31 28 81 46 
. = ~ 0 ( 5 0 0 )  31 22 63 35 

p = 3 0 0 3  # 27 23 47 36 
p = 4 0  (250) 27 27 47 50 
p = 50 (200) 26 29 42 43 

Tab le  15.1: C o m p a r i s o n  of  popu l a t i on  size versus i t e ra t ion  count  using a 
(64, 8, 25, 50) d o c u m e n t  d i s t r i bu t ion  

space, the bet ter  is the derived allocation. A more balanced evaluation compares the 
effects of varying the population size on the derived allocation if a constant explored 
search spaced is maintained. That  is, an increase in the population size results in a 
corresponding decrease in the number of generations permitted. Experimental results 
from such a study are presented in tables 6.1 and 6.2. As seen, a clear preference 
regarding a larger population versus a longer search is not demonstrated. 

. = 10 (1000) 
v = 20 (500) 
v = 30 (333) 

v = 4o (250) 
p = 50 (200) 

Mesh 4 • 4 Mesh 4 • 4 Mesh 16 • 1 Mesh 16 • 1 
(mutation) (mutation) 

35 30 76 70 
33 28 69 44 
27 28 41 
32 
33 

31 
30 

60 

62 
63 

52 
61 

Tab le  15.2: C o m p a r i s o n  of  p o p u l a t i o n  size versus i t e ra t ion  count  using a 

(64, 8, x, x) d o c u m e n t  d i s t r i bu t ion  

Genetic A~ori thm Random A~ori thm Greedy A~ori thm 

Hypercube 19 23 29 
Mesh 16 - by - 1 26 66 67 
Mesh 8 - by-  2 22 37 39 
Mesh 4 - by-  4 20 28 38 

Tab le  15.3: C o m p a r i s o n  of  a lgo r i t hms  using a (64, 8, 25, 50) documen t  d i s t r ibu-  
t ion 

Ideally, the cost of the derived mapping should be compared against the cost of 
an optimal allocation. Since determining an optimal mapping, in the general case, is 
not computationally feasible (the problem was shown to be NP-Complete in Section 
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Genetic Algorithm Random Algorithm Greedy Algorithm 

Hypercube 23 25 24 
Mesh 16-  by-  1 29 76 56 
Mesh 8 - by - 2 23 43 32 
Mesh ~ - by - ~ 19 33 32 

Tab le  15.4: C o m p a r i s o n  of a lgor i thms  using a (64, 8, x, x) documen t  d i s t r i bu t ion  

2), two alternative comparison metrics were developed. The first comprised of ran- 
domly drawing 100,000 valid (an even distribution across the nodes) permutations and 
choosing the best allocation among those drawn. The second solution involved the 
development of a greedy document allocation algorithm based on best fit mappings. 

Tables 6.3 and 6.4 compare the derived mappings of the random, greedy, and genetic 
algorithm solutions. The genetically derived solutions are based on a population of size 
30, (p = 30), and a 1000 iteration search space. In all cases, for both document dis- 
tributions, the genetic algorithm approach yielded significantly better  mappings than 
either the random or the greedy algorithms. The relationship between the greedy and 
random algorithms was not derived as neither algorithm yielded acceptable mappings. 
(The execution time, in seconds, for all genetic and random algorithms was roughly 
equivalent. The greedy algorithm took substantially less processing time.) 

15.7  C o n c l u s i o n s  and Future  D i r e c t i o n s  

The performance of multiprocessor information retrieval systems depend not only 
on the underlying parallel technology employed but, at least as significantly, on the 
organization of the da ta  to be retrieved. Poor da ta  allocations result in minimal perfor- 
mance gains on a parallel engine as compared to a uniprocessor system. The problem 
addressing the derivation of document allocations that support efficient retrieval of 
documents from a distributed-memory multiprocessor is called MDAP. As an optimal 
solution to MDAP is not computationally feasible (MDAP is NP-Complete),  we pro- 
posed a genetic algorithm for MDAP. A proof demonstrating the convergence of our 
derived mappings to an optimal mapping was provided. Via simulation, the derived 
document allocations were analyzed. The results obtained compared favorably with 
both a random and a greedy algorithm. 

To complete the described effort, we are presently developing a parallel version 
of the described genetic algorithm. The parallel algorithm will be able to process 
significantly larger document sets within an acceptable amount of processing time. As 
demonstrated in the study by Blair and Maron [65], results obtained using a small 
document set do not always apply to significantly larger collections. Experimental 
results using an Intel iPSC/2 will be reported at a later date. 

We are also presently developing RIME (Retrieval of Information from a Multicom- 
puter  Engine). Once developed, we will evaluate the actual response time difference 
resulting from the use of various standard document allocation schemes, e.g., round- 
robin, hashed, etc., and those allocations derived by the parallel version of the described 
genetic algorithm. 
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Chapter 16 

Amalgame*: A Tool for Creating Interoperating, 
Persistent, Heterogeneous Components t 

Jean-Claude Franchitti  $ , Roger King w 

16.1 I n t r o d u c t i o n  

Persistent applications are becoming more and more "open" in terms of topology, plat- 
form and evolution, thus creating a need for a component-based approach to their 
development. However, the integration of persistent software components becomes in- 
creasingly difficult as we move up through the low-level layers of hardware, operating 
systems, database schemas and da ta  manipulation languages to the upper-layers of 
ontologies, application languages and application systems. Most previous approaches 
to component interoperability have provided support at the representation and specifi- 
cation levels with little or no concern to scalability and applicability of such support to 
layered persistent systems. The Amalgame system, being implemented at University 
of Colorado at Boulder, addresses higher semantic levels of interoperability, including 
languages, interfaces, and schemas, with a special focus on language/database interop- 
erability. The Amalgame system is part of the Heterogeneous and persistent APPlica- 
tions interoperabili tY project (called L'Heureux �82 from the acronym "HAPPY").  We 
shortly introduce the intent, organization and requirements of the larger project. We 
then focus on the goals and novelty of the Amalgame sub-project. 

16.1.1 The Persistent and Heterogeneous Applications In- 
teroperability Project 

L'Heureux has as its primary goal the development of a toolkit for supporting incre- 
mental integration of diverse systems. It is interesting to notice that  often, in modern 

*We are using the French spelling of the equivalent English word "amalgam". 
t This material is based on work sponsoredby the Advanced Research Projects Agency under 

Grant Numbers MDA972-91-J-1012 and N00014-92-J-1862, and by the Office of Naval Research 
under Grant Number N00014-92-J-1917. The content of the information does not necessarily 
reflect the position or the policy of the U.S. Government, and no officiM endorsement should 
be inferred. 

SDepartment of Computer Science, Campus Box 430, University of Colorado, Boulder, CO 
80309, U.S.A. 

w of Computer Science, Campus Box 430, University of Colorado, Boulder, CO 
80309, U.S.A. 

�82 for "the happy one"; L'Heureux is Roger's real family name. 
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businesses, interoperability is provided via humans. The "single point of contact" is a 
person who, usually by telephone, is available to answer questions that involve multiple, 
heterogeneous systems. As an example, a telephone customer might call up the phone 
company and ask about a service problem. He or she doesn't know it, but the question 
might involve three separate systems. Rather than being referred to two other people, 
the single point of contact is able to view the three systems on three separate screens or 
windows and provide an integrated answer. The need for a software toolkit supporting 
integration of existing heterogeneous applications is clear from this example. 

The L'Heureux toolkit currently consists of inter-related components that address 
a variety of semantic levels. The three that we have isolated for our experiments are: 
database schemas, database transaction protocols, and application programs. Clearly, 
higher levels of semantic richness result in tougher interoperability problems; for this 
reason, it is critical that  the toolkit support incremental integration, so that het- 
erogeneous systems can be  gradually integrated, typically starting at lower levels of 
semantics. The various components are accessible through a unified interface language 
as illustrated in Figure 16.1 below. 

Arc A 1 Arc A 2 
/ A1 = {vl ,  v2, v3, v4, v5} 

Vl v, ~ v 4 ,  v5, v6, v7, vS, V 9 } 

v7 

v9 

Figure 16.1: The  various levels of  interoperabil i ty encompassed by L Heureux 

In this integrated architecture, Findit [76] documents, organizes, and helps users 
locate underlying application components on wide area networks, and Pano-rama [644, 
645] provides reusable abstractions of application queries. These two components act 
at the level between database schemas and application programs by managing high 
level application descriptions and database queries. A la carte [161, 160, 162] acts at 
the level of database transactions by supporting heterogeneous transaction protocols. 
The Heraclitus [220, 265, 267, 286] active database manager provides a rule based 
repository for keeping track of component interconnections; this system is yet to be 



16.1. I N T R O D U C T I O N  315 

fully integrated into L'Heureux. Amalgame, which focuses on apphcat ion/database 
and apphcat ion/apphcat ion interoperability, can be used along with the other unified 
tools to build heterogeneous persistent apphcations that  axe truly "open" in the sense 
that  they support  interoperability at various levels and granularities of semantics. 

The interoperabili ty toolkit does not support any specific methodology for perform- 
ing integration. For example, many existing "legacy" systems [81] are constructed in 
a "stove pipe" fashion, with separate application programs running on top of separate 
database transaction protocols and on top of separate database systems. 

Thus, there might be a system written in C running on top of a relational system, 
and there might be a system written in Ada running on top of a home-made persistent 
store. It may be desirable to strip away all but the functional core of these systems and 
throw away the user interfaces and the database systems, and then integrate them with 
a centralized database system and a uniform user interface. Or, it might be desirable to 
gradually remove one database at a time and create a uniform database, while leaving 
the existing applications and user interfaces alone. Clearly, many methodologies can 
be imagined. Our toolkit leaves these decisions up to the user, and only provides 
the software modules necessary to integrate systems at a variety of levels of semantic 
richness. 

Our toolkit does enforce, however, a couple guiding principles of interoperability. 
First ,  we assume that  only rarely will complete, global, integrated database schemas 
be required, since such schemas are extremely difficult to maintain. Thus, our toolkit 
focuses on transaction and application program interoperability; we have not yet con- 
structed schema-level components. (Panorama and Findit act closer to the transac- 
t ion/apphcat ion 'level and do not support schema integration.) Second, we assume that  
often, only pieces of legacy systems are to be integrated. Thus, our toolkit takes an en- 
capsulation approach; our goal is to support the isolation of arbitrary code fragments, 
and not on building large scale, uniform system interfaces. 

Our research II is intended to serve as a vehicle for integrating technologies between 
the ARPA Arcadia software environment project [575, 576], the Prototech prototyping 
project [602], and the TI  Persistent Object Base project (TI POB) [606]. Arcadia and 
Prototech are collaborative research programs encompassing groups at several universi- 
ties and industrial organizations. The objective of Arcadia is to develop advanced soft- 
ware environment technology and to demonstrate it through prototype environments. 
On the other end, Prototech is investigating languages and infrastructure requirements 
for prototyping environments, and consists of several loosely-connected teams. TI  POB 
research program focuses on the design and implementation of an open, next-generation 
object-oriented database system. 

Due to the wide variety of inter-related persistent application components they 
produce, the Arcadia, Prototech and TI  POB research programs provide an excellent 
framework for studying interoperability. In particular, three important  goals of next 
generation software development environments, such as those envisioned by Arcadia, 
are broad scope, extensibility and integration. These goals require that  Arcadia en- 
vironments facilitate the addition, modification and replacement of any and all kinds 
of environment components. To help meet these goals, L'Heureux provides a set of 
integrated tools that  support interoperability of highly heterogeneous components at 
various levels of semantics. 

II The development of L'Heureux is being funded by ARPA, ONR and USWest. In particular, 
research related to the design and implementation of AmaJgarne at University of Colorado (CU) 
is being funded under the ARPA CU-Arcadia and CU-Prototeeh efforts. 
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16.1.2 Goals and Novelty of the Amalgame System 
The high level goal of the Amalgame system is to develop an integrated solution to 
address high semantic levels of interoperability, including languages, interfaces, and 
schemas, with a special focus on language/database interoperability. 

In a nutshell, Amalgame provides a high-level specification language to help hetero- 
geneous application designers encapsulate representations of arbitrary code fragments 
into classes of an object-oriented database framework. Designers can encapsulate en- 
tire applications or isolate components within monolithic applications. They can also 
specify mappings between the original application components and their encapsulated 
representation. The AmaJgame encapsulated components may then be combined in 
various ways to create new heterogeneous applications. Upon request, Amaigame will 
validate a specified combination of components and generate a corresponding hetero- 
geneous run-time program. 

The Amalgame system provides a novel solution to the application interoperability 
problem. Indeed, persistent components produced in Amaigame to implement specific 
heterogeneous applications can be reused to support new designs. Since Amaigame 
designers incrementally unify underlying types in the context of particular applications, 
they are not required to conform to a universal type system. Since application sub- 
components are abstracted and pieced together as needed, Amalgame ensures efficient 
~piecemeal" interoperability. Also, the integration mechanisms provided by Amalgame 
are applicable to a wide range of persistent applications interoperability requirements. 
Finally, Amalgame provides integrated support for accessing functionality implemented 
by other components of the L'Heureux toolkit. 

In this chapter, we present the Amalgame approach and describe our prototype 
implementation. We first give a short presentation of current research work related 
to Amalgame. We then give a detailed description of the Amalgame architecture, 
present our initial prototype, and give a report of a working interoperability experiment 
involving the use of Amalgame to interoperate various Arcadia tools. To conclude this 
chapter, we summarize the experience acquired using Amalgame and outline our plans 
for extending both the approach and its realization. 

16 .2  R e l a t e d  W o r k  

Several relatively disparate research areas are relevant to the Amaigame project. This 
related work is categorized below according to specific characteristics of the Amalgame 
framework. 

16.2.1 Interoperability Support 

A significant amount of research has been produced in the domain of application in- 
teroperability, an area of primary interest to Amalgame. Such interoperability must 
address two aspects of cooperation between programs. First, it must coordinate the 
execution of interoperating programs tha t  may be based on very different execution 
models, including procedural, triggers or logic programming models. Second, it must 
achieve type correspondence at some level of granularity so that entities such as data 
objects or procedures, used in one application can be shared by another application 
that may be written in a different language or running on a different kind of processor. 
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Most current approaches to interoperability do not address the execution model 
interoperability issues. Instead, they rely on the assumption that the interoperat- 
ing components share some notion of procedure or function call, or some concurrent 
communication mechanism [52, 221, 404]. Amalgame departs from these approaches 
by supporting the execution of interoperating programs through an extensible set of 
coordination mechanisms. 

Many research projects have focused on the type model interoperability issues. 
These issues have been solved in most approaches by establishing correspondence of 
data types at the representation level (RLI) [19, 244, 366,393,392, 403]. The RLI ap- 
proach provides a lower level support to interoperability than does Amalgame. Indeed, 
RLI is primarily focused on providing mappings between the different representations 
of low-level simple types or compound simple types. The lack of support for abstract 
types makes RLI awkward to use in conjunction with the rich and extensible typing 
mechanisms inherent to modern programming languages. 

Specification level interoperability (SLI), which is much more closely related to 
Amalgame, overcomes the shortcomings associated to RLI. Rather than focusing on the 
mapping between different representations of a type, SLI focuses on support for com- 
mon definitions of a type's properties. Of course SLI depends upon RLI mechanisms, 
essentially subsuming RLI in those cases involving simple types. Various approaches to 
achieving SLI are discussed in the literature [64, 115,611]. A later approach proposed 
in [612] is most closely related to Amalgame. Amalgame shares this SLI approach by 
defining a unifying model that can be mapped into specific implementations in their 
respective domains. However, the Amalgame framework extends SLI mechanisms to 
the unification of classes in an integrated object-oriented database framework, thereby 
making it possible to capture higher semantic levels. 

16.2.2 Architectural Representation 
Megaprogramlning 

Languages and 

Several research projects have defined architectural representation languages to specify 
arbitrary software components and support Megaprogramming activities. This work 
overlaps the domain of the Amalgame framework. 

There is a large amount of hterature related to specification languages that focus 
on various issues of module interoperability [44, 382,425, 578,579,620,621]. However, 
these approaches are usually restricted to a narrow apphcation domain. More recently, 
Prototech [269, 322] has focused on defining general purpose prototyping languages 
which provide a way of expressing architectural and interface concerns in a highly 
parametrizable manner. To meet these requirements, various Prototech teams have 
implemented Module Interconnection Formalisms (MIFs) [30], such as Polylith [458, 
457], and Architectural Description Languages (ADLs), such as Griffin [433,534, 533]. 

The Amalgame framework shares some common goals with Prototech. In partic- 
ular, the aspect of defining a specification language to express and relate application 
components. However, Amalgame does not intend to produce a language to address 
specific apphcation prototyping needs. The Amalgame system is more concerned with 
making layered persistent application interoperable. As a result, Amalgame has focused 
on providing an extensible and well-integrated service layer infrastructure tailored to 
the support of persistent apphcations interoperability. 
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16.2.3 Extensible Reusable Heterogeneous Frameworks 

A lot of related research on heterogeneous and extensible systems has influenced the 
design of Amalgame [2, 32, 75, 82, 86, 114, 321, 430, 495, 643]. There have been 
several approaches to provide frameworks for tool fragments interoperability [242, 246] 
which provide little or no support for extensibility. However, there are several more 
general purpose approaches which, like the Amalgame framework, use some form of 
meta-information as a basis of analysis or integration. Among these, the ARPA TI 
Open Object-Oriented Database (TI OOODB) [606], and the A la carte framework 
[161, 160, 162] are most closely related to Amalgame. 

The TI OOODB introduces a computational model of extended events which con- 
stitutes a formal conceptual framework to operationally characterize openness and 
achieve seamless extensibility. The Amalgame internal architecture implements a sim- 
ilar model to transparently extend the behavior of normal operations on its component 
classes. Amalgame also intends to use an operational version of the TI OOODB as 
its own underlying component database. At the difference of the TI OOODB, Areal- 
game primary focus is to support tailorable persistent heterogeneous systems rather 
than autonomous database systems. To reach this divergent goal, Amalgame provides 
a unified language to manage heterogeneous components, allowing multiple persistent 
applications accessing various underlying POBs to interoperate, share and potentially 
complement their capabilities. 

The A la carte system is a toolkit for the rapid construction of heterogeneous, 
persistent object stores. This system concentrates on providing extensibility and tai- 
lorability for internal heterogeneous database management system software. Amalgame 
uses some of the design concepts of A la carte to implement its software component 
class management capabilities. At the difference of A la carte, Amalgame provides 
a persistent heterogeneous apphcation design environment not forcibly limited to the 
design of heterogeneous object stores. Amalgame also provides a natural extension 
to A la carte by supplying support for evolving architecture specifications through a 
unified specification language. 

16.3 A n  Overv iew of  A m a l g a m e  

The Amalgame system provides a toolkit designed to assist the construction of hetero- 
geneous and persistent programs. The various components of the Amalgame system 
are fully extensible; they allow designers to interoperate arbitrary code fragments at 
selected granularities of semantics, and produce reasonably efficient heterogeneous ap- 
plications. Using concrete examples, we give a high-level overview of the Amalgame 
architecture and show how it is used to implement heterogeneous and persistent pro- 
grams. Our architectural overview describes Amalgame from the designer's point of 
view, the specification language which guides the designer through the construction 
process, and an architectural view of the Amalgame framework itself. 

16.3.1 A Motivating Example 
To experiment with Amalgame, we implemented a demonstration scenario involving 
two persistent software development support systems used in the Arcadia consortium. 
A detailed report of this experiment is given in section 16.4 of this chapter. The two 
systems involved in the experiment are Rebus [302] and PGraphite [114,611]. 
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Rebus is a requirement specification process program written in a Software Process 
Programming Language (SPPL) called APPL/A [301,547]. SPPLs support software- 
process programming, a way to formalize the representation of software product and 
processes. A P P L / A  is an SPPL which specifically addresses the problems related to 
change management in process centered environments. A P P L / A  is an extension to Ada 
which provides abstract and persistent relations to represent inter-object relationships 
explicitly, and maintain derivation dependencies automatically. A P P L / A  uses Triton 
[247] to store the relations existing between the different phases of a software process. 
Triton is an object management system built on top of the Exodus [87] database system. 
The current implementation of Rebus consists of a menu based DAG editor client and 
a Rebus server. The Rebus server maintains underlying A P P L / A  relations that are 
managed by Triton and stored in Exodus. 

PGraphite is a meta-tool which automatically generates persistent Ada implemen- 
tations of graph abstract data types from concise declaxative specifications supplied in 
a Graph Description Language (GDL). These generated Ada implementations access 
the Mneme Database System [418] through a Storage Manager Interface (SMI) to store 
and retrieve graph node instances. 

To illustrate our presentation of the Amaigame architecture , we will use concrete 
examples derived from our experience of using Amalgame to interoperate Rebus and a 
Rebus-like PGraphite application. 

16.3.2 The Designer's View of the Amalgame Toolkit 
The Amalgame toolkit is built on top of the Eiffel environment [279] and relies ex- 
tensively on the tools and class management facilities provided by this system. The 
Amalgame toolkit consists of two ma~n components that help automate the design of 
heterogeneous and persistent applications. These components include the Amalgame 
framework which provides a reusable and extensible architecture to integrate persis- 
tent and heterogeneous applications, and the Amalgame toolset which provides design 
components to operate on the framework. The toolset includes a language processor 
complemented with various tools implementing basic and extended functionality. 

The toolset language processor performs lexica~ analysis and parsing of Amalgame 
scripts. Amalgame scripts are source texts specified by designers and written using 
the Amaigame Specification Language (ASL). The ASL is an extension of the Eiffel 
[298,401,402] object-oriented language. The design of the ASL extensions to Eiffel was 
strongly influenced and guided by the textual version of the Better Object Notation 
(BON) [431,432]. 

The ASL is a unified and extensible language which provides constructs to imple- 
ment the full range of capabilities offered by Amalgame. Some of these ASL constructs 
are used to define, refine, test, and assemble framework components. Other ASL 
constructs implement access methods to the Amalgame toolset basic and extended 
functionality. 

The basic functionality supported by the AmMgame toolset consists of a browser, a 
run-time generator, and a heterogeneous program execution driver. The extended func- 
tionality provides a channel to communicate with other components of the L'Heureux 
toolkit such as Findit, Panorama, and A la carte. Figure 16.2 below illustrates the 
various application design components supplied by Amalgame. 

The Amalgame browser allows designers to peruse, edit and query existing frame- 
work components. Amalgame also provides a run-time generator to package the various 
framework components and support infrastructure involved in specified heterogeneous 



320 CHAPTER 16. AMALGAME 

programs. Finally, Amalgame provides an execution driver which can be used as an 
option to spawn, control and terminate the execution of heterogeneous programs. 

Access to the toolset functionality is serverized to promote cooperative hetero- 
geneous application development, and ease the integration of AmaJgame in existing 
development environments. An Amalgame toolset server can handle concurrent re- 
quests from multiple client interfaces. Each client interface provides access to the basic 
and extended Amalgame toolset functionality. Amalgame supports a combination of 
menu driven and programmatic client interfaces. 

Menu driven client interfaces provide interactive implementations of the basic and 
extended set of Amalgame functionalities. These interactive interfaces are intended to 
support  human designers in the process of defining new heterogeneous and persistent 
applications. Programmatic interface bindings are currently provided for C and Ada. 
These bindings implement ASL interfaces for the supported languages and are intended 
to support  direct access to the ASL language from existing applications. Heterogeneous 
programs specified using the ASL can be built and executed directly through Amalgame 
client interfaces. Experienced designers may also elect to build and/or  execute their 
Amalgame heterogeneous programs manually. 
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Figure  16.2: A des igner ' s  view of  the  A m a l g a m e  design componen t s  

16.3 .3  P r a c t i c a l  U s e  of the  Amalgame  Toolkit  

To describe the construction of a heterogeneous application using the Amalgame 
toolkit, we step through the various phases of the Rebus and PGraphite  interconnec- 
tion process mentioned earlier. We assume that  a fictitious human designer interacts 
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with a running Amalgame server through a menu driven client interface. For reasons 
described in section 16.4 of this chapter, our fictitious designer would like to inter- 
operate Rebus with a PGraphi te  Rebus-like application. As a result, he is wondering 
whether Amalgame has been previously exposed to similar applications and can supply 
any reusable components. 

To answer this question, our designer selects the Amalgame browse menu option to 
invoke the Eiffel graphical browser and starts  exploring the existing Amalgame clusters. 
In Eiffel terminology, a cluster is a group of related component classes. In Amalgame, 
any defined application is attached to an environment which itself corresponds to an 
Eiffel cluster. To simplify our presentation we assume that  the cluster list displayed by 
the browser does not show any evidence of applications related to Rebus or PGraphite.  
At this stage, our designer can select existing clusters one by one and browse through 
them. Another alternative is to select the language processor option and submit a 
small ASL script to query the Amalgame framework using the "Find" construct. Fig- 
ure 16.3 below shows an example of such a script devised to identify any Amalgame 
environment containing components related to the keywords "Rebus" or "Requirement 
Specification". 

Find 
With 

ENVIRONMENT 

Rebus, Requirement Specification 

Figure  16.3: A s imple  ASL scr ipt  to  locate  componen t  classes 

The ASL "Find" construct is implemented through Findit which is part  of the 
Amalgame extended toolset functionality provided by the L'Heureux toolkit. Other 
ASL constructs are supplied to assist designers in locating related Amalgame framework 
class components. In particular, the ASL "Browse" and "Show" constructs provide an 
alternative to using the graphical browser. 

At  this point our designer is in the worst case situation where Amalgame cannot 
provide reusable framework component classes to build upon. He is now ready to start  
from scratch and step through the various phases of the Amalgame heterogeneous 
application construction process. These various phases include the encapsulation of 
selected Rebus and Pgraphite functionality into framework component classes of speci- 
fied AmaJgame environments, the creation and refinement of the infrastructure required 
to relate these encapsulated components to the selected application functionality, the 
interconnection of the encapsulated components, and the generation of a run-time ex- 
ecutable heterogeneous application. 

To start  with, our designer creates a new Amaigame environment for these applica- 
tions. The ASL constructs provided to assist the designer in this process are illustrated 
in Figure 16.4 below. 

"A..APPL/A" and "A_PGRAPHITE" are the names of the Amalgame environ- 
ments selected to respectively contain Rebus and PGraphite Rebus-like components. 
This naming scheme provides a good basis for clustering as it suggests grouping appli- 
cations writ ten in A P P L / A  in the A_APPLA clusters and applications generated using 
PGraphi te  in the A_PGRAPHITE cluster. 

As they attach a new environment to Amalgame, designers may be aware of a subset 
of rules for interchanging basic and/or  complex types between the type system of the 
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Attach Environment APPL/A 

With NONE 

To A_APPL/A 

Attach Environment PGRAPHITE 

With NONE 

To A~GRAPHITE 

Figure 16.4: Creat ing A m a l g a m e  environments  for Rebus and PGraph i t e  

environment they are attaching and the Eiffel type system. Amalgame data dictionary 
files provide a specific syntax for expressing these rules and communicate them to the 
Amalgame system. In particular, the "With" field, in the "Attach Environment" ASL 
construct, is used to specify an optional Amalgame data dictionary file name. However, 
by selecting "NONE" in the "With" fields, our designer chose to implement the type 
conversions as part of the component specification. 

Our designer is now ready to encapsulate selected functionality from the Rebus and 
PGraphite Rebus-like applications into framework component classes of the respective 
"A_APPL/A" and "A_PGRAPHITE" AmaJgame environments. As explained in sec- 
tion 16.4, his goal is to store persistent ]~ebus objects interchangeably using Triton or 
PGraphite. He is therefore trying to isolate the Rebus functionality that manipulates 
these persistent components. Careful examination of the Rebus source code reveals 
that the nine underlying A P P L / A  relations which compose the Rebus process pro- 
gram are mapped into a single Triton relation which provides a better compromise 
for encapsulation. Figure 16.5 above illustrates the portion of the ASL script which 
encapsulates the Triton relation. 

