

INTRODUCTION TO ADVANCED SYSTEM-ON-CHIP TEST DESIGN

AND OPTIMIZATION

FRONTIERS IN ELECTRONIC TESTING

Consulting Editor

Vishwani D. Agrawal

Books in the series:

Embedded Processor-Based Self-Test

D. Gizopoulos

ISBN: 1-4020-2785-0

Testing Static Random Access Memories

S. Hamdioui

ISBN: 1-4020-7752-1

Verification by Error Modeling

K. Radecka and Zilic

ISBN: 1-4020-7652-5

Elements of STIL: Principles and Applications of IEEE Std. 1450

G. Maston, T. Taylor, J. Villar

ISBN: 1-4020-7637-1

Fault Injection Techniques and Tools for Embedded systems Reliability

Evaluation

A. Benso, P. Prinetto

ISBN: 1-4020-7589-8

High Performance Memory Memory Testing

R. Dean Adams

ISBN: 1-4020-7255-4

SOC (System-on-a-Chip) Testing for Plug and Play Test Automation

K. Chakrabarty

ISBN: 1-4020-7205-8

Test Resource Partitioning for System-on-a-Chip

K. Chakrabarty, Iyengar & Chandra

ISBN: 1-4020-7119-1

A Designers' Guide to Built-in Self-Test

C. Stroud

ISBN: 1-4020-7050-0
Boundary-Scan Interconnect Diagnosis

J. de Sousa, P.Cheung
y

ISBN: 0-7923-7314-6
Essentials of Electronic Testing for Digital, Memory, and Mixed Signal VLSI
Circuits

M.L. Bushnell, V.D. Agrawal
ISBN: 0-7923-7991-8

Analog and Mixed-Signal Boundary-Scan: A Guide to the IEEE 1149.4
Test Standard

A. Osseiran
ISBN: 0-7923-8686-8

Design for At-Speed Test, Diagnosis and Measurement
B. Nadeau-Dosti
ISBN: 0-79-8669-8

Delay Fault Testing for VLSI Circuits
A. Krstic, K-T. Cheng

gg

ISBN: 0-7923-8295-1
Research Perspectives and Case Studies in System Test and Diagnosis

J.W. Sheppard, W.R. Simpson
p

ISBN: 0-7923-8263-3
Formal Equivalence Checking and Design Debugging

S.-Y. Huang, K.-T. Cheng
q gg

ISBN: 0-7923-8184-X
Defect Oriented Testing for CMOS Analog and Digital Circuits

M. Sachdev
ISBN: 0-7923-8083-5

by

ERIK LARSSON
Linköpings University, Sweden

INTRODUCTION TO ADVANCED

SYSTEM-ON-CHIP TEST DESIGN

AND OPTIMIZATION

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10 1-4020-3207-2 (HB) Springer Dordrecht, Berlin, Heidelberg, New York
ISBN-10 0-387-25624-5 (e-book) Springer Dordrecht, Berlin, Heidelberg, New York
ISBN-13 978-1-4020-3207-3 (HB) Springer Dordrecht, Berlin, Heidelberg, New York
ISBN-13 978-0-387-25624-5 (e-book) Springer Dordrecht, Berlin, Heidelberg, New York

Published by Springer,

P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved

© 2005 Springer

No part of this work may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photocopying, microfilming, recording

or otherwise, without written permission from the Publisher, with the exception

of any material supplied specifically for the purpose of being entered

and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

Contents

Preface xiii

Acknowledgements xvii

Part 1 Testing concepts

1. INTRODUCTION 1

2. DESIGN FLOW 5

1 Introduction 5

2 High-level design 6

3 Core-Based Design 7
3.1 Network-on-Chip 9
3.2 Platform-Based Design 9

4 Clocking 10
4.1 System Timing 11
4.2 Clock Distribution 11
4.3 Multiple Clock Domains 12

4.3.1 Phase Locked Loop (PLL) 12
4.3.2 Globally-Asynchronous Locally-Synchronous 13

5 Optimization 14
5.1 Optimization Techniques 16

5.1.1 Backtracking and Branch-and-bound 16
5.1.2 Integer Linear Programming 17
5.1.3 Local Search 17
5.1.4 Simulated Annealing 18
5.1.5 Genetic Algorithms 18
5.1.6 Tabu Search 19

SOC Test Designvi

3. DESIGN FOR TEST 21

1 Introduction 21
1.1 Fault models 21

1.1.1 Stuck-at Fault Model 22
1.1.2 Bridging Fault Model 22
1.1.3 Stuck-Open Fault Model 23
1.1.4 Delay Fault Model 23

1.2 Test Generation for Combinational Circuits 24
1.2.1 Path Sensitization 25
1.2.2 Boolean Difference 25
1.2.3 D-algorithm 26
1.2.4 PODEM (Path-Oriented Decision-Making) 27
1.2.5 FAN (Fanout-Oriented Test Generation) 28
1.2.6 Subscripted D-Algorithm 28
1.2.7 CONcurrent Test Generation 28
1.2.8 Fault Simulation 28
1.2.9 Optimization 28
1.2.10 Delay Fault Detection 30

1.3 Testing Sequential Circuits 30

2 Design-for-Test Methods 31
2.1 Test Point Insertion 32
2.2 The Scan Technique 32

2.2.1 Scan Testing for Delay Faults 36
2.3 Test Pattern Generation for BIST 39

2.3.1 Exhaustive Pattern Generation 40
2.3.2 Pseudo-Random Pattern Generation 40
2.3.3 Pseudo-random-based test generation 40
2.3.4 Deterministic Testing 41

2.4 Test Response Analysis for BIST 41
2.5 Circular-BIST 43
2.6 BIST-Architectures 43

2.6.1 BILBO (Built-In Logic Block Observer), 43
2.6.2 STUMPS Architecture 44
2.6.3 LOCST (LSSD On-Chip Self-Test) 44

2.7 Memory Testing 45
2.7.1 Algorithmic Test Sequence (ATS) 48
2.7.2 Marching Pattern Sequences (MARCH) 48
2.7.3 Checkboard Test 49
2.7.4 Memory BIST 49
2.7.5 Memory Diagnosis and Repair 50

3 Mixed-Signal Testing 51

Contents vii

4. BOUNDARY SCAN 53

1 Introduction 53

2 The Boundary-Scan Standards (IEEE 1149.1) 53
2.1 Registers 56
2.2 TAP Controller 57
2.3 Instructions 57

2.3.1 Example 57
2.3.2 Boundary-Scan Languages 58
2.3.3 Cost of Boundary Scan 58

3 Analog Test Bus (IEEE 1149.4) 61
3.1 Analog Test Access Port (ATAP) 63
3.2 Test Bus Interface Circuit (TBIC) 63
3.3 Analog Boundary Module (ABM) 63
3.4 Instructions 63
3.5 Chaining Example 63

Part 2 SOC Design for Testability

5. SYSTEM MODELING 67

1 Introduction 67

2 Core modeling 68

3 Test Resource modeling 71

4 Core Wrapper 72

5 Test Access Mechanism 74

6. TEST CONFLICTS 77

1 Introduction 77

2 Limitations at the Tester 78
2.1 Bandwidth Limitations 79
2.2 Tester Memory Limitations 79
2.3 Test Channel Clocking 80

3 Test Conflicts 81
3.1 General Test Conflicts 81
3.2 Multiple Test Set 82
3.3 Multiple Sets of Test Sets 82
3.4 Interconnection Testing - Cross-Core Testing 84
3.5 Hierarchy - Cores Embedded in Cores 85

4 Discussion 86

SOC Test Designviii

7. TEST POWER DISSIPATION 89

1 Introduction 89

2 Power consumption 90

3 System-level Power modeling 91

4 Hot-spot modeling with Power Grids 93

5 Core-level Power modeling 95

6 Discussion 98

8. TEST ACCESS MECHANISM 99

1 Introduction 99
1.1 System-on-Chip Test Data Transportation 100

1.1.1 The TestShell and P1500 Approach 100
1.2 Reconfigurable Core Wrappers 106

2 Test Access Mechanism Design 107
2.1 Multiplexing Architecture 108
2.2 Distribution Architecture 109
2.3 Daisychain Architecture 110
2.4 Test Bus Architecture 111
2.5 TestRail Architecture 111
2.6 Flexible-Width Architecture 112
2.7 Core Transparancy 112

3 Test TIME Analysis 113

9. TEST SCHEDULING 115

1 Introduction 115

2 scheduling of Tests with fixed test time under test conflicts 119
2.1 Preemptive test scheduling 128

3 scheduling of tests with non-fixed (variable) testing times 128
3.1 Idle Types 128

3.1.1 Imbalanced TAM Test Completion Times 129
3.1.2 Module Assigned to TAM of Non Pareto Optimal

Width 130
3.1.3 Imbalanced Scan Chains in Module 131
3.1.4 Other Types of Idle Bits 131

3.2 SOC Test Scheduling with Fixed-Width TAM 132
3.3 SOC Test Scheduling with Flexible-Width TAM 134

3.3.1 Test Power 137
3.3.2 Multiple Test Sets 138

Contents ix

3.4 Other Test Scheduling Techniques 138
3.4.1 Problem: Control lines and Layout. 138
3.4.2 Problem: Power Modeling 138
3.4.3 Problem: Fixed Test Resources 139
3.4.4 Problem: Multiple Clock Domains 140
3.4.5 Problem: Delay Fault Testing 140
3.4.6 Defect-Oriented Scheduling 140

4 Optimal Test time? 143
4.1 Soft Cores - No Fixed Scan-chains 146
4.2 Hard Cores - Fixed Number of Scan-chains 150

5 Integrated Test Scheduling and TAM Design 151
5.1 Test Time and Test Power Consumption 152
5.2 Bandwidth Assignment 152
5.3 Test Scheduling 153
5.4 TAM Planning 154
5.5 TAM Optimization 156

6 Integrating Core Selection in the Test Design Flow 157

7 Further Studies 160
7.1 Combined Test Time and TAM Design Minimization 160
7.2 Core Selection in the Test Design Flow 160
7.3 Defect-Oriented Test Scheduling 160

Part 3 SOC Test Applications

10. A RECONFIGURABLE POWER-CONSCIOUS CORE WRAPPER
AND ITS APPLICATION TO SYSTEM-ON-CHIP TEST
SCHEDULING 163

1 Introduction 163

2 Background and Related Work 165

3 A Reconfigurable Power-Conscious Core Wrapper 167

4 Optimal Test Scheduling 170
4.1 Optimal Scheduling of Core Tests 171
4.2 Transformations for Optimal TAM Utilization 173
4.3 Cross-Core Test Scheduling 175
4.4 Optimal Power-Constrained Scheduling 177
4.5 Minimization of TAM Wiring 179

5 Experimental Results 180

6 Conclusions 182

SOC Test Designx

11. AN INTEGRATED FRAMEWORK FOR THE DESIGN AND OPTI-
MIZATION OF SOC TEST SOLUTIONS 187

1 Introduction 187

2 Related Work 188

3 System modeling 192

4 The SOC Test Issues 194
4.1 Test Scheduling 194
4.2 Power Consumption 195
4.3 Test Source Limitations 197
4.4 Test Set Selection 197
4.5 Test Access Mechanism 198
4.6 Test Floor-planning 200

5 The Heuristic Algorithm 201

6 Simulated Annealing 205
6.1 The Simulated Annealing Algorithm 205
6.2 Initial Solution and Parameter Selection 206
6.3 Neighbouring Solution in Test Scheduling 206
6.4 Neighbouring Solution in Scheduling and TAM Design 206
6.5 Cost function 207

7 Experimental Results 208
7.1 Benchmarks 208
7.2 Test Scheduling 208
7.3 Test Resource Placement 209
7.4 Test Access Mechanism Design 209
7.5 Test Scheduling and TAM Design 211

8 Conclusions 214

12. EFFICIENT TEST SOLUTIONS FOR CORE-BASED DESIGNS 215

1 Introduction 215
1.1 Introduction 215

2 Background and Related Work 217

3 Test Problems 221
3.1 Test Time 221
3.2 Test Power Consumption 226
3.3 Test Power Consumption at Test Parallelization 229
3.4 Test Resource Limitations 230
3.5 Test Conflicts 231
3.6 Test Access Mechanism Design 232
3.7 System Modeling 233

Contents xi

4 Our Approach 237
4.1 Bandwidth Assignment 238
4.2 Test Scheduling 239
4.3 TAM Planning 240
4.4 An Example 242
4.5 TAM Optimization 244
4.6 Complexity 246

5 Experimental Results 246
5.1 Test Scheduling 246
5.2 Integrated Test Scheduling and TAM Design 247
5.3 Test Scheduling, Test Parallelization and TAM Design 249

6 Conclusions 250

13. CORE SELECTION IN THE SOC TEST DESIGN-FLOW 253

1 Introduction 253

2 BACKGROUND 254

3 Related Work 257

4 Problem Formulation 260
4.1 Problem Complexity 263

5 Test Problems and Their Modeling 263
5.1 Test Time 263
5.2 Test Power Consumption 264
5.3 Test Conflicts 267

6 Test Design Algorithm 268
6.1 Resource Utilization 271
6.2 Example 271

7 Experimental Results 273

8 Conclusions 275

14. DEFECT-AWARE TEST SCHEDULING 277

1 Introduction 277

2 Related Work 278

3 Sequential Test Scheduling 279

4 Concurrent Test Scheduling 280
4.1 Test Sets with Fixed Test Times 281
4.2 Test Sets with Flexible Test Times 282
4.3 Test Scheduling Algorithms 283

5 Experimental Results 286

SOC Test Designxii

6 Conclusions 286

15. AN INTEGRATED TECHNIQUE FOR TEST VECTOR SELECTION
AND TEST SCHEDULING UNDER ATE MEMORY DEPTH
CONSTRAINT 291

1 Introduction 291

2 Related Work 293

3 Problem Formulation 295

4 Test Quality Metric 296

5 Test Scheduling and Test Vector Selection 299
5.1 Illustrative Example 301
5.2 Optimal Solution For Single TAM 305

6 Experimental Results 305

7 Conclusions 307

Appendix 1. Benchmarks 321

1 Introduction 321

2 Format of the inputfile 321

3 Design Kime 324

4 Design Muresan 10 326

5 Design Muresan 20 327

6 ASIC Z 329

7 Extended ASIC Z 331

8 System L 333

9 Ericsson design 335

10 System S 349

References 353

Index 383

Preface

Advances in both semiconductor processing technologies as well as inte-
grated circuit (IC) design techniques and tools have enabled the creation of
micro-electronic products that contain a huge amount of complex functional-
ity on a single die. This allows the integration into a single IC of the
components that traditionally resided on one or multiple printed circuit
boards. As the latter traditional product was commonly referred to as “sys-
tem”, a modern IC that contains the same functionality goes by the name
“System-On-Chip” or SOC. The benefits of this ongoing integration are obvi-
ous: (1) a smaller form factor, as we want small products that fit our pockets,
(2) higher performance, as our needs to do, hear, see more with micro-elec-
tronics seem insatiable, and (3) lower power, as these portable, mobile
products work of batteries with a limited energy budget.

Designing SOCs is a challenge. The functional and layout designs need to
be modular and hierarchical, as flat design is no longer an option for such
“monster chips”. Increasingly, also the on-chip interconnect becomes hierar-
chical; we refer to this as Network-On-Chip or NOC. In order to reduce time-
to-market and leverage external expertise, we see large modules being
imported and reused. The latter design practice has divided the IC design
community into ‘core providers’ and ‘SOC integrators’.

Testing SOCs brings forward new challenges as well. The only viable way
to contain the growing complexity of SOCs is to apply a modular test
approach. Modular testing is required (1) for heterogeneous SOCs, which
contain non-logic modules, such as embedded memories, analog and RF mod-
ules, e-FPGAs, etc., and (2) for black-boxed third-party cores, for which the
test is developed by the core provider, but applied by the SOC integrator.
However, modular testing also has precious benefits in terms of (3) reduced
test pattern generation efforts due to “divide-n-conquer”, and (4) test reuse

SOC Test Designxiv

over multiple generations of SOCs. The research challenges related to a mod-
ular test approach are the following.

■ Design and test development is distributed over multiple parties,
companies, geographical locations, and time. This brings with it chal-
lenges with respect to the transfer of “test knowledge” from core pro-
vider to SOC integrator.

■ Cores and other modules are typically deeply embedded within the
SOC, without direct access to SOC pins or other test resources.
Hence, we need to add an on-chip test access infrastructure, that
enables proper testing of the SOC, but that is as much as possible
transparent when not in test mode.

■ The fact that there is no longer one monolithic chip test, but many
smaller tests instead, brings with it many optimisation issues with
respect to test coverage, test application time, power dissipation dur-
ing test, silicon area used by the on-chip infrastructure, etc. Designers
and test engineers need support to make the right choices in this com-
plex matter, where everything seems to be related with everything.

This book by my fellow researcher Erik Larsson tries to shed light on the
many issues that come to play in the arena of modular SOC testing. It was
written from the need to have a book that could serve as text book for univer-
sity students. On the one hand, several text books are available on the
fundamentals of classical test approaches. On the other hand, available books
on modular SOC testing have too much a research nature and too little of
introductory material to serve the purpose of student text book. And indeed,
Larsson’s book exactly fits the void in between these two categories.

This book consists of three parts. In Part 1, the book starts out with a brief
overview of classical test approaches. This provides the type of introduction
someone new in the field will need, with many references to the well-known
text books for further, in-depth coverage. Part 2 describes the challenges and
problems specific to testing large, modular, and heterogeneous SOCs. The
experienced reader is suggested to right away jump to this part of the book.
Subsequently, Part 3 provides details of the research work Larsson and his
team have done to address these research challenges. The central key word in
all these solutions is “integration”; integration of design and test, and integra-
tion of solutions to tackle the many multi-faced optimisation problems at
hand. The entire book is written in the very clear style that also marks Lars-
son’s research papers and presentations.

xv

I strongly believe that a modular and hence scalable approach is the only
feasible way forward to address the manufacturing test challenges of ICs that
are every-increasing in size and complexity. Hence, I do recommend this
book; to researchers, to test methodology developers at EDA companies, to
design and test engineers, and of course to university students.

ERIK JAN MARINISSEN

Principal Scientist
Philips Research Laboratories

Eindhoven, The Netherlands

Acknowledgements

This book would not have been written without the help of many. I would
like to thank Zebo Peng, Petru Eles, and the rest of the group at Embedded
Systems Laboratory at the Department of Computer and Information Science
at Linköpings Universitet, Sweden. I would like to thank Julien Pouget, Stina
Edbom, Klas Arvidsson, and Per Beijer for their contributions to the book.
And I would like to thank Krishendu Chakrabarty, Erik Jan Marinissen, and
Vishwani D. Agrawal for comments on the draft. I would like to thank Hideo
Fujiwara for the time in Japan, Mark de Jongh for inspiration and Cindy Zitter
for encouragements, and finally friends and familly.

ERIK LARSSON

Linköpings Universitet
Linköping, Sweden

PART 1
TESTING CONCEPTS

Chapter 1

Introduction
The aim of this book is to discuss production test, including related prob-

lems, their modeling, and the design and optimization of System-on-Chip
(SOC) test solutions. The emphasis is on test scheduling, how to organize the
testing, which is becoming important since the amount of test data is increas-
ing due to more complex systems to test, and the presence of new fault types
because of device size miniaturization. The focus of the discussion in the
book is on the system perspective since the increasing complexity of SOC
designs makes it harder for test designers to grasp the impact of each design
decisions on the system’s test solution, and also because locally optimized
test solution for each testable unit do rarely lead to globally optimized
solutions.

An important aspect when taking the system perspective is the computa-
tional cost versus modeling and optimization granularity. A fine grain model
taking a high number of details into account is obviously to be preferred com-
pared to a model that is considering only a few details. However, a fine grain
model leads to high computational cost, and the computational cost is impor-
tant to keep under control since the SOC designs are increasing in size, and
also since the nature of the design process of test solutions is an iterative pro-
cess. Furthermore, as the number of design parameters increases, which
makes the design space large, it is of most import to decide on which prob-
lems to spend the computational effort.

The number of transistors per chip has increased enormously over the
years. Moore predicted that the number of transistors per chip should roughly
double every eighteen months [198]. In Figure 1, the prediction (Moore’s
law) versus the actual number of transistor per processor is plotted for some
Intel processors. The prediction has been amazingly precise.

Chip design is a challenge driven by the increasing number of transistors,
device size miniaturization, and shorter development times. An increasing
number of transistors can be handled by modeling the system at higher
abstraction levels; however, device size miniaturization requires early knowl-
edge of the design at transistor-level. The design times can be shortened by
reusing previous designs, or parts (modules or cores) of previous designs. A
core-based design methodology is an alternative since it allows pre-defined
and pre-verified blocks of logic, so called cores, to be combined with glue
logic to become the designed system. The cores can be reused from previous
designs or bought from core vendors.

The SOC integrator is the person that designs the system. The design work
includes decision on which cores to be used in the design and how the cores

SOC Test Design2

should be combined to a system. Each of the cores in the design may origin
from previous designs within the company, or can be bought from some other
companies (core vendors), or can be completely newly designed. The SOC
test integrator is the person that designs the test solution for the system.
Figure 2(b) shows a simplified SOC design flow. In Figure 2(a) the work by
the SOC integrator and the SOC test integrator is organized in a sequence.
The SOC test integrator starts working on the test solution when the SOC
integrator has fixed and finished the design. An alternative to a sequential
design flow is shown in Figure 2(c) where the SOC test integrator takes part
as early as in the SOC design. The advantage of the latter approach is that the
SOC test integrator can have an impact on design decisions; the selections of
cores. In such a design flow, it becomes obvious that the SOC test integrator
needs support, i.e. tools, for the evaluation of different design decisions. For
instance, if two different processor cores can solve the same problem, but the
two processors have different test characteristics, which one should the SOC
test integrator select?

A motivation for considering the test cost as early as in the design phase is
that the test cost is becoming a bottleneck. In Figure 3, the expected cost-per-
transistor and the expected test-cost-per-transistor are plotted [106]. The num-
ber of transistor per chip increases, but interestingly, the cost-per-transistor is

2250

 5000

 10000

 100000

 1e+06

1e+07

1971 1975 1980 1985 1990 1995 2000

N
um

be
r

of
 T

ra
ns

is
to

rs

Year

4004
8008

8080

8086

286

386

486

Pentium

PentiumII

PentiumIII

Pentium4

Transistors
2250
2500
5000

29000
120000
275000

1180000
3100000
7500000

24000000
42000000

Year
1971
1972
1974
1978
1982
1985
1989
1993
1997
1999
2000

Processor
4004
8008
8080
8086
286
386
486
Pentium
PentiumII
PentiumIII
Pentium 4

Figure 1.The number of transistors for some Intel processors (points) and the
Moore’s law prediction (straight line) [107, 198].

Chapter 1: Introduction 3

decreasing. Interesting is also that the test-cost-per-transistor keeps constant,
however, the trend is clear from Figure 3; the relative test cost per designed
transistor is increasing.

Among expected challenges are that device size miniaturization and
increasing performance lead to new fault types that require new fault models.
New models will further increase the amount of test data for an SOC design,
and hence the testing times are becoming longer, making test scheduling even
more important. Moore [198] pointed out that the transistor count will
increase drastically, but also that the power consumption-per-transistor will
decrease. It is likely that there will be a time when the transistors can be
designed, but the power to make them work will enforce limitations. For
designers who want to implement an increasing functionality in the system
this might be frustrating. However, the test design community can take advan-
tage of this fact. It means that the cost of additional DFT logic is reduced.
Logic can be introduced as logic only used for test purpose. And, logic redun-
dancy can also be used, for instance, to improve yield. The power dissipation
during testing is another important problem. In order to detect as many faults
as possible per test vector, it is desirable to activate as many fault locations as
possible. High activity in the system leads to higher power consumption. The
system’s power budget can be exceeded, the allowed power consumption for
each power grid can be exceeded, and also a testable unit can during testing
consume such amount of power that the system is damaged.

Figure 2.The system-on-chip design flow, the involved persons in (a) a sequential design
flow and (b) in an integrated design flow.

SOC design
(core selection)Core integrator

Core test integrator SOC test design

Production test

Sequential-flow Integrated-flowDesign flow

Core integrator and
core test integrator

Core test integrator

(b)

(a) (c)

SOC Test Design4

This book is dived into three parts. Part one contains the following chap-
ters, an introduction of the topic (Chapter 1), the design flow (Chapter 2) and
the test problems (Chapter 3), system modeling (Chapter 5), test conflicts
(Chapter 6), and test power consumption (Chapter 7). Part two contains the
two chapters; Chapter 8 were TAM design approaches are described and
Chapter 9 where test scheduling is discussed. The third part discusses applica-
tions in detail. The part is a compilation of a set of papers covering test
scheduling using reconfigurable core wrappers, test scheduling and TAM
design, core selection integrated in the test solution design flow, and defect-
oriented test scheduling.

 2001 2005 2010 2015

C
os

t p
er

 T
ra

ns
is

to
rs

Year

test cost

total cost

Figure 3.The predicted cost per transistor versus the predicted test cost per transistor
[106].

Chapter 2

Design Flow

1 INTRODUCTION

The aim with this chapter is to give a brief introduction to design flow in
order to motivate the discussion on modeling granularity in the following
chapters.

The pace in the technology development leads to an extreme increase of
the number of transistor in a system (See Introduction on page 1). However,
there is a gap between what is possible to design according to what the tech-
nology development allows to be designed and what is possible to design in
terms of cost (time, money, manpower). The so called productivity gap,
which is increaseing, is the difference between what is possible to design
using available technologies and what is reasonable to accomplish in reason-
able design time. The productivity is defined as [120]:

It means that if productivity keeps stable, the design time would increase
drastically (keeping the design team size constant). An alternative is to
increase the size of the design teams in order to keep design time constant.
Neither of the approaches are viable. Instead, the evolution in EDA (Elec-
tronic Design Automation) will provide productivity improvements. That
means that better modeling and optimization techniques have to be
developed.

In order for the designers to handle the complexity of the designs due to
the technology development, the system can initially be modeled at a high
abstraction level. Semi-automatic synthesis and optimization steps (Compu-
ter-Aided Design (CAD) tools guided by designers) on the high-level
specification transforms the design from the abstract specification to the final
circuit (see Figure 4). System modeling at an high abstraction level, means
that less implementation specific details are included compared to a system
model at lower abstraction levels. Gajski et al. [64] view the design flow
using a Y-chart where the three direction behavior, structure, and geometry.

P total gate count
development time number of designers
---=

SOC Test Design6

2 HIGH-LEVEL DESIGN

The advantage of a top-down design flow, specifying the design a high
abstraction level with less implementation specific details, and through syn-
thesis move to a model with a high degree of implementation specific details,
is that design exploration, where design alternatives easily can be explored, is
eased. A model at high abstraction level includes fewer details and therefore
the handling of the design becomes easier, and more optimization steps can be
allowed, which means a more thorough search in the design space.

In the design flow, the system is modeled. The purpose of modeling is to
understand the function of the system as well as adding implementation spe-
cific details. A number of techniques have been developed. On initiative by
VHSIC (Very High Speed Integrated Circuits) programme the description
language for digital circuits called VHDL (VHSIC Hardware Description
Language) was developed [120]. VHDL became an IEEE standard in 1987,
and the latest extension took place in 1993 [268]. Graphical descriptions are
useful for humans to more easily understand the design. Examples of graphi-
cal descriptions are Block Diagrams, Truth Tables, Flow Charts, State
Diagrams (Mealy and Moore state machine), and State Transition Diagrams.
Netlists are used to enumerate all devices and their connections. The SPICE
(Simulation Program with Integrated Circuit Emphasis) is an example of a
device oriented structure [265]. The EDIF (Electronic Design Interchange
Format) was developed to ease transport of designs between different CAD
systems. And, for capturing delay formats in the design, the SDF (Standard
Delay Format) was developed [252].

Figure 4.Design flow.

Behavioral specification

Structural specification

Production

Testing

Abstraction level

Implementation
specific details

Chapter 2: Design Flow 7

3 CORE-BASED DESIGN

There are a number of disadvantages with a top-down design flow. One
obvious is that at high abstraction level implementation details are less visi-
ble. It makes discussion on certain detailed design aspects impossible at high
abstraction level. The problem with high abstraction levels where less infor-
mation is captured has become a problem in sub-micron technology where
technology development has lead to high device size miniaturization that
requires knowledge of transistor-level details. Another fundamental problem
is that in a top-down design flow, there is a basic assumption that the system
is designed for the first time. In reality, very few systems are designed from
scratch. In most cases, there exists a previous system that is to be updated. It
means that small parts or even large part of the previous system can be reused
for the new system. Also, other previously designed blocks that have been
used in a completely different system can be included in the new system. It
can also be so that blocks of logic, cores, are bought from other companies.
For instance, CPU cores can be bought from different companies and used in
the design.

In the core-based design environment, blocks of logic, so called cores, are
integrated to a system [84]. The cores may origin from a previous design
developed at the company, it may be bought from another company, or it can
be a newly designed core. The core integrator is the person that selects which
cores to use in a design, and the core test integrator is the person that makes a
design testable - designs the test solution. The core integrator selects core
from different core providers. A core provider can be a company, a designer
involved in a previous design, or a designer developing a new core for the
system.

A core-based design flow is typically a sequence that starts with core
selection, followed by test solution design, and after production, the system is
tested (Figure 5(a)). In the core selection stage, the core integrator selects
appropriate cores to implement the intended functionality of the system. For
each function there are a number of possible cores that can be selected, where
each candidate core has its specification on, for instance, performance, power
consumption, area, and test characteristics. The core integrator explores the
design space (search and combines cores) in order to optimize the SOC. Once
the system is fixed (cores are selected) the core test integrator designs the
TAM and schedules the tests based on the test specification for each core. In
such a design flow (illustrated in Figure 5(a)), the test solution design is a
consecutive step to core selection. In such a flow, even if each core’s test
solution is highly optimized, when integrated as a system, the system’s global
test solution is most likely not highly optimized.

SOC Test Design8

The design flow in Figure 5(b), on the other hand, integrates the core
selection step with the test solution design step, making it possible to consider
the impact of core selection when designing the test solution. In such a design
flow (Figure 1(b)), the global system impact on core selection is considered,
and the advantage is that it is possible to develop a more optimized test
solution.

The design flow in Figure 1(b) can be viewed as in Figure 6, where the
core type is floor-planned in the system but there is not yet a design decision
on which core to select. For each position, several cores are possible. For
instance, for the cpu_x core there are in Figure 6 three alternative processor
cores (cpu1, cpu2 and cpu3).

In general, the cores can be classified as:

■ soft cores,

■ firm cores, or

■ hard cores.

A soft core is given as a specification that has to be synthesized, while a
hard core is already a fixed netlist. A firm core is somewhere between a soft
core and a hard core. A soft core is therefore the most flexible type of core;

Figure 5.Design flow in a core-based design environment (a) traditional and (b) proposed.

core selection

production

test application

test design

core selection
& test design

production

test application

(a) (b)

Figure 6.System design.

cpu1
cpu2

cpu3

ram1
ram2

ram3

cpu_x dsp_y

ram_z ram_u

dsp1
dsp2

dsp3

Chapter 2: Design Flow 9

however, it requires the tools, effort and time involved in the work of synthe-
sizing it to a gate-level netlist. A hard core, on the other hand, is already fixed
and ready to be used in the design. Hence, less effort and time are required for
the optimization of the core. The difference between a soft core, firm core,
and a hard core is also visible when it comes to testing. For soft core there is a
higher degree of freedom when determine the test method compared to hard
cores where the test method and test vectors are more fixed.

3.1 Network-on-Chip

A problem when the SOC designs grow in complexity is that the on-chip
interconnections, such as buses and switches, can not be used anymore due to
their limited scalability. The wires are simply becoming too long. An alterna-
tive is to use networks on chip (NOC) [14, 121].

3.2 Platform-Based Design

The design flow must not only take the development of the hardware into
account but also the development of software. Systems of today include an
increasing number of programmable devices. The software (operating system
and application programs as well as compilers) must be developed. In order to
fix the architecture, the concept of platform-based design has been developed.
Sangiovanni-Vincentelli [237] compare it with the PC (personal computer):

■ The X86 instruction set makes it possible to re-use operating systems
and software applications,

■ Busses (ISA, USB, PCI) are specified,

■ ISA interrupt controller handles basic interaction between software
and hardware,

■ I/O devices, such as keyboard, mouse, audio and video, have a clear
specification.

The PC platform has eased the development for computers. However,
most computers are not PCs but embedded systems in mobile phones, cars,
etc [266]. Hence, a single platform-based architecture for all computer sys-
tems is not likely to be found.

SOC Test Design10

4 CLOCKING

Clocking the system is becoming a challenge. Higher clock frequencies
are making timing issues more important. The storage elements (flip-flops
forming registers) in a system have to be controlled. For instance, Figure 7(a)
shows a finite state machine (FSM), and a pipelined system is in Figure 7(b);
the storage devices are controlled by the clock. Most systems are a combina-
tion of FSM and pipelined systems.

The input of a register (flip-flop) is commonly named D, and the output
named Q. Figure 8 illustrates the following:

■ the setup time (TsTT) - the time required before the edge until the value
is stable at the D input,

■ the hold time (ThTT) - the time required after the edge in order store the
value in the register,

■ the clock-to-Q delay (TqTT) - the time required after the edge in order to
produce the value on Q,

■ the cycle time (TcTT) - the time between two positive edges (from 0 to
1).

The registers can be design for instance as a level-sensitive latch, edge-
trigged register, RS latch, T register, and JK register [277].r

Figure 7.Clocked systems. (a) a finite state machine (FSM); (b) a pipelined system.

inputs outputs
combinational
logic

DQ

next state bitscurrent state bits

registers

clock

(a)

QDD

clock

inputs
logic QDD logic

registers registers

QDD logic

registers

QDD

registers
outputs

(b)

Chapter 2: Design Flow 11

4.1 System Timing

Latches and registers can be used in different ways to implement a clocked
system [277]. It is important that the clock signal is delivered to the registers
correctly. Long wires may introduce delays in the clock distribution leading
to clock skew - the clock signal is not delivered at the same time to all clocked
elements.

The cycle time (TcTT) is given by:

where TqTT is the clock-to-Q delay, TsTT is the setup time, and TdTT is the worst-
case delay through the combinational logic blocks.

4.2 Clock Distribution

Clock distribution is a problem. For instance, the total capacitance in the
system that has to be driven can be above 1000 pF [277]. Driving such capac-
itance at high repetition rate (clock speed) creates high current (see example
in Figure 9).

Figure 8.Single phase clocking and its parameters.

clock

data

Q

cycle time (Tc)

setup time (Ts)

hold time (Th)

clock-to-Q time(Tq)

Tc Tq Td Ts+ +Td=

Figure 9.Example illustrating high current and power [277].

VDD = 5V
Creg = 2000 pF (20K register bits @ .1pF
Tclk = 10 ns
Trise/fall = 1 ns

Ipeak = C×dv/dt = (2000×10-12×5)/(1.0×10-9) = 10A
Pd = C
pp

×Vdd2×f = 2000×10-12×25×100×10-6= 5W

SOC Test Design12

The clock can be distributed using [277]:

■ a single large buffer (i.e. cascaded inverters) that is used to drive all
modules, or

■ a distributed-clock-tree approach (Figure 10).

4.3 Multiple Clock Domains

In a core-based design, a set of cores are integrated to a system. Each core
might require its dedicated clock speed. A design with multiple clock
domains can present challenges. A typical problem is at the clock-domain
boarders where one clock frequency is meeting another clock domain. Prob-
lems that can appear are, for instance, data loss and metastability. Data loss
can appear when data generated by clock1 is not captured by clock2 until it
has already been changed. Such problems appear if the destination clock is
running at a higher speed. Metastability is due to that there is no timing rela-
tion between source and destination clock domain, and it can happen that data
and clock signals reach the flip-flops at the same time. Metastability can
cause reliability problems.

4.3.1 Phase Locked Loop (PLL)

A phase locked loop (PLL) is used to generate internal clocks in the sys-
tem for two main reasons [277]:

■ Synchronize the internal clock with an external clock.

■ The internal clock should operate at a higher frequency than the
external clock.

Figure 10.Distributed clock-tree where the logic is omitted.

Register

clock
Register

Register

Register

delays must match

Chapter 2: Design Flow 13

The increasing on-chip clock speed has lead to clock skew problems. A
PLL allows an internal clock to be generated that is in phase with an external
clock.

4.3.2 Globally-Asynchronous Locally-Synchronous

The advantage of making a system synchronous is that it is:

■ a proven technique, and

■ wide-spread EDA tools are available.

However, it is important to note that

■ clock speed limited by slowest operation,

■ clock distribution a problem,

■ hard to design systems with multiple clock domains, and

■ energy is consumed for idle operation.

An alternative is to make the system asynchronous. Instead of synchronize
based on a clock, the system is controlled through communication protocol
(often hand-shaking). The advantages with such a system are that is:

■ ”average-case” performance,

■ no clock signal to distribute, and

■ no energy for idle operations.

The disadvantages with the asynchronous design approach are that:

■ limited EDA supports, and

■ extremely difficult to test.

Chapiro [36] proposed a scheme named Globally-asynchronous locally-
synchronous (GALS) where there is an asynchronous wrapper around each
core/block and where each core itself is synchronous. FIFO queues are
inserted at the boundaries between the asynchronous and the synchronous
parts.

The advantages with GALS are:

■ easy to design systems with multiple clock domains,

■ no global clock to distribute,

SOC Test Design14

■ power efficient - system only operates when data is available,

■ asynchronous circuits (and related problems) limited to the wrapper,
and

■ main functional blocks designed using conventional EDA tools.

Among the disadvantages is the area overhead for self-timed wrapper.
Implementations has shown about 20% power saving at 10% area increase.

5 OPTIMIZATION

Optimization problems can be mapped to well-known problem. The
advantage by doing that is that if it is known that the well-known problem is
NP-complete, the mapped problem is also NP-complete. The Knap-sack
problem and the fractional Knap-sack problem are interesting for scheduling
problems. The Knap-sack problem where given items of different values and
volumes, the problem is to find the most valuable set of items that fit in a
knapsack of fixed volume. The decision problem, if an item should be
included in the knap-sack or not, is NP-hard [42]. However, the fractional
Knap-sack problem where given materials of different values per unit volume
and maximum amounts, find the most valuable mix of materials which fit in a
knapsack of fixed volume. Since we may take pieces (fractions) of materials,
a greedy algorithm finds the optimum. Take as much as possible of the mate-
rial that is most valuable per unit volume. If there is still room, take as much
as possible of the next most valuable material. Continue until the knapsack is
full and the result is an optimal solution [42].

The test scheduling problem for systems where all tests are given and all
are assigned a fixed testing time and the objective is to minimize the test
application time is in the case when sequential testing is assumed trivial. The
optimal test application time τapplication is for a system with N tests each with
a test time τi (i={1..N} given by:

The assumptions that only one test at a time can be active at any moment,
and that all tests have to be applied, means that any order of the tests is opti-
mal. An algorithm iterating in a loop over all tests is required and at each
iteration one test is selected and given a start time. The computational com-
plexity of such an algorithm depends linearly on the number of tests, O(n) - n
is the number of tests, hence the algorithm is polynomial (P((). Most problems
cannot be solved, that is an optimal solution is found, in polynomial time. The

τapplication τii 1
N∑= (2.1)

Chapter 2: Design Flow 15

problems are then said to be NP-complete (non-deterministic polynomial
time). Until today, there is no algorithm that in polynomial time guarantees to
find the optimal solution for NP-complete problems. At present, all known
algorithms for NP-complete problems require time which is exponential in the
problem size [42]. Therefore, in order to solve an NP-complete problem for
any non-trivial problem size, a heuristic can be used.

Optimization is the search for a solution that minimizes a given cost func-
tion where the ultimate goal is to find the optimal solution (no better solution
can be found). An algorithm that guarantees to find the global optimum is an
exact algorithm. In many cases, the problems are NP hard and a heuristic
algorithm finds a solution that locally, not globally, optimizes the cost func-
tion. A heuristic can find the optimal solution, however, there is no guarantee
that the optimal solution is found. A heuristic is often a trade-off between
computational cost (CPU time) and computational quality (how far is the
solution from the optimal solution).

In practice, the obvious problem with a heuristic is to evaluate the quality,
that is how close is the solution produced from the heuristic compared to the
optimal solution (the optimal solution is only guaranteed with exhaustive
search, which is not possible due to time constraint). A lower bound can help
a designer for instance in giving a feeling on how close to a lower bound a
certain solution is. Often a resource limits a solution, and knowledge about
the resources can guide the evaluation of the quality of a solution. A way to
model resource utilization is to use a Gantt chart [23]. A Gantt chart can either
be job (task)-oriented or resource oriented (figure 11). In figure 11(b) task_A
and task_B both use resource _1 and it is obvious that resource_1 is used
most, and hence, will most likely be the reasons for a bottleneck. A Gantt-
chart can be used to define a lower bound on the test application time of a sys-
tem, for instance. A lower bound is the lowest possible cost of a solution.
Note that defining a way to compute a lower bound does not mean it is a way
to find a solution corresponding to that the lower bound is found.

Above it was shown that it is trivial to develop an optimal test schedule in
respect to test time for a sequential architecture when all tests are given a
fixed test time and the objective is to minimize the test application time. In
sequential testing, only one test at a time can be active, and that means that no
constraint can limit the solution. In concurrent test scheduling, where more

Figure 11.Gantt chart.

task A
task B
task C

resource_1 resource_1
resource_2
resource_3

resource_2

resource_3
task_B
task_A

task_C

task_B

SOC Test Design16

than one test can be applied at a time, conflicts often limits the solution. The
problem to minimize the test application time using concurrent test schedul-
ing for a system where all tests are given a fixed testing time under no
constraint is trivial. All tests are simply started at time point zero. The opti-
mal test application time τapplication is for a system with N tests each with a
test time τi (i={1..N} given by:

The concurrent test scheduling problem, more than one test can be exe-
cuted at the same time, is in general not NP-complete. However, the
concurrent test scheduling problem under constraint is NP-complete. We will
discuss this in more detail below.

5.1 Optimization Techniques

The search for a solution can be done using exhaustive search or using
some heuristics. The advantage of exhaustive methods is that an optimal solu-
tion is found. The problem is that most problems are complicated (NP-hard),
which means that the computational effort (CPU time) is unacceptable for
larger instances of the problem.

The most straight forward optimization approach is exhaustive search. It
means that every single solution in the search space is evaluated and the best
solution is reported. Below are a selection of such approaches, namely: back-
tracking, branch-and-bound, integer-linear programming. Iterative
algorithms that iteratively search for an optimized solution but cannot guaran-
tee that optimal solution is found are heuristics such as for instance: local
search, simulated annealing, genetic algorithms and tabu search. These heu-
ristics are iterative, that is from an initial solution an optimized solution is
created through iterative modifications (transformations). A heuristic can be
constructive - the solution is constructed from scratch. A constructive heuris-
tic is used in an iterative transformation-based heuristic. The computational
cost of an constructive algorithm is often in the range of NxNN where x=2, 3, 4.

5.1.1 Backtracking and Branch-and-bound

The idea when using backtracking for an exhaustive search is to start with
an initial solution where as many variables as possible are left unspecified
[67]. The back-tracking process assigns values to the unspecified values in a
systematic way. As soon as all variables are assigned to valid values, the cost
of the feasible solution is computed. Then, the algorithm back-track to a par-
tial solution assigning next value to the unspecified variables.

τapplication max i{ }τi= (2.2)

Chapter 2: Design Flow 17

Often it is not needed to visit all solutions that are produced in the back-
tracking process. Therefore the solution space is in back-tracking evaluated in
a search tree. The idea in branch-and-bound is to not traverse sub-trees where
the cost is higher than the best cost so far. If the cost of the solution of a par-
tial specified solution is worse than the best solution, the sub-tree can be
killed or pruned, which means that the sub-tree is not traversed. The search
for a solution can be done in a depth-first or breath-first manner.

5.1.2 Integer Linear Programming

Integer Linear Programming (ILP) is a way to transform combinatorial
optimization problems into a mathematical format. A high number of prob-
lems can relatively easily be reduced to ILP [67]. However, from a
computational point of view, this does not help since ILP is NP-complete
itself. Nevertheless, there exists a number of general ILP-solvers, which
means that if the optimization problem can be modeled as an ILP instance, the
software (program) solves the problem. The main advantage of using an ILP-
solver is that an exact solution is found. The draw-back is, obviously, the
computational cost for larger problems.

ILP is a variant of Linear programming (LP). LP problems can be solved
the polynomial-time ellipsoid algorithm, however, it is in practice outper-
formed by the simplex algorithm which has a worst-case time complexity
[67]. ILP is a variant of LP where variables can only be integers [67].

5.1.3 Local Search

Local search is an iterative method that search a local neighborhood
instead of searching the whole search space when creating the new solution
[67]. The idea is to search the neighborhood and by using modifications
called move or local transform the current solution is improved. The best
solution, found using exhaustive search in the local neighborhood (steepest
decent), is used as the next solution. In practice the search in the local neigh-
borhood can be terminated at first improvement. The first improvement makes
use of less computational cost compared to the steepest decent. However, in
steepest decent each iteration creates a better solution, which can lead to less
required iterations, hence less computational cost, compared to using first
improvement. In order to avoid getting stuck at local optimum, a larger neigh-
borhood can be used. However, if a larger neighborhood is to be considered,
higher computational cost is required to search the neighborhood. Local
search does not allow moves out of local optimum, so called uphill moves, as
allowed in Simulated Annealing and Tabu Search.

SOC Test Design18

5.1.4 Simulated Annealing

Simulated Annealing (or statistical cooling) proposed by Kirkpatrick et al.
[131] is an optimization technique that is analogous to a physical process
[67]. Initially, the material is heated up so that the molecules can move freely
(the material is liquid). The temperature is slowly decreased to cool down the
material. The freedom of molecules to move is decreased with temperature.
At the end, the energy of the material is minimal provided that the cooling
speed was very slow.

The pseudo-code for Simulated Annealing is in Figure 12. An initial solu-
tion is created and in each iteration a random modification of the solution is
allowed. Initially, at high temperatures, major modifications are allowed
while as the temperature decreases smaller and smaller modifications are
allowed. If a better solution than the previous is created, it is kept. And at a
certain probability, in order to avoid local optimum, worse solutions are
accepted.

5.1.5 Genetic Algorithms

Genetic algorithm (pseudo-code in Figure 13) is inspired by nature and the
theory of evolution [197]. An initial set of valid solutions called the popula-
tion is created and in an iterative process, new solutions are created. The
current population is replaced by a new population. In order to create a new
solution, called a child, two solutions are selected, called parent1 and parent2.
The selected parents create in a crossover process a child, which will belong
to the new generation. The idea is that by combining features from the best
solutions (selected parents) in current population, new better solutions (chil-
dren) can be created. Each solution is characterized by its chromosome and
the chromosome from two parent solutions creates a child solution. In order to
avoid local optimum, mutation is allowed in the crossover process. A muta-

Figure 12.Simulated Annealing algorithm.

Construct initial solution, xnow;
Initial Temperature: T=TI;
while stop criteria not met do begin

for i = 1 to TL do begin
Generate randomly a neighboring solution x’∈Ν(xnow);
Compute change of cost function ∆C=C(x’)-C(xnow);
if ∆C≤0 then xnow=x’

else begin
Generate q = random(0, 1);

if q<e-∆C/T
qq

then xnow=x’
end;

end;
Set new temperature T=α×T;

end;
Return solution corresponding to the minimum cost function;

Chapter 2: Design Flow 19

tion is, as in nature, the insertion of a small modification in the creation of the
child solution.

5.1.6 Tabu Search

Tabu search is an optimization technique where the solution is improved
through search in the neighborhood. An initial solution is created and a set of
modifications are defined. The initial solution is through the defined modifi-
cations improved in n iterations. In order to avoid having a modification
followed by a re-modification, a tabu list is used. The tabu list of length k
keep track on the k last moved and prohibit cycles of length <k k.

Figure 13.Genetic algorithm.

Create an initial population pop
Do begin

newpop=empty
For i=1 to size_of_population Begin

parent1=select(pop)
parent2=select(pop)
child=crossover(parent1, parent2)
newpop=newpop+child

End
pop=newpop;

End;
Return solution corresponding to the minimum cost function;

Chapter 3

Design for Test

1 INTRODUCTION

Design for testability is basically how to make each unit in the system test-
able. The intention with this chapter is to give an introduction to techniques
for design for test. For further studies there are a number of books on test such
as Abramovici et al. [2], Bushnell and Agrawall [24], Lala [151], Mourad and
Zorian [199], Rajsuman [225] and Tsui [264].

Testing is used to check if a design is correct according to its specification.
Failures can appear at any time during the life of a system, and a failure has
occurred if the system’s behavior is different from its specification. A fault is
a physical defect that may or may not cause a failure, and a fault can be
described by its nature, value, extent, and duration [151]. The nature of a fault
can be logical or nonlogical. A logical fault makes the logic at a certain point
in time different from its specification, while a nonlogical fault is due to the
rest of the faults, such as clock signal distribution, power failure, etc. [151].
The value of a fault is simply how the fault creates the signal. The fault value
can be fixed or it may vary over time. The extent of a fault is how the fault
effect is distributed. A fault may affect only a part of the system, locally, or it
can distribute over a larger part in the system. For instance, a logical fault may
be local while a fault on the clock distribution is likely to be distributed
through the system. The duration of the fault is if the fault is permanent or
temporary. Sometimes a permanent fault is referred to as a hard fault and a
temporary fault is a soft fault. A temporary fault or soft fault are often more
complicated to replicate (make the fault appear again). These types of faults
are due to not stable power supply (transient) or degradation (intermittent)
[199].

Faults may appear in the system at any time. However, a majority of the
faults, if any, are introduced during the manufacturing process. Hence, focus
on production testing and on faults related to the manufacturing is of high
importance.

1.1 Fault models

The faults in a design can be due to defective parts, breaks in signal lines,
lines unintentionally connected to ground or to the power supply, short-circuit
between signal lines, and so on. Poor design may introduce faults such as haz-

SOC Test Design22

ards and races. A fault model is used to model the behavior of a fault. The
most common fault models are the models for stuck-at faults (Section 1.1.1),
bridging faults (Section 1.1.2), stuck-open fault (Section 1.1.3), and delay
fault (Section 1.1.4).

1.1.1 Stuck-at Fault Model

The most commonly used fault model is the single stuck-at (SSA) model.
It assumes that a fault location can either be stuck-at 1 or stuck-at 0. If a fault
at a wire is stuck-at 0, the logic value at the wire is always 0. In order to detect
such a fault, the test stimulus should produce logic 1 at the wire. A stuck-at 0
fault at a wire is to be seen as if the wire is connected to ground. For a stuck-
at 1, the wire acts as if it was connected to Vdd (power supply). For the gener-
ation of test vectors for SSA, it is assumed that only one fault appear in the
system. Otherwise, if more than one fault is present at a time, the multiple
stuck-at (MSA) fault model is used.

Assume a SA1 fault on input A at the AND-gate in Figure 14. The fault
makes the truth table different compared to the correct (fault-free truth table).
Regardless of what value input A is set to (0 or 1), the input is 1 (stuck-at 1).
The number of faults is 2*k under the SSA assumption in a circuit with k
lines. For instance, there are 3 lines (fault locations), namely A, B, and X, at
the AND-gate in Figure 14, and each location can be either SA0 or SA1, i.e. 6
faults.

The stuck-at fault model is widely used. Among the advantages are the
simplicity of the model and that it has been shown that it is effective to detect
several types of faults. Among the disadvantages are that it is less effective to
model faults in modern sub-micron CMOS systems [60, 151].

1.1.2 Bridging Fault Model

It is actually more likely that two signal lines are unintentionally con-
nected compared to that a single line is stuck-at 0 or 1 (connected to ground or
Vdd). A short-circuit between two signal lines is known as bridge fault. The

Figure 14.An AND gate with a SA1 at input A.

&
A

B
X

ABX
0 0 0
0 1 0
1 0 0
1 1 1

ABX
1 0 0
1 1 1
1 0 0
1 1 1

Fault-free (correct)
behavior

Faulty behavior

SA1

Chapter 3: Design for Test 23

bridging faults can be grouped into input bridging, feedback bridging and non
feedback bridging [151].

The number of faults depends on the number of signal lines that are tested
to bridge. In order to reduce the amount of bridging faults knowledge about
the wire routing is needed, since signal lines routed at far distance from each
other cannot bridge while signal lines routed next to each other are likely to
bridge.

1.1.3 Stuck-Open Fault Model

Breaks and transistor stuck-on defects in CMOS designs may be undetec-
ted under the stuck-at fault model [151]. Breaks may occur on lines between
gates, signal line breaks, or on internal lines in a gate, intragate breaks. To
model these faults, transistor level fault models are used because it is required
to know the structure of the circuit. It means that tests have to be done for
shorts with stuck-on transistor and opens with stuck-open transistor [151]. A
stuck-on transistor fault makes short-circuit between the source and the drain.

1.1.4 Delay Fault Model

Timing faults are detected with the delay fault model. Minor timing prob-
lems in the system, for instance if a signal is slightly delayed, may not affect
the systems at all. However, longer delays through gates can make the system
fail to meet its timing specification. Therefore, delay testing is required. Fur-
thermore, in high performance systems running at very high clock frequencies
testing for timing faults is of high importance.

Two types of delay faults have been proposed: gate delay faults and path
delay faults [151]. Gate delay faults consider the delay within a certain gate.
For instance, if the delay through a gate is longer than a certain value, the gate
is considered faulty. The main draw-back with the gate delay model is that it
only considers faults locally at each gate. The path delay model, on the other
hand, considers the delay impact on a given path. It means that each gate in a
path can meet its timing specification, but the propagation delay through a
path (a given sequence of gates) might exceed a specified value. The disad-
vantage of the path delay model is the high number of possible paths in a
circuit. A way to reduce the number of paths is to only consider, so called,
critical paths. Critical paths are paths that have a direct impact on the delay.
However, in high performance systems, the number of critical paths increases
and basically every path in the system is a critical path.

SOC Test Design24

1.2 Test Generation for Combinational Circuits

Fault detection is the process to determine if a system contains a fault, and
fault location is the process of discovering the location of a fault. Fault detec-
tion is performed by applying a sequence of test inputs and observing the
outputs which are compared to expected (fault free) outputs. Testing can be
performed without knowledge about the structure, only by the function, of the
circuit. For instance, to test the function completely of a 3-input adder (Table
1), all possible (23=8) input vectors are needed. The number of required test
inputs grows exponentially (2n - n number of input pins). And therefore alter-
natives where a lower number of test inputs (test stimulus) is needed have
been developed.

The faults that can be detected with a test is determined with a fault simu-
lator, which is basically a logic simulator where the faults are introduced
usually one at a time and the test stimulus is applied and the output response
is compared to the expected response (fault-free response).

The quality of a test is determined by the fault coverage (fc) given as
[151]:

where f is the number of detected faults and x is the number of faults in the
circuit. Some faults are not possible to detect, and fault collapsing where
equivalent faults are ignored can be used to reduce the number of faults. For
instance, an x-input logic gate can have 2*x+2 possible faults but some faults
cannot be distinguished from each other.

Test generation is the process of creating test stimulus and test response
for the circuit or for parts of it (logic blocks or cores). Circuits can be divided

Table 1. A 3-input adder.

a b c carry sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

f c
f
x
------= (3.1)

Chapter 3: Design for Test 25

into combinational and sequential. A combinational circuit or part of the cir-
cuit does not have any clocked elements such as flip-flops, while a sequential
design or a sequential partition of the design has clock elements. Test genera-
tion for combinational circuits is compared to test generation for sequential
circuits simpler because there are no clocked elements. Test generation for
sequential circuits means that in order to set a certain value in the circuit, sev-
eral time frames might be required, which makes the search space larger and
hence the problem more complicated.

1.2.1 Path Sensitization

In path sensitization a path is selected from a failure to the outputs. In
order to create test stimulus for a SA1 present at line a in figure 15, line a
should be set to 0 and line b should be 1, since there is a stuck-at-1 fault at line
a, the output value on gate G1 (line e) will be 1. The value on line e should be
propagated to line g and to do so line f should be 1. The value 1 is set on line f
if at least one of line c and line d are 1. The input word 0111 (abcd) is the test
stimulus for a stuck-at-1 on line 1. In the case of a fault-free (good circuit) the
output will be 0 while in the case of a faulty circuit the output will be 1. Note
that, it was enough setting line c or line d to 1. And therefore, a test stimulus is
not unique for a given fault, several alternative stimuli exist.

The forward trace is the process of setting values from the fault site to the
circuit’s outputs, and the backward trace is the process to set necessary gate
conditions in order to propagate the fault along the path. In the example
(Figure 15) assigning value to line b, e, f, andff g are included in the forward
trace, while setting values on line c and d are referred to as the backward
trace.

1.2.2 Boolean Difference

In Boolean difference two Boolean expressions, one for the fault-free cir-
cuit and one for a faulty circuit, are ORed. Assume F(FF X(() =XX F(FF x((1, ... , xn) as a

Figure 15.An example circuit.

&
G1

a

b

c

d

e

f

g

≥1
G2

&
G3

s-a-1

SOC Test Design26

logic function of n variables. The Boolean difference of F(FF X(() with respect to aXX
fault xi is defined as:

Assume a fault at line a in Figure 15 and that line a is input x1, line b is
input x2, line c is x3, and finally line d isd x4, we then have [246]:

The advantage of Boolean difference approach is that it generates tests for
every fault in a circuit. The algorithm is complete and does not require trial
and error [151]. The disadvantage of the method is that it requires high com-
putational cost and high memory requirements.

1.2.3 D-algorithm

The first algorithmic test generation method is the D-algorithm, and if a
test exists for a fault, the algorithm finds it [233]. The algorithm makes use of
singular cover, D-cube propagation, D-cube fault representation, and D-
intersection. The singular cover is a compact version of the truth table. An
example for an AND-gate is in Figure 16.

The singular cover for a circuit is illustrated in Figure 17.
The input-output behavior of a good and faulty gate is represented by a D-

cube. The symbol D can be either 0 or 1 and D is the opposite of D. It means

dF x1 i n()x1… xi …xn, ,xi

dxi
-- dF X()X

dxi
F 1 i n()x1… xi …xn, ,xi F 1 i n()x1… xi …xn, ,xi⊕= =()--------------------

dF X()X
dx3

dF x1 2 3 4()x1 x2⋅ x3 x4⋅+

dx3
l l{ }Boolean rules x2 x3 x4⋅⋅= = =--- { }Boolean rules

Figure 16.(a) Truth table; (b) singular cover.

(b)(a)

&
a

b
c a b c

0 0 0
0 1 0
1 0 0
1 1 1

a b c
0 x 0
x 0 0
1 1 1

Figure 17.The singular covers for a circuit.

&
G1

a

b

c

d

e
≥1
G2

G1

G2

a b c
0 x
x 0
1 1

d e
0
0
1

0 0 0
x 1 1
1 x 1

Chapter 3: Design for Test 27

that if D is 1, D=0 and vice versa. The propagation of D-cubes of a gate are
those that makes the output depend on the specified inputs. The propagation
D-cubes for a two-input AND gate are in Figure 18. In this case, D is under-
stood as being 1 if the circuit is fault-free and 0 if the given fault is present.

The existence of a given fault is specified using the D-cube. For instance,
if there is a stuck-at 0 on the output of the AND-gate in Figure 16 the primi-
tive D-cube is:

The D-intersection is used to build the sensitized paths. The D-cube for a
test for a stuck-at 0 fault at line b in Figure 17 is:

In order to propagate the D on line d through G2, the propagation cube of
G2 must match. The following values propagate:

The D-algorithm selects primitive D-cubes for the given fault. All possible
paths are then sensitized from the fault location to a primary output (D-drive).
The final step is a consistency operation.

An advantage of the D-algorithm is that it “proves” that it can identify
redundant faults if such exists [151].

1.2.4 PODEM (Path-Oriented Decision-Making)

The PODEM algorithm enumerates all input patterns for a given fault. The
process continues until a test pattern is found or the search space is exhausted.
If no pattern is found, the fault is considered untestable [72].

The advantage of the PODEM approach is that it compared to the D-algo-
rithm is more efficient in terms of required computer time.

Figure 18.(a) Singular cover and (b) D-cubes for an AND-gate.

(b)(a)

b
D
0
D

c
D
D
D

a
0
D
D

b
x
0
1

c
0
0
1

a
0
x
1

b
D

c
D

a
D

b
1

d
D

a
1

d
D

e
D

c
0

SOC Test Design28

1.2.5 FAN (Fanout-Oriented Test Generation)

The FAN algorithm is similar to the PODEM, but unlike PODEM where
backtracking is performed along a single path, FAN uses multiple paths [151].
A technique called multiple backtrace is used to reduce the number of back-
tracks [63].

1.2.6 Subscripted D-Algorithm

The D-algorithm generates test vectors for one fault at a time [39]. It
means that the path sensitization must be repeated from the output of a gate to
a primary output for every fault associated with a particular gate. The sensiti-
zation must take place even if the paths are similar. The basic idea with the
Subscripted D-Algorithm [195] is to remove some of the repeated work.

1.2.7 CONcurrent Test Generation

The CONcurrent Test Generation (CONT) Algorithm [259] tries to con-
currently generate tests for a set of faults [39]. The algorithm makes use of
PODEM but in addition it keeps track on active faults in the forward implica-
tion process. The advantage is that once a vector is found for a fault, all faults
in the fault list associated with primary outputs are detected by the vectors. In
the presence of conflicts, a strategy of fault switching is used. The strategy of
changing target faults reduces the number of needed backtracks.

1.2.8 Fault Simulation

Fault simulation determines all faults that are detected with a given test
input. The D-algorithm, on the other hand, creates a test for a given fault. In
fault simulation, a list of faults is kept and as soon as a fault is detected, it is
marked as detected. An example circuit with 5 lines (a to e) and hence 10
faults (line a stuck-at 0 (a0) and stuck-at 1 (a1) and so forth) is in Figure 19.
Input pattern 000 detects three out of ten faults, c1, d1, and e1, making the
fault coverage 30% (Table 2). Input pattern 001 detects two faults, and in total
after the two input vectors (000 and 001) five out of ten faults are detected,
making the fault coverage 50%. Some input patterns, such as 011, do not con-
tribute to increase the fault coverage; hence such input patterns can be
removed. A sequence of {000, 001, 010, 100, 110} detects all ten faults.

1.2.9 Optimization

Fault simulation and test generation can be co-optimized in order to mini-
mize the effort spent on test pattern creation. In practice, it is common to first
perform fault simulation with arbitrary inputs to detect so called easy to detect

Chapter 3: Design for Test 29

faults for a specified computational time. Afterwards, a test generation algo-
rithm replaces the random test generation for the hard to detect faults.

The cost of applying a test set can be reduced be efficiently select test pat-
terns. Based on equivalent faults - faults that are detected by exactly the same
test patterns - the number of patterns can be reduced [120]. And also by
knowing which fault each test pattern detects, the minimal set of patterns can
be selected.

The selection of test patterns can also be used to reduce the test application
time. The fault table for the example circuit (Figure 19) is in Table 3 where an
x marks that a test pattern detects a fault. For example, pattern 000 detects e1
(line e stuck-at-1). The stuck-at 1 fault e1 can be detected by one of 000, 010,
and 100. The objective is to select a minimum of patterns in such a way that
every fault is covered once. However, due to new fault types, an effective way
of detecting faults is to detect every fault multiple times [182].

Table 2. Fault simulation results on example circuit in Figure 19.

input
a b c

output
e

a0 b0 c0 d0 e0 a1 b1 c1 d1 e1 detected faults fault coverage

0 0 0 0 0 0 0 0 0 0 0 1’ 1’ 1’ c1, d1, e1 30%

0 0 1 1 1 1 0’ 1 0’ 1 1 c0, e0 50%

0 1 0 0 0 0 0 1’ 0 a1 60%

0 1 1 1 1 1 1 1

1 0 0 0 0 0 0 1’ b1 70%

1 0 1 1 1 1 1

1 1 0 1 0’ 0’ 0’ a0, b0, d0 100%

1 1 1 1

Figure 19.An example circuit.

&
G1

a

b

c

d

e
≥1
G3

SOC Test Design30

1.2.10 Delay Fault Detection

A delay fault is detected by applying two vectors, one initialization vector
to set the fault location, and in the consecutive clock cycle one transition vec-
tor or propagation vector is applied to activate the fault at a primary output.
The initialization vector sets the condition in order to test a slow-to-rise or a
slow-to-fall signal and the propagation vector propagates the fault effect to an
output. The delay faults can be classified into robust andt nonrobust [151].

1.3 Testing Sequential Circuits

A circuit usually contains both combinational blocks of logic and sequen-
tial elements such as registers formed by a set of flip-flops (see Figure 20). In
order to set a fault location, sensitize, not only must the combinational logic
must be considered, but also the number of clock cycles required propagating
values from the inputs of the circuit to the fault location (and from the fault
location to the primary outputs). For instance, assume testing for a fault in
logic block B in Figure 20. The test stimulus must from the primary inputs be
clocked through the sequential elements to logic block B, and the test
response must also be clocked through sequential elements until primary out-
puts are reached.

Table 3. Fault table for the example circuit in Figure 19.

input ouput fault locations

a b c e a0 b0 c0 d0 e0 a1 b1 c1 d1 e1

0 0 0 0 x x x

0 0 1 1 x x

0 1 0 0 x x x

0 1 1 1 x x

1 0 0 0 x x x

1 0 1 1 x x

1 1 0 1 x x x x

1 1 1 1 x

Chapter 3: Design for Test 31

Chen and Agrawal [39] group algorithms for sequential test generation as
follows:

■ Iterative Array Approaches - combinational test generation algo-
rithms are used as the basis in sequential test generation. The outputs
are fed to the inputs as a previous-time copy. Examples of such algo-
rithms are Extended D-Algorithms [150,221], Nine-Value Algorithm
[203], SOFTG [249], Backtrace Algorithms [37, 183, 193, 194],

■ Verification-Based Approaches - tries to determine if the circuit
under test operates as its state table. Example of such a technique is
the SCIRTSS (Sequential CIRcuit Test Search System) [95].

■ Functional and Expert System Approaches. Examples of functional
approaches are proposed by Sridhar and Hayes [251], and Brahme
and Abraham [21], and expert system approaches have been proposed
by Bending [13] and Singh [248].

2 DESIGN-FOR-TEST METHODS

The design under test can be modified in order to make it easier to test,
that is improve the design’s testability. In this section we discuss several tech-

Figure 20.A circuit with both blocks of combinational logic and sequential elements.

logic block A

sequential elements

primary inputs

primary outputs

logic block B

sequential elements

logic block C

SOC Test Design32

niques to improve the testability such as test point insertion and the scan
technique.

2.1 Test Point Insertion

The obvious problem when generating tests is to control and observe val-
ues at certain locations within the circuit. A way to ease the test generation
process is to use test point insertion to improve controllability and/or observa-
bility at lines in the design. Test point insertion is illustrated in Figure 21. The
original circuit with no test points is in Figure 21(a). Assume that it is difficult
to observe the value on the line between logic block A and logic block B. The
insertion of a test point to observe the value on the line is shown in Figure
21(b). If the line between logic block A and logic block B is difficult to set to
1, a test point as in Figure 21(c) can be used while if the line is difficult to set
to 0, a test point as in Figure 21(d) can be used. If the value at a line is both
difficult to observe and control combinations of test points can be used. The
disadvantage of test point insertion is that the cost of additional test points is
high. For instance, direct access is required, and it usually means that direct
access must be introduced from existing or additional input/output pins of the
system to the actual test point. The cost is related to additional wiring and, if
needed, additional pins.

2.2 The Scan Technique

The scan technique, initially proposed by Kobayashi et al. [134], is a
straight forward technique that is easily automized, so called plug’n play. An
advantage of the technique is that all flip-flops are connected into shift regis-

Figure 21.Test point insertion, (a) original circuit, (b) observation point,
(c) 1-control point, and (d) 0-control point.

(a) original circuit

Logic
block B

Logic
block A

(b) Observation point

Logic
block B

Logic
block A

(d) 0-control point

Logic
block B

Logic
block A

(c) 1-control point

≥1

Logic
block B

Logic
block A

&

Chapter 3: Design for Test 33

ters making the circuit behave as if it was a combinational design. A
combinational test generation tool can be used, eliminating the problems due
to sequential blocks.

The basic idea in the scan technique is to connect the sequential elements
(registers) into a shift register. In test mode, test stimulus can be shifted in
through the scan path. A normal (system clock) is then applied to execute the
test stimulus and the test response is then captured in the scan path (the shift
register). Finally, the test response can be shifted out and analyzed. An exam-
ple of a circuit with a scan-chain is in Figure 22. To test logic block B, after
the shift in of test stimulus into register 1, a capture cycle is applied and the
test response is loaded register 2 and it can be shifted out for analysis. In order
to reduce the shift time, new test stimulus can be shifted in at the same time as
the test response from the previous test stimulus is shifted out.

A scan path is shown in Figure 23. The flip-flops are connected into a scan
path, and the additional multiplexors are used to select between testing mode
and normal operation. For scan testing, a minimum of three additional pins
are required. Two inputs, one for multiplexor selection between testing mode
and normal mode and one for serially inserting test stimulus in the scan path.
The added output is to observe test response. It is possible to reduce the added
number of pins by multiplexing with existing pins.

A single scan chain results in the lowest need of additional pins. However,
a single scan chain leads to long shift in/shift out times, and the consequence

Figure 22.A circuit with both blocks of combinational logic and sequential elements.

logic block A

register 1

primary inputs

primary outputs

logic block B

register 2

logic block C

SOC Test Design34

is that the test application time becomes high. A way to reduce the test appli-
cation time is to partition the scanned elements into a higher number of scan
chains, which makes each scan-chain shorter and hence the testing time is
reduced.

The number of clock cycles to shift in a test vector is given by the length
of the scan chain. The test time for a single test vector is given as the summa-
tion of the shift in time, the capture cycle, and the shift out time. For a set of
test vectors, the time is multiplied by the number of test vectors
(Figure 24(a)). Hence, the test time for a single scan chain of length sc tested
with tv test vectors without using overlapping is given by:

The testing time for a single scan chain of length sc tested with tv test vec-
tors where overlapping is used is illustrated in Figure 24(b). Overlapping
means that while the test response of the current test vector is shifted out, the
following test vector is shifted in. Overlapping can be seen as a way of pipe-
lining the test vectors. The test time when using overlapping is given by:

Note, that the term last term (+sc) is added for unloading the test response
from the final test pattern.

When discussing when scan chains are partitioned into more than a single
scan chain, it is important to distinguish between soft cores and hard cores.
For soft cores the number of scanned elements (scan flip-flops) and the num-

Figure 23.A scan path.

mux

flip-
flop

normal/test (n/t)

Q0

SI
D0

clk

mux

flip-
flop

n/t

Q1

D1

clk

mux

flip-
flop

Qn-1

Dn-1

clk

n/t

SO

τ 2 1()sc 2 1 tv×= (3.2)

τ 1()sc 1 tv× sc+= (3.3)

Chapter 3: Design for Test 35

ber of test patterns are given. If the ff scan elements are partitioned into n scan
chains the test time assuming no over lapping is given by:

and the testing time for a soft core when overlapping is used is given by:

Note that the upwards rounding is used due to that the length of scan
chains must be integer. For instance, if a core has 3 scanned elements that are
partitioned into 2 scan chains the shift-in/shift-out time is 2.

For hard cores the number of scan-chains is fixed. Assume that a core is
tested with a set of test vectors tv and that the scan chains are partitioned into
a i scan chains each of length sci. The testing time for a hard core when test
vector overlapping is not used is given by:

and the testing time for a hard core when test vector overlapping is used is
given by:

In the case of hard cores, we overlooked the problem of grouping scan-
chains into the set of scan-chains. For instance, if 5 scan chains of different
length are given and they are to be connected into 2 chains, there is a need to

C - capture

shift in

C

C

shift out

shift in

C

C

shift in/out

tvi - test pattern i

tv1

tv2

tv1

tv2

(a)

Figure 24.Scan chain testing (a) without test vector overlapping and
(b) with test vector overlapping.

τ
n⎝ ⎠n
---- 2 1×⎛ ⎞ff 2 1×⎝ ⎠⎝ ⎠
ff---- 2 1× tv×= (3.4)

τ
n⎝ ⎠n
---- 1+⎛ ⎞ff 1+⎝ ⎠⎝ ⎠
ff---- 1+ tv ff

n
----+×=

(3.5)

τ i 2 1()max()sci 2 1× tv×= (3.6)

τ i 1()max()sci 1+ tv× min sci()sci+= (3.7)

SOC Test Design36

group the chains. However, this problem will be further discussed (see Test
Scheduling on page 115).g

In the Level-Sensitive Scan Design (LSSD) approach three clocks are
used, one is for the normal operation and one clock for each of the master and
slave flip-flop.

2.2.1 Scan Testing for Delay Faults

It is becoming important to not only test for stuck-at faults, but also for
delay faults and timing related (Delay Fault Model, see page 23). In order to
detect a delay fault, two test vectors are used. The first vector initializes the
design and the second vector, applied in the consecutive clock cycle, captures
the fault. Furthermore, it is important that the testing is performed at system
speed, otherwise the timing fault is most likely not present.

A disadvantage of the scan technique is that it is difficult to apply the two
vectors in consecutive clock cycle. The scan technique requires test vector
shift-in, capture, and then shift-out.

2.2.1.1 Enhanced Scan

The enhanced scan flip-flop was proposed by Dervisoglu and Strong [52].
The enhancement compared to a standard scan flip-flop is an additional latch
and the advantage of the additional latch is that it can hold a value while the
scan flip-flop is loaded/unloaded. For delay testing, in means that for a scan
path with enhanced scan flip-flops, first a vector V1 can be shifted in, and sec-
ond a vector V2 can be shifted in. The first vector V1 is kept in the added
latch. Figure 25 shows an illustrative design with enhanced scan flip-flops
and the timing diagram for one test (shift in of vector V1 and vector V2). The
disadvantage of enhanced scan is the additional silicon area that is required.

2.2.1.2 Skewed-load

Savir and Patil [235, 236, 238] propose a skew-load technique which has
the advantage that it can be used in a standard scan architecture. The test is
designed so that the second vector (V2) is created from the first vector (V1)
through a one-bit shift. The first vector (V1) is shifted in. The second vector
(V2) is then created by an additional shift and the response is captured. See
the illustration in Figure 26(a).

The advantage of the technique is that it does not require additional scan
area as in the case with enhanced scan. The disadvantage of the technique is
that the two vectors (V1 and V2) for a test cannot be created purely indepen-
dent, hence, it can be difficult to achieve a high fault coverage.

Chapter 3: Design for Test 37

2.2.1.3 Broadside Test

In Broadside Test, Savir and Patil [239, 240] propose a technique where
standard scan architecture is used, and the additional vector is created through
an analysis of the combinational logic. Figure 27 shows an example where
logic block B is to be tested. The first vector V1 is shifted in through the scan-
path. The second vector V2’ is also shifted in; however, for V2’, the analysis
of the design and the scan-path results in what V2’ should be shifted in. Fur-
thermore, the analysis of the circuit, in this case logic block A, results in V2’
where the vector V2 is the output of logic block A if V2’ is the input. The
scheme allows the two vectors (V1 and V2) to be applied in consecutive clock
cycles, when vector V1 has been applied, vector V2 has been produced by
V2’ and logic block A, and V2 is present in the scan register. See the illustra-
tion in Figure 26(b).

Figure 25.Enhanced-scan.

Combinational circuit

TC

HL: Hold latch,
SFF: Scan flip-flop,
TC: Test control,
CK: clock

Hold

Primary Input

Scanin

Primary Output

HL SFF

Scanout

HL SFF

CK

CK

TC

V2 scan in

V1 applied

V1 settles

TC

Hold

CK

CK period

V2 applied

Test result latched

Test result scan out,
next V1 scan in

scan mode

normal
mode

SOC Test Design38

Figure 26.Skew-load and Broadside Test.

Combinational circuit

TC
SFF: Scan flip-flop,
TC: Test control,
CK: clock

Primary Input

Scanin

Primary Output

SFF

Scanout

SFF

CK

CK

TC

V1 applied

V2 applied

Test result latched

Path tested

(a) Skew-load

Normal mode

Scan mode

TC

TC V1 scan in
V2 by
scan shift

(b) Broadside Test

Normal mode

Scan mode
TC V1 scan in V2 functional

Chapter 3: Design for Test 39

The advantage of Broadside Test is, similar to Skewed-load, that it is used
using standard scan architecture, hence, no additional silicon area is needed.
The disadvantage is, also similar to Skewed-load, that the fault coverage
depends highly on the combintational logic.

2.3 Test Pattern Generation for BIST

A deterministic test vector set is created using an automatic test pattern
generator (ATPG) tool, where the structure of the circuit under test is ana-
lysed and based on the analysis, test vectors are created. The size of the test
vector set is relatively small compared to other techniques, which reduces test
application time. If the generated test vector set is to the circuit using an exter-
nal tester the following limitations are important to note [92]:

■ scan usually operates at a maximum frequency of 50 MHz,

■ tester memory is usually very limited, and

■ it can support a maximum of 8 scan chains, resulting in long test
application time for large designs.

BIST test pattern generation can be divided into:

■ exhaustive,

■ random/pseudo-random, and

■ deterministic.

Figure 27.Broadside Test.

A

Vector 2’
Logic block

Scan register

Vector 1

Response

B

scanin

scanout

inputs

outputs

SOC Test Design40

2.3.1 Exhaustive Pattern Generation

In an exhaustive test generation approach, all possible test patterns are
applied to the circuit under test. For an n-input combinational circuit, all 2n

possible inputs are applied. Such an approach detects all possible stuck-at
faults. A counter can be used to implement an exhaustive pattern generator.
The area-overhead and design complexity is low and it is feasible to place
such a generator on-chip. However, the approach is often not feasible since
the number of possible patterns is too high: for a n-bit input design 2n patterns
are generated which results in extremely long test application time for larger
designs.

A way to make the approach applicable to larger designs, is to partition the
circuit into several smaller designs, where the size of each partition is defined
in such a way that it is possible from a computational complexity point of
view to apply all possible test patterns.

2.3.2 Pseudo-Random Pattern Generation

Another approach is to use random-based techniques. The draw-back with
randomly generated test patterns is that some patterns are hard to create. For
instance, generating a test pattern that creates a one on the output of an AND
gate is only achieved when all inputs are one; the probability is 1/2n. For a 4-
bit AND-gate the probability is only 0.0625 (1/24), Figure 28. This means that
a large set of test vectors has to be generated in order to achieve high fault
coverage, which leads to long test application time.

2.3.3 Pseudo-random-based test generation

A pseudo-random test pattern set can be achieved using a linear feedback
shift register (LFSR). An advantage is the reasonable design complexity and
the low area overhead, which allow on-chip implementation. An example of
an LFSR is shown in Figure 29 where one module-2 adder and three flip-flops
are used. The sequence can be tuned by defining the feedback function to suit
the block under test.

Figure 28.A 4-input AND-gate.

1
2
3
4

Chapter 3: Design for Test 41

2.3.4 Deterministic Testing

The deterministic test stimulus can be used in a BIST environment. An
ATE can be used to apply the test stimulus and the test response of the circuit
is compared to the correct test response stored in a ROM memory. It is also
possible to store the test stimulus in a ROM memory and using the ATE to
compare the produced test response with the expected response.

2.4 Test Response Analysis for BIST

The test response data must be compressed in order to handle it within the
system. Several compression approaches have been proposed, including [151]

■ transition count,

■ syndrome checking and

■ signature analysis.

The transition count technique counts and summarizes for the test
response all transitions from zero to one (0->1) and one to zero (1->0) [89].
The advantage is that only the number of transitions are stored, and compared
with the correct and expected transition count. In Figure 30 the transition
count is shown for some test stimulus. In the presence of a fault in the circuit,
the transition count will be different from expected. The advantage of transi-
tion count is that only the number of transitions are stored, which reduces the
storage requirement for the test response. A disadvantage is that there is a

Figure 29.Example of 3-stage linear feedback shift register based on x3+x+1
and generated sequence where S0 is the initial state.

Q1 Q2 Q3

+

S0 0 1 1
S1 0 0 1
S2 1 0 0
S3 0 1 0
S4 1 0 1
S5 1 1 0
S6 1 1 1
S7 0 1 1

D3D2D1

SOC Test Design42

possibility of fault masking error. Several different sequences results in the
same transition count and therefore it is possible that the transition count of a
faulty circuit can be the same as that of a fault-free one. However, as the
sequences increases, this problem is reduced [151].

In syndrome checking, a function defined as S=SS K= /2KK n, where K in the num-
ber of realized min-terms by the function and n is the number of inputs [234].
The syndrome of a three-input AND gate is 1/8 - the function is true in one
out of eight cases. The syndrome for a two-input OR-gate is 3/4 - there are
three “true” cases out of the four possible outputs. A set of syndrome relations
exists for each gate type. For an AND-gate the syndrome relation is S1S2SS - the
single min-term. And for an OR-gate the syndrome relation is S1+S2SS -S1S2SS . For
the example circuit in Figure 31, the syndrome S3SS =S1S2SS (the syndrome of an
AND-gate), and the syndromes of S1=1/4 and S2SS =3/4 (given by S=SS K= /2KK n), mak-
ing S3SS =1/4*3/4=3/16.

Signature analysis is a technique to compress the test responses into a sin-
gle signature [94]. Figure 32 shows the architecture for a signature analyzer.
The test response is XOR-ed with selected bits in the n-bit shift register to
form the current content of the n-bit shift register. At the end of the testing,
the shift register contain the signature, which is compared to the expected
signature.

An n-bit generator can create 2n signatures; however, input sequences may
map to the same signature. In general, if the length of the input is m and the

Figure 30.An example circuit.

&
G1

10001(2)

≥1
G2

&
G3

10101(4)

10001(2)
11011

10101

00101

10100

Figure 31.An example circuit.

&
G1

S1

S2

S3

≥1
G2

&
G3

Chapter 3: Design for Test 43

signature register has n stages, 2m input sequences map into 2n signatures. It
means that 2m-n input sequences map into each correct signature. Only one
signature out of 2m possible sequences is the correct signature. However, it
can be so that some of the signatures map to the correct signature and, hence,
even if the signature is correct, the circuit is faulty. This problem is called
aliasing and the probability of aliasing is:g

If only on input sequence may be good or faulty, the expression 3.1 can be
reduced to:

The probability of aliasing is low if the signature generator has many
stages and can generate a high number of signatures.

2.5 Circular-BIST

The circular BIST technique makes use of the existing flip-flops in the cir-
cuit to implement the test pattern generator and the signature generator [144].
The advantage of the technique is that the additional logic is reduced; how-
ever, it might be complicated to create certain test patterns for some faults in
the design when the actual design itself is used as test pattern generator.

2.6 BIST-Architectures

2.6.1 BILBO (Built-In Logic Block Observer),

A BILBO can operate as both a test pattern generator and a signature ana-
lyzer [136]. Figure 33 shows a design with two logic blocks, block A and
block B. Testing Block A requires that BILBO 1 operates as test pattern gen-

P 2
m n

1–

2
m

1–
----------------------=

(3.8)

P 1

2
n

-----= for m n (3.9)

Figure 32.Signature analyzer architecture.

test response

clock
start

stop

feed-back

signature
n-bit shift registerXOR

SOC Test Design44

erator while BILBO 2 serves as the signature analyzer. Clearly, the
architecture in Figure 33 prevents concurrent testing of block A and block B,
since BILBO 2 serves as a signature generator when testing block A and can
not concurrently produce test patterns required for the testing of Block B.
BILBO 2 is a conflicting resource in this example.

Since there is no loading/unloading as in the case when using scan chains,
a test can be applied in each clock cycle, and such a scheme is called test-per-
clock.

