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trative examples, this is an ideal textbook for anyone who wants to learn about modern
digital communications.

• The simple, logical presentation covers the fundamentals in sufficient detail to
allow students to master the basic concepts in digital communications without being
overwhelmed.

• Step-by-step examples and extensive problem sets, including MATLAB� exercises,
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• Mathematical derivations are complete, but kept clear and simple to ensure a thorough
understanding.
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Preface

As the title indicates, the text is intended for persons who are undertaking a study of digital
communications for the first time. Though it can be used for self-study the orientation
is towards the classroom for students at the fourth-year (senior) level. The text can also
serve readily for a beginning-level graduate course. The basic background assumed of the
reader is: (i) introductory linear circuit and systems concepts, (ii) basic signal theory and
analysis, and (iii) elementary probability concepts. Though most undergraduate electrical
and computer engineering students have this background by their final year, the text does
include two review chapters which the reader is strongly encouraged to read.

By reading these chapters she/he will obtain a sense of the authors’ pedagogical style
and the notation used. The notation used is quite standard except (perhaps) in the case
of random variables or events. They are denoted (faithfully and slavishly) by boldface.
As importantly, because of their importance in digital communications, several topics that
may or may not be covered in typical introductory courses, are explained in detail in these
chapters. The primary topic is random signals which, after a treatment of random variables
and probability concepts, are explained in the necessary depth in Chapter 3. Another topic
of importance that typically is not touched on or is treated in only a cursory fashion in an
introductory signal course is auto- and crosscorrelation and the corresponding energy and
power spectral densities. These are explained in Chapter 2 for deterministic signals and
Chapter 3 for random processes.

The text material is a reflection of many years (over two decades for the second author)
of teaching digital (and analog) communications at the undergraduate level at three uni-
versities. At all three universities the course was one term or semester in duration with
approximately 36 hours of lectures. The students had diverse backgrounds: at one univer-
sity they had a prerequisite course where analog communications and random processes
were covered, at the second university the students had no background in random concepts
even at the elementary level. In both universities the students were in a quite general electri-
cal and engineering program. The third university was one where the students specialized
in telecommunications. Except perhaps for the material in the advanced modulation chapter
(Chapter 11), the text material can be quite comfortably covered in the allotted time.

The presentation of the material has been strongly influenced by two classic texts: Prin-
ciples of Communication Engineering (John Wiley & Sons, 1965) by J. M. Wozencraft
and I. M. Jacobs, and Detection, Estimation, and Modulation Theory – Part I (Wiley &
Sons, 1968) by H. L. van Trees. Both texts were written at a graduate level but the authors’
experience is that their approach to the fundamental concepts of digital communications
can be, and in the authors’ opinion should be, readily mastered by the target undergrad-
uate audience. The approach taken in the text is to introduce the signal space approach
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and the concept of sufficient statistics and the likelihood ratio test at the outset. Most
introductory texts present these much later. In our experience, the geometrical interpre-
tation offered by the signal space approach offsets any perceived abstraction. Certainly
the students responded very favorably to it. Another major and unique difference from
standard texts at this level is the introduction of the dynamic search algorithm known as
Viterbi’s algorithm. This occurs early in the text (in Chapter 6 on baseband modulation)
and the algorithm is then used in later chapters. The search algorithm is paramount for
modulation/coding techniques that exploit “memory.” Almost invariably, modern digital
communication systems use this type of modulation/coding. The concept is too important
to be left for advanced studies.

Though it would be presumptuous of the authors to tell an instructor how to teach the
material in the text, a few guidelines are appropriate. The core material is Chapters 4–8.
The presentation is such that these chapters should be taught in the order in which they
appear and that the material covered should be treated in some detail since it is very basic
to digital communications. After these chapters the authors typically cover Chapter 12,
synchronization. This at least introduces the student to this important aspect of commu-
nications engineering. Chapters 9 and 10 can be taught independently, the first one deals
with bandlimited channels and additive white Gaussian noise, while Chapter 10 considers
the fading channel. Chapter 11, which examines advanced modulation techniques has three
major sections. The first, on trellis-coded modulation, can be taught after Chapter 8 while
the other two, on code-division multiple access and space-time transmission, require the
knowledge of the Rayleigh fading channel model developed in Section 10.4.1. Within any
of these three chapters, the instructor is free to highlight different topics and assign the rest
as reading material. Pedagogically, they build on the concepts of the core chapters so that
a reader should be able to read them without much difficulty.
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1 Introduction

Anytime, anywhere, anything can be taken as the motto and objective of digital commu-
nications. Anytime means that one can communicate on a 24/7 basis; anywhere states this
communication can take place in any geographical location, at minimum one no longer
is tied to being close to one’s land line; anything implies that not only traditional voice
and video but also other messages can be transmitted over the same channel, principally
text, and not only individually but in combination. In large part digital communication sys-
tems over the past three decades have achieved the three objectives. Text messaging in all
its forms, such as email, internet access, etc., is a reality. Webcasting and podcasting are
becoming common. All parts of the globe are connected to the world wide communication
system provided by the Internet.

Perhaps, and arguably just as important, a fourth “any” can be added, anybody. Though
perhaps not as well developed as the first three, digital communication has the potential
to make communication affordable to everyone. One feature of digital circuitry is that its
cost, relative to its capability, keeps dropping dramatically. Thus though analog communi-
cation could achieve the above objectives, digital communications, due to this increasingly
low cost, flexibility, robustness, and ease of implementation, has become the preferred
technology.

This text is an introduction to the basics of digital communication and is meant for
those who wish a fundamental understanding of important aspects of digital communica-
tion design. Before detailing the text’s content and organization, a brief history of digital
communication and general comments about it are in order.

Though it does not appear on Maslow’s hierarchy [1] of human needs, communication
is crucial for any living organism, human or otherwise. To aid the process of communi-
cation, humans and human society have developed various techniques and technologies.
The impetuses for the developments have been the need to increase the distances over
which communication takes place, to increase the rate of communication, and to main-
tain the reliability of communication. It was only in the last half of the twentieth century
that communication systems started to achieve reliable, universal, global communication.
Many factors have contributed to this but at the core is the rapid adoption of digital
communications.

So what is digital communication? Definitions vary, but the simplest one is that it is the
communication (or transmission) of a message using a finite alphabet (symbol set) dur-
ing a finite time interval (symbol interval). As such the raising of an eyebrow, a wink, the
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nod of one’s head or a shoulder shrug may be considered to be digital communications.1

However, both the message set and the distances are limited in these examples. More mean-
ingful digital communication systems were developed early: the Roman army used shields
and the sun to flash signals over line-of-sight distances; similarly, North American natives
used smoke signals, to list just two preindustrial digital communication systems. But com-
munications as we know today and experience daily was ushered in during the nineteenth
century. It started with the “harnessing” of electricity. This harnessing, which began in the
mid-eighteenth century, meant that communication at distances further than one could see
or hear became feasible.

In 1729, the English scientist Stephan Gray demonstrated that static electricity could be
conducted by some materials, e.g., wet twine. The first idea for an electric telegraph was
outlined in 1753 in a letter to the Scots Magazine. The letter was signed “C.M.” and the
anonymous author is believed to be Charles Morrison, a surgeon. He proposed the use of
as many wires as there are letters in the alphabet. A message was sent sequentially in time
with the specific letter indicated by sending an electrostatic charge over the appropriate
wire. Dispatches could be sent at distances of 1 or 2 miles with considerable speed. Though
there followed various variants and improvements on this idea, it was not until 80 years
later that a practical digital communication system, the electric telegraph, was developed
and patented. Indeed two patents were granted. One to Charles Wheatstone (of Wheatstone
bridge fame) in 1837 in London; the other to Samuel Morse,2 applied for in 1840, based
on his 1837 caveat, with a US patent granted in 1849.

Until 1877, all rapid long distance communication depended upon the telegraph, in
essence digital communication with only text messages being transmitted. But in 1877
the telephone was invented by Alexander Graham Bell and this heralded the arrival of
long distance analog communications. Coupled with Hertz’s discovery of the propagation
of electromagnetic waves and Marconi’s subsequent exploitation of this phenomenon to
greatly increase communication distances, analog communication was ascendent for most
of the twentieth century.

However, the second half of the twentieth century, particularly the last two decades, saw
a resurgence in digital communications. In 1948 Claude Shannon published a landmark
paper [2] in the annals of science in which he showed that by using digital communications
it was possible even in the presence of noise to achieve a vanishingly small error probability
at a finite communication rate (or finite bandwidth) and with finite signal power. His was a
theoretical result and promised the Holy Grail that communication engineers have pursued
since. At approximately the same time, R. W. Hamming proposed the Hamming codes [3]
for error detection and correction of digital data. The invention of the transistor, also in
1948, and subsequent development of integrated circuitry provided the last component for
a digital communications resurrection.

Initially digital communication systems were developed for deep space communications
where data reliability was paramount and cost of lesser consideration. The first commercial

1 In the context of a typical digital communication system block diagram presented later, it is left to the reader
to identify the source alphabet, transmitter, receiver, channel, possible impairments, etc., in the described
scenarios.

2 Samuel Morse also devised the dot-dash system known as Morse code.
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application started in 1962 when Bell Systems introduced the T1 transmission system for
telephone networks.

However, analog communication was still dominant and the first mobile telephone sys-
tem introduced in North America in the 1980s was analog based. But the ever increasing
integrated chip densities and the concomitant decrease in cost meant that the intensive
signal processing required by digital communications became feasible. And indeed the
late 1980s and the last decade of the twentieth century saw several digital communi-
cation systems developed. The GSM mobile phone system3 was introduced in Europe
and DARPA’s (Defense Advanced Research Projects Agency) sponsor of a computer
communication network, led to the establishment of the Internet. At the end of the mil-
lennium one could reasonably state that digital communication systems were dominant
again.

So what is a digital communication system and what does it involve? Let us start to
answer these questions by considering two general paradigms.

1.1 Open system interconnection (OSI) model

The OSI model was developed explicitly for computer communications over public com-
munication networks. However, it may also serve as a model for other communications.
Communication networks such as the public switched telephone network (PSTN) and the
Internet are very complex systems which provide transparent and seamless communication
between cities, different countries, different languages, and cultures. The OSI model serves
to abstract the fundamentals of such a system. It is a seven-layer model for the functions
that occur in a communication process.

Figure 1.1 illustrates the different layers. Each layer performs one or a number of related
functions in the communication process. Using terminology that arose from computer com-
munications, the seven layers, or any subset of them, are often called a protocol stack.
Layers at the same level are known as peer processes. The following description of the
functionality of each layer is taken from [4].

(1) Physical layer This first layer provides a physical mechanism for transmitting bits
between any pair of nodes. The module for performing this function is often called a
modem (modulator and demodulator).

(2) Data link layer This second layer performs error correction or detection in order to
provide a reliable error-free link to the higher layers. Often, the data link layer will
retransmit packets that are received in error, but in some implementations it discards
them and relies on higher layers to do the retransmission. The data link layer is also
responsible for the ordering of packets, to make sure that all packets are presented to
the higher layers in the proper order. The role of the data link layer is more complicated
when multiple nodes share the same media, as usually occurs in wireless systems. The

3 The abbreviation “GSM” originally came from the French phrase Groupe Spécial Mobile. It is also interpreted
as the abbreviation for “Global System for Mobile communications.”
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�Fig. 1.1 Illustration of different layers in the OSI model.

component of the data link layer that controls multiple-access communications is the
medium access control (MAC) sublayer, the purpose of which is to allow frames to be
sent over the shared media without undue interference from other nodes.

(3) Network layer This third layer has many functions. One function is to determine the
routing of the packet. A second is to determine the quality of service (QoS), which is
often controlled by the choice of a connectionless or connection-oriented service. A
third function is flow control, which ensures that the network does not become con-
gested. Note that the network layer can generate its own packets for control purposes.
Often, there is a need to connect different subnetworks together. The connectivity is
accomplished by adding an internet sublayer to the network layer – a sublayer that
provides the necessary translation facilities between the two networks.

(4) Transport layer The fourth layer separates messages into packets for transmission and
reassembles the packets at the other end. If the network layer is unreliable, the trans-
port layer provides reliable end-to-end communications by retransmitting incomplete
or erroneous messages; it also restarts transmissions after a connection failure. In addi-
tion, the transport layer may provide a multiplexing function by combining sessions
with the same source and destination; an example is parallel sessions consisting of a
gaming application and a messaging application. The other peer transport layer would
separate the two sessions and deliver them to the respective peer applications.

(5) Session layer This fifth layer finds the right delivery service and determines access
rights.

(6) Presentation layer The major functions of the presentation layer are data encryption,
data compression, and code conversion.

(7) Application layer This final layer provides the interface to the user.

Though the OSI model has conceptual utility, one should realize that in practice, for
many (if not most) digital communication systems, use of the OSI model becomes quite
ambiguous if not downright misleading. To give a simple but important example consider
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error correction or detection. Though assigned to the data link layer, it is just as readily
found at the physical layer when hardware error correction/detection integrated circuits
are designed. Even more dramatically, data encryption/decryption, data compression, and
code conversion can be performed at the physical layer level. Therefore, though the OSI
model is of use to elucidate the different functions, in practical implementations of a digital
communication system the levels are blurred considerably. For engineering purposes a
more pertinent block diagram of a digital communication system is discussed in the next
section. In essence, such a block diagram is mainly concerned with the functionality and
issues in the physical layer of the OSI seven-layer model.

1.2 Block diagram of a typical digital communication system

Figure 1.2(a) shows a block diagram applicable to either an analog or a digital communica-
tion system (to be precise, the “synchronization” block is typically only needed in a digital
system). It is rare for the system designer to have control over the channel and even rarer,
if ever, for the designer to have control over the source. Therefore design and analysis are
focused on the transmitter and receiver blocks. The design, of course, must take the source
and channel characteristics into consideration. With regard to the transmitter and receiver
blocks, for a digital communication system they can be further subdivided for our purposes
as shown in Figure 1.2(b).

Consider the transmitter block. The source is typically first passed through a source
encoder which prepares the source messages. The encoder details depend on the source and
may be further subdivided. For a voice or video source it would consist of, at minimum,
an analog-to-digital converter, for a keyboard it could be an ASCII code mapper, etc. Data
encryption may be considered to be part of it. Ideally what the source encoder should do
is remove all redundancy from the source message, represent it by a symbol drawn from a
finite alphabet, and transmit this symbol every Ts seconds. Typically the alphabet is binary
and the source encoder output is a bit stream or sequence. Removal of the redundancy
implies that the source rate (typically measured in bits/second) is reduced, which in turn,
as shall be seen, means that the required frequency spectrum bandwidth is reduced.

Having removed at least some of the redundancy by means of the source encoder,
it may appear to be counterintuitive to have redundancy added back in by the channel
encoder. This redundancy, however, is added back in a controlled fashion for error detec-
tion/correction purposes.4 The channel encoder therefore maps the input symbol sequence
into an output symbol sequence. To transmit this symbol sequence across a physical chan-
nel requires energy and this is the function of the modulator block. It takes the symbol
occurring in each Ts (symbol interval) and maps it onto a continuous-time waveform
which is then sent across the channel. It is important to emphasize that, over any finite

4 The reader may be familiar with odd/even parity check bits which add an extra binary digit for error detection
purposes at the receiver.
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(a) General block diagram of a communication system. The “synchronization” block is only present in a
digital system. (b) More detailed block diagram of the transmitter and receiver blocks of a digital
communication system. Note that the outputs of the source and channel encoders are digital data streams,
while that of the modulator block is a continuous-time signal.

time interval, the continuous-time waveform at the output of a digital communication sys-
tem belongs to a finite set of possible waveforms. This is in sharp contrast to the analog
communication system, in which the modulator directly maps the analog message to a
continuous-time signal for transmission. Since analog messages are characterized by data
whose values vary over a continuous range, the output of an analog communication system
can assume an infinite number of possible waveforms. As shall be seen throughout the text,
it is the finite property of the sets of the digital messages and modulated waveforms that
makes the digital communication system more reliable than its counterpart by applying
advanced signal processing algorithms at both the transmitter and the receiver.

The subdivision of the transmitter block, though still relevant, is somewhat classical. The
channel encoder/modulator blocks can be, and are, combined to produce a coded modu-
lation paradigm. Indeed all three blocks, source encoder, channel encoder, and modulator,
can be combined though this approach is still in the research stage.

At the receiver, one simply passes the received signal through the inverse of the opera-
tions at the transmitter; simply, except it is not that simple due to the influence of the
channel. If the channel did not filter or distort the signal, did not add noise to it, and if
there was no interference from other users, then it would be simple. However, some or all
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of these degradations are present in physical channels. Therefore one must attempt to
overcome the degradations with one’s design. For the design or analysis one needs rea-
sonable engineering models of the channel. The channel model depends on the media over
which the transmission of modulated signals takes place. Consider guided media such as
twisted-pair wire, coaxial cable, and optical fiber. In these the background noise is mainly
Gaussian. However, they may exhibit a signal distortion where the transmitted signal is
“smeared” out and causes intersymbol interference, i.e., signals in adjacent or nearby time
slots interfere with each other. In twisted-pair wire and coaxial cable the smearing occurs
due to the finite bandwidth property, while in optical fiber it is due to the dispersion of the
light as it travels down the fiber.5

A space channel, i.e., satellite communications, typically only adds Gaussian noise to the
received signal. The terrestrial microwave channel is similar but the transmitted signal may
also be subjected to reflection, diffraction, and refraction, which leads to fading. Fading
is a predominant degradation in mobile communications where the signal path from the
transmitter to the receiver changes rapidly. In mobile communications, because a great
many users must be accommodated in a given geographic area, interference from other
users becomes a factor and the chosen modulation/demodulation must reflect this.

As mentioned above, the designer of a communication system typically has little or no
control over the source or channel. One is primarily concerned with the transmitter/receiver
design. In this introductory text, the major concern is with the modulator/demodulator
blocks, commonly called the modem, which are part of every digital communication
system. The introduction is concluded by an outline of the text contents.

1.3 Text outline

Since digital communications, particularly at the physical layer and particularly the
modem block, involves the transmission of continuous-time waveforms with their recep-
tion corrupted by continuous-time noise signals, the next two chapters are concerned with
continuous-time signals and systems. Chapter 2 deals with deterministic signals and dif-
ferent methods of characterizing and analyzing them. The material covered is that found
in a typical undergraduate signals/systems course. As such it is meant primarily for review
purposes but since it is quite self-contained it may be used by a reader with little or no
background in the subject. The reader is encouraged to read it and also to attempt the
problems at the chapter’s end, or at least to read them.

Similar comments apply to Chapter 3 which deals with random signals, or random pro-
cesses as common terminology terms them (stochastic processes is another name). First,
a review of probability theory and random variables is provided. A random process is in
essence nothing more than a random variable that evolves in time. Though one initially
encounters a random process as additive noise in the channel model it should be pointed

5 The bandwidth of twisted-pair wire is on the order of kilohertz, that of coaxial cable on the order of megahertz,
and for fiber optic it is gigahertz.
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out that basically any message source is best modeled as a random signal. Furthermore, the
time-varying characteristic of a wireless channel can also be modeled by a random process.

Chapter 4 starts the reader on the road of digital communication. It deals with what,
arguably, are the two most important sources, audio and video. These are sources whose
outputs are inherently analog in nature. The chapter investigates fundamental principles
of converting the analog signal into a digital format. The techniques are applicable to any
analog source, e.g., a temperature measurement system. Converting the analog signal to a
digital format can be considered to be an elementary form of source encoding.

Chapter 5 is where the study of digital communication systems starts in earnest. Since
digital communication systems are found in diverse configurations and applications, the
chapter develops a general approach to analyze and eventually design modems. The under-
lying philosophy is based on the phrase “short-term pain for long-term gain”.6 First the
modulator output and channel noise are characterized. Then the demodulator is designed
to satisfy a chosen performance criterion, namely to minimize the probability of (sym-
bol) error. This is in contrast to analog communications where the criterion is typically
the power signal-to-noise ratio (SNR) at the receiver output. The two criteria are related
but are not synonymous. Though the symbols are assumed to be binary digits (bits) the
concepts are readily extended to nonbinary symbols, and they are in later chapters. The
chapter concludes with the derivation of the power spectral density (watts/hertz) for general
memoryless binary modulation.

Chapters 6 and 7 deal with modem design. Chapter 6 considers baseband signaling.
Loosely speaking, in baseband modulation the transmitted signal energy is concentrated
around 0 hertz in the frequency band. However, the occupied band can be quite large,
ranging from kilohertz (telephone line) to megahertz (cable) and gigahertz (fiber). Since
using electromagnetic radiation is not feasible, baseband communication is over guided
media. Chapter 7 considers modulation where the modulated signal is shifted to an appro-
priate frequency band (passband modulation) and then typically transmitted via antennas.
Typically the channels are those found in space communications, terrestrial microwave
communications, and mobile communications. However, passband modulation may also
be found in cable channels for instance.

The analysis/design is concerned with the bandwidth and the average power (or equiv-
alently energy) required by a given or proposed modulation format to achieve a certain
performance level, as measured by the bit error probability. Bandwidth and power are
viewed as the two natural resources that one has to utilize in the design. To reduce the
bandwidth requirement at a given average power-per-symbol level (and hence error per-
formance) one can resort to a nonbinary or M-ary modulation format. This is the topic of
Chapter 8.

6 Though the phrase sounds good, caution is advised. Excluding its application to dental visits, the second author
is reminded of a political scenario where a federal minister proposed a budget that included a 25 cents tax
increase on a liter of petrol and invoked the phrase. Needless to say the budget and government were defeated
on a motion of confidence. In these days of global warming perhaps the minister was correct, though that was
hardly his motivation. Furthermore, as subsequent events unfolded what resulted was the nation went through
long-term pain for no gain (but this is only a personal opinion).



9 References
�

Up to Chapter 8 the channel model is that of additive white Gaussian noise (thermal
noise) with a bandwidth that is infinite or at least sufficiently large so that any effect it has
on the transmitted signal can be ignored. Chapter 9 studies the effect of bandlimitation.
Bandlimitation results in interference where the transmitted signal in a given signaling
interval interferes with the signals in adjacent intervals. Therefore, besides random thermal
noise, one has to contend with intersymbol interference. Methods to eliminate or mitigate
this interference are investigated in this chapter.

Wireless communications involves a transmitted signal being received over many paths.
This results in a phenomenon called fading where the received signal strength varies with
time. Chapter 10 develops this important channel model and the various challenges and
solutions associated with it.

The modulation/demodulation aspect concludes with Chapter 11 where three modern
modulation approaches are described and analyzed. The first modulation, known as trellis-
coded modulation (TCM) was discovered in the late 1970s and developed during the 1980s.
Its main feature is that a significant bandwidth reduction is achieved with no power or
error penalty. The second modulation paradigm presented is code-division multiple access
(CDMA) used in the so-called third (and future) generations of wireless communication
networks. Finally space-time coding, introduced in the late 1990s, concludes the chap-
ter. Space-time coding provides a significant improvement for wireless communication
where fading is present. Though advanced, the modulations are quite readily understood
in terms of the fundamental background material presented in the text up to this chapter.
In fact all three modulations can be classed under the rubric of coded modulation where
coding/modulation is viewed as a single entity. The coding (i.e., adding redundancy), how-
ever, is performed differently for the three modulations: in TCM it is done in the time
domain, in CDMA in the frequency domain, and in space-time modulation the redundancy
is accomplished by having a symbol and its variants transmitted over multiple antennas.

The book concludes with a chapter on synchronization, which appears last not because it
is any less important than the other topics covered but simply because one has to start and
end somewhere. Synchronization provides all the timing necessary in a digital communi-
cation system and therefore is of equal importance to modem design. Chapter 12 presents
two very common circuits used in digital communications: the phase-locked loop and the
early–late gate.
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2 Deterministic signal characterization and analysis

2.1 Introduction

The main objective of a communication system is the reliable transfer of information over
a channel. Typically the information is represented by audio or video signals, though one
may easily postulate other signals, e.g., chemical, temperature, and of course text, i.e., the
written word which you are now reading. Regardless of how the message signals origi-
nate they are, by their nature, best modeled as a random signal (or process). This is due to
the fact that any signal that conveys information must have some uncertainty in it. Other-
wise its transmission would be of no interest to the receiver, indeed the message would
be quite boring (known knowns so to speak1). Further, when a message signal is transmit-
ted through a channel it is inevitably distorted or corrupted due to channel imperfections.
Again the corrupting influences such as the addition of the ever present thermal noise
in electronic components, the multipath fading experienced in wireless communications,
are unpredictable in nature and again best modeled as nondeterministic signals or random
processes.

However, in communication systems one also utilizes signals that are deterministic, i.e.,
completely determined and therefore predictable or nonrandom. The simplest example is
perhaps the carrier used by AM or FM analog modulation. Another common example
is the use of test signals to probe a channel’s characteristics. Channel imperfections can
also be modeled as deterministic phenomena: these include linear and nonlinear distortion,
intersymbol interference in bandlimited channels, etc.

This chapter looks at the characterization and analysis of deterministic signals. Random
signals are treated in the next chapter. It should be mentioned at the outset that in certain sit-
uations whether a signal is considered deterministic or random is in the eyes of the viewer.
Only experience and application can answer this question. The chapter reviews determin-
istic signal concepts such as Fourier series, Fourier transform, energy/power spectra, auto
and crosscorrelation operations. Most of the concepts discussed carry over to random sig-
nals. Though intended to be self-contained it is expected that the reader has been exposed to
these concepts in other undergraduate courses, hence the treatment is presented succinctly.

1 For a discussion of knowns and unknowns see “The Secret Poetry of Donald Rumsfield” website
http://maisonbisson.com/blog/post/10086/.
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2.2 Deterministic signals

A deterministic signals is a defined, or completely specified, function of an independent
variable. The independent variable is invariably taken to be time (seconds) but it may be
some other independent variable, e.g., position, heat input (joules), etc. Typically the signal
is represented by a graph or analytically by an equation; but other possible representations
are a table of values, a statement in English, an algebraic or differential equation, or some
combination of the above. The most common representation is that of an equation, several
examples of which are given below along with their graphical representations.

(a) s(t) =
{

1, t ≥ 0
0, t < 1

. Known as the unit step function and often denoted by u(t).

(b) s(t) = e−atu(t), a > 0. A decaying exponential function.
(c) s(t) = e−a|t|, a > 0. Also a decaying exponential. It is an even function (also known as

a tent function).
(d) s(t) = V cos(2π fct). A periodic sinusoid, whose fundamental period is 1/fc (seconds).
(e) s(t) = V cos(2π fct)

[
u (t + T/2)− u (t − T/2)

]
. A tone burst of duration T (seconds).

(f) s(t) =∑∞
k=−∞ p(t − kT), where p(t) is an arbitrary signal (pulse) for 0 < t ≤ T and

equal to zero elsewhere. This is a train of delayed pulses.
(g) s(t) = m(t) cos (2π fct + dm(t)/dt), where m(t) = A sin(2π fmt), fm � fc. An ampli-

tude/phase modulated signal.
(h) s(t) = g(t − t0), where g(t) is any defined signal, perhaps one of the above. This is

simply a time shift of g(t) by t0 seconds – to the right if t0 is positive and to the left if
negative.

Signals (a)–(f) are represented graphically in Figure 2.1.
Though signals can be represented graphically or analytically in the time domain, it

is common to seek other representations which allow one to gain insight into the signal
characteristics and/or to deal with them more successfully. The most ubiquitous represen-
tation is a frequency domain one via either the Fourier series (for periodic signals) or the
Fourier transform (for aperiodic signals). Periodic signals have more structure than aperi-
odic signals and since their representation provides the stepping stone to aperiodic signal
representation, they are discussed next.

2.3 Periodic signals

2.3.1 Representation in a (Fourier) series expansion

A periodic signal is simply one where a “pulse,” p(t), is defined over a finite time interval
of [0, T1] seconds and repeated every T seconds, where T ≥ T1. Implicitly it is assumed
p(t) is zero outside the interval [0, T1]. Figure 2.2 illustrates various examples of periodic
signals. Analytically a periodic signal can be expressed as
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Graphs of example signals: (a) s(t) = u(t); (b) s(t) = e−atu(t), a > 0; (c) s(t) = e−a|t|u(t), a > 0; (d)
s(t) = V cos(2π fct); (e) s(t) = V cos(2π fct)[u(t + T/2)− u(t − T/2)]; (f) s(t) =∑∞

k=−∞ p(t − kT).

s(t) =
∞∑

k=−∞
p(t − kT), where p(t) =

{
arbitrary, t ∈ [0, T1], T1 ≤ T ,

0, elsewhere
(2.1)

which is simply example (f) of the previous section, written slightly differently. It is worth-
while to make two observations: (i) if a periodic signal is shifted to the left or right by T
or any integer multiple of T seconds, one sees graphically exactly the same signal, (ii) a
periodic signal has to last from minus infinity to plus infinity in time.
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Examples of commonly encountered periodic signals s(t) =∑∞

k=−∞ p(t − kT): (a) impulse train; (b)
square pulse train; (c) square wave; (d) sawtooth; (e) triangular wave; (f) full-wave rectified sinusoid.
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Though (2.1) describes the signal s(t), indeed one could even say that it does so con-
cisely, it turns out that when one considers the processing/filtering/generation of the signal
it is more convenient to expand s(t) in a series of sinusoidal functions as follows:2

s(t) =
∞∑

k=−∞

[
Ak cos(2πkfrt)+ Bk sin(2πkfrt)

]
, (2.2)

with fr = 1/T cycles/second or hertz.
The quantity fr is the repetition frequency,3 usually called the fundamental frequency,

and kfr, k a positive integer, is the kth harmonic frequency. The special case of k = 0
corresponds to the average or DC value of the signal.

Now elementary trigonometry establishes that

a cos(x)+ b sin(x) =
√

a2 + b2 cos

(
x− tan−1

(
b

a

))
. (2.3)

Applying this to (2.2) yields an equivalent representation for s(t) as follows:

s(t) =
∞∑

k=−∞

√
A2

k + B2
k cos

(
2πkfrt − tan−1

(
Bk

Ak

))

=
∞∑

k=−∞
Ck cos (2πkfrt − θk) , (2.4)

where Ck =
√

A2
k + B2

k is the amplitude of the kth harmonic with units of s(t) and θk =
tan−1 (Bk/Ak) (radians) is the phase.

Yet another equivalent representation is obtained by using the complex exponential
forms to express the cosine and sine functions, namely cos(x) = 1

2

(
ejx + e−jx

)
and sin(x) =

(1/2j)
(
ejx − e−jx

)
. Using these identities in (2.2) and performing straightforward algebra

gives:

s(t) =
∞∑

k=0

[(
Ak − jBk

2

)
ej2πkfrt +

(
Ak + jBk

2

)
e−j2πkfrt

]
. (2.5)

Denote (Ak − jBk)/2 as Dk and observe that D∗k = (Ak + jBk)/2. With this notation, (2.5)
can be written as

s(t) =
∞∑

k=0

[
Dkej2πkfrt + D∗ke−j2πkfrt

]
. (2.6)

Moreover, it can be shown (left as an exercise) that D∗k = D−k and the final representation
for s(t) in terms of complex exponentials is then

s(t) =
∞∑

k=−∞
Dkej2πkfrt. (2.7)

2 The series expansion is analogous to the Taylor/MacLaurin series expansion of a function.
3 In signal theory it is customary to use radian frequency ω = 2π f , with a unit of 2π (radian/cycle)

(cycle/second) = radian/second. We prefer the use of f and it will be used almost exclusively in this book.
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To proceed it seems advisable to establish a procedure to determine the coefficients of
the series expansion. If the coefficients Ak, Bk can be found then Ck, θk, and Dk are known.
Similarly, knowledge of Dk allows one to determine Ak, Bk or Ck, θk. The coefficients Ak,
Bk, Dk are readily determined by using the orthogonality property of harmonic sinusoids;
indeed that is why the frequencies of the sinusoids were chosen as they were. Orthogonality
is an important enough property to warrant a more general definition and discussion.

Orthogonality Two signals s1(t) and s2(t) are said to be orthogonal over a time interval,
t ∈ (t0, t0 + T), of duration T if and only if∫ t0+T

t0
s1(t)s2(t)dt = 0. (2.8)

Note that two aspects determine whether two signals are orthogonal: (i) the shapes of the
two signals and (ii) the time interval (t0, t0 + T). Orthogonality of two signals has the con-
notation that the two signals are at “right angles” and indeed the mathematical operation
expressed by (2.8) is directly analogous to the dot product of vectors encountered in mechan-
ics. This geometrical implication is exploited later to give a visual interpretation of many
concepts.

Going back to the problem at hand, that of determining the coefficients, straightforward
integration establishes the following:

(a)
∫ t0+T

t0
cos(2πkfrt) cos(2π lfrt)dt =

⎧⎨⎩
0, k 	= l

T/2, k = l 	= 0
T , k = l = 0

, (2.9a)

(b)
∫ t0+T

t0
sin(2πkfrt) sin(2π lfrt)dt =

⎧⎨⎩
0, k 	= l

T/2, k = l 	= 0
0, k = l = 0

, (2.9b)

(c)
∫ t0+T

t0
cos(2πkfrt) sin(2π lfrt)dt = 0, (2.9c)

(d)
∫ t0+T

t0
ej2πkfrte−j2π lfrtdt =

{
0, k 	= l
T , k = l

, (2.9d)

where t0 is arbitrary and fr = 1/T . Therefore the sinusoids (or complex exponentials) of
harmonic frequency, kfr, are orthogonal over a time interval of T seconds.

The fact that two sinusoids of different harmonic frequencies are orthogonal over the
interval T = 1/fr means that the coefficients Ak, Bk, Dk in the Fourier series expansion can
be determined “individually.” Simply multiply both sides of (2.2) by (2/T) cos(2πmfrt) or
(2/T) sin(2πmfrt) and integrate over a time interval of T seconds. Since all terms on the
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right-hand side (RHS) of (2.2), except for the k = m term, integrate to zero one has:

Am =

⎧⎪⎪⎨⎪⎪⎩
2

T

∫
t∈T

s(t) cos(2πmfrt)dt, m = 1, 2, · · ·
1

T

∫
t∈T

s(t)dt, m = 0 (average or DC of s(t))

(2.10a)

Bm = 2

T

∫
t∈T

s(t) sin(2πmfrt)dt, m = 1, 2, . . . (2.10b)

The factor 2/T (or 1/T for m = 0) is simply a normalizing constant used for convenience.
Similarly, the complex coefficients Dk are determined by

Dm = 1

T

∫
t∈T

s(t)e−j2πmfrtdt, m = 0,±1,±2, . . . (2.11)

Note that Dm needs to be calculated only for m = 0, 1, 2, . . .. Then the fact that D−m = D∗m
is used for negative m.

Though simple enough in principle the integrations of (2.10), (2.11) and the resultant
algebra can be quite tedious in practice. Some of this tedium can be alleviated, but alas
never completely eliminated, by using the six properties that are presented and discussed
next. Judicious application of these properties along with exploitation of signal symmetries
can in some instances significantly reduce the effort. Even if the straightforward approach
is taken to determine the coefficients, the properties may be used to provide a check on
one’s work.

2.3.2 Properties of the Fourier series

1. Superposit ion Suppose that the function, s(t), is expressed as, or can be expressed
as, the weighted sum of two functions, i.e.,

s(t) = αs1(t)+ βs2(t), (2.12)

where α, β are arbitrary constants and s1(t), s2(t) are periodic functions. The following
three cases are possible.

(i) The fundamental periods of s1(t) and s2(t) are the same and equal T seconds. Then
s(t) is periodic with fundamental period an integer multiple of T , typically T , and

s(t) =
∞∑

k=−∞

[
αD[s1(t)]

k + βD[s2(t)]
k

]
ej2πkfrt

⇒ D[s(t)]
k = αD[s1(t)]

k + βD[s2(t)]
k , (2.13)

where hopefully the notation D[·]
k is self-evident.

(ii) The functions s1(t) and s2(t) are periodic with fundamental periods T1 and T2, respec-
tively. Moreover, the ratio T1/T2 is a rational number. Then s(t) is periodic with
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fundamental period4 T = LCM{T1, T2}. The Fourier series coefficients are related
again to those of s1(t), s2(t), but not as simply as in (i).

(iii) The functions s1(t) and s2(t) are periodic with fundamental periods T1 and T2, respec-
tively. However, the ratio T1/T2 is an irrational number. Then there is no finite interval
T that contains simultaneously an integer number of periods of both signals s1(t) and
s2(t). The signal s(t) is therefore not periodic (i.e., it is aperiodic).

2. Change of interval The integration to determine Ak, Bk, Dk can be performed over
any time interval (t0, t0 + T), where t0 is arbitrary. Typically t0 is chosen to be −T/2 but
other choices may simplify the integration.

3. Time scal ing Let s(t) be a periodic function with fundamental period T . Define
s1(t) = s(γ t), where γ > 0 is the time scaling factor.

At t = 0, s1(0) = s(0) and at t = T/γ , s1(T/γ ) = s(T). This implies that s1(t) is periodic
with fundamental period T1 = T/γ , which means that f [s1(t)]

r = 1/T1 = γ /T = γ fr (Hz).
Note that s1(t/γ ) = s(t). Now the coefficient D[s1(t)]

k in the Fourier series expansion of s1(t)
is given by

D[s1(t)]
k = 1

T1

∫ T1/2

−T1/2
s1(t)e−j2πkf

[s1(t)]
r tdt= γ

T

∫ T/2γ

−T/2γ

s1(t)e−j2πkγ frtdt. (2.14)

Changing the integration variable to λ = γ t gives

D[s1(t)]
k = γ

T

∫ T/2

λ=−T/2
s1

(
λ

γ

)
e−j2πkγ fr(λ/γ ) dλ

γ

= 1

T

∫ T/2

λ=−T/2
s(λ)e−j2πkfrλdλ = D[s(t)]

k , (2.15)

which shows that the Fourier series coefficients are unchanged in magnitude or phase. But
the frequencies they are now associated with are changed from kfr to kγ fr.

4. Time displacement Consider a signal that is a time shifted version of a periodic
signal, s(t), i.e., s1(t) = s(t − τ ), where τ is the time shift. It is easy to see graphically that
s1(t) is also periodic with the same fundamental period T . To see the relationship between
the Fourier series coefficients of s(t) and those of s1(t), start with s(t) =∑∞

k=−∞ Dkej2πkfrt.
Then s1(t) = s(t − τ ) =∑∞

k=−∞ Dkej2πkfr(t−τ ) =∑∞
k=−∞

[
Dke−j2πkfrτ

]
ej2πkfrt. But the

RHS is simply the Fourier series of s1(t) and therefore the Fourier series coefficients of
s1(t) are

D[s1(t)]
k = D[s(t)]

k e−j2πkfrτ . (2.16)

5. Integrat ion Start with s(t), a periodic function with fundamental period T and
define s1(t) = ∫ t s(λ)dλ. The first observation is that if the DC value of s(t) is nonzero,

4 LCM means least common multiple. For example, LCM{3, 4} = 12.
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i.e., A0 = C0 = D0 	= 0, then s1(t) is not periodic because it will have a linear component
D0t which is not periodic. However, if the DC value is zero then

s1(t) =
∫ t

s(λ)dλ =
∫ t ∞∑

k=−∞
Dkej2πkfrλdλ

=
∞∑

k=−∞
Dk

∫ t

ej2πkfrλdλ

= K +
∞∑

k=−∞

Dk

j2πkfr
ej2πkfrt, (2.17)

where K is a constant of integration. This shows that

D[s1(t)]
k =

⎧⎨⎩ D[s(t)]
k

j2πkfr
, k = ±1,±2, . . .

K, k = 0.
(2.18)

The constant of integration represents the DC value of s1(t) and depends on how the inte-
gration is performed. This will be illustrated in an example later.

6. Differentiat ion Let s1(t) = ds(t)/dt where, as usual, s(t) =∑∞
k=−∞ Dkej2πkfrt and

fr = 1/T . Direct differentiation of the RHS gives s1(t) =∑∞
k=−∞

[
Dk(j2πkfr)

]
ej2πkfrt,

which simply implies that

D[s1(t)]
k = j2πkfrD[s(t)]

k . (2.19)

2.3.3 Examples of Fourier series

When one models a physical signal, one looks for a model that both captures the essence of
the signal and also simplifies subsequent analysis. One consequence is that discontinuities
are introduced. Perhaps the square pulse is the simplest example of this. Differentiation
of discontinuities leads to the concept of the impulse or delta function. The impulse
function, though strictly speaking a mathematical fiction, is of considerable importance
in signal and system analysis. Before presenting the examples, the impulse function is
discussed.

Impulse function The impulse function, also known as the delta function, is typically
denoted by δ(t) and is a function that is zero for t 	= 0, infinite (i.e., mathematically
undefined) at t = 0, and has an area under it that is unity, i.e.,

∫∞
−∞ δ(t)dt = 1. It is com-

monly defined as the limit of the square pulse shown in Figure 2.3(a). As � (hence one
of the names) tends to zero, it is easy to see that the area of the pulse remains 1,
that s�(t) becomes zero for nonzero t, and that at t = 0 the amplitude goes to infin-
ity which corresponds to all the characteristics ascribed to an impulse function. Therefore
δ(t) = lim�→0 s�(t).
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One can generalize the impulse by considering the square pulse of Figure 2.3(b). Now
in the limit as � → 0, the following happens. The function is zero for t 	= t0, its amplitude
approaches infinity at t = t0, and the area of the pulse is always V. The quantity V is called
the strength of the impulse. Notationally, in the limit the square pulse in Figure 2.3(b) results
in Vδ(t− t0).

Two parameters define an impulse function: its strength V and its location t0. A very impor-
tant property of the impulse function, particularly for our purposes, is the sifting or sampling
property which states that whenever a unit (V = 1) impulse is “embedded” within an inte-
grand the value of the integral is simply the value of whatever else is keeping it company in
the integrand evaluated at the time the impulse occurs, i.e.,∫ ∞

−∞
δ(t− t0)s(t)dt = s(t)

∣∣∣∣
t=t0

= s(t0), (2.20)

where it is assumed s(t) is continuous at t = t0.
The proof relies on the characteristics of the impulse function, is quite straightforward, and

is left to the reader. More specifically, it relies on the fact that the strength of the impulse
when multiplied by a function is the value of the function evaluated at the location of the
impulse,5 i.e.,

s(t)δ(t− t0) = s(t0)δ(t− t0). (2.21)

Other useful relationships regarding the impulse function are:

δ(t) = δ(−t), (2.22)and

δ(γ t) = 1
γ

δ(t), γ > 0. (2.23)

Having presented a number of properties and introduced the impulse function it is time
to consider examples. Because of properties 2 (change of interval) and 4 (time shift), in the
examples the integration period is taken to be from−T/2 to T/2 with the signal “centered”
at t = 0 to exploit any symmetry. Only the coefficients, Dk, are determined. As mentioned,
it is straightforward to obtain Ak, Bk or Ck, θk coefficients from Dk.

t
0

2

Δ−
2

Δ

1

Δ

(a) δ (t) = lim sΔ (t)

t
0

2
t0 t0

Δ−
2

Δ+

V

Δ

t0

sΔ (t) sΔ (t)

Δ→ 0
(b) Vδ (t – t0) = lim sΔ (t)

Δ→ 0�Fig. 2.3
Definition of the impulse function as the limit of a square pulse: (a) unit strength impulse at t = 0; (b)
impulse of strength V at t = t0.

5 Therefore in terms of terminology one can say that in (2.21) the impulse samples the value of s(t) whereas in
(2.20) it sifts out the value of s(t).
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Example 2.1 impulse train Because a periodic signal with discontinuities when
differentiated results in a periodic train of impulses, the first example considers the periodic
train of impulses shown in Figure 2.2(a). The Fourier coefficients are

Dk = 1

T

∫ T/2

−T/2
s(t)e−j2πkfrtdt = 1

T

∫ T/2

−T/2
Vδ(t)e−j2πkfrtdt = V

T
. (2.24)

Observe that a periodic train of impulses results in a Fourier series where the coefficient
of each frequency is the same. Since the average power of a sinusoid, V cos(2π ft), is
V2/2 watts, one concludes that a periodic sequence of impulses has equal power at each
harmonic frequency. �

Example 2.2 square pulse train For the square pulse train shown in Figure
2.2(b), it is straightforward to determine Dk directly as follows:

Dk = 1

T

∫ T/2

−T/2
s(t)e−j2πkfrtdt = V

T

∫ T/2

0
e−j2π k

T tdt = V

j2πk

(
1− e−jπk

)
. (2.25)

Since e−jπk = 1 when k is even and e−jπk = −1 when k is odd, one has

Dk =

⎧⎪⎪⎨⎪⎪⎩
V/jπk, k odd

0, k even

V/2, k = 0 (i.e., D0)

. (2.26)

Note that to determine D0 by setting k = 0 in the general expression for Dk results in
0/0 and one must resort to l’Hospitale’s rule to determine the value of this indeterminate
expression. However, recall that D0 is the average or DC value of the signal over T seconds.
Therefore D0 = area under the pulse/period = V(T/2)/T = V/2. �

Example 2.3 square wave For the square wave in Figure 2.2(c), again though it is
straightforward enough to determine Dk = D[s(t)]

k directly, to illustrate the use of the proper-
ties “decompose” s(t) as shown in Figure 2.4 into s1(t) and s2(t). Since s(t) = s1(t)+ s2(t),
it follows from the superposition property that D[s(t)]

k = D[s1(t)]
k + D[s2(t)]

k . Note that D[s1(t)]
k

has been already determined in the last example. Furthermore, s2(t) = −s1(t − T/2).
Applying the amplitude scaling and time shifting (τ = T/2) properties yields D[s2(t)]

k =
−D[s1(t)]

k e−jπk. Finally,

D[s(t)]
k = D[s1(t)]

k + D[s2(t)]
k = D[s1(t)]

k

(
1− e−jkπ

)
=
{

2V/jπk, k odd

0, k even
. (2.27)

Note that D[s(t)]
0 = 0 as is easily seen from the graph of s(t). �
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�Fig. 2.4 Representing the square wave of Figure 2.2(c) as the sum of s1(t) and s2(t).

(–V )
0

V

T

ds(t)
dt

t
–3T –2T –T T 2T 3T

�Fig. 2.5 Derivative of the sawtooth wave of Figure 2.2(d) over interval 0+ to T+.

Example 2.4 sawtooth wave Consider the sawtooth wave in Figure 2.2(d). The
DC value is easily determined to be D[s(t)]

0 = V/2. To determine D[s(t)]
k for k 	= 0,

differentiate s(t) to obtain the waveform s1(t) shown in Figure 2.5.
From the differentiation property one has D[s1(t)]

k = (j2πk/T)D[s(t)]
k or D[s(t)]

k =
D[s1(t)]

k /(j2πk/T). Next, determine D[s1(t)]
k by direct integration over the interval 0+ to T+

as follows:

D[s1(t)]
k = 1

T

∫ T+

0+
V

T
e−j2π k

T tdt + 1

T

∫ T+

0+
−Vδ(t − T)e−j2π k

T tdt

= V

T

1− e−j2πk

j2πk
− V

T
e−j2πk = −V

T
. (2.28)

Therefore

D[s(t)]
k = D[s1(t)]

k

j2πk/T
=
{
−V
/

j2πk, k 	= 0

V
/

2, k = 0
. (2.29)

�

Example 2.5 tr iangular wave For the triangular wave in Figure 2.2(e), differentia-
tion of s(t) results in the square wave of Figure 2.6, which is the square wave considered in
Example 2.3 scaled by −2/T . As seen in the previous example the DC term vanishes due
to the differentiation. But D[s(t)]

0 is easily seen to be (VT/2)/T = V/2. Next, to apply the
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t
0−3T −2T −T T 2T 3T

2V

T

2V

T
−

�Fig. 2.6 Derivative of the triangular wave of Figure 2.2(e).
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3T

2

5T
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−

ds(t)
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T
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(4πfmV)

−(2π fm)2V�Fig. 2.7 First and second derivatives of the full-wave rectified sinusoid of Figure 2.2(f).

differentiation property D[s(t)]
k = D[s1(t)]

k /(j2πk/T), determine D[s1(t)]
k by applying ampli-

tude scaling to the results of Example 2.3 to obtain D[s1(t)]
k = (−2/T) (2V/jπk) for k odd,

and D[s1(t)]
k = 0 for k even. Therefore

D[s(t)]
k =

⎧⎪⎪⎨⎪⎪⎩
2V/π2k2, k odd

0, k even, k 	= 0

V/2, k = 0

. (2.30)

�

Example 2.6 rect i fied sinusoid The rectified sinusoid is shown in Figure 2.2(f).
After two differentiations (see Figure 2.7) one obtains the following signal in the interval
−T+/2 to T+/2:

d2s(t)

dt2
= −(2π fm)2V cos(2π fmt)+ 4π fmVδ

(
t − T

2

)
= −(2π fm)2s(t)+ 4π fmVδ

(
t − T

2

)
. (2.31)
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Equivalently,

d2s(t)

dt2
+ (2π fm)2s(t) = 4π fmVδ

(
t − T

2

)
, (2.32)

which implies that

(j2πkfr)2D[s(t)]
k + (2π fm)2D[s(t)]

k = 4π fmVD[δ(t−T/2)]
k (2.33)

where fr = 2fm = 1/T . Now

D[δ(t−T/2)]
k = 1

T

∫ T+/2

−T+/2
δ

(
t − T

2

)
e−j2π k

T tdt = e−jkπ

T
= (−1)k

T
. (2.34)

Therefore, [
−4π2k2f 2

r + π2f 2
r

]
D[s(t)]

k = 2π f 2
r V(−1)k

⇒D[s(t)]
k = 2V(−1)k

π (1− 4k2)
, ∀k. (2.35)

�

Example 2.7 integrat ion The last example to be considered illustrates the integra-
tion property. Let the signal of Figure 2.2(c) be passed through an integrator as shown in
Figure 2.8, where 1/T is a scaling factor which makes the output amplitude independent
of T .

Using the results of Example 2.3 and the integration property, one has

D[s0(t)]
k = 1

T

D[s(t)]
k

j2πk/T
= 2V

(j2πk)(jπk)
=
{
−V/π2k2, k odd

0, k even, k 	= 0
. (2.36)

The DC value, D[s0(t)]
0 , depends on when we visualize the integrator as having “started.”

This is shown in Figure 2.9, where the input signal is shown along with the output signal
for three different starting times. Note that one should visualize the integrator as acting
both before and after the starting time. Clearly, D[s0(t)]

0 = −V/4 for t1, D[s0(t)]
0 = 0 for t2,

and D[s0(t)]
0 = V/4 for t3. �

t
0–T T

2
T

2
T–

V

–V

(•)dt
1
T ∫ so(t)

s(t)

�Fig. 2.8 Integration of a periodic signal.
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�Fig. 2.9 Effect on output signal of different starting times for the integrator.

2.3.4 Discussion of examples

Having determined the Fourier series for a number of periodic signals several statements
can be made from the obtained coefficients. Coefficients Dk for the square wave of Figure
2.2(c) have only an imaginary component, which means that Ak = 0, or that only sine terms
are present in the signal. Note that s(t) is an odd function about t = 0, i.e., s(t) = −s(−t)
which implies that only the harmonics sin(2πkfrt) (which are odd time functions) are
needed to represent it. This is true in general: if (and only if) s(t) is an odd periodic func-
tion, then the real component of Dk is zero, i.e., Ak = 0 or θk = ±π/2. Though the signal
of Figure 2.2(b) is not odd, the coefficients have Ak = 0 for all nonzero k, which appears to
contradict what has just been said. However, once the DC value of V/2 is subtracted, one
obtains an odd function. The same remark applies to the signal of Figure 2.2(d).

The signals of Figures 2.2(e), 2.2(f) are even functions about t = 0, i.e., s(t) = s(−t).
The Fourier coefficients, Dk, have only real components since Bk = 0, implying that only
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the harmonics cos(2πkfrt) (even time functions) are needed for the representation. Again
this is true in general: if (and only if) s(t) is an even periodic function, then the imaginary
component of Dk is zero, i.e., Bk = 0 for all k or θk = 0 (or π if Ak is negative).

The signals of Examples 2.2, 2.3, 2.5 have nonzero harmonics only for odd k. This is
not happenstance. It is because these signals possess what is called half-wave symmetry. If
one shifts a signal by±T/2 seconds and upon flipping it over obtains the same signal, then
the signal has half-wave symmetry, i.e., s(t) = −s (t ± T/2). In general, if a periodic signal
has half-wave symmetry (after the DC value is subtracted out) it will have only nonzero
odd harmonics., i.e., excluding D0, Dk = 0 for all even k. It should be pointed out that s(t)
can exhibit half-wave symmetry and be neither an odd nor even function. If in addition to
having half-wave symmetry, s(t) is also even or odd, then it is said to exhibit quarter-wave
symmetry, even or odd quarter-wave symmetry, respectively.

Finally consider the behavior of the coefficients with k keeping in mind that k indexes the
frequency of the harmonics. In particular, consider the magnitude, |Dk|. The harmonics of
the first example have the same magnitude at all k. The second, third, and fourth examples
have harmonics whose magnitudes decay as 1/k, while those of the fifth and sixth examples
decay as 1/k2, considerably faster. The behavior of the harmonic magnitudes is related
directly to how many times s(t) can be differentiated before an impulse (or equivalently a
discontinuity) first appears. The rule is that if an impulse first appears in dns(t)/dtn then
|Dk| ∝ 1/kn.

2.3.5 Frequency spectrum of periodic signals

The expansion of a periodic signal into an infinite series of orthonormal sinusoidal func-
tions is done to obtain a representation in the frequency domain. At each harmonic
frequency the signal has a magnitude and phase which can be obtained from one of the sets
{Ak, Bk}, {Ck, θk}, or {Dk}. It is customary to plot |Dk|, 	 Dk, k = 0,±1,±2, . . . to obtain a
two-sided spectrum where negative ks reflect the e−j2πkfrt terms and are called negative fre-
quencies. The same information is presented by {Ck, θk} except that since k = 0, 1, 2, . . .,
only the positive frequency axis is needed. Regarding Ck, a distinction should be made
between Ck, called the amplitude, and the magnitude of Ck, namely |Ck|. The coefficient
Ck is always a real number (for a real signal, s(t)), but it could be positive or negative. If
negative, then in addition to the phase θk the harmonic has a further phase of π radians
which should be taken into account if plots of {|Ck|, θk} versus kfr are presented. Finally
note that |Ck| = 2|Dk| and θk = 	 Dk so that only plots of {|Dk|, 	 Dk} need to be considered
and that is what is done here.

Figure 2.10 shows the magnitude and phase plots for Examples 2.3, 2.4, 2.5. Because
a periodic signal contains only discrete frequency components it is logical to call this a
discrete frequency spectrum. Though the discrete frequency spectrum gives an alternative
representation of a periodic signal, the motivation for using this representation still needs
to be addressed. There are at least three primary motivations: (i) to synthesize the signal,
(ii) to filter the signals, which typically involves the filtering of undesired signal compo-
nents (usually called noise) while leaving the desired signal as undistorted as possible,
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Magnitude and phase plots for: (a) Example 2.3, (b) Example 2.4, and (c) Example 2.5. Note that the
axes’ units are: (i) for the vertical axis |Dk| has the unit of the signal, typically volts, 	 Dk has the unit of
radians, (ii) the horizontal axis is a normalized frequency, k = f /fr , where fr is the fundamental frequency.
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(iii) to determine the bandwidth required to pass the signal through a channel relatively
undistorted.

All of the above require a measure of performance and the typical measure chosen is
average power. The average power of a periodic signal is6

Pav = 1

T

∫ T/2

−T/2
|s(t)|2dt = 1

T

∫ T/2

−T/2
s(t)s∗(t)dt (watts). (2.37)

In terms of the Fourier series representation, it can be calculated as

Pav = 1

T

∫ T/2

−T/2

⎡⎣ ∞∑
k=−∞

Dkej2πkfrt

⎤⎦⎡⎣ ∞∑
l=−∞

Dle
j2π lfrt

⎤⎦∗ dt

=
∞∑

k=−∞

∞∑
l=−∞

DkD∗l
1

T

∫ T/2

−T/2
ej2π (k−l)frtdt. (2.38)

Using the orthogonality property of the complex exponential over the period T reduces
(2.38) to

Pav =
∞∑

k=−∞
|Dk|2 = |D0|2 + 2

∞∑
k=1

|Dk|2. (2.39)

The above shows that

1

T

∫ T/2

−T/2
|s(t)|2dt =

∞∑
k=−∞

|Dk|2, (2.40)

a relationship known as Parseval’s theorem (in this case for periodic signals).
To judge the quality of a synthesized signal or the required bandwidth needed to pass the

signal relatively undistorted one can ask how many terms are needed to “capture” a certain
percentage of the signal’s average power, i.e., determine N such that:

% power captured = P[captured]
av

Pav
× 100

= |D0|2 + 2
∑N

k=1 |Dk|2
Pav

× 100. (2.41)

Analytical expressions are not available for finite sums of the form∑N
k=1 1/kn, but these are readily programmed to obtain plots such as those shown in

Figure 2.11 for Examples 2.3–2.6. Table 2.1 lists N, the number of harmonics, needed
to capture the specified amount of signal power. From this one can judge the bandwidth

6 Though s(t) is a real-time signal, its Fourier series representation in terms of Dk is a complex-time signal.
Hence the complex conjugate. One also encounters complex-time functions when what is called the equivalent
baseband model of a communication system is used.
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Table 2.1 Number of harmonics needed to capture the specified amount
of signal power

Signal % captured power

90 95 98 99

(a) Square wave N = 3 N = 9 N = 21 N = 41
(b) Sawtooth wave N = 1 N = 3 N = 8 N = 15
(c) Triangular wave N = 1 N = 1 N = 1 N = 1
(d) Rectified sinusoid N = 1 N = 1 N = 1 N = 1
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�Fig. 2.11
Plots of the percentage power captured for: (a) Example 2.3 (square wave); (b) Example 2.4 (sawtooth
wave); (c) Example 2.5 (triangular wave); (d) Example 2.6 (rectified sinusoid).

needed to pass the signal relatively undistorted or the number of terms needed to synthe-
size the signal. Figures 2.12 and 2.13 compare graphically the synthesized signals using N
terms with the actual sawtooth wave and the rectified sinusoid, respectively.

To illustrate the last application of Fourier series, that of filter design, consider the design
of a simple power supply circuit shown in Figure 2.14. The full-wave rectifier, under the
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�Fig. 2.12
Comparison of synthesized signals and the actual sawtooth wave: (a) actual sawtooth wave,
(b) synthesized sawtooth wave N = 5; (c) synthesized sawtooth wave N = 10; (d) synthesized sawtooth
wave N = 100.

condition that the current always flows in the output, produces a periodic signal vin(t) which
is that of Example 2.6. The useful component of this signal is the DC value, D0, while the
AC portion of the signal is a ripple which is undesirable. The function of the ripple filter is
to filter out this ripple component while passing the DC component undistorted.

In the sinusoidal steady state the output vout(t), is also a periodic signal with the same
period as the input. However, the magnitude and phase of each harmonic is modified by
the transfer function, H(f ), of the ripple filter/load circuit. From elementary circuit theory
one has

H(f ) = RL

(RL − 4π2f 2RLLC)+ j2π fL
= 1

(1− 4π2f 2LC)+ j2π fL/RL
. (2.42)

The output coefficients are given by:

D[vout(t)]
k = H(f )

∣∣∣∣
f=kfr

× D[vin(t)]
k

= 1

(1− 4π2k2f 2
r LC)+ j2πkfr(L/RL)

2V(−1)k

π (1− 4k2)
. (2.43)
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Comparison of synthesized signals and the actual rectified sinusoid: (a) actual rectified sinusoid; (b)
synthesized rectified sinusoid N = 5; (c) synthesized rectified sinusoid N = 10; (d) synthesized rectified
sinusoid N = 100.
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�Fig. 2.14 Power supply – ripple filter design.

An important parameter in power supply design is the ripple factor, which is defined as:

ripple factor = RMS value of the AC signal components

DC value of the signal

=
√

2
∑∞

k=1 |Dk|2
D0

, (2.44)
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where RMS means root-mean-squared. For the circuit shown the ripple factor is:

ripple factor =

√
2
∑∞

k=1 |H(kfr)|2
∣∣∣D[vin(t)]

k

∣∣∣2∣∣∣D[vin(t)]
0

∣∣∣
=

√
2
∑∞

k=1
1

(1− 4π2k2f 2
r LC)2 + (2πkfr(L/RL))2

4V2

π2(1− 4k2)2

2V/π

= √2

√√√√ ∞∑
k=1

1

(1− 4π2k2f 2
r LC)2 + (2πkfrL/RL)2

×
√

1

(1− 4k2)2
. (2.45)

The above is an exact expression for the ripple factor but it does not readily yield any
insight for design. Recall, however, that most of the AC power is in the first harmonic
(k = 1). Therefore only the first term is retained in the sum, which gives

ripple factor = √2

√
1

(1− 4π2f 2
r LC)2 + (2π frL/RL)2

√
1

9

≈
√

2

3

1∣∣1− 4π2f 2
r LC

∣∣ . (2.46)

Lastly a bit of thought convinces one that if the power supply is to be well designed the
ripple factor should be � 1. This implies that 4π2f 2

r LC should be � 1 and therefore

ripple factor ≈
√

2

3

1

4π2f 2
r LC

. (2.47)

Using a mains frequency of 60 hertz, fr = 120 hertz, the ripple factor expression is

ripple factor ≈ 0.83× 10−6

LC
, (2.48)

or

ripple factor ≈ 0.83

LC
, (2.49)

where C is in microfaradays and L is in henries.

2.3.6 Fourier series of a product of two signals

To complete the discussion of periodic signals and their Fourier series representation we
consider one last property. Namely, what is the Fourier series of a signal that is the product
of two periodic signals with the same period.
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To this end, let s(t) = s1(t)s2(t), where signals s1(t) and s2(t) are periodic with the same
fundamental period T or fr = 1/T . Substituting in the Fourier series representations of
s1(t), s2(t), one has

s(t) =
∞∑

k=−∞
D[s1(t)]

k ej2πkfrt
∞∑

l=−∞
D[s2(t)]

l ej2π lfrt. (2.50)

Consider the second sum. By letting the dummy index variable l be −l it can be written as∑∞
l=−∞ D[s2(t)]

−l e−j2π lfrt. The Fourier series representation of s(t) is now

s(t) =
∞∑

k=−∞

⎡⎣ ∞∑
l=−∞

D[s1(t)]
k D[s2(t)]

−l ej2π (k−l)frt

⎤⎦ . (2.51)

Let m = k − l, which implies that l = k − m. Note that index variable m also ranges from
−∞ to ∞. Therefore

s(t) =
∞∑

k=−∞

[ ∞∑
m=−∞

D[s1(t)]
k D[s2(t)]

m−k ej2πmfrt

]

=
∞∑

m=−∞

⎡⎣ ∞∑
k=−∞

D[s1(t)]
k D[s2(t)]

m−k

⎤⎦ ej2πmfrt, (2.52)

where the second equality follows by simply interchanging the order of summation. But
the RHS of the last equality is simply the Fourier series representation of s(t) where the
coefficient D[s(t)]

m is given in terms of the Fourier series coefficients of s1(t) and s2(t) by

D[s(t)]
m =

∞∑
k=−∞

D[s1(t)]
k D[s2(t)]

m−k =
∞∑

k=−∞
D[s1(t)]

m−k D[s2(t)]
m . (2.53)

The above mathematical operation, which in this case arose to determine the coeffi-
cients D[s(t)]

m , is a very important one in linear system theory and signal processing. It is
called convolution. It is denoted usually by the symbol ∗ and Equation (2.53) is written
as D[s(t)]

k = D[s1(t)]
k ∗ D[s2(t)]

k . The convolution operation has a graphical interpretation that

aids in understanding the mathematical operation. Visualize the coefficients D[s1(t)]
k and

D[s2(t)]
k plotted on two separate graphs.7 Flip one set of coefficients, say D[s2(t)]

k , about the

vertical axis to produce D[s2(t)]
−k . Then slide the coefficients D[s2(t)]

−k to the left or right by

the value of index m to get D[s2(t)]
m−k . Multiply the set {D[s1(t)]

k } by the set {D[s2(t)]
m−k } point by

point and sum the resultant products to obtain D[s(t)]
m . Repeat for another m. Figure 2.15

illustrates the procedure with a simple toy example.
Since convolution is a mathematical operation that tends to cause some difficulty when

first encountered a comment is in order. The graphical interpretation aids one in doing
the algebra. The algebra in this case, as shown, is complex number multiplication and
addition, no more, no less. Observe that a positive m means a shift of D−k+m to the right

7 Some imagination is required here since in general the coefficients are complex numbers.
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�Fig. 2.15 Fourier coefficients of the product of two periodic signals determined by graphical convolution.
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by m units. This is a consequence of the fact that we are dealing with D−k, that is the flipped
version of Dk.

Lastly an important engineering observation is that s(t) has frequency components not
present in either s1(t) or s2(t). This is because multiplication is a nonlinear operation and
passing signals through nonlinearities such as squarers, rectifiers, saturation, etc., creates
frequencies that were not present in the input signal. This is in contrast to a linear operation
(or filter), which never creates new frequencies, it only modifies the magnitude/phase of
the frequencies in the input signal.

2.4 Nonperiodic signals

2.4.1 Derivation of the Fourier transform representation of a nonperiodic
signal

Attention is turned now to nonperiodic signals, specifically signals of finite energy where∫ ∞

−∞
|s(t)|2dt < ∞. (2.54)

As with periodic signals what is desired is a frequency domain representation of the nonpe-
riodic signal. To obtain this representation we start with the periodic signal, s(t), shown in
Figure 2.16(a). Keep the shape of the basic pulse, p(t), unchanged and increase the period
to T1 = αT , α > 1 as shown in Figure 2.16(b). As T1 or α approaches ∞ the periodic
signal becomes nonperiodic, as shown in Figure 2.16(c). Consider now the Fourier series
coefficients for the signals of Figure 2.16, note that f [s1(t)]

r = 1/αT = fr/α:

D[s(t)]
k = 1

T

∫ T
2

− T
2

p(t)e−j2πkfrtdt, (2.55a)

D[s1(t)]
k = 1

αT

∫ αT
2

− αT
2

p(t)e−j2π k
α

frtdt

= 1

α

[
1

T

∫ T
2

− T
2

p(t)e−j2π k
α

frtdt

]
. (2.55b)

For simplicity visualize α to be integer. Then it is readily seen from (2.55b)
that D[s1(t)]

k=±α,±2α, . . . = (1/α)D[s(t)]
k=±1,±2, . . .. In other words, D[s1(t)]

k=±α,±2α, . . . is the same as

D[s(t)]
k=±1,±2, . . . except for the scaling factor 1/α. Recall also that the spacing between fre-

quency points, �f , is equal to the fundamental frequency, fr or f [s1(t)]
r = fr/α. Therefore as

the period is increased the spacing between harmonics becomes smaller or in a given fre-
quency range the number of harmonics increases. This is illustrated in Figure 2.17 for the
case that p(t) is a rectangular of amplitude V over [−T/3, T/3] and α = 3. These remarks
hold for any α > 1. From this discussion one concludes that as α →∞ the harmonics
come closer and closer together, indeed become infinitesimally close, and also that they
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Derivation of the Fourier transform of a nonperiodic signal: fundamental period is (a) T , (b) αT, α > 1,
(c) approaching ∞.
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Illustration of the effect of increasing the fundamental period while keeping the basic pulse p(t)
unchanged. Here p(t) is a rectangular of amplitude V over [−T/3, T/3].
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become infinitesimally small in amplitude. The sum of these infinitesimally small harmon-
ics, spaced infinitesimally apart becomes an integration and results in a useful integral
representation of finite energy, nonperiodic signals called the Fourier transform.

To derive the Fourier transform representation start as above by assuming s(t) is
periodic with fundamental period T . Then the Fourier series representation of s(t) is
s(t) =∑∞

k=−∞ Dkej2π (k/T)t with Dk = (1/T)
∫ T/2
−T/2 s(t)e−j2π(k/T)tdt. Denote the spacing

between the harmonics by �f = 1/T . Then D[s(t)]
k = �f

∫ 1/2�f
−1/2�f s(t)e−j2π(k�f )tdt. Now let

the period T run to infinity which means that �f goes to zero. Therefore, as long as the
integral is finite, then the coefficients D[s(t)]

k = �f
∫ 1/2�f
−1/2�f s(t)e−j2π(k�f )tdt → 0. However,

if the integral is finite, then the ratio D[s(t)]
k /�f is a definite value. The fact that s(t) is a finite

energy signal is a sufficient condition for the integral to be finite. Therefore consider the
ratio D[s(t)]

k /�f in the limit as �f → 0. As �f → 0 the spacing between the harmonics,
�f , becomes infinitesimal. The frequency, f , of the kth harmonic is f = k�f , which sug-
gests that as �f → 0 the value of k must approach infinity to keep the product k�f equal to
f . That is, instead of discrete frequencies corresponding to the harmonics, every frequency
value is allowed and the discrete index k is replaced by the continuous frequency variable,
f . Therefore:

lim
�f→0

D[s(t)]
k

�f
= lim

�f→0

∫ 1/2�f

−1/2�f
s(t)e−j2π(k�f )tdt =

∫ ∞

−∞
s(t)e−j2π ftdt. (2.56)

Note that the limit becomes a function of f . It is typically denoted by a capital letter and is
called the Fourier transform of the signal s(t),

S(f ) =
∫ ∞

−∞
s(t)e−j2π ftdt. (2.57)

The units of S(f ) are those of D[s(t)]
k /�f or units of s(t)/hertz. For this reason S(f ) is called a

spectral density: it shows how the amplitude of s(t) is distributed in the frequency domain.
Having represented s(t) by sinusoids with a continuous range of frequencies, albeit of

infinitesimal amplitude, we consider how to reconstruct s(t) from S(f ). Again the reasoning
proceeds from the Fourier series representation,

s(t) =
∞∑

k=−∞
Dkej2π (k�f )t. (2.58)

But Dk = S(f )�f and therefore s(t) =∑∞
k�f /�f=−∞ S(f )�f ej2π (k�f )t. As �f → 0 it

becomes infinitesimally small, i.e., �f → df and k�f → f , and the summation becomes
an integration. Therefore

s(t) =
∫ ∞

−∞
S(f )ej2π ftdf ; (2.59)

this is called the inverse Fourier transform. The operations of direct and inverse Fourier
transformation will be denoted by F and F−1, respectively.

Before considering a few examples of the Fourier transform and its properties an
interpretation of the transform is given. The Fourier transform was arrived at through
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mathematical manipulation and, as mentioned, it is a representation of the signal s(t),
where s(t) is resolved into sinusoids of infinitesimal amplitude at frequencies that are
“spaced” infinitesimally apart. This frequency domain representation results in a spectrum;
the spectrum, however, is not discrete, as was the case for periodic signals, but continuous.
Furthermore, though the Dk coefficients have the same unit as s(t), the unit of S(f ) is the
s(t) unit per hertz. For this reason the spectrum is not only a continuous one but it is
also a density, i.e., a continuous amplitude spectral density. It tells one how the ampli-
tude of s(t) is concentrated with regard to frequency. Higher values of S(f ) mean that more
amplitude (and eventually more energy) is concentrated around these frequencies. This
is directly analogous to the concept of mass density or gas concentration encountered in
mechanics. Though an object may have a uniform density throughout its volume (units of
mass/volume), no point within the object has finite mass. Finite mass is associated with
finite volume only.

2.4.2 Examples of the Fourier transform

The Fourier transform of s(t), S(f ), is, in general, a complex function. Therefore, as with Dk

the coefficients for periodic signals, S(f ) can be resolved into either a magnitude and phase
or into real and imaginary components, i.e., S(f ) = |S(f )|ej	 S(f ) = R{S(f )} + jI{S(f )}.
Usually the magnitude/phase representation is chosen since it is the most informative. It is
important to note that the Fourier transform pair is unique, important because it assures us
that when one goes from the time domain, s(t), to the frequency domain, S(f ), one can get
to the same s(t) (proof of this is left as an exercise for the reader).

Example 2.8 one-sided decaying exponential The signal under considera-
tion is shown in Figure 2.18(a). The Fourier transform pair is as follows:

s(t) = Ve−atu(t), a > 0, (2.60a)

S(f ) =
∫ ∞

−∞
Ve−atu(t)e−j2π ftdt

= Ve−(a+j2π f )t

−(a+ j2π f )

∣∣∣∣∞
t=0

= V

a+ j2π f
, (2.60b)

|S(f )| = V√
a2 + 4π2f 2

, 	 S(f ) = − tan−1
(

2π f

a

)
, (2.60c)

R{S(f )} = Va

a2 + 4π2f 2
, I{S(f )} = − V2π f

a2 + 4π2f 2
. (2.60d)

The following observations can be made from (2.60a) and (2.60b). |S(f )| is an even func-
tion in f , while 	 S(f ) is an odd function. Similarly R{S(f )} is even while I{S(f )} is odd.
Furthermore S(−f ) = V/(a− j2π f ) = S∗(f ). For real nonperiodic signals these observa-
tions are always true with the proof left as an exercise. Plots of S(f ) and 	 S(f ) are given in
Figure 2.18(b). It shows that the signal amplitude is concentrated around f = 0. At
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(a) One-sided decaying exponential, (b) two-sided magnitude and phase spectra, and (c) one-sided
magnitude and phase spectra.

f = a
/

2π , |S(f )| = S(0)
/√

2 and is known as the 3 dB frequency or the half-power point.
The plot of Figure 2.18(b) is the two-sided spectral density of amplitude and phase. The
same information is easily presented by a one-sided spectral density as shown in Figure
2.18(c). Though the one-sided graph represents the physical phenomena the two-sided
spectral density is the one used in analysis.8 The one-sided spectral density is directly
analogous to Ck and θk where |Ck| = 2|Dk| and θk = 	 Dk. �

8 It is a standing challenge of the authors to have someone demonstrate a negative frequency in the lab.
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�Fig. 2.19 (a) Tent function and (b) its Fourier transform.

Example 2.9 tent funct ion For the tent function shown in Figure 2.19(a), one has

s(t) = Ve−a|t|, a > 0, (2.61a)

S(f ) =
∫ ∞

−∞
Ve−a|t|e−j2π ftdt

=
∫ 0

−∞
Veate−j2π ftdt +

∫ ∞

0
Ve−ate−j2π ftdt

= V2a

a2 + 4π2f 2
. (2.61b)

Observe that S(f ) is real, i.e., I{S(f )} = 0. This is a consequence of s(t) being an even
function. The general statement is: if (and only if) s(t) is an even function, then S(f ) has
only a real component. �

Example 2.10 For the function plotted in Figure 2.20(a), one has

s(t) = Ve−a|t|sgn(t), a > 0, (2.62a)

S(f ) = −
∫ 0

−∞
Veate−j2π ftdt +

∫ ∞

0
Ve−ate−j2π ftdt

= −j
V4π f

a2 + 4π2f 2
, (2.62b)

|S(f )| = V4π |f |
a2 + 4π2f 2

, 	 S(f ) = −π

2
sgn(f ). (2.62c)

Since s(t) is an odd function, R{S(f )} = 0. In general, if (and only if) s(t) is an odd function,
then S(f ) has only an imaginary component. �
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(a) The function considered in Example 2.10, (b) its magnitude spectrum, and (c) its phase spectrum.

Example 2.11 rectangular pulse Figure 2.21(a) shows the rectangular pulse. Its
Fourier transform is determined as

s(t) = V

[
u

(
t + T

2

)
− u

(
t − T

2

)]
, (2.63a)

S(f ) =
∫ T

2

− T
2

Ve−j2π ftdt = VT
sin(π fT)

(π fT)
, (2.63b)

|S(f )| = VT

∣∣∣∣ sin(π fT)

(π fT)

∣∣∣∣ ,
	 S(f ) =

{
0, k

T < |f | < k+1
T , k even and ≥ 0

πsgn(f ), k
T < |f | < k+1

T , k odd and > 0
. (2.63c)

Since s(t) is an even function, it only has a real component. However, observe that this
does not mean that the phase is zero. It can be 0 or ±π depending on whether the real
component is positive or negative. There is no difference between a phase of +π or −π
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�Fig. 2.21 (a) Rectangular pulse, (b) its phase spectrum, and (c) its combined magnitude–phase spectrum.
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but it helps to show graphically that the phase function is odd (Figure 2.21(b)). Typically
the magnitude/phase function for the rectangular pulse is represented by a single graph as
shown in Figure 2.21(c). �

Example 2.12 impulse funct ion

s(t) = Vδ(t), (2.64a)

S(f ) =
∫ ∞

−∞
Vδ(t)e−j2π ftdt = V . (2.64b)

Though this function is not a finite energy signal, it still has a Fourier transform (recall
that finite energy was a sufficient condition, not a necessary one). The signal is equally
concentrated at all frequencies, i.e., the spectrum is flat. �

Example 2.13 DC signal

s(t) = V , (2.65a)

S(f ) =
∫ ∞

−∞
Ve−j2π ftdt = ej2π f∞ − e−j2π f∞

j2π f

= sin(j2π f∞)

π f
. (2.65b)

Unfortunately the above approach fails since sin(∞) is undefined. However, recall that S(f )
is a spectral density and given that the signal is a DC one it seems reasonable for all of it
to be concentrated at f = 0. Therefore postulate that S(f ) = Vδ(f ) and check what time
function corresponds to this S(f ). Evaluating

∫∞
−∞ Vδ(f )ej2π ftdf we get V and therefore

s(t) = V ←→ S(f ) = Vδ(f ), (2.66a)

|S(f )| = Vδ(f ), 	 S(f ) = 0. (2.66b)

�

Note that the above implies that
∫∞
−∞ Ve−j2π ftdt = Vδ(f ), or that the integral∫∞

−∞ e−j2πxydy = δ(x). This is a useful relationship that is used in the next example.