Now that appropriate Amaigame class components have been created, our designer 
is ready to use the Amalgame extension library to help specify the necessary infras- 
tructure to relate his class components to the original Rebus and PGraphite Rebus-like 
applications. Amalgame provides library clusters containing various extension compo- 
nents, which are generic implementations of a specific type of support mechanism. 
Amalgame currently provides data dictionary, communication and translation library 
clusters. The set of support mechanisms can easily be extended by adding new clusters 
and populating them with extension components implementing the adequate support 
mechanisms. Extension components package functionality from existing Arcadia tools 
such as Q [392], Triton [247], Chiron [314], and the client/server based generic inter- 
connection scheme supplied by A la carte. 

At this point our designer chooses to implement a client/server infrastructure. 
While browsing through the Amalgame communication library, he notices that the Q- 
based communication extension components. "aserver.e" and "aclient.e" provide the 
functionality required to solve his problem. These two components also require the 
translation extension "adr.e" and the data dictionary extension "add.e'.  Figure 16.6 
above illustrates the partial contents of the "aserver.e" extension component selected 
to support the Rebus communication server mechanism. 

To make the selected library generic support mechanisms available to his framework 
component environments, our designer uses the ASL "Attach Extension" construct as 
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Encapsulate From APPL/A.triton.triton_relation 

Type Is SUB_COMPONENT 

In A_APPL/A.TRITON 

As RELATION 

With Specification { 

class TRITON_RELATION export 

insert, delete, update 

feature 

Create(name: STRING); 

do 
(...) 
end; -- Create 

insert(relation: STRING, name: NAME_STRING) is 

deferred 

end; -- insert 

delete(relation: STRING, instance: NODE_NAME_TUPLE) is 

deferred 

end; -- delete 

update(relation: STRING, 

instance : NODE_NAME_TUPLE, 

update_name: B00LEAN is false, 

name: NAME_STRING is ~ ~noname' ') is 

deferred 

end; -- update 

end -- class TRITON_RELATION 

Figure 16.5: Encapsulation of Rebus selected functionality 

illustrated in Figure 16.7 below. 
To complete the implementation of his Rebus framework component infrastructure 

mechanisms using the generic client/server mechanisms provided by the Amalgame 
library, our designer creates extension mapping components to handle messages which 
are specific to his applications. On the Rebus side, his server mapping component 
inherits the generic functionality provided by the extension component "qserver.e" 
and provides an implementation for the deferred "execute" method of that extension 
component. The implementation uses the data dictionary and data translation mech- 
anisms provided by the "adr.e" and "add.e" extension components mentioned earlier. 
A partial snapshot of the ASL script implementing this phase is given in figure 16.8 
below. 

Our designer provides similar ASL script specifications to accommodate his 
PGraphite Rebus-like component encapsulation. The ASL can Mso be used to define 
new extension components or check whether a framework component is an extension 
component. This functionality is available through the ASL constructs "New Extension 
Component" and "Is Extension Component". 

Our designer is now ready to interconnect his Rebus and PGraphite Rebus-like 
framework components and implement the internal features of his serverized Re- 
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class ASERVER export 

initialize, execute, shutdown 

feature 

initialize is 

do ( . . . )  
end; - -  i n i t i a l i z e  

b e g i n  i s  d e f e r r e d  
end; - -  b e g i n  

commit i s  d e f e r r e d  
end; -- commit 

abort is deferred 

end; -- abort 

execute(rune: STRING, 

input: ADR_HANDLE, 

return: ADR_HANDLE)is 

deferred 

end; -- execute 

shutdown is 

do ( . . . )  
end; - -  shutdown 

end -- class ASERVER 

Figure  16.6: A m a l g a m e  class which suppl ies  server mechan i sms  

bus framework component. To properly support the demonstration scenario de- 
scribed in section 16.4 of this chapter, the serverized Rebus framework compo- 
nent should properly react to requests of the type "Execute(APPL/A.TRITON.-  
RELATION.nodenameinser t ,  input, . . . ) ' ,  where the 'Snput" buffer supplies the pa- 
rameters "(tuple, PGRAPHITE)" .  Such a request should insert the specified '%uple" 
in the "nodename" relation of APPL/A .TRITON.RELATION in the context of the 
"PGRAPt t ITE"  Rebus-like application. 

The context based mechanism just  described allows designers to provide different 
internal implementations of their encapsulated components according to the context 
in which they are being accessed. As a result, our designer requests the interconnec- 
tion and provides the necessary implementations using the ASL constructs partially 
il lustrated in Figure 16.9 below. 

To emphasize the result of this context-based interconnection process, it is im- 
por tant  to point out the differences between the  Rebus encapsulated component 
"A_APPL/A.TRITON.RELATION" and the original Ada package "APPL/A.triton.- 
triton_relation". Although both have the same interface in terms of methods and 
at t r ibute  declarations, the internal implementations of these methods and attr ibutes 
are completely different. For example,  the "insert" method of "A_APPLA.TRITON.-  
RELATION" in the context of P G R A P H I T E  shown in Figure 16.9 uses the "Put- 
Attr ibute"  method provided by the encapsulated component "PGRAPHITE.REBUS" 
to store persistent objects in PGraphite.  

In a nutshell, the interconnection process we just described specifies a list of com- 
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Attach Extension To 
Of Type 
Specified In 

Attach Extension To 
Of Type 
Specified In 

Attach Extension To 

Of Type 
Specified In 

AAPPL/A 
DATA~ICTIONARY 

./library/dictionary/add.e 

A_APPL/A 
DATA_C0~IJNICATION 

./library/cemmunication/aserver.e 

AAPPL/A 

DATA_TRANSLATI 0N 

�9 ion/adr, e 

Figure 16.7: Attaching component extensions to the A_APPL/A environment 

ponents to interoperate and supplies modifiers that implement appropriate support 
features. Through this process, Amalgame environments can dynamically capture 
meta-model information that describes the requirements and conditions under which 
specified components can be interconnected. This interconnection process is supported 
by Amalgame context-sensitive modifiers and a heterogeneous constraint mechanism 
[90], which is part of the extended functionality provided by the L'Heureux toolkit. 

At this stage, our designer has successfully created the Rebus and PGraphite Rebus- 
like framework class components and derived specializations of these components using 
Amalgame modifiers. He has also derived and interfaced proper mapping components 
as specialized instances of generic AmaJgame framework extension components. It is 
now possible to generate a run-time heterogeneous program that will implement the in- 
terconnection between the Rebus and Pgraphite Rebus-like encapsulated components. 

Our designer can use the ASL construct "Megacompile" to validate framework com- 
ponents, generate corresponding Eiffel classes, and Eiffel compile the resulting classes. 
He can then use the ASL construct ~'Megalink" to assemble specified framework com- 
ponents. The ASL construct "Generate Runtime Component", which is also available 
as an option of the menu driven client interface, combines the "Megacompile" and "Me- 
galink" phases and generates runtime programs by operating directly on a specified root 
class. Once successfully built, the heterogeneous program can be invoked through the 
"Execute" menu option or the equivalent ASL construct. Figure 16.10 below shows the 
script portion that builds and executes the Rebus/Pgraphite heterogeneous program. 

16.3.4 T h e  I n t e r n a l  A r c h i t e c t u r e  of t he  A m a l g a m e  Toolk i t  

The Amaigame internal architecture implements support mechanisms for creating, 
maintaining, and interconnecting heterogeneous framework components. These mech- 
anisms are handled by various Amalgame underlying components including the persis- 
tent object base (POB), the ASL lexieai analyzer and parser, the framework config- 
uration manager, the framework component context handler, and additional support 
facilities for transaction, correctness and constraint management. 

The Amalgame POB is implemented using the Eiffel environment support facilities. 
In Eiffel, an environment represents a set of persistent objects that can be individually 
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Add Class To A_APPL/A 

Of Type EXTENSION 

As TRITON_MAPPING 
With Specification { 

class TRITON_MAPPING export 

inherit 

feature 

initialize, execute, shutdown 

ASERVER, ADR, ADD 

-- Execute method 

execute(func: STRING, 
input: ADR_HANDLE, 

return: ADR_HANDLE) is 

local 
adr: ADR; 
tuple: TUPLETYPE; 
relation: TRITON~ELATION 

do 

end 
end -- class 

if func= APPL/A. 

TRITON.RELATION.nodename.insert then 
adr. Create; 

adr.set_read; 
adr.tupletype (input, tupletype); (...) 
relation.Create (''nodename"); 

-- perform ''insert" on tuple 

relation.insert(tupletype); ( . . . )  
end 
-- execute 
TRITON_MAPPING 

Figure 16.8: Partial snapshot of the Rebus extension mapping component 

identified through keys. Amalgame maps its heterogeneous application environments 
onto Eiffel environments, and uses keys to identify and selectively manipulate the 
various ftkmework components associated with each environment. Amalgame currently 
uses the Eiffel facilities to store its heterogeneous application environments in the 
UNIX** file system. In the near future, Amalgame will provide specializations of the 
Eiffel environment support  classes to integrate the TI  OOODB and Triton as possible 
underlying framework object repositories. 

The Amalgame lexica] analyzer and parser provide the language processing support 
required to check the syntax and semantics of ASL scripts. This extensible component 
is implemented using the Eiffel lexical and parsing library classes. The parser uses the 
lexical analyzer to identify ASL tokens as it scans through the ASL constructs found 

**UNIX is a registered trademark of AT&T 
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I n t e r c o n n e c t  APPL/A.TRITON.RELATION, PGRAPHITE.REBUS 

Modifier For 

In Context Of 

With Type 

With Method 

APPL/A.TRITON.RELATION.insert 

PGRAPHITE.REBUS 

DEFINE 
{ 

insert(relation: STRING, name: 

local 

do 

namestring) is 

node: REBUS; 

id: integer; 

. . . )  
if relation = ~nodename'' then 

id = GetUniqueId(name); 

node. Create(~RebusNode~'); 

node.AssociateNodeWithId(~RebusNode''); 

node.PutAttribute(node.id,relation,name); 

node.PutAttribnte(node.id, ~Cnodeid", id); 

end 

end -- insert 

Figure 16.9: In terconnect ion and specification of a context sensitive feature 

in the submitted scripts. Once scripts are successfully parsed, the Amalgame lan- 
guage processor applies the AmMgame semantics, which implement the specified ASL 
constructs through the Amalgame framework configuration and component context 
managers. 

The Amalgame framework configuration manager maintains a table of configura- 
tion connector components to keep track of the inter-relations between the various 
Amalgame environments. The configuration connectors also keep track of component 
classes and extensions attached to each particular environment. Finally the configu- 
ration connectors associate and maintain the keys associated to the Amalgame frame- 
work components in their corresponding environments. As an example, during the 
encapsulation process described in section 16.3.3, the configuration manager defines 
two separate configuration connectors for the "A_APPL/A" and "A_PGRAPttITE" 
environments. A third configuration connector is defined for to the Rebus/PGraphite 
environment. 

The framework component context manager interacts with the framework configu- 
ration manager to create new configuration connectors or check the consistency of ASL 
constructs according to existing configuration information. The context manager also 
creates context-based mapping connector components which are used to seamlessly 
adapt the features of encapsulated components through modifiers specified using the 
ASL. In the case of the example given in section 16.3.3, the Amalgame context manager 
creates a connector component which inherits the deferred insert, delete and update 
features of the "A.-APPL/A.TRITON.RELATION" (see section 16.3.3, Figure 16.5) 



328 C H A P T E R  16. A M A L G A M E  

-- Build and execute run-time heterogeneous program 

-- The root class is TRITON_MAPPING 

Generate Runtime Component APPL/A.TRITON~APPING 

Execute APPL/A.TRITON.RELATION 

Figure 16.10: Bui ld ing and  executing the Amalgame  heterogeneous program 

and defines the insert method using the specification provided in the modifier (as 
shown in section 16.3.3, Figure 16.9). The functionality of the resulting context-based 
connector component is illustrated in Figure 16.11 below. 

To generate a run-time version of "A_APPL/A.TRITON.RELATION", the context 
manager combines all the context-based connectors defined for "A_APPL/A.TRITON.- 
RELATION" into a single object and supplies an access method to allow this generated 
component to sense the context in which it is accessed at run-time. This explains how 
the "PGRAPHITE" context parameter is used at run-time by "A_APPL/A.TRITON.- 
RELATION" to select the insert method shown ill Figure 16.11. 

This component context sensitivity plays an important role in supporting concur- 
rency control mechanisms and transaction management facilities within heterogeneous 
applications created by AmMgame. Let us assume that we are implementing an hetero- 
geneous application which is somewhat more complicated than the one we describe ill 
the Arcadia experiment. This application still involves a "A_PGRAPHITE.REBUS" 
component but this component is now accessible in the context of REBUS as well 
as PGRAPHITE.  We also assume that the implementations of the modifier methods 
defined for the PGRAPHITE context access "A_PGRAPHITE.REBUS" in the con- 
text of REBUS. In this case, accessing "A__PGRAPHITE.REBUS" in the context of 
PGRAPI-IITE triggers a begin transaction for this particular component/context com- 
bination. When "A_PGRAPttlTE.REBUS" is accessed in the context of "REBUS" 
AmMgame senses the context parameter, finds out that it is different from the current 
transaction context and triggers a nested begin transaction. This example illustrates 
the nested transaction model implemented by Amalgame on the basis of defined context 
parameters. 

To implement the nested transaction model just described, the run-time version 
of "A_APPLA.TRITON.RELATION" is created by AmaJgame as a multi-threaded 
object which supports concurrency control and a nested transaction model to swi tch  
between its defined access contexts. As a result, ff PGraphite were to use a version 
of Mneme which supports transaction management and concurrency control, we could 
create a heterogeneous application on top of Mneme that supports a context-based 
nested transaction model. A similar approach that combines the definition of active 
threaded objects in an object-oriented model is described in [82]. As an alternative to 
the nested transaction model just described, Amaigame also provides ASL constructs to 
reuse existing transaction management and recovery mechanisms supplied by A la carte 
through the extended toolset functionality provided by the L'tieureux toolkit. 

The context-sensitive mechanism we just described was largely inspired by the TI 
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...) 
export  

i n s e r t ,  d e l e t e ,  update  
f e a t u r e  
insert(relation: STRING, name: 

local 
node: REBUS; 

id: integer; 

do 
(..) 
if relation = 

namestring) is 

~nodename" then 

id = GetUniqueId(name); 

node. Create(~RebusNode''); 

node.AssociateNodeWithId('~RebusNede''); 

node.PutAttribute(node.id,relation,name); 

node.PutAttribute(node.id, ~Cnodeid", id); 

end 

end -- insert 

delete(instance: NODEJAME_TUPLE) is 

deferred 

end; -- delete 

update(instance: NODE~AME~UPLE, 

update_neuae: BOOLEAN is false, 

name: NAME~TRING is ~nename'') is 

deferred 

end; -- update 

end 
(...) 

Figure  16.11: Func t iona l i ty  of the Rebus context-based connector component  

OOODB computationa/ model of event extensions described in section 16.2.3 of this 
chapter. The model seamlessly adds database functionality to existing object-oriented 
programming languages as a collection of event extensions. An event is the application 
of an operation to a particular set of objects. An extension to a programming language 
is modeled as enhancements to the behavior of events in the language. Extensions can 
be modeled in various ways and invariants that must be met by the corresponding 
operations can be specified. For example, if an extension defines the ability to operate 
on remote objects, an invariant could state that the operator and the operands need 
to be instantiated in the same physical address space. Each way of meeting such an 
invariant is defined in the TI model as a policy which is implemented by a policy 
performer. We refer the reader to [606] for a complete description of the TI OOODB 
computational model of event extensions. 

To model its run-time context sensitive mechanism, Amalgame defines as an event 
the operation that consists in applying a set of modifier methods to a framework 
class component. This event is extended by defining modifier methods using the ASL 
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"Modifier For" construct. The corresponding Amalgame invariant rules that the set 
of modifiers associated to a class component in a certain context must match the set 
of modifiers defined for this context. To meet this invariant, Amalgame currently 
implements a single policy as an internal policy performer. This performer selectively 
retrieves the proper set of modifiers which are applicable to a specified framework class 
component in a certain context. 

To complete the description of the Amalgame internal architecture, we briefly de- 
scribe its additional support facilities'for transaction, correctness and constraint man- 
agement. Amalgame provides transaction management support as part of its generic 
extension components. Indeed, the begin, commit and abort methods provided in an 
extension mapping such as "TRITONAVIAPPING" can be used to group multiple ASL 
constructs in a single transaction. Within this transaction, Amalgame automatically 
implements a nested transaction model using the context parameter as a basis for lock- 
ing components. An example of a heterogeneous application making use of this nested 
transaction model was presented earlier in this section. 

Amalgame also inherits correctness enforcement mechanisms from the Eiffel lan- 
guage. Semantical correctness ensures that a class implementation conforms to its 
specification and other requirements. Eiffel provides language constructs which can be 
checked dynamically to ensure partial correctness of run-time programs. In particular, 
Eiffel supports the definition of class invariants, method pre/post conditions, and loop 
variants/invariants. We refer heterogeneous application designers to the Eiffel language 
documentation [279] for a complete description of correctness mechanisms. 

Finally, the ASL supports constraint specification, detection, and enforcement, as 
part of the extended functionality provided by the L'Heureux toolkit through its het- 
erogeneous constraint package. Using this package through special ASL constructs, 
designers can ensure correct heterogeneous component integration and maintain con- 
sistency in heterogeneous environments. 

16 .4  A n  A r c a d i a  D e m o n s t r a t i o n  S c e n a r i o  

The interoperability experiment we have implemented using Amalgame consists in 
interoperating Rebus with an Ada Rebus-like application generated by PGraphite from 
a simple GDL specification. We quickly describe the Arcadia experiment from a high- 
level standpoint and expose the simple modifications required to interconnect the Rebus 
and Ada Rebus-like applications to the heterogeneous AmaJgame server generated in 
section 16.3.3. Finally we summarize the various benefits of using Amalgame in the 
scope of this experiment. 

16.4.1 High-level Description of the Arcadia Experiment 
There are numerous benefits to implementing mechanisms that transparently store re- 
quirement specifications produced by Rebus using Triton and PGraphite interchange- 
ably. For example, such mechanisms would allow a design specification tool written 
using PGraphite to directly access and modify a Rebus requirement specification for a 
particular design. This would definitely simplify the specification and maintenance of 
the inter-dependencies between software requirement and design specifications. More- 
over, the above described mechanisms address the interoperability of applications based 
on heterogeneous graph specification languages. As a result, they provide an interest- 
ing testbed for experimenting Amalgame interoperability mechanisms at the levels of 
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protocols and languages. 
These various considerations motivated our experiment which precisely consists in 

interoperating Rebus, Triton and a PGraphite Rebus-like application to transparently 
store Rebus requirement specifications using either Triton or PGraphite. The basic 
scenario using Amalgame to interoperate Rebus with Triton and PGraphite is shown 
in Figure 16.12 below. On the PGraphite side, a GDL specification is devised to 
implement the Rebus underlying APPL/A relations in terms of a PGr~phite node kind. 
The corresponding Ada application generated by PGraphite is then made interoperable 
with Rebus and Triton using Amalgame supplied extension components. Figure 16.12 
also illustrates the encapsulated Rebus and PGraphite components required to support 
this experiment and the access contexts supported by these components. 

16.4.2 Implementation Details Related to The Arcadia In- 
teroperability Experiment 

A detailed representation of the Arcadia experiment showing the nature of the actual 
components required to support the demonstration is provided in Figure 16.13 above. 
We then briefly describe the different components required to support the intercon- 
nection of the Rebus and Ada Rebus-like applications to the heterogeneous Ama]game 
server generated in section 16.3.3. 

Modif icat ions a n d  A m a l g a m e  S u p p o r t  fo r  R e b u s  

Some small modifications are inserted in the Rebus DAG editor server at the level of its 
Triton client interface. These modifications involve initialization and shutdown of the 
Amalgame heterogeneous server, and execute method calls to invoke the Amalgame 
encapsulated Rebus application component. Actual modifications added to the Triton 
relation insert procedure are shown in Figure 16.14 below. 

The execute method calls inserted in the Rebus DAG server Triton interface are pro- 
cessed by a generic Ada client interface obtained from the Amalgame communication 
library. This client interface is specifically designed to communicate with the server 
extension component used to create the extension mapping "TRITON_MAPPING" 
in section 16.3.3. The generic Ada client interface obtained from the Amalgame li- 
brary does not require any modification, it is simply compiled and linked to the Rebus 
server/client component. Figure 16.15 below shows the Ada specification for the Amal- 
game supplied client package. 

M o d i f i c a t i o n s  a n d  A m a l g a m e  S u p p o r t  for  P G r a p h i t e  

Modifications and Amalgame support provided for the PGraphite generated Ada ap- 
plication are of similar simplicity as the ones provided for Rebus. Therefore, we omit 
the details concerning the Amalgame supplied server interface and the associated mod- 
ifications to the PGraphite'application. Figure 16.4.2 below illustrates the GDL script 
implemented to specify the Rebus relations in terms of a PGraphite node kind. 

class RebusDhG is 

package Rebus ; 
with Unix_Time. (Time_T) ; 
subtype uniqueid is INTEGER ; 
subtype timestamp is Unix_Time.TimeX; 
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subtype namestring is STRING; 

subtype accessrights is INTEGER; 

subtype text is STRING; 

type coordstate is (Posted, Locked, Completed); 

type FieldType is (NAME, AUTHOR, DATE, DESCRIPTION, TYPES, 

DEFINITIONS,INPUT~PEC, 0UTPUT~PEC, 

ACCURACY, ROBUSTNESS, TIMING, FLEXIBILITY, 
SECURITY, PERFORMANCE); 

type FieldSet is array(FieldType) of Boolean; 

type FieldValueTuple is record 

typename: namestring; 

value: text; 

end record; 

FieldValues is array (FieldType) of text; 

RebusNode; 

NodeSequence 
RebusNode i s  
no de i d : uniqueid; 
nodename : String; 
p a r e n t s  : NodeSequence; 
c h i l d r e n  : NodeSequence; 
c r e a t e d :  t imestamp; 
modified: t imestamp; 
owner: namestring; 
r i g h t  s : accessrights; 
state : coordstate; 
a u t h o r  : namestring; 
stamp : t imestamp; 
t o  : coordstate; 
t r a c e a u t h o r :  namestring; 
lockowner :  namestring; 
f ields : FieldSet; 
f i e l d v a l u e  : FieldValues; 
end node ; 

t ype  
node 

t ype  
node 

end Rebus end RebusDAG; 

-- complete definition given belo~ 

is sequence of RebusNode; 

-- nodename 

-- parents/children 

-- status of node 

-- state of node 

-- trace of node 

-- trace author 

-- lock 

-- field set 

-- field values 

F i g u r e  0.16 GDL class representing the Rebus DAG 

16 .4 .3  Benefits of The Amalgame Approach 
The object-oriented paradigm promotes the reusability of Ama/game components and 
past  modifications to these components. The encapsulation of general purpose appli- 
cation code fragments provides a way to organize existing components by decomposing 
them into cooperating objects. As a result, Amalgame framework components usually 
support  a basic set of reusable functionality that  applies to various contexts without 
requiring extensive modifications. These modifications are a/so extremely simplified 
by the constructs supported by the Amalgame ASL and the underlying Eiffel object- 
oriented language. Moreover, inheritance provides a flexible mechanism to isolate, 
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maintain, adapt  and reuse past modifications to Amalgame components implemented 
through ASL modifiers. 

There are other benefits to the Amalgame approach which are not directly related 
to its object-oriented approach. In particular, the implementation of the communi- 
cation infrastructure supporting our Arcadia experiment is greatly simplified by the 
Amalgame extension library which provides the necessary support to quickly imple- 
ment the required client/server interfaces. We also find the amount of modifications 
required to interoperate the programs to be quite minimal in comparison with the cod- 
ing of the Amalgame specification script. The Amalgame lexieal analyzer and parser 
are fast and efficient and Amalgame provides useful assistance in the debugging of ASL 
scripts. 

We can foresee that  the type of automated assistance provided by Amalgame be- 
comes increasingly useful as more interconnection contexts populate the Amalgame 
framework. Since the implementation details are hidden from the interoperating pro- 
grams by the Amalgame framework components, we can quickly experiment alternative 
modifier implementations without affecting the interoperating programs. Finally, the 
use of a single unified specification language is a definite benefit. Indeed, in the case 
of our Arcadia experiment, no extensive knowledge of A P P L / A  or GDL is required to 
interoperate the Rebus and PGraphi te  Rebus-like persistent programs. 

1 6 . 5  F u t u r e  D i r e c t i o n s  

16.5.1 A Joint Arcadia and Prototech Demonstration Sce- 
nario 

We are currently implementing a joint Arcadia and Prototech demonstration scenario to 
enable application developers to use variations of Rebus with either Triton or PGraphi te  
as their storage manager. These variations of Rebus are obtained by modifying the 
Rebus Process Program Control Structures using a MIF [30] prototyping language. For 
example, a variant of Rebus could capture bottom-up instead of top-down functional 
requirements. Amalgame provides the support components for this interoperability 
experiment between Rebus, Triton, PGraphite  and the MIF prototyping language. 
The demonstration accomplishes four major goals. It shows how Prototech languages 
can interoperate with Arcadia tools, it makes Rebus more usable by making it more 
flexible, it  also validates the usefulness of a Prototech language by using it to quickly 
prototype a variation of Rebus. This experiment finally illustrates how Amalgame can 
be used to allow a tool to run on a different database platform, and allow a prototype 
system to replace an existing version of an outside tool. 

16.5.2 An Interoperability Experiment with Chiron 

There is a growing interest among the Arcadia researchers at University of California 
at Irvine to put  Chiton on top of multiple database managers. Chiron is a serverized 
user-interface system capable of supporting multiple simultaneous views of abstract  
da ta  types (ADTs). Chiton provides an Abstract  Depiction Language (ADL), which is 
object-oriented and used to program new "widgets". Multiple client programs called 
"artists" can concurrently send requests to the Chiton server to display different views 
of the Chiron server ADTs. We are currently investigating the requirements of the Ch- 
iron Object  Manager interface which corresponds to a heterogeneous interface between 
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Chiron and multiple underlying databases. This will help us evaluate the support 
provided by Amalgame to place Chiton on top of multiple object managers. 

16.5.3 An International "Library" of Deployed 
"Wrapped" Persistent Applications 

Research performed under the L'Heureux and Discovery projects at University of Col- 
orado at Boulder suggests the idea to extend the scope of interoperating persistent 
applications to develop an international "library" of deployed encapsulated persistent 
applications. Possible interested sites to support this experiment have been identi- 
fied in Europe (Esprit, GMD), Japan, Australia (CITRI), and the U.S.A (USC, CU). 
Although this project is in its very preliminary stages, it constitutes an interesting 
experiment for Amalgame in terms of providing interoperability mechanisms for large 
scale persistent systems. 

16.6 Conclusion 
The Amaigame system provides an integrated solution to the persistent heterogeneous 
component interoperability problem by addressing various levels of interoperability 
among languages, interfaces, and schemas. In this chapter, we have thoroughly de- 
scribed the architecture of Amalgame and discussed an interoperability experiment 
involving Arcadia tools. 

The existing Amalgame prototype could be improved in many ways. Constraints 
between heterogeneous components could be managed in a more flexible fashion. Inter- 
faces to existing or upcoming components of the L'Heureux toolkit should be created or 
perfected to improve the level of automated assistance. Finally, new components should 
populate the extension library to further enhance existing communication, translation, 
data dictionaries, or transaction management schemes, and support the various types 
of execution models found in diverse application domains. 