2.6.2 STUMPS Architecture

In the STUMPS (Self-Testing Using an MISR and Parallel Shift Register
Sequence Generator) architecture, the pseudo-random pattern generator feed
test stimulus to the scan chains and after a capture cycle the signature genera-
tor receives the test responses. The pseudo-random generator loads test
stimulus until all scan-chains are filled and after the application of a system
clock cycle, a capture cycle, the test response captured in the scan-chains is
shifted out into the signature generator (Figure 34)[8]. The pseudo-random
pattern generator can be implemented as an LFSR and a MISR can be used as
the signature generator. A test scheme where new test stimulus is shifted into
the scan chains, and after a capture cycle, the test response is shifted out while
the following test stimulus is shifted in, is called test-per-scan, i.e. one test is
performed when all scan-chains are loaded/unloaded. Long scan chain lead to
long testing times. In order to reduce the test application time, a higher num-
ber of scan chains can be used, which reduces the loading/unloading time
since it is performed concurrent over all scan chains. In a test-per-clock
scheme there is one test per clock cycle.

2.6.3 LOCST (LSSD On-Chip Self-Test)

In the LOCST (LSSD On-Chip Self-Test) architecture the test data is
transported to the circuit under test using a boundary scan chain [179]. Figure
35 shows an example where the test stimulus is transported from the pseudo-
random pattern generator via the Boundary chain to the circuit under test. The
test stimulus is loaded into the scan path (the scan-chains in the system con-
nected into a single chain). After a capture cycle, the test response is shifted
out to the signature generator using the Boundary scan chain.

Figure 33.A BILBO architecture.

BILBO 1 Block A BILBO 22 Block B BILBO 3

Chapter 3: Design for Test 45

2.7 Memory Testing

The number of bits/chip quadruples approximately every 3.1 (π) year [24].
Figure 36 shows the number of bits (memory density) over time. A major part
in terms on silicon area is usually devoted to memories; hence, it is important
to discuss problems and techniques related to the testing of memories. How-
ever, the increasing memory density enforces limitations on test algorithms.
Table 4 shows the test time in terms of memory size (n is the number of mem-
ory bits). As a result, the test generation techniques cannot of order O(n2) or
higher [82].

The fault models in memory testing are stuck-at-fault, transition fault,
coupling fault (inversion coupling fault, idempotent coupling fault, dynamic

Figure 34.The STUMPS (Self-Testing Using an MISR and Parallel Shift
Register Sequence Generator) architecture.

Circuit under test

Pseudo-random
pattern generator

Signature
generator

Scan-chain

Scan-chain

Scan-chain

Figure 35.The LSSD On-Chip Self-Test (LOCST).

Circuit under test

Primary inputs Primary outputs

B
ou

nd
ar

y
sc

an

Test controller

B
ou

nd
ar

y
sc

an

Pseudo-random
pattern generator

Signature
generator

Scan-pathp

Sout

Sin

SOC Test Design46

coupling fault, bridging fault, state coupling fault, neighborhood pattern sen-
sitive coupling fault (active, passive, and static)), address decoder fault, read/
write logic fault.

The stuck-at-fault (SAF) is when the logic of a cell or line is always 0
(SA0) or always 1 (SA1) and cannot be changed. The transition fault is when
a cell fails to make a transition from 0 to 1 or from 1 to 0. The difference
between a stuck-at-fault and a transition fault is illustrated in Figure 37.

A coupling fault means that a transition in memory bit j results in an
unwanted change in memory bit i. An address decoder fault is a fault where
the decoder logic does not become sequential.

There are a number of test algorithms for memory testing (RAM). The
complexity of the algorithms vary between O(n) to O(n3) where n is the num-
ber of bits in the RAM. In the MSCAN algorithm, a sequence or pattern
consisting of all-0’s (all-1’s) is written and then read from each location
(Figure 38). The complexity of the algorithm is O(4×n) where n is the size of
the memory.

Table 4. Test time in terms of memory size n [24].

Number of test algorithm operations

n n n×log2g n n3/2 n2

1 Mb 0.063 s 1.26 s 64.5 s 18.33 hr.

4 MB 0.252 5.54 s 515.4 s 293.2 hr.

16 MB 1.01 24.16 s 1.15 hr. 4691.3 hr.

64 MB 4.03 104.7 s 9.17 hr. 75060 hr.

256 MB 16.11 451.0 s 73.30 hr. 1200959.9 hr.

1 GB 64.43 1932.8 s 586.41 hr. 19215358.4 hr.

2 GB 128.9 3994.4 s 1658.61 s 76861433.7 hr.

Figure 36.Number of bits per DRAM chip in volume production [24].

82 - 86 - 90 - 94 - 98 - 02 - 06

10G
1 G
100M
10M
1M
100K

1M
4M

16M

64M
128M

256M
512M

1G

Chapter 3: Design for Test 47

The GALPAT (GALloping PATtern - Galloping 0s and 1s), or walking
1(0) or Ping-Pong test [22]. GALDIA, with complexity O(2×n2), same as
GALPAT, avoids that an entire row, column, or diagonal can hold 1s. A simi-
lar approach as GALPAT and GALDIA is “walking 0s and 1s”, O(2×n2),
where only a single memory location is assigned to 1 and all locations are
checked that they are 0s [22]. In Algorithmic Test Sequence, complexity
O(4×n) [133], patterns are applied to three partitions of the memory (each
partition corresponds to the address modulo 3). The algorithm has been
improved to the MATS [206] and the MATS+ [1] algorithms. Marching Pat-
tern Sequences, March test, is a version of the walking 1/0 [205]. Several
versions of March technique exists at different complexities O(k×kk n) where k
is a constant. In Checkboard test, complexity O(n), partition the memory into
two parts and sets cells into 1 and all neighbors to 0, and all neighbors to a 0 is
set to 1. All cells in partition 1 are set to 1 and all cells in partition 0 are set to
0. All cells are read, and then all cells in partition 1 are set to 0 and all cells in
partition 0 are set to 1. And finally, all cells are read. More algorithms on
memory testing can be found in [247, 82].

The regular structure of memories makes them easily testable and memo-
ries are often tested with BIST. However, the high density (memory capacity
on a given silicon area) makes memories sensitive to faults.

Figure 37.State transition diagram model for stuck-at and transition faults.

(a) A good cell.

S0 S1

w1
w0

w1

w0

S0

w0

(b) SA0 fault

w1

S1

w0

(c) SA0 fault

w1

(a) <↑/0> transition

S0 S1

w1
w0w0

w1

Figure 38.MSCAN.

0
0
0
0
0

w r

1
1
1
1
1

w r

SOC Test Design48

2.7.1 Algorithmic Test Sequence (ATS)

In the Algorithmic Test Sequence algorithm the test stimulus is applied to
three partitions of the memory array where each partition corresponds to
addresses mod 3 [133]. It means that the cells of a partition does not occupy
adjacent locations, the three partitions are Π1, Π2, and Π3. The algorithm is
illustrated in Figure 39 and its complexity is of O(4×n). The algorithm detects
stuck-at faults on the memory cells, decoders, memory data registers, and
memory address registers. The algorithms has been improved to the MATS
[206] and the MATS+ [1] algorithms.

2.7.2 Marching Pattern Sequences (MARCH)

The GALPAT (GALloping PATtern - Galloping 0s and 1s), or walking
1(0) or Ping-Pong test [22] is a special version of March test [82]. In March
testing, after initialization, each cell is read and then complemented (written
with the reverse value as it should contain). The process is repeated in reverse
order when the memory array has been traversed. Figure 40 shows a March
algorithm that requires 11 read/write operations, leading to a testing time of
O(11 ×n××).

Figure 39.The algorithmic test sequence [133].

1. write 0 in all cells of Π1 and Π2.
2. write 1 in all cells of Π0.
3. read 1 from Π1 if 0, then no fault, else faulty
4. write 1 in all cells of Π1
5. read 1 from Π2 if 1, then no fault, else faulty
6. read 1 from Π0 and Π1 if 1, then no fault, else faulty
7. write 0 in all cells of Π0
8. read 0 from Π0 if 0, then no fault, else faulty
9. write 1 in all cells of Π2
10. read 1 from Π2 if 1, then no fault, else faulty

Figure 40.MARCH test algorithm.

For all addresses j=1 to N
write 0 in all cj
read cj
write 1 in c

jj
j

read cj
write 0

j

For all addresses j=N to 1
read cj
write 1 in c

j
j

read cj
write 0 in c

j
j

read cj

Chapter 3: Design for Test 49

2.7.3 Checkboard Test

The memory cells are set to 0 and 1 so that each cell is different from its
neighbor (see Figure 41(a)). The bits (memory cells) are partitioned into parti-
tion Π0 - all bits set to 0, and Π1- all bits set to 1. The algorithms reads and
writes one partition, and then the other (see Figure 41(b)). The algorithm
requires 4×n read/write and its complexity is O(n). The test detects all stuck-
at-faults, data retention faults, and 50% of the transitions faults.

2.7.4 Memory BIST

Embedded memories are suitable for BIST testing due to the regular struc-
ture, the low sequential depth, and accessible I/Os. Furthermore, Memory
BIST would be an advantage since memory testing requires a high amount of
test data (test stimulus and test response). And on-chip test generation using
Memory BIST would also lead to shorter testing times since the testing can be
performed at a higher clock frequency. And finally, with Memory BIST per
memory block means that the blocks can be tested concurrently; hence, fur-
ther reduction of testing time.

Figure 42 shows a memory cell. It has an address register to address a
memory cell and an input data register for writing in the addressed memory
cell. There is also an output data register where the output (the contents of an
addressed memory cell) from a read operation is placed.

Figure 43 shows a memory cell tested with the scan technique. The regis-
ters (address, input data, and output data) are included in the scan path. Small
memories can be tested using the scan technique. However, as the size of the
memories increases, the test data increases, leading to ATE limitations and
long testing times (high test cost).

Figure 44 shows an example of a Memory BIST tested embedded RAM.
The address register and the input data register from Figure 42 have been
modified. The address register or stepper can be an LFSR or a binary counter.
The output data register is modified to include a compactor and a comparator.
The expected test response is compared with the actual produced test response

Figure 41.Checkerboard test.

1. write 0 in cells of Π0
2. write 1 in cells of Π1
3. read all cells
1. write 1in cells of Π0
2. write 0in cells of Π1
3. read all cells

(b)

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

(b)

SOC Test Design50

from the memory cell. At the end of the testing, a go/no-go (good/no-good)
value is produced.

The BIST circuits can be shared among multiple RAM blocks in order to
save silicon area. The organization of the testing can be either daisy chaining
or test multiplexing. However, sharing enforces constraints on the test sched-
uling. It is therefore important to consider the gain in saving silicon area
versus the flexibility of parallel testing (reduced testing time).

2.7.5 Memory Diagnosis and Repair

The regular structure of memory arrays has made it common practice to
include spare rows and columns to replace possible faulty ones. It means that
testing should not only detect if a memory is faulty, it should also detect
where the fault appear (diagnosis) in order to repair it. In order to reduce the

Figure 42.Embedded RAM.

Address register

Output data register

Input data register

Memory cell

Address Data in

Data out

Figure 43.Scan tested embedded RAM.

Address register

Output data register

Input data register

Memory cell

Address Data in

Data out

Scan in

Scan out

Chapter 3: Design for Test 51

amount of test data, this (diagnosis and repair) should be embedded within the
system.

3 MIXED-SIGNAL TESTING

Although only a minor part, in terms of silicon area, of the SOC is occu-
pied by analog blocks such as analog switches, analog-to-digital (A/D)
converters, comparators, digital-to-analog (D/A) converters, operational
amplifiers, precision voltage references, phase-locked loops (PLL), resistors,
capacitors, inductors, and transformers, these (analog blocks) must be treated
with special care. Analog blocks are in general more difficult to test than dig-
ital blocks mainly due to the lack of well-accepted fault models, and the
continuos range of analog circuit parameters [24]. The cost of testing analog
blocks is about 30% of the total test cost [24]. Analog testing is different from
digital testing. In digital parts of the system only two values are possible (0 or
1). In analog parts, continuos signals are allowed. Analog circuits are tested
for their specification where the specification is expressed in terms of func-
tional parameters, voltage, frequency, etc.

Figure 44.Memory BIST tested embedded RAM.

Address register/
Address generator

Output data register/
Compactor and comparator

Input data register/
Data generator

Memory cell

Address Data in

Data out

Scan in

Scan out

SOC Test Design52

Vinnakota [269] compare analog testing with digital testing and points out
(in short):

■ size - analog blocks are relatively few compared to digital blocks.

■ modeling - is more complicated for analog parts than for digital parts.

* there is no widely accepted analog fault model (as stuck-at).

* a continuos signal is to be handled compared to a discrete (0 and
1).

* tolerance, variation, and measurement are more complicated.

* noise has to be modeled.

■ partitioning - a digital design which is partitioned into sub-compo-
nents (cores) can usually be tested in parallel, not one core at a time.

■ test access - the problem of sending test stimulus from primary inputs
to an embedded analog block, and receiving the test response from an
embedded analog block at primary outputs.

■ test methods - the lack of an analog fault model makes test generation
problematic.

Chapter 4

Boundary Scan

1 INTRODUCTION

The Boundary-scan test (IEEE 1149.1) standard initially developed for
Printed Circuit Board (PCB) designs to ease access of the components. The
common practice through the early 1980s was to use a bed-of-nails to access
the unit under test where the nails are the probes, the connection to control
and observe. For modern PCB the actual size has decreases, making it diffi-
cult for physically access. Also, the use of multiple layers of a board makes
test data access complicated.

2 THE BOUNDARY-SCAN STANDARDS (IEEE
1149.1)

The main objective in PCB testing is to ensure a proper mounting of com-
ponents and correct interconnections between components. One way to
achieve this objective is to add shift registers next to each input/output (I/O)
pin of the component to ease test access. The IEEE 1149.1 standard for the
Standard Test Access Port and Boundary-scan Architecture deals primarily
with the use of an on-board test bus and the protocol associated with it. It
includes elements for controlling the bus, I/O ports for connecting the chip
with the bus and some on-chip control logic to interface the test bus with the
DFT hardware of the chip [2]. In addition, the IEEE 1149.1 standard requires
Boundary-scan registers on the chip.

A general form of a chip with support for 1149.1 is shown in Figure 45
with the basic hardware elements: test access port (TAP), TAP controller,
instruction register (IR), and a group of test data registers (TDRs) [19]. And a
system with Boundary Scan is in Figure 46.

The TAP provides access to many of the test support functions built into a
component. The TAP consists of four inputs of which one is optional and a
single output: the test clock input (TCK) which allows the Boundary-scan part

SOC Test Design54

of the component to operate synchronously and independently of the built-in
system clock; the test mode select input (TMS) is interpreted by the TAP Con-
troller to control the test operations; the test data input (TDI) feeds the
instruction register or the test data registers serially with data depending on
the TAP controller; the test reset input (TRST) is an optional input which is
used to force the controller logic to the reset state independently of TCK and
TMS signals; and the test data output (TDO). Depending on the state of the
TAP controller, the contents of either the instruction register or a data register
is serially shifted out on TDO.

The TAP controller, named tapc in Figure 45, is a synchronous finite-state
machine which generates clock and control signals for the instruction register
and the test data registers. The test instructions are shifted into the instruction
register. A set of mandatory and optional instructions are defined by the IEEE
1149.1 standard in order to define what operation to be performed. It is possi-
ble to add design-specific instructions when the component is designed.

The Boundary-scan Architecture contains at a minimum two test data reg-
isters: the Bypass Register and the Boundary-scan Register. The advantage of
the mandatory bypass register, implemented as a single stage shift-register, is
to shorten the serial path for shifting test data from the component’s TDI to its
TDO [19]. The Boundary-scan register of a component consists of series of

Figure 45.An example of chip architecture for IEEE 1149.1.

Boundary-scan cell Boundary-scan pathI/O pad

TMS
TDI

TCK
TDO

tapc miscellaneous
registers

instruction
register

bypass
register

mux

logic
sin

sout

Chapter 4: Boundary Scan 55

Boundary-scan cells arranged to form a scan path around the core, see
Figure 45 [19].

A Boundary Scan cell can through the control signals (shift/load and test/
normal) be in different modes. A Boundary scan cell as in Figure 47 can be
seen as in Figure 48(a). Its basic modes are illustrated in Figure 48(b) - shift
mode, Figure 48(c) - extest mode, and Figure 48(d) - intest mode.

Figure 46.Boundary scan system view.

core

IR

TDO

TDI
TMS
TCLK

core

IR

core core

IR IR

Figure 47.Basic Boundary scan cell.

Q

Q

D Q

Q

D

CLK

TDI

TDO

Shift/load

Test/normal

Data_in
Data_out

Serial_out

SOC Test Design56

The Bypass register (Figure 45) is a single-stage register used to bypass
data directly from the TDI to the TDO of a component (module, core). The
advantage is that instead of having to shift (clock) data through all the Bound-
ary Cells in the Boundary Scan ring at a component, a single clock cycle is
needed (Figure 45).

2.1 Registers

A Boundary Scan register at a component is all the Boundary Scan Cells
(Figure 47) connected in a single register (similar as a scan chain)
(Figure 45). The Boundary Scan Cells in the Boundary Scan register are con-
trolled through the Instruction Register. Instructions are serially shifted into
the Instruction Register. An output latch holds current instruction until a new
is shifted in and an Update-IR is made (Up-date IR state in Figure 49).

The Device Identification Register is an optional 32-bit long register used
to contain an identification number defined by the manufacturer. The idea is
that the Device Identification Register is used to verify that correct compo-
nent of the correct version is mounted at a correct position in the system.

Figure 48.Basic Boundary scan cell.

TDI

TDO

Data_in Data_out

(a) Boundary scan cell

TDI

TDO

Data_in Data_out

(b) Shift mode

TDI

TDO

Data_in Data_out

(c) ExTest

TDI

TDO

Data_in Data_out

(d) InTest

Chapter 4: Boundary Scan 57

2.2 TAP Controller

The TAP controller, trigged by the TMS signal and the positive edge of
CLK (the test clock), is responsible of:

■ loading instructions to IR,

■ producing control signals to load and shift test data into TDI and out
of TDO, and

■ performing test actions such as capture, shift, and update test data.

The TAP controller is a 16-state finite state machine (Figure 49). The
Test-Logic-Reset is the reset state. The controller remains in Test-
Logic_Reset while TMS=1 and the system is in normal mode. The Test-
Logic-Reset state is reached in five clock cycles from any state in the
controller.

The testing starts from state Run-Test/Idle by loading an instruction into
the instruction register (IR). It is achieved by keeping TMS=1 for two cycles
to reach the state Select-IR-Scan. TDI and TDO are connected to IR. After
TMS=0 the instruction is captured (state Capture-IR), the required number of
shifts are applied (state Shift-IR).

2.3 Instructions

The mandatory instructions are Bypass, Extest, and Sample/Preload.
Instructions as Idcode, Intest, and Runbist are the most frequently used
optional instructions. The Bypass instruction is used to bypass data between
TDI and TDO at a component. The Extest instruction is used to test intercon-
nection and logic between components equipped with Boundary Scan. And
the Sample/Preload instruction is used to scan the Boundary Scan Register
without interrupting the normal operation. The instruction is useful for debug-
ging purposes. The Idcode, Intest, Runbist, Clamp, Highhz instructions are all
optional.

2.3.1 Example

An example to illustrate testing is in Figure 50. First, Figure 50(a), test
data is shifted in, and when completed, the test data is applied to the logic
under test (Figure 50(b)). Finally, the captured test response is shifted out
Figure 50(c). A more detailed view on a Boundry Scan cell of the example is
in Figure 51. In Figure 51(a) the test data is shifted in, and in Figure 51(b) the
test data is produced at the outputs. In Figure 51(c) the test response is cap-
tured, and finally it is shifted out.

SOC Test Design58

2.3.2 Boundary-Scan Languages

The Boundary-Scan Description Language (BSDL) is a subset of VHDL
developed to connect the system (pins, clocks etc) with the test data (test stim-
uli and test responses) [214, 215].

2.3.3 Cost of Boundary Scan

The advantage of Boundary Scan is that access to all components (mod-
ules/cores) in the system (PCB/SOC) is provided. And, adding Boundary
Scan, as with the scan technique, is fairly much plug’n play, which is a major
advantage when used in a design flow. Boundary Scan can be used for testing
purpose, as well as for debugging. The cost of additional silicon and extra
pins is relative to the system cost decreasing since the silicon cost due to
Boundary Scan is relatively constant while the size of the systems is increas-
ing. Boundary Scan introduces additional delays due to multiplexors (similar
cost as with the scan technique). However, the cost is fixed, which makes it
possible to predict it early in a design flow. The major disadvantage with

0

0

0

0

1

0

1

1

Figure 49.The TAP (test access port) controller.

Run-Test/Idle Select-DR-Scan

Update-IR

Exit2-IR

Pause-IR

Exit1-IR

Shift-IR

Capture-IR

Select-IR-Scan

Capture-DR

Exit2-DR

0

1

iTest-Logic-Reset

0
1 1

0

0

1

Shift-DR

Exit1-DR
0

Pause-DR

1

1

Update-DR

0

1

0

0

1

1 0 1 0

1

1

0

Chapter 4: Boundary Scan 59

Figure 50.External testing of “under test” logic/interconnection.

core

IR

core

IR

(a) Shift in stimulus - shift-DR

Under

test

(b) Capture data - capture-DR.

(c) Shift out response - shift-DR.

core

IR

core

IR

Under

test

core

IR

core

IR

Under

test

SOC Test Design60

Figure 51.External testing of “under test” logic/interconnection.

(a) System

(c) Capture data at the outputs - capture-DR.

(b) Shift in stimulus - shift-DR

core

IR

core

IR

CLK
Serial_out

TDO

Shift/load

Test/normal

Data_in Data_out
Under

test

Data_out Data_in

TDO

CLK

TDI

Shift/load

Test/normal

TDI

Under

test

(d) Capture the response data - capture-DR.

Serial_out

CLK
Serial_out

TDO

Shift/load

Test/normal

Data_in Data_out
Under

test

Data_out Data_in

TDO

CLK

TDI

Shift/load

Test/normal

TDI

Serial_out

CLK
Serial_out

TDO

Shift/load

Test/normal

Data_in Data_out
Under

test

Data_out Data_in

TDO

CLK

TDI

Shift/load

Test/normal

TDI

Chapter 4: Boundary Scan 61

Boundary Scan in larger SOC designs, where not only the interconnections
are to be tested but also the cores (modules, components) themselves, is the
long test application time due the high amount of test data that has to be trans-
ported into and out of the system using a single Boundary Scan chain.

3 ANALOG TEST BUS (IEEE 1149.4)

The analog test bus (ATB) (IEEE Standard 1149.4) is an extension of
IEEE Standard 1149.1) intended to handle mixed-signal devices (see
Figure 52) [216]. The advantage of the bus is that by using the bus, observa-
bility of analog circuits is achieved. Hence, it replaces the in-circuit tester.
The bus also eliminates large analog chip area needed for extra test points.
Therefore, it reduces various external impedances connected to the pins of the
chip. Among the disadvantages are the measurement error (about 5%), the
capacitance of all probing points, and the bus length limitations. To put it sim-
ple, the 1149.4 works as 1149.1 but instead of only being able of handling
discrete values (0s and 1s), 1149.4 can handle analog continuos values.

Figure 53 shows the types of analog faults that must be tested for. The
faults include opens and shorts in the interconnects (often due to solder prob-
lems). Shorts may appear between any wires; hence a short can be between
two analog wires or between an analog wire and a digital wire. The aim of
1194.4 is to provide capability to find these types of faults. It means it will
give test access in order to eliminate bed-of-nails testers.

The 1149.4 allow interconnection testing and the standard defines three
types of interconnections:

■ simple interconnect - wires,t

■ differential interconnect - a pair of wires transmit a signal - , and,t

■ extended interconnect - where components such a capacitors are
inserted on the wires.

The aim of the analog test bus is to provide access to embedded analog
block. The analog bus will not replace analog ATE; similar to that digital
Boundary scan will not replace ATE. The advantage with ATB (1149.4) is
that it allows testing of embedded analog blocks. The disadvantage is that the
analog test bus might result inaccurate measurements. It has been shown that
testing for extremely high frequencies, small amplitudes, or high precision
components can be difficult.

SOC Test Design62

TCK

TMS

Figure 52.The analog test bus architecture.

DBM
Digital I/O

DBM: Digital Boundary Module
ABM: Analog boundary Module
TAP: Test Access Port
ATAP: Analog Test Access Port
TBIC: Test Bus Interface Circuit
TDI: Test Data Input
TDO: Test Data Output
TCK: Test Clock
TMS: Test Mode Select

Analog I/O

VH
VVL
G

TDI

TBIC

Test control block
(1149.1)(1149

Mixed-signal
block

DBM

ABM

ABM

DBM

AT1
AT2ATAP

TAP

AB1
AB2

VH
VVL
G

TDO

AT1: Analog Test Bus 1
AT2: Analog Test Bus 2
AB1: Analog Measurement Bus 1
AB2: Analog Measurement Bus 2

Figure 53.Defects in a mixed-signal circuit [216].

Transmission point Reception point

AAA

Extended interconnect

Open

Wrong value

Differential interconnect

Short
AAA

AAA

DDD

AAA

AAA

AAA

DDD
+

-

+

-

Misloaded device

Simple interconnect

Short

Chapter 4: Boundary Scan 63

3.1 Analog Test Access Port (ATAP)

The 1149.4 standard is an extension of the 1149.1 standard. It means that
the analog test access port (ATAP) include the four mandatory signals and
one optional signal from 1149.1 (TDI, TDO, TCK, TMS, and TRST (The
Boundary-Scan Standards (IEEE 1149.1) on page 53)). The 1149.4 standard
adds two mandatory analog signals, AT1 and AT2. The analog test stimulus is
usually sent from the ATE to AT1, while the analog test response is sent from
AT2 to the ATE.

3.2 Test Bus Interface Circuit (TBIC)

The Test Bus Interface Circuit (TBIC) can [24]:

■ connect or isolate the internal analog measurement buses (AB1 and
AB2) to the external analog buses (AT1 and AT2),

■ perform digital interconnection test on AT1 and AT2, and

■ support characterization (to improve accuracy of analog measure-
ments).

3.3 Analog Boundary Module (ABM)

The 1194.4 standard requires that every pin has a digital boundary module
(DBM) (see Figure 47) or an analog boundary module (ABM). The ABM
includes a one-bit digitizer that interprets the voltage on the I/O pin.

3.4 Instructions

The instructions Bypass, Preload, Idcode, and Usercode are identical in
1149.4 as in 1149.1. Other instructions, such as Extest, Clamp, Highz, clamp,
Sample, are extended to handle analog signals. The Probe instruction is a
mandatory instruction in 1149.4.

3.5 Chaining Example

Figure 54 shows an example where two analog blocks are chained to the
analog test bus. The blocks are to be tested in a sequence, one after the other.

SOC Test Design64

Figure 54.Chaining of analog blocks using 1149.4.

BlockA BlockBTDI
TCK
TMS

AT1
AT2

digital

analog

PART 2
SOC DESIGN FOR TESTABILITY

Chapter 5

System Modeling

1 INTRODUCTION

In this chapter we discuss modeling and concepts related to core-based
system. The introduction of test methods (DFT techniques), the creation of
test stimulus, and the test response analysis in Chapter Design for Test on
page 5 serves as the basis for this chapter. It is therefore known that a testable
unit has its test stimulus and expected test response. The site where the test
stimulus (test vectors, test patterns) is stored or created is called test source
while a test sink is where the test response is stored or analyzed (Figure 55).
Figure 55 shows a test architecture where test stimulus is stored at the test
source and transported on the test access mechanism (TAM) to the testable
unit, in this example a core. The test response is also transported on the TAM
to the test sink. In order to ease test access between the core and the TAM the
core is placed in a wrapper.

These concepts have been introduced by Zorian et al. [289]. We further
illustrate them with the example in Figure 56. The example consists of three
main blocks of logic, core A (CPU core), core B (DSP core), and core C
(UDL (user-defined logic) block). A test source is where test stimulus is cre-
ated or stored, and a test sink is where the test response from a test is stored or
analyzed. Test resources (test source and test sink) can be placed on-chip or
off-chip. In Figure 56 the ATE serves as off-chip test source and off-chip test
sink, while TS1, for instance, is an on-chip test source. The TAM is the infra-
structure for test stimulus transportation from a test source to the block to test
and for test response transportation from a testable unit to a test sink. A wrap-
per is the interface between a core and the TAM. A core equipped with a
wrapper is wrapped and a core without wrapper is unwrapped. If a core need
test data from the TAM a wrapper is needed. The wrapper can be the cores

Core

Figure 55.Test source, test access mechanism, wrapper, core (testable unit) and test sink.

Test source

Wrapper

Test sink

Test Access
MechanismTest Access

Mechanism

SOC Test Design68

dedicated wrapper or the core can make use of a wrapper at a neighboring
core. For example, Core A is a wrapped core while Core C is an unwrapped
core. The wrapper and the wrapper cells at the wrapper can be in one of the
following modes at a time: internal mode, external mode and normal opera-
tion mode.

2 CORE MODELING

A core-based system is composed of a set of cores (Figure 57). The cores
(also referred to as modules, blocks, or macros), may, for instance, be digital
signal processing (DSP) processor, central processing unit (CPU), random
access memory (RAM), field-programmable gate array (FPGA), and user-
defined logic (UDL). There is no strict definition of what constitutes a core.
For example, what amount of logic is required in order to call the partition of
logic a core? For some parts in a core-based system, it is well-defined what
constitutes a core while in other cases, such as for UDL blocks, it is less obvi-
ous. We simply say that a core is a well-partitioned piece of logic.

Figure 56.A system and the definition of test concepts.

wrapper

A ()coreA (CPU)
wrapper

core B (DSP)

system wrapper cell

TR1

off-chip test source
off-chip test sink

on-chip test source

on-chip test sink

block A.1

block A.2

scan chain core C
(UDL)

block C.1scan chain

ATE
test stimulus test response

scan chain

block B.1

TS1

scan chain

scan chain

prim
ary inputs

TR2

TS2

Chapter 5: System Modelling 69

The cores in a system can have different origin (core providers see Design
Flow on page 5) and they can be classified into three categories [84, 199]:

■ soft cores,

■ firm cores, and
■ hard cores.

Hard cores are given as layout files that cannot be modified. This type of
cores are highly optimized for area and performance, and synthesized to a
specific technology. And also the test sets (test stimuli and test responses) are
given. Soft cores, on the other hand, are given in a high-level description
(HDL) language, hence, technology independent, and the soft cores can easily
be modified compared to hard cores. The soft core specification has to be syn-
thesized and optimized, and also it is required to perform test generation. Firm
cores are given as technology-dependent netlists using a library with cells that
can be changed according to the core integrator’s need.

Hard cores, obviously, give less flexibility to the core integrator but saves
design time and effort since less synthesis and test generation are required.
Soft cores give the core integrator high flexibility but they require design time
for synthesis and test generation. Firm cores are somewhere between hard
cores and soft cores. It means that firm cores give a little more flexibility than
hard cores but not as much as soft cores, and firm cores require some more
design time for optimization and test generation than hard cores but not as
much as for soft cores (Figure 58).

The core-based system in Figure 57 is flat. The system consists of a set of
cores where the cores are all on the same “level”; there is no hierarchy. How-
ever, a core can be embedded within a core. A parent core may have several
child cores embedded inside of it. Furthermore, each child core can in turn be
a parent core with embedded child cores (Figure 59). From a modeling per-
spective, embedding a core in core (parent-child) makes it a bit more

DSP

Figure 57.A core-based system.

UDLCPU

RAM

FPGA

UDL

SOC Test Design70

complicated. How to organize the modeling? What is a testable unit? How
will testing be performed when a child core is embedded in a parent core.
How many testable units are there? CoreA in Figure 59 can be a single test-
able unit; however, coreA is a parent core with four child cores where each
child core can be viewed as a testable unit.

Larsson et al. [158, 160, 164, 165, 166, 176] have taken the view that a
core is composed of a set of blocks. The blocks are the testable units in the
system and tests may, but do not have to, be defined for the blocks. Each core
is given a position (x,y) in the system and the blocks are attached to a core.

Figure 60 shows an illustrative example. CoreA consists of four child
cores (UDL, CoreA.1, CoreA.2, and CoreA.3). CoreA is placed at x,y-coordi-
nate 10,10 and it consists of the four blocks (UDL, CoreA.1, CoreA.2, and
CoreA.3). The tests at each block are then specified. For instance, block
UDL.1 is tested with test.UDL1 and testUDL.2.

The core-block model by Larsson et al. [158, 160, 164, 165, 166, 176]
could be more elaborate where each pin at a core would be specified with
(x,y)-coordinates. It would also be possible to specify each pin at each block

Figure 58.Trade-offs among core types.

Flexibility

Hard

Firm

Soft

Design time required by the core integrator

Flexibility

Soft

Performance

Firm

Hard

CoreC

Figure 59.System-on-chip hierarchy.

SOC

CoreACoreB

UDL

UDL CoreA.1

CoreA.2

CoreA.3

Chapter 5: System Modelling 71

in a core. However, such a fine-grain model would lead to additional compu-
tational cost.

The core-block model does actually also support parent-child core hierar-
chy. It is possible by specifying hierarchy using constraints (see Hierarchy -
Cores Embedded in Cores on page 85).

3 TEST RESOURCE MODELING

A test source is where test stimulus is stored or created. It can be placed
off-chip as an ATE or on-chip as an LFSR, embedded processor, memory etc.
A test sink is where test response is stored or analyzed. It can, as a test source,
be placed off-chip as an ATE or on-chip as a MISR or memory. In general,
any combination is possible. For a test at a testable unit, both the test source
and the test sink can be an ATE. Or, both the test source and the test sink can
be placed on-chip. It is also possible to make use of an off-chip test source
and an on-chip test sink, and vice versa.

CoreC

Figure 60.System modeling Larsson et al. [176, 166, 164, 165, 160, 158].

SOC

CoreA
(x,y)

CoreB

UDL

UDL CoreA.1

CoreA.2

CoreA.3

#Syntax: name x y {block1 block2 ... blockN}

CORE.A 10 10 {UDL.1 CoreA.1 CoreA.2 CoreA.3}

// for all cores

[Blocks]

#Syntax: name idle_power {test1 test2 ... testN}

UDL.1 23 {test.UDL1 test.UDL2}

//for all other blocks

(a)

(b)

SOC Test Design72

Figure 61 shows an SOC example where an ATE is serving as an off-chip
test source and an off-chip test sink, an LFSR operating as an on-chip test
source, and an embedded processor (CPU) working as an on-chip test sink.
Each of the tests of the core in Figure 61 has to make use of one test source
and one test sink. For instance, one test can be defined so that is makes use of
the ATE as test source and test sink. Another test can make use of the LFSR
as test source and the CPU as test sink. It is also possible to allow a test to
make use of the LFSR as the test source and the ATE as the test sink.

Larsson et al. [158, 160, 164, 165, 166,176] model, for instance, the test
sources and the test sinks as in Figure 62. Each test source (Generator) and
each test sink (Evaluator) is given a name and (x,y) co-ordinates. For instance
as LFSR at (20,40). The use of test source (tpg) and test sink (tre) is specified
for each test. The modeling is in more detailed discussed in Chapter Test Con-
flicts on page 77.

4 CORE WRAPPER

A core may be equipped with a wrapper such as P1500 [51, 104], Bound-
ary Scan [2], TestCollar [267] and TestShell [186]. A wrapper serves as the
interface between the core and the TAM. An advantage of wrapping a core is
that a wrapper isolates the core during testing. A wrapper can in general be in
the following modes of operation:

■ normal mode,

■ external test mode,

■ internal core test mode

Figure 61.Test resources - test source and test sink.

ATE
(x,y)

LFSR
(x,y)

CPU
(x,y)

test source

SOC

test sink

test source

Core

test sink

Chapter 5: System Modelling 73

For testing, the external test mode (extest) and internal core test mode
(intest) are of most interest. In intest mode the core at current wrapper is
tested while in extest the interconnection and logic placed between two wrap-
pers are tested. Figure 63 shows an example with three cores, coreA, coreB,
and coreC. CoreA and coreB are placed in wrapper so they have interfaces to
the TAM. A core with an interface to the TAM is commonly called wrapped,
while a core such as coreC does not have its dedicated interface to the TAM is
called unwrapped. The testing of a wrapped core and an unwrapped core dif-
fers. Testing of a wrapped core such as coreA in Figure 63 means that the
wrapper at coreA is placed in internal core test mode and test stimulus and test
responses are transported via the TAM to coreA. Testing of an unwrapped
core, such as coreC in Figure 63, means that the wrapper at coreA and the
wrapper at coreB must be used since coreC does not have its dedicated inter-
face to the TAM. A problem that has to be addressed when scheduling the
tests is that a wrapper can only be in one mode at a time (normal, intest, or
extest). In the example in Figure 63 it means that when coreA is tested its
wrapper is in intest and when coreC is tested both wrappers at coreA and
coreB must be in extest mode. Note also, that when coreA is tested test stimu-
lus and test responses are transported to coreA, while when coreC is tested,
the test stimulus is transported to coreA and the test responses are transported
to the test sink from coreB.

In the modeling approach proposed by Larsson et al. [158, 160, 164, 165,
166, 176] the system in Figure 63 is modeled as shown in Figure 64. As dis-
cussed above, each core is given (x,y)-coordinates and the testable unit is a

Figure 62.The modeling of test sources and test sinks.

[Generators]

#Syntax: name x y

ATE 150 50

LFSR 20 40

[Evaluators]

#Syntax: name x y

ATE 150 50

CPU 145 50

[Tests]

#name tpg tre

 TestA ATE ATE

 TestB LFSR CPU

 TestC LFSR ATE

SOC Test Design74

block. The model of CoreB is a single block and a corresponding test. BlockA
at CoreA is the core test in Figure 63. The interconnection test of core C is
modeled as a block at CoreA and an indication at the test shows that the inter-
connection is to CoreB. It should be read as test stimulus should be
transported from the test source to CoreA and test responses is to be trans-
ported from CoreB to the test sink.

The core wrappers are described in more detail in chapter Test Access
Mechanism on page 99, and wrapper conflicts are in deeper detailed discussed
in chapter Test Conflicts on page 77.

5 TEST ACCESS MECHANISM

The TAM (Test Access Mechanism) (for detailed discussion see Chapter 8
on page 99) connects test sources with testable units and testable units and
test sinks. The TAM can be dedicated for testing purpose only or an existing
structure can be used. The advantage of making use of an existing structure is
that additional routing of wires is minimized. The advantage of a dedicated
structure is the flexibility. The functional bus which is used in normal opera-
tion can during testing be used for test data transportation. The advantage of
using the functional bus is that it exists in the system. There is no need for
additional routing. The execution on a functional bus is sequential - one task
(job) at a time and since it only allows sequential use, it can be modeled as a
test conflict.

Figure 63.Illustration of external test mode (extest) and internal core test mode (intest).

test source test sinkTAM

wrapper

AcoreA

wrapper

coreBcore C

Chapter 5: System Modelling 75

Figure 64.The modeling of test sources and test sinks.

Syntax: name x y {block1 block2 ...
blockN}

COREA 120 50 {BlockA CoreC}

COREB 180 50 {BlockB}

[Blocks]

#Syntax: name {test1 test2 ... testN}

BlockA {TestA}

BlockB {TestB}

CoreC {TestC}

[Generators]

#Syntax: name x y

ATE 100 50

[Evaluators]

#Syntax: name x y

ATE 200 50

[Tests]

#name tpg tre interconnection test

TestA ATE ATE no

TestB ATE ATE no

TestC ATE ATE CoreB

Chapter 6

Test Conflicts

1 INTRODUCTION

In this chapter, we describe and discuss test conflicts that are important to
consider when developing a test solution for a system. Problems related to test
power consumption are discussed in Test Power Dissipation (page 89).

Conflicts can be classified as conflicts known prior to scheduling and con-
flicts that occur due to a certain test schedule, for instance, if a testable unit is
to be tested with two test sets. One test set could be a deterministic set stored
in the ATE while the second test set is a pseudo-random set generated with an
LFSR. These two test sets can obviously not be scheduled (executed) concur-
rently. Only one test can be applied to a testable unit at a time. This is an
example of a test conflict which is known prior to scheduling. A conflict that
is not known of prior to scheduling is TAM wires sharing, for instance. If two
tests are scheduled to be executed at the same time, these two tests can in gen-
eral not share TAM wires, unless special care has been taken as in daisy-
chaining (pipelining). A conflict such as TAM wire sharing cannot be found
prior to scheduling.

We have assumed a core-based environment or a modular system view
(See System Modeling on page 67) as in Figure 65, where the test data (test
stimuli and test responses) can be stored in an ATE (test source and test sink).
The test source feeds test stimuli to the system and the test sink stores the test
responses.

Figure 65.Modular view of system testing.

System-under-testTest source Test sink

Test stimulus
Test response

d l 1 CModule1-CPU

d l 2 AModule2-RAM

d l 3 SModule3-DSP

d l 4 GModule4-MPEG

SOC Test Design78

2 LIMITATIONS AT THE TESTER

The setup for testing a system can be as in Figure 66 where the system
under test is connected to an ATE (Automatic Test Equipment). The test stim-
ulus is transported from the channels at the ATE to the scan-chains at the
system under test, and the test response captured in the scan-chains is trans-
ported back to the ATE for test evaluation. Examples of companies producing
ATEs are Advantest [4], Agilent (HP) [7], Credence [48], LTX [181], and
Teradyne [260].

In the example (Figure 66) the ATE serves as off-chip test source and off-
chip test sink. Regardless if the test resources (test sources and test sinks) are
on-chip or off-chip, there are a number of possible limitations that are to be
considered.

An ATE has a number of channels (usually up to 1024) where each chan-
nel can be seen as a bit stream that is clocked out of the ATE. The ATE
channels are usually grouped into ports (about 64) where a port is connected
to a group of pins. Each port is controlled by a sequencer (can be seen as a
controller running at some clock frequency).

Important conflicts at the ATE are:

■ Bandwidth limitations (a limited number of channels are available),

■ Memory limitations, test data (test stimulus and test response) has to
fit the tester’s memory. It is not feasible to reload the ATE.

■ ATE clock-domains; the channels can be run at different clock speed.

System under test

Figure 66.An Automatic Test Equipement (ATE) with n channels connected to the
m scan-chains of the system under test.

scan-chain 1- 120 flip-flops

scan-chain 2 - 120 flip-flops

scan-chain m- 120 flip-flops

ATE

Channel 1

Channel 2

....

Channel n

Channel 1

Channel 2

....

Channel n

Test stimuli Test response

Chapter 6: Test Conflicts 79

2.1 Bandwidth Limitations

The number of scan-chains in a system is often higher than the number of
channels at the ATE. Especially for a system designed in a modular way. In
order to make the scan-chains in the system fit the number of ATE channels,
the scan-chains have to be partitioned into longer chains. This problem will be
in detail discussed in Test Scheduling, (page 115).

A way to model bandwidth limitations is illustrated for a small system in
Figure 67 [166, 176]. A test source ([Generators]) r1 placed in the system at
(x,y)-coordinate (10,10) has a maximal bandwidth of 1, i.e. a single TAM
wire (scan-chain). The test sink s1 at [Evaluators] placed in the system at
(x,y)-coordinate (20,10) has a maximal bandwidth of 2.

2.2 Tester Memory Limitations

A test source, such as an ATE, has a fixed memory for storing test data.
For an ATE, it is of most importance that the test data fits the ATE since an
ATE refill is only an option in theory, in practice a memory refill is too time
consuming. If test data is stored in an on-chip test source, which could be a
memory, there is also a storage limitation.

The modeling of memory limitations is illustrated for a small system in
Figure 67 [176, 166]. A test source r1, [Generators], has a storage capacity of
100. A test such as testA [Tests] requires 10 units out of the 100.

A way to reduce the tester memory limitation is to compress the test data.
It is known that only a few bits (care bits) are specified in a test set (1 to 5%)
for large cores [272]. The idea is to store compressed data in the ATE, send it
to the SOC where added decompression logic uncompress’ the test stimuli.
For example, Koeneman [135] uses static LFSR reseeding. Several tech-
niques have been proposed, for instance, Hellebrand et al. [90] proposes a
approach using multiple-polynomial LFSR, Rajski et al. [222] suggest a tech-
nique using LFSR with variable-length seeds, and Jas et al. [123] describe a a

Figure 67.Illustration of limitations at tester bandwidth and tester memory [166, 176].

[Generators]
#name x y max bandwidth memory
r1 10 10 1 100

[Evaluators]
#name x y max bandwidth
s1 30 10 2

[Tests]
#name x y test sourcetest sink memory
testA 20 10 r1 s1 10

SOC Test Design80

technique called multiple LFSRs in virtual scan chains. The techniques using
dynamic LFSR reseeding by Koenemann et al. [137], Krishna et al. [146],
Krishna and Touba [147], Rajski et al. [223] are achieving best results.

An alternative way is to compress test data is to make use of a hardware
structure such as XOR-networks proposed by Bayraktarolgu and Orailoglu
[10], and folding counters proposed by Liang et al. [180]. The scan-chains
can also be modified as in the approach proposed Hamazaoglu and Patel [87]
where Illinois Scan is used, and in the RESPIN approach proposed by Dorsch
and Wunderlich [54].

It is also possible to encode the test stimuli. Huffman codes and statistical
codes have been used by Ichihara et al. [103], Iyengar et al. [109], and Jas et
al. [122]. Iyengar et al. [109] explored the usage of run-length codes, while
Chandra and Chakrabarty [35], and Hellebrand and Wurtenberg [91] investi-
gated the use of alternating run-length codes. Golomb codes for test data
compression was explored by Chandra and Chakrabarty [34], frequency-
directed run-length (FDR) codes, also by Chandra and Chakrabarty [33], and
packet-based codes by Koche et al. [129] as well as by Volkernik et al. [270].
Vranken et al. [272] propose a technique where the features of the ATE are
explored instead of adding additional decompression logic to the system. The
idea is that the sequencer (controller of each port) is programmed to control
the flow of test data from the ATE. If a channel is to deliver x 1, the sequencer
is programmed to repeat 1 x times. By doing this, the amount of test data can
be reduced. Instead of storing x 1’s, a single 1 is stored and a control scheme.
A draw-back with the technique is that it is most efficient for testers with a
high number of ports, hence expensive testers.

The techniques above are useful for compression of the test data. Espe-
cially, the test stimulus since it can be compressed off-line (before being
stored in the tester). Test response has to be compressed on-chip and at run
time. A disadvantage of the approaches is that they require additional silicon
area. However, that can often be justified. But, the techniques also impose a
more complicated design flow and tools [272].

2.3 Test Channel Clocking

The channels at the tester can all be driven by a single clock or by multiple
clocks. The minimal multiple clock case is where two clocks are used and the
channels are divided into two clock domains. The most general case is when
there is one clock domain per channel. The clock domains can be fixed or
non-fixed (flexible). If the clock in a clock domain is fixed, its frequency is
fixed through out the testing while in the case of flexible clock speed the
clock frequency can be changed during the application of the tests.

Chapter 6: Test Conflicts 81

A test scheduling where the ATE contains two fixed clock domains is pro-
posed by Sehgal and Chakrabarty [243]. The problem that occurs when
having several clock domains is to assign modules to tester channels in such a
way that the testing time is minimized and not violating test power consump-
tion at a module. If a module is tested at a high clock frequency its power
consumption increases as the switching activity increases and if the power
consumption is above the limit of the module the module can be damaged. In
the case with a tester where each channel has its dedicated and controllable
clock, this problem can be avoided (on module-level) since each channel is
clocked at a feasible frequency at any time.

3 TEST CONFLICTS

3.1 General Test Conflicts

In a system there can be general conflicts preventing tests to be executed
concurrently. It can be conflicts such that a part of the system has to be used
while another part is tested. In order to test part A, part B cannot be tested
simultaneously. This type of conflicts can be modeled using a resource graph
as used by Garg et al. (Figure 68) [65]. In a resource graph, see Figure 68, the
tests in the system are on the top level and the resources are on the bottom
level. An edge between nodes at different levels indicates that a test ti tests a
resource rjr or a resource rjr is needed to perform test ti. This means that the
resource graph captures information on resource conflicts. For instance, in
Figure 68 both test t1 and test t3 make use of resource r1, which means that
test t1 and test t3 cannot be scheduled simultaneously.

Given a resource graph, a test compatibility graph (TCG) (Figure 69) can
be obtained, where the nodes define the different test plans and the edges
specify that two tests are compatible. From the test compatibility graph in
Figure 69 it can be determined that test t1 and t2t , for example, can be executed
concurrently as they are connected with an edge.

The resource conflict in the example in Figure 68 can be modeled as in
Figure 70 with the approach proposed by Larsson et al. [166, 176]. The basic
idea is to list all resources (called blocks) for each test. The blocks are the

Figure 68.A resource graph.

t3t1 t2t

r1 r2r

SOC Test Design82

testable units; however, it is not required to give a test for all blocks. It means
that so called dummy blocks intended to specify a general conflict such as bus
sharing.

3.2 Multiple Test Set

It can be efficient to test a testable unit with several test sets. For instance,
if two sets are used; one stored off-chip in the ATE while the other is gener-
ated on-chip by an LFSR. A deterministically generated test set is often of
higher quality than the quality of an LFSR-generated set. However, as dis-
cussed above, an ATE test set requires memory storage and it is becoming a
limiting factor due to the high amount of test data that has to be stored in the
limited memory of the ATE. If several test sets are used for a testable unit,
test conflicts are unavoidable. Larsson et al. [166, 176] propose a way to
model multiple test sets (Figure 71). A testable unit, blockA, is tested by a set
of tests (testA1, testA2, and testA3) and each of the tests have their own spec-
ification on power consumption, test time, test source (TPG), test sink (TRE).
The bandwidth (min_bw and max_bw) will be discussed later, as well as
interconnection testing (ict).

3.3 Multiple Sets of Test Sets

A testable unit in a complex system may be tested by several test sets. It
can be done in order to achieve a sufficient fault coverage. The selection of
the test sets for the cores in the system affects the total test application time
and the ATE usage. For instance, assume a system consisting of 4 cores as in
Figure 72 and where each core is tested by a BIST and an external tester. Fur-
ther, assume that the external tester can only test one core at a time. For each

Figure 69.A test compatibility graph.

t2t

t1

t3

4T

T2T

Figure 70.Test conflict modeling where testA requires blockA and
blockB to be avialable during its test execution.

[Constraints] test {block1, block2, ..., block n}
t1 {r1}
t2 {r1}
t3 {r2}

Chapter 6: Test Conflicts 83

core it is possible to determine several test sets with sufficient fault coverage
where the test sets differ in test time ratio between BIST test time and external
test time. In Figure 72 two solutions for testing the cores are shown where in
Figure 72(a) the total test time is higher than the test time in Figure 72(b) due
to the use of different of test sets.

Sugihara et al. propose a technique for test set selection for each individ-
ual core, where each core is tested by a test set consisting of two parts, one
based on BIST and the other based on external testing [256]. For each core i a
set of test sets is defined, vi∈ViVV . Each test set vi consists of a BIST part and a
part using an external tester. BC(vi) is the number of BIST clock cycles for

Figure 71.Multiple test sets.

[Tests]
#name pwr time TPG TRE min_bw max_bw ict
testA160 60 r1 s1 1 1 no
testA2100 50 r2 s2 4 5 no
testA3.60 72 r1 s2 1 1 no

[Blocks]
#name idle_pwrpwr_grid test_sets {}
blockA 0 p_grd1{ testA testA2 testA3}

Figure 72.Example of test schedules.

core1

core2

core3

External test BIST

core4

core1

core2

core3

core4

(a)

(b) Test time

Test time

SOC Test Design84

test set vi, and ETC(vi) is the number of clock cycles using the external tester.
The total time used for external testing TETT is given by:T

where FT is the frequency of the external tester.T
The total time used for external testing TETT is given by:T

where F is the system frequency used at the BIST. The total test applica-
tion time, T, for the system is given by:TT

The main problem is to determine the test set vi for each core i, and the
objective is to minimize the test application time.

For the system modeling of multiple test sets, Larsson [175, 177] proposed
a scheme illustrated in Figure 73. For each testable unit (block) it is possible
to specify sets of test sets where each such set is sufficient for the testing of
the testable unit. For instance, Block1 can be tested either by the set {testA.1,
testA.2, testA.2}, {testA1, testB} or {testC}. Each test in each set has its
specification of test power test time, and test resources (test source and test
sink).

3.4 Interconnection Testing - Cross-Core Testing

The interconnections between wrapped cores must also be tested. The
problem with interconnection testing is that the interconnections and logic
between wrapped cores do not have their own dedicated wrapper and hence
no direct connection to the TAM. As wrappers are the required interface to
the TAM, test stimuli and test responses for interconnection tests have to be

TET

ETC vi()vi

FT

i 0

n 1

∑=
(6.1)

Tvi

BC vi()vi

F

ETC vi()vi

FT
---------------------+=

(6.2)

T max
⎩ ⎭

ET i 0 vi
⎨ ⎬TET max

i
{ }Tv,

⎩ ⎭⎩ ⎭
ET i 0 vi

{ }vi
,

⎧ ⎫n 1
⎨ ⎬⎨ ⎬T

n 1
{ }T (6.3)

Figure 73.Multiple test sets for a testable unit (block).

[Tests]
#name pwr time TPG TRE min_bw max_bw ict
testA.1 60 60 r1 s1 1 1 no
testA.2 100 30 r2 s2 2 2 no
testA.3 160 72 r3 s3 1 8 no
testB 50 100 r4 r4 1 4 no
testC 200 20 r3 s1 1 3 no

[Blocks]
#name idle_pwrpwr_grid test_sets {}, {}, ...,{}
Block1 0 p_grd1{testA.1 testA.2}{testA.1 testB} {testC}

Chapter 6: Test Conflicts 85

transported to and from the TAM via wrappers at wrapped cores. Figure 74
shows a part of a system where the UDL block is under test. The UDL block
is unwrapped, and hence, it has no direct interface to the TAM. In order to
access the TAM, the wrapper at CoreA is used for receiving test stimulus and
the wrapper at CoreB is used to send the produced test response from the
UDL to the test sink. The main problem is that wrapper cells can only be in
one mode at a time, and therefore testing of CoreA and CoreB cannot be per-
formed concurrently with the testing of the UDL block.

The testing of the wrapped core A is performed by placing the wrapper in
internal test mode and test stimulus is transported from the required test
source to the core using a set of TAM wires and the test response is trans-
ported from the core to the test sink using a set of TAM wires. In the case of
an unwrapped testable unit such as the UDL block (Figure 74), the wrappers
at core A and B are placed in external test mode. The test stimulus is trans-
ported from the required test source on the TAM via core A to the UDL block
and the test response is transported via core B to the TAM and to the test sink.

The part of the system in Figure 74 where three testable units are tested
with one test each can be modeled as in Figure 75 with the scheme by Larsson
[175, 177]. All testable units are making use of the same test source (r1) and
the same test sink (s1). The test testUDL is attached to coreA, this is the core
to which test stimulus should be transported for the testing of testUDL, and at
the specification of testUDL CoreB is indicated at ict (interconnection test),
which means that CoreB is where test response is sent to the test sink.

3.5 Hierarchy - Cores Embedded in Cores

In a core-based environment, cores are embedded in the system. However,
a core can also be embedded in a core. One or more child cores can be embed-

Figure 74.Interconnection test (cross-core testing) of the UDL block.

TAM

CoreA

CoreB

Test source Test sink

scan chain

Wrapper Wrapper
Wrapper cell

UDL

Rest of the system
Rest of the

system

SOC Test Design86

ded in a parent core (Figure 76). The embedding of cores in cores results in
conflicts at testing. The testing of a parent core can usually not be performed
at the same time as the testing of a child core. The required resources for the
testing of the parent core are marked in bold in Figure 76(a) and the needed
resources for the testing of the child core are marked in bold in Figure 76(b).
From the example it is shown that the wrapper cells at the child core are the
limiting resources. These wrapper cells are used both when testing the parent
core and when testing the child core. For instance, the input wrapper cells (on
the left side of the child core) are used to capture the test response when test-
ing the parent core and to set up test stimulus when testing the child core.

This is a type of conflict that is known in advance and hence it can be
modeled using a test resource graph as proposed by Garg et al. [65] and by
Larsson et al. [176, 166] (Section 3.1). Figure 77 shows who to model the
conflicts in Figure 76.

Goel [80] as well as Sehgal et al. [245] proposed recently wrapper exten-
sions in order to handle hierarchical cores.

4 DISCUSSION

We have divided the test conflicts into conflicts known prior to scheduling
and conflicts not known in advance. A test conflict known prior to scheduling
is, for instance if a testable unit is tested by multiple test sets, meanse that
only one test can be applied to each testable unit at a time. On the other hand,
a conflict that is not explicitly known prior to scheduling is TAM wire assign-
ment, which TAM wires a particular test is assigned to use.

Figure 75.Multiple test sets for a testable unit (block).

[Tests]
#name pwr time TPG TRE min_bw max_bw ict
testA 60 60 r1 s1 1 1 no
testB 100 30 r1 s1 2 2 no
testUDL 160 72 r1 s1 1 8 CoreB

[Blocks]
#name idle_pwrpwr_grid test_set
CoreA 0 p_grd1{testA testUDL}
CoreB 10 p_grid2{testB}

Figure 77.Test conflict modeling of cores embedded in cores (Figure 76).

[Constraints] test {block1, block2, ..., block n}
testParent{ParentCore ChildCore}
testChild {ParentCore ChildCore}

Chapter 6: Test Conflicts 87

Figure 76.Test conflict due to hierarchy (child core embedded in parent core).

(a) Testing of parent core logic.

Core (child)

scan chain

Wrapper

scan chain

Core (parent)

Wrapper

Functional input
Functional output

scan chain

scan chainTAM inputs TAM outputs

h iscan chain

Wrapper

h iscan chain

Core (parent)

Wrapper

scan chain

scan chain

(b) Testing of child core logic.

Functional output

TAM outputs

Functional input

TAM inputs

Chapter 7

Test Power Dissipation

1 INTRODUCTION

The power consumed in a system during test mode can be higher than that
consumed during normal operation. The reason is that in order to detect as
many faults as possible per test stimulus (at as short time as possible) test
stimulus is designed to create hyper-activity in the system. And, in order to
reduce the testing time testing should be performed at the highest possible
clock frequency. The test time can be reduced by activating a high number of
cores concurrently, which means that during testing testable units may be
activated in way that they will not be activated during normal operation. For
example, a memory bank that in normal operation is activated one at a time
can in testing mode be activated all at a time in order to reduce the testing
time. However, systems are usually designed for normal operation, which
makes it important to consider power consumption during testing otherwise
the high power consumed during testing can lead to that the system is
damaged.

The power dissipated during testing can be classified as:

■ system power consumption - the testable units should not be activated
in such a way that the total power budget for the system is exceeded,

■ hot spot power consumption - the power consumed at given areas
(parts of the system) should not exceed the given limit for that part,

■ unit power consumption - the power consumed during testing can be
higher than the specified limit for the testable unit.

High power consumption in a system can be tackled by:

■ design for low power - which reduces the testing times by allowing
testing at higher clock frequencies,

■ test scheduling - where the tests are organized as concurrent as possi-
ble in order to minimize the test time while power limitations are con-
sidered, and

■ a combination of design for low power and test scheduling.

SOC Test Design90

In this chapter we discuss test power dissipation. In section 2 “Power con-
sumption” the initial discussion on test power and its modeling is given and in
section 3 “System-level Power modeling” power modeling at system level is
discussed. In section 4 “Hot-spot modeling with Power Grids” and in section
5 “Core-level Power modeling” are discussed and the chapter is concluded
with section 6 “Discussion”.

2 POWER CONSUMPTION

The power consumption during test is usually higher than during the nor-
mal operation mode of a circuit due to the increased number of switches per
node which is desirable in order to detect as many faults as possible in the
minimum of time [93]. However, high power consumption may damage the
system because it generates extensive heat, which simply burns the system.

The power dissipation in a CMOS circuit can be divided into a static part
and a dynamic part. The static power dissipation is derived from leakage cur-
rent or other current drawn continuously from the power supply, while the
dynamic power dissipation is due to switching transient current and charging
and discharging of load capacitances [277].

The dynamic power consumption has, compared to the static part, been the
dominating until the advent of sub-micron technology. The dynamic power
consumption is due to loading and unloading of capacitances, and can be
characterized by [277]:

where the capacitance C, the voltage V and the clock frequency f, are
fixed for a given design [277]. The switch activity α, on the other hand,
depends on the input to the system, which during test mode is the test stimu-
lus. It means that the power dissipation varies depending on the test stimuli.

All parameters but the switching activity in formula (7.1) can be estimated
using a design library. The switching activity depends on the input data and
there are two main approaches to estimate it; based on simulation or probabil-
ity. During testing the input to the design consists of the test vectors and it is
possible to make use of the test vectors generated by an ATPG tool to esti-
mate the switch activity for a circuit under test. As the order in which the
vectors are applied often is not important the ordering can be used to control
test power consumption. An approach where the test vectors are ordered
based on Hamming distance has been proposed by Girard et al. [70].

Pdyn
1
2
------ V

2× C× f α××= (7.1)

Chapter 7: Test Power Dissipation 91

The power dissipation is usually considered to originate from gates. How-
ever, power may dissipate not only from gates at blocks but also from large
buses. For instance, for a wire of length 10 mm the capacitance will be about
7 pF [58]. In calculation of power consumption, the average capacitance
should be used, which is close to half of the worst-case capacitance [58].
Assume a system running at 100 Mhz where the average switch activity (fre-
quency) is 25 MHz for random input data. At 2 volts the power consumption
is calculated by using formula 7.1

In a realistic example the width of the data bus from the memory is 512
bits which results in a power dissipation of 90 mW (512 × 0.175=89.6).

3 SYSTEM-LEVEL POWER MODELING

An example illustrating the test power dissipation variation over time τ for
two test ti and tjt is in Figure 78. Let pi(τ) and pjp (τ) be the instantaneous power
dissipation of two compatible tests ti and tjt , respectively, and P(ti) and P(tjt) be
the corresponding maximal power dissipation. If pi(τ) + pjp (τ) < pmax, the two
tests can be scheduled at the same time. However, instantaneous power of
each test vector is hard to obtain. To simplify the analysis, a fixed value
ptest(ti) is usually assigned for all test vectors in a test ti such that when the test
is performed the power dissipation is no more then ptest(ti) at any moment.

The ptest(ti) can be assigned as the average power dissipation over all test
vectors in ti or as the maximum power dissipation over all test vectors in ti.
The former approach could be too optimistic, leading to an undesirable test
schedule, which exceeds the test power budget. The latter could be too pessi-
mistic; however, it guarantees that the power dissipation will satisfy the
constraints. Usually, in a test environment the difference between the average
and the maximal power dissipation for each test is often small since the objec-
tive is to maximize the circuit activity so that it can be tested in the shortest
possible time [40, 41]. Therefore, the definition of power dissipation ptest(ti)
for a test ti is usually assigned to the maximal test power dissipation (P(ti))
when test ti alone is applied to the device. This simplification (Figure 79) was
introduced by Chou et al. [40, 41] and has been used by Zorian [287], Mure-
san et al. [201, 202], Xia et al. [279], Zou et al. [292], Pouget et al. [219, 220]
and Larsson et al. [176,169, 166].

P
1
2

C× V
2

f α××× 1
2

3.5 10
12–× 2

2× 25 10
6× 0.175mW= = =------ C× V f α××× ------ 3 5 10× 2× 25 10×

SOC Test Design92

Zorian [287] and Chou et al. [40, 41] use an additive model for estimating
the power consumption. The power dissipation for a test session sjs is defined
as:

where ti is a test scheduled in test session sjs .
The system power modeling used by Larsson et al. [176,169, 166] is illus-
trated in Figure 78. A power limit MaxPower is given as the limit that should
not be exceeded at any time. For each test in the system a name, its power
consumption when active, its test time, as well as test source (tpg) and test
sink (tre) are specified. For instance, test tROM1 consumes 279 power units
when active and it takes 102 time units to execute the test. The test source for
the test is TCG and the test sink is TCE. And for each block the idle power,
power consumed when the test is not active, and the tests for the block are
specified. For instance, the idle power for block rom1_1 is 23 and it is tested
with test tROM1.

Figure 78.An example of the power dissipation for two tests over of time [40].

Power

Time, τ

pmax

ti

ti+tjt

P(ti, tjt) = | pi(τ) + pjp (τ) |

P(ti) + P(tjt) = | pi(τ) | + | pjjp (τ) |

P(ti) = | pi(τ) |

P(tjt) =| pjp (τ) |

pi(τ) = instantaneous power dissipation of test ti
P(ti) = | pi(τ) | = maximum power dissipation of test ti

tjt

dissipation

P j()s j P i()ti
ti s j∈
∑= (7.2)

Figure 79.Test time and power consumption for a test.

test

test time τ

test power p

Chapter 7: Test Power Dissipation 93

4 HOT-SPOT MODELING WITH POWER GRIDS

The system-level power model considers the global dissipated power. It
means that at any time the total amount of consumed power is never above a
certain limit. However, such a model does not consider where in the system
the power is dissipated. A so called hot spot is a limited area where a high
amount of power is consumed and it can damage the system. The power dissi-
pated within the area does not have to exceed the system’s total power budget,
but can nevertheless damage the system.

Hot spots may appear during testing due to that testable units are activated
in a way that they would not be activated during normal operation. Four mem-
ory blocks A, B, C, and D that are part of a system are shown in Figure 81.
The memory blocks are powered by the same power grid. In normal operation
the memory access to these four blocks is designed in such a way that only
one block is activated at a time. The four memory blocks are designed to
functionally work as a single memory. The power consumed by the memories
is then not more than activating one block (PA, PB, PC, PD), i.e 50, which is
far under the power budget of the power grid. In testing mode, all memory
blocks can be activated concurrently in order to reduce the testing time. The
power consumed by the four memory blocks is then PA + PB + PC + PD = 50 +
50 + 50 + 50 = 200, which is far above the power budget of the power grid.
There is then a high risk that such concurrent testing of the memory blocks in
Figure 81 will damage the system.

Larsson [177] proposed a why to model power grid. The power grid model
has similarities to the approach proposed by Chou et al. [40] but in contrast to
it the model by Larsson includes local areas (power grids). Each block (test-
able unit) is assigned to a power grid where the power grid has its power

Figure 80.System-level power modeling.

[Global Options]
MaxPower = 900 # Maximal allowed simultaneous power
[Tests]
#Syntax:
name power time tpg tre min_bandw max_bandw memory itc
tROM1 279 102 TCG TCE 1 1 4 no
tRAM4 96 23 TCG TCE 1 1 2 no
tRAM1 282 69 TCG TCE 1 1 4 no

[Blocks]
#Syntax: name idle_power {test1 test2 ... testN}

rom1_1 23 { tROM1 }
ram4_1 7 { tRAM4 }
ram1_1 20 { tRAM1 }

SOC Test Design94

budget and the system can contain a number of power grids. Blocks assigned
to a power grid cannot be activated in such a way that the power grid budget
is exceeded at any time. The example in Figure 81 is modeled as in Figure 82.
Note that the modeling of test sources and test sinks are excluded. A limit is
given to each power grid and the placement of the memory blocks are then
given. Each memory block consists of one testable unit. For instance, Memo-
ryA consists of the testable unit MemBlkA. Each testable unit is tested with
one test. MemBlkA, for example, is tested with the test named testMemA.
And each test has its specification on test time etc.

Figure 81.A part of a system. Four memories block powered with the same power grid.

Memory A

Memory C

Memory B

Memory D

Power grid: 1

Budget power grid 1=60
Normal Test
MemoryA PA=50
Memory B PB=50
Memory C PC=50
Memory D PD=50

Figure 82.Power grid (hot spot) modeling.

[PowerGrid] pwr_grid limit
grid1 30

[Cores]
#Syntax:
#name x y {block1 block2 ... blockN}
MemoryA 10 10 {MemBlkA}
MemoryB 20 10 {MemBlkB}
MemoryC 10 20 {MemBlkC}
Memoryd 20 20 {MemBlkD}
[Blocks]
#name idle_pwr pwr_grid {test1,...,test n}
MemBlkA 0 grid1 {testMemA}
MemBlkB 0 grid1 {testMemB}
MemBlkC 0 grid1 {testMemC}
MemBlkD 0 grid1 {testMemD}
[Tests]
#Syntax:
#name power time tpg tre min_bw max_bw mem itc
testMemA 1 255 TGA TRA 1 1 1 no
testMemA 1 255 TGB TRB 1 1 1 no
testMemA 1 255 TGC TRC 1 1 1 no
testMemA 1 255 TGD TRD 1 1 1 no

Chapter 7: Test Power Dissipation 95

5 CORE-LEVEL POWER MODELING

The test power dissipation at a testable unit can be above the specified
limit for the unit. But it results in that when testing the unit it is damaged. This
can, for instance, occur if the test clock frequency is too high (increasing the
power dissipation) or due to hyper-activity. The motivation behind core-level
adjustments is two-fold. First, by lowering the power consumption at a core, a
higher number of cores can be activated concurrently. Second, since test
power consumption often is higher than that during the normal operation, the
power dissipation at a specific core can be higher that its own power budget.

The power consumed at a core can be adjusted by using clock-gating
[241]. Clock-gating can reduce the power consumption so that a higher num-
ber of tests can be executed concurrently, but also, it can be use for testable
units where its own power dissipation is higher than its allowed power con-
sumption due to for instance a too high test clock frequency.

The power consumption during testing is often higher than that consumed
during normal operation. A testable unit that consumes power below the
power budget during normal operation can during testing consume power
above the power budget. In Figure 83 each module consumes 50 units during
normal operation, and during testing each module consumes 80 units, which
is above the power budget for power grid 1. The power grids in the system
can be over-designed in order to make sure that testable units can be tested.
An alternative is to use clock-gating.

The test power consumption depends highly on the switching activity.
During testing in scan-based systems, switches appear not only during the
application of test vectors, at the capture cycles, but also in the shift process
when a new test vector is shifted in while the test response from the previous
test vector is shifted out. Actually, the shift process contributes to a major part
of the test power consumption [68]. Gerstendörfer and Wunderlich [68] pro-
posed a technique to isolate the scan flip-flops during the shift process.
However, the approach may cause an effect on the critical path.

Figure 83.A part of a system. Four memories block powered with the same power grid.

Memory A

Memory C

Memory B

Memory D

Power grid: 1

Budget power grid 1=60
Block Normal Test
MemoryA PAN=50 PAT=80
Memory B PBN=50 PBT=80
Memory C PCN=50 PCT=80
Memory D PDN=50 PDT=80

SOC Test Design96

Saxena et al. [241] proposed a gating scheme to reduce the test power dis-
sipation during the shift process that does not have a direct impact on the
critical path. Given a set of scan-chains as in Figure 84 where the three scan-
chains are forming a single chain. During the shift process, all scan flip-flops
are active and it leads to high switch activity in the system and high power
consumption. However, if a gated sub-chain scheme as proposed by Saxena et
al. is introduced (Figure 85), only one of the three chains is active at a time
during the shift process while the others are switched off and as a result no
switching activity is taking place in them. The test time in the examples
(Figure 84 and Figure 85) are the same while the switch activity is reduced in
the gated example and also the activity in the clock tree distribution is reduced
[241].

The experimental results presented by Saxena et al. [241] indicate that the
test power consumption can be reduced to a third using a gated scheme with
three sub-chains as in Figure 85 compared to the original scheme in
Figure 84. Larsson [177] used this and created generalized model based on
the experimental results presented by Saxena et al. [241] assuming a linear
dependency between the test time and the test power consumption. If x scan
chains exist at a core, it is possible to form x number of wrapper chains. In
such a case, the test time will be reduced since the shift process is minimized;
however, the test power consumption will be maximized since all of the x
scan chains are active at the same time. On the other hand, if a single wrapper
chain is assumed where all scan chains are connected into a single wrapper
chain, the test time will increase but the test power consumption can be
reduced by gating the x scan chains.

Figure 84.Original scan chain [241].

clk

scan-in
scan ffs scan ffs scan ffs

scan-out

Figure 85.Scan chain with gated sub-chains[241].

clk

scan-in
scan ffs

scan ffs

scan ffs

scan-out

decode

T0 T1

clk1 clk2 clk3

Chapter 7: Test Power Dissipation 97

An illustrative example is in Figure 86. In Figure 86(a) the scan chains at
the core are all connected into a single wrapper chain, which is connected to
the TAM. In such a scheme, the testing time becomes long due to long shift in
time and shift out time. Also, the test power consumption is high since all
scanned elements are active at the same time. Figure 86(b) shows how the test
time can be reduced. A high number of TAM wires are connected to the scan
chains. There is one wire per scan chain. The test time is reduced since all
scan chains can be loaded concurrently. However, the test power consumption
remains as in Figure 86(a) since all scanned elements are activated concur-
rently. In order to reduce the test power, a scheme as Figure 86(c) can be used
(clock-gating). In this scheme, as few scan chains as possible are loaded con-
currently. If one TAM wire is assigned to the core, one scan chain is loaded at
a time. The testing time is the same as compared to the scheme in
Figure 86(a). However, since less scanned elements are active at a time, the
test power consumption is lower.

Larsson [177] defined a model as illustrated in Figure 87. There are two
tests, testA and testB. TestA does not allow clock-gating (indicated by
flex_pwr no). It can be a test at a testable unit where the core provider fixed
the test power. On the other hand, testB, allows clock gating (indicated by
flex_pwr yes). The power consumption for a test is given as a single value and
within the specified bandwidth range, the power can change. Note that we
include the possibility to specify if clock-gating can be used by setting
flexible_pwr to yes or no. If power can be modified, we assume a linear
dependency:

where p1 is the power at a single tam wire, and tam is the number of TAM
wires, which has to be in the specified range [minbw:maxbw].

The advantage of the model is that it is possible to model systems tested
with a combination of tests with fixed testing time and fixed test power, flexi-
ble testing time and fixed power consumption, and flexible testing time and
flexible power consumption.

pi p1 tam×= (7.3)

Figure 87.Core-level power modeling.

[Tests]
#Syntax:
#name power time tpg tre min_bw max_bw mem flex_pwr
testA 15 255 TGA TRA 1 3 1 no
testB 10 155 TGA TRA 1 3 1 yes

SOC Test Design98

6 DISCUSSION

Power consumption is becoming a problem in testing. Several test sched-
uling techniques have been proposed that take power consumption into
consideration. However, the used power model has been a single fixed value,
i.e. a not very precise measure.

This chapter has given an introduction to power consumption and its mod-
eling. System level (global) power modeling as well as power grid (hot spot)
modeling, and core-level adjustments such as clock gating have been dis-
cussed. Questions that remains to be answered is if it make sense to consider
power consumption with only a single power value when test time is counted
at clock cycle granularity? At what granularity can power consumption be
modeled? How does it behave? Is peak power consumption worse than high
average power consumption? Is static power really negligible in comparison
with dynamic power consumption for CMOS designs?

wrapper

Figure 86.Core design alternatives.

te
st

 p
ow

er

test time
te

st
 p

ow
er

test time

te
st

 p
ow

er

test time

lo
gi

c

scan chain

scan chain

scan chain

scan chain

scan chain

scan chain

hscan chain

scan chain

scan chain

wrapper

lo
gi

c

wrapper

(a)

TA
M

test time

(b)

TA
M

test time

(c)

TA
M

test time

Chapter 8

Test Access Mechanism

1 INTRODUCTION

The TAM (test access mechanism), the topic of this chapter, is responsible
for the transportation of test data (test stimulus and test response). The TAM
can be dedicated for test purposes only, or it can be an existing structure, such
as the functional bus, used not only in testing mode but also during normal
operation. The TAM connects, for each testable unit, its test sources with the
testable unit and the testable unit with its test sinks (Figure 88). To ease the
connection between a testable unit and the TAM, an interface called a core
test wrapper is used.

The test infrastructure, the TAM, consists of two parts; one part for the
actual test data transportation and one part that control the test data transporta-
tion. The cost of the infrastructure depends on its length and width; that is the
length and the number of TAM wires. In the case of reusing the existing func-
tional structure, the additional TAM cost is negligible. In a fully BISTed
system where each testable unit in the system has its own dedicated test
source and its dedicated test sink there is a minimal TAM requirement assum-
ing that the test source and the test sink for each testable unit are placed at the
location of the testable unit. Only an infrastructure controlling the start and
end of the tests is required.

We will discuss Boundary-scan (IEEE 1149.1)[19], TestShell [184],
TestCollar [267] and P1500 [51, 104] with the emphasis of SOC testing and
their use in different TAM architectures.

wrapper

Figure 88.Test sources and sinks.

sink

source

sink

test access
mechanism

core

source test access
mechanism

SOC

SOC Test Design100

1.1 System-on-Chip Test Data Transportation

The Boundary Scan technique (see page 53) is mainly developed for PCB
systems. The main objective is to test interconnections and logic placed
between components. The infrastructure for test data and test control is mini-
mal as it is shared. The advantage of that is that minimal additional silicon is
required. The disadvantage of Boundary Scan is the long testing times due to
serial access. For SOC designs where modules (cores, components) are not
tested prior to mounting, testing includes external testing, as in PCB, and also
internal testing of the cores. Also, the increasing complexity of SOCs leads to
an increasing amount of test data volume to be transported in a system. For
that reason, core wrappers such as TestShell, TestCollar, and P1500 have be
developed.

1.1.1 The TestShell and P1500 Approach

The TestShell is proposed to reduce the test access and test isolation prob-
lems for SOC designs proposed by Marinissen et al. [186]. The TestShell
consists of three layers of hierarchy, see Figure 89, namely:

■ the core or the IP module,

■ the TestShell, and

■ the host.

The core or the IP module is the object to be tested and it is designed to
include some DFT mechanism. No particular DFT technique is assumed by
the TestShell. The host is the environment where the core is embedded. It can
be a complete IC, or a design module which will be an IP module itself.
Finally, the TestShell is the interface between the core and the host and it con-
tains three types of input/output terminals, see Figure 90:

■ function input/output corresponds one-to-one to the normal inputs
and outputs of the core.

■ TestRail input/outputs are the test access mechanism for the TestShell
with variable width and an optional bypass.

■ direct test input/outputs are used for signals which can not be pro-
vided through the TestRail due to their non-synchronous or non-digi-
tal nature.

Chapter 8: Test Access Mechanism 101

The conceptual view of a TestCell is illustrated in Figure 91 and it has
four mandatory modes:

■ Function mode, where the TestShell is transparent and the core is in
normal mode, i.e. not tested. It is achieved by setting the multiplexers
m1=0 and m2=0.

■ IP Test mode, where the core within a TestShell is tested. In this case
the multiplexers should be set as: m1=1 and m2=0 where test stimulus
comes from s1 and test response is captured in r1.

■ Interconnect Test mode, where the interconnections between cores
are tested. The multiplexers are set to m1=0 and m2=1 where r2 cap-
tures the response from a function input and s2 holds the test stimulus
for a function output.

■ Bypass mode; test data is transported through the core regardless if
the core has transparent modes. It may be used when several cores are
connected serially into one TestRail to shorten an access path to the

Figure 89.Three hierachy layers: core, TestShell and host.

host

TestShell

core A

TestShell

core B

Figure 90.Host-TestShell interface.

function input

direct test input

TestRail input

function output

direct test output

TestRail output

by
pa

ss
core

n1

n2

n4

n5

n6n3

SOC Test Design102

core-under-test, see Bypass using Boundary-scan in see page 53
(Bypass is not shown in Figure 91). The bypass is implemented as a
clocked register.

Figure 92 illustrates the TestShell approach where a Test Cell is attached
to each functional core terminal (primary input and primary output). Every
TestShell has a TestRail which is the test data transport mechanism used to
transport test patterns and responses for synchronous digital tests. The width n
(n≥0) of the TestRail is a trade-off between the following parameters:

■ Host pins available for test form an important limiting factor with
respect to the maximal TestRail width.

■ Test time is dependent on the test data bandwidth.

■ Silicon area required for wiring the TestRail increases with the width
of the TestRail.

The TestRail is designed to allow flexibility; see Figure 93, where an
example is shown to illustrate some possible connections. Within the
TestShell the connections may vary. The three basic forms of connection are
as follows, see Figure 94:

■ Parallel connection means that the TestRail is a one-to-one con-
nected to the terminal of the core.

■ Serial connection means that a single TestRail wire is connected to
multiple IP terminals forming a shift register, similar to Boundary-
scan (see page 53).

■ Compressed connection refers to decompression hardware at core
inputs or compression hardware at core outputs.

It is also possible to use a combination of the above types of connections.
The type of connection selected for a particular core depends mainly on the
width of the available TestRail.

A standardized Test Control Mechanism to control the operation of the
TestShell means that instructions are loaded in the Test Control Block, see
Figure 92.

A similar approach to the TestShell is the P1500 proposal (see Figure 95)
[104]. The P1500 consists of a Core Test Wrapper and a Core Test Language.
The wrapper uses Wrapper Boundary Cells with functionality similar to the
Test Cell in TestShell and the Boundary-scan Cell in the Boundary-scan
approach. Instructions are loaded to the Wrapper Instruction Register (WIR)

Chapter 8: Test Access Mechanism 103

Figure 91.Conceptual view of a Test Cell.

function

IP test

r1s2

0

1

shell

output

interconnect
stimulus response

function

interconnect

r2r

s1

input

IP test
stimulus

response

0

1

corem1 m2

Figure 92.The TestShell approach.

Core

a[0:4]

TestShell

a[0:4]

T
estR

aili [0:2]

T
estR

ailo [0:2]

z[0:2]

TC-in TC-out

tc[0:4]

sc

z[0:2]

bypass

scan-chain 0

scan-chain 1
m

u
x 1

m
u

x 2x

bypass

bypass

m
u

x 33

Test Control Block

SOC Test Design104

which is similar to the Test Control Mechanism in TestShell and the instruc-
tion register in Boundary-scan.

The differences between the TestShell wrapper and the P1500 approach is
that the former allow a bypass of the test access mechanism (TAM) width
while the P1500 only has a single-bit bypass, the single-bit TAM plug (STP).
The P1500 wrapper connects to one mandatory one-bit wide TAM and zero or
more scalable-width TAM, multi-bit TAM plug (MTP). The P1500 allows dif-
ferent widths of the multi-bit TAM plugs (MTP) input and output.

Figure 93.Example of possible host-level TestRail connections.

core A
host

core B

core D

core E

core F

core C

m
u

x

10 8

16

16 16

16

16
16

16

2 2

10

Figure 94.The core-level TestRail connections.

(a) parallel (b) compressed(b) serial

d
ec

om
pr

es
si

on

co
m

pr
es

si
on

core

shellshell shell

corecore

Chapter 8: Test Access Mechanism 105

Another wrapper approach, called TestCollar, is proposed by Varma and
Bhatia [267]. The approach is similar to the TestShell; however, the approach
does not have the bypass feature which reduces the flexibility by allowing
only one core to be served at a time.

An approach combining P1500 and the TestShell approach has been pro-
posed by Marinissen et al. [187]. A major advantage is the flexible bypass
introduced, see Figure 96. Two types of bypass styles are defined; wrapper
bypass and scan-chain bypass. The wrapper bypass is the same as used in the
TestShell while the scan-chain bypass is a flexible structure which can be
inserted at any place between a terminal input and a terminal output. The
advantage is that it allows a non-clocked bypass structure which can be used
to bypass the complete core.

Figure 95.The P1500 approach.

Core

a[0:4]

Wrapper

a[0:4]

M
T

P
i [

0:
2]

M
T

P
o [

0:
2]

z[0:2]

STPi STPo

wc[0:5]

sc clk

z[0:2]

m
u

x 33
m

u
x 222x

mux4

mux1

m
u

x 5

Bypass

m
u

x 66

Wrapper Instruction Register

scan-chain 0

scan-chain 1

SOC Test Design106

1.2 Reconfigurable Core Wrappers

The core wrapper proposed by Koranne allows, in contrast to approaches
such as Boundary Scan, TestShell and P1500, several wrapper chain configu-
rations [139, 140]. The main advantage is the increased flexibility in the
scheduling process. We use a core with 3 scan chains of length {10, 5, 4} to
illustrate the approach. The scan-chains and their partitioning into wrapper
chains are specified in Table 5.