Example 2.14 sinusoid

s(t) = V cos(2π fct + θ ) = V
[
ej(2π fct+θ) + e−j(2π fct+θ)

]
2

, (2.67a)

S(f ) =
∫ ∞

−∞
V

2
ejθ e−j2π(f−fc)tdt +

∫ ∞

−∞
V

2
e−jθ e−j2π(f+fc)tdt

= V

2
ejθ δ(f − fc)+ V

2
e−jθ δ(f + fc), (2.67b)
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|S(f )| = V

2
δ(f − fc)+ V

2
δ(f + fc), 	 S(f ) =

{
θ , f = fc

−θ , f = −fc
. (2.67c)

For a pure sinusoid, one lasting from −∞ to ∞, all the amplitude is concentrated at ±fc,
the frequency of the sinusoid. Cosine and sine have the same magnitude density spectrum,
the difference between them is in the phase, 0 (rad) for the cosine and −π/2 (rad) for the
sine. But we knew this already. �

Example 2.15 step funct ion Figure 2.22(a) shows a step function, which is not a
finite energy signal. Also as in Examples 2.13 and 2.14, it does not go to 0 as t →∞. But
like the previous two examples it has finite, nonzero average power since

lim
T→∞

1

T

∫ T
2

− T
2

s2(t)dt = lim
T→∞

1

T

∫ T
2

0
V2dt = V2

2
(watts). (2.68)

The direct approach to determine S(f ) = ∫∞−∞ Vu(t)e−j2π ftdt = ∫∞0 Ve−j2π ftdt =
V(1− ej2π f∞)/2jπ f fails because ej2π f∞ is undefined. Therefore decompose s(t) as shown
in Figures 2.22(b) and 2.22(c):

s(t) = V

2
+ V

2
sgn(t) ⇒ F{s(t)} = F

{
V

2

}
+ F

{
V

2
sgn(t)

}
. (2.69)

We already know that F {V/2} = (V/2)δ(f ). To determine F {(V/2)sgn(t)}, write
(V/2)sgn(t) = lima→0(V/2)e−a|t|sgn(t). Therefore

t

u(t)

0

V

t
0

t0

2−V

sgn(t)
2

V
eat

2

V−

(a)

2V

2V
(b)

(c)

e−at

2

V

�Fig. 2.22 (a) Step function, (b) its DC component, and (c) the remaining component.
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F
{

V

2
sgn(t)

}
= F

{
lim
a→0

V

2
e−a|t|sgn(t)

}
= lim

a→0
F
{

V

2
e−a|t|sgn(t)

}
= lim

a→0

−4Vjπ f

a2 + 4π2f 2

1

2
= V

j2π f
, (2.70)

where the result of Example 2.10 has been used to arrive at the last expression. Finally,

s(t) = Vu(t) ←→ S(f ) = V

2
δ(f )+ V

j2π f
. (2.71)

�

The three previous signals had in common three interrelated characteristics: (i) they do
not tend to zero as t goes to infinity (either−∞ or+∞ or both); (ii) their energy is infinite
but they have finite average power; and (iii) their spectral density contains an impulse(s). In
general signals that do not go to zero as t →±∞ and have finite, nonzero, average power
have impulses in their amplitude density spectrum.

The next two examples consider signals that illustrate aspects of the frequency
bandwidth occupied by a signal. Bandwidth is a precious and expensive resource in
communications.

Example 2.16 tone burst Figure 2.1(e) shows a tone burst, which can be expressed
as s(t) = V cos(2π fct)

[
u (t + T/2)− u (t − T/2)

]
, where T is such that there are n cycles

of the sinusoid in the interval of T seconds. Since Tc = 1/fc and nTc = T , then T = n/fc.
The Fourier transform of s(t) is

S(f ) = Vn

2fc

⎡⎣ sin
(

nπ
(

f
fc
− 1
))

nπ
(

f
fc
− 1
) +

sin
(

nπ
(

f
fc
+ 1
))

nπ
(

f
fc
+ 1
)

⎤⎦ . (2.72)

Figure 2.23 shows a plot of S(f )/(V/2fc) versus f /fc for various values of n, the number
of cycles. The important observation is that as n increases the spectrum becomes more and
more concentrated around f = fc. To increase the number of cycles, n, one must increase T
since fc is fixed. This is precisely what is done in M-ary (or multilevel) digital modulation
which is discussed in Chapter 8. As n →∞ the signal tends to a pure sinusoid and in the
limit the spectrum becomes an impulse (see Example 2.14). �

Example 2.17 Gaussian signal The Gaussian signal is plotted in Figure 2.24(a).
Its expression and its Fourier transform are as follows:

s(t) = Ve−at2 , a > 0, (2.73a)

S(f ) =
∫ ∞

−∞
Ve−at2 e−j2π ftdt

=
∫ ∞

−∞
Ve−a(t2+j2π ft/a)dt. (2.73b)
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�Fig. 2.23 Fourier transforms of tone bursts with different numbers of cycles.

To perform the integration complete the exponent to make it a perfect square as follows:

t2 + 2
jπ f

a
t = t2 + 2

jπ f

a
t +
(

jπ f

a

)2

−
(

jπ f

a

)2

=
(

t + jπ f

a

)2

+ π2f 2

a2
. (2.74)

Therefore S(f ) = e−π2f 2/a
∫∞
−∞ Ve−a(t+jπ f /a)2

dt. It can be shown that
(

1/
√

2πσ
) ∫∞

−∞
e−(x−μ)2/2σ 2

dx = 1 for any μ (real or complex) and σ (real and positive).9 Therefore, after
some algebraic manipulations, one obtains

S(f ) = F{s(t)} = V

√
π

a
e−π2f 2/a. (2.75)

The transform has the interesting property that it is of the same form as the time signal.
It is sketched in Figure 2.24(b). A more interesting property is that the time–bandwidth
product is the minimum possible. �

9 The astute reader or one with the appropriate background may recognize that this is the area under a Gaussian
probability density function.
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π
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s(t) = Ve–at 

2
, a > 0

S( f ) = V

�Fig. 2.24 (a) Gaussian signal and (b) its Fourier transform.

Table 2.2 Fourier transform properties

s(t) =
∫ ∞
−∞

S(f )ej2π ftdf ←→ S(f ) =
∫ ∞
−∞

s(t)e−j2π ftdt

Property Signal type Remark

1. |S(f )| = |S(−f )| Real Magnitude spectrum is even
2. 	 S(f ) = −	 S(−f ) Real Phase spectrum is odd
3. R{S(f )} = R{S(−f )} Real Real part is even
4. I{S(f )} = −I{S(−f )} Real Imaginary part is odd
5. S(−f ) = S∗(f ) Real Complex conjugate symmetry

6. s(0) =
∫ ∞
−∞

S(f )df Complex Total area under S(f )

7. S(0) =
∫ ∞
−∞

s(t)dt Complex Total area under s(t)

2.4.3 Properties of the Fourier transform

Having presented several common and important Fourier transform pairs we consider next
several properties of the Fourier transform. These are presented in tabular form in Tables
2.2 and 2.3, mostly without proof.

Table 2.2 provides several properties pertaining to S(f ), the first five of which apply only
to real signals. Table 2.3 is concerned with various properties of the Fourier transform
operation that are applicable to both real and complex signals.10 The reader is urged to
prove them for her/himself. The transform operation properties are discussed next with
proofs given for some along with illustrative examples.

10 In analysis it is convenient sometimes to deal with complex signals. This occurs with Hilbert transforms for
instance.
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Table 2.3 Fourier transform relationships for general signals, real or complex

s(t) =
∫ ∞
−∞

S(f )ej2π ftdf ←→ S(f ) =
∫ ∞
−∞

s(t)e−j2π ftdt

Operation s(t) S(f )

1. Superposition αs1(t)+ βs2(t) αS1(f )+ βS2(f )
2. Time shifting s(t − t0) S(f )e−j2π ft0

3. Time scaling s(at)
1

|a|S
(

f

a

)
Time reversal s(−t) S(−f )

4. Frequency-shifting s(t)ej2π fct S(f − fc)
Amplitude modulation s(t) cos(2π fct) 1

2 S(f − fc)+ 1
2 S(f + fc)

5. Time differentiation
dns(t)

dtn
(j2π f )nS(f )

6. Time integration
∫ t

−∞
s(λ)dλ

1

j2π f
S(f )+ S(0)

2
δ(f )

7. Time multiplication s1(t)s2(t) S1(f ) ∗ S2(f )
8. Time convolution s1(t) ∗ s2(t) S1(f )S2(f )
9. Duality S(t) s(−f )

Note: α and β are arbitrary constants,
S1(f ) ∗ S2(f ) = ∫∞−∞ S1(λ)S2(f − λ)dλ = ∫∞−∞ S2(λ)S1(f − λ)dλ,

s1(t) ∗ s2(t) = ∫∞−∞ s1(λ)s2(t − λ)dλ = ∫∞−∞ s2(λ)s1(t − λ)dλ.

Superposit ion (l inearity) Fourier transformation is an integral operation on the sig-
nal, s(t). Since integration is a linear operation, superposition in an obvious but extremely
important property.

Time shift ing A shift of the time signal, s(t), leaves its shape unchanged. In essence
what is done is that the t = 0 point is redefined. In the frequency domain S(f ) is multiplied
by the factor e−j2π ft0 . Observe that the magnitude of the transform is unchanged by a
time shift. The phase, however, is changed by a linear factor −2π ft0 where the slope is
determined by the time shift, i.e.,

s(t) ←→ S(f ), (2.76a)

s1(t) = s(t − t0) ←→ S1(f ) = S(f )e−j2π ft0 = |S(f )|ej(	 S(f )−2π ft0). (2.76b)

Time scal ing The relationship is easy enough to prove for a > 0 since

F{s(at)} =
∫ ∞

−∞
s(at)e−j2π ftdt

λ=at=
∫ ∞

−∞
s(λ)e−j2π(f /a)λ dλ

a
= 1

a
S

(
f

a

)
. (2.77)
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For a < 0, write at as at = −|a|t since a = −|a| for a < 0. Now let λ = at = −|a|t. The
Fourier integral becomes∫ ∞

−∞
s(λ)e−j2π(−f /|a|)λ dλ

|a| =
1

|a|S
(−f

|a|
)
= 1

|a|S
(

f

a

)
. (2.78)

The case a = −1 is special and corresponds to playing the signal backwards.

Frequency shift ing This is extremely important in communications; it is not an exag-
geration to call it the cornerstone of communications. Multiplication of the signal s(t) by
a sinusoid of frequency fc shifts the spectrum to ±fc. Typically fc is much larger than the
bandwidth of s(t) and its spectrum is shifted up to frequencies where antenna design is
easier, spectrum sharing is possible, etc.

Time differentiat ion Since s(t) = ∫∞−∞ S(f )ej2π ftdf , we have ds(t)/dt = ∫∞−∞(j2π f )
S(f )ej2π ftdf , which implies that ds(t)/dt and (j2π f )S(f ) are a Fourier transform pair. Typ-
ically this relationship is used to determine S(f ) where S(f ) = F {ds(t)/dt}/j2π f . Care,
however, must be exercised since if s(t) has a DC value it will not show up after differentia-
tion. Consider the step function s(t) = Vu(t). Since ds(t)/dt = Vδ(t) and F {ds(t)/dt} = V ,
it implies that S(f ) = V/j2π f . But from Example 2.15 we know that

S(f ) = V

j2π f
+ V

2
δ(f ),

where the second term represents the DC value of s(t) which is lost during the differentia-
tion. A sufficient condition is for s(t) to be absolutely integrable, i.e.,

∫∞
−∞ |s(t)|dt < ∞.

Then it does not have a DC component and the relationship S(f ) = F {ds(t)/dt}/j2π f
holds.

As another example, consider the rectangular signal of Example 2.11, where s(t) =
V[u(t + T/2)− u(t − T/2)]. By inspection this signal does not have a DC component and

ds(t)

dt
= V

[
δ

(
t + T

2

)
− δ

(
t − T

2

)]
, (2.79)

F
{

ds(t)

dt

}
= V

∫ ∞

−∞

[
δ

(
t + T

2

)
− δ

(
t − T

2

)]
e−j2π ftdt. (2.80)

Using the sifting property of the impulse function one has F {ds(t)/dt} = V
[
ejπ fT − e−jπ fT

]
.

Therefore

S(f ) = V
[
ejπ fT − e−jπ fT

]
j2π f

= VT
sin(π fT)

π fT
. (2.81)

Time integrat ion Consider s1(t) = ∫ t
−∞ s(λ)dλ, where s(t) has a Fourier transform

S(f ). The goal is to find the Fourier transform of s1(t), i.e., S1(f ), in terms of S(f ).
Since ds1(t)/dt = s(t), one may quickly conclude that S1(f ) = S(f )/j2π f . However,

as pointed out above, any DC component in s1(t) disappears when differentiated, and
therefore is not present in S1(f ). To account for this, rewrite s1(t) as s1(t) = s̃1(t)+ sDC

1 ,



49 2.4 Nonperiodic signals
�

where s̃1(t) has zero DC and sDC
1 is precisely the DC component of s1(t). Now S1(f ) =

S̃1(f )+ sDC
1 δ(f ). But ds1(t)/dt = ds̃1(t)/dt = s(t), and one has S̃1(f ) = S(f )/j2π f . Next,

find sDC
1 from the basic definition as follows:

sDC
1 = lim

T→∞

{
1

2T

∫ T

t=−T
dt
∫ t

−∞
s(λ)dλ

}
. (2.82)

Assume s(t) = 0 for t < τ , where τ is any finite number. Obviously one also has s1(t) = 0
for t < τ . Then sDC

1 = limT→∞{(1/2T)
∫ T
τ

dt
∫ t
τ

s(λ)dλ}. As T →∞, the inner integral

becomes
∫∞
−∞ s(λ)dλ = S(0). Therefore sDC

1 = limT→∞(S(0)/2T)
∫ T
τ

dt = S(0) limT→∞
{(T − τ )/2T} = S(0)/2. Finally,

S1(f ) = S(f )

j2π f
+ S(0)

2
δ(f ). (2.83)

Let us consider the step function, Vu(t), which is the integral of the impulse function
Vδ(t). The Fourier transform of Vδ(t) is V , which means that S(0) = V . Therefore the
Fourier transform of Vu(t), by the integration property is S(f ) = V/j2π f + (V/2)δ(f ), in
agreement with Example 2.15.

Time mult ipl icat ion Consider s(t) = s1(t)s2(t), where s1(t) ←→ S1(f ) and s2(t) ←→
S2(f ) Therefore

S(f ) =
∫ ∞

−∞
s1(t)s2(t)e−j2π ftdt

=
∫ ∞

t=−∞

[∫ ∞

λ=−∞
S1(λ)ej2πλtdλ

]
×
[∫ ∞

u=−∞
S2(u)ej2πutdu

]
e−j2π ftdt. (2.84)

Interchanging the order of integration, one has

S(f ) =
∫ ∞

λ=−∞

∫ ∞

u=−∞
dλduS1(λ)S2(u)

∫ ∞

t=−∞
ej2π (λ+u−f )tdt. (2.85)

The integral with respect to t is an impulse δ(λ+ u− f ). The impulse sifts out the value of
S2(u) at u = f − λ or S1(f ) at λ = f − u. The result is

S(f ) =
∫ ∞

−∞
S1(λ)S2(f − λ)dλ =

∫ ∞

−∞
S2(λ)S1(f − λ)dλ. (2.86)

The above operation is known as convolution and it is directly analogous to that encoun-
tered earlier for Fourier series. Indeed, in both cases it arose from multiplication in the time
domain. The next property discussed shows that convolution in the time domain results in
multiplication in the frequency domain. This we would suspect from the duality property
but of course duality has not been discussed yet.

The graphical interpretation of convolution is similar to that of the discrete case. It
involves flipping S2(λ) (or S1(λ)) about the vertical axis to obtain S2(−λ) (or S1(−λ)),
shifting it by the value f which gives S2(f − λ) (or S1(f − λ)), multiplying by S1(λ) (or
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S2(λ)), and finding the area under the product. The shift is to the right if f is positive and
to the left if f is negative.

As an example consider the tone burst, given as (see Example 2.16) s(t)
=V cos(2π fct)

[
u (t + T/2)− u (t − T/2)

]
. Identify s1(t) = cos(2π fct) and s2(t)

= V
[
u (t + T/2)− u (t − T/2)

]
. From Examples 2.11 and 2.14 we know that S1(f ) =

[δ(f − fc)+ δ(f + fc)]/2 and S2(f ) = VTsin(π fT)/(π fT). Therefore

S(f ) =
∫ ∞

−∞
S1(λ)S2(f − λ)dλ

=
∫ ∞

−∞
δ(λ− fc)+ δ(λ+ fc)

2
VT

sin(π (f − λ)T)

π (f − λ)T
dλ

= VT

2

sin(π (f − fc)T)

π (f − fc)T
+ VT

2

sin(π (f + fc)T)

π (f + fc)T
. (2.87)

If T = n/fc, i.e., T contains n cycles of the sinusoid, we arrive at the same result as in
Example 2.16.

Time convolut ion The convolution referred to here is in the time domain and it leads
to multiplication in the frequency domain. The result is of paramount importance in linear
system theory, where the output of a linear, time-invariant system is given (in the time
domain) by the convolution of the input with the impulse response of the system and by the
product of the transforms in the frequency domain. This is discussed more fully in the next
section. The proof can be obtained by the same approach as above or by invoking duality.

To illustrate the application of the convolution property, we derive the time integration
property in a different way. Recognize that

u(t − λ) =
{

1, λ ≤ t
0, λ > t

(2.88)

and write
∫ t
−∞ s(λ)dλ in the form of convolution as follows:∫ t

−∞
s(λ)dλ =

∫ ∞

−∞
s(λ)u(t − λ)dλ = s(t) ∗ u(t). (2.89)

Making use of the result F{u(t)} = 1
2δ(f )+ 1/j2π f established in Example 2.15 and

applying the convolution property gives∫ t

−∞
s(λ)dλ = s(t) ∗ u(t) ←→S(f )

[
1

2
δ(f )+ 1

j2π f

]
= S(0)

2
δ(f )+ S(f )

j2π f
. (2.90)

Dual ity Consider Examples 2.12 and 2.13. In the first an impulse in the time domain
results in a DC in the frequency domain, while in the second the opposite is true, an
impulse in the frequency domain corresponds to DC in the time domain. The transform
pairs are said to be duals of each other. Duality arises from the fact that aside from a sign
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difference in the exponent of the exponential the forms of the direct and inverse transforms
are the same.

Proof of the duality relationship proceeds as follows. Let s(t) = ∫∞−∞ S(f )ej2π ftdf ←→
S(f ) = ∫∞−∞ s(t)e−j2π ftdt. Now consider the time function s1(t) = S(t) (be clear on what S
means). The Fourier transform of s1(t) is S1(f ) = ∫∞−∞ S(t)e−j2π ftdt. For the moment, call
the frequency variable λ. Then S1(λ) = ∫∞−∞ S(t)e−j2πλtdt. But t is a dummy variable and
can be changed to a variable f . Therefore S1(λ) = ∫∞−∞ S(f )ej2π (−λ)f df . Compare the RHS
of this expression with that for s(t) and realize that it is s(−λ). Restoring the usual name
for the frequency variable one has S1(f ) = s(−f ). That is,

S(t) ←→ s(−f ), or S(−t) ←→ s(f ). (2.91)

As an example consider the time function s(t) = A sin(at)/at. To determine the Fourier
transform S(f ) = ∫∞−∞ A(sin(at)/at)e−j2π ftdt would tax either your integration skills or
your integration tables. However, from Example 2.11 we expect, by duality, that the spec-
trum will be rectangular. This is shown using the duality relationship as follows. Start with
the known Fourier transform pair:

s(t) = V

[
u

(
t + T

2

)
− u

(
t − T

2

)]
←→ S(f ) = VT

sin(π fT)

(π fT)
. (2.92)

Let A = VT and a = πT . Then s(t) = VTsin(π tT)/(π tT) = S(−t). Therefore F{s(t)} =
s(f ) = V

[
u (f + T/2)− u (f − T/2)

]
. It is customary to let T/2 = W in which case we

have the Fourier transform pair:

s(t) = 2VW
sin(2πWt)

2πWt
←→ S(f ) = V

[
u (f +W)− u (f −W)

]
. (2.93)

2.4.4 Relationship between Fourier series and
the Fourier transform

The Fourier transform was introduced as a limiting case of the Fourier series. We now
relate the Fourier series coefficients to the Fourier transform. Given the Fourier transform
of the basic pulse, p(t), that defines the periodic signal over

[−T/2, T/2
]
, one can readily

determine the Fourier series coefficients, Dk. Consider

P(f ) =
∫ ∞

−∞
p(t)e−j2π ftdt =

∫ T/2

−T/2
p(t)e−j2π ftdt, (2.94)

where the second equality follows from the fact that p(t) = 0 outside
[−T/2, T/2

]
. On the

other hand, the Fourier series coefficients of the periodic signal are

Dk = 1

T

∫ T/2

−T/2
p(t)e−j2πkfrtdt. (2.95)

Comparing (2.94) and (2.95) gives

Dk = 1

T
P(f )

∣∣∣∣
f=kfr

. (2.96)
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One may also determine the Fourier transform of a periodic signal in terms of the Fourier
series expansion s(t) =∑∞

k=−∞ Dkej2πkfrt. It is simply S(f ) = F{s(t)} =∑∞
k=−∞ Dkδ(f −

kfr), which is a train of impulses located at the harmonics kfr. Recall that S(f ) is a density
indicating the concentration of the amplitude of s(t) in the frequency domain. Since these
amplitudes are concentrated at discrete frequencies this extreme concentration results in an
impulse of strength |Dk| and phase 	 Dk.

There are two more important topics with regard to the frequency representation of non-
periodic signals that remain to be developed: the concentration of energy (or power) in the
frequency domain and a lower bound on the time–bandwidth product. Both topics have
implications for the bandwidth transmission needed to transmit the signal with reasonable
fidelity. But before delving into these topics we digress slightly and discuss linear, time-
invariant (LTI) systems, in particular the input/output relationship in both the time and
frequency domains.

2.5 Input/output relationship of linear, time-invariant
systems

There are two distinct approaches to characterizing the input/output relationship of an LTI
system. The first approach, if the system is analog, is to obtain the differential equation
relating the output to the input (or the difference equation if the system is discrete). The
second approach is to apply a test input as shown in Figure 2.25 and use the response to
determine the system’s output for any other input. The first approach requires us to know
in detail the structure of the system, whereas in the second nothing needs to be known
about the internal system structure, it is the so-called black box approach. However, the

Linear, time-invariant
dynamic system

Zero energy storage at t = 0

OutputInput test signal

Test signal = δ(t)
(impulse function)

sout(t) = h(t)
(impulse response)

s[in](t)

S [in]( f )

sout(t) = h(λ)s[in](t – λ)dλ

h(t  – λ)s[in](λ)dλ

−¥

¥

=

Sout( f ) = H( f )S[in]( f )

−¥

¥

�Fig. 2.25 Input/output relationship for an LTI system in terms of the impulse response.



53 2.5 Input/output relationship of linear, time-invariant systems
�

system must be in a relaxed state, i.e., there is no energy stored in it, when the test signal
is applied. This assures us that the response we see is due only to the test input.

The black box approach, the one developed here, relies heavily on the superposi-
tion property of an LTI system. Superposition means that if the individual responses
to two different inputs are known, then the response to an input signal which is a
weighted sum of the two inputs is the same weighted sum of the individual responses.
Mathematically, if

s[in]
1 (t) −→ s[s1]

out (t), s[in]
2 (t) −→ s[s2]

out (t),
then

s[in](t) = αs[in]
1 (t)+ βs[in]

2 (t) −→ αs[s1]
out (t)+ βs[s2]

out (t).

The approach also depends on the time-invariant property which states that if input
s[in](t) produces sout(t), then shifting the input in time shifts the output accordingly, i.e.,
s[in](t − τ ) −→ sout(t − τ ). Though there is more than one potential candidate that may
be chosen for a test signal the one selected here is the impulse function. Recall that in
the frequency domain the impulse function has equal amplitude at all frequencies. It thus
excites the system simultaneously at all frequencies. The system response to a unit impulse
applied at t = 0 is called the impulse response of the system and is denoted typically
by h(t).

It is now necessary to determine the output to any input in terms of the impulse
response. To this end express the input by the seemingly facetious equation s[in](t) =∫∞
λ=−∞ s[in](λ)δ(t − λ)dλ and express the integral as the limiting operation of the

sum s[in](t) = lim�λ→0
∑∞

k=−∞ s[in](k�λ)δ(t − k�λ)�λ. Consider each term of the
sum to be an individual input to the system. Since it is an impulse of strength
s[in](k�λ) applied at t = k�λ the corresponding output, using the time-invariant prop-
erty, is s[in](k�λ)h(t − k�λ). Now use superposition to determine the total output,
sout(t) = lim�λ→0

∑∞
k=−∞ s[in](k�λ)h(t − k�λ)�λ. In the limit the sum becomes an

integration:

sout(t) =
∫ ∞

−∞
s[in](λ)h(t − λ)dλ, (2.97)

which is recognized as a convolution.
Therefore for an LTI system, for any input, the output is a convolution of the input with

the system’s impulse response, h(t). Using Property 8 of Table 2.3 it is seen that in the
frequency domain the input and output are related by a simple product:

Sout(f ) = S[in](f )H(f ), (2.98)

where H(f ) is called the transfer function of the system. It represents a complex gain, i.e., it
modifies the gain and phase at any specific frequency where |Sout(f )| = |S[in](f )| × |H(f )|
and 	 Sout(f ) = 	 S[in](f )+ 	 H(f ). The unit of H(f ) (and |H(f )|) is the unit of sout(t) divided
by that of s[in](t). Note that even when both input and output have the same units, say volts,
it is a common practice to refer to the unit of H(f ) as volt/volt.
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2.5.1 Energy/power relationships for a signal

As in the case of periodic signals it is important for nonperiodic signals to know how the
signal’s energy or power is distributed in the frequency domain. This knowledge allows one
to make judgements regarding the amount of spectrum a signal occupies, the bandwidth
needed to transmit the signal, how to design a filter to suppress unwanted signals, etc.
Energy signals are dealt with here. The results are readily extended to power signals and
this is done in the problem set at the end of the chapter. The energy of a nonperiodic signal
is given by

E =
∫ ∞

−∞
s2(t)dt (joules), (2.99)

where for our purposes we assume s(t) is a real voltage signal applied to a 1 ohm resistor so
that s2(t) = s2(t)/(1 ohm),

(
volts2/ohm = watts

)
is the instantaneous power. Now (2.99)

can be written as ∫ ∞

−∞
s(t)s∗(t)dt =

∫ ∞

t=−∞
dts(t)

∫ ∞

f=−∞
S(f )ej2π ftdf

=
∫ ∞

f=−∞
dfS(f )

∫ ∞

t=−∞
s(t)ej2π ftdt. (2.100)

But the inner integral is S(−f ) = S∗(f ). Therefore

E =
∫ ∞

−∞
s2(t)dt =

∫ ∞

−∞
S(f )S∗(f )df =

∫ ∞

−∞
|S(f )|2df (joules), (2.101)

which is Parseval’s theorem for nonperiodic energy signals. Note that the unit of |S(f )|2 is
joules/hertz. Therefore |S(f )|2 is an energy spectral density and tells us how the energy is
distributed in the frequency domain.

Furthermore, |S(f )|2 is a function of f and as such, via the inverse Fourier transform,
represents (or corresponds to) a function in the time domain. This function is not s(t) but
it is of interest to determine how this function is related to s(t). So let us try to determine
the inverse transform of |S(f )|2 = S(f )S∗(f ). This inverse we shall call Rs(τ ), where τ is a
time variable and is named so for reasons that shall be given later. The inverse transform is

Rs(τ ) =
∫ ∞

−∞
S(f )S∗(f )ej2π f τ df

=
∫ ∞

f=−∞

[∫ ∞

t=−∞
s(t)e−j2π ftdt

] [∫ ∞

λ=−∞
s(λ)ej2π f λdλ

]
ej2π f τ df . (2.102)

Integrating first with respect to variable f gives

Rs(τ ) =
∫ ∞

t=−∞
dts(t)

∫ ∞

λ=−∞
dλs(λ)

∫ ∞

f=−∞
ej2π (−t+τ+λ)f df . (2.103)

But the integral with respect to f we recognize as an impulse function,
∫∞

f=−∞ ej2π (−t+τ+λ)f

df = δ(−t + τ + λ), which then sifts out the value of s(λ) at λ = t − τ ,
∫∞
λ=−∞ dλs(λ)

δ(−t + τ + λ) = s(t − τ ). Finally,
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Rs(τ ) =
∫ ∞

t=−∞
s(t)s(t − τ )dt, (2.104)

a time function that is called the autocorrelation of s(t). The time variable, τ , is called the
delay since to compute Rs(τ ), s(t) is delayed by τ to form s(t − τ ), the product is formed
and then the area under the product is determined. Here, the subscript s refers to the signal
whose autocorrelation we are talking about and R is a commonly used symbol to denote
correlation.

Though Rs(τ ) ←→ |S(f )|2 is a unique Fourier transform pair, it is important to realize
that different signals, s(t), can have the same autocorrelation function. This is due to the
fact that phase information is ignored and phase plays as an important role as magnitude
in determining the actual time function, s(t). Thus we can take the magnitude function,
|S(f )|, attach any phase function θ (f ) we wish, the only restriction is that it be an odd
function of frequency, and end up with the same correlation function. An example of this
is the two time functions s1(t) = 1/(1+ t2) and s2(t) = t/(1+ t2). They have the same
autocorrelation function and hence their energy is identically distributed in the frequency
domain.

Parseval’s relationship can be generalized to∫ ∞

−∞
s1(t)s2(t)dt =

∫ ∞

−∞
S1(f )S∗2(f )df =

∫ ∞

−∞
S∗1(f )S2(f )df . (2.105)

The two integrands S1(f )S∗2(f ) and S∗1(f )S2(f ), though when integrated result in the same
value, are different functions and in general represent different time functions. To see what
time function S1(f )S∗2(f ) corresponds to proceed as in the case of the autocorrelation to
obtain

Rs1(t)s2(t)(τ ) =
∫ ∞

−∞
s1(t)s2(t − τ )dt ←→ S1(f )S∗2(f ), (2.106a)

Rs2(t)s1(t)(τ ) =
∫ ∞

−∞
s2(t)s1(t − τ )dt ←→ S2(f )S∗1(f ). (2.106b)

The time domain operation is called crosscorrelation, i.e., the correlation of signal s1(t)
with signal s2(t). The variable τ again is interpreted as a delay variable where either s1(t) is
delayed with respect to s2(t) or vice versa. Note that Rs1(t)s2(t)(τ ) 	= Rs2(t)s1(t)(τ ) and that the
subscript notation signifies that the second signal is the delayed one, though the notation is
not universal. It can be shown that Rs1(t)s2(t)(τ ) = Rs2(t)s1(t)(−τ ).

In the frequency domain the crosscorrelation function can be interpreted as a cross
energy spectral density while in the time domain it is a measure of the similarity between
the two time functions and at what time(s), or value of τ this similarity is most pronounced.
It is this latter interpretation that is of interest to us and which we now illustrate with an
example.

Example 2.18 a toy radar problem Consider the highly simplified radar detec-
tion problem shown in Figure 2.26. A signal, p(t), known to the sender (here we take it to
be a square pulse), is transmitted to determine the range of the incoming aircraft. The signal
is reflected off the aircraft and the received signal is an attenuated, delayed, and corrupted
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p(t)

p(t - tdelay)

Jamming signal

�Fig. 2.26 Illustration of the toy radar problem.

version of the transmitted signal, r(t) = Kp(t − tdelay)+ njam(t)+ nnoise(t), where K � 1
and the transmitted pulse duration T � tdelay. The term nnoise(t) represents the ever present
background thermal noise, while njam(t) is an enemy jamming signal. The enemy is not
very sophisticated and has limited technology. Thus the jamming signal is the simplest
possible, a high-power, high-frequency sinusoid, njam(t) = Vjam cos(2π fjamt + θ ), where
Tjam = 1/fjam � T . It is desired to estimate tdelay which will be used to determine the
aircraft range from the relationship, range = (c× tdelay)/2, where c is the speed of light.

To obtain this estimate we crosscorrelate r(t) with p(t), the premise being that p(t) is not
correlated with either noise component but should be highly correlated with the reflected
pulse at delay time tdelay,

Rr(t)p(t)(τ ) =
∫ ∞

−∞
r(t)p(t − τ )dt

=
∫ ∞

−∞
p(t − tdelay)p(t − τ )dt +

∫ ∞

−∞
njam(t)p(t − τ )dt

+
∫ ∞

−∞
nnoise(t)p(t − τ )dt. (2.107)

The crosscorrelation has three components: (i)
∫∞
−∞ p(t − tdelay)p(t − τ )dt, which intu-

itively we expect to be maximum at τ = tdelay. This indeed is the case since in
general Rs(0) ≥ Rs(τ ) (the proof is left as an exercise). (ii)

∫∞
−∞ njam(t)p(t − τ )dt =∫∞

−∞ Vjam(t) cos(2π fjamt + θ )p(t − τ )dt, which, since fjam � T , crosscorrelates out to zero
since it is simply the area under the sinusoid over T seconds. (iii)

∫∞
−∞ nnoise(t)p(t − τ )dt

which is also the area under the background noise over T seconds and again intuitively we
expect this to be close to zero. Therefore a good estimate of tdelay can be obtained from the
time at which the crosscorrelation, Rr(t)p(t)(τ ), is maximum. This is the delay τ at which
r(t) and p(t) are most “similar.” Figure 2.27 illustrates the above discussion. �

The concepts of energy spectral density, and auto- and crosscorrelation are equally
applicable for power signals. The approach is similar to that just presented for energy
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�Fig. 2.27
Estimation of tdelay: (a) transmitted pulse, p(t); (b) reflected pulse p(t − tdelay); (c) jamming signal,
njam(t); (d) background noise, nnoise(t); (e) received signal r(t) = kp(t − tdelay)+ njam(t) +nnoise(t); (f)
crosscorrelation between r(t) and p(t).
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signals. It, along with various general properties of the correlation functions, is developed
through a set of problems at the end of this chapter.

2.6 Time–bandwidth product

A time-limited signal, i.e., one that is nonzero only over a finite time interval cannot be
bandlimited in the frequency domain and by duality the opposite is true. 11 Thus it appears
that the time–bandwidth product is always infinite, at least mathematically. It therefore
behooves engineers to come up with time duration, bandwidth duration definitions that are
sensible physically and tractable mathematically. The definitions chosen here, though not
the only ones possible, are based on energy. They are measures that indicate how a signal’s
energy is concentrated in the time and frequency domains.

Consider the arbitrary waveform, s(t), shown in Figure 2.28. Then s2(t), which is also
shown in Figure 2.28, is a signal that represents the instantaneous power dissipated by s(t)
in a 1 ohm resistor. We now define a measure of the effective width of s2(t). For any time
waveform one can find an axis of symmetry on the time axis such that

∫∞
−∞(t − t0)s2(t)dt =

0. A mechanical engineer would call t0 the center of gravity, a statistician the first moment,
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�Fig. 2.28 An arbitrary waveform and its squared waveform.

11 The sampling theorem is used to prove this. See http://en.wikipedia.org/wiki/Bandlimited.
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an interior designer or carpenter the picture hanging moment. As a measure of the concen-
tration of the instantaneous power of s(t) around t0, consider

∫∞
−∞(t − t0)2s2(t)dt. Again

for a mechanical engineer this is the moment of inertia and for a statistician the second
central moment; it is not known what an interior designer or carpenter would call it. Now
consider all the energy of s(t),

∫∞
−∞ s2(t)dt, to be concentrated at a single point at a distance

that gives the same moment of inertia. This distance is known as the radius of gyration and
we have (radius of gyration)2

∫∞
−∞ s2(t)dt = ∫∞−∞(t − t0)2s2(t)dt. We define the radius of

gyration to be the effective width or duration of the waveform s(t). Denoting it by Wt we
have

W2
t ≡

∫∞
−∞(t − t0)2s2(t)dt∫∞

−∞ s2(t)dt
. (2.108)

As examples of this measure take the rectangular pulse of Figure 2.21 and the
tent function of Figure 2.19(a). By inspection the axis of symmetry of both signals squared
is t0 = 0. For the rectangular pulse,

W2
t =

∫ T/2
−T/2 t2V2dt

V2T
= T2

12
⇒ Wt = T

2
√

3
(seconds). (2.109)

As expected the width is proportional to T . For the tent function,

W2
t =

V2
∫∞
−∞ t2e−2a|t|dt

V2
∫∞
−∞ e−2a|t|dt

=
∫∞

0 t2e−2atdt∫∞
0 e−2atdt

= 1

2a2
⇒ Wt = 1√

2a
(seconds). (2.110)

The determined width is proportional to the time constant, 1/a, again a result that is
intuitively satisfying.

The width of the signal in the frequency domain is defined in the same way, except now
we deal with the energy spectral density, |S(f )|2. Since |S(f )|2 is an even function the axis
of symmetry is f0 = 0. The width is defined as

W2
f ≡

∫∞
−∞ f 2|S(f )|2df∫∞
−∞ |S(f )|2df

. (2.111)

We are now in a position to prove a lower bound on the time–bandwidth prod-
uct, WtWf , but before doing this we recast the numerator of (2.111) in the time
domain by application of Parseval’s theorem. Rewrite the numerator as f 2|S(f )|2 =[
(j2π f )S(f )(−j2π f )S∗(f )

]
(1/4π2) and recall that if s(t) ←→ S(f ) then ds(t)/dt ←→

(j2π f )S(f ). Therefore by Parseval’s theorem∫ ∞

−∞
|(j2π f )S(f )|2 df =

∫ ∞

−∞

(
ds(t)

dt

)2

dt. (2.112)

Therefore

W2
f ≡

(
1/4π2

) ∫∞
−∞ (ds(t)/dt)2 dt∫∞
−∞ s2(t)dt

. (2.113)

To show that

WtWf ≥ 1/4π (2.114)
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use (2.108) and (2.113) to write the product

W2
t W2

f =
[∫∞
−∞(t − t0)2s2(t)dt

] [
(1/4π2)

∫∞
−∞ (ds(t)/dt)2 dt

][∫∞
−∞ s2(t)dt

]2 . (2.115)

Note that t0 can be chosen to be 0 without loss of generality. Now invoke the Cauchy–
Schwartz inequality, which states that

∫ b
a f 2(x)dx

∫ b
a g2(x)dx ≥ [

∫ b
a f (x)g(x)dx]2 and apply

it to the numerator. One then has[∫ ∞

−∞
t2s2(t)dt

][
1

4π2

∫ ∞

−∞

(
ds(t)

dt

)2

dt

]
≥ 1

4π2

[∫ ∞

−∞
ts(t)

ds(t)

dt
dt

]2

. (2.116)

Integrate
∫∞

t=−∞ ts(t)ds(t)/dt = ∫ s=s(+∞)
s=s(−∞) ts(t)ds(t) by parts, with u = t, dv = s(t)ds(t) and

v(t) = s2(t)/2. Then∫ s=s(+∞)

s=s(−∞)
ts(t)ds(t) = ts2(t)

2

∣∣∣∣∣
s=s(+∞)

s=s(−∞)

− 1

2

∫ ∞

−∞
s2(t)dt, (2.117)

which, provided that limt→±∞ ts2(t) = 0, is equal to − 1
2

∫∞
−∞ s2(t)dt. From this it follows

that

W2
t W2

f ≥
(
1/4π2

) [− 1
2

∫∞
−∞ s2(t)dt

]2

[∫∞
−∞ s2(t)dt

]2 = 1

16π2
, (2.118a)

or

WtWf ≥ 1

4π
. (2.118b)

As examples, let us determine the time–bandwidth products for the tent function
(Example 2.9) and the Gaussian signal (Example 2.17).

Example 2.19 time–bandwidth product of the tent signal To determine
Wf use (2.113). The quantity (ds(t)/dt)2 is equal to a2e−2a|t| and therefore

W2
f =

(1/4π2)
∫∞
−∞ a2e−2a|t|dt∫∞

−∞ e−2a|t|dt
= a2

4π2
⇒ Wf = a

2π
. (2.119)

It follows that WtWf = (1/
√

2a)(a/2π ) = √2(1/4π) which is almost 50% larger than
the lower bound. Note that the product is independent of the time constant, therefore to
decrease the spectrum width one must either increase the time constant and hence the
effective time duration, or the converse. It is the well-known adage: one cannot have one’s
cake and eat it too. �

Example 2.20 time–bandwidth product of the Gaussian signal The Fourier
transform pair is repeated from Example 2.17:

s(t) = Ve−at2 ←→ S(f ) = V

√
π

a
e−π2f 2/a. (2.120)
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To perform the necessary integration, we state two results, again one that was used in
Example 2.17:12

1√
2πσ

∫ ∞

−∞
e−x2/2σ 2

dx = 1, (2.121a)

and
1√

2πσ

∫ ∞

−∞
x2e−x2/2σ 2

dx = σ 2. (2.121b)

Therefore

W2
t =

∫∞
−∞ t2e−2at2 dt∫∞
−∞ e−2at2dt

.

Now write the exponent as 2at2 = t2/2
(
1/2

√
a
)2 and identify σ 2 = (1/2

√
a
)2 = 1/4a.

The expression for the width becomes

W2
t =

√
2πσ

[
1√

2πσ

∫∞
−∞ t2e−t2/2σ 2

dt

]
√

2πσ

[
1√

2πσ

∫∞
−∞ e−t2/2σ 2 dt

] = σ 2 = 1

4a
. (2.122)

Turning now to the effective bandwidth, using (2.111) one has

W2
f =

∫∞
−∞ f 2e−2π2f 2/adf∫∞
−∞ e−2π2f 2/adf

.

As above, identify σ 2 = a/4π2 and apply the identities in (2.121a) to arrive at
W2

f = a/4π2, or Wf = √a/2π . Finally,

WtWf = 1

2
√

a

√
a

2π
= 1

4π
, (2.123)

which is the lower bound on the time–bandwidth product. So not only does the Gaussian
signal have the interesting property that both its time and frequency descriptions are of the
same functional form but it occupies the least possible bandwidth, at least with respect to
the bandwidth measure here. �

2.7 Summary

This chapter has presented the Fourier representation of deterministic signals, both periodic
and nonperiodic. This representation leads to a frequency domain characterization of the
signals, namely in terms of amplitude and energy/power spectrum densities. The represen-
tation is a powerful tool for design purposes, most signal processing/filtering techniques

12 The proof of these results is left to the next chapter when the Gaussian random variable is discussed.
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are based largely on this representation. However, signals can also be represented by other
orthogonal sets of basis functions. Some of these sets are explored in the problems at the
end of this chapter. These sets have not proven to be as useful for engineering practice with
one notable exception. This is the case in which the set of deterministic time functions is
finite in number, the situation in digital communications. Then a special orthogonal basis
set is developed for detection purposes. This is fully explained in Chapter 5.

The chapter ends with a derivation of a lower bound on the time duration–frequency
bandwidth product. It was based on a specific definition, one that makes engineering sense,
of a signal’s time duration and frequency bandwidth. Other definitions are possible that
equally make for good engineering sense, one of which is given in the problem set. The
problem set, hopefully, not only gives the reader further insight into the concepts of the
chapter but it also develops further results based on these concepts. In particular the Hilbert
transform and the baseband representation of passband signals is developed.

The reader is strongly encouraged to at least read through the problems.

2.8 Problems

The first two problems on Fourier series look at the interrelationships between the

coefficient sets and properties of the coefficients. Familiarity with these properties

can simplify computation of the coefficients and/or help in exposing errors in the

computation.

2.1 The Fourier series of a complex signal can be expressed in three ways: (i) trigono-
metric with coefficient set {Ak, Bk}, (ii) amplitude/phase with coefficient set {Ck, θk},
and (iii) complex exponential with coefficient set {Dk}. Given one set of coefficients
show how the other two sets would be determined.

2.2 Prove the following properties of the Fourier series coefficients for a real signal:
(a) Ak is always an even function of k.
(b) Bk is always an odd function of k.
(c) Ck is always an even function of k.
(d) θk is always an odd function of k.
(e) D∗k = D−k (always).

Note that the relationships and properties of Problems 2.1 and 2.2 have direct

analogs for the Fourier transform.

2.3 A continuous-time periodic signal s(t) is real-valued and has a fundamental period
T = 8. The nonzero Fourier series coefficients for s(t) are specified as

D1 = D∗−1 = j, D5 = D−5 = 2.

Express s(t) in the amplitude-phase and trigonometric forms.
2.4 (Fourier series by inspection) Consider, arguably, the simplest periodic signal: s(t) =

V cos(2π fct + α).
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(a) Determine the Fourier series coefficients Dk of s(t) for: (i) α general, (ii) α = 0,
(iii) α = π , (iv) α = −π , (v) α = π/2, (vi) α = −π/2.

(b) For each case of α above, plot the magnitude and phase spectra of s(t).
(c) For each case of α, determine the coefficients {Ak, Bk}, {Ck, θk}.

2.5 (Another Fourier series by inspection) Consider the continuous-time periodic signal:
s(t) = 2 sin(2π t − 3)+ sin(6π t).
(a) Determine the fundamental period and the Fourier series coefficients Dk.
(b) Plot the magnitude and phase spectra of s(t).

2.6 Several symmetries and their influence on the form of the Fourier coefficients are
discussed in the chapter. Classify the signals shown in Figure 2.29 as (a) even, (b)
odd, (c) half-wave symmetric, (d) quarter-wave even symmetric, (e) quarter-wave
odd symmetric, none of the preceding. Use as many symmetries as are applicable.
(f) If a DC value is added to any of the signals in Figure 2.29 how would it

change the classification? How would it affect the value of the Fourier series
coefficients? Explain.

(g) How would a time shift of τ seconds affect the classification? The coefficients?
2.7 Consider the signal s(t) = s1(t)+ s2(t), where s1(t) and s2(t) are periodic with the

same period, T . What can you say about the symmetries or nonsymmetries of s(t) for
the following cases:
(a) s1(t) is even, s2(t) is even.
(b) s1(t) is even, s2(t) is odd.
(c) s1(t) and s2(t) are both half-wave symmetric.
(d) s1(t) is even, s2(t) is half-wave symmetric.
(e) s1(t) is odd, s2(t) is half-wave symmetric.
(f) s1(t), s2(t) are both quarter-wave symmetric, either even or odd.
(g) s1(t) is even, s2(t) is quarter-wave even symmetric.

2.8 Repeat Problem 2.7 for s(t) = s1(t)s2(t).
2.9 (Properties of Fourier series coefficients) Figure 2.30 shows the magnitude and phase

spectra of three continuous-time periodic signals.
(a) For each signal, determine whether the signal is real or complex. Explain.
(b) Which signal is a real-valued and even function? Which signal is a real-valued

and odd function? Explain.
The next three problems introduce one to analog modulation concepts, both

amplitude and frequency, where the message signal is the special one of a sinusoid.
2.10 (Amplitude modulation with suppressed carrier) Consider the signal:

s(t) = Vm cos(2π fmt)Vc cos(2π fct), (P2.1)

where fm � fc and fc/fm is a rational number. It is easy enough to find the
spectrum of s(t) using the trigonometric relationship cos(x) cos(y) = (cos(x+ y)+
cos(x− y))/2. However, let s1(t) = Vm cos(2π fmt) and s2(t) = Vc cos(2π fct) and use
convolution to find the Fourier series of what is s(t) = s1(t)s2(t).

2.11 (Amplitude modulation with carrier) Change the modulation process of Problem
2.10 slightly to the following:

s(t) = [VDC + Vm cos(2π fmt)
]

Vc cos(2π fct), (P2.2)
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�Fig. 2.29 Signals for Problem 2.6.
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�Fig. 2.30 Magnitude and phase spectra of three signals.

where fm � fc and fc/fm is a rational number. Again determine the Fourier series
using convolution and plot the two-sided spectrum. Compare the spectrum with that
of Problem 2.10.

2.12 (Frequency modulation) Consider the signal

s(t) = Vc cos (2π fct − Vm sin(2π fmt)) , (P2.3)

where fc = nfm, n an integer ≫ 1.
(a) The message Vm sin(2π fmt), it is more appropriate to call it a test signal, controls

the instantaneous frequency of the sinusoid Vc cos(2π fct). The instantaneous
frequency of a sinusoid is fi(t) = (1/2π )dθi(t)/dt (hertz) where θi(t) is the instan-
taneous phase, which here is θi(t) = 2π fct − Vm sin(2π fmt) (radians). Determine
fi(t) and plot it.

(b) Show that s(t) is periodic with period T = 1/fm (seconds).
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(c) Since s(t) is periodic it can be expanded in a Fourier series. To determine
coefficients, Dk, write s(t) as

s(t) = R
{

Vcej[2π fct−Vm sin(2π fmt)]
}

(P2.4)

and observe that ej[2π fct−Vm sin(2π fmt)] is a periodic signal, albeit a complex one,
with period T = 1/fm. Therefore find the Fourier series of it and then take the
real part. Dk is given by, as usual, Dk = 1

T

∫ T/2
−T/2 ej[2π fct−Vm sin(2π fmt)]e−j2πkfmtdt.

To do the integration, change the integration variable to λ = 2π fmt and recognize
the resultant integral as a Bessel function, namely as Jn−k(Vm).

2.13 Consider Figure 2.15. To check the convolution determine the Fourier series directly
by the following steps.
(a) Determine the time domain functions s1(t) and s2(t) from the given Fourier

coefficients. Recall that cos x = 1
2

(
ejx + e−jx

)
.

(b) Determine the product, s(t) = s1(t)s2(t). Recall that

cos x cos y = 1

2

[
cos(x+ y)+ cos(x− y)

]
.

(c) Determine the Fourier series coefficients, D[s(t)]
k . Do they agree with those of

Figure 2.15?
2.14 Consider the output of a half-wave rectifier shown in Figure 2.31. Express the sig-

nal as s(t) = s1(t)V cos(2π fct). Determine the Fourier coefficients of s1(t) and of
V cos(2π fct), and use convolution to determine the Fourier coefficients of s(t).

t
0

s(t)

−T

V

T2−T 2T

V cos(2π fct)

�Fig. 2.31 Output of a half-wave rectifier.

2.15 Clipping or saturation is a common phenomenon in amplifiers leading to a distortion
of the input signal. To investigate this distortion the frequency spectrum of the output
is to be determined when the input is a sinusoid. The block diagram is shown in
Figure 2.32.

sin(t) = V cos(2π fmt) sout(t)

V > V1

0

V1

V1

–V1

–V1

Input voltage

Output voltage

�Fig. 2.32 Illustration of signal clipping.
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Determine the Fourier series of sout(t). Then sketch the magnitude spectrum when
V = 2V1. Hint Model the output signal as sout(t) = s1(t)sin(t)+ s2(t), where s1(t),
s2(t) are periodic signals chosen to represent the distortion. Use convolution and
superposition to determine the Fourier series.

The following problems are concerned with the Fourier transform.

2.16 Consider the signal shown in Figure 2.33.

t
0

s(t)

V

–T/2 T/2–β β

�Fig. 2.33 Signal considered in Problem 2.16.

(a) Find the Fourier transform of s(t).
(b) Now make the signal periodic by repeating the signal s(t) every αT seconds,

where α ≥ 1. Determine the Fourier coefficients of the periodic signal by using
the relationship D[αT]

k = (1/T1)S(f )
∣∣
f=kfr

, where T1 = αT .
(c) View the coefficients found in (b) as a function of α. Using Matlab plot on

the same frequency and amplitude scale the coefficients for several values of
α. Values of V = β = 1, T = 4, α = 1, 1.5, 2, 3, 5 are suggested.

(d) Explain qualitatively what happens as α becomes larger and larger. What
happens as α →∞?

2.17 Find the Fourier transforms of the signals in Problem 2.3 and Problem 2.4(a). Sketch
the magnitude and phase spectra.

2.18 (a) Determine the Fourier transforms of the following signals: (i) s(t) =
V1 cos(2π

√
2t)+ V2 cos(4π t), (ii) s(t) = V1 cos(2π

√
2t)+ V2 cos(4π

√
2t).

(b) If appropriate, determine the Fourier series for the two signals.
2.19 (Amplitude modulation-suppressed carrier) Consider a more general version of

Problem 2.10. Let s(t) = m(t) cos(2π fct).
(a) Determine the Fourier transform S(f ).
(b) Let m(t) be a bandlimited signal with M(f ) = 0 for |f | > W. Sketch the spectrum

of S(f ) for the case of fc � W.
2.20 (Frequency modulation) Generalize Problem 2.12 (but only slightly) by not

requiring that fc and fm be related harmonically. Write s(t) as s(t) =
R
{
Vcej2π fcte−jVm sin(2π fmt)

}
. Find the Fourier series of e−jVm sin(2π fmt), then the

Fourier transform of the series and apply the shifting property that results from the
multiplication by ej2π fct.

2.21 Determine the Fourier transforms of the two signals shown in Figure 2.34.
Remark Though you are welcome to integrate the functions, another approach might
be to differentiate them until impulses occur. Then find the Fourier transform of the
impulses and use the differentiation property.
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�Fig. 2.34 Figure for Problem 2.21.

2.22 Use the Fourier transform of a rectangular pulse (already established in this chapter)
and apply the linear and time-shifting properties of the Fourier transform to obtain
the Fourier transform for the signal s(t) shown in Figure 2.35.

s(t)

t(s)
0 1

1

32 4

2

�Fig. 2.35 Figure for Problem 2.22.

2.23 (Inverse Fourier transform) Determine and plot the continuous-time signal s(t) with
the magnitude and phase spectra shown in Figure 2.36.

2.24 (Fourier transform of a half cosine) Consider the windowed cosine in Figure 2.37
as a product of a rectangular pulse and a “pure” cosine whose Fourier transforms
have already been established and use the convolution property to find the Fourier
transform S(f ). Simplify the expression as much as you can. Then plot S(f ) for T = 1
(second) and A = 1 (volt).

2.25 (Properties of Fourier transform) Consider the signal s(t) shown in Figure 2.38. Here
we shall derive the Fourier transform of s(t) using different properties of the Fourier
transform.
(a) Use the Fourier transform of a rectangular pulse (already established in this

chapter) and apply the linear and time-shifting properties to obtain the Fourier
transform for s(t).

(b) First find the Fourier transform of ds(t)/dt and then apply the differentiation
property to find the Fourier transform for s(t).

2.26 (Parseval’s theorem for nonperiodic signals) Consider real, aperiodic signals x(t) and
y(t) with Fourier transforms X(f ) and Y(f ), respectively.
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�Fig. 2.38 Plot of s(t) for Problem 2.25.
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(a) Show that X(−f ) = X∗(f ).
(b) Prove that∫ ∞

−∞
x(t)y(t)dt =

∫ ∞

−∞
X(f )Y∗(f )df =

∫ ∞

−∞
X∗(f )Y(f )df .

Write the above expression for the special case of x(t) = y(t) and interpret it.
2.27 (An application of Parseval’s theorem) It has been shown that

s(t) = e−atu(t)
F←→ S(f ) = 1

a+ j2π f
, a > 0. (P2.5)

(a) Compute the energy Es of s(t) in the time domain, i.e., by directly performing∫∞
−∞ s2(t)dt.

(b) Verify the result obtained in (a) using Parseval’s theorem.
(c) Determine the frequency W of s(t) so that the energy contributed by all the fre-

quencies below W is 95% of the total signal energy Es. Hint
∫

df /(f 2 + a2) =
(1/a) tan−1(f /a).

2.28 (Parseval’s theorem for power signals) A power signal is one that has infinite energy
but finite average power, i.e.,

∫∞
−∞ s2(t)dt = ∞ but P = limT→∞

∫ T/2
−T/2 s2(t)dt =

limT→∞
∫∞
−∞ s2

T (t)dt is finite. Here sT (t) = s(t)[u(t + T/2)− u(t − T/2)], i.e., s(t)
truncated to the interval [−T/2, T/2].
(a) Employing an approach directly analogous to that used in this chapter for energy

signals show that:

P = lim
T→∞

∫ ∞

−∞
s2

T (t)dt =
∫ ∞

−∞
lim

T→∞
|ST (f )|2

T
df . (P2.6)

Keep in mind that
∫∞
−∞ ej2πxydy = δ(x).

(b) Do a dimensional analysis to determine the unit of P and S(f ) =
limT→∞ |ST (f )|2/T . What name would you assign to S(f )?

2.29 (Autocorrelation for power signals) Show that in the time domain, S(f ) in Problem
2.28 represents the time function

R(τ ) = F−1{S(f )} = lim
T→∞

1

T

∫ ∞

−∞
sT (t)sT (t + τ )dt. (P2.7)

2.30 Determine the autocorrelation, R(τ ), and S(f ) for the following power signals:
(a) s(t) = V (a DC signal).
(b) s(t) = Vu(t) (half a DC signal).
(c) s(t) = V cos(2π fct + θ ).

2.31 Any periodic signal is a power signal. Show that its autocorrelation is also periodic.
2.32 (a) Differentiation in the time domain results in multiplication in the frequency

domain. Use the concept of duality to complete the statement: Multiplication
in the time domain results in in the frequency domain.

(b) Derive the exact relationship between the Fourier transform S(f ) of s(t) and that
of s1(t) = ts(t).

2.33 Given the Fourier transform pair Ve−a|t| ←→ V2a/(a2 + 4π2f 2), use duality to
determine the Fourier transform of 1/(1+ t2).
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2.34 Use the results of Problems 2.32 and 2.33 to show that s(t) = t/(1+ t2) and S(f ) =
−jπe−2π |f | are a Fourier transform pair.

2.35 (Cauchy–Schwartz inequality) Consider two energy signals, s1(t) and s2(t). To prove
the inequality form a quadratic in λ, where λ is an arbitrary real constant, q(λ) =∫∞
−∞[s1(t)+ λs2(t)]2dt, which obviously is nonnegative. Since q(λ) ≥ 0, it cannot

have real roots. Use this to prove that

∣∣∣∣∫ ∞

−∞
s1(t)s2(t)dt

∣∣∣∣ ≤
√[∫ ∞

−∞
s2

1(t)dt

] [∫ ∞

−∞
s2

2(t)dt

]
. (P2.8)

What is the relationship between s1(t) and s2(t) for equality to hold?
2.36 Use Parseval’s theorem to express the Cauchy–Schwartz inequality in the frequency

domain.
2.37 Use the Cauchy–Schwartz inequality to prove the autocorrelation property |Rs(τ )| ≤

Rs(0). Hint Let s1(t) = s(t) and s2(t) = s(t + τ ).
2.38 Consider the following definitions of time and bandwidth durations based on equal

area. Let both s(t) and |S(f )| be maximum at the origin. Define the time duration
as the interval T such that s(0)T = ∫∞−∞ |s(t)|dt and the frequency bandwidth W to
satisfy 2S(0)W = ∫∞−∞ |S(f )|df . Show that the time–bandwidth product WT is lower
bounded by 1/2.

Remark It is a common practice to take WT to be equal to 1. This will be used in
later chapters as a quick means to determine the bandwidth of digital communication
systems.

Neither the time–bandwidth product definition given in the chapter nor the one
based on equal area defined in Problem 2.38 works for the signals of Examples 2.8 and
2.10. Since both signals have a discontinuity, their Fourier amplitude spectra do not
decay rapidly enough with f and therefore the appropriate integrals do not exist. Here
another bandwidth definition that is commonly used in communications is introduced.

2.39 Consider the signal of Example 2.8.
(a) From either the time signal or the Fourier transform show that the total energy in

the signal is 1/2a joules.
(b) Now determine the frequency bandwidth needed by an ideal lowpass filter to

pass a certain percentage of the signal energy, i.e., find fκ such that

2
∫ fκ

0
|S(f )|2df = κ

(
1

2a

)
, (P2.9)

where 0 ≤ κ ≤ 1. (Note: κ = 0.9 for 90%, etc.)
Hint Change the variable of integration so that fκ is normalized and becomes
fn = 2π fκ/a. Also the integral

∫
dx/(x2 + a2) = (1/a) tan−1(x/a) is useful.

(c) As a measure of time duration, T , choose the equal-energy definition of Prob-
lem 2.38. Show that T = 1/a and that the time duration–frequency bandwidth
product T × fκ = (1/2π ) tan (πκ/2).

(d) Plot T × fκ versus κ . The suggested range on κ is 0.1–0.99. Interpret and
comment on the plot.
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2.40 Repeat Problem 2.39 for the signal in Example 2.10. Hint
∫

(x/(x2 + a2))dx =
1
2 ln(x2 + a2).

2.41 (Asymptotic behavior of the amplitude spectrum) Consider an energy signal, s(t),
that can be differentiated n times before an impulse appears. The nth derivative can
therefore be written as dns(t)/dtn = s1(t)+ Kδ(t). Practically the Fourier transform
of s1(t) is a ratio of two functions in f such that the limit as f tends to infinity is finite,
typically zero. Show that S(f ) decays as 1/f n for large f .

The following set of problems considers various versions of analog amplitude modu-
lation. For illustrative purposes let m(t) be a bandlimited signal, bandwidth W hertz
with magnitude and phase spectra as shown in Figure 2.39.

0

M( f )

A

–θ

(V/Hz)M( f )

ÐM( f ) (rad)

f (Hz)

θ

�Fig. 2.39 Illustration of magnitude and phase spectra of m(t).

2.42 (Double sideband suppressed-carrier modulation) Consider a general version of
Problem 2.10. Let s(t) = m(t) cos(2π fct).
(a) Determine the Fourier transform, SDSB-SC(f ), where the mnemonic DSB-SC

stands for double sideband suppressed-carrier.
(b) Sketch the spectrum SDSB-SC(f ) for the case of fc � W.
(c) What is the bandwidth of the transmitted signal, i.e., of SDSB-SC(f )?

2.43 (Amplitude modulation) Let s(t) = [Vc + m(t)] cos(2π fct). Determine SAM(f ) and
sketch its spectrum. As in Problem 2.42 assume fc � W.

2.44 (Coherent demodulation of DSB-SC or AM) For the signals, s(t), of Problems 2.42
and 2.43, consider s1(t) = s(t) cos(2π fct).
(a) Determine S1(f ) and sketch the resultant spectrum.
(b) Let s1(t) be input to an ideal lowpass filter, bandwidth W hertz. What is the

output?
(c) Repeat (a) and (b) but let s1(t) = s(t) sin(2π fct).

2.45 (Envelope detection or noncoherent demodulation) Let the AM signal, s(t) = [Vc +
m(t)] cos(2π fct), be input to a full-wave rectifier followed by an ideal lowpass filter
of bandwidth W (see Figure 2.40).

f
–W W0

1

Full-wave rectifier Ideal lowpass filter

s(t) = [Vc + m(t)cos(2π fct)] s1(t) sout(t)
H( f )

�Fig. 2.40 Block diagram of envelope detection of amplitude modulation.
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(a) Determine the spectrum of s1(t) for the case where Vc ≥ max |m(t)|. What is
sout(t)?

(b) Let Vc = 0. What is s1(t) in this case? Note that in general a sinusoid can be
written as E(t) cos(θ (t)), where E(t) is the instantaneous amplitude of the sinu-
soid while θ (t) is the instantaneous phase. The envelope is defined to be |E(t)|
and this is what an ideal envelope detector should detect.

The modulation/demodulation above involves shifting the spectrum of the mes-
sage, m(t), to around fc for transmission and then back down to baseband at the
receiver. The required transmission bandwidth is 2W hertz. The next set of prob-
lems looks at reducing the bandwidth to W hertz. The technique developed is called
single-sideband modulation and leads one to the Hilbert transform.

2.46 Consider the spectrum shown in Figure 2.41.
(a) Show that SUSSB(f ) is related to SDSB-SC(f ) of Problem 2.42 by

SUSSB(f ) =
[

1+ sgn(f − fc)

2
+ 1− sgn(f + fc)

2

]
SDSB-SC(f ). (P2.10)

(b) Let SUSSB(f ) ←→ sUSSB(t) be a Fourier transform pair. Consider s(t) =
sUSSB(t)2 cos(2π fct). Sketch the spectrum of s(t).

(c) Let s(t) be input to an ideal lowpass filter, bandwidth W hertz. Show that the
output is m(t).

0

A

f (Hz)

A

– fc – W fc + W

M ( f  + fc) M ( f  – fc)SUSSB ( f )

–θ

θ

– fc fc

�Fig. 2.41 Spectrum of upper single-sideband (USSB) modulation.

2.47 Problem 2.46 shows that m(t) can be recovered from sUSSB(t) but the required trans-
mission bandwidth is only W hertz. The question thus becomes how to modulate m(t)
to obtain sUSSB(t). The following steps show how it is done.
(a) Show that SUSSB(f ) can be written as

SUSSB(f ) = M(f − fc)+M(f + fc)

2

+ M(f − fc)sgn(f − fc)−M(f + fc)sgn(f + fc)

2
. (P2.11)

(b) What time function does [M(f − fc)+M(f + fc)]/2 represent.
(c) Consider the term M(f − fc)sgn(f − fc). Argue that it is the time function [m(t) ∗

h(t)]ej2π fct, where h(t) is the inverse Fourier transform of sgn(f ).
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(d) Similarly show that M(f + fc)sgn(f + fc) represents the time function [m(t) ∗
h(t)]e−j2π fct.

(e) Combine the results of (c) and (d) to show that

M(f − fc)sgn(f − fc)−M(f + fc)sgn(f + fc)

2

←→ [m(t) ∗ h(t)]
ej2π fct − e−j2π fct

2
(P2.12)

are a Fourier transform pair.
(f) Is h(t), the inverse Fourier transform of sgn(f ), a real time function? Give the

reason(s).
(g) Does jsgn(f ) represent a real time function?
(h) Rewrite [m(t) ∗ h(t)][ej2π fct − e−j2π fct]/2 as [m(t) ∗ jh(t)][ej2π fct − e−j2π fct]/

(2j). What is the Fourier transform of jh(t)? Does it represent a real time
function?

(i) All of the above leads to the block diagram shown in Figure 2.42. Show that it
indeed does produce an USSB spectrum.

sUSSB(t)

cos(2π fct)

sin(2π fct)

m(t)

+

+

ˆ

m(t)

h(t)←→H( f )

H( f ) = jsgn( f )

LTI filter

�Fig. 2.42 Block diagram of a USSB modulator.

2.48 Modify the reasoning of Problems 2.45 and 2.46 to produce a lower single-sideband
signal, sLSSB(t).

2.49 What, if anything, would change if in Problem 2.46(a) we started with SAM(f ) instead
of SDSB-SC(f )?

The LTI filter of Figure 2.42 in Problem 2.46 produces what is known as a Hilbert
transformation. The functions m(t) and m̂(t) are called a Hilbert transform pair. The next
set of problems looks at properties of the Hilbert transform and another application.

2.50 Consider the LTI system shown in Figure 2.43. The system has equal gain at all
frequencies and a phase shift of −π/2 for f ≥ 0 and π/2 for f < 0.

Show that the system’s impulse response is −1/π t. Hint Start with H(f ) =
lima→0−je−a|f |sgn(f ), find ha(t) corresponding to −je−a|f |sgn(f ) and then let a go
to zero, i.e., h(t) = lima→0 ha(t).
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sin(t) sout(t)H( f ) = jsgn( f )

Hilbert transform pair

�Fig. 2.43 The LTI system considered in Problem 2.50.

2.51 Show that a Hilbert transform pair is orthogonal.
2.52 Show that the autocorrelation of the output in Figure 2.43 is equal to the autocorre-

lation of the input. Hint Work in the frequency domain. Note that this confirms the
remark made in the chapter that distinct signals can have the same autocorrelation
function.

2.53 Find the Hilbert transform of V cos(2π fct).
One application of the Hilbert transform is the representation of a passband signal by

a baseband (lowpass) equivalent signal. The analysis/design is done at baseband and
then the results are translated to the appropriate passband. The procedure to obtain an
equivalent baseband signal is shown in the next problem.

2.54 Consider a passband signal with the magnitude and phase spectra illustrated in
Figure 2.44.

0

∠SPB( f )

SPB( f )
SPB( f ) ¬® sPB(t)

f

�Fig. 2.44 Illustration of the magnitude and phase spectra of a passband signal.

(a) Show that the spectrum, S(f ), of the signal s(t) = sPB(t)− jŝPB(t) is one-sided
and sketch it. Here ŝPB(t) is the Hilbert transform of sPB(t).

(b) Choose a frequency fs and obtain a baseband signal by shifting S(f ) to the left by
fs, i.e., form sBB(t) = s(t)e−j2π fst. Sketch the spectrum SBB(f ).

(c) Note that, in general, sBB(t) is a complex signal. Why? Express it as sBB(t) =
s[real]

BB (t)+ js[imag]
BB (t). Show that

sPB(t) = R
{

sBB(t)ej2π fst
}

= s[real]
BB (t) cos(2π fst)− s[imag]

BB (t) sin(2π fst). (P2.13)

(d) The choice of the shift frequency, fs, is somewhat arbitrary. Typically either it is
chosen to simplify the problem or there is a natural choice such as the carrier fre-
quency in amplitude modulation. Therefore consider only the positive frequency
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axis. If there exists an axis of symmetry, fs, such that SPB(f ) is even and 	 SPB(f )
is odd about it, then it becomes a natural choice. In this case what can one say
about the baseband equivalent signal?

2.55 Determine the baseband equivalent signal for an USSB signal as discussed in
Problem 2.46.



3
Probability theory, random variables and random

processes

The main objective of a communication system is the transfer of information over a chan-
nel. By its nature, the message signal that is to be transmitted is best modeled by a random
signal. This is due to the fact that any signal that conveys information must have some
uncertainty in it, otherwise its transmission is of no interest. When a signal is transmit-
ted through a communication channel, there are two types of imperfections that cause the
received signal to be different from the transmitted signal. One type of imperfection is
deterministic in nature, such as linear and nonlinear distortions, intersymbol interference
(ISI), etc. The second type is nondeterministic, such as addition of noise, interference, mul-
tipath fading, etc. For a quantitative study of these nondeterministic phenomena, a random
model is required.

This chapter is concerned with the methods used to describe and characterize a random
signal, generally referred to as a random process and also commonly called a stochastic
process.1 Since a random process is in essence a random variable evolving in time we first
consider random variables.

3.1 Random variables

3.1.1 Sample space and probability

The fundamental concept in any probabilistic model is the concept of a random experi-
ment. In general, an experiment is called random if its outcome, for some reason, cannot
be predicted with certainty. Examples of simple random experiments are throwing a die,
flipping a coin, and drawing a card from a deck. The common property of all these exper-
iments is that the outcome (or result) of the experiment is uncertain. In throwing a die,
the possible outcomes are sides with 1, 2, 3, 4, 5, and 6 dots. In flipping a coin, “head”
and “tail” are the possible outcomes. The set of all possible outcomes is called the sample
space and is denoted by �. Outcomes are denoted by ωs and each ω lies in �, i.e., ω ∈ �.

A sample space is discrete if the number of its elements is finite or countably infinite,
otherwise it is a nondiscrete or continuous sample space. All the random experiments men-
tioned before have discrete sample spaces. If one predicts tomorrow’s highest temperature,
then the sample space corresponding to this random experiment is nondiscrete.

1 Stochastic is a word of Greek origin and means “pertaining to chance.”
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Events are subsets of the sample space for which measures of their occurrences, called
probabilities, can be defined or determined. For discrete sample spaces, any subset of the
sample space is an event, i.e., a probability can be assigned for it. For example, in throwing
a die various events such as “the outcome is odd,” “the outcome is smaller than 3,” and
“the outcome divides by 2” can be considered. For a nondiscrete sample space, it might
not be possible to assign a probability to every subset of � without changing the basic
intuitive properties of probability.

For a discrete sample space �, define a probability measure P on � as a set function
that assigns nonnegative values to all events, denoted by E, in � such that the following
conditions are satisfied

Axiom 1 0 ≤ P(E) ≤ 1 for all E ∈ � (on a percentage scale probability ranges from 0 to
100%; despite popular sports lore, it is impossible to have more than 100%).
Axiom 2 P(�) = 1 (when an experiment is conducted there has to be an outcome).
Axiom 3 For mutually exclusive events2 E1, E2, E3,. . . we have P

(⋃∞
i=1 Ei

) =∑∞
i=1 P(Ei).

From these three axioms several important properties of the probability measure follow.
The more important ones are:

(1) P(Ec) = 1− P(E), where Ec denotes the complement of E. This property implies that
P(Ec)+ P(E) = 1, i.e., something has to happen.

(2) P(�) = 0 (again, something has to happen).
(3) P(E1 ∪ E2) = P(E1)+P(E2)− P(E1 ∩ E2). Note that if two events E1 and E2 are

mutually exclusive, then P(E1 ∪ E2) = P(E1)+P(E2), otherwise the nonzero common
probability P(E1 ∩ E2) needs to be subtracted.

(4) If E1 ⊆ E2, then P(E1) ≤ P(E2). This says that if event E1 is contained in E2, then
occurrence of E2 means E1 has occurred but the converse is not true.

In many situations we observe or are told that event E1 has occurred but are actually
interested in event E2. Knowledge that E1 has occurred changes, in general, the probability
of E2 occurring. If it was P(E2) before, it now becomes P(E2|E1), which is read as the
probability of E2 occurring given that event E1 has occurred. This probability is called
conditional probability and is given by

P(E2|E1) =
⎧⎨⎩

P(E2 ∩ E1)

P(E1)
, if P(E1) 	= 0

0, otherwise
. (3.1)

The numerator P(E2 ∩ E1) is the probability of the two events occurring jointly, or
loosely speaking, how much of E2 is contained within E1. The denominator reflects that
since we know that E1 has occurred, we are dealing with a new sample space. Note that
P(E|�) = P(E ∩�)/P(�) = P(E)/1 = P(E). The probabilities P(E2) and P(E2|E1) are
known as the a priori (before) and a posteriori (after) probabilities.

If knowledge of E1 does not change the unconditional probability of E2 occurring, i.e.,
P(E2|E1) = P(E2), then the two events E1 and E2 are said to be statistically independent.

2 The events E1, E2, E3,. . . are mutually exclusive if Ei ∩ Ej = � for all i 	= j, where � is the null set.



79 3.1 Random variables
�

From (3.1) we have P(E2|E1) = P(E2) = P(E2 ∩ E1)/P(E1). It follows that3 P(E2 ∩ E1) =
P(E1)P(E2).

Also from (3.1) we have P(E2 ∩ E1) = P(E2|E1)P(E1). Interchange the roles of E1 and
E2 and we also have P(E1 ∩ E2) = P(E1|E2)P(E2). Of course, P(E2 ∩ E1) = P(E1 ∩ E2),
which means that P(E2|E1)P(E1) = P(E1|E2)P(E2). Written in another way, this relation-
ship is

P(E2|E1) = P(E1|E2)P(E2)

P(E1)
, (3.2)

a result known as Bayes’ rule.

Example 3.1 In throwing a fair die (i.e., any of the six faces are equally probable to
occur), the probability of event E1 = “the outcome is even” is

P(E1) = P(2)+ P(4)+ P(6) = 1

2
. (3.3)

The probability of event E2 = “the outcome is smaller than 4” is

P(E2) = P(1)+ P(2)+ P(3) = 1

2
. (3.4)

In this case

P(E2|E1) = P(E2 ∩ E1)

P(E1)
= P(2)

1/2
= 1/6

1/2
= 1

3
. (3.5)

�

The events {Ei}ni=1 partition the sample space � if the following conditions are satisfied:

(i)
n⋃

i=1

Ei = � (3.6a)

(they cover the entire sample space),
(ii)

Ei ∩ Ej = � for all 1 ≤ i, j ≤ n and i 	= j (3.6b)

(they are mutually exclusive).

Then, if for an event A we have the conditional probabilities {P(A|Ei)}ni=1, P(A) can be
obtained by applying the total probability theorem, which is

P(A) =
n∑

i=1

P(Ei)P(A|Ei). (3.7)

3 This is usually taken as the definition of statistical independence but the definition given here is much preferred.
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Furthermore, Bayes’ rule gives the conditional probabilities P(Ei|A) by the following
relation:

P(Ei|A) = P(A|Ei)P(Ei)

P(A)
= P(A|Ei)P(Ei)∑n

j=1 P(A|Ej)P(Ej)
. (3.8)

3.1.2 Random variables

A random variable is a mapping from the sample space � to the set of real numbers.
Figure 3.1 shows a schematic diagram describing a random variable. We shall denote ran-
dom variables (or the mapping) by boldface, i.e., x, y, etc., while individual or specific
values of the mapping x are denoted by x(ω). A random variable is discrete if the set of its
values is either finite or countably infinite.

A complete description of the random variable is given by the cumulative distribution
function (cdf), defined as

Fx(x) = P(ω ∈ � : x(ω) ≤ x), (3.9)

which can be written simply as

Fx(x) = P(x ≤ x). (3.10)

It is important that the reader is clear as to the difference between x and x in (3.9) and (3.10).
The boldface x refers to the random variable (i.e., mapping) being considered, while x is
simply an indeterminate or dummy variable. The cdf has the following properties:

(1) 0 ≤ Fx(x) ≤ 1 (this follows from Axiom 1 of the probability measure).
(2) Fx(x) is nondecreasing: Fx(x1) ≤ Fx(x2) if x1 ≤ x2 (this is because event x(ω) ≤ x1 is

contained in event x(ω) ≤ x2).
(3) Fx(−∞) = 0 and Fx(+∞) = 1 (x(ω) ≤ −∞ is the empty set, hence an impossible

event, while x(ω) ≤ ∞ is the whole sample space, i.e., a certain event).
(4) P(a < x ≤ b) = Fx(b)− Fx(a).

R

ω1 ω2

ω3

ω4

x(ω4) x(ω1) x(ω3) x(ω2)

Ω

�Fig. 3.1 Random variable as a mapping from � to R.
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�Fig. 3.2
Typical cdfs: (a) a discrete random variable, (b) a continuous random variable, and (c) a mixed random
variable.