Amalgame contribution to the "open" database research world is to provide a 
framework for analyzing the components that should be exposed to ease interoper- 
ability among future database systems. Amalgame provides an important enabling 
technology which applies to a large number of application domains ranging from wide 
integrated, extensible, broad-scope persistent environments to larger, evolving, hetero- 
geneous persistent software systems. 
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Figure 16.12: High level view of the Amalgame experiment 
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Figure 16.13: Amalgame interoperability experiment using Arcadia components 
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procedure insert(tup: in out tupletype) 
is 
begin 
(...) 

if A_initialized = true then 
qdr.set_write(A~args); 
qdr~upletype(A~args,tup); 
qdr~tring~lice (A_qargs,A_context.all); 
status := execute(~APPL/A.Rebus. '' ~ relationmame 

~.insert'', A_qargs,A~result); 
if status <= 0 then raise amalgame~ccess_error; 

end if; 
end if; 

end insert; 

Figure 16.14: Sample modification of the Rebus insert procedure 

with system; 
withq, qpc, qdr, q_pc_clnt; 
package amalgame is 

amalgame_access_error: exception; 
amalgame_c onstraint_error : exception; 

function initialize_amalgame (hostname : string) 
return integer ; 

function shutdown_amalgame(exitcode : in integer:=O) 
return integer; 

function execute (amalgame_component_method : in string; 
input: in qdr.handle := qdr.null_handle; 
output: in qdr.handle := qdr.null_handle) 

(...) 

end area!game 

Figure 16.15: Rebus Ada client interface supplied by Amalgame 



Chapter 17 

Correctness and Enforcement of Multidatabase 
Interdependencies 

G. Karabatis*, M. Rusinkiewicz*, A. Sheth $ 

1 7 . 1  I n t r o d u c t i o n  

Many industrial computing environments consist of multiple data processing systems 
developed along functional or organizational divisions. Each such system usually au- 
tomates a part of company operations and consists of an application and a centralized 
DBMS. While the systems are frequently interconnected, they typically are not inte- 
grated and provide a limited support for interoperability. An important problem in 
such environments is to maintain a desired level of consistency of data across these 
systems, in the presence of concurrent update operations. 

The concept of interdependent data has been introduced in [518] to provide a 
framework for studying data consistency in multidatabase environments. Interdepen- 
dent data are data objects related by consistency requirements and possibly managed 
by different systems. These objects could be quite different structurally and seman- 
tically. Data dependency descriptors (D3s) [479] are used to specify the dependency 
between related data objects, the levels of permitted inconsistency, and methods that 
can be used to restore the consistency if it is violated beyond the specified limits. 

In addition to the specification of data consistency requirements, two additional 
issues need to be addressed to manage interdependent data: (a) correctness of the 
specifications and (b) enforcement of the specifications. In this chapter, we address 
these two issues for a wide range of interdependency specifications. However, given the 
complexity of handling relaxed constraints consisting of both data state and temporal 
components in an environment consisting of heterogeneous and autonomous systems, 
significant additional work will be needed in the future. 

An update to an interdependent data object, may violate the consistency require- 
ments among interdependent data objects. The mutual consistency requirements may 
not require immediate restoration of full consistency. Instead, a promise from the 
system that the consistency will be restored eventually, may be sufficient. Various 
relaxed consistency criteria have been proposed in literature. The relaxed criteria of 
consistency for replica control include k-completeness [489], c-serializability [456, 631] 
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and N-ignorance [333]. The above three criteria allow limited inconsistency among 
replicas specified in terms of the number of updates or other countable events. D3s 
allow specifying more general criteria of lagging consistency and eventual consistency 
to capture relaxed consistency requirements involving a variety of temporal and data  
state based parameters  among interdependent da ta  [519]. 

When the consistency limits of a dependency descriptor are exceeded, an additional 
transaction may be created automatically to restore the consistency of the interdepen- 
dent data. The execution of this transaction may affect consistency requirements spec- 
ified by some other D a and another transaction may be activated. We refer to a tree of 
transactions, initiated by an update to an interdependent data, as a polytransaction 
[519]. 

Polytransactions allow automatic maintenance of multidatabase consistency, based 
on the weak consistency requirements. When immediate consistency is not required, 
an update  to a da ta  item can be decoupled from the actions that  would need to ac- 
company it to restore the mutual  consistency. These actions can be executed later, 
within the limits specified by the dependency descriptor. Such an approach also allows 
to reduce the number of remote transactions that  are needed to maintain mutual con- 
sistency. These consistency-restoring transactions may need to be executed only when 
the consistency requirements are violated rather than after every update. 

The weak mutual  consistency criteria may allow a situation in which an object does 
not reflect all the changes to the da ta  items to which it is related, but the inconsistency 
remains within the allowed limits. We discuss the conflicts between polytransactions 
and the correctness of concurrent execution of polytransactions. While the serializ- 
ability can be used when no temporal terms are involved, we introduce the concept 
of temporal  serializability that  considers serializable schedules for nontemporal con- 
straints as well as temporal  precedence for temporal constraints. 

This chapter is organized as follows. Section 17.2 reviews our framework for spec- 
ifying interdependent da ta  and presents a conceptual architecture in which the speci- 
fications can be enforced. Section 17.3 discusses the correctness of dependency speci- 
fications. Section 17.4 defines the polytransaction mechanism. Section 17.5 discusses 
the consistency states of interdependent da ta  objects and various operations/events 
that  lead to the state transitions. We also discuss the need to control updates by local 
transactions. Section 17.6 discusses the correctness of the execution of a single poly- 
transaction and the issues related to concurrent execution of polytransactions. Finally 
Section 17.7 provides conclusions. 

17.2 Background 
In this section we briefly review our framework for the specification of interdependent 
data. A more detailed discussion can be found in [479, 519]. We then discuss a concep- 
tual architecture that  could support maintenance and enforcement of specifications. 

17.2.1 Specification of Interdependent Data 
Our framework for specifying interdatabase dependencies consists of three components: 
dependency information, mutual  consistency requirements, and consistency restoration 
procedures. While these components have been addressed in the literature separately, 
in our opinion they represent facets of a single problem that  should be considered 
together. Data dependency conditions are similar to Unlike integrity connstraints 
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in distributed DBMSs [525], full integrity between interdependent da ta  in different 
databases may be necessary at all times or not possible in many environments. We use 
Data Dependency Descriptors (D 3) to specify the interdatabase dependencies. Each 
D 3 consists of an identification of related objects and a directional relationship defined 
in terms of the three components just  mentioned. A D 3 is a 5-tuple: 

D 3 =< S ,U,P,C,A > 

where: 

�9 S is the set of source data objects, 

�9 U is the target data object, 

�9 P is a boolean-valued predicate called interdatabase dependency predicate (de- 
pendency component). It specifies a relationship between the source and target 
da ta  objects, and evaluates to true if this relationship is satisfied. 

�9 C is a boolean-valued predicate, called mutual consistency predicate (consistency 
component). I t  specifies consistency requirements and defines when P must be 
satisfied. 

�9 A is called actioncomponent and contains information about how the consistency 
between the source and the target da ta  object may be restored. 

The objects specified in S and U may reside either in the same or in different 
centralized or distributed databases, located in the same or different sites. We are 
particularly interested in those dependencies in which the objects are stored in different 
databases managed by a local database management system (LDBS). 

The dependency predicate P is a boolean-valued expression specifying the relation- 
ship that  should hold between the source and target da ta  objects. 

The consistency predicate C, contains mutual  consistency requirements specified 
along two dimensions - the da ta  state dimension s, and the temporal dimension t. 
The specification of the consistency predicate can involve multiple boolean valued 
conditions, referred to as consistency terms and denoted by ci. Each consistency term 
refers to a mutual  consistency requirement involving either time or the state of a da ta  
object. 

The action component A, is a collection of consistency restoration procedures. They 
specify actions that  may be taken to maintain or restore consistency. There can be 
multiple restoration procedures, and the one to be invoked, may depend on which 
conditions lead to the inconsistency between interdependent data. The execution mode 
can be defined for each restoration procedure to specify the degree of coupling between 
the action procedure and its parent transaction (i.e., the transaction that  invokes it). 

The set of all D3s together constitutes the Interdatabase Dependency Schema, (IDS) 
[519]. It is conceptually related to the Dependency Schema presented in [373]. 

Alternative ways to specify consistency requirements among related data  have been 
also discussed. Identity connections [609] introduced a time based relaxation of mu- 
tual  consistency requirements among similarly structured da ta  items. Relaxed criteria 
based on numerical relationships between data  items have been proposed in [34]. Quasi- 
copies support  relaxed consistency between primary copies and quasi-copies, based on 
several parameters  [16]. E-C-A rules can be used to specify the C and A components 
of D3s [138]. In [90, 91] interdatabase constraints axe translated to production rules in 
a semi-automatic way, using a language based on SQL, to specify consistency between 
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interrelated data objects. The derived production rules enforce consistency by gener- 
ating operations automatically. However, tolerated inconsistencies are not allowed in 
that approach. 

In the following example, we illustrate the use of D3s, for the specification of 
consistency requirements between a primary and a secondary copy, as a special case 
of replicated data. We assume that copies of data are stored in two or more data-. 
bases. The dependency between all copies requires that changes performed to any 
copy are reflected in other copies, possibly within some predefined time. Let us con- 
sider the relation D1.EMP (i.e., relation E M P  stored ill database D1) and its replica 
D3.EMP_COPY. We assume that E M P  must always be up-to-date, but we can tol- 
erate inconsistencies in the E M P _ C O P Y  relation for no more than one day. q~he 
following pair of dependency descriptors represents this special type of replication: 

8:  D1.EMP 
U: D3.EMP_COPY 
P: EMP = EMP_COPY 
C: ~(day) 
~" Duplicate-EMP 
( E M P  is copied to E M P _ C O P Y ) .  

$ : D3.EMP_COPY 
U : D1.EMP 
P :  EMP = EMP_COPY 
C:  1 update on S 
.A : Propagate_Update_To_EM P 

as coupled & vital 
(The update on EMP_COPY 
is repeated on EMP.) 

The two descriptors above, represent a case of a bi-directionai dependency between 
two database objects. The target object in one descriptor is the source object in the 
other descriptor. The consistency predicate P is exactly the same in both D3s. The 
consistency between the two objects is specified as follows: whenever an update is 
performed on E M P _ C O P Y ,  it must be reflected immediately in the E M P  relation. 
On the other hand, consistency will be restored in the E M P _ C O P Y  with respect to 
the updates on E M P  only at the end of the day (although there may be a number of 
updates performed to the E M P  during that day). 

17 .2 .2  Conceptual System Architecture 
In this chapter we are concerned with the effects that an update operation on a data 
object may have on the related data managed by other systems. We assume that a 
system involved in the management of interdependent data consists of a data manager 
(DM) ,  the database(s) it manages, and a new component called a dependency sub- 
system that is introduced below. A D M  can be a DBMS that manages data in the 
database(s). With different types of DMs,  interfaces vary. However the basic issues of 
managing interdependent data that are discussed here apply in all cases. 

A possible conceptual system architecture that can be used to maintain interde- 
pendent data objects is illustrated in Figure 17.1. Every database participating in 
a multidatabase environment is augmented with a Dependency Subsystem (DS), that 
serves a dual purpose: it acts as an interface between different databases where in- 
coming transactions (updates and queries) are to be executed, and also monitors the 
consistency of interdependent data. The evaluation of the consistency between in- 
terdependent data implies knowledge of all events and operations in the system. To 
facilitate monitoring of relevant events and operations, we assume the existence of a 
monitor [470], as an internal part of each DS. To identify all consistency terms that 
may be violated due to updates on interdependent data, the monitor in the D S  is 
informed of all updates of the data objects, which may require adding appropriate 
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commands to a transaction (e.g., see [517]) or linking the data  manipulation routines 
with procedures that  inform the monitor, tn addition, the monitor needs to know 
the changes to interdependent da ta  before and/or  after the updates are performed. If 
the consistency requirements are violated, the DS would invoke appropriate actions 
to execute restoration procedures on the da ta  managed by the DMs. Under the pro- 
posed architecture each site can be monitored independently. DSs at different, sites 
can communicate with each other, exchanging information between monitors. 

A transaction submitted to a DS is analyzed before being executed by the DM. 
In particular, the DS consults the IDS to determine whether the data  accessed by the 
transaction are dependent on da ta  controlled by other DMs. Then, a series of related 
transactions may be scheduled for execution to preserve mutual consistency of related 
data. The initially submitted transaction, and related transactions corresponding to 
restoration procedures, are submitted to the DMs that  manage the databases where 
da ta  to be updated are stored. After the execution of a restoration procedure, the 
values of the various components of the dependency descriptors that  are maintained 
by the monitor, including the consistency terms c,, are updated. Special precautions 
must be taken to properly serialize the execution of these monitoring transactions with 
respect to the updates, to assure that  the v~lues observed by the monitor correspond 
to consistent snapshots of data. Once it is determined that  the inconsistency among 
the interdependent da ta  has exceeded the limits specified in the IDS, either in the 
terms of the da ta  state, or temporal constraints, appropriate procedures are invoked 
to restore the consistency. 

The IDS  itself can be either centralized or distributed over multiple systems. In 
the la t ter  case, only those dependency descriptors that  have their source or target 
objects stored locally might be kept in the IDS partit ion associated with the DS. 

17.3 Correctness of Dependency Specifications 
In this section we discuss the issue of correctness of interdependent data  specifications, 
i.e., the D3s in the IDS. We first introduce a graphical representation of the IDS 
and then discuss the correctness issues that  can be determined by static examination 
of the IDS. We call interdependency specifications to be incorrect when they specify 
contradictory requirements, or when there are no potential schedules to enforce them. 
In this section we investigate two cases that  lead to incorrect specifications in the 
IDS: first, we identify incorrect specifications due to potential conflicts among the C 
components of D3s. Then, we show incorrect specifications due to conflicts among the 
P components of the D3s. 

17.3.1 Dependency Graph 
Each descriptor D 3, identifies a relationship between the source and the target da ta  
objects. The set of D3s that  comprise the IDS  can be represented as a directed graph 
that  we call the dependency graph. Figure 17.2 illustrates an example of such a graph. 

A database object participating in an IDS  is called a Data Object Vertex and rep- 
resented by a circle. A dependency descriptor D 3 between two database objects, called 
a Dependency Vertex, is represented by a square. The edges of the graph represent the 
directionality of the descriptors between the objects. An edge of the graph originates 
from a da ta  object vertex (source data  object), passes through a dependency vertex 
(representing the D 3 itself), and terminates at another data  object vertex (the target 
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I DM 

Figure  17.1: Architecture of a system for managing interdependent data  

da ta  object). If a D 3 has multiple source da ta  objects, we create edges from all partic- 
ipating source objects to the descriptor vertex. From that  descriptor vertex, another 
edge is directed to the target object vertex of the D 3. In Figure 17.2 the descriptor 
D~ specifies the relationship between the source object ol and the target object o3. 
Descriptor D 3 connects two source objects ol and o2, with the target object o4. An 
object vertex with no incoming edges is called a top vertex. In Figure 17.2 objects ol 
and 02 are top vertices. 

Every da ta  object vertex o~ has outgoing edges to all dependency vertices d~ in 
which it participates as a source object. A dependency vertex di, has incoming edges 

O1 02 

3 3 

03 04 

Figure  17.2: I n t e rdependen t  d~ ta  ob jec t s  and  thei r  descr ip tors  
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from all the da ta  object vertices that  are sources in the dependency descriptor it 
represents, and an outgoing edge to the vertex that  represents its target da ta  object. 
Hence, we have 

Vdi, in-degree(d~) E {1, n} 
Vd~, out-degree(di) = 1, and 
voj, o~t-degree(o~) �9 {0, n} 

Now, we examine correctness of 1DS specifications. 

17.3.2 Correctness  Requirements  Involving Consistency 
Predicates  

A possible case of conflict arises when a new D 3 has a target object that  is also the 
target  object of an existing D z. This case introduces the notion of conflict between da ta  
descriptors in the IDS. One possibility is to characterize two dependency descriptors 
as conflicting if they have the same data  object as their targets (see Figure 17.3). The 
problem with this specification is as follows. Suppose that  ol and o3 are da ta  objects 

(~) 

O1 02 

03 

Figure  17.3: Confl ic t ing D a t a  Descr ip tors  

related through descriptor D13 and 02 is related with object 03 through descriptor D~. 
The dependency predicates P1 of D~, and P2 of D~ are given below: 

P1:o3=o1+3 
P2 :o3 = 0 2 * 2  

Additionally, the consistency predicates C of both D3s specify that  the updates 
on the sources should be propagated to the targets immediately. If the initial values 
are ol = 1, o2 = 2 and o3 = 4, both D3s are satisfied. Suppose that  ol is updated to 
5, which is propagated to os through descriptor D~, updating o3 to 8 (5+3). Then, 
P2 predicate in D23 is violated. If o2 is now updated, the result of this update is 
propagated to o3 invalidating the effects of the previous update on o3 resulting from 
D13. In general, there is no way the system can ensure that  both dependency predicates 
are satisfied simultaneously. The problem is due to the existence of two D3s targeting 
the same object,  whose consistency predicates overlap (in this particular example they 
are exactly the same). In general, it is not clear what semantics these two D3s convey, 
and situations like this may lead to uncertainty about the D 3 that  updates the target.  
It is similar to the case where two rules have the same right hand side and both are 
triggered. Stonebraker et. al, refer to such updates as non]unctional [553]. One way 
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to avoid this problem is not to allow specification of a D 3 that targets a data object 
which is already a target of another D 3. 

However, this approach is rather restrictive, since there may be cases that a tar- 
get object must be mutually consistent with more than one source data objects. Our 
framework is flexible enough to allow in a single D 3 the specification of consistency be- 
tween multiple sources and one target. For this reason, we recommend incorporating all 
source objects having the same target into a single D 3. The collection of all consistency 
information regarding the same target object into a single D e gives a uniform struc- 
ture to the IDS.  The advantages of this approach include a better description of the 
I D S ,  a natural  criterion for fragmenting it, and also a safeguard against the creation 
of new D3s that may potentially undo actions that other D3s enforce. SchematicaJ]y 
we illustrate this by re-directing all edges terminating at the same target object, to the 
same descriptor vertex containing the D 3, as shown in Figure 17.3b. The target object 
always belongs to one D 3. Whenever a new D 3 is to be created targeting an object 
that is already the target of an existing D 3, the two descriptors must be merged to one 
with the P, C, and A predicates, appropriately augmented. w Therefore, we impose the 
following restriction to the dependency graph: each data object vertex has at most one 
incoming edge, i.e., its in-degree(o 0 E {0, 1}. 

17.3.3 Correctness Requirements Involving Dependency 
Predicates 

In this subsection, we discuss the correctness of dependency predicates, first limiting 
our discussion to Des involving singleton source sets. 

E x a m p l e :  Let us consider the following pair of Des: 
D~ :: $1 : oi D3 :: $2 : oj 

U1 : oj U2 : oi 
Pl  : oj  = o i + 2  P2 : ok = oj - 3  
C1 : immed ia te l y  C2 : immedia te ly  

A~ : Update_oj A2 : Update_ok 

In this example, a cycle exists between objects oi and oj in the dependency graph. 
If an update occurs on oi so that P1 no longer holds, oj becomes inconsistent, and 
must be updated by executing the procedure Update_oj. After oj has been updated, 
the P2 predicate is violated. That  means, oi is inconsistent, and requires immediate 
execution of the Update_o, procedure. This could be repeated indefinitely. 

The above abnormal behavior is caused by the fact that each Pi predicate of the 
corresponding D3s is not the inverse  of the other. If P2 were oi = oj - 2 instead of 
oi = o j - 3  the cycle would be acceptable since after performing A2, P1 and P2 are both 
satisfied. Therefore, no more updates will be performed due to restoration procedures. 
Cycles that do not cause infinite number of updates are harmless and are referred to 
as stable. 

One way to avoid unstable cycles is to disallow cycles in the I D S .  However, this 
may be too restrictive, since there may be applications that require cyclic dependencies. 
Therefore, we will require that all cycles in the I D S  are stable. 

To generalize the previous discussion let us assume a cyclic dependency graph as 
illustrated in Figure 17.4. All updates resulting from an update to ol can be propagated 

w the designer of the D 3 is knowledgeable about the semantics of the existing 0 3 targeting 
the same object, it is easy to merge the two D3s into one. 
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further, up to ok. The last dependency D~ introduces a cycle by linking objects ok 
and ol. Let Pi be the dependency predicate of D~, i = 1, 2 . . .  k. In order for the cycle 
to be stable, the composition of all predicates involved in the cycle must be equal to 
identity, i.e., (P1 o P2 o . . .  o Pk-1 o Pk) = I .  For example, if 

/~ : 02 =01  + 3 ,  
P2 : 0 3  = 0 2  - -  1, 
then for a stable cycle we must have 
Ps : ol = 0 3 - 2 .  

E 
-] 

02 
~ f  
r k..~ Ok 

Figure  17.4: A cyclic dependency  g raph  

The correctness of dependency specifications in the IDS, can be determined by a 
static analysis of the dependency graph. Conflicting descriptors and unstable cycles 
can be identified, every time a new D 3 is added, and appropriate actions can be taken 
to maintain an I D S  with correct specifications. The above notion of correctness can 
be extended to the cases that  involve multiple source objects. 

So far, we investigated some cases of correctness of specifications that  can be iden- 
tified by a static analysis of the dependency graph. In the remainder of the chapter 
we will investigate the issues of maintenance and enforcement of consistency between 
interdependent da ta  that  are being updated by transactions. 

17.4 Polytransactions 
Transaction management technologies have been developed to ensure proper inter- 
leaving of concurrent activities, and to maintain database consistency. Most of the 
concurrency control methods proposed for distributed databases use the concept of 
one-copy serializability to support mutual consistency of related data. In most cases, 
its use is limited to replicas. In the context  of semantically related da ta  maintained 
in multiple databases, one-copy seriMizability, and the corresponding replica-control 
mechanisms, may be unnecessarily stringent, expensive or difficult to implement. A 
possible approach to this problem is to use application/operation semantics to allow 
harmless non-serializable conflicts [209, 185]. 

In an environment consisting of multiple autonomous systems, the concept of global 
(multidatabase) transaction that  is composed of a well-defined set of subtransactions 
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may be too restrictive. The need to relax atomicity, isolation and durabifity are dis- 
cussed in various papers in [172]. The transactions we are interested in may not have 
all the ACID properties [240]. We require that  a transaction is correct in a sense de- 
fined by the semantics of the apphcation. Depending on the apphcation, requirements 
weaker than absolute consistency may optionally be imposed on updates performed on 
interdependent data. 

Some of the earher efforts that  support enforcement of weaker consistency criteria, 
but more hmited that  those that  can be expressed using D3s, or in a hmited system en- 
vironment, are as follows. Mechanisms to enforce c-seriahzability [631] and N-ignorance 
[333] have been proposed. Demarcation protocols allow maintenance of arithmetic con- 
strains [34]. An enforcement mechanism for some types of interdependent data  specifi- 
cations was proposed by extending a distributed transaction management approach in 
[517]. Actions to restore consistency between interdependent da ta  were discussed in the 
context of active databases with nontemporai constraints are discussed in [138, 257]. 
An idea comparable to triggers for the management of interdependent da ta  was dis- 
cussed in [407]. The authors used a table driven approach to schedule complementary 
updates (or invoke a contract) whenever a da ta  item involved in a multi-system con- 
straint was updated. The parent transaction would then terminate, without waiting 
for a chain of complementary actions to take place. 

To support  enforcement of da ta  consistency requirements as specified by D3s, we 
use the more flexible notion of a polytransaction to describe a sequence of related update 
activities. An important  difference between polytransactions and the above mentioned 
extended transaction models is that  polytransactions do not assume that  a set of 
component (sub-)transactions is known in advance. In this respect, polytransactions 
are closest to the transactional model for long running activities proposed in [140]. 
Polytransactions are dynamically generated when an update or other event could result 
in violation of the consistency specification given in D 3. Additionally, polytransactions 
allow selective and controlled relaxation of atomicity and isolation criteria, as discussed 
later. 

A polytransaction P is a '~transitive closure" of a transaction T submitted to an 
interdependent da ta  management system. The transitive closure is computed with re- 
spect to the IDS. A polytransaction can be represented by a tree in which the nodes 
correspond to its component transactions and the edges define the "couphng" between 
the parent and children transactions. Given a transaction T, the tree representing its 
polytransaction P can be determined as follows. For every data  dependency descriptor 
D 3 such that  a da ta  item updated by T is among the source objects of the D 3, we 
look at the dependency and consistency predicates P and C. If they are satisfied, no 
further transaction will be scheduled. If they are violated, we create a new node corre- 
sponding to a (system generated) new transaction T'  (child of T) to update the target 
object of the D 3. T ~ will restore the consistency of the target objec t. Specification of 
weaker mutual  consistency criteria will result in less frequent violations of consistency. 
Hence, the restoration procedures (and the corresponding children transactions) will 
be scheduled less often. 

When a user submits a transaction that  updates a da ta  item that  is related to other 
da ta  items through a D 3, this transaction may become the root of a polytransaction. 
Subsequently, the system responsible for the management of interdependent data  uses 
the IDS to determine what descendent transactions should be generated and scheduled 
in order to preserve interdatabase consistency. Execution of a descendent transaction, 
in turn, can result in generating additional descendent transactions. This process 
continues until the consistency of the system is restored as specified in the IDS. 
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The ways by which a child transaction is related to its parent transaction within 
a polytransaction are specified in D 3 by the execution mode of the action component. 
This relationship is indicated as a label of the edge between each parent and its child in 
the polytransaction tree. A child transaction is coupled if the parent transaction must 
wait until the child transaction completes before proceeding further. It is decoupled if 
the parent transaction may schedule the execution of a child transaction and proceed 
without waiting for the child transaction to complete. 

If the dependency schema requires immediate consistency, the nested transaction 
model may be used, in which the descendent transactions are treated as subtransactions 
which must complete before the parent transaction cast commit. A two-phase commit 
protocol may be used in this case. A coupled transaction can be vital in which case 
the parent transaction must fail if the child fails, or non-vital in which case the parent 
transaction may survive the failure of a child [210]. 

Traditional transactions are characterized by the ACID properties. Polytransac- 
tions provide a mechanism to support these properties if needed, using appropriate 
specification of the consistency predicate and the execution mode action predicate of 
the dependency descriptors that  are used to create a polytransaction. I t  is the respon- 
sibility of the D 3 designer to specify which of the ACID properties a polytransaction 
may have, as follows: 

A t o m i c l t y  A polytransaction supports atomicity if all of its transactions are executed 
in vital mode. Atomicity is relaxed if at least one of its transactions is executed 
in non-vitalmode. �82 

C o n s i s t e n c y  We discuss issues of consistency of polytransactions later in Section 17.6 
of this chapter. 

I s o l a t i o n  A polytransaction supports isolation if all of its transactions are executed 
in coupled mode, and the D 3 consistency requirements specify immediate consis- 
tency. Otherwise, isolation is relaxed since values of a da ta  object that  is within 
a consistent state, can be seen by other transactions. 

D u r a b i l i t y  As in other extended transaction models, if every transaction of a poly- 
transaction is durable, then the whole polytransaction supports durability. 

Several new transaction paradigms have been proposed recently in the literature 
that  are based on various degrees of decoupling of the spawned activities from the 
creator (e.g., [327]). Triggers used in active databases [139] are probably the best 
known mechanism in this group. The main problem with asynchronous triggers is that  
the parent transaction has no guarantee that  the activity that  was triggered will, in 
fact, complete in time to assure the consistency of the data. 

To allow the parent transaction some degree of control over the execution of a child 
transaction, the concept of a VMS mailbox has been generalized in [210]. Similar ideas 
have been presented in [48], and in [258], where the notion of a "persistent pipe" has 
been introduced. Both generalized mailboxes and persistent pipes allow the parent 
transaction to send a message to a child process and know tha t  the message will be 
eventually delivered. If such a guarantee is sufficient, the parent transaction may then 
commit, without waiting for the completion of the actions that  were requested. The 
parent or its descendant may check later if the message has been indeed received and 
take a complementary or compensating action. 

�82 definition only coupled transactions can be vital or non-vilal. 
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17.5 Consistency of Interdependent Data 

In this section we present the concept of consistency of interdependent data. First we 
discuss about the states, the events, and the transitions that  affect the consistency of 
interdependent da ta  objects. Then we define the measures that  can be used to quantify 
the consistency of interdependent data. Finally we discuss the issue of when a target 
da ta  object can be directly updated outside of the polytransaction mechanism without 
violating consistency requirements of interdependent data. 

17.5.1 States of Interdependent Data Objects 

For every dependency descriptor, its source and target data  objects must be consis- 
tent according to the specified degree. However, the source and the target objects go 
through various states of consistency: Initially the target object is fully consistent with 
its source objects. Then, updates on the source object may violate the relationship 
between them, but the discrepancy may still be within the limits specified in the D 3 
(partial  consistency). Finally, the source and target will diverge beyond the tolerable 
limits (inconsistency). Then a restoration procedure will update the target, restoring 
full consistency. This scenario is repeated in a cyclic manner. In this section we classify 
the various states of consistency a da ta  object can be in, and we introduce metrics to 
identify in detail how consistent source and target objects can be at any point in time, 
with respect to a given D ~. 