For each TAM widths (1, 2, and 3) a di-graph (directed graph) is generated
where a node denotes a scan-chain and the input TAM, node I (Figure 97). An
arc is added between two nodes (scan-chains) to indicate that the two scan-
chains are connected, and the shaded nodes are to be connected to the output
TAM. A combined di-graph is generated as the union of the di-graphs.

TAM width Wrapper chain partitions Max length

1 [(10,5,4)] 19

2 [(10),(5,4)] 10

3 [(10),(5),(4)] 10

Table 5. Scan chain partitions.

Figure 96.Proposed bypass structures where optional items are dashed [187].

wrapper input cells

wrapper output cells

scan-chains

o2

i1 i2

omo1

ik

wrapper bypass

scan chain bypass

scan-chain nscan-chain 1

Chapter 8: Test Access Mechanism 107

Figure 98 shows the result of the generated combined di-graph from the three
di-graphs in Figure 97 The indegree at each node (scan-chain) in the com-
bined di-graph gives the number of signals to multiplex. For instance, the scan
chain of length 5 has two input arcs, which in this example means that a mul-
tiplexer selecting between an input signal and the output of the scan chain of
length 10 is needed. The multiplexing for the example is outlined in
Figure 99.

2 TEST ACCESS MECHANISM DESIGN

The Test Access Mechanism (TAM) is responsible for transporting test
data in the system. It connects test sources with cores and the cores with the
test sinks. The TAM can be dedicated for test purposes only, or it can be an
existing structure. It is also, for a system, possible to combine the two.

I

Figure 97.Di-graph representations.

4 5

10

(a) 1 wrapper-chain

I

4 5

10

(b) 2 wrapper-chains

I

4 5

10

(c) 3 wrapper-chains

I

Figure 98.The union of di-graphs in Figure 97.

4 5

10

Figure 99.Multiplexing strategy [139, 140].

0
1I2

I3

0
1

5S

4S

scan chain of length 10

scan chain of length 5

scan chain of length 4

10

5

I1

4

SOC Test Design108

2.1 Multiplexing Architecture

Aerts and Marinissen propose the Multiplexing architecture [5], see
Figure 100, where each of the cores are assigned to all TAM wires and the
cores are tested one at a time. The TAM is routed to and from all cores in the
system. The outputs from all cores are multiplexed, which means that only
one core at the time can use the outputs. The result is that the cores have to be
tested in sequence [5].

Assume that the following is given:
fiff : the number of scannable flip-flops,
pi: the number of test patterns, and
N: the scan bandwidth for the system, maximal number of scan-chains.NN
In scan-based systems it is common to use a pipelined approach where the

test response from one pattern is scanned out, the next pattern is scanned in
simultaneously. The test application time ti for a core i is given by [5]:

In the muliplexed architecture ni=N= . The term +pNN i in Equation (8.1) is
added due to the fact that the pipelining can not be used for scanning out the
last pattern. The pipelining approach can be used when several cores are
tested in a sequence. While the first pattern is scanned in for a core, the test
response from previous pattern can be scanned out for the previous core under
test. The test application time using the multiplexed architecture is given by:

where the maximum results from filling the largest core.

Figure 100.Example of the Multiplexing architecture [5].

system

m
u

lt
ip

le
xe

r

core bbN N

core a

core c

N

N

N

N

N

N

i
f i

ni
---- pi 1()pi 1+⋅ pi+= (8.1)

T
f

N⎝ ⎠pi N
-------- pi+⎛ ⎞p
f i p+ ⎠⎠pi

i--------⋅ pi+ maxi C
f i

N
--------+

i C
∑ (8.2)

Chapter 8: Test Access Mechanism 109

2.2 Distribution Architecture

Aerts and Marinissen proposed also the Distributed architecture where
each core is given a private dedicated number of TAM wires [5], Figure 101.
The problem is to assign TAM wires and connect the flip-flops into that num-
ber of scan chains at each core i in order to minimize the test time, i.e. assign
values to ni where 0<ni≤N≤≤ .NN The test application time for a core i in the distri-
bution architect is given by Equation (8.1) and the total test time for the
system is given by:

An algorithm is proposed to assign the bandwidth ni for each core i, Figure
102, where the goal is to find a distribution of scan chains such that the test
time of the system is minimized while all cores are accessed, expressed as:

The algorithm outlined in Figure 102 works as follows. Each core is
assigned to one TAM wires and the scanned elements at each core are form-
ing a single scan-chain at the core which is required to test the system. In each
iteration of the loop, the core with the highest test time is selected and another
TAM wire is assigned. The scanned elements at that core are formed into a
higher number of scan-chains; hence the testing time is reduced. The itera-
tions are terminated when no more TAM wires can be distributed.

Figure 101.Example of the Distribution architecture [5].

system

core a

core bb

core c

na

nb

nc nc

nb

na

T maxi C i()ti (8.3)

min
n N C i C i()maxi C()ti ni N≤

i C
∑ i C ni 0{ }ni 0>∀∧, (8.4)

SOC Test Design110

2.3 Daisychain Architecture

In the Daisychain architecture proposed by Aerts and Marinissen [5],
Figure 103, a bypass structure is added to shorten the access path for individ-
ual cores. The bypass register and 2-to-1 multiplexer allow flexible access to
individual cores, which can be accessed using the internal scan chain of the
cores and/or by using the bypass structure.

The bypass offers an optional way to access cores and a bypass selection
strategy is proposed by Aerts and Marinissen [5], where all cores are tested
simultaneously by rearranging the test vectors. The approach starts by not
using any of the bypass structures and all cores are tested simultaneously. At
the time when the test of one core is completed, its bypass is used for the rest
of the tests. Due to the delay of the bypass registers, the Daisy-chain approach
is more efficient compared to testing all cores in sequence.

Assume the system in Figure 103 where pa=10, pb=20, pc=30 (number of
test patterns (vectors)) and faff =f= bff =f= cff =10 (number of flip-flops). When the cores

Figure 102.Algorithm for scan chain distribution.

forall i∈C begin
ni=1
ti=⎡fi/ni⎤ ⋅ (pi+1)+pi

sort elements of C according to test time
L=N-|C|
end
while L≠0 begin

determine i* for which ti*=maxi∈C(ti)
let ni*=ni*+1 and update ti* accordingly
let L=L-1;

end
ni gives the number of scan chains for core i
maxi∈C(ti) gives the test time

Figure 103.Example of the Daisychain architecture [5].

core bcore a core c

m
u

x

m
u

x

m
u

x

system

N

by
pa

ss

by
pa

ss

by
pa

ss

Chapter 8: Test Access Mechanism 111

are tested in a sequence the test time of the system is 720
(10×(10+1+1)+(20×(10+1+1)+ (30×(10+1+1)). Note that the terms +1+1 are
due to the bypass registers. However, using the approach proposed by Aerts
and Marinissen, the test time for the system is reduced to 630
(10×30+10×(20+1)+10×(10+1+1)). The test application using this scheme is
given by:

where p0=-1. Note that the indices in Equation (8.5) are rearranged into a
non-decreasing number of patterns.

2.4 Test Bus Architecture

The Test Bus architecture proposed by Varma and Bahtia [267] is a com-
bination of the Multiplexing Architecture and the Distribution Architecture. If
a single Test Bus is assumed, all tests are tested in a sequence where the full
TAM width is given to each core at a time; as in Multiplexing Architecture
(Section 2.1). However, if several Test Buses are assumed, only one test can
be active at a time on each Test Bus since the testing on a Test Bus is sched-
uled sequentially. But, concurrent testing is achieved since multiple Test
Buses can be active at a time. An example of the Test Bus architecture where
the N TAM wires are partitioned into three Test Buses each of width w1, w2,
and w3, respectively, in such a way that w1+w2+w3=N= is in Figure 104.N

2.5 TestRail Architecture

Marinissen et al. [184] proposed the TestRail architecture, which basically
is a combination of Daisychain and Distribution architecture. The advantage
of Daisychain is that it allows concurrent as well as sequential testing. The

T
j i

C

∑ ⎠i⎝ j⎝
pi pi 1)pi pi 1 ⎠⎝ ⎠N

j i

)pi pi 1– ⎟⎟j----⎜i 1 +⋅
⎠⎠

)pi pi 1 ⎠⎠

⎝⎝

⎛ ⎞⎛ ⎞f
C

⎜ ⎟⎜ ⎟() ⎟⎟
f j⎜⎜i 1 + p C+

i 1

C

∑ (8.5)

Figure 104.Test Bus architecture.

CoreA CoreB CoreC

CoreD CoreE CoreF

CoreG CoreH

CoreC

w1

w2

w3

SOC Test Design112

concurrent execution means that more than one wrapper can be active at a
time, which makes it possible to perform external testing (interconnection
testing or cross-core testing). The N TAM wires are partitioned into n
TestRails each of width wi in such a way that w1+w2+...+wn=N= .NN

2.6 Flexible-Width Architecture

It is also possible to view the TAM wires as a set of single wires that are
assigned to cores in a flexible way; Flexible-Width Architecture proposed by
Iyengar et al. [117]. An example of the Flexible-Width Architecture is in
Figure 105.

Wang et al. [276] proposed a Test Access Control System (TACS) suit-
able for flexible-width TAM design. The architecture can be used for one-
level or multi-level test hierarchy. It means it is possible to design an architec-
ture for systems where cores are embedded within cores (Section 3.5,
Hierarchy - Cores Embedded in Cores, page 85). Figure 106 shows an exam-
ple of TACS. In Figure 106(a) the cores are divided into two sessions (session
1 with coreA, coreB, and coreC, and session 2 with core D and core E). The
two sessions (session 1 and session 2) must be scheduled in a sequence while
cores in the same session are executed concurrently (coreD and coreE can be
tested at the same time). Figure 106(b) shows an example of the multi-tier
architecture which allows a flexible width schedule.

2.7 Core Transparancy

Macro Test [11] and Socet [69] make use of the core-internal functional
paths as TAMs. Transparent paths are created using neighboring cores.
Yoneda and Fujiwara [283, 284, 285, 286] have also proposed techniques
making use of transparent paths. The advantage of such approaches is that the
need for additional TAMs is reduced. The disadvantage is that the testing of a
core depends on the availability of paths at its neighboring cores.

Figure 105.Test Bus architecture.

CoreD CoreE CoreG CoreH

N

CoreA CoreB CoreC CoreC

CoreF

Chapter 8: Test Access Mechanism 113

3 TEST TIME ANALYSIS

Larsson and Fujiwara [162, 163, 173] analyzed the MA (Multiplexing
architecture) [5] and the DA (Distribution architecture) [5] (Figure 107) from
a test time perspective. In MA each core is given all TAM bandwidth when it
is to be tested, which means the tests are scheduled in a sequence (see Section
2.1). For cores where the number of scan-chains is smaller than the TAM
bandwidth, the TAM is not fully utilized. Furthermore, since the test time is
minimized at each core, the test power is maximized, which could damage the
core.

In DA, each core is given its dedicated part of the TAM, which means that
initially all cores occupy a part of the TAM (see Section 2.2). The DA
approach assumes that the bandwidth of the TAM is at least as large as the
number of cores, (Ntam≥|C|).

Figure 106.Examples of TACS [276].

(a) One-level test hierarchy. (b) Multi-level test hierarchy.

M

U

X

session 2

session 1

TACS2

TACS3

Core A

Core B

Core C

Core D

Core E

M

U

X

M

U

X

M

U

X

8

8

8

8

84

4

4
44

8

8

8

Core C

2

6 8

Core A

5 Core B

8

2

1 8

Core D

Core E

Figure 107.Multiplexing architecture and distribution architecture [5].

test sinkNN

test sink

A

A

B

B NN

NNNN

NN
NNtest source

test source

N1N +N2N =NN1NN1N

N2N N2N

(a) Multiplexing architecture

(b) Distribution architecture

SOC Test Design114

In the analysis of the test time the IC benchmark (data as in Table 6) is
used. Both for the MA and the DA each scan chains must include at least 20
flip flops and the size of the TAM is in the range |C|≤Ntam≤96, Figure 108.
The lower bound of the test time, excluding the capture cycles and the shift
out of the last response, is given by [5]:

The results in Figure 108 indicate that the DA is not efficient for low
TAM size while MA is less efficient as the TAM size increases. It is impor-
tant to note that the reason why the MA performs worse as the TAM with
increases is the limitation that no scan-chain can be of shorter length than 20
flip-flops.

Core ci Flip-flops ffiff Test vectors tvi

1 6000 1100

2 3000 900

3 2600 1100

4 1500 1000

5 1500 800

6 800 1000

7 800 400

8 600 500

9 300 300

10 150 400

11 120 150

Table 6. Design data for benchmark IC [5].

f f i tvi×
Ntam

i 1

C

∑ (8.6)

Figure 108.Difference to lower bound for the Multiplexing and
the Distribution Architecture at various TAM widths.

tam NtamNN

Difference to
lower bound (%)

60

40

20

10

30

50

8 16 24 32 40 48 56 64 72 80 88 96

:distribution architecture
:multiplexing architecture

Chapter 9

Test Scheduling

1 INTRODUCTION

In this chapter we will discuss test scheduling. The fundamental test
scheduling problem is to determine the order in which the tests (the sets of
test vectors) are to be applied; that is to give a start time to all tests, where the
objective is to minimize a cost function while ensuring that no constraints are
violated. The cost function is often related to the test application time, which
either is to be minimized or given as a constraint, and/or to the need of addi-
tional DFT logic and wires, such as routing of a dedicated TAM. The
constraints that must be considered are, for instance, test conflicts, resource
sharing (see Chapter 6, Test Conflicts, page 77) and power constraints (see
Chapter 7, Test Power Dissipation, page 89). It is important when discussing
the test scheduling problem to clearly describe which assumptions, such as
TAM architecture, and constraints, such as power consumption, that are taken
into account.

System testing can be viewed as black-box testing (no knowledge is
known of the system) as in Figure 109 where the test response is the produced
outputs for the given input test stimulus. If the test stimulus for the system is
applied and the produced test response is equal to the expected test response,
the system is fault free in respect to the applied test set. The test patterns (test
stimulus and test response) can be stored in an ATE, for instance. A finer
grain view of system testing is in Figure 110 where a core-based system is
shown.

As an example to illustrate the importance of test scheduling, assume a
design with two modules each with one scan-chain. The length of the scan-
chains is 100 flip-flop respectively 200 flip-flops, where the former is tested
with 50 test vectors and the latter with 10 test vectors. A straight forward
approach to organize the testing is to connect the two scan-chains into a single

Figure 109.System testing.

System-under-testTest source Test sinkTest stimulus
Test response

SOC Test Design116

longer scan-chain of 300 flip-flops where 50 test vectors are required (the 10
test vectors for the scan-chain of length 200 are loaded simultaneously with
50 test vectors for the scan-chain of length 100). The testing time for such an
approach can be estimated to 300×50=15000 cycles (capture cycles and shift-
out of the last test response are neglected). However, if the design consists of
two separate modules, the testing can be performed as a sequence where the
modules are tested one after the other. The testing time is then approximately
100×50+200×10=7000. The example demonstrates that rather trivial consid-
erations during the organization of the tests can lead to substantially lower
testing time, and further as the testing times often are related to the ATE
memory size, an effective organization of the tests means that an ATE with a
smaller memory can be used.

In general, the tests in a system can be organized sequentially
(Figure 111(a)) or concurrently (Figure 111(b)). In sequential test scheduling,
all tests are ordered in a sequence where only one test is applied at a time,
while in concurrent test scheduling more than a single test can but does not
have to be active at a time. The test application time can be minimized by
ordering tests in an efficient manner. Four basic scheduling strategies can be
distinguished, namely:

■ Nonpartitioned testing,

■ Partitioned testing with run to completion,

■ Partitioned testing or preemptive testing, and

■ Pipelined testing org daisychained testing.

The four scheduling strategies are illustrated in Figure 112. In nonparti-
tioned testing no new tests are allowed to start until all tests in a session are
completed. As examples of techniques using this scheduling scheme are the
ones proposed by Zorian [287], Chou et al.[41], and Larsson and Peng [158].
In partitioned testing with run to completion a test may be scheduled to start
as soon as possible. For instance, test3 is started before test1 is completed. It

Figure 110.Modular view of system testing.

System-under-testTest source Test sink

Test stimulus
Test response

d l 1 CModule1-CPU

d l 2 AModule2-RAM

d l 3 SModule3-DSP

d l 4 GModule4-MPEG

Chapter 9: Test Scheduling 117

means that the idea of test sessions is neglected. Chakrabarty [25], Muresan et
al. [202] and Larsson and Peng [158] have proposed techniques for this type
of test scheduling. Finally, in partitioned testing or preemptive testing the
tests may be interrupted at any time. The requirement is that all tests must be
completed by the end of testing. In Figure 112(c) test1 is interrupted and is
scheduled to be executed as two segments with indexes a and b. Iyengar and
Chakrabarty [110], Larsson and Fujiwara [162], and Larsson and Peng [171]
have proposed preemptive test scheduling techniques. Pipelined testing
(daisy-chain testing) - the tests are pipelined through the testable units. An
example of pipelining is scan testing where new test stimulus is shifted in at
the same time as the test response from previous test stimulus is shifted out.
Aerts and Marinissen have investigated this type of test scheduling [5].

The above scheduling strategies do not separate between the transporta-
tion and the application of test data. The transportation of test data can make
use of a strategy while the actual application can make use of another strat-
egy. For instance, Larsson et al. investigated the use of a test bus where the
test data transportation is sequential and buffers are introduced at each core
making it possible to apply more than one test at a time [152, 153]. The classi-
fication of testing in Figure 112 apply both to sequential scheduling and
concurrent scheduling, however, partitioned testing with run to completion
will in sequential scheduling be the same as nonpartitioned testing.

The test scheduling problem for systems where all tests are given and all
are assigned a fixed testing time and the objective is to minimize the test
application time is in the case when sequential testing is assumed trivial. The

Figure 111.Sequential test scheduling (a) versus concurrent test scheduling (b).

testDtestA testC testB

testA

testB

testD

testC

time

time(a)

(b)

SOC Test Design118

optimal test application time τapplication is for a system with N tests each with
a test time τi (i={1..N} given by:

The assumptions that only one test at a time can be active at any moment,
and that all tests have to be applied, means that any order of the tests is opti-
mal. An algorithm iterating in a loop over all tests is required and at each
instance of the iteration one test is selected and given a start time. The compu-
tational complexity of such an algorithm depends linearly on the number of
tests, O(n) - n is the number of tests and hence the algorithm is polynomial
(P(().

Above it was shown that it is trivial to develop an optimal test schedule in
respect to test time for a sequential architecture when all tests are given a
fixed test time and the objective is to minimize the test application time. In

Figure 112.Scheduling approaches.

test1

test2 test4

test3 test5

session 2session 1 session 3

(a) Nonpartitioned testing

(b) Partitioned testing with run to completion

(c) Partitioned testing

test1

test2

test4

test3

test5

test1a

test2

test4

test3

test5

test1b

(d) Pipelined testing

test1
test4

test3 test2 test5

τapplication τii 1
N∑= (9.1)

Chapter 9: Test Scheduling 119

sequential testing, only one test at a time can be active, and that means that no
constraint can limit the solution. In concurrent test scheduling, where more
than one test can be applied at a time, a conflict often limits the solution. The
problem to minimize the test application time using concurrent test schedul-
ing for a system where all tests are given a fixed testing time under no
constraint is trivial. All tests are simply started at time point zero. The opti-
mal test application time τapplication is for a system with N tests each with a
test time τi (i={1..N} given by:

The concurrent test scheduling problem, more than one test can be exe-
cuted at the same time, is in general not NP-complete. However, the
concurrent test scheduling problem under constraint is NP-complete. We will
discuss this in more detail below.

2 SCHEDULING OF TESTS WITH FIXED TEST
TIME UNDER TEST CONFLICTS

A test scheduling approach is proposed by Garg et al. for systems where
the test time for each test is fixed in advance and the objective is to minimize
the test application time while the constraints among the tests are considered
[65]. Test conflicts among the tests make it impossible to execute all test con-
currently. A system and its tests can be modeled using a resource graph, see
Figure 113, where the tests in the system are on the top level and the resources
are on the bottom level. An edge between nodes at different levels indicates
that a test ti tests a resource rjr or a resource rjr is needed to perform test ti. This
means that the resource graph captures information on resource conflicts. For
instance, in Figure 113 both test t1 and test t3 use resource r1 which means that
test t1 and test t3 can not be scheduled simultaneously.

Given a resource graph, a test compatibility graph (TCG) (Figure 114) can
be obtained where the nodes define the different test plans and the edges spec-
ify that two tests are compatible. From the test compatibility graph in
Figure 114 it can be determined that test t1 and t2t , for example, can be exe-
cuted concurrently.

τapplication max i{ }τi= (9.2)

Figure 113.A resource graph.

t3t1 t2t

r1 r2r

SOC Test Design120

The problem of finding the minimal number of test groups such that tests
within a group can be executed concurrently can be formulated as a clique
partitioning problem [65]. Finding the minimal clique cover on a TCG is a
non-deterministic polynomial (NP)((complete problem, which justifies the use
of heuristics [65].

Given a TCG, Garg et al. construct a binary tree called time zone tree
(TZT) [65]. Each node in the TZT represents a time zone and its constraints,TT
i.e. tests associated with the zone. An illustrative example of the approach
proposed by Garg et al. is presented in Figure 115. The example is based on
the test compatibility graph shown in Figure 114 which is obtained from the
resource graph illustrated in Figure 113.

Initially the root R = < ∅, Σ l(ti)> is unconstrained (∅) and of length 7T
(Σ l(ti)=4T+2TT T+TT T). When a testTT tkt is assigned to R, two branches are created
with two nodes, the first with the constraint tkt and length l(tkt), and the secondkk
with no constraint (∅) and length Σ l(ti) - l(tkt).kk

For the first test, the test with the maximum length is selected. If several
such tests exist, favour is given to the test with the highest compatibility. For
all other tests, the selection is based on the cost function CF(FF ti), where the
selected test ti has the least value according to the cost function:

where:

In the example, given in Figure 115, t1 is selected first and when appended
to the tree, two branches (or zones) Z1Z and Z2Z are created, see Figure 115(a),
(b). Next when t2t is assigned to zone Z1Z , node 3 is appended to the tree with
constraints and length as shown in Figure 115 (c). Node 4 is also created at
this time, denoting that Z4Z is of length 2T and constrained by t1 only. Finally,
test t3 is assigned, resulting in the TZT shown in Figure 115(e) and the corre-
sponding diagram is in Figure 115(f). The scheduling diagram is directly

Figure 114.A test compatibility graph.

t2t

t1

t3

4T

T2T

CF ti()ti l j Opp t j ⁄
i

()l t()t j Opp t)t j t⁄
i

–
j 1

T

∑=
(9.3)

Opp t j i⁄)t j ti⁄

⎩
⎪
⎩⎩

⎨
⎪⎪

⎪
⎨⎨

⎧
⎪⎪

=
l(Zk), if tkk jt is compatible with tj i
l(Zk), if tkk jt is not compatible with tj i and l(Zk) > l(Zkk k)kk
0, otherwise.

Chapter 9: Test Scheduling 121

derived by inspection of the leaves of the TZT from left to right. And the
worst case computational cost of the approach is of the order O(n3) [65].

Chakrabarty proposes a test scheduling algorithm where test time is mini-
mized while test constraints are considered. Chakrabarty shows that the test
scheduling problem is equivalent to open-shop scheduling [81]. And then a
test scheduling algorithm is proposed, see Figure 116 [27]. In the approach
tests are scheduled as soon as possible. If a conflict among two tests occurs

Figure 115.The test scheduling approach proposed by Garg et al. [65].

2T 2T 2T T2T

t1

t2t t3
∅

Z3Z Z4Z Z5 Z6

2T 2T 3T

t1

t2t
∅

Z3Z Z4Z Z2Z

4T 3T

t1 ∅

Z1 Z2Z

(a)

(d)

(f)

constraint

length

zones
1

R

2

<∅,7T>

<∅,3T><{t1} 4T>

1

R

2

<∅,7T>

<∅,T>

<{t1} 4T>

<{t3} 2T>

<∅,3T>

<{t1, t2t } 2T>

<{t1} 2T> 5

4

3

6

1

R

2

<∅,7T>

<{t1} 4T> <∅,3T>

<{t1, t2t } 2T> <{t1} 2T>
43

(b)

(c)

(e)

SOC Test Design122

the test with the shortest test time is scheduled first. The algorithm in
Figure 116 has a worst case execution time of O(n3) for n tests.

Other test scheduling approaches where test time is minimized while con-
sidering test conflicts are proposed by Kime and Saluja [132], Craig et al. [47]
and Jone et al. [128].

An approach where the test application time is minimized while con-
straints on power consumption are considered is proposed by Zorian [287].
The tests in the system are partitioned in such a way that tests in a partition
can be executed concurrently and the power dissipation within each partition
is below the maximal allowed power dissipation. The partitioning is guided
by the placement of the blocks in the system. Tests at blocks which are physi-
cally close to each others are placed in the same partition. This approach to
partitioning minimizes the amount of control lines added for controlling the
tests of the system since the same control line is used for a complete partition.

The system ASIC Z is used to illustrate the approach by Zorian, see
Figure 117, where the design is partitioned into four partitions, marked with
numbers 1 to 4. Table 7 gives the design data for this example and the test
schedule for ASIC Z is shown in Figure 118.

Another approach to test scheduling where test application time is mini-
mized while constraints among tests and test power consumption are
considered is proposed by Chou et al. [40]. The approach works on a TCG
with added power constraints and test length information constructed from a
resource graph (Figure 119). In order to minimize the complexity of the test
controller, the tests are assigned to test sessions and no new tests are started

Figure 116.The shortest-task-first procedure [28].

Procedure SHORTEST_TASK_FIRST({ti})
begin
for i:= 1 to m do /* there are m tasks */

start_timei := 0;
while flag = 1 do begin

flag = 0;
for i:= 1 to m do

for j := i + 1 to m do
if xij=1 then

/* xij=1 if i and j are conflicting */
if OVERLAP(

j
i,j) then begin

if start_timei+li>start_timej+lj then
start_timei+li:=start_time

j
j+lj

else
start_timei+li:=start_timej+lj;

flag := 1;
end;

end;
end;

Chapter 9: Test Scheduling 123

until all tests in a session are completed. The power dissipation for a test ses-
sion sjs is given by:j

The power constraint is defined as:

From the TCG a power compatible set (PCS) is derived where the tests in
each set (clique) are time compatible with each other and do not violate the
power constraints. For instance PCS={t4,t3,t1} in such a set, as illustrated in
Figure 119.

A power compatible list (PCL) H is a PCS such that the elements in H are
arranged in descending order of length. For instance, the PCL for PCS={t4, t3,

Figure 117.ASIC Z floor-plan and test partitioning.

RAM 2 RAM 3 RL 1

RL 2

ROM 1 ROM 2 RAM 4 RFRAM 1

1 2

3 4

P j()s j P i()ti
ti s j∈
∑= (9.4)

P j()s j Pmax≤ j∀ (9.5)

Ram1

Figure 118.ASIC Z test schedule using the approach proposed by Zorian [287].

time

power
a = RF
b = Ram4

RL1

Ram2
RL2

c = Ram3

Rom1

Rom2

a

b c

100 200 300

600

900

300

power limit

392

SOC Test Design124

t1} is H={HH t1, t3, t4} since l(t1)≥l(t1)≥l(t1). A derived PCL (DPCL) is an
ordered subset of a PCL or DPCL such that the test length of the first element
is strictly less than the test length of the first element in the original PCL. For
instance the DPCLs of the PCL H={HH t1, t3, t4} are H’={t3, t4} and H’’={t4}. A
reduced DPCL (RDPCL) set is the set of all DPCLs derivable from all possi-
ble PCLs such that each DPCL appears only once. Furthermore, if DPCL
h1=(t1, t2t ,...,tmt) and DPCL h2=(ti1, ti2,..., tik) such thatkk tij ∈ h1, j=1, 2,..., k and
l(h1)=l(h2), then h2 is removed from the TDPCL set.

Given a TCG, as shown in Figure 119, the steps in the approach by Chou
et al. are as follows:

1. All possible cliques are identified: G1={t1, t3, t5}, G2={t1, t3, t4},
G3={t1, t6}, G4={t2t , t5}, G5={t2t , t6}.

2. All possible PCLs are: (t1, t3), (t1, t5), (t3, t5) obtained from G1, (t1, t3,
t4t) from G2, (t1, t6) from G3, (t2t , t5) from G4 and finally (t2t , t6) from
G5.

3. The reduced DPCLs are: (t1, t5), (t5), (t3, t5), (t1, t3, t4t), (t3, t4t), (t4t),
(t1, t6), (t2t , t5), (t2t , t6).

4. Using a minimum cover table, see Table 8, to find an optimum sched-
ule over the compatible tests, the test schedule is: (t3, t4t), (t2t , t5), (t1,
t6) with a total test time of 120.

The test schedule achieved on the ASIC Z system by the approach pro-
posed by Chou et al. is shown in Figure 120. The total test application time is
331; the approach proposed by Zorian needs 392 time units, see Figure 118.

Block Test Time Idle Power Test Power

RL1 134 0 295

RL2 160 0 352

RF 10 19 95

RAM1 69 20 282

RAM2 61 17 241

RAM3 38 11 213

RAM4 23 7 96

ROM1 102 23 279

ROM2 102 23 279

Table 7. ASIC Z characteristics.

Chapter 9: Test Scheduling 125

The identification of all cliques in the TCG graph is an NP-complete prob-
lem and therefore a greedy approach such as proposed by Muresan et al. is
justified where test time is minimized while test constraints and power con-
sumption are considered [202].

A basic assumption in the approaches by Chou et al. [40] and by Zorian
[287] is that no new tests are started until all tests in a test session are all com-
pleted. Due to this assumption the test controller is minimized. However, this
assumption is not valid in the approach proposed by Muresan et al. [202].

Muresan et al. define an extension called the expanded compatibility tree
(ECT) of the compatibility tree introduced by Jone et al., where the number of
children is generalized. For instance, assume tests t1, t2t , t3 and t4, where t2t , t3
and t4 are compatible with t1, see Figure 121. However, t2t , t3 and t4 are not
compatible with each other. Assume that the test length l(t2t)+l(t3)<l(t1) and t4
is to be scheduled. If l(t4)≤l(t1)-(l(t2t)+l(t3) then t4 can be inserted in the ECT.

Neither the approach by Chou et al. [40,41] nor that by Muresan et al.
[202] consider the routing of control lines, which was considered by Zorian
[287] by partitioning the tests due to their physical placement in the system.

Figure 119.TCG with added power constraint and test length for each test.

t2t

pmax=4

ti

(P(ti), l(ti))

(1,10)

t3
(1,10)

t1
(2,100)

t6
(1,100)

t5
(2,10)

t4
(1,5)

Node notation

Figure 120.ASIC Z schedule using the approach proposed by Chou et al. [40].

time

power a = RF
b = Ram4

Ram1

c = Ram3

a
bbbbb

c

100 200 300

600

900

300

power limit

331

RL1

RL2

Ram2

Rom1

Rom2

SOC Test Design126

Larsson and Peng proposed a constructive power-constrained test schedul-
ing approach running at O(n2) - n is the number of tests [158]. The tests are
initially sorted based on test length and scheduled in order. Table 9 collects
the results from the approach by Zorian, Chou et al. and Larsson and Peng on
the design ASIC Z. The results indicate that a straight-forward algorithm can
produce high quality solutions.

Wang et al. [275] proposed a Simulated Annealing technique ([131]) to
schedule memory BIST cores in such a way that the test time is minimized.

Figure 121.Merging example by Muresan et al. [202].

t2t

t1

t3 t4

l(t1)

l(t2t) l(t3)

t1

t2t t3

l(t1) - (l(t2t) + l(t3))

Figure 122.Test scheduling technique by Larsson and Peng.

sort tests according to a key and put them in a list L.
time point τ=0
while L is not empty begin

for i = 1 to |P| begin //all tests (items) in the list
if itemi = ok to schedule then begin

remove itemi from L
schedule itemi at time τ

end //if
end // for
increase τ to the next timepoint when a test stops

end //while
end.

c

Ram2

RL1

Figure 123.Test schedule achieved using the heuristi proposed by
Larsson and Peng [161, 164, 165] on ASIC Z.

time

power

a = RF
b = Ram4

RL2

Ram1
c = Ram3

Rom1

Rom2

100 200 300

600

900

300

power limit = 900

a
bb

Chapter 9: Test Scheduling 127

Each core is given a fixed testing time and a fixed power consumption value
when active, and there are no constraint among the tests since each testable
unit (memory core) has its dedicated BIST. The objective is to schedule the
tests in such a way that the test application time is minimized while power
constraints are met. Flottes et al. [61, 62] compared the control over-head for
session-based (nonpartitioned testing) and session-less scheduling (parti-
tioned testing with run to completion). The results indicate that relative to the
size of the system, the type of controller has minor impact.

RDPCL t1 t2t t3 t4 t5 t6 Cost

(t1, t3, t4t) x x x 100

(t1, t5) x x 100

(t1, t6) x x 100

(t2t , t6) x x 100

(t3, t5) x x 10

(t2t , t5) x x 10

(t3, t4t) x x 10

(t5) x 10

(t4t) x 5

Table 8. Covering table.

Test
session

Zorian Chou et al. Larsson and Peng

Time Blocks Time Blocks Time Blocks

1 69 Ram1, Ram4,
RF

69 Ram1,Ram3,
Ram4,RF

160 RL2, RL1,
Ram2

2 160 160RL1, RL2 102RL1, RL2 Ram1,Rom1,
Rom2

3 61 102Ram2, Ram3 Rom1, Rom2,
Ram2

38 Ram3, Ram4,
RF

4 102 Rom1,
Rom2

Total time: 392 331 300

Table 9. A comparison of different test scheduling approaches on ASIC Z.

SOC Test Design128

2.1 Preemptive test scheduling

A way to minimize the impact of test conflicts is to make use of preemp-
tive scheduling (partitioned testing) (Figure 112). The idea is to stop a test as
soon as a conflict appears, and by selecting an alternative test, the conflict is
avoided. Iyengar and Chakrabarty proposed preemptive test scheduling [110].

3 SCHEDULING OF TESTS WITH NON-FIXED
(VARIABLE) TESTING TIMES

The test time for a testable unit (core) does not have to be fixed. For
instance, the scan-chains at a scan-tested unit can often be configured into one
or more chains. If a single chain is used the testing time becomes long while if
the scanned elements are connected into n chains, it is possible to load all n
chains concurrently, and hence reduce the test time. For instance, assume a
core with four scan-chains (Figure 124). The scan-chains can be assigned to a
wire each or as in Figure 124(b) and (c) where two respectively three wires
are used. There is a clear trade-off between test time and the number of used
wires. Few wires means that the scanned elements are configured into a few
longer wrapper chains, while if a high number of wires are used, the chains
become shorter. Shorter wrapper chains lead to shorter loading/unloading
time and hence shorter testing times. However, as can be seen in
Figure 124(b), increasing number of wires does not guarantee in lower testing
times for a core since the length of the wrapper chain is actually not decreased
when going from a configuration using two wires Figure 124(b) to a configu-
ration using three wires Figure 124(c). Further, all cores in the system have to
be considered.

Several techniques have been proposed to solve the problem. The tech-
niques have different assumptions and take different constraints into account.
The constraints when designing test solutions have been described in Chapter
6, Test Conflicts, on page 77. Below in Section 3.1 the introduced idle bits,
which should be minimized, are described. The general problem is to config-
ure the scan-chains into wrapper-chains and assign a start time for each test in
such a way that the total test time is minimized while considering test
conflicts.

3.1 Idle Types

Test scheduling having the objective to minimize the test application time
means that the idle times (idle bits) in a test schedule should be minimized.
The idle bits are useless data that have to be stored in the ATE. The idle bits

Chapter 9: Test Scheduling 129

can be found at different places in a test schedule. Therefore, Goel and Marin-
issen [78] defined the following three idle types for a test schedule:

■ Type 1 Idle Bits: Imbalanced TAM Test Completion Times,

■ Type 2 Idle Bits: Module Assigned to TAM of Non Pareto Optimal
Width, and

■ Type 3 Idle Bits: Imbalanced Scan Chains in Module.

The idle bit types are described below. And for flexible-width TAM, an
additional idle type is defined.

3.1.1 Imbalanced TAM Test Completion Times

The Type 1 idle bits are by Goel and Marinissen [78] defined as the idle
time that is:

Figure 124.(a) A core with four scan chains. (b) The four scan chians configured into
two wrapper chains making use of two wires. (c) The four scan chains configured

into three wrapper chains making use of three wires.

Scan chain 1 Scan chain 2

Scan chain 3 Scan chain 4

Scan chain 1 Scan chain 2

Scan chain 3

Scan chain 4

Core

Scan chain 1

Scan chain 2

Scan chain 3

Scan chain 4

(b) (c)

(a) A core with four scan chains.

SOC Test Design130

“between the completion time of an individual TAM and the overall
completion time, the TAM in question is not utilized”.

For an example system with four tests, A, B, C, and D, scheduled on two
TAMs, TAM1 and TAM2, as in Figure 125, the Type 1 idle bits are at the end
of TAMs that are not limiting the solution.

3.1.2 Module Assigned to TAM of Non Pareto Optimal Width

For scan-tested cores the scanned elements (scan-chains and wrapper
cells) are to be configured into at least one wrapper chain. A single wrapper-
chain leads to long testing times, and therefore, increasing the number of
wires assigned to a core, will reduce the test time. However, increasing the
number of wrapper-chains will not always lead to lower testing times.
Assume that the four scan-chains in Figure 124 each include 100 flip-flops.
The shift-in/shift-out time if two wrapper-chains are used is 200 cycles
(Figure 126(a)). However, if the number of wrapper-chains is increased to
three (Figure 126(b)) the shift-in/shift-out time will not decrease.

The test time versus the number of wrapper chains (TAM wires) are in
Figure 127 plotted for Core 11 the ITC’02 [189] design P93791. The test time
when all scanned elements (scan chains and wrapper cells) are connected into
a single wrapper chain is the longest, and the test time decreases as the num-

Figure 125.Illustration of Type 1 Idle Bits.

TAM width
WTAMWW

test time τ

test A test B

test C test DTAM2

TAM1

Type 1 idle bits

Figure 126.(a) The scan chains configured into two wrapper chains making use of two wires.
(b) The scan chains configured into three wrapper chains making use of three wires.

Scan chain 1 Scan chain 2

Scan chain 3 Scan chain 4

Scan chain 1 Scan chain 2

Scan chain 3

Scan chain 4

(a) (b)

Chapter 9: Test Scheduling 131

ber of wrapper chains increases. However, at some points, the test time does
not decrease even if the number of wrapper chains increases. It means that for
several TAM widths the test time is constant. For all points with the same test
time, a Pareto-optimal point is the point where the least number of TAM
wires is used [113]. Type 2 Idle Bits occur when a module is assigned to a n
number of wrapper-chains where n is not a Pareto-optimal point.

3.1.3 Imbalanced Scan Chains in Module

The type 2 idle bits occur when assigning the scanned elements at a core
into n wrapper-chains where the configuration at n is not a Pareto-optimal
point. However, even if assigning the TAM width to Pareto-optimal points the
cost τ×w is not constant. For instance, Edbom and Larsson [57] plotted for
TAM widths up to 64 TAM wires the Wrapper Design Cost (WDC), defined
as wn×τn-τ1, for core 1 in the ITC’02 design P93791 [189, 190] (Figure 128).
Figure 128 shows that the cost test time×ΤΑΜ is not constant, not even for
the Pareto-optimal points. Type 3 idle bits come from the imbalance at scan-
chains.

3.1.4 Other Types of Idle Bits

Idle bits may also occur due to test conflicts. In the flexible-width archi-
tecture idle bits may occur as indicated in Figure 129.

 0 2 4 6 8 10 12 14 16

T
e
st

 t
im

e

TAM width

Figure 127.Test time versus number of wrapper chains (TAM wires) for Core 11
in ITC’02 benchmark P93791.

SOC Test Design132

3.2 SOC Test Scheduling with Fixed-Width TAM

Given for the problem is a core-based architecture with n cores i={1..n}
and for each core i the following is given:

scij={sci1, sci2,..., scim} - the length of the scanned elements at core i are
given where m is the number of scanned elements,

wii - the number of input wrapper cells,

Figure 128.The plot of the wrapper design quality (WDC) - τ×w-τ1×w1, test time (τ)
times the number of wrapper chains (w) for Core 1 in P93791.

 0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70

W
D

C

TAM width

Figure 129.Illustration of idle bits.

TAM width
WTAMWW

test time τ

test A
test B

test C
test D

Idle bits

Chapter 9: Test Scheduling 133

woi - the number of output wrapper cells,
wbi - the number of bidirectional wrapper cells,
tvi - the number of test vectors,
For the system, a maximal TAM bandwidth WtamWW which can be partitioned

onto k number of TAMs,k w1, w2, ..., wk, in such a way that:

Problem 1: Find a test schedule that minimizes the test application time for a
SOC system where each core is wrapped and scan-tested by one ATE test per
testable unit for a fixed width TAM architecture.

Iyengar et al. [111, 113] formulated and proposed an algorithm to chain
the scanned elements (wrapper inputs, wrapper outputs, wrapper bidirection-
als, and scan-chains) for a core into w number of wrapper-chains and modeled
the test scheduling problem in such a way that an ILP solver could be used.
Due to the fact that for larger designs, the ILP becomes to costly, Iyengar et
al. [112] proposed a heuristic for the test scheduling.

Goel and Marinissen [74, 75, 78] proposed the TR-Architect algorithm,
which is composed of four main steps; CreateStartSolution, Optimize-Bot-
tumUp, Optimize-TopDown, and CoreReshuffle. The initial solution
(CreateStartSolution) is created by assigning a single TAM wire to each core
(similar to Distribution Architecture, page 109)). A limitation of Distribution
Architect is that it is not applicable if the number of TAM wires are less then
the number of cores (WTAMWW <M i). In the case when WTAMWW <M i the largest cores in
respect to test time are each assigned to a dedicated TAM wire while test with
shorter test times are share wires (the tests will be executed in a sequence on
the wires).

In Optimize-BottomUp TAMs with shortest test time are merged with
another TAM so that TAM wires are freed up. The free wires are then distrib-
uted in order to minimize the test time. In the Optimize-TopDown the focus is
on TAMs that limits the solutions, the bottleneck. The idea is to merge TAM
that limits the solution with another TAM. If TAM wires can be freed, they
are distributed to reduce the testing time. In the CoreReshuffle step, cores at a
TAM that is a bottleneck are moved to other TAMs in an attempt to reduce
the total test time.

Note that pipelining (daisy-chaining) (see page 110) is used on each TAM
in TR-Architect. An advantage of TR-Architect is the fact the width of each
TAM is nor fixed; the algorithm defines the number of TAMs as well as their
width.

Wtam wi
i 1

k

∑= (9.6)

SOC Test Design134

Ebadi and Ivanov [56] proposed a technique where a Genetic algorithm
[197] (Genetic Algorithms at page 18) is used for the optimization in assign-
ing TAM wires to the cores.

3.3 SOC Test Scheduling with Flexible-Width TAM

The problem, similar to problem 1 (see page 133), however, the difference
is in the TAM architecture where an architecture such as the one proposed by
Wang et al. [276] is used. In this problem, instead of partitioning the TAM
wires into a set of TAMs, there is a flexibility to basically use a TAM wire as
soon as it is free.
Problem 2: The scheduling problem for systems with core tests with variable
testing times, and one ATE test per testable unit for a flexible-width TAM
architecture.

Huang et al. [97, 99] mapped the problem to the two-dimensional bin-
packing problem and made use of a Best Fit Decrease algorithm for the opti-
mization. Koranne proposed a technique based on the shortest job first
algorithm [138]. Koranne and Iyengar [141] proposed a k-tuple technique
based on sequence-pair proposed by Murata et al. [200]. The sequence-pair
technique was developed for placement of VLSI components where the prob-
lem is to pack the components on a limited silicon area. A sequence pair for n
modules is a pair of sequences of the n module names. Figure 130 show an
example of packing and its sequential-pair representation (abc, bac), and it
should be read as {a should be placed to the left of c, b should be placed to the
left of c, b should be placed below a}.

Zou et al. [292] formulate the problem as a two-dimensional bin packing
problem, similar to Huang et al. [97, 99], and is as Koranne and Iyengar [141]
making use of sequence-pair [200]. For the optimization, Zou et al. [292]
make use of Simulated Annealing (see Section 5.1.4). Xia et al. [279] are also
making use of the sequence-pair technique [200] and a Genetic Algorithm for
the test application time optimization.

Figure 130.A packing example and its sequence-pair representation (abc, bac) [200].

a

b
c a

b
c b

a
cbbbbb

c
a

(a) (b)

Chapter 9: Test Scheduling 135

Koranne proposed on-the fly reconfigurable wrappers [139, 140, 143] (see
Reconfigurable Core Wrappers at page 106) and corresponding scheduling
techniques. Larsson and Fujiwara [167, 172] make use of reconfigurable
wrappers as proposed by Koranne [139, 140, 143], but in contrast to previous
work, Larsson and Fujiwara [167, 172] modeled the problem as the indepen-
dent job scheduling on identical machines, and demonstrated that a
preemptive algorithm can produce optimal solution in linear time [23]. The
test scheduling problem of core tests is equal to the independent job schedul-
ing on identical machines [167, 172] since each test ti at a core ci, (i=1, 2, …,
n) with testing time τi is independent on all other core tests, and each TAM
wire wjw (j((=1, 2, …, NtamNN) is an independent machine used to transport test
data [172, 171]. The LB (lower bound) of the test time for a given TAM width
NtamNN can be computed by [23]:

The problem of independent job scheduling on identical machines can be
solved in linear time (O(n) for n tests) by using preemption [23]: assign tests
to the TAM wires successively, assign the tests in any order and preempt tests
into two parts whenever the LB is reached. Assign the second part of the pre-
empted test on the next TAM wire starting from time point zero.

An example (Figure 131) illustrates the approach where the five cores and
their test times are given. The LB is computed to 7 (Equation (9.7)) and due to
that τi≤LB for all tests; the two parts of any preempted test will not overlap.

LB max
i 1

n

∑
⎩ ⎭

i i
i 1

tam⎨ ⎬max() ττi i Ntam⁄
⎩ ⎭⎩ ⎭

i()i i tam
⎧ ⎫n

⎨ ⎬⎨ ⎬() N⁄ (9.7)

Figure 131.Optimal TAM assignment and preemptive scheduling.

NtamNN = 3 w1
w2
w3

ci 1 2 3 4 5
τi 4 5 3 4 5

1 2

2 3 4

4 5
τ

1 2 3 4 5 6 7

Figure 132.An example system with three wrapped cores (1,2,3) and two
unwrapped cores (4,5).

test access mechanism (tam)

wrapper

core 1

te
st

 s
ou

rc
e

te
st

 s
in

k

scan chain 1

core 5

Ntam

wrapper cell

scan chain 2
scan chain 3

fu
nc

tio
na

l i
np

ut

fu
nc

tio
na

l o
ut

pu
t

core 2

scan chain 1
scan chain 2

core 3

scan chain 1
scan chain 2
scan chain 3

wrapper

wrapper

co
re

 4

SOC Test Design136

The scheduling proceeds as follows: The tests are considered one by one, for
instance, starting with a test at c1 scheduled at time point 0 on wire w1. At
time point 4, when the test at c1 is finished, the test at c2 is scheduled to start.
At time point 7 when LB is reached, the test at c2 is preempted and the rest of
the test is scheduled to start at time 0 on wire w2. Therefore the test at c2 is
partitioned into two parts. In execution of the test at c2, the test starts at wire
w2 at time point zero. At time point 2, the test is preempted and resumed at
time point 4. The test ends at time point 7. At the preemption of a test, another
wire is assigned to the core and a multiplexer is added for wire selection. For
the test of c2, a multiplexer is added to select between w1 and w2.

In general preemptive scheduling, extra time is introduced at each preemp-
tion point due to the need to set up a job and also to save its state. In this case,
the machines are the wires and no extra time is needed to set up and save the
state. Also, in testing no other tasks are performed at the cores but testing, i.e.
the core’s state can be left as it is until the testing continues. The advantage is
that the state of the core is already set and testing of it can start at once.

Assume that a core has a wrapper-chain of length l (l cycles are needed to
perform a shift-in of a new vector and a shift-out of the previous test
response). If the test is preempted when x% of the l cycles are shifted in it
means that when the test restarts x% of the new test vector is already loaded
and x% less cycles are needed in the first shift process, i.e. there is no time
overhead due to setting up and saving the state of a core; all tests can be
stopped at LB.

Finally, in some cases, such as for some types of memories such as
DRAMs, the testing cannot be preempted. For instance, assume that test t2t
cannot be preempted as in Figure 131. In such a case, when LB is met, the
scheduling algorithm restarts at LB (and not at time 0) and moves towards
zero. The resulting schedule is in Figure 133. Note that, test t2t now makes use
of one wire during time point 4 to 5 and two wires during time 5 to 7, which is
possible using the reconfigurable wrapper (more details can be found in
Chapter 10, A Reconfigurable Power-Conscious Core Wrapper and its Appli-
cation to System-on-Chip Test Scheduling, page 163).

Figure 133.Optimal TAM assignment and preemptive scheduling assuming that
test t2t cannot be interrupted (preempted).

NtamNN = 3 w1
w2
w3

ci 1 2 3 4 5
τi 4 5 3 4 5

1 2

234

4 5
τ

1 2 3 4 5 6 7

Chapter 9: Test Scheduling 137

3.3.1 Test Power

It is becoming important to consider test power consumption during test-
ing (see Chapter 7, Test Power Dissipation, page 89). Huang et al. [100]
included test power by extending the two-dimensional model (TAM width
versus test time) into a three-dimensional problem. The power model is based
on the model proposed by Chou et al. [40, 41] which means that each test is
assigned a fixed power value. Pouget et al. [218, 219, 220] have also pro-
posed heuristics for the wrapper design problem under power constraint.
Pouget et al. tries a pseudo-exhaustive approach, and the experiments shows
that it can only be used at limited sized designs.

Hsu et al. [96] proposed scheduling technique for single-tier and multi-tier
TACO architectures. For single-tier, three techniques are proposed; based on
limited-polymorphic, similarity, and grouping. In order to minimize the test
time further the multi-tier architecture can be used. However, Hsu et al. [96]
reports that the multi-tier architecture only results in a slight test time reduc-
tion at the expense of a 583% higher hardware over-head compared to single-
tier architecture. It should be noted that the comparison is between the addi-
tional hardware and not of the relative additional hardware. Flottes et al. [61,
62] demonstrated that the additional hardware overhead in relative terms is
modest.

Zhao and Upadhyaya [291] proposes a technique where test conflicts and
test power consumption are taken care of. The modeling of test conflicts and
test power consumption is similar to the idea by Chou et al. [40, 41]. The dif-
ference is that in the approach by Zhao and Upadhyaya [291] the test times
are not fixed for each testable unit and tests are not scheduled according to the
partitioned testing scheme. Not fixed test times per testable unit means that
special care has to be taken when analyzing the conflict graph since the test-
ing times can be modified.

An approach that also tackles the test scheduling problem under power
constraints and test conflicts is proposed by Su and Wu [258]. Similar to the
approach by Zhao and Upadhyaya [291], Su and Wu [258] have to take spe-
cial care when scheduling tests since the testing times for each test can be
modified. For the optimization, Su and Wu [258] make use of a Tabu-search
technique (see Section 5.1.6). Cota et al. [44, 45, 46] have proposed schedul-
ing techniques for network-on-chip designs.

Xia et al. [279] make use of an Evolutionary Algorithm (EA) to solve the
test scheduling problem. The power model is assumed to be non-fixed per
test. A non-fixed power model is a result of clock-gating (Saxena et al. [241])
and has been used by for instance Larsson and Peng [158, 161].

Larsson and Peng [171] extended the work by Larsson and Fujiwara [167,
172] to also include test power consumption and clock-gating as proposed by

SOC Test Design138

Saxena et al. [241]. The approaches by Larsson and Fujiwara [167, 172] and
Larsson and Peng [171] are in more detail described in Chapter 10, A Recon-
figurable Power-Conscious Core Wrapper and its Application to System-on-
Chip Test Scheduling, page 163.

3.3.2 Multiple Test Sets

Huang et al. have proposed an extension allowing multiple tests per test-
able unit [101]. Iyengar et al. [118] proposed techniques to handle hierarchy
(cores embedded in cores). Larsson and Fujiwara [167, 172] showed that con-
flicts between core tests and interconnection tests can be solved in an optimal
way.

3.4 Other Test Scheduling Techniques

There are a number of additional problems that must be taken into account
when designing the test solution.

3.4.1 Problem: Control lines and Layout.

The cost of adding additional pins to the SOC or pins to a component used
in a PCB is high. It is therefore important to not only discuss the pins used for
test data transportation but also the pins required for the control of the test
data transportation. In the work by Aerts and Marinissen [5] the control pins
required for scan-chain control was taken into account. Goel and Marinissen
[77] as well as Wayers [273, 274] have proposed techniques where the addi-
tional control lines are taken into account. However, the cost of additional
input and outputs at a core embedded in a SOC is by far lower than the cost of
additional pins.

Goel and Marinissen [76] proposed a scheduling scheme were the floor-
plan of the system is taken into account when designing the test architecture.
Larsson and Peng [171] showed that their approach minimizes the additional
TAM routing.

3.4.2 Problem: Power Modeling

The power consumed during testing can be high due to the fact that it is
desirable to activate as many fault locations as possible in order to reduce the
testing times (see Chapter 7, Test Power Dissipation, page 89). Rosinger et al.
[231, 232] propose a scheme where better power profiles for each test are
used. The idea is that if a better model, not only a fixed power value per test, it
is possible to schedule the tests in a way that minimizes the test time. An
example is in Figure 134. The measured power over time for a test is in
Figure 134(a) and the power model proposed by Chou et al.[40, 41] is in

Chapter 9: Test Scheduling 139

Figure 134(b) where one value is given to each test. The model proposed by
Rosinger et al. [231, 232] allows more the one value per test. The advantage
is that a more accurate model of the real power consumption is given. The
advantage during test scheduling is illustrated in Figure 134(d) and
Figure 134(e). One can see that by having multiple power values per test (sev-
eral boxes) it is possible to get a lower testing time for the system.

The model proposed by Chou et al.[40, 41] (one fixed test power value per
test) is supported by the assumption that there is only a small difference
between the peak test power and the average test power. If the difference is
small between peak power and average power, the impact of the more accu-
rate model as proposed by Rosinger et al. [231, 232] becomes less significant.
It should also be noted that it is complicated to measure test power. The
power depends highly on the activity in the rest of the system. A test that con-
sumes a certain power when activated alone can use a different power when
activated concurrent with other tests. One could also put a question mark on:
why one measures the number of clock cycles at an extreme granularity while
test power is given as a single value which is not very precise.

3.4.3 Problem: Fixed Test Resources

Multiple clock domains are common in systems. Therefore Xu and
Nicoloci [282] propose a core wrapper that can handle related problems. Seh-
gal and Chakrabarty [243] has proposed optimization techniques where the
ATE can deliver test data a dual speed; the ATE channels are partitioned into

Figure 134.Power profiling and its impact on test scheduling.

(a) Measured power
consumption

time

power

(b) Power model by
Chou et al.[40, 41].

(c) Power model by
Rosinger et al. [231, 232].

TestA TestB

Power limit Power limit

(d) Test scheduling with the
model by Chou et al.[40, 41].

(e) Test scheduling with the model
by Rosinger et al. [231, 232].

SOC Test Design140

two partitions each with its clock speed. To minimize the test time, as many
cores as possible should be assigned to the high-speed channels, however, test
power consumption puts a limitation.

3.4.4 Problem: Multiple Clock Domains

Multiple clock domains are common in SOC designs. It is common that
cores operate at different clock frequencies, and furthermore, cores may oper-
ate internally at multiple frequencies. For stuck-at testing, lock-up latches
could be inserted at the boundary between clock domains however, for at
speed testing, clock skew during at-speed capture might occur and corrupt the
test response [282]. Xu and Nicolici [282] propose a technique (wrapper and
algorithm) for at-speed testing using a low speed ATE. It means that the sys-
tem is running at a higher frequency compared to the ATE. Xu and Nicolici
[282] propose a core wrapper architecture where the low speed ATE is syn-
chronized with the higher clock frequency of the SOC. In order to apply at-
speed testing, the last launch and the capture must be performed at-speed [92].

3.4.5 Problem: Delay Fault Testing

Testing for timing faults is becoming important due to deep submicron
process variations. Xu and Nicolici [280] proposed a technique for broadside
delay fault testing (see Broadside Test, see page 37) for SOCs with P1500
wrappers. The objective is to detect delay faults, which are becoming increas-
ingly important to detect due to higher clock frequencies. The main problem
in delay fault testing is that two test patterns must be applied in consecutive
clock cycles.

Chakrabarty et al. [29] proposed a DFT technique where multiplexers are
inserted in order to bypass a core. In such a way, two patterns can be applied
in consecutive clock cycles. Yoneda and Fujiwara [284, 285, 286] proposed a
technique where instead of adding multiplexers, test vectors are transported
through the cores (instead of around the cors as in the approach by Chakra-
barty et al. [29].

3.4.6 Defect-Oriented Scheduling

The aim of testing is to ensure that the circuit under test is fault-free in
respect to the applied test set. That means to ensure that no mistakes have
been inserted during production. If a fault exists in the circuit, the system is
faulty and should not be sent for use. It means that as soon as a fault appears
in the system, the testing can be aborted. If one fault appears, the system is
faulty. In high-volume production (a high number of chips are tested), it is
desirable to schedule the tests in such a way that the cores with a high proba-

Chapter 9: Test Scheduling 141

bility to fail, are scheduled as early as possible. In such a way, the expected
test time can be minimized. Larsson et al. [168, 169, 174] have proposed for-
mulas to compute the expected test time for a system where each core is given
a probability of having a defect.

For illustration of the computation of the expected test time, we use an
example with four tests (Table 10). The tests are scheduled in a sequence as in
Figure 135. For test t1, the expected test time is given by the test time τ1 and
the probability of success p1, τ1×p× 1=2×0.7=1.4. Note if there is only one test
in the system, our above formula will give the expected test time to be 2 since
we assume that every test set has to be fully executed before we can determine
if the test is a successful test or not.

The expected test time for the completion of the complete test schedule in
Figure 135 is:
τ1×(1-p1) + // test t1 fails
(τ1+τ4)×p× 1×(1-p4) + // test t1 passes, test t4 fails
(τ1+τ4+τ3)×p× 1×p× 4×(1-p3) + // test t1, t4 pass, test t3 fails
(τ1+τ4+τ3+τ2)×p× 1×p× 4×p× 3×(1-p2) + //test t1, t4, t3 pass, test t2
fails
(τ1+τ4+τ3+τ2)×p× 1×p× 4×p× 3×p× 2 = // all tests run until completion,

// i.e. correct system.
2×(1-0.7) +
(2+6)×0.7×(1-0.6) +
(2+6+3)×0.7×0.6×(1-0.9) +
(2+6+3+2)×0.7×0.6×0.9×(1-0.8) +
(2+6+3+2)×0.7×0.6×0.9×0.8 = 8.2

As a comparison, for the worst case schedule where the test with highest
passing probability is scheduled first, the order will be t3, t4t , t2t , t1, and the
expected test time is 12.1. In the case of executing all tests until completion,
the total test time does not depend on the order, and is τ1+τ2+τ3+τ4=15 (more
details can be found in Chapter 14, Defect-Aware Test Scheduling, page 277).

Core i Test ti Test time τi Probability to pass, pi Cost (τi×pi)

1 t1 2 0.7 1.4

2 t2t 4 0.6 2.4

3 t3 3 0.9 2.7

4 t4t 6 0.8 4.8

Table 10. Example data.

Figure 135.Sequential schedule of the example (Table 10).

ττ1 τ2 τ3

t1 t2 t3 t4t

τ4

SOC Test Design142

An alternative approach to defect-oriented scheduling is taken by Edbom
and Larsson [57] where a time constraint (given by the ATE memory depth) is
given and the aim is to select test vectors and schedule them in such a way
that the quality of the testing is maximized. The assumption in the approach
by Edbom and Larsson is that the amount of test data increases and in cases
where all needed test vectors cannot be applied, it is important to select the
test vectors that contribute the most in increasing the systems quality. Each
core is as in the approach by Larsson et al. [168, 169, 174] attached with a
defect probability. Different from Larsson et al. [168, 169, 174], Edbom and
Larsson [57] assume that the first test vectors detects a higher number of
faults compared to test vectors applied later. Edbom and Larsson [57] approx-
imate the fault detection to an exponential curve (Figure 136).

For each core i the CTQi (core test quality) given as:

and for the system with n cores, the STQ (system test quality) metric given
as:

The CTQi value depends on the defect probability (dpi)ii and increases
according to the exponential function fci with the number of applied test vec-
tors (stvi).

To illustrate the approach, the d695 (a design from the ITC’02 benchmark
set [189, 190]) is used, see Figure 137. The time constraint is set to 5% of the
total time if all test vectors would have been applied. In Figure 137 (a) only
test scheduling is used, defect probability, fault coverage, and test set selec-

Figure 136. (a) Exponential estimation of the fault coverage and (b) the actual fault cov-
erage for some ISCAS designs [57]

Number of
test vectors

Fault coverage (%)

stvi

Max fault coverage - fci

fci(stvi)

tvi

fci

CTQi dpi f ci× i()stvi= (9.8)

STQ CTQi
i 1

n

∑ dpi
i 1

n

∑⁄ (9.9)

Chapter 9: Test Scheduling 143

tion are not used. It means that core 2 and core 5 are tested. All vectors from
core 2 are applied and 20% of the vectors from core 5 are applied. At the point
when 20% vectors are applied from core 5 the time constraint limits further
testing; hence the testing is terminated. The STQ value for such an approach
on this design is 0.0322. In Figure 137 (b) test scheduling and defect probabil-
ity are considered but not fault coverage and test set selection. Only one core
is selected to be tested (core 7) and 54% of the vectors are applied. The STQ
value in this approach is improved to 0.167. Figure 137 (c) where test sched-
uling, defect probability and fault coverage are considered, the STQ is
improved to 0.203. If test set selection (selection of number of test vectors per
core), defect probability, and fault coverage all are taken into account, the
STQ value increases to 0.440. If a higher number of TAMs are allowed
(Figure 137(e), (f)), the STQ value can be even increased.

The STQ value versus the test time is plotted in Figure 138. As the test
application time increase (the time constraint becomes closer to the test appli-
cation time when all test vectors are applied) the STQ value increases.
Obviously, the STQ value is highest when all test vectors are applied. How-
ever, it is interesting to note that the same STQ value can be reached at a
much lower test time when using test vector selection and test scheduling
when considering defect probability and fault coverage compared to when it
is not used. For instance, the STQ value at 20% of the test time for a tech-
nique where defect probability, fault coverage and test vector selection are
taken into account is as high as the STQ value for a technique at 50% of the
testing time when only considering defect probability and fault coverage. It
means that a significant amount of test time can be gained by an effective
selection of test vectors. The approach by Edbom and Larsson is in more
detail described in Chapter 15, An Integrated Technique for Test Vector
Selection and Test Scheduling under ATE Memory Depth Constraint,
page 291.

4 OPTIMAL TEST TIME?

The main objective with test scheduling is to organize the test in such a
way that the test application time is minimized. The optimal goal is to find a
test schedule with the lowest possible test application time; the optimal test
time. In this section discuss possibilities and limitations for achieving optimal
test application time.

In the case when each test is given a fixed test time and a fixed resource
usage, and the scheduling (packing) problem is to minimize the test time
while not violating any given constraint the problem is NP-complete (dis-

SOC Test Design144

Illustration of the approach by Edbom and Larsson [57].

(a) Not considering test vector selection,
defect probability, and fault coverage.

(b) Not considering test vector selection
and fault coverage, but defect probability.

(c) Not considering test vector selection but
defect probability and fault coverage.

(d) Considering test vector selection, defect
probability and fault coverage on single TAM.

(e) Considering test vector selection, defect
probability and fault coverage on two TAMs.

(e) Considering test vector selection, defect
probability and fault coverage on three TAMs.

Chapter 9: Test Scheduling 145

cussed in Section 2, page 119). Note, that sequential scheduling is not NP-
complete and concurrent test scheduling is NP-complete only when a resource
constraint is to be met (see page 118). Figure 139 shows an example where a
test named testA has its specified fixed test time and its fixed resource usage
(the fixed resource usage can for instance be test power or TAM wire usage).
Figure 139 also shows a schedule where the tests are assigned a start time.

Optimal test schedule can be defined as a test schedule having minimal
idle bits (see Section 3.1 for discussion on idle bits). However, a test schedule
where idle bits exist can be optimal in test time, i.e. it is the best possible test
schedule from test time perspective. Figure 140 shows an example with two

0.2

0.4

0.6

0.8

1

 0 10 20 30 40 50 60 70 80 90 100

S
T

Q

test time %

Test vector selection, three TAMs
Test vector selection, two TAMs
Test vector selection, one TAM

Considering dp and fc
Considering dp but not fc
Not considering dp and fc

Figure 138.The STQ (system test quality) versus the test time [57].

Figure 139.Test scheduling with tests having fixed test time and fixed resource usage.

test time (τ)

resource

limitation

test time

resource
usage A

A
C

B

SOC Test Design146

tests (testA and testB). Each of the test has a fixed test time and a fixed TAM
wire usage. The two tests are scheduled on 4 TAM wires (Figure 140). The
test schedule results in a test application time of 6 time units (τAτ +τB=3+3=6).
The test schedule in Figure 140 is optimal even if it contain idle bits. The
solution is optimal from test application time perspective but obviously not
from a TAM wire perspective (three TAM wires would result in the same
solution).

A way to compute the lower bound, assuming no idle bits at all, would be:

For the example in Figure 140, τopt=(τAτ ×wAw +τB×wBw)/N// tamNN =(3×3+3×2)/
4=3.75. Larsson and Peng [159, 161] defined, similar to Equation (9.10), to
compute the lower bound when the resource is test power:

The Equations (9.10) and (9.11) gives a feeling for the lower bound. In
order to achieve a solution near to the lower bound, the testing times must, if
possible, be modified.

4.1 Soft Cores - No Fixed Scan-chains

For a system with soft cores where for each core i a number of scanned
elements (flip-flops) ffiff , a number of test vectors tvi, and the width of the
TAM NtamNN are given. The problem is to configure the flip-flops at each core
to scan-chains, and determine the organization of the testing in such a way
that the test time is minimized. We assume that Multiplexing Architecture
(Chapter 8, Section 2.1, page 108) is used, which means that the cores are
tested one at a time and the full TAM width is given to each core when tested.

Figure 140.Test scheduling with tests having fixed test time and fixed resource usage.

test time (τ)

TAM wires

τAτ =3

4
3
2
1

A
B

test application time

A
BwAw =3

τB=3

wBw =2

τopt

τi ri×
i∀

∑
Rmax

-------------------------=
(9.10)

τopt

τi pi×
i∀

∑
Pmax

--------------------------=
(9.11)

Chapter 9: Test Scheduling 147

The test time τi for a scan test at core ci where the scanned elements (flip-
flops) are not fixed into scan-chains is given by Aerts and Marinissen [5]:

at a core with ffiff scanned flip-flops partitioned into ni scan chains and tvi
test vectors. Assuming Multiplexing Architecture means that ni is equal to
NtamNN (number of TAM wires).

Figure 141 (a) shows an example with a core having 16 scanned flip-flops
that are partitioned into 3 scan-chains (Figure 141 (b)). The shift-in time is
then 6 (=⎧16/3⎤) cycles. At the same time as the test response from the previ-
ous test vector is shifted out, a new test vector is shifted in. Such pipelining
can be applied for all test vectors but the last test response Figure 141 (c).

For each test vector, idle bits are introduced due to the imbalanced scan-
chains (⎧ff⎧ iff /N// tamNN ⎤) (see Section 3.1). The worst case is when there is NtamNN -1
idle bits per test vector for each core. It means that the number of idle bits at a
core i tested with tvi test vectors is:

τi i 1()tvi 1+
ff i

ni
----------× tvi+= (9.12)

Figure 141.Configuration of scan flip-flops into scan-chains.

Core A

Scan-in vector 1

Capture

Partitioning the 16 scan flip-
flops into 3 scan-chains

scan flip-flop

Time

Scan-out response 1/
scan-in vector 2

Capture

Scan-out response n

Capture

(a) (b)

(c)

X
X

X
X

X
X

X
X

X
X

- idle bitX

tvi tam 1()Ntam 1–× (9.13)

SOC Test Design148

For a system with |C| cores, the number of idle bits is then given by:

Equation (9.14) can if NtamNN -1 almost equal to NtamNN be approximated to:

In order to minimize the idle bits, Equation (9.14) actually suggests that
the TAM width should be minimized.

It is of interest to explore the number of idle bits in relation to the number
of non idle bits. Taking Equation (9.12) and by assuming that the last test vec-
tor at each core has a minor impact, the following simplification ((tvi+1)×ff× iff /
NtamNN >> tvi) can be made for each core:

Assuming that the number of test vectors is high, Equation (9.16) can by
assuming that tvi+1=tvi be further simplified to:

If the number of flip-flops is high compared to the TAM width, Equation
(9.17) can be approximated to:

If the simplifications above are acceptable, Equation (9.18) demonstrates
that there is a linear dependency between the test time and the number of
TAM wires; hence the scheduling problem assuming soft cores is trivial.
Assign the full TAM bandwidth to each core in a sequence (Multiplexing
Architecture).

If the approximations leading to Equation (9.18) are not acceptable, start-
ing with Equation (9.12),

the difference (∆) between considering idle bits and not considering idle
bits is given by:

tvi tam 1()Ntam 1–×
i 1

C

∑ (9.14)

tvi tam 1()Ntam 1–×
i 1

C

∑ tvi Ntam×
i 1

C

∑≈ (9.15)

i 1()tvi 1+
ff i

Ntam
----------------× tvi+ i 1()tvi 1+

ff i

Ntam
----------------×≈ (9.16)

i 1()tvi 1+
ff i

Ntam
----------------× tvi+ i 1()tvi 1+

ff i

Ntam
----------------× tvi

ff i

Ntam
----------------×≈ ≈()tvi 1+ i× (9.17)

i 1()tvi 1+
ff i

Ntam
----------------× tvi+ i 1()tv 1+()tvi 1+

ff i

Ntam
----------------× tvi

ff i

Ntam
----------------× tvi

ff i

Ntam
----------------×≈i≈ ≈()tvi 1+ i× tvi × (9.18)

τi i 1()tvi 1+
ff i

Ntam
----------------× tvi+= (9.19)

∆i
ff

Ntam
⎝ ⎠i()tvi 1+

Nt
----------------× tvi+⎛ ⎞1()tv 1+
ff i× tv+⎝ ⎠⎝ ⎠()tvi 1+ i----------------× tvi+

ff

tam
⎝ ⎠i()tvi 1+

Ntam
× tvi+⎛ ⎞1()tv 1+

ff i× tv+⎝ ⎠⎝ ⎠()tvi 1+ ----------------× tvi+–= (9.20)

Chapter 9: Test Scheduling 149

Equation (9.20) can be reduced to:

Equation ∆i is obviously minimal as ffiff can be evenly divided by NtamNN . ∆i
is minimized when the number of scan flip-flops is much larger than the TAM
width, ffiff >>N> tamNN .

In the study made by Larsson and Fujiwara [162, 163, 173] it is assumed
that tests can be partitioned into smaller pieces. It means that a set of TV test
vectors for the test of a core can be partitioned into {tv1, tv2, ..., tvm} where
TV=VV Σ tvi; all test vectors are applied. Larsson and Fujiwara make use of pre-
emption and reconfigurable wrappers to allow the most suitable wrapper
configuration at a core. Figure 142 shows an example of a produced test
schedule where core 3 is tested in two sessions. Note, that the TAM width at
core 3 is different in the two sessions.

For the experiments, Larsson and Fujiwara make use of the ITC’02 bench-
marks [189, 190] where it is assumed that all cores are soft cores. As a
reference Larsson and Fujiwara make use of the lower bound of the test appli-
cation time, excluding the capture cycles and the shift out of the last response,
defined by Aerts and Marinissen [5] as:

Larsson and Fujiwara compare the three techniques; Multiplexing Archi-
tecture [5], Distribution Architecture [5], and preemptive scheduling. The
result from the experiments on design p93791 is in Figure 143. The reason
why Distribution Architect does not perform well at low TAM widths is that
the design contains some small cores with low testing time. It means that
there are cores assigned to dedicated TAM wires but these cores only make
use of the wires for a short period of time. The reason why Multiplexing
Architecture does not perform well at high TAM width is that Aerts and Mari-

∆i
f f i

Ntam

f f i

Ntam
----------------–= (9.21)

f f i tvi×
Ntam

i 1

C

∑ (9.22)

Figure 142.Session length based on preemption.

session k session l

TAM

time

core 5

core 3

core 1

core 1

core 3

core 2

core 4

min(ttil)

tam3l

NTAM

SOC Test Design150

nissen [5] impose the constraint the a scan-chain must at least contain 20 flip-
flops.

The results for the designs ic, p22810, p34392, and p93791 is in
Figure 144 where for the ic design each scan-chain must contain at least 20
flip-flops, p22810 at least 5 flip-flops, p34392 at least 60, and p93791 at least
30. Figure 144 shows that the preemption-based technique proposed by Lars-
son and Fujiwara [162, 163, 173] produces results close to the lower bound. It
also supports the statement in Equation (9.21) that the number of idle bits are
reduced when NtamNN <<ff< iff .

4.2 Hard Cores - Fixed Number of Scan-chains

Hard cores are cores where the number and the length of the scan-chains
are fixed prior to the design of the test solution for the system. It means that a
fixed number of scan-chains are given. The test time versus the number of
TAM wires (wrapper chains) at a core is illustrated in Figure 127. From
Figure 127 it is clear that at some TAM widths, the testing time is actually not
decreased compared to a lower TAM width.

Larsson [177] made an analysis of the test time, the TAM width and the
number of scan-chains at core 11 in the ITC’02 benchmark p93791

0

 20000

40000

60000

80000

100000

120000

140000

160000

30 40 50 60 70 80 90 100

T
es

t A
pp

lic
at

io
n

T
im

e

TAM width

distribution architecture

multiplexing architecture

preemptive scheduling

Figure 143.Comparing the test application time for multiplexing architecture, distri-
bution architecture and preemptive scheduling.

Chapter 9: Test Scheduling 151

(Figure 145). Figure 145 plots the test time (τ(w) at w TAM wires) times the
number of TAM wires (w), i.e (τ(w) × w). For Core 11 - original - the original
design as specified in the p93791 design. However, the flip-flops are for
design Core 11 - balanced - partitioned into 11 balanced scan-chains. The
design Core X - balanced - means that the scanned elements (flip-flops) are
partitioned into X balanced chains (X=11, 22, 44, and 88). As the number of
scan-chains increases, the more linear the term τ(w) × w becomes. It means
that by carefully designing the scan-chains at a module, a near linear behavior
is achieved. And hence, the scheduling problem becomes trivial (if no other
constraints but test time and TAM wires are considered).

5 INTEGRATED TEST SCHEDULING AND TAM
DESIGN

The possibility to acheive a low test application time for a system depends
highly on the test schedule and the TAM design. Narrow TAMs reduces the
routing cost at the expense of the testing time. Larsson et al. [166, 176] pro-
posed therefore an integrated technique where the test schedule and the TAM
are designed. In the approach several constraints are taken into account.

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100

T
im

e
fr

om
 L

ow
er

 B
ou

nd
 (

%
)

TAM width

p22810

p93791

design ic

p34392

Figure 144.Test time analysis by Larsson and Fujiwara [162, 163, 173].

SOC Test Design152

5.1 Test Time and Test Power Consumption

An important constraint to consider is test power. The test power problem
and its modeling have been discussed in Chapter 7, “Test Power Dissipation”,
on page 89. The power consumption can be assumed to be fixed for each test-
able unit or it can be assumed to be non-fixed. A non-fixed test power model
based on the assumption by Saxena et al. [241] has been used by Larsson et
al. [158, 159, 161, 164, 166, 176] (Eq. 7.1, page 90).

5.2 Bandwidth Assignment

Test parallelization allows a flexible bandwidth assignment for each test
depending on the bandwidth limitations at the block under test and the band-
width limitations at the test resources. The test time (see Section 5.1) for a test
tijk at blockk bij at corej ci is given by:

and the test power (see Section 5.1):

where bwij is the bandwidth at blockj bij at corej ci [161].

 140000

 160000

 180000

200000

220000

240000

260000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TAM width

|τ1-τ2|/τ// 2x100=5%
τ1=156850

τ2=149381

Core 11 - original

Core 11 - 11 balanced chains

Core 11 - 22 balanced chains

Core 11 - 44 balanced chains Core 11 - 88 balanced chains
2

Figure 145.The test time versus the number of TAM wires for different scan
design versions of Core 11 in P93791 made by Larsson [177].

τ′ijk
τijk

bwij
----------= (9.23)

p′ijk pijk bw×
ij

= (9.24)

Chapter 9: Test Scheduling 153

Combining the TAM cost and the test time (Equation 9.23), the following
is given for each block bij and its tests tijk:

where: and k is the index of all tests at the
block. To find the minimum cost of Equation 9.25, the derivative in respect to
bw gives the bandwidth bwij at a blockj bij:

Naturally, when selecting bwij, the bandwidth limitations at each block are
considered.

5.3 Test Scheduling

The test scheduling algorithm is outlined in Figure 146. First, the band-
width is determined for all blocks (Section 5.2) and the tests are sorted based
on a key (time, power or time×power). The outmost loop terminates when all
tests are scheduled. In the inner loop, the first test is picked and after calling
create_tamplan (Section 5.4), the required number of TAM wires are selected
or designed for the test based on the cost function. If the TAM factor is impor-
tant, a test can be delayed in order to use an existing TAM. This is determined
by the cost function. If all constraints are fulfilled, the test is scheduled and
the TAM assignment is performed using the technique in section 5.4. Finally,
all TAMs are optimized according to the technique discussed in section 5.5.

t bij()bij ll bwij β τijk b ij()ij⁄ αb()bwij××
k∀

∑=cos (9.25)

l ijk()ijk i ijk()ijk][()ijk i ()ijk

α
β

k∀
∑⎝ ⎠τijk

k∀

⎛ ⎞τ ⎠⎠τ⎝⎝ ijk ∑⎝ ⎠ll
⎛ ⎞l⎝ ⎠⎝ ⎠ll⁄× (9.26)

Figure 146.Test scheduling algorithm.

for all blocks bandwidth = bandwidth(block)
sort the tests descending based on time, power
or time×power
τ=0
until all tests are scheduled begin

until a test is scheduled begin
tamplan = create_tamplan(τ, test) // see

Figure 147 //
τ' = τ + delay(tamplan)
if all constraints are fulfilled then

schedule(τ')
execute(tam plan) // see Figure

148 //
remove test from list

end if
end until
τ = first time the next test can be sched-

uled
end until
order (tam) // see Figure 149 //

SOC Test Design154

5.4 TAM Planning

In the TAM planning phase, our algorithm:

■ creates the TAMs,

■ determines the bandwidth of each TAM,

■ assigns tests to the TAMs, and

■ determines the start time and the end time for each test.

The difference compared to the published approaches [164, 165] is that in
the planning phase the existence of the TAMs is determine but not their
routing.

For a selected test, the cost function is used to evaluate all options
(create_tamplan(τ', test)) (Figure 147). The time (τ’) when the test can be
scheduled to start and its TAM is determined using the cost function and if all
constraints are fulfilled, the TAM floor plan is determined (execute (tam-
plan)) (Figure 148). To compute the cost of extending a TAM wire with a
node, the length of the required additional wires is computed. Since the order
of the cores on a TAM is not yet decided, an estimation technique for the wire
length is needed. For most TAMs, the largest wiring contribution comes from
connecting the nodes with the largest distance from each other. The rest of the
nodes can be added on the TAM at a limited additional cost (extra routing).
However, for TAMs with a high number of nodes, the number of nodes
becomes important.

The estimation of the wire length considers both of these cases. We
assume that the nodes (test sources, test sinks and the wrapped cores) in the
system are evenly distributed over the area, i.e. A = width×height =
(N((xNN ×∆)×(N((yNN ×∆) = NxNN ×N×× yNN ×∆2, where NxNN and NyNN are the number of cores on the
x and y axis, respectively. Therefore ∆, the average distance between two
nodes, is computed as:

The estimated length, eli, of a wire, wi, with k nodes is:

It means that the maximum between the length of the longest created wire
and the sum of the average distances for all needed arcs (wire parts) is com-
puted. For example, let nfurthestn be the node creating the longest wire, and nnew

∆ A Nx y()Nx Ny×⁄= (9.27)

eli max1 j kjj l source j ksin) ∆)k(source j sin k 1(){ }l() ∆nsource j n ksin→ →nj ()k 1×= (9.28)

Chapter 9: Test Scheduling 155

the node to be added, the estimated wiring length after inserting nnew is given
by (Eq. 9.27):

For a TAM, the extension is given as the summation of all extensions of
the wires included in the TAM that are needed in order to achieve the required
bandwidth. The TAM selection for a test tijk is based on the TAM with the
lowest cost according to:

Using this cost function, a trade-off between adding a new TAM and
delaying a test on an existing TAM is given. For a newly created TAM, the

el′i max

∆ ()k 2⎩ ⎭∆ k 2()k 2×
⎪ ⎪

sou ce u t est ew sin⎩ ⎭source furthest new ksin

⎩ ⎭⎩ ⎭

⎨ ⎬⎩ ⎭l()nsource furthest new n ksin→ → →nfurthest nnew
⎨ ⎬
⎩ ⎭⎩ ⎭l)

⎪ ⎪⎪ ⎪
⎩ ⎭source furthest new ksin()source furthest new ksin

⎪ ⎪min⎨ ⎬⎨ ⎬⎨ ⎬
source new furthest ksin

⎨ ⎬⎨ ⎬
min⎨ ⎬

l⎩ ⎭⎩ ⎭l)
⎧ ⎫l)⎧ ⎫l()nsource new furthest n ksin→ → →nnew nfurthest
⎪ ⎪⎪ ⎪⎨ ⎬

⎧ ⎫source new furthest ksin()source new furthest ksin
⎨ ⎬⎨ ⎬

source new furthest ksin

= (9.29)

l′l ll()el′l ell– delay taml ijk) αtaml tijk, .+× (9.30)

Figure 147.TAM estimation, i.e. create_tamplan(τ((, test).

for all tams connecting the test source and test sink used
by the test, select the one with lowest total cost

tam cost=0;
demanded bandwidth=bandwidth(test)
if bandwidth(test)>max bandwidth selected tam then

demanded bandwidth=max bandwidth(tam)
tam cost=tam cost+cost for increasing bandwith of tam;

end if
time=first free time(demanded bandwidth)
sort tams ascending according to extension (τ, test)
while more demanded bandwidth

tam=next tam wire in this tam;
tam cost=tam cost+cost(bus, demanded bandwidth)
update demanded bandwidth accordingly;

end while
total cost=costfunction(tam cost, time, test);

Figure 148.TAM modifications based on create_tamplan (Figure 147), i.e. execute
(tamplan).

demanded bandwidth = bandwidth(test)
if bandwidth(test)>max bandwidth selected virtual tam then

add a new tam with the exceeding bandwidth
decrease demanded bandwidth accordingly

end if
time=first time the demanded bandwidth is free sufficient
long
sort tams in the tam ascending on extension (test)
while more demanded bandwidth

tam=next tam in this tam;
use the tam by adding node(test) to it, and mark it busy
update demanded bandwidth accordingly;

end while

SOC Test Design156

delay for a test is 0 (since no other test is scheduled on the TAM and the test
can start at time 0):

5.5 TAM Optimization

Above the TAMs for the system was created, each test was assigned to a
TAM, the bandwidth of the TAMs was determined, and every test was given a
start time and an end time in such a way that no conflicts and no limitations
were violated. In this section, we discuss the routing of the TAMs, order(tam)
in Figure 146. The approach is based on a simplification of an algorithm pre-
sented by Caseau and Laburthe [38]. The notation TG→[A,D]→SA was
above used to indicate that core A and D were assigned to the same TAM,
however, the order of [A,D] was not determined (Equation 9.25), which is the
objective in this section. The following is used:

to denote that a TAM from nsource (the test source) to nsink (the test sink)
connects the cores in the order nsource, n1, n2,..., nn, nsink.