For a discrete random variable, Fx(x) is a staircase function, whereas a random variable
is called continuous if Fx(x) is a continuous function. A random variable is called mixed
if it is neither discrete nor continuous. Typical cdfs for discrete, continuous, and mixed
random variables are shown in Figures 3.2(a), 3.2(b), and 3.2(c), respectively.

Rather than dealing with the cdf, it is more common to deal with the probability density
function (pdf), which is defined as the derivative of Fx(x), i.e.,

fx(x) = dFx(x)

dx
. (3.11)

From the definition it follows that

P(x1 ≤ x ≤ x2) = P(x ≤ x2)− P(x ≤ x1)

= Fx(x2)− Fx(x1)

=
∫ x2

x1

fx(x)dx. (3.12)
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The above says that the probability that the random variable lies in a certain range is the
area under the pdf in that range. An important and useful interpretation of this is that
P(x ≤ x ≤ x+ dx) = fx(x)dx.

The pdf has the following basic properties:

(1) fx(x) ≥ 0 (because Fx(x) is nondecreasing).
(2)

∫∞
−∞ fx(x)dx = 1 (because it equals Fx(+∞)− Fx(−∞) = 1).

(3) In general, P(x ∈ A) = ∫A fx(x)dx.

In the case where the random variable is discrete or mixed, the cdf has discontinuities
and therefore the pdf will involve impulses. The pdf is a density and tells us how the
probability is concentrated with respect to x and so the impulses signify that a finite amount
of probability is concentrated at each discontinuity point. For discrete random variables, it
is more common to define the probability mass function, or pmf, which is defined as {pi},
where pi = P(x = xi). Obviously for all i one has pi ≥ 0 and

∑
i pi = 1.

Any function that satisfies conditions (1) and (2) above can serve as a pdf. Whether it is
a useful model for the physical situation is another matter. Typically fx(x) is determined by
intuition, logical reasoning, or experimentally. Some of the most commonly encountered
random variables in communications and their pdfs are discussed below.

Bernoul l i random variable This is a discrete random variable that takes two values,
1 and 0, with probabilities p and 1− p. The pdf and cdf of the Bernoulli random variable
are shown in Figure 3.3.

A Bernoulli random variable is a good model for a binary data source whose output is
bit 1 or 0. Furthermore, when a bit stream is transmitted over a communication channel,
some bits might be received in error. An error can be accounted for by a modulo-2 addition
of a 1 to the source bit, thus changing a 0 into a 1 and a 1 into a 0. Therefore, a Bernoulli
random variable can also be used to model the channel errors.

0
x x

1 0 1

1 – p

1

(1 – p)
(p)

fx(x) Fx(x)

�Fig. 3.3 The pdf and cdf for the Bernoulli random variable.
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Binomial random variable This is also a discrete random variable that gives the
number of 1s in a sequence of n independent Bernoulli trials. The pdf is given by

fx(x) =
n∑

k=0

(
n

k

)
pk(1− p)n−kδ(x− k), (3.13)

where the binomial coefficient is defined as(
n

k

)
= n!

k! (n− k)!
. (3.14)

An example of the pdf for a binomial random variable is shown in Figure 3.4.
If the Bernoulli random variable discussed above is used to model the channel errors of

a communication system (with a cross error probability of p), then the binomial random
variable can be used to model the total number of bits received in error when a sequence
of n bits is transmitted over the channel.

Uniform random variable This is a continuous random variable that takes values
between a and b with equal probabilities over intervals of equal length. The pdf is given by

fx(x) =
⎧⎨⎩

1

b− a
, a < x < b

0, otherwise
. (3.15)

General plots of the pdf and cdf for a uniform random variable are shown in Figure 3.5.
This model is often used for continuous random variables whose range is known, but

where nothing else is known about the likelihood of various values that the random variable
can take on. For example, in communications the phase of a received sinusoidal carrier is
usually modeled as a uniform random variable between 0 and 2π . Quantization error is
also typically modeled as uniform.

x
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4 6

fx(x)

�Fig. 3.4 The pdf for the binomial random variable.
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fx(x) Fx(x)

�Fig. 3.5 The pdf and cdf for the uniform random variable.
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fx(x) Fx(x)

�Fig. 3.6 The pdf and cdf of a Gaussian random variable.

Gaussian (or normal) random variable This is a continuous random variable that
is described by the following pdf:

fx(x) = 1√
2πσ 2

exp

{
− (x− μ)2

2σ 2

}
, (3.16)

where μ and σ 2 are two parameters whose meaning is described later. It is usually denoted
as N (μ, σ 2). Figure 3.6 shows sketches of the pdf and cdf of a Gaussian random variable.

The Gaussian random variable is the most important and frequently encountered ran-
dom variable in communications. This is because thermal noise, which is the major source
of noise in communication systems, has a Gaussian distribution. Gaussian noise and the
Gaussian pdf are discussed in more depth at the end of this chapter.

The problems explore other pdf models. Some of these arise when a random variable
is passed through a nonlinearity. How to determine the pdf of the random variable in this
case is discussed next.

Funct ions of a random variable A function of a random variable y = g(x) is itself a
random variable. From the definition, the cdf of y can be written as

Fy(y) = P(ω ∈ � : g(x(ω)) ≤ y). (3.17)
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In practice one usually finds the pdf of y. Assume that for all y, the equation g(x) = y has
a countable number of solutions (or roots) and, at each solution point, dg(x)/dx exists and
is nonzero. Then the pdf of the random variable y = g(x) is given by

fy(y) =
∑

i

fx(xi)∣∣∣∣∣ dg(x)

dx

∣∣∣∣
x=xi

∣∣∣∣∣
, (3.18)

where {xi} are the solutions of g(x) = y.

Example 3.2 Consider a random variable x with pdf fx(x). Find the pdf of the random
variable y = ax+ b in terms of fx(x). Then examine the special case that x is a Gaussian
random variable with parameters μx and σ 2

x .

Solut ion

In this example g(x) = ax+ b, therefore dg(x)/dx = a. The equation ax+ b = y has only
one solution given by x1 = (y− b)/a. Therefore

fy(y) = fx ((y− b)/a)

|a| . (3.19)

The cdf of y can also be obtained directly as follows. We assume that a > 0 (if a < 0
the approach is similar). Since the mapping y = ax+ b is linear and monotonic, then

Fy(y) = P(y ≤ y) = P(ax+ b ≤ y) = P

(
x ≤ y− b

a

)
=
∫ (y−b)/a

−∞
fx(x)dx = Fx

(
y− b

a

)
. (3.20)

Differentiating (3.20) with respect to y gives the following relationship between the pdfs
of y and x:

fy(y) = fx ((y− b)/a)

a
, (3.21)

which is the same as before. Though in this case there is not much difference in difficulty
between the approaches, typically the approach based on (3.18) is easier to apply.

Finally, for the important case that x is N (μx, σ 2
x ), one has

fy(y) = 1√
2πa2σ 2

x

exp

{
− (y− aμx − b)2

2a2σ 2
x

}
. (3.22)

Note that y is a Gaussian random variable with parameters μy = aμx + b and σ 2
y =

a2σ 2
x . �

The above result leads to the important conclusion that a linear function of a Gaussian
random variable is itself a Gaussian random variable.
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Example 3.3 Consider a random variable x with pdf fx(x). Find the pdf of the random
variable y = ax2, where a > 0, in terms of fx(x). Then examine the case when x is
N (0, σ 2

x ).

Solut ion

The equation g(x) = ax2 = y has two real solutions x1 = √y/a and x2 = −√y/a for y≥ 0,
and dg(x)/dx = 2ax. The pdf fy(y) consists of two terms:

fy(y) = fx
(
x = √y/a

)+ fx
(
x = −√y/a

)
2
√

ay
u(y). (3.23)

Now consider the case fx(x) ∼ N (0, σ 2
x ). It is not hard to show that the pdf of y is

given by

fy(y) =
{(

1/
√

2πayσ 2
x

)
e−y/(2aσ 2

x ), y ≥ 0

0, y < 0
. (3.24)

�

3.1.3 Expectation of random variables

The pdf of a random variable provides a complete description of it. However, in many
situations only a partial description is either needed or feasible. This is provided by
statistical averages which play an important role in the characterization of the random
variable defined on the sample space of an experiment. These statistical averages are
known as moments. Of particular interest are the first and second moments of a sin-
gle random variable and the joint moments such as the correlation and the covariance,
between any pair of random variables in a multidimensional set of random variables. For
a Gaussian random variable(s) it turns out that these moments completely characterize it.
This section is devoted to the definition of these important statistical averages. In gen-
eral, the mathematical operation of finding a statistical average is called an expectation
operation.

The expected value (also called the mean value) of the random variable x is defined as

mx = E{x} ≡
∫ ∞

−∞
xfx(x)dx, (3.25)

where E denotes the statistical expectation operator. Since fx(x)dx is the probability of
random variable x lying in the infinitesimal strip dx, mx is interpreted as the weighted
average of x, where each weight is the probability of that specific value of x occurring. The
expected value of a random variable is an average of the values that the random variable
takes in a large number of experiments and is called the first moment of a random variable.4

4 The terminology is from mechanics, where fx(x) is interpreted as a mass density and x is the moment arm.
mx would then be the center of gravity. Colloquially one can call it the picture hanging moment for random
variables.
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In general, the nth moment of a random variable x is defined as

E{xn} ≡
∫ ∞

−∞
xnfx(x)dx. (3.26)

The most important moments are the first (n = 1) which we have just discussed and the
second, n = 2, which is also known as the mean-squared value of the random variable.
Knowledge of all the moments of a random variable also completely describes the random
variable just as the pdf does. This is explored in Problem 3.19.

One can look upon (3.26) as the expected value of a random variable which is the result
of passing x through a nonlinearity, i.e., determining E{y}, where y = xn. Now consider the
more general case y = g(x), where g(x) is some arbitrary function of the random variable
x. The expected value of y is

E{y} = E{g(x)} =
∫ ∞

−∞
g(x)fx(x)dx. (3.27)

In particular, if y = (x− mx)n, where mx is the mean value of x, then

E{y} = E{(x− mx)n} =
∫ ∞

−∞
(x− mx)nfx(x)dx. (3.28)

This expected value is called the nth central moment of the random variable x, because
it is a moment taken relative to the mean. When n = 2 the central moment is called the
variance of the random variable and commonly denoted as σ 2

x . That is,

σ 2
x = var(x) = E{(x− mx)2} =

∫ ∞

−∞
(x− mx)2fx(x)dx. (3.29)

This parameter provides a measure of the dispersion of the random variable x. In some
sense it is a measure of the variable’s “randomness.” By specifying the variance σ 2

x , one
essentially constrains the effective width of the pdf fx(x) of the random variable x about its
mean value mx. A mathematical statement of this constraint is the Chebyshev inequality:

P(|x− mx|) ≥ ε ≤ σ 2
x

ε2
(3.30)

for any positive number ε. From the above discussion it can be seen that the mean and
variance of a random variable give a partial description of its pdf.

By expanding the term (x− mx)2 in the integral of (3.29) and noting that the expected
value of a constant is the constant itself, one obtains the following expression that relates
the variance to the first and second moments:

σ 2
x = E{x2} − [E{x}]2 = E{x2} − m2

x. (3.31)

To put an electrical engineering interpretation on the mean and variance, the mean value
would be the DC component of the random variable, while the variance is the AC power.
With this interpretation (3.31) states that the AC power equals total power minus DC
power. Lastly, the square-root of the variance is known as the standard deviation and it
is interpreted as the root-mean-squared (RMS) value of the AC component.
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3.1.4 Multiple random variables

When dealing with combined experiments or repeated trials of a single experiment, one
often encounters multiple random variables and their cdfs and pdfs. Multiple random vari-
ables are basically multidimensional functions defined on a sample space of a combined
experiment. Consider the two-dimensional case. Let x and y be the two random vari-
ables defined on the same sample space �. For those two random variables, the joint cdf
Fx,y(x, y) is defined as

Fx,y(x, y) = P(x ≤ x, y ≤ y), (3.32)

where the notation (x ≤ x, y ≤ y) means (x ≤ x ∩ y ≤ y), or (x ≤ x and y ≤ y).
Similarly, the joint pdf fx,y(x, y) of x and y is

fx,y(x, y) = ∂2Fx,y(x, y)

∂x∂y
, (3.33)

where it is assumed that Fx,y(x, y) is continuous everywhere.
When the joint pdf fx,y(x, y) is integrated over one of the variables, one obtains the pdf

of the other variable. That is, ∫ ∞

−∞
fx,y(x, y)dx = fy(y), (3.34)∫ ∞

−∞
fx,y(x, y)dy = fx(x). (3.35)

The above pdfs that are obtained from integrating over one of the variables are called
marginal pdfs. Furthermore, if fx,y(x, y) is integrated over both variables one obtains∫ ∞

−∞

∫ ∞

−∞
fx,y(x, y)dxdy = F(∞,∞) = 1. (3.36)

Also note that Fx,y(−∞,−∞) = Fx,y(−∞, y) = Fx,y(x,−∞) = 0.
As with the pdf of a single random variable the joint pdf of two random variables needs

to satisfy simple conditions, namely: (i) it is nonnegative for all x and y, (ii) the volume
under it is 1, (3.36) above, (iii) the marginal densities should also be valid pdfs. Again any
two-dimensional function that satisfies these conditions is a valid joint pdf. But again only
a few are of any use. Indeed, we shall only be concerned with the random variables that
are jointly Gaussian. Many might be called but only a few get to serve.

The conditional pdf of the random variable y, given that the value of the random variable
x is equal to x, is denoted by fy(y|x) and defined as

fy(y|x) =
⎧⎨⎩

fx,y(x, y)

fx(x)
, fx(x) 	= 0

0, otherwise
. (3.37)

We have already defined statistical independence of two or more events of a sample
space �. The concept of statistical independence can be extended to random variables
defined on a sample space generated by a combined experiment or by repeated trials of a
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single experiment. In particular, two random variables x and y are statistically independent
if and only if

fy(y|x) = fy(y) (statistical independence) (3.38)

or equivalently

fx,y(x, y) = fx(x)fy(y). (3.39)

The joint pdf provides a complete description of the two random variables but as in
the single variable case a partial description is provided by the moments of the random
variables. In the case of two random variables, x and y, we define the joint moment as

E{xjyk} =
∫ ∞

−∞

∫ ∞

−∞
xjykfx,y(x, y)dxdy (3.40)

and the joint central moment as

E{(x− mx) j(y− my)k} =
∫ ∞

−∞

∫ ∞

−∞
(x− mx) j(y− my)kfx,y(x, y)dxdy, (3.41)

where mx = E{x} and my = E{y}.
Of particular importance are the joint moment and the joint central moment correspond-

ing to j = k = 1:

E{xy} ≡
∫ ∞

−∞

∫ ∞

−∞
xyfx,y(x, y)dxdy (correlation) (3.42)

and

cov{x, y} ≡ E{(x− mx)(y− my)}
= E{xy} − mxmy (covariance). (3.43)

These joint moments are called the correlation and the covariance of the random variables
x and y, respectively.5

Let σ 2
x and σ 2

y be the variance of x and y respectively. The covariance normalized with
respect to σxσy is called the correlation coefficient, denoted by ρx,y; i.e.,

ρx,y = cov{x, y}
σxσy

. (3.44)

Using the Cauchy–Schwartz inequality, it can be shown that |ρx,y| ≤ 1.
The two random variables x and y are said to be uncorrelated if and only if their cor-

relation coefficient (or covariance) is zero. So again, uncorrelatedness means E{xy} =
E{x}E{y}. It is easy to verify that if x and y are independent, then cov{x, y} = ρx,y = 0.
That is, independence implies lack of correlation (ρx,y = 0). It should be noted that lack of
correlation does not in general imply statistical independence. That is, ρx,y might be zero
but the random variables x and y may still be statistically dependent.

5 The “co” in covariance has the same connotation as “co” in co-ed.
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3.2 Random processes

Many random phenomena that occur in nature are functions of time. For example, meteoro-
logical phenomena such as the random fluctuations in air temperature and air pressure are
functions of time. The thermal noise voltage generated in a resistor of an electronic device,
say a radio receiver, is also a random function of time. Similarly, the signal at the output of a
source that generates information is characterized as a random signal that varies with time.
An audio signal that is transmitted over a telephone channel is an example of such a signal.
All these are examples of random (stochastic) processes. In our study of digital commu-
nications, we encounter random processes in the characterization and modeling of signals
generated by information sources, in the characterization of communication channel used
to transmit the information, and in the design of the optimum receiver for processing the
received random signal.

As with random variables a random process can be visualized as a mapping from a
sample space that is the set of experimental outcomes to a set of time functions as shown
in Figure 3.7. In practice this mapping is seldom known and indeed is not needed to be
known. What is important is the set of possible time functions that one sees, i.e., the ensem-
ble. Denote this set by x(t), where the time functions x1(t, ω1), x2(t, ω2), x3(t, ω3),. . . are

Real number

Time
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. 
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ω2

ωM
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. . . .
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. �Fig. 3.7 An illustration of a random process.
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specific members of the ensemble. At any time instant, say t = tk, we have a random
variable x(tk), a mapping from the sample space to x1(tk, ω1), x2(tk, ω2), x3(tk, ω3), . . . .
Therefore the random process can be looked upon as a random variable that is a function
of time.

One can obtain a partial description of the random variable by determining the pdf of
x(t) at time t, fx(t)(x; t), where the variable t is included in the argument of the pdf to signify
that the pdf may change with time. It should be pointed out that at any two time instants,
say t1 and t2, we have two different random variables x(t1) and x(t2). Any relationship
between them is described by the joint pdf fx(t1),x(t2)(x1, x2; t1, t2) where again the times t1
and t2 are included in the argument since in general the joint pdf may depend on the actual
times t1 and t2.

A complete description of the random process is accomplished by taking any set of time
instants t1 < t2 < · · · < tN , where N is any positive integer, N = 1, 2, . . ., and either deter-
mining or postulating the joint pdf of the N random variables, x(t1), x(t2), . . . , x(tN), i.e., the
Nth-order pdf fx(t1),x(t2),...,x(tN )(x1, x2, . . . , xN ; t1, t2, . . . , tN), where xj in the argument is the
(dummy) variable for random variable x(tj). The variables tj again signify that the joint pdf
may depend on where the time instants are taken to be. For our purposes the most important
joint pdfs are the first-order pdf fx(t)(x; t) and the second-order pdf fx(t1),x(t2)(x1, x2; t1, t2).

In general the random variable may be discrete or continuous, depending on the char-
acteristics of the source that generates the random process. The parameter t is considered
here to be continuous, though it may be also discrete. Figure 3.8 shows four examples of
commonly encountered random processes.

The sample functions of the first process are what ensemble members of thermal noise,
discussed later in the chapter, look like on an oscilloscope. The pdf of the amplitude is
Gaussian. The second process is encountered in communication systems where it is not
feasible to establish timing at the receiver. The mapping is x(t) = V cos(2π fct +�), where
� is often taken to be uniform over [0, 2π ). This is a mapping from the random variable
� to the time function.

The process illustrated in Figure 3.8(c) is one commonly encountered in wireless chan-
nels where the communication system experiences fading. The mapping is given by

x(t) = V cos(2π fct +�), where V =
√

x2
1 + x2

2 and � = tan−1(x2/x1). Furthermore, x1

and x2 are usually modeled as being zero mean, of equal variance σ 2, statistically inde-
pendent Gaussian random variables. In this case V has a Rayleigh pdf, whereas � is
uniform over [0, 2π ). It is commonly referred to as a Rayleigh process. The Rayleigh pdf is
given by

fV(v) = v

σ 2
e−v2/(2σ 2)u(v). (3.45)

The last process is the binary random process where transmitted bits 0 and 1 are mapped
to+V and−V (volts). The mapping is assumed to be statistically independent from one bit
interval to another. Further, it is also usual to assume that the starting time, ε, of transmis-
sion is random, uniform over the bit interval. A reasonable assumption from the channel’s
point of view since it does not know when the transmitter starts to transmit. An analytical
expression for the process is



92 Probability theory, random variables and random processes
�

t0

(c)

t

+V

−V

(d)

0

Tb

(a)

0 t
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t0
 

�Fig. 3.8
Typical ensemble members for four random processes commonly encountered in communications: (a)
thermal noise, (b) uniform phase, (c) Rayleigh fading process, and (d) binary random data process.

x(t) =
∞∑

k=−∞
V(2ak − 1)[u(t − kTb + ε)− u(t − (k + 1)Tb + ε)], (3.46)

where ak = 1 with probability p, 0 with probability (1− p) (usually p = 1/2), Tb is the bit
duration, and ε is uniform over [0, Tb).

Observe that two of these ensembles have member functions that look very determin-
istic, one is “quasi” deterministic but for the last one even individual time functions look
random. But the point is not whether any one member function looks deterministic or
not; the issue when dealing with random processes is that we do not know for sure which
member function we shall have to deal with.

3.2.1 Classification of random processes

The basic classification of random processes arises from whether its statistics change with
time or not, i.e., whether the process is nonstationary or stationary. Even if stationary
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there are different levels of stationarity. A strictly stationary process is one where the joint
pdf of any order is independent of a shift in time. Consider again the ensemble of Fig-
ure 3.7, the time instants t1, . . . , tN , associated random variables x(t1), . . . , x(tN) with joint
pdf fx(t1),..., x(tN )(x1, . . . , xN ; t1, . . . , tN). If we consider a new set of N random variables,
obtained by an arbitrary time shift of t, then the process is said to be Nth-order stationary
if the joint pdf does not change, i.e.,

fx(t1),x(t2),..., x(tN )(x1, x2, . . . , xN ; t1, t2, . . . , tN)

= fx(t1+t),x(t2+t),..., x(tN+t)(x1, x2, . . . , xN ; t1 + t, t2 + t, . . . , tN + t). (3.47)

If (3.47) is true for all t and all N, then the process is strictly stationary. Observe that
though Nth-order stationarity does not depend on the time shift, it does depend on the
spacing between the time instants. Taking t1 as a reference point, the pdf depends on
τ1 = t2 − t1, τ2 = t3 − t1,. . . , τN−1 = tN − t1. Put simply, we can throw N lines arbitrar-
ily across the ensemble and shift these lines as we wish to see different sets of random
variables. But as long as we maintain the spacings between the lines the joint pdf of any
set of encountered random variables is the same. Provided, of course, that the process is
Nth-order stationary.

Strict stationarity is a very strong condition that only a few physical processes may sat-
isfy. And indeed for our purposes it is not necessary since we shall be interested exclusively
in the first- and second-order stationarity, i.e., that

fx(t1)(x, t1) = fx(t1+t)(x; t1 + t) = fx(t)(x) (3.48)

and

fx(t1),x(t2)(x1, x2; t1, t2) = fx(t1+t),x(t2+t)(x1, x2; t1 + t, t2 + t)

= fx(t1),x(t2)(x1, x2; τ ), τ = t2 − t1. (3.49)

3.2.2 Statistical averages or joint moments

As in the case of random variables, statistical averages or expected values can provide
a partial but useful characterization for a random process. Consider N random variables
x(t1), x(t2), . . . , x(tN). The most general form for the joint moments of these random
variables is

E{xk1 (t1), xk2 (t2), . . . , xkN (tN)} =
∫ ∞

x1=−∞
· · ·
∫ ∞

xN=−∞
xk1

1 xk2
2 · · · xkN

N

× fx(t1),x(t2),...,x(tN )(x1, x2, . . . , xN ; t1, t2, . . . , tN)dx1dx2 . . . dxN ,

(3.50)

for all integers kj ≥ 1 and N ≥ 1.
However, we shall be satisfied by considering only the first- and second-order moments,

i.e., E{x(t)}, E{x2(t)}, and E{x(t1)x(t2)}. They are the mean value, mean-squared value, and
(auto)correlation, respectively, of the process.
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Mean value or the first moment The mean value of the process at time t is

mx(t) = E{x(t)} =
∫ ∞

−∞
xfx(t)(x; t)dx. (3.51)

Note that the average is across the ensemble and if the pdf varies with time, then the mean
value is a (deterministic) function of time. If, however, the process is stationary, then the
mean is independent of t or a constant, i.e.,

mx = E{x(t)} =
∫ ∞

−∞
xfx(x)dx. (3.52)

Mean-squared value or the second moment This is defined, as per the discussion
for random variables as

MSVx(t) = E{x2(t)} =
∫ ∞

−∞
x2fx(t)(x; t)dx (3.53)

or for a stationary process

MSVx = E{x2(t)} =
∫ ∞

−∞
x2fx(x)dx. (3.54)

As with random variables we have a second central moment, which is the variance:

σ 2
x (t) = E

{
[x(t)− mx(t)]2

}
= MSVx(t)− m2

x(t) (nonstationary), (3.55)

σ 2
x = E

{
[x(t)− mx]2

}
= MSVx − m2

x (stationary). (3.56)

The physical interpretations of these moments are DC value (mx), total power (MSVx), AC
power (σ 2

x ), and DC power (m2
x).

Correlat ion This is another statistical average that plays a very important role in our
study of random processes. It is a second-order moment which is called the autocorrelation
of the random process. Its importance arises from the fact that it completely describes
the power spectral density (PSD) of the random process, i.e., it tells how the power is
distributed in frequency. It is therefore analogous to the correlation functions encountered
in Chapter 2 for deterministic signals. However, in general, the averaging is done here
across the ensemble and not in time. The autocorrelation function for random process
x(t) is the correlation between the two random variables x1 = x(t1) and x2 = x(t2) and
is defined as

Rx(t1, t2) = E{x(t1)x(t2)}
=
∫ ∞

x1=−∞

∫ ∞

x2=−∞
x1x2fx1,x2 (x1, x2; t1, t2)dx1dx2. (3.57)
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For a stationary process, since the joint pdf depends only on the time difference (also
known as the lag time) τ = t2 − t1 (t2 > t1) the above becomes

Rx(τ ) = E{x(t)x(t + τ )}
=
∫ ∞

x1=−∞

∫ ∞

x2=−∞
x1x2fx1,x2 (x1, x2; τ )dx1dx2. (3.58)

An even less restrictive condition than demanding first- and second-order stationarity of
a process is what is termed wide-sense stationarity (WSS). A process is said to be WSS if
the following two conditions are satisfied:

(1) The mean value is independent of time, i.e., E{x(t)} = mx for any t.
(2) The autocorrelation depends only on the time difference τ = t2 − t1, i.e., Rx(t1, t2) =

Rx(τ ).

Note that the first- and second-order stationarity implies WSS but that the converse is not
true in general. It is fortunate that most information signals and noise sources encountered
in communication systems are well modeled as WSS random processes. Hereafter, the
term stationary with no adjective will mean WSS and unless explicitly stated the random
processes will be considered to be WSS.

The autocorrelation function Rx(τ ) has several properties:

(1) Rx(τ ) = Rx(−τ ). It is an even function of τ because the same set of product values is
averaged across the ensemble, regardless of the direction of translation.

(2) |Rx(τ )| ≤ Rx(0). The maximum always occurs at τ = 0, though there may be other
values of τ for which it is as big. Further Rx(0) is the mean-squared value of the
random process.

(3) If for some τ0 we have Rx(τ0) = Rx(0), then for all integers k, Rx(kτ0) = Rx(0).
(4) If mx 	= 0, then Rx(τ ) will have a constant component equal to m2

x.
(5) Autocorrelation functions cannot have an arbitrary shape. The restriction on the shape

arises from the fact that the Fourier transform of an autocorrelation function must be
greater than or equal to zero, i.e., F{Rx(τ )} ≥ 0.

The Fourier transform of the autocorrelation function is the power spectral density of the
process, as discussed next. The power of a physical process is always nonnegative (≥ 0),
otherwise we could design a perpetual motion machine. Among other things, the restriction
means that Rx(τ ) cannot have any discontinuities or flat tops.

A final point is that there may be many different random processes that have the same
autocorrelation function. Knowledge of Rx(τ ) is not sufficient to specify the joint pdf, not
even fx(x). The autocorrelation function is the Fourier transform pair of the PSD, where all
phase information is disregarded. It is directly analogous to the situation for deterministic
signals discussed in Chapter 2. Furthermore, as shown later, the effect of linear systems
on the autocorrelation function of the input can be determined without any knowledge of
the pdfs. Therefore the correlation function represents a considerably smaller amount of
information.
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3.2.3 Power spectral density (PSD) of a random process

In seeking a frequency domain representation of a random process it must be realized at
the outset that the ensemble members of a stationary process are not energy signals but
ones that have finite average power. This is simply due to the fact that MSVx = E{x2(t)}
represents average power and is the same for all time for a stationary process. Therefore
the straightforward approach of taking the Fourier transform of the random process, i.e.,
determining X(f ) = ∫∞−∞ x(t)e−j2π ftdt runs into mathematical difficulties due to conver-
gence problems. As an aside, note that what is meant by the above operation is that each
time function of the ensemble, x(t), is Fourier transformed into the frequency domain, see
Figure 3.9.

Even if one ignores the difficulties associated with taking the Fourier transform of a
power signal all one winds up with is another random process. Perhaps a way out is to
define an average member for the ensemble, E{X(f )}, and take it as being representative of
the entire process. But this leads nowhere since6

E{X(f )} = E

{∫ ∞

−∞
x(t)e−j2π ftdt

}
=
∫ ∞

−∞
E{x(t)}e−j2π ftdt

=
∫ ∞

−∞
mxe−j2π ftdt = mxδ(f ). (3.59)

Surely not every random process has all its amplitude concentrated at f = 0.
The approach taken to obtain a frequency-domain characterization of the process is to

determine how the average power of the process is distributed in frequency. To this end,
define a truncated process as follows:

xT (t) =
{

x(t), −T ≤ t ≤ T
0, otherwise

. (3.60)

The truncation ensures that, provided the process x(t) has a finite mean-squared value,
the truncated process will have finite energy, i.e.,

∫∞
−∞ |xT (t)|2dt < ∞. Now consider the

Fourier transform of this truncated process:

XT (f ) =
∫ ∞

−∞
xT (t)e−j2π ftdt. (3.61)

Again the truncation ensures that this is well defined. By Parseval’s theorem it follows that∫ ∞

−∞
x2

T (t)dt =
∫ ∞

−∞
|XT (f )|2 df (joules). (3.62)

Since we are seeking to determine how the average power is distributed in frequency, we
average the energy over the total time, 2T , i.e.,

P = 1

2T

∫ T

−T
x2

T (t)dt = 1

2T

∫ ∞

−∞
|XT (f )|2 df (watts). (3.63)

6 Note that expectation is a linear operation and that it only acts on random quantities, i.e., as far as it is concerned,
e−j2π ft is simply a constant.
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�Fig. 3.9
Fourier transforms of member functions of a random process. For simplicity, only the magnitude spectra
are shown.

What we have managed to accomplish thus far is to create the random variable, P, which
in some sense represents the power in the process. Now we find the average value of P, i.e.,

E{P} = E

{
1

2T

∫ T

−T
x2

T (t)dt

}
= E

{
1

2T

∫ ∞

−∞
|XT (f )|2 df

}
. (3.64)
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To return to the original process, we take the limit as T →∞:

lim
T→∞

1

2T

∫ T

−T
E
{

x2
T (t)
}

dt = lim
T→∞

1

2T

∫ ∞

−∞
E
{
|XT (f )|2

}
df , (3.65)

where the expectation and integration operations have been interchanged. Note that for a
stationary process, within the interval [−T , T], E{x2

T (t)} and E{x2(t)} are the same as the

mean-squared value (MSVx) of the process x(t). Therefore limT→∞(1/2T)
∫ T
−T E

{
x2

T (t)
}

dt = MSVx limT→∞(1/2T)
∫ T
−T dt = MSVx. It follows that

MSVx =
∫ ∞

−∞
lim

T→∞
E
{|XT (f )|2}

2T
df (watts). (3.66)

Since MSVx has the unit of watts, the quantity limT→∞ E
{|XT (f )|2}/2T must have the

unit of watts/hertz. Call the limit Sx(f ) and thus

Sx(f ) = lim
T→∞

E
{|XT (f )|2}

2T
(watts/hertz), (3.67)

which is the PSD of the process.
As in the case of deterministic signals we now relate the PSD, Sx(f ), to the corresponding

time function. It turns out to be the autocorrelation function defined in (3.58). We start with
XT (f ) = ∫ T

−T xT (t)e−j2π ftdt, which means that

|XT (f )|2 = XT (f )X∗T (f ) =
∫ T

−T
xT (t)e−j2π ftdt

∫ T

−T
xT (λ)ej2π f λdλ. (3.68)

Now consider

Sx(f ) = lim
T→∞

E
{|XT (f )|2}

2T

= lim
T→∞

[
1

2T
E

{∫ T

t=−T

∫ T

λ=−T
xT (t)xT (λ)e−j2π f (t−λ)dλdt

}]
= lim

T→∞

[
1

2T

∫ T

t=−T

∫ ∞

λ=−∞
E {xT (t)xT (λ)} e−j2π f (t−λ)dλdt

]
, (3.69)

where we let λ range from −∞ to ∞ since xT (λ) is zero outside the range [−T , T]. Now7

E{xT (t)xT (λ)} = Rx(t − λ). Therefore

Sx(f ) = lim
T→∞

[
1

2T

{∫ T

t=−T
dt
∫ ∞

λ=−∞
Rx(t − λ)e−j2π f (t−λ)dλ

}]
. (3.70)

7 The astute reader might observe that xT (t) must be a nonstationary process and therefore the correlation function
should be a function of both t and λ, not just the difference. But within the interval [−T , T], xT (t) and x(t) are
identical and x(t) is stationary. So for t and λ in this range the equation is valid and eventually we let the range
go to [−∞,∞].
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Now change variables in the second integral to τ = t − λ, it becomes
∫∞
τ=−∞ Rx(τ )

e−j2π f τ dτ = F{Rx(τ )}. Therefore,

Sx(f ) = lim
T→∞

[
1

2T

{∫ T

t=−T
F{Rx(τ )}dt

}]
= F{Rx(τ )} lim

T→∞

[
1

2T

{∫ T

t=−T
dt

}]
= F{Rx(τ )}. (3.71)

To conclude, the PSD and the autocorrelation function are a Fourier transform pair, i.e.,

Rx(τ ) ←→ Sx(f ). (3.72)

It is important to recognize that there is a fundamental difference regarding this relation-
ship between the autocorrelation function and the corresponding PSD, and that presented
for deterministic signals. The autocorrelation function here is defined on the ensemble,
while for deterministic signals it is defined for a single time function. For the random pro-
cess it is an average across the ensemble while for the deterministic signal it is a time
average. Would it not be fortuitous if one could determine the autocorrelation function and
indeed any of the other parameters, such as the mean value, mean-squared value, fx(x),
from any one member function of the ensemble. It certainly would be efficient from the
engineering perspective since one would not have to conduct the experiment many times to
create the ensemble and then average across it to develop the model. One would only do the
experiment once and use the resultant time function to estimate the mean, autocorrelation,
fx(x), etc.

A process where any one ensemble member function can be used as a representative of
the ensemble is called ergodic. Ergodicity is discussed next.

3.2.4 Time averaging and ergodicity

An ergodic random process is one where any member of the ensemble exhibits the same
statistical behavior as that of the whole ensemble.8 In particular all time averages on a
single ensemble member are equal to the corresponding ensemble average. Thus for an
ergodic process

E{xn(t)} =
∫ ∞

−∞
xnfx(x)dx = lim

T→∞
1

2T

∫ T

−T
[xk(t, ωk)]ndt, ∀ n, k. (3.73)

A natural consequence of ergodicity is that in measuring various statistical averages
(mean and autocorrelation, for example), it is sufficient to look at only one realization of
the process and find the corresponding time average, rather than consider a large number
of realizations and averaging over them. Since time averages equal ensemble averages for

8 More precisely, almost every member of the ensemble since it may be possible to have a set of sample functions
with a total probability of zero that do not have the appropriate behavior. Note that zero probability does not
mean that the sample function cannot occur.
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ergodic processes, fundamental electrical engineering parameters, such as DC value, RMS
value, and average power can be related to the moments of an ergodic random process, as
indeed we have been doing.

Other consequences of ergodicity are that the autocorrelation, Rx(τ ), and the pdfs, fx(x)
and fx1,x2 (x1, x2; τ ), can be determined from a single sample function. It is important to
note that for a process to be ergodic it must be stationary. However, not all stationary pro-
cesses are necessarily ergodic. To prove ergodicity is in general difficult, if not impossible.
However, it is customary to assume ergodicity unless there are compelling physical rea-
sons for not doing so, such as an obvious nonstationarity. Three examples to illustrate this
discussion are presented next.

Example 3.4 A random process is defined by x(t) = A cos(2π f0t +�), where � is a
random variable uniformly distributed on [0, 2π ]. Note that in this case, we have an analytic
description of the random process. The mean of this random process can be obtained by
noting that

f�(�) =
⎧⎨⎩

1

2π
,

0,

0 ≤ � < 2π

otherwise
. (3.74)

Hence

mx(t) = E{x(t)} =
∫ 2π

0
A cos(2π f0t +�)

1

2π
d� = 0. (3.75)

Observe that mx(t) is independent of t. The autocorrelation function is

Rx(t1, t2) = E{A cos(2π f0t1 +�)A cos(2π f0t2 +�)}
= A2E

{
1

2
cos (2π f0(t1 − t2))+ 1

2
cos(2π f0(t1 + t2)+ 2�)

}
= A2

2
cos (2π f0(t1 − t2)) ,

where we have used the fact that

E{cos(2π f0(t1 + t2)+ 2�)} =
∫ 2π

0
cos[2π f0(t1 + t2)+ 2�]

1

2π
d� = 0. (3.76)

Since mx(t) = 0 and Rx(t1, t2) = (A2/2) cos (2π f0(t1 − t2)), the random process is WSS.
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Furthermore, for any value of 0 ≤ � < 2π (i.e., for any realization of the process),
consider the following time average of a sample function:

lim
T→∞

1

2T

∫ T

−T
[A cos(2π f0t +�)]ndt

= lim
N→∞

1

2NT0

∫ NT0

−NT0

[A cos(2π f0t +�)]ndt (where T0 = 1/f0)

= 1

T0

∫ T0

0
[A cos(2π f0t +�)]ndt

= 1

T0

∫ 2π+�

�

[A cos u]n du

2π f0
(where u = 2π f0t +�)

= 1

2π

∫ 2π

0
[A cos u]ndu. (3.77)

On the other hand,

E
{
xn(t)

} = ∫ 2π

0
[A cos(2π f0t +�)]n 1

2π
d�

= 1

2π

∫ 2π f0t+2π

2π f0t
[A cos(u)]ndu (where u = 2π f0t +�)

= 1

2π

∫ 2π

0
[A cos u]ndu. (3.78)

The above shows that the time averages are the same as the ensemble averages. Therefore
the process is also ergodic.

Finally, since the process is both stationary and ergodic, we have

Px = Rx(0) = A2

2
cos(2π f0τ )

∣∣∣∣
τ=0

= A2

2
. (3.79)

This is, in fact, the power content of each sample function in the process since each
realization is a sinusoidal waveform of constant amplitude A. �

Example 3.5 The process x(t) is defined by x(t) = x, where x is a random variable uni-
formly distributed on [−A, A], where A > 0. In this case, again an analytic description of
the random process is given. For this random process, each sample is a constant signal.
The mean value is E{x} = 0. The autocorrelation function of this random process is

Rx(t1, t2) = E{x2} =
∫ A

−A

1

2A
x2dx = A2

3
, (3.80)

which is a constant. The process is therefore WSS, indeed it is strictly stationary.
However, the process is not ergodic. Given a specific member function of the ensemble

function, say x where −A ≤ x ≤ A, the mean and mean-squared values obtained by a time
average are x and x2, respectively, not mx = 0 and Px = Rx(0) = A2/3 as obtained by an
ensemble average. �
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Example 3.6 Consider the random process of Example 3.4 but let the amplitude of the
sinusoid be random as well. The process is then x(t) = A cos(2π f0t +�) where A is a
zero-mean random variable with variance, σ 2

A, and � is uniform in [0, 2π ]. Furthermore,
A and � are statistically independent.

Let us now compute the first and second moments of x(t) by an ensemble average and a
time average.

For ensemble average, the first and second moments are:

E{x(t)} = E{A cos(2π f0t +�)}
= E{A}E{cos(2π f0t +�)} = 0, (3.81)

E{x2(t)} = E{[A cos(2π f0t +�)]2}

= E{A2}E{[cos(2π f0t +�)]2} = σ 2
A

2
. (3.82)

For the time average, one has:

lim
T→∞

1

2T

∫ T

−T
A cos(2π f0t +�)dt

= A lim
T→∞

1

2T

∫ T

−T
cos(2π f0t +�)dt = 0 (first moment), (3.83)

lim
T→∞

1

2T

∫ T

−T
[A cos(2π f0t +�)]2dt

= A2 lim
T→∞

1

2T

∫ T

−T
[cos(2π f0t +�)]2dt = A2

2
(second moment). (3.84)

This example illustrates several points. The second moments obtained by ensemble and
time averages do not agree, therefore, the process is not ergodic. However, the first moment
is the same for both averages. Thus the process can be said to be ergodic in the mean.9 Fur-
thermore, it can be shown that x(t) is strictly stationary, which illustrates that stationarity
is a necessary not sufficient condition for ergodicity. �

3.3 Random processes and LTI systems

Since random processes are invariably subjected to filtering we now consider the effect of
a linear, time-invariant (LTI) system on the statistics of the input process. Consider an LTI
system with impulse response, h(t) (see Figure 3.10). Though one may desire a complete or

9 As for stationarity, there are different levels of ergodicity which leads to the definitions of: strictly ergodic,
ergodic in the mean as above, wide sense ergodicity which is ergodicity in the mean and autocorrelation.
Wide-sense ergodicity is the ergodicity of most interest to us.
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Linear, time-invariant
(LTI) system
h(t) ¬® H( f )

Input Output

y(t)

Rx,y (τ)

mx, Rx (τ) ¬® Sx ( f ) my, Ry (τ) ¬® Sy ( f )

x(t)

�Fig. 3.10 Illustration of the response of an LTI system to an input random process.

at least a partial characterization of the output process in terms of say the first- and second-
order pdfs, it turns out, somewhat ironically, that this is impossible to determine, except
in the important Gaussian case. Ironically, because when the random process is input to a
nonlinearity we have a well-established method to determine the output pdf (see Equation
(3.18)). Therefore we shall have to be content with determining only the output mean,
autocorrelation function, PSD, and crosscorrelation between input and output. The PSD is
of particular importance since it informs us as to the filtering (shaping) capability of the
system. Finally if the input is a Gaussian process, then so is the output because the output
is a weighted linear combination of the input (shown in a following section). In this very
important case we can obtain a complete characterization of the output random process.

For the LTI system of Figure 3.10 the output is given by the convolution integral y(t) =∫∞
−∞ h(λ)x(t − λ)dλ = ∫∞−∞ h(t − λ)x(λ)dλ in the time domain or Y(f ) = H(f )X(f ) in the

frequency domain. We assume that the input is at least WSS and because the system is
time-invariant the output will also be WSS. The mean my, autocorrelation Ry(τ ), and PSD
Sy(f ) are then determined as follows.

For the mean value, one has

my = E{y(t)} = E

{∫ ∞

−∞
h(λ)x(t − λ)dλ

}
=
∫ ∞

−∞
h(λ)E {x(t − λ)} dλ = mx

∫ ∞

−∞
h(λ)dλ. (3.85)

But
∫∞
−∞ h(λ)dλ = H(0), which is the DC gain of the LTI system. Therefore we have the

following very sensible relationship:

my = mxH(0). (3.86)

Regarding the relationship between Sy(f ) and Sx(f ), it turns out to be somewhat sim-
pler to compute the output power spectral density from the basic definition. As in the
case when the basic definition for the power spectral density was given, we start with the
truncated version of xT (t) and the corresponding output y(T)(t), which certainly should
be well behaved. The subscript (T) for the output indicates that it corresponds to a
truncated input. The process y(T)(t) itself is not necessarily truncated but this is not
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the issue here. Now we have that Y(T)(f ) = H(f )XT (f ) and
∣∣Y(T)(f )

∣∣2 = |H(f )|2 |XT (f )|2.
Therefore

Sy(f ) = lim
T→∞E

{∣∣Y(T)(f )
∣∣2

2T

}
= lim

T→∞E

{
|H(f )|2 |XT (f )|2

2T

}

= |H(f )|2 lim
T→∞E

{
|XT (f )|2

2T

}
= |H(f )|2 Sx(f ). (3.87)

Due to the above relationship, it is obvious to call |H(f )|2 the power transfer function.
Next, the output autocorrelation function is obtained readily from (3.87) by writing

|H(f )|2 as H(f )H∗(f ). Since Sy(f ) = H(f )H∗(f )Sx(f ) is the product of three terms in
the frequency domain, the inverse Fourier transform of Sy(f ) is the convolution of the
corresponding time functions in the time domain, i.e.,

Ry(τ ) = h(τ ) ∗ h(−τ ) ∗ Rx(τ ), (3.88)

where we have used the fact that H∗(f ) ←→ h(−τ ).
Finally consider the crosscorrelation, Rx,y(τ ), between the input and output. The function

Rx,y(τ ) is not that important in communications but it does have an interesting application
in system theory, where it can be used for system identification. This is explored in a
problem at the end of the chapter. Left as an exercise to the reader, it can be shown that

Rx,y(τ ) = h(τ ) ∗ Rx(τ ). (3.89)

3.4 Noise in communication systems

Noise refers to unwanted electrical signals that are always present in electronic circuits; it
limits the receiver’s ability to detect the desired signal and thereby limits the rate of infor-
mation transmission. Noise can be human made or occur naturally. A natural noise source
is thermal noise, which is caused by the omnipresent random motion of free electrons in
conducting material. If one were to put a sensitive enough oscilloscope across a resistor one
would see a voltage across the resistor terminals due to this motion (assuming the oscillo-
scope circuitry did not itself produce significant noise). Further, if one were to observe the
waveforms of N resistors all having the same resistance, at the same temperature, and built
from the same material, one would see N different waveforms, i.e., an ensemble. Therefore
it is appropriate to model the noise as a random process.

Because the terminal voltage is produced by the random motion of a great many free
electrons,10 due to the central limit theorem (discussed in Section 10.6) the amplitude
statistics are well modeled to be Gaussian. The Gaussian process is determined by the mean
and autocorrelation. The mean value of thermal noise can be shown, both analytically and

10 It is of interest to determine how many free electrons there are in our ubiquitous 1 ohm resistor.
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experimentally, to be zero. Intuitively one would not expect the electrons to huddle at one
terminal or the other for any length of time.

A statistical analysis of the random motion of electrons shows that the autocorrelation
of thermal noise w(t) is well modeled as

Rw(τ ) = kθG
e−|τ |/t0

t0
(watts), (3.90)

where k is Boltzmann’s constant (k = 1.38× 10−23 joule/degree Kelvin), G is the conduc-
tance of the resistor (mhos), θ is temperature in degrees Kelvin, and t0 is the statistical
average of time intervals between collisions of free electrons in the resistor, which is on
the order of 10−12 seconds. The corresponding PSD is

Sw(f ) = 2kθG

1+ (2π ft0)2
(watts/hertz). (3.91)

Observe that the noise PSD is approximately flat over the frequency range 0–10
gigahertz. As far as a typical communication system is concerned we might as well let
the spectrum be flat from 0 to ∞, i.e.,

Sw(f ) = N0

2
(watts/hertz), (3.92)

where N0 is a constant; in this case N0 = 4kθG.
The factor 2 in the denominator is included to indicate that Sw(f ) is a two-sided spectrum.

Noise that has a uniform spectrum over the entire frequency range is referred to as white
noise. The adjective “white” comes from white light, which contains equal amounts of all
frequencies within the visible band of electromagnetic radiation.

The autocorrelation of white noise w(t) is given by

Rw(τ ) = N0

2
δ(τ ) (watts). (3.93)

Thus the autocorrelation of white noise is a delta function of strength N0/2 occurring at
τ = 0. Since Rw(τ ) = 0 for τ 	= 0, any two different samples of white noise, no matter how
close in time they are taken, are uncorrelated. The models of PSD and autocorrelation for
white noise are illustrated in Figure 3.11 together with the counterparts of thermal noise as
given in (3.91) and (3.90). In particular Equations (3.91) and (3.90) are plotted on Figure
3.11 by assuming that G = 1/10 (mhos), θ = 298.15 K and t0 = 3× 10−12 seconds. Note
also that the frequency range 0–15 GHz on Figure 3.11(a) covers the spectrum of almost
all commercial wired and wireless communication systems.

The average power of white noise, which equals the area under the power spectral den-
sity, is obviously infinite. White noise is therefore an abstraction since no physical noise
process can truly be white. Nonetheless, it is a useful abstraction. The noise encountered
in many real systems can be assumed to be approximately white. This is because we can
only observe such noise after it has passed through a real system, which will have a finite
bandwidth. Thus, as long as the bandwidth of the noise is significantly larger than that of
the system, the noise can be considered to have an infinite bandwidth. As a rule of thumb,
noise is well modeled as white when its PSD is flat over a frequency band that is 3–5 times
that of the communication system under consideration.
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�Fig. 3.11 (a) The PSD (Sw(f )), and (b) the autocorrelation (Rw(τ )) of thermal noise.

y(t)x(t)

L

R

�Fig. 3.12 A lowpass filter.

Finally, since the noise samples of white noise are uncorrelated, if the noise is both white
and Gaussian (for example, thermal noise) then the noise samples are also independent.

Example 3.7 Consider the lowpass filter given in Figure 3.12. Suppose that a (WSS)
white noise process, x(t), of zero-mean and PSD N0/2 is applied to the input of the filter.

(a) Find and sketch the PSD and autocorrelation function of the random process y(t) at the
output of the filter.

(b) What are the mean and variance of the output process y(t)?

Solut ion

(a) Since x(t) is WSS white noise of zero-mean and PSD N0/2, Sx(f ) = N0/2, for all f .
The transfer function of the lowpass filter is:

H(f ) = R

R+ j2π fL
= 1

1+ j2π fL/R
. (3.94)
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Therefore

|H(f )|2 = 1

1+ (2πL/R)2 f 2
. (3.95)

One obtains

Sy(f ) = N0

2

1

1+ (2πL/R)2 f 2
. (3.96)

The autocorrelation function of y(t) is the inverse Fourier transform of Sy(f ):

Ry(τ ) = F−1{Sy(f )} = N0

2
F−1

{
1

1+ (2πL/R)2 f 2

}
. (3.97)

We have established in Chapter 2 that

F−1
{

2a

a2 + (2π f )2

}
= e−a|t|, a > 0. (3.98)

Therefore

Ry(τ ) = N0

2
F−1

{
(R/L)2

(R/L)2 + (2π f )2

}
= N0

4

R

L
F−1

{
2(R/L)

(R/L)2 + (2π f )2

}
= N0R

4L
e−(R/L)|τ |. (3.99)

Plots of Sy(f ) and Ry(τ ) are provided in Figure 3.13.
(b) The mean of y(t) is

my = mxH(0) = 0× H(0) = 0 (3.100)

and the variance of y(t) is

E{[y(t)− my]2} = E{y2(t)} = Ry(0) = N0R

4L
. (3.101)

�

0 0

2
N0

f (Hz) τ (sec)

N0R
4L

Sy( f ) (W/Hz) Ry(τ) (W)

�Fig. 3.13 PSD and autocorrelation function of the output process.



108 Probability theory, random variables and random processes
�

3.5 The Gaussian random variable and process

Unquestionably the Gaussian pdf model is the one most frequently encountered in nature.
This, as mentioned earlier, is because most random phenomena are due to the action of
many different factors. By the central limit theorem, the resultant random variable tends
to be Gaussian regardless of the underlying probabilities of the individual actors. In this
section the Gaussian pdf is discussed in some detail. We look at its form and its properties
and also try to gain graphical insight into its behavior.

To motivate the discussion, consider the electrical activity of a skeletal muscle. A sample
function is shown in Figure 3.14(a), along with the experimentally determined histogram
in Figure 3.14(b).11 The histogram is an estimate of the amplitude’s pdf and we attempt to
determine a reasonable analytical model for the pdf. To this end two functional forms are
proposed for the pdf. Both are decaying exponentials: one has an exponent that is linear in
x, of the form Ke−a|x|, while the exponent in the other is quadratic in x, Ke−(ax2+bx+c). The
latter is known as a Gaussian pdf but is also frequently referred to as a normal pdf. Simply
put, a Gaussian random variable is one whose pdf is of the form of an exponential where
the exponent is a quadratic function in the variable.

We now proceed to write the Gaussian pdf in the standard form in which one always
sees it written. Of course fx(x) should be a valid pdf. This means that it needs to satisfy the
two basic conditions: (i) fx(x) ≥ 0 for all x and (ii)

∫∞
−∞ fx(x)dx = 1. The constants K, a,

b, and c therefore are not completely arbitrary. The first condition means that K > 0, the
second that a > 0. Now by a series of fairly straightforward algebraic steps we write the
pdf in the standard form as follows:

fx(x) = Ke−a
(
x2+(b/a)x+(c/a)

)
= Ke−a

(
x2+2b1x+c1

)
, where b1 = b/2a and c1 = c/a

= Ke−a
(
x2+2b1x+b2

1−b2
1+c1

)
= Ke−a(c1−b2

1)e−a(x+b1)2

= K1e−a(x+b1)2
, where K1 = Ke−a(c1−b2

1). (3.102)

Note that regardless of K1, the center of gravity of fx(x) is x = −b1. This then is the first
moment, E{x}, call it mx, i.e., b1 = −mx. Therefore fx(x) = K1e−a(x−mx)2

. The constant
K1 simply ensures that the area under fx(x) is 1. However, we shall use this constraint to
determine the relationship between K1 and a. Realizing that the area is independent of mx,
set the mean to zero and proceed as follows:

11 The histogram shows how many samples fall within a certain amplitude interval normalized by the total
number of samples. In essence, it is an estimate of P[x < x ≤ x+�x], where �x is the width of the amplitude
interval.
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�Fig. 3.14 (a) A sample skeletal muscle (emg) signal, and (b) its histogram and pdf fits.

1 =
[∫ ∞

−∞
fx(x)dx

]2

=
[∫ ∞

−∞
K1e−ax2

dx

]2

= K2
1

∫ ∞

x=−∞
e−ax2

dx
∫ ∞

y=−∞
e−ay2

dy

= K2
1

∫ ∞

x=−∞

∫ ∞

y=−∞
e−a(x2+y2)dxdy. (3.103)
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Now find the volume under e−a(x2+y2) in polar coordinates with ρ = √x2 + y2 as

1 = K2
1

∫ 2π

α=0

∫ ∞

ρ=0
e−aρ2

ρdρdα = 2πK2
1

∫ ∞

ρ=0
ρe−aρ2

dρ

λ=ρ2= πK2
1

∫ ∞

0
e−aλdλ = πK2

1

a
. (3.104)

The above gives K1 = √a/π and the pdf becomes fx(x) = √a/πe−a(x−mx)2
.

To write the equation in the standard form consider the second central moment or
variance:

σ 2
x = E

{
(x− mx)2

}
=
√

a

π

∫ ∞

−∞
(x− mx)2e−a(x−mx)2

dx

λ=x−mx=
√

a

π

∫ ∞

−∞
λ2e−aλ2

dλ. (3.105)

Integrate by parts with u = λ and dv = λe−aλ2
dλ, i.e., v = −(1/2a)e−aλ2

, to obtain:

σ 2
x = − 1

2a

√
a

π
λe−aλ2

∣∣∣∣∞−∞︸ ︷︷ ︸
=0

+ 1

2a

[√
a

π

∫ ∞

−∞
e−aλ2

dλ

]
= 1

2a
. (3.106)

Therefore a = 1/2σ 2
x and the final form for the Gaussian pdf is

fx(x) = 1√
2πσ 2

x

e−(x−mx)2/2σ 2
x , (3.107)

where, to repeat, the parameters mx and σ 2
x are the mean and variance of the random

variable.
The other proposed pdf model, using the unit area constraint, can be written as fx(x) =

(a/2)e−a|x|. It is known as a Laplacian density, and in this case it has zero mean. Figure
3.14(b) also shows curve fits of both pdfs to the histogram and, as can be seen, the Gaussian
pdf provides a better fit. This is to be expected since the signal under consideration is the
result of the underlying activity of many (> 100) active motor neurons that activate the
skeletal muscle.

Before going on to the discussion of jointly Gaussian random variables, consider the
influence of σ 2

x on the shape of the pdf (see Figure 3.15). As mentioned, the variance, more
precisely the standard deviation, σx, of a random variable is a measure of the dispersion of
the random variable about the mean. Therefore consider how much of the probability of
the Gaussian random variable lies within different ranges of σx. To this end, we determine
P(mx − kσx < x ≤ mx + kσx), k = 1, 2, 3 . . .. Table 3.1 shows that a range of ±3σx cap-
tures most of the probability.12 However, one should not conclude from this that the tails

12 The erf(·) function available in Matlab finds the area under a zero-mean Gaussian pdf with σ 2
x set to 1/2.
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�Fig. 3.15 Plots of the zero-mean Gaussian pdf for different values of standard deviation, σx.

Table 3.1 Influence of σx on different quantities

Range (±kσx) k = 1 k = 2 k = 3 k = 4

P(mx − kσx < x ≤ mx + kσx) 0.683 0.955 0.997 0.999
Error probability 10−3 10−4 10−6 10−8

Distance from the mean 3.09 3.72 4.75 5.61

of the pdf are ignorable. Indeed when communication systems are considered later it is the

presence of these tails that results in bit errors. The probabilities are on the order of 10−3–

10−12, very small, but still significant in terms of system performance. It is of interest to

see how far, in terms of σx, one must be from the mean value to have the different levels of

error probabilities. As shall be seen in later chapters this translates to the required SNR to

achieve a specified bit error probability. This is also shown in Table 3.1.

Having considered the single (or univariate) Gaussian random variable, we turn our

attention to the case of two jointly Gaussian random variables (or the bivariate case). Again

they are described by their joint pdf which, in general, is an exponential whose exponent

is a quadratic in the two variables, i.e., fx,y(x, y) = Ke(ax2+bx+cxy+dy+ey2+f ), where the con-

stants K, a, b, c, d, e, and f are chosen to satisfy the basic properties of a valid joint pdf,

namely being always nonnegative (≥ 0), having unit volume, and also that the marginal

pdfs, fx(x) = ∫∞−∞ fx,y(x, y)dy and fy(y) = ∫∞−∞ fx,y(x, y)dx, are valid. Written in standard

form the joint pdf is
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fx,y(x, y) = 1

2πσxσy

√
1− ρ2

x,y

exp

{
− 1

2(1− ρ2
x,y)

×
[

(x− mx)2

σ 2
x

− 2ρx,y(x− mx)(y− my)

σxσy
+ (y− my)2

σ 2
y

]}
, (3.108)

where the parameters mx, my, σx, σy have the usual significance of being the mean and
variance of the respective random variables, x and y. The parameter ρx,y is the correla-
tion coefficient defined earlier, ρx,y = E{(x− mx)(y− my)}/(σxσy). One very important
property of jointly Gaussian random variables is that any weighted sum of them is also
Gaussian. That is, if z = ax+ by and both x and y are jointly Gaussian, then z is also
Gaussian. Before proving this, we show that (a) the marginal density of jointly Gaus-
sian random variables is also Gaussian, and (b) the correlation coefficient is indeed the
correlation coefficient.

(a) The marginal density of joint ly Gaussian random variables is Gaussian

Applying the basic equation to determine the marginal pdf, fx(x) = ∫∞−∞ fx,y(x, y)dy,
we have

fx(x) = 1

2πσxσy

√
1− ρ2

x,y

∫ ∞

y=−∞
exp

{
− 1

2σ 2
y (1− ρ2

x,y)

×
[

(y− my)2 − 2ρx,yσy(x− mx)(y− my)

σx
+ ρ2

x,yσ
2
y (x− mx)2

σ 2
x

− ρ2
x,yσ

2
y (x− mx)2

σ 2
x

+ σ 2
y (x− mx)2

σ 2
x

]
dy

}
, (3.109)

where the square in the exponent is completed in terms of y. After some straightforward
algebra, one obtains

fx(x) = 1√
2πσx

exp

{
− (x− mx)2

2σ 2
x

}[
1

√
2πσy

√
1− ρ2

x,y

(3.110)

×
∫ ∞

y=−∞
exp

{
− 1

2(1− ρ2
x,y)σ 2

y

[
(y− my)− ρx,yσy

σx
(x− mx)

]2
}

dy

]
= 1√

2πσx
exp

{
− (x− mx)2

2σ 2
x

}
, (3.111)

where the last equality follows by recognizing that the integration in the square brackets is
simply the total area under a valid Gaussian pdf and hence evaluates to 1. By symmetry,
one also has

fy(y) = 1√
2πσy

exp

{
− (y− my)2

2σ 2
y

}
. (3.112)
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(b) The parameter ρx,y is indeed the correlat ion coeffic ient Since the mean
values do not affect ρx,y, we set them to zero and show that E{xy} = ρx,yσxσy. Again
showing this fact is a matter of completing the square and doing the algebra as follows:

E{xy} = 1√
2πσx

∫ ∞

−∞

∫ ∞

−∞
xy

√
2πσy

√
1− ρ2

x,y

× exp

⎧⎨⎩− 1

2σ 2
y

(
1− ρ2

x,y

) [y2 − 2ρx,y
σy

σx
xy+ σ 2

y

σ 2
x

x2

]⎫⎬⎭ dxdy. (3.113)

Integrating first with respect to y yields

∫ ∞

y=−∞
y

√
2πσy

√
1− ρ2

x,y

exp

{
− 1

2σ 2
y

(
1− ρ2

x,y

)
×
[

y2 − 2ρx,y
σy

σx
xy+ ρ2

x,yσ
2
y

σ 2
x

x2 − ρ2
x,yσ

2
y

σ 2
x

x2 + σ 2
y

σ 2
x

x2

]}
dy

= exp

⎧⎨⎩− 1

2σ 2
y

(
1− ρ2

x,y

) [−ρ2
x,yσ

2
y

σ 2
x

x2 + σ 2
y

σ 2
x

x2

]⎫⎬⎭
×
⎡⎢⎣ 1
√

2πσy

√
1− ρ2

x,y

∫ ∞

y=−∞
y exp

⎧⎪⎨⎪⎩−
(

y− ρx,yσy
σx

x
)2

2σ 2
y

(
1− ρ2

x,y

)
⎫⎪⎬⎪⎭ dy

⎤⎥⎦
︸ ︷︷ ︸

= ρx,yσy
σx

x

= ρx,yσy

σx
x exp

{
− x2

2σ 2
x

}
. (3.114)

Now integrating with respect to x gives

E{xy} = ρx,yσy

σx

[
1√

2πσx

∫ ∞

−∞
x2 exp

{
− x2

2σ 2
x

}]
= ρx,yσyσx (3.115)

as required.

The correlation coefficient, ρx,y, is an indication of the amount of “interdependence”
between the random variables x and y. Note that when ρx,y = 0 the joint density becomes
fx,y(x, y) = fx(x)fy(y), which means that the random variables are statistically independent.
Thus uncorrelatedness means that jointly Gaussian random variables are statistically inde-
pendent, a result that is used extensively in later chapters. However, it should be stressed
that just because two random variables are uncorrelated does not mean that they are
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�Fig. 3.16 Plots of a joint Gaussian pdf and its contours: σx = σy = 1 and ρx,y = 0.

statistically independent. Indeed this is only true for random variables that are jointly
Gaussian.

Figures 3.16–3.19 show surface and contour plots of fx,y(x, y) for various values of ρx,y.
Note that as ρx,y increases to 1 the probability becomes more and more concentrated
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�Fig. 3.17 Plots of a joint Gaussian pdf and its contours: σx = σy = 1 and ρx,y = 0.3.

around the x = y line, implying there is a stronger linear relationship between x and y.
Any cross-section is a univariate Gaussian pdf and in the case of ρx,y = 0 the joint pdf
exhibits circular symmetry. Hence for ρx,y = 0 all cross-sections through the origin, more
generally through the point (mx, my), are identical. The plots are done for zero means since
all nonzero means do is shift the surface to the (mx, my) point. The variances are set to be
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�Fig. 3.18 Plots of a joint Gaussian pdf and its contours: σx = σy = 1 and ρx,y = 0.7.

equal but similar observations can be made for unequal variances, except that in the case
of ρx,y = 0 we would not have circular symmetry.

We now go on to show that the weighted sum of two jointly Gaussian random variables
is also Gaussian. To do this we need the following from probability theory.
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Joint density function of two functions of two random variables Consider two deter-
ministic functions, g(x, y), h(x, y), two random variables, x, y, with joint pdf fx,y(x, y). Form
two random variables z = g(x, y) and w = h(x, y). The joint density function, fz,w(z, w) is
given by

fz,w(z, w) =
n∑

i=1

fx,y(xi, yi)∣∣J(xi, yi)
∣∣ , (3.116)

where the pair (xi, yi) is one of the n real solutions to the equation set g(x, y) = z; h(x, y) = w
and J(x, y) is the Jacobian of the above transformation, given as

J(x, y) = det

⎡⎢⎢⎣
∂g(x, y)

∂x
∂g(x, y)

∂y
∂h(x, y)

∂x
∂h(x, y)

∂y

⎤⎥⎥⎦ . (3.117)

The result is a direct analog of (3.18) for the single variable case.

The (linear) transformation discussed here is

z = ax+ by, (3.118)

w = cx+ dy. (3.119)

The random variable w is introduced as an auxiliary variable. We determine the joint pdf
fz,w(z, w) and use it to find the marginal pdf fz(z) = ∫∞−∞ fz,w(z, w)dw. There is only one
solution pair to the transformation as shown below:[

a b
c d

] [
x
y

]
=
[

z
w

]
(3.120)

⇒
[

x
y

]
= 1

ad − bc

[
d −b
−c a

] [
z
w

]
=
[

a1z+ b1w
c1z+ d1w

]
, (3.121)

where it has been assumed that (ad − bc) 	= 0, i.e., the equations are linearly independent
(which is always possible to arrange). The Jacobian is

J(x, y) = det

[
a b
c d

]
= ad − bc. (3.122)

Therefore

fz,w(z, w) = fx,y(a1z+ b1w, c1z+ d1w)

|ad − bc| . (3.123)

The above is a general result. However, we are considering the case where fx,y(x, y) is a
jointly Gaussian pdf and from (3.123) we conclude that fz,w(z, w) is of the following form:
an exponential whose exponent is a quadratic in z and w. But this is exactly what a joint
Gaussian pdf is!

We have already shown that if the joint pdf is Gaussian, then the marginal pdfs are also
Gaussian. Therefore fz(z) is Gaussian. To complete the discussion we determine the mean
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and variance of fz(z) since they completely specify the pdf. They are simply computed as
follows:

mz = E{z} = E{ax+ by}
= aE{x} + bE{y} = amx + bmy, (3.124)

var(z) = E
{

(z− mz)2
}
= E

{[
(ax+ by)− (amx + bmy

)]2}
= E

{[
a (x− mx)+ b

(
y− my

)]2}
= a2E

{
(x− mx)

2
}
+ 2abE

{
(x− mx)

(
y− my

)}
+ b2E

{(
y− my

)2} , (3.125)

σ 2
z = a2σ 2

x + 2abρx,yσxσy + b2σ 2
y . (3.126)

The importance of the result that we have just proven can be appreciated, for example,
by considering the case of a random process applied to a linear system. The output is a
weighted linear sum (more precisely an integral where the weight is the impulse response,
h(t)) of the input. Therefore if the input is a Gaussian random process, then so is the output.
All we need to determine is the mean and autocorrelation of the output and we know the
pdf of the output process.

To conclude the section consider the multivariate Gaussian pdf. The pdf for two
jointly Gaussian random variables can be extended to n jointly Gaussian random vari-
ables x1, x2, . . . , xn. If we define the random vector −→x = [x1, x2, . . . , xn], a vector of
the means −→m = [m1, m2, . . . , mn], and the n× n covariance matrix C such that Ci,j =
cov(xi, xj) = E{(xi − mi)(xj − mj)}, then the random variables {xi}ni=1 are jointly Gaussian
if the n-dimensional pdf is

fx1,x2,...,xn (x1, x2, . . . , xn) = 1√
(2π )n det(C)

× exp

{
−1

2
(−→x −−→m )C−1(−→x −−→m )�

}
. (3.127)

Once again, the joint pdf is in the form of an exponential with an exponent that is a
quadratic in the variables x1, x2, . . . , xn. Furthermore, in the special case that the covari-
ance matrix C is diagonal (i.e., the random variables {xi}ni=1 are all uncorrelated), there
are no cross-terms in the quadratic exponent and the joint pdf in (3.127) is a product of
the marginal pdfs. So again, uncorrelatedness implies statistical independence for multiple
Gaussian random variables.

Finally, it should be observed that for jointly Gaussian random variables all that need
be known to specify the joint pdf is the first and second moments. Again, even though
these moments only provide, in general, a partial description of the random variables, for
the Gaussian random variables they provide a complete description. This is of importance
when, for example, we are trying to determine the pdf experimentally. If we have good
reason to believe that the random variables are Gaussian, then we need only measure the
first two moments.



120 Probability theory, random variables and random processes
�

3.6 Summary

Philosophically randomness is the spice of life and living in a world where everything is
predetermined does not strike one as being particularly fulfilling. Therefore random signals
(or processes) and ways of characterizing them have been described in this chapter. The
principal characterization is through the amplitude pdf but of equal importance is the partial
characterization through moments. Specifically the first and second moments, i.e., the DC
value and the variance respectively.

As will be seen in later chapters, at the receiver of a communication system the first
moment is determined by the transmitted signal, whereas the variance is due to noise
added by the channel. The second moment also includes the autocorrelation or equivalently
the PSD of a random signal. In contrast to deterministic signals the frequency bandwidth
requirements for transmitting random signals are based largely on the bandwidth occupied
by a certain percentage of the random signal’s power. This is obtained from the PSD.

3.7 Problems

3.1 Consider the random experiment of simultaneously tossing two fair coins.
(a) Clearly illustrate the sample space of the above random experiment.
(b) Let A denote the event that “at least one head shows” and B denote the event that

“there is a match of two coins.” Find P(A) and P(B).
(c) Compute P(A|B) and P(B|A).
(d) Determine whether the two events A and B are statistically independent.

3.2 A person has a test for a nasty disease. Use the random variable x to describe the
person’s health condition:

x = 1 : the person has the disease,
x = 0 : the person does not have the disease.

Similarly, we use the random variable y to describe the test result. The result of the
test is either “positive" (y = 1) or “negative" (y = 0). The test is 95% reliable, i.e., in
95% of cases of people who really have the disease, a positive result is returned, and
in 95% of cases of people who do not have the disease, a negative result is obtained.
A final piece of information is that 1% of those of the person’s age and background
have the disease.

The person has the test, and the result is positive. What is the probability that the
person has the disease? Hint Use the conditional probability.

3.3 An information source produces 0 and 1 with probabilities 0.6 and 0.4, respectively.
The output of the source is transmitted over a channel that has a probability of error
(turning a 0 into a 1 or a 1 into a 0) equal to 0.1.
(a) What is the probability that at the output of the channel a 1 is observed?
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(b) What is the probability that a 1 is the output of the source if at the output of the
channel a 1 is observed?

(c) Relate the question in (b) to that of Problem 3.2.
3.4 (This problem generalizes Problem 3.3) Consider a binary symmetric channel (BSC),

depicted in Figure 3.20. The channel’s binary input is represented by the random
variable x and the channel’s binary output is represented by the random vari-
able y. Let ε be the crossover probability of the channel such that P(y = 1|x =
0) = P(y = 0|x = 1) = ε. The probability of 0 being the channel’s input (i.e., 0 is
transmitted) is p.
(a) Given that a 1 is received, what is the probability that a 1 was transmitted?
(b) Consider the decision rule which guesses that the transmitted symbol is the same

as the received symbol. What is the probability of making an error?
(c) If a sequence of n independent symbols is transmitted in succession, what is the

probability that k 1s are received?
(d) Suppose we want to transmit two equally likely messages. Represent one mes-

sage by a sequence of n 1s and the other by a sequence of n 0s. The sequence
is passed through the channel. Assume ε < 1/2. Give a natural decision rule for
deciding which message is transmitted based on the received sequence (of length
n). Find the error probability.

(e) The representation in (d) is a repetition code. What happens to the error
probability as n →∞? What is the problem with using this code when n is
large?

0

1

Crossover probability

p

Output yInput x

P(x)

1 – p

ε

ε

0

1

BSC�Fig. 3.20 Binary symmetric channel (BSC) considered in Problem 3.4.

3.5 A random variable x is defined by the following cdf:

Fx(x) =
⎧⎨⎩

0, x ≤ 0
Ax3, 0 ≤ x ≤ 10
B, 10 < x

. (P3.1)

(a) Find the proper values for A and B.
(b) Obtain and plot the pdf fx(x).
(c) Find the mean and variance of x.
(d) What is the probability that 3 ≤ x ≤ 7?
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3.6 x is a Gaussian random variable with a pdf N (0, σ 2). This random variable is passed
through a limiter whose input–output relationship is given by

y = g(x) =
⎧⎨⎩
−b, x ≤ −b

b, x ≥ b
x, x < |b|

. (P3.2)

Find the pdf of the output random variable y. Hint First find the cdf of y based on the
definition of the cdf.

3.7 Find the mean and variance of the random variable x for the following cases:
(a) x is a uniformly distributed random variable, whose pdf is

px(x) =
{

1
b− a , a ≤ x ≤ b

0, otherwise
. (P3.3)

Also consider the special case when a = −b.
(b) x is a Rayleigh distributed random variable, whose pdf is

fx(x) =
{ x

σ 2
e−x2/2σ 2

, x > 0

0, otherwise
. (P3.4)

(c) x is a Laplacian distributed random variable, whose pdf is

fx(x) = c

2
e−c|x|. (P3.5)

(d) y is a discrete random variable, given by y =∑n
i=1 xi, where the random vari-

ables xi, i = 1, 2, . . . , n, are statistically independent and identically distributed
(i.i.d.) random variables with the pmf: P(xi = 1) = p and P(xi = 0) = 1− p.
Remark y is, in fact, a binomial distributed random variable. However, you do
not need the binomial distribution to calculate the mean and variance of y. All
you need are the linear property of the expectation operation E{·} and the fact
that if U and V are statistically independent random variables, then E{UV} =
E{U} · E{V}.

Given a sample space � and events such as A, B, C, set operations on these events

of union, (A ∪ B), intersection (A ∩ C), complement (B̄) can be conveniently visualized

geometrically by a drawing called the Venn diagram, shown in Figure 3.21. To use the

Venn diagram, the areas of the different events represent the probabilities of these

events. Thus the area of �, the whole sample space, is equal to 1.

Use Venn diagrams to solve the next set of problems.

3.8 Prove the following relationships:
(a) P (A ∪ B) = P (A)+ P (B)− P (A ∩ B).
(b) P (A ∪ B ∪ C) = P (A)+ P (B)+ P (C)− P (A ∩ B)− P (A ∩ C)− P (B ∩ C)

+P (A ∩ B ∩ C).
Remark One can do this directly from the Venn diagram or by making use of the
result in (a).
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�Fig. 3.21 Visualization of set operations with the Venn diagram.

3.9 (Bayes’ rule)
(a) Show that P (A|B) = P (A ∩ B)/P (B).
(b) Interpret statistical independence in terms of the areas of events A and B.
(c) Are mutually exclusive events statistically independent? Explain.

3.10 Conditional probabilities restrict consideration to a subspace, say B, of the sample
space �. In effect B becomes the new sample space, call it �B. In terms of the
Venn diagram, the picture could look as shown in Figure 3.22, where events Ai, i =
1, . . . , n, are mutually exclusive and partition the sample space �, i.e., Ai ∩ Aj = ∅

for i 	= j, and
⋃n

i=1 Ai = �. Show that the probability system created by knowledge
of event B satisfies the appropriate axioms.

A1

A2

A3

A4

A5

An

BB

Ω

ΩB

�Fig. 3.22 Visualization of conditional probabilities with the Venn diagram.

3.11 Statistical independence was defined in terms of two events in this chapter. For n
events {Ai}, i = 1, . . . , n, statistical independence means that the probability of the
intersection of any group of k or fewer events equals the product of the probabilities
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of that group of events. Stated mathematically, for all possible combinations of k sets,

k = 2, 3, . . . , n, one has P
(⋂qk

i=q1
Ai

)
=∏qk

i=q1
P (Ai), where q1, . . . , qk are indexes

of the events belonging to a given set. Consider three events A, B, and C.
(a) State the four conditions that the event probabilities must satisfy for them to be

statistically independent.
(b) Consider the Venn diagrams shown in Figure 3.23. Note that the areas are not

drawn to scale. For each Venn diagram determine whether they are or are not
statistically independent.

(c) Is it possible for events to be pairwise statistically independent but not statisti-
cally independent?

(d) Given n events, what is the expression for the number of conditions that must be
satisfied for them to be statistically independent?

C

A

B

W

1/8

1/8

1/8

1/8

1/8

1/8

1/8

1/8

W

C

A

B

W

1/8
1/8

1/8 1/8

1/4

1/4

01/4 1/4

1/4

A

C B

(i) (ii) (iii)�Fig. 3.23 Three Venn diagrams considered in Problem 3.11.

3.12 Consider the Venn diagram in Figure 3.24. Show that events A, B, C are statistically
dependent but that events A, B are conditionally independent, i.e., P(A ∩ B|C) =
P(A|C)P(B|C).

C

A

B

W

0.08

0.03

0.02

0.07

0.38
0.2

0.08

0.07

�Fig. 3.24 The Venn diagram considered in Problem 3.12.
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3.13 Consider the “toy” channel model shown in Figure 3.25. The channel is toy only
in the sense of the transition probability values; the structure of it represents what
is known as an “error and erasure channel,” where output y2 represents the erasure
symbol.