D e f i n i t i o n  17.5.1 At  any instant of time, the target data object within a given D 3 
is defined to be current with respect to a given D 3, i f  the dependency predicate P 
is satisfied. The data item is said to be consistent if  the dependency predicate P is 
violated, but the consistency predicate C is not. Hence, if  a target item is current then 
its consistency is implied, but the opposite is not true: an object may be consistent 
and not current. I f  both P and C are violated, the target data object is inconsistent 
and the corresponding D 3 is violated. A multidatabase with an I D S  is defined to be 
in a consistent s tate i f  every target data object, is either current or consistent, i.e., 
VD 3 E IDS ,  D3.C = true. 

current consistent inconsistent 

tl  t3 

t~ t4 

te 

F igure  17.5: Transitions of a target da ta  object 

Figure 17.5 illustrates the transitions among the three states (current, consistent 
and inconsistent) of a target da ta  object. These transitions occur as a result of the 
changes in values of the P and C predicates. The transitions are explained below: 
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�9 Transition t l :  the state of the target data object changes from current to con- 
sistent, as a result of an update to a data item belonging to the source set S. 
The consistency predicate C continues to be satisfied, although the values of the 
temporal or data state consistency terms may be changed. 

�9 Transition t2: a current target data object becomes inconsistent as a result of 
an update on an object in the source set S. Either the data state and/or the 
temporal terms violate the consistency predicate C. 

�9 Transition ts: a target data object is transformed from the consistent to the 
inconsistent state, due to a change in the terms of the C predicate. 

�9 Transition t4: the purpose of a restoration procedure is to change the state of 
a target data object, to either consistent or current. Transition t4 occurs when 
we perform a partial restoration, so that an inconsistent data object becomes 
consistent, but not current. Various cost policies may indicate that a partial 
restoration to a consistent state is more appropriate than a (sometimes more 
expensive) restoration to a current state. 

�9 Transition ts: this transition occurs when the state of the target data object 
changes from consistent to current. When the target object is consistent, we 
have the choice of either doing nothing, or executing a restoration procedure to 
make the data object current. This choice can be made considering performance 
parameters, load balancing, etc. Execution of restoration procedures in this 
manner will be referred to as eager restoration of current state. 

�9 Transition t6: an inconsistent data object becomes current, by invoking a restora- 
tion procedure in one of the following ways: 

(a) the restoration procedure is executed when it is discovered that C is vio- 
lated. This is referred to as late restoration of current state. 

(b) the particular data object is marked as inconsistent but no action is taken 
until an access to the target object is attempted. Then, the restoration 
procedure is activated before the access is granted. This method is referred 
to as a lazy restoration of current state. This strategy is used in [517]. 

External events, such as source updates or time restrictions, change the state of 
consistency of a data object in the IDS. In order to estimate the degree of inconsistency, 
we need to precisely identify how "far away" a target object is from its source, or how 
inconsistent it is with respect to the consistency requirements specified in the DSs. 
However, it is not enough, to say that an object is current, consistent or inconsistent. 
The monitor must be able to identify the relative discrepancy between the source and 
the target at any instant of time. Below, we present definitions that are used as metrics 
to calculate the relative consistency between the source and the target objects. From 
now on, the word consistent will be used to mean either Current or consistent, unless 
we explicitly specify otherwise. 

1 7 . 5 . 2  M e a s u r e s  o f  Consistency 
We arc interested in the semantics of consistency requirements of interdependent data. 
We estimate the degree of inconsistency between two objects connected by a D 3. We 
will view each consistency predicate C of a D 3, as a pair of the two dimensions: time 
and data state. 

As an example, let us consider the following D3: 
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S :  a 

U : b  
P : a = b  
C : cl Y c2 

cl = 5 versions o f  a 
c2 = e(48 hours) 

A : Update_Target 

This example identifies two interdependent data objects a and b. The target data 
object b is a replica of the source data object a, as specified by the dependency predicate 
P. If the source object is updated the target object becomes inconsistent. We specify 
that we can tolerate inconsistencies between the source and the target up to 5 versions 
of a or until a 48 hour period ends. 

D e f i n i t i o n  17.5.2 A state-time-pair (stp) is a pair (s,t), where s is a value in the 
data state dimension, and t is a value in the time dimension. 

A value along the state dimension identifies the data state of a database object, and a 
value in the time dimension specifies time. We use the syntax described in a previous 
section for data state and temporal consistency terms. The pair (5 versions, 48 hours) 
is an example of an stp. In general, s and t, can be logical formulae consisting of various 
types of consistency terms. For example, if C = 5%(Employee), then the data state 
dimension of this term is s = 5%(Employee).  A detailed presentation of the different 
consistency terms can be found in [519]. For this chapter, we assume that both s and 
t can be represented as linear functions. 

D e f i n i t i o n  17.5.3 The limit of discrepancy along a D 3, L(D3), is an stp, (ds, dr), 
where ds and dt specify the maximum allowed discrepancy along the data state and 
temporal dimensions, between the source and the target database objects of a dependency 
descriptor. 

For example, the limit of discrepancy between the source and the target objects of the 
above D 3, is either 5 versions or 48 hours specified as L(D 3) = (5 versions,  2 days). 
The limit of discrepancy of every D 3 is constant, and can be extracted from the C 
predicate of the D 3 itself. 

D e f i n i t i o n  1 7 . 5 . 4  The consistency restoration point of a D 3, I ( D3 ) , is an stp , (i~, it), 
where i~ and it specify the values along the data state and time dimension when con- 
sistency between source and target objects was restored. 

The value of I changes every time we restore consistency between the source and the 
target data objects. It is the initial point of reference, used in calculation of discrepancy 
between source and target data objects. In the above D 3, assuming that the value of 
the 30th version of the source object a was propagated to the target object b, at 10 
a.m on 26th of February 1992, then I (D  3) = (30, 26 - 02 - 1992~10). 

D e f i n i t i o n  17.5.5 The Current Value C of discrepancy along a D z, C(D3), is an stp, 
(c~, ct), where cs and ct identify the distance between current state of the source and 
target objects measured in terms of data state and time. 
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The da ta  state dimension c, of the current value changes every time an update 
is performed on the source object, and the temporal dimension ct of the current 
value changes constantly with time. If an update has been performed on object 
a, 15 hours after the last restoration of.consistency the current value of our D 3 is 
C(D 3) = (1 version, 15 hours). 

D e f i n i t i o n  17.5.6 The Final Value F o] a D 3 is an stp, (fs, f t ) ,  defining a point 
when the consistency between source and target objects must be restored. 

The value of the final state is calculated as the sum of the consistency restoration 
point plus the specified limit of discrepancy, i.e., f~ = is | ds. The operator @ de- 
notes summation on da ta  states and carries a broader meaning than the regular arith- 
metic operator "+",  since we have different types of da ta  state terms that  must be 
"added" together. The f t  is calculated as the sum of the time of consistency restora- 
tion plus the specified limit of discrepancy, i.e., ft  = it + dr. In our D 3, we have 
F = (35 versions, 28 - 02 - 1992@10). 

D e f i n i t i o n  17.5.7 The source S and the target It data objects of a D 3 become incon- 
sistent with respect to that D 3, when the value of the restoration point I ( D  3) plus the 
current value C( D 3) exceed the final value F( D3), i.e., when I ( D  a) + C( D 3) > F(  D3). 

Hence, D z is violated (the state of the target object is inconsistent) when at least 
one of the following cases occur: 

1. the value of the da ta  state at restoration point is plus the value of the current 
da ta  state c~, exceed the value of the final state f~, i.e., c~ �9 is > f~, or 

2. the value of the temporal dimension at restoration point it, plus the value of the 
current temporal  dimension et, exceed the final deadline ft, i.e., ct + it > ft .  

As a direct consequence of the above, the source and target da ta  objects are current 
or consistent if the restoration point of the descriptor, I (D  3) plus the current value 
of the descriptor C(D a) has not reached the final value F(D 3) of the same D z, i.e., 
I ( D  ~) + C(D 3) < F ( D  3) r S is consistent w i th / / .  

17.5.3 Updatability of Objects 
The I D S  encapsulates the information about da ta  objects and dependency descriptors 
and can be used to maintain the consistency of related data  through polytransactions. 
One of our primary concerns in the management of interdependent da ta  is to assure 
that  applications will always access interdependent da ta  in a consistent state. Updates 
performed on a da ta  object represented by one of the top vertices of the I D S  are 
guaranteed to propagate to all the dependent objects, to maintain mutual  consistency. 
However, if an external update (i.e., an update not resulting from the polytransaction 
mechanism) is performed directly on a da ta  object that  is a target of a dependency 
descriptor, then we may introduce inconsistencies, which cannot be corrected by poly- 
transactions. Such updates occur outside of the consistency maintenance framework, 
specified by the set of dependency descriptors. The results of such updates can be in- 
validated by subsequent invocations of polytransactions. Also, it is not clear whether 
such updates should be propagated along the dependency descriptors. 

One possible solution to the above problems that  guarantees consistency of inter- 
dependent da ta  read by applications, is to disallow external updates on target data  
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objects. Therefore, external updates to the interdependent data  are allowed only on 
the da ta  objects represented by top vertices. All da ta  objects managed by the I D S  
can be read by applications at any time. 

Although the above mechanism could guarantee mutual consistency of interdepen- 
dent da ta  of the entire IDS ,  it is quite restrictive. Frequently, we would like to perform 
(possibly limited) external updates on target data  objects in addition to the updates 
propagated from source da ta  objects by polytransactions. At the same time we do 
want interdependent da ta  to still be mutually consistent as specified in the IDS .  We 
can achieve this, by allowing external updates on target data  objects only if they do 
not violate consistency requirements specified by any D 3 in IDS .  Since we realize that  
maintaining consistent da ta  using polytransactions and allowing updates outside the 
polytransaction mechanism, are two contradictory goals, we discuss below a compro- 
mise solution, based on restricting external updates. 

I . Q  I [ I �9 I ,  .... 
ol D~ D~ o~ 

F igure  17.6: Cons is tency  zone for ob jec t  o2 

Let us consider an object (e.g. 02) which participates in two D3s: as a target in D~, 
and as a source in D23 (Figure 17.6). We will examine the effects of an external update to 
02 on other objects to which o2 is related. If o2 is externally updated, the dependency 
/)1 and consistency C1 predicates of D~ may be violated. In this case, D~ would 
be violated, which is not acceptable according to our criterion of mutual consistency. 
However, if the consistency predicate C1 is still satisfied, the external update was within 
consistency limits. This kind of update does not violate the consistency requirements 
between ol and o2. On the other hand, if we examine the relationship between o2 
and 03 specified by descriptor D~, we may find that  the update on o2, may have been 
propagated to o3, which is not desirable. The propagation of external updates on 
target objects through the polytransaction mechanism is undesirable, if the updates 
do not originate from a top object, because we will face the problems of inconsistency, 
described earlier. Therefore, an external update of object o2 affects all D3s that  axe 
adjacent. 

The consistency predicates of these descriptors define a zone of consistency around 
a da ta  object. In general, the da ta  objects that  are targets of a dependency descriptors 
represent derived da ta  and, hence, should not be directly updated unless a complemen- 
tary  dependency descriptor to a source data  item exists. However, we may allow direct 
updates to a da ta  object, if they would not violate any mutual consistency require- 
ments specified in the D3s it participates, either as a source object or as the target 
object. Such updates maybe useful for temporarily changing the value of a data  object 
to a new value for the purpose of running a local application. The updated value repre- 
sents a non-permanent patch and would be overwritten by the "correct" value, by the 
polytransaction originating from the source data  item. However, such direct updates 
on target da ta  objects should also be directly sent to the top object. The top object 
update will flow through the polytransaction mechanism (and may be combined with 
other updates) to overwrite this target object. 

D e f i n i t i o n  17.5.8 The zone of consistency of a data object is specified by an stp, 
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(c,, c 0 that is the intersection of the limits of discrepancy Li(D z) of all the descriptors 
in which the object participates (as source or target). 

If an external update changes the value of the target data object in such a way 
that the object remains within its zone of consistency, then the update is allowed. The 
zone of consistency of an object can be adjusted by changing the limits of discrepancy 
allowed by the relevant dependency descriptors. However, the stricter the consistency 
specification is, the smaller zone of consistency we have, which results in limiting ex- 
ternal updates that are allowed. We also see that the updates are performed according 
to semantic criteria of consistency specified in D3s, as opposed to a fixed number of 
updates [631], or a predetermined number of transactions [333]. This is because we 
believe that even a single update can irrecoverably destroy the consistency between re- 
lated data objects, if semantic information regarding affected data objects is not taken 
into account. 

In addition to the updates we mentioned above, we can also allow updates on tar- 
get objects if there is another D 3, directed from the target object to its source with 
execution mode marked as vital and coupled and immediate consistency specification. 
We allow such updates, since they invoke the polytransaction mechanism to propa- 
gate them immediately. Such example was previously specified using a pair of DSs 
identifying a case of replicated data with primary and secondary copies. 

1 7 . 6  C o n c u r r e n t  E x e c u t i o n  o f  P o l y t r a n s a c t i o n s  

In this section we discuss issues concerning the consistency of a system of interdepen- 
dent data in the presence of concurrent polytransactions. A polytransaction starts at 
a site and its (sub)transactions may propagate to various other sites to maintain or re- 
store mutual consistency of related data. A number of polytransactions may be active 
at the same time, updating related data objects. We assume that initially the system 
contains consistent interdependent data objects, i.e., the set of all D3s in the I D S  is 
satisfied. In this section we will investigate the effects of concurrent polytransactions 
on the consistency of the interdependent data objects. We first present the correctness 
criterion for the execution of a single polytransactioa. Then we define when a con- 
current execution of polytransactions is correct. In the discussion below, we use P, to 
denote a polytransaction and P[ to specify a transaction of polytransaction P~ that 
executes at site j .  

17.6.1 Correctness of the Execution of a Single Polytrans- 
action 

First, consider the execution of a single polytransaction. As we described earlier a 
polytransaction starts at a particular site, originated by an external update or a tem- 
poral event, and propagates dynamically to other sites where interdependent data are 
stored. 

D e f i n i t i o n  17.6.1 The projection of operations from different polytransactions at a 
site over time represent the local history at that site. 

A polytransaction accesses various objects in different sites, by means of its trans- 
actions. We identify the set of data objects a transaction reads as the read-set of the 
transaction, and the set of the data objects it writes as the write-set of the transaction. 
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D e f i n i t i o n  17.6.2 A D 3 is incident to a (poly)transaction at a site, if  the set of its 
source objects intersects the write-set of a transaction, or its target object belongs to 
the read set of  the transaction. 

In the tradit ional  transaction model, it is assumed that  each transaction when exe- 
cuted alone on a consistent database will execute correctly, transforming the database 
to another consistent s tate [49]. The equivalent requirement for polytransactions is 
that  a polytransaction when executed alone on a consistent system of interdependent 
data,  will terminate and leave the system consistent. The consistency is determined 
by the I D S .  The above can be stated more formally as: 

D e f i n i t i o n  17.6.3 The execution of a single polytransaction is correct if and only if: 

�9 Every transaction of a polytransaction obeys intra-polytransaction precedences in 
all local histories. 

�9 Af ter  the execution of every transaction of a polytransaction the temporal and 
data state predicates of all D3 s incident to the polytransaction at all sites are 
satisfied. 

17.6.2 Conflicts  in Polytransactions 
Now, we consider concurrent execution of polytransactions. In our model we incorpo- 
rate a two level approach to the concurrency control. At the lower level are transactions 
that  belong to polytransactions. At this level we rely on traditionM concurrency control 
protocols supported by the D M s  and we assume that  these transactions are executed 
correctly by the local systems, with regards to the ACID properties. Thus, we avoid 
problems such as lost updates, non-atomic behavior of transactions, etc. In this chapter 
we will not address the lower level, and we will concentrate on the polytransaction level. 
We discuss consistency problems due to concurrent execution of different transactions 
that  belong to separate polytransactions. These transactions are executed under the 
control of local systems, with only limited global coordination. 

We start  by examining the notion of conflict for polytransactions. We assume that  
the I D S  composed of Das, is correct, i.e., it does not include cycles in the dependency 
graph. 

D e f i n i t i o n  17.6.4 Two transactions Ti and Tj are in conflict on a dependency de- 
scriptor D 3 if and only if they perform conflicting operations on data objects that 
belong to the source set S of D 3. Two operations are conflicting if at least one of them 
is a write operation. 

D e f i n i t i o n  17.6.5 Two polytransactions P~ and Pj are in conflict with respect to the 
IDS i f  and only i f  they contain transactions Ti E Pi and Tj E Pj that conflict on any 
D 3 in the IDS. 

Figure 17.7 shows a dependency graph with source objects a,b and targets c,d in- 
terconnected through descriptors D~ and D~. If the source object a is updated by 
polytransaction P,,, and the source object b is updated by polytransaction Pb, then P ,  
and Pb are examples of conflicting polytransactions. 

Since uncontrolled updates from conflicting concurrent polytransactions may lead 
to distortion of da ta  and violation of mutual consistency, we need to control the execu- 
tion of concurrent polytransactions so that  consistency of the data  is preserved. One 
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F igure  17.7: A dependency  g raph  and  conflict ing po ly t r ansac t i ons  P~, P~ 

way of achieving this goal is to use serializability for polytransactions, which is anal- 
ogous to global serializability. However, in the IDS, the problem of indirect conflicts 
caused by local transactions serialized between polytransactions and possibly chang- 
ing their serialization order [218] does not arise. This is because we either completely 
disallow external (local) updates or limit them to stay within the zone of consistency, 
thus assuring that  they are insignificant. 

The correctness of concurrent execution of polytransactions relies not only on the 
execution order and precedence of their transactions, but also on the specification of the 
D3s. On one hand, we have a more precise specification of what is considered consistent, 
so we can exploit semantic information to preserve consistency. On the other hand, 
we may have different actions and restoration procedures and various timing intervals 
during which a transaction may run, which impose additional restrictions. 

Since we know the code of the conflicting transactions we can use this informa- 
tion to customize serializability for polytransactions. If a descriptor D 3 contains only 
a single restoration procedure, then two conflicting polytransactions will execute the 
same transaction twice. Then under certain conditions we can demonstrate that  the 
execution of a non serializable schedule, may stil] be correct, regardless of the seri- 
alization order. The basic assumption is the following: If the calculation of the new 
value of the target object d (Figure 17.7), is a function of both sources a and b, and 
each transaction reads the same latest version of the sources when it s tarts  executing, 
then the two conflicting transactions will execute the same code with identical input 
(a, b) and produce the same output d. The order of their operations may violate seri- 
alizability but  the final value of the target object will be the same regardless of their 
relative order. If an edge appears in the serialization graph, due to events of this type, 
that  introduces a cycle, we can safely remove this edge from the serialization graph, 
eliminating the cycle, thus making the schedule correct. 

In this case, by examining the specification of the D3s we may allow some relaxation 
of serializability. This, in turn, may lead to the reduction of concurrency control 
overhead involved in processing of polytransactions. A more consezvative approach 
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where serializability is preserved can be found in [207]. The authors introduce two 
concurrency control mechanisms for concurrent execution of polytransactions. The first 
is a deadlock free graph locking mechanism and the second is a variant of multiversion 
t imestamps with rollback, that  never rejects operations arriving out of t imestamp 
order. However, this conservative approach assumes ])3s without temporal predicates. 
Concurrent execution of polytransactions including temporal predicates is examined 
next. 

17.6.3 Polytransactions with Temporal Constraints 
So far, we discussed the issue o f  concurrent execution of polytransactions triggered by 
D3s that  do not contain temporal predicates. In the absence of temporal constraints, 
it  is sufficient to define the notion of "conflict" and then derive a protocol that  resolves 
conflicts. Usually "preservation of precedence order" is an acceptable criterion of cor- 
rectness. However, time itself implies an order, an absolute precedence between events 
(e.g. read and write operations). The temporal order of read and write operations on 
an object in a database,  may not necessarily be the same as the precedence order im- 
posed by the concurrency control mechanism. In this subsection we address the issue 
of correctness of concurrent execution of polytransactions under temporal constraints 
specified in the D3s. 

In the following discussion we assume synchronized site clocks and ordering of 
events as in [348]. We also assume that  a timestamp TS(T) which indicates a real time 
value, is associated with a transaction T, similar to the value date by Litwin and Tirri 
[374]. 

D e f i n i t i o n  17.6.6 Transaction Ti precedes in time transaction Tj (Ti ~ Tj)  if Ti has 
a timestamp smaller than the timestamp o fT j ,  i.e., TS( t i )  < TS( t j ) .  This precedence 
order defines a temporal order between the transactions Ti and Tj. 

D e f i n i t i o n  17.6.7 Two transactions Ti E Pi and Tj E Pj are Temporally Serialized 
(TSR),  if and only if, their serialization order coincides with their temporal order, i.e., 
if Ti ~ Tj, then Ti ~ Tj, or if Tj --+ Ti, thenTj ~-+ Ti. 

When we deal with temporal  constraints, we have to expand our criterion of correct- 
ness in concurrent execution of polytransactions with temporal constraints as follows: 

D e f i n i t i o n  17.6.8 A schedule of concurrent execution of polytransactions with tempo- 
ral constraints is considered correct, if and only if every pair of conflicting transactions 
Ti E Pi and Tj E Pj is temporally serialized. 

It is obvious that  the introduction of temporal constraints in the polytransactions 
modifies the definition of correctness. In particular, a schedule may be seriafizable, but 
still incorrect if temporal  predicates are not satisfied. On the other hand, if a schedule 
obeys temporal  predicates but is not serializable then it is not correct either. The 
problem introduced by the temporal constraints has been identified by researchers in 
the area of real time database systems, as a "trade-off with completeness, accuracy, 
consistency and currency" [463]. It should be noted that  the existence of temporal 
constraints in polytransactions gives them characteristics of long-lived transactions, 
executing for prolonged periods of time, and potentially increasing the number of con- 
flicts. 
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A variation of the Timestamp Order mechanism can be used to correctly serialize 
conflicting polytransactions. However, the t imestamps we use in this mechanism reflect 
real time as mentioned earfier. The time of an update on a top object, identifies the 
t imestamp TS, given to a polytransaction. 

The basic idea is as follows: We order conflicting operations from transactions 
in t imestamp order. If an operation comes out of order, the transaction is rejected, 
and resubmitted with a new timestamp. However, if the rejected transaction has a 
temporal  constraint that  triggered it, it will not be resubmitted. This can happen 
if transactions with temporal  predicates carry information that  is "older" than the 
conflicting transaction that  has already accessed the target object. We do not want 
the temporal  transaction to overwrite a value that  has been written by a "younger" 
non-temporai  transaction. This implies that  the regular "recent" transactions have 
precedence over transactions triggered by temporal predicates. A temporal constraint 
is included in a D 3 specification to propagate the update to the target object, after some 
t ime period. In the meantime, if a more recent transaction updated the target  object, 
then this update carries more recent information, and the rejected update should not 
be resubmitted. The same reasoning applies to the case of two conflicting transactions 
that  both contain temporal  predicates. This policy is similar to the Thomas-Write- 
Rule [49] which ignores write operations that  a t tempt  to place an obsolete value in 
the database. The above technique guarantees TSR between concurrent execution of 
polytransactions at the expense of rejection of transactions with temporal constraints. 

The advantage of using IDS to manage interdependent da ta  is that  the periods of 
da ta  unavailability can be controlled (or eliminated) by an appropriate specification 
of the temporal  terms within the consistency predicates. However, the problems of 
temporal  consistency of da ta  needs further investigation. 

17.7 C o n c l u s i o n  

This chapter addresses issues in managing interdependent data. We provided a brief 
overview of the specification of the dependency descriptors, and the interdatabase 
dependency schema. We also proposed a conceptual architecture of a system that  can 
be used to manage interdependent data. 

We explored the issue of correctness of specifications. I t  involved investigation of 
semantic information stored in the interdatabase dependency schema and potential 
conflicts that  may arise due to the specification of the consistency and dependency 
predicates. Two correctness checks we proposed were a) avoiding multiple dependency 
descriptors directed to the same target da ta  object and b) avoiding cycles that  do not 
satisfy certain properties. 

Then, we described the polytransaction mechanism that  could be used to auto- 
matically enforce consistency of interdependent da ta  according to the requirements 
specified in the interdatabase dependency schema. We also discussed issues concerning 
the consistency of interdependent data. We presented a classification of various states 
of consistency of a data  object, and identified the events that  lead to changes to its 
s tate of consistency. We showed that  the consistency of interdependent data  can be 
violated if uncontrolled updates are allowed outside of the polytransaction mechanism. 

Finally, we investigated the concurrent execution of polytransactions. We discussed 
the information needed to reason about the correctness of schedules of concurrent poly- 
transaction execution and identified cases where they can be enforced. We also pre- 
sented a preliminary solution concerning the concurrent execution of polytransactions 
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with temporal specifications. 
This chapter presents the results of our on-going research project on managing 

interdependent data at Bellcore. It is inspired by the data consistency requirements 
in industrial environments. Real examples of interdatabase dependencies specified as 
D3s can be found in [514].. 



Chapter 18 

F E M U S  : A Federated Mult i l ingual  Database  Sys tem 

Martin Andersson*, Yann Dupont t , Stefano Spaccapietrat, Kokou Y6tongnon w Markus 
Tresch �82 Haiyan Ye II 

18.1 I n t r o d u c t i o n  

The increased availability of various databases in large corporations has created the 
need to federate the databases into loosely coupled collections of autonomous systems 
to aJ]ow controlled sharing of information and at the same time preserve the autonomy 
of each participant. Traditional distributed database (DDB) research has provided the 
earliest solutions to information sharing in distributed computing environments. The 
DDB approach, however, assumes that a single and integrated conceptual view of the 
databases must be provided to the users. Federated database (FDB) schema/system 
architecture design has partially benefited from this effort. For example, the design 
of both DDB and FDB systems includes functionalities such as: schema integration, 
query processing, transaction management. The DDB techniques used to provide these 
functionalities can be extended and applied to FDBS. The main difference between the 
two approaches are in the classes of users and the levels of component autonomy they 
support. Users of DDB systems access shared data only through the single conceptual 
schema of the DDB. This facilitates the enforcement of integrity constraints attached 
to the DDB, in much the same way (from user's point of view) as centralized DB 
system's. FDB systems, on the other hand, generally support two classes of users: fed- 
eration users manipulate shared distributed information through one or more federated 
schemas; and local users, to whom the federation is transparent, access local data only. 
Preservation of local access to, and control over, the local database is essential for the 
support of component autonomy, the most salient feature of FDB systems. 

Typically, federations are built upon heterogeneous systems and may include data- 
bases which support different data models: relational, CODASYL, and object-oriented 
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da ta  models. One of the important  issues that  need to be addressed is therefore the 
da ta  model translation problem. Usually, to avoid a proliferation of translators, the 
use of a common data  model within the distr ibuted/federated system is encouraged. 
Semantic or object- oriented da ta  models represent the best candidates for this role. 
Translations between semantic, object-oriented and relational models have largely been 
dealt with in the past. They have been commonly developed for two major cases: 1) 
to support  a database design process where the database is first described in a con- 
ceptual schema which is subsequently converted into a logical schema [77]; and 2) to 
support  the design and operation of traditional DDB system. In the former case the 
translations are one-way processes which produce a single logical target schema from 
the source conceptual schema. As user queries are expressed and performed directly 
on the logical schema, there is no need for further translations. In the lat ter  case, 
interoperabili ty among da ta  models is needed to move data  in and out from the DDB. 
However, interoperabili ty is usually not required among data  manipulation languages, 
as most of the proposed DDB systems are monolingual: they support only one DML, 
the one associated to the common data  model in use ([144] is an exception). The 
distinguishing feature of federated environments is that  they have to be multilingual, 
because of the autonomy goal [318]. Therefore, the support of interoperability among 
DMLs becomes in fact the primary criterion for the specification of data  model trans- 
lations. Besides the translation problem, interoperability in the federated approach 
necessitates a mechanism for making da ta  available to the federation and for ensuring 
access to the data. This mechanism is usually called an import /expor t  facility. Data 
exchanges require first that  description of accessible (exported) data  be available to all 
users of the federation or designated set of partners, and second that  the information 
be presented to them in their local model (in a model they understand). Partners may 
then select (import) da ta  of interest to them and include/integrate them into their 
view of the FDB. Integration facilities are the essential feature in building this unified 
view from the different pieces of imported data. 