The TAM routing algorithm is outlined in Figure 149. The algorithm is
applied for each of the TAMs and initially in each case the nodes (test
sources, wrapped cores, and test sinks) of a TAM are sorted in descending
order according to:

where the function dist gives the distance between two cores, or between a
test source and a core, or between a core and a test sink, i.e:

First the test source and the test sink are connected (Figure 149). In the
loop over the list of nodes to be connected, each node is removed and added
to the final list in such a way that the wiring distance is minimized according
to:

where 1≤i<n (all nodes on the TAM).

new t ijk()tijk l j i j() βsource t j()t j i k t j()t jsin→ →ci .=

nsource 1 2…
n

n ksin→ →n1 n→ →n2… (9.31)

dist nsource i()nsource ni, dist ni ksin()ni n ksin,+ (9.32)

dist ni j()ni n j, i j()xi x j–
2

yi y j()yi y j–
2

+= (9.33)

min dist ni new()i new di new i 1()new i 1 di i i 1()i i 1{ }dist n()ni nnew, dist n()nnew ni 1, dist n()ni ni 1,–+ (9.34)

Figure 149.Routing optimization of all TAMs.

add test source and test sink to a final list
sort all cores descending according to Eq. 9.34
while cores left in the list

remove first node from list and insert in the final list
insert direct after the position where Eq. 9.32 is fulfilled

end while

Chapter 9: Test Scheduling 157

Further details on the above approach is to be found in “An Integrated
Framework for the Design and Optimization of SOC Test Solutions”
(page 187) and “Efficient Test Solutions for Core-based Designs” (page 215).

6 INTEGRATING CORE SELECTION IN THE
TEST DESIGN FLOW

A core-based design flow is typically a sequence that starts with core
selection, followed by test solution design, and after production, the system is
tested (Figure 150(a)). In the core selection stage, the core integrator selects
appropriate cores to implement the intended functionality of the system. For
each function there are a number of possible cores that can be selected, where
each candidate core has its specification on, for instance, performance, power
consumption, area, and test characteristics. The core integrator explores the
design space (search and combines cores) in order to optimize the SOC. Once
the system is fixed (cores are selected) the core test integrator designs the
TAM and schedules the tests based on the test specification for each core. In
such a design flow (illustrated in Figure 150(a)), the test solution design is a
consecutive step to core selection. And, even if each core’s specification is
highly optimized, when integrated as a system, the system’s global test solu-
tion is most likely not highly optimized.

The design flow in Figure 150(b), on the other hand, integrates the core
selection step with the test solution design step, making it possible to consider
the impact of core selection when designing the test solution. In such a design
flow (Figure 1(b)), the global system impact on core selection is considered,
and the advantage is that it is possible to develop a more optimized test
solution.

Figure 150.Design flow in a core-based design environ-
ment (a) traditional and (b) proposed.

core selection

production

test application

test design

core selection
& test design

production

test application

(a) (b)

SOC Test Design158

The design flow in Figure 150(b) can be viewed as in Figure 151, where
the core type is floor-planned in the system but there is not yet a design deci-
sion on which core to select. For each position, several cores are possible. For
instance, for the cpu_x core there are in Figure 151 three alternative processor
cores (cpu1, cpu2 and cpu3).

The modeling technique proposed by Larsson et al. [166, 176] allows a
flexible specification of tests. Each testable unit can have multiple test sets,
and each test set is modeled in a flexible way. For instance, a testable unit can
be tested by three test sets. Each test set has its specification on test time, test
power and test resources (test source and test sink). It is, for instance, possible
to specify a test having an external test source and an internal test sink. How-
ever, each testable unit has its specified tests. Larsson [175, 177] proposes a
technique where for each testable unit a set of test sets are specified for each
testable unit. It means that for each testable unit, one such test should be
selected. Figure 152 shows an example. The testable unit blockB1 can be
tested by the two tests tB1.1 and tB1.2 or by tB1.3.

The approach by Larsson [175, 177] is outlined in Figure 153. The
approach consists of:

■ Creation of initial solution,

■ Test scheduling and TAM design,

■ Identification of limiting resources,

■ Design modifications.

Figure 151.System design

cpu1
cpu2

cpu3

ram1
ram2

ram3

cpu_x dsp_y

ram_z ram_u

dsp1
dsp2

dsp3

[Blocks]
#name idle_pwr pwr_grid test_sets {} {} ...{}
blockA1 0 p_grd1{ tA1.1 }{ tA1.2, tA1.3}
blockA2 0 p_grd1{ tA2.1 }{ tA2.2 }
blockB1 5 p_grd1{ tB1.1 tB1.2 } { tB1.3 }

Figure 152.Extention to allow test set selection.

Chapter 9: Test Scheduling 159

The initial solution is created by selecting the best test set for each testable
unit by only considering the test set itself. It means that only a local view is
taken.

After the creation of the initial solution, each testable unit has its tests and
the tests and the TAM are to be designs. For this task the approach by Larsson
et al. [166, 176] is used.

The bottlenecks or limiting resources are to be identified. A machine-ori-
ented Gantt chart where the resources are the machines and the tests are the
jobs can be used to show the allocation of jobs on machines [23]. A Gantt
chart is in Figure 154 where for instance, test B2 needs TG: r2 and TRE: s2.
An inspection of Figure 154 shows that TG:r2 and TRE:s2 are not limiting the
solution. On the other hand, all resources that are used more than τopt are lim-
iting the solution. The test source TG:r1 is the most critical one followed by
the test sink TRE:s1. These two test resources are the obvious candidates for
modification.

For tests that are using a limiting resource TAM size modification and test
set modifications and the novel extensions are the bandwidth modifications.
The search for an improved solution continues until no better solution can be
found (Figure 153).

Further details on the above described approach can be found in “Core
Selection in the SOC Test Design-Flow” (page 253).

Figure 153.Core selection integrated in test solution design.

Create initial solution
Do {

Create test schedule and TAM
Find limiting resources
Modify tests at limiting resources

} Until no improvement is found
Return best solution

Figure 154.A machine-oriented Gantt chart [23].

time

resources

TG: r1 testA testB1

test B2

τtotal

TG: r2

TRE: s1

TRE: s2

testC

testA testB1

test B2 testC

SOC Test Design160

7 FURTHER STUDIES

We have discussed test scheduling and the impact of the test architecture
(TAM), test conflicts and test power consumption.

7.1 Combined Test Time and TAM Design Minimization

Below, in the chapter “An Integrated Framework for the Design and Opti-
mization of SOC Test Solutions” (page 187) and “Efficient Test Solutions for
Core-based Designs” (page 215) techniques where the cost of both test time
and TAM routing cost are minimized.

7.2 Core Selection in the Test Design Flow

Larsson proposes in “Core Selection in the SOC Test Design-Flow”
(page 253) a technique where the test sets are not yet fixed for the system. The
idea is to include the test solution design already at the core integration phase.
Each core has its specification on performance, power consumption, as well
as its test specification. In order to design a test solution with a minimal cost
(test time and TAM routing cost), the core selection, and test resource parti-
tioning and placement should be taking into account with a system-level
perspective. A system-level perspective is needed since only considering a
solution at core-level will not show the impact for the whole system.

7.3 Defect-Oriented Test Scheduling

In a large volume production a high number of systems are to be tested.
Some are faulty will some a non-faulty (correct) to be shipped. In the case
when a system is faulty the testing is terminated not at the end when all tests
are applied but as soon as a fault appears - abort-on-fail. In abort-on-fail the
cores with a high probability to have a fault should be scheduled prior to cores
with a lower defect probability. The idea is to minimize the expected test
time.

In the chapter “Defect-Aware Test Scheduling (page 277) formulas to
compute the expected test time for different test architectures are presented,
as well as experiments to illustrate the importance of considering the defect
probability per testable unit (core). In “An Integrated Technique for Test Vec-
tor Selection and Test Scheduling under ATE Memory Depth Constraint”
(page 277) a technique is proposed to select test sets for a system to meet the
time constraint while maximizing the test quality.

PART 3
SOC TEST APPLICATIONS

Part 3 is a collection of the following longer papers:

■ The chapter A Reconfigurable Power-Conscious Core Wrapper
and its Application to System-on-Chip Test Scheduling is based
on the papers presented at International Test Conference (ITC’03)
[171], Asian Test Symposium (ATS’03) [172], and Workshop on
RTL and High-Level Testing WRTLT’02 [167].

■ The chapter An Integrated Framework for the Design and Opti-
mization of SOC Test Solutions is based on the papers presented at
Design Automation and Test in Europe (DATE), 2001 [158], Interna-
tional Conference on Computer-Aided Design (ICCAD), 2001 [160],
and Journal on Electronic Testing: Theory and Applicationd (JETTA)
2002 [164, 165].

■ The chapter Efficient Test Solutions for Core-Based Designs is
based on the following papers Asian Test Symposium (ATS), 2002
[166], and Transactions on Coputer-Aided Design for Integrated Cir-
cuits, 2004 [176].

■ The chapter Integrating Core Selection in the System-on-Chip
Test Solution Design-Flow is based on the papers presented at Inter-
national Test Resource Workshop (TRP), 2004, [175], and Interna-
tional Test Conference (ITC), 2004 [177].

■ The chapter Defect-Aware Test Scheduling is based on the papers
presented at International Test Synthesis Workshop (ITSW’03)
[168], 2003, Design and Diagnostics of Electronic Circuits & Sys-
tems (DDECS’03), 2003 [169], and VLSI Test Symposium
(VTS’04), 2004 [174].

■ The chapter An Integrated Technique for Test Vector Selection
and Test Scheduling under Test Time Constraint is based on the
work submitted to Asian Test Symposium (ATS), 2004, [57].

Chapter 10

A Reconfigurable Power-Conscious Core Wrapper
and its Application to System-on-Chip Test Schedul-
ing1

1 INTRODUCTION2

Test power consumption and test time minimization (test scheduling) are
becoming major challenges when developing test solutions for core-based
designs. Test power consumption is usually high during testing since it is
desirable to activate as many fault locations as possible in a minimum of time,
and if the tests are scheduled concurrently in order to reduce the testing times
the test power increases. In this chapter, we demonstrate that the scheduling
of tests on the test access mechanism (TAM) is equivalent to independent job
scheduling on identical machines, and we make use of an existing preemptive
scheduling algorithm and reconfigurable core wrappers to produce optimal
solution in linear time. We propose a novel reconfigurable power-conscious
core test wrapper and discusses its application to optimal power-constrained
SOC (system-on-chip) test scheduling. The advantage of the proposed wrap-
per is that at each core it allows (1) a variable number of wrapper-chains, and
(2) a possibility to select the appropriate test power consumption for each
core. Our scheduling technique produces optimal solutions in respect to test
time, and selects wrapper configurations in a systematic way that implicitly
minimizes the TAM routing and the wrapper logic. We have implemented the
technique and the experimental results show the efficiency of our approach.
The results from our technique are less than 3% from the theoretical com-
puted lower bound.

Long testing times are required due to the increasing amount of test data
needed to test complex SOC (System-on-Chip). The testing times can be
reduced by concurrent execution of tests, however, constraints and limitations
must be considered. Concurrent testing leads to higher activity in the system

1. The chapter is based on the papers presented at International Test Conference (ITC’03)
[171], Asian Test Symposium (ATS’03) [172], and Workshop on RTL and High-Level Testing
WRTLT’02 [167].
2. The research is partially supported by the Swedish National Program STRINGENT.

SOC Test Design164

and hence higher power consumption. The high test power consumption and
the test time minimization problem can be tackled by:

■ design for low power testing where the system is designed to mini-
mize test power consumption, which allows consequently testing at a
higher clock frequency [68, 207, 230, 241], and

■ test scheduling where the tests are organized in such a way that the
test time is minimized while considering test power limitations and
test conflicts [5, 41, 75, 74, 73, 100, 115, 113, 112, 114, 140, 141,
164].

A core-based design is composed of pre-defined cores, UDL (user-defined
logic) blocks and interconnections. From a testing perspective, all testable
units, that is core logic, UDL blocks and interconnections, are defined as
cores. The TAM (Test Access Mechanism), the set of wires connecting the
ATE (Automatic Test Equipment) and the cores under test, is responsible for
the test data transportation. A wrapper is the interface between the TAM and a
core and it can be in one of the following modes at a time: normal operation,
internal test or external test. A core can be either wrapped or unwrapped,
which means that there are have two types of tests in a system: wrapped core
test at wrapped cores and cross-core test (interconnection test) at unwrapped
cores [191].

In this chapter, we propose a reconfigurable power-conscious (RPC) core
test wrapper. The advantage is that it can be used to regulate the test power at
core-level. We describe also the application of the RPC core wrapper in opti-
mal test scheduling. The main contributions of the chapter are that we:

1. show that the problem of scheduling wrapped core tests on the TAM
is equivalent to independent job scheduling on identical machines,

2. make use of a preemptive approach to produce a solution with opti-
mal test time in linear time [23] using reconfigurable wrappers [140],

3. extend the scheduling algorithm to handle wrapped core tests and
cross-core tests while preserving the production of an optimal solu-
tion in linear time.

4. develop RPC core test wrapper which combines the gated sub-chain
scheme presented by Saxena et al. [241] and the reconfigurable core
test wrapper introduced by Koranne [140],

Chapter 10 165

5. integrate the RPC wrapper in the preemptive test scheduling
approach, and

6. formulate a power condition that, if satisfied, guarantees that our pre-
emptive test scheduling scheme produces optimal test application
time for the system.

The main advantages with our approach are that:

1. optimal test time is achieved in linear time,

2. the TAM routing is minimized by assigning a minimum of TAM
wires per core,

3. the reconfigurable wrappers are selected and inserted in a systematic
manner to minimize the number of configurations, which minimizes
the added logic,

4. it is possible to regulate the power consumption at each individual
core, which allows the test clock speed to increase,

5. it is possible to regulate the test power consumption at system level,
which should be kept within a given value in order to reduce the risk
of over-heating which might damage the system under test,

6. it is possible select the best TAM size, and

7. minimization of the TAM routing and the overhead when using the
RPC wrapper is performed.

The rest of the chapter is organized as follows. Related work is reviewed
in Section 2 and our reconfigurable power-conscious test wrapper is intro-
duced in Section 3. In Section 4 we present our optimal preemptive test
scheduling technique, based on a known preemptive scheduling algorithm
[23]. In the experiments we have made a comparison with previous
approaches and we illustrate the advantages with our wrapper and its use in
the proposed scheduling approach in Section 5. The chapter is concluded with
conclusions in Section 6.

2 BACKGROUND AND RELATED WORK

Figure 155 shows an example of a core-based system consisting of five
cores, a TAM and an ATE (serving as test source and test sink). The test
source, where the test stimulus are stored, and the test sink, where the test
responses are saved, are connected to the NtamNN wire wide TAM. The test

SOC Test Design166

source feed test stimulus to the cores via the TAM and the produced test
responses from the cores are also transported via the TAM to the test sink.
The cores are equipped with a test method; core 1 is, for instance, scan tested.
A wrapper is the interface between a core and the TAM. Its main task is to
connect the scan chains and the wrapper cells at a core into a set of wrapper
chains, which are connected to the TAM. Cores with a dedicated wrapper,
such as core 1, 2, and 3, are wrapped while cores without a dedicated wrapper,
such core 4 and 5, are unwrapped. A core test is a test at a wrapped core, and
a cross-core test is a test at an unwrapped core. The execution of a core test
and a cross-core test therefore differs from each other. A core test is per-
formed by placing its wrapper cells in internal test mode, and the test stimulus
are transported direct from the test source via the TAM to the core. The test
responses are transported from the core via the TAM to the test sink. The test-
ing of an unwrapped core (such as core 4 in Figure 155), cross-core test,
requires that the wrapper at core 1 and the wrapper at core 2 are both placed in
external test mode. Test stimulus are then transported from the test source on
the TAM via the wrapper cells at core 1 to core 4. The test responses are
transported from core 4 via the wrapper cells at core 2 and the TAM to the test
sink.

In the particular example given in Figure 155, the testing of core 1 and
core 4 cannot be performed concurrently due to that in both cases the wrapper
at core 1 is needed, and a wrapper can only be in one mode at a time. In gen-
eral, test conflicts such as this one must be considered in the scheduling
process. There are mainly two types of test conflicts: (1) TAM wire conflicts
and (2) core wrapper conflicts, respectively.

Several test scheduling techniques have been proposed [5, 41, 75, 74, 73,
100, 115, 113, 112, 114, 140, 141, 167, 164]. Chou et al. proposed a tech-
nique for general systems where each test has a fixed test time and a fixed
power consumption value [41]. The objective is to organize the tests in such a
way that the total test application time is minimized while test conflicts and
test power limitation are taken in to account [41]. The testing time for a test

Figure 155.An example system with three wrapped cores (1,2,3)
and two unwrapped cores (4,5).

test access mechanism (tam)

wrapper

core 1

te
st

 s
ou

rc
e

te
st

 s
in

k

scan chain 1

core 5

Ntam

wrapper cell

scan chain 2
scan chain 3

fu
nc

tio
na

l i
np

ut

fu
nc

tio
na

l o
ut

pu
t

core 2

scan chain 1
scan chain 2

core 3

scan chain 1
scan chain 2
scan chain 3

wrapper

wrapper

co
re

 4

Chapter 10 167

can often be modified. In scan testing, for example, the test time at a core can
be modified by adjusting the number of wrapper chains that the scanned ele-
ments are configured into. A low number of wrapper chains at a core reduces
the number of occupied TAM wires at the expense of higher testing time. And
vice versa. Several wrapper chain configuration and TAM wire assignment
algorithms to minimize the test time for core tests at wrapped cores have been
proposed [75, 74, 73, 100, 115, 113, 112, 114, 140, 141]. For instance, Iyen-
gar et al. [113] used an ILP (Integer-Linear Programming) approach. Koranne
[140] introduced a reconfigurable wrapper with the advantage of allowing
NtamNN wrapper chain configurations per wrapped core. In order to minimize the
added overhead due to the reconfigurable wrapper, a limited number of cores
are selected to have a reconfigurable wrapper prior to the scheduling. The
fundamental reason that the SOC wrapper configuration problem is hard is
that the test time is not linear with the number of wrapper-chains. Figure 156
shows the test time versus the number of wrapper chains and the test time
decreases as the number of wrapper chains increases. However, it is not a
strict linear function. And, it is a staircase function where certain points (num-
ber of wrapper chains) does not reduce the test time.

Iyengar et al. [115] and Huang et al. [100] proposed scheduling tech-
niques for core tests under power constraints with fixed test power
consumption for each test. Nicolai and Al-Hashimi [207] proposed a tech-
nique to minimize useless switches, and Gerstendörfer and Wunderlich [68]

introduced a technique to disconnect the scan-chains from the combinational
logic during the shift process, both leading to a lower power consumption
during test, which reduces test time by allowing clocking at a higher fre-
quency. For the same purpose, Saxena et al. [241] proposed an approach to
gate sub-chains.

3 A RECONFIGURABLE POWER-CONSCIOUS
CORE WRAPPER

The RPC (reconfigurable power-conscious) test wrapper we propose com-
bines the gated sub-chain approach proposed by Saxena et al. [241] and the
reconfigurable wrapper introduced by Koranne [140]. The basic idea in the
approach proposed by Saxena et al. [241] is to use a gating scheme to lower
the test power dissipation during the shift process. Given a set of scan-chains
as in Figure 157 where the three scan-chains are connected into a single chain.
During the shift process, all scan flip-flops are active, leading to high switch
activity in the system and therefore high power consumption. However, if a
gated sub-chain scheme is introduced (Figure 158), only one of the three

SOC Test Design168

chains is active at a time during the shift process. The advantage is that the
switch activity is reduced in the scan-chains and also in the clock tree distri-
bution while the test time remains the same in the two cases [241].

The wrapper proposed by Koranne allows, in contrast to approaches such
as Boundary Scan, TestShell and P1500, several wrapper chain configurations

 0

20000

40000

60000

80000

 100000

 120000

 140000

 160000

 0 2 4 6 8 10 12 14 16

T
es

t t
im

e

TAM width

Figure 156.The test time versus the number of wrapper chains at core 11 in design P93791.

Figure 157.Original scan chain [241].

clk

scan-in
scan ffs scan ffs scan ffs

scan-out

Figure 158.Scan chain with gated sub-chains[241].

clk

scan-in
scan ffs

scan ffs

scan ffs

scan-out

decode

T0 T1

clk1 clk2 clk3

Chapter 10 169

[140]. The main advantage is the increased flexibility in the scheduling pro-
cess. We use a core with 3 scan chains of length {10, 5, 4} to illustrate the
approach. The scan-chains and their partitioning into wrapper chains are spec-
ified in Table 11.

For each TAM widths (1, 2, and 3) a di-graph (directed graph) is generated
where a node denotes a scan-chain and the input TAM, node I (Figure 159).
An arc is added between two nodes (scan-chains) to indicate that the two
scan-chains are connected, and the shaded nodes are to be connected to the
output TAM. A combined di-graph is generated as the union of the di-graphs.
Figure 160 shows the result of the generated combined di-graph from the
three di-graphs in Figure 159. The indegree at each node (scan-chain) in the
combined di-graph gives the number of signals to multiplex. For instance, the
scan chain of length 5 has two input arcs, which in this example means that a
multiplexer selecting between an input signal and the output of the scan chain
of length 10 is needed. The multiplexing for the example is outlined in
Figure 161.

Our combined approach works in two steps. First, we generate the recon-
figurable wrapper using Koranne’s approach. Second, we add clock gating,
which means we connect the inputs of each scan-chain to the multiplexers,
which is to be compared to connecting the outputs of each scan-chain as in the
approach by Koranne. We illustrate our approach using the scan chains speci-

TAM width Wrapper chain partitions Max length

1 [10,5,4] 19

2 [(10),(5,4)] 10

3 [(10),(5),(4)] 10

Table 11. Scan chain partitions.

I

Figure 159.Di-graph representations.

4 5

10

(a) 1 wrapper-chain

I

4 5

10

(b) 2 wrapper-chains

I

4 5

10

(c) 3 wrapper-chains

I

Figure 160.The union of di-graphs in Figure 159.

4 5

10

SOC Test Design170

fied in Table 11. The result is given in Figure 162, and the generated control
signals are in Table 12.

The advantages with our approach are that we gain control of the test
power consumption at each core, and we do not require the extra routing
needed with Koranne’s approach, as illustrated in Figure 163.

We could make use of the RPC wrapper at all cores, which would lead to a
high flexibility since we could reconfigure the wrapper into any configura-
tion. However, in order to minimize the overhead, we will use a systematic
approach to select cores and number of configurations at each core (described
below).

4 OPTIMAL TEST SCHEDULING

In this section we describe our power-constrained test scheduling tech-
nique that produces optimal test time in linear time while scheduling both
core tests and cross-core tests. The approach also selects the wrapper
configurations.

Wrapper chains T0 T1 T2 5S 4S S1 S2 clk10 clk5 clk4

3 0 0 0 1 1 0 0 1 1 1

2 0 0 1 1 x 0 0 1 0 0

0 1 0 1 0 0 1 0 1 1

1 0 1 1 x x 0 x 1 0 0

1 0 0 0 x 1 0 0 1 0

1 0 1 0 0 1 1 0 0 1

Table 12. Control signals.

Figure 161.Multiplexing strategy [140].

0
1I2

I3

0
1

5S

4S

scan chain of length 10

scan chain of length 5

scan chain of length 4

10

5

I1

4

Chapter 10 171

4.1 Optimal Scheduling of Core Tests

The test scheduling problem of core tests is equal to the independent job
scheduling on identical machines since each test ti at a core ci, (i=1, 2, …, n)
with testing time τi is independent on all other core tests, and each TAM wire
wjw (j((=1, 2, …, NtamNN) is an independent machine used to transport test data
[167]. The LB (lower bound) of the test time for a given TAM width NtamNN can
be computed by [23]:

The problem of independent job scheduling on identical machines can be
solved in linear time (O(n) for n tests) by using preemption [23]: assign tests
to the TAM wires successively, assign the tests in any order and preempt tests
into two parts whenever the LB is reached. Assign the second part of the pre-
empted test on the next TAM wire starting from time point zero.

An example (Figure 164) illustrates the approach where the five cores and
their test times are given. The LB is computed to 7 (Equation (10.1)) and due
to that τi≤LB for all tests; the two parts of any preempted test will not overlap.
The scheduling proceeds as follows: The tests are considered one by one, for
instance, starting with a test at c1 scheduled at time point 0 on wire w1. At
time point 4, when the test at c1 is finished, the test at c2 is scheduled to start.

Figure 162.Our multiplexing and clocking strategy.

0
1I1

I2

I0

0
1

5S

4S

scan chain of length 10

scan chain of length 5

scan chain of length 4

10

5

4

0
1

S2
0
1

S1

O0

O1

O2

clk10

clk5

clk4

Figure 163.Wrapper routing.

scan chain
scan chain

core

wrapper

scan chain

scan chain
scan chain

core

wrapper

scan chain

(a) Koranne’s routing [140]. (b) Our approach.

LB max
i 1

n

∑
⎩ ⎭

i i
i 1

tam⎨ ⎬max() ττi i Ntam⁄
⎩ ⎭⎩ ⎭

i()i i tam
⎧ ⎫n

⎨ ⎬⎨ ⎬() N⁄ (10.1)

SOC Test Design172

At time point 7 when LB is reached, the test at c2 is preempted and the rest of
the test is scheduled to start at time 0 on wire w2. Therefore the test at c2 is
partitioned into two parts. In execution of the test at c2, the test starts at wire
w2 at time point zero. At time point 2, the test is preempted and resumed at
time point 4. The test ends at time point 7. At the preemption of a test, another
wire is assigned to the core and a multiplexer is added for wire selection. For
the test of c2, a multiplexer is added to select between w1 and w2.

In general preemptive scheduling, extra time is introduced at each preemp-
tion point due to the need to set up a job and also to save its state. In our case,
the machines are the wires and no extra time is needed to set up and save the
state. Also, in testing no other tasks are performed at the cores but testing, i.e.
the core’s state can be left as it is until the testing continues. The advantage is
that the state of the core is already set and testing of it can start at once.

Assume that a core has a wrapper-chain of length l (l cycles are needed to
perform a shift-in of a new vector and a shift-out of the previous test
response). If the test is preempted when x% of the l cycles are shifted in it
means that when the test restarts x% of the new test vector is already loaded
and x% less cycles are needed in the first shift process, i.e. there is no time
overhead due to setting up and saving the state of a core; all tests can be
stopped at LB.

Finally, in some cases, such as for some types of memories such as
DRAMs, the testing cannot be preempted. For instance, assume that test t2t
cannot be preempted as in Figure 164. In such a case, when LB is met, the
scheduling algorithm restarts at LB (and not at time 0) and moves towards
zero. The resulting schedule is in Figure 165. Note that, test t2t now makes use
of one wire during time point 4 to 5 and two wires during time 5 to 7, which is
possible using the reconfigurable wrapper. This overlapping is further dis-
cussed below.

Figure 164.Optimal TAM assignment and preemptive scheduling.

NtamNN = 3 w1
w2
w3

ci 1 2 3 4 5
τi 4 5 3 4 5

1 2

2 3 4

4 5
τ

1 2 3 4 5 6 7

Figure 165.Optimal TAM assignment and preemptive schedul-
ing where test t2t cannot be interrupted.

NtamNN = 3 w1
w2
w3

ci 1 2 3 4 5
τi 4 5 3 4 5

1 2

234

4 5
τ

1 2 3 4 5 6 7

Chapter 10 173

4.2 Transformations for Optimal TAM Utilization

A long test time for one of the test in the system may limit the solution, i.e.
LB is given by the test time of a test (max(τi) in Equation 10.1). In such a
case, the test time can be reduced by assigning more TAM wires so that the
length of the wrapper chains becomes shorter. Our approach is straight for-
ward, we remove max(τi) from Equation 10.1:

When LB is computed, we use the scheduling approach illustrated above
(Figure 164). For illustration, we use the same example but with a wider
TAM (N((tamNN =7). The scheduling result is presented in Figure 166. A test may
now overlap in using the wires (machines). For instance, the test at c1 uses
wire w1 and w2 during time period 0 to 1 and only wire w1 during period 1 to
3. A reconfigurable wrapper is required to solve this problem.

We solve the overlapping problem in two consecutive steps: partitioning
of the tests, and inserting of reconfigurable wrappers. After assigning TAM
wires to all tests, we determine the partitions, which is illustrated in
Figure 166. For instance, in partition 1 of the test at c2, w3 is used during
period τ21 and in partition 2 of the test at c2, w2 and w3 are used during period
τ22. From this we can determine that two wrapper chains are initially needed
and then a single wrapper chain is needed. In total, two configurations are
needed for core c2. The generic partitioning of a test’s usage of wires over the
testing time is given in Figure 167. For each test, a start time starti and an end
endid are assigned by the algorithm, respectively. The number of partitions,
which will be the number of configurations, is computed for each test by the
algorithm given in Figure 168. If the test time τi for a test ti is below LB, only
one configuration is needed. A multiplexer might be required for wire selec-

LB max τi
i 1

n

∑ Ntam⁄ . (10.2)

Figure 166.Partitioning of the schedule into sessions.

w1
w2
w3
w4
w5
w6
w7

1

2
2

3

4

4

5

1

5

4

5

2

1

τ12,τ22τ11,τ21

τ41,τ51 τ42,τ52

LB=3

1 2 3

SOC Test Design174

tion if starti>endid . From the algorithm, we find that the maximal number of
partitions per test is three, which means we in the worst case have to use three
configurations per core. The wrapper logic is then in range |C|×3×technology
parameter (maximum 3 configurations per core). In the approach by Koranne
[140] the added logic, if a reconfigurable wrapper is added at all cores, is
given by |C|×N×× tamNN ×technology parameter.

The preemption based approach, assumes that a job can be divided over
machines. And that the job time is reduced linearly with the number of
machines. In the case of testing, it means that the testing times reduces in a
linear way with the number of wrapper chains. However, Figure 156 showed
that at some points the testing time does not decrease as the number of wrap-
per chains are increased. A major reason is that the scan-chains are

Figure 167.Bandwidth requirement for a general test.

τ1 τ2 τ3

n2n1
n3

n1+1=n2=n3+1

w1
w2
w3
w4

starti

endidd

for all ti begin
if τi ≤ LB then begin
if starti ≤ endi then begin
no pre-emption for ti → no wrapper logic is added.

end else begin
the test is split into two parts at different wires →
1 multiplexer is inserted.

end
end else begin
if starti ≤ endi then begin
one configuration needed from time point 0 to starti,
one configuration needed from time point starti to endi,
one configuration needed from time point endi to LB,

end else begin
one configuration needed from time point 0 to endid ,
one configuration needed from time point endi to start,
one configuration needed from time point starti to LB,

end
end

end

Figure 168.Algorithm to determine wrapper logic.

Chapter 10 175

unbalanced. We have made further studies on the test time versus the number
of wrapper chains. We took core 11 from design P93791 and plotted the dif-
ference to linear test time (τxτ -τ1/x// at x tam wires where τ1 is the test time at a
single TAM wire) (Figure 169). The difference to the assumption that the
testy time is linear increases as the number of wrapper chains increases. How-
ever, note that the difference is extremly low when the number of wrapper
chains are few. It means that an efficient test scheduling technique should
make use of as few wrapper chains as possible.

4.3 Cross-Core Test Scheduling

There are no wrapper conflicts among core tests since each core has its
dedicated interface to the TAM. For cross-core tests, on the other hand, there
is not a dedicated interface to the TAM and wrapper conflicts must therefore
be taken into account.

Test conflicts can be modeled using a resource graph [41]. The system in
Figure 155 is modeled as a resource graph as in Figure 170, where the nodes
represents the tests and the resources. A resource may consist of cores and
wrapper cells, which are explicitly captured as shown in Figure 170. An edge
between a test and a resource (core or a wrapper cell) indicates that the test

Figure 169.The test time over a set of TAM widths (wrapper chains) for core 11.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16

D
iff

er
en

ce
 to

 li
ne

ar
 te

st
 ti

m
e

(%
)

TAM width

SOC Test Design176

requires the resource during testing. The test conflicts are due to that the
wrapper cells can only be in one mode at a time: In core testing the wrapper
cells are in internal test mode while in cross-core test they are in external test
mode. In Figure 170, we denote arcs from core tests with (i) - internal mode
and arcs from cross-core tests with (e) - external mode. Breaking the graph
into two resource graphs, one for core tests and one for cross-core tests makes
it possible to schedule all core tests with the algorithm in section 4.1.

For a cross-core test, test vectors are transported from the TAM to a
wrapped core placed in external test mode, which is feeding the test vectors to
the unwrapped core (the target for the cross-core test). The test responses are
captured at a wrapped core also in external test mode and then the test
responses are fed to the TAM. A cross-core test involves therefore three
cores. In Figure 155 a cross-core test at c4 is performed by setting the wrap-
pers at c1 and c2 in external test mode, and then test vectors are transported to
c4 through the wrapper at c1 and the test response from c4 is transported to the
TAM using the wrapper at c2. This demonstrates a cross-core test with a one-
to-one mapping where the wrapper cells at the functional outputs at c1 are
connected via c4 to the functional input wrapper cells at c2.

Several other mapping combinations are possible for the wrapper input
and wrapper output cells, including one-to-many, many-to-one and many-to-
many. These mappings cover all combinations and we assume that each func-
tional input and output can be in only one such mapping and in only one test
set. In Figure 155, for instance, a functional output wrapper cell at c1 cannot
be in one test set with an input wrapper cell at c5 and in another test set with
an input cell at c3. However, a wrapper cell at c1 can be in the same test set as
a wrapper cell at c3 and at c5. In some cases, the functional inputs and outputs
at a wrapped core may be connected to different cores. Figure 155 shows such
an example where the outputs at c1 are partitioned into two sets, one set used
by c2 and c4 and another set used by c3 and c5. However, these partitions
operates independently when the wrapper is in external test mode. Therefore
there is no conflict.

Figure 170.A resource graph of the system in Figure 155

(e))(i) (i) (i))(e)

wrapper mode: i - internal mode

t1 t2t t3t t4t t5ttests:

iwc-input wrapper cells
owc-output wrapper cells

cores: c1 c2 c3 c4 c5

owciwciwc iwcowc owc

e - external mode

Chapter 10 177

We have above shown that partitioning the tests into two distinct test
phases, core tests and cross-core tests, eliminates the wrapper conflicts
between the set of core tests and the set of cross-core tests. We make use of
this property and divide the test scheduling into two separate parts, core test-
ing followed by cross-core testing. The partition of the tests means we divide
the tests into a core test part given by LBct and a cross-core test part given by
LBict. To illustrate, we take the example in Figure 164 assuming that the test
at c2 and c4 are cross-core tests, which means that executing the test at c2
entails concurrent testing at c1 and at c3, and testing t4t entails concurrent test-
ing at c3 and at c5. The core tests are performed at core c1, c3 and c5 and the
cross-core tests are at core c2 and c4. The lower bound for the core tests:
LBct=(4+3+5)/3=4 and the lower bound for the cross-core tests: LBict=(5+4)/
3=3, i.e. LB=LB= ct+LB+ ict. One test schedule is presented in Figure 171.

The test scheduling algorithm consists of four steps:

1. Compute LBct (lower bound) for the core tests,t

2. Schedule all core tests,

3. Compute LBict for the cross-core tests, andt

4. Schedule all cross-core tests.

The algorithm starts by selecting a core and assigning it to wire zero at
time zero. If the core’s test time is higher than LB, a new wire is used. The
test time is reduced until it reaches zero and each time LB is reached, a new
wire is added to the test. The start time and the end time of the tests are used
when creating the partitions. We observe that the LB defines the test applica-
tion time and also that all TAM wires are fully utilized, all tests ends at the
same time (Figure 166). It means that partitioning the tests into two partitions
(core tests and cross-core tests) will still produce an optimal solution.

4.4 Optimal Power-Constrained Scheduling

Chou et al. introduced a power model where each test is denoted with a
fixed power consumption value [41]. Recently a more elaborate model was
presented by Rosinger et al. [231]. The power consumption depends on the
switching activity in the circuit, and by reducing the switching activity, the

Figure 171.Partitioning of the schedule in Figure 166.

w1
w2
w3

5

2

5

3 4

4 45

1

LBict=3LBct=4

2

2

SOC Test Design178

power consumption is reduced. Saxena et al. [241] showed by experiments
that sub-gating a single scan-chain into three sub-chains reduces the test
power to approximately a third. Rosinger et al. proposed a technique to
reduce both shift and capture power consumption. The experimental results
indicate, in most cases, that the power consumption is lower than the intuitive
approximation of dividing the consumption at a single chain with the number
of partitions [230]. In this chapter, we use a power model based on the results
by Saxena et al, which means the power depends on the number and the
length of the wrapper chain partitions. However, a more elaborate power
model can easily be adopted in our approach.

We use an example to illustrate the test power modeling at scan-chain
level (Figure 172). In Figure 172 (a) a single wire is assigned to the core
where the three scan chains form a single wrapper chain. The result is that the
wire usage is minimized but both the test time and the test power are rela-
tively high. In Figure 172 (b) three TAM wires (one per wrapper chain) are
used resulting in a lower test time while the test power consumption remain
the same as in Figure 172(a). However, in Figure 172(c), our approach, the
same test time is achieved as in Figure 172(a) but at a lower test power con-
sumption. The reduction in test power in this example is due to that each scan-
chain is loaded in a sequence, and not more than one scan-chain is activated at
a time.

Our test scheduling technique [167] minimizes the number of TAM wires
at each core by assigning as few wires as possible to each core. It means that
each wrapper chain includes a high number of scanned elements. This is an
advantage since it maximizes the possibility to gate scan-chains at each wrap-
per chain and hence control the test power consumption at the cores.

We assume that the test power at a core is evenly distributed over the
scanned elements. The algorithm to compute the power limit (P((limit) for a sys-
tem is in Figure 173. At step 2, the LB is computed, and at step 3, the
maximal number of required TAM wires are computed. At step 4, the amount
of test power consumed by each scan chain, and wrapper cell is computed. At
steps 5 and 6, the NtamNN values with highest test power are summarized which

Figure 172.Core design alternatives.

(a) (b)

te
st

 p
ow

er

test time

lo
gi

c

lo
gi

c

te
st

 p
ow

er

test time
(c)

te
st

 p
ow

er

test time

Chapter 10 179

is the Plimit. If Plimit is below Pmax (P((limit≤Pmax), optimal test time can be
achieved.

We have now a relationship between the TAM bandwidth and the test
power. The advantage is that we can use it when we determine the TAM
bandwidth; NtamNN can be increased as long as Plimit≤Pmax. It is also possible to
increase the frequency of the test clock in order to minimize the test time as
long as Plimit≤Pmax.

4.5 Minimization of TAM Wiring

The test scheduling approach above minimizes the number of TAM wires
assigned to each core. The advantage is that, even if the floor-plan is
unknown, the TAM routing cost is minimized since as few TAM wires as
possible are assigned to each core. If the floor-plan is known, we can further
minimize the TAM routing since the scheduling approach does not require
any particular sorting of the tests. We take the system in Figure 164 with
NtamNN =7 resulting in a test schedule as in Figure 166 where the cores are sorted
(and numbered) clock-wise as in Figure 174. The advantage is that neighbour-
ing cores share TAM wires. For instance core 2, which makes use of TAM
wire w2 as soon as core 1 finish its use of w2. Cores placed far away from each
other are not sharing TAM wires, such as core 5 and core 3.

Figure 173.Algorithm to compute the power limit.

1. Given: a system with i cores, where each core i con-
sists of ffi scanned flip-flops and wrapper cells parti-
tioned into j partitions each of length scij (including
wrapper cells). The test time τi is computed as if all ffi
elements are connected to a single wrapper chain. The
test power when all ffi elements are active is given by
pi. Ntam is the TAM bandwidth.

2. Compute LB (lower bound) (algorithm in Section 4.3)
3. For each core i compute wiw as the maximal number of TAM
wires that can be assigned to it assuming preemptive
scheduling:

4. For each scan-chain partition sij compute its power:

5. For all cores: select the wiw scan elements with highest
power value and sort them descending in a list L.

6. For all scan elements in L select the Ntam first and the
Plimit is equal to the summation of the Ntam values.

wi
τi

LB
------------=

pij

pi

ff i
---------- scij×=

SOC Test Design180

5 EXPERIMENTAL RESULTS

We have above shown that the test scheduling problem can be solved in
linear time by using our proposed RPC wrapper. For illustration, we have
made experiments using the P93791 design, one of the largest ITC’02 bench-
marks [189]. We have made a test time comparison between our approach and
techniques proposed by Goel and Marinissen [75, 74, 73], Huang et al. [100],
Iyengar et al. [113, 112, 114], Koranne [140], and Koranne and Iyengar [141].
In our implementation we made use of the wrapper chain algorithm proposed
by Iyengar et al. [113]. Similar to all previous approaches, we assume that all
tests are core tests and that the designs are flat (no hierarchy). The results are
collected in Table 13. In some cases the previously reported results are below
the lower bound computed by Goel and Marinissen [75]. These results are
excluded and placed within parentheses. In six out of the seven TAM band-
widths our approach finds the solution with the lowest test time. In the other
case, our approach is the second best. The results are also illustrated as the
difference to lower bound (τ-LB)/LB×100 for all approaches in Figure 175
and in more detail for the best approaches in Figure 176. It should be noted
that most approaches are less than 10% from the lower bound (Figure 175)
and that the best approaches are less than 6% from the lower bound. Our
approach is less than 3% from lower bound at all bandwidths. It should be
noted that the lower bound of the test time is computed assuming that the last
stimulus from the previous core can be shifted out on wires concurrently as
the first vector of the following core is loaded on the same wires [75]. We
have in our approach not considered such optimization. Hence, our approach
can be further optimized.

We have in Table 14 collected the overhead due to the use of our reconfig-
urable wrapper. The overhead is computed as follows. For cores with a single

Figure 174.The example system assuming the five wrapped cores to be floor-planned.

wrapper

core 1

te
st

 s
ou

rc
e

te
st

 s
in

k

Ntam = 7

core 2

core 3

wrapper

wrapper

wrapper

core 4

wrapper

core 5

w1
w2
w3
w44
w55
w66
w77

Chapter 10 181

TAM bandwidth assigned to it, only one bandwidth is required and the cost is
assumed to be zero. In some cases, only a multiplexer is to be added for the
selection between wires and we assumed such cost to be equal to 1. For cores
with three configurations, we assumed the cost to be equal to 3. We have col-
lected the overhead at each scanned core and for the rest of the cores. The test
times for the cores without scan-chains are in general shorter and in only a
few cases additional logic is required.

We have also made experiments considering test power consumption.
First, we illustrate the use of the RPC wrapper at core 12 assuming a fixed test
time at a single TAM wire (Table 15). The test time remains the same while
the test power consumption can be adjusted depending on the number of gated
wrapper-chains. The added wrapper logic depends on the number of wrapper
chains which indicate how many partitions are to be gated. An advantage of
our scheduling approach is that we assign as few TAM wires as possible to
each core, which makes it possible to have a high ratio between the number of

Approach Test application time: T

TAM=16 TAM=24 TAM=32 TAM=40 TAM=48 TAM=56 TAM=64

Lower bound [75] 1746657 1164442 873334 698670 582227 499053 436673

Enumerate [113] 1883150 1288380 944881 929848 835526 537891 551111

ILP [113] 1771720 1187990 887751 (698583) 599373 514688 460328

Par eval [112] 1786200 1209420 894342 741965 599373 514688 473997

GRP[114] 1932331 131084 988039 794027 669196 568436 517958

Cluster [73] - - 947111 816972 677707 542445 467680

TRA [74] 1809815 1212009 927734 738352 607366 529405 461715

Binpack[97] 1791860 1200157 900798 719880 607955 521168 459233

CPLEX[140] 1818466 (1164023) 919354 707812 645540 517707 453868

ECTSP[140] 1755886 (1164023) 919354 707812 585771 517707 453868

ECTSP1[140] 1807200 1228766 967274 890768 631115 562376 498763

TB-serial [75] 1791638 1185434 912233 718005 601450 528925 455738

TR-serial [75] 1853402 1240305 940745 786608 628977 530059 461128

TR-parallel [75] 1975485 1264236 962856 800513 646610 540693 477648

K-tuple [141] 2404341 1598829 1179795 1060369 717602 625506 491496

Our approach 1752336 1174252 877977 703219 592214 511925 442478

Table 13. Test time comparison on P93791.

SOC Test Design182

gated wrapper chains and the number of TAM wires at each core. In other
words, we have a high possibility to regulate the test power at each core.

We have compared our approach with the multiplexing and the distribu-
tion architecture [5]. In the multiplexing approach all cores are tested in a
sequence where the full bandwidth is given to each core at a time. In the dis-
tribution architecture, every core is given its dedicated TAM wires. The
distribution architecture is sensitive to test power consumption since the test-
ing of all cores are started at the same time. All results are collected in Table
16. The distribution architect is not applicable when the TAM bandwidth is
below the number of cores (32 in P93791). At the 50000 power limit the dis-
tribution architecture can not be used since activating all cores exceeds the
power limit. At the limit 20000, the multiplexing approach is not applicable
since core 6 limits the solution with its consumption of 24674. Our approach
results in the same test time, however, the wrapper logic is increased in order
to gate the wrapper chains.

6 CONCLUSIONS

In this chapter we have proposed a reconfigurable power-conscious core
test wrapper, and described its application to preemptive test scheduling. The
main advantages with the wrapper is the possibility to (1) control the test
power consumption at each individual core and (2) the possibility to achieve
several TAM bandwidths for a given core test. Test power control at each
core is important since it allows testing at a higher clock frequency, which can

TAM
band-width

Test time Wrapper logic at core ci Total

c1 c6 c11 c12 c13 c14 c17 c19 c20 c23 c27 c29 Cores with
no scan chains

4 6997584 0 1 0 0 0 1 0 0 1 0 0 0 0 3

8 3498611 0 3 0 1 0 1 0 1 1 0 1 0 1 9

16 1752336 1 3 0 1 1 1 1 1 3 1 1 1 1 16

24 1174252 2 3 0 3 3 3 3 1 3 3 3 1 1 29

32 877977 2 3 1 3 3 3 3 3 3 3 3 3 1+1 35

40 703219 2 3 0 3 3 3 3 3 3 3 3 3 3+1 36

48 592214 2 3 0 3 3 3 3 3 3 3 3 3 3+2 37

56 511925 2 3 0 3 3 3 3 3 3 3 3 3 3+2+3 40

64 442478 2 3 1 3 3 3 3 3 3 3 3 3 3+3+3 42

Table 14. Number of configurations per core for our approach on P93791 (Table 13).

Chapter 10 183

be used to further decrease the test time. Test power control also allows a
higher number of cores to be tested simultaneously. Variable bandwidth is
important since it increases the flexibility during the scheduling process. The
advantage of the proposed test scheduling scheme, besides the production of
an optimal solution in respect to test time, is that it also considers cross-core
testing, which are used to test unwrapped testable units such as interconnec-
tions and used-defined logic.

Wrapper chains Power consumption Wrapper logic

1 4634 0

2 2317 1

3 1545 3

4 1159 4

5 927 5

6 773 6

Table 15. Test power consumption options at core 12 (P93791) with the
RPC wrapper at a fixed test time (=1813502) and fixed TAM width (=1).

0

10

20

30

40

50

60

16 24 32 40 48 56 64

D
iff

er
en

ce
 to

 lo
w

er
 b

ou
nd

 (
%

)

TAM width

Figure 175.Difference to lower bound for the approaches in Table 13.

SOC Test Design184

Pmax TAM width Multiplexing architecture Distribution architecture Our approach

Test time Test time Test time

100000 4 7113317 Not applicable 6997584

8 3625510 Not applicable 3498611

16 1862427 Not applicable 1752336

24 1262427 Not applicable 1174252

32 1210398 5317007 877977

40 1119393 1813502 703219

48 660143 1126316 592214

56 645698 907097 511925

64 645682 639989 442478

50000 4 7113317 Not applicable 6997584

8 3625510 Not applicable 3498611

16 1862427 Not applicable 1752336

24 1262427 Not applicable 1174252

32 1210398 Not applicable 877977

40 1119393 Not applicable 703219

48 660143 Not applicable 592214

56 645698 Not applicable 511925

64 645682 Not applicable 442478

20000 4 Not applicable Not applicable 6997584

8 Not applicable Not applicable 3498611

16 Not applicable Not applicable 1752336

24 Not applicable Not applicable 1174252

32 Not applicable Not applicable 877977

40 Not applicable Not applicable 703219

48 Not applicable Not applicable 592214

56 Not applicable Not applicable 511925

64 Not applicable Not applicable 442478

Table 16. Test time on P93791 for the multiplexing architecture [5], the distribution archi-
tecture [5], and our approach at different power limitations.

Chapter 10 185

Figure 176.Difference to lower bound for the best approaches in Table 13.

 0

 1

2

 3

4

 5

 6

7

16 24 32 40 48 56 64

D
iff

er
en

ce
 to

 lo
w

er
 b

ou
nd

 (
%

)

TAM width

TRA

Bin-packing

TB-Serial

ECTSP

Proposed approach

Chapter 11

An Integrated Framework for the Design and Opti-
mization of SOC Test Solutions1

1 INTRODUCTION2

We propose an integrated framework for the design of SOC test solutions,
which includes a set of algorithms for early design space exploration as well
as extensive optimization for the final solution. The framework deals with test
scheduling, test access mechanism design, test sets selection, and test
resource placement. Our approach minimizes the test application time and the
cost of the test access mechanism while considering constraints on tests and
power consumption. The main feature of our approach is that it provides an
integrated design environment to treat several different tasks at the same time,
which were traditionally dealt with as separate problems. We have made an
implementation of the proposed heuristic used for the early design space
exploration and an implementation based on Simulated Annealing for the
extensive optimization. Experiments on several benchmarks and industrial
designs show the usefulness and efficiency of our approach.

The testing of System-on-Chip (SOC) is a crucial and time consuming
problem due to the increasing design complexity. Therefore it is important to
provide the test designer with support to develop an efficient test solution.

The work-flow for a test designer developing a test solution consists typi-
cally of two consecutive parts: an early design space exploration and an
extensive optimization for the final solution. During the process, conflicts and
limitations must be carefully considered. For instance, tests may be in conflict
with each other due to the sharing of test resources; and power consumption
must be controlled, otherwise the system may be damaged during test. Fur-
thermore, test resources such as external testers support a limited number of
scan-chains and have a limited test memory, which also introduce constraints.

Research has been going on in developing techniques for test scheduling,
test access mechanism (TAM) design and testability analysis. For example, a
framework to support the design of test solutions for SOC with Built-In Self-
Test (BIST) has been proposed by Benso et al. [15]. In this chapter, we com-

1. The chapter is based on the papers presented at Design Automation and Test in Europe
(DATE), 2001 [158], International Conference on Computer-Aided Design (ICCAD), 2001
[160], Journal on Electronic Testing: Theory and Applicationd (JETTA) 2002 [164, 165].
2.
[[

The research is partially supported by the Swedish National Program STRINGENT.

SOC Test Design188

bine and generalize several approaches in order to create an integrated
framework for the development of SOC test solutions where:

■ tests are scheduled to minimize the total test time,

■ a minimal TAM is designed,

■ test resources are floor-planned, and

■ test sets for each core with test resources are selected.

The above set of tasks is performed in a single algorithm, which considers
test conflicts, power limitation and test resource constraints [158,160,157].
The algorithm is suitable for early design space exploration due to its low
computational complexity, which is an advantage since it will be used itera-
tively many times.

Chakrabarty showed that test scheduling is equal to the open-shop sched-
uling [28], which is known to be NP-complete and the use of heuristics are
therefore justified. Several heuristics have been proposed
[5,28,25,41,65,110,202,287]; however, they have been evaluated using rather
small benchmarks. For such benchmarks, a technique based on Mixed-Integer
Linear-Programming (MILP) can be used [28]. A disadvantage is the com-
plexity of solving the MILP model since the size of it quickly grows with the
number of tests making it infeasible for large industrial designs. We have
therefore made an implementation based on Simulated Annealing for the
extensive optimization of the test schedule and the TAM design for the final
solution [131]. We have performed experiments on several benchmarks and
on an Ericsson design consisting of 170 tests to show the efficiency and use-
fulness of our approach.

The rest of the chapter is organised as follows. Related work is outlined in
Section 2 and the system modeling is introduced in Section 3. Factors affect-
ing the test solution are presented in Section 4. The integrated algorithm is
described in Section 5 and how we used Simulated Annealing is outlined in
Section 6. The chapter is concluded with experimental results in Section 7 and
conclusions are in Section 8.

2 RELATED WORK

The basic problem in test scheduling is to assign a start time for all tests.
In order to minimize the test application time, tests are scheduled as concur-
rent as possible, however, various types of constraints must be considered.

Chapter 11 189

A test to be scheduled consists of a set of test vectors produced or stored at
a test source (placed on-chip or off-chip). The test response from the test is
evaluated at a test sink (placed on-chip or off-chip). When applying a test, a
test conflict may occur, which must be considered during the scheduling pro-
cess. For instance, often a testable unit is tested by several test sets (usually an
external test set and a on-chip test set are required to reach high test quality).
If several tests are used for a testable unit, only one test can be applied to the
testable unit at a time.

Constraints on power consumption must be considered otherwise the sys-
tem can be damaged. During testing mode, the power consumption is usually
higher compared to normal operation [68]. For instance, consider a memory,
which often is organized in memory banks. During normal operation, only a
single bank is activated. However, during testing mode, in order to test the
system in the shortest possible time it is desirable to concurrently activate as
many banks as possible [41].

The use of different test resources may entail constraints on test schedul-
ing. For instance, external testers have limitations of bandwidth due to that a
scan chain operates usually at a maximum frequency of 50 MHz [92]. Exter-
nal testers can usually only support a maximum of 8 scan chains [92],
resulting in long test application time for large designs. Furthermore, an exter-
nal tester’s memory is limited by its size [92].

Zorian proposed a test scheduling technique for fully BISTed systems
where test time is minimized while power constraint is considered [287]. The
tests are scheduled in sessions where tests at cores placed physically close to
each other are grouped in the same test session. In a fully BISTed system,
each core has its dedicated test source and test sink; and there might not be
any conflicts among tests, i.e. the tests can be scheduled concurrently. How-
ever, in the general case, conflicts among tests may occur. Garg et al.
proposed a test scheduling technique where test time is minimized for systems
with test conflicts [65] and for core-based systems a test scheduling technique
is proposed by Chakrabarty [28, 25]. Chou et al. proposed an analytic test
scheduling technique where test conflicts and power constraints are consid-
ered [41]. A resource graph is used to model the system where an arc between
a test and a resource indicate that the resource is required for the test,
Figure 177. From the resource graph, a test compatibility graph (TCG) is gen-
erated (Figure 178) where each test is a node and an arc between two nodes
indicates that the tests can be scheduled concurrently. For instance t1 and t4t
can be scheduled at the same time. Each test is attached with its test time and
its power consumption and the maximal allowed power consumption is 10.
The tests t1 and t5 are compatible, however, due to the power limit they cannot
be scheduled at the same time.

SOC Test Design190

Another test scheduling approach is proposed by Muresan et al. where
constraints among tests and on power consumption are considered [202].
Favour is given to reduce the test time by allowing new tests to start even if
all tests in a session are not completed. Iyengar and Chakrabarty proposed a
pre-emptive test scheduling technique where the test for a testable unit may be
interrupted and resumed later, i.e. the test set is partitioned into several test
sets [110]. Using a scheme by Craig et al., the above discussed scheduling
techniques can be grouped in [47]:

■ nonpartitioned testing,

■ partitioned testing with run to completion, and

■ partitioned testing.

The differences among the grouping are illustrated with five tests (t1,..., t5)
in Figure 179. The scheduling strategies proposed by Zorian [287] and Chou
et al. [41] are nonpartitioned (Figure 179(a)), the strategy proposed by Mure-
san et al. is partitioned testing with run to completion (Figure 179(b)) and the
approach proposed by Iyengar and Chakrabarty [110] is partitioned testing
(Figure 179(c)).

A test infrastructure is responsible for the transportation of test vectors
from test sources to cores under test and test responses from cores under test
to test sinks. It consists of two parts; one for the test data transportation and

Figure 177.Resource graph of an example system.

t1 t2t t3t t4t t5t

r5rr4rr3rr2rr1

Figure 178.Test compatibility graph (TCG) of the example system (Figure 177).

t1
(5,3)

t5t
(6,2)

t4t
(4,2)

t2t
(3,5)

t3t
(4,2)

test
(power,time)

power limit = 10

Chapter 11 191

one for the control of the transportation. In the approach for fully BISTed sys-
tems proposed by Zorian [287], tests at cores placed physically close to each
other are grouped in the same test session. The main advantage is that the
same control structure can be used for all tests in the session, which mini-
mizes the routing of control wires. In general, systems are not tested with a
BIST structure only for each testable unit and therefore a TAM is required
[27,30,26,212]. Chakrabarty proposed an integer linear programming (ILP)
for the allocation of TAM width [27,30,26] and the effect on test time for sys-
tems using various design styles for test access with the TestShell wrapper is
analysed by Aertes and Marinissen [5].

To ease test access the cores can be placed in wrappers such as Boundary
scan [19], TestShell [187] or P1500 [104, 186]. The Boundary scan technique,
developed for PCB designs, suffers from long testing time due to the shifting
process, and it becomes even worse for SOC designs since the amount of test
data to be transported increases. An alternative is to use an architectures as
proposed by Aertes and Marinissen (Figure 180.(a,b,c)) where the test time
only depends on the number of flip-flops within the cores and the number of
test vectors, i.e. the transportation to and from a core is free [5]. The daisy-
chained architecture uses a clocked bypass, however, Marinissen et al. have
also proposed a wrapper design library allowing bypass structures without
clock delay [187].

The above scheduling techniques all assume that all testable units have
their selected test sets. Sugihara et al. proposed a technique for selecting test
sets where each core may be tested by one test set from an external tester and
one test set from a dedicated test generator for the core [256].

Figure 179.Scheduling approaches.

t2at

(c) Partitioned testing

t5t

t1
t4t

t3t

t2bt

(b) Partitioned testing with run to completion

t2t

t5t t4t

t1 t3t

(a) Nonpartitioned testing
session 1 session 2 session 3

t2t

t5t

t4t

t1

t3t

SOC Test Design192

3 SYSTEM MODELING

This section describes the formal notation we use to model the SOC under
test. An example of a system under test is given in Figure 181 where each
core is placed in a wrapper to ease test access. A DFT technique is added to
each core and in this example all cores are tested using the scan technique.
The test access port (tap) is the connection to an external tester and for
instance the test source, test source 1, and test sink, test sink 1, are imple-
mented on-chip [158,157]. Applying several sets of tests, where each test set
is produced or stored at a test source and the test response is analysed at a test
sink, tests the system.

Figure 180.Multiplexing, distribution and daisy-chain
architecture [5].

test sinkNN

test sink

test sink

A

A

A B

B

B NN

NNNN

NN
NNtest source

test source

test source

N1N +N2N =NN1NN1N

N2N N2N

NN

NN

NN

NN

NN

(a) Multiplexing architecture

(b) Distribution architecture

(c) Daisy-chain architecture

Figure 181. An example system.

TAP source

TAP sink

test sink 1

test source 1
test sink 2

wrapperwrapper

wrapper

core 1 (c1 core 2(c) 2)

core 3(c3)
test source 2

scan-chain 1

scan-chain 1

scan-chain 1

scan-chain 2

scan-chain 3

Chapter 11 193

The system in Figure 181 can be modelled as a design with test, DT = (C,
Rsource, Rsink, pkk max, T, source, sink, core, constraint, mem, bw), where:

C = {c1, c2,..., cn} is a finite set of cores where each core ci∈C is charac-
terized by pidle(ci): idle power;

Rsource = {r1, r2,..., rpr } is a finite set of test sources;
Rsink = {r1, r2,..., rq} is a finite set of test sinks;
pmax: maximal allowed power at any time;
T = {t1, t2t ,..., to} is a finite set of tests, each consisting of a set of test vec-

tors. Several tests form a core test (CT) and each core,TT ci, can be associated
with several core tests, CTijTT (j j((=1,2,...,l).

Each test ti is characterized by:
τtest(ti): test time for test ti,ii
ptest(ti): test power for test ti,
bw(ti): bandwidth required for ti
mem(ti): memory required for test pattern storage.
source: T→TT Rsource defines the test sources for the tests;
sink: T→TT Rsink defines the test sinks for the tests;
core: T→TT C: the core where a test is applied;
constraint: T→TT 2C: the set of cores required for a test;
mem(ri): memory available at test source ri∈Rsource;
bw(ri): bandwidth at test source ri∈Rsource.
For each test, one test sink and one test source are required. In our model,

it is possible for every test to combine any type of test source (on-chip or off-
chip) with any type of test sink (on-chip or off-chip), which is important to
allow high flexibility. To further give the designer a high flexibility to explore
different combinations of tests, it is possible to define several set of tests
(CTijTT)jj for each core where each such set tests the core.

Given a system as in Figure 181 where for each of the cores c1, c2, c3, one
CT exists. For core c1, CT11TT ={t1, t2t }, for core c2, CT21TT ={t4t , t5} and for c3,
CT31TT ={t3}. The on-chip test source 1 is required by t1 and t3 and the on-chip
test sink 1 is required by t3 and t5. The resource graph in Figure 177 and the
test compatibility graph in Figure 178 model the system when r3 (test source
1) is needed by t1 and t3 and r4 (test sink 1) needed by t3 and t5.

Figure 182.Example of test scheduling.

power limit
power

t4t

t1

t5t

t2t
t3t

τ1 τ2 τ

SOC Test Design194

4 THE SOC TEST ISSUES

In this section we discuss the different issues considered by our SOC test
framework. We also demonstrate the importance of considering them in an
integrated manner.

4.1 Test Scheduling

The test scheduling problem can be seen as placing all tests in a diagram
as in Figure 182 while satisfying all constrains. For instance, t1 and t2t cannot
be applied at the same time since both tests the same core, c1 (example in Sec-
tion 3).

The basic difference between our scheduling technique [158,157] and the
approaches proposed by Zorian [287] and Chou et al. [41] is, besides that we
design the TAM while scheduling the tests, that Zorian and Chou et al. do not
allow new tests to start until all tests in a session are completed. It means that
if t3 is about to be scheduled it cannot be scheduled as in Figure 182. In the
approach proposed by Muresan et al. [202], t3 can be scheduled if it is com-
pleted no later than t2t .

In our approach it is optional if tests may start before all tests in a session
are completed (nonpartitioned testing) or not (partitioned testing with run to
completion). The advantage of using the latter is that it gives more flexibility.

Let a schedule S be an ordered set of tests such that:S

where S(ti) defines the position of test ti in S; τstart(ti) denotes the time
when test ti is scheduled to start, and τend(ti) its completion
time:

For each test, ti, the start time and the wires for test data transportation
have to be determined before it is inserted into the schedule, S.

Let the Boolean function scheduled(ti,ii τ1, τ2) be true if test ti is scheduled
in such a way that the test time overlaps with the time interval [τ1, τ2], i.e.,

An example to illustrate the function scheduled for a set of scheduled tests
is shown in Figure 183.

The Boolean function scheduled(ri,ii τ1, τ2) is true if a source ri is used by a
test tjt betweenj τ1 and τ2, i.e.:

S i()i S j()j start i()i start j()j i j i∀ S j S∀{ },S t()ti S t)t()j< τS()t j start() τti start()t j i j ti∀ S∈ t j S∈∀, , ,i j ti∀ S∈

τend i() τti start i() τti test i()ti .

i S end i 1 start i 2()end()i 1 start()i 2{ }ti S∈ S ()τend() τti 1 ττ1 start() τti 2 .

t j S∈∃ r
i

source j()t j= scheduled t j 1 2() }t j τ1τ2, .∧{

Chapter 11 195

A similar definition is used if a sink ri is scheduled (used by any test)
between τ1 and τ2. The Boolean function scheduled(constraint(ti), τ1, τ2) is
true if:

4.2 Power Consumption

Generally speaking, there are more switching activities during the testing
mode of a system than when it is operated under the normal mode. The power
consumption of a CMOS circuit is given by a static part and a dynamic part
where the latter dominates and can be characterized by:

where the capacitance C, the voltage V, and the clock frequencyVV f are fixed
for a given design [277]. The switch activity α, on the other hand, depends on
the input to the system, which during testing are test vectors and therefore the
power dissipation varies depending on the test vectors.

An example illustrating the test power dissipation variation over time τ for
two test ti and tjt is in Figure 184. Let pi(τ) and pjp (τ) be the instantaneous
power dissipation of two compatible tests ti and tjt , respectively, and P(ti) and
P(tjt) be the corresponding maximal power dissipation.

If pi(τ) + pjp (τ) < pmax, the two tests can be scheduled at the same time.
However, instantaneous power of each test vector is hard to obtain. To sim-
plify the analysis, a fixed value ptest(ti) is usually assigned for all test vectors
in a test ti such that when the test is performed the power dissipation is no
more then ptest(ti) at any moment.

The ptest(ti) can be assigned as the average power dissipation over all test
vectors in ti or as the maximum power dissipation over all test vectors in ti.
The former approach could be too optimistic, leading to an undesirable test
schedule, which exceeds the test power constraints. The latter could be too

Figure 183.The function scheduled.

(tend(ti)<τ1 ∨ tstartt (ti)>τ2)

i=1: ¬(True ∨ False) → False
i=2: ¬(False ∨ False) → True
i=3: ¬(False ∨ False) → True
i=4: ¬(False ∨ False) → True
i=5: ¬(False ∨ True) → False
i=6: ¬(False ∨ False) → True

t1
t2t

t3t

t4t

t5t

t6

ττ1 τ2

t j S∈ core j()t j constraint ti()ti∈ scheduled t j 1 2() }t j τ1 τ2, ,τ1 .∧∃{

p C V
2

f α××

SOC Test Design196

pessimistic; however, it guarantees that the power dissipation will satisfy the
constraints. Usually, in a test environment the difference between the average
and the maximal power dissipation for each test is often small since the objec-
tive is to maximize the circuit activity so that it can be tested in the shortest
possible time [41]. Therefore, the definition of power dissipation ptest(ti) for a
test ti is usually assigned to the maximal test power dissipation (P(((ti)) when
test ti alone is applied to the device. This simplification was introduced by
Chou et al. [41] and has been used by Zorian [287] and by Muresan et al.
[202].We will use this assumption also in our approach.

Let psch(τ1, τ2) denote the peak power between τ1 to τ2:

where scheduled(ti, τ)=scheduled(dd ti, τ, τ).
As an example, applying the function psch(τ1, τ2) on the schedule for a

system with 5 tests as in Figure 182, with τ1 and τ2 as indicated in the figure,
returns ptest(t2t) + ptest(t5) +p+ idle(c3), the peak power consumption between τ1
and τ2.

In our approach, the maximal power consumption should not exceed the
power constraint, pmax, for a schedule to be accepted. That is, psch(0, ∞) ≤
pmax.

Figure 184.Power dissipation as a function of time [41].

Power

Time, τ

pmax

ti

ti+tjt

P(ti, tjt) = | pi(τ) + pjp (τ) |

P(ti) + P(tjt) = | pi(τ) | + | pjjp (τ) |

P(ti) = | pi(τ) |

P(tjt) =| pjp (τ) |

pi(τ) = instantaneous power dissipation of test ti
P(ti) = | pi(τ) | = maximum power dissipation of test ti

tjt

dissipation

max ptest i()ti pidle i()()t()core()ti– +pidle()core)ti
tischeduled ti()ti τ,∀

∑
⎩
⎨
⎩⎩

⎧
⎨⎨

pidle i() τ τci 1 2[]τ1 τ2,
ci C∈∀
∑

⎭
⎬
⎭⎭

⎫
⎬⎬,

Chapter 11 197

4.3 Test Source Limitations

A test source usually has a limited bandwidth. For instance, external tester
may only support a limited number of scan chains at a time [92]. There could
also be a limitation in the number of available pins. For each test source, this
information is given in the attribute bandwidth.

The function bwalloc(ri,ii τ1, τ2) gives the maximal number of wires allo-
cated between τ1 and τ2 for a source ri, i.e.:

For instance, in Figure 185 a test source r1 feeds test t5 using wire w2 and
w3. In this example, bw(r1)=6 and bwalloc(ri,ii τ1, τ2) = 4 since wire w2 and w3
are used by t3 and t5 and w5 and w6 are used by6 t2t .

A test generator (test source) may use a memory for storing the test pat-
terns. In particular, external test generators use such a memory with a limited
size, which may lead to additional constraints on test scheduling [92].

The function memalloc(ri,ii τ1, τ2) gives the allocated memory between time
τ1 and τ2 for a given source ri, i.e.:

4.4 Test Set Selection

A test set is attached with its test power consumption, test application
time, bandwidth requirement and memory requirement (Section 3). The
required test source and the test sink are also defined for each test set. In the
approach proposed by Sugihara et al. each testable unit can be tested by two
test sets using a dedicated BIST resource and an external tester [256]. In our
approach, we assume that an arbitrary number of test sets can be used for each
testable unit where each test set can be specified using any type of test
resource. For instance, we allow the same test resource to be used by several

max twires j()t j
t jscheduled t j()t j τ, ri source j()t j=∧∀

∑
⎩
⎨
⎩⎩

⎧
⎨⎨ τ 1 2[] }τ1 τ2, .,

Time, ττ2τ1

Figure 185.The TAM allocation.

w1
w2
w3
w4
w5
w6

t5t t3t

t2t

Test source r1

max mem
tjscheduled t j()t j τ, ri source j()t j=∧∀

∑ j()t j
⎩
⎨
⎩⎩

⎧
⎨⎨ τ 1 2[] }τ1 τ2, .,

SOC Test Design198

test sets at different testable units. The major advantage is that the designer
can define and explore a wider range of test sets. Due to that the test resources
are defined for each test set it is possible to make a comparison of different
test sets not only in terms of the number of test vectors but also in respect to
test resources.

For each testable unit, the designer defines a core test set where each set is
a set of test vectors. For instance, if the following CT11TT ={t1, t2t }, CT12TT ={t6},
CT13TT ={t7, t8, t9} is given for core c1. One of CT11TT , CT12TT or CT13TT must be
selected and all tests within the selected CT must be scheduled and no other
tests from any other CT for core c1 should be scheduled.

4.5 Test Access Mechanism

A test infrastructure transports and controls the flow of test data in the sys-
tem under test. The Boundary scan technique can be used for these purposes,
however, it suffers from long testing times and due to the amount of test data
to be transported in the system, we assume an infrastructure consisting of test
wires (lines). It means we add needed number of test wires from test sources
to cores and from cores to test sinks. The time to transport a test vector from a
test source to a core and the time to transport test response from a core to a
test sink is neglected, which means that the test time is determined by the test
vectors and design characteristics of each core.

When adding a TAM between a test source and a core or between a core
and a test sink, and the test data has to pass another core, ci, several routing
options are possible:

1. through the core ci using its transparent mode;

2. through an optional bypass structure of core ci; and

3. around core ci and not connecting it to the TAM.

The model in Figure 186(a) of the example system in Figure 181 illus-
trates the advantage of alternatives 1 and 2 (Figure 186 (b)) compared to
alternative 3 (Figure 186 (c)) since the TAM can be reused in the former two
cases. However, a delay may be introduced when the core is in transparent
mode or its by-pass structure is used as in the TestShell [186]. On the other
hand, Marinissen et al. recently proposed a library of wrapper cells allowing a
flexible design where it is possible to design non-clocked bypass structures of
TAM width [187]. In the following, we assume that bypass may be solved
using such non-delay mechanism.

Chapter 11 199

When designing the TAM, two problems must be solved:

■ the design and routing of the TAMs, and

■ the scheduling of tests using the TAMs.

In order to minimize the routing, few and short wires are desired. How-
ever, such approach increases the test time of the system. For instance,
consider System S [25] (Table 17) where we added the floor planning (x, y
co-ordinates for each core). A minimal TAM would be a single wire starting
at the TAP, connecting all cores and ending at the TAP. However, such TAM

leads to high test application time since no tests can be applied concurrently,
all tests have to be applied in a sequence.

The system (for instance the example system in Figure 181 or System S)
can be modelled as a directed graph, G=(V,A), where V consists of the set of
cores (the testable units), C, the set of test sources, Rsource, and the set of test
sinks, Rsink, i.e. V=C∪Rsource∪Rsink [158,157]. An arc ai∈A between two
vertices vi and vjv indicates a TAM (a wire) where it is possible to transport test

Core Index i External test
cycles, ei

BIST cycles,
bi

Placement

x y

c880 1 377 4096 10 10

c2670 2 15958 64000 20 10

c7552 3 8448 64000 10 30

s953 4 28959 217140 20 30

s5378 5 60698 389214 30 30

s1196 6 778 135200 30 10

Table 17. Test data for the cores in System S.

Figure 186.Illustrating TAM design alternatives using the example in Figure 181.

core ci
test source r1
test sink r2r

r1 r2r

(a)

(b) (c)

c3

c2c1

1 r2r

c3

c2c11 r2r

c3

c2c1

SOC Test Design200

data from vi to vjv . Initially no TAM exists in the system, i.e. A=∅. However, if
the functional infrastructure may be used, it can be included in A initially. A
test wire wi is a path of edges {(v0,v1),.,(vn-1,vn)} where v0∈Rsource and vn∈R-

sink. Let ∆y∆ ij be defined as and ∆x∆∆ ij as , where x(vi)
and y(vi) are the x-placement respectively the y-placement for a vertex vi and
the distance between vertex vi and vjv is:j

The Boolean function scheduled(wi,ii τ1, τ2) is true when a wire wi is used
between τ1 to τ2:

where tam(tjt) is the set of wires allocated for test tjt .
The information of the nearest core in four directions, north, east, south

and west, are stored for each vertex. The function south(vi) gives the closest
vertex south of v:

The functions north(vi), east(vi) and west(vi) are defined in similar ways.
The function insert(vi, vjv) inserts a directed arc from vertex vi to vertex vjv if
and only if the following is true:

where south(vi,vjv) is true if vjv =south(vi). The function closest(vi, vjv) gives a
vertex, vk, in the neighbourhood of vi with the shortest distance to vjv . The
function add(vi, vjv) adds arcs from vi to vjv in the following way: (1) find
vk=kk closest(vi, vjv); (2) add an arc from vi to vk; (3) if vk = vjv , terminate other-
wise let vi=vk and go to (1).k

The total length of a path is the sum of the length of all individual edges.
An example to illustrate the calculation of the length of a test wire on the
example system (Figure 181) defined as a path is in Figure 187 (in this path
core c3 is not included).

4.6 Test Floor-planning

In the approach proposed by Sugihara et al. each testable unit is tested by
a test sets using a dedicated BIST resource and an external tester [256]. How-
ever, we allow the sharing of test resources and if a BIST resource is shared
among several cores, the floor-planning is not trivial.

y i)i y j)j i j

dist vi j()vi v j, yij∆()yij∆ 2
ij∆()xij∆ 2

.+=

t j S w∈∃
i

tam j()t j∈ scheduled t j 1 2() },t j τ1 τ2, ,τ1∧{

south vi()vi vi

y∆

ij

y∆

ij
⎝ ⎠xij∆ 1>

xij∆ 1<∨⎛ ⎞yij∆
1>

yij∆
1<∨⎝ ⎠⎝ ⎠

j--------- 1> j--------- 1–<∨ y vj()vj y vi()vi< i j≠ min dist vi j()i j{ }dist v()vi v j, ., ,y)vj y)vi< i, j≠
⎩
⎨
⎩⎩

⎧
⎨⎨=

h i j()i j h i j()i j i j()i j i j()i j{ }south v()vi v j, north v()vi v j, west()()vi v j, east()vi v j,∨ ∨ ∨north)vi v j, west)vi v j,

Chapter 11 201

For instance, if two cores in the example design (Figure 181) both use a
single on-chip test source and test sink, it is most feasible to place the test
source at one core while the test sink is placed at the other core.

Initially, the test resources may not be placed. Our algorithm, described in
the next section, determines their placement in this case.

5 THE HEURISTIC ALGORITHM

In this section the issues discussed above are combined into an algorithm.
The algorithm assumes that the tests are initially sorted according to a key k,
which characterizes power(p((), test time(t) or power×test time(p((×t).

Let T be the ordered set of the tests, which are ordered based on the key k.
If the scheduling approach is partitioned testing with run to completion the
function nexttime(τ((old)dd gives the next time where it is possible to schedule a
test:

otherwise if nonpartitioned testing is used the function nexttime(τ((old)dd is
defined as:

The algorithm depicted in Figure 188 can basically be divided into four
parts for:

■ constraint checking,

■ test resource placement,

■ test access mechanism design and routing, and

■ test scheduling.

Figure 187.Computing the TAM length.

Tam length=dist(v0,v00 1)+dist(v1,v2)+dist(v2,v3)

v0=test source, v1=c1, v2=c2, v3=test sink

dist(v0,v00 1) dist(v1,v2)

dist(v2,v3)

v0, (x,y)00 v1, (x,y) v2, (x,y)

v3, (x,y)

end i()i i end i()end()i old end i()i i S∀{ },τend()ti min() ττend()ti old τend()ti ti S∈∀,<

end i()i end i()end()i old end i()i i∀ S{ }τend()ti max() ττend()ti old τend()ti ti∀ S∈,< .

SOC Test Design202

A main loop is terminated when there exists a core test (CT) for each core
such that all tests within the selected CT are scheduled. In each iteration at the
loop over the tests in T a test cur is checked. A check is also made to deter-

Sort T according to the key (p, t or p×t);
S=∅; τ=0;
until ∀bpqb ∃CTpqTT ∀tst ∈S do

for all cur in T do
va=source(cur);
vb=core(cur);
vc=sink(cur);
τend=τ+ttest(cur);
if all constraints are satisfied then begin

¬scheduled(va, 0, tend) floor-plan va at vb;
¬scheduled(vc, 0, tend) floor-plan vc at vb;
for all required test resources begin

new=length of a new wire wjw connecting va, vb and vc;
u=number of wires connecting va, vb and vc not

scheduled from τ to τend;
v=number of wires connecting va, vb and vc;
for all min(v-u, bw(cur))wires wjw

extend=extend+length of an available wire(wjw);
if (bw(cur)>u)

extend=extend+new×(par-u(();
move=par= (va) × min{dist(va, vb),dist(vb, vc)};
if (move≤min{extend, new × bw(cur)})

vxv , vxx yv =min{dist(va, vb), dist(vb, vc)}, dist(va, vb)>0,
dist(vb,vc)>0

add par(va) wires between vxv and vy;
if (vxv =source(cur)) then floorplan va at vb;
if (vyv = sink(cur)) then floorplan vc at vb;

end
for r = 1 to bw(cur)

if there exists a not scheduled wire during τ to τend
connecting va, vb and vc it is selected

else
if (length of a new wire < length of extending a wire wjw)

wjw =add(va, vb)+add(vb, vc);
else

extend wire;
schedule cur and remove cur from T;

end;
τ = nexttime(τ).

Figure 188.The system test algorithm.

Chapter 11 203

mine if all constraints are fulfilled, i.e. it is possible to schedule test cur with a
start at τ and an end time at τend=dd τ+τtest:

■
¬∃tft (tft ∈CTijTT ∧tft ∈S∧SS cur ∉CTijTT) checks that another core test set for
current core is not used in the schedule,

■ psch(τ, τend)+dd p+ test(cur)<p< max checks that the power constraint is not
violated,

■ ¬scheduled(va, τ, τend) checks that the test source is not scheduleddd
during τ to τend,

■ ¬scheduled(vc, τ, τend) checks that the test sink is not scheduled dur-
ing τ to τend,

■ ¬scheduled(constraint(cur), τ, τend) checks that all cores required fordd
cur are available duringr τ to τend,

■ the available bandwidth at test source va is checked to see if: bw(va) >
bw(cur) + bwalloc(va, τ, τend) anddd

■ the available memory test source va is checked to see if:
mem(va)>mem(cur)+memalloc(va, τ, tend).dd

Then the placement of the test resources is checked. If the test resources
are on-chip resources and not placed in the system, they are placed at core ci.
If they are floor-planned, a check is performed to determine if they are to be
moved.

When the placement of the test resources for the selected test is deter-
mined, the test access mechanism is designed and routed. The basic question
is if existing wires can be used or new wires must be added. If no routed con-
nection is available connecting all required cores, the distance for adding a
completely new connection is re-calculated due to a possible moving of test
resources.

Examples of the produced results from the algorithm using System S [25]
(Table 17) are the TAM design as in Figure 189 and the test schedule as in
Figure 190. The TAM wires 1 to 5 in Figure 189 correspond to the TAM 1 to
5 in Figure 190. For instance, b5 is the BIST test of core indexed 5 (s5378)
and e5 is the external test of s5378 (note that the BIST tests bi do not require a
TAM but they are placed in Figure 190 to illustrate when they are scheduled).

The computational complexity for the above algorithm, where the test
access mechanism design is excluded in order to make it comparable with
other approaches, comes mainly from sorting the tests and the two loops. The
sorting can be performed using a sorting algorithm at O(n×log n). The worst

SOC Test Design204

case occurs when in each loop iteration for the loops only one test is sched-
uled giving a complexity:

The total worst case execution time is n×log n + n2/2 +n/2, which is of O(n2). For
instance, the approach by Garg et al. [65] and by Chakrabarty [25] both has a worst
case complexity of O(n3).

i()T i
i 0

T 1

∑ n
2

2
----- n

2
-------+=

Figure 189.TAM design using our heuristic on System S.

c7552

s1196c2670

s53781s953

2

3

5c8800

4

TA
P

Figure 190.TAM schedule on System S using our
heuristic.

time

996194

TAM

2

1

--
--

--
--

--
 B

IS
T

 -
--

--
--

--
-

e5

b4

e3

e4

b2

b1

b3

b5

e1 e6

e2

b6

3

4

5

Chapter 11 205

6 SIMULATED ANNEALING

In this section we outline the Simulated Annealing (SA) technique and
describe its adoption to be used for scheduling and TAM design. The tech-
nique proposed by Kirkpatrick et al. [131] uses a hill-climbing mechanism to
avoid getting stuck in at local optimum.

6.1 The Simulated Annealing Algorithm

The SA algorithm (Figure 191) starts with an initial solution and a minor
modification creates a neighbouring solution. The cost of the new solution is
evaluated and if it is better than the previous, the new solution is kept. A
worse solution can be accepted at a certain probability, which is controlled by
a parameter referred to as temperature.

The temperature is decreased during the optimization process, and the
probability of accepting a worse solution decreases with the reduction of the
temperature value. The optimization terminates when the temperature value is
approximately zero.

Figure 191.Simulated Annealing algorithm.

1: Construct initial solution, xnow;
2: Initial Temperature: T=TT TI;II
3: while stop criteria not met do begin
4: for i = 1 to TL do begin
5: Generate randomly a neighboring solution

x’∈Ν(x((now);
6: Compute change of cost function

∆C=CC C(x((’)-C(x((now);
7: if ∆C≤CC 0 then xnow=x= ’
8: else begin
9: Generate q = random(0, 1);
10: if q<e-∆C/T

qq
then xnow=x= ’

11: end;
12: end;
13: Set new temperature T=TT α×T;TT
14: end;
15: Return solution corresponding to the minimum

cost function;

SOC Test Design206

6.2 Initial Solution and Parameter Selection

We use our heuristic described in Section 5 with an initial sorting of the
tests based on power (using time and power×time results after optimization in
the same cost) within the integrated test framework (Section 5) to create the
initial solution [158,157]. An example of an initial solution produced for Sys-
tem S is in Figure 189 and Figure 190.