0.4

0.4

0.4

0.4

0.2

0.2

y1 = 1

x1 = 1

x2 = –1

y2 = 0

y3 = –1

Transition probability P(y2 | x1)

1/2

1/2

Output yInput x

P(x)

�Fig. 3.25 The toy channel model considered in Problem 3.13.

(a) Determine P(y = 1), P(y = 1|x = 1), P(y = 1|x = −1). Are the random vari-
ables x, y statistically independent?

(b) Determine the crosscorrelation E{xy}. Comment on the result if a comment is
appropriate.

3.14 Consider the toy channel model of Problem 3.13 again but with the different set of
transition probabilities indicated in Figure 3.26. Again determine whether random
variables x, y are statistically independent and/or uncorrelated.

Transition probability P(y2 | x1)

y1 = 1

x1 = 1

x2 = –1

y2 = 0

y3 = –1

1/2

1/2

0.3

0.4

0.4

0.5

0.3

0.1

Output yInput x

P(x)

�Fig. 3.26 The toy channel model considered in Problem 3.14.



126 Probability theory, random variables and random processes
�

3.15 The channel model of Problem 3.13 is repeated in Figure 3.27 in a more general form.
Realistically the transition probabilities p and ε are ≪ 1, on the order of 10−3 or
smaller. Under these conditions determine whether x, y are statistically independent
and/or correlated.

Transition probability P(y2 | x1)

1 – p – ε

1 – p – ε

ε

ε

p

p

Output yInput x

y1 = 1

x1 = 1

x2 = –1

y2 = 0

y3 = –1

1/2

1/2

P(x)

�Fig. 3.27 The channel model considered in Problem 3.15.

3.16 In developing the optimal receiver for a binary communication system in the next
chapter we shall use the concept of “coordinate rotation” to simplify the receiver.
Here we shall look at the effect of rotation on the correlation of two random variables.

Consider two random variables x and y with means mx, my and variances σ 2
x , σ 2

y
respectively. Further, let the two random variables be uncorrelated. Now “rotate” x
and y to obtain new random variables xR and yR as follows:[

xR

yR

]
=
[

cos θ sin θ

− sin θ cos θ

] [
x
y

]
, (P3.6)

where θ is some arbitrary angle.
Under what condition on x and y, are the two random variables xR and yR also

uncorrelated?
3.17 (Theorem of expectation) Consider random variable y, defined by the transformation

of random variable x, y = g(x), where g(·) maps every value of x into a real number.
As usual the expected value of y is given by E{y} = ∫∞−∞ yfy(y)dy, which means that
fy(y) needs to be determined. This can be avoided by the following reasoning based
on Figure 3.28.
(a) The probability that x lies in the infinitesimal dx, P(x < x ≤ x+ dx) is given by

.
(b) The probability that y lies in the infinitesimal dy, P(y < y ≤ y+ dy) is given by

.
(c) Are the two probabilities determined in (a) and (b) equal or unequal?
(d) Combine the answers of (a), (b), and (c) to show that E{y} = ∫∞−∞ yfy(y)dy =∫∞

−∞ g(x)fx(x)dx, which is (3.27).
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0

y + dy
y = g(x)y

x 
+

 d
xx

�Fig. 3.28 Figure for Problem 3.17.

An interesting and important transformation on x is y = ej2π f x. The expected value of

y, E{y} = ∫∞−∞ fx(x)ej2π fxdx is known as the characteristic function or moment gener-

ating function of the random variable x. It is a function of f and is typically denoted as

�x(f ). Note that, in principle, �x(f ) is the Fourier transform of fx(x). The only difference

with the Fourier transform encountered in Chapter 2 is in the sign of the exponent, but

mathematically this was an arbitrary choice. The implication is that the inverse trans-

form is given by fx(x) = ∫∞−∞�x(f )e−j2πxf df . With this in mind all the usual properties

and results for Fourier transforms and transform pairs hold. The function �x(f ) is useful

to prove a number of basic results. This is done in the next set of problems.

3.18 Show that the nth moment of x, E{xn}, is equal to

1

(2π j)n

dn�x(f )

df n

∣∣∣∣
f=0

: (P3.7)

hence the name, moment generating function, for �x(f ).
3.19 Expand ej2πxf in a McLaurin series to show that �x(f ) is completely determined

by the moments of x. Since �x(f ) determines fx(x), knowledge of all the moments
provides the same description of a random variable as does the pdf.

3.20 Determine the characteristic function of the following zero-mean random variables:
(a) Gaussian,
(b) Laplacian,
(c) uniform of width 2A.
Remark You may determine �x(f ) directly from the basic definition or use the fact
that �x(f ) is the Fourier transform of fx(x) and use results from Chapter 2.

3.21 Expand the characteristic function of the zero-mean Gaussian random variable in
a McLaurin series in f . Derive the relationship between the nth moment and the
variance σ 2

x .
3.22 Consider a random variable x with nonzero mean, mx. Let y = x− mx. Obviously

E{y} = 0.
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(a) What is the relationship between the two characteristic functions, �x(f ) and
�y(f )?

(b) What then is the characteristic function of a Gaussian random variable of mean
mx, variance σ 2

x ?
Remark This shows that the pdf of a Gaussian random variable is completely
specified by the first and second moments.

3.23 The expectation theorem is readily extended to the mapping y = g(x), where x is a
k-dimensional random variable {x1, . . . , xk} with joint pdf fx(x1, . . . , xk). Now

E{y} =
∫ ∞

−∞
· · ·
∫ ∞

−∞
g(x1, . . . , xk)fx(x1, . . . , xk)dx1 · · · dxk. (P3.8)

Consider y = x1 + x2, where x1, x2 are statistically independent random variables.
(a) Show that the characteristic function of y is

�y(f ) = �x1 (f )�x2 (f ). (P3.9)

(b) Multiplication in the frequency (transform) domain means
in the original domain. Use this to find the pdf of y when x1, x2 are statistically
independent uniform random variables, each zero mean and of width 2A.

(c) Generalize the result of (a) to y =∑n
k=1 xk, where xks are statistically indepen-

dent Gaussian random variables.
3.24 Though to find the expected value of y = g(x) one does not need to determine fy(y)

as shown in Problem 3.17, there are situations where it is desirable to do so. This is
accomplished by (3.18) and here you are guided through a derivation of this relation-
ship. Consider the graph plotted on Figure 3.29, where x1, x2, x3 are the real roots of
the equation g(x) = y (for the shown y).

y = g(x)

y + dy

x 1
x 1

 +
 d

x 1 x 2
x 2

 +
 d

x 2 x 3
x 3

 +
 d

x 3

y

0

�Fig. 3.29 Figure for Problem 3.24.

(a) Reason that the probability of the event (y < y ≤ y+ dy) is given by

fy(y)dy = fx(x1)|dx1| + fx(x2)dx2 + fx(x3)|dx3|. (P3.10)

(b) Why are there magnitude signs on dx1 and dx3?
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(c) In terms of infinitesimals is there any difference among |dx1|, |dx2|, |dx3|, or can
they be called |dx|?

(d) Combine (a), (b), (c) and generalize to obtain the desired relationship

fy(y) =
∑

i

fx(xi)∣∣∣∣∣ dg(x)

dx

∣∣∣∣
x=xi

∣∣∣∣∣
,

where {xi} are the real roots of g(x) = y.
Note that as y changes the number of real roots may change. Also there may be

intervals for which there are no real roots, in which case fy(y) = 0 for that interval and
finally there may be specific values of y where there is an infinite number of roots. In
this case fy(y) has an impulse at this y of strength equal to the probability of the values
of x producing this y. All these cases are illustrated by the very artificial nonlinearity of
the next problem.

3.25 Let y = g(x) be defined as:

y =
⎧⎨⎩

−1, −∞ < x ≤ −1
x, −1 < x ≤ 0

1− (1− x)2, 0 ≤ x
. (P3.11)

Determine fy(y) when fx(x) = 1
2 e−|x|. Hint Consider the following ranges of y,

−∞ < y < −1, y = −1 < y ≤ 0, 0 < y ≤ 1, 1 ≤ y.
3.26 A more realistic nonlinearity is y = cos(α + θ), where α is a constant while θ is a

uniform random variable over the range [0, 2π ).
(a) Determine fy(y). Does it depend on α?
(b) Determine fy(y) where θ is still uniform but over the range [0, 20◦).

3.27 (Cauchy–Schwartz inequality for random variables) The inequality is proven in a
manner directly analogous to that used in Chapter 2 for signals.
(a) The expected or average value E{(x+ λy)2} where λ is an arbitrary real number

is obviously ≥ .
(b) Consider the expression in (a) as a quadratic in λ. Reason that it cannot have any

real nonzero roots and therefore that E{xy} ≤ √E{x2}E{y2}.
(c) When does the equality hold?
(d) Use the results of (b) to prove that the correlation coefficient ρx,y =

E{(x− mx)(y− my)}/σxσy lies in the range [−1, 1].
(e) Let the random variables x and y be x(t) and x(t + τ ), respectively, where x(t) is

a WSS process. Use the result of (b) to show that |Rx(τ )| ≤ Rx(0).
3.28 Equation (3.37) gives the relationship for the conditional pdf fy(y|x) as

fy(y|x) =
⎧⎨⎩

fx,y(x, y)

fx(x)
, fx(x) 	= 0

0, otherwise
. (P3.12)

To derive this relationship consider the events (y < y < y+�y) and (x < x
< x+�x).
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(a) Use Bayes’ rule to determine the probability P(y < y < y+�y|x < x <

x+�x).
(b) As �x → 0 what value does the random variable become?
(c) Multiply and divide both sides of the expression obtained in (a) appropriately by

�x, �y and then let �x, �y → 0 to obtain (P3.12).
3.29 Show that if x, y are jointly Gaussian, then the conditional densities fy(y|x), fx(x|y)

are also Gaussian.
3.30 The relation in Problem 3.28 involves two random variables. This problem considers

a “mixed” form of the relation where one variable is a random variable, r, and the
other is a random event, A. Using an approach similar to that of Problem 3.28 show
that

P(A|r) = f (r|A)P(A)

fr(r)
. (P3.13)

Remark Typically in communications A is the event that a 0 or 1 was transmitted
while r is the observation at the output of the demodulator.

3.31 Two first-order pdfs are proposed for the random process, x(t), as follows:

(i) fx(x; t) = 1√
2πσ

e−(x−sgn(t))2/2σ 2
; (P3.14)

(ii) fx(x; t) = 1√
2πσ

e−x2/2σ 2
sgn(t), (P3.15)

where sgn(t) = 1 for t ≥ 0 and = −1 for t < 0.
(a) Which density function, if either, is valid?
(b) If a density function is valid, find the mean and variance of x(t).

3.32 A random process is generated as follows: x(t) = e−a|t|, where a is a random variable
with pdf fa(a) = u(a)− u(a− 1) (1/seconds).
(a) Sketch several members of the ensemble.
(b) For a specific time, t, over what values of amplitude does the random variable

x(t) range?
(c) Find the mean and mean-squared value of x(t).
(d) Determine the first-order pdf of x(t).

3.33 Figure 3.30 shows a simple lowpass filter with impulse response h(t) =
(1/RC)e−t/RCu(t).
(a) Design the filter for a 3 decibel bandwidth of 10 kilohertz. Use a 1.5 nanofaraday

capacitor value and the closest available resistor value. In practice the values of

C

R

Input Output

�Fig. 3.30 The lowpass filter considered in Problem 3.33.
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the resistor and capacitor vary around their nominal specifications, typically by
±5% and ±10%, respectively, i.e., R = Rnom ±�R, C = Cnom ±�C. The time
constant becomes RC = RnomCnom ± Rnom�C ± Cnom�R±�R�C. The term
�R�C is quite small, compared to the others and can be ignored. Furthermore,
the variation in the component values is modeled as random and uniform over
their ranges. Lastly the resistor value is statistically independent of the capacitor
value.

(b) For the values of Rnom and Cnom determined in (a), using the discussion above
and any other reasonable assumptions determine the first-order pdf of the
product RC.

(c) The impulse response is a random process, denoted by h(t). Find the average
impulse response and the worst-case impulse response.

(d) Determine the first-order pdf of h(t).
(e) Find the mean and variance of the 3 decibel filter bandwidth.

3.34 The first-order pdf of x(t) is proposed to be fx(x; t) = (|t|/2)e−|x|/|t|.
(a) Is the pdf a valid one?
(b) If valid, find the mean and variance of x(t).
(c) Discuss the case of t = 0.

3.35 You take a number of measurements of the electrical activity produced by your bicep
muscle as you contract it from rest to a constant force level. As the output power of
the muscle increases so does the power or variance of the electrical activity. Based
on the ensemble you propose the following first-order pdf for the random signal:
fx(x; t) = (1/

√
2πσ (t))e−x2/2σ 2(t), where σ (t) = [1− e−10t]u(t).

(a) Is the proposed pdf valid? Explain.
(b) If it is valid, what is the mean and variance of the signal?
(c) It appears that the random process is nonstationary. At what time (in millisec-

onds) would you feel comfortable to judge the process to be at least first-order
stationary?

3.36 Let g(t) be a deterministic signal of duration [0, Tb] whose energy is Eg, i.e.,∫ Tb
0 g2(t)dt = Eg. Let w(t) be a zero-mean, white noise with two-sided PSD N0/2.

In the development of the optimal receiver, you will often see that the noise w(t) is
correlated with the function g(t) to form the random variable x as x = ∫ Tb

0 w(t)g(t)dt.
Find the mean and variance of x.

3.37 The input noise x(t) applied to the filter in Figure 3.31 is modeled as a WSS, white,
Gaussian random process with a zero mean and two-sided PSD N0/2. Let y(t) denote
the random process at the output of the filter.

0 W

1

f
–W

H( f )

Lowpass filter

y(t)x(t)

�Fig. 3.31 The lowpass filter considered in Problem 3.37.
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(a) Find and sketch the power spectral density of y(t).
(b) Find and sketch the autocorrelation function of y(t).
(c) What are the average DC level and the average power of y(t)?
(d) Suppose that the output noise is sampled every Ts seconds to obtain the noise

samples y(kTs), k = 0, 1, 2, . . .. Find the smallest values of Ts so that the noise
samples are statistically independent. Explain.

3.38 Repeat Problem 3.37 with the system shown in Figure 3.32.

0 W
f

–W

H( f )

y(t)x(t)

A linear filter

1

�Fig. 3.32 System under consideration in Problem 3.38.

3.39 Let the random process x(t) in Problem 3.37 be a linear sum of two signals, i.e.,
x(t) = s(t)+ w(t), where s(t) is the desired signal with autocorrelation Rs(τ ) =
Ke−a|τ | and w(t) is white noise of spectral strength N0/2.
(a) Derive the expression for the power SNR at the filter’s output in terms of the

bandwidth W.
(b) Obtain the differential equation needed to maximize the SNR and solve for W.

3.40 The noise x(t) applied to the filter in Figure 3.33 is modeled as a WSS random
process with PSD Sx(f ). Let y(t) denote the random noise process at the output of the
filter.

y(t)
h(t)

x(t)

0 T

1
T

t

A linear filter

�Fig. 3.33 System under consideration in Problem 3.40.

(a) Is y(t) a WSS noise process? Why?
(b) Find the frequency response, H(f ), of the filter.
(c) If x(t) is a white noise process with PSD N0/2, find the PSD of the noise process

y(t).
(d) What frequency components cannot be present in the output process? Explain.

3.41 Repeat Problem 3.40 with the system shown in Figure 3.34.
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Delay = T

d(×)
dt

System

x(t) y(t)

�Fig. 3.34 System under consideration in Problem 3.41.

3.42 In digital communications, both message and noise are modeled as WSS random pro-
cesses. Consider a message m(t), whose autocorrelation function is Rm(τ ) = Ae−|τ |
(watts). The message m(t) is corrupted by zero-mean additive white Gaussian noise
(AWGN) n(t) of spectral strength N0/2 (watts/hertz) and the received signal is
r(t) = m(t)+ n(t). You decide to filter the noise by passing r(t) through an ideal
lowpass filter with bandwidth W. The procedure is depicted in block diagram form
in Figure 3.35.

m(t)

n(t)

r(t) mo(t) + no(t)

0 W

1

f
–W

H( f )

Ideal LPF

�Fig. 3.35 System under consideration in Problem 3.42.

(a) Show that the PSD of the message is given by Sm(f ) = 2A/(1+ 4π2f 2), −∞ ≤
f ≤ ∞. Then sketch Sm(f ).

(b) Determine the power of the message at the output of the filter. What are the
percentages of the input power passed through the filter when W = 10 hertz,
W = 50 hertz and W = 100 hertz? Hint

∫
(1/(a2 + x2))dx = (1/a) tan−1(x/a).

(c) Determine the power of the noise at the output of the filter.
(d) Let A = 4× 10−3 watts, W = 4 kilohertz and N0 = 10−8 watts/hertz. Determine

the SNR in decibels at the filter output.
3.43 (System identification) Identification of an LTI system can be accomplished by

finding the gain/phase response of the system at all frequencies, the sinusoidal
steady-state approach, or by applying an impulse at the input and measuring h(t),
the resultant impulse response. Both approaches require the system to be taken “off-
line.” The frequency response method takes considerable time while the impulse
method, if not actually causing damage to the system due to the extremely large
input amplitude, tends to drive the system into nonlinear operation. Here another
approach based on a white noise input is explored.
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w(t)

x(t) y(t)s(t) LTI system
impulse response h(t)

�Fig. 3.36 System setup for Problem 3.43.

Consider the setup shown in Figure 3.36, where s(t) is the operating input and
w(t) is a white process. Assume s(t) and w(t) are uncorrelated. Determine the
crosscorrelation between the output y(t) and w(t). Comment on the result.



4 Sampling and quantization

The previous two chapters have reviewed and discussed the various characteristics of sig-
nals along with methods of describing and representing them. This chapter begins the
discussion of transmitting the signals or messages using a digital communication system.
Though one can easily visualize messages produced by sources that are inherently digital
in nature, witness text messaging via the keyboard or keypad, two of the most common
message sources, audio and video, are analog, i.e., they produce continuous time signals.
To make them amenable for digital transmission it is first required to transform the analog
information source into digital symbols which are compatible with digital processing and
transmission.

The first step in this transformation process is to discretize the time axis, which involves
sampling the continuous time signal at discrete values of time. The sampling process, pri-
marily how many samples per second are needed to exactly represent the signal, practical
sampling schemes, and how to reconstruct, at the receiver, the analog message from the
samples is considered first. This is followed by a brief discussion of three pulse modula-
tion techniques, a sort of half-way house between the analog modulation methods of AM
and FM and the various digital modulation–demodulation methods which are the focus of
the rest of the text.

Though time has been discretized by the sampling process the sample values are still
analog, i.e., they are continuous variables. To represent the sample value by a digital
symbol chosen from a finite set necessitates the choice of a discrete set of amplitudes to rep-
resent the continuous range of possible amplitudes. This process is known as quantization
and unlike discretization of the time axis, it results in a distortion of the original signal since
it is a many-to-one mapping. The measure of this distortion is commonly expressed by the
signal power to quantization noise power ratio, SNRq. Various approaches to quantization
and the resultant SNRq are the major focus of this chapter.

The final step is to map (or encode) the quantized signal sample into a string of dig-
ital, typically binary, symbols, commonly known as pulse-code modulation (PCM). The
complete process of analog-to-digital (A/D) conversion is a special, but important, case of
source coding.1

1 A more general source coding process not only involves A/D conversion but also some form of data
compression to remove the redundancy of the information source.
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4.1 Sampling of continuous-time signals

The first operation in A/D conversion is the sampling process. Both the theoretical and
practical implementations of this process are studied in this section.

4.1.1 Ideal (or impulse) sampling

The sampling process converts an analog waveform into a sequence of discrete samples
that are usually spaced uniformly in time. This process can be mathematically described as
in Figure 4.1(a). Here the analog waveform m(t) is multiplied by a periodic train of unit
impulse functions s(t) to produced the sampled waveform ms(t). The expression for s(t) is
as follows:

s(t) =
∞∑

n=−∞
δ(t − nTs). (4.1)

Thus the sampled waveform ms(t) can be expressed as

ms(t) = m(t)s(t)

=
∞∑

n=−∞
m(t)δ(t − nTs) =

∞∑
n=−∞

m(nTs)δ(t − nTs). (4.2)

The parameter Ts in (4.1) and (4.2) is the period of the impulse train, also referred to as
the sampling period. The inverse of the sampling period, fs = 1/Ts, is called the sampling
frequency or sampling rate. Figures 4.1(b)–(d) graphically illustrate the ideal sampling
process. It is intuitive that the higher the sampling rate is, the more accurate the represen-
tation of m(t) by ms(t) is. However, to achieve a high efficiency, it is desired to use as low
a sampling rate as possible. Thus an important question is: what is the minimum sampling
rate for the sampled version ms(t) to exactly represent the original analog signal m(t)?
For the family of bandlimited signals, this question is answered by the sampling theorem,
which is derived next.

Consider the Fourier transform of the sampled waveform ms(t). Since ms(t) is the product
of m(t) and s(t), the Fourier transform of ms(t) is the convolution of the Fourier trans-
forms of m(t) and s(t). Recall that the Fourier transform of an impulse train is another
impulse train, where the values of the periods of the two trains are reciprocally related to
one another. The Fourier transform of s(t) is given by

S(f ) = 1

Ts

∞∑
n=−∞

δ(f − nfs). (4.3)

Also note that convolution with an impulse function simply shifts the original function as
follows:

X(f ) ∗ δ(f − f0) = X(f − f0). (4.4)
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Ideal sampling process: (a) mathematical model, (b) analog signal, (c) impulse train, (d) sampled version
of the analog signal, (e) spectrum of bandlimited signal, (f) spectrum of the impulse train, (g) spectrum of
the sampled waveform.

From the above equations, the transform of the sampled waveform can be written as

Ms(f ) = M(f ) ∗ S(f ) = M(f ) ∗
[

1

Ts

∞∑
n=−∞

δ(f − nfs)

]

= 1

Ts

∞∑
n=−∞

M(f − nfs). (4.5)

Equation (4.5) shows that the spectrum of the sampled waveform consists of an infinite
number of scaled and shifted copies of the spectrum of the original signal m(t). More
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precisely, the spectrum M(f ) is scaled by 1/Ts and periodically repeated every fs. It should
be noted that the relation in (4.5) holds for any continuous-time signal m(t), even if it is not
bandlimited, or of finite energy.

However, for the bandlimited waveform m(t) with bandwidth limited to W hertz, a
generic Fourier transform of the sampled signal ms(t) is illustrated in Figure 4.1(e). The tri-
angular shape chosen for the magnitude spectrum of m(t) is only for ease of illustration. In
general, M(f ) can be of arbitrary shape, as long as it is confined to [−W, W]. Since within
the original bandwidth (around zero frequency) the spectrum of the sampled waveform is
the same as that of the original signal (except for a scaling factor 1/Ts), it suggests that the
original waveform m(t) can be completely recovered from ms(t) by an ideal lowpass filter
(LPF) of bandwidth W as shown in Figure 4.1(g). However, a closer investigation of Figure
4.1(g) reveals that this is only possible if the sampling rate fs is high enough that there is no
overlap among the copies of M(f ) in the spectrum of ms(t). It is easy to see that the condi-
tion for no overlapping of the copies of M(f ) is fs ≥ 2W, therefore the minimum sampling
rate is fs = 2W. When the sampling rate fs < 2W (undersampling), then the copies of M(f )
overlap in the frequency domain and it is not possible to recover the original signal m(t)
by filtering. The distortion of the recovered signal due to undersampling is referred to as
aliasing.

It has been shown using the frequency domain that the original continuous signal m(t)
can be completely recovered from the sampled signal ms(t). Next we wish to show how to
reconstruct the continuous signal m(t) from its sampled values m(nTs), n = 0,±1,±2, . . ..
To this end, write the Fourier transform of ms(t) as follows:

Ms(f ) = F{ms(t)} =
∞∑

n=−∞
m(nTs)F{δ(t − nTs)}

=
∞∑

n=−∞
m(nTs)e

−j2πnfTs . (4.6)

Since M(f ) = Ms(f )/fs, for −W ≤ f ≤ W, one can write

M(f ) = 1

fs

∞∑
n=−∞

m(nTs)e
−j2πnfTs , −W ≤ f ≤ W. (4.7)

The signal m(t) is the inverse Fourier transform of M(f ) and it can be found as follows:

m(t) = F−1{M(f )} =
∫ ∞

−∞
M(f )ej2π ftdf

=
∫ W

−W

1

fs

∞∑
n=−∞

m(nTs)e
−j2πnfTsej2π ftdf

= 1

fs

∞∑
n=−∞

m(nTs)
∫ W

−W
ej2π f (t−nTs)df

=
∞∑

n=−∞
m(nTs)

sin[2πW(t − nTs)]

π fs(t − nTs)
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=
∞∑

n=−∞
m
( n

2W

) sin(2πWt − nπ )

(2πWt − nπ )
(4.8)

=
∞∑

n=−∞
m
( n

2W

)
sinc(2Wt − n), (4.9)

where, to arrive at the last two equations, the minimum sampling rate fs = 2W has been
used and sinc(x) ≡ sin(πx)/(πx).

Equation (4.9) provides an interpolation formula for the construction of the original sig-
nal m(t) from its sampled values m(n/2W). The sinc function sinc(2Wt) plays the role of
an interpolating function (also known as the sampling function). In essence, each sam-
ple is multiplied by a delayed version of the interpolating function and all the resulting
waveforms are added up to obtain the original signal.

Now the sampling theorem can be stated as follows.

Theorem 4.1 (sampling theorem) A signal having no frequency components
above W hertz is completely described by specifying the values of the signal at periodic
time instants that are separated by at most 1/2W seconds.

The theorem stated in terms of the sampling rate, fs ≥ 2W, is known as the Nyquist
criterion. The sampling rate fs = 2W is called the Nyquist rate with the reciprocal called
the Nyquist interval.

The sampling process considered so far is known as ideal sampling because it involves
ideal impulse functions. Obviously, ideal sampling is not practical. In the next two sec-
tions two practical methods of implementing sampling of continuous-time signals are
introduced.

4.1.2 Natural sampling

Figure 4.2(a) shows the mathematical model of natural sampling. Here, the analog sig-
nal m(t) is multiplied by the pulse train, or gating waveform p(t) shown in Figure 4.2(c).
Let h(t) = 1 for 0 ≤ t ≤ τ and h(t) = 0 otherwise. Then the pulse train p(t) can be
written as,

p(t) =
∞∑

n=−∞
h(t − nTs). (4.10)

Natural sampling is therefore very simple to implement since it requires only an on/off gate.
Figure 4.2(d) shows the resultant sampled waveform, which is simply ms(t) = m(t)p(t). As
in ideal sampling, here the sampling rate fs also equals the inverse of the period Ts of
the pulse train, i.e., fs = 1/Ts. Next it is shown that with natural sampling, a bandlimited
waveform can also be reconstructed from its sampled version as long as the sampling
rate satisfies the Nyquist criterion. As before, the analysis is carried out in the frequency
domain.
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�Fig. 4.2
The natural sampling process: (a) mathematical model, (b) analog signal, (c) rectangular pulse train, (d)
sampled version of the analog signal, (e) spectrum of bandlimited signal, (f) spectrum of the pulse train,
(g) spectrum of the sampled waveform.

Recall that the periodic pulse train p(t) can be expressed in a Fourier series as follows:

p(t) =
∞∑

n=−∞
Dnej2πnfst, (4.11)

where Dn is the Fourier coefficient, given by

Dn = τ

Ts
sinc

(
nτ

Ts

)
e−jπnτ/Ts . (4.12)
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Thus the sampled waveform is

ms(t) = m(t)
∞∑

n=−∞
Dnej2πnfst. (4.13)

The Fourier transform of ms(t) can be found as follows:

Ms(f ) = F{ms(t)} =
∞∑

n=−∞
DnF

{
m(t)ej2πnfst

}
=

∞∑
n=−∞

DnM(f − nfs). (4.14)

Similarly to the ideal sampling case, (4.14) shows that Ms(f ) consists of an infinite
number of copies of M(f ), which are periodically shifted in frequency every fs hertz. How-
ever, here the copies of M(f ) are not uniformly weighted (scaled) as in the ideal sampling
case, but rather they are weighted by the Fourier series coefficients of the pulse train. The
spectrum of the sampled waveform ms(t) is shown in Figure 4.2(g), where m(t) is again
a bandlimited waveform. It can be seen from Figure 4.2(g) that, despite the above dif-
ference, the original signal m(t) can be equally well reconstructed using an LPF as long
as the Nyquist criterion is satisfied. Finally, it should be noted that natural sampling can
be considered to be a practical approximation of ideal sampling, where an ideal impulse
is approximated by a narrow rectangular pulse. With this perspective, it is not surpris-
ing that when the width τ of the pulse train approaches zero, the spectrum in (4.14)
converges to (4.5).

4.1.3 Flat-top sampling

Flat-top sampling is the most popular sampling method. This sampling process involves
two simple operations:

(i) Instantaneous sampling of the analog signal m(t) every Ts seconds. As in the ideal and
natural sampling cases, it will be shown that to reconstruct the original signal m(t) from
its sampled version, the sampling rate fs = 1/Ts must satisfy the Nyquist criterion.

(ii) Maintaining the value of each sample for a duration of τ seconds.

In circuit technology, these two operations are referred to as sample and hold. The flat-top
sampled waveform is illustrated in Figure 4.3.

It is straightforward to verify that the flat-top sampling described above can be math-
ematically modeled as shown in Figure 4.4(a). Note that Figure 4.4(a) is an extension of
Figure 4.1(a), where a filter with impulse response h(t) is added at the end.

Again, we are interested in the spectrum of the sampled signal ms(t), which is related to
the original signal m(t) through the following expression:

ms(t) =
[

m(t)
∞∑

n=−∞
δ(t − nTs)

]
∗ h(t). (4.15)
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The Fourier transform of ms(t) is determined as follows:

Ms(f ) = F
{

m(t)
∞∑

n=−∞
δ(t − nTs)

}
F{h(t)}

= 1

Ts
H(f )

∞∑
n=−∞

M(f − nfs), (4.16)

where H(f ) is the Fourier transform of the rectangular pulse h(t), given by H(f ) =
τ sinc(f τ )e−jπ f τ .

Equations (4.16) and (4.5) imply that the spectrum of the signal produced by flat-top
sampling is essentially the spectrum of the signal produced by ideal sampling shaped by
H(f ). Since H(f ) has the form of a sinc function, each spectral component of the ideal sam-
pled signal is weighted differently, hence causing amplitude distortion. As a consequence
of this distortion, it is not possible to reconstruct the original signal using an LPF, even
when the Nyquist criterion is satisfied. This is illustrated in Figure 4.5.

In fact, if the Nyquist criterion is satisfied, then passing the flat-top sampled signal
through an LPF (with a bandwidth of W) produces the signal whose Fourier transform is
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(1/Ts)M(f )H(f ). Thus the distortion due to H(f ) can be corrected by connecting an equal-
izer in cascade with the lowpass reconstruction filter, as shown in Figure 4.4(b). Ideally,
the amplitude response of the equalizer is given by

|Heq| = Ts

|H(f )| =
Ts

τ sinc(f τ )
(4.17)

Finally, it should be noted that for a duty cycle τ/Ts ≤ 0.1, the amplitude distortion is
less than 0.5%. In this case, equalization may not be necessary in practical applications.
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Various spectra in the flat-top sampling process: (a) magnitude spectrum of the original message, (b)
spectrum of the ideal sampled waveform, (c) |H(f )| = |τ sinc(f τ )|, (d) spectrum of the flat-top sampled
waveform.
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4.2 Pulse modulation

Recall that in analog (continuous-wave) modulation, some parameter of a sinusoidal carrier
Ac cos(2π fct + θ ), such as the amplitude Ac, the frequency fc, or the phase θ , is varied
continuously in accordance with the message signal m(t). Similarly, in pulse modulation,
some parameter of a pulse train is varied in accordance with the sample values of a message
signal.

Pulse-amplitude modulation (PAM) is the simplest and most basic form of analog pulse
modulation. In PAM, the amplitudes of regularly spaced pulses are varied in proportion
to the corresponding sample values of a continuous message signal. In general, the pulses
can be of some appropriate shape. In the simplest case, when the pulse is rectangular,
then the PAM signal is identical to the signal produced by flat-top sampling described in
Section 4.1.3.

It should be noted that PAM transmission does not improve the noise performance over
baseband modulation (which is the transmission of the original continuous signal). The
main (perhaps the only) advantage of PAM is that it allows multiplexing, i.e., the sharing
of the same transmission media by different sources (or users). This is because a PAM
signal only occurs in slots of time, leaving the idle time for the transmission of other PAM
signals. However, this advantage comes at the expense of a larger transmission bandwidth,
as can be seen from Figures 4.5(a) and 4.5(d).

It is well known that in analog FM, bandwidth can be traded for noise perfor-
mance. As mentioned before, PAM signals require a larger transmission bandwidth
without any improvement in noise performance. This suggests that there should be bet-
ter pulse modulations than PAM in terms of noise performance. Two such forms of pulse
modulation are:

• Pulse-width modulation (PWM): in PWM, the samples of the message signal are used
to vary the width of the individual pulses in the pulse train.

• Pulse-position modulation (PPM): in PPM, the position of a pulse relative to its original
time of occurrence is varied in accordance with the sample values of the message.

Examples of PWM and PPM waveforms are shown in Figure 4.6 for a sinusoidal message.
Note that in PWM, long pulses (corresponding to large sample values) expend consid-

erable power, while bearing no additional information. In fact, if only time transitions are
preserved, then PWM becomes PPM. Accordingly, PPM is a more power-efficient form of
pulse modulation than PWM.

Regarding the noise performance of PWM and PPM systems, since the transmitted infor-
mation (the sample values) is contained in the relative positions of the modulated pulses,
the additive noise, which mainly introduces amplitude distortion, has much less effect. As
a consequence, both PWM and PPM systems have better noise performance than PAM.

Pulse modulation techniques, however, are still analog modulation. For digital commu-
nications of an analog source, one needs to proceed to the next step, i.e., quantization.
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Examples of PWM and PPM: (a) a sinusoidal message, (b) pulse carrier, (c) PWM waveform, (d) PPM
waveform.

4.3 Quantization

In all the sampling processes described in the previous section, the sampled signals are
discrete in time but still continuous in amplitude. To obtain a fully digital representation
of a continuous signal, two further operations are needed: quantization of the amplitude of
the sampled signal and encoding of the quantized values, as illustrated in Figure 4.7. This
section discusses quantization.
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�Fig. 4.8 Description of a memoryless quantizer.

By definition, amplitude quantization is the process of transforming the sample ampli-
tude m(nTs) of a message signal m(t) at time t = nTs into a discrete amplitude m̂(nTs)
taken from a finite set of possible amplitudes. Clearly, if the finite set of amplitudes is
chosen such that the spacing between two adjacent amplitude levels is sufficiently small,
then the approximated (or quantized) signal, m̂(nTs), can be made practically indistin-
guishable from the continuous sampled signal, m(nTs). Nevertheless, unlike the sampling
process, there is always a loss of information associated with the quantization process, no
matter how finely one may choose the finite set of the amplitudes for quantization. This
implies that it is not possible to completely recover the sampled signal from the quantized
signal.

In this section, we shall assume that the quantization process is memoryless and instan-
taneous, meaning that the quantization of sample value at time t = nTs is independent of
earlier or later samples. With this assumption, the quantization process can be described
as in Figure 4.8. Let the amplitude range of the continuous signal be partitioned into L
intervals, where the lth interval, denoted by Il, is determined by the decision levels (also
called the threshold levels) Dl and Dl+1:

Il : {Dl < m ≤ Dl+1}, l = 1, . . . , L. (4.18)

Then the quantizer represents all the signal amplitudes in the interval Il by some amplitude
Tl ∈ Il referred to as the target level (also known as the representation level or reconstruc-
tion level). The spacing between two adjacent decision levels is called the step-size. If the
step-size is the same for each interval, then the quantizer is called a uniform quantizer,
otherwise the quantizer is nonuniform. The uniform quantizer is the simplest and most
practical one. Besides having equal decision intervals, the target level is chosen to lie in
the middle of the interval.
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4.3.1 Uniform quantizer

From the description of the quantizer, it follows that the input–output characteristic of the
quantizer (or quantizer characteristic) is a staircase function. Figures 4.9(a) and 4.9(b)
display two uniform quantizer characteristics, called midtread and midrise. As can be
seen from these figures, the classification whether a characteristic is midtread or midrise
depends on whether the origin lies in the middle of a tread, or a rise of the staircase char-
acteristic. For both characteristics, the decision levels are equally spaced and the lth target
level is the midpoint of the lth interval, i.e.,

Tl = Dl + Dl+1

2
. (4.19)
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�Fig. 4.9 Two types of uniform quantization: (a) midtread and (b) midrise.
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As an example, Figure 4.10 plots the input and output waveforms of a midrise uniform
quantizer.

As mentioned before, the quantization process always introduces an error. The per-
formance of a quantizer is usually evaluated in terms of its SNR. In what follows, this
parameter is derived for the uniform quantizer.

Since we concentrate only on memoryless quantization, we can ignore the time index
and simply write m and m̂ instead of m(nTs) and m̂(nTs) for the input and output of the
quantizer respectively. Typically, the input of the quantizer can be modeled as a zero-mean
random variable m with some pdf fm(m). Furthermore, assume that the amplitude range
of m is −mmax ≤ m ≤ mmax, that the uniform quantizer is of midrise type, and that the
number of quantization levels is L. Then the quantization step-size is given by

� = 2mmax

L
. (4.20)

Let q = m− m̂ be the error introduced by the quantizer, then −�/2 ≤ q ≤ �/2. If the
step-size � is sufficiently small (i.e., the number of quantization intervals L is sufficiently
large), then it is reasonable to assume that the quantization error q is a uniform ran-
dom variable over the range [−�/2, �/2]. The pdf of the random variable q is therefore
given by
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m(t)
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�Fig. 4.10 An example of the input and output of a midrise uniform quantizer.
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fq(q) =
{

1/�, −�/2 < q ≤ �/2
0, otherwise

. (4.21)

Note that with this assumption, the mean of the quantization error is zero, while its variance
can be calculated as follows:

σ 2
q =

∫ �/2

−�/2
q2fq(q)dq =

∫ �/2

−�/2
q2
(

1

�

)
dq

= �2

12
= m2

max

3L2
, (4.22)

where the last equality follows from (4.20).
Each target level at the output of a quantizer is typically encoded (or represented) in

binary form, i.e., a binary string. For convenience, the number of quantization levels is
usually chosen to be a power of 2, i.e., L = 2R, where R is the number of bits needed
to represent each target level. Substituting L = 2R into (4.22) one obtains the following
expression for the variance of the quantization error:

σ 2
q =

m2
max

3× 22R
. (4.23)

Since the message sample m is a zero-mean random variable whose pdf is fm(m), the
average power of the message is equal to the variance of m, i.e., σ 2

m =
∫ mmax
−mmax

m2fm(m)dm.
Therefore, the SNRq can be expressed as,

SNRq =
(

3σ 2
m

m2
max

)
22R (4.24)

= 3× 22R

F2
. (4.25)

The parameter F in (4.25) is called the crest factor of the message, defined as

F = peak value of the signal

RMS value of the signal
= mmax

σm
. (4.26)

Equation (4.25) shows that the SNRq of a uniform quantizer increases exponentially with
the number of bits per sample R and decreases with the square of the message’s crest
factor. The message’s crest factor is an inherent property of the signal source, while R is a
technical specification, i.e., under an engineer’s control.

Expressed in decibels, the SNRq is given by

10 log10 SNRq = 6.02R+ 10 log10

(
σ 2

m

m2
max

)
+ 4.77 (4.27)

= 6.02R− 20 log10 F + 4.77. (4.28)

The above equation, called the 6 decibel rule, points out a significant performance charac-
teristic of a uniform quantizer: an additional 6 decibel improvement in SNRq is obtained
for each bit added to represent the continuous signal sample.



150 Sampling and quantization
�

4.3.2 Optimal quantizer

In the previous section the uniform quantizer was discussed where all the quantization
regions are of equal size and the target (quantized) levels are at the midpoint of the quanti-
zation regions. Though simple, uniform quantizers are not optimal in terms of minimizing
the SNRq. In this section the optimal quantizer that maximizes the SNRq is studied.

Consider a message signal m(t) drawn from some stationary process. Let[−mmax, mmax]
be the amplitude range of the message, which is partitioned into L quantization regions
as in (4.18). Instead of being equally spaced, the decision levels are constrained to satisfy
only the following three conditions:

D1 = −mmax,
DL+1 = mmax,
Dl ≤ Dl+1, for l = 1, 2, . . . , L.

(4.29)

A target level may lie anywhere within its quantization region and as before, is denoted by
Tl, l = 1, . . . , L. Then the average quantization noise power is given by

Nq =
L∑

l=1

∫ Dl+1

Dl

(m− Tl)
2fm(m)dm. (4.30)

We need to find the set of 2L− 1 variables {D2, D3, . . . , DL, T1, T2, . . . , TL} to maximize
the SNRq, or equivalently to minimize the average power of the quantization noise Nq.
Differentiating Nq with respect to a specific threshold, say Dj (using Leibniz’s rule)2 and
setting the result to 0 yields

∂Nq

∂Dj
= fm(Dj)

[
(Dj − Tj−1)2 − (Dj − Tj)

2
]
= 0, j = 2, 3, . . . , L. (4.31)

The above gives L− 1 equations with solutions

Dopt
l = Tl−1 + Tl

2
, l = 2, 3, . . . , L. (4.32)

This result simply means that, in an optimal quantizer, the decision levels are the midpoints
of the target values (note that the target values of the optimal quantizer are not yet known).

To determine the L target values Tl, differentiate Nq with respect to a specific target level
Tj and set the result to zero:

∂Nq

∂Tj
= −2

∫ Dj+1

Dj

(m− Tj)fm(m)dm = 0, j = 1, 2, . . . , L. (4.33)

The above equation gives

Topt
l =

∫ Dl+1
Dl

mfm(m)dm∫ Dl+1
Dl

fm(m)dm
, l = 1, 2, . . . , L. (4.34)

2 Leibniz’s rule states that if f (p) = ∫ u(p)
l(p) g(x; p)dx, where p is a parameter, then ∂f (p)/∂p =∫ u(p)

l(p) (∂g(x; p)/∂p)dx+ g(x = u(p); p)∂u(p)/∂p− g(x = l(p); p)∂l(p)/∂p.
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Equation (4.34) states that in an optimal quantizer the target value for a quantization region
should be chosen to be the centroid (conditional expected value) of that region.

In summary, (4.32) and (4.34) give the necessary and sufficient conditions for a memo-
ryless quantizer to be optimal and are known as the Lloyd–Max conditions. Although the
conditions are very simple, an analytical solution to the optimal quantizer design is not
possible except in some exceptional cases. Instead, the optimal quantizer is designed in
an iterative manner as follows: start by specifying an arbitrary set of decision levels (for
example the set that results in equal-length regions) and find the target values using (4.34).
Then determine the new decision levels using (4.32). The two steps are iterated until the
parameters do not change significantly from one step to the next.

Though optimal, a major disadvantage of the optimal quantizer is that it requires knowl-
edge of the statistical properties of the message source, namely the pdf fm(m) of the
message amplitude. In practice, the quantizer in use may have to deal with a variety of
sources. Another disadvantage is that the quantizer is designed for a specific mmax, while
typically the signal level varies, resulting in poor performance. These disadvantages pre-
vent the use of the optimal quantizer in practical applications. In the next section, a different
quantization method that overcomes these disadvantages and which is used is practice
is examined. The method is quite robust to both the source statistics and changes in the
signal’s power level.

4.3.3 Robust quantizers

It can be easily verified from (4.32) and (4.34) that for the special case where the message
signal is uniformly distributed, the optimal quantizer is a uniform quantizer. Thus, as long
as the distribution of the message signal is close to uniform, the uniform quantizer works
well. However, for certain signals such as voice, the input distribution is far from uniform.
For a voice signal, in particular, there exists a higher probability for smaller amplitudes
(corresponding to silent periods and soft speech) and a lower probability for larger ampli-
tudes (corresponding to loud speech). Therefore it is more efficient to design a quantizer
with more quantization regions at lower amplitudes and less quantization regions at larger
amplitudes to overcome the variations in power levels that the quantizer sees at its input.
The resulting quantizer would be, in essence, a nonuniform quantizer having quantization
regions of various sizes.

The usual and robust method for performing nonuniform quantization is to first pass the
continuous samples through a monotonic nonlinearity called a compressor that compresses
the large amplitudes (which essentially reduces the dynamic range of the signal). One
view of the compressor is that it acts like a variable-gain amplifier: it has high gain at low
amplitudes and less gain at high amplitudes. The compressed signal is applied to a uniform
quantizer. At the receiving end, the inverse of compression is carried out by the expander
to obtain the sampled values. The combination of a compressor and an expander is called
a compander. Figure 4.11 shows the block diagram for this technique, where g(m) and
g−1(m) are the compressing and expanding functions, respectively.
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�Fig. 4.11 Block diagram of the compander technique.
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�Fig. 4.12
Compression characteristic: (a) μ-law and (b) A-law. Note that both characteristics are odd functions and
only the positive half of the input signal is illustrated.

There are two types of companders that are widely used for voice signals in practical
telecommunication systems. The μ-law compander used in the USA, Canada, and Japan
employs the following logarithmic compressing function:

y = ymax
ln
[
1+ μ (|m|/mmax)

]
ln(1+ μ)

sgn(m), (4.35)

where

sgn(x) =
{+1, for x ≥ 0
−1, for x < 0

. (4.36)

In (4.35) mmax and ymax are the maximum positive levels of the input and output voltages
respectively. The compression characteristic is shown in Figure 4.12(a) for several values
of μ. Note that μ = 0 corresponds to a linear amplification, i.e., there is no compression.
In the USA and Canada, the parameter μ was originally set to 100 for use with a seven-bit
PCM encoder. It was later changed to 255 for use with an eight-bit encoder.
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Another compression characteristic, used mainly in Europe, Africa, and the rest of Asia,
is the A law, defined as

y =

⎧⎪⎪⎨⎪⎪⎩
ymax

A (|m|/mmax)
1+ lnA sgn(m), 0 <

|m|
mmax

≤ 1
A

ymax
1+ ln

[
A (|m|/mmax)

]
1+ lnA sgn(m), 1

A <
|m|

mmax
< 1

, (4.37)

where A is a positive constant. The A-law compression characteristic is shown in
Figure 4.12(b) for several values of A. Note that a standard value for A is 87.6.

4.3.4 SNRq of nonuniform quantizers

Consider a general compression characteristic as shown in Figure 4.13, where g(m) maps
the interval [−mmax, mmax] into the interval [−ymax, ymax]. Note that the output of the com-
pressor is uniformly quantized. Let yl and � denote, respectively, the target level and the
(equal) step-size of the lth quantization region for the compressed signal y. Recall that
for an L-level midrise quantizer one has � = 2ymax/L. The corresponding target level and
step-size of the lth region for the original signal m are ml and �l respectively.

Assume that the number of quantization intervals L is very large (L � 1) and the density
function of the message m is smooth enough. Then both � and �l are small. Thus one can
approximate fm(m) to be a constant fm(ml) over �l and, as a consequence, the target level

y

y = g(m)

Δ

ml Δl

dm
dy

–mmax mmax

m

–ymax

ymax

0

yl

�Fig. 4.13 Compression characteristic g(m).
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ml is basically at the midpoint of the lth quantization region. With this approximation, Nq

can be evaluated as follows:

Nq =
L∑

l=1

∫ ml+�l/2

ml−�l/2
(m− ml)

2fm(m)dm

∼=
L∑

l=1

fm(ml)
∫ ml+�l/2

ml−�l/2
(m− ml)

2dm

=
L∑

l=1

�3
l

12
fm(ml). (4.38)

Furthermore, it can be seen from Figure 4.13 that � is related to �l through the slope of
g(m) as follows:

�

�l
= dg(m)

dm

∣∣∣∣
m=ml

. (4.39)

Substituting �l found from (4.39) into (4.38) produces

Nq = �2

12

L∑
l=1

fm(ml)(
dg(m)

dm

∣∣∣
m=ml

)2
�l. (4.40)

Finally, since L � 1 one can approximate the summation by an integral to obtain

Nq = �2

12

∫ mmax

−mmax

fm(m)

(dg(m)/dm)2
dm = y2

max

3L2

∫ mmax

−mmax

fm(m)

(dg(m)/dm)2
dm. (4.41)

Example 4.1 (SNRq of the μ- law compander) As an example, let us determine
SNRq for the μ-law compander. To this end, evaluate the derivative of g(m) in (4.35) to get

dg(m)

dm
= ymax

ln(1+ μ)

μ(1/mmax)

1+ μ(|m|/mmax)
. (4.42)

Note that the derivative of g(m) is an even function. This is expected from the symmetry of
the μ-law compression characteristic. Now substituting (4.42) into (4.41) gives

Nq = y2
max

3L2

ln2(1+ μ)

y2
max (μ/mmax)

2

∫ mmax

−mmax

[
1+ μ

( |m|
mmax

)]2

fm(m)dm

= m2
max

3L2

ln2(1+ μ)

μ2

×
∫ mmax

−mmax

[
1+ 2μ

( |m|
mmax

)
+ μ2

( |m|
mmax

)2
]

fm(m)dm. (4.43)
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Then since
∫ mmax
−mmax

fm(m)dm = 1,
∫ mmax
−mmax

m2fm(m)dm = σ 2
m, and

∫ mmax
−mmax

|m|fm(m)dm =
E{|m|}, the quantization noise power can be rewritten as,

Nq = m2
max

3L2

ln2(1+ μ)

μ2

[
1+ 2μ

E{|m|}
mmax

+ μ2 σ 2
m

m2
max

]
. (4.44)

Finally, by noting that the average power of the message signal is σ 2
m, the SNRq of the

μ-law compander is given by

SNRq = σ 2
m

Nq
= 3L2μ2

ln2(1+ μ)

(σ 2
m/m2

max)

1+ 2μ(E{|m|}/mmax)+ μ2(σ 2
m/m2

max)
. (4.45)

To express SNRq as a function of the normalized power level σ 2
n = σ 2

m/m2
max, rewrite

the term E{|m|}/mmax in the denominator as

E{|m|}
σm

σm

mmax
= E{|m|}

σm
σn.

Therefore,

SNRq(σ 2
n ) = 3L2

ln2(1+ μ)

σ 2
n

1+ 2μσnE{|m|}/σm + μ2σ 2
n

. (4.46)

Equation (4.46) shows that the SNRq of the μ-law compander depends on the statis-
tics of the message through E{|m|}/σm. For example, for a message with Gaussian
density E{|m|}/σm = √2/π = 0.798, and E{|m|}/σm = 1/

√
2 = 0.707 for a Laplacian-

distributed message.
Furthermore, if μ � 1 then the dependence of SNRq on the message’s characteristics is

very small and SNRq can be approximated as

SNRq = 3L2

ln2(1+ μ)
. (4.47)

For practical values of μ = 255 and L = 256, one has SNRq = 38.1 decibels. �

To compare the μ-law quantizer with the uniform quantizer, Figure 4.14 plots the SNRq

of the μ-law quantizer and the uniform quantizer for the Gaussian-distributed message
over the same range of normalized input power. As can be seen from this figure, the μ-law
quantizer can maintain a fairly constant SNRq over a wide range of input power levels (it is
also true for different input pdfs). In contrast, the SNRq of the uniform quantizer decreases
linearly as the input power level drops. Note that at σ 2

m/m2
max = 0 decibels, the SNRqs for

the μ-law and uniform quantizers are 38.1 decibels and 52.9 decibels respectively. Thus
with the μ-law quantizer, one sacrifices performance for larger input power levels to obtain
a performance that remains robust over a wide range of input levels.

4.3.5 Differential quantizers

In the quantizers looked at thus far each signal sample is quantized independently of all
the others. However, most message signals (such as voice or video signals) sampled at the
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SNRq of an eight-bit quantizer with and without companding for the Gaussian-distributed message.

Nyquist rate or faster exhibit a high degree of correlation between successive samples. This
essentially means that the signal does not change rapidly from one sample to the next. This
redundancy can be exploited to obtain a better SNRq for a given number of levels, L, or
conversely for a specified SNRq the number of levels, L, can be reduced. The number of
bits, R, needed to represent L levels is R = log2 L. Reducing L means that the number of
bits needed to represent a sample is reduced and hence the bit rate is reduced. A lower bit
rate eventually implies that less bandwidth is needed by the communication system.

To motivate the discussion further two examples are considered: one is a toy example
which illustrates how redundancy helps in reducing bit rate, the other leads one into the
major topic of this section, differential quantizers. First let us consider, as a toy example, a
message source whose output is the random process m(t) = Ae−ctu(t), where A and c are
random variables with arbitrary pdfs. In any transmission the output of the message source
is a specific member of the ensemble, i.e., the signal m(t) = Ae−ctu(t), where A and c are
now specific, but unknown, values. One could, of course, sample this signal at a chosen rate
Ts, quantize these samples, and transmit the resultant sequence of samples. However, after
some thought one could equally just quantize two samples, say at t = 0 and t = t1 > 0,
and transmit the quantized values m(0) = A, m(t1) = Aect1 . At the receiver the two sample
values are used to determine the values of A and c, which are then used to reconstruct the
entire waveform.

Of course, the above is an extreme example of redundancy in the message waveform.
Indeed once one has the first two samples, then one can predict exactly the sample values
at all other sampling times. In the more practical case one does not have good analytical
expressions for how the waveform is generated to enable this perfect prediction. The typ-
ical information one has about the redundancy in the samples, as mentioned above, is the
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correlation between them. The approach, as shown in Figure 4.15 where m[n] is employed
instead of m(nTs) to refer to the sampled values, is to use the previous sample values to
predict the next sample value and then transmit the difference. Recall from (4.23) that
the quantization noise, σ 2

q , depends directly on the message range, i.e., mmax. The mes-
sage being quantized and transmitted now is the prediction error, e[n] = m[n]− m̃[n] =
m[n]− km[n]. Therefore if |emax| = |mmax − kmmax| = |1− k|mmax is less than mmax,
then the quantization noise power is reduced. Therefore the predictor should be such that
0 < k < 2, ideally k = 1, hopefully k ≈ 1. The approach just described is called differen-
tial quantization. The main design issue for this quantizer is how to predict the message
sample value. Ideally one would base the design on a criterion that minimizes emax but
this turns out to be intractable. Thus the predictor design is based on the minimization of
the error variance, σ 2

e . Further, a linear structure is imposed on the predictor since it is
straightforward to design, quite practical to realize, and performs well.

Linear predictor A linear predictor forecasts the current sample based on a weighted
sum of the previous p samples. It is called a pth-order linear predictor. As can be seen in
Figure 4.16, the predicted sample, m̃[n], is given by

m̃[n] =
p∑

i=1

wim[n− i]. (4.48)

Quantizer

Predictor

Sampled (PAM)
signal

–

+
Differentially

quantized signal

Prediction error

m[n]

m[n]

e[n] ê[n]
S

�Fig. 4.15 Illustration of a differential quantizer.
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w1 . . .

. . . Prediction

m[n]

z–1 z–1

w2 wp – 1 wp

Σ Σ Σ
�Fig. 4.16 Block diagram of a pth-order linear predictor.
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The blocks labeled with z−1 in Figure 4.16 signify unit-delay elements (z-transform
notation).

In general, the coefficients {wi} are selected to minimize some function of the error
between m[n] and m̃[n]. However, as mentioned it is the average power of the prediction
error that is of interest. The coefficient set {wi} is selected to minimize

σ 2
e = E{e2[n]} = E

⎧⎨⎩
(

m[n]−
p∑

i=1

wim[n− i]

)2
⎫⎬⎭

= E{m2[n]} − 2
p∑

i=1

wiE{m[n]m[n− i]}

+
p∑

i=1

p∑
j=1

wiwjE{m[n− i]m[n− j]}. (4.49)

Since the quantity E{m[n]m[n+ k]} is the autocorrelation function, Rm(k), of the sampled
signal sequence {m[n]}, (4.49) can be expressed as follows:

σ 2
e = Rm(0)− 2

p∑
i=1

wiRm(i)+
p∑

i=1

p∑
j=1

wiwjRm(i− j). (4.50)

Now take the partial derivative of σ 2
e with respect to each coefficient wi and set the

results to zero to yield a set of linear equations:

p∑
i=1

wiRm(i− j) = Rm(j), j = 1, 2, . . . , p. (4.51)

The above collection of equations can be arranged in matrix form as⎡⎢⎢⎢⎢⎢⎣
Rm(0) Rm(1) Rm(2) · · · Rm(p− − 1)

Rm(−1) Rm(0) Rm(1) · · · Rm(p− − 2)
Rm(−2) Rm(−1) Rm(0) · · · Rm(p− 3)

...
...

...
. . .

...
Rm(−p− + 1) Rm(−p− + 2) Rm(−p+ 3) · · · Rm(0)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
w1

w2

w3
...

wp

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
Rm(1)
Rm(2)
Rm(3)

...
Rm(p)

⎤⎥⎥⎥⎥⎥⎦ . (4.52)

This equation set is also known as the normal equations or the Yule–Walker equations.
The remaining design issue is the choice of p, the predictor’s order. In practice, for

voice signals it has been found that the greatest improvement happens when one goes from
no prediction to a first-order prediction, i.e., p = 1, but for other sources one should be
prepared to experiment.
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Reconstruct ion of m[n] from the differential samples Though at the receiver
one sees the quantized samples, ê[n], for discussion purposes we assume that the quan-
tization noise or error is negligible. The distortion introduced by the quantizer is ignored
and therefore we look at the reconstruction of m[n] from the differential samples e[n]. For
the pth-order linear predictor the differential sample e[n] is related to m[n], using (4.48), by

e[n] = m[n]−
p∑

i=1

wim[n− i]. (4.53)

Using the z-transform, the above relationship becomes

e(z−1) = m(z−1)−
p∑

i=1

wiz
−im(z−1)

= m(z−1)−m(z−1)
p∑

i=1

wiz
−i

= m(z−1)−m(z−1)H(z−1), (4.54)

where H(z−1) =∑p
i=1 wiz−i is the transfer function of the linear predictor.

Equation (4.54) states that e(z−1) = m(z−1)
[
1− H(z−1)

]
, or

m(z−1) = 1

1− H(z−1)
e(z−1). (4.55)

Recall from feedback control theory that the input–output relationship for negative feed-
back is G/(1+ GH), where G is the forward loop gain and H is the feedback loop
gain. Comparing this with (4.55) one concludes that G = 1 and H = −H(z−1). There-
fore m(z−1) is reconstructed by the block diagram of Figure 4.17. Note that even if one
has forgotten or has never learned feedback control theory one should be able to convince
oneself that the block diagram on the right in Figure 4.17 reconstructs m[n].

However, the input to the reconstruction filter is not e[n] but ê[n], which is equal to
e[n]+ q[n], where q[n] is the quantization noise or error. The difficulty this poses with
the proposed reconstruction filter is that not only does the noise in the present differential
sample affect the reconstructed signal but so do all the previous quantization noise sam-
ples, though with diminishing effect. In essence this is because the reconstruction filter has
infinite memory. To add to this effect one should also be aware that the channel will also
induce noise in e[n].

++
– +

m[n]

m[n]

m(z–1)

–H(z–1) H(z–1)

e(z–1) m(z–1) e[n]
Σ Σ

�Fig. 4.17 Reconstruction of m[n] from e[n].
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A solution that would eliminate this effect is quite desirable. Since engineers are sup-
posed to be, if anything, ingenious, this is precisely what is accomplished by the system
shown in Figure 4.18, known as differential pulse-code modulation (DPCM). The pulse-
code aspect is discussed in the next section but here we show that indeed m̂[n] is only
affected by the quantization noise, q[n]. The analysis shows that this is true regardless of
the predictor used, it can even be nonlinear, and the conclusion is also independent of the
form of the quantizer. This is truly ingenious.

Referring to Figure 4.18(a), the input signal to the quantizer is given by

e[n] = m[n]− m̃[n], (4.56)

which is the difference between the unquantized sample m[n] and its prediction, denoted
by m̃[n]. The predicted value can be obtained using a linear prediction filter, whose input
is m̂[n]. The output of the quantizer is then encoded to produce the DPCM signal. The
quantizer output can be expressed as

ê[n] = e[n]− q[n], (4.57)

where q[n] is the quantization error. According to Figure 4.18(a), the input to the predictor
can be written as follows:

m̂[n] = m̃[n]+ ê[n] = m̃[n]+ (e[n]− q[n])

= (m̃[n]+ e[n])− q[n] = m[n]− q[n]. (4.58)

Since q[n] is the quantization error, (4.58) implies that m̂[n] is just the quantized version
of the input sample m[n].

The receiver for a DPCM system is shown in Figure 4.18(b). In the absence of channel
noise, the output of the decoder is identical to the input of the encoder (at the transmitter),
which is ê[n]. If the predictor at the receiver is the same as the one in the transmitter,
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�Fig. 4.18 DPCM system using a differential quantizer: (a) transmitter and (b) receiver.
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then its output should be equal to m̃[n]. It follows that the final output of the receiver is
ê[n]+ m̃[n], which is equal to m̂[n]. Thus, according to (4.58), the output of the receiver
differs from the original input m[n] only by the quantization error q[n] incurred as a result
of quantizing the prediction error. Note that the quantization errors do not accumulate in
the receiver.

4.4 Pulse-code modulation (PCM)

The last block in Figure 4.7 to be discussed is the encoder. A PCM signal is obtained
from the quantized PAM signal by encoding each quantized sample to a digital code-
word. If the PAM signals are quantized using L target levels, then in binary PCM
each quantized sample is digitally encoded into an R-bit binary codeword, where R =
�log2 L� + 1. The quantizing and encoding operations are usually performed in the same
circuit known as an A/D converter. The advantage of having a PCM signal over a
quantized PAM signal is that the binary digits of a PCM signal can be transmitted
using many efficient modulation schemes compared to the transmission of a PAM sig-
nal. The topics of baseband and passband modulation of binary digits are covered in
Chapters 6 and 7.

There are several ways to establish a one-to-one correspondence between target levels
and the codeword. A convenient method, known as natural binary coding (NBC), is to
express the ordinal number of the target level as a binary number as described in Fig-
ure 4.19. Another popular mapping method is called Gray mapping. Gray mapping is
important in the demodulation of the signal because the most likely errors caused by noise
involve the erroneous selection of a target level that is adjacent to the transmitted tar-
get level. Still another mapping, called foldover binary coding (FBC), is also sometimes
encountered.
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011 010 001 000 100 101 110 111FBC:�Fig. 4.19 Encoding of quantized levels into PCM codewords, L = 8.
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4.5 Summary

The basic concepts behind converting analog information to digital have been presented in
this chapter. The first step in this process is to sample the continuous-time output of the
analog source. The sampling theorem shows that if the sampling rate is at least twice the
highest frequency present in the analog signal, then the original signal can be recovered
exactly.

However, not only does the time axis need to be discretized, the analog amplitude values
of the samples also must be quantized. Since this step is a many-to-one mapping, it inher-
ently produces a distortion or a loss. Various quantizers to minimize this distortion, with the
performance measure of the SNRq (signal power to quantization noise power ratio), have
been analyzed and discussed.

The final step, encoding, is to map quantized sample values to a set of discrete symbols,
typically a sequence of binary digits called variously a binary string, binary word, or simply
codeword. The codeword, however, is an abstract quantity, i.e., a nonphysical entity. To
transmit the information that a codeword represents one needs to map each codeword to
an electrical signal or waveform. As has been mentioned several times, this mapping is
called modulation and it, along with demodulation, is the subject of succeeding chapters.
To conclude we are finally in a position to discuss digital communications.

However, a few further closing remarks are in order. The quantization and encoding dis-
cussed in this chapter go under the general topic of source coding. But some sources, e.g.,
the keyboard, are already discrete in nature. The sampling/quantization steps are not nec-
essary for them and only the encoding step, that of converting the discrete source symbols
to a codeword, is required. Traditional source coding is concerned primarily with this step.
Some aspects of this are presented in the problems at the end of the chapter but the
interested reader is referred to the literature for a more comprehensive treatment.

4.6 Problems

4.1 Consider signal s(t) = 5 cos(1000π t)+ 2 cos(3600π t) (volts) which is ideally sam-
pled at a frequency of fs = 2000 hertz. The sampled signal is then passed through an
ideal LPF. What is the output signal if the filter’s bandwidth is (a) 1 kilohertz, and
(b) 2 kilohertz.

4.2 The sampling theorem states that a bandlimited signal, m(t), can be expressed as

m(t) = Ts

∞∑
n=−∞

m(nTs)
sin[2πW(t − nTs)]

π (t − nTs)
, (P4.1)
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where W is the bandwidth and 2Ts = 1/W. Show that{
sin[2πW(t − nTs)]

π (t − nTs)
, n = 0,±1,±2, . . .

}
is an orthonormal set.
Hint Use Parseval’s theorem which states that

∫∞
−∞ s1(t)s∗2(t)dt = ∫∞−∞ S1(f )

S∗2(f )df .
4.3 Consider a white Gaussian process, w(t), of spectral strength N0/2 (watts/hertz). A

discrete random process {wout(kTs)}, where k ∈ integer, is generated by passing w(t)
through an ideal LPF of bandwidth W hertz to obtain the signal wout(t) and sampling
wout(t) at the Nyquist sampling rate, Ts = 1/(2W).
(a) The output of the LPF is a correlated process. Determine the correlation function

of wout(t).
(b) Does the correlation function depend on the fact that w(t) is Gaussian? However,

when the input is Gaussian, is wout(t) then Gaussian? Why?
(c) Show that the sampled process {wout(kTs)} is a set of statistically indepen-

dent random variables. Is this true when the input is still white but no longer
Gaussian?

(d) If the ideal LPF is unchanged but the sampling rate is increased or decreased,
are the samples still statistically independent? Uncorrelated?

4.4 Common input voltage ranges for commercial A/D converters (i.e., quantizers) are
±1 volt, ±5 volts, ±10 volts. Take an A/D converter with a ±1 volt range and
compute the number of levels and the step size if it is (a) 8-bit, (b) 12-bit, and
(c) 16-bit.

The next set of problems principally deals with the optimum quantizer. Recall
that the equations to be solved for the target levels and thresholds of the optimum
quantizer are:

Dl = Tl−1 + Tl

2
, l = 2, . . . , L, (P4.2)

Tl =
∫ Dl+1

Dl
mfm(m)dm∫ Dl+1

Dl
fm(m)dm

, l = 1, . . . , L. (P4.3)

4.5 Consider a source, m(t), whose amplitude statistics are as follows:

fm(m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
4 , −1 ≤ m ≤ +1
1
12 , −4 ≤ m ≤ −1
1
12 , +1 ≤ m ≤ +4

0, otherwise

. (P4.4)

(a) Design an optimum three-bit quantizer.
(b) Determine the SNRq. Hint Try to solve the problem graphically and use (P4.2)

and (P4.3) to confirm your solution.
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�Fig. 4.20 Amplitude pdf considered in Problem 4.6.
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�Fig. 4.21 Amplitude pdf considered in Problem 4.7.

4.6 Consider a message with the amplitude pdf shown in Figure 4.20. Derive the set
of equations that the optimum two-bit quantizer should satisfy and solve them for
the threshold and target values. Hint Exploit the symmetry and assume one of the
thresholds to be greater than 0.25.

4.7 Consider a signal with the amplitude pdf shown in Figure 4.21. Determine the target
and decision levels and SNRq for the following quantizers:
(a) one-bit (L = 2 levels) uniform quantizer.
(b) one-bit optimum quantizer.
(c) Repeat (a) and (b) for a two-bit quantizer. Derive the equations to be solved

for the optimum target and decision levels and check the following answers:
T1 = 0.176, T2 = 0.588 (two positive target levels) and D1 = 0.382 (a positive
decision level).

(d) Repeat (a) for a three-bit quantizer. For the optimum quantizer simply derive the
set of equations to be solved.

Remark Use symmetry to reduce the number of equations.
4.8 Consider a message source that with confidence you feel is well modeled by a first-

order Laplacian density function, i.e., fm(m) = 1
2 ce−c|m|.

(a) Derive the general equation for the target level Tl for an optimum quantizer. For
simplicity let c = 1. However, once you obtain a solution for the thresholds and
target levels with c = 1, you should be able to obtain a solution for any c. How?
Also because of the symmetry of fm(m), you only need to determine the equation
for m > 0.

(b) Find the target levels, thresholds, and SNRq for a one-bit uniform quantizer.
(c) Find the target levels, thresholds, and SNRq for a one-bit optimum quantizer.
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(d) Repeat (b) and (c) for two-bit uniform and optimum quantizers. Note that, for
the optimum quantizer, all that need be determined are T3, D3 and T4 (see Figure
4.22). Obtain an equation for D3 and solve it.

T1

D2 = 0 D3D1

T2 T3 T4
m

�Fig. 4.22 Thresholds and target levels of the two-bit optimum quantizer considered in Problem 4.8.

4.9 For a very coarse quantization of one and two bits obtaining the solutions for
the target values and thresholds can be done explicitly. However, if L = 256 or
larger solving the set of coupled simultaneous nonlinear algebraic equations poses a
challenge. The following attempts to set up a recursive algorithm to obtain the solu-
tion. It is illustrated by the message model of Problem 4.8 and for L = 4. It is as
follows.
(i) Guess T3 and determine D3 so that it is the centroid of fm(m) over the interval 0

to D3.
(ii) Compute T4 using the optimum equation D3 = (T3 + T4)/2. Call this solution

T (∗)
4 .

(iii) Compute T4 to be the centroid of fm(m) over the interval D3 to infinity. Call this
solution T (∗∗)

4 .

(iv) Compare T(∗)
4 (obtained after the first iteration) and T (∗∗)

4 (obtained from the
centroid condition). There are three possibilities:
(a) T (∗)

4 = T (∗∗)
4 . In this case heave a sigh of relief, say eureka and pat yourself

on the back for either your tremendous insight or lucky guess. Why?
(b) T (∗)

4 < T (∗∗)
4 .

(c) T(∗)
4 > T (∗∗)

4 .
If (b) or (c) occurs you obviously have not been that lucky and will have to
try again. Develop some method of correcting the initial guess T3 and repeat
steps (ii)–(iv). Continue until you are comfortable that you have a good engi-
neering solution which means that you will have to come up with a stopping
criterion.
Remark An initial guess of D3 = 1.5 is suggested.

4.10 Generalize the recursive algorithm outlined in Problem 4.9 to any number of levels,
L. Write a Matlab program that implements it for the message model of Problem 4.8
and L = 256.

4.11 Usually the number of levels, L, in a quantizer is quite large, which implies that � =
2mmax/L is “small.” Thus you feel justified in approximating fm(m) by a stepwise
approximation which graphically looks as in Figure 4.23. Based on f (a)

m (m) what is
the optimum quantizer?

4.12 Since a uniform quantizer is optimum for a message that has a uniform amplitude
pdf and since commercial A/D converters use uniform quantizers, as a hotshot newly
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�Fig. 4.23 Stepwise approximation of fm(m) considered in Problem 4.11.
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0

m(t) mout(t)
g(m) mroot
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�Fig. 4.24 Nonlinearity considered in Problem 4.12.

graduated engineer you propose the following: pass the message m(t) through a
nonlinearity, g(m), which produces a signal mout(t) that is uniform over the inter-
val [0, 1]. Since you eventually wish to recover m(t) the nonlinearity of necessity
must be invertible, i.e., monotonically increasing. In block diagram form, it looks as
in Figure 4.24.

From probability theory you know that

fmout (mout) =
fm(m)

∣∣
m=mroot

|dg(m)/dm|m=mroot

. (P4.5)

If fmout (mout) is to be uniform over the interval [0, 1] what must be the RHS of this
equation over this interval? From this observation conclude what the form of the
nonlinearity g(·) is. However, it is usually desired to have a uniform density over
the interval [−1, 1]. To conclude the design, how should mout(t) be processed to
achieve this.

Excited by the above you present the idea and design to your supervisor. She,
however, refuses to okay the project. Why?
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4.13 (Crest factor) A signal parameter of interest in designing a quantizer is the crest
factor F, defined as

F = peak value of the signal

RMS value of the signal
. (P4.6)

Determine the crest factors for the following signals:
(a) A sinusoid with peak amplitude of mmax.
(b) A square wave of period T and amplitude range [−mmax, mmax].
The above are deterministic signals and most of you are quite familiar with their
crest factors. Now consider random signals with the following pdfs and determine
their crest factors.
(c) Uniform over the amplitude range [−mmax, mmax].
(d) Zero-mean Gaussian:

fm(m) = 1√
2πσ 2

m

exp

(
− m2

2σ 2
m

)
.

(e) Zero-mean Laplacian:

fm(m) = c

2
exp(−c|m|).

(f) Zero-mean Gamma:

fm(m) =
√

k

4π |m|exp(−k|m|)

The Gamma pdf is sometimes used to model the voice signal. The following
should be of use:

∫∞
0 xv−1e−λxdx = �(v)/λv, where �(v) is the Gamma function

with the property �(v) = (v− 1)�(v− 1) and �(1/2) = √π .
Remark For (d), (e), and (f), the peak value appears to be infinity. Thus take an
“engineering approach” and define the peak value mmax such that the probability that
the signal amplitude falls into [−mmax, mmax] is 99%. Furthermore, evaluation of
mmax for (d) and (f) involves the error function, defined as

erf(x) = 2√
π

∫ x

0
e−t2 dt. (P4.7)

The error function is available in Matlab under the name erf.
4.14 The SNRq for a compander involves the following signal parameter:

average value of the absolute value of the signal

RMS value of the signal
= E{|m|}

σm
. (P4.8)

Determine the values of this parameter for the signals of Problem 4.13.
4.15 Determine and on a single graph plot SNRq(σ 2

n ) for the μ-law compander with
L = 256 and μ = 255. Assume the following models for the message statistics: (a)
Gaussian, (b) Laplacian, and (c) Gamma.
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Remark Let σ 2
n range from −100 decibels to 0 decibels. Also note that

E

{ |m|
mmax

}
= E

{
σm|m|

σmmmax

}
= σm

mmax
E

{ |m|
σm

}
=
√

σ 2
n E

{ |m|
σm

}
. (P4.9)

4.16 Derive SNRq for the A-law compander. As compared with the μ-law compander how
dependent is the A-law compander on the assumed signal model?

4.17 Intuitively one may feel that the output of the compressor block of a compander,
since it is quantized with a uniform quantizer, has a pdf that is uniform or close
to it. How true this intuition is, is explored in this problem. Let the input to the
compressor be Gaussian, zero-mean, unit variance. Determine and plot the pdf of the
output where the compressor is μ-law with μ = 255. Draw conclusions.

4.18 Consider the following proposed S-law compressor (S stands for student):

y(x) = (1+ S)
|x|

1+ S|x| sgn(x), |x| < 1. (P4.10)
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�Fig. 4.25 Characteristics of the S-law compressor.

Figure 4.25 plots, as examples, the characteristics of the above compressor for
S = 10, 50, 100. Derive SNRq(σ 2

n ) for it and plot for a Gaussian input. Choose S to
be 10 and 100.

The next set of problems is on the topic of differential quantization.
4.19 Given an R-bit quantizer (i.e., the number of target levels is L = 2R), how many

mappings are there from the target levels to the R-bit sequences?
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4.20 For the mappings presented in the chapter, what is SNRq when the channel is such
that only one bit in the R-bit sequence is in error and that with probability P[error].
Since P[error] is typically 10−4 or smaller, how much do the channel errors affect
SNRq?

4.21 (Delta modulation) Assume that the sampling period is normalized to be Ts = 1
second and the amplitude of the signal m(kTs) is zero mean and uniformly distributed
in (−Vmax, Vmax) (first-order statistics). Also the correlation function (second-order
statistics) is given by

Rm (τ ) = e−|τ |/100.

(a) Assume that the number of quantization levels is 256. Calculate the mean-square
quantization error for an optimum quantizer designed for m(kTs).

(b) Consider the differential quantization system and assume that a first-order linear
predictor has been used as illustrated in Figure 4.26. Choose the coefficient of
the linear predictor under the minimum mean-square error (MMSE) criterion.

m(kTs) y(kTs)

m'(kTs)

Quantizer

Delay Ts

+

–
Σ

α

�Fig. 4.26 Differential quantization with a first-order linear predictor.

(c) In (b), since y(kTs) = m(kTs)− αm((k − 1)Ts), in general the amplitude of
y(kTs) is no longer uniformly distributed. However, this signal can be approxi-
mated by another signal y′(kTs). The amplitude distribution of y′(kTs) is uniform
and has the same mean and variance as y(kTs). Find the pdf of the amplitude of
y′(kTs). Suppose an optimum quantizer with 256 quantization levels is designed
based on y′(kTs), calculate the mean-square quantization error and compare with
the result in (a).

4.22 (PCM representation) Your USB drive has a capacity of 109 bytes (1 gigabyte). You
wish to store a digital representation of an information source on the drive. Using a
straightforward PCM representation, determine the maximum recording duration for
each of the following sources:
(a) 4 kilohertz speech signal, with eight bits per sample.
(b) 22 kilohertz stereo audio signal, with 16 bits per sample in each stereo channel.
(c) 5 megahertz video signal, with 12 bits per sample, and combined with the audio

signal in (b).
(d) Digital surveillance video signal, with 1024× 768 pixels per frame, eight bits

per pixel, and one frame per second.
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4.23 (A different definition for SNRq) For an analog signal with peak magnitude mmax, let
us define the peak signal-to-quantization noise ratio as

PSNRq = 20log10

(
mmax

qmax

)
, (P4.11)

where qmax = max{|m− m̂|} is the peak magnitude of the quantization noise.
Assuming an R-bit uniform quantizer, what is the smallest value of R that ensures
the PSNRq is at least D decibels?