This paper presents the approach of an ongoing research project, FEMUS (FEder- 
ated MUltilingual System), jointly developed by the database research groups at Swiss 
Insti tutes of Technology (EPFL and ETHZ). The primary goal of the project is to 
provide a framework for investigating semantic related issues of interoperable database 
architectures. The focus of this paper is particularly on federated database construction 
issues. The FEMUS project itself is not discussed in detail. Instead, we examine two of 
its most important  aspects: data  model translation and integration issues. The former 
is dealt with in section 3, while the lat ter  is the topic of section 4. Section 2 presents 
the architecture of the FEMUS prototype and the modeling paradigms on which in- 
teroperabili ty is being experimented. Section 5 discusses semantics issues related to 
schema negotiation and da t a /me tada t a  exchange. Section 6 reviews implementation 
aspects related to the expor t / impor t  mechanism. Section 7 concludes the paper. 

18.2 F E M U S  

The aim of the FEMUS project is to set up a framework for building a federated mul- 
tilingual database system. By federated it is meant that  the global system provides 
the functionalities to include, as components, different heterogeneous database sys- 
tems cooperating together, and that  the major goals are preserving site autonomy and 
supporting maximum flexibility in the interoperability mechanisms. By mult~lingualit 
is meant that  an equally important  goal is to build a system which can be accessed 
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by different users through the local interface (data  model and manipulation language) 
they are used to. 

The initial version of the project includes two different database approaches: 

�9 E R C +  [447], an object-based extension of the entity- relationship model, in- 
cluding the specification of an ER algebra [446] and calculus. The fundamental 
concepts of the ERC+ model are entities, relationships, and complex objects. 

�9 C O C O O N ,  an object-oriented da ta  model with an object algebra that  was 
developed based on the nested relational algebra [501, 500,494, 493]. The ba- 
sic concepts are objects and functions. COCOON, like DUAL [451], promotes 
separation between the type and class hierarchies. This separation introduces 
original problems that  need to be addressed by the model translation processes. 
The two approaches are briefly presented in the subsections hereinafter. Study- 
ing interoperabllity between these two approaches is of particular interest, as 
they represent, as stated above, two very important  and widely used families of 
models possible in a federation. 

In [515], five schema levels were proposed as a reference architecture for federated 
database systems, separating local pre- existing schemas, component schemas (com- 
mon model counterpart  of local schemas), export schemas, federated schemas (FS), 
and external schemas defined over federated schemas. The federated schemas hold a 
global dictionary with additional information about fragmentation and allocation of 
distributed objects. Thus, to the users of FS, both fragmentation and allocation are 
fully transparent.  The FDBS is responsible for transforming the global queries and 
updates into statements for the component databases. FEMUS basically adheres to 
this proposal, while adding one more level to allow users to integrate various import  
schemas (derived from either export schemas or from federated schemas) to form their 
own federation. In this way ad-hoc federations may be built, enhancing the flexibility 
of the system from user's perspective. Figure 1 shows FEMUS six levels generic schema 
~rcliitecture. It includes the concept of median schema, as suggested in [496], to em- 
phasize domain-specific federations. It also shows that  export schemas may be derived 
as views over component schemas or directly from local views through da ta  model 
translation. Finally, import  schemas are derivable from any of the schemas available 
at the federated level: export, federated or median schemas. A simplified architecture 
(Figure 2) is currently being implemented for the first exploratory prototype. It mainly 
includes two process types, Translators (mappers) and Integrators. The mapping pro- 
cesses translate schemas, integrity constraints, and language elements from one da ta  
model/ language to the other (ERC+, COCOON); the integration processes combine 
schema and instances from the two components. 

18.2.1 The ERC§ Approach 
A complete definition of ERC+,  and a discussion of its features, may be found elsewhere 
[447]. Here we briefly recall the main features of ERC+:  

�9 entity types bear one or more attributes. As attr ibutes may in turn, iteratively, 
be composed of other attributes~ the structure of.an object type may be regarded 
as an unlimited at t r ibute tree; 

�9 relationship types may connect any number of participating entity types. As 
entity types, they may have attributes.  They are said to be cyclic if the same 
entity type participates more than once in the relationship type; 
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�9 a role name is associated to each participation of an entity type in a relation- 
ship type. The participation is characterized by its minimum and maximum 
cardinalities; 

�9 attributes may be either atomic (non decomposable) or complex, i.e. decompos- 
able into a set of component attributes, which may themselves be either atomic 
or complex. An at t r ibute  is also characterized by its minimum and maximum 
cardinalities (mandatory/opt ional ,  monovalued/ multivalued). Attr ibutes may 
be valued in a multiset (i.e. not excluding duplicates); 

�9 two generalization relationships are supported, the classical "is-a" and an ad- 
ditional "may-be-a" relationships. The former corresponds to the well-known 
generalization/specialization construct; the lat ter  has the same semantics, but 
does not require an inclusion dependency between the subtype and the type and 
is therefore used to describe multi-instantiation at the schema level; 

�9 an object identityis associated to entities. 

Figure 3 shows a sample ERC§ diagram. A single continuous line represents a 
1:1 link (mandatory monovalued), a single dot ted line represents a 0:1 link (optional 
monovalued), a double dotted line represents a 0:n link (optional multivalued), a double 
line (once dotted, once continuous) represents a l :n  link (mandatory multivalued). No 
generalizations appear in this particular example. 

Two formal query languages, an algebra and an equivalent calculus, are associated 
with the ERC+ data  model. The functionalities provided by the algebraic operators 
include: selection of entity type occurrences based on a given predicate, projection of 
entity type occurrences on a subset of its attributes, union of the populations of two 
entity types. Specific to ERC+ is the reduction operator, which allows the elimination 
of the values of an at t r ibute which do not conform to a given predicate. Most important  
is the relationship-join (r-join, in short) operator. Let El ,  E2, ..., En be the set of 
entity types linked by a relationship type R, the r-join of E1 with E2, ..., En via R 
builds a new entity type (and the corresponding population) whose schema includes the 
schema of E1 plus an additional complex attribute,  named R, whose components are 
the schemas of R, E2, ..., En. In some sense, this operator groups into a single entity the 
information scattered over entities linked by a relationship. A spe-join operator allows 
to join entity types participating into a given generalization [538], thus providing for 
an explicit inheritance mechanism. Every ERC+ operation is objects preserving and 
creates a new derived entity type. The attributes, relationships, generalization links 
and population of the created type are derived from the operand types. Operations 
may thus be combined into expressions of arbitrary complexity. 

18.2.2 The  C O C O O N  Approach 

COCOON is an object-function model. Its basic constituents are objects, functions, 
types, classes and views. The following is an excerpt from [502]. Objects are instances 
of abstract  types, specified by their interface operations. Functions are either retrieval 
functions or update methods. They are described by their name and signature. They 
may be multivalued. Types are described by their name and the set of functions 
that  are apphcable to their instances. A subtype hierarchy defines type inheritance 
relationships. Objects are instances of one or more types (multi- instantiation). Full 
static type-checking is supported. Classes are collection of objects (type extents). A 
subclass hierarchy defines class inclusion relationships. Objects are members of one 
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or more classes. For each object class, its member type is an associated type, and its 
extent denotes a set of objects of that type. Classes may be constrained by a predicate 
that  must be satisfied by all members of the class. 

A set-oriented query language, called COOL, similar to relational algebra, provides 
operators to build an output set of objects from input sets of objects. Query opera- 
tors can be applied to extents of classes, set-valued function results, and query results. 
The algebra has object preserving semantics. Queries are also used as the view defi- 
nition mechanism: they introduce new virtual classes, and define their extent. Views 
may be defined by basic COOL operators, over other views or by composite queries. 
COOL operators are: selection, projection, extend (allows the definition of new derived 
functions), set operators (union, difference, intersection), and generic update operators 
(update,  insert, delete, add, remove, and set to assign return values to functions). Fig- 
ure 4 shows a COCOON type diagram describing the same universe of discourse as the 
E R C +  diagram in Figure 3. Arrows with single arrow head (respectively, double arrow 
head) represent single- valued (respectively, set-valued) functions. A function and its 
inverse are linked by a straight line. 

18.3 The Mapping Process 
The translation process is well understood when converting from a conceptual da ta  
model to a target (logical) da ta  model during the design of a database. In this context 
the main requirement is to minimize semantic loss that  may occur when semantically 
rich modeling concepts of the source model are converted into less expressive constructs 
in the target  model. These schema translations mainly focus on implementing da ta  
structures and access paths in the target model. By analogy to top down design 
methodologies, this conversion process is regarded as a "vertical translation". Since 
users queries during the operational phase of the database are expressed in the DML 
of the target  model, there is generally no DML translation between the conceptual and 
logical models. On the contrary, cooperative DBS require hi-directional translation 
processes between any pair of component sites. These translations must take into 
consideration the reversibility and equivalence issues between two different da ta  models 
of similar semantic expression power. Thus, the translations are called "horizontal and 
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Figure  18.4: The  C O C O O N  equivalent  to  the  example  E R C +  schema 

bi-directional translations". Moreover, interoperability implies that  data  manipulation 
requests will generally be issued by each component of the federation towards the 
other components, this also calling for a horizontal translation between the various 
DML in the federation. FEMUS focuses on the horizontal translations between object- 
oriented and semantic da ta  models. The following subsections discuss mappings for 
the E R C + / C O C O O N  case. The discussion, however, may be easily adapted to other 
similar models. 

As stated,  interoperable mappings need to be defined in terms of both static 
(schemas) and dynamic (operations) aspects. Of course, these two mappings are 
strongly related to each other, as illustrated in Figure 5. Let S1, $2 be schemas in 
two different da ta  models, say model-1 and model-2. Let O1, 02 denote operations of 
the algebras of model- l ,  model-2 respectively. An operation is either a single operator 
or an expression. The result of am operation is both in terms of new schema elements 
and their instances. Let O1(S1) denote the result of applying O1 to S1 (similarly for 
O2($2)). Let T be a translation from model-1 into model-2 such that  T transforms 
S1 into $2 and the underlying database-1 into database-2. Let TOP be a translation 
from model-1 into model-2 such tha t  it transforms an operation O1 into an operation 
02.  Then the following should hold: 

T(S1) = $2 A WOP(O1) = 02  ~ T(OI(S1))  = O2($2) 

18.3 .1  M a p p i n g  an E R C +  S c h e m a  to C O C O O N  

The major  differences between the two modeling approaches are: 
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Figure 18.5: Mappings consistency 

�9 ERC+ distinguishes between attributes and relationships, while COCOON treats 
them uniformly as functions, 

�9 ERC+ supports the representation of a complex object as a single entity while 
COCOON decomposes it into a set of related objects. 

Accordingly, the following schema translation rules may be stated. 

a) A t t r i b u t e s  

A simple attribute is mapped into a COCOON function whose domain is the 
COCOON object type corresponding to the attribute owner, and whose range is 
the COCOON primitive type corresponding to the ERCq- value domain of the 
attribute. The function is single-valued or set-valued depending on whether the 
attribute is monovalued or multivalued. 

Examples: 

�9 Ename (Figure 3) results in the Ename function: Employee --~ string (Fig- 
ure 4). 

�9 day (Figure 3) results in the day function: Date ~ integer (Figure 4). 

A complex attribute is mapped into a new object type and its associated class. 
A function is added to link the owner object type to the new type. 

Examples: 

�9 Child (Figure 3) results in the Child object type. A set-valued function, 
named children in Figure 4, is added to link Employee to Child. 

�9 Date (Figure 3) results in the Date object type. A single-valued function, 
named bdate, is added to link Child to Date. 

b) E n t i t y  t y p e s  

An entity type is mapped into an object type and its associated class. Functions 
are attached to the type according to attributes and relationships translation 
rules. 

c) t t e l a t l o n s h i p  t y p e s  

1. Binary relationship types without attributes A binary relationship type 
with no attribute is mapped into two inverse functions between the object 
types corresponding to the entity types participating into the relationship 
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type. These functions are single- or set-valued depending on the cardinali- 
ties of the corresponding roles. 

Example: 

�9 Job (Figure 3) results in the two inverse functions worksfor and staff. 
Worksfor is single-valued as the role of Employee in Job is monovalued. 
Staff is set-valued as the role of Department in Job is multivalued. 

2. Binary relationship types with attributes and n-ary relationship types. 
These relationship types are mapped into a new object type and its as- 
sociated class. The attributes, if any, of the relationship type are mapped 
into functions according to rules in a). Each role of the relationship type 
is mapped into a pair of inverse functions between the new type and the 
type corresponding to the entity type attached to the role. 

Examples: 

�9 Sale (Figure 3) results in the object type Sale (and its class), with the 
attached QT function: Sale integer, and two pairs of inverse functions, 
D-Sale and Sale-D, linking Sale with Department, and Art-Sale and 
Sale-Art linking Sale with Article. 

�9 Delivery (Figure 3) similarly results in one new object type, Delivery, 
and three p~irs of inverse functions. 

d)  G e n e r a l i z a t i o n  l inks  

An is-a link between two entity types is mapped into an is-a link between the 
object types and classes corresponding to these entity types. May-be-a links are 
not mapped, as there is no such concept in COCOON at the moment. 

18.3 .2  M a p p i n g  a C O C O O N  S c h e m a  to ERC+ 
The COCOON to ERC-I- mapping rises problems typical of reverse engineering situ- 
ations, in which a more decomposed representation has to be translated into a more 
compact one. A classical example is the relational to ER translation. A straight al- 
gorithm may be used to transform a COCOON schema into an ERC§ schema. The 
algorithm is driven by class and function definitions. A function from an object class to 
a primitive type is mapped into a simple at tr ibute of the ERC+ element corresponding 
to the class. A pair of inverse functions between object classes is translated into a 
binary relationship between the two entity types corresponding to the related classes. 
A function between object classes which has no inverse is mapped as an at tr ibute of the 
ERC-J- element corresponding to the class where the function originates. COCOON 
classes which have not been translated as attributes using the above rules are mapped 
into ERC+ entity types, whose structure (the set of attributes) is derived from the 
membership type of the class. An is-a link between two object classes is mapped as an 
is-a link between the corresponding entity types. 

The algorithm generates a valid ERC+ schema, which includes only binary re- 
lationship types with no attributes. Applied to the schema in Figure 4, it  does not 
produce the schema in Figure 3. The consequence is that  applications using the ERC-I- 
schema will be overloaded in terms of da ta  manipulations needed to get the desired 
result. For instance, assume we want a list of departments showing their deliveries in 
terms of quantity, supplier and article. To produce the list using the schema in Figure 
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3, a single r-join operation is needed. To do the same using the schema resulting from 
the translation of the schema in Figure 4, it will need three r-join operations (because 
Delivery is now an entity type linked by three binary relationship types to Department,  
Supplier and Article). There is no automatic solution to avoid such overloading, unless 
the COCOON schema is enriched with information on dependencies among its compo- 
nents. I t  is known that,  if certain dependencies hold, a n-ary relationship type may be 
decomposed into relationship types of degree less than n. Reversing this reasoning, the 
translation algorithm can infer from the known dependencies if a set of pairs of inverse 
functions defined on the same object class can be mapped as a n-ary relationship type 
also representing that  object class. 

18.3.3 Operators Mapping 
Both ERC+ and COCOON models incorporate an algebra as DML. In this section 
we compare the characteristics features of the two aigebraic query languages in order 
to define a mapping (translation) of operators from one model to the other. The 
two algebra have in common several operations (such as selection and projection, for 
instance) with well known semantics. In addition, they contain operations which have 
no direct corresponding counterpart in the other model. Thus, an operator in one 
model may correspond to an algebraic expression, rather than a single operator, in the 
other model. The requirement for correctness of the translation is the consistency of 
the mappings as discussed at the beginning of section 3. The mappings relationships 
il lustrated in Figure 5 can also be used to determine TOP. Knowing T, we can use it 
to translate S1 and O1(S1) into the second model, getting $2 and the result of O2($2). 
We can then check how, in the second model, $2 can be mapped onto O2($2). If there 
is no direct operator which does it, then we have to find the adequate expression to 
build the expected known result. Hereinafter we discuss the operators mapping based 
on ERC+ operators. 

S e l e c t  O p e r a t o r  

Select operators in ERC+ and COCOON have the same semantics. They preserve the 
schema of their input operands. Their main difference is in the type of predicate they 
allow. ERC+ predicates may contain quantifiers (over set-vaiued attributes),  whereas 
COCOON selections may contain nested expressions and set comparison operators. 

Consider the following query: 
"select all employees who earn, at least, one salary greater than 6000". 

Below we give ERC+ and COCOON algebraic expressions for the queries and derive 
the rules for translating the operators. 

ERC+ query 
The selection operator, noted cr in ERC+,  creates a new entity type which con- 
tains the entities (objects) that  satisfy the selection predicate. The ERC+ alge- 
braic expression corresponding to the above query is given by: 

E1 : ~r[3ses~(s > 6000)]Employee 
where the existential quantifier (3) is extended to apply to multisets. 

COCOON query 
In the following EmployeeC denotes the class of objects belonging to the type 
Employee. The above query is written in COCOON as: 

C1 = seZect[sdect[s > 6000](s : SaZ) # O](E,~ployeeC) 
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The nested select operation implements the selection predicate "at least one 
salary greater than 6000" by first retrieving the set of salaries over 6000 of an 
employee, and then checking whether the retrieved set is empty or not. 

If the above query is modified to "select all employees who have all their salaries 
greater than 6000", then the corresponding ERC+ algebraic expression is: 

E2 = ~r[V~es~,(s > 6000)]Employee. 

The universal quantifier included in the predicate can be expressed in different ways 
in COCOON by using nested select operations and set comparison operations. The 
resulting queries are: 

C2 = seleet[select[s > 6000](s : Sa 0 = Sat](EmployeeC). 
C2' = select[select[NOT(s > 6000)](s : Sat) = O](EmployeeC). 

The second query is obtained from the first one by the application of the standard 
transformation of the universal quantifier into the existential one: Vx(P) r -~3x(-~P). 

In summary the following rules can be derived for converting selection operations 
between ERC+ and COCOON. P(a) is a predicate on variable a, and a is a variable 
on a multivalued at t r ibute  A. 

Equivalence rules between ERC+ and COCOON selection predicates: 
3~en(P(a)) r select[P(a)](a.A) # O. 
V~eA(P(a)) r select[gOTP(a)](a.d) = 0. 

P r o j e c t  O p e r a t o r  

1. Projection over a simple at t r ibute 
Project  operators in ERC+ and in COCOON have equivalent behavior when 
they are applied to simple attributes.  In essence, they are used to drop one or 
more simple at tr ibutes from the schema of an entity or object type. 

The translation rule in this case is trivial. For instance: 
ERC+ COCOON 
rr [Ename] Employee r project [Ename] EmployeeC 

2. Projection over complex at tr ibutes 
As discussed in section 3.1 above, the translation of ERC+ complex attr ibutes 
leads to the decomposition of an object over several objects. Therefore the 
translation of an ERC+ projection over a component of a complex at tr ibute 
requires that  the corresponding COCOON object type be augmented with a 
derived function which links it directly to the desired attribute.  Derivation is 
through composition of COCOON functions. For instance, a projection over 
the a t t r ibute  Forename of the complex at tr ibute Child (Figure 3) is mapped as 
follows: 

ERC+ COCOON 
~r [Child.Forname] Employee r project [forename] 

(extend [forename = Forename(Child)])EmployeeC 

P r o d u c t  O p e r a t o r  

A product operator in ERC+ is useful for linking two entity types which are not linked 
by any relationship type. In the case where a relationship exists between the two en- 
t i ty types, it  is simply ignored by the product operator. The operation extends every 
occurrence of its first operand with the set of all the occurrences of the second operand 
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(represented in the schema of the resulting entity type as a multivalued complex at- 
tr ibute whose components are the attr ibutes of the second operand). For example, a 
product will be applied to the entity types Employee and Supplier of Figure 3 as a first 
step to check whether there are employees having the same name as a supplier. 

The result of this product operation is an entity type, say ES, with all the original 
at t r ibutes from Employee plus an additional complex at tr ibute supplier, which is com- 
posed of Sname and Addr. The check is then done through a selection on the result of 
the product.  The ERC+ selection predicate is: 

3,~e~ppZi~.~ . . . .  (u = Ename). 
The result of the product operation can  be achieved in COCOON by extending 

the object type Employee with a new function to create the link to the object type 
Supplier. 

Relationship-Join (R-Join) 
The R-join transforms a relationship type into a complex at tr ibute structure with re- 
spect to one of its participating entity types. Consider the two entity types Department 
and Article, and the relationship type Sale in Figure 3. The result of applying R-join 
to Department through the relationship Sale is an entity type with all the at tr ibutes 
of Department  (Dname, Floor) and an additional complex and multivalued at t r ibute 
named Sale, whose at tr ibutes are Qt and Article, the lat ter  being a complex at t r ibute 
with Aname and Type as components. 

As the product operator, the relationship-join is used to merge information from 
various entity types into a single entity type. While product merges systematically each 
entity of one type with all entities of the other type, R-join uses as merging criteria the 
fact that  the entities forming one occurrence in the result are linked by a relationship 
of the given type. 

To some extent, we could state that  R-join builds more complex entity types from 
the existing ones. COCOON objects are not complex objects. Because of decompo- 
sition rules of the schema mapping, the result of an R-join, translated in COCOON, 
would generate the same objects and functions as those already there. Therefore, the 
translation of an R-join is the identity operation. 

18.4 The Integration Process 
Database integration is the second key feature in building integrated database services 
in an interoperable environment. The autonomy goal inherent to FDBS requires that  
new integration techniques are developed to cope with all possible discrepancies among 
component databases, without altering them, while providing for maximum integrata- 
bility. Although schema integration has already been investigated for a long time [38], 
existing methodologies lack the power to integrate schemas showing structural conflicts, 
i.e. to solve situations where, for instance, the same real world object is represented as 
a~ at t r ibute  in one schema and as an object in another schema [536]. These method- 
ologies need a conforming step, prior to integration, such that  all structural conflicts 
are removed from the input schemas. The conforming process relies on schema mod- 
ification, a consequence which contradicts the primary FDBS requirement: to ensure 
continuation of local usage of da ta  without any user visible impact due to the new 
federation services. Moreover, current methodologies do not really handle da ta  model 
heterogeneity. They only propose to translate every input schema in some common 
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model within a pre-integration step. This is consistent with the usual approach to 
federated or distributed heterogeneous databases, but might become a bottleneck in 
more flexible architectures in which multiple federations, although defined on the saxae 
component databases, are not necessarily built upon the same data  model. 

Integration in FDBS is a bot tom-up task, that  must combine databases that  may 
have existed for a long time. These databases may already have a considerable amount 
of data. Thus, integration in federated databases must cover both tasks, the integra-~ 
tion of schemas and of existing objects. This is usually called database integration, 
in contrast with view integration where only schemas with no associated extensions 
are integrated. A relatively small amount of work concerns database integration. One 
recent exception is the Pegasus project [9, 335]. Kent emphasized the separation be- 
tween real world entity objects and their, database counterpart, called proxy objects 
[315]. The lat ter  ones represent entities in different component databases. Object 
integration must deal with the fact that  due to historical evolution of databases, the 
same real world entity may be stored as different database approximations in different 
databases (the proxy objects). Thus, the FDB administrator must also specify what 
proxy objects of what component databases represent the same real world object and 
under what circumstances. 

FDBS integration requirements also differ from DDB requirements. In DDB sys- 
tems, integration is performed once, taking as input the schemas of existing databases 
and producing as output the global schema of the DDB. As there is no mandate to 
preserve site autonomy, local pre-existing databases may be modified to make integra- 
tion easier or to redefine da ta  allocation. For instance, if the same data  appear in more 
than one local database, the DDB administrator may just keep one copy and have the 
other ones deleted to avoid the da ta  replication problem. In FDBS, integration may 
be performed at different levels, depending on the organization's approach to FDBS 
architecture (cf. Figure lb) .  As in DDBS, it might be the task of the FDB administra- 
tor (for each FDB being built). It  might as well be a process performed by end users, 
if they are given the ability to i m p o r t d a t a  from various sources (whether directly from 
local databases or through a FDB) to build their own, single user FDB. 

Integration is a two-fold process. First,  syntactic as well as semantic relationships 
among elements in the input schemas have to be precisely identified. This is the inves- 
tigation phase. A first s tream of research developed methods and tools to assist the 
database administrator in identifying interschema relationships [516]. In the second 
phase, the integration phase, related elements have to be "integrated". Various tech- 
niques have been proposed for this purpose. The first approach is manual integration, 
where the DBA is provided with a schema restructuring language. The lat ter  allows 
the DBA to direct the integration process towards the step by step construction of the 
integrated schema the DBA is aiming at. The integrated schema is seen as a superview 
defined over input schemas [419]. This approach is relatively simple to implement, as 
the functionality supported by the system is limited to executing the restructuring 
operations. It is, however, of poor user friendliness and badly suited for the non ex- 
pert  users which might be allowed to build federations in a flexible FDBS. To cope 
with these inconveniences, more powerful assertional approaches have been proposed. 
They are intended to automatically perform integration from input correspondence 
assertions, which instruct the integrator tool on which interschema relationships ex- 
ist. Assertional techniques provide a higher level of service t o  their users (users just 
have to care about existing correspondences, not about how corresponding items may 
be merged to form the integrated schema). They build the integrated schema (and 
the associated mappings to/ f rom source schemas), using established integration rules 
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which allow to solve all types of conflicts supported by the tool. Finally, rather than 
building a new integrated schema, a third approach performs integration by extending 
input schemas (and databases) with the additional interschema descriptions. These 
either record correspondence information, or add new constructs to relate one element 
in a schema to another element in another schema [502]. 

FEMUS currently focuses on the integration phase. We discarded the manual su- 
perview approach as contrary to FDBS flexibility goal. As for the two other approaches 
- the integration assertional technique and the augmentation technique described just  
above - no definite assessment has evaluated and compared their pros and cons. Intu- 
itively, building an integrated schema seems preferable if there is a heavy overlap among 
component schemas, with many component elements resulting in a single element after 
the merging. On the other hand, if the component databases have complementary 
content, augmenting existing schemas with interschema references is a simpler process. 
To know more about the comparison we have decided to investigate and experiment 
both techniques in parallel. They are hereinafter separately presented. 

To show differences and/or  similarities between these two integration techniques, we 
illustrate their usage on the same very simple example (Figure 6) modeled according 
to object-oriented notations. The example assumes a FDB environment with two 
databases, DB1 and DB2. DB1 contains information about cars (the class Car, with 
three attributes: the car 's registration number and color, and the person identification 
number of the car 's owner), whereas DB2 holds persons (the class Person, with three 
attr ibutes:  the person's identification number and name, and the registration numbers 
of the cars (s)he owns). Since cars are owned by persons, and persons own cars, there is 
some sort of inter- database correspondence. We show below how this correspondence 
is specified using the assertion-driven integration, and how it is done through the 
augmentation ~pproach. 

DB1 DB2 

J I J I. I I 
leg# color owner pm name {cars} 

DBI: Class Car tuple <leg#: integer, color, string, owener: integer> 

DB2: Class Person tuple <pin: integer, name: string, cars: setof integer> 

F igure  18.6: The  example  in tegra t ion  case 

As stated, the definitions of the two classes do not bear any indication of their 
interrelationship. It is assumed that  the FDBA has the external knowledge about the 
semantics of the at tr ibutes and the object classes being described. (S)he is therefore 
responsible for directing the integration tool through explicitation of that  knowledge. 
In a repository environment, the definitions would be complemented with some natural  
language descriptive information. For instance, the owner at tr ibute could be described 
as: this a t t r ibute  holds the person identification number of the person who owns the 
car. An investigation tool could then guess that  there might be some relationship 
between the two classes, due to the fact that  the term "person" appears in both de- 
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scriptions. Nevertheless, the FDBA would have to be prompted anyway to confirm or 
correct the proposed correspondence. Note that the guess made by the tool is only in 
terms of structural correspondence, unless both databases are accessed to check the 
corresponding populations. 