The parameters, initial temperature TI, the temperature lengthII TL and the
temperature reduction factor α (0<α<1) are all determined based on
experiments.

6.3 Neighbouring Solution in Test Scheduling

In the case when only test scheduling is considered, i.e. the TAM is not
considered or it is fixed and seen as a resource, we create a neighbouring solu-
tion by randomly selecting a test from an existing schedule and schedule it as
soon as possible but not at the same place as it was in the original schedule.
For instance, creating a neighbouring solution given a test schedule as in
Figure 182 with resource graph as in Figure 177 and test compatibility graph
as in Figure 178, we randomly select a test, let say t1. We try to schedule t1 as
soon as possible but not with the same starting time as it had while fulfilling
all constraints. Test t1 was scheduled to start at time 0 and no new starting
point exists where constraints are fulfilled until end of t3 where t1 now is
scheduled. In this case, the test time increases after the modification (getting
out of a possible local minimum), however, only temporarily since in the next
iteration a test may be scheduled at time 0 (where t1 used to be).

6.4 Neighbouring Solution in Scheduling and TAM
Design

When both the test time and the TAM design are to be minimized, a neigh-
bouring solution is created by randomly adding or deleting a wire and then the
tests are scheduled on the modified TAM.

If the random choice is to add a wire, a test is randomly selected and a
wire is added from its required test source to the core where the test is applied
and from the core to the test sink for the test. For instance, if e3 in System S
(Table 17) is selected, a wire is added from the TAP to core c7552 and from
core c7552 to the TAP.

If the random choice is to delete a wire, a similar approach is applied.
However, a check is performed to make sure that all tests can be applied.

Chapter 11 207

6.5 Cost function

The cost function of a test schedule, S, and the TAM, A, is:

where: T(TT S) is the test application time for a sequence of tests,SS S, L(A(() is
the total length of the TAM, β1, β2 are two designer-specified constants used
to determine the importance of the test time and the TAM.

The test application time, T(TT S), for a schedule,SS S, is:

and the length, L(A((), of the TAM, A, is given by:

For the test schedule, S, produced by SA for System S (Figure 192) the
test time, T(S) is 996194 (the end time of test e5) and the length of the TAM
(Figure 193) is 160. Comparing this to the results produced by our heuristic
[158] shows that test time is the same while the TAM is reduced from 320
(Figure 189) to 160 (Figure 193).

C() βS A, 1 × βT S()S 2 L A()A×

T S()S i end i()end()i∀ i S{ }ti()max{ }tend()ti∀ ti S∈,=

di
j 0

wi 1–

∑
wj A∈
∑ st j j 1()vj v j 1, vj v j 1, wi∈,

Figure 192.Test schedule on System S using SA.

time

996194

TAM

2

1

--
--

--
--

--
 B

IS
T

 -
--

--
--

--
-

e5

b4

e3e4

b2

b1

b3

b5
e1e6

e2

b6

Figure 193.TAM design using SA on System S.

s1196c2670

s953 s5378c7552

c880

2
1

TA
P

SOC Test Design208

7 EXPERIMENTAL RESULTS

7.1 Benchmarks

We have used the System S [25] (Appendix 1, page 349), ASIC Z design
(Appendix 1, page 329). We have also used an extended ASIC Z design
where each core is tested by two test sets (one external test and one BIST) and
an interconnection test to a neighbouring core [157]; in total 27 tests.

We have used a design with 10 tests presented by Muresan et al. [202] and
an industrial design. The largest design is the Ericsson design [160,157] con-
sisting of 8 DSP cores plus additional logic cores and memory banks. All data
for the benchmarks can be found in Appendix 1.

For the implementation, we have simplified our system model (Section 3)
regarding the TAM wire design and only allowing a single wire per test.
When discussing about our algorithm we use our1, our2 and our3, which cor-
responds to the initial sorting based on test power(p((), test time(t) and test
power×test time(p((×t).

Unless stated, we use partitioned testing with run to completion, for the
cost function (Section 6.5) β1=β2=1 and we have used a Sun Ultra10, 450
MHz CPU, 256 MB RAM.

7.2 Test Scheduling

We have compared our algorithm (nonpartitioned testing) with the non-
partitioned testing approaches proposed by Zorian [287] and Chou et al. [41].
We have used the same assumptions as Chou et al. and the results are in Table
18. Our approaches (our1, our2, and our3) results, in all cases, in a test sched-
ule with three test sessions (ts) at a test time of 300 time units, which is 23%
better than Zorian’s approach and 9% better than the approach by Chou et al.

t
s

Zorian Chou et al. Our1, Our2, Our3

Cores Time Cores Time Cores Time

1 RAM1,RAM4, RF 69 RAM1,RAM3, RAM4, RF 69 RL2, RL1,RAM2 160

2 RL1, RL2 160 RL1, RL2 160 RAM1,ROM1, ROM2 102

3 RAM2,RAM3 61 ROM1, ROM2, RAM2 102 RAM3, RAM4, RF 38

4 ROM1, ROM2 102

Test time: 392 331 300

Table 18. ASIC Z test scheduling.

Chapter 11 209

In System S, no power constraints are given and therefore only our2 can
be used. Our approach finds using partitioned testing with run to completion
after 1 second the optimal solution; see Table 11.1 (first group).

The results on the industrial design are in Table 11.1 (second group)
where the industrial designer’s solution is 1592 time units while our test
scheduling achieve a test time of 1077 time units, the optimum, in all cases
(our1, our2, and our3), which is 32.3% better than the designer’s solution.

The results on design Muresan are in the third group of Table 11.1. The
test time using the approach by Muresan et al. is 29 time units and the results
using our approaches our1, our2, and our3 are 28, 28 and 26, respectively, all
produced within 1 sec. Our SA (TI=400, TL=400, α=0.97) improves to 25
time units using 90 seconds.

When not considering idle power on ASIC Z, the test schedules using
our1, our2, and our3 (fourth group in Table 11.1) all result in a test time of
262. The SA (TI=400, TL=400 and α=0.97) did not find a better solution.

In the experiments considering idle power (fifth group of Table 11.1), our
heuristic approaches our1, our2, and our3 resulted in a solution of 300, 290
and 290, respectively, each produced within 1 second. The SA (TI=400,
TL=400 and α=0.99) produced a solution of 274 requiring 223 sec., i.e. a cost
improvement in the range of 6% to 10%.

The results on Extended ASIC Z when not considering idle power are 313
(our1), 287 (our2) and 287 (our3) (sixth group in Table 11.1), which were
produced by our heuristic after 1 second. The SA optimization (TI=TL=400,
α=0.97) produced a solution at a cost of 264 running for 132 seconds, i.e. a
cost improvement in the range of 9% to 18%.

The results on the Ericsson design (seventh group of Table 11.1) are
37226, 34762, 34762 produced by our heuristic our1, our2, and our3 (within 3
sec.). The SA algorithm (TI=200, TL=200, α=0.95) produced a solution at
30899 after 3260 seconds.

7.3 Test Resource Placement

In the ASIC Z design all cores have their own dedicated BIST structure.
Let us assume that all ROM cores share one BIST structure and all RAM
memories share another BIST structure; the rest of the cores have their own
dedicated BIST structure.

7.4 Test Access Mechanism Design

Assume for ASIC Z that all tests are scan-based (1 scan-chain per core)
applied with an external tester allowing a maximum of 8 scan chains to oper-
ate concurrently. The results using our1, our2, and our3 considering idle

SOC Test Design210

power are collected in Table 19. The test schedule and the TAM schedule
achieved with heuristic our3 are in Figure 194. The total length of the test

Design Approach Test time Diff. to
SA/optimum

CPU

System S

[25]

Optimal solution 1152180 - -

Chakrabarty 1204630 4.5% -

Our2 (t) 1152180 0% 1 sec.

Industrial

design

Optimal solution 1077 - -

Designer 1592 47.8% -

Our1 (p) 1077 0% 1 sec.

Our2 (t) 1077 0% 1 sec.

Our3 (p×t) 1077 0% 1 sec.

Muresan

[202]

SA 25 - 90 sec.

Muresan [202] 29 16% -

Our1 (p)[158] 28 12% 1 sec.

Our2 (t)[158] 28 12% 1 sec.

Our3 (p×t)[158] 26 4% 1 sec.

ASIC Z

(1)

SA 262 - 74 sec.

Our1 (p) 262 0% 1 sec.

Our2 (t) 262 0% 1 sec.

Our3 (p×t) 262 0% 1 sec.

ASIC Z

(2)

SA 274 - 223 sec.

Our1 (p)[158] 300 10% 1 sec.

Our2 (t)[158] 290 6% 1 sec.

Our3 (p×t)[158] 290 6% 1 sec.

Extended

ASIC Z

(3)

SA 264 - 132 sec.

Our1 (p) 313 18% 1 sec.

Our2 (t) 287 9% 1 sec.

Our3 (p×t) 287 9% 1 sec.

Ericsson SA 30899 - 3260 sec.

Our1 (p) 37336 20% 3 sec.

Our2 (t) 34762 12% 3 sec.

Our3 (p×t) 34762 12% 3 sec.

Table 11.1. Test scheduling results.

Chapter 11 211

access mechanism is 360 units and it is routed as in Figure 195. All solutions
were produced within 1 second.

7.5 Test Scheduling and TAM Design

We have made experiments using System S and ASIC Z to demonstrate
the importance of integrating test scheduling and TAM design. The ASIC Z is
fully BISTed; however, in this experiment we assume all tests are applied
using an external tester able of supporting several tests concurrently. We have
used two naive approaches, Naive1 and Naive2. Naive1 uses a minimal TAM
design connecting all cores in a ring and Naive 2 uses an extensive TAM
where each core gets its own dedicated TAM.

For the cost function, we have for ASIC Z used β1=β2=1 and for System S
β1=1/1000 and β2=1 and the results are collected in Table 20. Naive 1 pro-
duces a low cost TAM design but the test time is long leading to high total
cost due to that all tests have to be scheduled in a sequence. The total cost of
using the approach Naive 2 is also high due to the extensive TAM design.
Such extensive TAM gives more flexibility, however, other constraints in the
design limits its use. Our approaches (our1, our2, and our3) produces better
results indicating the importance of considering TAM design and test sched-

Figure 194.Test schedule for ASIC Z.

time

power/TAM

(a)

(b)(c)

(d)(e)

(g)

(f(()ff

(h)

(i)

power limit

134 160 236 290

1

2

3

4

Figure 195.ASIC Z with test data access mechanism.

i h

f

a b c ed

tap

g

(2)

(4)(3)

(1)

SOC Test Design212

uling in an integrated manner. The TAM design (Figure 189) and the test
schedule (Figure 190) achieved using our heuristic for System S (Table 17)
have a test time of 996194 and a TAM length of 320 computed within 1 sec-
ond. The SA (TI=TL=100, α=0.99) was running for 1004 seconds producing
a test schedule (Figure 192) and a TAM design (Figure 193) with a test time
of 996194 and a TAM length of 160, a TAM improvement of 50%. For ASIC
Z, the SA (TI=TL=300, α=0.97) produced after 855 seconds a solution with a
cost of 514 (334 for test time and 180 for TAM).

The results comparing our heuristic with SA are collected in Table 21
where, for instance, our heuristic our1 produced a solution for ASIC Z with a
total cost of 660 (a test time of 290 and a TAM cost of 360) after 1 second.
The test time results are in the range of 10% to 13% better using our fast heu-
ristic (in all cases) compared to the SA optimization. However, the TAM
results are much worse using our heuristics and the total cost improvements
by the SA are in the range from 21% to 28%.

The results from experiments on Extended ASIC Z are in Table 21 (sec-
ond group). Our heuristic our1 produced a solution after 1 second with a test
time of 313 and a TAM cost of 720, resulting in a total cost of 1033. The solu-
tion produced after 4549 seconds by our SA (TI=TL=200, α=0.97)
optimization has a test time of 270 and a TAM cost of 560. In this experiment,
SA produced a better total cost (range 14% to 24%) as well as better cost

Approach Test time TAM cost

Our1 (p) 300 360

Our2 (t) 290 360

Our3 (p×t) 290 360

Table 19. Results on ASIC Z.

Approach System S ASIC Z

Time TAM Tota
l

Time TAM Tota
l

Naive 1 1541394 100 1641 699 110 809

Naive 2 996194 360 1356 300 500 800

Our 1 (p) - - - 300 360 660

Our 2 (t) 996194 320 1316 290 360 650

Our 3 (p×t) - - - 290 360 650

SA 996194 160 1156 334 180 514

Table 20. TAM design and test scheduling.

Chapter 11 213

regarding test time (range 6% to 16%) and TAM cost (range 18% to 29%).
The results on the Ericsson design are collected in Table 21 (third group). For
instance, our heuristic our1 results in a solution with a test time of 37336 and
a TAM cost of 8245, which took 81 seconds to produce. The total cost is

Approach SA Our1 Our2 Our 3

ASIC Z Test time 334 300 290 290

Diff to SA - -10% -13% -13%

TAM cost 180 360 360 360

Diff to SA - 100% 100% 100%

Total Cost 514 660 650 650

Diff to SA - 28% 21% 21%

Comp. cost 855 sec. 1 sec. 1 sec. 1 sec.

Diff to SA - -85400% -85400% -85400%

Extended ASIC Z Approach SA Our 1 Our 2 Our 3

Test time 270 313 287 287

Diff to SA - 16% 6% 6%

TAM cost 560 720 660 660

Diff to SA - 29% 18% 18%

Total Cost 830 1033 947 947

Diff to SA - 24% 14% 14%

Comp. cost 4549 sec. 1 sec. 1 sec. 1 sec.

Diff to SA -454800% -454800% -454800%

Ericsson

Approach SA Our1 Our2 Our3

Test time 33082 37336 34762 34762

Diff to SA - 11% 5% 5%

TAM 6910 8245 9350 8520

Diff to SA - 19% 35% 23%

Total Cost 46902 53826 53462 51802

Diff to SA - 15% 14% 10%

Comp. cost 15h 81 sec. 79 sec. 62 sec.

Diff to SA -66567% -68254% -86996%

Table 21. TAM and scheduling results.

SOC Test Design214

53826 when using β1=1 and β2=2. The SA (TI=TL=200, α=0.95) optimiza-
tion produced a solution with a test time of 33082 and a TAM cost of 6910
after 15 hours. In all cases, the SA produces better results. Regarding test time
the SA improvement is in the range from 5% to 11%, for the TAM cost in the
range from 19% to 35% and the total cost in the range from 10% to 15%.

For all experiments with the SA, the computational cost is extremely
higher compared to our heuristics. A finer tuning of the SA parameters could
reduce it, however, the extensive optimization is only used for the final design
and therefore a high computational cost can be accepted.

8 CONCLUSIONS

For complex systems such as SOCs, it is a difficult problem for the test
designer to develop an efficient test solution due to the large number of fac-
tors involved. The work-flow consists of two consecutive parts: an early
design space exploration and an extensive optimization for the final solution.
In this chapter we have proposed a framework suitable for these two parts
where test scheduling, test access mechanism design, test set selection and
test resource placement are considered in an integrated manner minimizing
the test time and the size of the test access mechanism while satisfying test
conflicts and test power constraint. For the early design space exploration, we
have implemented an algorithm running at a low computational cost, which is
suitable to be used iteratively many times. For the final solution, a more
extensive optimization can be justified and we have proposed and imple-
mented a technique based on Simulated Annealing for test scheduling and test
access mechanism design. We have performed several experiments on bench-
marks and industrial designs to show the efficiency and usefulness of our
approach.

Chapter 12

EFFICIENT TEST SOLUTIONS FOR CORE-BASED
DESIGNS1

1 INTRODUCTION2

A test solution for a complex system requires the design of a test access
mechanism (TAM), which is used for the test data transportation, and a test
schedule of the test data transportation on the designed TAM. An extensive
TAM will lead to lower test application time at the expense of higher routing
costs, compared to a simple TAM with low routing cost but long testing time.
It is also possible to reduce the testing time of a testable unit by loading the
test vectors in parallel, thus increasing the parallelization of a test. However,
such a test time reduction often leads to higher power consumption, which
must be kept under control since exceeding the power budget could damage
the system under test. Furthermore, the execution of a test requires resources
and concurrent execution of tests may not be possible due to resource or other
conflicts. In this chapter, we propose an integrated technique for test schedul-
ing, test parallelization and TAM design, where the test application time and
the TAM routing are minimized while considering test conflicts and power
constraints. The main features of our technique are the efficiency in terms of
computation time and the flexibility to model the system’s test behaviour, as
well as the support for the testing of interconnections, unwrapped cores and
user-defined logic. We have implemented our approach and made several
experiments on benchmarks as well as industrial designs in order to demon-
strate that our approach produces high quality solution at low computational
cost.

1.1 Introduction

The advance in design methodologies and semiconductor process technol-
ogies has led to the development of systems with excessive functionality
implemented on a single die, called system-on-chip (SOC). In a core-based
design approach, a set of cores, i.e. pre-defined and pre-verified design mod-
ules, is integrated into a system using user-defined logic (UDL) and
interconnections. In this way, complex systems can be efficiently developed;

1. The chapter is based on the following papers Asian Test Symposium (ATS), 2002 [166], and
Transactions on Coputer-Aided Design for Integrated Circuits, 2004 [176].
2. The research is partially supported by the Swedish National Program STRINGENT.

SOC Test Design216

however, the complexity in the systems leads to high test data volumes and
the development of a test solution must therefore consider the following inter-
dependent problems:

■ how to design an infrastructure for the transportation of test data in
the system, a test access mechanism (TAM), and

■ how to design a test schedule to minimize test time, considering test
conflicts and power constraints.

The testable units in an SOC design are the cores, the UDL and the inter-
connections. The cores are usually delivered with pre-defined test methods
and test sets; while the test sets for UDL and interconnections are to be gener-
ated prior to test scheduling and TAM design. The test vectors, forming the
test sets for each testable unit, are stored or created in some test source, and
their test responses are stored or analyzed in some test sink. The TAM is the
connection between the test sources, the testable units and the test sinks. The
test application time can be minimized by applying several test sets concur-
rently; however, test conflicts, limitations and test power consumption must
be considered.

The work-flow when developing an SOC test solution can mainly be
divided into two consecutive parts; an early design space exploration fol-
lowed by an extensive optimization for the final solution. For the former, we
have proposed a technique for integrated test scheduling and TAM design to
minimize test time and TAM cost [158, 165]. The advantage of the technique
is its low computational cost making it useful for iteratively use in the early
design space exploration phase. For extensive optimization of the final solu-
tion, we have proposed a technique based on Simulated Annealing, which is
used only a few times, justifying its high computational cost [160,165]. We
have also proposed an integrated test scheduling and scan chain partitioning
(test parallelization) technique under power constraints [161]. The test paral-
lelization problem is, for a testable unit with variable test time such as scan-
tested cores, to determine the number of scan-chains to be loaded concur-
rently, i.e. to determine the test time for each testable unit in such a way that
the system’s total test time is minimized while considering test power
limitations.

In this chapter, we propose a technique to integrate test scheduling, test
parallelization (scan-chain partitioning) and TAM design with the objective to
minimize the test application time and the TAM routing cost while consider-
ing test conflicts and power constraints. The aim with our approach is to
reduce the gap between the design space exploration and the extensive opti-

Chapter 12 217

mization, i.e. to produce a high quality solution in respect to test time and
TAM cost at a relatively low computational cost.

The features of our proposed approach are that we support:

■ the testing of interconnections,

■ the testing of user-defined logic,

■ the testing of unwrapped cores,

■ the consideration of memory limitations at test sources,

■ the consideration of bandwidth limitations on test sources and test
sinks, and

■ embedding cores in core.

We have implemented our technique and performed experiments on sev-
eral benchmarks including a large industrial design called Ericsson, which is
tested by 170 test sets. The experimental results demonstrate that we can deal
with systems tested with different test methods; our approach is not limited to
scan-based systems.

The organization of the chapter is as follows. An introduction to the back-
ground and an overview of related work are given in Section 2. The
considered test problems are discussed and described in Section 3. The sys-
tem model is defined in Section 3.7, and our integrated test scheduling, test
parallelization and TAM design technique is presented in Section 4. The
paper is concluded with experimental results in Section 5 and conclusions in
Section 6.

2 BACKGROUND AND RELATED WORK

The test application time when testing a system can be minimized by
scheduling the execution of the test sets as concurrently as possible. The basic
idea in test scheduling is to determine when each test set should be executed,
and the main objective is to minimize the test application time. However, var-
ious conflicts and limitations must be considered. For instance, only one test
set can be applied at any time to each testable unit. Power constraints must
also be carefully considered otherwise the system under test can be damaged.

SOC Test Design218

The scheduling techniques can be classified using a scheme by Craig et al.
[47] into:

■ nonpartitioned testing,

■ partitioned testing with run to completion, and

■ partitioned testing.

The differences among the techniques are illustrated with five test sets
(t1,..., t5) in Figure 196, where the length of the rectangles corresponds to the
test time of respective test sets. In nonpartitioned testing, Figure 196(a), test
sets are grouped into sessions and new tests are allowed to start only when all
test sets in the preceding session are completely executed. A test scheduling
approach based on partitioned testing with run to completion does not group
tests into sessions, and new tests are therefore allowed to start at any time
(Figure 196(b)). And finally in partitioned testing or preemptive testing a test
can be interrupted and resumed at a later point, as test t2t in Figure 196(c),
which is split into two partitions.

A set of test vectors is called a test set, and a system is usually tested by
applying a number of test sets. For every test set, one test source and one test
sink are required. The test source is where the test sets are stored or produced.
A test source can be placed either on-chip or off-chip. The test sink is where
the test response, produced by the testable unit when a test vector is applied, is
stored or analyzed. Test sinks can, as test sources, be placed either on-chip or
off-chip. If both the test source and the test sink for a particular testable unit
are placed on-chip, it is common to refer to it as Built-In Self-Test (BIST). An
example of an on-chip test source is a Linear-Feedback Shift-Register (LFSR)

Figure 196.Scheduling approaches.

t2at

(c) Partitioned testingd
t5t

t1
t4t

t3t

t2bt

(b) Partitioned testing with run to completion

t2t

t5t t4t

t1 t3t

(a) Nonpartitioned testing
session 1 session 2 session 3

t2t

t5t

t4t

t1

t3t

Chapter 12 219

or a memory; and an example of an off-chip test source is an Automatic Test
Equipment (ATE). The main advantage of using an ATE as test source and
test sink is that a relatively small test set can be used for each testable unit.
However, among the disadvantages are the slow speed of an ATE and its lim-
ited memory capacity [92]. An on-chip test source such as an LFSR, on the
other hand, does not require an extensive global test infrastructure, which is
especially true if each testable unit has its dedicated LFSR. The disdvantage
with an LFSR is that usually a relatively large test set is required, which leads
to long testing times and also more activity (power consumption) in the
system.

The test sources and the sinks can be shared among several testable units.
And every testable unit is tested by one or more test sets. A system may con-
tain several test sources and test sinks. A test infrastructure, TAM, is used to
connect the test sources, the testable units and the test sinks. The TAM is used
for the transportation of test vectors from a test source to a testable unit and
test responses from a testable unit to a test sink.

Zorian has proposed a test scheduling technique based on nonpartition
testing (see Figure 196(a)) for systems where each testable unit has its dedi-
cated on-chip test source and on-chip test sink [287]. In the approach, a test
set is assigned a fixed test time and a fixed test power consumption value. The
objective is to minimize the total test application time and the routing of con-
trol lines while making sure that the total test power consumption at any time
is below a given limit. The minimization of control lines is achieved by
grouping tests based on the floor-plan in such a way that testing of neighbour-
ing cores are scheduled in the same test session. The advantage of the
grouping is that the control lines can be shared among all test sets executed in
the same session. Recently Wang et al. proposed a test scheduling technique
based on partitioned testing with run to completion for memories with dedi-
cated BIST [275].

An analytic test scheduling approach, also for nonpartitioned testing, was
proposed by Chou et al. [41] where as in Zorian’s approach each test set is
assigned a fixed test time and a fixed test power value. Test conflicts are mod-
eled in a general way using a resource graph. Based on the resource graph, a
test compatibility graph is generated and a covering table is used to determine
the tests scheduled in the same test session. Muresan et al. [202] have pro-
posed a test scheduling technique with the same assumptions as Chou et al.
and to allow a higher degree of flexibility in the scheduling process parti-
tioned testing with run to completion is used.

In all the above approaches, each testable unit has one dedicated test set
with a fixed test time. Sugihara et al. proposed a technique for the selection of
test sets for each testable unit where each testable unit can be tested by one

SOC Test Design220

test set using an off-chip test source and an off-chip test sink as well as one
test set using a dedicated on-chip test source and a dedicated on-chip test sink
[256]. The objective is to find a trade-off between the number of test vectors
in on-chip resources (test source and test sink) and off-chip resources (test
source and test sink). The sharing of test resources may introduce conflicts if
a test resource can only generate test patterns for a testable unit at a time.
Chakrabarty also proposed a test scheduling technique for systems tested by
two test sets, one BIST test set and one stored at the ATE [28,25]. Chakra-
barty also considered the conflicts that appears when sharing the test bus for
test data transportation. Furthermore, the sharing of BIST resources among
testable units is considered.

A test infrastructure is used for the transportation of test data, that is test
vectors and test responses. The Advanced Microcontroller Bus Architecture
(AMBA) is an approach where all test sets are scheduled in a sequence on a
single bus [88]. Another bus approach is proposed by Varma and Bhatia
[267]. Instead of having all TAM wires in a single bus, Varma and Bhatia pro-
pose a technique where several set of wires form several test buses. The tests
on each test bus are, as in the case with AMBA, scheduled in a sequence.
However, tests on different buses are executed concurrently. Aerts and Marin-
issen have also proposed three architectures, multiplexing where all tests are
scheduled in a sequence, distributed where all tests are scheduled concur-
rently on their dedicated TAM wires, and daisy-chain where all tests are
scheduled concurrently and as soon as a core is finished with its testing, the
core is by-passed using a clocked buffer [5]. A common draw-back with
scheduling tests in a sequence is that the testing of interconnection is a bit
cumbersome.

The advantage of scheduling the tests in a sequence is that only one test set
is active at a time and there is only switching in one testable unit at a time,
which reduces the test power consumption. In an concurrent approach the
testing of several cores can be performed at the same time. In the distributed
architecture the testing of all cores are started at the same time, which means
that all cores are activated simultaneously, resulting in a high test power con-
sumption. In the daisy-chain approach, all cores are also scheduled to start at
the same time and the test vectors are pipelined through the cores. The idea of
daisy-chain tests is efficient from a test time perspective, however, from a test
power consumption perspective it results in a high switching activity. Saxena
et al. have proposed a technique to reduce the test power consumption in
scan-based designs by using a gated sub-chain scheme [241]. Experimental
results indicate that comparing an original design and a design with gated sub-
chains, the test time remains the same but the test power consumption is
reduced by the number of gated sub-chains.

Chapter 12 221

A core test wrapper is the interface between a core and the TAM. A stan-
dard core wrapper such as the proposed P1500 or the TestShell can be in four
modes, normal operation, internal core test, external test, and bypass [104,
188]. The tests in a system can be grouped into wrapped core tests and
unwrapped core tests. A wrapped core test is a test at a core equipped with a
dedicated interface (a wrapper) to the TAM and an unwrapped core test is a
test at a core that does not have a dedicated wrapper. A new conflict appears,
namely test wrapper conflict. Several approaches have been proposed for
wrapped core tests. Iyengar et al. proposed a technique for core tests where a
fixed TAM bandwidth is assumed to have been partitioned into a set of fixed
TAMs and the problem is to assign cores to the TAMs in such a way that the
total test application time is minimized [113]. The tests on each TAM are
scheduled in a sequence and the tests can be assigned to any of the TAMs in
the system. In order to make the approach applicable to large industrial
designs, Iyengar et al. have proposed the use of an heuristic instead of Integer
Linear Programming (ILP) [112].

Several approaches by Iyengar et al. [114], Goel and Marinissen [73],
Goel and Marinissen [74], Goel and Marinissen [75], Huang et al. [97],
Koranne [139], and Koranne and Iyengar [141] have been proposed for the
assignment of TAM wires to each core test. Hsu et al. [96] and Huang et al.
[100] proposed also techniques for TAM wire assignment under power con-
straints for tests with fixed power consumption and variable test times.
Iyengar et al. proposed a technique where hierarchical conflicts are consid-
ered [118]. An approach for TAM design and test scheduling is proposed by
Cota et al. [43]. The test data can be transported on dedicated TAM as well as
on the functional bus. To further explore the design space, the approach
allows redesign and extensions of the functional bus.

3 TEST PROBLEMS

In this section we describe the test problems we are considering and their
modeling.

3.1 Test Time

In this chapter we use a test time model that assumes within a given range
a linear dependency between the test time and the number of TAM wires
assigned to a testable unit. In our model we assume that the designer specifies
a bandwidth range for each core. It means that for each testable unit a band-
width is to be selected, which is within the minimal bandwidth and the

SOC Test Design222

maximal bandwidth range and the test time contra TAM bandwidth within the
given range is linear.

The test time for executing a test at a testable unit is defined by the time
required for applying the test vectors. For some test methods, the test time is
fixed, while for other test methods, such as scan-based testing, the testing
time can be modified. A modification is achieved by test parallelization. For
instance assume a core with a number of scan chains which form a single
chain connected to a single TAM wire. The testing of the core is performed by
shifting in a test vector and when the scan chains are filled, a capture cycle is
applied, and then the test response is shifted out. A major part of the testing
time is therefore consumed by the shift process. In order to reduce the shifting
time, a new test vector can be shifted in at the same time as the test response
from the previous test vector is shifted out. To further reduce the time con-
sumed due to shifting, the scan chains can be connected into several wrapper
chains where each wrapper chain is connected to a TAM wire. For instance if
the n scan chains in Figure 197 are connected to m wrapper chains (n≥m) the
loading of a new test vector can be performed in the m wrapper chains
concurrently.

The problem of forming wrapper chains has been addressed by Iyengar et
al. [113] and the test application time for a core is given by:

where si is the longest wrapper chain for scan in, so is the longest wrapper
chain for scan out and p is the number of test vectors.

The computation of an exact test time requires an algorithm such as the
one proposed by Iyengar et al. to determine the number of wrapper chains at a
core. It is important to note that even if the test time is computed exactly for
each testable unit, the above formula does not consider the effect at the sys-
tem level introduced by the clocked bypass structures, which is used in the
TestShell when the TAM wires are becoming longer. Since the application of
the formula at the system level does not lead to exact testing time and in order

Figure 197.Scan-chains design at a core.

scan chain 1

core

scan chain 2

scan chain n

wrapper

m TAM width m TAM width

τe 1 i o()1 max si o{ }si so, p min si o}si so,×= (12.1)

Chapter 12 223

to reduce the computational cost, we suggest an approximation of the test
time:

where τe1 is the test time when a single wrapper chain is assumed and m is
the number of TAM wires assigned to the core and m is in the designer speci-
fied range.

We have analyzed the correlation between the exact test time (τe) compu-
tation and the approximated test time (τa). We have used one of the largest
industrial designs, the P93791, in the ITC’02 benchmarks [189] to illustrate
our analysis. We have extracted the twelve scan-based cores in the P93791.
Key data for the design is in Table 22. The aim of the analysis is to check the
correlation between the exact computation of the test time and our proposed
approximation of the test time, and also to identify possible reasons for a non-
linear dependency between test time and the number of wrapper chains.

The analysis results for cores 1, 6 and 11 are collected in Table 23, the
results for cores 12, 13, and 14 in Table 24, the results for cores 17, 19 and 20
in Table 25, and the results for core 20, core 23 and core 27 in Table 26. For
each core, we have computed the exact test time using the wrapper chain par-
titioning algorithm presented by Iyengar et al. [113] for different cases of
wrapper chains (TAM width) 1 to 16. For each width, we have also computed
the approximate test time (τa) and the difference between the exact test time

Core Test
vectors

Inputs Outputs Bidir
s

Scan
chains

Shortest
scan-chain

Longest
scan-chain

1 409 109 32 72 46 1 168

6 218 417 324 72 46 500 521

11 187 146 68 72 11 17 82

12 391 289 8 72 46 92 93

13 194 111 31 72 46 173 219

14 194 111 31 72 46 173 219

17 216 144 67 72 43 145 150

19 210 466 365 72 44 97 100

20 416 136 12 72 44 181 132

23 234 105 28 72 46 1 175

27 916 30 7 72 46 50 68

29 172 117 50 0 35 185 189

Table 22. Characteristics for the scan-based cores in design P93791.

τa
τe1

m
-------= (12.2)

SOC Test Design224

and the approximated test time. From the results in Tables 23, 24, 25 and 26
we observe that the difference between τe and τa is extremely low for low
TAM width. However, as the TAM width increases, the difference between τe
and τa also increases. Among the cores, the case is worst for core 11. We have
therefore made an investigation of core 11, and we made two observations.
The number of scan chains is 11 while the TAM bandwidth has been in the
range from 1 to 16, and the length of the scan chains is rather unbalanced. The
shortest scan chain is 17 flip-flops long while the longest scan chain consists
of 82 flip-flops. We have made three new scan chain partitions of core 11
(Table 27), namely

■ balanced.11 - where the 11 scan chains are redesigned to be as bal-
anced as possible,

■ balanced.22 - where the number of scan chains is increased to 22 and
the partitions are made as balanced as possible,

Core 1 Core 6 Core 11

TAM
width

Test time,
τe

Test time,
τa

Diff (%) Test time,
τe

Test time,
τa

Diff (%) Test time,
τe

Test time,
τa

Diff (%)

1 2862952 2862952 0% 5317007 5317007 0% 149381 149381 0%

2 1431714 1431476 0.02% 2658613 2658504 0.004% 74784 74691 0.12%

3 954862 954317 0.06% 1809815 1772336 2.1% 49981 49794 0.4%

4 740459 715738 3.3% 1358456 1329252 2.1% 37580 37345 0.6%

5 573163 572590 0.1% 1126316 1063401 5.6% 32513 29876 8.1%

6 494049 477159 3.4% 907097 886168 2.3% 25177 24897 1.1%

7 431729 408993 5.3% 793217 759572 4.2% 21608 21340 1.2%

8 370639 357869 3.4% 679337 664626 2.2% 18977 18673 1.6%

9 318561 318106 0.14% 674957 590779 12.5% 17105 16598 3.0%

10 308319 286295 7.1% 565457 531701 6.0% 16538 14938 9.7%

11 305449 260268 14.8% 561077 483364 13.9% 15603 13580 13.0%

12 248049 238579 10.6% 455738 443084 2.8% 15603 12448 20.2%

13 246409 220227 10.6% 451577 409001 9.4% 15603 11491 26.4%

14 244359 204497 16.3% 451358 379786 15.9% 15603 10670 31.6%

15 191464 190863 0.3% 447197 354467 20.8% 15603 9959 36.2%

16 186549 178935 4.1% 341858 332313 2.8% 15603 9336 40.2%

Table 23. Test time comparison between an exact method and an approximation for cores 1, 6, and 11 in
P93791. Diff (%) is computed as |τe-τa|/τ// e×100.

Chapter 12 225

■ balanced.44 - where the number of scan chains is increased to 44 and
the partitions are made as balanced as possible,

■ balanced.88 - where the number of scan chains is increased to 88 and
the partitions are made as balanced as possible.

The results from the experiments on the original core 11 and the four ver-
sions of the balanced design are collected in Table 28. We made experiments
with the TAM width in the range from 1 to 16, and for each of the versions of
core 11, at each TAM width we computed the exact test time, the approxi-
mated test time and the difference between the exact time and the
approximated time. On average, the approximated test time is 12.1% from the
exact test time on the original design. For the balanced.11, which is the bal-
anced version of the original one, the average is down to 5.7%. If the number
of scan chains are increased to 22 as in balanced.22 the average difference is
only 2.7% and if the number of scan chains are increased to 44 the average

Core 12 Core 13 Core 14

TAM
width

Test time,
τe

Test time,
τa

Diff (%) Test time,
τe

Test time,
τa

Diff (%) Test time,
τe

Test time,
τa

Diff (%)

1 1813502 1813502 0% 1893564 1893564 0% 1893564 1893564 0%

2 906947 906751 0.02% 946880 946782 0.01% 946880 946782 0.01%

3 604799 604501 0.05% 639989 631188 1.4% 639989 631188 1.4%

4 453892 453376 0.1% 480479 473391 1.5% 480479 473391 1.5%

5 363774 362700 0.3% 395654 378713 4.3% 395654 378713 4.3%

6 302596 302250 0.11% 320969 315594 1.7% 320969 315594 1.7%

7 259492 259072 0.16% 278654 270509 2.9% 278654 270509 2.9%

8 227337 226688 0.29% 242384 236696 2.3% 242384 236696 2.3%

9 217951 201500 7.5% 235754 210396 10.8% 235754 210396 10.8%

10 182278 181350 0.51% 200069 189356 5.4% 200069 189356 5.4%

11 181887 164864 9.4% 193439 172142 11.0% 193439 172142 11.0%

12 151689 151125 0.4% 165749 157797 4.8% 165749 157797 4.8%

13 145823 139500 4.3% 159509 145659 8.7% 159509 145659 8.7%

14 145431 129536 10.9% 153269 135255 11.8% 153269 135255 11.8%

15 145431 120900 16.9% 152879 126238 17.4% 152879 126238 17.4%

16 114060 113344 0.6% 123434 118348 4.1% 123434 118348 4.1%

Table 24. Test time comparison between an exact method and an approximation for cores 12, 13, and 14 in
P93791. Diff (%) is computed as |τe-τa|/τ// e×100.

SOC Test Design226

difference is down to 1.5%. A further increase of the number of scan chains to
88, balanced.88, will not give a lower difference at the TAM bandwidth we
did experiments with. The analysis indicates that designing the scan chains at
a core in a balanced way with a relatively high number of scan chains will
result in a near linear dependency between test time and TAM width. It
should be noted that we used TAM bandwidth in the range from 1 to 16.
Obviously, the linear dependency does not hold for small cores with a few
scanned element. However, our modeling assumes a linear dependency within
a range specified by the designer.

3.2 Test Power Consumption

The power consumption is usually higher during testing compared to that
during normal operation. The reason is that a high switching activity is
desired in order to detect as many faults as possible for each test vector.
Detecting a high number of faults per vector minimizes the number of test

Core 17 Core 19 Core 20

TAM
width

Test time,
τe

Test time,
τa

Diff (%) Test time,
τe

Test time,
τa

Diff (%) Test time,
τe

Test time,
τa

Diff (%)

1 1433858 1433858 0% 1031266 1031266 0% 3193678 3193678 0

2 717181 716929 0.04% 515843 515633 0.04% 1597047 1596839 0.01%

3 483258 477953 1.1% 343904 343755 0.04% 1065003 1064559 0.04%

4 358699 358465 0.07% 258027 257816 0.08% 798940 798419 0.07%

5 290128 286772 1.2% 206553 206253 0.15% 639256 638736 0.08%

6 257361 238976 7.1% 179524 171878 4.3% 551690 532280 3.5%

7 225028 204837 9.0% 156728 147324 6.0% 477047 456240 4.4%

8 192912 179232 7.1% 134801 128908 4.4% 416582 399210 4.2%

9 161664 159318 1.5% 114775 114585 0.17% 361121 354853 1.7%

10 160579 143386 10.7% 111164 103127 7.2% 346109 319368 7.7%

11 130849 130350 0.4% 94095 93751 0.4% 291064 290334 0.25%

12 129331 119488 7.6% 90077 85939 4.6% 286061 266140 7.0%

13 128680 110297 14.3% 85444 79328 7.2% 271466 245668 9.5%

14 128029 102418 20.0% 83133 73662 11.4% 261458 228120 12.8%

15 97215 95591 1.7% 68992 68751 0.35% 216005 212912 1.4%

16 97215 89616 7.8% 67506 64454 4.5% 215588 199605 7.4%

Table 25. Test time comparison between an exact method and an approximation for cores 17, 19 and 20 in
P93791. Diff (%) is computed as |τe-τa|/τ// e×100.

Chapter 12 227

vectors and therefore also the test time. The problem is that a high power con-
sumption might damage the system. It is therefore needed to schedule the
tests in such a way that the total test power consumption is kept under control.
To be able to analyze the test power consumption, a model of the power con-

Core 23 Core 27 Core 29

TAM
width

Test time,
τe

Test time,
τa

Diff (%) Test time,
τe

Test time,
τa

Diff (%) Test time,
τe

Test time,
τa

Diff (%)

1 1836917 1836917 0% 2869269 2869269 0% 1161619 1161619 0%

2 918609 918459 0.02% 1435093 1434635 0.03% 584201 580810 0.6%

3 612618 612306 0.05% 957346 956423 0.1% 389582 387206 0.6%

4 475404 459229 3.4% 718007 717317 0.1% 292187 290405 0.6%

5 367758 367383 0.1% 588713 573854 2.5% 232497 232324 0.07%

6 317719 306153 3.6% 480507 478212 0.5% 194963 193603 0.7%

7 277534 262417 5.4% 418151 409896 2.0% 166241 165946 0.2%

8 240874 229615 4.7% 365882 358659 2.0% 161235 145202 9.9%

9 204440 204102 0.16% 341123 318808 6.5% 130090 129069 0.8%

10 200689 183692 8.5% 303526 286927 5.5% 129057 116162 10.0%

11 194579 166992 14.2% 279684 260843 6.7% 128884 105602 18.1%

12 160739 153076 4.8% 248506 239106 3.8% 97568 96802 0.8%

13 160504 141301 12.0% 248506 220713 11.2% 96879 89355 7.8%

14 156979 131208 16.4% 232000 204948 11.7% 96879 82973 14.4%

15 122898 122461 0.35% 217328 191285 12.0% 96706 77441 19.9%

16 120554 114807 4.8% 187067 179329 4.1% 96533 72601 24.8%

scan chains Scan chains

Original 11 82 82 82 81 81 81 18 18 17 17 17

Balanced.11 11 53 53 53 53 52 52 52 52 52 52 52

Balanced.22 22 27 27 27 27 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26

Balanced.44 44 14 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
13 13

Balanced.88 88 7
7 7 7 7 7 7 7 7 7 7 7 7 7 6

6 6 6 6 66 6 6 6 6 6 6 6

Test time comparison between an exact method and an approximation for cores 23, 27 and 29 in
P93791. Diff (%) is computed as |τe-τa|/τ// e×100.

Table 27. Modified scan-chain partitioning on core 11.

SOC Test Design228

sumption is needed. Chou et al. [41] have introduced a test power model by
denoting a fixed test power value to each test set. The motivation for the
model is as follows. Figure 198 shows an example of the test power dissipa-
tion variation over time τ when the two tests ti and tjt are executed. If pi(τ) and
pjp (τ) are the instantaneous power dissipation of the two compatible tests ti and
tjt , respectively, and P(ti) and P(tjt) are the corresponding maximal power dissi-
pation. In the case where pi(τ) + pjp (τ) < pmax, the two tests can be scheduled at
the same time. However, instantaneous power of each test vector is hard to
obtain. To simplify the analysis, a fixed value ptest(ti) is assigned for all test
vectors in a test ti such that when the test is performed the power dissipation is
no more than ptest(ti) at any moment. The ptest(ti) can be assigned as the aver-
age power dissipation over all test vectors in ti or as the maximum power
dissipation over all test vectors in ti. The former approach could be too opti-
mistic, leading to an undesirable test schedule, which exceeds the test power
constraints. The latter could be too pessimistic; however, it guarantees that the

Original Balanced.11 Balanced.22 Balanced.44 Balanced.88

TAM
width

τa τe Diff (%) τe Diff (%) τe Diff(%) τe Diff(%) τe Diff(%)

1 149381 149381 0 149381 0 149381 0 149381 0 149381 0

2 74691 74784 0.1 74784 0.1 74784 0.1 74784 0.1 74784 0.1

3 49794 49981 0.4 49981 0.4 49981 0.4 49981 0.4 49981 0.4

4 37345 37580 0.6 37579 0.6 37579 0.6 37579 0.6 37579 0.6

5 29876 32513 8.1 32135 7.0 30065 0.6 30064 0.6 30064 0.6

6 24897 25177 1.1 25177 1.1 25177 1.1 25177 1.1 25177 1.1

7 21340 21608 1.2 21806 2.1 21618 1.3 21608 1.2 21608 1.2

8 18673 18977 1.6 20487 8.9 18976 1.6 18976 1.6 18976 1.6

9 16598 17105 3.0 19739 15.9 16905 1.8 16909 1.8 16909 1.8

10 14938 16538 9.7 19739 24.3 16161 7.6 15219 1.8 15219 1.8

11 13580 15603 13.0 13903 2.3 13903 2.3 13903 2.3 13903 2.3

12 12448 15603 20.2 12775 2.6 12775 2.6 12775 2.6 12775 2.6

13 11491 15603 26.4 11839 2.9 11831 2.9 11835 2.9 11836 2.9

14 10670 15603 31.6 11090 3.8 10903 2.1 10903 2.1 10898 2.1

15 9959 15603 36.2 11086 10.2 10899 8.6 10147 1.9 10147 1.9

16 9336 15603 40.2 10338 9.7 10337 9.7 9582 2.6 9582 2.6

Average: 12.1 5.7 2.7 1.5 1.5

Table 28. Test time comparison between an exact model (τe) and our approximation (τa) for variations of core
11 (see Table 27). Diff (%) is computed as |τe-τa|/τ// e×100.

Chapter 12 229

power dissipation will always satisfy the constraints. Usually, in a test envi-
ronment the difference between the average and the maximal power
dissipation for each test is often small since the objective is to maximize the
circuit activity so that it can be tested in the shortest possible time [41]. There-
fore, the definition of power dissipation ptest(ti) for a test ti is usually assigned
to the maximal test power dissipation (P(ti)) when test ti alone is applied to
the device. This simplification was introduced by Chou et al. [41] and has
been used by Zorian [287] and by Muresan et al. [202].We will also use this
assumption in our approach.

3.3 Test Power Consumption at Test Parallelization

The test power consumption depends on the switching activity. During
testing in scan-based systems, switches appear not only during the application
of test vectors, at the capture cycles, but also in the shift process when a new
test vector is shifted in while the test response from the previous test vector is
shifted out. Saxena et al. [241] proposed a gating scheme to reduce the test
power dissipation during the shift process. Given a set of scan-chains as in
Figure 199 where the three scan-chains are forming a single chain. During the
shift process, all scan flip-flops are active and it leads to high switch activity
in the system and high power consumption. However, if a gated sub-chain
scheme as proposed by Saxena et al. is introduced (Figure 200), only one of
the three chains is active at a time during the shift process while the others are
switched off and as a result no switching activity is taking place in them. The
test time in the examples (Figure 199 and Figure 200) are the same while the
switch activity is reduced in the gated example and also the activity in the
clock tree distribution is reduced [241]. The experimental results presented by
Saxena et al. [241] indicate that the test power consumption can be reduced to

Figure 198.Power dissipation as a function of time [41].

Power

Time, τ

pmax

ti

ti+tjt

P(ti, tjt) = | pi(τ) + pjp (τ) |

P(ti) + P(tjt) = | pi(τ) | + | pjjp (τ) |

P(ti) = | pi(τ) |

P(tjt) =| pjp (τ) |

pi(τ) = instantaneous power dissipation of test ti
P(ti) = | pi(τ) | = maximum power dissipation of test ti

tjt

dissipation

SOC Test Design230

a third using a gated scheme with three sub-chains as in Figure 200 compared
to the original scheme in Figure 199. We use a generalized model based on
the experimental results presented by Saxena et al., which shows that there is
a linear dependency between the test time and the test power consumption. If
x scan chains exist at a core, it is possible to form x number of wrapper chains.
In such a case, the test time will be reduced since the shift process is mini-
mized, however, the test power consumption will be maximized since all of
the x scan chains are active at the same time. On the other hand, if a single
wrapper chain is assumed where all scan chains are connected into a single
wrapper chain, the test time will increase but the test power consumption can
be reduced by gating the x scan chains. For the power modeling, we do as
with the test time. We assign one test time value and one test power consump-
tion value at a single wrapper chain. As the number of assigned TAM wires
changes, we assume that there is a linear change in test time and the test
power within the specified range.

3.4 Test Resource Limitations

A test source usually has a limited bandwidth. For instance, an external
tester only supports a limited number of scan chains at a time [92]. The mem-
ory limitation at a test source may also put a limitation on the testing [92] and
there could also be a limitation in the number of available pins. In our model,
we use a fixed value for the maximal bandwidth at a test source and a test
sink. We also use a fixed value to indicate the memory size used for test vec-
tor storage at a test source.

Figure 199.Original scan chain [241].

clk

scan-in
scan ffs scan ffs scan ffs

scan-out

Figure 200.Scan chain with gated sub-chains[241].

clk

scan-in
scan ffs

scan ffs

scan ffs

scan-out

decode

T0 T1

clk1 clk2 clk3

Chapter 12 231

3.5 Test Conflicts

We have discussed conflicts due to test power consumption, bandwidth
limitations, memory limitations and sharing of TAM wires. These are con-
flicts that are to be considered during the test scheduling. There are also
conflicts that are known in advance. In this section we will discuss such test
conflicts. These conflicts are due to interference during testing and also the
testing of interconnections and UDL. It is also possible that conflicts appear
when the system contains cores that are embedded in cores [118].

In general, in order to execute a test, a set of testable units might be
required. This set can often be specified in advance. The advantage of speci-
fying the test conflicts explicitly is that it gives the designer the flexibility to
explore different design possibilities. It also makes our technique more flexi-
ble compared to an approach where test conflicts are built in to the tool.

We will use the example in Figure 201 to illustrate unwrapped core testing
and test interference. The example consists of only one test source and one
test sink and three cores (c1, c2, and c3) where core c1 consists of two testable
units, b11 and b12, core c2 consists of two testable units, b21 and b22, and core
c3 consists of two testable units, b31 and b32. Core c1 and core c2 have inter-
faces to the TAM, i.e. they are placed in wrappers. As discussed above, we
call such cores wrapped cores while cores such as core c3, which do not have
a dedicated interface to the TAM, are called unwrapped cores. Tests per-
formed at wrapped cores are called wrapped core tests, and tests at
unwrapped cores are called unwrapped core test. The testing of the UDL at
the testable unit b32 is an unwrapped core test. In order to perform testing of
b32 the test vectors are transported from the test source r1 using the TAM to
the wrapped core c1. The wrapper at c1 is placed in the external test mode,
which means that no core tests can be applied at c1 as long as the wrapper is in
external test mode. The test vectors are transported from the wrapper at c1 to
the testable unit b32. The test responses are captured at the wrapper at core c2,
which, as core c1, is placed in the external test mode. From the wrapper at
core c2 the test response is transported via the TAM to the test sink s1. The
testing of the testable units b11 and b12 at core c1 and b21 and b22 core c2 can-
not be performed at the same time as the testing of b32. In our model we
specify this as a conflict list: {b11, b12, b21, b23}.

The testing of b32 could, but does not have to, have an impact on the test-
ing of some other testable units such as b31. In our approach we list all
testable units that are required in order to execute a test explicitly. If b31 is
interfered during the testing of b32, b31 is also included in the conflict list.

An advantage of listing all the test conflicts explicitly is that it makes it
possible to model hierarchy where for instance cores are embedded in cores.
An hierarchical modeling technique usually has an implicit way to model con-

SOC Test Design232

flicts. In our approach, such implicit modeling does not exist, and hence
longer conflict lists are required.

3.6 Test Access Mechanism Design

In our design flow, we assume that there are initially no TAM wires in the
system. TAM wires are added when the transportation of test data in the sys-
tem requests them. In general, all test sources are to be connected with
wrapped cores and the wrapped cores have to be connected with the test sinks.

In our modeling of the TAM wires, we assume that each TAM wire is
independent of other TAM wires. It means we are not partitioning the TAM
wires into subsets. We also assume that the delay of data transportation on the
TAM wires is negligible. We also assume, as discussed above, that the time
impact from eventual by-pass structures introduced on long time wires is not
considered.

For the placement modeling of cores and test resources, we assume a sin-
gle point assignment given by (x,y)-coordinates for each. The placement
model could be more elaborate than a single point assignment, however, a
more advanced model would lead to higher computational complexity. To
illustrate that further, consider a conceptional view of a P1500 compliant core
given in Figure 202. It is important to note that it is only a conceptional view.
For instance, the inputs do not always have to be placed on the left hand side
and the outputs on the right hand side. A more elaborate placement model
than a single point model would need a way to determine where to connect the
wires. A more elaborate wiring model would also have to consider the size of
the core since the wiring inside the wrapper has a cost.

Furthermore, a more elaborate model should handle the wiring due to con-
necting the scan-chains into a set of wrapper chains. It means that the model
should consider exactly where on the core each of the scan inputs and each of
the the scan outputs are placed. On top of this, it is also needed to have a
model for different types of cores. A core can be equipped with a built-in by-
pass structure or a special transparency mode, which can reduce the required

Figure 201.Illustration of unwrapped core testing and test interference.

Test source, r1

Test sink, s1

Core, c1

UDL, b31

UDL, b32

Core, c2
Core, c3

(b) no tam

(a) tam

(d) tam

(c) no tam

Block b11§

Block b12§

Block b21§

Block b22§

Chapter 12 233

wiring but will require consideration during the test time modeling since the
transparency mode can require several clock cycles in order to transport test
data from the core input to its outputs. There might also exist several possibil-
ities for transparency where each such mode requires a certain number of
clock cycles and each mode consumes a certain amount of power. We have
therefore decided to use a single point model for the placement.

3.7 System Modeling

We have in Section 3 discussed SOC test problems and their modeling. In
this section, we describe our system model and the input specification to our
test design tool. We illustrate the modeling and the input specification using
an example.

We have developed a model, which is based on our previous system
model [158, 160, 165], to model a SOC system with given test methods and
added test resources, as illustrated in Figure 203, A design with test, DT, is
represented as follows:

DT= (TT C, T, Rsource, Rsink, pkk max,), where: C = {c1, c2,..., cn} is a finite set of
cores; each core, ci∈C, is characterized by:

(x((i, yi): placement denoted by x and y coordinates and each core consists
of a finite set of blocks ci={bi1, bi2,..., bimi

} where mi>0 {i=1,2,...,n}. Each
block, bij∈B {i=1, 2,..., n, j=1, 2,..., mi}, is characterized by:

ii

minbwij: minimal bandwidth,
maxbwij: maximal bandwidth, which are the minimal possible bandwidth

and maximal possible bandwidth at a block, respectively.

Figure 202.Conceptual view of a P1500 compliant core [186].

Wrapper

a[0:3]

MTPi[0:2] MTPo[0:2]

z[0:2]

STPi

wc[0:5]

Wrapper Instruction Register STPo

Core

a[
0:

3]

sc

z[
0:

2]

scan-chain 1

scan-chain 0

clk

bypass

SOC Test Design234

Each block, bij, is attached with a finite set of tests, bij={tij1, tij2,..., tijoij
}

where oij>0 {i=1, 2,..., n, j=1, 2,..., mi} and each test, tijk∈T {i=1, 2,..., n, j=1,
ijj

2,..., mi, k=1, 2,...,kk oij}, is characterized by:
τijk: test time (at TAM bandwidth 1),
pijk: test power (at TAM bandwidth 1 using a gated sub-chain scheme (dis-

cussed above)),
memijk: required memory for test pattern storage.
clijk: constraint list with blocks required for the test.
Rsource = {r1, r2,..., rpr } is a finite set of test sources where each test source,

ri∈Rsource, is characterized by:
(x((i, yi): placement denoted by x and y coordinates,
vbwi : vector bandwidth,
vmemi: vector memory size.
Rsink = {s1, s2,..., sq} is a finite set of test sinks; where each test sink, si∈R-

sink, is characterized by:
(x((i, yii i): placement denoted by x and y coordinates,
rbwi: response bandwidth,
source: T→TT Rsource defines the test sources for the tests;
sink: T→TT Rsink defines the test sinks for the tests;
pmax: maximal allowed power at any time.

Figure 203. Modeling the example system.

System
wrapper

core 1 (c1)

On-chip test generator
test source, r2r

scan-chain 1

External test evaluator
test sink, s1

block 1 (b11)

vbw1 rbw1

vbw2
rbw2

core 3(c3)

block 1 (b31)

block 2(b32)

w
ra

pp
er

co
re

 2
(c

2)

sc
an

-c
ha

in
 2

bl
oc

k
2(

b 2
2)

sc
an

-c
ha

in
 1

bl
oc

k
1

(b
21

)

sc
an

-c
ha

in
 3

sc
an

-c
ha

in
 1

sc
an

-c
ha

in
 2

sc
an

-c
ha

in
 3

sc
an

-c
ha

in
 4

bw21 bw22

External test generator
test source, r1

On-chip test evaluator
test sink, s2

Chapter 12 235

The input specification for the example system (Figure 203) to our test
design tool is outlined in Figure 204. The power limit for the system is given
under [Global Constraints], and at [Cores] the placement (x, y) for each core
is given and all blocks within each core are listed. The placement (x, y) for
each test source, its possible bandwidth, and its test vector memory are given
at [Generators]. At [Evaluators], the placement (x, y) and the maximal
allowed bandwidth for each test sink is given. For each test the following is
specified under [Tests], the test identifier, test power <pwr>, test time <time>,
test source <tpg>, test sink <tre>, minimal <minbw> and maximal bandwidth
<maxbw>, memory requirement <mem> and, optional, if the test is for testing
of interconnections or UDL placed between another core <ict>. For instance,
test t2t is an unwrapped core test of UDL logic or interconnections between
core c1 and core c2 (Figure 204). Test t2t requires at least two TAM wires but
not more than four. The test source for test t2t is r1 and the test sink is s2. The
test vectors for test t2t requires 5 units for storage at r1. The tests for each
block are specified at [Blocks] and at [Constraints] the blocks required in
order to apply a test are listed. Note that, the possibility to specify idle power
for each block is implemented in our algorithm but, to simplify the discussion,
it is excluded from the system model above.

The advantage of this model is that we can model a system with a wide
range of tests (scan tests as well as non-scan tests such as delay, timing and
cross-talk tests) and constraints. For instance we can model:

■ unwrapped core test, which is for the testing of interconnections and
UDL,

■ any combination of test resources, for instance a test source can be
on-chip while the test sink is off-chip, and vice versa,

■ any number of tests per block (testable unit),

■ memory requirements at test sources,

■ bandwidth limitations at test resources,

■ constraints among blocks, which allows the modeling of constraints
such as cores embedded in cores.

Initially, it is assumed that no TAM exists in the system. Our technique
adds a set of TAMs, tam1, tam2,..., tamn where tami is a set of wires with a
certain bandwidth. We assume that we can partition the TAM connected to a
set of wrapped cores freely, which means we are not limited to assigning all
wires in a TAM to one core at a time or dedicate TAM wires to a single core.
We also assume that we can extend a subset of the TAM wires if required.

SOC Test Design236

The TAM is modeled as a directed graph, G=(N((,NN A), where a node, ni∈N,
corresponds to a member of C, Rsource or Rsink. An arc, aij∈A, between two
nodes ni and njn indicates the existence of a wire and a wire wk consists of a set
of arcs. For instance a wire w1 from c1 to c3 passing c2 is given by the two
arcs: {a12, a23}.

The assignment of cores to TAM wires means connecting a test source,
nsource, a set of cores, n1, n2,..., nn, and a test sink, nsink, and it is denoted as:

where [] indicates that these nodes (wrapped cores) are included
(assigned) to this TAM but not ordered.

The length, ljl , of a test wire, wjw , is given by:

where ni=nsource and nl=nsink and the function adist gives the Manhattan
distance between two nodes, i.e:

Figure 204. Test specification of the system in Figure 203.

Example design
[Global Constraints]
MaxPower = 25
[Cores] identifier x y {block1, block2, ..., block n}

c1 10 30 {b11}
c2 10 20 {b21, b22}
c3 20 30 {b31, b32}

[Generators] identifier x y maxbw memory
r1 10 40 3 100
r2 10 10 1 100

[Evaluators] identifier x y maxbw
s1 20 40 4
s2 20 10 4

[Tests] identifier pwr time tpg tre minbw maxbw mem ict
t1 10 15 r1 s1 1 2 10 no
t2 5 10 r1 s2 2 4 5 c2

// for all tests in similar way
t12 15 20 r1 s2 2 2 2 no

[Blocks] #Syntax: identifier idle pwr {test1, test2, ..., test n}
b11 1 {t1, t2, t3}
b21 1 {t4, t5}

// for all blocks in similar way
b32 2 {t11, t12}

[Constraints] Syntax: test {block1, block2,..., block n}
t1 {b11}
t2 {b11, b21, b22, b31, b32}

// constraint for all tests in similar way
t12 {b11}

nsource 1 2 n[,] n1 2 … n,, ksin→ [,]n1 n2 … nn,, (12.3)

adist ni l()ni nl, adist nk 1 k()nk 1 nk, adist nn l()nn nl,+
k 2

n

∑+ (12.4

adist ni j()ni n j, xi x j– yi y j–+= (12.5)

Chapter 12 237

A set of wires form a tami and the routing cost is given by:

where li is the length and bandwidthi is the width of the TAM, and the
total TAM routing cost in the system is given by:

The total cost for a test solution is given by: α×test time + β×ctam where
test time is the total test application time, ctam (defined above) is the total wir-
ing cost, and α and β are two designer-specified constants determining the
relative importance of the test time and the TAM cost.

4 OUR APPROACH

In this section we describe our approach to integrate test scheduling, test
parallelization and TAM design. For a given floor-planned system with tests,
modeled as in Section 3.7, we have to:

■ determine the start time for all tests,

■ determine the bandwidth for each test,

■ assign each test to TAM wires,

■ determine the number of TAMs,

■ determine the bandwidth of each TAM, and

■ route each TAM,

while minimizing the test time and the TAM cost, and considering con-
straints and power limitations. Note that, when the start time and the
bandwidth for a test are determined, the end time is implicitly given. Com-
pared to previous approaches [158,160,161,165], we have the following
improvements:

■ Test scheduling. In [158, 165] when a test was selected and all con-
straints were fulfilled, a TAM was designed. The technique there
always minimized test time at the expense of the TAM cost. In the
proposed approach, a cost function including both test time and TAM
cost guides the test scheduling process.

■ Test parallelization. The technique described in [161] maximized the
bandwidth for each test, which resulted in low test time. However, its

tamlengthi li bandwidthi×= (12.6)

ctam tamlengthi
i∀

∑= (12.7)

SOC Test Design238

draw-back is a higher TAM cost. In our proposed approach an elabo-
rate cost function guides the algorithm.

■ TAM design. In [158,165] when a test was considered and a free
TAM existed, the TAM was selected. If an extension was required, an
extension was made to minimize the additional TAM. A disadvantage
of the approach is illustrated in Figure 205 where D is to be connected
using the dashed line (Figure 205(a)). A re-routing as A, C, D, B
would include D at no additional cost (Figure 205(b)).

The cost function for a test solution was defined above as: α×test time +
β×ctam where test time is the total test time, ctam is the cost of the TAM and, α
and β are user-defined constants used to determine the relative importance
between the test time and the TAM cost. We also use the cost function for the
guidance at each step in our algorithm based on each test and the TAM
design. The cost function guiding our algorithm is for a test tijk usingk taml:

where: τstart: is the time when tijk can start, tamlengtht l: is the cost of the
tam wiring (Eq. 12.6), and the designer specified factors α and β are used to
set the relative importance between test time and TAM cost. Eq. 12.8 is used
in the test scheduling algorithm for the selection of start time and TAM for
each test.

4.1 Bandwidth Assignment

Test parallelization allows a flexible bandwidth assignment for each test
depending on the bandwidth limitations at the block under test and the band-
width limitations at the test resources.

The test time (see Section 3.1) for a test tijk at block bij at core ci is given
by:

and the test power (see Section 3.2):

where bwij is the bandwidth at blockj bij at corej ci [161].

Figure 205.Illustration of (a) a published and (b) our improved TAM design approach.

C

A

D

B

C

A

D

B

(b)(a)

c α start× βτstart tamlengthl×= (12.8)

τ′ijk τijk bwij⁄= (12.9)

p′ijk pijk bw×
ij

= (12.10)

Chapter 12 239

Combining the TAM cost and the test time (Equation 12.9), we get for
each block bij and its tests tijk:

where: and k is the index of all tests at the
block. To find the minimum cost of Equation 12.11, the derivative in respect
to bw gives the bandwidth bwij at a blockj bij:

Naturally, when selecting bwij, we also consider the bandwidth limitations
at each block.

4.2 Test Scheduling

Our test scheduling algorithm is outlined in Figure 206. First, the band-
width is determined for all blocks (Section 4.1) and the tests are sorted based
on a key (time, power or time×power). The outmost loop terminates when all
tests are scheduled. In the inner loop, the first test is picked and after calling
create_tamplan (Section 4.3) , the required number of TAM wires are
selected or designed for the test based on the cost function. If the TAM factor
is important, a test can be delayed in order to use an existing TAM. This is
determined by the cost function. If all constraints are fulfilled, the test is
scheduled and the TAM assignment is performed using the technique in sec-
tion 4.3. Finally, all TAMs are optimized according to the technique
discussed in section 4.5.

t bij()bij ll bwij β τijk b ij()ij⁄ αb()bwij××
k∀

∑=cos (12.11)

l ijk()ijk i ijk()ijk][()ijk i ()ijk

α
β

k∀
∑⎝ ⎠τijk

k∀

⎛ ⎞τ ⎠⎠τ⎝⎝ ijk ∑⎝ ⎠ll
⎛ ⎞l⎝ ⎠⎝ ⎠ll⁄× (12.12)

Figure 206.Test scheduling algorithm.

for all blocks bandwidth = bandwidth(block)
sort the tests descending based on time, power or time×power
τ=0
until all tests are scheduled begin

until a test is scheduled begin
tamplan = create_tamplan(τ, test) // see Figure 207 //
τ' = τ + delay(tamplan)
if all constraints are fulfilled then

schedule(τ')
execute(tam plan) // see Figure 208 //
remove test from list

end if
end until
τ = first time the next test can be scheduled

end until
order (tam) // see Figure 210 //

SOC Test Design240

4.3 TAM Planning

In the TAM planning phase, our algorithm:

■ creates the TAMs,

■ determines the bandwidth of each TAM,

■ assigns tests to the TAMs, and

■ determines the start time and the end time for each test.

The difference compared to the published approaches is that in the plan-
ning phase we only determine the existence of the TAMs but not their routing.

For a selected test, the cost function is used to evaluate all options
(create_tamplan(τ', test)) (Figure 207). The time (τ’) when the test can be
scheduled to start and its TAM is determined using the cost function and if all
constraints are fulfilled, the TAM floor plan is determined (execute (tam-
plan)) (Figure 208).

To compute the cost of extending a TAM wire with a node, the length of
the required additional wires is computed. Since the order of the cores on a
TAM is not decided, we need an estimation technique for the wire length. For
most TAMs, the largest wiring contribution comes from connecting the nodes
with the largest distance from each other. The rest of the nodes can be added
on the TAM at a limited additional cost (extra routing). However, for TAMs
with a high number of nodes, the number of nodes becomes important.

Our estimation of the wire length considers both of these cases. We
assume that the nodes (test sources, test sinks and the wrapped cores) in the
system are evenly distributed over the area, i.e. A = width×height =
(N((xNN ×∆)×(N((yNN ×∆) = NxNN ×N×× yNN ×∆2, where NxNN and NyNN are the number of cores on the
x and y axis, respectively. Therefore ∆, the average distance between two
nodes, is computed as:

The estimated length, eli, of a wire, wi, with k nodes is:

It means that we compute the maximum between the length of the longest
created wire and the sum of the average distances for all needed arcs (wire
parts). For example, let nfurthestn be the node creating the longest wire, and

∆ A Nx y()Nx Ny×⁄= (12.13)

eli max1 j kjj l source j ksin() ∆source j ksin k 1(){ }l() ∆nsource j n ksin→ →nj ()k 1×= (12.14)

Chapter 12 241

nnew the node to be added, the estimated wiring length after inserting nnew is
given by (Eq. 12.13):

For a TAM, the extension is given as the summation of all extensions of
the wires included in the TAM that are needed in order to achieve the required
bandwidth. The TAM selection for a test tijk is based on the TAM with the
lowest cost according to:

Using this cost function, we get a trade-off between adding a new TAM
and delaying a test on an existing TAM. For a newly created TAM, the delay

el′i max

∆ ()k 2⎩ ⎭∆ k 2()k 2×
⎪ ⎪

sou ce u t est ew sin ⎭k⎩ source furthest new sin

⎩ ⎭⎩ ⎭

⎨ ⎬⎭⎩l()nsource furthest new n ksin→ → →nfurthest nnew
⎨ ⎬
⎩ ⎭⎩ ⎭l)

⎪ ⎪⎪ ⎪
⎭k⎩ source furthest new sin()source furthest new ksin

⎪ ⎪min⎨ ⎬⎨ ⎬⎨ ⎬
source new furthest ksin

⎨ ⎬⎨ ⎬
min⎨ ⎬

l⎩ ⎭⎩ ⎭l)
⎧ ⎫l)⎧ ⎫l()nsource new furthest n ksin→ → →nnew nfurthest
⎪ ⎪⎪ ⎪⎨ ⎬

⎧ ⎫source new furthest ksin()source new furthest ksin
⎨ ⎬⎨ ⎬

source new furthest ksin

= (12.15)

l′l ll()el′l ell– delay taml ijk) αtaml tijk, .+× (12.16)

Figure 207.TAM estimation, i.e. create_tamplan(τ((, test).

for all tams connecting the test source and test sink used by the
test, select the one with lowest total cost
tam cost=0;
demanded bandwidth=bandwidth(test)
if bandwidth(test)>max bandwidth selected tam then
demanded bandwidth=max bandwidth(tam)
tam cost=tam cost+cost for increasing bandwith of tam;

end if
time=first free time(demanded bandwidth)
sort tams ascending according to extension (τ, test)
while more demanded bandwidth
tam=next tam wire in this tam;
tam cost=tam cost+cost(bus, demanded bandwidth)
update demanded bandwidth accordingly;

end while
total cost=costfunction(tam cost, time, test);

Figure 208.TAM modifications based on create_tamplan (Figure 207), i.e. execute
(tamplan).

demanded bandwidth = bandwidth(test)
if bandwidth(test)>max bandwidth selected virtual tam then
add a new tam with the exceeding bandwidth
decrease demanded bandwidth accordingly

end if
time=first time the demanded bandwidth is free sufficient long
sort tams in the tam ascending on extension (test)
while more demanded bandwidth
tam=next tam in this tam;
use the tam by adding node(test) to it, and mark it busy
update demanded bandwidth accordingly;

end while

SOC Test Design242

for a test is 0 (since no other test is scheduled on the TAM and the test can
start at time 0):

4.4 An Example

We illustrate the TAM assignment by using an example with four cores
each with one block (testable units). The four cores are placed as in
Figure 209(a). We assume that there is one test per block and that the test time
is attached to each block. In the example, all tests are making use of the same
test resources (test source and test sink) and there are no bandwidth limita-
tions. Assuming an initial sorting of the tests based on test time, i.e. A, D, B,
C, and success for the schedule at first attempt for each test (there are no lim-
iting constraints which means that when a test is selected it can be scheduled)
and the cost function (α:β) is in Figure 209 (b) set to 1:3 and in Figure 209 (c)
to 2:3. The TAM design algorithm is illustrated for the two cases in Table 29
and the results are in Figure 209(b) and Figure 209(c). In the case when α=1
and β=3 (top Table 29), at step 1, A is selected (first in the list). No TAM
exists in the design and the cost for a new TAM to be created is 90, which
comes from the distance connecting TG with A and A with SA
(TG→[A]→SA), 10+10+10=30, times the tam factor (β) which is 3. It is a
new TAM, which means that there is no delay for the test; test A is scheduled
at time 0 to 50. In the second step D is considered. The TAM created in step 1
can be extended or alternatively a new TAM can be created. Both options are
estimated. The cost of a new TAM, TG→[A]→SA, is 150 while the cost of an
extension of T1, TG→[A, D]→SA, is 110, computed as TAM extension 20×3
and delay on TAM 50×1. The delay on the TAM is due to that A occupies the
TAM during 0 to 50. The algorithm selects to make use of the existing TAM.
When all tests are assigned to TAMs the resulting TAM and test schedule are
as in Figure 209(b).

For Figure 209(c), a different solution is created due to a different cost
function (α=2 and β=3)(see algorithm flow bottom Table 29). The example
illustrates the importance of considering the test time and the TAM design in
an integrated way. In Figure 209(b) the result is a single TAM, which implies
higher testing time while in Figure 209(c) two TAMs are created which
makes it possible to reduce the testing time.

In the example, only a single TAM wire is assumed. In complex systems a
higher number of TAM wires exists. In our approach, we handle that and we
treat each wire independently, and when the question comes to select TAM
wires for a test we explore all possibilities.

new t ijk()tijk l j i j() βsource t j()t j i k t j()t jsin→ →ci .=

Chapter 12 243

Figure 209.An example to illustrate TAM assignment.

x

y
10
0

C10

200 10 30

(b) TAM and corresponding test schedule with α:β factor 1:3.

(a) Before TAM design.

D30

TG A50 B10 SA

(c) TAM and corresponding test schedule with α:β factor 2:3

C10 D30

TG A50 B10 SA

C10 D30

TG A50 B10 SA

test time

test time

TAM

TAM

2

1

1 AA D CB

A

D CB

SOC Test Design244

4.5 TAM Optimization

Above we created the TAMs for the system, assigned each test to a TAM,
determined the bandwidth of the TAMs and every test was given a start time
and an end time in such a way that no conflicts and no limitations were vio-
lated. In this section, we discuss the routing of the TAMs, order(tam) in
Figure 206. Our approach is based on a simplification of an algorithm pre-
sented by Caseau and Laburthe [38]. The notation TG→[A,D]→SA was
above used to indicate that core A and D were assigned to the same TAM,
however, the order of [A,D] was not determined (Equation 12.3), which is the
objective in this section. We use:

to denote that a TAM from nsource (the test source) to nsink (the test sink)
connects the cores in the order nsource, n1, n2,..., nn, nsink.

The TAM routing algorithm is outlined in Figure 210. The algorithm is
applied for each of the TAMs and initially in each case, the nodes (test
sources, wrapped cores, and test sinks) of a TAM are sorted in descending
order according to:

Cost
function

Step Test/
block

Length TAM options Cost Schedule on
selected

TAM

Selected TAM

α=1 and β=3

1 A 50 New:TG→A→SA 30×3+0×1=90 0-50 New:TG→A→SA

2 D 30 New:TG→D→SA
T1:TG→[A,D]→SA

50×3+0×1=150
20×3+50×1=110 0-50-80 T1:TG→[Α,D]→SA,

3 B 10 New:TG→B→SA
T1:TG→[A,D,B]→SA

30×3+0×1=90
0×3+80×1=80 0-50-80 T1:TG→[A,D,B]→SA

4 C 10 New:TG→C→SA
T1:TG→[A,D,B,C]→SA

50×3+0×1=150
0×3+90×1=80 0-50-80 T1:TG→[A,D,B,C]→SA

α=2 and β=3

1 A 50 New:TG→A→SA 30×3+0×2=90 0-50 T1:TG→A→SA

2 D 30 New:TG→D→SA
T1:TG→[A,D]→SA

50×3+0×2=150
20×3+50×2=160 0-30 T2:TG→D→SA

3 B 10
New:TG→B→SA

T1:TG→[A,B]→SA
T2:TG→[D,B]→SA

30×3+0×2=90
0×3+50×2=100
0×3+30×2=60

0-30-40 T2:TG→[D,B]→SA

4 C 10
New:TG→C→SA

T1:TG→[A,C]→SA
T2:TG→[D,B,C]→SA

50×3+0×2=150
20×3+50×2=110
0×3+40×2=80

0-30-40-50 T2:TG→[D,B,C]→SA

nsource 1 2…
n

n ksin→ →n1 n→ →n2… (12.17)

dist nsource i()nsource ni, dist ni ksin()ni n ksin,+ (12.18)

Table 29. Illustration of TAM assignment. On top with a cost function where α=1 and β=3 and below with a
cost function where α=2 and β=3.

Chapter 12 245

where the function dist gives the distance between two cores, or between a
test source and a core, or between a core and a test sink, i.e:

First the test source and the test sink are connected (Figure 210). In the
loop over the list of nodes to be connected, each node is removed and added
to the final list in such a way that the wiring distance is minimized according
to:

where 1≤i<n (all nodes on the TAM).
We use the TAM, TG→[C, D, A, B]→SA, from the example in

Figure 209(a) to illustrate the algorithm, see Table 30. At step 0, the nodes are
ordered, C, D, A, B, and a connection is added between TG and SA. At step 1,
in the loop over the sorted list, C is picked and inserted between TG and SA
and the TAM is modified accordingly, TG→C→SA. Node C can obviously
only be inserted in one way, that is between the test source and the test sink.
At step 2, node D is to be inserted. D can be inserted as TG→D→C→SA or
as TG→C→D→SA. Eq. 12.20 determines which of the alternatives to select
and in this example TG→C→D→SA is selected. The algorithm continues
until all nodes are inserted, resulting in a TAM: TG→A→C→D→Β→SA.

Step Selected Order
before

selection

Length of
each TAM
partition

Order
after

selection

TAM length Remaining
in list

0 - TG→SA 30 C,D,A,B

1 C TG→SA 0 TG→C→S 14+22=36 D,A,B

2 D TG→C→SA 18,2 TG→C→D→SA 14+10+14=38 A,B

3 A TG→C→D→SA 6,14,20 TG→A→C→D→SA 10+10+10+14=44 B

4 B TG→A→C→D→SA 20,14,14,6 TG→A→C→D→Β→SA 10+10+10+10+10=50 -

dist ni j()ni n j, i j()xi x j–
2

yi y j()yi y j–
2

+= (12.19)

min dist ni new()i new di new i 1()new i 1 di i i 1()i i 1{ }dist n()ni nnew, dist n()nnew ni 1, dist n()ni ni 1,–+ (12.20)

Figure 210.Routing optimization of all TAMs.

add test source and test sink to a final list
sort all cores descending according to Eq. 12.20
while cores left in the list
remove first node from list and insert in the final list
insert direct after the position where Eq. 12.18 is fulfilled

end while

Table 30. Illustration of TAM routing.

SOC Test Design246

4.6 Complexity

The worst case complexity for the test scheduling when the TAM design is
excluded is of O(|T|TT 3) where T is the set of tests. In the TAM design there are
two sequential steps; assignment and ordering (optimization). The assignment
can be done in O(|T|TT ×log(|T|TT)) and the optimization in O(|n|2) for a TAM with n
cores. If we assume that each core consists of one block (testable unit) tested
by one test set, the optimization is of O(|T|TT 2). The test scheduling and the
TAM assignment are integrated while the TAM optimization is performed as
a final step. The total complexity is therefore O(|T|TT 4×log(|T|)TT).

5 EXPERIMENTAL RESULTS

We have implemented our technique and compared it with previously pro-
posed approaches using the following designs: Ericsson [160], System L
[158], System S [25], ASIC Z [287], an extended version of ASIC Z, a design
called Kime [132] and one design named Muresan [202]. Detailed informa-
tion about all benchmarks can be found at [178] and in Appendix 1.

When referring to our technique, unless stated, the reported results are
produced based on an initial sorting of the test based on the key t×tt p× (test
time×test power), and our previous techniques are referred to as SA (Simu-
lated Annealing) [160,165] and DATE [158,165]. The final cost and our
algorithm are guided by the cost function: α×test time+β×TAM cost where α
and β are designer specified constants determining the relative importance of
the test time and the TAM cost (we use α=1 and β=1 unless stated), see Sec-
tion 4.

For the experiments we have used a Pentium II 350 MHz processor with
128 Mb RAM. Our previous results referred to as DATE and SA were per-
formed on a Sun Ultra Sparc 10 with 450 MHz processor and 256 Mb RAM
[158, 160, 165].

5.1 Test Scheduling

We have performed experiments comparing our test scheduling technique
with previously proposed techniques. The results are given in Table 31. For
design Muresan, the optimal test time can be computed to 25 time units. The
approach proposed by Muresan et al. produces a solution with a test time of
29 time units. The DATE approach finds a solution using 26 time units at a
computational cost of only 1 second. The SA optimization finds after 90 sec-
onds the optimal solution while our technique finds it within 1 second. For the
designs Kime, System S, and System L our approach finds the optimal solu-

Chapter 12 247

tion at a low computational cost. For the larger Ericsson design, our approach
finds the optimal solution after 5 seconds. The SA approach also finds the
optimal solution, however, the computational cost is high. The DATE solu-
tion computes the solution after 3 seconds but the solution is 12.5% from the
optimal solution.

5.2 Integrated Test Scheduling and TAM Design

We have made experiments where we integrate the TAM and the test
scheduling. For each of the benchmarks (ASIC Z, Extended ASIC Z, System
S, and Ericsson), we applied our algorithm using the initial sorting of the tests
based on the key, tp (time×power), t (time), and p (power). The results from
the experiments are collected in Table 32. On ASIC Z when not considering
idle power, the SA produces a solution with a test time of 326 time units and
180 as the TAM cost.The total cost of the solution is 506. The DATE
approach produces a solution with a better test time than the SA approach,
however, the TAM cost is higher, leading to a higher total cost. Our approach
produces solutions with a test time in the same range as the DATE approach.
The TAM cost using our approach is better than the DATE approach leading
to better total cost. The computational cost of our approach is in the same
range as the DATE approach.

For the extended ASIC Z example, our approach produces test solutions
with a lower test time in all cases compared to SA and the DATE approach.
Furthermore, the TAM cost using our approach is lower than compared to the
SA and the DATE approach, which leads to a lower total cost.

In the experiments on System S, the efficiency of our TAM design algo-
rithm is shown. In the SA and DATE approaches the external tester supported
several tests at the same time [160]. For our approach, we now assume that
the external tester can support 2 tests concurrently, i.e. we have more limita-
tion. The SA approach produced a solution with a TAM cost of 160 and the
DATE produced a solution at a TAM cost of 320. Our approach results in a
TAM cost of 100. The total cost is evaluated to 1462180 for our approach,
which is to be compared to 1492194 using SA (α=1 and β=3100).

For the experiments on the Ericsson design we have used α=1 and β=2 in
the cost function. In the previous approaches no bandwidth limitations were
given on the external tester [158,160,165], however, here we assume a band-
width limitation of 12 (there are 12 wires or lines to distribute).

The experiments indicate that our approach produces test solutions at a
low computational cost. The test time for the test solutions are in the range of
the DATE solutions, however, the TAM costs are reduced leading to lower
total costs. In many cases, our approach produces solutions near the SA solu-
tion at a low computational cost.

SOC Test Design248

The advantage of a low computational cost is that it gives the designer a
possibility to explore the design space since each iteration consumes only a
low computational cost. We have computed the cost for a set of design alter-
natives for the Ericsson design (Table 33), which are plotted in Figure 211.
The results show that when test time decreases the TAM cost increases. Typi-
cally, the designer starts with the extreme points α=0, β=1 (only TAM design
is important) and α=1, β=0 (only test time is important). And then creating
new solutions at different values of α and β. The designer tries to find an
approperiate balance of α and β based on the previous runs and inspection of
the computed testing times and the TAM costs.