5 Optimum receiver for binary data transmission

In Chapter 4 it was shown how continuous waveforms are transformed into binary digits
(or bits) via the processes of sampling, quantization, and encoding (commonly referred
to as pulse-code modulation, or PCM). However, it should be pointed out that bits are
just abstractions: there is nothing physical about bits. Thus, for the transmission of the
information, we need something physical to represent or “carry” the bits.

Here, we represent the binary digit bk (0 or 1) by one of two electrical waveforms s1(t)
and s2(t). Such a representation is the function of the modulator as shown in Figure 5.1.
These waveforms are transmitted through the channel and perturbed by the noise. At the
receiving side, the receiver needs to make a decision, b̂k, on the transmitted bit based on
the received signal r(t).

In this chapter we study the optimum receiver for a binary digital communication system
as illustrated in Figure 5.1. The performance of the receiver will be measured in terms of
error probability. A channel model of infinite bandwidth with AWGN is assumed. Though
somewhat idealized, this channel model does provide us with a starting point to develop
the approaches necessary to design and analyze receivers. Besides, many communication
channels such as satellite and deep space communications are well represented by this
model.

Other assumptions and the notation which pertain to the discussion of the communica-
tion system in Figure 5.1 are as follows.

• The bit duration of bk is Tb seconds, or the bit rate is rb = 1/Tb (bits/second).
• Bits in two different time slots are statistically independent.
• The a priori probabilities (i.e., before we observe the received signal r(t)) of bk are as

follows:

P[bk = 0] = P1, (5.1)

P[bk = 1] = P2, (5.2)

where P1 + P2 = 1. Most often, we will assume that the bits are equally likely, i.e.,
P1 = P2 = 1/2.
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m̂(t)

m(t) {bk}
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Modulator
(transmitter)

Channel

Demodulator
(receiver)
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w(t)

r(t){bk}ˆ

bk = 0 « s1(t)

bk = 1 « s2(t)

�Fig. 5.1 Block diagram of a binary digital communication system.

• The bit bk is mapped by the modulator into one of the two signals s1(t) and s2(t). Each
signal is of duration Tb seconds and has a finite energy:

E1 =
∫ Tb

0
s2

1(t)dt (joules), E1 < ∞, (5.3)

E2 =
∫ Tb

0
s2

2(t)dt (joules), E2 < ∞. (5.4)

For now we shall consider the signal waveforms to be arbitrary, but known to the
receiver. Later, in Chapters 6 and 7, by employing certain waveforms for s1(t) and s2(t),
many popular baseband/passband modulation schemes are analyzed.

• The channel is sufficently wideband that the signals s1(t) and s2(t) pass through without
any distortion. Essentially, this means that there is no intersymbol interference (ISI)
between successive bits.

• The noise w(t) is stationary Gaussian, zero-mean, white noise with a two-sided PSD of
N0/2 (watts/hertz). That it is Gaussian means that the pdf of the noise amplitude at any
time instant t is Gaussian. Also if the noise is passed through any linear operation (or
filter) the output will be Gaussian. That the noise is white means that

E{w(t)} = 0, E{w(t)w(t + τ )} = N0

2
δ(τ ). (5.5)

Given the above, the received signal over the time interval [(k − 1)Tb, kTb], i.e., the
interval in which we send the bit bk, can be written as

r(t) = si(t − (k − 1)Tb)+ w(t), (k − 1)Tb ≤ t ≤ kTb. (5.6)

The objective is to design a receiver (or demodulator) such that by observing the signal r(t),
the probability of making an error is minimized. The development proceeds by reducing
the problem from the observation of a time waveform to that of observing a set of numbers
(which are random variables).1

The approach is basically to represent the signal s1(t), s2(t) and the noise w(t) by a
specifically chosen series. The coefficients of this series then constitute the set of numbers
on which our decision is based. This approach leads to a geometrical interpretation which
readily lends insight and interpretation to the relationship between the signal energy, the
distance between signals, and the error probability.

1 A common name for this set is sufficient statistics, another is observables.
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5.1 Geometric representation of signals s1(t) and s2(t)

Consider two arbitrary signals s1(t) and s2(t). We wish to represent them as linear combi-
nations of two orthonormal basis functions φ1(t) and φ2(t). Recall that two functions φ1(t)
and φ2(t) are said to be orthonormal if the following two conditions are satisfied:

∫ Tb

0
φ1(t)φ2(t)dt = 0 (orthogonality), (5.7)∫ Tb

0
φ2

1(t)dt =
∫ Tb

0
φ2

2(t)dt = 1 (normalized to have unit energy). (5.8)

The signals s1(t) and s2(t) should have the following expansions in terms of φ1(t) and φ2(t):

s1(t) = s11φ1(t)+ s12φ2(t), (5.9)

s2(t) = s21φ1(t)+ s22φ2(t). (5.10)

By direct substitution and integral evaluation, it is simple to verify that if one can represent
s1(t) and s2(t) as in (5.9) and (5.10), then the coefficients sij, i, j ∈ {1, 2} must be given as
follows:

sij =
∫ Tb

0
si(t)φj(t)dt, i, j ∈ {1, 2}, (5.11)

where we can view the mathematical operation
∫ Tb

0 si(t)φj(t)dt as the projection of signal
si(t) onto the jth axis, φj(t). Equations (5.9) and (5.10) can be geometrically interpreted as
shown in Figure 5.2.

The question now is how do we choose the time functions φ1(t) and φ2(t), so that (5.7)
is satisfied and also so that s1(t) and s2(t) can be exactly represented by them. More fun-
damentally, we could ask if such a choice is possible. If possible, is the choice unique?

s1(t)

s2(t)

s21
φ1(t)

φ2(t)

s11

s22

s12

0�Fig. 5.2 Projection of s1(t) and s2(t) onto φ1(t) and φ2(t).
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As we shall see in the following, the choice is possible, indeed there are many possible
choices!

The most straightforward way to find φ1(t) and φ2(t) is as follows:

(i) Let φ1(t) ≡ s1(t)/
√

E1. This means that the first orthonormal function is chosen to be
identical in shape to the first signal, but is normalized by the the square root of the
signal energy. Note that from (5.9), one has s11 = √E1 and s12 = 0.

(ii) To find φ2(t), we first project s
′
2(t) = s2(t)/

√
E2 onto φ1(t) and call this quantity ρ,

the correlation coefficient:

ρ =
∫ Tb

0

s2(t)√
E2

φ1(t)dt = 1√
E1E2

∫ Tb

0
s1(t)s2(t)dt. (5.12)

(iii) Now subtract the projection ρφ1(t) from s
′
2(t) = s2(t)/

√
E2 to obtain

φ
′
2(t) = s2(t)√

E2
− ρφ1(t). (5.13)

Intuitively we would expect φ
′
2(t) to be orthogonal to φ1(t). To verify that this is true,

consider ∫ Tb

0
φ
′
2(t)φ1(t)dt =

∫ Tb

0

s2(t)√
E2

φ1(t)dt − ρ

∫ Tb

0
φ2

1(t)dt

= ρ − ρ = 0. (5.14)

(iv) The only thing left to do is to normalize φ
′
2(t) to make sure that φ2(t) has unit energy

(see Problem 5.1):

φ2(t) = φ
′
2(t)√∫ Tb

0

[
φ
′
2(t)
]2

dt
= φ

′
2(t)√

1− ρ2

= 1√
1− ρ2

[
s2(t)√

E2
− ρs1(t)√

E1

]
. (5.15)

To summarize, the two orthonormal functions are given by,

φ1(t) = s1(t)√
E1

, (5.16)

φ2(t) = 1√
1− ρ2

[
s2(t)√

E2
− ρs1(t)√

E1

]
. (5.17)

Furthermore, the coefficients s21 and s22 can be determined as follows:

s21 =
∫ Tb

0
s2(t)φ1(t)dt = ρ

√
E2, (5.18)

s22 =
∫ Tb

0
s2(t)φ2(t)dt =

∫ Tb

0
s2(t)

1√
1− ρ2

[
s2(t)√

E2
− ρs1(t)√

E1

]
dt

= 1√
1− ρ2

(√
E2 − ρ2

√
E2

)
=
(√

1− ρ2

)√
E2. (5.19)
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α

�Fig. 5.3 Obtaining φ1(t) and φ2(t) from s1(t) and s2(t).

Geometrically, the above procedure is illustrated in Figure 5.3.
To carry the geometric ideas further, define the distance between the signals s2(t) and

s1(t) as

d21 =
√∫ Tb

0
[s2(t)− s1(t)]2dt. (5.20)

From the geometry of the signal representation we see that

d2
21 = s2

22 +
(√

E1 − s21

)2

=
(

1− ρ2
)

E2 +
(

E1 − 2ρ
√

E1E2 + ρ2E2

)
= E1 − 2ρ

√
E1E2 + E2. (5.21)

It can be verified (try it yourself) that evaluating (5.20) yields the same result of (5.21) for
the distance d21.

An important geometric interpretation follows from Figure 5.3. The distance of either
signal point to the origin is the square root of the energy of that signal. For example, in

the case of s2(t), the distance is
√

s2
21 + s2

22, which from (5.18), (5.19) is
√

E2. The general
statement is that if a signal is expressed as a linear combination of orthonormal functions,
then the distance of the signal from the origin is always equal to the square root of its
energy.

The above procedure has shown that two arbitrary deterministic waveforms can be rep-
resented exactly by at most two properly chosen orthonormal functions. This procedure
can be generalized to a set with an arbitrary number of finite-energy signals (which are
not necessarily limited to [0, Tb] as in the case of two signals just considered) and it is
known as the Gram–Schmidt orthogonalization procedure. The Gram–Schmidt procedure
is outlined below for the set of M waveforms.
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Gram–Schmidt procedure Suppose that we have a set of M finite-energy waveforms
{si(t), i = 1, 2, . . . , M} and we wish to construct a set of orthonormal waveforms that
can represent {si(t), i = 1, 2, . . . , M} exactly. The first orthonormal function is simply
constructed as

φ1(t) = s1(t)√∫∞
−∞ s2

1(t)dt
. (5.22)

The subsequent orthonormal functions are found as follows:

φi(t) = φ
′
i (t)√∫∞

−∞
[
φ
′
i (t)
]2

dt
, i = 2, 3, . . . , N, (5.23)

where

φ
′
i (t) =

si(t)√
Ei
−

i−1∑
j=1

ρijφj(t), (5.24)

ρij =
∫ ∞

−∞
si(t)√

Ei
φj(t)dt, j = 1, 2, . . . , i− 1. (5.25)

In general, the number of orthonormal functions, N, is less than or equal to the number of
given waveforms, M, depending on one of the two possibilities:

(i) If the waveforms {si(t), i = 1, 2, . . . , M} form a linearly independent set, then N = M.
(ii) If the waveforms {si(t), i = 1, 2, . . . , M} are not linearly independent, then N < M.

To illustrate the Gram–Schmidt procedure, let us consider a few examples.

Example 5.1 Consider the signal set shown in Figure 5.4(a). This signal set is in a sense
a degenerate case since only one basis function φ1(t) is needed to represent it. The signal
energies are given by

E1 =
∫ Tb

0
s2

1(t)dt = V2Tb = E2 ≡ E (joules). (5.26)

The first orthonormal function is given by

φ1(t) = s1(t)√
E
= s1(t)√

V2Tb

. (5.27)

The correlation coefficient, ρ, is ρ =
∫ Tb

0
(s2(t)s1(t)/E) dt = −1, reflecting the fact that

s2(t) = −s1(t). Therefore the unnormalized basis function φ
′
2(t) is

φ
′
2(t) = s2(t)√

E
− ρφ1(t) = s2(t)+ s1(t)√

E
= 0. (5.28)
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�Fig. 5.4 (a) Signal set for Example 5.1, (b) orthonormal function, (c) signal space representation.

The basis function φ1(t) is plotted in Figure 5.4(b). In terms of φ1(t) the two signals can be
expressed as

s1(t) = √Eφ1(t), (5.29)

s2(t) = −√Eφ1(t). (5.30)

The geometrical representation of the two signals s1(t) and s2(t) is presented in Figure
5.4(c). Note that the distance between the two signals is d21 = 2

√
E. �

Example 5.2 The signal set considered in this example is given in Figure 5.5(a). Again
this is a special case because the two signals are orthogonal. The energy in each signal is
equal to V2Tb ≡ E (joules). The first orthonormal basis function is

φ1(t) = s1(t)√
E

. (5.31)

The correlation coefficient, ρ, is

ρ =
∫ Tb

0

s1(t)s2(t)

E
dt = 0, (5.32)

which shows that the two signals are orthogonal. Therefore φ
′
2(t) = s2(t)/

√
E = φ2(t).

Thus the signals s1(t) and s2(t) are expressed as

s1(t) = √Eφ1(t), (5.33)

s2(t) = √Eφ2(t). (5.34)
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�Fig. 5.5 (a) Signal set for Example 5.2, (b) orthonormal functions.
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�Fig. 5.6 Signal space representation for Example 5.2.

Graphically, the orthonormal basis functions φ1(t) and φ2(t) look as in Figure 5.5(b) and
the signal space is plotted in Figure 5.6. The distance between the two signals can be easily
computed as follows:

d21 =
√

E + E = √2E = √2
√

E. (5.35)

�

In comparing Examples 5.1 and 5.2 we observe that the energy per bit at the transmitter
or sending end is the same in each example. The signals in Example 5.2, however, are closer
together and therefore at the receiving end, in the presence of noise, we would expect more
difficulty in distinguishing which signal was sent. We shall see presently that this is the
case and quantitatively express this increased difficulty.

Example 5.3 This is a generalization of Examples 5.1 and 5.2. It is included princi-
pally to illustrate the geometrical representation of two signals. The signal set is shown
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in Figure 5.7, where each signal has energy equal to E = V2Tb. The first basis function is
φ1(t) = s1(t)/

√
E. The correlation coefficient ρ depends on parameter α and is given by

ρ = 1

E

∫ Tb

0
s2(t)s1(t)dt = 1

V2Tb

[
V2α − V2(Tb − α)

]
= 2α

Tb
− 1. (5.36)

As a check, for α = 0, ρ = −1 and for α = 1
2 Tb, ρ = 0, as expected. The second basis

function is

φ2(t) = 1√
E(1− ρ2)

[s2(t)− ρs1(t)]. (5.37)

To obtain the geometrical picture, consider the case when α = 1
4 Tb. For this value of α

one has ρ = − 1
2 . As before φ1(t) = s1(t)/

√
E, whereas the second orthonormal function

is given by

φ2(t) = 2√
3V
√

Tb

[
s2(t)+ 1

2
s1(t)

]
. (5.38)

The two orthonormal basis functions are plotted in Figure 5.8. The geometrical representa-
tion of s1(t) and s2(t) is given in Figure 5.9. Note that the coefficients for the representation

of s2(t) are s21 = − 1
2

√
E and s22 =

√
3

2

√
E. Since s2

21 + s2
22 = E, the signal s2(t) is at a dis-

tance of
√

E from the origin. In general as α varies from 0 to Tb, the function φ2(t) changes.
However, for each specific φ2(t) the signal s2(t) is always at distance

√
E from the origin.

The locus of s2(t) is also plotted in Figure 5.9. Note that as α increases, ρ increases and
the distance between the two signals decreases. �
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�Fig. 5.7 Signal set for Example 5.3.
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�Fig. 5.8 Orthonormal functions for Example 5.3.
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�Fig. 5.9 Signal space representation for the signal set in Example 5.3.
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�Fig. 5.10 (a) Signal set for Example 5.4, (b) orthonormal functions.

Example 5.4 Consider the signal set shown in Figure 5.10(a). Again the energy in each
signal is E = V2Tb joules. We have the following:

φ1(t) = s1(t)√
E

, (5.39)

ρ = 1

E

∫ Tb

0
s2(t)s1(t)dt = 2

E

∫ Tb/2

0

(
2
√

3

Tb
Vt

)
Vdt =

√
3

2
, (5.40)

φ2(t) = 1

(1− 3
4 )

1
2

[
s2(t)√

E
− ρ

s1(t)√
E

]
= 2√

E

[
s2(t)−

√
3

2
s1(t)

]
, (5.41)
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�Fig. 5.11 Signal space representation for signal set in Example 5.4.

s21 =
√

3

2

√
E, s22 = 1

2

√
E. (5.42)

The distance between the two signals is

d21 =
[∫ Tb

0
[s2(t)− s1(t)]2dt

] 1
2

=
⎧⎨⎩
[√

E

(
1−

√
3

2

)]2

+
(√

E

2

)2
⎫⎬⎭

1
2

= E
(

2−√3
) 1

2 =
√(

2−√3
)

E. (5.43)

The orthonormal functions are plotted in Figure 5.10(b), whereas the signal space
representation is illustrated in Figure 5.11. �

Example 5.5 As a final example to illustrate the Gram–Schmidt procedure, consider two
sinusoidal signals of the same frequency but different phase:

s1(t) = √E

√
2

Tb
cos(2π fct), (5.44)

s2(t) = √E

√
2

Tb
cos(2π fct + θ ). (5.45)

Choose fc = k/2Tb, k an integer. This choice means that cos(2π fct) and sin(2π fct) are
orthogonal over a duration of Tb seconds. The energy in each signal is

E1 = E
∫ Tb

0

2

Tb
cos2(2π fct)dt = E, (5.46)

E2 = E
∫ Tb

0

2

Tb
cos2(2π fct + θ )dt = E. (5.47)

The first orthonormal function is

φ1(t) = s1(t)√
E
=
√

2

Tb
cos(2π fct). (5.48)
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�Fig. 5.12 Signal space representation for signal set in Example 5.5.

Now, using the basic trigonometric identity cos(x+ y) = cos x cos y− sin x sin y, write
s2(t) as

s2(t) =
(√

E cos θ
)[√ 2

Tb
cos(2π fct)

]
+
(
−√E sin θ

)[√ 2

Tb
sin(2π fct)

]
. (5.49)

Since we have said that sin(2π fct) is orthogonal to cos(2π fct) (you might want to show this
for yourself) over the interval (0, Tb), our second basis function is chosen to be

φ2(t) =
√

2

Tb
sin(2π fct). (5.50)

Because s2(t) = s21φ1(t)+ s22φ2(t), by inspection we have

s21 =
√

E cos θ , s22 = −
√

E sin θ . (5.51)

Finally, the signal space plot looks as shown in Figure 5.12. �

5.2 Representation of the noise

As seen in the previous section, the signal set {s1(t), s2(t)} used to transmit the binary data
needs at most only two orthonormal functions to be represented exactly. In contrast, to
represent the random noise signal, w(t), in the time interval [(k − 1)Tb, kTb] (the interval
of bit bk) we need to use a complete orthonormal set of known deterministic functions. The
series representation of the noise is given by
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w(t) =
∞∑

i=1

wiφi(t), (5.52)

where the coefficients wi are given as follows:

wi =
∫ Tb

0
w(t)φi(t)dt. (5.53)

Again the coefficient wi can be viewed as the projection of the noise process onto the φi(t)
axis. Note also that the above representation can be used for any random signal.

The coefficients wi are random variables and understanding their statistical properties is
imperative in developing the optimum receiver. When the noise process w(t) is zero-mean
and white, one has the following important properties of these coefficients.2

(i) The average (also known as the mean, or DC, or expected) value of wi is zero. This is
because w(t) is a zero-mean random process. Mathematically,

E{wi} = E

{∫ Tb

0
w(t)φi(t)dt

}
=
∫ Tb

0
E{w(t)}φi(t)dt = 0. (5.54)

(ii) The correlation between wi and wj is given by

E
{
wiwj

} = E
{ ∫ Tb

0
dλw(λ)φi(λ)

∫ Tb

0
dτw(τ )φj(τ )

}
=
∫ Tb

0
φi(λ)

[∫ Tb

0
φj(τ )E{w(λ)w(τ )}dτ

]
dλ.

(5.55)

But w(t) is white noise, therefore E{w(λ)w(τ )} = (N0/2)δ(λ− τ ). Equation (5.55) can
now be written as

E{wiwj} =
∫ Tb

0
φi(λ)

[∫ Tb

0
φj(τ )

N0

2
δ(λ− τ )dτ

]
dλ

= N0

2

∫ Tb

0
φi(λ)φj(λ)dλ

=
{

N0
2 , i = j

0, i 	= j
. (5.56)

The above result means that wi and wj are uncorrelated if i 	= j.

2 It is important to stress the simple fact that if the noise w(t) is zero-mean and white, it is not necessarily
Gaussian.
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In summary, the coefficients {w1, w2, . . .} are zero-mean and uncorrelated random
variables.

Now, if the noise process w(t) is not only zero-mean and white, but also Gaussian, then
each wi is a Gaussian random variable. This is because wi is obtained by passing the Gaus-
sian process w(t) through a linear transformation (system). Because the random variables
{w1, w2, . . .} are Gaussian and uncorrelated, we deduce the important property that they
are statistically independent. Furthermore, we note that the above properties do not depend
on the set {φi(t), i = 1, 2, . . .} chosen, i.e., on the orthonormal basis functions. The set of
orthonormal basis functions that we shall choose will have as the first two functions the
functions φ1(t) and φ2(t) used to represent the two signals s1(t) and s2(t) exactly. The
remaining functions, i.e., φ3(t), φ4(t), . . . , are chosen simply to complete the set. However,
as will be seen shortly, in practice, we do not need to find these functions.

5.3 Optimum receiver

In any bit interval we receive the noise-corrupted signal. Let us concentrate, without any
loss of generality, on the first bit interval. The received signal is

r(t) = si(t)+ w(t), 0 ≤ t ≤ Tb

=
{

s1(t)+ w(t), if a “0" is transmitted
s2(t)+ w(t), if a “1" is transmitted

. (5.57)

Besides r(t), the following are known to us. We know exactly when the time interval begins,
i.e., the receiver is synchronized with the transmitter. The receiver knows precisely the two
signals s1(t) and s2(t). Finally the a priori probability of a 0 or 1 being transmitted is also
known.

To obtain the optimum receiver, we first expand r(t) into a series using the orthonormal
functions {φ1(t), φ2(t), φ3(t), . . .}. As mentioned before, the first two functions are chosen
so that they represent the signals s1(t) and s2(t) exactly (in effect the signals s1(t) and
s2(t) determine them, for example, by applying the Gram–Schmidt procedure). The rest
are chosen to complete the orthonormal set. Over the time interval [0, Tb] the signal r(t)
can therefore be expressed as

r(t) = si(t)+ w(t), 0 ≤ t ≤ Tb

= [si1φ1(t)+ si2φ2(t)]︸ ︷︷ ︸
si(t)

+ [w1φ1(t)+ w2φ2(t)+ w3φ3(t)+ w4φ4(t)+ · · · ]︸ ︷︷ ︸
w(t)

= (si1 + w1)φ1(t)+ (si2 + w2)φ2(t)+ w3φ3(t)+ w4φ4(t)+ · · ·
= r1φ1(t)+ r2φ2(t)+ r3φ3(t)+ r4φ4(t)+ · · · , (5.58)
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where rj =
∫ Tb

0
r(t)φj(t)dt, and

r1 = si1 + w1,

r2 = si2 + w2,

r3 = w3, (5.59)

r4 = w4,

...

It is important to note that rj, for j = 3, 4, 5, . . ., does not depend on which signal (s1(t) or
s2(t)) was transmitted.

The decision as to which signal has been transmitted can now be based on the observa-
tions3 r1, r2, r3, r4, . . .. Before proceeding we need a criterion which the decision should
optimize. The criterion that we choose is the perfectly natural one, namely to minimize the
bit error probability.

To derive the receiver that minimizes the error probability, consider the set of observa-
tions �r = {r1, r2, r3, . . .}. If we consider only the first n terms in the set, then they form an
n-dimensional observation space which we have to partition into decision regions in order
to minimize the error probability. This is illustrated in Figure 5.13.

The probability of making an error can be expressed as

P[error] =P[(“0" decided and “1" transmitted) or

(“1" decided and “0" transmitted)]. (5.60)

ℜ1

ℜ1

ℜ2

Observation space ℜ

Decide a "0" was transmitted

if r falls in this region.

Decide a "1" was transmitted

if r falls in this region.

�Fig. 5.13 Observation space and decision regions.

3 Though, in general, the coefficients of the expansion in (5.58) are random quantities, in the discussion that
follows we take the viewpoint that the experiment, i.e., the transmission and reception of the signal, has been
conducted and that we are observing its outcome. Namely, the set of projections, of the received signal onto the
basis functions. Therefore the observations are treated as being a specific set of values.
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Using obvious notation and the fact that the two events that constitute the error event are
mutually exclusive, the above can be written as

P[error] = P[0D, 1T ]+ P[1D, 0T ]

= P[0D|1T ]P[1T ]+ P[1D|0T ]P[0T ], (5.61)

where the second equality follows from Bayes’ rule. Consider now the quantity P[0D|1T ].
A zero is chosen when the observation �r falls into region  1. Therefore the probability that
a “0" is chosen given that a “1" was transmitted is the same as the probability that �r falls
in region  1 when a “1" is transmitted. But this latter probability is given by the volume
under the conditional density4 f (�r|1T ) in region  1, i.e.,

P[0D|1T ] =
∫
 1

f (�r|1T )d�r (5.62)

(note that the above is a multiple integral). Since P[0T ] = P1 and P[1T ] = P2, one has

P[error] = P2

∫
 1

f (�r|1T )d�r + P1

∫
 2

f (�r|0T )d�r

= P2

∫
 − 2

f (�r|1T )d�r + P1

∫
 2

f (�r|0T )d�r

= P2

∫
 

f (�r|1T )d�r +
∫
 2

[P1f (�r|0T )− P2f (�r|1T )]d�r

= P2 +
∫
 2

[
P1f (�r|0T )− P2f (�r|1T )

]
d�r. (5.63)

The error, of course, depends on how the observation space is partitioned. Looking at
the above expression for the error probability, we observe that if each �r that makes the
integrand [P1f (�r|0T )− P2f (�r|1T )] negative is assigned to  2, then the error probability is
minimized. Note also that, for an observation �r that gives [P1f (�r|0T )− P2f (�r|1T )] = 0, it
does not matter whether �r is put into  1 or into  2, i.e., the receiver can arbitrarily decide
“1” or “0.” Thus the minimum error probability decision rule can be expressed as{

P1f (�r|0T )− P2f (�r|1T ) ≥ 0 ⇒ decide “0" (0D)
P1f (�r|0T )− P2f (�r|1T ) < 0 ⇒ decide “1" (1D)

. (5.64)

Equivalently,

f (�r|1T )
f (�r|0T )

1D

�
0D

P1
P2

. (5.65)

The expression f (�r|1T )/f (�r|0T ) is commonly called the likelihood ratio. The receiver
consists of computing this ratio and comparing the result to a threshold determined by the
a priori probabilities. Furthermore, observe that the decision rule in (5.65) was derived
without specifying any statistical properties of the noise process w(t). In other words, it is
true for any set of observations �r.

4 A more consistent notation for the conditional pdf of �r would be f�r(�r|1T ). However, for simplicity of
presentation, the subscript �r is dropped.
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The decision rule in (5.65) can, however, be greatly simplified when the noise w(t) is
zero-mean, white, and Gaussian. In this case, the observations r1, r2, r3, r4, . . ., are statis-
tically independent Gaussian random variables. The variance of each coefficient is equal
to the variance of the noise coefficient, wj, which is N0/2 (watts). The average or expected
values of the first two coefficients r1 and r2 are (s11, s12) and (s21, s22), respectively. The
other coefficients, rj, j ≥ 3, have zero mean. The conditional densities f (�r|1T ) and f (�r|0T )
can simply be written as products of the individual pdfs as follows:

f (�r|1T ) = f (r1|1T )f (r2|1T )f (r3|1T ) · · · f (rj|1T ) · · · , (5.66)

f (�r|0T ) = f (r1|0T )f (r2|0T )f (r3|0T ) · · · f (rj|0T ) · · · (5.67)

or

f (�r|1T ) = 1√
πN0

exp

[
− (r1 − s21)2

N0

]
1√
πN0

exp

[
− (r2 − s22)2

N0

]
× f (r3|1T ) · · · (5.68)

f (�r|0T ) = 1√
πN0

exp

[
− (r1 − s11)2

N0

]
1√
πN0

exp

[
− (r2 − s12)2

N0

]
× f (r3|0T ) · · · (5.69)

Note that the terms f (rj|1T ) = f (rj|0T ) = (1/
√

πN0) exp
(
−r2

j /N0

)
for j ≥ 3, therefore

they will cancel in the likelihood ratio in (5.65). Thus the decision rule becomes

exp
[
−(r1 − s21)2/N0

]
exp
[
−(r2 − s22)2/N0

]
exp
[
−(r1 − s11)2/N0

]
exp
[
−(r2 − s12)2/N0

] 1D

�
0D

P1
P2

. (5.70)

To further simplify the expression, take the natural logarithm of both sides of (5.70).
Since the natural logarithm is a monotonic function, the inequality is preserved for each
(r1, r2) pair. The resulting decision rule becomes

(r1 − s11)2 + (r2 − s12)2
1D

�
0D

(r1 − s21)2 + (r2 − s22)2 + N0ln
(

P1
P2

)
. (5.71)

The above rule has an interesting geometrical interpretation. The quantity (r1 − s11)2 +
(r2 − s12)2 is the distance squared from the projection (r1, r2) of the received signal r(t)
to the transmitted signal s1(t). Similarly, (r1 − s21)2 + (r2 − s22)2 is the distance squared
from (r1, r2) to s2(t). For the special case of P1 = P2, i.e., each signal is equally likely, the
decision rule becomes

(r1 − s11)2 + (r2 − s12)2
1D

�
0D

(r1 − s21)2 + (r2 − s22)2. (5.72)

In essence, the above implies that the optimum receiver needs to determine the distance
from r(t) to both s1(t) and s2(t) and then to choose the signal to which r(t) is closest.

For the more general case of P1 	= P2 the decision regions are determined by a line
perpendicular to the line joining the two signals {s1(t), s2(t)}, except that it now shifts
toward s2(t) (if P1 > P2) or toward s1(t) (if P1 < P2). This is illustrated in Figure 5.14.
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�Fig. 5.14 Decision regions are determined by a line perpendicular to the line joining s1(t) to s2(t).

5.4 Receiver implementation

To determine, in a minimum error probability sense, whether a “0” or “1” was transmitted
we need to determine (r1, r2) and then use (5.71) to make a decision. The receiver would
therefore look as shown in Figure 5.15.

The process of multiplying r(t) by φ1(t) and integrating over the bit duration is that of
correlation and therefore the above is called a correlation receiver configuration. Since at
the end of each bit duration the integrator must be reset to zero initial condition, the above
is also commonly called an integrate-and-dump receiver. Moreover, the decision block can
be simplified somewhat by expanding the terms in (5.71) to arrive at

1D

(r1 − s11)2 + (r2 − s12)2 � (r1 − s21)2 + (r2 − s22)2

−N0 ln P1 0D −N0 ln P2

(5.73)

Tb

0

(•)dt

t = Tb

t = Tb

Decision

r1

r2

r(t) = si(t) + w(t)

φ2(t)

φ1(t)

Compute
(r1 – si1)2 + (r2 – si2)2

–N0 ln(Pi)
for i = 1, 2
and choose
the smaller

∫

Tb

0

(•)dt∫

�Fig. 5.15 Correlation receiver implementation.
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or

1D

r2
1 − 2r1s11 + s2

11 + r2
2 � r2

1 − 2r1s21 + s2
21 + r2

2
−2r2s12 + s2

12 − N0 ln P1 0D −2r2s22 + s2
22 − N0 ln P2.

(5.74)

Canceling the common terms, recognizing that E1 = s2
11 + s2

12, E2 = s2
21 + s2

22 and rear-
ranging yields

r1s21 + r2s22 − E2
2 + N0

2 ln P2

1D

�
0D

r1s11 + r2s12 − E1
2 + N0

2 ln P1. (5.75)

The term r1si1 + r2si2 = (r1, r2)

(
si2

si1

)
can be interpreted as the dot product between the

vector �r = (r1, r2) representing the received signal r(t) and the vector �si = (si1, si2) rep-
resenting the signal si(t). Therefore the receiver implementation can be redrawn as in
Figure 5.16.

The correlation part of the optimum receiver involves a multiplier and integrator. Mul-
tipliers are difficult to realize physically. As an alternative, the correlator section can be
implemented by a finite impulse response filter as shown in Figure 5.17, where

h1(t) = φ1(Tb − t), (5.76)

h2(t) = φ2(Tb − t). (5.77)

The above filters are generally referred to as matched filters, in this case they are “matched”
to the basis functions.

DecisionChoose
the

larger2
ln(P1) –

2
E1N0

2
ln(P2) –

2
E2N0

t = Tb

t = Tb

r1

r2

r(t)

φ2(t)

φ1(t)

Tb

0

(•)dt∫

Tb

0

(•)dt∫

Form
the
dot

product
r • si

�Fig. 5.16 A different implementation of a correlation receiver.

Decision
circuit

h1(t) = φ1(Tb – t)

h2(t) = φ2(Tb – t)

Decision

t = Tb

t = Tb

r1

r2

r(t)

�Fig. 5.17 Receiver implementation using matched filters.
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(b)�Fig. 5.18 (a) Signal set for Example 5.6, (b) orthonormal functions.

Example 5.6 Consider the signal set {s1(t), s2(t)} shown in Figure 5.18(a). Simple
inspection shows that this signal set can be represented by the orthonormal functions
{φ1(t), φ2(t)} in Figure 5.18(b) as follows:

s1(t) = φ1(t)+ 1
2φ2(t),

s2(t) = −φ1(t)+ φ2(t).

The energy in each of the signals is given as

E1 =
∫ Tb

0
s2

1(t)dt = 1.25 (joules), E2 =
∫ Tb

0
s2

2(t)dt = 2 (joules). (5.78)

Unlike the examples considered up to now, here the two signals have unequal energy.
The signal space plot looks as shown in Figure 5.19. Consider now the detection of the
transmitted signal over a bit interval where the PSD of the white Gaussian noise is N0/2 =
0.5 (watts/hertz). The optimum receiver to minimize error probability consists of projecting



191 5.4 Receiver implementation
�

s1(t)

s2(t)

φ1(t)

φ2(t)

0–0.5 0.5

0.5

1–1

1

�Fig. 5.19 Signal space representation, for Example 5.6.

the received signal r(t) onto φ1(t), φ2(t) and then applying the decision rule given by (5.71),
i.e.,

(r1 − 1)2 + (r2 − 1
2 )2

1D

�
0D

(r1 + 1)2 + (r2 − 1)2 + ln
(

P1
P2

)
. (5.79)

Upon expanding, the decision rule becomes that of (5.75) which can be written as

−4r1 + r2 −
(

3
4 + ln P1

P2

) 1D

�
0D

0. (5.80)

The boundary between the two decision regions is given by

4r1 − r2 +
(

3

4
+ ln

P1

P2

)
= 0, (5.81)

which is an equation of a straight line of slope 4 and intercept
(

3
4 + ln(P1/P2)

)
. In terms

of (r2, r1) the equation of the straight line joining the s2(t) and s1(t) points is given by

r2 − s12

s22 − s12
= r1 − s11

s21 − s11
, or r2 = −1

4
r1 + 3

4
. (5.82)

It can be seen that the straight lines defined by (5.81) and (5.82) are perpendicular to
each other. The decision regions therefore look as in Figure 5.20 for three different sets of
a priori probabilities. �

Example 5.7 For the second example, consider the two orthonormal functions shown in
Figure 5.21. Let the signal set be as follows:

s2(t) = φ1(t)+ φ2(t), (5.83)

s1(t) = φ1(t)− φ2(t). (5.84)
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�Fig. 5.20
Decision regions for Example 5.6: (a) P1 = P2 = 0.5. (b) P1 = 0.25, P2 = 0.75. (c) P1 = 0.75,
P2 = 0.25.

The two signals have equal energy of E1 = E2 = 2 (joules). Note that s1(t) and s2(t) have a
common component φ1(t). Thus, intuitively we would expect that only the component
along φ2(t) will help us to distinguish between the possible transmitted signals in the
presence of noise. This is verified formally by applying (5.71) as follows:
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�Fig. 5.22 Signal space representation and the decision regions for Example 5.7.

(r1 − 1)2 + (r2 + 1)2 − N0 ln P1

1D

�
0D

(r1 − 1)2 + (r2 − 1)2 − N0 ln P2, (5.85)

which simplifies to

r2

1D

�
0D

N0
4 ln

(
P1
P2

)
. (5.86)

The signal set and the decision regions are shown in Figure 5.22. The receiver can be
implemented using a correlator or a matched filter, as shown in Figures 5.23(a) and 5.23(b),
respectively. �



194 Optimum receiver for binary data transmission
�

Comparator

T = 

t
0 Tb

Tb

3

t
0

3

(a)

(b)

Choose s2(t)

Choose s1(t)

Choose s2(t)

Choose s1(t)

r(t)

h2(t)

r(t)

φ2(t)

t = Tb
r2 ≥ T ⇒

r2 < T ⇒

r2 ≥ T ⇒

r2 < T ⇒

Tb

0

(•)dt∫
r2

t = Tb

r2

ln ⎛
4 P2

P1N0

⎝
⎛
⎝

⎛
P2

P1

⎝
⎛
⎝

T = ln
4

N0

Comparator

�Fig. 5.23
Receiver implementation for Example 5.7: (a) correlation receiver, and (b) matched-filter receiver.

5.5 Receiver implementation with one correlator (or matched
filter)

In general, for two arbitrary signals s1(t) and s2(t) we need two orthonormal basis functions
to represent them exactly. Furthermore, the optimum receiver requires the projection of r(t)
onto the two basis functions. This in turn means that in the receiver implementation either
two correlators or two matched filters are required. In Example 5.7, however, only one cor-
relator or matched filter was required. For binary data transmission, where the transmitted
symbol is represented by one of two signals, this simplification is always possible by a
judicious choice of the orthonormal basis.

Consider that s1(t) and s2(t) are represented by the orthonormal basis φ1(t) and φ2(t) as
shown in Figure 5.24(a). To simplify the receiver so that only one correlator or matched
filter is needed what we need is to find orthonormal basis functions φ̂1(t) and φ̂2(t) such
that along one axis, say φ̂1(t), the signals s1(t) and s2(t) have an identical component. To
determine this basis set we rotate φ1(t) and φ2(t) through an angle θ until one of the axes
is perpendicular to the line joining s1(t) to s2(t) (see Problem 5.2). This rotation can be
expressed as [

φ̂1(t)
φ̂2(t)

]
=
[

cos θ sin θ

− sin θ cos θ

] [
φ1(t)
φ2(t)

]
. (5.87)
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�Fig. 5.24 Signal space representation: (a) by φ1(t) and φ2(t) and (b) by φ̂1(t) and φ̂2(t).

Now we project the received signal r(t) = si(t)+ w(t) onto the orthonormal basis func-
tions φ̂1(t) and φ̂2(t). The components of s1(t) and s2(t) along φ̂1(t), namely ŝ11 and ŝ21, are
identical. The noise projections ŵ1 and ŵ2 are again statistically independent zero-mean
Gaussian random variables with variance N0/2.

As before, the other orthonormal basis functions φ̂3(t), φ̂4(t), . . ., are simply chosen to
complete the set. Again, given the fact that w(t) is white and Gaussian, the likelihood ratio
of the projections of r(t) onto φ̂1(t), φ̂2(t), φ̂3(t), . . . is

f (r̂1, r̂2, r̂3, . . . , |1T )
f (r̂1, r̂2, r̂3, . . . , |0T )

= f (ŝ21 + ŵ1)f (ŝ22 + ŵ2)f (ŵ3) · · ·
f (ŝ11 + ŵ1)f (ŝ12 + ŵ2)f (ŵ3) · · ·

1D

�
0D

P1
P2

, (5.88)

which upon canceling the common terms, remember ŝ21 = ŝ11, reduces to

f (r̂2|1T )
f (r̂2|0T )

= f (ŝ22 + ŵ2)
f (ŝ12 + ŵ2)

1D

�
0D

P1
P2

. (5.89)

Substituting in the exact expressions of the density functions, the decision rule becomes

(πN0)−1/2 exp[−(r̂2 − ŝ22)2/N0]
(πN0)−1/2 exp[−(r̂2 − ŝ12)2/N0]

1D

�
0D

P1
P2

. (5.90)

Taking the natural logarithm and simplifying, the final decision rule is

r̂2

1D

�
0D

ŝ22 + ŝ12
2 +

(
N0/2

ŝ22 − ŝ12

)
ln
(

P1
P2

)
. (5.91)

Note that, to arrive at the above decision rule, it was assumed that (ŝ22 − ŝ12) > 0. This is
indeed the case since, as will be shown in Section 5.6, (ŝ22 − ŝ12) measures the distance
between the two signals.

Thus the optimum receiver consists of finding r̂2 by projecting r(t) onto φ̂2(t), i.e., r̂2 =∫ Tb
0 r(t)φ̂2(t)dt, and comparing r̂2 = r̂2 to a threshold:

T ≡ ŝ22 + ŝ12

2
+
(

N0/2

ŝ22 − ŝ12

)
ln

(
P1

P2

)
. (5.92)
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Two receiver implementations are shown in Figures 5.25(a) and 5.25(b), corresponding
to the correlation receiver and the matched filter, respectively.

As evidenced from Figure 5.25, one needs to know φ̂2(t) in order to implement the
optimum receiver. This basis function can be determined as follows. Observe first that
φ̂2(t) points along the line joining s1(t) to s2(t) which, as a vector, is s2(t)− s1(t). Thus
normalizing this vector so that the resultant time function has unit energy gives φ̂2(t).
That is,

φ̂2(t) = s2(t)− s1(t){∫ Tb

0
[s2(t)− s1(t)]2dt

} 1
2

= s2(t)− s1(t)

(E2 − 2ρ
√

E1E2 + E1)
1
2

. (5.93)

Observe that the above expression of φ̂2(t) illustrates that only the difference between
the two signals is important in making the optimum decision at the receiver.

Example 5.8 Consider the signal set of Example 5.2. The signal space diagram is shown
in Figure 5.26. By inspection, a rotation of 45◦ results in the desired orthonormal basis
functions, where φ̂1(t) and φ̂2(t) can be written as

(a)

(b)

ˆ

ˆ ˆ
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r(t)

t = Tb

r2

t = Tb

r2

Comparator
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0

(•)dt∫
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r̂2 < T ⇒ 0D

r̂2 ≥ T ⇒ 1D

r̂2 < T ⇒ 0D

φ̂2(t)

h(t) = φ2(Tb – t)ˆ

�Fig. 5.25 Simplified optimum receiver: (a) using one correlator; (b) using one matched filter.
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θ = π/4

ˆ

�Fig. 5.26 Signal space representation for Example 5.8.
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�Fig. 5.27 Receiver implementations of Example 5.8: (a) correlation receiver; (b) matched-filter receiver.

φ̂1(t) = 1√
2

[φ1(t)+ φ2(t)],

φ̂2(t) = 1√
2

[−φ1(t)+ φ2(t)].

The receiver implementations are illustrated in Figures 5.27(a) and 5.27(b). �

5.6 Receiver performance

Consider now the determination of the performance of the optimum receiver, which is
measured in terms of its bit error probability. Recall from the preceding section that the
detection of the information bit bk transmitted over the kth interval [(k − 1)Tb, kTb] consists
of computing r̂2 =

∫ kTb
(k−1)Tb

r(t)φ̂2(t)dt and comparing r̂2 to the threshold

T = ŝ12 + ŝ22

2
+ N0

2(ŝ22 − ŝ12)
ln

(
P1

P2

)
. (5.94)

When a “0” is transmitted, r̂2 is a Gaussian random variable of mean ŝ12 and variance
N0/2 (watts). When a “1” is transmitted r̂2 is a Gaussian random variable of mean ŝ22 and
variance N0/2 (watts). Graphically the conditional density functions f (r̂2|0T ) and f (r̂2|1T )
are illustrated in Figure 5.28.
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The probability of making an error is given by

P[error] = P[(0 transmitted and 1 decided) or (1 transmitted and 0 decided)]

= P[(0T , 1D) or (1T , 0D)]. (5.95)

Since the two events are mutually exclusive, one has

P[error] = P[0T , 1D]+ P[1T , 0D]

= P[1D|0T ]P[0T ]+ P[0D|1T ]P[1T ]

= P1

∫ ∞

T
f (r̂2|0T )dr̂2︸ ︷︷ ︸
area B

+P2

∫ T

−∞
f (r̂2|1T )dr̂2︸ ︷︷ ︸
area A

. (5.96)

Note that the two integrals in (5.96) are equal to area B and area A in Figure 5.29,
respectively. Thus the error probability can be calculated as follows:

P[error] =P1

∫ ∞

T

1√
πN0

exp

{
− (r̂2 − ŝ12)2

N0

}
dr̂2

+ P2

∫ T

−∞
1√
πN0

exp

{
− (r̂2 − ŝ22)2

N0

}
dr̂2. (5.97)

Consider the first integral in (5.97). Change the variable λ ≡ (r̂2 − ŝ12)/
√

N0/2, then
dλ = dr̂2/

√
N0/2 and the lower limit becomes (T − ŝ12)/

√
N0/2. The integral therefore

can be rewritten as∫ ∞

T

1√
πN0

exp

{
− (r̂2 − ŝ12)2

N0

}
dr̂2 = 1√

2π

∫ ∞
T−ŝ12√

N0/2

exp

(
−λ2

2

)
dλ

= Q

(
T − ŝ12√

N0/2

)
, (5.98)

where Q(x) is called the Q-function. This function is defined as the area under a zero-mean,
unit-variance Gaussian curve from x to ∞ (see Figure 5.30 for a graphical interpretation).
Mathematically,
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Q(x) ≡ 1√
2π

∫ ∞

x
exp

(
−λ2

2

)
dλ, −∞ ≤ x ≤ ∞. (5.99)

A plot of Q(x) is shown in Figure 5.31. It is also simple to verify the following useful
property of the Q-function:

Q(x) = 1− Q(−x), −∞ ≤ x ≤ ∞. (5.100)

Similarly, the second integral in (5.97) can be evaluated as follows:∫ T

−∞
1√
πN0

exp

{
− (r̂2 − ŝ22)2

N0

}
dr̂2

= 1−
∫ ∞

T

1√
πN0

exp

{
− (r̂2 − ŝ22)2

N0

}
dr̂2

= 1− 1√
2π

∫ ∞
T−ŝ22√

N0/2

exp

(
−λ2

2

)
dλ

= 1− Q

(
T − ŝ22√

N0/2

)
, (5.101)

where the second equality in the above evaluation follows by changing λ = (r̂2 −
ŝ22)/

√
N0/2.
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Therefore, in terms of the Q-function, the probability of error can be compactly
expressed as

P[error] = P1Q

(
T − ŝ12√

N0/2

)
+ P2

[
1− Q

(
T − ŝ22√

N0/2

)]
. (5.102)

Consider now the important case where the a priori probabilities are equal, i.e., P1 = P2.
The threshold T becomes T = (ŝ12 + ŝ22)/2. Substituting this threshold into (5.102) and
applying the property Q(x) = 1− Q(−x) of the Q-function simplifies the expression of the
error probability to

P[error] = Q

(
ŝ22 − ŝ12

2
√

N0/2

)
. (5.103)

The term (ŝ22 − ŝ12) can be further evaluated as follows:

ŝ22 − ŝ12 =
∫ Tb

0
s2(t)φ̂2(t)dt −

∫ Tb

0
s1(t)φ̂2(t)dt

=
∫ Tb

0
[s2(t)− s1(t)]φ̂2(t)dt

=
∫ Tb

0
[s2(t)− s1(t)]

s2(t)− s1(t)

(E2 − 2ρ
√

E1E2 + E1)1/2
dt

=

∫ Tb

0
[s2(t)− s1(t)]2dt

(E2 − 2ρ
√

E1E2 + E1)1/2
= d2

21

d21
= d21. (5.104)

The above result shows that ŝ22 − ŝ12 simply measures the distance between the two
signals s1(t) and s2(t) (see (5.21)), which is consistent with what is observed graphically in
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Figure 5.24(b). The above evaluation also shows that, as long as s1(t) 	= s2(t), the quantity
ŝ22 − ŝ12 is indeed positive. This is the assumption we used to arrive at the decision rule
in (5.91).

Since the term
√

N0/2 is interpreted as the RMS value of the noise at the output of
the correlator or matched filter after sampling, one can write the expression for the error
performance as

P[error] = Q

(
distance between the signals

2× noise RMS value

)
. (5.105)

Q(·) is a monotonically decreasing function of its argument, the probability of error
decreases as the ratio (distance between the signals/2× noise RMS value) increases, i.e.,
as either the two signals become more dissimilar (increasing the distance between them) or
the noise power becomes less. Both factors of course make it easier to distinguish between
the two possible transmitted signals at the receiver.

Typically the channel noise power is fixed and thus the only way to reduce error is by
maximizing the distance between the two signals. One way of doing this is, of course, by
increasing the signal energy.

However, the transmitter also has an energy constraint, say
√

E. Recall that in the signal
space representation the distance from a signal point to the origin of the {φ1(t), φ2(t)} plane
is simply the square root of the signal energy. Thus the signals must lie on or inside a circle
of radius

√
E. Therefore, to maximize the distance between the two signals one chooses

them so that they are placed 180◦ from each other. This implies that s2(t) = −s1(t) (you
might want to show this). This very popular signal set is commonly known as antipodal
signaling.

A last observation is that the error probability does not depend on the signal shapes but
only on the distance between them. Vastly different signal sets (in terms of time wave-
forms) will lead to the same error performance. This is due to the fact that our noise is
considered to be white5 and Gaussian.

Relationship between Q(x) and erfc(x) Besides the Q-function, another function widely
used in error probability calculation is the complementary error function, denoted by erfc(·).
The erfc function is defined as follows:

erfc(x) = 2√
π

∫ ∞
x

e−λ2
dλ (5.106)

= 1− erf(x). (5.107)

By change of variables, it is not hard to show that the erfc function and the Q function are
related by

Q(x) = 1
2

erfc
(

x√
2

)
, (5.108)

5 “You can run but you cannot hide.” Because white noise has equal power at each frequency one can say that
the signals can run but cannot hide. The challenge to boxing fans is: What famous person uttered this phrase
and in what circumstance?
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or conversely

erfc(x) = 2Q(
√

2x). (5.109)

Moreover, let Q−1(x) and erfc−1(x) be the inverses of Q(x) and erfc(x), respectively. Then
these functions are related by

Q−1(x) = √2erfc−1(2x). (5.110)

It should be pointed out that erfc(x) and erfc−1(x) are available in Matlab, not Q(x) nor
Q−1(x). However, the above relationships allow one to easily write new Matlab functions for
Q(x) and Q−1(x).

Finally, the next example is provided to illustrate some of the most important concepts
introduced in this chapter.

Example 5.9 Consider the signal space diagram shown in Figure 5.32.

(a) Determine and sketch the two signals s1(t) and s2(t).
(b) The two signals s1(t) and s2(t) are used for the transmission of equally likely bits 0

and 1, respectively, over an additive white Gaussian noise (AWGN) channel. Clearly
draw the decision boundary and the decision regions of the optimum receiver. Write
the expression for the optimum decision rule.

(c) Find and sketch the two orthonormal basis functions φ̂1(t) and φ̂2(t) such that the opti-
mum receiver can be implemented using only the projection r̂2 of the received signal
r(t) onto the basis function φ̂2(t). Draw the block diagram of such a receiver that uses
a matched filter.

s1(t)

φ2(t)

φ1(t)

0T⇔

1T s2(t)⇔

−1

2

−2

1

−1

1

2

−2

0 1

1

t

0
1

1

t

−1

0

�Fig. 5.32 Signal set for Example 5.9.
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(d) Consider now the following argument put forth by your classmate. She reasons that
since the component of the signals along φ̂1(t) is not useful at the receiver in deter-
mining which bit was transmitted, one should not even transmit this component of the
signal. Thus she modifies the transmitted signal as follows:

s(M)
1 (t) = s1(t)−

(
component of s1(t) along φ̂1(t)

)
(5.111)

s(M)
2 (t) = s2(t)−

(
component of s2(t) along φ̂1(t)

)
(5.112)

Clearly identify the locations of s(M)
1 (t) and s(M)

2 (t) in the signal space diagram. What is
the average energy of this signal set? Compare it to the average energy of the original
set. Comment.

Solut ion

(a) The two signals s1(t) and s2(t) can be determined simply from their coordinates as

s1(t) = s11φ1(t)+ s12φ2(t) = 2φ1(t)+ φ2(t), (5.113)

s2(t) = s21φ1(t)+ s22φ2(t) = −φ1(t)− 2φ2(t). (5.114)

The two signals are plotted in Figure 5.33.
(b) Since the two binary bits are equally likely, the decision boundary of the optimum

receiver is the bisector of the line joining the two signals. The optimum decision

0
t

3−

1−

1

s1(t) s2(t)

0
1

3

t

1−

�Fig. 5.33 Plots of s1(t) and s2(t).
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s1(t) 0T⇔

r2, φ2(t)
φ2(t)

φ1(t)

φ1(t)

1−

2

–2

1

–1

1

2

2−

0

ˆ

4
θ = −

Decision boundary 0D

1D

ˆ

(M)
1 ( )s t

(M)
2 ( )s t

0
1

1

t

1−

0 1

1

t

1T ⇔ s2(t)

π r1

�Fig. 5.34 Optimum decision boundary and decision regions.

boundary and the decision regions are shown in Figure 5.34. A simple inspection of
the decision boundary in Figure 5.34 gives the following optimum decision rule:

r1

0D

�
1D

−r2. (5.115)

Of course, the above expression for the optimum decision rule can also be reached
by substituting all the signal coordinates into the following fundamental minimum
distance rule:

(r1 − s21)2 + (r2 − s22)2
0D

�
1D

(r1 − s11)2 + (r2 − s12)2. (5.116)

(c) From the signal space diagram in Figure 5.34, it is clear that the orthonormal basis
functions φ̂1(t) and φ̂2(t) are obtained by rotating φ1(t) and φ2(t) by 45◦ clockwise
(i.e., θ = −π/4), or 135◦ counterclockwise (i.e., θ = 3π/4). This rotation is to ensure
that φ̂1(t) is perpendicular to the line joining the two signals. Choosing θ = −π/4
yields: [

φ̂1(t)
φ̂2(t)

]
=
[

cos(−π/4) sin(−π/4)
− sin(−π/4) cos(−π/4)

] [
φ1(t)
φ2(t)

]

=
[

1√
2

− 1√
2

1√
2

1√
2

][
φ1(t)
φ2(t)

]
. (5.117)

It follows that

φ̂1(t) = 1√
2

[φ1(t)− φ2(t)], (5.118)

φ̂2(t) = 1√
2

[φ1(t)+ φ2(t)]. (5.119)
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0
t

0
1 t

2−

1/ 2

2

1/ 2

( )h t =
t = 1

0
t

2

1/ 2 1

Matched filter

2

2

ˆ 0 0

ˆ 0 1
D

D

r

r

≥ ⇒
<

( )tr

φ1(t)ˆ φ2(t)ˆ

φ2(1 − t)ˆ

�Fig. 5.35 Plots of φ̂1(t) and φ̂2(t) and the simplified receiver.

These two functions are plotted in Figure 5.35, together with the block diagram of a
receiver that uses one matched filter.

(d) The locations of s(M)
1 (t) and s(M)

2 (t) are shown on the signal space diagram in Figure
5.34. The average energy of this signal set is simply

E(M) = 1

2
(ŝ2

12 + ŝ2
22) = 1

2
[(E1 − ŝ2

11)+ (E2 − ŝ2
21)]

= 1

2
(E1 + E2)− 1

2
(ŝ2

11 + ŝ2
21) = 5−

(
1√
2

)2

= 4.5 (joules). (5.120)

The average energy of the modified signal set is clearly smaller than the average energy of
the original set, which is (E1 + E2)/2 = 5 joules. Since the distance between the modified
signals is the same as that of the original signals, both sets perform identically in terms
of the bit error probability performance. The modified set is therefore preferred due to its
better energy (or power) efficiency. It should be pointed out, however, that the other set
might have better timing or spectral properties. Besides error performance, the issues of
timing and bandwidth are also very important considerations and will be explored further
in the next chapter. The next two sections derive general expressions of PSD for some
families of digital modulation. �

5.7 Power spectral density of digital modulation

In this section we derive an expression for the PSD of digital signals that, in essence, are
produced by amplitude modulation. A general block diagram of the modulation process is
shown in Figure 5.36.
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Mapping to
real numbers

{ }0,1k ∈b

kcInformation bits
s(t)

p(t)

Amplitude 

modulation�Fig. 5.36 General block diagram of digital amplitude modulation.

Typically ck takes on the values from the set {−1,+1} (antipodal signaling), {0, 1} (on–
off keying), {−1, 0,+1} (pseudoternary line coding) or {±1,±3, · · · ,±(M − 1)} (M-ary
amplitude-shift keying (ASK)). These modulations are discussed in the next three chapters.
Here the important thing about ck is that it is drawn from a finite set of real numbers with
a probability that is known or can be determined. The function p(t) is a pulse waveform of
duration Tb, i.e., it is zero outside the interval [0, Tb]. The transmitted signal is

s(t) =
∞∑

k=−∞
ckp(t − kTb). (5.121)

To find the PSD of s(t) we follow the procedure of Chapter 3 where the basic definition of
PSD was established. First, truncate the random process to a time interval of −T = −NTb

to T = NTb, i.e., 2N + 1 bit durations. This gives

sT (t) =
N∑

k=−N

ckp(t − kTb). (5.122)

Take the Fourier transform of the truncated process:

ST (f ) =
∞∑

k=−∞
ckF{p(t − kTb)} = P(f )

∞∑
k=−∞

cke−j2π fkTb . (5.123)

Now apply the basic definition of (3.67):

S(f ) = lim
T→∞

E
{|ST (f )|2}

2T
= lim

N→∞
|P(f )|2

(2N + 1)Tb
E

⎧⎪⎨⎪⎩
∣∣∣∣∣∣

N∑
k=−N

cke−j2π fkTb

∣∣∣∣∣∣
2
⎫⎪⎬⎪⎭ . (5.124)

The expectation in (5.124) is computed as follows:

E

⎧⎪⎨⎪⎩
∣∣∣∣∣∣

N∑
k=−N

cke−j2π fkTb

∣∣∣∣∣∣
2
⎫⎪⎬⎪⎭

= E

⎧⎨⎩
⎡⎣ N∑

k=−N

cke−j2π fkTb

⎤⎦⎡⎣ N∑
l=−N

cle
−j2πflTb

⎤⎦∗⎫⎬⎭
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s( )kc

in
1
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m = −∞b
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T

∞
−= ∑ c

�Fig. 5.37 Impulse modulator model.

=
N∑

k=−N

N∑
l=−N

E {ckcl} e−j2π f (k−l)Tb

m=k−l=
N∑

k=−N

k−N∑
m=k+N

Rc(m)e−j2πmfTb , (5.125)

where Rc(m) = E {ckck−m} is the (discrete) autocorrelation of the sequence {ck}, with
Rc(m) = Rc(−m).

The important observation is that in (5.125) the inner summation becomes the same,
regardless of the index m, as N →∞. The outer summation then gives (2N + 1) inner
summations, i.e., for large N, (5.125) becomes

E

⎧⎪⎨⎪⎩
∣∣∣∣∣∣

N∑
k=−N

cke−j2π fkTb

∣∣∣∣∣∣
2
⎫⎪⎬⎪⎭ = (2N + 1)

k−N∑
m=k+N

Rc(m)e−j2πmfTb . (5.126)

Therefore,

S(f ) = |P(f )|2
Tb

lim
N→∞

2N + 1

2N + 1

k−N∑
m= k+N

Rc(m)e−j2πmfTb

= |P(f )|2
Tb

∞∑
m=−∞

Rc(m)e−j2πmfTb . (5.127)

Basically (5.127) tells us that the output PSD is the input PSD,
(1/Tb)

∑∞
m=−∞ Rc(m)e−j2πmfTb , multiplied by |P(f )|2, a transfer function. The production

of s(t) can be modeled by what is called impulse modulator model. This model is shown in
Figure 5.37.

5.8 A PSD derivation for an arbitrary binary modulation

The previous PSD derivation applies for antipodal signaling, in fact to any digital amplitude
modulation. However, a modulation scheme such as binary frequency-shift keying (BFSK,
to be discussed in Chapter 7) does not fall into the above model. This section presents an
approach that is applicable to any binary modulation with arbitrary a priori probabilities
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of the information bits. However, it is restricted to the input symbols being statistically
independent.

Consider binary modulation in which the two signals s1(t) and s2(t) are used to transmit
information bits “0” and “1,” respectively. The bits are statistically independent (from bit
to bit) and their a priori probabilities are P[0] = P1 and P[1] = P2. Modulations such
as NRZ-L, RZ-L, Biφ, BASK, BPSK, and BFSK, which are discussed in the next two
chapters, fall in this category, but for now, no specific forms are assumed for s1(t) and s2(t).

An example of the transmitted signal is shown in Figure 5.38. In general, the transmitted
signal, viewed as a random process, can be analytically expressed as

sT (t) =
∞∑

k=−∞
gk(t), (5.128)

where

gk(t) =
{

s1(t − kTb), with probability P1

s2(t − kTb), with probability P2
. (5.129)

The process sT (t) can be decomposed into the sum of a DC and an AC component as
follows:

sT (t) = E{sT (t)}︸ ︷︷ ︸
DC

+ sT (t)− E{sT (t)}︸ ︷︷ ︸
AC

= v(t)+ q(t). (5.130)

Let SsT (f ), Sv(f ), and Sq(f ) denote the PSD of sT (t), v(t), and q(t), respectively. Obviously,
SsT (f ) = Sv(f )+ Sq(f ). Since v(t) is a deterministic signal (why?), the calculation of Sv(f )
is relatively easy.

Write v(t) as follows:

v(t) = E{sT (t)} =
∞∑

k=−∞
E{gk(t)}

=
∞∑

k=−∞
[P1s1(t − kTb)+ P2s2(t − kTb)]. (5.131)

… …
t0

( )Ts t

bT 2 bT

3 bT 4 bT

1( )s t 2( 3 )bs t T−

bT−2 bT−

�Fig. 5.38 Transmitted signal in binary modulation.
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Recognize that v(t + Tb) = v(t) (see Problem 5.26), i.e., v(t) is a periodic signal.
Therefore,

Sv(f ) =
∞∑

n=−∞
|Dn|2δ

(
f − n

Tb

)
, (5.132)

where the Dn are the coefficients of the Fourier series expansion of v(t). They are
determined as follows:

Dn = 1

Tb

∫ Tb/2

−Tb/2
v(t)e−j2πnt/Tbdt

= 1

Tb

∫ Tb/2

−Tb/2
e−j2πnt/Tb

∞∑
k=−∞

[P1s1(t − kTb)+ P2s2(t − kTb)]dt

λ=t−kTb= 1

Tb

∞∑
k=−∞

∫ (Tb/2)−kTb

(−Tb/2)−kTb

[P1s1(λ)+ P2s2(λ)]e−j2πn(λ+kTb)/Tb dλ

= 1

Tb

∫ ∞

−∞
[P1s1(λ)+ P2s2(λ)]e−j2πnλ/Tbdλ

= 1

Tb

[
P1S1

(
n

Tb

)
+ P2S2

(
n

Tb

)]
, (5.133)

where S1(f ) and S2(f ) are the Fourier transforms of s1(t) and s2(t), respectively. Using
(5.133) in (5.132) the PSD of v(t) is

Sv(f ) =
∞∑

n=−∞

∣∣∣∣P1S1 (n/Tb)+ P2S2 (n/Tb)

Tb

∣∣∣∣2 δ

(
f − n

Tb

)
. (5.134)

Next, we calculate Sq(f ), the PSD of q(t). To this end, apply the basic definition of power
spectral density, i.e., let qT (t) denote the truncated version of q(t) to the length T so that

Sq(f ) = lim
T→∞

E{|QT (f )|2}
T

(watts/hertz) (5.135)

where QT (f ) is the Fourier transform of qT (t) and T can be chosen as T = (2N + 1)Tb,
with N a very large integer.

Now,

qT (t) = [sT (t)− E{ST (t)}]truncated

=
N∑

k=−N

{gk(t)− [P1s1(t − kTb)+ P2s2(t − kTb)]}

=
N∑

k=−N

qT ,k(t), (5.136)

where

qT ,k(t) =
{

P2[s1(t − kTb)− s2(t − kTb)], with probability P1

−P1[s1(t − kTb)− s2(t − kTb)], with probability P2
, (5.137)
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i.e., within each bit interval, qT ,k(t) can be only one of two possible signals. Another way
to express qT ,k(t) is to write

qT ,k(t) = ak[s1(t − kTb)− s2(t − kTb)], (5.138)

where ak is a random variable that can take only one of two values:6

ak =
{

P2, with probability P1

−P1, with probability P2
. (5.139)

Using (5.138) in (5.136), the Fourier transform of qT (t) is

QT (f ) =
∫ ∞

−∞
qT (t)e−j2π ftdt

=
∫ ∞

−∞

N∑
k=−N

ak[s1(t − kTb)− s2(t − kTb)]e−j2π ftdt

=
N∑

k=−N

ak

∫ ∞

−∞
[s1(t − kTb)− s2(t − kTb)]e−j2π ftdt

=
N∑

k=−N

ak[S1(f )− S2(f )]e−j2πkfTb . (5.140)

It follows that

|QT (f )|2 =QT (f )[QT (f )]∗

=
⎧⎨⎩

N∑
k=−N

ak[S1(f )− S2(f )]e−j2πkfTb

⎫⎬⎭
×
{

N∑
m=−N

am[S1(f )− S2(f )]∗ej2πmfTb

}

=
N∑

k=−N

N∑
m=−N

akam|S1(f )− S2(f )|2ej2π (m−k)fTb .

(5.141)

The expected value of (5.141) is given by

E
{
|QT (f )|2

}
=

N∑
k=−N

N∑
m=−N

E{akam}|S1(f )− S2(f )|2ej2π (m−k)fTb . (5.142)

6 Be careful and clear about the two different meanings of P1 and P2 in (5.139).
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The expectation E{akam} in (5.142) is computed as follows.

(i) When k = m, one has

akam = a2
k =

{
P2

2, with probability P1

P2
1, with probability P2

. (5.143)

Therefore E{a2
k} = P2

2P1 + P2
1P2 = P1P2(P2 + P1) = P1P2.

(ii) When k 	= m, then

akam =
⎧⎨⎩

P2
2, with probability P2

1
P2

1, with probability P2
2

−P1P2, with probability 2P1P2

. (5.144)

Therefore E{akam} = P2
2P2

1 + P2
1P2

2 − (P1P2)(2P1P2) = 0.

Using the above results in (5.142) we obtain:

E
{
|QT (f )|2

}
=

N∑
k=−N

P1P2|S1(f )− S2(f )|2

= P1P2|S1(f )− S2(f )|2(2N + 1). (5.145)

Substituting (5.145) into (5.135) yields the following PSD of g(t):

Sq(f ) = lim
T→∞

E{|QT (f )|2}
T

= lim
N→∞

P1P2|S1(f )− S2(f )|2(2N + 1)

(2N + 1)Tb

= P1P2

Tb
|S1(f )− S2(f )|2. (5.146)

Finally, combining (5.146), (5.134), and (5.130) gives the following expression for the PSD
of sT (t):

SsT (f )= P1P2

Tb
|S1(f )− S2(f )|2

+
∞∑

n=−∞

∣∣∣∣∣P1S1
(
n
/

Tb
)+ P2S2

(
n
/

Tb
)

Tb

∣∣∣∣∣
2

δ

(
f − n

Tb

)
. (5.147)

Equation (5.147) clearly shows that the PSD depends not only on the Fourier transforms
of the two signals chosen to represent bits “0” and “1,” but also on the a priori probabilities
of the data from the source.
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5.9 Summary

The foundation for the analysis, evaluation, and design of a wide spectrum of digital
communication systems has been developed in this chapter. Since the approach is so
fundamental, it is worthwhile to summarize the important features of it.

One starts with the modulator where a signal set comprising two members, s1(t) and
s2(t), is chosen to represent the binary digits “0” and “1” respectively. Then an orthonor-
mal set, {φ1(t), φ2(t)}, is selected to represent the two signals exactly. This representation
is expressed geometrically in a signal space plot. The received signal is corrupted by AWGN,
w(t), which is also represented by a series expansion using the orthonormal basis set,
φ1(t), φ2(t), as dictated by s1(t), s2(t), and the set φ3(t), φ4(t), . . . , which are used to
complete the set. However, as shown the projections of the noise w(t) onto the basis
functions φ3(t), φ4(t), . . . , do not provide any information as to which signal was transmit-
ted, they are irrelevant statistics. Therefore these projections can be discarded or ignored
which means that in practice the basis functions φ3(t), φ4(t), . . . , do not need to be
determined.

Having developed a representation of the transmitted signal, the additive noise, and
hence the received signal, r(t), attention was turned to the development of the demod-
ulator. To proceed the criterion of minimizing bit error probability was chosen. This
resulted in the likelihood ratio test of (5.65). One should observe that in the devel-
opment of the likelihood ratio test no assumptions regarding the statistics of the
received samples, r1, r2, r3, . . . , were made. The developed test is therefore quite
general; what one needs to do is to determine the two conditional densities, f(�r|1T)
and f(�r|0T).

Determination of these conditional densities is greatly simplified when the important
channel model of AWGN is invoked. This is because the noise projections are Gaussian and
uncorrelated and because they are Gaussian and uncorrelated they are statistically inde-
pendent. Therefore, as mentioned above, the projections of the received signal onto φ3(t),
φ4(t), . . . , can be ignored. The receiver, in this situation, has a very intuitive interpretation
both algebraically and graphically using the signal space plot. Mainly it can be interpreted
either as a minimum-distance receiver, i.e., choose the transmitter’s signal to which the
received signal is closest, or as a maximum correlation receiver, i.e., choose the trans-
mitter’s signal with which the received signal is most correlated. The minimum distance
interpretation holds exactly when the transmitter’s two signals are equally probable, which
is the typical situation. If not, then the distance or correlation needs to reflect this a priori
knowledge.

The next two chapters apply the concepts developed in this chapter to important base-
band and passband modulation schemes for binary digital communication systems. Though
a formal approach known as the Gram–Schmidt procedure was presented in this chapter to
determine the orthonormal basis {φ1(t), φ2(t)} it will be used sparingly, if at all, in the next
two chapters. Indeed, the basis set will be determined by inspection. But to do this one
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needs to have a clear idea of what orthogonality is. Two signals, s1(t) and s2(t), are
orthogonal over the interval of T seconds if and only if:∫

T
s1(t)s2(t)dt = 0.

5.10 Problems

5.1 Verify the final expression of φ2(t) in (5.15).
5.2 (Coordinate rotation) Assume that s1(t) and s2(t) are represented by an orthonormal

basis set {φ1(t), φ2(t)} as shown in Figure 5.39.

)(1 ts

)(2 ts

0

φ1(t)

φ2(t)

φ1(t)
θ

ˆ

φ2(t)ˆ

�Fig. 5.39 Rotation of φ1(t) and φ2(t) by θ .

Now consider the rotation of φ1(t) and φ2(t) by an angle θ to obtain a new set of
functions {φ̂1(t), φ̂2(t)}. This rotation can be expressed as[

φ̂1(t)
φ̂2(t)

]
=
[

cos θ sin θ

− sin θ cos θ

] [
φ1(t)
φ2(t)

]
. (P5.1)

(a) Show that, regardless of the angle θ , the set {φ̂1(t), φ̂2(t)} is also an orthonormal
basis set.
Remark Note that the above result means that the projection of white noise of
spectral strength N0/2 (watts/hertz) onto the basis set {φ̂1(t), φ̂2(t)} still results in
zero-mean uncorrelated random variables with variance N0/2 (watts).

(b) What are the values of θ that make φ̂1(t) perpendicular to the line joining s1(t)
to s2(t)? For these values of θ , mathematically show that the components of s1(t)
and s2(t) along φ̂1(t), namely ŝ11 and ŝ21, are identical.

5.3 The Q-function is defined as the area under a zero-mean, unit-variance, Gaussian
curve from x to ∞. In determining the error performance of the receiver in digital
communications, one often needs to compute the area from a threshold T to infinity
under a general Gaussian density function with mean μ and variance σ 2 (see Figure
5.40). Show that such an area can be expressed as Q ((T − μ)/σ), −∞ ≤ T ≤ ∞.



214 Optimum receiver for binary data transmission
�

x
T

Area
T

Q
−⎛ ⎞= ⎜ ⎟⎝ ⎠

1
e

2πσ
( )2

 / 2σ2x−−

0
μ

μ

σ

μ

�Fig. 5.40 The area under the right tail of a Gaussian pdf.

The next eight problems deal with the representation of signals using the signal
space diagram. It is almost impossible to overestimate the importance of this concept
in digital communications. The reader is strongly urged to attempt all the problems.

5.4 (a) Consider two arbitrary signals s1(t) and s2(t) whose energies are E1 and E2,
respectively. Both signals are time-limited over 0 ≤ t ≤ Tb. It is known that two
orthonormal functions φ1(t) and φ2(t) can be used to represent s1(t) and s2(t)
exactly as follows: {

s1(t) = s11φ1(t)+ s12φ2(t)
s2(t) = s21φ1(t)+ s22φ2(t)

. (P5.2)

Show that Ei = s2
i1 + s2

i2 by directly evaluating
∫ Tb

0 s2
i (t)dt, i = 1, 2.

(b) Let

φ1(t) =
{√

2/Tb cos(2π fct), 0 ≤ t ≤ Tb

0, otherwise
, (P5.3)

and

φ2(t) =
{√

2/Tb sin(2π fct), 0 ≤ t ≤ Tb

0, otherwise
. (P5.4)

Find the minimum value of frequency fc that makes φ1(t) and φ2(t) orthogonal.
Remark The signal set considered in (b) is an important one in passband communi-
cation systems, not only binary but also M-ary.

5.5 Consider the following two signals that are time-limited to [0, Tb]:

s1(t) = V cos(2π fct), (P5.5)

s2(t) = V cos(2π fct + θ ), (P5.6)

where fc = k/2Tb and k is an integer.
(a) Find the energies of both signals. Then determine the value of V for which both

signals have an unit energy.
(b) Determine the correlation coefficient ρ of the two signals. Recall that

ρ = 1√
E1E2

∫ Tb

0
s1(t)s2(t)dt. (P5.7)
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(c) Plot ρ as a function of θ over the range 0 ≤ θ ≤ 2π . What is the value of θ that
makes the two signals orthogonal?

(d) Verify that the distance between the two signals is
d = √2E

√
1− ρ. What is the value of θ that maximizes the distance between

the two signals?
Remark The above is another important signal set. Relate the value of θ found in
(c) to Problem 5.4(b). Sketch the answers in (c) and (d) in the signal space to get
geometrical insight. Finally to determine the energies in (a): you may do it directly
or reason as follows. For a sinusoid of amplitude V with an integer number of cycles
in the time interval Tb, its RMS (root mean-squared value) should be known by you
from an elementary signals course. The average dissipated power across a 1 ohm
resistor is then V2

RMS/1 (watts). Multiplying by the time interval gives the average
energy of the signal V2

RMSTb (watts× seconds = joules).
5.6 (In contrast to Problem 5.5 where the phase of a sinusoid is used to distinguish

between the two signals, here the frequency is used. Though the frequency can
be chosen to maximize the distance between the signals, in practice the frequency
separation is chosen so that the two signals are orthogonal. This greatly simpli-
fies receiver design and also makes synchronization easier, as will be seen in later
chapters.)

Consider the following signal set over 0 ≤ t ≤ Tb:

s1(t) = V1 cos

[
2π

(
fc − �f

2

)
t

]
, (P5.8)

s2(t) = V2 cos

[
2π

(
fc + �f

2

)
t

]
, (P5.9)

where fc = k/2Tb and k is an integer. The amplitudes V1 and V2 are adjusted so that
regardless of �f the energies E1, E2 are always the same and equal to E = V2Tb/2
joules.
(a) Determine and plot the correlation coefficient, ρ, as a function of �f .
(b) Given that the distance between two equal-energy signals is d = √2E

√
1− ρ,

show that the distance between the two above signals is maximum when �f =
0.715/Tb. Compute the distance between s1(t) and s2(t) for this �f . How much
has the distance increased as compared to the case ρ = 0.

5.7 (This problem results in an orthonormal set that is a subset of the well-known Legen-
dre polynomials. As such they are not particularly important in communications.
The problem is included to strengthen your understanding of the Gram–Schmidt
procedure.)

Using the Gram–Schmidt procedure, construct an orthonormal basis for the space
of quadratic polynomials {a2t2 + a1t + a0; a0, a1, a2 ∈ R} over the interval −1 ≤
t ≤ 1. Hint The equivalent problem is to find an orthonormal basis for three signals
{1, t, t2} over the interval −1 ≤ t ≤ 1.
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5.8 (Simplex signal set) Consider a set of M orthogonal signal waveforms sm(t), 1 ≤ m ≤
M, 0 ≤ t ≤ T , all of which have the same energy E. Define a new set of M waveforms
as

ŝm(t) = sm(t)− 1

M

M∑
k=1

sk(t), 1 ≤ m ≤ M, 0 ≤ t ≤ T . (P5.10)

Show that the M signal waveforms {ŝm(t)} have equal energy, given by

Ê = (M − 1)E/M (P5.11)

and are equally correlated, with correlation coefficient

ρmn = 1

Ê

∫ T

0
ŝm(t)ŝn(t)dt = − 1

M − 1
. (P5.12)

Remark The signal set obtained here is the well-known simplex set. Signal space
plots of them for M = 2, 3, 4 are quite informative.