18.4.1 Assertion-driven Integration 

The EPFL team has proposed a new assertional method to integrate heterogeneous 
source schem~ [537]. The method solves structural, semantic and descriptive conflicts 
without changing the input schemas. It is also able to directly integrate heteroge- 
neous schemas, without going through a preliminary translation step. To this purpose, 
interschema correspondence assertions, stated by the DBA, may relate an element 
whatsoever in one schema to an element of any type in another schema. An assertion 
defines the relationships between the element "types" (structural description) and the 
related "classes" (sets of associated instances). It also includes the necessary definition 
of an object mapping at the instance level, which provides for the integration of the re- 
lated databases. Integration rules are generically defined on an abstract "generic data 
model" (which basically supports objects, value attributes and reference attributes), 
but their implementation in the actual integration of two input schemas is taJlorable 
to the specific features of the input data model. 

Considering the example in Figure 6, and assuming that the two schemas describe 
exactly the same sets of cars and persons (for every car seen by DB1, its owner is seen 
by DB2, and vice versa), the interrelationship between the two schema would be first 
described through two element correspondence assertions: 

Car - cars with correspondiffg attributes reg# = cars 
owner - Person with corresponding attributes owner = pin 

The first assertion states that the set of cars described by the object type Car in 
DB1 (the real world state of Car) is the same (=) as the one described by the cars 
attributes of the Person object type in DB2. The set equality is between sets of real 
world objects, and holds independently of their representation in the two schemas. The 
"with corresponding attributes" clause describes the structural relationship between 
the two representations. In this case there is only one information about cars which is 
represented in both databases: the car's registration number. This is hold by the reg# 
attribute in DB1 and by the cars attribute itself in DB2. Hence the stated equality 
of the two attributes. The same considerations apply to the interschema relationship 
between DB1 car owners and DB2 persons. 

The fact that associated elements in one schema (Car and owner in DB1) are 
equivalent to associated elements in another schema (cars and Person in DB2) does 
not necessarily imply that the association has the same semantics in both schemas. It 
could be the case that DB1 talks about ownerships, and DB2 talks about cars being 
driven by persons, while still referring to the same real world state for cars and persons. 
Therefore, one assertion remains to be stated: a path correspondence assertion, making 
explicit that the link between cars and owners in DB1 (noted Car--owner) has the same 
semantics as the link between persons and car in DB2 (noted Person--cars). Links are 
bi-directional: Person--cars and cars--Person denote the same DB2 link. The path 
correspondence assertion for the example simply is: 

Car--owner = cars--Person 
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The integrator tool, with the two schemas and these three assertions as input, will 
generate the following integrated schema: 

IDB: C l a s s  Car t u p l e  < r e g # :  integer, color: string, owner: r e f e r e n c e  Person> 
C l a s s  Person t u p l e  <pin: integer, name: string, cars se tof :  r e f e r e n c e  Car> 

The corresponding diagram may be drawn as follows, with labeled arrows repre- 
senting reference attributes: 

IDB 
owner ~j ] 

Car I ~ {cars} -~ Person 

I I I I 
leg# color pin name 

F igure  18.7: The  in t eg ra ted  schema 

IDB goes with the mapping information which states that  the Car class is to be 
found in DB1, the Person class is to be found on DB2, and the references in be- 
tween have to be evaluated through the matching criteria Carereg#  = Personocars 
and Car.owner = Person.pin. Mapping information supports transformation of user 
queries against IDB into queries on the underlying DB1 and DB2 databases. 

1 8 . 4 . 2  Integration Through Augmentation 
The ETHZ team has developed an approach to provide a flexible way to specify the 
correspondence between existing objects of different databases. This is achieved by 
defining (global) object identity in terms of algebraic (extend) views [502]. We thereby 
make use of COCOON's  view definition fax:ility [500] that  was extended such that  it 
can span over multiple databases. It includes mechanisms for linking objects across 
systems and to deal with semantic conflicts. The necessary view definition method is 
to extend the local schema by elements of the schema of another system. Consider 
the example in Figure 6. The DBA will s tart  the integration process by defining a 
view "Cars" as an extension of Car, with an additional function owned-by that  returns 
for each car-object the person-object of the other database, that  owns that  car. This 
definition is stated as follows: 

d e f i n e  v i e w  Cars as  e x t e n d  
[owned-by:= s e l ec t  [reg#(c) �9 cars(p)](p:Person)](c:Car). 

The selection predicate in the view definition materiMizes DBA's knowledge of the 
fact that  the at t r ibute cars of class Person specifies registration numbers of cars, which 
are recorded as values of the r eg#  at t r ibute of Car in the other database. Knowledge 
that ,  similarly, the at t r ibute owner of Car specifies a pin of a person in the other 
database,  leads to similar extension of the Person type in DB2: 

d e f i n e  v i e w  Persons as  e x t e n d  [owns:= 
s e l ec t  [pin(p) = owner(c)](c:Car)](p:Person). 

The additional function owns returns the cars owned by each person. It acts as 
the inverse of owned-by in DB1. Figure 8 below shows the schema of both databases, 
extended with views having functions that  lead from one database to the other. 
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Car 

I I I 
reg# color owner 

Cars 

Person 

I. I I 
pm name {cars} 

Persons 

Figure  18.8: The  augmen ted  schemas 

The advantage of this approach is that  it uses almost exclusively the expressive 
power of a query language, together with a view definition facility. The only needed 
extension is a global object identity predicate. This is necessary, since, due to demand 
of local autonomy, we axe not allowed to make any assumption on the local internal 
object-identities. Consequently, no change is required in the implementation of local 
database systems. 

While from a conceptual point of view this approach looks simple and clean, more 
effort remains to be spent on the implementation issues. Particularly, an efficient, but 
overridable, implementation of the identity test seems to require further investigations. 
Till now, comparing object identities is typically hardcoded into the implementation 
of local object based management systems. Efficient support by indexes or some other 
form of replicated information is needed. 

18.5 Negotiation 
In a federated system, it is the responsibility of the local DBAs to decide and de- 
fine which parts of their local data  are available to external users (users from other 
sites). The decision process relies on negotiation with the other DBAs, for which 
specific tools may be developed within the federated system [245]. Negotiation needs 
an understanding of the semantics of data. This is usually supported by information 
attached to da ta  descriptions and stored in a repository. The repository manager pro- 
vides browsing capabilities and facilities to support dialogue and explanations among 
DBAs. Negotiation also settles an agreement on access restrictions and the desired 
level of consistency between imported materialized views, and the original version in 
the exporting system (as discussed below). 

18 .5 .1  Exchanging Metadata 
The specification of exported data  is stored in an export schema (or export view) in 
the exporting system. The export schema provides access to both the data  defini- 
tions (description of types, classes . . . .  ) and the corresponding instances (the objects 
in the database).  Export schemas may be defined using different techniques: sub- 
schemas, views, virtual objects,... Usage permissions granted (read, update, ...) are 
also specified. Export  schemas may be made available to designated users only (a us- 
age permission is attached to the view itself), or they may be broadcasted (available 
to everybody), or designed to become a component of some designated federation. It 
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is worthwhile noting that  da ta  is exported to become part of one or more federations 
(thus providing for location transparency), not for direct access as in multidatabase 
systems [372]. If a local system accesses a federation it contributed to, the system 
is importing da ta  it exported. From the semantic perspective this is perfectly correct 
(similar to what happens everyday in international trade). From the performance point 
of view, it is expected that,  as in DDBSs, the federated query processors will be able 
to access local da ta  directly, rather than access some copy elsewhere. 

18.5.2 Exchanging Data 

A well-known problem in moving objects around in a federated system relates to object 
identity. The requirement clearly is that  object identity has to be preserved (to avoid 
semantic loss). This implies that ,  when an object comes back to its exporter, updated 
by some importer~ it is recognized by the exporter so that  the update can be correctly 
applied to the local database. 

A first problem obviously comes from the fact that  the federation may include 
value based systems (relational DBMSs), which do not know about object identity. 
However, an object-oriented system can also offer values to the federation, instead of 
objects, either because it generally does not extract object identities, or because some 
type of queries it accepts generate values as result. If object identities can be provided 
by component systems, a global identity is easily built [245, 170]. I t  will include the 
local identity, which allows to later apply external updates on the original exported 
object. If no local identity is available to the federation, exported values can be turned 
into objects by the FDBS, but this does not make sure that  an external update will 
be correctly propagated. To that  extent, restrictions have to be imposed on exported 
values: i.e., they must contain a key which uniquely identifies the value in the local 
database (as in relational databases).  Otherwise, export should be restricted to read 
only import.  When an imported object is stored by the importer, it gets a local object 
identity. If the object might have to be returned to the exporter, the global object 
identity (which is locally meaningless) has to be stored as an additional at t r ibute of 
the object (not visible to users), for future reuse in the federation layer. An object to 
be imported may contain object identities as references to component objects in the 
exporting database.  If the component objects are not imported, references are just 
dropped before import.  If a component object is imported as a component value in 
the importing system, the reference has to be replaced in the imported copy with the 
value of the corresponding object. If the component object is imported as an object, 
new references, local to the importing system, should complement the imported ones 
(or replace them, if the importer is not allowed to update the object). 

18.6 Implementat ion  Issues 
Since object identifiers in general are not available outside a system, the specification 
of information to import  has to be done by means of algebraic expressions [502]. Also 
exported information can be specified comfortably with a query expression. The query 
is given a name whose value is the result of the query, i.e., a data  definition and a set 
of instances. At each use of the name the query can be re-executed in the exporting 
system and the result t ransmit ted to the importer. To the user there is only one version 
of the information located in the exporting system, and up to date. A problem arises 
when the amount of da ta  specified by the expression is large, the da ta  transfer might 
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take considerable time. To avoid the delay, the user might want to create a local copy, 
thus he explicitly stores the result of the import expression at his own site. Now, on 
the other hand, the importer  does not know whether his local copy is up to date or 
not, since updates on the original version are not by default propagated to his copy. As 
a compromise, it would be possible to refresh the copy of the importer at some access 
occasions, but not all. 

Another solution to the delay problem would be to keep an automatically updated 
local copy that  the user never sees. The problem with this approach is of course how to 
ensure the consistency between the copy and the original. The following is a summary 
of techniques used to solve materialized view management problems. Materialized view 
update strategies can be classified according to, first, the consistency that  is required 
between the original and the materialized view, secondly how to detect that  an update 
to the original is relevant to a materialized view, and lastly how to actually update the 
view. 

18.7 Consistency Requirement 
The strongest consistency requirement is transactional consistency, i.e., the material- 
ized view is updated before the update transaction on the base has terminated. This 
implies total  correspondence between the versions [66]. The consistency requirement 
may be relaxed in a well-defined way [15] where the notion of quasi-copy is introduced. 
A quasi-copy may deviate from the original in one of the ways: 

�9 Time delay 

�9 Version number 

�9 Numeric deviation 

A way to specify these deviations exactly and to calculate the export costs is 
proposed. An even weaker consistency requirement is proposed by [362], where a 
"snapshot" is a copy that  is updated only periodically, to be used by update-insensitive 
applications. 

18.7.1 Detection of Relevant Updates 

An update operation on the database is made on a set of objects specified by a query. If 
these objects are also present in a materialized export view, the view has to be updated, 
otherwise not. Thus the problem is to say whether the sets of objects specified by two 
queries are disjoint or not, a problem that  is in general impossible to solve. It is solvable 
for queries involving only the project or join operators, and the select operator with 
a condition predicate containing only conjunctions. This is used by [66] to obtain 
transaction consistency. [171] improves the method. A different approach is made 
in [362] to update  snapshots. A "snapshot" is the stored result of a view definition 
expression. A snapshot is read-only and is updated "periodically", i.e. all updates on 
the database since the last snapshot are propagated. Here a t imestamp is added to 
every tuple when it is updated in order to be able to say if the tuple object has been 
updated since the last snapshot refresh. 
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18.7.2 Differential Refresh 

When an update  has been found relevant to a view, the view materialization has 
to be updated.  One way to do this is to recompute the query specifying the view 
and to update  the whole query. This clearly may result in the rewrite of a lot" of 
unchanged data. I t  is desirable to update the view only with the da ta  actually changed. 
[362] proposes a differential refresh algorithm for snapshots. When the snapshot is 
to be updated,  the tuples of the base table are traversed, and if a tuple is younger 
than the snapshot and satisfies the view condition it is t ransmitted to the snapshot. 
Improvements are made by discarding clusters of not interesting tuples. [66] proposes 
a different method based on the apphca t ion  of the same update operations on the 
view materialization, that  were applied to the base table. This method relies on the 
distributivity properties of set union and set difference, which do not hold in the 
relational model, but  hold for object oriented models. The method is used to provide 
transaction consistency, since the view update is included last in the update operation 
transaction of the base table. The authors claim that  their results are also valid for 
snapshot update,  i.e., when the view update is made after the transaction updating 
the original table has terminated. It is not evident that  the application of an update 
operation at a time point when the execution environment may have changed will 
produce the same database state as in the original environment. 

Another way to improve system efficiency at update, and to avoid the exporter 
bottleneck problem that  occurs when a lot of importers are requesting updates from 
the same exporter, is proposed in [306]. The idea in this method is to let the importing 
systems re-export information to other importing systems, thus relieving the original 
exporter from work. 

There are cases when keeping a local copy at the importing site is necessary for 
performance reasons. This copy can be invisible to the user, giving the impression that  
there is only one version of the information. The consistency requirement varies, de- 
pending on application requirements, from periodically updated snapshots, over quasi- 
copies to transaction consistency. The results in the referenced papers concerns the 
relational model, it remains to be studied whether they are also applicable to semantic 
and object- oriented models. Nothing is however pointing in any other direction, on 
the contrary, it seems like further problems encountered in the relational model do not 
occur in this environment. For example, the problem caused by the fact that  projection 
is not distributive over difference in the relational model, does not occur in a model 
with object identities, see [66]. 

An interesting approach seems to be to combine the periodic update with the 
differential refresh method that  applies the update operations to the view. To update 
the view at every modification of the original da ta  even if the materialized view is not 
used at the moment seems inefficient, instead the update should be made on request 
from the view user, then all the updates on the base table can be applied at one time. 
An open question is if the update operations applied in the same order will produce the 
same result at the later time point. Another question is how the mechanism to update 
materialized views can be made symmetric, i.e., how updates on the materialized view 
can be propagated to the original. 
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18.8 C o n c l u s i o n  and Future  Research  

In this chapter we have presented the motivation and the key features of the ongoing 
FEMUS research project. The aim of the project is to explore architectural and seman- 
tic related issues of federated database systems. We have discussed, in particular, two 
of the most distinguishing features of the project: da ta  model translation and database 
integration. 

Cooperation between heterogeneous systems can involve bi- directional translations 
L 

between da ta  models of eqmvalent semantic power. Semantic data  models and object 
oriented da ta  models are more and more included in current federated database sys- 
tems. In order to avoid a proliferation of translators in the federation, they are often 
used as common data  model. We have examined in detail the characteristics of the 
translation process between object oriented and extended semantic da ta  models. The 
translations rules between two representative models, ERC+ and COCOON, are given 
as an example. Their scope covered both schema and operation mapp ing .  

Next, we have investigated database integration issues in interoperable systems. 
Integration techniques are used in these systems to build unified views of information 
imported from different databases. The main thrust of our research is to extend to 
federated database systems two alternative integration methodologies we have devel- 
oped. The first one uses interschema correspondence assertions and integration rules 
to derive an integrated schema from a set of heterogeneous input schemas. The second 
one uses the existing view mechanism to augment the input schemas with interschema 
correspondences expressed as constructs of the model (interschema functions in the 
ease of COCOON).  We presented the key features of these integration methodologies 
and an example to support their comparison. 

Our future research effort is on: 

�9 the specification and identification of tools to aid the translation process. The 
translation rules can serve as a basis for defining a rule based generator for the 
translation process; 

�9 the specification and implementation of a federation server to aid federation 
users in sharing information, meta information, and schema construction tools 
(translators and integrators). The server must provide sophisticated dictionary 
and/or  directory look up services to aid navigation and negotiation throughout 
the federation; 

�9 the extension of the assertional integration technique to solve more cases of 
schema discrepancies and the extension of the augmentation integration tech- 
nique to cope with heterogeneous input schemas; 

�9 the extension of both integration techniques to the integration of object-oriented 
methods. 
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Chapter 19 

Communication and Synchronization Issues in Distributed 
Multimedia Database Systems 

Shirley Browne* 

19.1 I n t r o d u c t i o n  

Current research into high-speed wide-area communications is raising the possibility 
of new distributed multimedia applications, including distributed multimedia database 
and information systems. The goals of research in this area will be to extend distributed 
database and information retrieval paradigms to the following: 

* database access over large-scale wide-area packet-switched networks, 

. storage, retrieval, and display of multimedia objects. 

Although CD-ROM technology provides local mass storage for static information, 
distributed databases will be crucial for accessing information which is constantly 
changing, inherently distributed, or accessed infrequently by a given user. As the 
amount of information available threatens to overwhelm us, multimedia offers a way 
of increasing the machine to human bandwidth through the use of images, animation, 
sound, and video, as opposed to purely textual  display. The economics of bandwidth 
sharing argue for use of packet-switching, as opposed to circuit-switching. 

Motivating the development of wide-area multimedia information systems will be 
the desire for large-scale collaboration on the Grand Challenge problems, saving lives 
and reducing costs through the use of medical databases, and consumer demand for 
commercial applications such as video browsing and home shopping. For example, 
Project Sequoia 2000, funded by Digital Equipment Corporation at the University 
of California, involves work on distributed database management of large constantly 
changing global change datasets, along with network facilities for accessing, visualizing, 
and analyzing the data [300]. Distributed medical databases which allow a doctor han- 
dling an emergency to instantly review a patient's medical records remotely will greatly 
improve the quality of emergency care. Applications of video browsing, ranging from 
computer dating to long-distance real estate services [281], will provide convenience 
and cost savings to consumers. 

Libraries will become important users and providers of multimedia information ser- 
vices. Although libraries have traditionally been repositories of printed information, 
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print has limitations, such as fixed, static representation of information, lack of inter- 
activity, and its restriction to single-user mode. Multimedia information systems hold 
promise for overcoming these limitations, as they can provide a multisensory, dynaxnic, 
interactive, multiuser environment. Future library multimedia computer systems are 
expected to utilize expert system technology to assist users in selecting and retriev- 
ing multimedia information. This technology will be deployed at specialized, powerful 
database servers in the networked environment [25]. The problems of interconnecting 
heterogeneous networks and databases remain to be solved, however, before integration 
of diverse information sources can take place. 

Object-oriented software technology, with its properties of encapsulation of oper- 
ations, distribution of logical autonomy, processing concurrency, and reactive control 
structures [603], may prove to be the most appropriate model for the design of multi- 
media databases. With the object-oriented paradigm, it will be possible to incorporate 
the display and processing information associated with objects into the objects them- 
selves. Other relevant information includes the synchronization and communication 
performance requirements of multimedia objects. 

Research into object-oriented and multimedia database systems is being carried 
out at a number of institutions. O-RAID is an object-oriented extension of the RAID 
distributed database system being developed at Purdue University [60]. O-RAID pro- 
vides a class structure for objects, with support for large, complex objects and for 
object composition and replication. Although not currently a multimedia database, 
the modular, object-oriented architecture of O-RAID lends itself to a natural exten- 
sion to multimedia objects. 

The POSTGRES database system extends the relational model to incorporate 
object-oriented features such as inheritance and methods, along with a rules system 
for adding intelligence to the database [556]. An extended version of POSTGRES is 
being employed to help manage terabytes of global change data for the Sequoia 2000 
project mentioned above [300]. Work at Boston University involves the capture of tem- 
poral relations for  the storage and subsequent retrieval of multimedia objects, using 
POSTGRES as the database management system, an X l l  user interface, and JPEG 
compression. 

OMEGA is a object-oriented multimedia database system being developed at the 
University of Library and Information Science in Japan [391]. This research project 
is extending the object-oriented model to represent temporal and spatial information 
about multimedia data. The author of [391] argues in favor of the object-oriented 
approach, as opposed to the hypermedia approach. 

Researchers at Washington University in St. Louis are designing and implementing 
an experimental ATM network which will link physician's workstations with medical 
databases. The system is being developed with the goals of eliminating the manual 
management, retrieval, and transportation of X-ray and other imaging data, and of 
allowing simultaneous access to this data by multiple users. 

The Collaborative Visualization (CoVis) Project at Northwestern University in- 
volves the design of future distributed multimedia high school science learning en- 
vironments [449]. Multimedia database servers will reside at CoVis network testbed 
sites. These servers will support collaborative visualization activities for geographically 
dispersed students and teachers working jointly on science projects. 

Other research efforts include the Multimedia Information Laboratory at Syracuse 
University [50], the IRIS Hypermedia System at Brown University [239], research into 
efficient search and retrieval techniques at the MIT Multimedia Lab [364], and research 
at Fermilab and CERN on extensions to World-Wide Web for the high-energy physics 
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community [47]. 
A number of challenging problems remain to be solved before large-scale distributed 

multimedia databases become a reality. Efficient means of organizing and storing 
extremely large quantities of diverse types of da ta  must be found. Appropriate  indexing 
and search strategies, with flexible user interfaces, must be developed. Techniques 
for retrieving, composing, and synchronizing the components making up a complex 
multimedia object are needed. Specification of the communication requirements for 
the network transfer of multimedia objects will be a necessary function of a distributed 
multimedia database system. The distributed system must also interface with the 
underlying communication services to obtain the quality of service desired. 

The remainder of this chapter surveys issues involved with synchronization and 
communication requirements of distributed multimedia databases. Solutions which 
have been proposed in the l i terature are described and related to each other. Finally, 
suggestions are made of fruitful areas for future research. 

19.2 Characteristics and Requirements 
Uses of distributed multimedia databases will span a variety of application areas, in- 
cluding the following: 

�9 Education - electronic books, educational videos, simulations, multimedia 
courseware, and collaborative projects. 

�9 Libraries and museums - Literary, musical, and artistic works, and multimedia 
presentations. 

�9 Offices - documents, memos, training and sales videos. 

�9 Medical databases - Case histories, X-rays, test results, and digital da ta  from 
computer tomography, magnetic resonance, and ultrasound. 

�9 Computer  aided design - Design documents, symbols and components, simula- 
tion. 

�9 Scientific databases - Sensory data, da ta  visualization, animation, and simula- 
tion. 

�9 Geographic databases - Maps, satellite images, demographic information. 

Despite the wide arena of application areas, a common set of requirements caxt 
be defi~ed. The functional requirements for a multimedia database server include the 
following [50]: 

�9 management of complex multimedia information, in the form of text, images, 
audio, and video, 

�9 spatial and temporal  integration of information units of various types into the 
multimedia object of interest to the user. 

Because of the extremely large storage requirements of some multimedia informa- 
tion types (e.g., images and video), accessing a remote multimedia database is expected 
to be a real-time playback application. A real-time playback application, as described 
in [113], involves packetization and transmission of some signal by the source followed 
by depacketization and replay at a designated playback point by the receiver. Any 
da ta  that  arrives before its designated playback point can be used to reconstruct the 
signal; da ta  arriving after its playback point is useless. Hence, playback applications 
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are sensitive to network-introduced delay and j i t ter  (variation in delay). A multime- 
dia presentation has the additional requirement that  the playback points of multiple 
signals must be coordinated. 

The coordination of multiple streams during playback is called temporal synchro- 
nization in [369]. The temporal composition of a multimedia object may consist of 
either fine-grained continuous, or isosynchronous, relationships, or course-grained syn- 
thetic relationships [369]. An example of a continuous relationship is the coordination 
between audio and video streams representing the voice and image of a speaker. An 
example of a synthetic relationship is the synchronization of text and images for a 
multimedia display. A distributed multimedia database system must provide facilities 
for storing these relationships and for enforcing them when a multimedia object is 
retrieved and t ransmit ted over the network for display to the user. 

In general, the need for synchronization arises from several causes, including the 
following: 

1. Transmission of a multimedia object may involve transmission of related data  
streams over different communication channels (e.g., motion video and accom- 
panying voice). Because of their different communication requirements (e.g., low 
delay j i t te r  for voice, low loss rate for compressed video), it is desirable to use 
separate communication channels for different types of media. Since timing rela- 
tionships are typically not preserved across different channels, these relationships 
will need to be restored at the destination before correct playout of the related 
streams can occur. 

2. A displayed object may be synthesized from individually stored components. In 
a multimedia database, a complex object may consist of components of different 
media types which are stored separately. Synchronization requirements for such 
an object would specify how the various components fit together temporally. A 
database server would need to retrieve the object 's  components and transmit 
them in such a way that  the synchronization requirements are not violated or 
made impossible to enforce at the destination. The specification tbr the synthesis 
of an object from its components may be pre-orchestrated and stored in the 
database or may be constructed at query time. 

3. In a distributed environment, retrieval of a complex object may involve the 
retrieval of individual components from different database servers. For example, 
a sequence of images (i.e., slide show) may be stored at one location, with a 
voice commentary stored at a different location. Display of such an object will 
involve the combination at the destination of data  streams coming from different 
database servers. Somehow the timing relationships between the components 
must be enforced by synchronization actions taken at the various sources, at the 
destination, or at both the sources and the destination. 

4. Pipelined decompression architectures can introduce additional delay and delay 
j i t ter  into a da ta  stream. Since the use of compression is highly desirable in a 
distributed multimedia environment for reducing the amount of data  that  must 
be transmit ted,  techniques are needed to compensate for the j i t ter  introduced 
by the decompression algorithm. 

5. Starvation of a da ta  stream may occur because of a shortage of network resources. 
With  appropriate techniques for statistical multiplexing of network bandwidth, 
such starvation can be made highly unlikely, but there is still a chance that  it can 
occur. Network users may also take a calculated risk of starvation occurring in 
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exchange for a lower charge for use of the network. Regardless of why starvation 
occurs, da ta  streams that  are receiving adequate service must be synchronized 
with those that  have fallen behind because of starvation. 

The communication requirements of multimedia objects vary greatly, depending 
on the type of media and on the degree of compression being used. The bandwidth 
required for sound can vary from 2.4 kb/s  for coded voice up to 1.4 Mb/s  for CD 
quality. Full-motion video can range from 30 Mb/s  for medium resolution black-and- 
white to 750 Mb/s  for high resolution color [368]. Sizes of images can vary from a 
few to tens of megabits, depending on the resolution. Lossless da ta  compression can 
reduce these quantities by factors of 3 to 4; greater reduction, up to a factor of 100, 
is possible using lossy compression, but with some image degradation. The quality of 
service required for different media can be expressed in terms of bandwidth, delay, delay 
j i t te r  (i.e., the variation in delay), and error rate. Sound has stringent delay and delay 
j i t te r  requirements, but can tolerate some loss due to error. Image and compressed 
video may have stringent error requirements. Video has less stringent delay and delay 
j i t te r  requirements than audio. Use of delay compression can have an adverse effect on 
delay j i t ter .  Throughput,  delay, j i t ter,  and reliability requirements may be expressed 
either deterministicaily or statistically [186]. A distributed multimedia database system 
must provide facilities either for storing quality of service requirements of objects or 
for calculating them on demand, and for negotiating with the communication service 
provider to obtain the desired quality of service. 

Quality of service requirements can also be classified as either guaranteed or pre- 
dicted [113]. If a communication system provides guaranteed service, it ensures that  
the quality-of-service commitment will be met, provided the client conforms to its end 
of the service contract (i.e., by staying within its declared average and peak trans- 
mission rates and its declared burst length). Predicted service, on the other hand, 
a t tempts  to deliver consistent performance to the client, based on past network condi- 
tions, but there is no guarantee. The advantages of predicted service are that  it allows 
greater sharing of bandwidth, thus reducing communication cost, and that  it allows 
an adaptive application to adjust its playback point to take advantage of current net- 
work conditions. Predicted service may suffice for casual users of multimedia database 
systems (e.g., l ibrary browsers, office applications), whereas time-critical and real-time 
applications may require the more dependable but more costly guaranteed service. 