Design Approach Test time Difference
to optimum (%)

CPU (s)

Muresan

[202]

Optimal 25 - -

SA [160] 25 0 90

Muresan [202] 29 16.0 -

DATE [158] 26 4.0 1

Our (p) 25 0 1

Kime

[132]

Optimal 318 - -

Kime and
Saluja[132]

349 9.7 -

DATE [158] 318 0 1

Our 318 0 1

System S

[25]

Optimal 1152180

Chakrabarty
SJF[28]

1204630 4.5 -

DATE [158] 1152180 0 1

Our 1152180 0 1

System L

[158]

Optimal 1077 - -

DATE [158] 1077 0 1

Our 1077 0 1

Designer 1592 47.8 -

E
ri

cs
so

n

[1
60

]

Optimal 30899 - -

SA [160] 30899 0 3260

DATE [158] (t) 34762 12.5% 3

Our 30899 0 5

Table 31. Test scheduling results.

Chapter 12 249

5.3 Test Scheduling, Test Parallelization and TAM
Design

In the experiments above we assumed a fixed test time for each test set. In
this experiment we allow modifications of the test time at each test set. It
means we have performed experiments combining test scheduling, TAM
design and test parallelization using the System L design. The results are col-
lected in Table 34. The results using SA and DATE approaches do not
support TAM of higher bandwidth than 1 and therefore only test time is

Design Approach Test Application Time Test Access Mechanism Total CPU

Test time (τ(() Differenceτ
to SA (%)

TAM cost
(tam)

Difference
to SA (%)

Total cost
α×τ+β×tam

Difference to
SA(%)

A
S

IC
 Z

SA [160] 326 - 180 - 506 865

DATE[158] 262 -19.6 300 66.7 562 11.1 <1

Our tp 262 -19.6 280 55.6 542 7.1 <1

Our t 262 -19.6 280 55.6 542 7.1 <1

Our p 305 -6.4 240 33.3 545 7.7 <1

E
x
te

n
d

ed
 A

S
IC

 Z

SA [160] 270 - 560 - 830 - 4549

DATE[158] 287 6.3 660 17.9 947 14.1 <1

Our tp 264 -2.2 480 -14.3 744 -10.4 <1

Our t 264 -2.2 460 -17.9 724 -12.8 <1

Our p 264 -2.2 480 -14.3 744 -10.4 <1

S
y

st
em

 S

SA [160] 996194 0 160 - 1492194 - 1004s

DATE[158] t 996194 0 320 100 1988194 33.2 <1

Our tp 1152180 15.7% 100 -37.5 1462180 -2.0 <1

Our t 1152180 15.7% 100 -37.5 1462180 -2.0 <1

Our p 1152180 15.7% 100 -37.5 1462180 -2.0 <1

E
ri

cs
so

n

SA [160] 33082 - 6910 - 46902 - 15h

DATE[158] tp 34762 5.1 8520 23.3 51802 10.4 62s

Our tp 30899 -6.6 6015 -13.0 42929 -8.5 10s

Our t 30899 -6.6 6265 -9.3 43429 -7.4 10s

Our p 30899 -6.6 6205 -10.2 43309 -7.7 10s

Table 32. Experimental results on integrated test scheduling and TAM design.

SOC Test Design250

reported (the experiments were performed ignoring TAM design). In Our* we
have forced the bandwidth to 1.

6 CONCLUSIONS

Test time minimization and efficient test access mechanism (TAM) design
are becoming increasingly important due to the high amount of test data to be
transported in a System-on-Chip (SOC) design. In the process of developing
an efficient test solution, both test time and TAM design must be considered
simultaneously. A simple TAM leads to long test application time while a
more extensive TAM would reduce the test time at the cost of more wiring.
However, an extensive TAM might not automatically lead to lower testing
times since test resource conflicts and power limitations might limit the solu-
tion. We have proposed an integrated technique for test scheduling, test
parallelization (scan chain partitioning) and TAM design that minimizes test
time and TAM cost while considering test conflicts and power limitations.
With our approach it is possible to model a variety of tests as well as tests of
wrapped cores, unwrapped cores and user-defined logic. We have imple-
mented the technique and performed several experiments to demonstrate the
efficiency of our approach.

Design alternative a b test time TAM cost

1 1 0 30899 19030

2 1 15 31973 5745

3 1 30 31973 5865

4 1 45 32901 5975

5 1 60 30899 5705

6 1 90 34332 5445

7 1 125 44488 5355

8 1 250 71765 4235

9 1 500 99016 4015

10 1 1000 134706 3635

11 0 1 235084 3175

Table 33. Design alternatives for the Ericsson design.

Chapter 12 251

Approach Test Application Time Test Access Mechanism cost CPU

SA [160]-flexible test time 316 38sN.A.

DATE[158]-flexible test
time

316 <1N.A.

Our (α=15500:1) 316 18500 <1

Our (α=3000:β=1) 318 9490 <1

Our (α=500:β=1) 322 5140 <1

Our (α=100:β=1) 343 2420 <1

Our (α=50:β=1) 360 1750 <1

Our (α=10:β=1) 399 1030 <1

Our (α=5:β=1) 463 710 <1

Our (α=2:β=1) 593 510 <1

Our (α=1:β=1) 710 490 <1

Our (α=1:β=5) 923 380 <1

Our* 1077 240 <1

Table 34. Experimental results on System L on combined test scheduling, TAM design and
test parallelization.

Figure 211.Variation of test time and TAM cost for the design alternatives in Table 33
of the Ericsson design.

1 2 3 4 5 6 7 8 9 10 11

test time

TAM cost

Design alternatives.

Test time/TAM cost

Chapter 13

Core Selection in the SOC Test Design-Flow1

1 INTRODUCTION2

Testing is performed to ensure the manufacturing of fault-free chips. As
the number of possible faults in a chip is increasing dramatically due to the
technology development, the testing process and the test design are becoming
complicated and very expensive, especially in the case of SOCs. It is therefore
important to take test design into consideration as early as possible in the SOC
design flow in order to develop an efficient test solution. In this chapter, we
propose a technique to integrate test design in the early design exploration
process. The technique can, in contrast to previous approaches, be used
already in the core selection process to evaluate the impact on the system’s
final test solution imposed by different design decisions, regarding the selec-
tion of cores and their test characteristics. The proposed technique considers
the interdependent problems of core selection, test scheduling, TAM (test
access mechanism) design, test set selection, and test resource floor-planning.
It minimizes a weighted cost-function based on test time and TAM routing
cost while considering test conflicts and test power limitations. The power
consumed during testing is often higher than that during normal operation
since during testing hyper-activity is desired in order to maximize the number
of tested faults at a minimal time. A system under test can actually be dam-
aged during testing, and therefore power constraints must be considered.
However, power consumption is complicated to model, and often simplistic
models that focus only on the global system power limit have been proposed
and used. We therefore include a novel three-level power model: system,
power-grid, and core. The advantage is that system-level power budget is met,
and hot-spots can be avoided both at a specific core and at certain areas in the
chip. We have implemented and compared the proposed technique with an
estimation-based approach and a computational expensive pseudo-exhaustive
method. The results from the experiments show that the pseudo-exhaustive
technique cannot produce results within reasonable computational time and
the estimation-based technique cannot produce solutions with a high quality.
Our the proposed technique, on the other hand, produces results close to the
ones produced by the pseudo-exhaustive technique at computational cost

1. The chapter is based on the papers presented at International Test Resource Workshop
(TRP), 2004, [175], and International Test Conference (ITC), 2004 [177].
2.
((

The research is partially supported by the Swedish National Program STRINGENT.

SOC Test Design254

close to the cost of the estimation-based technique, i.e it produces high-qual-
ity solutions at low computational cost.

The rest of the chapter is organized as follows. A background is in Section
2 and an overview of prior work is in Section 3. The problem formulation and
the problem complexity discussion are in Section 4, and the test problems and
their modeling are in Section 5. The algorithm and an illustrative example are
in Section 6. The experimental results are in Section 7, and the conclusions
are in Section 8.

2 BACKGROUND

Technology development has made it possible to design a chip where a
complete system is placed on a single die, so called system chip or System-
on-Chip (SOC). These system chips have to be tested to ensure fault-free
operation. The growing complexity of such chips, device size miniaturization,
increasing transistor count, and high clock frequencies have led to the dra-
matic increase of the number of possible fault sites and the fault types, and
therefore a high test data volume is needed for high-quality testing. The high
test data volume leads to long testing times, and therefore the planning and
organization of the testing become a challenge that has to be tackled.

EDA (Electronic Design Automation) tools are developed to reduce the
design productivity gap, i.e. the gap between what technology allows to be
designed, and what a design team can produce within a reasonable time. A
way to handle the increasing complexity of systems is to model the systems at
higher abstraction levels. However, modeling at higher abstraction levels
means that less implementation specific details are visible. The problem is
that device size miniaturization has made implementation specific details
highly important. The core-based design approach is therefore proposed to
design complex systems, in reasonable time, and at the same time handle
implementation specific details [191, 84]. The idea is that pre-designed and
pre-verified blocks of logic, so called cores, are integrated by the core inte-
grator to a SOC. The cores, provided by core vendors, may each have
different origin, such as from various companies, reuse from previous
designs, or the cores can be completely new in-house designs. The test
designer is then responsible for the design of the system’s test solution, which
includes decision on the organization and the application of test data (test
stimulus and test responses) for each core in the system. Test application time
minimization is often one of the main objective since it is highly related to the
cost of test, but the added over-head, such as additional wiring is also impor-
tant to minimize, while constraints and conflicts should be considered.

Chapter 13 255

The design flow has traditionally been sequential where system design is
followed by test design, and as a final step the chip is produced and tested. A
core-based SOC design methodology consists of two major steps: a core
selection step where the core integrator selects the appropriate cores for the
system, and the core test design step where the test solution for the system is
created, which includes test scheduling and the design of the infrastructure for
test data transportation, the TAM (Test Access Mechanism). These two steps
are traditionally performed in sequence, one after the other (see
Figure 212(a)). For such a SOC design flow, it is important to note that, the
core integrator can, in the initial design step (core selection), select among
several different cores often from several core vendors to implement a certain
functionality in the system. The core integrator selects, based on each core’s
design characteristics given in its specification, the cores that fits the system
best. Each possible core may not only have different design characteristics,
but may also have different test characteristics (for instance test sets and
power consumption). For example, one core may require a large ATE (Auto-
matic Test Equipment) stored test set, while another core, implementing the
same functionality, requires a combination of a limited ATE test set and a
BIST (Built-In Self-Test) test set. The decision on which core to select has
therefore an impact on the global test solution. Selecting the optimal core only
based on its functionality will lead to local optimum, which is not necessarily
the global optimum when the total cost of the system including test cost is
considered. In other words, the selection (of cores and/or test partitioning)
must be considered with a system perspective in order to find a globally opti-
mized solution. This characteristics means that there is need for a test solution
design tool that can be used in the early core selection process to explore and
optimize the system’s test solution (see Figure 212(b)). Such a tool could help
the test designer to answer the following question from a core integrator “For
this SOC-design, which out of these cores is most suitable for the systems test
solution?”.

We have previously proposed a technique for integrated test scheduling
and TAM design where a weighted cost-function based on test time and TAM
wiring cost is minimized while considering test conflicts and test power con-
sumption [176]. We then assumed that the tests for each testable unit was
fixed, and the main objective was, for a given system, to define a test solution.
In this chapter, on the other hand, we assume that for each testable unit sev-
eral alternatives may exist. We propose a technique for integrated core
selection, test set selection, test resource floor-planning, TAM design, and test
scheduling. The core selection, test set selection, test resource floor-planning,
TAM design, and test scheduling are highly interdependent. The test time can
be minimized by scheduling the tests as concurrent as possible, however, the

SOC Test Design256

possibility of concurrent testing depends on the size of the TAM connecting
the test resources (test sources and test sinks). The placement of the test
resources has a direct impact on the length of the TAM wires. And finally, the
selected test sets for each testable unit are partitioned over the test resources
and impacts the TAM design and the test schedule. Therefore, these problems
must be considered in an integrated manner.

Test power consumption is becoming a severe problem. In order to reduce
testing times, concurrent execution of test is explored. However, this may
lead to too high power consumption. The proposed technique includes an
improved power model that consider (1) global system-level limitations, (2)
local limitations on power-grid level (hot spots), as well as (3) core-level lim-
itations. The motivation for this more elaborate power model is that the
system is designed to operate in normal mode, however, during testing mode
the testable units are activated in a way that would not usually occur during
normal operation. It can lead to that (1) the systems power budget is
exceeded, or (2) hot spots appear and damage a certain part in the system, or
(3) a core is activated in such a way that the core is damaged.

The proposed technique can be used to explore alternative cores for a
SOC, different test alternatives for each testable unit, as well as the placement
of test resources. As the design alternatives increases, we make use of Gantt
charts to limit the search space. We have implemented the proposed tech-
nique, an estimation-based technique and a pseudo-exhaustive technique. The
experiments using the estimation-based technique shows that it is difficult to
produce high-quality solutions and the experiments with the pseudo-exhaus-
tive technique demonstrates that the search space is enormous. The proposed
technique, on the other hand, produces solutions with a cost close to the
pseudo-exhaustive technique but at a computational cost close to the estima-
tion-based technique.

Figure 212. Design flow in a core-based design environment
(a) traditional and (b) proposed.

core selection

production

test application

test design

core selection
& test design

production

test application

(a) (b)

Chapter 13 257

3 RELATED WORK

The technology development has, as discussed above, enforced the intro-
duction of the core-based design environment [84]. Blocks of reusable logic
blocks, so called cores, are combined to a system that is placed on a single
die. A core-based design flow is typically a sequential sequence that starts
with core selection, followed by test solution design, and after production, the
system is tested (Figure 212(a)). In the core selection stage, the core integra-
tor selects appropriate cores to implement the intended functionality of the
system. For each function there is usually a number of possible cores to select
from, and where each candidate core has its specification. The specification
include, for instance, performance, power consumption, area, and test charac-
teristics. The core integrator explores the design space (search and combines
cores) in order to optimize the performance of the SOC. Once the system is
fixed (the cores are selected) the core test designer designs the TAM and
schedules the tests based on the test specification for each core. In such a
design flow (illustrated in Figure 212(a)), the test solution design is a consec-
utive step to core selection. It means that even if each core’s specification is
highly optimized, when integrated as a system, the system’s global test solu-
tion is not highly optimized.

A design flow such as the one in Figure 212(b), on the other hand, inte-
grates the core selection step and the test solution design step. The advantage
is that it makes it possible to consider the impact of core selection when
designing the test solution. In such a design flow (Figure 1(b)), the global sys-
tem impact on core selection is considered, and the advantage is that it is
possible to develop a more optimized test solution. The design flow in
Figure 1(b) can be viewed as in Figure 213, where the core type is floor-
planned in the system but there is not yet a design decision on which core to
select. For each position, several cores are possible. For instance, for the
cpu_x core there are in Figure 213 three alternative processor cores (cpu1,
cpu2 and cpu3).

In this chapter we make use of the concepts introduced by Zorian et al.
[191], which are illustrated with an example in Figure 214. The example con-

Figure 213.System design with different alternatives.

cpu1
cpu2

cpu3

ram1
ram2

ram3

cpu_x dsp_y

ram_z ram_u

dsp1
dsp2

dsp3

SOC Test Design258

sists of three main blocks of logic, core A (CPU core), core B (DSP core), and
core C (UDL (user-defined logic) block). A test source is where test stimulus
is created or stored, and a test sink is where the test response for a test is
stored or analyzed. The test resources (test source and test sink) can be placed
on-chip or off-chip. In Figure 214 the ATE serves as an off-chip test source
and off-chip test sink, while TS1, for instance, is an on-chip test source. The
TAM is the infrastructure (1) for test stimulus transportation from a test
source to the testable unit, and (2) for test response transportation from a test-
able unit to a test sink. A wrapper is the interface between a core and the
TAM, and a core with a wrapper is wrapped while a core without wrapper is
unwrapped. Core A is a wrapped core while Core C is unwrapped. The wrap-
per cells at each wrapper can be in one of the following modes at a time:
internal mode, external mode and normal operation mode. In addition to the
definitions by Zorian et al. [191], we assume that a testable unit is not a core,
but a block at a core and that a core can consist of a set of blocks. For exam-
ple, core A (Figure 214) consists of two blocks (A.1 and A.2).

For a fixed system where cores are selected and floor-planned, and for
each testable unit the tests are fixed, the main tasks are to organize the testing
and the transportation of test stimuli and test responses (as the example design
in Figure 214). Several techniques have been proposed to solve different
important problems under the assumption that the cores are already selected
(design flow as in Figure 212(a)).

Zorian [287] proposed a test scheduling technique for fully BISTed sys-
tem where each testable unit is tested by one test with a fixed test time, and

Figure 214.A system and the illustration of some test concepts.

wrapper

A ()core A (CPU)
wrapper

core B (DSP)

system wrapper cell

TR1

off-chip test source
off-chip test sink

on-chip test source

on-chip test sink

block A.1

block A.2

scan chain core C
(UDL)

block C.1scan chain

ATE
test stimuli test response

scan chain

block B.1

TS1

scan chain

scan chain

TR2

TS2

Chapter 13 259

each testable unit has its dedicated on-chip test source and its dedicated on-
chip test sink. A fixed test power value is attached to each test and the aim is
to organize the tests into sessions in such a way that the summation of the
power consumed in a session is not above the system’s power budget while
minimizing the test application time. In a system where the testable units
share test source and test sink, the test conflicts must be taken into account.
Chou et al. proposed a test scheduling technique that minimizes the test time
for systems where both the test time and power consumption for each test are
fixed, and to handle general conflicts a conflict graph is used [41].

The approaches by Zorian and Chou et al. assume fixed testing times for
each testable unit. The test time for a core can be fixed by the core provider. It
can be due to that the core providers have optimized their cores in order to
protect the IP-blocks, for instance. However, the test time at a core is not
always fixed. For scan-tested cores, the scanned elements can be connected to
any number of wrapper chains. If the scanned elements (scan-chains, inputs,
and outputs) at a core are connected to a small number of wrapper chains, the
testing time is higher compared to if the scan elements are connected into a
higher number of wrapper chains. Iyengar et al. proposed a scheduling tech-
nique for systems where the testing time for all cores is flexible and the
objective is to form a set of wrapper chains for each core in such a way that
the testing time for the system is minimized [113].

In order to minimize the test times as many fault locations as possible are
activated concurrently, which leads to high power consumption. A high-level
of power can also be consumed at certain so called hot-spots. Zorian [287]
and Chou et al. [41] assign a fixed power value to each test and make sure that
the scheduling does not activate the tests in such a way that the system’s
power budget is exceeded at any time. Bonhomme et al. [18] and Saxena et
al. [241] proposed clock-gating schemes intended to reduce the test power
consumed during the scan-shift process. The advantage is that the test power
can be reduced at a core with such a scheme, and hence a higher number of
cores can be scheduled concurrently. The basic idea is if a wrapper chain con-
sists of n scan-chains, the scan-chains can be loaded one at a time, which
means that only one chain is active at a time, hence, lower power
consumption.

There has been research on finding the most suitable ATE/BIST partition
for each testable unit. Sugihara et al. investigated the partitioning of test sets
where one part is on-chip test (BIST) and the other part is off-chip test using
an ATE (Automatic Test Equipment) [257]. A similar approach was proposed
by Jervan et al. [126], which later was extended to not only locally optimize
the test set for a core but to consider the complete system by using an estima-
tion technique to reduce the test generation complexity [127].

SOC Test Design260

Hetherington et al. discussed several important test limitations such as
ATE bandwidth and memory limitations [92]. These problems as well as the
problems described above are important to include and consider in the search
of a final test solution for the system.

The above addressed problems are all individually important to consider
when designing the test solution for an SOC, however, it is important to con-
sider them simultaneously from a system test perspective. We have
previously proposed an integrated technique for test scheduling and TAM
design where the test application time and the TAM design are minimized
while considering test conflicts and power consumption [176]. The technique
handles unwrapped as well as wrapped cores, and also cores with a fixed test-
ing time as well as cores with a flexible testing time. The technique is also
general in the test source and test sink usage. Each test can be defined to use
any test source and any test sink. It is not needed that a test uses a test source
and a test sink where both are placed on-chip, or both are placed off-chip. Fur-
thermore, the technique allows an arbitrary number of tests per testable unit,
which is important to handle testing such as timing faults and delay faults and
not only stuck-at faults. However, the technique assumes that the tests for
each testable unit are fixed and defined.

4 PROBLEM FORMULATION

The problem we address in this chapter can be illustrated with Figure 215
where a SOC with its floor-plan is given as the rectangle. Note, the core types
are defined but the particular core is not yet selected. For example, at position
CpuX, coreA and coreB are the alternatives. Each of the alternative cores may
consist of a set of blocks (testable unit) where each block has multiple test
alternatives. For instance, blockA1 at coreA can be tested by test t1 or by t2
and t3. Each test is attached to one block and each test can have its combina-
tion of test source and test sink. For instance, t1 makes use of r1 and s1. Since
no other test in the system makes use of r1 and s1, r1 and s1 will most likely
not limit the test time. On the other hand, since s1 and r1 are not used by any
other test, the added TAM has a low utilization, which leads to the waste of
resources.

An example of an input specification, the starting point in our approach, is
given in Figure 216. The structure of the input specification is based on the
specification we made use of in [176]. The major extension are (1) that for
each block (testable unit) several lists of tests can be specified, instead of as
before where it was only possible to assign one list per block, and (2) the
improved power-grid model.

Chapter 13 261

The advantage of the possibility to specify several lists of tests for each
block (testable unit) where each test in a list make use of its specified
resources (test source and test sink), and each test has its test characteristics, is
that it makes it possible to explore different design alternatives (as illustrated
in Figure 215).

The test problems that are considered in our technique and their modeling
are discussed in Section 5. The cores are floor-planned, i.e. given (x,y) coor-
dinates and each core consists of a set of blocks (testable units):

[Cores] name x y {list for Core1} {list for Core2}
CpuX 10 20 {BlockA1 BlockA2} {BlockB1}

For each block, several sets of tests are available, where each set of tests is
sufficient for the testing the block. For instance, to test a block bA three possi-
ble test sets are given:

[Blocks] name idle_pwr pwr_grid {test1, t2,..., tn} {t1,..tn}
bA 0 grid1 {tA1, tA2} {tB1} {tC1 tC2 tC3}

{tA1, tA2} or {tB1} or {tC1 tC2 tC3} should be selected where each test
has its resources and characteristics.

The problem is to select, cores and corresponding blocks and for each
block, which set of tests to use in order to produce an optimized test solution

Figure 215.Illustration of design alternatives.

coreA

s1 CpuX

s2

ti: test i
{t1, ..., tnt }: a set of tests
rjr : test source
sk: test sink

r1

r2r

r3r

s3

{t1}

r1

{t2, t3t }

coreB

DspY

r2r s2 r3r s3

coreC

s1 r4r s4

{t4t , t5t } {t6, t7} {t8, t9}

s4 r4r

SoC floor-plan

blockA2 blockB blockCCblockA1

{t10, t11} {t12, t13}

blockCC

{t14}

SOC Test Design262

for the system. The cost of a test solution is given by the test application time
and the amount of routed TAM wires:

where τtotal is the total test application time (end time of the test with high-
est test time), TAM is the routing length of all TAM wires, and, α and β are
two user-defined constants used to determine the importance of test time in
relation to TAM cost. The user-defined constants α and β depends on each
particular design, and it is therefore not possible to define universal values on
α and β. The selection of a and b is based on the characteristics of the particu-
lar SOC.

[Global Options]
MaxPower = 100
[Power Grid] #name power_limit

p_grid1 50
p_grid2 60

[Cores] #name x y block_list
coreA 20 10 { blockA1, blockA2 }
coreB 40 10 { blockB1, blockB2 }
coreC { blockC1 }

[Generators] #name x y max_bw memory
ATE 10 0 4 200
TG1 30 0 1 50
// the rest of the generators
TG2 30 10 1 100

[Evaluators] #name x y max_bw
ATE 50 0 4
TRE1 30 0 1
// the rest of the evaluators
TRE2 30 10 1

[Tests] #name pwr timetpg tre min_bw max_bw ict
tA1.1 60 60 TG1 TE1 1 1 no
// more tests for coreA
tB1.1 60 72 TG1 TE1 1 1 no
// more tests for coreB
tC1.1 70 80 TG1 TE2 1 4 coreB
// more tests for coreC

[Blocks] #name idle_pwr pwr_grid test_sets {}, {}, ...,{}
blkA1 0 p_grd1 { tA1.1 }{ tA1.2, tA1.3}
blkA2 0 p_grd1 { tA2.1 }{ tA2.2 }
blkB1 5 p_grd2 { tB1.1 tB1.2 } { tB1.3 }
blkB2 10 p_grd2 { tB2.1 }
blkC1 0 p_grd1 { tC1.1}

[Constraint] #name {block1, block2, ... , blockn}
tA1.1 {}
// constraints for each test
tC1.1 {blkC1 blkA1 blkA2 blkB1 blkB2}

Figure 216.Input specification for the example system in Figure 214.

tcos α total× βτtotal TAM×= (13.1)

Chapter 13 263

The produced output from our technique is a test schedule where the cores
are selected and for each block (testable unit) at the selected cores, the tests
are selected and given a start time, and an end time in such a way that all con-
flicts and constraints are not violated, and a corresponding TAM layout where
the cost (Eq. (13.1)) is minimized.

4.1 Problem Complexity

The number of design options when developing the test resource specifi-
cation can be high. Assume that each block (testable unit) bij∈B at a core ci
has |TijTT | possible combinations of test sets where each test set can be placed at
nij positions and each test set can be modified in mij ways where a high num-
ber of TAM wires reduces the test time and vice versa. The number of
possibilities are:

For a small system consisting of only two cores; each with two test sets
where each test set have two possible placements and each test set can be
modified in two ways, the number of design alternatives are: (2×2×2)2=64.

5 TEST PROBLEMS AND THEIR MODELING

In this section we discuss the test problems that have to be considered
when developing a SOC test solution and the modeling of the problems.

5.1 Test Time

The testing time for a testable unit can be fixed or non-fixed prior to the
design of the test solution. A core provider might protect the core and there-
fore optimize the core and its core wrapper prior to delivery, hence, having
the testing time fixed. On the other hand, the testing time for a scan-tested
core can also be non-fixed since the scanned elements (scan-chains and wrap-
per cells) can be connected into one or more wrapper-chains. The testing time
for a test with flexible test time depends on the number of wrapper-chains.
Important to note is that tests with fixed and non-fixed testing times can be
mixed in the system. The test time model must handle systems where some
cores have fixed test time while other cores haved non-fixed testing time.d

A higher number of wrapper-chains at a core results in lower testing time
compared to if fewer wrapper-chains are used. The scan-chains at a core can
be few and unbalanced (of unequal length), and the testing time might not lin-

Tij nij mij××
i 1 j 1=1 j

B

∏

SOC Test Design264

early dependent on the number of wrapper chains. Therefore, we analyzed the
linearity of the testing time (τ) versus the number of wrapper-chains (w) (τ×w
= constant) for the scan-tested cores in one of the largest ITC’02 designs,
namely the P93791 design [176]. We observed that the testing time for core
11 was most non-linear (Core 11 - original in Figure 217). We noted that the
576 scanned elements were partitioned into 11 scan-chains (82 82 82 81 81 81
18 18 17 17 17). We re-designed core 11 into four new cores with 11, 22, 44,
and 88 balanced scan-chains, respectively. We plotted τ×w for all cores in
Figure 217. As the number of scan-chains increases, the value τ×w becomes
more or less constant. The testing time at a single wrapper chain is 149381
(marked in Figure 217). For core 11 with 44 balanced scan-chains, the value
τ×w is always less than 5% from the constant theoretical value. Important to
note is that for all cores, the value τ×w is almost constant within a certain
range. We assume that the core test designer optimizes the cores, hence, the
number of scan-chains at a core is relatively high and of nearly equal length.

In our model [176], we specify the testing time for a testable unit at a sin-
gle TAM wire and the bandwidth limitations. For instance a testA has a test
time of 100 at a single wrapper chain and where the scanned elements can be
arranged into wrapper-chains in the range 1 to 4:

[Tests] name test time minbw maxbw
testA 100 1 4

We assume, based on our experiments, that the test time is linear to the
number of TAM wires within the bandwidth range. It means that given the
test time at a single TAM wire (τ1), the test time ti can be computed by:

where i is in the range [minbw, maxbw]. If the testing time is fixed, minbw
= maxbw.

5.2 Test Power Consumption

The testing time is reduced if a high number of cores are activated concur-
rently, but it leads to higher activity, and high power consumption can
damage the system. The system-level power budget can be exceeded in such a
situation. Furthermore, if cores that are physically close are activated during
testing, a hot-spot can be created and damage the system. For instance,
assume a memory organized as a bank of four where in normal operation only
one bank is activated at a time. However, during testing, in order to shorten
the test time, all banks are activated concurrently. The system’s power limit
might not be exceeded, however, a local hot spot is created, and the system
may be damaged. Another problem is that a core during testing mode dissi-

τi

τ1

i
---------= (13.2)

Chapter 13 265

pates power above its specified limit due to the nature of the test stimuli and/
or the test clock frequency. We therefore make use of a three-level power
model: system-level, power-grid-level (local hot spot), and core-level.

For the system-level, we make use of the power model defined by Chou et
al. where a fixed power value is attached to each test, and the tests are sched-
uled in such a way that at any time point, the summation of power values
executed concurrently is below the power budget of the system [41].

As an example, we can specify the system budget as:

MaxPower = 100

and for each test we specify the power consumed when the test is
activated:

[Tests] name pwr time tpg tre minbw maxbw mem ict
testA 60 60 r1 s1 1 1 10 no

Additionally, the idle power, the power consumed when a block is not
active is also specified at each block:

[Blocks] name idle pwr pwr_grid {t1, t2,...,tn} {t1,..tn}
bA 0 grid1 {testA} {testA2}

For local hot spots, we introduce a power grid model, which has similari-
ties to the approach proposed by Chou et al. [41], but in addition to it, our
model also include local areas (power grids). We assume that each block
(testable unit) is assigned to a power grid where the power grid has its power
budget. The system can contain a number of power grids. Blocks assigned to a

 140000

 160000

180000

200000

 220000

240000

 260000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TAM width

|τ1-τ2|/τ// 2x100=5%
τ1=156850

τ2=149381

Core 11 - original

Core 11 - 11 balanced chains

Core 11 - 22 balanced chains

Core 11 - 44 balanced chains Core 11 - 88 balanced chains
2

Figure 217.Test time analysis for core 11 in design P93791.

SOC Test Design266

power grid cannot be activated in such a way that the power grid budget is
exceeded at any time.

An example to illustrate the need of power grids is as follows, a memory
can be organized as a bank of memory blocks (see Figure 218). Assume that
the memory, during normal operation, never accesses more than a single
memory block the power grid is designed accordingly.

As an example of a single grid is:

[PowerGrid] pwr_grid limit
grid1 30

and for each block the used power grid is given:

[Blocks] name idle_pwr pwr_grid {test1, t2,..., tn} {t1,..tn}
bA 0 grid1 {testA} {testA2}

The motivation behind core-level adjustments is two-fold. First, by lower-
ing the power consumption at a core, a higher number of cores can be
activated concurrently without violating the system power budget. Second,
since test power consumption often is higher than that during the normal oper-
ation, the power dissipation during test at a specific core can be higher than its
own power budget, which can damage the core.

As discussed above, some tests have a fixed testing time while other tests
allow flexible testing times. Regarding test power consumption, we have
some tests where the power is fixed regardless of the number of assigned
TAM wires, while other tests allow the power to be adjusted by clock-gating,
for instance [241]. Clock-gating can be used to reduce the power consumption
so that a higher number of tests can be executed concurrently, but more
importantly, it can be use for testable units where its own power dissipation is
higher than its allowed power consumption due to for instance a too high test
clock frequency.

The power consumption for a test is given as a single value, for instance as
in the following example:

[Tests] name pwr time minbw maxbw flexible_pwr
testA 50 60 1 4 yes
testB 60 30 1 4 no

Figure 218.A memory organized as a bank of four blocks powered by a common grid.

Memory A Memory B

Memory C Memory D

Power grid 1

Chapter 13 267

Note that we include the possibility to specify if clock-gating can be used
by setting flexible_pwr to yes or no. If power can be modified, we assume a
linear dependency:

where p1 is the power at a single TAM wire, pi is the power consumed
when i number of TAM wires are used; i has to be in the specified range
[minbw:maxbw].

5.3 Test Conflicts

During the test solution design there are a number of conflicts that have to
be considered and modeled. Each test has its defined constraints depending on
the type of test; stuck-at, functional, delay, timing, etc. For general conflicts
we make use of the following notation [176]:

[Constraints] test {block1, block2, ..., block n}
tA {bA bB}

The notation means that when testing tA both block bA and bB must be
available since they are used by test tA or tA might interfere with one of the
blocks. This modeling support general conflicts, which can be due to hierar-
chy where cores are embedded in cores or interference during testing. The
model can also be used for designs where an existing functional bus is used as
the TAM media. A functional bus can be modeled as a dummy blocks, where
usually only one test can be active at a time.

A test source ([Generators]) may have limited bandwidth and memory.
The bandwidth limitation and the memory limitation are especially critical for
ATEs but are important if on-chip resources such as memories are used for
test data storage. We model bandwidth limitation as an integer stating the
highest allowed bandwidth for the test source. For memory limitations an
integer is used as the maximal memory limit. A test sink ([Evaluators]) can
also have a limited bandwidth and in a similar way as with test sources, we
model it also as an integer. For each test we give a number of its memory
requirement. An example with testA using test source r1 and test sink s1 [176]
is given below:

[Generators] name x y maxbw memory
r1 10 20 1 100

[Evaluators] name x y maxbw
s1 20 20 2

[Tests] name tg tre memory
testA r1 s1 10

The wrapper conflicts are slightly different compared to general conflicts
because of the TAM routing. The testing of a wrapped core is different from
the testing of an unwrapped one. The testing of the wrapped core A

pi p1 tam×= (13.3)

SOC Test Design268

(Figure 214), for example, is performed by placing the wrapper in internal
test mode and test stimuli are transported from the required test source using a
set of TAM wires to the core and the test responses are transported from the
core using a set of TAM wires to the test sink. In the case of an unwrapped
testable unit such as the UDL block, the wrappers at core A and B are placed
in external test mode. The test stimuli are transported from the required test
source on the TAM via core A to the UDL block and the test responses are
transported via core B to the TAM and to the test sink.

We model the wrapper conflict as in the following example with two
blocks (bA and bB) and one test per block (tA and tB):

[Blocks] name {test1, test2,..., test m} {test1,..., test n}
bA {tA}
bB {tB}

[Tests] name tg tre ict
tA r1 s1 bB
tB r1 s1 no

Test tB is not an interconnection test, hence, ict (interconnection test) is
marked as no. It means that there will be a connection between r1 to bB and
from bB to s1. Test tA, on the other hand, is an interconnection test with bB.
It means that r1 is connected to bA and bB is connected to s1.

6 TEST DESIGN ALGORITHM

In this section we describe the proposed test design algorithm (outlined in
Figure 219, and detailed in Figure 221 and Figure 220). In order to evaluate
the cost of a test solution, we make use of (Eq. 13.1). At a design modifica-
tions, the cost change before and after modification, is given by:

where ∆τ (∆TAM) is the difference in test time (TAM cost), before and
after the modification.

The TAM cost is given by the length l and its width w (TAM=MM l×ll w), and by
combining the cost function (Eq. (13.1)) considering only one testable unit,

∆τ α× ∆α TAM β× (13.4)

Figure 219.The algorithm.

Select tests for initial solution
Do {

Create test schedule and TAM
Find limiting resource with Gantt chart
Modify tests (select alternative tests or modify
TAM width) at limiting resource
Select best modification

} Until no improvement is found
Return best solution.

Chapter 13 269

and the test time versus TAM cost (Eq. (13.2)), the optimal TAM bandwidth
is given by [176]:

A detailed description of the algorithm (Figure 219) is in Figure 221 (test
set selection outline) and Figure 220 (test scheduling and TAM design). The
algorithm starts by the part given in Figure 221, where the list of test sets for
each testable unit is sorted based on the cost function (Eq. (13.1)). The cost
for each testable unit is locally optimized, however, there is at this point no
global consideration on sharing of TAM wires or conflicts. For each testable
unit, the first set of tests for each testable unit is selected, and the set is sched-
uled and the TAM is designed (Figure 220). From the test schedule, the test
application time is given and from the TAM layout, the TAM cost for the
solution is given. The algorithm checks the use of resources from a Gantt-
chart for the solution (explained below in Section 6.1). For example, assume
the a test solution generates a Gantt-chart as in Figure 222, where TG:r1 is the
critical resource. For all tests that are using the critical (limiting) resource, we
try to find alternative tests. We make use of Eq. (13.4) to evaluate the change
in cost for each possible alternative (at the critical resource). Instead of trying
all possible alternatives, we try a limited number of design modifications
(given from the Gantt chart). And to reduce the TAM cost we try to make use
of existing TAMs (a test can be delayed and applied later).

w () βα τ× l)β l×= (13.5)

Figure 220.Test scheduling and TAM design algorithm.

sort the list of tests descending according to the cost
function.
repeat until the list is empty {

select the first test in the list
repeat until a test is scheduled or at end of list {

repeat until selected test is scheduled or
bandwidth cannot be decreased {

try to schedule the test at current time
if fail to schedule {

if the bandwidth>1 then reduce bandwidth with 1
}

}
if the selected test could not be scheduled {

select the following test in the list
}

}
if the test was scheduled {

allocate TAM and remove the selected from the list
} else {

update current time to the nearest time in the
future where possible to schedule the first
test in the list

}
}

SOC Test Design270

Figure 221.Test set selection algorithm.

for each block (testable unit) {
for each test set at a block {

compute optimal bandwidth for each test (Eq. (13.5));
compute cost for the full test set (Eq. (13.1));

}
place test sets sorted descending on cost (step (13.4));
select first test set in the list as the active test set

}
repeat until no modification can be performed {

create test schedule and TAM layout (see Figure 220)
if the cost for schedule and TAM layout is best so far{

remember this test schedule and the TAM layout
}else {

if last modification was a TAM width modification {
undo the TAM width modification

}
if last modification was a test set modification {

remove the test set from the blocks list of test sets
}

}
for each block {

if the active test set has a test resource limiting
the solution {

compute cost for increasing the TAM width with 1
for every other test set for the block{

compute the cost of changing this test set
based on Eq. (13.4)
if the cost is lower than lowest cost {

remember this test set
}

}
if lowest cost for the block < the total cost{

remember block, TAM width and test set modification
}

}
if any alternatives exists {

perform TAM width modification or
test set modification

} else {
for each block {

for each test set after the active test set for the
block{

compute the cost of selecting it (Eq. (13.4))
if cost is lowest then remember this test set

}
if best cost for the block < lowest total cost then {

remember block change and test set change
}

}
if lowest cost difference <0 {

do the test set change
}

}
}

Chapter 13 271

6.1 Resource Utilization

We make use of a machine-oriented Gantt chart to track bottlenecks (the
resource that limits the solution) [23]. We let the resources be the machines,
and the tests be the jobs to show the allocation of jobs on machines. For
example, a Gantt chart is given in Figure 222 where test B2 needs TG:r2 and
TRE:s2. An inspection of Figure 222 shows that TG:r2 and TRE:s2 are not
critical to the solution. On the other hand, test source TG:r1 is the most criti-
cal one. It means that testA, testB1, and testC are the obvious candidates for
modification. The Gantt chart pin-points bottlenecks and therefore reduces
the search for candidates for modification. Note that the Gantt chart does not
show a valid schedule, only the usage of resources in the system.

6.2 Example

We use the design example in Figure 223 to illustrate the algorithm
described above. The example (Figure 223), simplified by removing power
grids, memory limitations and the list of general constraints, consists of two
cores each with a single block (testable unit). Each block can be tested in two
ways; there are two alternative test sets for each block. For instance, blockA
can be tested by testA1 or by testA2. Each of the tests can be defined with its
test time, combination of test sink and test source etc.

The algorithm proceeds as follows. Initial step: For each block, the test
sets are ordered ascending according to the cost function (Eq. (13.1) assuming
α=β=1):

test time TAM total cost
testA1: 60 40 100
testA2: 100 20 120
testB1: 72 40 112
testB2: 120 20 140

The evaluation results in the following sorted lists per block (first in the
list is the best candidate):

BlockA: {{testA1}, {testA2}}
BlockB: {{testB1}, {testB2}}

Figure 222.A machine-oriented Gantt chart [23].

time

resources

TG: r1 testA testB1

test B2

τtotal

TG: r2

TRE: s1

TRE: s2

testC

testA testB1

test B2 testC

SOC Test Design272

The first set of tests are selected as active, that is for BlockA {testA1} and
for BlockB {testB1}. The test scheduling algorithm sorts the tests based on
test time, and starts with the longest test, making the test schedule: testB start-
ing at time 0 followed by testA starting at time 72. The resulting total test
application time is 132. The TAM design algorithm connects TG1, coreB,
coreA, and TA1, and the Manhattan length is 20+20+20=60. The total cost (at
α=β=1) for the test solution is then: 132 (test time)+60 (TAM cost)=192.

From the Gantt chart for this test solution, we observe that TG1 and TA1
both are used for 132 time units, while TG2 and TA2 are not used at all, and
we note that TG1 and TA1 limits the solution. Based on the Gantt-chart, the
algorithm tries to find an alternative that is not using TG1 and TA1. For each
test that uses the limiting resources in the Gantt chart, in our example TG1
and TA1, the algorithm computes the alternative cost of using other resources.
It is important to note, that in order to limit the number of possible options,
we only try with the tests that depend on the resources critical to the solution
(Gantt chart).

As the first alternative modification, we try using testA2 to test BlockA
instead of using testA1. It means that testA1 will not be executed (one of the
set of tests for each block is only required). We evaluate the impact of the test
modification on the TAM layout, and we observe that we do not have to
include coreA in the layout. Taking coreA out of the bus layout means that
TAM corresponding to 20 units can be removed (testA2 is making use of dif-
ferent test resources compared to testA1). However, in order to execute
testA2 we have to include wires from TG2 to coreA and from coreA to TA2.
The additional required wiring corresponds to 20 units.

The difference in test time between testA1 and testA2 is (100-60=) 40. It
means that the total cost difference is estimated to: -20 (gain by not including
coreA for testA1)+20 (what we have to add to include TAM for TG2->coreA-
>TA2)+40=40.

For the second alternative modification, we try testB2 instead of testB1. It
means that a TAM (length and width) corresponding to 20 units can be
removed. The additional TAM cost of adding testB2 (its resources) is 20, and
the difference in test time between testB2 and testB1 is 48 (120-72). The cost
difference for this alternative is -20+20+48=48.

In this example we have two tests using the resources that are critical to
the solution (Gantt chart), and we also had only one possible alternative per
test. And, since the first alternative is better than the second, the first one is
selected. A new test schedule and a TAM layout is created where both testA1
and testB1 are scheduled to start at time 0, and there are two TAMs, one from
TG2->coreA->TA2 at length 20, and one from TG1->coreB->TA1 at length
40. The total cost is 60+72=132 (an improvement from 192 to 132).

Chapter 13 273

7 EXPERIMENTAL RESULTS

The objective with the experiments is to check that the proposed technique
produces a high quality solutions at a reasonable computational cost (CPU
time). For comparision purpose, we have also implemented an estimation-
based technique [170] and a pseudo-exhaustive algorithm. The estimation-
based technique, that tries to predict the cost at a low computational cost, is
used to demonstrate that finding a high quality test solution is not trivial, and
the pseudo-exhaustive algorithm, that basically tries all possible solutions, is
used to demonstrate that the search space is enormous in size.

We have created three designs, in increasing size: design_small,
design_medium and design_large. Design_small contains 4 cores each with
one testable unit and for each testable unit there are two alternative tests, cor-
responding to two different core alternatives. Design_medium contains 13
cores also with one testable unit per core and for each testable unit there are 5

Figure 223. An illustrative example with a simplified input where power grids, memory
limitations, and constraint list (general constraints) are not considered.

[Global Options]
MaxPower = 100
[Cores] #name x y block_list

coreA 20 10 { blockA }
coreB 40 10 { blockB }

[Generators] #name x y max_bw
TG1 30 0 1
TG2 30 10 1

[Evaluators] #name x y max_bw
TA1 30 0 1
TA2 30 10 1

[Tests] #name pwr timeTPG TRE min_bw max_bw ict
testA160 60 TG1 TA1 1 1 no
testB160 72 TG1 TA1 1 1 no
testA240 100 TG1 TA1 1 1 no
testB240 120 TG1 TA1 1 1 no

[Blocks] #name idle_power test_sets
bA 0 { testA1 }{ testA2 }
bB 0 { testB1 }{ testB2 }

CoreA
(20,10)

CoreB
(40,10)

TG1/TA1
(30,0)

TG2/TA2
(30,10)

BlockBBlockA

SOC Test Design274

design alternatives. Design_large consists of 122 testable units distributed
over 18 cores and 186 tests.

The experimental results with the three techniques on the three designs are
collected in Table 35, Table 36, Table 37, and Table 38 where α=β=1. Table
35 reports the computational cost (CPU time) for each of the three techniques.
The estimation-based technique produces results very quickly (less than one
second) while the pseudo-exhaustive approach does not terminate for the two
larger designs, i.e. no results were produced within reasonable time. The pro-
posed technique used CPU time that is in between the estimation-based and
the pseudo-exhaustive approach, and results were produced for all designs at
acceptable CPU times. For the largest design the CPU time was 4 seconds.

For the quality of the solutions we have collected the test application time,
the TAM cost, and the total cost of the test solution for each of the three tech-
niques at each of the three designs (reported in Table 36, Table 37, Table 38,
respectively). The test application time for design_small of the solution pro-
duced by the estimation-based technique is 400, for the solution produced by
both the pseudo-exhaustive technique and the technique two the test time is
320 (Table 36). The solution from the estimation-based technique is 25%
worse than the solutions from the pseudo-exhaustive and the proposed tech-
nique. The experiment indicates that the proposed technique finds a solution
of high quality (the same test time as the pseudo-exhaustive technique).

The TAM cost for the three techniques at the three designs are collected in
Table 37. The proposed technique finds for design_small a test solution with
the same TAM cost (120) as the pseudo-exhaustive technique. The results
from estimation-based technique is 140, which 17% from the pseudo-exhaus-
tive and the proposed techniques.

The total cost is computed with α=β=1 making the total cost = test time +
TAM cost (Eq. (13.1)). For instance, the total cost for the proposed technique
at design_small is 440 and it comes from the summation of the test time 320
(Table 36) and the TAM cost 120 (Table 37). The proposed technique pro-
duces a solution at the same cost as the pseudo exhaustive technique for
design_small, while the solution from the estimation-based technique is 23%
worse. The proposed technique produces results for all three designs that are
better than the results from the estimation-based technique.

Chapter 13 275

8 CONCLUSIONS

Test design is traditionally considered as a final step in the system chip
design flow, however, as testing is becoming a significant part in the design
flow it is important to consider test design as early as possible in the design
flow. The technology development has made it possible to design system

Design Estimation [170] Pseudo-exhaustive Proposed technique

Design_small <1 <1 <1

Design_medium <1 N.A <1

Design_large <1 N.A 4

Table 35. Computational cost (seconds).

Design Estimation [170] Pseudo-exhaustive Proposed technique

Design_small 400 320 320

Design_medium 240 N.A 193

Design_large 215 N.A 220

Table 36. Test application time.

Design Estimation [170] Pseudo-exhaustive Proposed technique

Design_small 140 120 120

Design_medium 810 N.A 690

Design_large 1072 N.A 962

Table 37. TAM routing cost.

Design Estimation [170] Pseudo-exhaustive Proposed technique

Design_small 540 440 440

Design_medium 1050 N.A 883

Design_large 1287 N.A 1182

Table 38. Total cost (α=β=1).

SOC Test Design276

chips that are shrinking in size but include an enormous number of transistors
that are clocked at an immense clock frequency. The draw-back with such
systems is that the number of fault sites increase drastically, and in order to
test these system chips a high test data volume is required. It is therefore
important to consider test planning as early as possible in the design flow. In
this chapter we propose a technique where system test design is included as
early as in the core selection phase. The advantage is that the technique makes
it possible to explore the impact of test design taking a system’s global per-
spective already when deciding on which cores to be used to implement the
system. The proposed technique can be used to explore the impact of (1) the
core selection on the test solution, (2) the test set partitioning (BIST size ver-
sus ATE size) on the test solution, and/or (3) the placement of test resources
(test source and test sink) on the test solution.

Prior work assume a system where cores, tests and placement of test
resources are already fixed when test planning is to be performed. It means
that test scheduling and TAM design are the main problems. Our approach
include the interdependent problems of test scheduling, TAM design, test set
selection and test resource placement, together with core selection. Our tech-
nique defines a test solution where the test time and the TAM routing cost are
minimized while test conflicts and power limitations are considered.

Test power consumption is becoming an important aspect to be consid-
ered, however, previously proposed power models have all been rather
simplistic, and have only been focusing on the global power budget. We have
improved test power modeling by introducing a three level power budget
model: system-level, power-grid (local hot-spot) level, and core-level. The
advantage is that with such a model it is possible to have more elaborate
power constraints on where the power is consumed in the system, at cores, at
certain hot-spot areas, and at the global level.

In this chapter we have proposed a technique for test solution design
where core selection, test set selection, test resource placement and TAM
design all are integrated. The design space is enormous when integrating
these problems and in order to limit it, we make use of Gantt charts to find the
limiting resources (bottlenecks). For validation of the proposed technique, we
have implemented the proposed technique, an estimation-based technique and
a pseudo-exhaustive technique. The experimental results show that the
pseudo-exhaustive technique cannot produce solutions within a reasonable
CPU time, and the estimation-based technique does not produce high-quality
solutions. The proposed technique can, on the other hand, produce high-qual-
ity solutions at a reasonable CPU time.

Chapter 14

DEFECT-AWARE TEST SCHEDULING1

1 INTRODUCTION2

In this chapter we address the test scheduling problem for system-on-chip
designs. Different from previous approaches where it is assumed that all tests
will be performed until completion, we consider the cases where the test pro-
cess will be terminated as soon as a defect is detected. This is common
practice in production test of chips. The proposed technique takes into
account the probability of defect-detection by a test in order to schedule the
tests so that the expected total test time will be minimized. It supports differ-
ent test bus structures, test scheduling strategies (sequential scheduling vs.
concurrent scheduling), and test set assumptions (fixed test time vs. flexible
test time). Several heuristic algorithms have been developed and experiments
performed to demonstrate their efficiency.

The cost of developing electronic systems is increasing and a significant
part of the cost is related to the testing of the systems. One efficient way to
reduce this cost is therefore to reduce the testing cost. Test cost reduction can
be achieved by minimizing the testing time of the system. An efficient order-
ing, test scheduling, of the execution of the test sets will minimize the total
testing time.

The core-based design technique is another approach to reduce the
increasing development costs. With such a technique, pre-designed and pre-
verified blocks of logic, so called cores, are integrated to a complete system,
which can be placed on a single die to form a system-on-chip (SOC). To test a
SOC, a test bus is used for the transportation of test data in the system and its
organization often has a great impact on the test schedule. SOC test schedul-
ing can be performed assuming: sequential scheduling, i.e. only one test at a
time, or concurrent scheduling, with a possibility to execute several tests at
the same time. The testing time for the execution of each test set can be fixed,
or flexible where it is possible to adjust it.

In a large volume production test for SOC, an abort-on-fail approach is
usually used, which means that the test sequence is aborted as soon as a fault
is detected. This approach is used to reduce the test application time. With the
abort-on-fail assumption, the tests should be ordered in such a way that tests
1. The chapter is based on the papers presented at International Test Synthesis Workshop
(ITSW’03) [168], 2003, Design and Diagnostics of Electronic Circuits & Systems
(DDECS’03), 2003 [169], and VLSI Test Symposium (VTS’04), 2004 [174].
2.
((

The research is partially supported by the Swedish National Program STRINGENT.

SOC Test Design278

with a high probability to fail are scheduled before tests with a lower proba-
bility to fail since this will minimize the average testing time.

In this chapter we propose a test scheduling technique based on defect
detection probability, collected from the production line or generated based
on inductive fault analysis. We have defined models to compute the expected
test time as well as scheduling heuristic taking the defect probabilities into
account. We have performed experiments to show the efficiency of the pro-
posed approach.

The rest of the chapter is organized as follows. An overview of related
work is in Section 2. Sequential test scheduling is discussed in Section 3 and
concurrent test scheduling is described in Section 4. The proposed algorithms
are presented in Section 4.3 and the chapter is concluded with experimental
results in Section 5 and conclusions in Section 6.

2 RELATED WORK

Test scheduling determines the execution order of the tests in a system.
The most common objective is to minimize the test application time while
considering test conflicts. In SOC systems, where each core is equipped with
a wrapper, an interface to the test access mechanism (TAM), test conflict is
due to the sharing of the TAM or the test bus. The TAM, used for the trans-
portation of test data, is used to connect the test source, the cores and the test
sink. The test source is where the test vectors are generated or stored and the
test sink is where the test responses are analyzed or stored. An automatic test
equipment (ATE) is a typical example of a test source and test sink.

A TAM can be organized in different ways, which impacts the test sched-
uling. An example is the AMBA test bus, which makes use of the existing
functional bus, however, the tests have to be scheduled in a sequence [88]. An
alternative is the approach proposed by Varma and Bhatia where several test
buses are used. The tests on each bus are scheduled in a sequence, however,
since several buses are allowed, testing can be performed concurrently [267].
Another approach is the TestRail, which allows a high degree of flexibility
[184].

The TestRail approach has recently gained interest and several scheduling
techniques for scan tested SOCs have been proposed [97,111,138]. The objec-
tive is to arrange the scan-chains into wrapper chains, which then are
connected to TAM wires. Iyengar et al. made use of integer-linear program-
ming [111] and Huang et al. used a bin-packing algorithm. Both these
approaches assume that the tests will always be performed until completion.
Koranne proposed an abort-on-fail technique to minimize the average-com-

Chapter 14 279

pletion time by scheduling tests with short test time early [138]. For
sequential testing, several abort-on-fail test scheduling techniques consider-
ing the defect probability have been proposed [102,124]. Huss and Gyurcsik
made use of a dynamic programming algorithm to order the tests [102]. Milor
and Sangiovanni-Vincentelli proposed a technique for the selection and order-
ing of the test sets [196], which is based on the dependencies between the test
sets. For SOC testing with cores in wrappers, however, there is no depen-
dency between the testing of different cores. In the approach proposed by
Jiang and Vinnakota the actual fault coverage is extracted from the manufac-
turing line [124]. The technique minimizes the average completion time by
ordering of the tests based on the failure probability.

3 SEQUENTIAL TEST SCHEDULING

In sequential testing, all tests are scheduled in a sequence, one test at a
time. When the abort-on-fail approach is assumed, if a defect is detected, the
testing should be terminated at once. In order to account for the case when the
test responses are compacted into a single signature after a whole test set is
applied, we assume that the test abortion occurs at the end of a test set even if
the actual defect is detected in the middle of applying the test set. This
assumption is also used in our formula to compute the expected test time.
Note, this means that the computational results are pessimistic, or the actual
test time will be smaller than the computed one, in the case when the tests are
actually aborted as soon as the first defect is detected.

Given a core-based system with n cores, for each core i there is a test set ti
with a test time τi and a probability of passing pi (i.e. the probability that test ti
will detect a defect at core i is 1-p- i). For a given schedule, the expected test
time for sequential testing is given by:

For illustration of the computation of the expected test time, we use an
example with four tests (Table 39). The tests are scheduled in a sequence as in
Figure 224. For test t1, the expected test time is given by the test time τ1 and
the probability of success p1, τ1×p× 1=2×0.7=1.4. Note if there is only one test
in the system, our above formula will give the expected test time to be 2 since
we assume that every test set has to be fully executed before we can determine
if the test is a successful test or not.

j 1

i

∑
j 1

i 1

∏⎝ ⎠⎝ ⎠jj 1 ⎝ ⎠
pj

j 1

pi()pi⎜⎜ ⎟τ j ⎜ ⎟pj× ⎟()1 pi×
⎝ ⎠⎝ ⎠⎠⎠

τ j⎝⎝ ⎝ ⎠⎝ ⎠
pj ()pi

⎛ ⎞⎛ ⎞i ⎛ ⎞i 1

⎜ ⎟⎜ ⎟⎟⎟τ⎜⎜ ⎜ ⎟⎜ ⎟× 1()1×
i 1
∑⎝ ⎠ii 1

⎜ ⎟τi⎠⎠
τi⎝⎝

⎛ ⎞n

⎟⎟τ⎜⎜ pi
i 1

n

∏×+
i 1

n

∑ (14.1)

SOC Test Design280

The expected test time for the completion of the complete test schedule in
Figure 224 is:

τ1×(1−p− 1) + // test t1 fails
(τ1+τ4)×p× 1×(1−p− 4) + // test t1 passes, test t4 fails
(τ1+τ4+τ3)×p× 1×p× 4×(1-p3) +// test t1, t4 pass, test t3 fails
(τ1+τ4+τ3+τ2)×p× 1×p× 4×p× 3×(1−p− 2) + //test t1, t4, t3 pass, test t2 fails
(τ1+τ4+τ3+τ2)×p× 1×p× 4×p× 3×p× 2 =// all tests run until completion,

// i.e. correct system.
2×(1−0.7) +
(2+6)×0.7×(1-0.6) +
(2+6+3)×0.7×0.6×(1-0.9) +
(2+6+3+2)×0.7×0.6×0.9×(1−0.8) +
(2+6+3+2)× 0.7×0.6×0.9×0.8 = 8.2

As a comparison, for the worst schedule, where the test with highest pass-
ing probability is scheduled first, the order will be t4t , t3, t2t , t1, and the
expected test time is 12.1. In the case of executing all tests until completion,
the total test time does not depend on the order, and is τ1+τ2+τ3+τ4=15.

4 CONCURRENT TEST SCHEDULING

The total test time of a system can be reduced by executing several tests at
the same time, concurrent testing. Concurrent testing is for instance possible
in systems with several test buses. In this section, we analyze concurrent
scheduling with fixed test time per test set and flexible test time per test set.

Core i Test ti Test time τi Probability to pass, pi Cost (τi×pi)

1 t1 2 0.7 1.4

2 t2t 4 0.8 2.4

3 t3 3 0.9 2.7

4 t4t 6 0.8 4.8

Table 39. Example data.

Figure 224.Sequential schedule of the example (Table 39).

ττ1 τ2 τ3

t1 t2 t3 t4t

τ4

Chapter 14 281

4.1 Test Sets with Fixed Test Times

A concurrent test schedule of the example system used in Section 3 with
data as in Table 39 assuming 3 TAMs (test buses) is in Figure 225. The test
schedule (Figure 225) consists of a set of sessions, S1, S2SS , S3SS , and S4S . Test ses-
sion S1 consists of test t1, t2t and t3; S1={t1,t2t ,t3}. The length of a session SkS is
given by lkl . For instance l1=2. We assume now that the abortion of the test
process can occur at any time during the application of the tests. To simplify
the computation of expected test time, it is assumed that the test process will
terminate at the end of a session (note this is again a pessimistic assumption).
The probability to reach the end of a session depends in the concurrent test
scheduling approach not only on a single test but on all tests in the session.
For instance, the probability to complete session 1 depends on the tests in ses-
sion 1 (S1): t1, t2t and t3. As can be observed in Figure 225, only test t1 is fully
completed at the end of session 1. For a test ti that is not completed at the end
of a session, the probability pik for it to pass all test vectors applied during ses-
sion k is given by:

It can be seen that for a test set ti, which is divided into m sessions, the
probability that the whole test set is passed is equal to:

since:

Figure 225.Concurrent schedule of the example (Table 39).

τ

t1

t2

t3 t4t

l4ll1 l2 l3

tam3

tam2

tam1

TAM

S1 S2SS S3SS S4S

pik pi
lk τi⁄= (14.2)

pik
k 1

m

∏ pi

l1

τi

pi

l2

τi

… pi

lk

τi

××× pi

lk

τi

k 1
ii

m

∑
pi=== (14.3)

lk

τi

k 1

m

∑ 1
τi
-------- lk

k 1

m

∑× 1== (14.4)

SOC Test Design282

For example, the probability for the tests in session S1 are (Figure 225):
p11 = p1 = 0.7.
p21 =0.82/4 = 0.89.
p31 =0.92/3 = 0.93.
The formula for computing the expected test time for a complete concur-

rent test schedule is given as:

As an example, the computation of the expected test time for the test
schedule in Figure 225 is given below. First we compute the probability for
each test set in each session.

The probabilities p11, p21, p31 are computed to 0.7, 0.89, and 0.93, respec-
tively (see above).

p22 = 0.71/4 = 0.91.
p32 = 0.91/3 = 0.96.
p23 =0.81/4= 0.95.
p43 =0.951/6=0.99.
p44 =0.955/6=0.96.
From the formula we get:
l1×(1−p− 11×p× 21×p× 31)+
(l1+l2l)×p× 11×p× 21×p× 31×(1−p− 22×p× 32)+
(l1+l2l +l3)×p× 11×p× 21×p× 31×p× 22×p× 32× (1−p− 23×p× 43)+
(l1+l2l +l3+l4l)×p× 11×p× 21×p× 31×p× 22×p× 32×p× 23×p× 43×(1-p- 44)+
(l1+l2l +l3+l4l)×p× 11×p× 21×p× 31×p× 22×p× 32×p× 23×p× 43×p× 44=
2×(1−0.7×77 0.89×0.93)+
(2+1)×0.7×77 0.89×0.93×(1−0.91×0.96)+66
(2+1+1)×0.7×77 0.89×0.93×0.91×0.96× (1−66 0.95×0.99)+
(2+1+1+5)×0.7×77 0.89×0.93×0.91×0.96×66 0.95×0.99×
(1-0.96) + (66 2+1+1+5)×0.7×77 0.8×0.9×0.95 = 5.66.
As a comparison, if all tests are assumed to be executed until completion,

the total test time will be 9.

4.2 Test Sets with Flexible Test Times

A way to further reduce the test application time is to modify, if possible,
the test times of the individual test sets. For instance, in scan tested cores the
test times at each core can be modified by loading several scan chains in par-
allel. The scan-chains and the wrapper cells are to form a set of wrapper
chains. Each wrapper chain is then connected to a TAM wire. If a high num-

j 1

i

∑
tk Sj∈∀
∏

j 1

i 1

∏
tk Si∈∀
∏⎝⎝ ⎠jj 1 ⎝ ⎠

pkj
tk Sj∈∀j 1 ⎠⎝ ⎠

pki
tk Si∈∀

⎜⎜ ⎟l j ⎟pkj⎜× ⎟⎟pki⎜1×
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠j ⎠⎠

pkj⎝⎝ ⎠⎠
pki⎝⎝

⎛ ⎞⎛ ⎞i ⎛ ⎞i 1 ⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟l ⎟⎟⎜⎜× ⎟⎟⎜⎜1×

i 1
∑⎝ ⎠ii 1

⎜ ⎟τi⎝ ⎠⎝ ⎠
τi

⎛ ⎞n

⎜ ⎟⎜ ⎟τ pi
i 1

n

∏×+
i 1

n

∑

∑
⎛ ⎞n

⎟⎟τ⎜⎜
n

∏×

(14.5)

Chapter 14 283

ber of wrapper chains are used, their length is shorter and the loading time of
a new test vector is reduced. However, the higher number of wrapper chains
require more TAM wires.

In Figure 226 the TAM bandwidth |W| is 4, there are four wires in W={w1,
w2, w3, w4}. The testing of each core is performed by transporting test vectors
on the assigned TAM wires to a core and the test response is also transported
from the core to the test sink using the TAM. The testing of cores sharing
TAM wires cannot be executed concurrently. For instance, the testing of core
1 and core 2 cannot be performed concurrently due to the sharing of TAM
wire w3 (Figure 226). A test schedule for the system is given in Figure 227
and the computation of the expected test time can be done using formula 14.3
in Section 4. In the case with flexible test times, the number of assigned TAM
wires will affect the expected test time. The problem is to assign TAM wires
to each core in such a way that the expected test time is minimized.

4.3 Test Scheduling Algorithms

The algorithm for test scheduling based on defect probability in the
sequential case is straight forward, it sorts the tests in descending order based
on τi×(1−p− i) and schedule the tests in this order (Figure 228).

Figure 226.SoC example.

Test source Test sink

1core 1

wrapper

2core 2

wrapper

3core 3

wrapper

4core 4

wrapper

W

Figure 227.SOC test schedule of the example (Table 39).

τ

t1
t2

t3

t4t

l4ll1 l2 l3

w4

w3

w2

w1

W

SOC Test Design284

In concurrent scheduling with fixed test times, we sort the tests based on
τi×(1−p− i) and select n tests for the n TAMs based on the sorted list. The
selected tests are scheduled and removed from the list. As soon as a test termi-
nates, a new test from the list of unscheduled tests is selected. The process
continues until all tests are scheduled (sketch of the algorithm is given in
Figure 229.)

For tests with flexible test times versus number of assigned TAM wires,
the wrapper chain design algorithm configures the scanned elements (scan-
chains, input wrapper cells, output wrapper cells and bidirectional wrapper
cells) into a given number of wrapper chains and computes the testing time
for the wrapper configuration.

The proposed wrapper design heuristic is illustrated in Figure 230. We use
an internal chaining function aiming at balancing the scan chains in order to
reduce the longest wrapper chain. The longest wrapper chain is the one that
limits the solution (the testing time). The generated designs are memorized so
that all the possible architectures for each core can be checked during the
TAM building and the test scheduling steps.

The scheduling heuristic is outlined in Figure 230. First the tests are sorted
in decreasing cost order. For each test, one Pareto optimal point is selected
considering the maximal width use (i.e. the couple TiTT , WiWW with WiWW being the
closest to WmaxWW (WmaxWW is given)).

Figure 228.Sequential test scheduling algorithm.

Compute the cost ci =pi×τi for all tests ti
Sort the costs ci ascending in L
until L is empty (all tests are scheduled) begin

select, schedule and remove the first test in L
end

Figure 229.Concurrent test scheduling algorithm for tests with fixed test times.

Compute the cost ci =τi × pi for all tests ti
Sort the costs ci ascending in L
f=number of TAMs
τ=0 // current time,
Until L is empty (all tests are scheduled) begin

at time τ Until f=0 Begin
select tests from list in order and reduce f accordingly

End
τ=time when first test terminates.

End

Chapter 14 285

At step two, the VirtualTime test time is estimated in order to obtain a
lower bound for the system test time. This bound is used in the scheduling
heuristic during the selection of configurations for each core. The advantage
is that points with a testing time higher than VirtualTime will not be selected
since they will increase the total test time.

The main idea in the heuristic is to schedule the tests as soon as possible
using the Pareto optimal points defined in the wrapper design heuristic. For
each test, the heuristic tries to place each test in a session starting from time
t=0, and also trying all the Pareto optimal points (tt i.e. changing the values of
WiWW and TiTT) of the considered test with a cost loss lower or equal to the toler-
ance to fit in the constraints. The heuristic defines one schedule and one TAM
configuration for each tolerance (i.e. 80 schedules and TAM configurations
from 0% to 80%) and memorizes the solution with the smallest test time fit-
ting into the limits imposed by the constraints.

For all the tests that are first sorted into a list L1, if one test can not be
scheduled, it is placed in a auxiliary list L2 to be scheduled later. When L1 is

L1=list of sorted tests in decreasing cost ci =τi × pi order
VirtualTime=
For tolerance=0 to tolerance=80
While all tests are not scheduled
While L1 not empty
For each test T in L1

For each time t defining the start of a test session
Select the best Pareto optimal point such that
a) it respects the tolerance;
b) the width constraint is satisfied,
c) the test time does not exceed VirtualTime, and
d) precedence, power, incompatibilities

constraints are respected.
If (the current total test time will not change

when T is scheduled to start at t)
Schedule T at t with the selected Pareto point;
remove T from L1.

Else
If T is the first test of L1
Schedule T at t with selected Pareto point;
remove T from L1.

Else
Place the test T in L2; remove T from L1.

L1<=L2
End

Wi Ti×
i00

∑ Wlimit⁄

Figure 230.Our Test Scheduling Heuristic

SOC Test Design286

empty, i.e. all tests are scheduled or placed in L2, then L2 becomes L1 and the
process is re iterated until all tests are scheduled.

5 EXPERIMENTAL RESULTS

We have compared three approaches to demonstrate the importance of
considering the defect probability during test scheduling. We have imple-
mented the three approaches; (1) sequential scheduling where the tests are
ordered in a sequence, (2) one where a fixed test time is assigned to each test
prior to scheduling [219], and (2) one where the testing time versus the num-
ber of used TAM wires is flexible [220], . We have used the ITC’02 designs
[190] and for all experiments we have used an AMD 1800 machine (1.53
GHz, 512 MB RAM) and the computational cost is usually a few seconds, and
never exceeds 15 seconds. The defect probability for each core is collected in
Table 40.

The experimental results are collected in Table 41. We have for each of
the benchmarks made experiments at various TAM bandwidths. We have also
compared the three approaches. The results indicate that an efficient ordering
taking the defect probabilities into account can reduce the testing times up to
nearly 90% compared to sequential testing (also taking the defect probabili-
ties into account).

6 CONCLUSIONS

In this chapter we have developed test scheduling techniques for system-
on-chip (SOC) that take into account the defect probability of each test. The
advantage of our approach is that by considering defect probabilities during
the test scheduling process, the expected test time can be minimized, which is
important in large volume production of SOC where the testing process is ter-
minated as soon as a defect is detected (abort-on-fail).

We have analyzed several different test bus structures and scheduling
approaches, and defined models to compute the expected test times and test
scheduling algorithms for several types of test buses. We have also performed
experiments to demonstrate the efficiency of our approach.

Chapter 14 287

Core Design

d695 h953 g1023 t51250 p22810 p34392 p93791

1 98 95 99 99 98 98 99

2 99 91 99 95 98 98 99

3 95 92 99 97 97 97 97

4 92 92 98 93 93 91 90

5 99 97 94 90 91 95 91

6 94 90 95 98 92 94 92

7 90 94 94 98 99 94 98

8 92 96 97 96 96 93 96

9 98 92 92 96 99 91

10 94 92 91 95 99 94

11 96 91 93 91 93

12 92 92 91 91 91

13 93 91 92 90 91

14 96 91 93 95 90

15 99 99 94 99

16 95 99 96 98

17 97 99 96 97

18 95 95 97 99

19 94 96 92 99

20 99 97 90 99

21 91 93 92 90

22 99 99 99 99

23 91 96 96 90

24 97 98 98 98

25 92 99 92

26 96 92 96

27 95 91 95

28 92 91 91

29 90 93 90

30 91 94 96

31 95

Table 40. The pass probability in percentage for cores in systems d695, g1023,
h953, t512505, p22810, p34392, p93791.

SOC Test Design288

Design TAM
Width

Expected Test Time Comparison

1 - Sequential
Testing

2 - Fixed
Testing Times

3 - Flexible
Testing Times

(3) vs (1) (3) vs (2)

g1023 128 41 807 24 878 17 904 - 57,2% - 28,0%

96 43 289 23 443 18 741 - 56,7% - 20,1%

80 44 395 23 112 18 229 - 58,9% - 21,1%

64 44 395 27 358 20 773 - 53,2% - 24,1%

48 46 303 27 997 21 501 - 53,6% - 23,2%

32 55 562 27 662 26 867 - 51,6% - 2,9%

24 56 711 29 410 28 795 - 49,2% - 2,1%

20 60 609 36 979 35 431 - 41,5% - 4,2%

16 75 100 44 728 44 657 - 40,5% - 0,2%

12 95 679 67 549 60 239 - 37,0% - 10,8%

d695

128 31 113 10 884 9 468 - 69,6% - 13,0%

96 31 158 14 716 11 712 - 62,4% - 20,4%

80 31 158 14 881 14 509 - 53,4% - 2,5%

64 40 586 25 483 16 652 - 59,0% - 34,7%

48 40 692 27 388 23 983 - 41,1% - 12,4%

32 70 411 50 998 33 205 - 52,8% - 32,9%

24 70 598 62 367 42 165 - 40,3% - 32,4%

20 70 696 68 611 50 629 - 28,4% - 26,2%

16 131 178 123 164 61 473 - 53,1% - 50,1%

12 131 465 131 465 82 266 - 37,4% - 37,4%

h953

128 104 382 87 339 82 358 - 21,1% - 5,7%

96 104 466 82 733 82 437 - 21,1% - 0,4%

80 104 466 85 307 82 448 - 21,1% - 3,4%

64 104 466 87 349 82 466 - 21,1% - 5,6%

48 104 508 87 443 82 495 - 21,1% - 5,7%

32 104 549 92 245 84 169 - 19,5% - 8,8%

24 104 591 99 888 104 290 - 0,3% + 4,4%

20 104 633 125 262 92 159 - 11,9% - 26,4%

16 159 657 137 089 135 438 - 15,2% - 1,2%

12 189 740 185 016 183 359 - 3,4% - 0,9%

Table 41. Experimental results comparing three approaches (1), (2) and (3).

Chapter 14 289

p22810

128 423 852 71 628 50 484 - 88,1% - 29,5%

96 423 968 93 921 59 177 - 86,0% - 37,0%

80 423 993 122 641 71 995 - 83,0% - 41,3%

64 443 459 141 999 92 218 - 79,2% - 35,1%

48 510 795 213 995 121 865 - 76,1% - 43,1%

32 535 586 355 646 160 237 - 70,1% - 54,9%

24 707 813 480 480 294 612 - 58,4% - 38,7%

20 836 491 756 138 328 270 - 60,8% - 56,6%

16 877 443 855 355 383 034 - 56,3% - 55,2%

12 1 341 549 1 336 251 401 720 - 70,1% - 69,9%

t512505

128 9 724 227 1 073 413 889 677 - 90,9% - 17,1%

96 9 724 227 1 217 641 894 924 - 90,8% - 26,5%

80 9 724 227 1 269 333 928 499 - 90,5% - 26,9%

64 9 724 227 2 810 847 1 062 112 - 89,1% - 62,2%

48 14 883 557 8 938 649 1 828 281 - 87,7% - 79,5%

32 14 883 609 8 940 193 1 955 361 - 86,9% - 78,1%

24 25 202 194 16 090 266 2 891 241 - 88,5% - 82,0%

20 25 202 230 16 308 884 3 652 388 - 85,5% - 77,6%

16 25 202 298 21 716 978 3 961 341 - 84,3% - 81,8%

12 46 296 336 27 526 848 5 394 939 - 88,3% - 80,4%

p34392

128 1 168 630 258 038 265 777 - 77,3% + 3,0%

96 1 168 630 343 408 248 170 - 78,8% - 27,7%

80 1 212 761 374 916 262 563 - 78,3% - 30,0%

64 1 212 899 470 976 268 010 - 77,9% - 43,1%

48 1 232 116 627 558 389 813 - 68,4% - 37,9%

32 1 525 655 1 271 626 563 470 - 63,1% - 55,7%

24 1 559 706 1 389 689 823 435 - 47,2% - 40,7%

20 1 640 812 1 596 012 1 382 206 - 15,8% - 13,4%

16 2 888 061 2 677 967 1 604 297 - 44,5% - 40,1%

12 2 960 587 2 926 044 2 154 610 - 27,2% - 26,4%

Design TAM
Width

Expected Test Time Comparison

1 - Sequential
Testing

2 - Fixed
Testing Times

3 - Flexible
Testing Times

(3) vs (1) (3) vs (2)

Table 41. Experimental results comparing three approaches (1), (2) and (3).

SOC Test Design290

p93791

128 491 279 431 628 124 278 - 74,4% - 71,2%

96 524 537 488 083 192 940 - 63,2% - 60,5%

80 942 900 852 477 197 393 - 79,1% - 76,8%

64 983 943 922 505 270 979 - 72,5% - 70,6%

48 1 072 900 1 003 672 360 045 - 66,4% - 64,1%

32 1 941 982 1 941 892 682 101 - 64,9% - 64,9%

24 2 125 118 2 125 118 826 441 - 61,1% - 61,1%

20 3 546 031 3 546 031 1 023 667 - 71,1% - 71,1%

16 3 854 386 3 854 386 1 353 034 - 64,9% - 64,9%

12 4 238 379 4 238 379 3 768 819 - 11,1% - 11,1%

Design TAM
Width

Expected Test Time Comparison

1 - Sequential
Testing

2 - Fixed
Testing Times

3 - Flexible
Testing Times

(3) vs (1) (3) vs (2)

Table 41. Experimental results comparing three approaches (1), (2) and (3).

Chapter 15

An Integrated Technique for Test Vector Selection
and Test Scheduling under ATE Memory Depth Con-
straint1

1 INTRODUCTION2

The technology development has made it possible to develop chips where
a complete system with an enormous number of transistors, which are clocked
at an immense frequency and partitioned into a number of clock-domains, is
placed on a single die. As the technology development makes it possible to
design these highly advanced system chips or SOC (system-on-chip), the
EDA (Electronic Design Automation) tools are aiming at keeping up the pro-
ductivity, making it possible to design a highly advanced system with a
reasonable effort in a reasonable time. New design methodologies are under
constant development. At the moment, a modular design approach where
modules are integrated to a system is promising. The advantage with such an
approach is that pre-designed and pre-verified modules, blocks of logic or
cores, with technology specific details, can at a reasonable time and effort be
integrated to a system. The core provider designs the cores and the system
integrator selects the appropriate cores for the system where the cores may
origin from previous in-house designs, or from different core vendors (com-
panies). The cores can be delivered in various formats. They can in general be
classified as soft cores, firm cores, and hard cores. Soft cores are general
high-level specifications where the system integrator can, if necessary, apply
modifications. Hard cores are gate-level specifications where, if any, only a
few modifications are possible. Firm cores are somewhere between soft cores
and hard cores. Soft cores allow more flexibility compared to hard cores. The
advantage is that the system integrator can modify such a core. On the other
hand, hard cores can be made highly protected by the core provider, which
often is desirable by the core provider.

A produced chip is tested to determine if it is faulty or not. In the test pro-
cess, a number of test vectors, stored in an ATE (Automatic Test Equipment),
are applied to the chip under test. If the produced test response from the
applied vectors corresponds to the expected response, the chip is considered
to be fault-free and can be shipped. However, testing these complex chips is
becoming a problem, and one major problem is the increasing test data vol-
1. The chapter is based on the work submitted to Asian Test Symposium (ATS), 2004, [57].
2. The research is partially supported by the Swedish National Program STRINGENT.

SOC Test Design292

ume that has to be stored in the ATE. Currently, the test data volume increases
faster than the number of transistors in a design [272]. The increasing test data
volume is due to (1) high number of fault sites because of the high amount of
transistors, (2) new defect types introduced with nanometer process technolo-
gies, and (3) faults related to timing and delay since systems have higher
performance and make use of multiple-clock domains [272].

The high test data volume is a problem. It is known that the purchase of a
new ATE with higher memory capabilities is costly; hence, it is desirable to
make use of the existing ATE instead of investing in a new. Vranken et al.
[272] discuss three alternatives to make the test data fit the ATE; (1) test
memory reload, where the test data is divided into several partitions, is possi-
ble but not practical due to the high time involved, (2) test data truncation,
the ATE is filled as much as possible and the test data that does not fit the
ATE is simply not applied, leads to reduced test quality, and (3) test data
compression, the test stimuli is compressed, however, it does not guarantee
that the test data will fit the ATE. As, test memory reload is not practical, the
alternatives are test data truncation and test data compression. This chapter
focuses on test data truncation where the aim is a technique that maximizes
test quality while making sure the test data volume fits the ATE memory.

The test data must also be organized or scheduled in the ATE. A recent
industrial study showed that by using test scheduling the test data was made to
fit the ATE [76]. The study demonstrated that the ATE memory limitation is a
real and critical problem. The basic idea in test scheduling is to reduce the
amount of idle bits to be stored in the ATE, and therefore scheduling must be
considered in combination with the test data truncation scheme. Further, when
discussing memory limitations, the ATE memory depth in bits is equal to the
maximal test application time for the system in clock cycles [116]. Hence, the
memory constraint must be seen as a time constraint.

In this chapter, we explore test data truncation. The aim is a technique that
maximizes test quality while making sure that the selected test data fits the
ATE. We assume that given is a core-based design and for each core the
defect probability, the maximal fault coverage when all its test vectors have
been applied, and the size of the test set (the number of test vectors) are given.
We define for a core, a CTQ (core test quality) metric, and for the system, a
STQ (system test quality) metric. The CTQ metric reflects that test data
should be selected for a core (1) with high probability of having a defect, and
(2) where it is possible to detect a fault using a minimal number of test vec-
tors. For the fault coverage function we make use of an estimation function.
Fault simulation can be used to extract the fault coverage at each test vector,
however, it is a time consuming process and also it might not be applicable
for all cores due to IP (Intellectual Property)-protection, for instance.

Chapter 15 293

The test vectors in a test set can be applied in any order. However, regard-
less of the order, it is well-known in the test community that the first test
vectors detects a higher number of faults compared to the last applied test vec-
tors, and that the function fault coverage versus number of test vectors has an
exponential/logarithmic behaviour. We therefore assume that the fault cover-
age over time (number of applied test vectors) for a core can be approximated
to an exponential function.

We make use of CTQ metric to select test data volume for each core in
such a way that the test quality for the system is maximized (STQ), and we
integrate the test data selection with test scheduling in order to verify that the
selected test data actually fits the ATE memory. We have implemented our
technique and we have made experiments on several ITC’02 benchmarks to
demonstrate that high test quality can be achieved by applying only a sub-set
of the test stimuli. The results indicate that the test data volume and the test
application time can be reduced to 50% while the test quality remains high.
Furthermore, it is possible to turn the problem (and our solution), and view it
as: for a certain test quality, which test data should be selected to minimize
the test application time.

The advantage with our technique is that given a core-based system, a test
set per core, a number on maximal fault coverage, and defect probability per
core, we can select test data for the system and schedule the selected test data
in such a way that the test quality is maximized and the selected test data fits
the ATE memory. In the chapter, we assume a single test per core. However,
the technique can easily be extended to allow multiple tests per core by intro-
ducing constraint considerations in the scheme.

The rest of the chapter is organized as follows. In Section 2 we present
related work, and in Section 3 the problem definition is given. The test quality
metric is defined in Section 4 and our test data selection and scheduling
approach is described in Section 5. The experiments are presented in Section
6 and finally the chapter is concluded in Section 7.

2 RELATED WORK

Test scheduling and test data compression are examples of approaches
proposed to reduce the high test data volumes that must be stored in the ATE
in order to test SOCs. The basic principle in test scheduling is to organize the
test bits in the ATE in such a way that the number of introduced so called idle
bits (not useful bits) is minimized. The gain is reduced test application time
and a reduced test data volume. A scheduling approach depends on the test

SOC Test Design294

architecture such as the AMBA test bus [88], the test bus [267] and the
TestRail [184].

Iyengar et al. [111] proposed a technique to partition the set of scan chain
elements (internal scan chains and wrapper cells) at each core into wrapper
scan chains, which are connected to TAM wires in such a way that the total
test time is minimized. Goel et al. [76] showed that ATE memory limitation is
a critical problem. On an industrial design they showed that by using an effec-
tive test scheduling technique the test data can be made to fit the ATE.

There has also been scheduling techniques that make use of an abort-on-
fail strategy that is the testing is terminated as soon as a fault is detected. The
idea is that as soon as a fault is present, the chip is faulty and the testing can
be terminated. Koranne minimizes the average-completion time by schedul-
ing short tests early [139]. Other techniques have taken the defect probability
for each testable unit into account [102,124,111]. Huss and Gyurcsik pro-
posed a sequential technique making use of a dynamic programming
algorithm for ordering the tests [102], while Milor and Sangiovanni-Vincen-
telli present a sequential technique based on selection and ordering of test sets
[196]. Jiang and Vinnakota proposed a sequential technique, where the infor-
mation about the fault coverages provided by the tests is extracted from the
manufacturing line [124]. For SOC designs, Larsson et al. proposed a tech-
nique based on ordering of tests, considering different test bus structures,
scheduling approaches (sequential vs. concurrent) and test set assumptions
(fixed test time vs. flexible test time) [111]. The technique takes defect proba-
bility into account; however, the probability of detecting a fault remains
constant through the application of a test.