5.9 (A generalization of the Fourier approach to approximate an energy signal)
Suppose that s(t) is a deterministic, real-valued signal with finite energy Es =∫∞
−∞ s2(t)dt. Furthermore, suppose that there exists a set of orthonormal basis

functions {φn(t), n = 1, 2, . . . , N}, i.e.,∫ ∞

−∞
φn(t)φm(t)dt =

{
0, m 	= n
1, m = n

. (P5.13)

We want to approximate the signal s(t) by a weighted linear combination of these
basis functions, i.e.,

ŝ(t) =
N∑

k=1

skφk(t), (P5.14)

where {sk}, k = 1, 2, . . . , N, are the coefficients in the approximation of s(t). The
approximation error incurred is

e(t) = s(t)− ŝ(t). (P5.15)

(a) Find the coefficients {sk} that minimize the energy of the approximation error.
(b) What is the minimum mean square approximation error, i.e.,∫∞

−∞ e2(t)dt?
5.10 (This problem emphasizes the geometrical approach to signal representation) Con-

sider two signals s1(t) and s2(t) as plotted in Figure 5.41(b). The two orthonormal
basis functions φ1(t) and φ2(t) in Figure 5.41(a) are chosen to represent the two
signals s1(t) and s2(t), i.e.,[

s1(t)
s2(t)

]
=
[

s11 s12

s21 s22

] [
φ1(t)
φ2(t)

]
. (P5.16)

(a) Determine the coefficients sij, i, j ∈ {1, 2}.
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�Fig. 5.41 (a) Orthonormal functions, and (b) signal set.

(b) Consider a new set of orthonormal functions φR
1 (t) and φR

2 (t), which are φ1(t)
and φ2(t) axes rotated by an angle of θ degrees, i.e.,[

φR
1 (t)

φR
2 (t)

]
=
[

cos θ sin θ

− sin θ cos θ

] [
φ1(t)
φ2(t)

]
. (P5.17)

Determine and draw the time waveforms of the new orthonormal functions for
θ = 60◦.

(c) Determine the new set of coefficients sR
ij , i, j ∈ {1, 2} in the representation:[

s1(t)
s2(t)

]
=
[

sR
11 sR

12
sR

21 sR
22

] [
φR

1 (t)
φR

2 (t)

]
. (P5.18)

(d) Provide the geometrical representation of the signal set using both basis sets on
the same figure.

(e) Determine the distance d between the two signals s1(t) and s2(t) in two ways:

(i) algebraically: d =
√∫ 1

0 [s1(t)− s2(t)]2 dt;
(ii) geometrically: from the signal space plot of (d) above.

(f) Though φ1(t) and φ2(t) can represent the two given signals, they are by no means
a complete basis set because they cannot represent an arbitrary, finite-energy
signal defined on the time interval [0, 1]. Start completing the basis, by plotting
the next two possible orthonormal functions φ3(t) and φ4(t) of the basis set.

5.11 (Again more practice in determining an orthonormal basis set to represent the sig-
nal set exactly but in the M-ary, M = 4, case) Consider the set of four time-limited
waveforms shown in Figure 5.42.
(a) Using the Gram–Schmidt procedure, construct a set of orthonormal basis

functions for these waveforms.
(b) By inspection, show that the set of orthonormal functions in Figure 5.43 can also

be used to exactly represent the four signals in Figure 5.42.
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(c) Plot the geometrical representation of the set of four signals {s1(t), s2(t), s3(t),
s4(t)} in the three-dimensional signal space spanned by {v1(t), v2(t), v3(t)}.

t

s1(t) s3(t)

s2(t) s4(t)

0

1

1
t02 2 3

1

−1

t0

1

1
t02 2 3

1

−1−1

�Fig. 5.42 A set of four time-limited waveforms.
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1

1 2 3�Fig. 5.43 A set of three orthonormal functions.

The next three problems consider aspects of the design of a minimum error
probability communication system.

5.12 (An orthogonal binary signal set) Consider the following signal set for binary data
transmission over a channel disturbed by AWGN:

s1(t) =
{√

3A cos (2π t/Tb) , 0 ≤ t ≤ Tb

0, otherwise
, (P5.19)

s2(t) =
{

A sin (2π t/Tb) , 0 ≤ t ≤ Tb

0, otherwise
. (P5.20)

The noise is zero-mean and has two-sided PSD N0/2. As usual, s1(t) is used for the
transmission of bit “0” and s2(t) for the transmission of bit “1.” Furthermore, the two
bits are equally likely.
(a) Show that s1(t) is orthogonal to s2(t). Then find and draw an orthonormal basis

{φ1(t),φ2(t)} for the signal set.
(b) Draw the signal space diagram and the optimum decision regions. Write the

expression for the optimum decision rule.
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(c) Let A = 1 volt and assume that N0 = 10−8 watts/hertz. What is the maximum
bit rate that can be sent with a probability of error P[error] ≤ 10−6.

(d) Draw the block diagram of an optimum receiver that uses only one matched filter.
Give the precise expression for the impulse response of the matched filter.

(e) Assume that, as long as the average energy of the signal set
{s1(t), s2(t)} stays the same, you can freely change (or move) both s1(t) and s2(t)
in the same signal space. Modify them so that the probability of error is as small
as possible. Explain your answer.

5.13 Consider the signal set in Figure 5.44 for binary data transmission over an AWGN
channel. The noise is zero-mean and has two-sided PSD N0/2. As usual, s1(t) and
s2(t) are used for the transmission of equally likely bits “0” and “1,” respectively.

0
t

0
t

Tb

2

Tb

V V

V−

2

Tb

Tb

s2(t)s1(t)

�Fig. 5.44 A binary signal set.

(a) Show that s1(t) is orthogonal to s2(t). Then find and draw an orthonormal basis
set {φ1(t), φ2(t)} for the signal set.

(b) Draw the signal space diagram and the optimum decision regions. Write the
expression for the optimum decision rule.

(c) Let V = 1 volt and assume that N0 = 10−8 watts/hertz. What is the maximum
bit rate that can be sent with a probability of error P[error] ≤ 10−6.

(d) Draw the block diagram of an optimum receiver that uses only one matched filter
and sketch the impulse response of the matched filter.

(e) Assume that the signal s1(t) is fixed. However, you can change the shape, but not
the energy, of s2(t). Modify s2(t) so that the probability of error is as small as
possible. Explain your answer.

5.14 Consider the signal set in Figure 5.45 for binary data transmission over a channel
disturbed by AWGN. The noise is zero-mean and has two-sided PSD N0/2. As usual,
s1(t) is used for the transmission of bit “0” and s2(t) is for the transmission of bit “1.”
Furthermore, the two bits are equiprobable.
(a) Find and draw an orthonormal basis {φ1(t),φ2(t)} for the signal set.
(b) Draw the signal space diagram and the optimum decision regions. Write the

expression for the optimum decision rule.
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T�Fig. 5.45 A binary signal set.

(c) Draw the block diagram of the receiver that implements the optimum decision
rule in (b).

(d) Let A = 1 volt and assume that N0 = 10−8 watts/hertz. What is the maximum
bit rate that can be sent with a probability of error P[error] ≤ 10−6.

(e) Draw the block diagram of an optimum receiver that uses only one correlator or
one matched filter.

(f) Assume that signal s1(t) is fixed. However, you can change s2(t). Modify it so
that the average energy is maintained at A2T/2 but the probability of error is as
small as possible. Explain.

5.15 (An example of colored noise) For a binary communication system with AWGN, the
error performance of the optimum receiver does not depend on the specific signal
shapes but simply on the distance between the two signals. This problem considers
noise that is Gaussian but not white (i.e., it is colored noise).

The communication system under consideration is shown in Figure 5.46.

∑

( )tn

( )is t

0 t T≤ ≤
r(t) = si(t) + n(t)

�Fig. 5.46 A binary communication system with additive noise.

The noise, n(t) = n, is simply a DC level but the amplitude of the level is random
and is Gaussian distributed with a probability density function given by

fn(n) = 1√
2πN0

e−n2/2N0 . (P5.21)

(a) Determine the autocorrelation and the PSD of the noise. Are the successive noise
samples correlated?

(b) Consider the signal set and the receiver shown in Figure 5.47. As usual, s1(t) is
used for the transmission of bit “0” and s2(t) is for the transmission of bit “1.”
What is the error probability of this receiver?

(c) Next consider the signal set in Figure 5.48. Find a receiver that will have an error
probability of 0.



221 5.10 Problems
�

t

)(1 ts

0

V

T
t

)(2 ts

0

V−

T

( )dt
T

T

∫
0

1
t = T

( )tr 1

1

0 0

0 1
D

D

r

r

≥ ⇒
< ⇒

�Fig. 5.47 The signal set and receiver considered in Problem 5.15(b).
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�Fig. 5.48 The signal set considered in Problem 5.15(c).

5.16 (In the development of the optimum demodulator the concept of the matched filter
arose: either matched to the orthonormal basis set that is used to represent the signal
set or directly to the signal set. The optimality criterion was minimum error prob-
ability. This problem shows that the matched filter has another desirable property,
namely, it maximizes the signal-to-noise ratio at the output.)

)()( fHth ⇔
( ) ( )s t t+ w sout (t) + wout (t)

�Fig. 5.49 A block diagram of the matched filter, in Problem 5.16.

Consider the block diagram shown in Figure 5.49. The signal s(t) is known, i.e.,
deterministic, and duration-limited to [0, Tb] seconds. The input noise w(t) is white
with spectral strength of N0/2. It is desired to determine the impulse response h(t),
or equivalently the transfer function H(f ), that maximizes the SNR at the output at
time t = t0. The problem is therefore to choose h(t) so that

SNRout ≡ s2
out(t0)

E{w2
out(t)}

= s2
out(t0)

Pwout

(P5.22)

is maximized. To find the solution, proceed as follows:
(a) Write the expression for sout(t) in terms of H(f ) and S(f ). From this get the

expression for s2
out(t0).

(b) Write the expression for the output noise power Pwout (watts) in terms of H(f ) and
the input noise power spectral density. Based on the results in (a) and (b) write
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the expression for SNRout. To proceed further we need the Cauchy–Schwartz
inequality, which states that for any two real functions a(t) and b(t) one has[∫ ∞

−∞
a(t)b(t)dt

]2

≤
∫ ∞

−∞
a2(t)dt

∫ ∞

−∞
b2(t)dt. (P5.23)

(c) Prove this inequality. The starting point is to consider∫∞
−∞[a(t)+ λb(t)]2dt ≥ 0 (always). Expand the square and observe that the

quadratic in λ cannot have any real roots to arrive at the inequality. When does
the equality hold?

(d) Recall that
∫∞
−∞ a(t)b(t)dt = ∫∞−∞ A(f )B∗(f )df . (Why?) Rewrite the Cauchy–

Schwartz inequality in the frequency domain, i.e., in terms of A(f ) and B(f ).
(e) Identify A(f ) = H(f ) and B∗(f ) = S(f )ej2π ft0 . Argue that SNRout ≤

∫∞
−∞[|S(f )|2/

(N0/2)]df .
(f) Choose H(f ) to achieve equality and to complete the problem, find the corre-

sponding h(t).
5.17 A communication magazine carries an advertisement for bargain basement pieces on

a filter that has the impulse response shown in Figure 5.50.

TbTb3

20
t

)(th

1

�Fig. 5.50 An impulse response.

The manager of your division notices this and asks you to design an antipodal
binary modulator for an AWGN channel, where the noise has a two-sided PSD of
N0/2 (watts/hertz). The goal of the design is to take advantage of this filter in the
receiver for an optimum demodulation.
(a) Design the modulator, basically the signal set to take advantage of this filter.

Explain.
(b) Assume that N0 = 10−9 watts/hertz. What is the maximum bit rate that can be

sent with a probability of error P[error] ≤ 10−3.
Hint One can match the filter to the signal or match the signal to the filter. To para-
phrase the biblical statement: one can either bring the mountain to Moses or Moses
to the mountain.

5.18 (Antipodal signaling) The received signal in a binary communication system that
employs antipodal signals is

r(t) = si(t)+ w(t) =
{

s(t)+ w(t), if “0” is transmitted
−s(t)+ w(t), if “1” is transmitted

, (P5.24)

where s(t) is shown in Figure 5.51 and w(t) is AWGN with PSD N0/2 (watts/hertz).
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(a) Sketch the impulse response of the filter that is matched to s(t).
(b) Precisely sketch the output of the filter to the input s(t) (i.e., “0” was transmitted

and noise is ignored).
(c) Precisely sketch the output of the filter to the input −s(t) (i.e., “1” was

transmitted and noise is ignored).
(d) Compute the SNR at the output of the filter at t = Tb.
(e) Determine the probability of error as a function of SNR.
(f) Plot the probability of error (on a log scale) as a function of SNR (in decibels).

What is the minimum SNR to achieve a probability of error of 10−6?
5.19 (Bandwidth) Consider an antipodal binary communication system, where the two

signals s(t) and −s(t) are used to transmit bits 0 and 1 respectively every Tb seconds.
You have learned in this chapter that the error performance of the optimum receiver
for such a system depends on the energy, not the specific shape of the signal s(t).
Despite this fact, the choice of s(t) is important in any practical design because it
determines the transmission bandwidth of the system.

Since the signal s(t) is time-limited to Tb seconds, it cannot be bandlimited and
a bandwidth definition is required. Here we define W to be the bandwidth of the
signal s(t) if ε% of the total energy of s(t) is contained inside the band [−W, W].
Mathematically, this means that

∫ W

−W
|S(f )|2df∫ ∞

−∞
|S(f )|2df

=
2
∫ W

0
|S(f )|2df

E
= ε

100
, (P5.25)

where S(f ) is the Fourier transform of s(t). Consider the following three signals:
(i) rectangular pulse: s(t) = √1/Tb, 0 ≤ t ≤ Tb;

(ii) half-sine: s(t) = √2/Tb sin (π t/Tb), 0 ≤ t ≤ Tb;
(iii) raised-cosine: s(t) = √2/3Tb

[
1− cos (2π t/Tb)

]
, 0 ≤ t ≤ Tb.
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Note that all the three signals have been normalized to have unit energy, i.e., E = 1
(joule).
(a) Derive (P5.25) for the above three signals. Try to put the final expressions in a

form such that WTb appears only in the limit of the integrals.
(b) Based on the expressions obtained in (a), evaluate WTb for the three signals for

each of the following values of ε: ε = 90, ε = 95, and ε = 99.
Remark For this part, you need to do the integration numerically. In Matlab, the
routine quadl is useful for numerical integration. Type help quadl to see
how to use this routine.

5.20 In antipodal signaling, two signals s(t) and −s(t) are used to transmit equally
likely bits 0 and 1, respectively. Consider two communication systems, called sys-
tem (i) and system (ii), that use two different time-limited waveforms as shown in
Figure 5.52.

0
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( )s t
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A

0
t

( )s t

2T

B

T

System (i) System (ii)�Fig. 5.52 Two possible waveforms for antipodal signaling.

(a) What is the relationship between the parameters A and B of the two waveforms if
the two communication systems have the same error performance? Explain your
answer.

(b) Since the two signals in Figure 5.52 are time-limited, they cannot be bandlimited
and a bandwidth definition is required. Here we define W to be the bandwidth
of the signal s(t) if 95% of the total energy of s(t) is contained inside the band
[−W, W]. Assume that both systems have the same bit rate of 2 Mbps. What
are the required bandwidths of the two systems? Which system is preferred
and why?

(c) Consider the system (i) in Figure 5.52. How large does the voltage level A need
to be to achieve an error probability of 10−6 if the bit rate is 2 Mbps and N0/2 =
10−8 (watts/hertz)?

5.21 (A diversity system) Consider the antipodal signaling system in Figure 5.53, where
the signals s(t) and−s(t) are used to transmit the information bits “1” and “0” respec-
tively. The bit duration is Tb and s(t) is assumed to have unit energy. The signal is
sent via two different channels, denoted “A” and “B,” to the same destination. Each
channel is described by a gain factor (VA or VB) and AWGN (wA(t) or wB(t)). The
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noises wA(t) and wB(t) both have zero means and PSDs of σ 2
A and σ 2

B respectively.
Furthermore, they are independent noise sources.

VA

± s(t)

∫(•)dt
0

Tb

∫(•)dt
0

Tb

K

Channel A

Channel B

wA(t)

VB wB(t)

s(t)

s(t)

rA(t)

rB(t) rB = ±VB + wB

rA = ±VA + wA

r ≥ 0 ⇒ 1D

r < 0 ⇒ 0D

�Fig. 5.53 A diversity system.

The receiver for such a system consists of two correlators, one for each channel,
as shown in Figure 5.53. The output of one correlator, say the one corresponding
to channel A, is passed through an amplifier with an adjustable voltage gain K. The
signals are then added before being compared with a threshold of zero to make the
decision.
(a) For a fixed K, find the probability of error of this system. Hint The noise samples

wA and wB are independent, zero-mean, Gaussian random variables with vari-
ances σ 2

A and σ 2
B respectively. Furthermore, the sum of two independent Gaussian

random variables is a Gaussian random variable whose variance equals the sum
of the individual variances.

(b) Find the value of K that minimizes the probability of error. Hint Minimizing Q(x)
is equivalent to maximizing x.

(c) What is the probability of error when the optimum value of K is used?
(d) What is the probability of error when K is simply set to 1? Comment.
Remark Using diversity is an effective technique that is used to combat fading, a
channel degradation commonly experienced in wireless communications.

The next two problems look at channels that are not modeled as AWGN. Though the
general results obtained for the AWGN channel do not apply directly one can still use
the concepts developed in this chapter. In particular, as mentioned in the summary
section, the likelihood ratio test of (5.65) holds.

5.22 (Detection in Laplacian noise) Consider the communication system model in Figure
5.54, where P[s1(t)] = P1 and P[s2(t)] = P2. The noise is modeled to be Laplacian.
At the receiver, you sample r(t) uniformly m times within the time period [0, Tb].
The samples are taken far enough apart so that you feel reasonably confident that the
noisy samples rj = r(jTb/m), j = 1, . . . , m, are statistically independent.
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�Fig. 5.54 A binary communication system with additive noise.

(a) Determine the two conditional density functions for a single sample, i.e.,
f (rj|1T ) and f (rj|0T ). From this what are the conditional density functions
f (r1, r2, . . . , rm|1T ) and f (r1, r2, . . . , rm|0T )?

(b) Find the natural logarithm of the likelihood ratio:

f (r1, r2, . . . , rm|1T )

f (r1, r2, . . . , rm|0T )
. (P5.26)

Simplify the sum as much as possible by considering the samples that fall in three
different regions: rj < 0 with m1 samples; 0 < rj < V with m2 samples; V <

rj with m3 samples, where m1 + m2 + m3 = m. Considering the three different
regions should allow you to eliminate the magnitude operation.

(c) Derive the decision rule that minimizes the error probability.
5.23 (Optical communications) As one goes higher and higher in frequency, the wave-like

nature of electromagnetic radiation recedes into the background and quantum effects
become more pronounced. In optical communications, one turns on the source (say a
semiconductor laser) for a fixed interval of time and lets it radiate energy (photons).
This represents the binary digit “1.” To transmit a “0” the laser is switched off but
because of background radiation, there are photons arriving at the receiver even when
the laser is switched off. A common model for the number of photons emitted per
unit time is that it is random and behaves like a Poisson point process. Thus

P[k photons emitted in a unit interval] = λke−λ

k!
, k = 0, 1, . . . , (P5.27)

where λ is the mean arrival rate with units of photons per unit time. Let the signaling
interval be Tb seconds. The receiver counts the number of photons received in the
interval [0, Tb] and based on this count makes a decision as to whether a “0” or
“1” was transmitted. Assume that the probability of transmitting a “1” is the same
as transmitting “0.” Note also that λ = λs + λn or λ = λn, where λs is due to the
transmitter laser being turned on and λn is due to the background radiation.
(a) Design the receiver that minimizes the probability of error.
(b) After designing the receiver, derive an expression for the error performance. Note

that the average transmitted energy is hfTb, where hf is the energy of photon with
frequency f , h is Planck’s constant (h = 6.6× 10−34) and λsTb is the average
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number of signal photons per bit interval. Is the error performance dependent on
“some” SNR?

5.24 (Signal design for nonuniform sources) Consider a binary communication system
where s1(t) and s2(t) are used for the transmission of bits “0” and “1,” respectively,
over an AWGN channel. The bit duration is Tb and both s1(t) and s2(t) are time-
limited to [0, Tb]. Furthermore, the a priori probabilities of the information bits are

P[0T ] = P[s1(t)] = p ≤ 0.5, P[1T ] = P[s2(t)] = 1− p ≥ 0.5. (P5.28)

The two signals s1(t) and s2(t) have energies E1 and E2. The optimum receiver for
such a system implements the following decision rule:∫ Tb

0
r(t)[s2(t)− s1(t)]dt

1D

�
0D

E2 − E1

2
+ N0

2
ln

(
p

1− p

)
, (P5.29)

where r(t) is the received signal and N0/2 is the PSD of the AWGN.
It was determined in this chapter that the error performance of the above optimum

receiver is

P[error] = pQ

(
T − ŝ12√

N0/2

)
+ (1− p)

[
1− Q

(
T − ŝ22√

N0/2

)]
, (P5.30)

where

T = ŝ12 + ŝ22

2
+ N0

2(ŝ22 − ŝ12)
ln

(
p

1− p

)
(P5.31)

and ŝ12, ŝ22 are the projections of s1(t) and s2(t) onto φ̂2(t), respectively. The basis
function φ̂2(t) is given by

φ̂2(t) = s2(t)− s1(t)

(E2 − 2ρ
√

E1E2 + E1)1/2
, (P5.32)

with

ρ = 1√
E1E2

∫ Tb

0
s1(t)s2(t)dt. (P5.33)

The above results apply for an arbitrary source distribution (i.e., arbitrary value of
p ≤ 0.5) and arbitrary signal set {s1(t), s2(t)}. Now consider the case that p is fixed
but one can freely design s1(t) and s2(t) to minimize P[error] in (P5.30). Of course,
the design is subject to a constraint on the average transmitted energy per bit:

Ēb = E1p+ E2(1− p). (P5.34)

(a) Show that the error probability in (P5.30) can be written as

P[error] = pQ

(√
A− B√

A

)
+ (1− p)Q

(√
A+ B√

A

)
, (P5.35)

where A = (ŝ22 − ŝ12)2/2N0 = d2
21/2N0 = (E2 − 2ρ

√
E1E2 + E1)/2N0 and B =

0.5 ln((1− p)/p). It can be shown from (P5.35) that P[error] is minimized when
A, or equivalently d21, is maximized.
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(b) Consider the special case of orthogonal signaling, i.e., ρ = 0. Design the two
signals s1(t) and s2(t) to minimize P[error].

(c) Assume that p = 0.1. Use Matlab to plot on the same figure the P[error] of the
system that uses your signal design obtained in (b) and also the P[error] of the
system that uses the “conventional” design of E1 = E2 = Ēb. Show your plots
over the ranges [0 : 1 : 20] decibels for Ēb/N0 and [10−7 → 100] for P[error].
What is the gain in Ēb/N0 of your design over the conventional design at
P[error] = 10−5?

(d) Now let ρ be arbitrary. Design the two signals s1(t) and s2(t) to minimize
P[error]. Repeat (c) for the signal set obtained in this part and antipodal signaling
(also assume that p = 0.1).
Hint Argue that the optimal signal set must correspond to ρ < 0.

5.25 (A ternary communication system) Three messages m1, m2, and m3 can be broad-
casted by transmitting one of three signals, s(t), 0, or −s(t) every T seconds,
respectively. The received signal is

r(t) =
⎧⎨⎩

s(t)+ w(t), if m1 is broadcast
w(t), if m2 is broadcast

−s(t)+ w(t), if m3 is broadcast
, (P5.36)

where w(t) is white Gaussian noise with zero mean and PSD of N0/2. The optimum
receiver computes the correlation metric

� =
∫ T

0
r(t)s(t)dt (P5.37)

and compares each specific quantity � with a threshold A and a threshold −A. If
� > A, the decision is made that m1 was broadcast. If � < −A the decision is made
in favor of m3. If −A ≤ � ≤ A, the decision is made in favor of m2.
(a) Determine the three conditional probabilities of error: P[error|m1], P[error|m2],

and P[error|m3].
(b) Determine the average probability of error P[error] as a function of the threshold

A, where the a priori probabilities of the three messages are P[m1] = P[m3] = 1
4

and P[m2] = 1
2 .

(c) Determine the value of A that minimizes the average probability of error when
the a priori probabilities of three signals are given as in (b). How does the
value of A change if three signals are equally probable? Hint ∂Q(x)/∂x =
−(1/

√
2π )e−x2/2.

Remark This problem illustrates that the concepts developed in this chapter can also
be applied to a communication system that employs more than two waveforms.

5.26 Show that the DC signal given in (5.131) is a periodic signal with fundamental
period Tb.

5.27 (Regenerative repeaters or why go digital) In analog communication systems, ampli-
fiers (called repeaters) are used to periodically boost the signal level. However, each
amplifier also boosts the noise in the system. In contrast, digital communication sys-
tems allow one to detect and regenerate a clean (noise-free) signal to send over the
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transmission channel. Such devices, called regenerative repeaters, are commonly
used in wireline and fiber optic communication channels.

Because a noise-free signal is regenerated at each repeater, the additive noise does
not accumulate. However, when errors occur in the detection process of a repeater,
the errors propagate forward to the following repeaters in the channel. To evaluate
the effect of errors on the performance of the overall system, suppose that antipo-
dal signaling is used. The bit error probability for one hop (transmission from one
repeater to the next) is Q

(√
2Eb/N0

)
, where Eb is the energy per bit, N0/2 is the

two-sided PSD of AWGN and Eb/N0 is the SNR.
Typically errors occur with a low probability and one may ignore the probability

that any given bit will be detected incorrectly more than once in transmission through
a channel with K repeaters. Under this reasonable assumption, the number of errors
increases linearly with the number of regenerative repeaters used in the channel.
Therefore, the overall bit error probability can be approximated as

P[error]digital ≈ KQ

(√
2Eb

N0

)
. (P5.38)

For analog communication systems, the use of K analog repeaters in the channel
reduces the received SNR by K, and hence, the bit error probability is

P[error]analog ≈ Q

(√
2Eb

KN0

)
. (P5.39)

It is obvious from the above two expressions that for the same error performance,
the use of regenerative repeaters yields a significant saving in the transmitted power
as compared to the use of analog repeaters. Because of this regenerative repeaters are
preferable in digital communication systems. Nevertheless, in channels that are used
to transmit both analog and digital signals (such as the wireline telephone channels),
analog repeaters are generally employed.

Consider a binary communication system that transmits data over a wireline chan-
nel of length 2000 kilometers. Repeaters are used every 20 kilometers to offset the
effect of channel attenuation. Determine the required SNR, Eb/N0, to achieve a bit
error probability of 10−6 if:
(a) analog repeaters are used;
(b) regenerative repeaters are used.

5.28 (Simulation of a binary communication system using antipodal signaling) The prob-
ability of bit error, or bit error rate (BER), is an important performance parameter for
any digital communication system. However, obtaining such a performance parame-
ter in a closed-form expression is sometimes very difficult, if not impossible. This is
especially true for complex systems that employ error control coding, multiple access
techniques, wireless transmission, etc. It is common in the study and design of digi-
tal communication systems that the BER is evaluated through computer simulation.
In this problem you will use Matlab to write a simple simulation program to test
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the BER performance of a binary communication system using antipodal signaling.
The specific steps in your program are as follows:
• Information source Generate a random vector b that contains L information bits

“0” and “1.” The two bits should be equally likely. For this step, the functions
rand and round in Matlab might be useful.

• Modulator The binary information bits contained in vector b are transmitted using
antipodal signaling, where a voltage V is used for bit “1” and−V for bit “0.” Thus
the transmitted signal is simply y=V*(2*b-1);

• Channel The channel noise is AWGN with two-sided power spectral density
N0/2 = 1 (watts/hertz). The effect of this AWGN can be simulated in Matlab by
adding a noise vector w to the transmitted signal y. The vector of independent
Gaussian noise samples with variance of 1 can be generated in Matlab as follows:
w=randn(1,length(y)); The received signal r is simply r=y+w;
Remark In essence, the above implements a discrete (and equivalent) model of
an antipodal signaling system. In particular, the simulated vector r is the output
of the correlator or matched filter. Also for simplicity, it is assumed that Tb = 1
second.

• Demodulator (or receiver) With antipodal signaling, the demodulator is very
simple. It simply compares the received signal with zero to make the decision.
Determine the minimum values of V to achieve the bit error probability levels of

10−1, 10−2, 10−3, 10−4, and 10−5. Use each value of V you found to run your Matlab
program and record the actual BER. Plot (on a logarithmic scale) both the theoretical
and experimental BER versus V2 (decibels) on the same graph and compare.
Remark If you expect a BER of 10−K for K = 1, . . . , 5, then the length L of the infor-
mation bit vector b should be at least L = 100× 10K . This is to ensure that at least
about 100 erroneous bits are recorded in each simulation run and the experimental
BER value is reasonably reliable.
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6.1 Introduction

As pointed out in the previous chapter, binary digits (or bits) “0” and “1” are used simply to
represent the information content. They are abstract (intangible) quantities and need to be
converted into electrical waveforms for effective transmission or storage. How to perform
such a conversion is generally governed by many factors, of which the most important
one is the available transmission bandwidth of the communication channel or the storage
media.

In baseband1 data transmission, the bits are mapped into two voltage levels for direct
transmission without any frequency translation. Such a baseband data transmission is appli-
cable to cable systems (both metallic and fiber optics) since the transmission bandwidth of
most cable systems is in the baseband. Various baseband signaling techniques, also known
as line codes, have been developed to satisfy a number of criteria. Typical criteria are:

(i) Signal interference and noise immunity Depending on the signal sets, certain signaling
schemes exhibit superior performance in the presence of noise as reflected by the
probability of bit error.

(ii) Signal spectrum Typically one would like the transmitted signal to occupy as small
a frequency band as possible. For baseband signaling, this implies a lack of high-
frequency components. However, it is sometimes also important to have no DC
component. Having a signaling scheme which does not have a DC component implies
that AC coupling via a transformer may be used in the transmission channel. This
provides electrical isolation which tends to reduce interference. Moreover, it is also
possible in certain signaling schemes to match the transmitted signal to the special
characteristics of a transmission channel.

(iii) Signal synchronization capability In implementing the receiver, it is necessary to
establish the beginning and the end of each bit transmission period. This typically
requires a separate clock to synchronize the transmitter and the receiver. Self-
synchronization is, however, also possible if there are adequate transitions in the
transmitted baseband signal. Several self-synchronizing baseband schemes have also
been developed.

1 Baseband modulation can be defined, somewhat imprecisely, as a modulation whose PSD is huddled around
f = 0 (hertz).
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(iv) Error detection capability Some signaling schemes have an inherent error detection
capability. This is made possible by introducing constraints on allowable transitions
among the signal levels and exploiting those constraints at the receiver.

(v) Cost and complexity of transmitter and receiver implementations This is still a fac-
tor which should not be ignored even though the price of digital logic continues to
decrease.

This chapter discusses four baseband signaling schemes (also known as line codes)
from the aspects of the first three criteria. The four signaling schemes are commonly
known as nonreturn-to-zero-level (NRZ-L), return-to-zero (RZ), bi-phase-level (Biφ-L)
or Manchester, and delay modulation or Miller.

6.2 Baseband signaling schemes

Nonreturn-to-zero (NRZ) code The NRZ code can be regarded as the most basic
baseband signaling scheme, since it appears “naturally" in synchronous digital circuits.
In NRZ code, the signal alternates between the two voltage levels only when the current
bit differs from the previous one.

Figure 6.1(a) represents an example of NRZ waveform, where Tb is the bit duration.
Note that there is only one polarity in the waveform, hence it is also known as unipolar NRZ
waveform. This is the simplest version of NRZ and can easily be generated. However, the
DC component of a long random sequence of ones and zeros is nonzero. More precisely,
the DC component is VP[1T ]+ 0P[0T ] = VP2 + 0P1 = VP2. For the common case of
equally likely bits, the DC component is one-half of the positive voltage, i.e., 0.5V (volts).
Therefore it is common to pass the NRZ waveform through a level shifter. The resultant
waveform then alternates between +V and −V as shown in Figure 6.1(b). It is called
the polar NRZ or NRZ-L waveform, whose DC component is VP[1T ]+ (−V)P[0T ] =
V(P2 − P1). Obviously, the DC component of the NRZ-L waveform is zero if the two bits
are equally likely.

Observe that the NRZ-L code produces a transition whenever the current bit in the input
sequence differs from the previous one. These transitions can be used for synchronization
purposes at the receiver. However, if the transmitted data contain long strings of simi-
lar bits, then the timing information is sparse, and regeneration of the clock signal at the
receiver can be very difficult.

Return-to-zero (RZ) code The RZ code is similar to the NRZ code except that the
information is contained in the first half of the bit interval, while the second half is always
at level “zero.” An example of an RZ waveform is shown in Figure 6.1(c). Once again the
code has a DC component, which is (0.5V)P[1T ]+ 0P[0T ] = (0.5V)P2. If P1 = P2 = 0.5,
then the DC component is one-fourth of the positive voltage, i.e., 0.25V (volts). Figure 6.2
shows that the RZ code is generated by gating the basic NRZ signal with the transmitter
clock.
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In order to compare RZ fairly with the NRZ-L code in terms of error probability, we
shall consider the RZ-L (or bipolar RZ) code where the two levels are +V and −V rather
than V and 0. The corresponding waveform of RZ-L code is shown in Figure 6.1(d). The
DC component of RZ-L waveform is −VP1, which is −0.5V (volts) if P1 = P2 = 0.5.
Thus the code still has a nonzero DC component.

Regarding timing information, note that as opposed to NRZ, with RZ a long string of “1”
bits results in transitions from which a clock at the receiver can be regenerated. A string of
“0” bits, however, does not have any transitions just as with the NRZ code. For this reason
and the fact that it has poor spectral properties and inferior error performance, RZ coding
is not used except in some very elementary transmitting and recording equipment.

Biphase (Biφ ) or Manchester code To overcome the poor synchronization capabil-
ity of NRZ and RZ codes, biphase (Biφ) coding has been developed. It encodes information
in terms of level transitions in the middle of a bit interval. Note that this conversion of bits
to electrical waveforms is in a sharp contrast to what done in NRZ and RZ codes, where
the information bits are converted to voltage levels. The biphase conversion (or mapping,
or encoding) rules are as follows:

• Bit “1” is encoded as a transition from a high level to a low level occurring in the middle
of the bit interval.

• Bit “0" is encoded as a transition from a low level to a high level occurring in the middle
of the bit interval.

• An additional “idle" transition may have to be added at the beginning of each bit interval
to establish the proper starting level for the information carrying transition.

Examples of Biφ and Biφ-L waveforms are shown in Figures 6.1(e) and 6.1(f), respec-
tively. The DC component of the Biφ signal is evaluated as (0.5V)P[1T ]+ (0.5V)P[0T ] =
0.5V[P2 + P1] = 0.5V , while the DC component of the Biφ-L signal is obviously 0. Note
that the above results for the DC component hold regardless of the a priori probabilities of
the bits. Therefore the Biφ-L code does not have a DC component. Figure 6.3 shows that
the bi-phase code can be generated with an XOR logic whose inputs are the basic NRZ
signal and the transmitter clock.

The Biφ signal, however, occupies a wider frequency band than the NRZ signal. This is
due to the fact that for alternating bits there is one transition per bit interval while for two
identical consecutive bits, two transitions occur per bit interval. On the other hand, because
there is a predictable transition during every bit interval, the receiver can synchronize on

Clock
XOR

NRZ
Biφ

�Fig. 6.3 Biφ encoder.
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that transition. The Biφ code is thus known as a self-synchronizing code. It is commonly
used in local area networks (LANs), such as the Ethernet.

Mil ler code This code is an alternative to the Biφ code. It has at least one transition
every two-bit interval and there are never more than two transitions every two-bit interval.
It thus provides good synchronization capabilities, while requiring less bandwidth than the
Biφ signal. The encoding rules are:

• Bit “1” is encoded by a transition in the middle of the bit interval. Depending on the
previous bit this transition may be either upward or downward.

• Bit “0” is encoded by a transition at the beginning of the bit interval if the previous bit
is “0”. If the previous bit is “1,” then there is no transition.

The waveforms for Miller and Miller-level (Miller-L) codes are illustrated in Fig-
ures 6.1(g) and 6.1(h), respectively. The Miller-L signal can be generated from the NRZ
signal by the circuit shown in Figure 6.4.

6.3 Error performance

To determine the probability of bit error for each of the line codes we shall consider that
the transmitted signals are corrupted by zero-mean AWGN noise of spectral strength N0/2
(watts/hertz) and that the two bits, “0” and “1,” are equally likely. As shown in the previous
chapter, the error probability of each line code is readily determined by identifying the
elementary signals used for bits “0” and “1” and representing them in the signal space
diagram. In all cases, the orthonormal basis set for the signal space can be determined
simply by inspection. For each signaling scheme, a voltage swing from −V to V volts is
also assumed.

NRZ-L code The elementary signals are shown in Figure 6.5(a), where each signal
has energy ENRZ-L = V2Tb (joules). The single basis function and signal space plot
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are given in Figures 6.5(b) and 6.5(c). Applying (5.105), the probability of bit error is
given by

P[error]NRZ-L = Q
(√

2ENRZ-L/N0

)
. (6.1)

RZ-L code Figure 6.6 shows the elementary signals, the basis functions, the signal space
together with the optimum decision regions of RZ-L signaling. Each signal has energy
ERZ-L = V2Tb = ENRZ-L (joules) and the error probability is given as

P[error]RZ-L = Q
(√

ERZ-L/N0

)
. (6.2)

Biphase-level (Biφ -L) code Similar to the NRZ-L code, Biφ-L code is also an antipo-
dal signaling (see Figure 6.7). Its elementary signals are, however, different in shape
compared to that of NRZ-L code (so as to have the self-synchronizing capability dis-
cussed before). Here each signal has energy EBiφ-L = V2Tb = ENRZ-L joules and the error
probability is expressed as

P[error]Biφ-L = Q
(√

2EBiφ-L/N0

)
. (6.3)

Mil ler- level (Mil ler-L) code For this code there are four elementary signals, two of
which represent “1” bits with the other two representing “0” bits. The four elementary
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signals are shown in Figure 6.8(a), whereas the two orthonormal basis functions needed
to represent these four signals are plotted in Figure 6.8(b). The energy in each signal is
EM-L = V2Tb = ENRZ-L joules.

The minimum-distance receiver consists of projecting the received signal, r(t), onto φ1(t)
and φ2(t), which generates the statistics (r1, r2). Since each signal is equally likely and has
an a priori probability of 1/4, the decision rule is to choose the signal to which the point
(r1, r2) is closest. The decision space is shown in Figure 6.9.
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To determine the bit error probability, note that

P[error] = 1− P[correct], (6.4)

where

P[correct] =
4∑

i=1

P[si(t)]P[correct|si(t)]. (6.5)

Also P[si(t)] = 1/4, i = 1, 2, 3, 4. Because of the symmetry, P[correct|si(t)] is the same
regardless of which signal is considered. Therefore

P[correct] = P[correct|si(t)]. (6.6)

The above probability can be found by evaluating the volume under the pdf
f (r1, r2|s1(t)). Consider the volume under f (r1, r2|s1(t)) over region 1 shown as the shaded
area in Figure 6.10. The random variables r1 and r2 are statistically independent Gaussian
random variables, with means of

√
EM-L and 0 (volts), respectively, and with the same

variance of N0/2 (watts).
Rather than evaluating the integral with the joint pdf of r1 and r2, we change variables

so that the integral is expressed in terms of the joint pdf of r̂1 and r̂2, which are also
statistically independent Gaussian random variables with the same mean

√
EM-L/2 and
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variance N0/2. This is much more convenient since the region of the double integrals can
be expressed as two independent regions of variables r̂1, r̂2. In particular,

P[correct|si(t)] =
∫ ∞

0

∫ ∞

0
f
(
r̂1, r̂2|si(t)

)
dr̂1dr̂2

=
[∫ ∞

0
f
(
r̂1|si(t)

)
dr̂1

] [∫ ∞

0
f
(
r̂2|si(t)

)
dr̂2

]

=
[∫ ∞

0

1√
πN0

exp

{(
r̂ −√EM-L/2

)2
N0

}
dr̂

]2

=
[
1− Q

(√
EM-L/N0

)]2
.

(6.7)
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The bit error probability for the Miller code is therefore given by

P[error]M-L = 1−
[
1− Q

(√
EM-L/N0

)]2

= 2Q
(√

EM-L/N0

)
−
[
Q
(√

EM-L/N0

)]2
. (6.8)

Comparing the four signaling schemes investigated in this chapter we see that they have
the same energy per bit, i.e.,

ENRZ-L = ERZ-L = EBiφ-L = EM-L = V2Tb ≡ Eb (joules/bit). (6.9)
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Therefore, in terms of energy per bit, Eb, the error probabilities for the signaling
schemes are:

P[error]NRZ-L = P[error]Biφ-L = Q

(√
2Eb

N0

)
, (6.10)

P[error]RZ-L = Q

(√
Eb

N0

)
, (6.11)

and

P[error]M-L = 2Q

(√
Eb

N0

)
−
[

Q

(√
Eb

N0

)]2

(6.12)

≈ 2Q

(√
Eb

N0

)
. (6.13)

The approximation in (6.13) follows from the fact that, because the typical value for the
error probability is 10−4 or less, the second term in (6.12) is insignificant compared to the
first term.

These expressions are plotted in Figure 6.11 as functions of Eb/N0. What the above
expressions say is that the SNR, Eb/N0, would have to be double (i.e., it requires 3 decibels
more transmitted power) for RZ-L (or a little more than double for Miller-L) coding to
achieve the same error probability as NRZ-L or Biφ-L coding. This fact can also be verified
from Figure 6.11 at high SNR region.
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6.4 Optimum sequence demodulation for Miller signaling

To this point the demodulation developed in Chapter 5 and applied in this chapter to the
four line codes is a symbol-by-symbol demodulator. This type of demodulator assumes
that there is no information about the transmitted sequence other than that in the present
bit interval. Though this is true for the first three line codes it does not hold for Miller
signaling. Miller modulation has memory, since the transmitted signal in the present bit
interval depends on both the present bit and also the previous bit. In demodulation of the
received signal knowledge of this memory can, and should be, exploited to make a decision.
This leads to sequence demodulation, rather than symbol-by-symbol demodulation.

Before discussing sequence demodulation, a simple example is given to clearly illustrate
the shortcoming of the symbol-by-symbol receiver when a modulation has memory.

Example 6.1 Assume that the four Miller signals si(t), i = 1, 2, 3, 4 have unit energy.
The projections of the received signals onto φ1(t) and φ2(t), denoted by r(k)

1 , r(k)
2 where k

signifies the bit interval, are given as

{
r(1)

1 = −0.2, r(1)
2 = −0.4

}
,
{

r(2)
1 = +0.2, r(2)

2 = −0.8
}

,{
r(3)

1 = −0.61, r(3)
2 = +0.5

}
,
{

r(4)
1 = −1.1, r(4)

2 = +0.1
}

.
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Table 6.1 Distances squared from the received signals to four possible transmitted signals

Transmitted signal
Distance squared

0 → Tb Tb → 2Tb 2Tb → 3Tb 3Tb → 4Tb

s1(t) 1.6 1.28 2.8421 4.42
s2(t) 2.0 3.28 0.6221 2.02
s3(t) 0.8 2.08 0.4021 0.02
s4(t) 0.4 0.08 2.6221 2.42

The distances squared from the received signal to all four possible transmitted signals
in each bit interval are tabulated in Table 6.1. Thus the symbol-by-symbol minimum-
distance receiver decides {s4(t), s4(t), s3(t), s3(t)} as the sequence of transmitted signals,
which corresponds to the bit sequence {1100}. However, according to the encoding
rule of Miller modulation, the sequence {s4(t), s4(t), s3(t), s3(t)} is not a valid transmit-
ted sequence. This implies that there must be an error in the above symbol-by-symbol
decisions. �

The above example suggests that a better decision rule could be achieved by exploiting
the memory of the Miller code. One possible way to demodulate the received signal to an
allowable transmitted sequence is described next. Assume that a total of n bits is transmit-
ted. Each n-bit pattern results in a transmitted signal over 0 ≤ t ≤ nTb. Obviously, the total
number of different bit patterns (or signals) is M = 2n, i.e., it grows exponentially with n.
Typically n is a large number and 2n can be a very very big number.2 Denote the entire
transmitted signal over the time interval [0, nTb] as Si(t), i = 1, 2, . . . , M = 2n. The signal
Si(t) can also be written as Si(t) =∑n

j=1 Sij(t), where Sij(t) is one of the four possible sig-
nals used in Miller code in the bit interval [(j− 1)Tb, jTb] and zero elsewhere. Note the
meaning of the subscript notation, i refers to the specific transmitted signal under consid-
eration and j to the Miller signal in the jth bit interval. At the receiver, the received signal
over the time interval [0, nTb] is r(t) and it can also be written as r(t) =∑n

j=1 rj(t), where
rj(t) = r(t) in the interval [(j− 1)Tb, jTb] and zero elsewhere.

To decide which of the M possible signals was transmitted one can compute the distance
from each signal Si(t) to the received signal r(t), which is simply

di =
√∫ nTb

0
[r(t)− Si(t)]2dt. (6.14)

After such distances are computed for all Si(t), i = 1, 2, . . . , M = 2n, the decision rule is to
choose the transmitted signal to be the one that is closest to r(t).

The computation of the distance in the above decision rule can be simplified by project-
ing the continuous-time transmitted and received signals onto the signal space of Miller

2 Unless you are a loan shark or a banker (which may amount to the same thing) exponential growth is bad, while
linear growth is good.
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code. To this end, proceed as follows. First, note that if the distance is minimum then
the square of it will also be minimum. Then compute d2

i by splitting the integral up as
follows

d2
i =

n∑
j=1

∫ jTb

(j−1)Tb

[rj(t)− Sij(t)]
2dt. (6.15)

Now the term of summation d2
ij =

∫ jTb
(j−1)Tb

[rj(t)− Sij(t)]2dt is simply the distance squared

of rj(t) to Sij(t). Let [r(j)
1 , r(j)

2 ] be the outputs of the two correlators (or matched filters)

in the [(j− 1)Tb, jTb] time interval and [S(j)
i1 , S(j)

i2 ] the coefficients in the representation of

Sij(t). We know that d2
ij = (r(j)

1 − S(j)
i1 )2 + (r(j)

2 − S(j)
i2 )2. Therefore, the distance computation

in (6.14) can be rewritten as

d2
i =

n∑
j=1

[(
r(j)

1 − S(j)
i1

)2 +
(

r(j)
2 − S(j)

i2

)2
]

. (6.16)

If the transmitted bits are equally likely and if the channel is AWGN, it can be shown
that (see Chapter 7) the above decision rule, which is based on the minimum sequence
distance, constitutes an optimum receiver for Miller signaling. It is optimum in the sense
that the probability of making a sequence error is minimized.

Viterbi algorithm Though the optimum decision rule is rather simple in its interpre-
tation, it requires an extensive and simply impossible amount of computation if direct
evaluation of the M = 2n distances in (6.16) is to be carried out. Fortunately, a much more
efficient algorithm, due to A. J. Viterbi and known as the Viterbi algorithm [1, 2], exists to
implement the optimum decision rule. At the heart of the Viterbi algorithm are the con-
cepts of the state and trellis diagrams that are used to elegantly represent all the possible
transmitted sequences.

In general, the state of a system can be looked upon very simply (and perhaps somewhat
loosely) as what information from the past do we need at the present time, which together
with the present input allows us to determine the system’s output for any future input.
Here consider the system to be the modulator that produces the Miller encoded signal.
Recall that in Miller signaling, the transmitted signal depends on the bit to be transmitted
in the present interval and the signal, or bit, transmitted in the previous interval. There are
four possible previous signals and therefore there are four states. The state diagram that
represents the Miller encoding rule is shown in Figure 6.12.

Although the state diagram in Figure 6.12 clearly and concisely describes the encoding
rule, it only describes the rule in a single bit interval. To illustrate the modulator’s output for
any possible input sequence one can follow the path dictated by the input bits and produce
the output signal. However, a more informative approach is to use a trellis diagram. In
essence, a trellis diagram is simply an unfolded state diagram. Figure 6.13 shows the trellis
diagram for Miller modulation over the interval [0, 4Tb].
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Some important remarks regarding Figure 6.13 are as follows:

• It is assumed that the initial (or starting) state is s1(t). In practice, this can always be
guaranteed by an agreed protocol.

• A transmitted signal in a given bit interval is represented by a branch connecting two
states. The solid line corresponds to bit “0,” whereas the dashed line corresponds to bit
“1.”

• In the fourth bit interval ([3Tb, 4Tb]) the trellis is fully expanded. From this bit interval
on, the trellis pattern is the same.

• Each possible output sequence is represented by a path through the trellis. Conversely,
each path in the trellis represents a valid (or allowable) Miller signal.

State

Input bit

Output signal

1/s4(t)

1/s4(t)

0/s3(t)

0/s1(t)

0/s1(t)

1/s2(t)1/s2(t)

s1

s2

s4

s3

0/s3(t)

�Fig. 6.12
State diagram of the Miller code. The state is defined as the signal transmitted in the previous bit interval.

States

Bit sequence

Input bit = 0

Input bit = 1

Tb0 2Tb 3Tb 4Tb

Transmitted signal

s1(t)

s3(t)

s2(t)

s4(t)

⋅⋅⋅

�Fig. 6.13 Trellis diagram of Miller code.
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Working with the trellis diagram, the main steps in the Viterbi algorithm to find the
sequence (i.e., the path through the trellis) that is closest to the received signal are as fol-
lows.

Step 1: Start from the initial state (s1(t) in our case).
Step 2: In each bit interval, calculate the branch metric, which is the distance squared

between the received signal in that interval with the signal corresponding to each
possible branch. Add this branch metric to the previous metrics to get the partial
path metric for each partial path up to that bit interval.

Step 3: If there are two partial paths entering the same state, discard the one that has a
larger partial path metric and call the remaining path the survivor.

Step 4: Extend only the survivor paths to the next interval. Repeat steps 2–4 till the end of
the sequence.

In step 3 above, the procedure where one of the competing partial paths is discarded at
each state requires some justification. Namely, nothing that is received in the future will
give one any information about what happened in the past. This is because future noise
samples are statistically independent of present ones (recall that the noise is white and
Gaussian) and also the bits are assumed to be statistically independent.

Example 6.2 To illustrate the Viterbi algorithm, let us revisit Example 6.1 and apply the
Viterbi algorithm to demodulate the received sequence.

For the first interval there are only two possibilities. The distances squared of the
received signal to these two possibilities are computed and are shown in Figure 6.14.

At this point no decision is made. Rather we continue to the next interval and compute
the distance squared of the received signal (in the interval [Tb, 2Tb]) to the signal along
a particular branch. The distances squared of each possible transmitted sequence to the
received sequence are (see Figure 6.15):

00 → 2.08; 10 → 4.08; 01 → 0.88; 11 → 2.08.

If we were forced (or inclined) to make a decision at this stage we would choose
sequence 01 for a rather “obvious” reason. Note that symbol-by-symbol demodulation,
which ignores the memory, results in the sequence 11 being chosen. Again we do not make

States
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2.0

Accumu-
lated d2

Tb

s1(t)

s3(t)

s2(t)

s4(t)

�Fig. 6.14 Accumulated distances squared in the first bit interval.
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any firm decision as to which sequence is the most likely, but proceed to the next interval.
However, we make one decision, namely, which sequence(s) cannot be most likely (step
3 of the procedure). For the two sequences that end in state s4(t) we discard one, namely,
sequence 11. The picture now looks as in Figure 6.16.

In the third bit interval, the distance squared of the received signal to each possible signal
during this bit interval (called the branch metric) is now computed (see Table 6.1), added
to the surviving distances squared and new surviving sequences are determined. After the
third bit interval, the surviving sequences are shown in Figure 6.17.

For the fourth bit interval, the branch distances squared are calculated as in Table 6.1
(see column 5). These distances are added appropriately to the survivors after the third bit
interval. For the two sequences that converge in a given state, choosing the sequence that
is closest to the received signal results in the survivors shown in Figure 6.18.

So, the surviving sequences are (from top to bottom):

s3(t), s1(t), s3(t), s1(t) ⇔ 0000,

s3(t), s4(t), s2(t), s3(t) ⇔ 0110,

s3(t), s4(t), s1(t), s2(t) ⇔ 0101,

s3(t), s4(t), s2(t), s4(t) ⇔ 0111.
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We could continue ad nauseum, i.e., until we are ready to make a decision on the
transmitted sequence or we know (by prior agreement or by protocol) that the sequence
transmission has ended. Note that at this time (4Tb) one can make a very firm decision
about the transmitted sequence, i.e., a decision that will not change due to future received
signals. This decision is that of the first transmitted bit being “0,” which corresponds to the
common stem over [0, Tb] of all the four survivor paths.

From the above surviving sequences, it is quite obvious that if one needs to make a
decision at 4Tb, one will decide that the sequence s3(t), s4(t), s2(t), s3(t), which corresponds
to 0110, was transmitted. �

Finally, it is of interest to compare the bit error performance of the symbol-by-symbol
demodulation to that of the sequence demodulation of Miller signaling. The bit error prob-
ability of the symbol-by-symbol demodulation was derived earlier and is given in (6.12).
Derivation of the bit error probability for the sequence demodulation is, however, quite
complicated and is beyond the scope of the current discussion. Instead, a simulation result
can be obtained (see Problem 6.23), which is plotted in Figure 6.19 together with the
expression in (6.12). Observe that the sequence demodulation consistently outperforms the
symbol-by-symbol demodulation. The power gain provided by the sequence demodulation
is most significant in the low to medium SNR region, where a gain of 2 decibels can be
observed at the error probability of 10−2. The gain becomes smaller in the high SNR region
and it approaches about 0.5 decibels at the error probability of 10−6.



249 6.5 Spectrum
�

0 2 4 6 8 10 12 14

Symbol-by-symbol demodulation (analytical result)
Sequence demodulation (simulation result)

Eb/N0 (dB)

P
[e

rr
or

]

10−6

10−5

10−4

10−3

10−2

10−1

100

�Fig. 6.19
Bit error probability comparison of symbol-by-symbol demodulation and sequence demodulation (Viterbi
algorithm) of Miller signaling scheme.

6.5 Spectrum

The transmitted power required by a modulation scheme to achieve a certain error perfor-
mance is important but equally important is the bandwidth requirement of the modulation.
Therefore it is necessary to obtain the power spectral density.

For NRZ-L, RZ-L and Biφ codes, the PSD expression derived in Chapter 5, (5.147), can
be applied, since, as usual, we assume that the bits in different intervals are statistically
independent. For each signaling scheme, let the energy in an elementary waveform be
E � V2Tb joules. Also let the a priori probability of bit “1” be P2 = P and that of bit “0”
be P1 = 1− P. The normalized (with respect to E) PSDs are as follows.

For NRZ-L code, the spectrum is

SNRZ-L(f )

E
= 1

Tb
(1− 2P)2δ(f )+ 4P(1− P)

sin2(π fTb)

(π fTb)2
. (6.17)

Note that when P = 0.5 the impulse at f = 0 disappears as expected.
For Biφ code, the spectrum is given by

SBiφ(f )

E
= 1

Tb
(1− 2P)2

∞∑
n = −∞

n odd

(
2

nπ

)2

δ

(
f − n

Tb

)
+ 4P(1− P)

sin4(π fTb/2)

(π fTb/2)2
. (6.18)

There is no DC component as expected. Further, if P = 0 or P = 1, the continuous part of
the spectrum disappears and there is only a line spectrum, reflecting the fact that the signal
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is periodic. When P = 0.5 the line spectrum disappears and only the continuous spectrum
is present.

The PSD for Miller code is much more involved to derive. Here we simply give the PSD
expression. A procedure to derive the PSD can be found in [3, 4]. The expression for the
case of P1 = P2 = 0.5 is

SM-L(f )

E
= 1

2θ2(17+ 8 cos 8θ )
(23− 2 cos θ − 22 cos 2θ − 12 cos 3θ

+ 5 cos 4θ + 12 cos 5θ + 2 cos 6θ − 8 cos 7θ + 2 cos 8θ ), (6.19)

where θ = π fTb.
For comparison, the plots of the three different PSDs are shown in Figure 6.20. Observe

that the Miller code has several advantages in terms of spectral properties over the NRZ-L
and Biφ codes. These are:

• The majority of the signaling energy lies at frequencies less than one-half the bit rate,
rb = 1/Tb.

• The spectrum is minimal in the vicinity of f = 0. This is important for channels which
have poor DC response (for example, in magnetic recording).

• Bandwidth requirement is approximately 1/2 of that needed by biphase coding.

Miller modulation has another very interesting and important property. Consider any
transmitted signal out of the modulator. Suppose that at some point in time there is a
polarity reversal, i.e., multiplication of the signal by −1, in one of the various stages of
the transmitter or receiver, due, perhaps, to the insertion of an inverting amplifier stage.
Though, after the polarity reversal occurs, the entire received signal is the complete oppo-
site of the transmitted signal, it is easy to see that the polarity reversal does not change
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�Fig. 6.20 PSDs of NRZ-L, Biφ-L and Miller-L signals.
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the decisions made by optimum symbol-by-symbol demodulation. Thus when symbol-
by-symbol demodulation is used, Miller modulation is completely immune to a polarity
reversal.

Less obvious and more subtle is that when the Viterbi algorithm is used for sequence
demodulation of a Miller signal, it is also partially transparent to a polarity reversal.
Because the Viterbi algorithm is constrained to follow a path in the trellis an error(s) will
occur at the time of polarity reversal. However, the Viterbi algorithm will recover the most
likely path based on the received sequence.

For the other three baseband modulations, a polarity reversal means that the demod-
ulated bits are complemented, i.e., in the absence of AWGN, all bits are in error until
another polarity reversal occurs. Can this be avoided? The answer is yes, by using a tech-
nique called differential coding. Since differential coding is used in later chapters on phase
modulation and for channel models that exhibit phase uncertainty, we discuss it here in the
context of baseband modulation.

6.6 Differential modulation

The basic concept behind differential modulation or coding3 is that the signal transmitted
in one bit interval is relative to the one transmitted in the previous interval. The actual
transmitted signal thus depends on the present information bit and the previously transmit-
ted bit. As a concrete example, take NRZ-L. Rather than mapping “1” to level +V and “0”
to level −V irrespective of the previous signal, we change the modulation rule to:

• If the present bit is a “1,” then transmit a level that is opposite to that of the previous
interval.

• If the present bit is a “0,” then stay at the same level.

Put simply, a “1” means a level change, a “0” no change. The transmitted signal in any
interval is relative to that of the previous interval. More importantly, if there is a polarity
reversal this relativity is still preserved, i.e., two consecutive signals at the same level imply
a “0” and a change of level implies a “1.”

Though described at the modulator output level, the modulation rule can be implemented
by first differentially encoding the information bits, followed by an NRZ-L modulation.
This is shown in Figure 6.21.

If bk = 1 then dk = dk−1, implying a level change, and if bk = 0, then dk = dk−1, which
means no level change. Note that because of the memory one must initialize the shift
register circuit, say with a logic 0.

To demodulate the received signal one first determines dk with minimum error prob-
ability. Call this estimate d̂k. To recover an estimate of bk, which is the bit of interest,

3 Whether one calls it differential coding or differential modulation depends on whether one considers the process
to be a mapping from information bits to differential bits or from information bits to signals. The end result is
the same.
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�Fig. 6.21 Differential NRZ-L modulation.
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�Fig. 6.22 Demodulation of differential NRZ-L modulation.

note that dk = bk ⊕ dk−1 and adding modulo-2 dk−1 to both sides results in dk ⊕ dk−1 =
bk ⊕ dk−1 ⊕ dk−1 = bk, since dk−1 ⊕ dk−1 = 0 and bk ⊕ 0 = bk. This is what is done at
the receiver, except we do not have dk−1 but the next best thing, d̂k−1. A block diagram of
the demodulation is shown in Figure 6.22.

Once again, an initial condition must be assumed for the delay element, typically 0.
Observe that if d̂k is in error, then there will be two errors in the sequence {b̂k} since d̂k

appears in the computation of b̂k and b̂k+1. Thus the modulation is not totally transparent
to polarity reversals. The differential encoding/decoding process can be viewed, somewhat
imprecisely mathematically, as follows. The transfer function of the encoder is 1/(1+ z−1)
while that of the decoder is 1+ z−1. Thus the end-to-end result is a transfer function of(
1/(1+ z−1)

) (
1+ z−1

) = 1. Imprecisely, because we are dealing with modulo-2 algebra
and not the real (or complex) number system.

Finally the described modulation is known as non-return-to-zero-inverse (NRZI). The
problems explore the concepts of this section further.

6.7 Summary

The four baseband modulation methods dealt with in this chapter though basic are still
found, and indeed should continue to be found, in digital communication systems. This
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holds, in particular, for NRZ-L, Biφ, and Miller modulation. The next chapter considers pass-
band modulation techniques. Though the approach taken there is a direct one, passband
modulation can also be considered to be the frequency translation of an equivalent
baseband modulation. This is also touched upon in the next chapter.

Miller modulation has memory and this property led to the important concepts of state,
trellis, sequence demodulation, and Viterbi algorithm. The next three chapters continue the
study of memoryless modulation techniques since they are not only important in their own
right, but are found in modulation paradigms that have memory. State, trellis, and sequence
modulation/demodulation are returned to in the chapter on bandlimited channels where
intersymbol interference (ISI) is present and the one on trellis-coded modulation (TCM).

6.8 Problems

Many different baseband signaling schemes or line codes have been developed (see
[3]). The following problems look at some of them. We start with NRZI, which is used
primarily in magnetic recording. Because a long string of zeros results in no transitions,
its timing characteristics are poor and therefore in telecommunications it is limited to
short-haul applications.

6.1 Consider the following information bit sequence {bk} = {1011000111}.
(a) Draw the NRZI waveform by applying the rule that bk = 1 means there is a level

transition while bk = 0 means no transition. Assume that the initial condition is
−V volts.

(b) Determine the output of the differential encoder, {dk} and again draw the out-
put waveform of the NRZ-L modulator. Compare with (a). Assume the initial
condition d−1 = 0.

(c) Suppose a polarity reversal occurred after the fourth bit, i.e., at t = 4Tb where
transmission starts at 0. Draw the received waveform. Assume that there is no
AWGN during transmission. What would the detected differential bits d̂k be?
Keep in mind dk bits are NRZ-L modulated. What is the detected information
sequence, {b̂k}? As at the transmitter, the receiver assumes an initial condition of
d̂−1 = 0.

(d) Suppose that the receiver misunderstands the transmitter and that it assumes an
initial condition of d̂−1 = 1. What is the detected information bit sequence now?

(e) Finally assume that the technologist realized at t = 7Tb that there was a polarity
reversal and corrected it. Draw the received waveform now and determine the
detected differential bit sequence, {d̂k} and the decoded information bit sequence,
{b̂k}. Assume d̂−1 = 0 (same as the transmitter).

(f) Draw conclusions as to the influence of polarity reversals on the bit error
probability.

6.2 We now consider the influence of AWGN and polarity reversals on the bit error
probability for NRZI. Consider the information bit sequence of Problem 6.1, assume
that they are equally likely and that V2Tb = 1 joule.
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(a) Draw the signal space diagram for the two signals used in NRZI.
(b) The sampled output of the matched filter rk = sk + wk, where sk = ±√Eb, in

general is due to the signal transmitted and wk is AWGN. What is the output
sequence {sk} for the given information bit sequence?

(c) Now assume that the noise sample sequence, {wk}, is:

{−0.4,−1.2, 0.2, 0.2,−0.4,−0.2,−0.8, 1.2, 0.2, 0.0}.
Determine the complete sampled output sequence {rk}. Based on these {rk}, what
are the detected bit estimates {d̂k} and the corresponding {b̂k}? Note, particularly,
the errors in {d̂k} and {b̂k}. Based on this can you make a general statement about
the bit error probability?

(d) Now assume that a polarity reversal has occurred at t = 4Tb. What is the {sk}
sequence now? Given the noise samples of (c) what is the {rk} sequence and
then what are the {d̂k}, {b̂k} sequences?

6.3 Here we derive an expression for bit error probability when NRZI is used. The
information bits are equally likely.
(a) Show that the differential bits, {dk}, are also equally likely.
(b) Let the voltage level be set so that each signal has Eb joules. Draw the signal

space diagram and determine the bit error probability of the detected bits, d̂k, in
AWGN, strength N0/2 watts/hertz.

(c) But it is the error probability of {b̂k} that is of interest. To obtain this error
probability answer the following questions:

(i) Is b̂k in error if both d̂k and d̂k−1 are correct? Yes or No.
(ii) Is b̂k in error if both d̂k and d̂k−1 are incorrect? Yes or No.

(iii) Is b̂k in error if d̂k is correct and d̂k−1 is incorrect? Yes or No.
(iv) Is b̂k in error if d̂k is incorrect and d̂k−1 is correct? Yes or No.
Based on the above answers write P[b̂k is in error] as the probability of two
mutually exclusive events and show that

P[b̂k is in error] = 2Q

(√
2Eb

N0

)[
1− Q

(√
2Eb

N0

)]
. (P6.1)

Compare with NRZ-L and comment. How would you explain on an intuitive
basis the factor 2 in the above expression?

6.4 NRZI has memory and therefore we expect that it can be represented by a state
diagram and trellis. The memory can be looked upon in two ways: it occurs in the
mapping from bk to dk or from bk to the modulator output ±V .
(a) Define a state set for both ways of looking at the memory and draw a state dia-

gram. Label the transitions with the input bit, bk, and the corresponding output
quantity, either dk or voltage level ±V .

(b) Now draw a trellis corresponding to the above state diagrams. Start at t = 0 and
assume that before t = 0 either bk = 0 or the voltage level is−V volts (the initial
condition). Note you do not really need to draw two trellises, one trellis with clear
labeling should suffice.
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(c) Now assume that the sampled output sequence, {rk}, is that of Problem 6.2(d).
Assume that the source bits are equally likely and that V2Tb = Eb = 1 joule.
Use the signal space diagram of the NRZ-L modulator and the trellis of (b) to
sequence demodulate using the Viterbi algorithm. Note that we can demodu-
late in two ways: either first demodulate to the differential bits and then pass
them through the differential decoder to obtain the sequence {b̂k}, or demodulate
directly to the sequence {b̂k}.

(d) Now assume that the sampled output sequence, {rk}, is that of Problem 6.2(d)
where a polarity reversal takes place at t = 4Tb. Repeat (c).

6.5 The trellis determined in Problem 6.4 leads to the following interesting observation.
Consider any two consecutive bit intervals.
(a) What transmitted signals do the following bk bit patterns result in:

bk−1 bk

0 0
1 0
0 1
1 1

(P6.2)

(b) Based on these waveforms draw a signal space diagram which shows the signal
points that represent the bk bit, i.e., the present transmitted bit. Compare with the
Miller modulation signal space.

(c) Based on the signal space of (b) propose a demodulator for bit bk.
(d) What is the bit error probability, i.e., P[bk is in error], for this demodulator?

Compare with the answer of Problem 6.3(c) where differential decoding was
used.

6.6 Of interest is the PSD of NRZI. To determine it show that the correlation between
the differential bits dk and dk−1 is zero. Note that dk is an abstract quantity, logic 0 or
logic 1. To find the crosscorrelation map dk to the real number ±1, (i.e., dk = 1 →
+1 and dk = 0 →−1) and find the crosscorrelation between these quantities. Based
on this reason that the PSD of NRZI is the same as that of NRZ-L. Finally, though
uncorrelated, would you consider dk and dk−1 to be statistically independent?

6.7 What is called conditioned Biφ or Manchester code is in essence a combination of
a differential encoder whose output modulates a Biφ or Manchester modulator. It
looks as shown in Figure 6.23:

Differential encoder

Bi-phase
modulator

bk

z–1

Delay

dk = bk ⊕ dk–1

dk–1

Transmitted
signal sT (t)

Exclusive-OR

�Fig. 6.23 Block diagram of conditioned Biφ modulator.
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(a) Take the information bit sequence of Problem 6.1 and draw the output signal.
(b) Is the modulation reasonably transparent to polarity reversals?
(c) If you have assiduously worked through Problems 6.1–6.5 how would the

solutions change if the modulation is conditioned Biφ instead of NRZI?
6.8 Consider the following statement. “Any antipodal binary signal set can be made

immune to polarity reversals by differential encoding and decoding.” Please dis-
cuss the statement from the point of view of error performance, PSD, demodulator
implementation. Assume the information bits are equally probable and statistically
independent and that the only impairment is AWGN.

Of interest is that Biφ formats are used in magnetic recording, optical communi-

cations, and some satellite telemetry links. It is specified in the IEEE 802.3 Ethernet

standard for baseband coaxial cable using carrier sense multiple access and collision

detection (CSMA/CD). Differential Manchester coding is specified in the IEEE 802.5

standard for Token ring using either coaxial cable or twisted-pair wire.

6.9 Another so called Biφ modulation has the following mapping rule(s). There is always
a transition at the beginning of a bit interval. If bk = 1 there is a transition in the mid-
dle of the bit interval, while if bk = 0 there is no transition. As always the transitions
are between ±V .
(a) Based on this, draw the transmitted signal for the information bit sequence of

Problem 6.1.
(b) Is the modulation immune to polarity reversals?
(c) Draw the signal space diagram for this modulation. Based on this signal set, how

would you demodulate the received signal set with minimum error probability.
Assume a symbol-by-symbol demodulator and equally probable bits.

(d) What is the error probability of this modulation?
Remark The PSD of this is identical to that of Manchester coding. However, the
modulation process has memory. It can be modeled as a first-order Markov process
but the PSD derivation involves concepts beyond the scope of the text.

6.10 Try to extend differential modulation as follows. Any orthogonal binary signal set
can be made immune to polarity reversals by modifying the demodulator. What is
this modification and what is the price you pay for achieving this immunity?

The next set of problems, Problems 6.11–6.16, considers baseband modulation

that can be classed as pseudoternary. Ternary because it uses three levels, ±V volts

and 0.

6.11 (AMI-NRZ coding) Alternate-mark-inverse NRZ is a binary coding scheme. It
belongs to the family of pseudoternary codes where three levels ±V and 0 are used.
The output signal is determined from the source bit stream as follows:
• If the bit to be transmitted is a “0,” then the signal is 0 volt over the period of Tb

seconds.
• If the bit to be transmitted is a “1,” then the signal is either +V volts if −V

volts was previously used to represent bit 1, or vice versa. Hence the name and
mnemonic for the modulation.

(a) Draw the transmitted signal when the input bit sequence is that of Problem 6.1.
Is the modulation immune to polarity reversals?
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(b) Obtain a signal space representation of this modulation in terms of E = V2Tb.
Based on the signal space what is the sufficient statistic on which to base a
decision?

(c) Using this sufficient statistic find the conditional pdfs, f (r|1T ) and f (r|0T ). To
find f (r|1T ) average the two conditional pdfs f (r|1T ,−V), f (r|1T ,+V). Note that
f (r|1T ) is non-Gaussian. Sketch the two pdfs.

(d) Based on f (r|1T ) and f (r|0T ) from (c) show that the decision rule is

cosh

(
2
√

E

N0
r

)
1D

�
0D

eE/N0 . (P6.3)

(e) You wish to find the error performance versus the SNR, Eb/N0. To do this first
let � = (2

√
E/N0)r, which makes the decision rule become

�

1D

�
0D

cosh−1
(

e2E/N0
)
≡ Th. (P6.4)

Note that cosh−1(·) has two solutions, one at +Th and one at −Th. Sketch the
decision regions and the individual pdfs, f (�|0T ), f (�| − V), f (�| + V) on the �

axis. Note that � in the conditional pdfs is Gaussian, indicate the mean and the
variance in each case. Based on this sketch show that

P [error|0T ] = 2Q

⎛⎝ Th√
4Eb
N0

⎞⎠ , (P6.5)

P [error|1T ] = Q

(
(4Eb/N0)− Th√

4Eb/N0

)
− Q

(
(4Eb/N0)+ Th√

4Eb/N0

)
. (P6.6)

6.12 Your friend decides to obtain the decision rule for demodulation as follows. First she
demodulates the received signal to the signal level, i.e., detects whether a +V or a
−V or a 0 was transmitted and then maps the detected signal to the corresponding
bit. She does this on symbol-by-symbol basis and since there are now three symbols
(signals) she needs to extend the theory. She thus reads ahead to Chapter 8 on M-ary
modulation and finds out that she needs to determine three likelihoods, one for each
signal. That is, the decision rule is

compute
P1f (r| − V), P2f (r|0), P3f (r| + V)

and choose the largest,
(P6.7)

where P1 = P [−V is transmitted] = 1
4 , P3 = P [+V is transmitted] = 1

4 , P2 =
P [0 is transmitted] = 1

2 , and r is the same sufficient statistic as in Problem 6.11.
(a) Based on this show that the decision rule can be expressed as:⎧⎨⎩−

N0

2
√

E
ln 2+

√
E

2
≤ r ≤ N0

2
√

E
ln 2+

√
E

2
, choose 0

otherwise, choose 1
. (P6.8)

(b) Let � = (2
√

E/N0)r and express the decision rule in terms of �. Determine
f (�| − V), f (�|0), f (�| + V).
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(c) Using � as the decision variable show that:

P [error|0T ] = 2Q

(
ln 2+ (2Eb/N0)√

4Eb/N0

)
, (P6.9)

P [error|1T ] = 2

[
Q

(
(2Eb/N0)− ln 2√

4Eb/N0

)
− Q

(
(6Eb/N0)+ ln 2

√
4Eb/N0

)]
,

(P6.10)

where Eb = E/2 (joules/bit). Then find P[bit error].
6.13 Another friend neither wants to read ahead nor do the algebra of the two previ-

ous problems. He simply sketches the three pdfs f (r| − V), f (r|0), and f (r| + V),
notes which is the largest at each point on the axis, and chooses the signal and bit
corresponding to that density.
(a) What is the decision rule now? Express it as simply as possible.
(b) Determine the P[bit error] in terms of Eb/N0 for this approach.

6.14 The above three approaches resulted in three different decision rules and three
different expressions for error probability. The three approaches can be termed as: (i)
demodulate to bit, (ii) demodulate to signal and then to bit taking a priori probability
into account, and (iii) demodulate to signal or bit ignoring the a priori probability.
(a) Do you think there is any difference in error probability between the three

approaches? If so, then which approach should have the best performance?
(b) To confirm or disprove your intuition in (a), use Matlab to plot the error per-

formance for the three approaches for Eb/N0 in the range 0−10 dB. Look also
at sections of the plot, say Eb/N0 from 0.6−0.7 dB and Eb/N0 from 8−8.1 dB.
Discuss the plot.

6.15 One could, of course, consider another demodulator for AMI-NRZ. Since the signal
transmitted in any bit period depends on what happened previously, the modulation
has memory. Therefore there is a state diagram that describes the modulation and a
corresponding trellis.
(a) Decide on what you need to know from the past, define the states, and draw the

state diagram. Label the transitions between the states with the input bit and the
corresponding transmitted signal.

(b) Now draw the trellis corresponding to the above state diagram. As usual you
will have to decide on the initial state, i.e., the starting point. The decision is not
crucial as long as the transmitter and the receiver agree on it.

Remark To sequence demodulate the transmitted signal using the trellis and Viterbi
algorithm as discussed in the chapter one needs to derive a branch metric for this
modulation. The sufficient statistic is the same but f (r|1T ) is not Gaussian and
therefore the minimum distance metric no longer applies.

6.16 (AMI-RZ) Instead of NRZ, one can use RZ signals. Modify the AMI-NRZ mapping
rule to reflect this and redo Problems 6.11 and 6.12.
Remark AMI-RZ is used in the T1 carrier system by AT&T.

Optical fiber communication systems use baseband modulation. However, though
pseudoternary line codes have been widely used in coaxial or twisted-pair cable sys-
tems, they cannot be used readily in fiber because of the three levels, −V, 0, +V.
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Though one could map −V to the laser diode being off, 0 to 1/2 intensity and +V to

full intensity, the laser diode has nonlinearity. This has led to the line coding schemes

called coded mode inversion (CMI) and differential mode inversion (DMI).

6.17 (CMI) The modulation rule is as follows:
• Bit “1” is represented by either +I (laser diode full on) or 0 (laser diode off) with

the levels alternating between successive ones.
• A “0” is represented by level +I for the first half of the bit interval and by level 0

for the second half (or vice versa).
(a) Draw the output waveform for the bit sequence of Problem 6.1.
(b) Determine a basis set for the modulator and then plot the signal space. Note that

+I represents light intensity, it does not have the unit of volts. So plot the signal
points in terms of E, the energy transmitted over a full period.

(c) The AWGN model does not apply readily for fiber optics. One demodulation
method is to compare the intensity in the first half with that in the second half.
Based on this decide on an intuitive basis what the decision rule is and what the
decision space looks like. Is the decision insensitive to polarity inversions?

Remark CMI has been chosen for the 139.246 Mbps multiplex within the European
digital hierarchy [5].

6.18 Consider using the CMI scheme for optical communications, where the receiver mea-
sures the light intensity by counting the number of received photons. As in Problem
5.23, the number of photons emitted per unit time is modeled with a Poisson point
process:

P[k photons emitted in a unit interval] = λke−λ

k!
, k = 0, 1, . . . , (P6.11)

where λ is the mean arrival rate with units of photons per unit time. Here λ = λs + λn

or λ = λn, where λs is due to the transmitter laser being turned on and λn is due to
the background radiation. Assume that the probability of transmitting a “1” is the
same as transmitting a “0.”
(a) Design the receiver that minimizes the probability of error.
(b) Derive an expression for the error performance of the receiver obtained in (a).