19.3 Communicat ion  Approaches 
The Internet is expected to evolve into a network that  can support multimedia appli- 
cations [448]. Rather than interfacing directly to the underlying network, the commu- 
nication manager of a multimedia database system would most likely interact with a 
higher level protocol such as the Multi-flow Conversation Protocol (MCP) [636], being 
developed at the University of Kentucky, or Bellcore's Touring Machine System [343]. 
To satisfy bandwidth, delay, j i t ter,  and bit error requirements, data  streams carrying 
multimedia information will need to be sent over flows having performance guarantees 
[128]. In the approach in [636], flows are grouped into a logical unit called a multi-flow 
conversation. MCP is a t ransport  level protocol that  provides service primitives for es- 
tablishing, managing, and terminating multi-flow conversations. The Touring Machine 
System provides a set of logical abstractions for establishing and managing multimedia 
communication sessions. These abstractions hide the complexities of resource alloca- 
tion, network access control, and session management from the application. A session 
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consists of a set of medium-specific connectors, where a connector is a multiway trans- 
port  mechanism among multiple endpoints. 

In the context of public broadband networks [543], the communication manager 
for future multimedia database systems will need to interact with the admissions con- 
trol and policing mechanisms in use by the service provider. The admissions control 
mechanism ensures that  the average and peak rates, burstiness (defined as the ratio 
of peak to average rate), and burst length of a source are not exceeded. Thus, when 
making a call request (e.g., setting up a query session), the database communication 
manager will need to give information about call requirements and source traffic char- 
acteristics to the network service provider. One possibility is to store this information 
in the database schema itself (e.g, in the form of Estimated Bit Rate tables, as in 
[167]). Another approach is to calculate the required information from the parameters 
of a part icular query session and network and from accumulated statistical information 
collected during previous query executions. For example, an algorithm for calculating 
buffering requirements by processing the database schemas is given in [370]. 

Various bandwidth allocation mechanisms have been proposed for admissions con- 
trol [262,168,607]. These mechanisms a t tempt  to calculate the effective requirements 
of a connection request and determine whether or not sufficient resources exist to sat- 
isfy the request. Most proposed policing mechanisms use the notion of a token bucket 
filter [465]. The token bucket filter works conceptually as follows. Tokens enter the 
token bucket at a constant rate, up to some maximum depth. A source that  wishes to 
t ransmit  a packet must remove an appropriate number of tokens from its token bucket 
(e.g., a packet of length 1000 bits would be required to remove 1000 tokens). If the 
tokens are not available, the packet may be either queued or dropped. The token entry 
rate governs the average rate of the source, while the burstiness is governed by the 
bucket depth. 

Packet scheduling algorithms for controlling congestion and handling real-time traf- 
fic have been proposed in [143, 226, 113]. The weighted fair queuing algorithm pre- 
sented in [143] is a rate-based flow control scheme that  guarantees a given rate to 
each flow. In [445] it  is shown that  weighted fair queuing, when combined with token 
bucket filtering, allows the network to make worst-case performance guarantees on de- 
lay. Simulation results in [113] show, however, that  the worst-case bounds are typically 
much worse than the actual delay, and that  a modification of FIFO scheduling, while 
not guaranteeing a worst-case bound, appears to achieve much lower variance in delay. 
The stop-and-go queuing technique described in [226] makes less efficient use of band- 
width than the above schemes, resulting in larger average delay, but maintains tighter 
control of j i t te r  in the network. As research on the performance of packet scheduling 
algorithms continues, it appears likely that  network providers implementing these al- 
gorithms will be able to make deterministic and/or  statistical guarantees which can be 
used by applications to guarantee adequate quality of service to users. 

Future multimedia database communication services will likely run over Asyn- 
chronous Transfer Mode networks. Asynchronous Transfer Mode (ATM) is a fast 
t ransport  scheme, based on fixed-length cells, that  is projected to become widely used 
for carrying multimedia traffic. ATM achieves bandwidth efficiency by statistically 
multiplexing bursty traffic from virtual connections at the expense of cell delay and 
loss. Such multiplexing allows varying bit rate on demand, with the ATM specifica- 
tions of maximum bit rates at 150 and 600 Mbps. To support multimedia database 
retrieval, ATM will need to provide guarantees for cell delay and cell lost performance 
requirements for all media types supported. For example, voice data  are delay-sensitive 
while image da ta  are loss-sensitive. These guarantees will be accomplished through the 
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design and implementation of appropriate traffic control mechanisms. Possible traffic 
policing mechanisms are surveyed and compared in [465]. Estabhshing an ATM call 
requires negotiation of a traffic contract, which includes the attributes of maximum and 
mean cell rate as well as the quality of service requirements with respect to call loss, 
delay, and delay jitter. The policing function then controls the cell stream during the 
active phase of the call and restricts the traffic source to the characteristics negotiated 
in the contract. 

A layered view of an ATM network is shown in Figure 1. Traffic flows originate 
from sources at the services layer. An ATM adaptation function is required at the 
adaptation layer to segment the traffic flow at the source into fixed-length cells and 
to reassemble cell contents at the receiver. For message-oriented services, messages 
are reassembled. For continuous traffic, the variable transfer delays of the cells must 
be smoothed by buffering. The adaptation function may be provided either by the 
network or by the end system. In the case of distributed multimedia databases, spe- 
cialized adaptation layers may need to be designed to support the coordinated retrieval, 
transfer, and display of related streams of data from different sources. The cells are 
transferred across the network by the transport layer which is supported by the un- 
derlying physical layer. Performance impairments which may be introduced include 
cell error, cell loss, and cell delay. Cell loss can result from bit errors at the physical 
layer, buffer overflow at transport-layer switches, and smoothing buffer overflow at the 
adaptation layer. Cell delay can result from physical propagation delay, transport- 
layer switch queuing delay, and adaptation layer cell assembly and smoothing delay. 
Although there have been numerous studies of performance requirements at the ATM 
transport layer [168, 630], there has been little work on performance evaluation of 
adaptation layer functions. Adequate performance at the adaptation layer, as well as 
effective allocation of performance requirements between the adaptation and transport 
layers, will be critical for good performance of multimedia databases. 

Services layer 

Adaptation layer 

Transport hyer 

Physical layer 

Figure 1. Layered model of  ATM network 
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19.4 Synchronizat ion Approaches  

Synchronization requirements will need to be expressed at the application level. The 
Object Composition Petri Net (OCPN) has been proposed as an abstract model for 
representing the synchronization of elements composing a multimedia object [369]. The 
OCPN is shown to be capable of modeling any of the thirteen possible temporal rela- 
tionships between two temporal intervals (The logic of these relationships is presented 
in [13]). One of these temporal relations, the overlaps relation, is shown in Figure 2(a) 
for a multimedia object with components a and ft. Here, ra represents the duration of 
o 4 r~ the duration of fl, and r~ the interval from the beginning of the playout of c~ to 
the beginning of the playout of ft. The OCPN is a timed Petri net, with the playout 
processing of object components represented by places, and with instantaneous firing 
of transitions. The firing rules for the OCPN are summarized as follows [369]: 

1. A transition fires immediately when each of its input places contains an unlocked 
token, 

2. Upon firing, a transition removes a token from each of its input places and adds 
a token to each of its output places, 

3. Upon receiving a token, a place locks the token for the interval specified by the 
place's duration, after which time it unlocks the token. 

The OCPN corresponding to the overlap temporal relation is shown in Figure 
2(b), with places represented by circles and transitions by vertical lines. The OCPN 
is actually a hierarchical model, in that a subnet may be replaced by an equivalent 
abstract place. In [369], a hierarchical tree-structured database model is proposed for 
representing and storing OCPN's.  Two types of tree nodes are used - the terminal 
node which represents an atomic object and includes a pointer to the location of the 
actual data, and the nonterminal node which indicates the temporal relation imposed 
on its children. The representation of the overlap relation in this schema is shown 
in Figure 2(c). The OCPN model is extended to n-ary temporal relations (for more 
efficient representation) and reverse temporal relations (to allow reverse playout) in 
[371]. 

Algorithms for processing the OCPN associated with a multimedia object that 
is to be retrieved, transmitted over a network, and displayed are described in [370]. 
Algorithms are given for carrying out the calculation of the following quantities: 

1. the playout deadline schedule II, 

2. the retrieval time schedule O, and 

3. the destination buffer requirements. 

The timing for a single object is shown in Figure 3, where the network latency A 
includes activities such as packetization, transmission, and decompression, and the 
control time T is chosen by the algorithm so as to guarantee synchronization within 
a given probability of faJJure. Buffer requirements are calculated for the purpose of 
smoothing variations in latency and of storing objects that must be held at the desti- 
nation for some amount of time prior to their playout deadline. The schedules produced 
by the algorithms must somehow be enforced by the communication system. One pos- 
sible interface to a proposed system-level network synchronization protocol, the Flow 
Synchronization Protocol being developed at BBN [181], is described below. 
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Figure 3. Timing for retrieval, transmission, and display of a single object. 
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An alternative approach to expressing synchronization requirements is proposed as 
an extension of the CCITT standard Office Document Architecture (ODA) to multi- 
media objects [253]. ODA is a hierarchical object-oriented model designed to allow 
transmission of documents over a network and either direct display or storage and 
subsequent editing by the recipient. The structure of the model is shown in Figure 
4. Document types are defined as subclasses in the generic description class hierarchy. 
Each instance of a document has a specific description, derived from the appropriate 
generic description, which details the actual contents of the document. Logical objects 
include such things as sections, paragraphs, and headings. Layout objects include page 
formats, fonts, page breaks, etc. The generic description defines what logical and lay- 
out objects may exist and contains correspondence relation rules describing how logical 
and layout objects interrelate. In the specific description, the logical structure subdi- 
vides the document on the basis of meaning, and the layout structure subdivides it on 
the basis of paginated layout. A basic object is an object that  is not subdivided into 
smaller objects. In the specific description, the basic logical and layout objects contain 
pointers to actual content portions. The specific description contains correspondence 
relations that  interrelate the specific content portions. The document profile contains 
information such as the title, author, and revision history. An attribute is a property 
of a document or of a document component which expresses a characteristic of the 
component or a relationship with one or more other components. The set of at tr ibutes 
associated with a document as a whole is the document profile. An ODA document 
may by t ransmit ted in either finalized or editable form. In the case of finalized form, 
only the layout structure and document profile need to be sent, since these are all that  
is needed to display the document. In the case of editable form, however, the logical 
structure must also be sent so that  the recipient can modify it. 

Document profile ]< ~l 

Genedc doscdptlon~ 

Corre. spondsnce 

Logical object ~ Layout object 
definitions ~ de fruitions 

Generic content 
portions 

-[ ODA document ] 

Specific d~scdption 

_ _ _ ~  C . . . . .  & n c ~ . ~  
]Logical ~ L a y o u t  

Specific co.tent 
portions ] 

Figure 4. ODA document model 

A notation based on path expressions for the description of synchronized actions 
composing a multimedia object is presented in [253]. ODA extensions are described 
which integrate the semantics of path expressions into the layout structure of a doc- 
ument. The extensions are compatible with the current version of ODA. Multimedia 
objects are assumed to be logically decomposed into atomic actions, which may be syn- 
chronized only at their startpoints and endpoints. Path operators are defined for the 
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possible temporal  relations between pairs of actions and among multiple instantiations 
of an action. A path expression is composed of atomic actions and path operators, and 
it describes which path~ are allowed for the actions - i.e., the possible orders in which 
the actions may be executed. Path expressions define the semantics of the synchro- 
nization without imposing a specific synchronization mechanism. A total  of six path 
operators are described, but the following three are sufficient for describing Allen's 
thirteen possible temporal  relations between pairs of actions: 

A A B Parallel-last: Actions A and B are started together and execute concurrently. 
The composed action terminates when both A and B have terminated. 

A V B Parallel-first: Actions A and B are started together and execute concurrently. 
The composed action terminates when either A or B has terminated, whichever 
terminates first. 

A ; B Sequential: B executes immediately after A - i.e., the endpoint of A equals the 
star tpoint  of B. 

For example, the overlap of e~ and t ,  followed by the overlap of fl and 7, as shown in 
Figure 5(a), would be represented by the path expression shown in Figure 5(b). In this 
example, ~ (a dummy action which functions as a place holder) is executed only once 
but  appears in the two path expressions to produce the desired overlap between a and 

and between ~ and 7. 

Figure 5(a). Overlaps relations Figure 509). Path expressions 

A path expression may be viewed as a tree structure, with the path operators 
as internal nodes and the actions as leaves. Such a tree structure corresponds to 
the hierarchical structure of ODA. The current version of ODA provides for a time- 
invariant presentation of a document, with the layout structures describing the spatial 
relationships between objects. The only current time-based at tr ibute is Imaging Order, 
which gives the sequential ordering for layout objects in the layout object to which they 
are immediately subordinate. The author in [253] proposes extension of the layout 
structure of ODA to include at tr ibutes describing temporal relations. Extensions to 
the logical structure of ODA documents and to time-variant content portions are left 
for future work. The following new attr ibutes are proposed for the basic layout objects: 

B1 Content Temporal Type - static (time-invariant) or dynamic (time=variant), 

B2 Duration- presentation time in Basic Time Units. 

It is possible for a static object, such as an image, to have a positive duration. In 
the case of a static object  with zero for duration, the object is presented until it is 
terminated by its successor in the Imaging Order, thus preserving compatibility with 
the current version of ODA. The following new attr ibute is proposed for composite 
layout objects: 

C1 Object Synchronization Type- the type of path operator associated with the object, 
which may be parallel-last, parallel-first, sequential, or selective. 
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The attribute values parallel-first, parallel-last, and sequential have the meanings de- 
scribed above. With the selective attribute, only one of the subordinate layout objects 
will be displayed, depending on the user's choice. Additional attributes are defined for 
composite layout objects which concern additional timing constraints and user inter- 
actions. 

Before presentation of a time-variant document, the layout structure must be eval- 
uated, and the timing relationships must be extracted and enforced. As in the current 
ODA standard, the document imaging process, concerned with presentation of the 
document to the user, is not defined by the proposed extensions and depends on the 
presentation device being used. An important research question, however, will be how 
to interface the proposed ODA extensions with communication protocols and database 
user interfaces. 

In still another approach to the expression of synchronization properties, the object- 
oriented multimedia database system OMEGA [391] incorporates temporal properties 
into the class TemporalObject. Members of this class, called temporal objects, have 
internal state variables birth Time, death Time, terapoPrec, and terapoSync. The value of 
tempoPrec is calculated from the birth time and death time information, and indicates 
which object or objects immediately precede an object, and by how many seconds. 
The value of tempoSync represents which other objects must be synchronized with the 
object. Two objects are considered to synchronize if their lifetime periods overlap. 
Temporal properties are then addressed through the class definition language, the 
database programming language, and the query language. 

The database synchronization manager may interact with a lower-level synchro- 
nization protocol such as those described in [181,635, 17, 464]. A lower-level synchro- 
nization protocol provides primitives which may be called from an application program 
to access communication system synchronization facilities. 

The Multi-flow Conversation Protocol (MCP) described in [635] provides a way of 
combining logically related data streams which have performance guarantees, called 
flows, into a logical unit called a conversation. MCP provides a token mechanism for 
enforcing conversation concurrency control, or floor control. The mechanism includes 
primitives for creating, replicating, distributing, and deleting tokens. Synchronization 
is approached through the enforcement of a A-causality relation which is defined as 
follows for messages ml and me and a source S: 

ml -+ me, or ml precedes me, if 

1. S sends m2 after S sends ml,  or 

2. S sends rag_ after S receives ml.  
z~ 

ml --+ me, or ml A precedes me~ if 

1. S sends m~ after S sends rot, or 

2. S sends m~ after S receives ml and end-to-end delays for ml and 
m2 are both less than or equal to A. 

zx 
If ml ---+ me, then ml and m~= are delivered in causal order at all destinations. If 

rnl -+ me, but not(m1 ~-~ m2), then ml may be delivered after m2 or may be dropped. 
MCP also provides for expedited delivery of control messages. MCP does not 

require synchronized clocks, but does require a bound on clock drift between real-time 
clocks at different sites. Synchronization requirements for a multimedia object would 
be enforced by sending appropriate control messages and taking advantage of the causal 
order that is enforced on the delivery of these messages and the actual data messages. 



19.4. SYNCHRONIZATION APPROACHES 393 

The Logical Time System, or LTS, is a synchronization abstraction implemented 
over TCP (the Internet Transmission Control Protocol) as part  of the Acme continuous 
media I /O  server developed at UC Berkeley [17]. Application programs may deal with 
logical devices, which are abstract  versions of physical devices. Each logical device is 
bound to an LTS. I /O  on logical devices is synchronized in that  da ta  units with the same 
t imestamp are displayed at approyAmately the same real time. Each LTS has a current 
time value. While an LTS is running, its current value increases at approximately the 
same rate as real time. Acme provides primitives for creating an LTS, for binding a 
logical device to an LTS, for starting and stopping an LTS, for querying an LTS as to 
its current time, and for setting an alarm. The bind primitive allows specification of 
a max_skew value, which is the maximum allowed difference between a logical device 
and the current LTS time value. Aeme enforces synchronization by adjusting the rates 
of logical devices, using the techniques of skipping and pausing. The LTS abstraction 
provides local abstraction only. That  is, all logical devices for an LTS must reside at 
a common location. It is not required however that  the associated physical devices all 
reside at this location, but delay and j i t ter  induced by the network connection between 
a logical device and its associated physical device would not be handled by Acme. The 
Acme system requires synchronized clocks. 

The Flow Synchronization Protocol described in [181] uses a modular architecture 
that  permits the application to tailor the synchronization actions to its own synchro- 
nization requirements. The protocol t imestamps the data  at the sources and equalizes 
the delay at the destinations, so that  the end-to-end delay among flows is synchronized. 
The protocol relies on the underlying use of clock synchronization protocol to achieve 
a global t ime reference. The timing relationships are illustrated in Figure 6. In the 
database context, the collection delay would include the time required to process the 
query and seek and access the data, and the delivery delay would include the time to 
decode and present the data  to the user [368]. The application is allowed to specify the 
following three application-specific function to override the system-provided default 
functions: 

1. a Filtering Function to estimate the unequalized flow delay, 

2. a Synchronization Function to compute - given the estimated individual flow 
delays, the maximum acceptable end-to-end delay for each flow, and the flow 
priorities - the common synchronization delay A. 

3. a Delivery Function to schedule data  delivery (following insertion of the equal- 
ization delay) to the application. 

The protocol is adaptive, in that  it can adjust the synchronization delay A to reflect 
network conditions and performance. For example, if too many packets are being 
discarded because of late arrival, the synchronization delay may need to be increased. 
Thus, the database synchronization manager would be responsible for supplying the 
application-specific functions and for contacting the synchronization protocol controller 
if necessary to change protocol parameters, such as the interval at which A is updated. 

The protocol assumes a flow model in which each flow has a source process sending 
da ta  to a destination process. The source t imestamps the da ta  and the destination 
implements equalization by buffering the data. The destination processes execute the 
application-specific functions. Destination processes belong to synchronization groups. 
The processes in a synchronization group regularly exchange messages to compute a 
common synchronization delay A for the group. Synchronization groups can be used 
both for multiple destinations for the same source and for multiple related flows for 
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Figure 6. Timing relationships for Flow Synchronization Protocol 

the same application. Because the synchronization and delivery functions are executed 
by the destination processes, it might appear that the OCPN model for application 
synchronization, described in [369], could not be used together with this synchroniza- 
tion protocol, since the processing of the OCPN which corresponds to computing these 
functions must take place at the source. However, the Flow Synchronization Protocol 
provides a mechanism of event messages by means of which the a source process may 
send information about the flow known only to it to its corresponding destination pro- 
cesses. Thus, the OCPNs could be processed at the source and the results could be 
sent via event messages to the destinations where they could be used to compute the 
functions. 

A synchronization protocol designed to work in the absence of both synchronized 
clocks and control messages is described in [464]. The media mixing problem has the 
goal of minimizing the differences between generation times of packets being mixed from 
different sources, in the absence of synchronized clocks, but in the presence of jitter 
and transmission delays. The set of packets from different sources that are to be mixed 
to form a composite media packet is called the fusion set. Packets are transmitted 
from their sources to a mixer. Minimum and maximum bounds on the communication 
delay from a source to the mixer are assumed to be known. Packets are assumed to 
be generated at regular intervals, i.e., with a period p. Two packets may belong to 
the same fusion set if and only the difference between their generation times is less 
than or equal to p. This requirement is cMled the Mixing Rule. Conditions on jitter 
and generation intervals are given under which it is possible for the mixer to determine 
fusion sets. For the possible cases, algorithms for determining fusion sets are given. The 
possible communication architectures for media mixing range from centralized, with a 
single central mixer, to fully distributed, where mixing is performed independently 
at each destination. To make the mixing algorithms scalable with respect to both 
the number of participants and the geographical separation between participants, a 
hierarchical tree-structured communication architecture is proposed, with destinations 
at the leaves and mixers at the root and internal nodes. A bound on the time a mixer 
must wait for lost packets is derived that minimizes the real-time delay in a hierarchical 
architecture. 
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19.5 C o n c l u s i o n s  

This chapter has discussed the issues involved with synchronization and communica- 
tion in the context of distributed multimedia databases. Some proposed strategies for 
dealing with these issues have been described. As this field is in its infancy, a great 
deal of work remains to be done. Further research and development are needed in the 
foUowing areas: 

�9 Interfaces between multimedia database systems and communication subsystem 
synchronization primitives. 

Several system-level synchronization protocols are currently being implemented 
and tested. Methods of storing and/or  dynamically determining synchronization 
requirements of multimedia database object are needed, as well as the means of 
relaying these requirements to the underlying communication system. 

�9 Automated determination of quality-of-service requirements for multimedia da- 
tabase query sessions. 

Quality-of-service requirements such as bandwidth, delay, and error rate will 
need to be specified at the time the network connection for a query session is 
established and possibly modified during the session. It is not reasonable to 
expect the end user to bear the burden of specifying these requirements. Thus, 
the database user interface should be able to determine these requirements and 
relay them to the communication service provider. 

�9 Integration of abstract synchronization and object-oriented database models. 

Some work has already started in this direction, but it needs to be extended. 
Currently proposed abstract  synchronization models require temporal relations 
to be defined when an object is created and do not allow dynamic, query-time 
composition. Playout is also restricted to a predetermined rate and direction, 
with the user as a passive observer. A more interactive model, such as the VCR 
model described in [386], with operations such as fast forward, reverse, suspend, 
and resume, would be an improvement. The object-oriented paradigm offers the 
possibility of having the display and synchronization properties handled by the 
object themselves, rather than having these properties overlaid in a separate 
database schema. Methods could then be defined which would allow the objects 
to react to user input. 

�9 Performance studies using simulation of present and future network technologies. 

Multimedia database systems should be designed so as to be able to adapt  to 
changing network technologies. Projected technologies can be simulated before 
they become widely available, so that  the development of database systems that  
use these technologies need not lag behind. 

�9 Studies of the effect on synchronization and communication performance of con- 
currency control mechanisms. 

Certain multimedia databases, such as l ibrary-type information repositories, may 
be largely read-only, but others, such as medical databases that  are accessed and 
updated by physicians, will be updatable. The presence of updates introduces 
the problem of database concurrency control. Conventional concurrency control 
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mechanisms can introduce indeterminate delay in the accessing of database ob- 
jects. Such delay could violate the synchronization and display requirements of 
multimedia objects. Research is needed to determine under what conditions up- 
dating may be allowed, and to determine what concurrency control mechanisms 
will be most appropriate.  

�9 Participation by the database community in international standards efforts, such 
as ATM, ISDN, B-ISDN, ODA, and X400. 

To achieve the goal of interoperabili ty over large-scale wide-area networks, stan- 
dards will be needed, both at the application level and at the communication 
system level. Database researchers should be actively involved at both levels to 
insure that  the capabilities they need are deployed as part  of these standards. 



Chapter 20 

Multimedia Database Systems 

Arif Ghafoor*, P. Bruce Berra t 

20.1 I n t r o d u c t i o n  

The need for multimedia information systems is growing rapidly in a variety of fields in- 
cluding business [423, 22], manufacturing [31712 education [633, 297], Computer-Aided 
Design (CAD)/Computer -Aided Engineering (CAE) [383], medicine [466, 587, 309], 
weather, entertainment [363, 169, 386], etc. Multimedia data  include images, audio, 
full motion video, text and numeric data. Due to the diverse nature of the multimedia 
data,  systems designed to store, transport ,  display and, in general, manage such da ta  
must have considerably more functionality and capability than conventional informa- 
tion management systems. The main issues which multimedia database management 
researchers/designers need to face include: 

1. Development of sophisticated conceptual models which are rich in their semantic 
capabilities to represent complex multimedia objects and express their synchronization 
requirements. A transformation from models to a database scheme is then needed. 
Subsequently, one also needs to specify the object retrieval algorithms. 

2. Designing multimedia query languages which are not only powerful enough 
to handle various manipulation functions for multimedia objects but also simple in 
handling user's interaction for these functions. 

3. Designing powerful indexing and organization techniques for multimedia data. 
4. Developing efficient storage layout models to manage real-time multimedia data. 
In this chapter, we focus on the first issue of multimedia database systems. The 

major  challenge in multimedia information management is how to synchronize vari- 
ous types of da ta  both in space and time in order to compose complex multimedia 
objects [367]. The problem is especiaJly acute if we are dealing with "live" da ta  such 
as digital video or audio. The synchronization requirement plays a key role while de- 
signing a multimedia database. The traditional relational da ta  model is not capable 
of handling synchronization aspects and the heterogeneous nature of the multimedia 
data.  More powerful da ta  modeling schemes are needed for this purpose. Recently, we 
have seen the emergence of various new data  models which are capable of representing 
different characteristics of multimedia objects. The intent of this chapter is to discuss 
these models and their pros and cons in terms of suitability for developing multimedia 
databases. 

* School of Electrical Engineering, Purdue University, West Lafayette, IN, 47907, U.S.A. 
t CASE Center and Department of Electrical and Computer Engineering, syracuse Univer- 

sity, Syracuse, NY, 13244, U.S.A. 
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We begin this chapter with a discussion on the characteristics of multimedia data. 
We then elaborate on the problem of multimedia synchronization in Section 2. The 
conceptual modeling of multimedia da ta  is also discussed in this section. This is fol- 
lowed by an overview of the current state-of-the-art in multimedia databases. We 
conclude this chapter by describing the future trends and challenges in this area. 

20.2 Charac ter i s t i c s  of  M u l t i m e d i a  D a t a  

20.2 .1  T e x t  a n d  F o r m a t t e d  D a t a  

Format ted textual  and numeric da ta  will remain an essential part  of any multimedia 
information system. Database systems based on relational, network or hierarchical 
models are well suited for managing such type of data  and generally provide efficient 
access paths to da ta  in secondary storage by maintaining some type of indexing scheme. 
Queries based on a number of key values such as partial  match queries are supported 
by using intersection operations. Tree structure and hashing can be extended to multi- 
dimensional da ta  in order to support such queries. Examples of such methodologies 
include k-d trees and multi-dimensional extensible hashing. 

Each indexing scheme has its own advantages and disadvantages depending on the 
nature of query processing and da ta  lifetime. When the database is static and most 
queries are based on few keys, an inverted index can be the best indexing scheme. On 
the other hand, when the database is frequently updated, and partial  match queries 
based on a number of key values are common, compressed files [51] and most dynamic 
multidimensional file structures can provide better  performance. Maintaining indices 
for large unformatted textual  da ta  requires an even more complicated strategy as the 
index file itself can easily grow beyond any manageable size when full text inversion is 
used for indexing. Although the access rate of this type da ta  is not as crucial as the 
real-time deliverable data, such as video, audio etc., a large index file can prevent the 
database system from carrying out real-time updating. 

20 .2 .2  A u d i o  a n d  M u s i c  D a t a  

Due to their nature the audio waveform signals are usually sampled, encoded and then 
stored. In general, a high quality encoding scheme requires a great amount of storage 
space. Another way to provide users with the desired audio signal is to use some speech 
synthesis approach [619]. However, such an approach requires sophisticated processing 
and is usually slow. Compared to the speech signal, musical signals are much more 
regular and structural.  This implies that  forming an abstraction of music signals at a 
high level is possible. Graph model has been proposed for this abstraction [477], where 
common musical notations are used to represent the structures of the graph. 