Several compression schemes have been used to compress the test data.
For instance, Ichihara et al. used statistical codes [103], Chandra and Chakra-
barty made use of Golomb codes [34], Iyengar et al. explored the use of run-
length codes [109], Chandra and Chakrabarty tried Frequency-directed run-
length codes [33], and Volkerink et al. have investigated the use of Packet-
based codes [270].

All approaches above (test scheduling and test data compression tech-
niques) reduce the ATE memory requirement. In the case of test scheduling,
the effective organization means that both the test time and the needed test
data volume are reduced, and in the case of test data compression, less test
data is required to be stored in the ATE. The main advantage with these two
approaches is that the highest possible test quality is reached since the whole
test data volume is applied. However, the main disadvantage is that these
techniques do not guarantee that the test data volume fits the ATE. Hence,
they might not be applicable in practice. It means that there is a need for a
technique that in a systematic way defines the test data volume for a system in

Chapter 15 295

such a way that the test quality is maximized while the test data is guaranteed
to fit the ATE memory.

3 PROBLEM FORMULATION

We assume that given is a core-based architecture with n cores denoted by
i, and for each core i in the system, the following is given:

■ scij={sci1, sci2,..., scim} - the length of the scanned elements at core i
are given where m is the number of scanned elements,

■ wii - the number of input wrapper cells,

■ woi - the number of output wrapper cells,

■ wbi - the number of bidirectional wrapper cells,

■ tvi - the number of test vectors,

■ fci - the fault coverage reached when all the tvi test vectors are
applied.

■ ppi - the pass probability per core and,

■ dpi - the defect probability per core (given as 1-pp- i).

For the system, a maximal TAM bandwidth WtamWW , a maximal number of k
TAMs, and a upper-bound memory constraint MmaxMM on the memory depth in
the ATE are given.

The TAM bandwidth WtamWW is to be partitioned into a set of k TAMs
denoted by j each of widthj WtamWW ={w1, w2, ..., wk} in such a way that:

and on each TAM, one core can be tested at a time.
Since the memory depth in the ATE (in bits) is equal to the test application

time for the system (in clock cycles) [116], the memory constraint is actually
a time constraint τmax:

Our problem is to:

■ for each core i select the number of test vectors (stvi),

■ partition the given TAM width WtamWW into no more than k TAMs,k

■ determine the width of each TAM (wjw), j=1..k,

Wtam wj
j 1

k

∑= (15.1)

Mmax τmax= (15.2)

SOC Test Design296

■ assign each core to one TAM, and

■ assign a start time for the testing of each core.

The selection of test data (stvi for each core i) and the test scheduling
should be done in such a way that the test quality of the system (defined in
Section 4) is maximized while the memory constraint (M((maxMM) (time constraint
τmax) is met.

4 TEST QUALITY METRIC

For the truncation scheme we need a test quality metric to (1) select test
data for each core and (2) to measure the final system test quality. In this sec-
tion we describe the metric where we take the following parameters into
account to measure test quality:

■ defect probability,

■ fault coverage, and

■ number of applied test vectors.

The defect probability, the probability that a core is defect, can be col-
lected from the production line or set by experience. Defect probability has to
be taken into account since it is better to select test data for a core with a high
defect probability than to select test data for a core with a low defect probabil-
ity since the core with high defect probability it is more likely to hold a defect.

The possibility to detect faults depends on the fault coverage versus the
number of applied test vectors; hence the fault coverage and the number of
applied test vectors also have to be taken into account. Fault simulation can be
used to extract which fault each test vector detects. However, in a complex
core-based design with a high number of cores, fault simulation for each core
is, if possible due to IP-protection, highly time consuming. A core provider
may want to protect the core, which makes fault simulation impossible. We
therefore make use of an estimation technique. It is known that the fault cov-
erage does not increase linearly over the number of applied test vectors. For
instance, Figure 231 (a) shows the fault coverage for a set of ISCAS bench-
marks. The following observation can be made: the curves have an
exponential/logarithmic behaviour (as in Figure 231 (a)). We, therefore,

Chapter 15 297

assume that the fault coverage after applying stvi test vectors for core i can be
estimated to (Figure 2 (b)):

where the slopeConst is given as follows:t

and the +1 is used to adjust the curve to passes the origin.

Number of
test vectors

Fault coverage (%)

stvi

Max fault coverage - fci

fci(stvi)

tvi

fci

Figure 231.Fault coverage versus number of test vectors (a) for a set of
ISCAS designs (b) estimated as an exponential function.

(a)

(b)

f ci i()stvi
i 1()stvi 1+log

slopeConst
-------------------------------= (15.3)

slopeConst i 1()tvi 1+log

f ci
---------------------------------= (15.4)

SOC Test Design298

For a system we assume that the test quality can be estimated to:

The test quality describes the probability of finding a defect when we have
the condition that the SOC has one defect. By introducing this probability, we
find a way to measure the probability of finding a defect if a defect exist in the
SOC and hence the test quality. However, it is important to note that our met-
ric only describes the test quality and hence we are not introducing any
assumptions about the number of defects in the SOC.

In order to derive an equation for the test quality using information about
defect probability, fault coverage and the number of test vectors, we make use
of definitions from basic probability theory [20]:

1. If A and B are independent events =>

2. If is the empty set =>

3. , where P(B|A) is the probability of B condi-
tioned on A.

Furthermore, we assume (Section 3) that the quality of a test set (a set of
test vectors) for a core i is composed by the following:

■ fault coverage fci and

■ probability of defect dpi.

Since the number of applied test vectors indirectly has an impact on the
fault coverage, we define for each core i:

■ stvi - selected number of test vectors, and

■ fci(stvi) - fault coverage after stvi test vectors have been applied.

We do the following assumption:

■ dpi and fci are independent events.

Since we assume one defect in the system when we introduced test quality
(Equation 15.5), we can only have one defect in a core at a time in the system.
Therefore we can say:

■ The intersection of any of the events dpi is the empty set .

P we find a defect we have a defect in the SOC()we find a defect we have a defect in the SOC (15.5)

P A B()A B P A()A P()B=

 is the empty set is the empty set P A B()A B∪ P A()A P()B+=

P A B()A B P A()A P B A()B A=

Chapter 15 299

For a system with n cores, we can now derive STQ (system test quality)
from Equation 15.5 by using Definition 1., 2. and 3.:

And for a single core i, the CTQ (core test quality) is:

5 TEST SCHEDULING AND TEST VECTOR
SELECTION

In this section we describe our technique to optimize test quality by select-
ing test vectors for each core and schedule the selected vectors for an SOC
under the time constraint given by the ATE memory depth (see Equation 15.2
and [116]). We assume that given is a system as described in Section 3 and we
assume an architecture where the TAM wires can be grouped into several
TAMs and the cores connected to the same TAM are tested sequentially one
after the other [267]. We make use of the test quality metric defined in Sec-
tion 4.

The scanned elements (scan-chains, input cells, output cells and bidirec-
tional cells) at a core has to be configured into a set of wrapper chains, which
are to be connected to a corresponding number of TAM wires. The wrapper
scan chains, which are to be connected to the TAM wires wjw , should be as bal-
anced as possible and we make use of the Design_wrapper algorithm
proposed by Iyengar et al. [111]. For a wrapper chain configuration at a core i

STQ P〈 | 〉 ⇒defect detected in the SOC defect in the SOCdefect detected in the SOC

P 〈 〉defect detected in the SOC defect in the SOC
P 〈 〉defect in the SOC

-- ----- ⇒

P 〈 〉defect detected in core i defect in the core i
i 1

n

∑
P 〈 〉defect in the SOC

--- ----- ⇒

P 〈 〉defect detected in core i defecet in the core i
i 1

n

∑
P 〈 〉defect in the SOC

--- ⇒

fci fci i()stvi×
i 1

n

∑

dpi
i 1

n

∑

(15.6)

CTQi dpi f ci i()stvi×= (15.7)

SOC Test Design300

where sii is the longest wrapper scan-in chain and soi is the longest wrapper
scan-out chain, the test time for core i is given by [111]:

where tvi is the number of applied test vectors for core i and w is the TAM
width.

We need a technique to partition the given TAM width WtamWW into a num-
ber of TAMs k and to determine which core that should be assigned to the
designed which TAM. The number of different ways we can assign n cores to
k TAMs grows with knkk , and therefore the number of possible alternatives will
be huge. We need a technique to guide the assignment of cores to the TAMs.
We make use of the fact that Iyengar et al. [111] made use of, which is that
balancing the wrapper scan-in chain and wrapper scan-out chain introduces
different number of ATE idle bits as the TAM bandwidth varies. We define
TWUiUU (TAM width utilization) for a core i at a TAM of width w as:

and we make use of a single wrapper-chain (one TAM wire) as a reference
point to introduce WDC (wrapper design cost) that measure the imbalance
(introduced number of idle bits) for a TAM width w relative to TAM width 1:

For illustration of the variations in the number of ATE idle bits, we plot in
Figure 232(a) the value of WDC for different TAM widths (number of wrap-
per chains), obtained by using core 1 of the ITC’02 benchmark p93791. We
also plot the maximum value of the scan-in and scan-out lengths at various
TAM widths for the previous design in Figure 232(b). In Figure 232(b) sev-
eral TAM widths have the same test time. For a set of TAM widths with the
same test time, a Pareto-optimal point is the one with lowest TAM [111]. We
notice, we can notice that the TAM widths having a low value of the WDC,
and hence a small number of idle bits, corresponds to the Pareto-optimal
points. Hence, we make use of WDC to guide the selection of wrapper chains
at a core.

The algorithm for our test truncation scheme is outlined in Figure 233.
Given is a system, the upper bound on the test time (τmax) and the TAM width
(WtamWW). Initially no test vectors are selected for any core (stvi=0 for all i) and
the test time for the test schedule is zero (TAT=0). The test vector that con-
tributes most to improving STQ is selected, assigned to a TAM where WDC
is minimal and scheduled on the selected TAM in order to make sure that the
τmax is not violated. Additional vectors are selected one by one in such a way
that STQ is maximized, and after each selection the schedule is created to ver-
ify that the time constraint (ATE memory depth constraint) is not violated.

τi j i()wj tvi, 1 ii i()1 max si()sii()w soi()w, tv min sii i()sii()w soi()w,×= (15.8)

TWUi()w max sii i()sii()w soi()w, w×= (15.9)

WDCi TWUi()w TWUi 1()1–= (15.10)

Chapter 15 301

Note that the test vectors for a core might not be selected in order. For
instance, in a system with two cores A and B, the first vector can be selected
from core A, the second from core B, and the third from core A. However, at
the scheduling, the test vectors for each core are grouped and scheduled as a
single set. The algorithm (Figure 233) assumes a fixed TAM partition (num-
ber of TAMs and their width). We have therefore added an outer loop that
makes sure that we explore all possible TAM configurations.

5.1 Illustrative Example

To illustrate the proposed technique for test scheduling and test vector
selection, we make use of an example where the time constraint is set to 5%

Figure 232.Variation of (a) WDC and (b) max(scan-in, scan-out) at
different TAM widths at core 1 (p93791).

0

1000

2000

 3000

 4000

5000

6000

10 20 30 40 50 60

W
DC

TAM width

0

 500

 1000

1500

2000

 2500

 3000

3500

4000

10 20 30 40 50 60

m
ax

(s
ca

n-
in

, s
ca

n-
ou

t)

TAM width

(a)

(b)

SOC Test Design302

of the maximal test application time (the time when all available test vectors
are applied). For the example, we make use of the ITC’02 benchmark [189,
190] d695 with the data presented in Table 42. As the maximal fault coverage
for a core when all test vectors are applied and the pass probability per core
are not given in the ITC’02 benchmarks, we have added these numbers. In
order to show the importance of combining test scheduling and test vector
selection, we compare our proposed technique to a naive approach where we
order the tests and assign test vectors according to the initial sorted order until

Core

0 1 2 3 4 5 6 7 8 9 10

Scan-chains 0 0 0 1 4 32 16 16 4 32 32

Inputs wi 0 32 207 34 36 38 62 77 35 35 28

Outputs wo 0 32 108 1 39 304 152 150 49 320 106

Test vectors tvi 0 12 73 75 105 110 234 95 97 12 68

Pass probability ppi 97 98 99 95 92 99 94 90 92 98 94

Max fault coverage fci (%) 95 93 99 98 96 96 99 94 99 95 96

Figure 233.Test vector selection and test scheduling algorithm.

Given:
τmax - the upper test time limit for the system
Wtam - number of TAM wires - distributed over k TAMs w1ww , w2ww ,
..., wkw in such a way that Eq. 15.1 holds.
Variables:
stviv = 0 //selected number of test vectors for core i
TAT = 0 // test application time of the system
Compute WDCi for all cores at all k TAMs (Eq. 15.10)
Select best TAM for each core based on WDCi
while TAT<TT τmax at any TAM begin

for i=1 to n begin // For all cores
Compute τ(wjw ,1) (Eq. 15.8)
Compute CTQi assuming stviv =stviv +1 (Eq. 15.7)

end
for core with highest CTQ/τ(wjw ,1) and stviv <tviv

stviv =stviv +1
for all cores where stviv >0 begin// some selected vec-

tors
Assign core to an available TAM with minimal WDCi
if a TAM is full (<τmax) - mark TAM as unavailable.

end
Compute and return STQ (Eq. 15.7).
end

Table 42. Data for benchmark d695.

Chapter 15 303

the time limit (ATE memory depth) is reached. For this naive approach we
consider three different techniques.

1. Sorting when not considering defect probability and fault coverage
(Technique 1).

2. Sorting when considering defect probability but not fault coverage.
The cores are sorted in descending order according to defect probabil-
ity (Technique 2).

3. Sorting when considering defect probability in combination with fault
coverage. In this technique, we make use of the STQ (Equation 15.6)
equation to find a value of the test quality for each core. The cores are
then sorted in descending order according to test quality per clock
cycle. The sorting constant is described in Equation 15.11 (Technique
3).

For our test vector selection and test scheduling technique, we consider
three cases where we divide the TAM into one (Technique 4), two (Technique
5) or three test buses (Technique 6). The selected test data volume per core for
each of the six scheduling techniques is reported in Table 43 and the test
schedules with the corresponding STQ are presented in Figure 234. Figure
234 (a) illustrates the case when no information about defect probability and
fault coverage is used in the test ordering. As seen in the figure, such tech-
nique produces a schedule with an extremely low system test quality (STQ).
By making use of the information on defect probability (Figure 234 (b)),
respective defect probability and fault coverage (Figure 234 (c)) in the order-
ing, we can improve the test quality significantly. Although it is possible to
increase the STQ by using an efficient sorting technique, we are still not
exploiting the fact that the first test vectors in a test set detect more faults than
the last test vectors. In (Figure 234 (d) - (f)), we make use this information as
we are using our proposed technique for test scheduling and test vector selec-
tion. We note that it is possible to further improve the STQ by dividing the
TAM into several test buses (Figure 234 (e) - (f)).

sortConst
dpi f ci i()tvi×

τ i()w tvi, dpi
i 1

n

∑×

---=
(15.11)

SOC Test Design304

4 6 7 8 9 10

21

3 4 8

6 9 10

52

2

1

3

Figure 234.Results for different scheduling techniques.

(a) Test scheduling without test vector selection when
not considering defect probability and fault coverage.

(d) Test scheduling using test vector selection and one TAM.

(e) Test scheduling using test vector selection and two TAMs.

STQ=0.0332

STQ=0.440

STQ=0.538

1

9 10

2 6 76

3 4 84

(f) Test scheduling using test vector selection and three TAMs.

STQ=0.556

STQ=0.167

STQ=0.203

(b) Test scheduling considering defect probability.

(c) Test scheduling considering defect probability
and fault coverage.

7

7

1

Chapter 15 305

5.2 Optimal Solution For Single TAM

The algorithm above can easily be improved to produce an optimal solu-
tion in the case of a single TAM. The algorithm above aborts the assignment
of test vectors immediately when the time constraint (memory constraint) is
reached - a selected test vector cannot be assigned since it violates the con-
straint. However, test vectors from other cores (not from the core that violates
the time constraint) could have been selected while making sure that they do
not violate the ATE constraint.

Note, that the selection of test vectors is based on a monotonically
decreasing function. The test vector that contributes most to the test quality is
first selected. That process continous on an updated list until the constraint is
reached. In the case of a single TAM, the scheme is optimal.

6 EXPERIMENTAL RESULTS

The aim with the experiments is to demonstrate that the test quality can be
kept high by using the proposed ATE memory constrained test data truncation
scheme. We have implemented the proposed technique described above, and
we have in the experiments made use of five ITC’02 benchmarks [189, 190],
d281, d695, p22810, p34392, and p93791. It is given for each core in these
benchmarks, the number of test vectors, the number of scanned elements
(number and length of the scan-chains), the number of input pins, bidirec-
tional pins and output pins. The netlists for the ITC’02 benchmarks are not
publicly available, and therefore we have, in order to perform experiments,
added for each core a pass probability and a maximal fault coverage number

Technique
Selected test data for each core (%)

0 1 2 3 4 5 6 7 8 9 10

Technique 1 0 0 100 0 0 20 0 0 0 0 0

Technique 2 0 0 0 0 0 0 0 54.7 0 0 0

Technique 3 100 0 0 0 0 0 0 52.6 0 0 0

Technique 4 0 100 9.6 6.7 4.8 0 1.7 10.5 6.2 8.3 4.4

Technique 5 0 100 9.6 16.0 10.5 0 3.8 21.1 13.4 8.3 4.4

Technique 6 0 100 9.6 17.3 11.4 0 2.6 13.7 17.5 33.3 14.7

Table 43. Selected test vectors (%) for the cores in design d695 considering
different scheduling techniques.

SOC Test Design306

when all its test vectors are applied (Table 44). And to get soft cores, we have
assumed that when we need soft cores the scan-chains can be broken; only the
number of flip-flops is given.

In order to have a memory (time) constraint from the ATE, we performed
for each design a schedule where all vectors are applied and that test applica-
tion time reefers to 100%. We have performed experiments at various ATE
memory depths constraints (equal to time constraints (see Equation 15.2 and
[116])) and these constraints are set as a percentage of the time it would take
to apply all test vectors.

We identify six techniques:

1. Test scheduling when not considering defect probability nor fault
coverage and testing is aborted at τmax - technique 1.

2. Test scheduling when considering defect probability but not fault
coverage and testing is aborted at τmax - technique 2.

3. Test scheduling when considering defect probability as well as fault
coverage and testing is aborted at τmax - technique 3.

4. Test scheduling and test vector selection when considering defect
probability and fault coverage, using one TAM - technique 4.

5. Test scheduling and test vector selection when considering defect
probability and fault coverage, using up to two TAMs - technique 5.

6. Test scheduling and test vector selection when considering defect
probability and fault coverage, using up to three TAMs - technique 6.

In the first experiment, we analyze the importance of TAM width. We
have made experiments on benchmark p93791 at TAM width 16, 32 and 64 at
time constraint 5%, 10%, 25%, 50%, 75%, and 100% of the test application
time if all test data is applied. The results are collected in Table 45 and illus-
trated for technique 2, 4, and 6 in Figure 235. The results show that the
produced results (STQ) are at a given time constraint, rather similar at various
TAM widths. Therefore, for the rest of the experiments we assume a TAM
bandwidth WtamWW of 32.

All experimental results are collected in Table 46 for soft cores and in
Table 48 for hard cores. The CPU times and TAM widths (where applicable)
is found in Table 47 for soft cores, and in Table 49 for hard cores. The results
collected in Table 46 and Table 48 are for each design plotted in Figure 236
(D281 - soft cores), Figure 237 (D281 - hard cores), Figure 238 (D695 - soft
cores), Figure 239 (D695 - hard cores), Figure 240 (P22810 - soft cores),
Figure 241 (P22810 - hard cores), Figure 242 (P34392 - soft cores),
Figure 243 (P34392 - hard cores), Figure 244 (P93791 - soft cores),
Figure 245 (P93791 - hard cores). In column 1 the design name is given, in

Chapter 15 307

column 2 the percentage of the test time is given, and in column 3 to 8 the
produced STQ is reported for each technique (1 to 6). The computational cost
for every experiment is in the range of a few seconds to a few minutes.

From the experimental results we learn that the STQ value increases with
the time constraint (a larger ATE memory results in a higher STQ), which is
obvious. It is also obvious that the STQ value for a design is the same at 100%
test time, all test data is applied. From the results, we also see that test set
selection improves the test quality when comparing STQ at the same test time
limit. That is, technique 4, 5, 6 have significant higher STQ value compared
to technique 1, 2 and 3. But also important, we note that we can achieve a
high test quality at low testing times. Take design p93791, for example, where
the STQ value (0.584) for technique 1 at 75% of the testing time is lower than
the STQ value (0.748) at only 5% for technique 6. It means that it is possible,
by integrating test set selection and test scheduling, to reduce the test applica-
tion time while keeping the test quality high.Also, we have selected rather
high pass probabilities and rather high fault coverage as these numbers are not
publicly available. For designs with lower pass probabilities and lower fault
coverage, and also, for designs where the variations in these numbers are
higher, our technique becomes more important.

7 CONCLUSIONS

The technology development has made it possible to design extremely
advanced chips where a complete system is placed on a single die. The
requirement to test these system chips increase, and especially, the growing
test data volume is becoming a problem. Several test scheduling techniques
have been proposed to organize the test data in the ATE in such a way that the
ATE memory limitation is not violated, and several test compression schemes
have been proposed to reduce the test data volume. However, these tech-
niques do not guarantee that the test data volume fits the ATE.

In this chapter we have therefore proposed a test data truncation scheme
that systematically selects test vectors and schedules the selected test vectors
for each core in a core-based system in such a way that the test quality is max-
imized while the constraint on ATE memory depth is met. We have defined a
test quality metric based on defect probability, fault coverage and the number
of applied vectors that is used in the proposed test data selection scheme. We
have implemented our technique and the experiments on several ITC’02
benchmarks [189, 190] at reasonable CPU times show that high test quality
can be achieved by careful selection of test data. Further, our technique can be
used to shorten the test application time for a given test quality value.

SOC Test Design308

Table 44. Pass probability (pp) and maximal fault coverage (fc).

Core D281 D695 P22810 P34392 P93791

pp (%) fc (%) pp (%) fc (%) pp (%) fc (%) pp (%) fc (%) pp (%) fc (%)

0 98 93 97 95 98 95 98 97 99 99

1 98 98 98 93 98 99 98 97 99 99

2 99 97 99 99 97 97 97 99 99 95

3 95 95 95 98 93 98 91 98 97 98

4 92 98 92 96 91 94 95 99 90 98

5 99 98 99 96 92 99 94 99 91 99

6 94 96 94 99 99 99 94 97 92 97

7 90 99 90 94 96 97 93 98 98 99

8 92 97 92 99 96 95 99 94 96 95

9 98 95 95 97 99 96 91 96

10 94 96 93 97 91 98 94 97

11 91 99 91 98 93 99

12 92 99 90 99 91 99

13 93 94 95 94 91 94

14 99 97 94 97 90 98

15 99 94 96 95 99 94

16 99 99 96 98 98 97

17 95 98 97 98 97 97

18 96 94 92 95 99 95

19 97 95 90 95 99 95

21 93 99 99 99

22 99 99 90 98

23 96 95 99 96

24 98 98 90 98

25 99 95 98 94

26 92 99 92 99

27 91 99 96 99

28 91 97 95 98

29 93 98 91 99

30 90 97

31 96 98

32 99 99

Chapter 15 309

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

100755025105

S
T

Q

Test time constraint in %

TAM=16
TAM=32
TAM=64

0.2

0.4

0.6

0.8

1

1.2

100755025105

S
T

Q

Test time constraint in %

TAM=16
TAM=32
TAM=64

 0.2

 0.4

 0.6

 0.8

 1

 1.2

100755025105

S
T

Q

Test time constraint in %

TAM=16
TAM=32
TAM=64

(a)

(b)

(c)()

Figure 235.Comparing STQ at TAM width 16, 32, and 64 for technique 2 (a),
technique 4(b) and technique 6(c).

SOC Test Design310

SOC % of max
test time

Technique 1 Technique 2 Technique 3 Technique 4 Technique 5 Technique 6

STQ STQ STQ STQ STQ STQ

p93791

TAM width 16

5 0.00542 0.118 0.560 0.719 0.720 0.720

10 0.0248 0.235 0.618 0.793 0.796 0.796

25 0.0507 0.458 0.747 0.884 0.885 0.885

50 0.340 0.619 0.902 0.945 0.945 0.945

75 0.588 0.927 0.958 0.969 0.969 0.969

100 0.976 0.976 0.976 0.976 0.976 0.976

p93791

TAM width 32

5 0.00542 0.118 0.559 0.715 0.748 0.748

10 0.0249 0.235 0.618 0.791 0.822 0.822

25 0.0507 0.459 0.742 0.883 0.908 0.908

50 0.340 0.619 0.902 0.945 0.960 0.960

75 0.584 0.927 0.957 0.969 0.974 0.974

100 0.976 0.976 0.976 0.976 0.976 0.976

p93791

TAM width 64

5 0.00535 0.118 0.499 0.703 0.752 0.752

10 0.00606 0.235 0.567 0.780 0.827 0.827

25 0.0356 0.461 0.739 0.878 0.918 0.918

50 0.335 0.620 0.901 0.944 0.965 0.965

75 0.566 0.927 0.961 0.969 0.975 0.975

100 0.976 0.976 0.976 0.976 0.976 0.976

Table 45. Comparison of different TAM widths using ITC’02 benchmark p93791.

Chapter 15 311

Design Percentage
of maximal
test time

Technique 1 Technique2 Technique3 Technique 4 Technique5 Technique 6

STQ STQ STQ STQ STQ STQ

d281 5 0.0209 0.164 0.649 0.762 0.776 0.788

10 0.0230 0.186 0.676 0.838 0.846 0.846

25 0.209 0.215 0.884 0.905 0.910 0.911

50 0.940 0.237 0.931 0.947 0.951 0.951

75 0.965 0.944 0.949 0.967 0.968 0.968

100 0.974 0.974 0.974 0.974 0.974 0.974

d695 5 0.0332 0.185 0.445 0.625 0.641 0.641

10 0.0370 0.497 0.635 0.755 0.768 0.768

25 0.306 0.629 0.823 0.904 0.904 0.904

50 0.612 0.963 0.963 0.963 0.963 0.963

75 0.966 0.966 0.966 0.966 0.966 0.966

100 0.966 0.966 0.966 0.966 0.966 0.966

p22810 5 0.0526 0.179 0.672 0.822 0.822 0.834

10 0.0788 0.189 0.762 0.884 0.884 0.895

25 0.338 0.775 0.924 0.951 0.951 0.955

50 0.973 0.973 0.973 0.973 0.973 0.973

75 0.973 0.973 0.973 0.973 0.973 0.973

100 0.973 0.973 0.973 0.973 0.973 0.973

p34392 5 0.0566 0.329 0.640 0.839 0.858 0.869

10 0.0616 0.459 0.783 0.899 0.912 0.919

25 0.542 0.767 0.934 0.959 0.961 0.962

50 0.972 0.972 0.972 0.972 0.972 0.972

75 0.972 0.972 0.972 0.972 0.972 0.972

100 0.972 0.972 0.972 0.972 0.972 0.972

p93791 5 0.00572 0.199 0.566 0.748 0.755 0.755

10 0.0294 0.278 0.656 0.823 0.828 0.828

25 0.125 0.516 0.840 0.912 0.914 0.914

50 0.453 0.882 0.949 0.964 0.965 0.965

75 0.976 0.976 0.976 0.976 0.976 0.976

100 0.976 0.976 0.976 0.976 0.976 0.976

Table 46. Test quality (STQ) at different test time constraints where cores in the design are soft.

SOC Test Design312

Design Percentage
of maximal
test time

Technique 1 Technique2 Technique3 Technique 4 Technique5 Technique 6

CPU (s) CPU (s) CPU (s) CPU (s) CPU (s) TAMs CPU (s) TAMs

d281 5 0.1 0.1 0.1 0.4 4.6 11/21 29.0 8/10/14

10 0.1 0.1 0.1 0.4 4.8 11/21 29.9 11/21

25 0.1 0.1 0.1 0.4 4.8 11/21 28.2 5/13/14

50 0.1 0.1 0.1 0.4 5.4 11/21 34.0 11/21

75 0.1 0.1 0.1 0.5 5.9 11/21 34.0 11/21

100 0.1 0.1 0.1 0.5 5.9 32 36.6 32

d695 5 0.2 0.2 0.2 0.7 8.5 13/19 56.0 13/19

10 0.2 0.2 0.3 0.7 8.7 13/19 55.1 13/19

25 0.2 0.2 0.2 0.8 8.6 32 57.0 32

50 0.2 0.2 0.3 0.7 8.7 32 55.2 32

75 0.2 0.2 0.2 0.7 8.7 32 56.1 32

100 0.2 0.3 0.2 0.7 8.7 32 56.4 32

p22810 5 0.8 0.8 0.9 2.5 32.8 32 210.2 7/12/13

10 0.8 0.8 0.8 2.6 33.7 32 211.9 7/12/13

25 0.8 0.8 0.8 3.2 39.3 32 235.8 7/12/13

50 0.8 0.7 0.8 3.7 42.5 32 250.9 32

75 0.8 0.7 0.8 3.7 45.5 32 264.0 8/12/12

100 0.7 0.7 0.8 3.7 48.2 11/21 276.5 8/12/12

p34392 5 0.7 0.6 0.7 2.6 35.5 15/17 211.3 7/12/13

10 0.7 0.6 0.6 3.4 42.0 15/17 245.7 7/12/13

25 0.6 0.6 0.6 4.3 53.5 14/18 299.9 5/11/16

50 0.8 0.6 0.7 4.4 61.1 32 336.7 32

75 0.7 0.6 0.9 4.5 61.2 32 383.6 7/9/16

100 0.8 0.6 0.7 4.4 63.4 32 379.6 7/9/16

p93791 5 3.3 2.6 2.9 8.4 108.1 14/18 688.5 14/18

10 2.9 2.5 3.1 8.3 110.1 14/18 700.5 14/18

25 3.0 2.5 2.6 9.2 118.1 14/18 737.5 14/18

50 3.2 2.5 2.9 9.0 118.7 14/18 740.4 14/18

75 3.1 2.5 2.9 9.2 120.2 32 752.8 32

100 3.1 2.6 2.8 9.4 123.6 14/18 760.9 14/18

Table 47. CPU time and TAM width assignment where the cores in the design are soft.

Chapter 15 313

Design Percentage
of maximal
test time

Technique 1 Technique2 Technique3 Technique 4 Technique5 Technique 6

STQ STQ STQ STQ STQ STQ

d281 5 0.0209 0.164 0.496 0.674 0.726 0.726

10 0.0230 0.186 0.563 0.774 0.818 0.818

25 0.198 0.215 0.834 0.879 0.905 0.912

50 0.912 0.237 0.903 0.935 0.949 0.949

75 0.956 0.870 0.923 0.960 0.968 0.968

100 0.974 0.974 0.974 0.974 0.974 0.974

d695 5 0.0332 0.167 0.203 0.440 0.538 0.556

10 0.0370 0.257 0.254 0.567 0.670 0.690

25 0.208 0.405 0.510 0.743 0.849 0.863

50 0.335 0.617 0.803 0.879 0.952 0.952

75 0.602 0.821 0.937 0.946 0.965 0.965

100 0.966 0.966 0.966 0.966 0.966 0.966

p22810 5 0.0333 0.174 0.450 0.659 0.691 0.759

10 0.0347 0.186 0.608 0.764 0.796 0.856

25 0.0544 0.398 0.769 0.885 0.900 0.940

50 0.181 0.830 0.912 0.949 0.949 0.968

75 0.600 0.916 0.964 0.969 0.969 0.973

100 0.973 0.973 0.973 0.973 0.973 0.973

p34392 5 0.0307 0.312 0.683 0.798 0.843 0.859

10 0.0341 0.331 0.766 0.857 0.893 0.898

25 0.0602 0.470 0.846 0.919 0.940 0.942

50 0.533 0.492 0.921 0.950 0.963 0.967

75 0.547 0.906 0.943 0.965 0.972 0.972

100 0.972 0.972 0.972 0.972 0.972 0.972

p93791 5 0.00542 0.118 0.559 0.715 0.748 0.748

10 0.0249 0.235 0.618 0.791 0.822 0.822

25 0.0507 0.459 0.742 0.883 0.908 0.908

50 0.340 0.619 0.902 0.945 0.960 0.960

75 0.584 0.927 0.957 0.969 0.974 0.974

100 0.976 0.976 0.976 0.976 0.976 0.976

Table 48. Test quality (STQ) at different test time constraints where cores in the design are hard.

SOC Test Design314

Design Percentage
of maximal
test time

Technique 1 Technique2 Technique3 Technique 4 Technique5 Technique 6

CPU (s) CPU (s) CPU (s) CPU (s) CPU (s) TAMs CPU (s) TAMs

d281 5 0.2 0.1 0.1 0.4 3.1 11/21 19.7 11/21

10 0.1 0.2 0.1 0.4 3.4 11/21 20.6 11/21

25 0.1 0.1 0.1 0.4 3.6 11/21 21.3 5/13/14

50 0.1 0.1 0.2 0.4 4.1 11/21 26.0 11/21

75 0.1 0.1 0.1 0.4 4.4 11/21 27.0 11/21

100 0.1 0.1 0.1 0.4 4.8 11/21 28.1 11/21

d695 5 0.09 0.09 0.1 0.2 1.9 13/19 11.9 7/9/16

10 0.09 0.09 0.1 0.2 1.9 13/19 12.0 7/9/16

25 0.08 0.09 0.09 0.2 2.0 13/19 12.1 7/9/16

50 0.08 0.09 0.1 0.2 2.0 13/19 12.7 13/19

75 0.08 0.09 0.1 0.2 2.0 13/19 12.7 13/19

100 0.09 0.09 0.1 0.2 2.0 32 13.0 32

p22810 5 0.1 0.1 0.1 0.3 4.0 14/18 27.1 9/11/12

10 0.1 0.1 0.1 0.4 5.2 14/18 34.7 9/11/12

25 0.1 0.1 0.1 0.8 9.4 14/18 48.3 9/11/12

50 0.1 0.1 0.1 1.0 12.6 32 78.6 9/11/12

75 0.1 0.1 0.1 1.5 15.6 32 97.5 9/11/12

100 0.1 0.1 0.1 1.6 18.4 32 115.9 9/11/12

p34392 5 0.06 0.06 0.06 1.0 12.6 11/21 64.4 9/10/13

10 0.06 0.07 0.08 1.7 21.0 11/21 96.5 9/10/13

25 0.06 0.06 0.06 2.4 31.0 11/21 151.4 9/10/13

50 0.1 0.06 0.06 2.7 36.2 11/21 193.8 9/10/13

75 0.08 0.06 0.08 2.8 39.3 11/21 217.2 9/10/13

100 0.07 0.07 0.07 2.8 45.0 14/18 327.0 14/18

p93791 5 0.5 0.5 0.6 1.3 12.3 15/17 68.3 15/17

10 0.3 0.4 0.4 1.4 14.5 15/17 78.7 15/17

25 0.4 0.3 0.4 1.7 19.0 15/17 100.9 15/17

50 0.4 0.8 0.4 1.9 22.5 14/18 117.7 14/18

75 0.4 0.4 0.4 2.0 24.7 15/17 128.6 15/17

100 0.4 0.4 0.4 2.3 26.7 14/18 140.5 14/18

Table 49. CPU time and TAM width assignment where the cores in the design are hard.

Chapter 15 315

Figure 236.Design D281 - soft cores.

0.2

0.4

0.6

0.8

1

 0 10 20 30 40 50 60 70 80 90 100

S
T

Q

test time %

Test vector selection, three TAMs
Test vector selection, two TAMs
Test vector selection, one TAM

Considering dp and fc
Considering dp but not fc
Not considering dp and fc

Figure 237.Design D281 - hard cores.

0.2

0.4

0.6

0.8

1

 0 10 20 30 40 50 60 70 80 90 100

S
T

Q

test time %

Test vector selection, three TAMs
Test vector selection, two TAMs
Test vector selection, one TAM

Considering dp and fc
Considering dp but not fc
Not considering dp and fc

SOC Test Design316

Figure 238.Design D695 - soft cores.

0.2

0.4

0.6

0.8

1

 0 10 20 30 40 50 60 70 80 90 100

S
T

Q

test time %

Test vector selection, three TAMs
Test vector selection, two TAMs
Test vector selection, one TAM

Considering dp and fc
Considering dp but not fc
Not considering dp and fc

Figure 239.Design D695 - hard cores.

0.2

0.4

0.6

0.8

1

 0 10 20 30 40 50 60 70 80 90 100

S
T

Q

test time %

Test vector selection, three TAMs
Test vector selection, two TAMs
Test vector selection, one TAM

Considering dp and fc
Considering dp but not fc
Not considering dp and fc

Chapter 15 317

Figure 240.Design D22810 - soft cores.

0.2

0.4

0.6

0.8

1

 0 10 20 30 40 50 60 70 80 90 100

S
T

Q

test time %

Test vector selection, three TAMs
Test vector selection, two TAMs
Test vector selection, one TAM

Considering dp and fc
Considering dp but not fc
Not considering dp and fc

Figure 241.Design D22810 - hard cores.

0.2

0.4

0.6

0.8

1

 0 10 20 30 40 50 60 70 80 90 100

S
T

Q

test time %

Test vector selection, three TAMs
Test vector selection, two TAMs
Test vector selection, one TAM

Considering dp and fc
Considering dp but not fc
Not considering dp and fc

SOC Test Design318

Figure 242.Design D34392 - soft cores.

0.2

0.4

0.6

0.8

1

 0 10 20 30 40 50 60 70 80 90 100

S
T

Q

test time %

Test vector selection, three TAMs
Test vector selection, two TAMs
Test vector selection, one TAM

Considering dp and fc
Considering dp but not fc
Not considering dp and fc

Figure 243.Design D34392 - hard cores.

0.2

0.4

0.6

0.8

1

 0 10 20 30 40 50 60 70 80 90 100

S
T

Q

test time %

Test vector selection, three TAMs
Test vector selection, two TAMs
Test vector selection, one TAM

Considering dp and fc
Considering dp but not fc
Not considering dp and fc

Chapter 15 319

Figure 244.Design D93791 - soft cores.

0.2

0.4

0.6

0.8

1

 0 10 20 30 40 50 60 70 80 90 100

S
T

Q

test time %

Test vector selection, three TAMs
Test vector selection, two TAMs
Test vector selection, one TAM

Considering dp and fc
Considering dp but not fc
Not considering dp and fc

Figure 245.Design D93791 - hard cores.

0.2

0.4

0.6

0.8

1

 0 10 20 30 40 50 60 70 80 90 100

S
T

Q

test time %

Test vector selection, three TAMs
Test vector selection, two TAMs
Test vector selection, one TAM

Considering dp and fc
Considering dp but not fc
Not considering dp and fc

Appendix 1

Benchmarks

1 INTRODUCTION

This is the inputfiles for the various designs used to get the results:

■ Design Kime

■ Design Muresan 10

■ Design Muresan 20

■ ASIC Z

■ Extended ASIC Z

■ Ericsson

■ System S (and variants)

■ System L

2 FORMAT OF THE INPUTFILE

The inputfile is divided in sections, in the hope to make it clear, and easy
to extend. Each section is started with a [SectionName], and is parsed row by
row, and the content is interpreted according to each sections predefined for-
mat. Different values is separated by one or more spaces, lists within '{}',
empty lines are ignored and everything it case-sensitive. The sign '#' causes
the rest of the line to be ignored and can be used for comments.

SOC Test Design322

The format of each section is described below, every single name identify-
ing a core, block, test, etc. is required to be unique.

[Global Constraints]

Rowformat: identifier = value

[Cores]

Rowformat: name x y blocklist
blocklist specified as {block1 block2 ... blockN}

Identifier Value Default Description

MaxPower Integer 0 Highest possible total powerconsumtion.

OptimalTime Integer Perfect Optimal testtime. (Only purpose is for comparisions
of results.)

CmpTestTest Yes / No Yes Don't allow tests at the same block to execute concurrently.

CmpTestCts Yes / No No Don't allow a test if it's block is among the concurrency
constraints of an simultaneous test and vice vera.

CmpCtsCts Yes / No Yes Don't allow concurrent scheduling of tests with common
blocks in the concurrency constraints.

DoBusPlan Yes / No No Create a buslayout.

BusFactor Integer 1 Costfactor for buses.

TimeFactor Integer 1 Costfactor for testtime.

AvgNodeDist Integer Auto Average distance between nodes (cores, TPG, TRE).

Value Description

name Name identifying the core.

x Integer giving the x-coordinate of the cores position.

y Integer giving the y-coordinate of the cores position.

blocklist Names (at least one) of the blocks part of this core.

Appendix 1 323

[Generators] and [Evaluators

Rowformat: name x y bmin bmax mem movable

[Tests]

Rowformat: name power time tpg tre bmin bmax mem icore

Value Description

name Name identifying the generator or eveluator.

x Integer giving the x-coordinate of the position.

y Integer giving the y-coordinate of the position.

bmax Integer giving the highest possible bandwidth (0 indicates infinity)

mem This is only for generators and specifies the amount of memory avail-
able in the generator.

movable Yes or No, Specifies if the position is allowed to be changed by the
algorithm. Not implemented.

Value Description

name Name identifying a test.

power Integer giving the amount of power consumed by the test.

time Integer giving the time a test needs to complete.

tpg The name of the used generator.

tre The name of the used evaluator.

bmin Integer giving the (minimal) required bandwidth.

bmax Integer giving the possible (maximal) bandwidth (0 indicates infinity).

mem The amount of memory allocated in the generator.

icore The name of a core to perform interconnection test to, else 'no' or left out.

SOC Test Design324

[Blocks]

Rowformat: block idle testlist
testlist specified as {test1 test2 ... testN}

[Concurrency Constraints]

Rowformat: test blocklist
blocklist specified as {block1 block2 ... blockN}

3 DESIGN KIME

The test compatibility graph of a design with six tests is taken from Kime
and Saluja [132], see Figure 1.1.. Test t1 and t6 may be scheduled concur-
rently since an arc exists between node t1 and node t6. On the other hand, test
t1 and t2t may not be scheduled concurrently since no arc exists between the
node t1 and node t2t . Each node has its test time attached to it. For instance,
test t1 requires 255 time units.

Design Kime
[Global Options]
MaxPower = 2 # Maximal allowed simultaneous power
[Cores]
#Syntax: name x y {block1 block2 ... blockN}
N1 10 10 {n1}
N2 20 10 {n2}
N3 0 0 {n3}
N4 10 0 {n4}
N5 20 0 {n5}
N6 0 10 {n6}
[Generators]
#Syntax: name x y max_bandw max_mem movable
TC 0 20 2 6 no

Value Description

block Name identifying a block.

idle Integer giving the amount ow idle power used by the block.

testlist The names of the tests supposed to run on the block.

Value Description

test The name of a test.

blocklist The names of the blocks part of this tests concurrency constraints.

Appendix 1 325

[Evaluators]
#Syntax: name x y max_bandw movable
SA 20 20 6 no
[Tests]
#Syntax:
#name power time tpg tre min_bandw max_bandw mem #ict_to_core
t1 1 255 TC SA 1 1 1
t2 1 63 TC SA 1 1 1
t3 1 63 TC SA 1 1 1
t4 1 31 TC SA 1 1 1
t5 1 127 TC SA 1 1 1
t6 1 15 TC SA 1 1 1
[Blocks]
#Syntax: name idle_power {test1 test2 ... testN}
n1 0 {t1}
n2 0 {t2}
n3 0 {t3}
n4 0 {t4}
n5 0 {t5}
n6 0 {t6}
[Concurrency Constraints]
#Syntax: test {block1 block2 ... blockN}
t1 { n2}
t2 {n1 n3 n4}
t3 { n2 n6}
t4 { n2 n5 n6}
t5 { n4 n6}
t6 { n3 n4 n5}

Figure 1.1.Test compatibility graph.

t2
63

t3
63

t4t 31

t5
127

t1
255

t6

15

SOC Test Design326

4 DESIGN MURESAN 10

Muresan et al. present a design with the design data presented in
Table 1.2. [202]. For instance, test t2t requires 8 time units and 4 power units
and it is test compatible with the following tests: {t1, t3, t7, t77 9}. For instance, it
means that test t2t can be scheduled at the same time as test t3.

The power limit for the design is 12 power units.

[Global Options]
MaxPower = 12 # Maximal allowed simultaneous power
OptimalTime = 25
TimeFactor = 20
BusFactor = 1
[Cores]
#Syntax: name x y {block1 block2 ... blockN}
C1 10 10 {B1}
C2 20 10 {B2}
C3 30 10 {B3}
C4 40 10 {B4}
C5 50 10 {B5}
C6 10 20 {B6}
C7 20 20 {B7}
C8 40 20 {B8}
C9 40 30 {B9}
C0 50 40 {B0}
[Generators]
#Syntax: name x y max_bandw max_mem movable
TCG 50 20 8 32 yes
[Evaluators]
#Syntax: name x y max_bandw movable
TCE 50 20 8 no

Test Test time Test power Test Compatibility

t1 9 9 t2t , t3, t5, t6, t8, t9

t2 8 4 t1, t3, t7, t8

t3 8 1 t1, t2t , t4t , t7, t9, t10

t4 6 6 t3, t5, t7, t8

t5 5 5 t1, t4t , t9, t10

t6 4 2 t1, t7, t8, t9

t7 3 1 t2t , t3, t4t , t6, t8, t9

t8 2 4 t1, t2t , t4t , t6, t7, t9, t10

t9 1 12 t1, t3, t5, t6, t7, t8, t10

t10 1 7 t3, t5, t8, t9

Figure 1.2.Design data for design Muresan.

Appendix 1 327

[Tests]
#Syntax:
name power time tpg tre min_bandw max_bandw mem ict_to_core
t1 9 9 TCG TCE 1 1 1 no
t2 4 8 TCG TCE 1 1 1 no
t3 1 8 TCG TCE 1 1 1 no
t4 6 6 TCG TCE 1 1 1 no
t5 5 5 TCG TCE 1 1 1 no
t6 2 4 TCG TCE 1 1 1 no
t7 1 3 TCG TCE 1 1 1 no
t8 4 2 TCG TCE 1 1 1 no
t9 12 1 TCG TCE 1 1 1 no
t0 7 1 TCG TCE 1 1 1 no
[Blocks]
#Syntax: name idle_power {test1 test2 ... testN}
B1 0 {t1}
B2 0 {t2}
B3 0 {t3}
B4 0 {t4}
B5 0 {t5}
B6 0 {t6}
B7 0 {t7}
B8 0 {t8}
B9 0 {t9}
B0 0 {t0}
[Concurrency Constraints]
#Syntax: test {block1 block2 ... blockN}
Note that the constraints are symmetric around the #diagonal,
and only one half is actually needed.
t1 { B4 B7 B0}
t2 { B4 B5 B6 B9 B0}
t3 { B5 B6 B8 }
t4 {B1 B2 B6 B9 B0}
t5 { B2 B3 B6 B7 B8 }
t6 { B2 B3 B4 B5 B0}
t7 {B1 B5 B0}
t8 { B3 B5 }
t9 { B2 B4 }
t0 {B1 B2 B4 B6 B7 }

5 DESIGN MURESAN 20

[Global Options]
MaxPower = 15 # Maximal allowed simultaneous power
[Cores]
#Syntax: name x y {block1 block2 ... blockN}
CORE 0 0 {b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16
b17 b18 b19 b20}
[Generators]
#Syntax: name x y max_bandw max_mem movable
TG 0 0 20 20 no
[Evaluators]
#Syntax: name x y max_bandw movable
SA 0 0 20 no
[Tests]
#Syntax:
name power time tpg tre min_bandw max_bandw mem ict_to_core

SOC Test Design328

t1 3 12 TG SA 1 1 1
t2 5 11 TG SA 1 1 1
t3 9 9 TG SA 1 1 1
t4 12 8 TG SA 1 1 1
t5 4 8 TG SA 1 1 1
t6 2 8 TG SA 1 1 1
t7 1 8 TG SA 1 1 1
t8 7 6 TG SA 1 1 1
t9 6 6 TG SA 1 1 1
t10 7 5 TG SA 1 1 1
t11 5 5 TG SA 1 1 1
t12 11 4 TG SA 1 1 1
t13 2 4 TG SA 1 1 1
t14 3 3 TG SA 1 1 1
t15 1 3 TG SA 1 1 1
t16 5 2 TG SA 1 1 1
t17 4 2 TG SA 1 1 1
t18 12 1 TG SA 1 1 1
t19 8 1 TG SA 1 1 1
t20 7 1 TG SA 1 1 1
[Blocks]
#Syntax: name idle_power {test1 test2 ... testN}
b1 0 {t1}
b2 0 {t2}
b3 0 {t3}
b4 0 {t4}
b5 0 {t5}
b6 0 {t6}
b7 0 {t7}
b8 0 {t8}
b9 0 {t9}
b10 0 {t10}
b11 0 {t11}
b12 0 {t12}
b13 0 {t13}
b14 0 {t14}
b15 0 {t15}
b16 0 {t16}
b17 0 {t17}
b18 0 {t18}
b19 0 {t19}
b20 0 {t20}
[Concurrency Constraints]
#Syntax: test {block1 block2 ... blockN}
t1 { b2 b3 b6 b7 b11 b13 b14 b18 }
t2 { b6 b7 b8 b10 b11 b15 b16 b18 }
t3 { b4 b6 b8 b9 b15 b16 b19 b20 }
t4 { b5 b6 b8 b10 b12 b13 b16 b18 b20 }
t5 { b9 b10 b11 b13 b14 b16 b19 }
t6 { b8 b10 b12 b13 b15 b16 b18 b19 }
t7 { b8 b10 b11 b13 b17 }
t8 { b12 b13 b15 b18 }
t9 { b10 b13 b14 b16 b18 b20 }
t10 { b12 b13 b14 b19 b20 }
t11 { b12 b13 b15 b17 b19 }
t12 { b15 b17 b18 b20 }
t13 { b14 b20 }
t14 { b15 b17 b19 }
t15 { b19 b20 }
t16 { b18 }

Appendix 1 329

t17 { }
t18 { }
t19 { }
t20 { }

6 ASIC Z

The ASIC Z design presented by Zorian [287] with the estimations on test
length made by Chou et al. is in Figure 1.3. and Table 1.4. The power con-
sumption for each block when it is in idle mode and for each test when it is in
test mode is given by Zorian. The test lengths for each test is computed by
Chou et al. with an assumption of linear dependency between test length and
block size, see Table 1.4. [40,41].

The design originally consists of 10 cores. However, no data is available
for one block therefore it is excluded from the design. The maximal allowed
power dissipation of the system is 900 mW. All blocks have their own dedi-
cated BIST which means that all tests can be scheduled concurrently.

We have added the placement, see Table 1.4., where each block is given
an x-placement and a y-placement.

[Global Options]
MaxPower = 900 # Maximal allowed simultaneous power
[Cores]
#Syntax: name x y {block1 block2 ... blockN}
ROM1 10 10 {rom1_1}
ROM2 20 10 {rom2_1}
RAM4 30 10 {ram4_1}
RAM1 40 10 {ram1_1}
RF 50 10 {rf_1}
RAM2 10 20 {ram2_1}

Figure 1.3.ASIC Z floor-plan.

RAM 3RAM 2 RAM 3RAM 3 RL 1

RL 2

ROM 2 RAM 4ROM 1 ROM 2ROM 2 RAM 4RAM 4 RF

SOC Test Design330

RAM3 20 20 {ram3_1}
RL2 40 20 {rl2_1}
RL1 40 30 {rl1_1}
[Generators]
#Syntax: name x y max_bandw max_mem movable
TCG 50 20 9 32 yes
[Evaluators]
#Syntax: name x y max_bandw movable
TCE 50 20 9 no
[Tests]
#Syntax:
name power time tpg tre min_bandw max_bandw mem ict_to_core
tROM1 279 102 TCG TCE 1 1 4 no
tROM2 279 102 TCG TCE 1 1 2 no
tRAM4 96 23 TCG TCE 1 1 2 no
tRAM1 282 69 TCG TCE 1 1 4 no
tRF 95 10 TCG TCE 1 1 8 no
tRAM2 241 61 TCG TCE 1 1 2 no
tRAM3 213 38 TCG TCE 1 1 2 no
tRL2 352 160 TCG TCE 1 1 4 no
tRL1 295 134 TCG TCE 1 1 4 no
[Blocks]
#Syntax: name idle_power {test1 test2 ... testN}
rom1_1 23 {tROM1}
rom2_1 23 {tROM2}
ram4_1 7 {tRAM4}
ram1_1 20 {tRAM1}
rf_1 19 {tRF}
ram2_1 17 {tRAM2}
ram3_1 11 {tRAM3}
rl2_1 0 {tRL2}
rl1_1 0 {tRL1}

[Concurrency Constraints]
#Syntax: test {block1 block2 ... blockN}
tRAM1 {ram1_1 ram2_1 ram3_1 ram4_1}
tRAM2 {ram1_1 ram2_1 ram3_1 ram4_1}

Block Size Test Time Idle Power Test Power Placement

x y

RL1 13400 gates 134 0 295 40 30

RL2 16000 gates 160 0 352 40 20

RF 64 × 17 bits 10 19 95 50 10

RAM1 768 × 9 bits 69 20 282 40 10

RAM2 768 × 8 bits 61 17 241 10 20

RAM3 768 × 5 bits 38 11 213 20 20

RAM4 768 × 3 bits 23 7 96 30 10

ROM1 1024 × 10 bits 102 23 279 10 10

ROM2 1024 × 10 bits 102 23 279 20 10

Figure 1.4.ASIC Z characteristics.

Appendix 1 331

tRAM3 {ram1_1 ram2_1 ram3_1 ram4_1}
tRAM4 {ram1_1 ram2_1 ram3_1 ram4_1}

7 EXTENDED ASIC Z

The Extended ASIC Z design is an extended version of ASIC Z, see sec-
tion 6. For each core three tests are defined:

■ an interconnection test,

■ an BIST test, and

■ an external test.

In total there are 27 tests spread over the 9 cores. The maximal power con-
sumption and placement is assumed to be the same as for ASIC Z. The
characteristics for Extended ASIC Z are in Table 1.5. For instance, a BIST
test at RL1 require test generator TGrl1 and test analyser TArl1. The test takes
67 time units and consumes 295 mW and when it is applied no other tests at
RL1 can be performed.

The interconnection tests are performed between two cores. For instance
core RL1 performs an interconnection test with RL2 which requires 10 time
units and 10 mW. When this test is applied it is assumed that no other test can
be performed at RL1 and RL2 (specified under block constraint in Table 1.5.).

In this design the BIST resources are shared and each BIST resources can
be used by one test at a time. For instance when RAM1 is tested using TGram
and TAram no other tests can be performed using these test resources. The
external tests are connected through TAP and several tests can be applied con-
currently using the external tester. For Extended ASIC Z all tests at a core are
at one block which means that the BIST and the external test may not be
scheduled concurrently.

SOC Test Design332

Core Test time Test power Test source Test sink Block constraint

RL1 67 295 TAP TAP RL1

67 295 TGrl1 TArl1 RL1

10 10 TAP TAP RL1, RL2

RL2 80 352 TAP TAP RL2

80 352 TGrl2 TArl2 RL2

10 10 TAP TAP RL2, RAM3

RF 5 95 TAP TAP RF

5 95 TGrf TArf RF

10 10 TAP TAP RF,RL1

RAM1 35 282 TAP TAP RAM1

35 282 TGram TAram RAM1

10 10 TAP TAP RAM1,RF

RAM2 31 241 TAP TAP RAM2

31 241 TGram TAram RAM2

10 10 TAP TAP RAM2, ROM1

RAM3 19 213 TAP TAP RAM3

19 213 TGram TAram RAM3

10 10 TAP TAP RAM3, RAM2

RAM4 12 96 TAP TAP RAM4

12 96 TGram TAram RAM4

10 10 TAP TAP RAM4, RAM1

ROM1 51 279 TAP TAP ROM1

51 279 TGrom TArom ROM1

10 10 TAP TAP ROM1, ROM2

ROM2 51 279 TAP TAP ROM2

51 279 TGrom TArom ROM2

10 10 TAP TAP ROM2, RAM4

Figure 1.5.Extended ASIC Z characteristics.

Appendix 1 333

8 SYSTEM L

System L is an industrial design consisting of 14 cores that are named A
through N, see Table 50. The system is tested by 17 tests distributed over the
system as block-level tests and top-level tests. The block-level tests and the
top-level tests can not be executed simultaneously. Furthermore, all block-
level using the test bus can not be executed concurrently. The top-level tests
are using the functional pins which makes concurrent scheduling among them
impossible.

All tests are using external test resources and the total power limit for the
system is 1200 mW.

Test Block Test Test time Idle
power

Test
power

Test port

Block-level tests A Test A 515 1 379 scan

B Test B 160 1 205 test-bus

C Test C 110 1 23 test-bus

D Test D Tested as part of other top-level test

E Test E 61 1 57 test-bus

F Test F 38 1 27 test-bus

G Test G Tested as part of other top-level test

H Test H Tested as part of other top-level test

I Test I 29 1 120 test-bus

J Test J 6 1 13 test-bus

K Test K 3 1 9 test-bus

L Test L 3 1 9 test-bus

M Test M 218 1 5 test-bus

Top-level tests A Test N 232 1 379 functional pins

N Test O 41 1 50 functional pins

B Test P 72 1 205 functional pins

D Test Q 104 1 39 functional pins

Table 50. System L characteristics.

SOC Test Design334

System L
[Global Options]
MaxPower = 1200 # Maximal allowed simultaneous power
[Cores]
#Syntax: name x y {block1 block2 ... blockN}
A 10 0 {a}
B 20 0 {b}
C 30 0 {c}
D 40 0 {d}
E 0 10 {e}
F 10 10 {f}
G 20 10 {g}
H 30 10 {h}
I 40 10 {i}
J 50 10 {j}
K 10 20 {k}
L 20 20 {l}
M 30 20 {m}
N 40 20 {n}
[Generators]
#Syntax: name x y max_bandw max_mem movable
scanG 10 0 1 32 no
busG 0 0 1 32 no
pinsG 0 20 1 32 no
[Evaluators]
#Syntax: name x y max_bandw movable
scanE 10 0 1 no
busE 50 20 1 no
pinsE 50 0 1 no
[Tests]
#Syntax:
name power time tpg tre min_bandw max_bandw mem i_t_c
ta 379 515 scanG scanE 111 no
tb 205 160 busG busE 1 11 no
tc 23 110 busG busE 111 no
td 0 0 busG busE 111 no
te 57 61 busG busE 111 no
tf 27 38 busG busE 111 no
tg 0 0 busG busE 111 no
th 0 0 busG busE 111 no
ti 120 29 busG busE 111 no
tj 13 6 busG busE 111 no
tkl 9 3 busG busE 111 no
tm 5 218 busG busE 111 no
tn 50 41 pinsG pinsE 111 no
to 379 232 pinsG pinsE 111 no
tp 205 72 pinsG pinsE 111 no
tq 39 104 pinsG pinsE 111 no
[Blocks]
#Syntax: name idle_power {test1 test2 ... testN}
a 1 {ta to}
b 1 {tb tp}
c 1 {tc}
d 1 { tq}
e 1 {te}
f 1 {tf}
g 1 {}
h 1 {}
i 1 {ti}
j 1 {tj}

Appendix 1 335

k 1 {tkl}
l 1 {tkl}
m 1 {tm}
n 1 {tn}
[Concurrency Constraints]
#Syntax: test {block1 block2 ... blockN}
ta {a}
tb { b c d e f g h i j k l m n}
tc { b c d e f g h i j k l m n}
td {}
te { b c d e f g h i j k l m n}
tf { b c d e f g h i j k l m n}
tg {}
th {}
ti { b c d e f g h i j k l m n}
tj { b c d e f g h i j k l m n}
tkl{ b c d e f g h i j k l m n}
tm { b c d e f g h i j k l m n}
tn {a b c d e f g h i j k l m n}
to {a b c d e f g h i j k l m n}
tp {a b c d e f g h i j k l m n}
tq {a b c d e f g h i j k l m n}

9 ERICSSON DESIGN

The Ericsson design, see Figure 1.6., consists of 8 digital signal processor
(DSP) cores: a block for DSP control (DSPIOC); 2 memory banks, a common
program memory (CPM) and common data memory (CDM); a control unit
for each memory bank, common data memory controller (CDMC) and com-
mon program memory controller (CPMC); and five other blocks, RX1C,
RX0C, DMAIOC, CKReg and TXC. In total there are 18 cores.

Each of the DSP cores in the Ericsson design in Figure 1.6. consists of
four banks of local data memory (LDM), one bank of local program memory
and two banks of other memory (LZM) and five logic blocks, see Figure 1.7.
The memory banks of the CPM block and the CDM block in Figure 1.6. are
shown in Figure 1.8. respectively in Figure 1.9.

The characteristics for each of the blocks in the design are in Table 1.1
where the test time, test power and test resource is specified for each block in
the system. The idle power is zero for all blocks. The DSPs are numbered by
n in range 0 to 7 which results in total 170 (17 × 7+ 51) tests.

The maximal allowed power consumption is limited to 5125 mW. For
each logic block two test sets are applied. One using an external tester and one
on-chip tester. These tests can not be applied at the same time since they test
the same logic. All logic blocks within a DSP core share one test source and
test sink for the on-chip test. The connection to the external tester is named
TAP and several tests may use the external tester concurrently.

SOC Test Design336

Figure 1.6.The Ericsson design.

DSP6 DSP7 DSP0 DSP1

DSP4 DSP5 DSP2 DSP3

RX1C

RX0C

CPM CDMDSPIOC

DMAIOC

CKReg

CDMC

CPMC TXC

Figure 1.7.The blocks within each DSPn.

LDM0MM LDM1

LDM2M

Logic0 Logic1

LDM3M

LPM

Logic2 Logic3 Logic4

LZM1MLZM0MM

Figure 1.9.The common data memory bank.

CDM0 CDM1 CDM2M CDM3 CDM4M

CDM5 CDM6MM CDM8CDM7 CDM9MM

Appendix 1 337

All memory blocks of the same type have their own test resources. For
instance, the blocks within the CPM have one test generator and one test
response analyser. The placement of all blocks are in Table 1.2.

Figure 1.8.The blocks within CPM.

CPM0MM

CPM3MM

CPM5M

CPM1

CPM4M

CPM6MM

CPM2MM

CPM7MM

SOC Test Design338

Block Test Test time Test power Test source Test sink

RX0C 1 970 375 TAP TAP

2 970 375 TG0 TRA0

RX1C 3 970 375 TAP TAP

4 970 375 TG0 TRA0

DSPIOC 5 1592 710 TAP TAP

6 1592 710 TG0 TRA0

CPMC 7 480 172 TAP TAP

8 480 172 TG0 TRA0

DMAIOC 9 3325 207 TAP TAP

10 3325 207 TG0 TRA0

CKReg 11 505 118 TAP TAP

12 505 118 TG0 TRA0

CDMC 13 224 86 TAP TAP

14 224 86 TG0 TRA0

TXC 15 364 140 TAP TAP

16 364 140 TG0 TRA0

CPMi 17+i 239 80 TG1 TRA1

CDMjM 25+j 369 64 TG1 TRA1

Table 1.1. Design characteristics Ericsson.

Appendix 1 339

DSPn LPM 17×n+35 46 16 TGn,0 TRAn,0

LDMl 17×n+l+36 92 8 TGn,0 TRAn,0

LZMm 17×n+m+40 23 2 TGn,0 TRAn,0

Logic0 17×n+42 4435 152 TAP TAP

17×n+43 4435 152 TGn,1 TRAn,1

Logic1 17×n+44 4435 152 TAP TAP

17×n+45 4435 152 TGn,1 TRAn,1

Logic2 17×n+46 7009 230 TAP TAP

17×n+47 7009 230 TGn,1 TRAn,1

Logic3 17×n+48 7224 250 TAP TAP

17×n+49 7224 250 TGn,1 TRAn,1

Logic4 17×n+50 7796 270 TAP TAP

17×n+51 7796 270 TGn,1 TRAn,1

Block Test Test time Test power Test source Test sink

Table 1.1. Design characteristics Ericsson.

SOC Test Design340

Block X Y Block X Y

TG6 0 0 TG0 80 0

TG6L 10 0 TG0L 90 0

DSP6LDM1 20 0 DSP0LDM1 100 0

DSP6LDM2 30 0 DSP0LDM2 110 0

DSP6LDM3 0 10 DSP0LDM3 80 10

DSP6LDM4 10 10 DSP0LDM4 90 10

DSP6LPM 20 10 DSP0LPM 100 10

DSP6LZM1 30 10 DSP0LZM1 110 10

DSP6LZM2 0 20 DSP0LZM2 80 20

DSP6L1 10 20 DSP0L1 90 20

DSP6L2 20 20 DSP0L2 100 20

DSP6L3 30 20 DSP0L3 110 20

DSP6L4 0 30 DSP0L4 80 30

DSP6L5 10 30 DSP0L5 90 30

SA6 20 30 SA0 100 30

SA6L 30 30 SA0L 110 30

TG7 40 0 TG1 120 0

TG7L 50 0 TG1L 130 0

DSP7LDM1 60 0 DSP1LDM1 140 0

DSP7LDM2 70 0 DSP1LDM2 150 0

DSP7LDM3 40 10 DSP1LDM3 120 10

DSP7LDM4 50 10 DSP1LDM4 130 10

DS7LPM 60 10 DSP1LPM 140 10

DSP7LZM1 70 10 DSP1LZM1 150 10

DSP7LZM2 40 20 DSP1LZM2 120 20

DSP7L1 50 20 DSP1L1 130 20

DSP7L2 60 20 DSP1L2 140 20

DSP7L3 70 20 DSP1L3 150 20

DSP7L4 40 30 DSP1L4 120 30

Table 1.2. Placement characteristics Ericsson.

Appendix 1 341

DSP7L5 50 30 DSP1L5 130 30

SA7 60 30 SA1 140 30

SA7L 70 30 SA1L 150 30

TG4 0 60 TG2 80 60

TG4L 10 60 TG2L 90 60

DSP4LDM1 20 60 DSP2LDM1 100 60

DSP4LDM2 30 60 DSP2LDM2 110 60

DSP4LDM3 0 70 DSP2LDM3 80 70

DSP4LDM4 10 70 DSP2LDM4 90 70

DSP4LPM 20 70 DSP2LPM 100 70

DSP4LZM1 30 70 DSP2LZM1 110 70

DSP4LZM2 0 80 DSP2LZM2 80 80

DSP4L1 10 80 DSP2L1 90 80

DSP4L2 20 80 DSP2L2 100 80

DSP4L3 30 80 DSP2L3 110 80

DSP4L4 0 90 DSP2L4 80 90

DSP4L5 10 90 DSP2L5 90 90

SA4 20 90 SA2 100 90

SA4L 30 90 SA2L 110 90

TG5 40 60 TG3 120 60

TG5L 50 60 TG3L 130 60

DSP5LDM1 60 60 DSP3LDM1 140 60

DSP5LDM2 70 60 DSP3LDM2 150 60

DSP5LDM3 40 70 DSP3LDM3 120 70

DSP5LDM4 50 70 DSP3LDM4 130 70

DS5LPM 60 70 DSP3LPM 140 70

DSP5LZM1 70 70 DSP3LZM1 150 70

DSP5LZM2 40 80 DSP3LZM2 120 80

DSP5L1 50 80 DSP3L1 130 80

Block X Y Block X Y

Table 1.2. Placement characteristics Ericsson.

SOC Test Design342

DSP5L2 60 80 DSP3L2 140 80

DSP5L3 70 80 DSP3L3 150 80

DSP5L4 40 90 DSP3L4 120 90

DSP5L5 50 90 DSP3L5 130 90

SA5 60 90 SA3 140 90

SA5L 70 90 SA3L 150 90

TG8b 0 40 CDM4 0 50

TG9b 10 40 CDM5 10 50

TG10 20 40 CDM6 20 50

CPM0 30 40 CDM7 30 50

CPM1 40 40 CDM8 40 50

CPM2 50 40 RX0C 50 50

CPM3 60 40 RX1C 60 50

CPM4 70 40 CPMC 70 50

CPM5 80 40 DSPIOC 80 50

CPM6 90 40 DMAIOC 90 50

CPM7 100 40 CDMC 100 50

CPM8 110 40 TXC 110 50

CPM9 120 40 CKREG 120 50

CDM1 130 40 SA8b 130 50

CDM2 140 40 SA10 140 50

CDM3 150 40 TAP 150 50

Block X Y Block X Y

Table 1.2. Placement characteristics Ericsson.

Appendix 1 343

#
Ericsson
[Global Options]
DesignName = "Ericsson"
MaxPower = 5125
[Cores]
DSP0ldm0 100 0 {ldm00}
DSP0ldm1 110 0 {ldm10}
DSP0ldm2 80 10 {ldm20}
DSP0ldm3 90 10 {ldm30}
DSP0lpm 100 10 {lpm0}
DSP0lzm0 110 10 {lzm00}
DSP0lzm1 80 20 {lzm10}
DSP0logic0 90 20 {logic00}
DSP0logic1 100 20 {logic10}
DSP0logic2 110 20 {logic20}
DSP0logic3 80 30 {logic30}
DSP0logic4 90 30 {logic40}
DSP1ldm0 140 0 {ldm01}
DSP1ldm1 150 0 {ldm11}
DSP1ldm2 120 10 {ldm21}
DSP1ldm3 130 10 {ldm31}
DSP1lpm 140 10 {lpm1}
DSP1lzm0 150 10 {lzm01}
DSP1lzm1 120 20 {lzm11}
DSP1logic0 130 20 {logic01}
DSP1logic1 140 20 {logic11}
DSP1logic2 150 20 {logic21}
DSP1logic3 120 30 {logic31}
DSP1logic4 130 30 {logic41}
DSP2ldm0 100 60 {ldm02}
DSP2ldm1 110 60 {ldm12}
DSP2ldm2 80 70 {ldm22}
DSP2ldm3 90 70 {ldm32}
DSP2lpm 100 70 {lpm2}
DSP2lzm0 110 70 {lzm02}
DSP2lzm1 80 80 {lzm12}
DSP2logic0 90 80 {logic02}
DSP2logic1 100 80 {logic12}
DSP2logic2 110 80 {logic22}
DSP2logic3 80 90 {logic32}
DSP2logic4 90 90 {logic42}
DSP3ldm0 140 60 {ldm03}
DSP3ldm1 150 60 {ldm13}
DSP3ldm2 120 70 {ldm23}
DSP3ldm3 130 70 {ldm33}
DSP3lpm 140 70 {lpm3}
DSP3lzm0 150 70 {lzm03}
DSP3lzm1 120 80 {lzm13}
DSP3logic0 130 80 {logic03}
DSP3logic1 140 80 {logic13}
DSP3logic2 150 80 {logic23}
DSP3logic3 120 90 {logic33}
DSP3logic4 130 90 {logic43}
DSP4ldm0 20 60 {ldm04}
DSP4ldm1 30 60 {ldm14}
DSP4ldm2 0 70 {ldm24}
DSP4ldm3 10 70 {ldm34}
DSP4lpm 20 70 {lpm4}
DSP4lzm0 30 70 {lzm04}

SOC Test Design344

DSP4lzm1 0 80 {lzm14}
DSP4logic0 10 80 {logic04}
DSP4logic1 20 80 {logic14}
DSP4logic2 30 80 {logic24}
DSP4logic3 0 90 {logic34}
DSP4logic4 10 90 {logic44}
DSP5ldm0 60 60 {ldm05}
DSP5ldm1 70 60 {ldm15}
DSP5ldm2 40 70 {ldm25}
DSP5ldm3 50 70 {ldm35}
DSP5lpm 60 70 {lpm5}
DSP5lzm0 70 70 {lzm05}
DSP5lzm1 40 80 {lzm15}
DSP5logic0 50 80 {logic05}
DSP5logic1 60 80 {logic15}
DSP5logic2 70 80 {logic25}
DSP5logic3 40 90 {logic35}
DSP5logic4 50 90 {logic45}
DSP6ldm0 20 0 {ldm06}
DSP6ldm1 30 0 {ldm16}
DSP6ldm2 0 10 {ldm26}
DSP6ldm3 10 10 {ldm36}
DSP6lpm 20 10 {lpm6}
DSP6lzm0 30 10 {lzm06}
DSP6lzm1 0 20 {lzm16}
DSP6logic0 10 20 {logic06}
DSP6logic1 20 20 {logic16}
DSP6logic2 30 20 {logic26}
DSP6logic3 0 30 {logic36}
DSP6logic4 10 30 {logic46}
DSP7ldm0 60 0 {ldm07}
DSP7ldm1 70 0 {ldm17}
DSP7ldm2 40 10 {ldm27}
DSP7ldm3 50 10 {ldm37}
DSP7lpm 60 10 {lpm7}
DSP7lzm0 70 10 {lzm07}
DSP7lzm1 40 20 {lzm17}
DSP7logic0 50 20 {logic07}
DSP7logic1 60 20 {logic17}
DSP7logic2 70 20 {logic27}
DSP7logic3 40 30 {logic37}
DSP7logic4 50 30 {logic47}
CPM0 30 40 {cpm0}
CPM1 40 40 {cpm1}
CPM2 50 40 {cpm2}
CPM3 60 40 {cpm3}
CPM4 70 40 {cpm4}
CPM5 80 40 {cpm5}
CPM6 90 40 {cpm6}
CPM7 100 40 {cpm7}
CPM8 110 40 {cpm8}
CPM9 120 40 {cpm9}
CDM0 130 40 {cdm0}
CDM1 140 40 {cdm1}
CDM2 150 40 {cdm2}
CDM3 0 50 {cdm3}
CDM4 10 50 {cdm4}
CDM5 20 50 {cdm5}
CDM6 30 50 {cdm6}
CDM7 40 50 {cdm7}

Appendix 1 345

CDMC 165 40 {cdmc}
CPMC 90 60 {cpmc}
RX0C 15 40 {rx0c}
RX1C 15 80 {rx1c}
DSPIOC 90 80 {dspioc}
DMAIOC 90 40 {dmaioc}
CKREG 165 80 {ckreg}
TXC 165 60 {txc}
[Generators]
ETG 150 50 12 0 no
BTG 20 40 1 0 no
CPMG 0 40 1 0 no
CDMG 10 40 1 0 no
DSPLG0 90 0 1 0 no
DSPMG0 80 0 1 0 no
DSPLG1 130 0 1 0 no
DSPMG1 120 0 1 0 no
DSPLG2 90 60 1 0 no
DSPMG2 80 60 1 0 no
DSPLG3 130 60 1 0 no
DSPMG3 120 60 1 0 no
DSPLG4 10 60 1 0 no
DSPMG4 0 60 1 0 no
DSPLG5 50 60 1 0 no
DSPMG5 40 60 1 0 no
DSPLG6 10 0 1 0 no
DSPMG6 0 0 1 0 no
DSPLG7 50 0 1 0 no
DSPMG7 40 0 1 0 no
[Evaluators]
ERE 150 50 12 no
BRE 145 50 1 no
CPME 130 50 1 no
CDME 140 50 1 no
DSPLE0 110 30 1 no
DSPME0 100 30 1 no
DSPLE1 150 30 1 no
DSPME1 140 30 1 no
DSPLE2 110 90 1 no
DSPME2 100 90 1 no
DSPLE3 150 90 1 no
DSPME3 140 90 1 no
DSPLE4 30 90 1 no
DSPME4 20 90 1 no
DSPLE5 70 90 1 no
DSPME5 60 90 1 no
DSPLE6 30 30 1 no
DSPME6 20 30 1 no
DSPLE7 70 30 1 no
DSPME7 60 30 1 no
[Tests]
etrx 375 970 ETG ERE 1 1 0
btrx 375 970 BTG BRE 1 1 0
etdspioc 710 1592 ETG ERE 1 1 0
btdspioc 710 1592 BTG BRE 1 1 0
etcpmc 172 480 ETG ERE 1 1 0
btcpmc 172 480 BTG BRE 1 1 0
etdmaioc 207 3325 ETG ERE 1 1 0
btdmaioc 207 3325 BTG BRE 1 1 0
etckreg 118 505 ETG ERE 1 1 0

SOC Test Design346

btckreg 118 505 BTG BRE 1 1 0
etcdmc 86 224 ETG ERE 1 1 0
btcdmc 86 224 BTG BRE 1 1 0
ettxc 140 364 ETG ERE 1 1 0
bttxc 140 364 BTG BRE 1 1 0
btcpm 80 239 CPMG CPME 1 1 0
btcdm 64 369 CDMG CDME 1 1 0
etlogic0 152 4435 ETG ERE 1 1 0
etlogic1 152 4435 ETG ERE 1 1 0
etlogic2 230 7009 ETG ERE 1 1 0
etlogic3 250 7224 ETG ERE 1 1 0
etlogic4 270 7796 ETG ERE 1 1 0
btlogic00 152 4435 DSPLG0 DSPLE0 1 1 0
btlogic10 152 4435 DSPLG0 DSPLE0 1 1 0
btlogic20 230 7009 DSPLG0 DSPLE0 1 1 0
btlogic30 250 7224 DSPLG0 DSPLE0 1 1 0
btlogic40 270 7796 DSPLG0 DSPLE0 1 1 0
btlogic01 152 4435 DSPLG1 DSPLE1 1 1 0
btlogic11 152 4435 DSPLG1 DSPLE1 1 1 0
btlogic21 230 7009 DSPLG1 DSPLE1 1 1 0
btlogic31 250 7224 DSPLG1 DSPLE1 1 1 0
btlogic41 270 7796 DSPLG1 DSPLE1 1 1 0
btlogic02 152 4435 DSPLG2 DSPLE2 1 1 0
btlogic12 152 4435 DSPLG2 DSPLE2 1 1 0
btlogic22 230 7009 DSPLG2 DSPLE2 1 1 0
btlogic32 250 7224 DSPLG2 DSPLE2 1 1 0
btlogic42 270 7796 DSPLG2 DSPLE2 1 1 0
btlogic03 152 4435 DSPLG3 DSPLE3 1 1 0
btlogic13 152 4435 DSPLG3 DSPLE3 1 1 0
btlogic23 230 7009 DSPLG3 DSPLE3 1 1 0
btlogic33 250 7224 DSPLG3 DSPLE3 1 1 0
btlogic43 270 7796 DSPLG3 DSPLE3 1 1 0
btlogic04 152 4435 DSPLG4 DSPLE4 1 1 0
btlogic14 152 4435 DSPLG4 DSPLE4 1 1 0
btlogic24 230 7009 DSPLG4 DSPLE4 1 1 0
btlogic34 250 7224 DSPLG4 DSPLE4 1 1 0
btlogic44 270 7796 DSPLG4 DSPLE4 1 1 0
btlogic05 152 4435 DSPLG5 DSPLE5 1 1 0
btlogic15 152 4435 DSPLG5 DSPLE5 1 1 0
btlogic25 230 7009 DSPLG5 DSPLE5 1 1 0
btlogic35 250 7224 DSPLG5 DSPLE5 1 1 0
btlogic45 270 7796 DSPLG5 DSPLE5 1 1 0
btlogic06 152 4435 DSPLG6 DSPLE6 1 1 0
btlogic16 152 4435 DSPLG6 DSPLE6 1 1 0
btlogic26 230 7009 DSPLG6 DSPLE6 1 1 0
btlogic36 250 7224 DSPLG6 DSPLE6 1 1 0
btlogic46 270 7796 DSPLG6 DSPLE6 1 1 0
btlogic07 152 4435 DSPLG7 DSPLE7 1 1 0
btlogic17 152 4435 DSPLG7 DSPLE7 1 1 0
btlogic27 230 7009 DSPLG7 DSPLE7 1 1 0
btlogic37 250 7224 DSPLG7 DSPLE7 1 1 0
btlogic47 270 7796 DSPLG7 DSPLE7 1 1 0
btlpm0 16 46 DSPMG0 DSPME0 1 1 0
btlpm1 16 46 DSPMG1 DSPME1 1 1 0
btlpm2 16 46 DSPMG2 DSPME2 1 1 0
btlpm3 16 46 DSPMG3 DSPME3 1 1 0
btlpm4 16 46 DSPMG4 DSPME4 1 1 0
btlpm5 16 46 DSPMG5 DSPME5 1 1 0
btlpm6 16 46 DSPMG6 DSPME6 1 1 0
btlpm7 16 46 DSPMG7 DSPME7 1 1 0

Appendix 1 347

btldm0 8 92 DSPMG0 DSPME0 1 1 0
btldm1 8 92 DSPMG1 DSPME1 1 1 0
btldm2 8 92 DSPMG2 DSPME2 1 1 0
btldm3 8 92 DSPMG3 DSPME3 1 1 0
btldm4 8 92 DSPMG4 DSPME4 1 1 0
btldm5 8 92 DSPMG5 DSPME5 1 1 0
btldm6 8 92 DSPMG6 DSPME6 1 1 0
btldm7 8 92 DSPMG7 DSPME7 1 1 0
btlzm0 2 23 DSPMG0 DSPME0 1 1 0
btlzm1 2 23 DSPMG1 DSPME1 1 1 0
btlzm2 2 23 DSPMG2 DSPME2 1 1 0
btlzm3 2 23 DSPMG3 DSPME3 1 1 0
btlzm4 2 23 DSPMG4 DSPME4 1 1 0
btlzm5 2 23 DSPMG5 DSPME5 1 1 0
btlzm6 2 23 DSPMG6 DSPME6 1 1 0
btlzm7 2 23 DSPMG7 DSPME7 1 1 0
[Blocks]
rx0c 0 {etrx btrx}
rx1c 0 {etrx btrx}
dspioc 0 {etdspioc btdspioc}
cpmc 0 {etcpmc btcpmc}
dmaioc 0 {etdmaioc btdmaioc}
ckreg 0 {etckreg btckreg}
cdmc 0 {etcdmc btcdmc}
txc 0 {ettxc bttxc}
cpm0 0 {btcpm}
cpm1 0 {btcpm}
cpm2 0 {btcpm}
cpm3 0 {btcpm}
cpm4 0 {btcpm}
cpm5 0 {btcpm}
cpm6 0 {btcpm}
cpm7 0 {btcpm}
cpm8 0 {btcpm}
cpm9 0 {btcpm}
cdm0 0 {btcdm}
cdm1 0 {btcdm}
cdm2 0 {btcdm}
cdm3 0 {btcdm}
cdm4 0 {btcdm}
cdm5 0 {btcdm}
cdm6 0 {btcdm}
cdm7 0 {btcdm}
DSP0
logic00 0 {btlogic00 etlogic0}
logic10 0 {btlogic10 etlogic1}
logic20 0 {btlogic20 etlogic2}
logic30 0 {btlogic30 etlogic3}
logic40 0 {btlogic40 etlogic4}
lpm0 0 {btlpm0}
ldm00 0 {btldm0}
ldm10 0 {btldm0}
ldm20 0 {btldm0}
ldm30 0 {btldm0}
lzm00 0 {btlzm0}
lzm10 0 {btlzm0}
DSP1
logic01 0 {btlogic01 etlogic0}
logic11 0 {btlogic11 etlogic1}
logic21 0 {btlogic21 etlogic2}

SOC Test Design348

logic31 0 {btlogic31 etlogic3}
logic41 0 {btlogic41 etlogic4}
lpm1 0 {btlpm1}
ldm01 0 {btldm1}
ldm11 0 {btldm1}
ldm21 0 {btldm1}
ldm31 0 {btldm1}
lzm01 0 {btlzm1}
lzm11 0 {btlzm1}
DSP2
logic02 0 {btlogic02 etlogic0}
logic12 0 {btlogic12 etlogic1}
logic22 0 {btlogic22 etlogic2}
logic32 0 {btlogic32 etlogic3}
logic42 0 {btlogic42 etlogic4}
lpm2 0 {btlpm2}
ldm02 0 {btldm2}
ldm12 0 {btldm2}
ldm22 0 {btldm2}
ldm32 0 {btldm2}
lzm02 0 {btlzm2}
lzm12 0 {btlzm2}
DSP3
logic03 0 {btlogic03 etlogic0}
logic13 0 {btlogic13 etlogic1}
logic23 0 {btlogic23 etlogic2}
logic33 0 {btlogic33 etlogic3}
logic43 0 {btlogic43 etlogic4}
lpm3 0 {btlpm3}
ldm03 0 {btldm3}
ldm13 0 {btldm3}
ldm23 0 {btldm3}
ldm33 0 {btldm3}
lzm03 0 {btlzm3}
lzm13 0 {btlzm3}
DSP4
logic04 0 {btlogic04 etlogic0}
logic14 0 {btlogic14 etlogic1}
logic24 0 {btlogic24 etlogic2}
logic34 0 {btlogic34 etlogic3}
logic44 0 {btlogic44 etlogic4}
lpm4 0 {btlpm4}
ldm04 0 {btldm4}
ldm14 0 {btldm4}
ldm24 0 {btldm4}
ldm34 0 {btldm4}
lzm04 0 {btlzm4}
lzm14 0 {btlzm4}
DSP5
logic05 0 {btlogic05 etlogic0}
logic15 0 {btlogic15 etlogic1}
logic25 0 {btlogic25 etlogic2}
logic35 0 {btlogic35 etlogic3}
logic45 0 {btlogic45 etlogic4}
lpm5 0 {btlpm5}
ldm05 0 {btldm5}
ldm15 0 {btldm5}
ldm25 0 {btldm5}
ldm35 0 {btldm5}
lzm05 0 {btlzm5}

Appendix 1 349

lzm15 0 {btlzm5}
DSP6
logic06 0 {btlogic06 etlogic0}
logic16 0 {btlogic16 etlogic1}
logic26 0 {btlogic26 etlogic2}
logic36 0 {btlogic36 etlogic3}
logic46 0 {btlogic46 etlogic4}
lpm6 0 {btlpm6}
ldm06 0 {btldm6}
ldm16 0 {btldm6}
ldm26 0 {btldm6}
ldm36 0 {btldm6}
lzm06 0 {btlzm6}
lzm16 0 {btlzm6}
DSP7
logic07 0 {btlogic07 etlogic0}
logic17 0 {btlogic17 etlogic1}
logic27 0 {btlogic27 etlogic2}
logic37 0 {btlogic37 etlogic3}
logic47 0 {btlogic47 etlogic4}
lpm7 0 {btlpm7}
ldm07 0 {btldm7}
ldm17 0 {btldm7}
ldm27 0 {btldm7}
ldm37 0 {btldm7}
lzm07 0 {btlzm7}
lzm17 0 {btlzm7}

10 SYSTEM S

System S is defined by Chakrabaraty [25] and it consists of six cores
where each core is an ISCAS benchmark (core), see Figure 1.10.. Data for the
system is given in Table 1.11. where i is the core and for each core i the num-
ber of external test cycles, ei, and number of BIST cycles, bi are specified.