Remark The average transmitted energy is hfTb, where hf is the energy of photon
with frequency f , h = 6.6× 10−34 is Planck’s constant and λsTb is the average
number of signal photons per bit interval.

6.19 (DMI) The mapping rule for bit “1” is the same as that for CMI. However, it is
changed for bit zero to prevent any pulse widths that are wider than Tb, the bit inter-
val, i.e., bit “0” is mapped to either (I, 0) or (0, I), chosen so as to prevent a pulse
width wider than Tb.
(a) Plot the transmitted signal for the bit sequence of Problem 6.1.
(b) Is the modulation immune to polarity reversals?
(c) Obtain a signal space plot for the modulator.
(d) Obtain a state diagram for the modulator.
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6.20 To determine the PSD of AMI-NRZ one needs to determine the autocorrelation of
the input information sequence after the bits have been mapped to real numbers, ck,
as follows:

ck =
{

1 or − 1, if bk = 1
0, if bk = 0

. (P6.12)

(a) Assuming that the bk are equally probable, what are the following probabilities:
P[ck = 1]; P[ck = −1]; P[ck = 0]?

(b) Based on this determine the autocorrelation of sequence {ck}, i.e., find E
{
c2

k

}
;

E {ckck+1} and E {ckck+n}, n > 1. Hint Determine the probabilities by consider-
ing all possible products and the probability of each product.

(c) Once the autocorrelation has been found the PSD is determined from (5.127).
Show that it is

S (f ) = V2Tb

(
sin π fTb

π fTb

)2

sin2(π fTb). (P6.13)

(d) What is the null-to-null bandwidth?
6.21 (Miller code) Consider the optimum decision rule of Miller code that is based on the

minimum sequence distance.
(a) Show that finding the sequence with the minimum distance as computed in

(6.14) is equivalent to finding the sequence with the maximum correlation metric,
computed as follows:∫ nTb

0
r(t)Si(t)dt =

n∑
j=1

[
r(j)

1 , r(j)
2

] [ S(j)
i1

S(j)
i2

]
. (P6.14)

(b) Clearly describe all the steps of the Viterbi algorithm to find the transmitted
sequence based on the maximization of the above metric.

(c) Redo Example 6.2 using the above metric.
6.22 (Class2K modulation) In deriving the error probability of the symbol-by-symbol

demodulation of the Miller signaling, the factor of 2 arises from the fact that each bit
has two nearest neighbors crowding it. To overcome this the scheme shown in Figure
6.24, which we call Class2K (class of 2000) modulation, is proposed.

Several questions about the mapping in Figure 6.24 arise.
(a) The first question is what is the error probability of the symbol-by-symbol

demodulation? Determine this and compare it to the Miller scheme.
(b) More importantly, what is its PSD? Like the Miller scheme, this modulation has

memory, as described by the state diagram in Figure 6.25. The PSDs of signals
with memory are very difficult to determine analytically. However, there is more
than “one way to skin a cat” and here we shall skin the cat as follows.
The PSD of Class2K modulation can be found by simulation in Matlab. An
outline as how to accomplish this is given next.

(i) Generate a sequence of equally likely bits using rand and round com-
mands (a sequence of 100 bits is suggested).
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�Fig. 6.24 Signal space diagram of Class2K modulation.
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�Fig. 6.25 State diagram of Class2K modulation.

(ii) Generate the corresponding time signal (using 100 points per bit per inter-
val is suggested). Note that you will need to follow the state diagram in
Figure 6.25.

(iii) Find the fft of the time signal, fftshift it, and then magnitude square
the Fourier transform. Plot the result. It will in all likelihood look quite
“jagged.” To overcome this one needs to perform the last step in the basic
definition of the PSD of a random process: ensemble average.

(iv) Therefore repeat the above another nine times and average the resultant
spectra.

Compare the determined spectrum with that of Miller modulation and comment
on which you would choose.
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6.23 (Sequence demodulation of Miller signaling) Write a simulation program in Matlab
to perform Miller-L modulation and its sequence demodulation (using the Viterbi
algorithm). Verify the simulation result shown in Figure 6.19.
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7 Basic digital passband modulation

7.1 Introduction

In baseband transmission the transmitted signal power lies at low frequencies, typically
around zero. It is desirable in many digital communication systems, for the same reasons
as in analog communication systems, for the transmitted signal to lie in a frequency band
toward the high end of the spectrum. As an example satellite communication is normally
conducted in the 6–8 gigahertz band, while mobile phones systems are implemented in the
800 megahertz–2.0 gigahertz band.

The digital information is encoded as a variation of the parameters of a sinusoidal signal,
called the carrier signal. Typically, as for analog modulation systems, the carrier frequency
is much higher than the highest frequency of the modulating signals (or messages). Digital
passband modulation is based on variation of the amplitude, phase, or frequency of the
sinusoidal carrier, or some combination of these parameters.

Amplitude-shift keying (ASK) was probably the first type of digital modulation to be
practically applied. In its simplest form it has been used for radio telegraphy transmis-
sion in Morse code. Another name for ASK is “on–off keying” (OOK), since a binary
“1" corresponds to the sinusoid being transmitted while a binary “0" suppresses the car-
rier. Phase-shift keying (PSK) is an efficient, in terms of signal power, digital modulation
method. It is widely used in modern digital communication systems, such as satellite links,
wideband microwave radio relay systems, etc. The digital information is encoded in the
phase function of a constant-amplitude carrier signal. Frequency-shift keying (FSK) is also
a constant-amplitude modulation technique. Its main applications are in narrowband digital
radio equipment, such as portable radio sets. It has also been successfully used in relatively
wideband digital microwave radio relay equipment, primarily as modification of existing
analog frequency-division multiplexing (FDM) and frequency modulation (FM) systems.
The main advantages of FSK are simplicity, low implementation cost, and good perfor-
mance level, especially under signal fading conditions. As the name suggests the digital
information is encoded in the frequency of the sinusoidal carrier.

The discussion on digital modulation in this chapter first considers binary modulation
of the carrier. As with baseband transmission, binary ASK (BASK), binary PSK (BPSK),
and binary FSK (BFSK) modulations are discussed from the viewpoint of error perfor-
mance. Optimum receivers are developed for the AWGN channels. The spectra of the
three modulation schemes are also considered. After discussing these basic modulation
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techniques, extensions of them, including quadrature phase-shift keying (QPSK), offset
QPSK (OQPSK) and minimum shift keying (MSK), are presented.

It is assumed throughout the chapter that there is perfect synchronization at the receiver
and that the phase of the reference carrier is known. Optimum reception, when the channel
causes phase distortion and/or fading, is developed in Chapter 10, while the general M-ary
modulation techniques are covered in Chapter 8.

7.2 Binary amplitude-shift keying (BASK)

In BASK a sinusoidal carrier is simply gated on and off by the bit sequence to be transmit-
ted. A typical transmitted waveform would be that shown in Figure 7.1(c), corresponding
to the information sequence of Figure 7.1(a). The transmitted signal can be written as

s(t) = m(t)c(t), (7.1)

where m(t) is the modulating signal (the baseband signal, an NRZ signal) and c(t) =
V cos(2π fct) is the sinusoidal carrier. The logic “1” and “0” are represented during any
bit interval, Tb, by the following signal set:{

s1(t) = 0, if “0T”
s2(t) = V cos(2π fct), if “1T”

, 0 < t ≤ Tb, (7.2)

0

1

0 Tb 2Tb 3Tb 4Tb 5Tb 6Tb 7Tb 8Tb 9Tb

1 0 01 10 0 11

0

V

−V

0

V

−V

0

V

−V

t

t

t

t

(a)

(b)

(c)

(d)

(e)

�Fig. 7.1
Binary passband modulation techniques (a) binary data; (b) modulating signal m(t); (c) BASK signal; (d)
BPSK signal; (e) BFSK signal.
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where the carrier frequency is usually chosen such that there is an integer number of
cycles over the bit duration Tb, i.e., fc = n/Tb, n an integer. The energy in s2(t) is
EBASK = V2Tb/2 joules.

The received signal is r(t) = si(t)+ w(t), where i = 1 or 2 depending on the transmitted
signal, and w(t) is a zero-mean Gaussian noise process with two-sided PSD N0/2. Only
one orthonormal basis function, φ1(t) = s2(t)/

√
EBASK, is needed to represent the signal

set. The signal space plot is shown in Figure 7.2(a). The optimum receiver, i.e., the one
with the minimum error probability, is shown in Figure 7.2(b) in the form of a correlation
receiver. The threshold, Th, in Figure 7.2(b) is given by

Th = N0

2
√

EBASK
ln

(
P1

P2

)
+
√

EBASK

2
. (7.3)

For P1 = P2, the decision regions are depicted in Figure 7.2(c). The error probability for
this case is

P[error]BASK = Q

(√
EBASK

2N0

)
. (7.4)

0
EBASK

r1 = 

0
2

Comparator
r1 ≥ Th ⇒ 1D

r1 < Th ⇒ 0D

ln⎧
22

EBASKN0 P1Th = 
P2EBASK

 + 

(a)

(b)

(c)

Tb

0

(•)dt∫
r(t) r1

φ1(t)

φ1(t)

t = Tb

s2(t)s1(t)

EBASK

Choose 0T ⇐ ⇒ Choose 1T

s1(t) s2(t)
Tb

0
r(t)φ1(t)dt∫

⎩
⎧
⎩

�Fig. 7.2
BASK signaling scheme: (a) signal space plot; (b) optimum receiver implementation; (c) decision regions.
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SBASK( f )

f

Tb
fc

1−
Tb

fc
1

 + fc0

16
V2

�Fig. 7.3 PSD of BASK.

To determine the bandwidth requirement of BASK signaling use (5.147) to obtain the
PSD, which is1

SBASK(f ) = V2

16

[
δ(f − fc)+ δ(f + fc)

+ sin2[πTb(f + fc)]

π2Tb(f + fc)2
+ sin2[πTb(f − fc)]

π2Tb(f − fc)2

]
. (7.5)

A sketch of the PSD for positive frequencies is shown in Figure 7.3. It can be shown that
approximately 95% of the total transmitted power lies in a band of 3/Tb (hertz), centered
at fc.

7.3 Binary phase-shift keying (BPSK)

A BPSK signal is generated by amplitude modulating the sinusoidal carrier with a NRZ-L
signal of amplitude ±1. The transmitted signal is s(t) = m(t)c(t) (where m(t) is a NRZ-L
signal) with a resultant phase that is either 0 or π radians. The waveforms are plotted in
Figure 7.1(d). The signal set is given by{

s1(t) = −V cos(2π fct), if “0T”
s2(t) = +V cos(2π fct), if “1T”

, 0 < t ≤ Tb, (7.6)

0s1(t) s2(t)

EBPSK EBPSK

2φ1(t) = cos(2π fct)Tb

�Fig. 7.4 Signal space plot of BPSK.

1 Strictly speaking, there is a cross product term

V2

8
sin[π (f−fc)Tb]

π (f−fc)Tb
· sin[π (f+fc)Tb]

π (f+fc)Tb
.

But since fc is typically very large, it is ignored.
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where fc = n/Tb for some integer n. Each signal has energy EBPSK = V2Tb/2. The signal
space plot is shown in Figure 7.4, where φ1(t) = s2(t)/

√
EBPSK = √2/Tb cos(2π fct).

The minimum-error-probability (optimum) receiver projects the received signal r(t) onto
φ1(t − (k − 1)Tb), samples the output of the projection at t = kTb and compares it to the
threshold, which in the special case of P1 = P2 is equal to zero. The error probability for
P1 = P2 is given by

P[error]BPSK = Q

(√
2EBPSK

N0

)
. (7.7)

BPSK is an antipodal modulation and using the result in (5.147), the PSD for the BPSK
signal is given by (as in BASK, the cross product is negligible)

SBPSK(f ) = V2

4

[
sin2[π (f − fc)Tb]

π2(f − fc)2Tb
+ sin2[π (f + fc)Tb]

π2(f + fc)2Tb

]
. (7.8)

The PSD of BPSK is similar to that of BASK except that there are no impulse functions at
±fc, reflecting the fact that there is no power at the carrier. This is reasonable since BPSK
is really a “double” sideband suppressed carrier modulation.

7.4 Binary frequency-shift keying (BFSK)

The most basic method of generating BFSK is to gate two oscillators with the modulating
signal, as illustrated in Figure 7.5(a).

The elementary signals are{
s1(t) = V cos(2π f1t + θ1), if “0T”
s2(t) = V cos(2π f2t + θ2), if “1T”

, 0 < t ≤ Tb. (7.9)

Oscillator 1 ( f 1) “0”

“1”

VCOm(t) s(t)

s(t)

(a)

(b)

Oscillator 2 ( f 2)

�Fig. 7.5
Simple BFSK modulators: (a) by gating two oscillators; (b) using a voltage controlled oscillator (VCO).
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The two carrier frequencies are chosen to be integer multiples of 1/Tb, while the two phases
θ1 and θ2 need not be the same. Furthermore, the frequencies f1 and f2 are chosen so that
s1(t) and s2(t) are orthogonal over the interval [0, Tb], i.e.,∫ Tb

0
s1(t)s2(t)dt = 0. (7.10)

To see what this implies about the two frequencies assume, without loss of generality, that
f2 > f1. Substitute for s1(t), s2(t) in (7.10) and integrate to obtain

sin[2π (f2 + f1)Tb + (θ2 + θ1)]− sin(θ2 + θ1)

(f2 + f1)

+ sin[2π(f2 − f1)Tb + (θ2 − θ1)]− sin(θ2 − θ1)

(f2 − f1)
= 0. (7.11)

Equation (7.11) gives the following conditions on f1 and f2:

(i) If the two phases are the same, i.e., θ1 = θ2, then

f2 − f1 = m

2Tb
, m = 1, 2, . . . . (7.12)

The minimum frequency separation (f2 − f1) for orthogonality occurs when m = 1 and
is given by

(�f )[coherent]
min = 1

2Tb
. (7.13)

In this case the two sinusoidal carriers are said to be coherently orthogonal (coherent
because the two phases are the same).

(ii) If the two phases are different, i.e., θ1 	= θ2, then

f2 − f1 = m

Tb
, m = 1, 2, . . . . (7.14)

The minimum frequency separation for this case, called noncoherent orthogonality
(noncoherent because there is no relationship between the two phases), is

(�f )[noncoherent]
min = 1

Tb
. (7.15)

The above shows that relaxing phase synchronization of the two carriers requires a
doubling of their minimum spacing in order to maintain the orthogonality of the two
carriers.

It is also possible to express the signal set in a different way:{
s1(t) = V cos 2π(fc − fd)t
s2(t) = V cos 2π(fc + fd)t

, 0 < t ≤ Tb, (7.16)

where fc is the carrier frequency and fd is the frequency deviation. From this viewpoint
the transmitted signal is generated by frequency modulating a voltage-controlled oscillator
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(VCO) with the random binary sequence, m(t). This is illustrated in Figure 7.5(b). It can
be verified that the orthogonal condition requires that

fc = n/4Tb, (7.17)

fd =
{

m/4Tb (coherent orthogonality)
m/2Tb (noncoherent orthogonality)

, (7.18)

where n and m are positive integers, and n � m.
With either coherent or noncoherent orthogonality, the energy in each signal of BFSK

is given by EBFSK = V2Tb/2 (joules). Two orthogonal basis functions are required to
represent the signal set, namely

φ1(t) = s1(t)√
EBFSK

, φ2(t) = s2(t)√
EBFSK

. (7.19)

The signal space plot is shown in Figure 7.6. The optimum receiver projects the received
signal along the [φ2(t)− φ1(t)]/

√
2 axis and compares the projection to a threshold. For

the case of P1 = P2, this threshold is 0 and the decision region is geometrically shown in
Figure 7.6. The error probability is given by

P[error]BFSK = Q

(√
EBFSK

N0

)
. (7.20)

BFSK is a frequency modulation, i.e., a nonlinear modulation, and one would expect
that its PSD, as in the analog FM situation, is more difficult to determine. However, (5.147)
applies to BFSK under the provision that the signals are statistically independent from bit
interval to bit interval. The PSD of BFSK is therefore given by (again, ignoring the cross
product term)

0

Choose 0T

Choose 1T

φ2(t)

[φ2(t) – φ1(t)]

s1(t)

s2(t)

φ1(t)

r2

r1

2 ( )0, EBFSK

( )EBFSK,0

when P2 = P1 
Decision boundary

�Fig. 7.6 Signal space plot and decision regions of BFSK.
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Bandwidth W = ( f 2 – f 1) + 3/Tb

1.5f1 − f2 − f2 + f2f1Tb

1.5
Tb

1f1 + 
Tb

1
Tb

16
V2

16
V2

�Fig. 7.7 Bandwidth approximation for BFSK.

SBFSK(f ) = V2

16

[
δ(f − f2)+ δ(f + f2)

+ sin2[πTb(f + f2)]

π2Tb(f + f2)2
+ sin2[πTb(f − f2)]

π2Tb(f − f2)2

]
+ V2

16

[
δ(f − f1)+ δ(f + f1)

+ sin2[πTb(f + f1)]

π2Tb(f + f1)2
+ sin2[πTb(f − f1)]

π2Tb(f − f1)2

]
. (7.21)

The above result shows that the PSD of BFSK is that of two interleaved BASK signals.
Thus 95% of the power in each signal lies in a band of 3/Tb hertz centered respectively on
f2 and f1. Based on this the total 95% bandwidth can be taken to be (f2 + 1.5/Tb)− (f1 −
1.5/Tb) = (f2 − f1)+ 3/Tb = �f + 3/Tb. This is conceptually illustrated in Figure 7.7.

It is clear that the bandwidth of BFSK is kept to a minimum by using the minimum
frequency separation between the two orthogonal carriers. As discussed before, such a
minimum frequency separation is 1/2Tb for the case of coherently orthogonal carriers
(which have the same phase), while it is 1/Tb for noncoherently orthogonal carriers (which
have different phases).

7.5 Performance comparison of BASK, BPSK, and BFSK

To compare the error performance of the three signaling schemes, it is necessary to express
the error probabilities in terms of the average energy per bit, or Eb. With equally likely
information bits “0” and “1” one has the following relationships for different signaling
schemes: Eb = EBPSK, Eb = EBASK/2, and Eb = EBFSK. Thus the error performances of
different modulation schemes are as follows:
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�Fig. 7.8 Error performance of binary passband modulation techniques.

P[error]BPSK = Q

(√
2Eb

N0

)
, (7.22)

P[error]BASK = P[error]BFSK = Q

(√
Eb

N0

)
. (7.23)

The above shows that BPSK is 3 dB more efficient than BFSK, which has the same
performance as BASK. This is shown graphically in Figure 7.8.

In terms of bandwidth, BFSK occupies a larger bandwidth than BPSK and BASK (recall
that BPSK and BASK occupy the same bandwidth). Each of the three modulation tech-
niques has a spectrum that decays as 1/f 2 for frequencies away from the carrier, reflecting
the fact that for each modulation the transmitted signal has discontinuities. In the next
section, other modulation techniques are introduced which are more spectrally efficient.

7.6 Digital modulation techniques for spectral efficiency

To increase the bit rate without increasing the bandwidth, various modulation techniques
have evolved. Straightforward extensions of the techniques considered in the previous sec-
tion are QPSK, OQPSK, and MSK. They are a form of M-ary (M = 4) modulation which
is considered in a greater detail in Chapter 8.
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Table 7.1 QPSK signals and a mapping to the messages

Bit pattern Message Signal transmitted

00 m1 s1(t) = V cos(2π fct), 0 ≤ t ≤ Ts = 2Tb
01 m2 s2(t) = V sin(2π fct), 0 ≤ t ≤ Ts = 2Tb
11 m3 s3(t) = −V cos(2π fct), 0 ≤ t ≤ Ts = 2Tb
10 m4 s4(t) = −V sin(2π fct), 0 ≤ t ≤ Ts = 2Tb

0

V

−V

t

2Tb 4Tb 6Tb 8Tb0

m1 = 00 m3 = 11 m4 = 10m2 = 01

�Fig. 7.9 An example of a QPSK signal.

7.6.1 Quadrature phase-shift keying (QPSK)

The basic idea behind QPSK exploits the fact that cos(2π fct) and sin(2π fct) are orthogonal
over the interval [0, Tb] when fc = k/Tb, k integer. Just as in analog modulation, this can be
used to transmit two different messages over the same frequency band. To accomplish this
the bit stream is taken two bits at a time and mapped into signals as shown in Table 7.1.
An example QPSK signal is shown in Figure 7.9. Since each bit occupies Tb seconds,
the signals corresponding to the “digits" (or symbols), 00, 01, 11, 10, last for a symbol
duration of Ts = 2Tb seconds. The symbol signaling rate or what is commonly called the
baud rate is therefore rs = 1/Ts = 1/(2Tb) = rb/2 (symbols/second), i.e., halved. Since
the bandwidth requirement (the PSD will be derived later) is proportional to rs, it can also
be reduced by half for a given bit rate rb. Conversely, for a fixed bandwidth the bit rate rb

can be doubled.
Though the bit rate has been increased without a corresponding increase in bandwidth

it is also necessary to look at what happens to the bit error probability. To accomplish this
the signals s1(t), s2(t), s3(t), and s4(t) are represented, as usual, by an orthonormal basis
set. As mentioned, the signals satisfy the following:

∫ Ts

0
s2

i (t)dt = V2

2
Ts = V2Tb = Es, (7.24)∫ Ts

0
V sin(2π fct)V cos(2π fct)dt = 0. (7.25)
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s4(t)
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φ2(t)

φ1(t)

�Fig. 7.10 Signal space plot of QPSK modulation.

Therefore only two orthonormal functions are needed to represent the four signals, namely,

φ1(t) = s1(t)√
Es

, φ2(t) = s2(t)√
Es

. (7.26)

The signal space plot is shown in Figure 7.10.
To derive a minimum-error-probability receiver the results of the binary (two messages)

case have to be extended slightly. Rather than bit error, the criterion will be to find a receiver
that minimizes the symbol (message) error probability. In the present situation there are
four messages corresponding to s1(t), s2(t), s3(t), and s4(t). The optimum receiver is derived
by expanding the received signal r(t) = si(t)+ w(t) over the interval of Ts seconds into a
series as follows:

r(t) = r1φ1(t)+ r2φ2(t)+ r3φ3(t)+ · · · . (7.27)

Once again φ1(t) and φ2(t) are determined by the signal set, while φi(t), i > 2 are chosen
to simply complete the orthonormal set. Regardless of which signal is sent, the coefficients
ri, i > 2, are due only to the noise, w(t). They are uncorrelated Gaussian random variables
with zero mean and variance N0/2.

Based on the set of r1, r2, r3, . . . it is desired to make a decision as to the actual signal
transmitted at the modulator output. Consider for the moment only the first m projec-
tions, r1, r2, . . . , rm. The receiver is required to partition the m-dimensional space into four
regions in a manner which achieves the minimum error probability. Geometrically this can
be visualized as shown in Figure 7.11.
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ℜ4
Choose s4(t) or m4

ℜ3
Choose s3(t) or m3

ℜ1
Choose s1(t) or m1

ℜ2
Choose s2(t) or m2

m-dimensional observation space
(r1, r2, …, rm)

�Fig. 7.11 Decision regions of QPSK modulation.

Rather than minimizing the error, consider instead the equivalent criterion, that of
maximizing the probability of a correct decision. The expression for this can be written as

P[correct] = P[�r ∈  1|s1(t)]P[s1(t)]+ P[�r ∈  2|s2(t)]P[s2(t)]

+ P[�r ∈  3|s3(t)]P[s3(t)]+ P[�r ∈  4|s4(t)]P[s4(t)], (7.28)

where �r = (r1, r2, r3, . . . , rm) and P[�r ∈  i|si(t)] is the probability that the observation
vector �r falls into the ith region when signal si(t) (or message mi) is transmitted. P[si(t)] ≡
Pi is the a priori probability of message mi being transmitted. Therefore,

P[correct] =
∫
 1

P1f (�r|s1(t))d�r +
∫
 2

P2f (�r|s2(t))d�r

+
∫
 3

P3f (�r|s3(t))d�r +
∫
 4

P4f (�r|s4(t))d�r. (7.29)

To maximize the probability of a correct decision it is readily seen from the above that the
decision rule becomes

assign the observation vector �r = (r1, r2, . . . , rm) in
the m-dimensional signal space to the region for which

the integrand Pi f (�r|si(t)) is the largest.

Or stated in another way:

choose si(t) if Pi f (�r|si(t)) > Pj f (�r|sj(t)), j = 1, 2, 3, 4; j 	= i. (7.30)
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Letting m →∞, the conditional pdf given the ith message is transmitted can be
written as

f (�r|si(t)) = 1√
πN0

exp

{
− (r1 − si1)2

N0

}
1√
πN0

exp

{
− (r2 − si2)2

N0

}
×

∞∏
k=3

1√
πN0

exp

{
− r2

k

N0

}
. (7.31)

The terms due to r3, r4, . . . are common to each conditional density and therefore can be
ignored in the decision rule of (7.30), which can be rewritten as

choose si(t) if
Pif (r1, r2|si(t)) > Pj f (r1, r2|sj(t)),

j = 1, 2, 3, 4; j 	= i.
(7.32)

In essence, the projections of r(t) onto φj(t), j > 2 are ignored since they do not provide
us with any information concerning the transmitted signal (i.e., the input message). The
expression Pj f (r1, r2|sj(t)) is given by

Pj f (r1, r2|sj(t)) = Pj
1√
πN0

exp

{
− (r1 − sj1)2

N0

}
1√
πN0

exp

{
− (r2 − sj2)2

N0

}
. (7.33)

Taking the natural logarithm of (7.33) still preserves the relative values, i.e., the signal sj(t)
for which (7.33) is maximum does not change. The resulting expression is

ln Pj − ln(πN0)− (r1 − sj1)2

N0
− (r2 − sj2)2

N0
. (7.34)

Ignoring the term ln(πN0) and multiplying through by N0 (since again this does not affect
the maximum), the decision rule can be written as:

choose si(t) if
N0 ln Pi − (r1 − si1)2 − (r2 − si2)2 >

N0 ln Pj − (r1 − sj1)2 − (r2 − si2)2,
j = 1, 2, 3, 4; j 	= i.

(7.35)

Multiplying the terms out, ignoring the r2
1, r2

2 terms that are common to all expressions and
dividing through by 2, the decision rule is

choose si(t) if
N0

2
ln Pi + r1si1 + r2si2 −

(
s2

i1 + s2
i2

)
2

>

N0

2
ln Pj + r1sj1 + r2sj2 −

(
s2

j1 + s2
j2

)
2

,

j = 1, 2, 3, 4; j 	= i.

(7.36)
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Recognizing that s2
j1 + s2

j2 is the energy of signal sj(t) and that all the signals are of equal
energy, the final decision rule becomes

choose si(t) if
N0
2 ln Pi + r1si1 + r2si2 >

N0
2 ln Pj + r1sj1 + r2sj2,

j = 1, 2, 3, 4; j 	= i.

(7.37)

The block diagram of the above receiver is shown in Figure 7.12.
For the special case where the messages are equally likely, i.e., P1 = P2 = P3 = P4 =

0.25, it is simple to see the decision rule becomes:

choose si(t) if (r1 − si1)2 + (r2 − si2)2 is the smallest, (7.38)

which is simply interpreted as the minimum-distance receiver. Its decision region therefore
looks as shown in Figure 7.13.

The symbol (message) error probability of the minimum-distance receiver is determined
by first changing variables or rotating coordinates and then finding the volume under the
appropriate pdfs. Because of the symmetry and equal a priori probabilities, one has

P[error] = P[error|si(t)] = 1− P[correct|si(t)]. (7.39)

One computes P[correct|s1(t)] by finding the volume of f (r1, r2|s1(t)) over the shaded
quadrant in Figure 7.14. This volume is readily found by a change of variables to pro-
duce two new axes, r̂1, r̂2, as shown. This change of variables is a rotation of the r1, r2 axes
by θ = π/4, i.e., [

r̂1

r̂2

]
=
[

cos θ sin θ

− sin θ cos θ

] [
r1

r2

]
.

The new variables r̂1, r̂2 are still statistically independent Gaussian random variables
of variance N0/2 and means of

(√
Es/2,−√Es/2

)
. The volume under f (r̂1, r̂2|s1(t)) =

f (r̂1|s1(t)) · f (r̂2|s1(t)) is now readily found to be

P[correct|s1(t)] =
[

1− Q

(√
Es

N0

)]2

. (7.40)

Compute

2
for j = 1, 2, 3, 4

and choose
the largest

N0 ln(Pj)r1sj1 + r2sj2 + 

t = Ts = 2Tb

t = Ts = 2Tb

Decision

r1

r2

r(t)

φ2(t)

φ1(t)

Ts

0

(•)dt∫

Ts

0

(•)dt∫

�Fig. 7.12 Receiver implementation for QPSK signaling.
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Signal space diagram of QPSK: to compute P[correct|s1(t)] one finds the volume of f (r̂1, r̂2|s1(t)) over the
shaded quadrant.

This, however, would give the symbol (message) error probability and not the bit error
probability. Even though a message error has been made it does not mean that a specific bit
is in error. As an example, if the receiver decides on message m2 when m1 is the true
message, then only the second bit is in error. To determine the bit error probability it
is necessary to distinguish between the different message errors. Again, because of the
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symmetry, it is sufficient to consider only a specific message, say m1. Then the different
errors are

m1(00) ⇒ m2(01) : second bit is in error,

m1(00) ⇒ m3(11) : both bits are in error,

m1(00) ⇒ m4(10) : first bit is in error.

The different error probabilities are given by (see Problem 7.3):

P[m2|m1] = Q

(√
Es

N0

)[
1− Q

(√
Es

N0

)]
, (7.41)

P[m3|m1] = Q2

(√
Es

N0

)
, (7.42)

P[m4|m1] = Q

(√
Es

N0

)[
1− Q

(√
Es

N0

)]
. (7.43)

The bit error probability is then calculated as

P[bit error] = 0.5P[m2|m1]+ 0.5P[m4|m1]+ 1.0P[m3|m1]

= Q

(√
Es

N0

)
, (7.44)

where the viewpoint is taken that one of the two bits is chosen at random, i.e., with a
probability of 0.5. Thus when the message errors of m2 or m4 occur (given that m1 was
transmitted), then the chosen bit is in error with a probability of 0.5. When the message
error of m3 occurs, then the chosen bit is certain to be in error, i.e., has a probability of 1.

It is clear from the above derivation that the way each information bit pair is mapped
to a message (or signal) influences the bit error probability. Specifically, the mapping
determines how the three probabilities {0.5, 0.5, 1.0} are associated with the three error
probabilities {P(m2|m1), P(m3|m1), P(m4|m1). Recognizing that

P(m3|m1) < P(m2|m1) = P(m4|m1), (7.45)

it is desirable to associate the probability 1.0 with P(m3|m1) in order to minimize the
overall bit error probability. This means that the signals s1(t) and s3(t), which are sepa-
rated by the largest Euclidean distance, should be mapped to the bit pairs that differ in
both bits. Equivalently, the signals that are closest to each other, known as the nearest
neighbors, should be mapped to the bit pairs that differ in only one bit. Such a map-
ping is called Gray mapping. For example, the mapping scheme in Table 7.1 is a Gray
mapping.

In general, there is a total of 4!= 24 possible ways to map the bit pairs to QPSK signals.
However, due to the symmetry of the QPSK constellation, it is not hard to verify that all
24 mappings are equally divided into two types of mapping as far as the bit error probability
is concerned. These are Gray mappings and anti-Gray mappings (i.e., any mapping that is
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not a Gray mapping). The bit error probability of QPSK with an anti-Gray mapping is
examined in Problem 7.4.

For a fair comparison with the error performance of binary modulation schemes con-
sidered previously, again it is necessary to express (7.44) in terms of Eb, the average
energy per bit. Since each signal of QPSK carries two bits and the energy of each sig-
nal is Es = V2Tb, the average energy per bit is Eb = Es/2 = V2Tb/2. Therefore the bit
error probability of QPSK with a Gray mapping is

P[bit error] = Q

(√
2Eb

N0

)
, (7.46)

which is exactly the same as that of BPSK. This clearly demonstrates the advantage of
QPSK over BPSK. With QPSK modulation, the bit rate can be doubled without requiring
any additional transmission bandwidth or sacrificing the error performance. Interpreted
differently, to deliver the same transmission rate at the same bit error performance, using
QPSK reduces the transmission bandwidth to half of that required by BPSK.

7.6.2 An alternative representation of QPSK

In this representation, the information bit stream is first converted to an NRZ-L waveform
a(t) with ±1 levels. The waveform a(t) is then demultiplexed into even, aI(t), and odd,
aQ(t), bit streams (waveforms) where I and Q are mnemonics for inphase and quadrature,
respectively. The individual bits in each stream occupy Ts = 2Tb seconds and modulate
the inphase carrier, V cos(2π fct), and quadrature carrier, V sin(2π fct), respectively. A block
diagram of such a QPSK modulator is illustrated in Figure 7.15 and examples of various
waveforms are shown in Figure 7.16.

The transmitted signal is

s(t) = aI(t)V cos(2π fct)+ aQ(t)V sin(2π fct), (7.47)

Demultiplexer

V cos(2π fct)

V sin(2π fct)

a(t)

aI (t)

aQ (t)

s(t)

�Fig. 7.15 A different block diagram of a QPSK modulator.
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�Fig. 7.16 Examples of aI(t) and aQ(t) in QPSK modulation.

which can be rewritten as

s(t) =
√

a2
I (t)+ a2

Q(t)V cos

(
2π fct − tan−1

(
aQ(t)

aI(t)

))
= √2V cos[2π fct − θ (t)], (7.48)

where the phase θ (t) is determined as follows:

θ (t) =

⎧⎪⎪⎨⎪⎪⎩
π/4, if aI = +1, aQ = +1 (bits are 11)

−π/4, if aI = +1, aQ = −1 (bits are 10)
3π/4, if aI = −1, aQ = +1 (bits are 01)

−3π/4, if aI = −1, aQ = −1 (bits are 00)

. (7.49)

Figure 7.17 shows how the QPSK transmitted waveform is generated from its inphase and
quadrature components for the bit sequence given in Figure 7.16.

As can be seen from (7.49) the transmitted signal is a QPSK signal and depends upon
the specific even (inphase) and odd (quadrature) bits which select the phase θ (t) of the
sinusoidal carrier

√
2V cos[2π fct − θ (t)]. These four signals can be represented in terms

of the following orthonormal basis functions:⎧⎪⎪⎨⎪⎪⎩
φ1(t) = V cos(2π fct)√

V2Tb

φ2(t) = V sin(2π fct)√
V2Tb

, 0 < t < Ts = 2Tb, (7.50)
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sQPSK(t) = aI(t)Vcos(2π fct) + aQ(t)Vsin(2π fct)

t

aI(t)Vcos(2π fct)

aQ(t)Vsin(2π fct)

�Fig. 7.17 An example of a QPSK signal, viewed as a sum of inphase and quadrature components.

as shown in Figure 7.18. Note that, the phase of each signal point is relative to the φ1(t)
axis, which is proportional to

√
2V cos(2π fct). Further, the energy of each QPSK signal in

this representation is Es = V2Ts.
To derive the minimum-error-probability receiver, observe that the even and odd bit

streams can be treated separately since aI(t) does not have a component along φ2(t), and
aQ(t) does not have a component along φ1(t). Thus the QPSK signal can be considered to
consist of two separate (noninterfering) BPSK signals.

The signal space plots for the inphase and quadrature bit streams are shown in
Figure 7.19, where s(I)

1 (t) = V cos(2π fct), s(I)
2 (t) = −V cos(2π fct), s(Q)

1 (t) = V sin(2π fct)

and s(Q)
2 (t) = −V sin(2π fct). The receiver looks as shown in Figure 7.20. For equally likely

signals, the bit error probability is that of BPSK modulation and is given by

P[bit error] = Q

⎛⎝√V2Ts

N0

⎞⎠ . (7.51)

Of course, one expects that the above expression for bit error probability is identical
to that of (7.46) when expressed in terms of Eb, the energy per information bit. To
see this, as noted earlier, the energy of each QPSK signal is V2Ts (see Figure 7.18),
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�Fig. 7.18 Representing QPSK signals as phases of the sinusoidal carrier.
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�Fig. 7.19 Signal space plots for inphase and quadrature bit streams.
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�Fig. 7.20 Receiver implementation for QPSK.
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hence Eb = Es/2 = V2Ts/2, or V2Ts = 2Eb. Substituting this expression into (7.51) gives
P[bit error] = Q

(√
2Eb/N0

)
, which shows that (7.51) is indeed the same as (7.46). This is

not a surprising fact if one recognizes from Figure 7.18 that the mapping from two bits to
a signal point is exactly a Gray mapping.

Finally, viewing the QPSK signal as a sum of two BPSK signals facilitates the determi-
nation of its PSD. Specifically, due to the statistical independence of the even and odd bits,
the two BPSK signals that make up the QPSK signal are uncorrelated. It follows that the
PSD of the QPSK signal is twice the PSD of each BPSK signal. It is given as in (7.8), but
scaled by a factor of 2 and with Ts substituted for Tb.

7.6.3 Offset quadrature phase-shift keying (OQPSK)

One of the attractive properties of the QPSK signal is that its envelope is ideally constant.
However, in many applications (such as satellite communications), the QPSK signals must
be bandlimited by a bandpass filter in order to conform to out-of-band emission standards.
The filtering degrades the constant-envelope property of QPSK, and the occasional phase
shifts of π in QPSK signals cause the envelope to pass through zero momentarily. When
this signal is amplified by the final stage, usually a highly nonlinear power amplifier, in
the transmitter, the filtered sidelobes in the signal spectrum are recreated (the nonlinear-
ity causes signal energy to reappear in the spectrum where the sidelobes are located). To
prevent spectral widening, it is necessary for the QPSK signal to be amplified with linear
amplifiers, which usually have very low efficiency. To prevent the phase change of π in
QPSK, offset (or staggered) quadrature phase-shift keying (OQPSK) is used so that signal
amplification can be done more efficiently.

OQPSK differs from QPSK only in that in OQPSK the aI(t) and aQ(t) bit streams
are offset by one bit interval Tb as shown in Figure 7.21. The resultant signal s(t) =
aI(t)V cos(2π fct)+ aQ(t)V sin(2π fct) cannot undergo a change of π radians since the aI(t)
bit stream has a transition in the middle of the aQ(t) bit stream. The possible changes are 0
or±π/2 and phase changes occur more frequently, namely every Tb, as compared to every
Ts = 2Tb in QPSK. This is illustrated in Figure 7.22.

The optimum receiver for OQPSK is identical to that of QPSK except that the time shift
of Tb seconds for aI(t) must be taken into account by the correlator and sampler. The error
probability is the same. And because the PSD of a signal does not depend on the phase, the
PSDs of OQPSK and QPSK are identical.

7.6.4 Minimum shift keying (MSK)

The typical QPSK and OQPSK waveforms in Figures 7.17 and 7.22 show that the transmit-
ted signals s(t) in QPSK and OQPSK have sudden jumps at multiples of symbol duration
(for QPSK), or multiples of bit duration (for OQPSK). The maximum value of the jump
is 2V for both schemes. However, it is not the magnitude of the jump but the rapid transi-
tion that influences the PSD of the signal. Intuitively, if these jumps at the transitions are
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eliminated, then the PSD will not occupy as large a frequency band. This is the basic idea
behind minimum shift keying (MSK). Here, the two carriers V cos(2π fct) and V sin(2π fct)
are weighted by sinusoids of frequency 1/(4Tb) as follows:2

√
2 cos

(
π t

2Tb

)
V cos(2π fct), (7.52)

√
2 sin

(
π t

2Tb

)
V sin(2π fct). (7.53)

The signals represented by (7.52) and (7.53) are orthogonal over the interval of Tb

seconds, or any integer multiple of Tb. This is shown as follows:∫ Tb

0
cos

(
π t

2Tb

)
sin

(
π t

2Tb

)
cos(2π fct) sin(2π fct)dt

= 1

4

∫ Tb

0
sin

(
π t

Tb

)
sin(4π fct)dt

= 1

8

∫ Tb

0

{
cos

[(
4π fc − π

Tb

)
t

]
− cos

[(
4π fc + π

Tb

)
t

]}
dt

= 1

8

⎧⎪⎨⎪⎩
sin
[(

4π fc − π
Tb

)
t
]

(
4π fc − π

Tb

)
∣∣∣∣∣∣
Tb

0

−
sin
[(

4π fc + π
Tb

)
t
]

(
4π fc + π

Tb

)
∣∣∣∣∣∣
Tb

0

⎫⎪⎬⎪⎭
= 0, (7.54)

where fc, as usual, is an integer multiple of 1/Tb. The energy in each signal over the interval
(0, 2Tb) is

2V2
∫ 2Tb

0
cos2

(
π t

2Tb

)
cos2(2π fct)dt

= 2V2
∫ 2Tb

0

[
1

2
+ 1

2
cos

(
π t

Tb

)][
1

2
+ 1

2
cos(4π fct)

]
dt

= V2

2

∫ 2Tb

0

[
1+ cos

(
π t

Tb

)
+ cos(4π fct)+ cos

(
π t

Tb

)
cos(4π fct)

]
dt

= V2Tb (joules). (7.55)

The two weighted carriers therefore are orthogonal over the interval [0, 2Tb] and have the
same energy. When they are modulated by the odd and even bit streams, these bit streams
can be separately demodulated at the receiver. It follows that the bit error probability of
MSK is the same as that of BPSK, QPSK, and OQPSK, namely

2 Other weighting functions or pulse shaping functions, as they are commonly called, are possible. The challenge
is to still preserve the orthogonality of the two weighted carriers. The “half-cosine” pulses here are most
commonly used.
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P[bit error] = Q

(√
2Eb

N0

)
, (7.56)

where Eb = V2Tb is the energy per bit.
The MSK modulator is shown in Figure 7.23, while Figure 7.24 is a sketch of the

receiver. As in OQPSK, the odd bit stream in MSK is shifted by one bit period, Tb, without
affecting the bit error probability or PSD. This shifting is necessary to produce the constant
envelope and continuity of the phase in MSK. The two orthonormal basis functions used
in the receiver of Figure 7.24 are simply

φ1(t) =
[√

2 sin

(
π t

2Tb

)
V sin(2π fct)

]/√
V2Tb, (7.57)

φ2(t) =
[√

2 cos

(
π t

2Tb

)
V cos(2π fct)

]/√
V2Tb. (7.58)
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⎝�Fig. 7.23 Block diagram of the MSK modulator.
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�Fig. 7.24 Block diagram of the MSK receiver.
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To gain a further insight into the transmitted signal, s(t), of MSK, write

s(t) = aI(t)
√

2 cos

(
π t

2Tb

)
V cos(2π fct)

+ aQ(t)
√

2 sin

(
π t

2Tb

)
V sin(2π fct) (7.59)

= A cos(2π fct − θ ). (7.60)

In the representation of (7.60), the amplitude is

A =
[

a2
I (t)2V2 cos2

(
π t

2Tb

)
+ a2

Q(t)2V2 sin2
(

π t

2Tb

)] 1
2 = √2V (7.61)

since aI(t) = ±1 and aQ(t) = ±1. The phase is given by

θ = tan−1
{

aQ(t) sin (π t/2Tb)

aI(t) cos (π t/2Tb)

}
. (7.62)

Since aI(t) = ±1 and aQ(t) = ±1, then

θ = tan−1
{
± tan

(
π t

2Tb

)}
= tan−1

{
tan

(
± π t

2Tb

)}
= ± π t

2Tb
. (7.63)

Therefore

s(t) = √2V cos

[
2π

(
fc ± 1

4Tb

)
t

]
. (7.64)

The expression in (7.64) shows that s(t) not only has a constant envelope, but also a con-
tinuous phase. Furthermore, the transmitted signal is of either frequency f2 = fc + 1/4Tb

or frequency f1 = fc − 1/4Tb depending on the ratio aQ(t)/aI(t). It is f1 if aQ(t) and aI(t)
are of the same sign and f2 if they are of the opposite signs. Due to the offset alignment
of the inphase and quadrature bit streams, the switching between frequencies f1 and f2 can
occur every Tb seconds. Thus the transmitted signal may be considered to be a frequency-
shift keying signal with continuous phase (CPFSK). Note also that the frequency separation
is f2 − f1 = 1/2Tb, which is the minimum separation possible for the two sinusoidal carri-
ers to be “coherently” orthogonal. This explains the name “minimum shift keying” of the
modulation scheme.

The waveforms involved in generating the MSK signal are illustrated in Figure 7.25.
Figures 7.25(a) and 7.25(b) show the inphase and the sinusoidally shaped inphase bit
stream waveforms, respectively. The inphase carrier (the first term in (7.60)), obtained by
multiplying the waveform in Figure 7.25(b) by V cos(2π fct), is shown in Figure 7.25(e).
Similarly, the sinusoidally shaped odd-bit stream and the quadrature carrier are shown in
Figures 7.25(d) and 7.25(f), respectively. The MSK signal, the addition of the waveforms
of Figures 7.25(e) and 7.25(f), is shown in Figure 7.25(g). As expected, the MSK signal
appears and is continuous in phase and takes on one of the two frequencies over each bit
duration.

The demodulation of MSK can be accomplished differently, namely by considering it to
be an FSK modulation technique. During the interval of Tb seconds the receiver decides
whether frequency f2 or frequency f1 is sent as shown in Figure 7.26. Given the decision
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Various components of the MSK signal defined in (7.60): (a) aI(t); (b) aI(t)
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√
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√
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√
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�Fig. 7.26 Demodulation of MSK by viewing it as continuous-phase BFSK.
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�Fig. 7.27 Generation of the even bit stream in MSK.

during the previous bit duration then one can decide on the transmitted bit during the
present duration. Note that the decision alternates between the even and odd bits.

The above demodulation method suffers, however, from error propagation since the
present bit decision depends on the previous one. This could be overcome by precod-
ing at the transmitter (this technique is discussed in Chapter 10). Another disadvantage
is that, being considered as FSK, it is 3 decibels poorer in error performance than BPSK or
QPSK/OQPSK.

The PSD of the MSK signal is most easily obtained by applying the impulse modu-
lator technique presented in Section 5.7. Consider the even bit stream and the function
aI(t)

√
2 cos(π t/2Tb). The signal can be modeled as being generated by a linear system

whose impulse response is
√

2 cos(π t/2Tb), |t| ≤ Tb. The input to the system is a ran-
dom impulse train with the impulses occurring every 2Tb seconds. This is illustrated in
Figure 7.27. Note that the PSD of the input process is 1/2Tb, ∀f , which follows from the
result in Section 5.7 after substituting Rc(m) = 1 for m = 0 and Rc(m) = 0 for m 	= 0.

The transfer function of the linear system is

H(f ) =
∫ Tb

−Tb

√
2 cos

(
π t

2Tb

)
e−j2π ftdt = −√2

(
π

Tb

)⎡⎢⎢⎣ cos(2π fTb)

4π2f 2 − π2

4T2
b

⎤⎥⎥⎦ . (7.65)
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Therefore the PSD of aI(t) is given by

SI(f ) = 1

2Tb
|H(f )|2 = 1

Tb

(
π

Tb

)2

⎡⎢⎢⎣ cos(2π fTb)

4π2f 2 − π2

4T2
b

⎤⎥⎥⎦
2

. (7.66)

The PSD for the odd bit stream, aQ(t)
√

2 sin(π t/2Tb) is also given by (7.66). This
is because, as a random signal, the odd bit stream is generated in an identical manner
to the even bit stream except that there is a time shift of Tb seconds. This leaves the
PSD unchanged. Finally, each bit stream is modulated by a carrier, V cos(2π fct) and
V sin(2π fct). This effectively translates the PSD to be centered at the carrier frequency
fc. About the only question that might arise is “what is the effect of the crosscorrelation
between the even and odd bit streams?” This is zero. The reason is that the statistical inde-
pendence of the even and odd bits makes the inphase and quadrature bit streams, aI(t) and
aQ(t), uncorrelated.

Finally, the PSD of the transmitted MSK signal is given by

SMSK(f ) =

K

⎧⎨⎩
[

cos[2π (f − fc)Tb]

4π2(f − fc)2 − π2/(4T2
b )

]2

+
[

cos[2π (f + fc)Tb]

4π2(f + fc)2 − π2/(4T2
b )

]2
⎫⎬⎭ ,

(7.67)

where K is a scaling factor.
It should be noted that the PSD of QPSK/OQPSK can be found in the same manner but

with the impulse response in Figure 7.27 set to a rectangular pulse, i.e., h(t) = 1, |t| ≤ Tb.
As mentioned before, except for a scaling factor of 2, the PSD of QPSK/OQPSK has the
same expression as the PSD of BPSK in (7.8). It can be seen from (7.67) that the MSK
PSD decays as 1/f 4, which is considerably faster than the 1/f 2 decay behavior of the
PSDs of BPSK and QPSK/OQPSK (see (7.8)). This decay reflects the fact that there are
no discontinuities in the transmitted signal.

The normalized PSDs for QPSK/OQPSK and MSK are sketched in Figure 7.28. The
PSD of BPSK is also included for comparison. The fact that BPSK requires more band-
width than the others for any reasonable definitions of bandwidth, such as the null-to-null
or fractional out-of-band power definitions3 is obvious. The theoretical null-to-null band-
width efficiency of BPSK is half that of QPSK. As predicted by the decay rate discussed
above, it is observed from Figure 7.28 that MSK has lower sidelobes than QPSK/OQPSK.
This is a consequence of multiplying the binary bit stream with a sinusoid, yielding more
gradual phase transitions. The more gradual the transition, the faster the spectral tails drop
to zero. Consider a bandwidth that contains 99% of the total power. Then for the same bit
rate of rb = 1/Tb MSK has a bandwidth of ≈ 1.18/Tb, QPSK/OQPSK has a bandwidth of

3 The null-to-null bandwidth is determined based on the first frequency value where the PSD equals zero, while
the fractional out-of-band power bandwidth is defined based on a required percentage of the total power in the
bandwidth.
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≈ 10.28/Tb, while BPSK has a bandwidth of ≈ 20.56/Tb. However, the MSK spectrum
has a wider mainlobe than QPSK/OQPSK, which means that when compared in terms of
null-to-null bandwidth, MSK is less spectrally efficient than QPSK/OQPSK.

Since there are no discontinuities at the bit transitions in the MSK signal, bandlimiting
the MSK signal to meet the required out-of-band power specifications does not cause its
envelope to go to zero. The envelope of an MSK signal is basically kept constant after
bandlimiting. Even if there are small variations of the envelope after bandlimiting at the
transmitter, these can be removed by hardlimiting at the receiver without significantly rais-
ing the sidelobe levels. Due to its constant envelope, continuous phase, low sidelobe levels,
and the fact that it can be demodulated as easily as FSK, MSK is a very popular modulation
technique in mobile communications.

7.7 Summary

Basic passband modulations for digital communications have been discussed in this chapter.
As with baseband, the focus was on the power needed to achieve a certain performance,
measured as the bit error probability, and on the bandwidth requirements of the spe-
cific modulations. The channel model was one of AWGN and the mantra was the same
as in baseband modulation. Find a signal space representation of the modulator’s signal
set, project the received signal onto the signal space basis to generate a set of sufficient
statistics, and process them to obtain the decision. Indeed this mantra will be invoked in
subsequent chapters where other channel models and other modulations are studied.
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Besides the basic binary passband modulations, the chapter also discussed higher-level
modulations, namely, quadrature phase-shift keying (QPSK) and the related minimum shift
keying (MSK). They were introduced as methods to conserve bandwidth without sacrificing
error performance. The next chapter investigates higher-level modulations, known as M-ary
(M > 2) more fully. Minimum shift keying belongs to the class of modulations known as
continuous-phase modulation (CPM). The interested reader is referred to the classic text by
Anderson et al. [1] for further reading on this subject.

Lastly, the reader might have observed that the basic analysis is very similar for both
baseband and passband modulation. Indeed, though not done in the chapter, one can
develop an equivalent baseband model, and then proceed to develop the optimum demod-
ulator and its performance at baseband. The equivalent baseband model is pursued in the
problems at the end of the chapter. However, though a passband digital communication sys-
tem may be represented mathematically by an equivalent baseband system, one should
be aware that there are excellent engineering reasons for passband modulation. The two
major reasons are: (i) the decreased size of antennas for efficient electromagnetic transmis-
sion at higher frequencies, (ii) the ability for different users to share the same transmission
medium, be it cable, fiber optics, or the air waves.

7.8 Problems

7.1 (Why modulate?) In passband modulation, the message signal modulates a sinusoidal
carrier. One may ask why it is necessary to use a carrier for radio transmission. The
answer is examined in this question.

Radio transmission is achieved with the electromagnetic field. The transmission of
electromagnetic fields through space is accomplished with the use of an antenna. The
size of the antenna depends on the wavelength λ and the application. For a cellular
phone, the antenna is typically λ/4 in size (diameter), where wavelength is equal to
c/f , with c = 3× 108 (m/s) the speed of light.
(a) Consider sending a message signal, say with f = 4 kilohertz, by coupling it to

an antenna directly without a carrier. How large would the antenna have to be?
(b) Suppose that the message signal is first modulated onto a carrier of 1.2 gigahertz

before coupling to the antenna. What is the size of the antenna in this case?
Comment.

7.2 (Autocorrelation of the NRZ waveform) Show that the autocorrelation function of the
baseband NRZ waveform is given as

Rm(τ ) =

⎧⎪⎨⎪⎩
1

4
+ 1

4

(
1− |τ |

Tb

)
, |τ | < Tb

1

4
, |τ | > Tb

. (P7.1)

7.3 Verify the expressions in (7.41), (7.42), and (7.43).
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7.4 (Anti-Gray mapping) Recall that a Gray mapping is any mapping with the property
that the nearest symbols differ in only one bit. We have shown that with a Gray
mapping QPSK modulation has the same bit error probability as that of BPSK. Here
consider the mapping from two bits to one QPSK symbol as in Table 7.2, called an
anti-Gray mapping.

Table 7.2 An anti-Gray mapping of QPSK

Bit pattern Message Signal transmitted

00 m1 s1(t) = V cos(2π fct), 0 ≤ t ≤ Ts = 2Tb
11 m2 s2(t) = V sin(2π fct), 0 ≤ t ≤ Ts = 2Tb
10 m3 s3(t) = −V cos(2π fct), 0 ≤ t ≤ Ts = 2Tb
01 m4 s4(t) = −V sin(2π fct), 0 ≤ t ≤ Ts = 2Tb

(a) Find, in terms of Eb/N0, the expression for the bit error probability of QPSK
modulation using the above anti-Gray mapping.

(b) Compare the result with that of QPSK employing Gray mapping. Plot the two
bit error probabilities on the same graph versus Eb/N0 and comment.

7.5 (Asymmetric QPSK) Asymmetric constellations provide a simple solution for
unequal error protection, where bits that are deemed to be important can be protected
more than bits of lesser importance (e.g., image and voice signals in multimedia
applications). Consider an asymmetric QPSK constellation as shown in Figure 7.29,
where the mapping of two bits b1b2 to each signal point is also shown. The informa-
tion bits are equally likely. As usual, the signal set is used for communications over
an ideal AWGN channel with two-sided PSD N0/2 (watts/hertz).

0

Es

π/6

d1

d2

0 1
b1b2

0 0
b1b2

1 1
b1b2

1 0
b1b2

2φ2(t) = sin(2π fct)Ts

2φ1(t) = cos(2π fct)Ts

s2(t)

s3(t)

s1(t)

s4(t)

�Fig. 7.29 Asymmetric QPSK constellation.
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(a) Draw the decision boundary and the decision regions of the receiver that
minimizes the symbol error probability.

(b) Determine the symbol error probability of the receiver in (a) as a function of
Es/N0.

(c) Determine the bit error probabilities for b1 and b2 separately. Which bit is
more protected and why? Hint Argue that P[bk is in error] = P[bk is in error|
s1(t)], k = 1, 2.

(d) Assume that N0 = 10−6 watts/hertz. How large does Es need to be set to achieve
P[b1 is in error] ≤ 10−3?

7.6 (Propagation delay and phase shift) Consider the mobile radio link illustrated in
Figure 7.30. In the figure a user stands at point A, at a distance d from the base
station. The propagation delay from point A to the base station is Td. Consider
that a single tone s(t) = cos(2π fct) is transmitted from the user and let fc = 1.2
gigahertz. Neglecting the noise, the waveform received at the base station is r(t) =
cos[2π fc(t + Td)].
(a) If the user moves away from the base station to point B, or toward the base station

to point C, what is the minimum distance of the movement that will cause a 2π

rotation of the received waveform?
(b) Do we really care about a 2π phase rotation? What are the minimum distances

of the user’s movement that cause π/2 and π phase rotations? Comment.
7.7 (BASK with phase uncertainty) Consider BASK with the two elementary signals:⎧⎨⎩

s1(t) = 0, if “0T”

s2(t) = √E

√
2

Tb
cos(2π fct), if “1T”

, 0 < t ≤ Tb, (P7.2)

Base stationCB A

d

Δ Δ

�Fig. 7.30 Example of a radio link.
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where fc = n/Tb, n � 1. Upon transmission through the channel, the signal under-
goes a phase shift. The received signal is therefore given by

r(t) =
{

sR
1 (t)+ w(t)

sR
2 (t)+ w(t)

=
⎧⎨⎩

0+ w(t), if “0T”
√

E

√
2

Tb
cos(2π fct + θ )+ w(t), if “1T”

,

where, as usual, w(t) is AWGN with a two-sided PSD of N0/2, sR
1 (t) and sR

2 (t) are the
two possible received signals in the absence of noise. The phase θ is assumed to be
unknown to the receiver since either the company cannot afford a phase-locked loop
(PLL), or their engineers do not understand the circuit and cannot design one. Thus
they are attempting to overcome this problem.
(a) One proposed idea is as follows. Forget about the phase shift (i.e., assume θ = 0)

and just use the conventional “optimum” receiver. Calculate the error probabili-
ties for this method when θ = 30◦, 60◦, 90◦. Plot the error probability curves as
functions of Eb/N0 on the same graph and comment.

(b) After testing the performance of the receiver in (a) and not being satisfied with
it, the company comes to you for a suggestion. What should be a reasonable
receiver in the face of this phase uncertainty? Explain. Hint As a first step, deter-
mine the signal space of the received signals sR

1 (t) and sR
2 (t). Assume the phase

can be any value between 0 and 2π and plot the locus of sR
2 (t) in the signal space.

7.8 (BPSK with phase and attenuation uncertainty) Consider BPSK modulation, where
two antipodal signals

sT
1 (t) = −sT

2 (t) = √Eb

√
2

Tb
cos (2π fct)

are used for the transmission of equally likely bits 0 and 1 every Tb seconds, respec-
tively. Besides the usual AWGN of spectral strength N0/2 (watts/hertz), the channel
introduces a phase shift of θ radians, −π/4 < θ < π/4, and an attenuation of k
(volts/volts), 0 < k ≤ 1, to the transmitted signal.
(a) On the same graph, show the signal space diagrams at the transmitter and the

receiver for some arbitrary values of θ and k within the ranges specified above.
(b) When both θ and k are unknown to the receiver, the receiver just employs the

minimum distance rule as if there were no phase shift nor attenuation. Determine
the resultant bit error probability of this receiver in terms of Eb/N0, θ , and k.

(c) Assume now that the receiver can perfectly estimate the phase shift θ and the
attenuation k. Draw the decision regions and the block diagram of the optimal
receiver in this situation. Determine the error probability of this optimal receiver.
Compare it with the performance of the receiver in (b) and comment.
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7.9 (QPSK with phase and attenuation uncertainty) Consider QPSK modulation where
the transmitted signal is

sT
i (t) = √Es

√
2

Ts
cos
[
2π fct + (2i+ 1)

π

4

]
,

i = 0, 1, 2, 3; 0 ≤ t ≤ Ts.

Besides the usual AWGN of spectral strength N0/2 (watts/hertz), the channel
introduces a phase shift of θ radians, −π/4 < θ < π/4, and an attenuation of k
(volts/volts), 0 < k ≤ 1, to the transmitted signal. Both θ and k are fixed but unknown
to the receiver.
(a) On the same graph, show the signal space diagrams at the transmitter and the

receiver.
(b) Assuming that the four transmitted signals are equally likely, determine the resul-

tant symbol error probability of the “conventional optimum receiver” (i.e., the
receiver that assumes θ = 0 and k = 1) under the phase and gain uncertainty.

(c) Consider the following Gray mapping: 00 → sT
0 (t), 01 → sT

1 (t), 11 → sT
2 (t) and

10 → sT
3 (t). Obtain the bit error probability and compare it to the case when

there is no phase and attenuation uncertainty.
7.10 (BPSK with two different signal sets) Consider the following two signal sets proposed

for BPSK:

signal set #1:

{
0T : −√Eb

√
2/Tb cos(2π fct)

1T :
√

Eb
√

2/Tb cos(2π fct)
, 0 ≤ t ≤ Tb,

signal set #2:

{
0T : −√Eb

√
2/Tb sin(2π fct)

1T :
√

Eb
√

2/Tb sin(2π fct)
, 0 ≤ t ≤ Tb.

(a) Sketch the signals of the two signal sets. Without any computation, what would
you say about the PSD of each signal set.

(b) Determine the PSD of the two signal sets.
(c) Plot the respective PSDs. The plots should be versus fTb with fcTb a parameter.

Plot for fcTb = 1, 2, 5, 20. Compare and comment.
(d) A general remark that is often made (and indeed has been made in the text) is that

the PSD ignores the phase information of a signal or that phase information is
unimportant. Try to reconcile this statement with what you have observed above.

7.11 (Sensitivity of error performance to incorrect a priori probability) Consider BPSK,
where P[1T ] = p. The “optimum” demodulator is designed on the assumption that
p = 1/2.
(a) Fix the demodulator with the p = 1/2 assumption. What happens to the error

performance of this demodulator if p 	= 1/2.
(b) Design the optimum demodulator for general p and derive the expression for its

error performance.
(c) Plot the error performance based on the demodulator of (a) and that of (b) for

p = 0.6, 0.7, 0.8, 0.9. Comment on the sensitivity of the error performance to an
incorrect assumption of the a priori probability.
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7.12 Import your favorite music into Matlab as a wav file. Determine the “probability” of

a one occurring (or a zero occurring). Is the equally probable assumption reasonable?

Remark The format of your music file may or may not be important. You may wish

to import different formats of the music file.

7.13 (QPSK simulation) This problem uses Matlab to simulate QPSK modulation and

demodulation. To this end, let the duration of each QPSK signal be normalized to

Ts = 1 second, and the energy of each signal be Es = 1 joule. With these normaliza-

tions, the coordinates of QPSK signals in the signal space diagram are as shown in

Table 7.3.

Table 7.3 QPSK signal coordinates

Bit pattern QPSK signal Signal coordinates

00 s1(t) (1, 0)
01 s2(t) (0, 1)
11 s3(t) (−1, 0)
10 s4(t) (0,−1)

Perform the following steps in Matlab:

(a) Generate a random binary information sequence of length L = 1000 bits, whose

elements are drawn from {0, 1}. Take two bits at a time and Gray map them to

one of the four QPSK signals according to Table 7.3. This yields the sequence of

transmitted QPSK signals.

(b) Add to each transmitted QPSK signal zero-mean AWGN of variance σ 2 = N0/2.

This can be done by independently adding to each coordinate of a QPSK sig-

nal a Gaussian random variable of variance N0/2. In Matlab this means adding

σ*randn(1,1) to each coordinate.

(c) Plot the received signals in the signal space diagram. Also, plot the optimum

decision boundary.

Remark It is convenient to use four different “markers” for the received signals, each

corresponding to one of the four transmitted signals. In this way you can associate

a particular received signal with each transmitted QPSK signal. To carry out (b) and

(c), first determine the values of σ 2 so that the bit error probabilities of QPSK are

10−1, 10−2, 10−3, 10−4. Then run your program for each value of σ . (d) Comment

on the four plots obtained in (c).

Though not used in the text, it is common to develop an equivalent baseband model

for the various passband modulation schemes and then develop the optimum demod-

ulator and analysis. The approach has the advantage of being applicable to any carrier
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frequency, fc, provided of course that the model (in our case here that of an AWGN
channel) holds. It has the disadvantage that it somewhat abstracts the physical real-
ity. Although the Hilbert transform might be used to develop the equivalent baseband
model, here we take a more direct, intuitive approach.

7.14 First we develop the equivalent baseband signals for the passband signals used in the
chapter. In baseband the signal should be such that when shifted up (and down) by fs
hertz we should get the passband signal. The choice of the frequency fs can be made
arbitrarily but in most modulation there is a natural or logical choice. In general then

sPB(t) = R
{

sBB(t)ej2π fst
}

, (P7.3)

where sPB(t) is the passband signal, sBB(t) is the baseband signal, ej2π fst represents
a shift of fs hertz in the frequency domain, and R{·} takes the real part of the sig-
nal because we wish to transmit real signals. With all this, identify and sketch the
baseband signals for:
(a) the BASK signal set;
(b) the BPSK signal set;
(c) the BFSK signal set.
Remark In (a) and (b) there is a natural choice for the shift frequency, namely fs =
fc. For BFSK one has some choices. Three obvious choices are fs = f1, fs = f2 and
fs = (f1 + f2)/2.

7.15 The equivalent baseband signals in Problem 7.14(c) are complex, at least some of
them, while in (a) and (b) they are real. Can you deduce when you would get a real
equivalent baseband signal and when you would have a complex equivalent baseband
signal. Hint A time signal s(t) is real if and only if |S(f )| is even and 	 S(f ) is odd.

7.16 What are the equivalent baseband signals for QPSK?
We now develop an equivalent baseband representation of a passband random pro-

cess or, in our context, noise. By passband we mean that most of power of the noise
is concentrated around some frequency fs and the PSD becomes negligible for f suf-
ficiently far from fs. In essence given a passband process n(t) with PSD Sn(f ), Sn(f ) is
related to the equivalent baseband process SB(f ) by

Sn(f ) = SB(f − fs)+ SB(−f − fs), (P7.4)

where fs is the chosen shift or “representation” frequency. This relationship is
illustrated in Figure 7.31.

7.17 As in the deterministic signal case, the passband process, in terms of the equivalent
baseband process, nB(t), is to be expressed in the form n(t) = R

{
nB(t)ej2π fst

}
and

the aim is to find nB(t). Since we are interested only in the first- and second-order
moments, i.e., mean (which for us is 0) and autocorrelation/crosscorrelation, we start
by observing that n(t) can be generated by passing a white process through an LTI
filter (known as a shaping filter) as shown in Figure 7.32.
(a) Given that Sn(f ) lies in the passband, show that H(f ) can be written as H(f ) =

HB(f − fs)+ H∗
B(−f − fs), where HB(f ) is lowpass and negligible for |f | > fs.

Some sketches might be helpful.
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0 fs 2fs−2fs −fs
f

SB( f )

Sn( f )

0 fs
f

fs + W−fs −W

W�Fig. 7.31 Relationship between PSDs of passband and equivalent baseband processes.

h(t) ↔ H( f )

2
 = H ( f )H*

 ( f )Sn ( f ) = Sw ( f ) × H ( f )

n(t) = w(t) ∗ h(t)

↔

w(t)
White noise,

spectral strength of 1

�Fig. 7.32 Producing a passband random process from white noise and a shaping filter.

(b) Using Sn(f ) = SB(f − fs)+ SB(−f − fs), Sn(f ) = |H(f )|2, H(f ) = HB(f − fs)+
H∗

B(−f − fs), show that SB(f ) = |HB(f )|2.
(c) Now show that the relationship between the impulse response of the shaping

filter, h(t), and the equivalent baseband filter impulse response, hB(t) is

h(t) = 2R
{

hB(t)ej2π fst
}

, (P7.5)

where hB(t) = ∫∞−∞ HB(f )ej2π ftdf .
(d) Now show that

n(t) = R
{∫ ∞

−∞
w(t − λ)hB(λ)ej2π fsλdλ

}
. (P7.6)

(e) Observe that we want to express n(t) as n(t) = R
{
nB(t)ej2π fst

}
. To put the

expression in (d) in this form, multiply the quantity in the curly brackets by 1
(changes nothing), but express 1 as 1 = e−j2π fstej2π fst. Therefore

n(t) = R
{[

e−j2π fst
∫ ∞

−∞
w(t − λ)hB(λ)ej2π fsλdλ

]
ej2π fst

}
. (P7.7)

What is nB(t)? Would you say it is a baseband or lowpass process? Why?
(f) Express nB(t) = nI(t)− jnQ(t). What is nI(t)? nQ(t)? Show that n(t) =

nI(t) cos(2π fst)+ nQ(t) sin(2π fst).
Remark The choice of fs is somewhat arbitrary but as in the case of deterministic
signals, there are bad, good, and better choices. More about this in the next problem.
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We now investigate the statistical properties of nI(t) and nQ(t), the baseband

processes needed to represent the passband process.

7.18 Up till now we have made no assumptions about w(t), except that it should be white.
Now assume that it is also Gaussian. Then n(t), nI(t), and nQ(t) are Gaussian. Why?
If Gaussian, then what is needed to completely describe the two baseband processes
is the autocorrelation and crosscorrelation functions, i.e., RI(τ ), RQ(τ ), RI,Q(τ ) and
RQ,I(−τ ).
(a) Find E {nB(t)nB(t + τ )} = RnB (t, τ ). Fourier transform RnB(t, τ ) with respect

to the variable τ . The result you get should be of the form e−j4π fstHB(−f −
2fs)HB(f ). Argue that this product is zero and therefore that RI(τ ) = RQ(τ ) and
RI,Q(τ ) = −RQ,I(τ ).

(b) As in (a) find E
{
n∗B(t)nB(t + τ )

}
. Show that it equals

∫∞
0 h∗B(λ)hB(τ + λ)dλ and

that the Fourier transform is |HB(f )|2 = SB(f ).
(c) Use the results of (a) and (b) to conclude that

RI(τ ) = RQ(τ ) = 1

2

∫ ∞

−∞
SB(f ) cos(2π f τ )df , (P7.8)

RI,Q(τ ) = −RQ,I(τ ) = −1

2

∫ ∞

−∞
SB(f ) sin(2π f τ )df . (P7.9)

(d) If the PSD of n(t) is locally symmetric about fs then what sort of symmetry does
SB(f ) possess? What can you say about the crosscorrelation functions? What can
you say about the two processes nI(t) and nQ(t)? Remember that if two Gaussian
random variables are uncorrelated, then they are .

7.19 To finish with the representation of a communication system in equivalent baseband
consider the representation of the convolution operation in equivalent baseband. The
system is shown in Figure 7.33. Here both X(f ) and H(f ) are passband signals whose

x(t) ↔ X( f )

xB (t) hB (t) yB (t)

y(t) = x(t) * h(t) ↔ Y( f ) = X( f )H( f )h(t) ↔ H( f )

�Fig. 7.33 Equivalent baseband representation of the convolution operation.

spectral content lies around or near fs � 0. Express X(f ) and H(f ) as X(f ) = XB(f −
fs)+ X∗B(−f − fs) and H(f ) = HB(f − fs)+ H∗

B(−f − fs), where XB(f ) and HB(f ) are
the respective baseband representations. Show that

yB(t) = xB(t) ∗ hB(t). (P7.10)

7.20 As we have seen in Chapter 5, the matched filter, h(t), is of the form s(Tb − t), per-
haps normalized to have unit energy and s(t) is a signal chosen from the signal
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constellation. If sB(t) is the equivalent baseband signal for s(t), what is hB(t), the
equivalent baseband impulse response of h(t)?
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8 M-ary signaling techniques

8.1 Introduction

The previous chapter shows that there are benefits to be gained when M-ary (M = 4)
signaling methods are used rather than straightforward binary signaling. In general,
M-ary communication is used when one needs to design a communication system that
is bandwidth efficient. It is based on the observation that as the time duration of a signal,
Ts, increases, the bandwidth requirement decreases. See Examples 2.11, 2.16, and Prob-
lem 2.38, which illustrate this. Typically, unlike QPSK and its variations in the previous
chapter, the gain in bandwidth is accomplished at the expense of error performance. M-ary
modulation is also a natural choice when the source is inherently M-ary, for example, the
transmission of the English alphabet or when error control coding is used.

However, even when the source is inherently M-ary, the usual scenario is that the M
messages are mapped to a sequence of bits, e.g., the ASCII code used for text. Therefore,
even in these situations the final source output is binary and from the perspective of the
modulator looks like a binary source. The typical application of M-ary modulation is one
where a binary source has its bit stream blocked into groups of λ bits. The number of
different bit patterns is 2λ, which means M = 2λ, where each bit pattern is mapped (modu-
lated) into a distinct signal. Each block of λ bits is a symbol and given that the source’s bit
rate is rb = 1/Tb bits/second, the symbol transmission rate is rs = 1/Ts = 1/(λTb) = rb/λ

symbols/second. A signal from the modulator occupies Ts = λTb seconds and the implica-
tion is that the bandwidth requirement is on the order of 1/Ts, or that there is a bandwidth
saving of 1/λ compared to binary modulation.

In this chapter M-ary ASK, PSK, QAM (quadrature amplitude modulation) and FSK
signaling methods are discussed. In particular the demodulator which minimizes the mes-
sage error probability (or symbol error probability) is derived and applied to the different
signaling methods. The error performance of these modulation methods and bandwidth
saving are analyzed and contrasted. It should be noted that though a message will usu-
ally represent a block of binary digits or bits, minimizing message error probability is not
the same as minimizing bit error probability. In general, there is no simple relationship
between message error probability and bit error probability. Relationships, however, are
derived for the discussed modulations, albeit only in terms of bounds for some of them.
Only M-ary signaling techniques using passband modulation are discussed. M-ary com-
munication using baseband modulation is a fairly straightforward application of the ideas
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presented for the passband modulation signals. Before discussing the different modulation
methods the optimum decision rule of Chapter 5 is generalized to the M-ary case.

8.2 Optimum receiver for M-ary signaling

Consider the problem of trying to transmit one of M messages, say m1, m2, . . . , mM ,
through a communication channel every Ts seconds as shown in Figure 8.1. The mes-
sages are represented by M signals s1(t), s2(t), . . . , sM(t). As usual, the channel is assumed
to be wideband enough to transmit the signals without any distortion. The only effect of
the channel is to corrupt the signal with zero-mean, white Gaussian noise of strength N0/2
(watts/hertz).

The problem now is: having received the signal r(t) = si(t) + w(t) over the time inter-
val of [0, Ts] seconds how does one decide on the transmitted signal with minimum
error? The determination of the optimum receiver proceeds in a manner analogous to
that for the binary case. The M signals are first represented by an orthonormal basis set,
φ1(t), φ2(t), . . . , φN(t), where N ≤ M. The set can be determined as follows (recall the
Gram–Schmidt orthogonalization procedure):

(i) Choose one of the signals, say s1(t), normalize it by its energy and let this normalized
signal be the first orthonormal function, φ1(t).

(ii) Choose a second signal, s2(t), find its component along φ1(t) and subtract this
component from s2(t). Normalize the resultant signal and let it be φ2(t).

(iii) Choose a third signal, s3(t). Find the projections of s3(t) along the φ1(t) and φ2(t) axes
and subtract the two projections from s3(t). Normalize the resultant signal and call it
φ3(t). Note, if s3(t) is a linear combination of s1(t) and s2(t), then the subtraction will
yield zero resulting in a zero φ3(t) at this step. In this case go on to the fourth signal
s4(t), project onto φ1(t), φ2(t), subtract, normalize, and call this signal φ3(t).

(iv) Repeat the procedure for all signals. In each case, project the considered signal onto
the previously determined orthonormal functions. Subtract the components along
these axes from the considered signal and if the resultant signal is nonzero, normalize
so that it has unit energy and include it as part of the orthonormal basis.

The procedure thus yields N ≤ M orthonormal basis functions. The number of basis
functions, N, equals the number of signals, M, if no signal is a linear combination

Source
Modulator

(transmitter)
Demodulator

(receiver)

mi misi(t)

w(t)

r(t) ˆ

�Fig. 8.1 Block diagram of an M-ary signaling system.
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of some set of the other signals. Otherwise N < M. Signal si(t) is then represented as
follows:

si(t) = si1φ1(t) + si2φ2(t) + · · · + siNφN(t), (8.1)

where

sik =
∫ Ts

0
si(t)φk(t)dt. (8.2)

Typically a lot of the coefficients will be zero.
To determine the minimum message error probability receiver the received signal r(t) is

expanded into the series

r(t) = si(t)+ w(t)

= r1φ1(t)+ r2φ2(t)+ · · · + rNφN(t)+ rN+1φN+1(t)+ · · ·
= (si1 + w1)φ1(t)+ · · · + (siN + wN)φN(t)+ wN+1φN+1(t)+ · · · , (8.3)

where

rk =
∫ Ts

0
r(t)φk(t)dt. (8.4)

As before, for k > N, the coefficients rk are the same regardless of which message, mi (or
signal si(t)), is being transmitted and they are statistically independent of the coefficients
rj, j ≤ N. Therefore they can be discarded.

The decision problem is to partition the N-dimensional space formed by �r =
(r1, r2, . . . , rN) into M regions so that the message error probability is minimized or equiv-
alently the probability of a correct decision is maximized. This is illustrated in Figure 8.2.