20 .2 .3  I m a g e s  a n d  P i c t u r e s  D a t a  

Many data  structures have been proposed for storing images in a database system. 
These include pixel-oriented [110], quadtrees [484], R-trees [476] or vector based [304]. 
However, irrespective of the representation, the storage of this type of data  is essentially 
in a digital form with the indexing scheme to provide 2-dimensional browsing. The 
digital information is generally stored in a compressed form. For the da ta  that  is 
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highly structured and formatted, high speed retrieval and storage techniques can also 
be employed in this case. 

20.2.4 Full-Motion Video Data 

These da ta  are unique in their nature in the sense that  they can be totally in analog 
form containing both video frames and associated audio signals or in digital form. The 
information can be stored in the same way as in video cassetts with the functions of 
replay, freezing frame, advancing etc. However, in order to integrate this information 
with other da ta  they must be digitized in order to prepare composite digital da ta  
packets carrying requested multimedia object information for the user. Therefore, 
analog to digital conversion and compression of video data  needs to be carried-out 
by the server. The equivalent inverse function needs to be performed at the user end. 
This signal processing can be avoided if the video information is prestored in a digitized 
compressed form. In digital form data  manipulation is much more flexible as compared 
to analog form. However, irrespective of the nature of information, this service requires 
an enormous capacity for storage and very high transfer rate. 

From the da ta  modeling point of view virtually nothing exists. Selection of at- 
tributes, indexing techniques, access and retrieval of video da ta  are some of the open 
research issues in characterizing and managing video data. 

20.3  N o t i o n  of  T i m e  for M u l t i m e d i a  D a t a  

A multimedia object may contain real-time da ta  like audio and video in addition to 
the usual text  and image da ta  that  constitute present-day information systems. Real- 
time da ta  can require time ordered presentation to the user. A composite multimedia 
object  may have specific timing relationships among the different types of component 
media. Coordinating the real-time presentation of information and maintaining the 
time-ordered relations among component media is known as temporal synchronization. 
Assemblying information on the workstation is the process of spatial composition, 
which deals basically with the window management and display layout interface. 

For continuous media, the integration of temporal synchronization functions within 
the database management system is quite desirable since it can make the storage and 
handling of continuous da ta  more efficient for the database system. Also, implementa- 
tion of some standard format for da ta  exchange among heterogeneous systems can be 
carried out more effectively. In this section we first elaborate on the problem of tempo- 
ral  synchronization of multimedia da ta  for composing objects, followed by a discussion 
of modeling time. These models are then used to develop conceptual models for the 
multimedia data,  as described in a later section. 

20.3.1 The Temporal Synchronization Problem 
The concept of temporal synchronization is illustrated in Figure 20.1, where a se- 
quence of images and text is presented in time to compose a multimedia object. One 
can notice, from this figure that  the system must observe some time relationships (con- 
straints) among various da ta  objects in order to present the information to the user 
in a meaningful way. These relationships can be natural or synthetically created [369]. 
Simultaneous recording of voice and video through a VCR, is an example of natural re- 
lationship between audio and video information. A voice annotated slide show, on the 
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other hand, is an example of synthetically created relationship between audio and image 
information. In this case, change of an image and the end of its verbal annotation, 
represent a synchronization point in time. 

still still still 
image text image text image 

N N 
t I t [ t I t I t I " 

1 2 3 4 5 

time 

Figure  20.1: T i m e - O r d e r e d  M u l t i m e d i a  Data 

A user can randomly, access various objects, while browsing through a multimedia 
information system. In addition to simple forward playout of time-dependent data  
sequences, other modes of da ta  presentation are also viable, and should be supported 
by a multimedia database management system. These include reverse playout, fast- 
forward/fast-backward playout, and random access of arbitrarily chosen segments of 
a composed object. Although these operations are quite common in TV technology, 
(e.g., VCRs), these capabilities are very hard to implement in a multimedia system. 
This is due to the non-sequential storage of multimedia objects, the diversity in the 
features of hardware used for data  compression, the distribution of data, and random 
communication delays introduced by the network. Such factors make the provision of 
these capabilities infeasible with the current technologies. 

Conceptually, synchronization of multimedia information can be classified into 
three categories, depending upon the "level of granularity of information", requiring 
synchronization [568]. These are the physical level, the service level, and the human 
interface level [568], as shown in Figure 20.2. 

At the physical level, da ta  from different media are multiplexed over single physical 
connections or are arranged in physical storage. This form of synchronization can be 
viewed as "fine-grain". The service level synchronization is "more coarse grain", since it 
is concerned with the interactions between the multimedia appfication and the various 
media, and among the elements of the appfication. This level deals primarily with 
intermedia synchronization necessary for presentation or playout. The human interface 
level synchronization is rather "coarse grain" since it is used to specify the random user 
interaction to a multimedia information system such as viewing a succession of database 
items, also known as browsing. 

In addition to time dependent relational classification (i.e., synthetic/natural) ,  data  
objects can also be classified in terms of their presentation and appfication lifetimes. 
A persistent object is one that  can exist for the duration of the application. A non- 
persistent object is created dynamically and discarded when obsolete. For presentation, 
a transient object is defined as an object that  is presented for a short duration without 
manipulation. The display of a series of audio or video frames represents transient 
presentation of objects, whether captured live or retrieved from a database. Henceforth, 
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Figure 20.2: Levels of Synchronization of Multimedia Data 

we use the terms static and transient to describe presentation lifetimes of objects while 
persistence expresses their storage life in a database. 

In another classification, multimedia da ta  have been characterized as either contin- 
uous or discrete [250]. This distinction, however, is somewhat vague since time ordering 
can be assigned to discrete media, and continuous media are time-ordered sequences 
of discrete ones after digitization. We use a definition attr ibutable to Herrtwich [250], 
where continuous media are represented as sequences of discrete da ta  elements that  
are played out contiguously in time. However, the term continuous is most often used 
to describe the fine-grain synchronization required for audio or video. 

20.3.2 Model ing  Time 

The problem of multimedia synchronizing at presentation, user interaction, and physi- 
cal layers, reduces to satisfying temporal precedence relationships among various da ta  
objects under real timing constraints. For such purpose, models to represent time 
must be available. Temporal intervals and instants provide a means for indicating ex- 
act temporal  specification. In this section, we discuss these models and then describe 
various conceptual data  models to specify temporal information necessary to represent 
multimedia synchronization. 

To be applicable to multimedia synchronization, time models must allow synchro- 
nization of components having precedence and real-time constraints, and provide the 
capability for indicating laxity in meeting deadlines. The primary requirements for 
such a specification methodology include the representation of real-time semantics and 
concurrency, and a hierarchical modeling ability. The nature of presentation of multi- 
media da ta  also implies that  a multimedia system has various additional capabilities 
such as: to handle reverse presentation, to allow random access (at an arbitrary start  
point), to permit an incomplete specification of intermedia timing, to handle sharing of 
synchronized components among applications, and to provide da ta  storage for control 
information. In fight of these additional requirements, it is, therefore, imperative that  
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a specification methodology must also be well suited for unusual temporal semantics as 
well as be amenable to the development of a database for storing timing information. 

The first time model is an instant-based temporal reference scheme that  has been 
extensively applied in the motion picture industry, as standardized by the Society of 
Motion Picture and Television Engineers (SMPTE). This scheme associates a virtually 
unique sequential code to each frame in a motion picture. By assigning these codes to 
both an audio track and a motion picture track, intermedia synchronization between 
streams is achieved. This absolute, instant-based scheme presents two difficulties when 
applied to a multimedia application. First,  since unique, absolute time references 
are assumed, when segments are edited or produced in duplicate, the relative timing 
between the edited segments becomes lost in terms of playout. Furthermore, if one 
medium, while synchronized to another, becomes decoupled from the other, then the 
timing information of the dependent medium becomes lost. This instant-based scheme 
has also been applied using Musical Instrument Digital Interface (MIDI) time instant 
specification [416]. The same scheme is used to couple each time code to a common 
time reference [252]. 

In another approach, temporal  intervals are used to specify relative timing con- 
straints between two processes. This model is mostly applicable to represent simple 
parallel and sequential relationships. In this approach, synchronization can be accom- 
plished by explicitly capturing each of the thirteen possible temporal relations [369] 
that  can occur between the processes. Additional operations can be incorporated in 
this approach to facilitate incomplete timing specification [250]. 

We now discuss how these approaches can be used to develop conceptual models 
for multimedia objects. We discuss pros and cons of these models and compare them in 
terms of their effectiveness to represent objects and user's data  manipulation functions. 

20.4 Conceptual Models for Multimedia 
Objects 

A number of a t tempts  have been made to develop conceptual models for representing 
multimedia objects. These models can be classified into five categories, namely; graph- 
ical models, Petri-Net based models, object-oriented models, language based models, 
and temporal  abstraction models. Some models are primaly aimed at synchronization 
aspects of the multimedia da ta  while others are more concerned with the browsing 
aspects of the objects. The former models can easily render themselves to an ultimate 
specification of the database schema, as briefly discussed later in this section. Some 
models, such as based on graphs and Petri-Nets have the additional advantage of pic- 
torially illustrating synchronization semantics, and are suitable for visual orchestration 
of multimedia presentations. These models are discussed below. 

20.4.1 Graphical Models  

Labeled directed graphs have been extensively used to represent information [586]. Hy- 
pertext systems provide an example of such a mechanism. This approach allows one to 
interlink small information units (data) and provides a powerful capability for users to 
navigate through a database.  Information in such a systems represents a "page" con- 
sisting of a segment of text,  graphics codes, executable programs, or even audio/video 
data. All the pages axe linked via a labeled graph, called hypergraph. The major 
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application of this model is to specify higher level browsing features of multimedia 
system. The essence of hypertext is a nonhnear interconnection of information, unhke 
the sequential access of conventional text. Information is linked via cross-referencing 
between keywords or subjects to other fragments of information. An application has 
been implemented [492] for interactive movies by using the hypertext paradigm. 

Various operations, such as updating and querying, can be performed on a hyper- 
graph. Updating means changing the configuration of the graph and the content of 
the multimedia data. Querying operations include navigating the structure, accessing 
pages (read or execute), showing position in the graph, and controlling side effects. 
Basically, it is a model for editing and browsing hypertext.  

The hypergraph model suffers from many shortcomings. The major drawback is 
that  there is no specific mechanism to handle temporal synchronization among da ta  
items. 

20.4.2 Pe tr i -Net  Models  

Recently, the use of Petri-Nets for developing conceptual models and browsing seman- 
tics of multimedia objects [145, 369, 558] has been proposed. The basic idea in these 
models is to represent various components of multimedia objects as places and describe 
their inter-relationships in the form of transitions. These models have been shown to 
be quite effective for specifying multimedia synchronization requirements. 

For example, one such model is used to specify high level (object level) synchroniza- 
tion requirements which is both a graphical and mathematical  modeling tool capable 
of representing concurrency. In this approach Timed Petri Net has been extended to 
develop a model that  is known as Object Composition Petri Nets (OCPNs) [369]. The 
particularly interesting features of this model are the ability to explicitly capture all 
the necessary temporal  relations, and to provide simulation of presentation in both the 
forward and reverse directions. Each place in this Petri-Net derivative represents the 
playout of a multimedia object while transitions represent synchronization points. 

In [369], thirteen temporal relationships between two objects are presented, which 
are sufficient to specify temporal composition of any complex multimedia object. An 
OCPN model can represent all these relations. It has been shown in the paper that  
an arbitrarily complex process model of temporal relations can be constructed with an 
OCPN. Figure 20.3 shows an example of an OCPN that  describes a slide show. As can 
be noticed, in this model the duration of each object is also specified. 

F igure  20.3: AN O C P N  Model  for A Slide Show 

In another model, called Petri-Net-Based-Hypertext (PNBH), the higher level 
browsing semantics can be specified. In this model information units are treated as 
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net places and links as net arcs. Transitions in a PNBH indicate the traversal of links, 
or the browsing of information fragments. Figure 20.4 illustrates a PNBH model con- 
sisting of segments of an interactive movie. These segments can be played-out in a 
random order, as selected by the user and restricted by the semantics of the net. 

F igure  20.4: P N B I t  Pe t r i  Net  

Unlike the OCPN, net places in PNBH can have multiple outgoing arcs, and there- 
fore can represent nondeterministic and cyclic browsing. On the other hand, the OCPN 
specifies exact presentation-time playout semantics, useful in real-time presentation 
scheduling. Clearly these two models complement each other for specifying both user 
interaction and presentation orchestration. 

The above mentioned Petri-Net based models lack one capability. That  is, there 
is no mechanism to specify communication requirements and control functions for dis- 
t r ibuted composition of objects. An at tempt  has been made in [145] where another 
Petri  Net based hierarchical model, called G-Net, has been proposed. This model does 
allow specifications of communication primitives and types of connections that  can be 
established among communicating sites, floweret, the model is rather over simplified 
since, unlike OCPN, it does not facilitate generation of database schema in a straight 
forward manner for the multimedia objects. On the other hand, the Petri-Net models, 
especially the OCPN, can be easily extended to model databases. For this purpose, 
a place represents an object. Attributes,  operations on objects, pointers to physical 
data,  etc. can be associated with each object. The semantics of the schema, therefore, 
can be represented by the net structure. This conversion is explained at the end of this 
section. 

20.4.3 Object-Oriented Models 
The basic idea in this model is to represent a real world thing or concept as an object. 
An object usually has an identifier, attributes, methods, a pointer to data, etc. One 
such approach has been proposed in the OMEGA system [390]. To facilitate the presen- 
tat ion of multimedia objects, OMEGA uses temporal information associated with each 
object to calculate precedence and synchronization between objects. In this model, a 
multimedia object has attributes,  relationships which are its value reference to other 
objects, components (its value reference to other object(s) that  are dependent on the 
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referring superordinate object),  and methods. Some integrity rules also apply. These 
include class, instance, subclass, superclass, inheritance, generalization, and aggrega- 
tion. For instance, in OMEGA systems, IS_PART_OF and IS_ REFERENCE_OF can 
be specified between objects. In order to handle different types of multimedia data, 
a metaclass called mult imediact~ is defined in the OMEGA system that  consists of 
sound, image, text, and video class. 

In another approach [45], a three dimensional class hierarchy is used to represent 
spatial  objects. Definition and manipulation (usually specified in methods) are opera- 
tions applied to objects. 

This approach can facilitate the generation of multimedia database schema, by 
using either programming languages or ER diagrams. 

20.4.4 Language Based Models  

Concurrent languages have been extensively used to specify parallel and distributed 
process structures. These languages also have the potential to specify multimedia 
synchronization requirements. For one such scheme, an extension to the language 
called Communicating Sequential Processing (CSP) has been proposed. This exten- 
sion supports multimedia process synchronization, including semantics for real-time 
synchronization of multimedia data. The extension is based on a proposed concept, 
called "restricted blocking" which provides a resolution mechanism for the synchroniza- 
tion problem encountered while handling continuous media [548]. In the "restricted 
blocking" mode, an object may be forced to wait for an other object, to perform syn- 
chronization if the later does not arrive in time. For this purpose, the extention to 
CSP includes various constructs such as SYNCHRONIZE, WITH object-name, AT 
end, MODE type-of-blocking, WHILE_WAITING do-something. In this command, an 
object is forced to walt for the other object to arrive for synchronization. For this 
purpose, the parmater  for the MODE (type-of-blocking) primitive can be set as re- 
stricted_blocking. The waiting object can be replayed or slowed down during the wait 
state. These constructs are initiated by the system. Also, various time operands can 
be specified in this command to adjust the relative display time of two objects. 

Various other language-based approaches have also been proposed. Two such ex- 
amples include the specification using LOTOS (Language Of Temporal Ordering Spec- 
ification) [605], and process-oriented synchronization in CCWS [453]. 

The major advantage of language based models is that  they can directly lead to an 
implementation. However, their drawback is that,  unlike graphical models, they are 
hard to conceptually visualize and are difficult to verify. 

20.4.5 Temporal  Abstract ion Models  

Some of the requirements for multimedia presentation are not well described by either 
of the above mentioned models. For example, to reduce (slow motion) or increase (fast- 
forward) the speed of a multimedia presentation, the temporal models are deficient. 
These requirements can be addressed by temporal abstractions, which are means to 
manipulate or control the presentation of a temporal specification via time reference 
modification. Various virtual time abstractions have been described in the l i terature 
[250, 18]. These describe the maintenance of a time reference that  can be scaled to 
real-time and adjusted to appropriate playout speeds. If real-time is defined as nominal 
clock time as we perceive it, then virtual time is any other time reference system suitable 
for translation to real-time. For example, a unitless reference can be converted, or 
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projected to real-time system by any scaling or offsetting operations. In this manner, 
the output  rate and direction for a sequence of data  elements can be changed by simply 
modifying this translation, i.e., an entire temporal  specification, either language or 
graph-based, can track a specific time reference or translation process. 

20.4.6 Database Models for Multimedia Synchronization 

Once temporal  specifications of time-dependent multimedia objects are effectively mod- 
eled, a multimedia information system must have the capability for storing and access- 
ing these objects. This problem is distinct from historical databases, temporal query 
languages [529, 573], or time-critical query evaluation [256]. Unlike historical data, 
t ime-dependent multimedia objects require speci~d considerations for presentation due 
to their real-time playout characteristics. Data need to be delivered from storage based 
on a prespecified schedule, and presentation of a single object can occur over an ex- 
tended duration (e.g., a movie). 

A conceptual da ta  model for time-dependent multimedia objects must support 
forward and reverse playout as well as random access (in time) to the object in addition 
to conventional DBMS queries. Temporal intervals can be described either by a timellne 
representation in an unstructured format, or in a structured format such as the OCPN. 
Using the OCPN, temporal hierarchy can be imparted to the conceptual schema as sets 
of intervals bound to a single temporal relation. 

With  this approach, the conceptual schema forms a temporal hierarchy representing 
the semantics of the OCPN, as shown in Figure 20.5. Subsets or subtrees of this 
hierarchy represent subnets of the OCPN, illustrating the capability of composing 
complex multimedia presentations. Terminal elements in this model indicate base 
multimedia objects (audio, image, text, etc.), and additional attributes can be assigned 

t o  nodes in the hierarchy for conventional DBMS access. Timing information is also 
captured with node attributes,  allowing the assembly of component elements during 
playout. 

As mentioned above, temporal  information can also be encapsulated in the de- 
scription of the multimedia da ta  using the object-oriented paradigm [390]. Temporal 
information including a time reference, playout time units, temporal relationships, and 
required time offsets are maintained for specific multimedia objects. For stream type 
data, this approach can define the time dependencies for an entire sequence by defining 
the period or frequency of playout (e.g., 30 frames/s for video) analogous to a set of 
intervals bound to a single temporal relation. 

Given an application, the synchronization requirements then can be described by 
an OCPN model. The OCPN is then transformed into a database schema. A tree 
(network) structure is used to represent the schema. This is depicted in Figure 20.6. As 
can be noticed from this figure, three types of nodes are used to capture the information 
in OCPN. The first is a terminal node. It has attr ibutes that  indicate node type, media 
type, an unspecified field, and a pointer indicating the location of data. Nonterminal 
nodes have the following at tr ibutes : node type, an unspecified field, left and right 
child pointers and temporal  data. The third type of nodes is the meta node, which is 
similar to a nonterminal node except that  it has n (> 2) child pointers. 
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Figure 20.5: A Temporal Hierarchy for the Semantics of the OCPN 

20.5 S o m e  M u l t i m e d i a  Database  S y s t e m s  

In this section we discuss various multimedia databases. We start with an introduction 
to image database, followed by a description of audio databases. 

20.5.1 Image Database 

Conventional database management systems have been designed for managing numeric 
and text data, which are single dimensional in nature. But spatial or pictorial data are 
necessarily two- or three-dimensional and contain a considerable amount of information 
that cannot be stored directly as a set of hnear relationships. The spatial or two- 
dimensional image data have a great deal of implicit and exphcit knowledge. Explicitly, 
there is sensory information pertaining to the hghting-brightness, shadows, colors, etc. 
Implicit in all the spatial data is the information related to the concept of position as 
well as the notion of distance. 

What makes the management of spatial data very comphcated is that the same im- 
age can be viewed in different perspectives by various users. Consequently, the primary 
features that need to be recognized and extracted can be different for each problem 
domain. Moreover~ there is a need to be able to represent image data of various kinds. 
For example, a geographical map would directly pertain to two-dimensional informa- 
tion, whereas a machine design drawing contains information about three-dimensional 
objects. In addition, in order to support a large variety of continuous and discrete rep- 
resentations, an image database provides access to special-purpose functions for image 
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Figure  20.6: A Network  D a t a b a s e  Schema for the  O C P N  

processing such as primitives for feature extraction. In order go make progress in im- 
age databases from the software engineering perspective, it is important  to examine 
innovations in both processing and representations of images. 

One of the most important  problems to be considered in the design of image da- 
tabase systems is how images are stored in an image database. Many data  structures 
have been proposed. Some are pixel-oriented; some utilize quadtrees, or R-trees, and 
some are vector based. To make an image database system more intelligent, more 
flexible, and an efficient da ta  structure should be used. Also, the knowledge embedded 
in images should be captured by the da ta  structure as much as possible, especially 
spatial knowledge. Extracting information from images is a time consuming process. 
On the other hand, if information or knowledge is extracted from images item by item 
in advance and stored for later retrieval, we need much more storage capacity and 
therefore, retrieval would take a long time. 

In pictorial information retrieval, many approaches have been proposed and include 
relational database queries, query-by-view [412], quadtrees etc. We now describe some 
image database systems for which such approaches have been proposed and prototyped. 

1. Intelligent Image Database System (IIDS) [103]: This is a prototype intelligent 
image database system that  is based on a new pictorial data  structure. Specifi- 
cally, a new way of representing a picture by a 2-D string has been introduced in 
IIDS. A picture query can also be specified as a 2-D string~ The problem of picto- 
rial information retrieval then  becomes one of 2-D string subsequence matching. 
This approach aJlows an efficient and natural  way to construct iconic indexes for 
pictures. The 2-D string representation is ideally suited to formulating picture 
queries. The iconic index can not only be used in pictorial information retrieval, 
but also provides an efficient means for picture browsing. The corresponding 
2-D string for this kind of query contains two special icons. One is called single- 
variable icon, which can match any single object; the other is called multivariable 
icon, which can match any set of objects. 
In order to increase the power of the IIDS, it would be advantageous to add 



20.5. SOME MULTIMEDIA DATABASE SYSTEMS 409 

attr ibutes to symbols in the 2-D strings. In this way, we could convey not only 
the relative positions of objects, but also information such as orientation, size, 
and other characteristics. 

2. Image Database System (IDB) [591]: Most information management systems 
are designed to handle traditional alphanumeric data. Today technology makes 
available resources that  allow the management of new classes of information, such 
as image and voice. When deahng with images, we must generalize the input, 
processing, and output phases that  characterize the management of traditional 
da ta  types. Furthermore, all these activities require suitable hardware and soft- 
ware instruments. From the end-user point of view, the interface between users 
and systems would be much more attractive if it were possible to use images to 
manage images as well as we use words to manage traditional information. Two 
kinds of da ta  must be managed by an image system: image files and their de- 
scriptions. The former are characterized by large sizes and unstructured forms, 
while the lat ter  have small sizes and structured forms. Images and descriptions 
are stored on different kinds of devices. The main requirement for image da ta  
is the availability of a large memory at low cost. Optical disks can meet this re- 
quirement, and image da ta  are now increasingly stored on those special devices, 
while descriptive information continues to be stored on magnetic disks. 
The IDB system exploits images as a vehicle of interaction with the user; index 
images play a fundamental role in completing the selection of images from the 
archive. The architecture is characterized by modularity and flexibility; each 
single module is related to a specific task to be performed during the image 
management process. Functions have been integrated by distributing resources 
among the nodes of a LAN; each node COrresponds to a workstation, and many 
users can work with the system. 
Future extensions of IDB will involve the integration of new kinds of information 
such as audio da ta  and image animation. A hypermedia approach is also being 
evaluated. 

3. Map Database: A map database management system contains facilities to cre- 
ate, modify, store, and retrieve spatial information. A Map Database System 
(MDS) goes beyond simply replacing paper maps. MDS allows users to view, 
compare, and analyze spatial relationships. Map databases allow the generation 
of maps that  contain only the information required by the map user. The map 
information is divided into different layers which overlay on the same area. Typ- 
ical layers include streams, cities, sewers, roads, highways, secondary streets, 
water pipes, gas lines, telephone cables and so on. The information in layers 
may also contain per capital income, product consumption, or other thematic 
information. 
Map databases contain large amounts of data. Efficient encoding of the graph- 
ical information into a format suitable for digital storage is required. The non- 
graphical at tr ibutes are usually stored using the normal methods. Several dif- 
ferent encoding methods are polygon encoding, dual independent map encoding, 
and 2-D encoding [236]. 

2 0 . 5 . 2  A u d i o  D a t a b a s e  

Until now, there seems to be no practical audio database management system even 
though the technology for audio acquisition is available. In fact, an audio database 



4]0  CHAPTER 20. MULTIMEDIA DATABASE SYSTEMS 

can be reduced to an audio storage system. However, in order to support real time 
applications in multimedia representation, an efficient placement of audio da ta  on 
optical disks is important .  The placement of audio data  on the optical disk is of 
primary importance because the audio da ta  is being extracted from the optical disk 
in real-time. Real time means that  system interrupts greater than 30 msec cannot be 
tolerated. Yu et al. [637] proposed an optimal algorithm for merging two audio records, 
resulting in a record having minimum length. This result is useful in minimizing space 
for storing audio files, while maintaining realistic sound. 

20.6 C h a l l e n g e s  in M u l t i m e d i a  D a t a b a s e  

Conventional databases are mainly designed to process and access the text and numeric 
data.  These databases can be an important  part  of the overall multimedia system. Con- 
siderable research has been done during the last two decades in these databases. Their 
architecture ranges from centralized database to distributed database systems. How- 
ever, all these conventional database systems lack the capabilities needed to support 
advanced multimedia applications in offices and factories, that  require integration of 
various types of da ta  such as text, image, video and audio into a single object so that  
users can interact with it without being aware of the heterogeneity of data  in types 
and operations. 

The organization and management issues for multimedia databases have been the 
subject of extensive research and development since the middle of the 1980's. However, 
a number of challenges are faced by the database community to provide a comprehen- 
sive solution for designing and managing multimedia database systems. These include 
designing new da ta  models to capture semantics for multimedia objects, storing and ac- 
cessing multimedia data, indexing techniques for digital images, video and audio data, 
version management for distributed objects, query language development for multime- 
dia da ta  etc. Some approaches proposed for this purpose are based on the extension of 
existing relational, networking, and object-oriented models, as briefly described earlier. 

Coming back to four issues discussed in Section 1, we have only addressed the first 
issue in this chapter. Extensive research is needed to handle other issues as well. For 
example, the base technology that  deals with the management of various data  types 
poses a number of challenges. The major issue is related to storing live data  such as 
digital video and audio. Specifically, if we need to extend the data  models used in 
conventional databases, selection of attributes, designing suitable indexing schemes, 
searching for video and audio da ta  items, linking objects, etc., pose unique challenges 
that  are not faced in conventional databases. It is possible that  a mere extension of 
existing da ta  models may not prove fruitful for this purpose. More advanced da ta  
models, as discussed above, may provide better  and more powerful methodologies and 
warrant more extensive scrunity and evaluation. 

Another major challenge is integration of enabling technologies~ where diverse and 
heterogeneous (such as text, image, video etc.) databases need to interact with each 
other in order to provide unified composite objects to the end users. Schema integration 
for the individual multimedia databases, provision of a high level query language to 
manipulate objects across these databases etc., are some of the important  issues which 
need to be addressed. A number of papers have recently started appearing that  provide 
more powerful query languages which can be effectly used for multimedia databases 
[412] 
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20.7 Conclus ion  

One of the requirements of multimedia database systems is that they will need a data 
model more powerful than the relational model, without compromising its advantages. 
The relational data model exhibits limitations in terms of complex object support, 
type system, and object management. To address these issues, we have emphasized 
one key requirement for multimedia databases, which is the process of temporal syn- 
chronization. We have discussed various conceptual models to specify this requirement 
and have highlighted their capabilities and limitations. Still, a number of other issues 
need to be faced before multimedia database systems become a reality. 
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