Each core is tested by two test sets, one BIST test set and one determinis-
tic test set. The deterministic test vector set is applied using an external tester
and the test bus. Only one core at the time can use the test bus and the external
tester. The BIST patterns take one clock cycle to apply while the external
tester is ten times slower.

We have added placement for the cores in the system, see Table 1.11.

Circuit Core i Number of external
test cycles, ei.

Number of
BIST cycles, bi.

Placement

x y

c880 1 377 4096 10 10

c2670 2 15958 64000 20 10

Figure 1.11.Test data for the cores in System S.

SOC Test Design350

System S
[Global Options]
MaxPower = 14 # Maximal allowed simultaneous power
TimeFactor = 1
BusFactor = 15000
[Cores]
#Syntax: name x y {block1 block2 ... blockN}
C1 10 10 {c880}
C2 20 10 {c2670}
C3 10 30 {c7552}
C4 20 30 {s953}
C5 30 30 {s5378}
C6 30 10 {s1196}
C7 0 0 {s13207} # extra BIST-tested core (variant IV)
[Generators]
#Syntax: name x y max_bandw max_mem movable
BG1 10 10 1 32 yes
BG2 20 10 1 32 yes
BG3 10 30 1 32 yes
BG4 20 30 1 32 yes
BG5 30 30 1 32 yes
BG6 30 10 1 32 yes

c7552 3 8448 64000 10 30

s953 4 28959 217140 20 30

s5378 5 60698 389210 30 30

s1196 6 778 135200 30 10

Circuit Core i Number of external
test cycles, ei.

Number of
BIST cycles, bi.

Placement

x y

Figure 1.11.Test data for the cores in System S.

Core 2
(e2, b2)

Core 6
(e6, b66 6)

Core 5
(e5, b5)

Core 4
(e4, b44 4)

Core 3
(e3, b3)

External test bus

Figure 1.10.System S.

Core 1
(e1, b1)

BIST BIST BIST

BISTBISTBIST

Appendix 1 351

EG 0 20 1 32 yes
[Evaluators]
#Syntax: name x y max_bandw movable
BE1 10 10 1 yes
BE2 20 10 2 yes
BE3 10 30 1 yes
BE4 20 30 2 yes
BE5 30 30 3 yes
BE6 30 10 1 yes
EE 40 20 3 yes
[Tests]
#Syntax:
name power time tpg tre min_bandw max_bandw mem ict_to_core
e1 1 3770 EG EE 1 1 1 no
e2 1 159580 EG EE 1 2 1 no
e3 1 84480 EG EE 1 1 1 no
e4 1 289590 EG EE 1 2 1 no
e5 1 606980 EG EE 1 3 1 no
e6 1 7780 EG EE 1 1 1 no
b1 1 4096 BG1 BE1 1 1 1 no
b2 1 64000 BG2 BE2 1 2 1 no
b3 1 64000 BG3 BE3 1 1 1 no
dedicated BIST (variant I)
b4 1 217140 BG4 BE4 1 2 1 no
b5 1 389214 BG5 BE5 1 3 1 no
b6 1 135200 BG6 BE6 1 1 1 no
(s1196, c7552) and (s953, s5378) share BIST (variant II)
#b4 1 217140 BG4 BE4 1 2 1 no
#b5 1 389214 BG4 BE4 1 3 1 no
#b6 1 135200 BG3 BE3 1 1 1 no
(s1196, c7552, s953, s5378) share BIST (variant III)
#b4 1 217140 BG3 BE3 1 2 1 no
#b5 1 389214 BG3 BE3 1 3 1 no
#b6 1 135200 BG3 BE3 1 1 1 no
(s13207, c7552, s953, s5378) share BIST (variant IV)
#b4 1 217140 BG3 BE3 1 2 1 no
#b5 1 389214 BG3 BE3 1 3 1 no
#b6 1 135200 BG4 BE4 1 1 1 no
#b7 1 512000 BG3 BE3 1 1 1 no
[Blocks]
#Syntax: name idle_power {test1 test2 ... testN}
c880 0 {e1 b1}
c2670 0 {e2 b2}
c7552 0 {e3 b3}
s953 0 {e4 b4}
s5378 0 {e5 b5}
s1196 0 {e6 b6}
#s13207 0 { b7} ## only for variant IV
s13207 0 {} ## not when variant IV

References

[1] M.S. Abadir and H. K. Reghabati, “Functional Testing of Semiconductor Random

Access Memories”, Computer Survey, Vol. 15, No. 3, 1983, pages 175-198.

[2] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and

Testable Design, IEEE Press, ISBN 0-7803-1062-4, 1990.

[3] R. D. Adams, “High Performance Memory Testing - Design Principles, Fault

Modeling and Self-Test”, Kluwer Academic Publisher, ISBN 1-4020-7255-4,

2003.

[4] Advantest, http://www.advantest.com/

[5] J. Aerts and E. J. Marinissen, “Scan Chain Design for Test Time Reduction in

Core-Based ICs”, Proceedings of International Test Conference (ITC),

Washington, DC, USA, October 1998, pages 448-457.

[6] A. V. Aho, J. E. Hopcroft and J. D. Ullman, Data Structures and Algorithms,

Addison-Wesley, 1983, ISBN 0-201-00023-7.

[7] Agilent (HP), http://www.agilent.com/

[8] P.H. Bardell, W. H. McAnney, and J. Savir, “Built-In Test for VLSI

Pseudorandom Techniques”, John Wiley and Sons, 1987.

[9] J. Barwise and J. Etchemendy, The Language of First-Order Logic, CSLI

Publications, ISBN 0-937073-99-7, 1993.

[10] I. Bayraktarolgu and A. Orailoglu, “Test Volume And Application Time

Reduction Through Scan Chain Concealment”, Proceedings of Design

Automation Conference (DAC), Las Vegas, NV, USA, June 2001, pages 151-155.

SOC Test Design354

[11] F. Beenker, B. Bennets, and L. Thijssen, “Testability Concepts for Digital ICs -

The Macro Test Approach”, Frontiers in Electronic Testing, vol. 3, Boston,

Kluwer, 1995.

[12] M. Benabdenbi, W. Maroufi, and M. Marzouki, “CAS-BUS: A Test Access

Mechanism and a Toolbox Environment for Core-Based System Chip Testing”,

Journal of Electronic Testing; Theory and Applications (JETTA), Vol. 18, Nos. 4/

5, August/October 2002, pages 455-472.

[13] M. J. Bending, “Hitest: A Knowledge-Based Test Generation System”, Design &

Test of Computers, Vol. 1, May 1984, pages 83-92.

[14] L. Benini and G. De Micheli, “Networks on Chips: a New SoC Paradigm”,

Computer, Volume: 35, Issue: 1, January 2002, pages 70-80.

[15] A. Benso, S. Cataldo, S. Chiusano, P. Prinetto, and Y. Zorian, “A High-Level EDA

Environment for Automatic Insertion of HD-BIST Structures”, Journal of

Electronic Testing: Theory and Applications, Vol. 16, No. 3, June 2000, pages

179-184.

[16] A. Benso and P. Prinetto, “Fault Injection Techniques and Tools for Embedded

Systems Reliability Evaluation”, Kluwer Academic Publisher, ISBN 1-4020-

7589-8, 2003.

[17] A. Benso, S. Di Carlo, P. Prinetto, and Y. Zorian, “A Hierarchical Infrastructure

for SoC Test Management”, Design & Test of Computers, July-August 2003,

pages 32-39.

[18] Y. Bonhomme, P. Girard, L. Guiller, C. Landrault, and S. Pravossoudovitch, “A

Gated Clock Scheme for Low Power Scan Testing of Logic ICs or Embedded

Cores”, Proceedings of Asian Test Symposium (ATS), November 2001, pages

253-258.

[19] H. Bleeker, P. van den Eijnden and F. de Jong, Boundary-Scan Test: A Practical

Approach, Kluwer Academic Publishers, ISBN 0-7923-9296-5, 1993.

[20] G. Blom, “Sannolikhetsteori och statistikteori med tillämpningar”,
Studentlitteratur, 1989.

 References 355

[21] D. Brahme and J. A. Abraham, “Functional Testing of Microprocessors”,

Transactions on Computers, Vol. C-33, June 1984, pages 475-485.

[22] M. A. Breuer and A. D. Friedman, “Diagnosis and Reliable Design of Digital

Systems”, Computer Science Press, 1976.

[23] P. Brucker, “Scheduling Algorithms”, Springer-Verlag, ISBN 3-540-64105-X,

1998.

[24] M. L. Bushnell and V. D. Agrawal, “Essentials of Electronic Testing for Digital,

Memory, and Mixed-Signal VLSI Circuits”, Kluwer Academic Publisher, ISBN

0-7923-7991-8.

[25] K. Chakrabarty, “Test Scheduling for Core-Based Systems”, Proceedings of

International Conference on Computer Aided Design (ICCAD), San Jose, CA,

USA, November 1999, pages 391-394.

[26] K. Chakrabarty, “Design of System-on-a-Chip Test Access Architectures Using

Integer Linear Programming”, Proceedings of VLSI Test Symposium (VTS),

Montreal, Canada, April 2000, pages 127-134.

[27] K. Chakrabarty, “Design of System-on-a-Chip Test Access Architecture under

Place-and-Route and Power Constraints”, Proceedings of the Design Automation

Conference, 2000, pages 432-437.

[28] K. Chakrabarty, “Test Scheduling for Core-Based Systems Using Mixed-Integer

Linear Programming”, Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 19, No. 10, October 2000, pages 1163-1174.

[29] K. Chakrabarty, R. Mukherjee, and A. Exnicios, “Synthesis of Transparent

Circuits for Hierarchical and System-on-a-Chip Test”, Proceedings of

International Conference on VLSI Design (VLSID), Bangalore, India, January

2001, pages 431-436.

[30] K. Chakrabarty, “Optimal test access architectures for system-on-a-chip”, ACM

Transactions on Design Automation of Electronic Systems, Vol. 6, January 2001,

pages 26-49.

[31] K. Chakrabarty, V. Iyengar, and A. Chandra, "Test Resource Partitioning for

System-on-a-Chip", Kluwer Academic Publisher, 2002, ISBN-1-4020-7119-1.

SOC Test Design356

[32] K. Chakrabarty, V. Iyengar, and M. D. Krasniewski, “Test Planning for Modular

Testing of Hierarchical SOCs”, Transactions on Computer-Aided Design of

Iintegrated Circuits and Systems, 2004.

[33] A. Chandra and K. Chakrabarty, “Frequency-Directed-Run-Length (FDR) Codes

with Applications to System-on-a-Chip Test Data Compression”, Proceedings of

VLSI Test Symposium (VTS), Marina Del Rey, CA, USA, April 2001, pages 42-47.

[34] A. Chandra and K. Chakrabarty, “System-on-a-Chip Test Data Compression and

Decompression Architectures Based on Golomb Codes”, Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol. 20, No. 3, 2001,

pages 355-367.

[35] A. Chandra and K. Chakrabarty, “Reduction of SOC Test Data Volume, Scan

Power and Testing Time Using Alternating Run-length Codes”, Proceedings of

Design Automation Conference (DAC), New Orleans, LA, USA, June 2002, pages

673-678.

[36] D. Chapiro, “Globally-Asynchronous Locally-Synchronous Systems”,

Department of Computer Science, Ph. D. Thesis, Stanford University, Stanford,

CA, USA, October 1984.

[37] W. T. Chen, “The BACK Algorithm for Sequential Test Generation”, Proceedings

of International Conference on Computer Design (ICCD), Rye Brook, NY, USA,

October 1988, pages 66-69.

[38] Y. Caseau and F. Laburthe, “Heuristics for large constrained vehicle routing

problems”, October 1999, Journal of Heuristics, vol.5, no.3, pages 281-303.

[39] K.-T. Cheng and V. D. Agrawal, “Unified Methods for VLSI Simulation and Test

Generation”, Kluwer Academic Publisher, ISBN 0-7923-9025-3, 1989.

[40] R. M. Chou, K. K. Saluja, and V. D. Agrawal, ”Power Constraint Scheduling of

Tests”, Proceedings of International Conference on VLSI Design, Calcutta, India,

January 1994, pages 271-274.

[41] R. M. Chou, K. K. Saluja, and V. D. Agrawal, “Scheduling Tests for VLSI

Systems Under Power Constraints”, IEEE Transactions on VLSI Systems, Vol. 5,

No. 2, June 1997, pages 175-185.

 References 357

[42] T. Cormen, C. Leiserson, and R. Rivest, “Introduction To Algorithms”, The MIT

Press, ISBN 0-262-03141-8, 1989.

[43] E. Cota, L. Carro, M. Lubaszewski, and A. Orailoglu, “Test Planning and Design

Space Exploration in a Core-based Environment”, Proceedings of the Design,

Automation and Test in Europe Conference (DATE), Paris, France, March 2002,

pages 478-485.

[44] E. Cota, M. Kreutz, C.A. Zeferino, L. Carro, M. Lubaszewski, A. Susin, “The

Impact of NoC Reuse on the Testing of Core-based Systems”, Proceedings VLSI

Test Symposium (VTS), Napa, CA, April 2003, pages 128-133.

[45] E. Cota, L. Carro, F. Wagner, and M. Lubaszewski, “Power-Aware NoC Reuse on

the Testing of Core-Based Systems”, Digest of Papers of European Test Workshop

(ETW), Maastricht, The Netherlands, May 2003, pages 123-128.

[46] E. Cota, L. Carro, F. Wagner, and M. Lubaszewski, “Power-Aware NoC Reuse on

the Testing of Core-Based Systems”, Proceedings of International Test

Conference (ITC), Charlotte, NC, USA, September 2003, pages 612-621.

[47] G. L. Craig, C. R. Kime, and K. K. Saluja, “Test Scheduling and Control for VLSI

built-in-self-test”, Transactions on Computers, Vol. 37, No. 9, September 1988,

pages 1099-1109.

[48] Credence, http://www.credence.com

[49] A. L. Crouch, "Design-for-Test for Digital IC's and Embedded Core Systems",

Prentice Hall, 1999, ISBN 0-13-084827-1.

[50] H. Date, T. Hosokawa, and M. Muraoka, “A SoC Test Strategy Based on a Non-

Scan DFT Method”, Proceedings of Asian Test Symposium (ATS), Tamuning,

Guam, USA, November 2002, pages 305-310.

[51] F. DaSilva, Y. Zorian, L. Whetsel, K. Arabi, and R. Kapur, “Overview of the IEEE

P1500 Standard”, Proceedings of International Test Conference (ITC), Charlotte,

NC, USA, September 2003, pages 988-997.

[52] B. L. Dervisoglu and G. E. Strong, “Design for Testability: Using Scanpath

Techniques for Path-Delay Test and Measurement”, Proceedings of International

Test Conference (ITC), Nashville, TN, USA, October 1991, pages 365-374.

SOC Test Design358

[53] S. Dey, E. J. Marinissen, and Y. Zorian, “Testing System Chips: Methodologies

and Experiences” Integrated System Design, Vol. 11(No. 123), September 1999,

pages 36-48.

[54] R. Dorsch and H. -J. Wunderlich, “Tailored ATPG For Embedded Testing”,

Proceedings of International Test Conference (ITC), Baltimore, MD, USA,

October 2001, pages 530-537.

[55] R. Dorsch, R. Huerta Rivera, H. -J. Wunderlich, and M. Fischer, “Adapting an

SoC to ATE Concurrent Test Capabilities”. Proceedings International Test

Conference (ITC), Baltimore, MD, USA, October 2002, pages 1169-1175.

[56] Z. S. Ebadi and A. Ivanov, “Design of an Optimal Test Access Architecture Using

a Genetic Algorithm”, Proceedings of Asian Test Symposium (ATS), Kyoto, Japan,

November 2001, pages 205-210.

[57] S. Edbom and E. Larsson, “An Integrated Technique for Test Vector Selection

and Test Scheduling under Test Time Constraint”, Proceedings of Asian Test

Symposium (ATS), Taiwan, November 2004, pages 254-257.

[58] Ericsson, Design document, 2000.

[59] B. H. Fang, Q. Xu, and N. Nicolici, “Hardware/Software Co-testing of Embedded

Memories in Complex SOCs”, Proceedings of International Conference on

Computer-Aided Design (ICCAD((), San Jose, CA, USA, November 2003, pages

599-605.

[60] J. Ferguson and J. Shen, “A CMOS Fault Extractor for Inductive Fault Analysis”,

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

November 1988, Vol. 7, No. 11, pages 1181-1194.

[61] M. -L. Flottes, J. Pouget, and B. Rouzeyre, “Sessionless Test Scheme: Power-

Constrained Test Scheduling for System-on-a-Chip” Proceedings of International

Conference on Very Large Scale Integration (VLSI-SOC), Montpellier, France,

December 2001, pages 105-110.

 References 359

[62] M. -L. Flottes, J. Pouget, and B. Rouzeyre, “Power-Constrained Test Scheduling

for SOCs Under a ``No Session'' Scheme”, In Michel Robert, Bruno Rouzeyre,

Christian Piguet, and Marie-Lise Flottes, editors, SOC Design Methodologies,

Kluwer Academic Publishers, 2002, pages 401-412.

[63] H. Fujiwara and T. Shimono, “On the Acceleration of Test Generation

Algorithms”, Transactions on Computers, Vol. 32, No. 12, December 1983, pages

1137-1144.

[64] D.D. Gajski, N. D. Dutt, and A. C. Wu, “High-Level Synthesis: Introduction and

System Design, Kluwer Academic Publisher, 1992, ISBN 0-7923-9194-2.

[65] M. Garg, A. Basu, T.C. Wilson, D.K. Banerji, J.C. Majithia, “A New Test

Scheduling Algorithm for VLSI Systems”, Proceedings of the Symposium on

VLSI Design, New Delhi, India, January 1991, pages 148-153.

[66] M. R. Garey and, D. S. Johnson, “Computers and Intractability: A Guide to the

Theory of NP-Completeness”, W. H. Freeman and Company, San Fransisco,yy

1979, ISBN 0-716-71045-5 .

[67] S. H. Gerez, “Algorithms for VLSI Design Automation”, John Wiley and Sons

Ltd, ISBN 0-471-98489-2, 1998.

[68] S. Gerstendörfer and H.-J. Wunderlich, “Minimized Power Consumption for

Scan-Based BIST”, Proceedings of International Test Conference (ITC), Atlantic

City, NJ, USA, September 1999, pages 77-84.

[69] I. Ghosh, S. Dey, and N. K. Jha, “A Fast and Low Cost Testing Technique for

Core-based System-ob-Chip”, Proceedings of Design Automation Conference

(DAC), San Francisco, CA, USA, June 1998, pages 542-547.

[70] P. Girard, C. Landrault, S. Pravossoudovitch, and D. Severac, Reducing Power

Consumption During Test Application By Test Vector Ordering, Proceedings of

the International Symposium on Circuits and Systems (ISCAS), Vol. 2, Austin,

May/June 1998, pages 296-299.

[71] F. Glover, “Future Paths for Integer Programming and Links to Artificial

Intelligence”, Computer and Operations Research., Vol. 13, No. 5, May 1986,

pages 533-549.

SOC Test Design360

[72] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for

Combinational Logic Circuits”, Transactions on Computers, Vol. 30, No. 3,

March 1981, pages 215-222.

[73] S. K. Goel and E. J. Marinissen, “Cluster-Based Test Architecture Design for

System-On-Chip, Proceedings of VLSI Test Symposium (VTS), Monterey, CA,

USA, April 2002, pages 259-264.

[74] S. K. Goel and E.J. Mariniseen, “A Novel Test Time Reduction Algorithm for Test

Architecture Design for core-Based System Chips”, Formal Proceedings of

European Test Workshop (ETW), pp 7-12, Corfu, Greece, May 2002.

[75] S. K. Goel and E. J. Marinissen, “Effective and Efficient Test Architecture Design

for SOCs”, Proceedings of International Test Conference (ITC), Baltimore,

Maryland, USA, October 2002, pages 529-538.

[76] S. K. Goel and E. J. Marinissen, “Layout-Driven SOC Test Architecture Design

for Test Time and Wire Length Minimization.”, Proceedings Design, Automation,

and Test in Europe (DATE), Munich, Germany, March 2003, pages 738-743.

[77] S. K. Goel and E. J. Marinissen, “Control-Aware Test Architecture Design for

Modular SOC Testing”, Informal Proceedings of European Test Workshop

(ETW), Maastricht, The Netherlands, May 2003, pages 129-134.

[78] S. K. Goel and E. J. Marinissen, “SOC Test Architecture Design for Efficient

Utilization of Test Bandwidth”, Transactions on Design Automation of Electronic

Systems, Special Issue on VLSI Testing, Vol. 8, No. 4, October 2003, pages 399-

429.

[79] S. K. Goel, K. Chiu, E. J. Marinissen, T. Nguyen, and S. Oosrdijk, “Test

Infrastructure Design for the NexperiaTMHome Platform PNX8550 System

Chip”, Proceedings of Design Automation and Test in Europe (DATE), Paris,

France, February 2004, pages 1530-1591.

[80] S. K. Goel, “A Novel Wrapper Cell Design for Efficient Testing of Hierarchical

Cores in System Chips”, Proceedings of European Test Symposium (ETS),

Ajaccio, France, May 2004, pages 147-152.

 References 361

[81] T. Gonzales and S. Sahni, “Open Shop Scheduling to Minimize Finish Time”,

Journal of the ACM, Vol. 23, October 1976, pages 665-679.

[82] A. J. van de Goor, “Testing Semiconductor Memories: Theory and Practice,

Comtex Publishing, Gouda, The Netherlands, 1998.

[83] X. Gu, E. Larsson, K. Kuchcinski, and Z. Peng, “A Controller Testability Analysis

and Enhancement Technique”, Proceedings of European Design and Test

Conference (ED&TC), Paris, March 1997, pages 153-157.

[84] R. K. Gupta and Y. Zorian, “Introduction to Core-Based System Design”, Design

and Test of Computers, Vol. 14, No. 4, October 1997, pages 15-25.

[85] R. Gupta, R. Gupta, and M. A. Breuer, “The BALLAST Methodology for

Structured Partial Scan Design”, Transactions on Computers, Vol. 39, No. 4,

April 1990, pages 538-544.

[86] S. Hamdioui, “Testing Static Random Access Memories Defects, Fault Models

and Test Patterns”, Kluwer Academic Publisher, 2004, ISBN 1-4020-7752-1.

[87] I. Hamazaoglu and J. H. Patel, “Reducing Test Application Time For Full Scan

Embedded Cores”, Proceedings of International Symposium on Fault-Tolerant

Computing (FTCS), Madison, WI, USA, June 1999, pages 260-267.

[88] P. Harrod, “Testing Reusable IP-a Case Study”, Proceedings of International Test

Conference (ITC((), Atlantic City, NJ, USA, September 1999CC , pages 493-498.

[89] J. P. Hayes, “Transition Count Testing of Combinational Logic Circuits”,

Transactions on Computers, Vo. 25, No. 6, June 1976, pages 613-620.

[90] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkatraman, and B. Courtois, “Built-In

Test For Circuits With Scan Based Reseeding of Multiple-Polynomial Linear

Feedback Shift Registers”, Transactions on Computers, Vol. 44, No. 2, 1995,

pages 223-233.

[91] S. Hellebrand and A. Wurtenberger, “Alternating Run-Length Coding - A

Technique for Improved Test Data Compression”, Test Resource Partitioning

Workshop, Baltimore, MD, USA October 2002, pages 4.3.1-4.3.10.

SOC Test Design362

[92] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan, and J. Rajski,

“Logic BIST for Large Industrial Designs: Real Issues and Case Studies”,

Proceedings of International Test Conference (ITC), Atlantic City, NJ, USA,

September 1999, pages 358-367.

[93] A. Hertwig and H-J Wunderlich, “Low Power Serial Built-In Self-Test”,

Compendium of Papers of European Test Workshop, , Sitges, Spain, May 1998,

pages 49-53.

[94] Hewlett-Packard Corp., “A Designer’s Guide to Signature Analysis”, Application

note 222, April 1977.

[95] F. J. Hill and B. Huey, “A Design Language Based Approach to Test Sequence

Generation”, Computer, Vol. 10, June 1977, pages 28-33.

[96] H.-S. Hsu, J.-R. Huang, K.-L. Cheng, C.-W. Wang, C.-T. Huang, and C.-W. Wu,

“Test Scheduling and Test Access Architecture Optimization for System-on-

Chip”, Proceedings of Asian Test Symposium (ATS), Tamuning, Guam, USA,

November 2002, pages 411-416.

[97] Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O. Samman, Y. Zaidan, and S.

M. Reddy, “Resource Allocation and Test Scheduling for Concurrent Test of

Core-Based SOC Design”, Proceedings of Asian Test Symposium (ATS), Kyoto,

Japan, November 2001, pages 265-270.

[98] Y. Huang, N. Mukherjee, C. -C. Tsai, O Samman, Y. Zaidan, Y. Zhang, W.-T.

Cheng, and S.M. Reddy, “Constraint Driven Pin-mapping for Concurrent SOC

Testing”, Proceedings of the Asia and South Pacific Design Automation

Conference & International Conference on VLSI Design, Bangalore India,

January 2002, pages 511-516.

[99] Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O. Samman, Y. Zaidan, and S.

M. Reddy, “On Concurrent Test of Core-Based SOC Designs”, Journal of

Electronic Testing: Theory and Applications (JETTA), Volume 18, Nos. 4/5,

August/October 2002, pages 401-414.

 References 363

[100]Y. Huang, S. M. Reddy, W.-T. Cheng, P. Reuter, N. Mukherjee, C.-C. Tsai, O.

Samman, and Y. Zaidan, “Optimal Core Wrapper Width Selection and SOC Test

Scheduling Based on 3-D Bin Packing Algorithm”, Proceedings of International

Test Conference (ITC), Baltimore, Maryland, USA, October 2002, pages 74-82.

[101]Y. Huang, W.-T. Cheng, C. -C. Tsai, N. Mukherjee, and S.M Reddy, “Static Pin

Mapping and SOC Test Scheduling for Cores with Multiple Test Sets”,

Proceedings of International Symposium on Quality Electronic Design (ISQED),

March 2003, pages 99-104.

[102]S. D. Huss and R. S. Gyurcsik, “Optimal Ordering of Analog Integrated Circuit

Tests to Minimize Test Time”, Proceedings of Design Automation Conference

(DAC), San Francisco, CA, USA, June 1991, pages 494-499.

[103]H. Ichihara, A. Ogawa, T. Inoue, and A. Tamura, “Dynamic Test Compression

Using Statistical Coding”, Proceedings of Asian Test Symposium (ATS), Kyoto,

Japan, November 2001, pages 143-148.

[104]IEEE P1500 Standard for Embedded Core Test, web site:

http://grouper.ieee.org/groups/1500/ .

[105]V. Immaneni and S. Raman, “Direct Access Test Scheme - Design of Blocks and

Core Cells for Embedded ASICs”, Proceedings of International Test conference

(ITC), Washington, DC, USA, September 1990, pages 488-492.

[106]International Technology Roadmap for Semiconductors (ITRS), 2003,

http://public.itrs.net/

[107]Intel, 2003, http://www.intel.com/research/silicon/mooreslaw.htm

[108]H. Ichihara, A. Ogawa, T. Inoue, and A. Tamura, “Dynamic Test Compression

Using Statistical Coding”, Proceedings of Asian Test Symposium (ATS), Kyoto,

Japan, November 2001, pages 143-148.

[109]V. Iyengar, K. Chakrabarty, and B. T. Murray, “Built-In Self-Testing of

Sequential Circuits Using Precomputed Test Sets”, Proceedings of VLSI Test

Symposium (VTS), Princeton, NJ, USA, April 1998, pages 418-423.

SOC Test Design364

[110]V. Iyengar and K. Chakrabarty, "Precedence-based, Preemptive, and Power-

constrained Test Scheduling for System-on-a-Chip", Proceedings of VLSI Test

Symposium (VTS), Marina del Rey, CA, USA, May 2001, pages 368-374.

[111]V. Iyengar, K. Chakrabarty and E. J. Marinissen, “Test Wrapper and Test Access

Mechanism Co-Optimization for System-on-Chip”, Proceedings of International

Test Conference (ITC), Baltimore, Maryland, November 2001, pages 1023-1032.

[112]V. Iyengar K. Chakrabarty, and E. J. Marinissen, “Efficient Wrapper/TAM Co-

Optimization for Large SOCs”, Proceedings of Design and Test in Europe

(DATE), Paris, France, March 2002, pages 491-498.

[113]V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test Wrapper and Test Access

Mechanism Co-Optimization for System-on-Chip”, Journal of Electronic

Testing; Theory and Applications (JETTA), April 2002, pages 213-230.

[114]V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “On Using Rectangle Packing

for SOC Wrapper/TAM Co-Optimization”, Proceedings of VLSI Test Symposium

(VTS), Monterey, California, USA, April 2002, pages 253-258.

[115]V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Wrapper/Optimization, Test

Scheduling, TAM Co-Optimization, Constraint-Driven Test Scheduling, and Test

Data Volume Reduction for SOCs”, Proceedings of Design Automation

Conference (DAC), New Orleans, Louisiana, June 2002, pages 685-690.

[116]V. Iyengar, S. K. Goel, E. J. Marinissen and K. Chakrabarty, “Test Resource

Optimization for Multi-Site Testing of SOCs under ATE Memory Depth

Constraints”, Proceedings of International Test Conference (ITC), Baltimore,

MD, USA, October 2002, pages 1159-1168.

[117]V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Recent Advances in test

Planning for Modular Testing of Core-Based SOCs”, Proceedings of Asian Test

Symposium (ATS), November 2002, Guam, USA.

[118]V. Iyengar, K. Chakrabarty, M. D. Krasniewski, and G. N. Kuma, "Design and

Optimization of Multi-level TAM Architectures for Hierarchical SOCs",

Proceedings of VLSI Test Symposium (VTS), pages 299-304, 2003.

 References 365

[119]V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test Access Mechanism, Test

Scheduling, and Test Data Reduction for System-on-Chip”, Transactions on

Computers, Vol. 52, No. 12, December 2003, pages 1-14.

[120]D. Jansen et al. “The Electronic Design Automation Handbook”, Kluwer

Academic Publisher, 2003, ISBN-1-4020-7502-2.

[121]A. Jantsch and H. Tenhunen (editors), “Networks on Chip”, Kluwer Academic

Publishers, 2003, ISBN 1-4020-7392-5.

[122]A. Jas, J. Ghosh-Dastidar, and N. A. Touba, “Scan Vector Compression/

Decompression Using Statistical Coding”, Proceedings of VLSI Test Symposium

(VTS), San Diego, CA, USA, April 1999, pages 114-120.

[123]A. Jas, B. Pouya, and N. A. Touba, “Virtual Scan Chains: A Means For Reducing

Scan Length In Cores”, Proceedings of VLSI Test Symposium (VTS), Montreal,

Canada, April 2000, pages 73-78.

[124]W. J. Jiang and B. Vinnakota, “Defect-Oriented Test Scheduling”, Transactions

on Very-Large Scale Integration (VLSI) Systems, Vol. 9, No. 3, June 2001, pages

427-438.

[125]G. Jervan, Z. Peng and R. Ubar, “Test Cost Minimization for Hybrid BIST”,

Proceedings of the International Symposium on Defect and Fault Tolerance in

VLSI (DFT), Yamanashi, Japan, October 2000, pages 283-291.

[126]G. Jervan, Z. Peng, R. Ubar, and H. Kruus, “A Hybrid BIST Architecture and its

Optimization for SoC Testing”, Proceedings of International Symposium on

Quality Electronic Design (ISQED), San Jose, CA, USA, March 2002, pages 273-

279.

[127]G. Jervan, P. Eles, Z. Peng, R. Ubar, and M. Jenihhin, “Test Time Minimization

for Hybrid BIST of Core-Based Systems”, Proceedings of Asian Test Symposium

(ATS03), Xian, China, November 2003, pages 318-323.

[128]W. B. Jone, C. A. Papachrisou, and M. Perieria, “A Scheme for Overlaying

Concurrent Testing of VLSI Circuits”, Proceedings of the Design Automation

Conference (DAC), 1989, pages 531-536.

SOC Test Design366

[129]A. Khoche, E. Volkerink, J. Rivoir, and S. Mitra, “Test Vector Compression

Using EDA-ATE Synergies”, Proceedings of VLSI Test Symposium (VTS),

Monterey, CA, USA, April 2002, pages 97-102.

[130]T. Kim, “Scheduling and Allocation Problems in High-Level Synthesis”, Ph.D.

Dissertation, Department of Computer Science, University of Illinois at Urbana-

Champaign, USA, 1993.

[131]S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization by Simulated

Annealing”, Science, Vol. 220, No. 4598, May 1983, pages 671-680.

[132]C. R. Kime and K. K. Saluja, “Test Scheduling in Testable VLSI Circuits”,

Proceedings of the International Symposium on Fault-Tolerant Computing, pp.

406-412, 1982.

[133]J. Knaizuk Jr. and C. R. P. Hartmann, “An Algorithm for Testing Random Access

Memories”, Transactions on Computers, Vol. C-26, No. 4, 1977, pages 414-416.

[134]A. Kobayashi et al., “A Flip-Flop Circuit Suitable for FLT”, Annual Meeting of

the Institute of Electronics, Information and Communication Engineers,

Manuscript 892, page 962, 1963.

[135]B. Koenemann, “LFSR-Coded Test Patterns for Scan Designs”, Proceedings of

European Test Conference (ETC), 1991, Munchen, Germany, pages 237-242.

[136]B. Koenemann, J. Mucha, and G. Zwiehoff, “Built-In Logic Block Observation

Techniques”, Proceedings of International Test Conference (ITC), Washington,

DC, USA, October 1988, pages 37-41.

[137]B. Koenemann, C. Barnhart, B. Keller, T. Snethen, O. Farnsworth, and D.

Wheater, “A SmartBIST Variant With Guaranteed Encoding”, Proceedings of

Asian Test Symposium (ATS), Kyoto, Japan, November 2001, pages 325-330.

[138]S. Koranne, “On Test Scheduling for Core-based. SOCs”, Proceedings of

International Conference on VLSI Design, Bangalore, India, January 2002, pages

505-510.

 References 367

[139]S. Koranne, “Design of Reconfigurable Access Wrappers for Embedded Core

Based SOC Test”, Proceedings of International Symposium on Quality Electronic

Design (ISQED), San Jose, CA, USA, March 2002, pages 106-111.

[140]S. Koranne, “A Novel Reconfigurable Wrapper for Testing Embedded Core-

Based and its Associated Scheduling”, Journal of Electronic Testing; Theory and

Applications (JETTA), August 2002, pages 415-434.

[141]S. Koranne and V. Iyengar, “On The Use of k - tuples for SOC Test Schedule

Representation”, Proceedings of International Test Conference (ITC), Baltimore,

MD, USA, October 2002, pages 539- 548.

[142]S. Koranne, “Formulating SoC test scheduling as a network transportation

problem”, Transactions on Computer-Aided Design of Integrated Circuits and

System, Volume: 21 , Issue: 12 , December 2002, pages:1517 - 1525.

[143]S. Koranne, “Design of Reconfigurable Access Wrappers for Embedded Core

Based SoC Test”, Transactions on Very Large Scale Integration (VLSI) Systems,

Vol. 11, Issue: 5 , October 2003, pages 955 - 960.

[144]A. Krasniewski and S. Pilarski, “Circular Self Test Path: A Low Cost BIST

Technique”, Proceedings of Design Automation Conference (DAC), Miami

Beach, FL, USA, June 1987, pages 407-415.

[145]A. Krasniewski and S. Pilarski, “Circular self-test path: A low-cost BIST

technique for VLSI circuits,” Transactions on Computer-Aided Design, Vol. 8,

No. 1, 1989, pages 46-55.

[146]C. V. Krishna, A. Jas, and N. A. Touba, “Test Vector Encoding Using Partial

LFSR Reseeding”, Proceedings of International Test Conference (ITC),

Baltimore, MD, USA, October 2001, pages 885-893.

[147]C. V. Krishna and N. A. Touba, “Reducing Test Data Volume Using LFSR

Reseeding With Seed Compression”, Proceedings of International Test

Conference (ITC), Baltimore, MD, USA, October 2002, pages 321-330.

[148]A. Krstic and K.-T. Chen, “Dealy Fault Testing for VLSI Circuits”, Kluwer

Academic Publisher, ISBN 0-7923-8295-1, 1998.

SOC Test Design368

[149]L. Krundel, S. K. Goel, E. J. Marinissen, M.-L. Flottes, and B. Rouzeyre, “User-

Constrained Test Architecture Design for Modular SOC Testing”, Proceedings of

European Test Symposium (ETS), Ajaccio, France, May 2004, pages 153-158.

[150]H. Kubo, “A Procedure for Generating Test Sequences to Detect Sequential

Circuit Failures”, NEC Journal on Research and Development, October 1968,

pages 1968.

[151]P. K. Lala, "Digital Circuit Testing and Testability", Academic Press, 1997,

ISBN-0-12-434330-9.

[152]A. Larsson, E. Larsson, P. Eles, and Z. Peng, “Buffer and Controller

Minimisation for Time-Constrained Testing of System-On-Chip”, Proceedings of

International Symposium on Defect and Fault Tolerance in VLSI Systems

(DFT'03), Cambridge, MA, USA, November, 2003, pages 385-392.

[153]A. Larsson, E. Larsson, P. Eles, and Z. Peng, “A Technique for Optimization of

System-on-Chip Test Data Transportation”, Proceedings of European Test

Symposium (ETS), Corsica, France, May 23-26, 2004.

[154]E. Larsson and Z. Peng, “An Estimation-based Technique for Test Scheduling”,

Proceedings of Electronic Circuits and Systems Conference (ECS), Bratislava,

Slovakia, September 1999, pages 25-28.

[155]E. Larsson and Z. Peng, “A Technique for Test Infrastructure Design and Test

Scheduling”, Proceedings of Design and Diagnostic of Electronic Circuits and

Systems Workshop (DDECS), Smolenice Castle, Slovakia, April 2000, pages 26-

29.

[156]E. Larsson and Z. Peng, “Test Infrastructure Design and Test Scheduling

Optimization”, Informal Proceedings of European Test Workshop (ETW),

Cascais, Portugal, May 2000.

[157]E. Larsson, “An Integrated System-Level Design for Testability Methodology”,

Ph. D. Thesis No. 660, Department of Computer and Information Science,

Linköpings Universitet, Sweden, December 2000.

 References 369

[158]E. Larsson and Z. Peng, “An Integrated System-On-Chip Test Framework”,

Proceedings of Design, Automation and Test in Europe (DATE) Conference ,

Munchen, Germany, March 2001, pages 138-144.

[159]E. Larsson and Z. Peng, “System-on-Chip Test Parallelization Under Power

Constraints”, Informal Proceedings of European Test Workshop (ETW),

Stockholm, Sweden, May/June 2001.

[160]E. Larsson, Z. Peng, and G. Carlsson, “The Design and Optimization of SOC Test

Solutions”, Proceedings of International Conference on Computer-Aided Design

(ICCAD), San Jose, CA, USA, November 2001, pages 523-530.

[161]E. Larsson and Z. Peng, “Test Scheduling and Scan-Chain Division Under Power

Constraint”, Proceedings of Asian Test Symposium (ATS), Kyoto, Japan,

November 2001, pages 259-264.

[162]E. Larsson and H. Fujiwara, “Power Constrained Preemptive TAM Scheduling”,

Informal Proceedings of European Test Workshop 2002 (ETW), Corfu, Greece,

May 2002, pages 411-416.

[163]E. Larsson and H. Fujiwara, “Power Constrained Preemptive TAM Scheduling”,

Formal Proceedings of European Test Workshop (ETW), Corfu, Greece, May

2002, pages 119-126.

[164]E. Larsson and Z. Peng, “An Integrated Framework for the Design and

Optimization of SOC Test Solutions”, SOC (System-on-a-Chip) Testing for Plug

and Play Test Automation.Book Series: FRONTIERS IN ELECTRONIC

TESTING, Volume 21, Krishnendu Chakrabarty (editor), Kluwer Academic

Publisher, ISBN 1-4020-7205-8, 2002, pages 21-36.

[165]E. Larsson and Z. Peng, “An Integrated Framework for the Design and

Optimization of SOC Test Solutions”, Journal of Electronic Testing; Theory and

Applications (JETTA), Special Issue on Plug-and-Play Test Automation for

System-on-a-Chip, August/October 2002 issue (vol. 18, no. 4/5), pages 385-400.

[166]E. Larsson, K. Arvidsson, H. Fujiwara, and Z. Peng, “Integrated Test Scheduling,

Test Parallelization and TAM Design”, Proceedings of Asian Test Symposium

(ATS), Tamuning, Guam, USA, November 2002, pages 397-404.

SOC Test Design370

[167]E. Larsson and H. Fujiwara, “Optimal Test Access Mechanism Scheduling using

Preemption and Reconfigurable Wrappers”, Proceedings of Workshop on RTL

and High Level Testing (WRTLT), Guam, USA, November 21-22, 2002.

[168]E. Larsson, J. Pouget and Z. Peng, System-on-Chip Test Scheduling based on

Defect Probability, International Test Synthesis Workshop (ITSW), Santa Barbara,

CA, USA, March 31-April 2, 2003.

[169]E. Larsson, J. Pouget and Z. Peng, “Defect Probability-based System-On-Chip

Test Scheduling”, Proceedings of International Workshop on Design and

Diagnostics of Electronics Circuits and Systems (DDECS), Poznan, Poland, April

2003, pages 25-32.

[170]E. Larsson and H. Fujiwara, “Test Resource Partitioning and Optimization for

SOC Designs”, Proceedings of VLSI Test Symposium (VTS), Napa, USA, 27

April/May 2003, pages 319-324.

[171]E. Larsson and Z. Peng, “A Reconfigurable Power-conscious Core Wrapper and

its Application to SOC Test Scheduling”, Proceedings of International Test

Conference (ITC), Charlotte, NC, USA, September/October 2003, pp. 1135-

1144.

[172]E. Larsson and H. Fujiwara, “Optimal System-on-Chip Test Scheduling”,

Proceedings of Asian Test Symposium (ATS), Xian, China, November 2003, pages

306-311.

[173]E. Larsson and H. Fujiwara, “Preemptive system-on-chip test scheduling,” IEICE

Transactions on Information and Systems, Vol. E87-D, No. 3, March 2004, pages

620-629.

[174]E. Larsson, J. Pouget, and Z. Peng, “Defect-Aware SOC Test Scheduling“,

Proceedings of VLSI Test Symposium (VTS), Napa Valley, Ca, USA, April 2004.

[175]E. Larsson, “Core Selection Integrated in the SOC TestSolution Design-Flow”,

International Workshop on Test Resource Partitioning (TRP), Napa Valley

California USA, April 2004.

 References 371

[176]E. Larsson, K. Arvidsson, H. Fujiwara, Z. Peng, “Efficient Test Solutions for

Core-based Designs”, Transaction on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 23, No. 5, May 2004, pages 758-775.

[177]E. Larsson, “Integrating Core Selection in the SOC Test Solution Design-Flow”,

Proceedings of International Test Conference (ITC), Charlotte, NC, USA,

October 2004, paper 48.1, pages 1349-1358.

[178]E. Larsson, A. Larsson, and Z. Peng, “Linkoping University SOC Test Site“,

http://www.ida.liu.se/labs/eslab/soctest/ .

[179]J. J. LeBlanc, “LOCST: A Built-In-Self-Test Technique”, Design and Test of

Computers, November 1984, pages 42-52.

[180]H.-G. Liang, S. Hellebrand, and H.-J. Wunderlich, “Two-Dimensional Test Data

Compression For Scan-Based Deterministic BIST”, Proceedings of International

Test Conference (ITC), Baltimore, MD, USA, October 2001, pages 894-902.

[181]LTX, http://www.ltx.com/

[182]S. C. Ma, P. Franco, and E. J. McCluskey, “An Experimental Chip to Evaluate

Test Techniques: Experiment Results”, Proceedings of International Test

Conference (ITC), October 1995, Washington, DC, USA, pages 663-772.

[183]S. Mallela and S. Wu, “A Sequential Circuit Test Generation System”,

Proceedings of International Test Conference (ITC), Philadelphia, PA, USA,

November 1985, pages 57-61.

[184]E. J. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M. Lousberg, and C.

Wouters, “A Structured and Scalable Mechanism for Test Access to Embedded

Reusable Cores”, Proceedings of the International Test Conference (ITC),

Washington, DC, USA, October 1998, pages 284-293.

[185]E. J. Marinissen and Y. Zorian, “Challenges in Testing Core-Based System ICs”,

IEEE Communications Magazine, 37(6), June 1999, pages 104-109.

[186]E. J.Marinissen, Y. Zorian, R. Kapur, T. Taylor, and L. Whetsel, “Towards a

Standard for Embedded Core Test: An Example”, Proceedings of International

Test Conference (ITC), pp. 616-627, Atlantic City, NJ, USA, September 1999.

SOC Test Design372

[187]E. J. Marinissen, S. K. Goel, and M. Lousberg, “Wrapper Design for Embedded

Core Test”, Proceedings of International Test Conference (ITC), Atlantic City,

NJ, USA, October 2000, pages 911-920.

[188]E. J.Marinissen, R. Kapur, and Y. Zorian, “On Using IEEE P1500 SECT for Test

Plug-n-play”, Proceedings of International Test Conference (ITC), Atlantic City,

NJ, USA, October 2000, pages 770-777.

[189]E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “ITC’02 SOC Test Benchmarks

Web Site”, http://www.extra.research.philips.com/itc02socbenchm/.

[190]E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “A Set of Benchmarks for

Modular Testing of SOCs”, Proceedings of International Test Conference (ITC),

Baltimore, MD, USA, October 2002, pages 519-528.

[191]E. J. Marinissen, R. Kapur, M. Lousberg, T. McLaurin, M. Ricchetti, and Y.

Zorian, “On IEEE P1500’s Standard for Embedded Core Test”, Journal of

Electronic Testing: Theory and Applications, (JETTA), Vol. 18, Nos. 4 & 5,

August/October 2002, pages 365-383.

[192]E. J. Marinissen, “The Role of Test Protocols in Automated Test Generation for

Embedded-Core Based ICs”, Journal of Electronic Testing: Theory and

Applications, (JETTA), Vol. 18, Nos. 4 & 5, August/October 2002, pages 435-

454.

[193]R. A. Marlett, “EBT: A Comprehensive Test Generation Technique for Highly

Sequential Circuits”, Proceedings of Design Automation Conference (DAC), Las

Vegas, NV, USA, June 1978, pages 250-256.

[194]R. A. Marlett, “An Effective Test Generation System for Sequential Circuits”,

Proceedings of Design Automation Conference (DAC), Las Vegas, NV, June

1986, pages 250-256.

[195]J. F. McDonald and C. Benmehrez, “Test Set Reduction Using the Subscripted

D_Algorithm”, Proceedings of International Test Conference (ITC), October

1983, Philadelphia, PA, USA, pages 115-121.

 References 373

[196]L. Milor and A. L. Sangiovanni-Vincentelli, “Minimizing Production Test Time

to Detect Faults in Analog Circuits”, Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 13, No. 6, June 1994, pages 796-813.

[197]Z. Michalewicz, “Genetic Algorithm + Data Structure = Evolutionary Programs,

3d Edition, Springer Verlag, Berlin 1996.

[198]G. E. Moore, “Cramming more components onto integrated circuits”,

Electronics, April 19, 1965, pages 114-117.

[199]S. Mourad and Y. Zorian, “Principles of Testing Electronic Systems”, John Wiley

& Sons, Inc., ISBN 0-471-31931-7, 2000.

[200]H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI Module Placement

Based on Rectangle-Packing by Sequence-Pair”, Transactions on Computer-

Aided Design of Integrated Circuits and Systems,” Volume: 15, Issue: 12,

December 1996, pages 1518-1524.

[201]V. Muresan, X. Wang, V. Muresan, and M. Vladutiu, “Greedy Tree Growing

Heuristics on Block-Test Scheduling Under Power Constraints”, Journal of

Electronic Testing: Theory and Applications (JETTA), 20, 2004, pages 61-78.

[202]V. Muresan, X. Wang, V. Muresan, and M. Vladutiu, “A Comparison of Classical

Scheduling Approaches in Power-Constrained Block-Test Scheduling”,

Proceedings of International Test Conference (ITC), Atlantic City, NJ, OctoberCC

2000, pages 882-891.

[203]P. Muth, “A Nine-Valued Circuit Model for Test Generation”, Transactions on

Computers, Vol. C-25, June 1976, pages 630-636.

[204]B. Nadeau-Dostie (Editor), “Design for At-Speed Test, Diagnosis and

Measurement”, Kluwer Academic Publisher, ISBN 0-7923-8669-8, 2000.

[205]R. Nair, “Comments on an Optimal Algorithm for Testing Stuck-At Faults in

Random Access Memories”, Transactions on Computers, March 1979, pages

258-261.

[206]R. Nair, “Efficient Algorithms for Testing Semiconductor Random-Access

Memories”, Transactions on Computers, Vol. C-28, No. 6, 1979, pages 672-676.

SOC Test Design374

[207]N. Nicolici and B. M. Al-Hashimi, “Power Conscious Test Synthesis and

Scheduling for BIST RTL Data Paths”, Proceedings of International Test

Conference (ITC), Atlantic City, NJ, October 2000, pages 662-671.

[208]N. Nicolici and B. Al-Hashimi, “Multiple Scan Chains for Power Minimization

During Test Application in Sequential Circuits”, Transactions on Computers, Vol.

51, No. 6, June 2002, pages 721-734.

[209]N. Nicolici and B. M. Al-Hashimi, “Power-Constrained Testing of VLSI

Circuits”, Kluwer Academic Publisher, ISBN 1-4020-7235-X, 2003.

[210]N. Nicolici and B. M. Al-Hashimi, “Power-Conscious Test Synthesis and

Scheduling”, Design & Test of Computers, July/August 2003, pages 48-55.

[211]R. B. Norwood and E. J. McCluskey, “Synthesis-for-Scan and Scan Chain

Ordering”, Proceedings of the VLSI Test Symposium (VTS), Princeton, NJ, USA,

April 1996, pages 87-92.

[212]M. Nourani and C. Papachristou, “An ILP Formulation to Optimize Test Access

Mechanisms in System-On-A-Chip Testing”, Proceedings of International Test

Conference (ITC), pp 902-910, Atlantic City, NJ, USA, October 2000.

[213]M. Nourani and J. Chin, “Power-Time Trade Off in Test Scheduling for SoCs”,

Proceedings of International Conference on Computer Design (ICCD), San Jose,

CA, USA, October 2003, pages 548-553.

[214]K. P. Parker and S. Oresjo, “A Language for Describing Boundary-Scan

Devices”, Proceedings of International Test Conference (ITC), Washington, DC,

USA, September 1990, pages 222-234.

[215]K. P. Parker and S. Oresjo, “A Language for Describing Boundary-Scan

Devices”, Journal on Electronic Testing: Theory and Application (JETTA), Vol.

2, No. 1, pages 43-74, 1991.

[216]K. P. Parker, “The Boundary-Scan Handbook”, Boston: Kluwer Academic

Publishers, second edition, 1998.

[217]J. L. Peterson, Petri net theory and the modeling of systems, Prentice-Hall, Inc.,

ISBN 0-13-661983-5, 1981.

 References 375

[218]J. Pouget, E. Larsson, Z. Peng, M.-L. Flottes, and B. Rouzeyre, “An Efficient

Approach to SoC Wrapper Design, TAM Configuration and Test Scheduling”,

Informal Proceedings of European Test Workshop (ETW), Maastricht, The

Netherlands, May 2003, pages 117-122.

[219]J. Pouget, E. Larsson, Z. Peng, M.-L. Flottes, and B. Rouzeyre, “An Efficient

Approach to SoC Wrapper Design, TAM Configuration and Test Scheduling”,

Formal Proceedings of European Test Workshop (ETW), Maastricht, The

Netherlands, May 2003, pages 51-56.

[220]J. Pouget, E. Larsson, and Z. Peng, “SOC Test Time Minimization Under

Multiple Constraints”, Proceedings of Asian Test Symposium (ATS03), Xian,

China, November 2003, pages 312-317.

[221]G. R. Putzolu and J. P. Roth, “A Heuristic Algorithm for the Testing of

Asynchronous Circuits”, Transactions on Computers, Vol. C-20, June 1971,

pages 639-647.

[222]J. Rajski, J. Tyszer, and N. Zacharia, “Test Data Compression For Multiple Scan

Designs With Boundary Scan”, Transactions on Computers, Vol. 47, No. 11,

1998, pages 1188-1200.

[223]J. Rajski, J. Tyzer, M. Kassab, N. Mukherjee, R. Thompson, K.-H. Tsai, A.

Hertwig, N. Tamarapalli, G. Mrugalski, G. Eide, and J. Qian “Embeeded

Deterministic Test For Low Cost Manufacturing Test”, Proceedings of

International Test Conference (ITC), Baltimore, MD, USA, October 2002, pages

301-310.

[224]R. Rajsuman, “Testing a System-on-a-Chip with Embedded Microprocessor”,

Proceedings of International Test Conference (ITC), Atlantic City, NJ, USA,

September 1999, pages 499-508.

[225]R. Rajsuman, “System-on-a-Chip: Design and Test”, Artech House Publishers,

2000, ISBN 1-58053-107-5

[226]S. Ravi, G Lakshminarayana, and N.K. Jha, ”Testing of Core-based Systems-on-

a-Chip”, Transactions on Computer-Aided Design of Integrated Circuits and

Systems, Volume: 20 , Issue: 3, March 2001, pages 426 - 439.

SOC Test Design376

[227]C. P. Ravikumar, G. Chandra, and A. Verma, “Simultaneous Module Selection

and Scheduling for Power-constrained Testing of Core Based Systerms”,

Proceedings of International Conference on VLSI Design, Calcutta, India,

January 2000, pages 462-467.

[228]C. P. Ravikumar, A. Verma, and G. Chandra, “A Polynomial-time Algorithm for

Power Constrained Testing of Core Based Systems”, Proceedings of Asian Test

Symposium (ATS), Shanghai, China, November 1999, pages 107-112.

[229]C. R. Reeves, Modern Heuristic Techniques for Combinatorial Problems,

Blackwell Scientific Publications, ISBN 0-632-03238-3, 1993.

[230]P. M. Rosinger, B. M. Al-Hashimi, and N. Nicolici, “Scan Architecture for Shift

and Capture Cycle Power Reduction”, Proceedings of International Symposium

on Defect and Fault Tolerance in VLSI Systems (DFT), Vancouver, Canada,

November 2002, pages 129-137.

[231]P. M. Rosinger, B. M. Al-Hashimi, and N. Nicolici, “Power Profile Manipulation:

A New Approach for Reducing Test Application Time under Power Constraints”,

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

Volume 21, Issue 10, October 2002, pages 1217-1225.

[232]P. Rosinger, B. Al-Hashimi, and N. Nicolici, “Power Constrained Test

Scheduling Using Power Profile Manipulation”, Proceedings of International

Symposium on Circuits and Systems (ISCAS), Sydney, Australia, May 2001,

Volume 5, pages (V)251-(V)254.

[233]J. P. Roth, “Diagnosis of Automata Failures: A Calculus and a Method”, IBM

Journal of Research and Development, 10:4, July 1966, pages 278-291.

[234]J. Savir, “Syndrome-Testable Design of Combinational Circuits”, Transactions

on Computers, Volume 29, Number 6, June 1980, pages 442-451.

[235]J. Savir, “Skewed-Load Transition Test: Part 1, Calculus”, Proceedings of

International Test Conference (ITC), Baltimore, MD, USA, September 1992,

pages 705-713.

 References 377

[236]S. Patil and J. Savir, “Skewed-Load Transition Test: Part 2, Coverage”,

Proceedings of International Test Conference (ITC), Baltimore, MD, USA,

September 1992, pages 714-722.

[237]A. Sangiovanni-Vincentelli, “Defining Platform-based Design”, EEDesign of

EETimes, February 2002.

[238]J. Savir and S. Patil, “Scan-Based Transition Test”, Transactions on Computer-

Aided Design of Integrated Circuits and Systems, Vol. 12, No. 8, August 1993,

pages 1232-1241.

[239]J. Savir and S. Patil, ’’Broad-Side Delay Test’’, Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Vol. 13, No. 8, August 1994, pages

1057-1064.

[240]J. Savir and S. Patil, ’’On Broad-Side Delay Test’’, Transactions on VLSI, Vol. 2,II

No. 3, September 1994, pages 368-372.

[241]J. Saxena, K. M. Butler, and L. Whetsel, “An Analysis of Power Reduction

Techniques in Scan Testing”, Proceedings of International Test Conference (ITC),

Baltimore, MD, USA, October 2001, pages 670-677.

[242]A. Sehgal, V. Iyengar, M. D. Krasniewski, and K. Chakrabarty, “Test Cost

Reduction for SOCs Using Virtual TAMs and Lagrange Multipliers”,

Proceedings Design Automation Conference (DAC), Anaheim, CA, USA, June

2003, pages 738-743.

[243]A. Sehgal and K. Chakrabarty, “Efficient Modular Testing of SoCs Using Dual-

Speed Tam Architectures”, Proceedings of Design and Test in Europe (DATE),

Paris, France, 2004, pages 422-427.

[244]A. Sehgal, V. Iyengar and K. Chakrabarty, "SOC Test Planning Using Virtual Test

Access Architectures", Transactions on VLSI Systems, vol. 12, September 2004.

[245]A. Sehgal, S. K. Goel, E. J. Marinissen and K. Chakrabarty, “IEEE P1500-

Compliant Test Wrapper Design for Hierarchical Cores”, Proceedings of

International Test Conference (ITC), Charlotte, NC, USA, October 2004.

SOC Test Design378

[246]F. F. Sellers, M. Y. Hsiao, and C. L Bearnson, “Analyzing Errors with the Boolean

Difference”, Transactions on Computers, Volume C-17, July 1968, pages 676-

683.

[247]A. K. Sharma, “Semiconductor Memories: Technology, Testing, and Reliability”,

IEEE Press, Piscataway, NJ, USA.

[248]N. Singh, “An Artificial Intelligence Approach to Test Generation”, Kluwer

Academic Publisher, Norwell, MA, 1987.

[249]T. J. Snethen, “Simulator Oriented Fault Test Generator”, Proceedings of Design

Automation Conference (DAC), New Orleans, LA, USA, June 1977, pages 88-93.

[250]M. Soma, “Automatic Test Generation Algorithms for Analog Amplifiers”,

Proceedings of International Test Conference (ITC), Baltimore, MD, USA,

October 1993, pages 566-573.

[251]T. Sridhar and J. P. Hayes, “A Functional Approach to Testing Bit-Sliced

Microprocessors”, Transactions on Computers, Vol. 1, June 1984, pages 475-485.

[252]Standard Delay Format Specification, Version 2.1, Open Verilog International:

www.eda.org/sdf.

[253]A. Steiningerl, “Testing and Built-In Self-Test - A Survey”, Journal of System

Architecture, ISSN-1383-7621, Vol. 46, No. 9, July 2000, pages 721-747.

[254]C. E. Stroud, “A Designer’s Guide to Built-In Self-Test”, Kluwer Academic

Publisher, ISBN 1-4020-7050-0, 2002.

[255]M. Sugihara, H. Date, and H. Yasuura, “A Novel Test Methodology for Core-

Based System LSIs and a Testing Time Minimization Problem”, Proceedings of

International Test Conference (ITC), Washington, DC, USA, October 1998, pages

465-472.

[256]M. Sugihara, H. Date, and H. Yasuura, “A Test Methodology for Core-Based

System LSIs”, IEICE Transactions on Fundamentals, Vol. E81-A, No. 12,

December 1998, pages 2640-2645.

[257]M. Sugihara, H. Date, and H. Yasuura, “Analysis and Minimization of Test Time

in a Combined BIST and External Test Approach”, Proceedings of Design and

Test in Europe (DATE), March 2000, pages 134-140.

 References 379

[258]C. - P. Su and C. -W. Wu, “A Graph-Based Approach to Power-Constrained SOC

Test Scheduling”, Journal of Electronic Testing: Theory and Applications

(JETTA), 20(1), February 2004, pages 45-60.

[259]Y. Takamatsu and K. Kinoshita, “CONT: A Concurrent Test Generation

Algorithm”, Digest of Papers of Fault-Tolerant Computing Symposium (FTCS-

17), Pittsburg, PA, USA, July 1987, pages 22-27.

[260]Teradyne, http://www.teradyne.com

[261]N. Touba and B. Pouya, “Using Partial Isolation Rings to Test Core-Based

Designs”, Design and Test of Computers, 14(4), December 1997, pages 52-59.

[262]N. Touba and B. Pouya, “Testing Embedded Cores Using Partial Isolation

Rings”, Proceedings of VLSI Test Symposium (VTS), May 1997, pages 10-16.

[263]J. L. Turino, "Design to test: a Definitive Guide for Electronic Design,

Manufactoring, and Service", Van Nostrand Reinhold, 1990, ISBN-0-442-00170-

3.

[264]F. F. Tsui, LSI/VLSI Testability Design, McGraw-Hill Book Company,yy ISBN 0-

07-100356-8, 1988.

[265]Tuinenga, P. W., “SPICE, A Guide to Circuit Simulation & Analysis Using

PSPICE”, Englewood Cliffs, NJ, Prentice Hall, 1992.

[266]J. Turley, “Embedded Processors by the Numbers”, Embedded Systems

Programming, vol. 12, May 1999, pages 13-14.

[267]P. Varma and S. Bhatia, “A Structured Test Re-Use Methodology for Core-Based

System Chips”, Proceedings of International Test Conference (ITC), Washington,

DC, USA, October 1998, pages 294-302.

[268]“VHDL Language Reference Manual”, IEEE Std 1076-1993 (ISBN 1-55937-

376-8).

[269]B. Vinnakota, editor, Analog and Mixed-Signal Test, Upper Saddle River, New

Jersey:Prentice-Hall, 1998.

[270]E. H. Volkernik, A. Khoche, and S. Mitra, “Packet-based Input Test Data

Compression Techniques”, Proceedings of International Test Conference (ITC),

Baltimore, MD, USA, October 2002, pages 154-163.

SOC Test Design380

[271]E. H. Volkernik, A. Khoche, J. Rivoir, and K. D. Hilliges, “Modern Techniques:

Tradeoffs, Synergies, and Scalable Benefits”, Journal of Electronic Testing:

Theory and Applications (JETTA), Vol. 19, 2003, pages 125-135.

[272]H. Vranken, F. Hapke, S. Rogge, D. Chindamo, and E. Volkerink, “ATPG

Padding And ATE Vector Repeat Per Port For Reducing Test Data Volume”,

Proceedings of International Test Conferenence (ITC), Charlotte, NC, USA,

October 2003, pages 1069-1078.

[273]T. Waayers, “An Improved Test Control Architecture for Core-Based System

Chips”, Informal Proceedings of European Test Workshop (ETW), Maastricht,

The Netherlands, May 2003, pages 333-338.

[274]T. Waayers, “An Improved Test Control Architecture and Test Control Expansion

for Core-Based System Chips”, Proceedings of International Test Conference

(ITC), Charlotte, NC, USA, October 2003, pages 1145-1154.

[275]C.-W. Wang, J.-R. Huang, Y.-F. Lin, K.-L. Cheng, C.-T. Huang, and C.-W. Wu,

“Test Scheduling of BISTed Memory Cores for SOC”, Proceedings of Asian Test

Symposium (ATS), Tamuning, Guam, USA, November 2002, pages 356-361.

[276]C.-W. Wang, J.-R. Huang, K.-L. Cheng, H. - S. Hsu, C.-T. Huang, and C.-W. Wu,

“A Test Access Control and Test Integration System for System-on-Chip”,

Workshop on Testing Embedded Core-Based System-Chips (TECS), Monterey,

CA, USA, May 2002, pages P2.1-P2.8.

[277]N. H. E.Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-

Wesley, ISBN 0-201-53376-6, 1992.yy

[278]L. Whetsel, “An IEEE 1149.1 Based Test Access Architecture for ICs with

Embedded Cores”, Proceedings of International Test Conference (ITC),

Washington, DC, USA, November 1997, pages 69-78.

[279]Y. Xia, M. Chranowska-Jeske, B. Wang, and M. Jeske, “Using a Distributed

Rectangle Bin-Packing Approach for Core-based SoC Test Scheduling with

Power Constraints”, Proceedings of International Conference on Computer-

Aided Design (ICCAD((), San Jose, CA, USA, November 2003, pages 100-105.

 References 381

[280]Q. Xu and N. Nicolici, “Delay Fault Testing of Core-Based System-on-a-Chip”,

Proceedings of Design Automation and Test in Europe (DATE), Munchen,

Germany, March 2003, pages 744-749.

[281]Q. Xu and N. Nicolici, “On Reducing Wrapper Boundary Register Cells in

Modular SOC Testing”, Proceedings of International Test conference (ITC),

Charlotte, NC, USA, September 2003, pages 622-631.

[282]Q. Xu and N. Nicolici, “Wrapper Design for Testing IP Cores with Multiple

Clock Domains”, Proceedings of Design Automation and Test in Europe (DATE),

Paris, France, February 2004, pages 416-421.

[283]T. Yoneda and H. Fujiwara, “A DFT Method for Core-Based Systems-on-a-Chip

based on Consecutive Testability,” Proceedings of Asian Test Symposium (ATS),

Kyoto, Japan, November 2001, pages 193-198.

[284]T. Yoneda and H. Fujiwara, “Design for Consecutive Testability of System-on-a-

Chip with Built-In Self Testable Cores,” Journal of Electronic Testing: Theory

and Applications (JETTA) Special Issue on Plug-and-Play Test Automation for

System-on-a-Chip, Vol. 18, No. 4/5, August/October 2002, pages 487-501.

[285]T. Yoneda and H. Fujiwara, “Design for ConsecutiveTransparency of Cores in

System-on-a-Chip”, Proceedings of VLSI Test Symposium (VTS), Napa Valley,

CA, USA, April 2003, pages 287-292.

[286]T. Yoneda, T. Uchiyama and H. Fujiwara, "Area and Time Co-Optimization for

System-on-a-Chip based on Consecutive Testability," Proceedings of

International Test Conference (ITC), Charlotte, NC, USA, September 2003, pages

415-422.

[287]Y. Zorian, “A Distributed BIST Control Scheme for Complex VLSI Devices”,

Proceedings of VLSI Test Symposium (VTS), Atlantic City, NJ, USA, April 1993,

pages 4-9.

[288]Y. Zorian, “Test Requirements for Embedded Core-Based Systems and IEEE

P1500”, Proceedings of International Test Conference (ITC), Washington, DC,

USA, November 1997, pages 191-199.

SOC Test Design382

[289]Y. Zorian, E. J. Marinissen, and S. Dey, “Testing Embedded-Core Based System

Chip”, Proceedings of International Test Conference (ITC((), Washington, DC,CC

October 1998, pages 130-143.

[290]D. Zhao and S. Upadhyaya, “Adaptive Test Scheduling in SoCs by Dynamic

Partitioning”, Proceedings of International Symposium on Defect and Fault

Tolerance in VLSI Systems (DFT), Vancouver, Canada, November 2002, pages

334-342.

[291]D. Zhao and S. Upadhyaya, “Power Constrained Test Scheduling with

Dynamically Varied TAM”, Proceedings of VLSI Test Symposium (VTS), Napa

Valley, CA, USA, April 2003, pages 273-278.

[292]W. Zou, S. R. Reddy, I. Pomerance, Y. Huang, “SOC Test Scheduling Using

Simulated Annealing”, Proceedings of VLSI Test Symposium (VTS), Napa Valley,SS

CA, USA, April 2003, pages 325-330.

Index

A
ABM 63
Abort-on-fail 160
abort-on-fail 277
Address decoder fault 46
Algorithmic Test Sequence 47
Aliasing 43
Alternating run-length codes 80
Analog Boundary Module (ABM) 63
Analog test access port 63
Analog test bus (ATB) 61
Analog testing 52
ATAP 63
ATB 61
ATE 77, 291
ATE Advantest 78
ATE Agilent (HP) 78
ATE channel 78
ATE clock-domains 78
ATE Credence 78
ATE LTX 78
ATE Refill 79
ATE sequencer 80
ATE Teradyne 78
ATS 48

B
Backtracking 16
Bandwidth assignment 152
Bandwidth limitation 217
Bandwidth limitations 78, 152
Bed-of-nails tester 53, 61

BILBO (Built-In Logic Block
Observer) 43

Block 68
Block Diagrams 6
Boolean Difference 25
Bottleneck 15, 159
Boundary Scan 100
Boundary Scan Cell 56
Boundary-Scan 53
Boundary-scan 99
Boundary-Scan Description Language 58
Branch-and-bound 16
Bridging fault 46
Bridging Fault Model 22
Broadside Test 37
BSDL 58
Built-In Logic Block Observer 43
Bypass 57

C
CAD 5
Care bit 79
Central processing unit 68
Checkboard test 47
Chromosome 18
Circular BIST 43
Clamp 57
Clock signal distribution 21
Combinational 25
Computational cost 1, 15
Computational quality 15
Concurrent test scheduling 116

SOC Test Design384

Continuos values 61
Control pins 138
Controlability 32
Core 7, 68
Core integrator 7, 157
Core providers 7
Core test integrator 7, 157
Core Test Language 102
Core Transparancy 112
Core-based design 7, 164
Cost function 115
Cost-per-transistor 2
Coupling fault 45
CPU 68
Critical path 23
Cross-core testing 84
Crossover process 18
Cycle time (Tc) 10

D
Daisy chaining 50
Daisychain Architecture 110
Daisy-chain testing 117
D-algorithm 26
D-cube fault representation 26
D-cube propagation 26
Decision problem 14
Defect-Oriented Schedulin 140
Delay Fault 36
Delay Fault Model 23
Delay faults 140
Design flow 5
Design for low power 89
Design for low power testing 164
Design space 157
Deterministic Testing 41
Device Identification Register 56
Diagnosis 50
Differential interconnect 61
Digital signal processing 68
D-intersection 26
Discrete values 61
Distributed fault effect 21
Distribution Architecture 109
DSP 68
Duration of fault 21
Dynamic coupling fault 45
Dynamic power dissipation 90

E
EDIF (Electronic Design Interchange

Format) 6
Ellipsoid algorithm 17
Enhanced Scan 36
equivalent faults 24
Exhaustive Pattern Generation 40
Expected test time 160
Extended D-Algorithms 31
Extended interconnect 61
Extent of fault 21
External test 164
External test mode 72, 85
Extest 57, 73

F
Failure 21
FAN (Fanout-Oriented Test

Generation) 28
Fault 21
Fault collapsing 24
Fault coverage 24
fault detection 24
fault location 24
Fault masking error 42
Fault simulation 28
Feedback bridging 23
Field-programmable gate array 68
Finite state machine (FSM) 10
Firm core 8, 69
First improvment 17
Flexible-Width Architecture 112
Floor-plan 138
Flow Charts 6
Folding counters 80
FPGA 68
Fractional Knap-sack problem 14
Frequency-directed run-length (FDR)

codes 80
FSM 10

G
GALDIA 47
GALloping PATtern 47, 48
GALPAT 47, 48
GALS 13
Gantt chart 15, 159
Gate delay fault 23

Index 385

Genetic Algorithms 18
Globally-Asynchronous Locally-Synchro-

nous (GALS) 13
Golomb codes 80

H
Hard core 8, 69
Hard cores 150
HDL 69
Heuristic 15
Highhz 57
High-level description language 69
High-level design 6
Hold time (Th) 10
Hot spot power consumption 89
Huffman codes 80

I
Idcode 57
Idempotent coupling fault 45
Identical machines 163
Idle Bits 129
IEEE Standard 1149.1 53, 61, 99
IEEE Standard 1149.4 61
Illinois Scan 80
Independent job scheduling 163
Initialization vector 30
Input bridging 23
instruction register 53
Instructions 57
Integer Linear Programming 17
Interconnection testing 84
Intermittent fault 21
Internal core test mode 72
Internal test 164
Internal test mode 85
Intest 57, 73
Intragate break 23
Inversion coupling fault 45

J
JK register 10

K
Knap-sack problem 14

L
Leakage current 90
Level-sensitive latch 10
Level-Sensitive Scan Design 36
LFSR 40, 77
LFSR reseeding 79
LFSR reseeding (dynamic) 80
LFSR with variable-length seeds 79
Linear feedback shift register 40
Local fault effect 21
Local Search 17
LOCST 44
Logical fault 21
Lower bound 15
LSSD 36
LSSD On-Chip Self-Test 44

M
Macro 68
March test 47
Marching Pattern Sequences 47
MATS 47, 48
MATS+ 47, 48
Mealy 6
Memory limitation 217
Memory limitations 78
Memory Testing 45
Minituarization 7
Module 68
Moore 6
Moore’s law 1
MSCAN algorithm, 46
Multiple Clock Domains 12
Multiple clock domains 139
Multiple stuck-at (MSA) 22
Multiple test sets 158
Multiple tests 138
Multiple-polynomial LFSR 79
Multiplexing 50
Multiplexing Architecture 108

N
Nature of fault 21
Neighborhood 17
Neighborhood pattern sensitive coupling

fault 46
Netlist 8
Network-on-chip 137

SOC Test Design386

Networks on chip (NOC) 9
Nine-Value Algorithm 31
NOC 9
Non-deterministic polynomial time 15
Nonfeedback bridging 23
Nonlogical fault 21
Nonpartitioned testing 116, 190
Nonrobust delay test 30
Normal mode 72
Normal operation 164
NP hard 15

O
Observability 32
Optimal solution 15
Optimal test time 143
Optimization 15

P
P1500 99, 100
Packet-based codes 80
Pareto-optimal point 131
Partitioned testing 117, 190
Partitioned testing with run to

completion 116, 190
Path delay fault 23
Path sensitization 25
permanent fault 21
Phase Locked Loop (PLL) 12
Ping-Pong test 47, 48
Pipelined system 10
Pipelined testing 117
Platform-Based Design 9
PLL 12
PODEM (Path-Oriented Decision-

Making) 27
Population 18
Power failure 21
Preemptive scheduling 163
Preemptive test scheduling 128
Preemptive testing 117
Preload 57
Production test 21
Propagation vector 30
Pseudo-random-based test generation 40

R
RAM 68
Random access memory 68
Read/write logic fault 46
Reconfigurable core wrapper 163
Resource graph, 119
RESPIN 80
Robust delay test 30
Runbist 57
Run-length codes 80

S
Sample 57
Scan Technique 32
Scan Testing for Delay Fault 36
Scan-chain partitioning 216
SCIRTSS (Sequential CIRcuit Test Search

System) 31
Sequential 25
Sequential CIRcuit Test Search

System 31
Sequential test scheduling 116
Setup time (Ts) 10
Signal line break 23
Signature analysis 42
Simple interconnect 61
Simplex algorithm 17
Simulated Anneling 18
Single stuck-at (SSA) 22
Singular cover 26
Skewed-load 36
SOC integrator 2
SOC test integrator 2
Soft core 8, 69, 146
SPICE (Simulation Program with Integrat-

ed Circuit Emphasis) 6
State coupling fault 46
State Diagrams 6
State Transition Diagrams 6
Static power dissipation 90
Statistical codes 80
Steepest decent 17
Stuck-at Fault Model 22
Stuck-at-fault 45
stuck-on transistor 23
Stuck-Open Fault Model 23
Stuck-open transistor 23
STUMPS (Self-Testing Using an MISR and

Index 387

Parallel Shift Register Sequence
Generator) 44

Sub-micron technology 7
Syndrom checking 42
Synthesis 5
System power consumption 89

T
Tabu Search 19
TAM 99, 215
TAM architecture 99
TAM design 215, 238
TAM routing 215
TAP Controller 57
TAP controller 53
TBIC 63
TCK 53
TDI 54
TDO 54
Temporary fault 21
Test Access Mechanism 67, 99
Test access mechanism 215
Test Access Port 53
Test application time 29
Test Bus Architecture 111
Test Bus Interface Circuit (TBIC) 63
Test clock input 53
Test compatibility graph 119
Test conflict 77
Test data 1
Test data compression 292
Test data input 54
Test data output 54
Test data registers 53
Test Data Transportation 100
Test data transportation 215
Test data truncation 292
Test infrastructure 99
Test memory reload 292
Test mode select input 54
Test Multiplexing 50
Test parallelization 216, 237
Test Pattern Generation for BIST 39
Test point insertion 32
Test power 137
Test quality 296
Test Rail Architecture 111
Test reset input 54

Test scheduling 89, 115, 153, 163, 216,
237, 277

Test sink 67
Test solution 1, 7
Test solution design 157
Test solutions 163
Test source 67
TestCell 101
TestCollar 99, 100, 105
Test-cost-per-transistor 3
Testing of interconnection 217
Testing of unwrapped cores 217
Testing of user-defined logic 217
Test-per-clock 44
Test-per-scan 44
TestRail 100
TestShell 99, 100
Timing specification 23
TMS 54
Top-down 7
Transient fault 21
Transition count 41
Transition fault 45
Transition vector 30
Truth Tables 6

U
UDL 68
Unit power consumption 89
Unwrapped 215
Unwrapped core 73
Unwrapped cores 164
Uphill move 17
User-defined logic 68

V
Value of fault 21
Very High Speed Integrated Circuits 6
VHDL 6
VHSIC 6
VHSIC Hardware Description

Language 6

W
WIR 102
Wrapped core 73, 164
Wrapper 67

SOC Test Design388

Wrapper cell 102
Wrapper Instruction Register 102

X
XOR-network 80

Y
Y-chart 5

	Contents
	Preface
	Acknowledgements
	Part 1 Testing concepts
	1. INTRODUCTION
	2. DESIGN FLOW
	1 Introduction
	2 High-level design
	3 Core-Based Design
	4 Clocking
	5 Optimization

	3. DESIGN FOR TEST
	1 Introduction
	2 Design-for-Test Methods
	3 Mixed-Signal Testing

	4. BOUNDARY SCAN
	1 Introduction
	2 The Boundary-Scan Standards (IEEE 1149.1)
	3 Analog Test Bus (IEEE 1149.4)

	Part 2 SOC Design for Testability
	5. SYSTEM MODELING
	1 Introduction
	2 Core modeling
	3 Test Resource modeling
	4 Core Wrapper
	5 Test Access Mechanism

	6. TEST CONFLICTS
	1 Introduction
	2 Limitations at the Tester
	3 Test Conflicts
	4 Discussion

	7. TEST POWER DISSIPATION
	1 Introduction
	2 Power consumption
	3 System-level Power modeling
	4 Hot-spot modeling with Power Grids
	5 Core-level Power modeling
	6 Discussion

	8. TEST ACCESS MECHANISM
	1 Introduction
	2 Test Access Mechanism Design
	3 Test TIME Analysis

	9. TEST SCHEDULING
	1 Introduction
	2 Scheduling of Tests with fixed test time under test conflicts
	3 Scheduling of tests with non-fixed (variable) testing times
	4 Optimal Test time?
	5 Integrated Test Scheduling and TAM Design
	6 Integrating Core Selection in the Test Design Flow
	7 Further Studies

	Part 3 SOC Test Applications
	10. A RECONFIGURABLE POWER-CONSCIOUS CORE WRAPPER AND ITS APPLICATION TO SYSTEM-ON-CHIP TEST SCHEDULING
	1 Introduction
	2 Background and Related Work
	3 A Reconfigurable Power-Conscious Core Wrapper
	4 Optimal Test Scheduling
	5 Experimental Results
	6 Conclusions

	11. AN INTEGRATED FRAMEWORK FOR THE DESIGN AND OPTIMIZATION OF SOC TEST SOLUTIONS
	1 Introduction
	2 Related Work
	3 System modeling
	4 The SOC Test Issues
	5 The Heuristic Algorithm
	6 Simulated Annealing
	7 Experimental Results
	8 Conclusions

	12. EFFICIENT TEST SOLUTIONS FOR CORE-BASED DESIGNS
	1 Introduction
	2 Background and Related Work
	3 Test Problems
	4 Our Approach
	5 Experimental Results
	6 Conclusions

	13. CORE SELECTION IN THE SOC TEST DESIGN-FLOW
	1 Introduction
	2 Background
	3 Related Work
	4 Problem Formulation
	5 Test Problems and Their Modeling
	6 Test Design Algorithm
	7 Experimental Results
	8 Conclusions

	14. DEFECT-AWARE TEST SCHEDULING
	1 Introduction
	2 Related Work
	3 Sequential Test Scheduling
	4 Concurrent Test Scheduling
	5 Experimental Results
	6 Conclusions

	15. AN INTEGRATED TECHNIQUE FOR TEST VECTOR SELECTION AND TEST SCHEDULING UNDER ATE MEMORY DEPTH CONSTRAINT
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Test Quality Metric
	5 Test Scheduling and Test Vector Selection
	6 Experimental Results
	7 Conclusions

	Appendix 1. Benchmarks
	1 Introduction
	2 Format of the inputfile
	3 Design Kime
	4 Design Muresan 10
	5 Design Muresan 20
	6 ASIC Z
	7 Extended ASIC Z
	8 System L
	9 Ericsson design
	10 System S

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