The probability of making a correct decision is:

P[correct] =
∫
 1

P1f (�r|s1(t))d�r + · · · +
∫
 M

PMf (�r|sM(t))d�r. (8.5)

To maximize P[correct] the observed vector �r = (r1, r2, . . . , rN) is assigned to region  i if

Pif (�r|si(t)) is larger than Pj f (�r|sj(t)), j = 1, 2, . . . , M; j 	= i (8.6)

where Pi is the a priori probability of the ith message and f (�r|si(t)) is the conditional pdf
of the observations (r1, r2, . . . , rN). The conditional pdf is given by

f (�r|si(t)) =
N∏

k=1

1√
πN0

exp

{
− 1

N0
(rk − sik)2

}
. (8.7)

The decision rule expressed by (8.6) can be rewritten, by using (8.7) and taking the
natural logarithm of Pi f (�r|si(t)), as

choose mi if

ln Pi − 1
N0

∑N
k=1(rk − sik)2 > ln Pj − 1

N0

∑N
k=1(rk − sjk)2;

j = 1, 2, . . . , M; j 	= i,

(8.8)
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ℜM
Choose sM (t) or mM

ℜ1
Choose s1(t) or m1

ℜ2
Choose s2 (t) or m2

N-dimensional observation space
r = (r1, r2, …, rM) 

�Fig. 8.2 Decision regions of M-ary signaling.

where the common term −0.5N ln(πN0) is discarded. If the messages are equally likely,
i.e., Pi = Pj, then the decision rule simplifies to

choose mi if∑N
k=1(rk − sik)2 <

∑N
k=1(rk − sjk)2;

j = 1, 2, . . . , M; j 	= i.
(8.9)

Again the quantity
∑N

k=1(rk − sik)2 can be interpreted as the distance (squared) from the
observations (r1, r2, . . . , rN) to the ith signal si(t), which is represented by the components
(si1, si2, . . . , siN). Therefore the intuitive interpretation of a minimum-distance receiver also
applies in the M-ary situation. A general block diagram of the minimum-distance receiver
that implements the decision rule in (8.9) is obvious. The decision rule and its imple-
mentation can be greatly simplified for the specific signaling techniques discussed in the
following sections.

8.3 M-ary coherent amplitude-shift keying (M-ASK)

The transmitted signal is one of

si(t) = Vi

√
2

Ts
cos(2π fct), 0 ≤ t ≤ Ts

i = 1, 2, . . . , M; fc = k/Ts, k integer, (8.10)
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where the amplitude takes on one of M values and usually is increased in equal increments.
Obviously the above signal set is represented by only one orthonormal function, namely,

φ1(t) =
√

2

Ts
cos(2π fct), 0 ≤ t ≤ Ts. (8.11)

Let the signal amplitude be Vi = (i− 1)�. Then

si(t) = [(i− 1)�]φ1(t), i = 1, 2, . . . , M. (8.12)

The signal space plot is presented in Figure 8.3.
The optimum receiver, for equally likely messages, computes r1 =

∫ kTs
(k−1)Ts

r(t)
φ1(t)dt and determines to which signal the observed r1 is closest. This is illustrated in
Figure 8.4.

The sufficient statistic r1 is Gaussian, with variance N0/2 and a mean value determined
by the transmitted signal. The conditional pdf of r1 given that signal si(t) was transmitted is

f (r1|si(t)) = 1√
πN0

exp

{
− 1

N0
[r1 − (i− 1)�]2

}
. (8.13)

The decision regions are shown graphically in Figure 8.5. Mathematically they are:

choose

⎧⎪⎪⎨⎪⎪⎩
sk(t), if

(
k − 3

2

)
� < r1 <

(
k − 1

2

)
�, k = 2, 3, . . . , M − 1

s1(t), if r1 < �/2

sM(t), if r1 >
(

M − 3
2

)
�

. (8.14)

The message error probability is given by

P[error] =
M∑

i=1

P[si(t)]P[error|si(t)]. (8.15)

0 Δ 2Δ
φ1(t)

s1(t) s2(t) s3(t) sk(t)

(k – 1)Δ (M – 2)Δ (M – 1)Δ

sM–1(t) sM (t)

�Fig. 8.3 Signal space diagram for M-ASK signaling.

W/Hz
2

AWGN, strength
N0

Decision
device

si(t)

φ1(t)

r(t) miˆ

w(t)

t = kTs
r1

(k – 1)Ts

kTs
(•)dt∫

�Fig. 8.4 Receiver implementation for M-ASK signaling.
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0 Δ (k − 1)Δ

r1

sk(t))f (r1

Choose s1 (t) ⇐ ⇒ Choose sM (t)
Choose sk (t)�Fig. 8.5 Decision regions for M-ASK.

r1

sk(t))f (r1

2
Δ

2
Δ

�Fig. 8.6 Calculating the error probability for M-ASK.

For the M − 2 inner signals, si(t), i = 2, 3, . . . , M − 1, P[error|si(t)] is equal to the two
shaded areas as shown in Figure 8.6. Each area is equal to Q

(
�/
√

2N0
)
. Therefore

P[error|si(t)] = 2Q
(
�/
√

2N0

)
, i = 2, 3, . . . , M − 1. (8.16)

The two end signals have an error probability of

P[error|si(t)] = Q
(
�/
√

2N0

)
, i = 1, M. (8.17)

Combining the above and using the fact (or assumption) that P[si(t)] = 1/M results in

P[error] = 2(M − 1)

M
Q
(
�/
√

2N0

)
. (8.18)

The maximum amplitude of a transmitted signal is (M − 1)� and therefore the max-
imum transmitted energy is [(M − 1)�]2. This can be reduced, without any sacrifice in
error probability, by changing the signal set to one which includes the negative version
of each signal. In essence the modulation is now a combination of amplitude and phase
where the phase is either 0 or π . It is, however, the practice to call this M-ASK; M-ary
phase modulation is discussed in the next section. The resultant signals are

si(t) = (2i− 1−M)
�

2︸ ︷︷ ︸
Vi

√
2

Ts
cos(2π fct), 0 ≤ t ≤ Ts, i = 1, 2, . . . , M. (8.19)
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0
2
Δ

2
Δ−

φ1(t)

φ1(t)

2
3Δ

2
3Δ−

0 Δ 2Δ−Δ−2Δ

(a)

(b)

�Fig. 8.7 Signal space plot when (a) M is even, and (b) M is odd.

With the above signal set, the maximum transmitted energy is

Emax =
[

(M − 1)�

2

]2

(joules), (8.20)

which is reduced by four times compared to the previous signal set. The signal space plots
are shown in Figure 8.7 for even and odd M.

Note that with the above modified signal constellation, not only is the maximum trans-
mitted energy reduced, but also the average transmitted energy. As before, for a fair
comparison among different signal constellations (with either the same or different M),
it is desired to express the error probability in terms of Eb/N0, where Eb is the average
transmitted energy per bit. To do this, compute the average transmitted energy per message
(or symbol) as follows:

Es =
∑M

i=1 Ei

M
= �2

4M

M∑
i=1

(2i− 1−M)2

= �2

4M

[
1

3
M(M2 − 1)

]
= (M2 − 1)�2

12
. (8.21)

Thus the average transmitted energy per bit1 is

Eb = Es

log2 M
= (M2 − 1)�2

12 log2 M
, (8.22)

which also implies that

� =
√

12Es

M2 − 1
(8.23)

=
√

(12 log2 M)Eb

M2 − 1
. (8.24)

1 The number of bits per symbol here is λ, i.e., log2 M = λ. However, even when M is not a power of 2, log2 M
is still taken as the number of “equivalent” bits that the message represents.
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Substituting (8.23) and (8.24) into (8.18) yields

P[error] = 2(M − 1)

M
Q

(√
6Es

(M2 − 1)N0

)
(8.25)

= 2(M − 1)

M
Q

(√
6 log2 M

M2 − 1

Eb

N0

)
. (8.26)

The above probability of error is the symbol error probability. For M-ary modulations,
the relation between the symbol error probability and the bit error probability is often
tedious due to its dependence on the mapping from λ-bit patterns into the signal points.
If Gray mapping is used, two adjacent symbols differ in only a single bit. Since the most
probable errors due to noise result in the erroneous selection of a signal adjacent to the true
signal, most symbol errors contain only a single-bit error. Hence the equivalent bit error
probability for M-ASK modulation is well approximated by

P[bit error] ≈ 1

λ
P[symbol error]. (8.27)

Therefore for M-ASK with Gray mapping one has

P[bit error] = P[symbol error]

log2 M
≈ 2(M − 1)

M log2 M
Q

(√
6 log2 M

M2 − 1

Eb

N0

)
. (8.28)

The symbol error probability of M-ASK is plotted in Figure 8.8 for M = 2, M = 4,
M = 8, and M = 16. This figure clearly illustrates how one can trade power for bandwidth

0 5 10 15 20 25

M = 16
(W = 1/4Tb)

M = 8
(W = 1/3Tb)

M = 4
(W = 1/2Tb)

M = 2
(W = 1/Tb)

Eb/N0 (dB)

P
[s

ym
bo

l e
rr

or
]

10−6

10−7

10−5

10−4

10−3

10−2

10−1

�Fig. 8.8
Probability of symbol error for M-ASK signaling. The bandwidth, W, is obtained by using the WTs = 1
rule-of-thumb. Here 1/Tb is the bit rate (bits/second).
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by using a higher-order modulation. In particular, observe that the SNR per bit needs to
increase by over 4 decibels when M is doubled. For large M, the additional power per bit
needed when M increases by a factor of 2 approaches 6 decibels.

Though M-ASK gives a bandwidth saving, it comes at the expense of either error perfor-
mance or an increased transmission power if the same error performance is required. The
problem arises from the fact that the energy grows linearly with λ, while the number of
signals one needs to place on the single axis, φ1(t), grows exponentially (as 2λ). Perhaps if
one went to two dimensions, this effect, if not overcome completely, could at least be ame-
liorated. M-ary phase-shift keying (M-PSK), which uses two orthonormal basis functions,
may be a possible solution. It was certainly successful for the M = 4 (QPSK) situation (see
Section 7.6.1). The next section discusses general M-PSK.

8.4 M-ary phase-shift keying (M-PSK)

The signal set is given by

si(t) = V cos

[
2π fct − (i− 1)2π

M

]
, 0 ≤ t ≤ Ts,

i = 1, 2, . . . , M; fc = k/Ts, k integer; Es = V2Ts/2 joules (8.29)

which can be written as

si(t) = V cos

[
(i− 1)2π

M

]
cos(2π fct)+ V sin

[
(i− 1)2π

M

]
sin(2π fct). (8.30)

From the above it is seen that each signal is expressed in terms of the following two
orthonormal functions:

φ1(t) = V cos(2π fct)√
Es

, φ2(t) = V sin(2π fct)√
Es

. (8.31)

The coefficients of the ith signal are then

si1 =
√

Es cos

[
(i− 1)2π

M

]
, si2 =

√
Es sin

[
(i− 1)2π

M

]
. (8.32)

The signals therefore lie on a circle of radius
√

Es, and are spaced every 2π/M radians
around the circle. This is illustrated in Figure 8.9 for M = 8 and Figure 8.10 for an arbitrary
M (only the first two and the last signals are shown). Also shown in Figure 8.9 is a Gray
mapping from three-bit patterns to the signal points.

The receiver for minimum message error probability computes

Pi f (r1, r2|si(t)), i = 1, 2, . . . , M and chooses the largest,

where

r1 =
∫ Ts

0
r(t)φ1(t)dt, r2 =

∫ Ts

0
r(t)φ2(t)dt. (8.33)
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0

φ2(t)

φ1(t)

π/4

s3(t) ↔ 011

s2(t) ↔ 001

s1(t) ↔ 000

s8(t) ↔ 100

s7(t) ↔ 101

111 ↔ s6(t)

110 ↔ s5(t)

010 ↔ s4(t)

Es

�Fig. 8.9 Signal space plot for 8-PSK.

0

φ2(t)

φ1(t)
2π/M

–2π/M

s2(t)

s1(t)

sM  (t)

Es

�Fig. 8.10 Signal space plot for M-PSK.

When the messages are equally likely, the receiver is a minimum-distance receiver, which
in block diagram form looks as in Figure 8.11. Graphically the decision regions are
depicted in Figure 8.12.

To determine the error probability, note that due to the symmetry

P[error] = P[error|s1(t)]

= P[r1, r2 fall outside Region 1|s1(t) transmitted]

= 1− P[r1, r2 fall in Region 1|s1(t) transmitted]

= 1−
∫∫

r1,r2∈Region 1

f (r1, r2|s1(t))dr1dr2, (8.34)
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for i = 1, 2, …, M
and choose
the smallest

Compute
(r1 − si1)2 + (r2 − si2)2

ˆ

t = Ts

mi

t = Ts

r1

r2

r(t)

φ2(t)

φ1(t)

Ts

0

(•)dt∫

Ts

0

(•)dt∫

�Fig. 8.11 Receiver implementation for M-PSK signaling.

0

Es

r2

r1
π/M

s2(t)

s1(t)

Region 1
choose s1(t)

Region 2
choose s2(t)

�Fig. 8.12 Decision regions for M-PSK signaling.

where

f (r1, r2|s1(t)) = 1√
πN0

exp

{
− 1

N0

(
r1 −

√
Es

)2
}

1√
πN0

exp

{
− r2

2

N0

}
.

(8.35)

Unfortunately the above integral cannot be evaluated in a closed form. Thus to determine
how the error probability behaves with M and the SNR, the error probability is bounded as
follows.

For a lower bound, consider region  1 as shown in Figure 8.13. Obviously,

P[error|s1(t)] > P[r1, r2 fall in  1|s1(t)], or

P[error|s1(t)] > Q
{

sin
( π

M

)√
2Es/N0

}
. (8.36)
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( )Es,0�Fig. 8.13 Region  1.
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0 –π/M s1(t)
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Es sin(π/M)

( )Es,0

�Fig. 8.14 Region  2.

The upper bound is obtained by simply considering region  1 as above and region  2

shown in Figure 8.14. Then

P[error] < P[r1, r2 fall in  1|s1(t)]+ P[r1, r2 fall in  2|s1(t)], or

P[error] < 2Q
(

sin
( π

M

)√
2Es/N0

)
, (8.37)

where the common volume under f (r1, r2|s1(t)) where regions  1, 2 intersect has been
counted twice.

To compare M-PSK with BPSK let M = 2λ. Thus each message represents a bit pattern
of λ bits. The message occupies Ts = λTb seconds and therefore the bandwidth require-
ment for the M-ary scheme is 1/λ that of the binary case. With regard to error probability
note that the transmitted energy in the M-ary case is

Es = V2Ts

2
= V2λTb

2
= λEb (joules/message), (8.38)

where Eb is the energy transmitted in the binary case. Assuming that the SNR is high, the
message error probability can be approximated as

P[error]M-PSK # Q

(√
λ sin2

( π

M

) 2Eb

N0

)
. (8.39)

The bit error probability for BPSK is

P[error]BPSK = Q(
√

2Eb/N0). (8.40)
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Table 8.1 Performance comparison of M-PSK and BPSK

λ M M-ary bandwidth
binary bandwidth λ sin2(π/M) M-ary energy

binary energy

3 8 1/3 0.44 3.6 dB
4 16 1/4 0.15 8.2 dB
5 32 1/5 0.05 13.0 dB
6 64 1/6 0.0144 17.0 dB

M = 16

M = 32

M = 8

M = 4

M = 2

Exact

Lower bound
Upper bound
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�Fig. 8.15 Probability of symbol error for M-PSK signaling.

For the two error probabilities to be equal the M-PSK signal energy needs to be increased
by the reciprocal of the factor λ sin2(π/M). Table 8.1 summarizes the performances of M-
PSK and BPSK. It should be noted that the above compares the symbol error of M-PSK to
the bit error of BPSK.

The Gray approximation of (8.27) applies also to M-PSK. Therefore the bit error
probability of M-PSK can be obtained from (8.39) as follows:

P[bit error]M-PSK # 1

log2 M
Q

(√
λ sin2

( π

M

) 2Eb

N0

)
. (8.41)

Finally, the symbol error probability of M-PSK is illustrated in Figure 8.15 for various
values of M. In particular, upper and lower bounds on the symbol error probability are
plotted for M = 8, 16, 32, while the exact results are shown for the cases of M = 2, 4.
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Observe the tightness of the lower and upper bounds in the high SNR region. The perfor-
mance curves clearly illustrate the penalty in SNR per bit as M increases beyond M = 4.
For example, at P[error] = 10−5, the difference between M = 4 and M = 8 is approx-
imately 4 decibels, and the difference between M = 8 and M = 16 is approximately 5
decibels as in the case of M-ASK. For large values of M, doubling the number of messages
requires an additional 6 decibels of power to maintain the same error performance.

M-PSK therefore behaves much the same as M-ASK in terms of bandwidth and error
performance. In retrospect this might have been expected. Since the energy, Es, grows
linearly with λ, the radius of the circle that the signals are mapped onto grows as

√
Es

and hence so does the circumference. But the number of signals mapped onto the circum-
ference grows exponentially with λ. The distance between the signals therefore becomes
smaller and smaller. It appears that a straight line and a circle are “topologically” the same.
However, as the circle grows larger there is a lot of real estate inside it that should be able
to house signal points. This is what quadrature amplitude modulation (QAM), discussed
next, does.

8.5 M-ary quadrature amplitude modulation (M-QAM)

In M-ASK and M-PSK, the messages (patterns of λ = log2 M binary bits) are encoded
either into amplitudes or phases of a sinusoidal carrier. M-QAM is a more general mod-
ulation that includes M-ASK and M-PSK as special cases. In QAM, the messages are
encoded into both the amplitude and phase of the carrier. M-QAM constellations are
two-dimensional and they involve two orthonormal basis functions, given by

φI(t) =
√

2

Ts
cos(2π fct), 0 ≤ t ≤ Ts, (8.42)

φQ(t) =
√

2

Ts
sin(2π fct), 0 ≤ t ≤ Ts, (8.43)

where the subscripts I and Q refer to the inphase and quadrature carriers.2 Examples of
QAM constellations are shown in Figures 8.16 and 8.17 for various values of M.

The ith transmitted M-QAM signal is defined as follows:

si(t) = VI,i

√
2

Ts
cos(2π fct)+ VQ,i

√
2

Ts
sin(2π fct),

0 ≤ t ≤ Ts,
i = 1, 2, . . . , M,

(8.44)

where VI,i and VQ,i are the information-bearing discrete amplitudes of the two quadrature
carriers. The above shows that the signal si(t) consists of two phase-quadrature carriers,

2 Note that φI (t) and φQ(t) are exactly the same as φ1(t) and φ2(t) used in the representation of M-PSK. As will
be seen shortly, it is more informative to rename them in the representation of M-QAM.
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Triangle (4,4)

�Fig. 8.16 Examples of M-QAM constellations with M = 4 and M = 8.

each being modulated by a set of discrete amplitudes, hence the name quadrature ampli-
tude modulation. Also note that VI,i, VQ,i in (8.44) are precisely the coefficients si1, si2 in
the usual representation si(t) = si1φ1(t) + si2φ2(t).

Alternatively, the QAM signal waveforms may be expressed as

si(t) =
√

Ei

√
2

Ts
cos(2π fct − θi), (8.45)

where Ei = V2
I,i + V2

Q,i and θi = tan−1(VQ,i/VI,i). From this expression, it is apparent that
the QAM signal waveforms may be viewed as combined amplitude and phase modulation.

Since any M-QAM constellation is two-dimensional, just like M-PSK, the optimum
receiver for the case of equally likely signal points is the minimum-distance receiver and
can be implemented exactly as shown in Figure 8.11.
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�Fig. 8.17 Examples of 16-QAM constellations.

Depending on the number of possible symbols M and the set of amplitudes {VI,i, VQ,i},
a large variety of QAM constellations can be realized (see Figures 8.16 and 8.17 for exam-
ple). Obviously, for a given M, an important question is how to compare different M-QAM
constellations in terms of error performance. To answer this question, observe that for
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signaling over an AWGN channel the most likely error event is the one where the transmit-
ted signal is confused with its nearest neighbors. Therefore, in order to (roughly) maintain
the same symbol error probability, the distance between the nearest neighbors in all the
signal constellations should be kept the same. With this constraint, the more efficient sig-
nal constellation is the one that has smaller average transmitted energy. For the special but
also common case of equally likely signal points, the average transmitted energy is simply
Es = (1/M)

∑M
i=1(V2

I,i + V2
Q,i).

As an example, consider the 8-QAM signal constellations of Figure 8.16. Let � be the
minimum distance between signal points in any constellation. Assuming that the signal
points are equally probable, it is simple to find that the average transmitted energies for
the rectangular, triangular, (1,7), and (4,4) constellations are 1.50�2, 1.125�2, 1.162�2,
and 1.183�2, respectively. Therefore, among the four 8-QAM constellations, the triangular
constellation is most efficient, while the rectangular one is least efficient. In particular, the
triangular 8-QAM requires approximately 1.25 decibels less energy than the rectangular
8-QAM to achieve approximately the same error probability.

The most important configuration of signal points is rectangular. Known naturally as
rectangular QAM, the signal points are placed on a rectangular grid spaced equally in

0

φQ (t)

φ1 (t)

M = 64

M = 32M = 16

M = 8

M = 4

�Fig. 8.18 Rectangular M-QAM constellations.



319 8.5 M-ary quadrature amplitude modulation (M-QAM)
�

amplitude by � in each direction (dimension). Figure 8.18 shows rectangular QAM signal
constellations for M = 4, 8, 16, 32, 64. The signal components, VI,i and VQ,i, take their
values from the set of discrete values {(2i− 1−M)�/2}, i = 1, 2, . . . , M/2. The minimum
Euclidean distance between signal points is therefore �, as in M-ASK.

The major advantage of rectangular QAM is its simple modulation and demodulation.
This is because each group of λ = log2 M bits can be divided into λI inphase bits and λQ

quadrature bits, where λI + λQ = λ. The inphase bits and quadrature bits then modulate
the inphase and quadrature carriers independently. These inphase and quadrature ASK
signals are then added to form the QAM signal before being transmitted. At the receiver,
due to the orthogonality of the inphase and quadrature signals, the two ASK signals can
be independently detected to give the decisions on the inphase and quadrature bits. The
above discussion on the modulator and demodulator of a rectangular M-QAM is illustrated
in Figure 8.19.

Although in terms of energy, rectangular QAM constellations are not the best M-QAM
signal constellations for M ≥ 16, the average transmitted energy required to achieve a

De-
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decision
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Select VI,i

Select VQ,i

cos(2π fct)
2
Ts
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2
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2
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Infor. bits si (t)Inphase ASK

Quadrature ASK

Multiplexer
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(b)
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r(t) = si (t) + w(t)

φQ (t) = 

φI(t) = 

Ts

0

(•)dt∫

Ts

0

(•)dt∫

�Fig. 8.19
Implementations of modulator and demodulator for rectangular M-QAM: (a) transmitter; (b) receiver.
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given minimum distance is negligibly greater than the average energy required for the best
M-QAM signal constellation. For these reasons, rectangular M-QAM signals are those
most frequently used in practice. The most practical rectangular QAM constellation is one
which “carries” an equal number of bits on each axis, i.e., λ is even, 2, 4, 6, 8, etc., and
therefore M is a perfect square, 4, 16, 64, 256, etc., i.e., the rectangle is a square.

Any rectangular QAM signal constellation is equivalent to two ASK signals modu-
lating quadrature carriers. The inphase carrier, φI(t), carries λI bits and has 2λI signal
points, while the quadrature carrier φQ(t) has λQ bits assigned to it and 2λQ signal points.
For square constellations, each carrier has

√
M = 2λ/2 signal points. Since the signals in

the phase-quadrature components can be perfectly separated at the demodulator, the pro-
bability of error for QAM can be easily determined from the probability of error for ASK.
Specifically, the probability of symbol error for a square M-QAM system is

P[error] = 1− P[correct] = 1−
(

1− P√M[error]
)2

, (8.46)

where P√M[error] is the probability of error of a
√

M-ary ASK with one-half the aver-
age energy in each quadrature signal of the equivalent QAM system. By appropriately
modifying the probability of error for M-ASK, we obtain

P√M[error] = 2

(
1− 1√

M

)
Q

(√
3Es

(M − 1)N0

)
, (8.47)

where Es/N0 is the average SNR per M-QAM symbol.
The above result is for M = 2λ, λ even. However, even when λ is odd, an exact expres-

sion for the symbol error probability can be derived for rectangular QAM (see Problem
8.15). Furthermore, by upper bounding the conditional error probability (conditioned on
the transmission of any signal point in the constellation) by the worst case conditional
error probability (which corresponds to a signal point whose decision region is a square of
size � centered at the signal point), the symbol error probability of a rectangular QAM is
tightly upper-bounded by (see Problem 8.16)

P[error] ≤ 1−
[

1− 2Q

(√
3Es

(M − 1)N0

)]2

≤ 4Q

(√
3λEb

(M − 1)N0

)
(8.48)

for any λ ≥ 1, where Eb/N0 is the average SNR per bit. The probability of a symbol error
for M-QAM is plotted in Figure 8.20 as a function of Eb/N0 for various values of M. The
upper bounds plotted in this figure are based on (8.48) and can be seen to be very tight at
high SNR.

For nonrectangular QAM signal constellations, the error probability can be upper-
bounded by using the following union bound:

P[error] < (M − 1)Q

(√
�2/2N0

)
, (8.49)
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�Fig. 8.20 Probability of symbol error for M-QAM signaling.

where � is the minimum Euclidean distance between signal points. This bound may be
quite loose when M is large. In such a case, one may approximate P[error] by replacing
(M − 1) by Mn, where Mn is the largest number of neighboring points that are at distance
� from any constellation point, i.e., P[error] < MnQ(

√
�2/2N0).

Since both QAM and PSK are two-dimensional signal sets, it is of interest to compare
their error performance for any given signal size M. Recall that for M-PSK, the probability
of a symbol error is approximated as

P[error] ≈ Q

(√
2λEb

N0
sin

π

M

)
. (8.50)

For M-QAM, one may use the expression (8.48). Since the error probability is dominated
by the argument of the Q function, one may simply compare the squared arguments of Q(·)
for the two modulation formats. The ratio of these two arguments is

κM = 3/(M − 1)

2 sin2(π/M)
. (8.51)

When M = 4, κM = 1, which is not surprising since 4-PSK and 4-QAM are the same mod-
ulation format. However, when M > 4 it is seen that κM > 1, which means that M-QAM
yields better performance than M-PSK. Table 8.2 illustrates the SNR advantage of QAM
over PSK for several values of M. For example, one observes that 64-QAM has about 10
decibels SNR advantage over 64-PSK. The advantage, of course, is gained at the expense
of increased sensitivity to amplitude and phase degradation in the transmission.
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Table 8.2 SNR advantage of M-QAM over M-PSK

M 10 log10 κM

8 1.65 dB
16 4.20 dB
32 7.02 dB
64 9.95 dB
256 15.92 dB
1024 21.93 dB

8.6 M-ary coherent frequency-shift
keying (M-FSK)

M-ary frequency-shift keying takes an essentially different approach to the previously dis-
cussed modulations. It gives each individual signal its own orthogonal axis and gains real
estate in this manner. This, is done however, at the expense of bandwidth.

The signal set is given by

si(t) =
{

V cos(2π fit), 0 ≤ t ≤ Ts

0, elsewhere
, i = 1, 2, . . . , M, (8.52)

where the frequencies are chosen so that the signals are orthogonal over the interval [0, Ts].
A possible choice with minimum separation between the frequencies is

fi = (k ± i)

(
1

Ts

)
, i = 0, 1, 2, . . . (8.53)

or

fi = (k ± i)

(
1

2Ts

)
, i = 0, 1, 2, . . . . (8.54)

In the first case the signals are “noncoherently” orthogonal and in the second case they are
“coherently” orthogonal. The energy in each signal is Es = V2Ts/2. Since the signals are
orthogonal they represent a natural choice for the orthonormal basis; all that is required is
for the energy to be normalized to unity. Thus

φi(t) = si(t)√
Es

, i = 1, 2, . . . , M. (8.55)

A typical signal space diagram for M = 3 is shown in Figure 8.21.
For M-FSK, the optimum (minimum message error probability) receiver computes the

M projections, ri =
∫ Ts

0 r(t)φi(t)dt, and then uses the decision rule of (8.8). As usual,
r(t) = si(t) + w(t), w(t) being AWGN and therefore the ri are Gaussian random vari-
ables, with a variance of N0/2 and the mean determined by si(t). And, of course, they
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�Fig. 8.21 Signal space plot for 3-FSK.

are also uncorrelated and statistically independent. If the messages are equally likely, i.e.,
P[si(t)] = 1/M, i = 1, 2, . . . , M, then the receiver becomes that of the minimum-distance
receiver. This is expressed as follows:

choose mi if
M∑

k=1

(rk − sik)2 <

M∑
k=1

(rk − sjk)2

j = 1, 2, . . . , M; j 	= i,

(8.56)

where N = M, i.e., the number of basis functions equals the number of signals.
Note that

sik =
{

0, k 	= i√
Es, k = i

(8.57)

and similarly

sjk =
{

0, k 	= j√
Es, k = j

. (8.58)

Therefore the decision rule can be rewritten as

choose mi if
(ri −√Es)2 + r2

j < r2
i + (rj −√Es)2

j = 1, 2, . . . , M; j 	= i,
(8.59)

which reduces to

choose mi if
ri > rj, j = 1, 2, . . . , M; j 	= i.

(8.60)

In block diagram form the receiver looks as shown in Figure 8.22. Note that instead of
φi(t) one may use si(t). This only scales the correlator output by the factor

√
Es and does

not in any way change the ordering of the sampled outputs. To determine the message error
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�Fig. 8.22 Receiver implementation for M-FSK.

probability consider that message s1(t) is transmitted. Due to the symmetry of the signal
space and because the messages are equally likely

P[error] = P[error|s1(t)] = 1− P[correct|s1(t)]. (8.61)

The conditional probability of being correct can be expressed as follows:

P[correct|s1(t)] =
P[(r2 < r1) and (r3 < r1) and . . . and (rM < r1)|s1(t) sent]. (8.62)

The sampled outputs r1, r2, . . . , rM are random variables and thus the above is concerned
basically with the probability that one random variable is smaller than another. To pro-
ceed further, fix the random variable r1 at some specific value, say r1. Then (8.62) can be
rewritten as

P[correct|s1(t)] =∫ ∞

r1=−∞
P[(r2 < r1) and . . . and (rM < r1)|{r1 = r1, s1(t)}]f (r1|s1(t))dr1, (8.63)

where f (r1|s1(t))dr is interpreted as the probability that the random variable r1 is in the
infinitesimal range r1 to r1 + dr1. Given s1(t), f (r1|s1(t)) is Gaussian, with mean

√
Es

and variance N0/2. Furthermore, given r1 = r1, the random variables r2, r3, . . . , rM are
statistically independent Gaussian random variables with zero mean and variance N0/2.
Therefore

P[(r2 < r1) and . . . and (rM < r1)|{r1 = r1, s1(t)}] =
M∏

j=2

P[(rj < r1)|{r1 = r1, s1(t)}]. (8.64)
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The term P[rj < r1|{r1 = r1, s1(t)}] is

P[rj < r1|{r1 = r1, s1(t)}] =
∫ r1

−∞
1√
πN0

exp

{
− λ2

N0

}
dλ. (8.65)

It follows that

P[correct] =
∫ ∞

r1=−∞

[∫ r1

λ=−∞
1√
πN0

exp

{
− λ2

N0

}
dλ

]M−1

× 1√
πN0

exp

{
− (r1 −√Es)2

N0

}
dr1. (8.66)

The above integral can only be evaluated numerically. It can be normalized so that only
two parameters, namely M (the number of messages) and Eb/N0 (the SNR per bit), enter
into the numerical integration (see Problem 8.17) as

P[error] = 1− 1√
2π

∫ ∞

−∞

[
1√
2π

∫ y

−∞
exp

(−x2

2

)
dx

]M−1

× exp

⎡⎣−1

2

(
y−

√
2 log2 MEb

N0

)2⎤⎦dy. (8.67)

Due to the symmetry of the M-FSK constellation, all mappings from sequences of λ

bits to signal points yield the same bit error probability. The exact relationship between
the probability of bit error and the probability of symbol error for M-FSK can be found
as follows. For equally likely signals, all the conditional error events, each conditioned
on the transmission of a specific signal, are equiprobable and occur with probability

P[symbol error]/(M − 1) = P[symbol error]/(2λ − 1). There are
(

λ
k

)
ways in which k bits

out of λ may be in error. Hence the average number of bit errors per λ-bit symbol is

λ∑
k=1

k

(
λ

k

)
P[symbol error]

2λ − 1
= λ

2λ−1

2λ − 1
P[symbol error]. (8.68)

The probability of bit error is simply the above quantity divided by λ, i.e.,

P[bit error] = 2λ−1

2λ − 1
P[symbol error]. (8.69)

Note that the ratio P[bit error]/P[symbol error] = 2λ−1/(2λ − 1) is precisely the ratio
between the number of ways that a bit error can be made and the number of ways that
a symbol error can be made. Furthermore, this ratio approaches 1/2 as λ →∞.

Figure 8.23 plots the exact symbol error probability of M-FSK as a function of Eb/N0

for different values of M. In a completely opposite behavior as compared to M-ASK,
M-PSK, and M-QAM, the required Eb/N0 to achieve a given error probability decreases as
M increases in M-FSK signaling. It should be pointed out that this happens at the expense
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�Fig. 8.23 Probability of symbol error for M-FSK signaling.

of a larger transmission bandwidth in order to accommodate a higher number of orthogonal
carriers.

Although (8.67) and (8.69) provide exact symbol and bit error probabilities, respectively,
for M-FSK, they do not clearly show how the error probabilities behave with SNR, Eb/N0,
nor with the constellation size, M. To overcome this difficulty, consider upper-bounding
the error probability by using the union bound. The basic expression for the error is:

P[error] = P[(r1 < r2) or (r1 < r3) or . . . or (r1 < rM)|s1(t)]. (8.70)

Since the events are not mutually exclusive, the error probability is obviously bounded by

P[error] < P[(r1 < r2)|s1(t)]

+ P[(r1 < r3)|s1(t)]+ · · · + P[(r1 < rM)|s1(t)]. (8.71)

The quantity P[(r1 < r2)|s1(t)] is the same as the probability of making an error when only
s1(t) and s2(t) are considered (i.e., binary FSK). This is given by (see Figure 8.24)

P[(r1 < r2)|s1(t)] = Q
(√

Es/N0

)
. (8.72)

The other probabilities, P[(r1 < rj)|s1(t)], j = 3, 4, . . . , M, are equal to P[(r1 < r2)|s1(t)].
Therefore

P[error] < (M − 1)Q
(√

Es/N0

)
< MQ

(√
Es/N0

)
. (8.73)

An even simpler expression is obtained by further applying the following upper bound
on Q(x):

Q(x) =
∫ ∞

x

1√
2π

e−λ2/2 dλ < e−x2/2. (8.74)
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The above bound is graphically illustrated in Figure 8.25.
Therefore, the symbol error probability is upper-bounded by

P[error] < Me−Es/(2N0). (8.75)

If the number of messages is a power of 2, i.e., M = 2λ, where each message represents
a pattern of λ bits occurring at a rate of rb = 1/Tb (bits/second), then M = eλ ln 2 and
Es = λEb. Thus the error probability can be expressed as

P[error] < eλ ln 2e−λEb/(2N0) = e−λ(Eb/N0−2 ln 2)/2. (8.76)

Observe that, as λ →∞, or equivalently, as M →∞, the probability of error approaches
zero exponentially, provided that

Eb

N0
> 2 ln 2 = 1.39 = 1.42 decibels. (8.77)
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The upper bound on the probability of error given by (8.76) implies that, as long as SNR
per bit > 1.42 decibels, we can achieve an arbitrarily low probability of error!

A different interpretation of the upper bound in (8.76) can be obtained as follows. Since
Es = λEb = V2Ts/2, (8.76) can be rewritten as

P[error] < eλ ln 2e−V2Ts/(4N0) = e−Ts[−rb ln 2+V2/(4N0)]. (8.78)

The above implies that if −rb ln 2+ V2/(4N0) > 0, or rb < V2/(4N0 ln 2) the probability
or error tends to zero as Ts or M becomes larger and larger. This behavior of the error prob-
ability is surprising since what it shows is that, provided the bit rate, rb, is small enough,
the error probability can be made arbitrarily small even though the SNR is finite. Equiv-
alently the transmitter power can be finite and still one can achieve as small an error as
desired when the bit stream is transmitted by means of M-FSK.

8.7 Comparison of M-ary signaling techniques

Important parameters of a signaling (modulation/demodulation) technique include: (i)
transmission bit rate, rb (bits/second), (ii) bandwidth requirement, W (hertz), (iii) error per-
formance (bit or symbol error probability), and (iv) transmitted power (usually quantified
by the SNR per bit, Eb/N0) to achieve a certain error performance. To have a meaning-
ful comparison of different passband signaling techniques described in this chapter, these
important parameters need to be taken into account. In fact, this has been partially done
in the comparisons between M-PSK and BPSK in Section 8.4, and between M-QAM and
M-PSK in Section 8.5.

A more compact and meaningful comparison of different modulation techniques is the
one based on the bit-rate-to-bandwidth ratio, rb/W (bits per second per hertz of bandwidth)
versus the SNR per bit (Eb/N0) required to achieve a given error probability. The ratio
rb/W, commonly called the normalized bit rate, measures the bandwidth efficiency of a
signaling scheme. Let us determine this ratio for different signaling techniques.

Since M-ASK is amplitude modulation, the bandwidth-efficient transmission method
is single-sideband (SSB), which is identical to SSB amplitude modulation in analog
communications. With SSB transmission, the required channel bandwidth is approxi-
mately equal to half of the reciprocal of the symbol duration Ts, i.e., W = 1/2Ts. Since
Ts = λTb = λ/rb = log2 M/rb, it follows that

W = rb

2 log2 M
. (8.79)

The above expression shows that, when the bit rate rb is fixed, the channel bandwidth
required decreases as M is increased. Consequently, the bandwidth efficiency of SSB-ASK
increases with M as follows:( rb

W

)
SSB-ASK

= 2 log2 M ((bits/second)/hertz). (8.80)
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For M-PSK (M > 2), the signals must be transmitted via double sidebands. Therefore
the required channel bandwidth is W = 1/Ts. Similarly to the case of M-ASK, one has
Ts = log2 M/rb. It then follows that( rb

W

)
PSK

= log2 M ((bits/second)/hertz), (8.81)

which is a factor of 2 less than that of M-ASK with SSB transmission.
In the case of (rectangular) QAM, since the transmitted signal consists of two indepen-

dent ASK signals on orthogonal quadrature carriers, the transmission rate is twice that of
ASK. However, like M-PSK the QAM signals must be transmitted via double sidebands.
Consequently, QAM and SSB-ASK have the same bandwidth efficiency.

Orthogonal M-FSK has a totally different bandwidth requirement, and hence a totally
different bandwidth efficiency. If the orthogonal carriers in M-FSK have the minimum
frequency separation of 1/2Ts, the bandwidth required for transmission of λ = log2 M
information bits is approximately

W = M

2Ts
= M

2(λ/rb)
= M

2 log2 M
rb. (8.82)

The above expression shows that, for a fixed transmission rate rb, the bandwidth increases
as M increases. As a consequence, the bandwidth efficiency of M-FSK reduces in the
following manner as M increases:( rb

W

)
FSK

= 2 log2 M

M
. (8.83)

Figure 8.26 shows the plots of rb/W versus Eb/N0 for SSB-ASK, PSK, QAM, and
FSK when P[symbol error] = 10−5. Observe that, in the cases of ASK, PSK, and QAM,
increasing M results in a higher bandwidth efficiency rb/W. However, the cost of achieving
the higher data rate per unit of bandwidth is an increase in SNR per bit. Consequently, these
modulation techniques are appropriate for communication channels that are bandwidth-
limited, where it is desired to have a bit-rate-to-bandwidth ratio rb/W > 1 and where
there is sufficiently high SNR to support increases in M. Telephone channels and digital
microwave channels are examples of such bandwidth-limited channels.

In contrast, M-FSK modulation provides a bit-rate-to-bandwidth ratio of rb/W ≤ 1. As
M increases, rb/W decreases due to the larger increase in required channel bandwidth.
However, the SNR per bit required to achieve a given error probability (in the case of
Figure 8.26, P[symbol error] = 10−5) decreases as M increases. Therefore, the M-FSK
signaling technique is appropriate for power-limited channels that have sufficiently large
bandwidth to accommodate a large number of signals but cannot afford a large SNR per
bit. For the case of M-FSK, as M →∞, the error probability can be made as small as
desired, provided that Eb/N0 > 1.39 = 1.42 decibels (see (8.77)).

Note that also shown in Figure 8.26 is the graph for the normalized channel capacity of
the bandlimited AWGN channel, which is due to Shannon [1]. The ratio C/W, where C
is the capacity in bits/second, represents the highest achievable bit-rate-to-bandwidth ratio
on this channel, an AWGN channel. Hence, it serves as the upper bound on the bandwidth
efficiency of any modulation technique. This bound is discussed in more detail in the next
section.
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Comparison of different M-ary signaling techniques at a symbol error probability of 10−5. Note that the
values of M shown next to square markers are for QAM. For SSB-ASK, take the square roots of these
values.

8.8 Shannon channel capacity theorem

Shannon [1] showed that the system capacity (in bits/second) of an AWGN channel is a
function of the average signal power Pav, the average noise power, and the bandwidth W.
The Shannon capacity theorem can be stated as

C = W log2

(
1+ Pav

WN0

)
, (8.84)

where W is in hertz and, as usual, N0/2 is the two-sided PSD of the noise.
Shannon proved that it is theoretically possible to transmit information over such a chan-

nel at any rate rb, as long as rb ≤ C, with an arbitrarily small error probability by using
a sufficiently complicated modulation scheme. For an information rate rb > C, it is not
possible to find a modulation that can achieve an arbitrarily small error probability. Thus
Shannon’s work showed that the values of Pav, N0, and W set a limit on transmission rate,
not on error probability!

It follows from (8.84) that the normalized channel capacity C/W ((bits/second)/hertz) is
given by

C

W
= log2

(
1+ Pav

WN0

)
. (8.85)

It is instructive to express the normalized channel capacity as a function of the SNR per
bit. Since Pav represents the average transmitted power and C is the rate in bits/second, one
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has Pav = CEb, where Eb is the energy per bit. Hence (8.85) can be expressed as

C

W
= log2

(
1+ C

W

Eb

N0

)
. (8.86)

Consequently,

Eb

N0
= 2C/W − 1

C/W
. (8.87)

This relation is plotted in Figure 8.26.
An important observation from (8.87) is that there exists a limiting value of Eb/N0 below

which there can be no error-free communication at any information rate (and no matter how
much bandwidth one may have). This is shown below.

Let x = (C/W)(Eb/N0). Then from (8.87) one has

C

W
= x log2(1+ x)1/x (8.88)

and (
Eb

N0

)−1

= log2(1+ x)1/x. (8.89)

Now apply the identity limx→0(1+ x)1/x = e to (8.89). It follows that when C/W → 0,
one has

Eb

N0
= 1

log2 e
= ln 2 = 0.693 = −1.6 decibels. (8.90)

This value of Eb/N0 is called the Shannon limit.
Finally, it should be mentioned that Shannon’s work provides a theoretical proof for the

existence of a coding/modulation technique that could achieve the channel capacity. It does
not tell us how to construct such coding/modulation. For example, for a bit error probabil-
ity of 10−5, BPSK3 modulation requires an Eb/N0 of 9.6 decibels in order to transmit 1
((bits/second)/hertz). For this spectral efficiency, Shannon’s proof promises the existence
of a theoretical improvement of 9.6 decibels over the performance of BPSK, through the
use of some coding/modulation techniques. Today, most of that promised improvement
has been realized with turbo codes [2], low-density parity check (LDPC) codes [3], and the
iterative processing principle.

8.9 Summary

Basic M-ary modulation methods have been described and analyzed in this chapter. Band-
width reduction is the main motivation for M-ary modulation and accounts for the popularity
of QAM modulation. The reduction eliminates or at least mitigates intersymbol interference

3 BPSK is the optimum (uncoded) binary modulation technique.
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(ISI) effects which occur with bandlimited channels. Bandlimited channels are the subject
of the next chapter.

However, even the M-ary modulation of FSK, which involves an exponential expan-
sion of bandwidth, has important applications. It is the basis of the modulation technique
known as OFDM (orthogonal frequency-division multiplexing) used over channels where
fading, amplitude and phase distortion, are experienced. Typically it is combined with CDMA
(code-division multiple access). CDMA is a topic in a later chapter on advanced modulation
techniques where TCM (trellis-coded modulation), a very bandwidth efficient modulation,
is also discussed.

8.10 Problems

As mentioned in the text, the most important neighbors are the nearest ones. The first
set of problems explores how to ensure that nearest neighbors differ as little as possi-
ble. This might make for a dull neighborhood but it does reduce bit error probability. It
is also shown just how influential the near neighbors are. Finally, the problems explore
how for certain important M-ary constellations one can demodulate directly to the bits.

8.1 (Gray coding) Two different methods of generating a Gray code (mapping) are
presented. The first can be called an “inductive” technique. The second a direct
method.
(a) Inductive technique To Gray code a single bit is, of course, trivial. It is

0
1

.

However, use this as a starting point to Gray code two-bit sequences as

00

01

11

10

.

With this pattern in mind, what is the Gray code for three-bit sequences? For the
ambitious reader, what is the Gray code for four-bit sequences?

(b) Direct method Arrange the 2n n-bit sequences in natural order from 00 · · · 0 to
11 · · · 1. Then map each n-bit sequence a1, a2, . . . , an to a corresponding Gray
sequence, b1, b2, . . . , bn as follows. Let b1 = a1 and bk = ak ⊕ ak−1, where⊕ is
an exclusive or operation. Apply the method to obtain a Gray code for five-bit
sequences. Note you should only need to do the algebra for the first half, i.e.,
sequences 00000 to 01111, the other half of the table should be simple to fill in.
But describe how you would do it.

(c) Which approach do you prefer and why? Can one adapt the inductive technique
to produce a Gray code “as easily” as the direct method, whatever easy means.
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8.2 To explore the influence of nearest neighbors consider the simple 4-ASK modulation
with Gray mapping shown in Figure 8.27. The probability of symbol error is

P[symbol error] = 2(M − 1)

M
Q

(
�√
2N0

)
.

0
2
Δ

2
Δ

rI

2
3Δ

2
3Δ− −

01 11 1000

b1b2

↓↓

�Fig. 8.27 Signal constellation of 4-ASK with a Gray mapping.

(a) Determine the ratio �/
√

2N0 (which is related to the SNR = Eb/N0) so that
P[symbol error] = 10−1, 10−2, 10−3, 10−4.

(b) For each P[symbol error] determine the following:

Q

(
�√
2N0

)
, Q

(
3�√
2N0

)
, Q

(
5�√
2N0

)
.

(c) Consider that symbol 00 was transmitted. Determine the following error proba-
bilities:

P [{01}D |{00}T ] , P [{11}D |{00}T ] , P [{10}D |{00}T ] .

(d) How would the answer in (c) change if one of the other symbols was chosen to
be the transmitted one?
Therefore, in terms of neighbors the most important ones are the

ones.
8.3 Though in general it is difficult to determine bit error probabilities for M-ary

modulation, it is very feasible for the constellation shown in Figure 8.27.
(a) Determine the bit error probability for the constellation shown in Figure 8.27.
(b) Determine the individual bit error probabilities, i.e., P [b1 error], P [b2 error].

Compare the three bit error probabilities, as well as the approximate expression
for bit error probability in Equation (8.27). Comment.

8.4 Given rI , the sufficient statistic, and the constellation in Figure 8.27 one can readily
demodulate directly to the bits b1, b2. As an example, the decision rule for bit b1 is

rI

b1=1

�
b1=0

0.

(a) What is the corresponding decision rule for bit b2?
(b) Based on these decision rules, determine P [bit error], P [b1 error], and

P [b2 error]. Compare with the answers in Problem 8.3.
8.5 Instead of Gray coding let the mapping be a natural one, i.e., −3�/2 ↔ 00,

−�/2 ↔ 01, �/2 ↔ 10, 3�/2 ↔ 11. Repeat Problems 8.3 and 8.4 for this map-
ping and compare the results.



334 M-ary signaling techniques
�

8.6 Consider 8-ASK with Gray coding. As done for 4-ASK in Problem 8.4:
(a) Develop a set of rules that would demodulate directly to the bits b1, b2, b3.
(b) Determine P [bit error], P [bi error], i = 1, 2, 3 and compare the results.

8.7 (Two-dimensional Gray coding) Consider rectangular QAM and develop a Gray
mapping technique for the bit sequences. Hint Recall rectangular QAM is in essence
two separate ASK modulations. Illustrate the technique for 16-QAM.

8.8 Consider 16-QAM with Gray coding.
(a) Develop a set of decision rules that will directly demodulate to the bits b1, b2,

b3, b4.
(b) Determine P [bit error], P [bi error], i = 1, 2, 3, 4.
(c) If you have an application where one bit is deemed to be more valuable than the

others, how would you exploit the result of (b)?
8.9 (8-ary constellations) Consider the four 8-ary signal constellations in Figure 8.28,

where all the signal points in each constellation are equally probable.
(a) Compute the average energies for the four constellations and rank the signal

constellations in terms of energy efficiency.

(b)

(c) (d)

0

Δ ΔΔ

Δπ/4

(a)

Δ

d

0

Δ
Δ

0

φ1(t)

φ1(t)

φ2(t)

φ2(t)

φ1(t)

φ2(t)

φ1(t)

φ2(t)

Δ

Δ

Δ

0

�Fig. 8.28 The 8-ary constellations considered in Problem 8.9.
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(b) Specify Gray mapping for the constellation in Figure 8.28(b).
(c) Draw the minimum-distance decision boundaries for the signal constellation in

Figure 8.28(d). Which signals in this constellation are most susceptible to error
and why?

(d) How does the best constellation found in (a) compare with the best 8-ary
constellation in Figure 8.16.

8.10 (V.29 constellation) The 16-QAM signal constellation shown in Figure 8.29 is an
international standard for telephone-line modems, called V.29.
(a) Ignoring the four corner points at (±1.5�,±1.5�), specify a Gray mapping of

the constellation.
(b) Assume that all the 16 signal points are equally likely. Sketch the optimum

decision boundaries of the minimum-distance receiver.
8.11 (16-QAM constellations) Figure 8.30 shows two 16-QAM constellations.

(a) What can you say about the error performance of the two constellations? Which
constellation is more energy-efficient? Explain.

(b) Specify a Gray mapping for constellation (b).
(c) Draw the minimum-distance decision boundaries for constellation (b). Which

signals in this constellation are least susceptible to error and why?
8.12 (8-QAM) You are asked to design an 8-QAM modulator with a peak energy con-

straint of Es joules. Due to its regular structure you decide on the signal constellation
shown in Figure 8.31. The signal set is such that the signal points are symmetrical
about the φ1(t) and φ2(t) axes.

2
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2
Δ
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2
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2
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2

5Δ
2

5Δ
2

5Δ
2
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0

φ2(t)

φ1(t)

�Fig. 8.29 V.29 constellation.
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(a) (b)

0

Δ

Δ

0

φ2(t)

φ2(t)

φ1(t)φ1(t)

�Fig. 8.30 The two 16-QAM constellations considered in Problem 8.11.

0

θ

Es

Δh

2
Ts

Δv

sin(2π fct)φ2(t) = 

2
Ts

cos(2π fct)φ1(t) = 

�Fig. 8.31 The 8-QAM constellation considered in Problem 8.12.

(a) Determine the angle θ so that the minimum Euclidean distance, dmin, is
maximized.

(b) Specify a Gray mapping for the signal constellation obtained in (a).
(c) How does the constellation obtained in (a) compare with the 8-PSK constellation

with the same peak energy Es in terms of error performance? Explain.
8.13 (Another design of 8-QAM) You have been asked to design a modulation scheme

for a communication system, and to conserve bandwidth it has been decided to use
an 8-QAM constellation. Unhappy with the 8-PSK and 8-QAM you have learned
because you feel that they do not use the available energy very efficiently, you decide
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Es

V cos(2π fct)

0

φ2(t) = 

Es

V sin(2π fct)φ1(t) = 

�Fig. 8.32 The 8-QAM constellation considered in Problem 8.13.

to attempt a different signal constellation. Inspired by a tile design you notice in the
local shopping mall, you propose the signal constellation in Figure 8.32.

Assume that the side of each hexagon is of length �. Determine:
(a) The minimum distance between the signals in terms of �.
(b) The average transmitted energy per bit in terms of �.
(c) Assuming that all the signal points are equally likely, draw the decision regions

of the minimum-error-probability receiver.
(d) Is it possible to do a Gray mapping for this constellation? Explain.

8.14 (16-QAM in DVB-S2) The 16-QAM constellation labeled with (4,12) in Figure 8.17
is used in the DVB-S2 (Digital Video Broadcasting via Satellite–Second Generation)
standard. Since the constellation combines ASK and PSK, it is widely known as
16-APSK. There are two concentric circles, where four signals are equally spaced
on the inner circle and twelve signals are equally spaced on the outer circle. Assume
that the radii R1 and R2 are adjusted so that the minimum distances on both inner and
outer circles are �.
(a) Determine the average symbol energy of this 16-APSK constellation in

terms of �.
(b) Your friend is not totally convinced about the performance of the DVB-S2

16-APSK constellation over an AWGN channel. She thus proposes to use the
constellation labeled with (8,8) in Figure 8.17, where there are eight signal points
equally spaced on both inner and outer circles. Note that the radii R1 and R2 of
this constellation are also adjusted so that the distance � between the adjacent
signal points on the inner circle is equal to the distance between the nearest
points on the two circles (note the equilateral triangles). Determine the average
symbol energy of this (8,8) constellation and compare it with that of the DVB-S2
16-APSK constellation. Comment.

(c) Is it possible to perform a Gray mapping for the (8,8) or (4,12) constellation?
Explain.
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8.15 Consider a rectangular M-QAM constellation where M = 2λ. Assume that λI bits
independently modulate the inphase carrier, cos(2π fct), while λQ = λ− λI bits
independently modulate the quadrature carrier, sin(2π fct), by means of ASK.
(a) Obtain the exact symbol error probability in terms of the average energy per bit

Eb and the two-sided PSD N0/2 of AWGN.
(b) Obtain a union upper bound on the symbol error probability.

8.16 Consider a rectangular M-QAM constellation where M = 2λ. Verify the upper bound
on the symbol error probability in (8.48).

8.17 Verify that (8.66) can be written as (8.67).
8.18 (Hypercube constellation) Consider an M-ary signal constellation where M = 2λ and

λ is the dimension of the signal space. Suppose that the M signals lie on the vertices
of a hypercube that is centered at the origin. Determine the symbol error probability
as a function of Eb/N0, where Eb is the energy per bit and N0/2 is the two-sided PSD
of the AWGN. Also assume that all the signals are equally probable.

8.19 (Biorthogonal modulation) An M-ary biorthogonal signal constellation is obtained
from a set of M/2 orthogonal signals (such as M/2-FSK), {si(t)}M/2

i=1 , and their neg-

atives, {−si(t)}M/2
i=1 . As an example, a 4-QAM (or a QPSK) is a 4-ary biorthogonal

modulation.
(a) What is the transmission bandwidth requirement of an M-ary biorthogonal set

compared to that of an M-ary orthogonal set? Explain.
(b) Also assume that all the signals are equally probable. Obtain the expression

of the decision rule for the minimum-error-probability receiver of the M-ary
biorthogonal modulation.

(c) Based on (b), obtain the expression to compute the exact symbol error probability
of M-ary biorthogonal modulation in terms of Eb/N0, where Eb is the energy per
bit and N0/2 is the two-sided power spectral density of the AWGN.

8.20 (SSB transmission of BPSK) In determining the bandwidth efficiency of ASK sig-
naling, SSB transmission was assumed. This problem examines the transmitted
waveform of BPSK with SSB (note that BPSK can be viewed as an amplitude
modulation).
(a) Assume that the information bit sequence is {0, 1, 1, 0, 1, 0}. Use Matlab to obtain

and plot the BPSK waveform with upper single sideband (USSB). Remark Refer
to Figure 2.42 for the block diagram of a USSB modulator. In Matlab the Hilbert
transform can be performed with the command hilbert. To make the plot
visible, let fc = Tb/4, where Tb is the bit interval.

(b) How does the USSB waveform in (a) compare to the conventional BPSK
waveform? Does it still have a constant envelope?

8.21 (Bandwidth efficiency)
(a) Consider the bandwidth–power plane of Figure 8.26. Determine the locations

of 2-FSK and 4-FSK schemes. For 4-FSK, estimate the Eb/N0 value from
Figure 8.23.

(b) Obtain the plots similar to Figure 8.26 but for P[error] = 10−2 and P[error] =
10−7. Comment.
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In the 1200s a major philosophical debate was concerned with the question, “How

many angels can fit on the head of a pin?” Variants on this question are: “How many

angels can dance on the head of a pin?” and “How many angels can dance on the

point of a needle?” No less a person than St. Thomas Aquinas was involved in the

debate. However, in the twentieth century a more relevant question for communication

engineers became: “How many orthogonal signals of time duration T seconds can one

fit in a bandwidth of W hertz?” The answer, 2WT + 1 ≈ 2WT, was provided by Landau,

Pollack, and Slepian [4–6]. They used functional analysis to obtain the result. The next

problem provides a very heuristic derivation of the answer.

8.22 Consider a signal bandlimited to W hertz and of duration T seconds.
(a) What is the minimum number of samples per unit time needed to represent the

signal?
(b) In the time interval T , based on (a), how many independent time samples are

there?
(c) But the time signal can also be represented by a set of orthogonal time func-

tions (which are linearly independent). Reason that the number of orthogonal
functions needed is 2WT .
The difficulty in the above argument is that a time-limited signal cannot be ban-
dlimited and vice versa. One needs to have a reasonable definition of bandwidth.
Landau, Pollack, and Slepian used a fractional out-of-band energy definition.
Here we use a null-to-null bandwidth.

(d) Consider a rectangular pulse centered at the origin and of duration T seconds.
What is the null-to-null bandwidth after it is modulated up to fc hertz, i.e., of the
signal

s(t) = V
[
u (t + T/2)− u (t − T/2)

]
cos (2π fct) .

Based on this show that the number of orthogonal functions is four.
8.23 (Q2PSK) QPSK has two orthogonal functions, time duration T and null-to-null

bandwidth 2/T hertz. The previous question promises four possible orthogo-
nal functions. This is what quadrature–quadrature phase-shift keying (Q2PSK)
achieves.

Consider the following basis set:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ
′
1(t) = cos (π t/T) cos (2π fct)

φ
′
2(t) = sin (π t/T) cos (2π fct)

φ
′
3(t) = cos (π t/T) sin (2π fct)

φ
′
4(t) = sin (π t/T) sin (2π fct)

, |t| ≤ T/2 (P8.1)

and φ
′
i (t) = 0, i = 1, 2, 3, 4, for |t| > T/2; fc = k/2T , k integer and typically � 1.

Note that the basis set is a combination of two orthogonal carriers, c1(t) = cos(2π fct),
c2(t) = sin(2π fct) and two orthogonal pulse shaping functions, p1(t) = cos(π t/T),



340 M-ary signaling techniques
�

p2(t) = sin(π t/T). This is somewhat reminiscent of MSK but there is no time offset.
(a) Show that {φ ′i(t)}4i=1 form a set of orthogonal functions.
(b) Normalize the set so that each basis function has unit energy over the T-second

interval.
(c) The four orthogonal basis functions suggest one can use an individual bit to

modulate each basis function. This is what is done in Q2PSK. The binary input
is split into four bit streams. Draw a block diagram of the Q2PSK modulator. If
Tb is the bit interval of the primary source, what is the symbol interval Ts? And
how are they related to T?

(d) Assuming that the energy per bit is Eb joules, draw the signal space (or state
what it is). How many signals are there? What is the minimum distance between
two signals in the constellation? How many nearest neighbors does a signal
have?

8.24 (Q2PSK demodulation) One has two choices for demodulation. Either demodulate
to the signal (symbol) representing the four-bit sequence or directly to the individual
bits.
(a) Draw a block diagram of each demodulator.
(b) For the symbol demodulator determine P[symbol error], and for the bit demodu-

lator determine P[bit error]. Is the bit error probability of the symbol demodula-
tor different from that of the bit demodulator? Compare the bit error probability
with that of BPSK and QPSK/OQPSK/MSK.

8.25 (Q2PSK envelope) The transmitted signal in an interval of Ts is s(t) = b1
√

Ebφ1(t)+
b2
√

Ebφ2(t)+ b3
√

Ebφ3(t)+ b4
√

Ebφ4(t), where bi = ±1, i = 1, 2, 3, 4, and the
{φi(t)}4i=1 are the properly normalized basis functions.
(a) Write s(t) as s(t) = e(t) cos (2π fct + θ (t)). The envelope is of particular interest.

Show that

e(t) =
[

2+ (b1b2 + b3b4) sin

(
π t

4Tb

)]1/2

. (P8.2)

Plot e(t) for the various combinations of (b1b2 + b3b4).
(b) Since a constant envelope is beneficial when saturating nonlinearities are

encountered, devise a coding scheme that would make it constant, i.e., make one
of the bits dependent on the other bits. What is the price paid to have a constant
envelope?

(c) When the coding of (b) is used, how many signals are there in the signal space?
What is the dmin between signals?

(d) Draw a block diagram of a demodulator that demodulates directly to the bits.
What is the bit error probability?

(e) Can the coding of (b) be used for error detection? If so, how?
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8.26 (Q2PSK PSD) To determine the PSD proceed as follows. Write the transmitted
signal as

s(t) = √Eb

⎧⎨⎩
∞∑

k=−∞
b1k cos

(
π t

4Tb

)⎫⎬⎭︸ ︷︷ ︸
s1(t)

cos (2π fct)

+ √Eb

⎧⎨⎩
∞∑

k=−∞
b2k sin

(
π t

4Tb

)⎫⎬⎭︸ ︷︷ ︸
s2(t)

cos (2π fct)

+ √Eb

⎧⎨⎩
∞∑

k=−∞
b3k cos

(
π t

4Tb

)⎫⎬⎭︸ ︷︷ ︸
s3(t)

sin (2π fct)

+ √Eb

⎧⎨⎩
∞∑

k=−∞
b4k sin

(
π t

4Tb

)⎫⎬⎭︸ ︷︷ ︸
s4(t)

sin (2π fct) . (P8.3)

Since
√

Eb does not affect the signal shape, we set it equal to 1. Further, the carriers
cos (2π fct) and sin (2π fct) simply translate the PSD to lie around ±fc. Therefore we
concentrate on the PSD of s1(t), s2(t), s3(t), s4(t).
(a) Under the assumption that the bits are statistically independent what is the

crosscorrelation between any pair of the four signals s1(t), s2(t), s3(t), s4(t)?
(b) Argue that Rs1 (τ ) = Rs3 (τ ) and Rs2 (τ ) = Rs4 (τ ).
(c) Based on (c), the PSD at baseband is 2F

{
Rs1 (τ )

}+ 2F
{
Rs2 (τ )

}
. Determine the

two PSDs. Hint Treat s1(t) generation as a train of impulses, weight ±1, which
is input into a filter with impulse response

h(t) = cos

(
π t

4Tb

)
[u (t + 2Tb)− u (t − 2Tb)] .

Similarly with s2(t).
(d) Plot the resultant PSD and comment.
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9 Signaling over bandlimited channels

9.1 Introduction

Up to now we have considered only the detection (or demodulation) of signals transmitted
over channels of infinite bandwidth, or at least a large enough bandwidth that any signal
distortion is negligible and can be ignored. Though in some situations this assumption is
reasonable, satellite communications is a common example, bandlimitation is also com-
mon. The classical example is the telephone channel where the twisted-pair wires used as
the transmission medium have a bandwidth on the order of kilohertz. But even a medium
such as optical fiber exhibits a phenomenon called dispersion which results in an effect
very analogous to bandlimitation.

It is important to realize that bandlimitation depends not only on the channel medium but
also on the source, specifically the source rate, Rs (symbols/second). One common measure
of the bandwidth needed or occupied by a source is W = 1/Ts = Rs (hertz). As source
rates keep increasing to accommodate more data eventually any channel starts to look
bandlimited. Bandlimitation can also be imposed on a communication system by regulatory
requirements. A user is usually allotted only so much bandwidth in which to transmit
her/his information.

The general effect of bandlimitation on a transmitted signal of finite time duration, Ts

seconds, is to disperse it or to spread it out. Therefore the signal transmitted in a particular
time slot (or symbol interval) will interfere with signals in other time slots resulting in
what is called intersymbol interference (each signal represents a data symbol) or ISI. Thus
in this chapter we consider the demodulation of signals which are not only corrupted by
AWGN but also by ISI.

Three major approaches are developed. The first approach deals with the problem1 by
answering the question: “Under what conditions is it possible to achieve zero ISI even in
the presence of bandlimitation?” This leads to what is called Nyquist’s first criterion and
to zero-forcing equalization. The second approach is to allow some ISI but in a controlled
manner, resulting in what is known as partial response signaling. The final approach is to
live with what you are given, i.e., with the ISI present, and design the best demodulation
for the situation. The demodulation then determines the entire transmitted sequence using
a maximum likelihood sequence criterion. It is usually realized by a Viterbi algorithm.

1 To paraphrase the great philosopher, Charlie Brown: “No problem is too big or too complex that cannot be run
away from.”
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9.2 The communication system model

Figure 9.1 shows the communication system model that will be used. Regarding the model
it is logical enough to assume that the bandlimitation imposed on the system is due to the
channel. However, as mentioned, it may also come about at the transmitter due to regu-
latory constraint. Though for practical purposes the modulator and transmit filter may be
separate blocks, for our purposes they are lumped together into one block. Finally, antipo-
dal modulation is represented by a train of impulses resulting in an impulse modulator. The
resultant system to be considered is shown in Figure 9.2.

Before proceeding to investigate ISI let us consider a simple example to illustrate it. Let
the modulator be NRZ-L, signaling rate of rb = 1/Tb (bits/second), and let the channel be
a simple lowpass filter as shown in Figure 9.3, where the time constant RC is on order of
Tb. The signals at points �A and �B are shown in Figure 9.4 for a specific transmitted
bit sequence. The received signal r(t) during the interval, say [3Tb, 4Tb], is

r(t) = b3sB(t − 3Tb)+ b2sB(t − 2Tb)+ b1sB(t − Tb)+ b0sB(t)+ w(t). (9.1)

It is composed of three components: (i) b3sB(t − 3Tb), which represents the bit transmit-
ted in the interval [3Tb, 4Tb], (ii) w(t), the additive random noise, (iii) b2sB(t − 2Tb)+
b1sB(t − Tb)+ b0sB(t) due to the previous transmitted bits. Since to the receiver the bi

are unknown, b0, b1, b2 are binary random variables to it and therefore the receiver sees

Data
source

(rate rb)

Antipodal
modulator

Transmit
filter

HT( f )

Bandlimited
channel
HC( f )

w(t)
(AWGN)

Receive
filter

HR( f )

Binary data

Data sink
Decision
device

t = kTb

�Fig. 9.1 Communication system model.

B
HT( f ) HC( f ) HR( f )

w(t)

r(t) y(t)

t = kTbA

Tb0

2Tb

1 1 0

(V) (V)

(–V )

�Fig. 9.2 Impulse modulator.
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�Fig. 9.3 A lowpass filter.
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�Fig. 9.4
An example to illustrate ISI: (a) an individual transmitted signal at the channel’s input; (b) an individual
received signal at the channel’s output; (c) a sequence of transmitted signals at the channel’s input; (d)
received signal components at the channel’s output.

component (iii) as noise. This noise is not Gaussian and as such is difficult to han-
dle in an optimum, i.e., minimum error probability, sense. One possible approach is to
ignore it completely and proceed as in previous chapters. This, however, usually results
in severe performance degradation. Another approach is to determine under what condi-
tions on HT (f ), HC(f ), HR(f ) will the sample at t = 4Tb have no contribution from the
previous transmitted bits, i.e., in the term b2sB(t − 2Tb)+ b1sB(t − Tb)+ b0sB(t) each of
the signals goes through zero at t = 4Tb. This leads to Nyquist’s first criterion which is
discussed next.
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9.3 Nyquist criterion for zero ISI

In general, the received signal at the output of the receiver filter is given by

y(t) =
∞∑

k=−∞
bksR(t − kTb)+ wout(t), (9.2)

where sR(t) = hT (t) ∗ hC(t) ∗ hR(t) is the overall response of the system due to a unit
impulse at the input,

bk =
{

V if the kth bit is “1”
−V if the kth bit is “0”

. (9.3)

Without loss of generality, it is assumed that the overall response sR(t) is normalized so
that sR(0) = 1. At sampling time t = mTb the sampler’s output is

y(mTb) = bm +
∞∑

k=−∞
k 	=m

bksR(mTb − kTb)+ wout(mTb). (9.4)

The second term represents ISI and now we look into the conditions on the overall transfer
function SR(f ) = HT (f )HC(f )HR(f ) which would make it zero. To this end consider a unit
impulse applied to the system at t = 0 and look at the sampled output (see Figure 9.5(a)).
Ideally the samples of sR(t) due to this input should be 1 at t = 0 and zero at all other
sampling times kTb (k 	= 0) as shown in Figure 9.5. If sR(t) is such that this is the case,
then the system will experience no ISI since an impulse say at T = mTb will produce a
nonzero value at that time instance and zero at all other sampling points.

To determine what implication this has for SR(f ) recall the sampling theorem, which
states that the continuous time signal is uniquely specified by its samples provided the

0
HT 

( f ) × HC 
( f ) × HR 

( f )t sR 
(t)

sR 
(t)

1

SR 
( f ) ↔ sR 

(t)

0
t

−2Tb 2Tb 3Tb 4Tb−Tb Tb

Samples of sR 
(t)

Impulse applied
at t = 0

(1)

(a)

(b)

�Fig. 9.5
Condition on sR(t) for zero ISI: (a) obtain the overall impulse response sR(t); (b) conditions on the
samples of sR(t) at the sampling times.
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sampling frequency is at least twice the maximum bandwidth of the signal. Here sR(t) is
sampled at the signaling rate, every Tb seconds, and therefore for the samples in Figure
9.5(b) to uniquely specify sR(t) it follows that SR(f ) = 0 for frequencies f > 1/2Tb hertz.
To determine what SR(f ) is in the interval−1/2Tb ≤ f ≤ 1/2Tb we are faced with the prob-
lem of finding a time function of bandwidth 1/2Tb which in the time domain goes through
zero at multiples of Tb. Some reflection indicates that sR(t) = sin(π t/Tb)/(π t/Tb) =
sinc(t/Tb) satisfies this condition. The function SR(f ) is shown in Figure 9.6.

The above discussion indicates that if the overall bandwidth of the system is less than
1/2Tb hertz then the ISI terms cannot be made zero at the sampling instances. Typically,
however, the available bandwidth is greater than 1/2Tb. In this case, because the signal is
undersampled, aliasing occurs and many different SR(f ), indeed an infinite number, result
in the same set of desired samples shown in Figure 9.5(b). We claim that if the sampled
spectrum is such that SR(f ) and all its aliases add up to a constant value in the frequency
band |f | ≤ 1/2Tb, then no ISI occurs. Stated formally:

Claim If
∑∞

k=−∞ SR (f + k/Tb) = Tb for |f | ≤ 1/2Tb then

sR(kTb) =
{

1, k = 0
0, otherwise

. (9.5)

Graphically the condition looks as shown in Figure 9.7.
Proof sR(t) = ∫∞−∞ SR(f )ej2π ftdf . Split up the integral into intervals of 1/Tb and look at the
value of sR(t) at t = kTb:

sR(kTb) =
∞∑

m=−∞

∫ (2m+1)/2Tb

(2m−1)/2Tb

SR(f )ej2π fkTbdf . (9.6)

Change the integration variable to λ = f − m/Tb. This effectively shifts the integrand into
one range, namely, [−1/2Tb, 1/2Tb]. Therefore,

sR(kTb) =
∞∑

m=−∞

∫ 1/2Tb

−1/2Tb

SR

(
λ+ m

Tb

)
ej2π (λ+m/Tb)kTbdλ. (9.7)

Using the fact that ej2π (λ+m/Tb)kTb = ej2πλkTb and interchanging the summation and
integration operations gives

sR(kTb) =
∫ 1/2Tb

−1/2Tb

[ ∞∑
m=−∞

SR

(
f + m

Tb

)]
ej2π fkTbdf . (9.8)

f
0

2Tb

1
2Tb

1−

Tb

SR 
( f )

�Fig. 9.6 An example of SR(f ) which satisfies the zero-ISI condition.
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�Fig. 9.7 Condition on SR(f ) to achieve zero ISI.

But again the frequency function
∑∞

m=−∞ SR (f + m/Tb) must be such that the sample
values of the continuous time function that it represents satisfy (9.5). This means that

∞∑
m=−∞

SR

(
f + m

Tb

)
= Tb for − 1

2Tb
≤ f ≤ 1

2Tb
, (9.9)

which is Nyquist’s first criterion.
If the available bandwidth is exactly equal to 1/2Tb, then the overall response

must be flat over −1/2Tb ≤ f ≤ 1/2Tb hertz. The corresponding time function sR(t) is
sin(π t/Tb)/(π t/Tb). It goes through zero at every sampling point, except t = 0 as required.
The function is plotted in Figure 9.8. Besides going through zero at the sampling point as
required, an important characteristic is that it decays rather slowly as 1/t which means that
if the sampler is not perfectly synchronized in time, considerable ISI can be encountered.

Usually, however, the available bandwidth is greater than 1/2Tb hertz. Since the sam-
pling rate of 1/Tb now results in aliasing, then as mentioned an infinite number of SR(f )
are available to satisfy Nyquist’s criterion. One can exploit this by choosing SR(f ) to meet
other criteria. One criterion is to attempt to increase the rate of decay. Practically, though
the available bandwidth is greater than 1/2Tb, it is less than 1/Tb which means only one
alias is present in the interval [−1/2Tb, 1/2Tb] hertz as shown in Figure 9.7. To satisfy
Nyquist’s criterion, SR(f ) must have a certain symmetry about the point 1/2Tb. Namely, it
should have the following form:

SR(f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Tb, 0 ≤ |f | ≤ 1− β
2Tb

Tb − X
(
−|f | + 1

2Tb

)
, 1− β

2Tb
≤ |f | ≤ 1

2Tb

X
(
|f | − 1

2Tb

)
, 1

2Tb
≤ |f | ≤ 1+ β

2Tb

0, 1+ β
2Tb

≤ |f |

, (9.10)
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�Fig. 9.8 Time domain function of the rectangular spectrum.

where 0 ≤ β ≤ 1 and X(f ) is any function that satisfies the following conditions:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 ≤ X(f ) ≤ Tb for 0 ≤ f ≤ β/(2Tb),

X(0) = Tb/2 and X(β/(2Tb)) = 0,

X(f ) = 0 for f < 0 and f > β/(2Tb).

(9.11)

In the above, β is a parameter that controls the excess bandwidth, over 1/2Tb, that the
system response occupies. This parameter is also commonly referred to as the roll-off
factor.

A popular overall system response, SR(f ), is the raised-cosine function shown in
Figure 9.9 with the corresponding time function shown in Figure 9.10. It is defined as
follows:

SR(f ) = SRC(f ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Tb, |f | ≤ 1− β

2Tb

Tb cos2
[
πTb

2β

(
|f | − 1− β

2Tb

)]
,

1− β

2Tb
≤ |f | ≤ 1+ β

2Tb

0, |f | ≥ 1+ β

2Tb

.

The time domain response is given by

sR(t) = sRC(t) = sin(π t/Tb)

(π t/Tb)

cos(πβt/Tb)

1− 4β2t2/T2
b

= sinc(t/Tb)
cos(πβt/Tb)

1− 4β2t2/T2
b

, (9.12)

which decays as 1/t3, as expected, since SR(f ) must be differentiated twice before a
discontinuity is created. This makes it less sensitive to mistiming errors.
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�Fig. 9.9 The raised-cosine spectrum.
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�Fig. 9.10 Time domain function of the raised-cosine spectrum.

One common way to observe and measure (qualitatively) the effect of ISI is to look at
the eye diagram of the received signal. The effect of ISI and other noise can be observed
on an oscilloscope by displaying the output of the receiver filter on the vertical input with
the horizontal sweep rate set at multiples of 1/Tb. Such a display is called an eye diagram.
For illustration, Figures 9.11 and 9.12 show the eye diagrams (without the additive random
noise component) for two different overall impulse responses, namely the ideal lowpass
filter and a raised-cosine filter with roll-off factor β = 0.35. The effect of ISI is to cause
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�Fig. 9.11 Eye diagram: ideal lowpass filter of the overall frequency response and no AWGN.
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�Fig. 9.12
Eye diagram: raised-cosine filter of the overall frequency response with β = 0.35 and no AWGN.

a closing of the eye, which makes the system more sensitive to a synchronization error.
Observe from Figures 9.11 and 9.12 that, compared to the ideal lowpass filter, the raised-
cosine filter has a larger eye opening. This is to be expected based on the decay behaviors
of the impulse responses of the two filters just discussed. Finally, the eye diagram in the
presence of AWGN is also shown in Figure 9.13 for the case of a raised-cosine filter with
β = 0.35 and an SNR of 20 decibels.
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Eye diagram: raised-cosine filter of the overall frequency response with β = 0.35 and with the presence
of AWGN (V2/σ 2

w=20 decibels).
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�Fig. 9.14 Communication system model.

9.3.1 Design of transmitting and receiving filters

It is customary and logical to assume that the channel transfer function, HC(f ), is fixed.
However, all that has been shown thus far is that the overall response

SR(f ) = HT (f )HC(f )HR(f ) (9.13)

must be such that it satisfies the zero-ISI criterion. Though HC(f ) is fixed, one still has
flexibility in the design of HT (f ) and HR(f ) to satisfy the zero-ISI criterion. A natural
approach to the design is to attempt to minimize the probability of error. To develop the
design equations for HT (f ), HR(f ) let us revisit the overall block diagram of the system as
shown in Figure 9.14. Note that the noise here is assumed to be Gaussian (as usual) but
does not necessarily have to be white.



353 9.3 Nyquist criterion for zero ISI
�

It was shown earlier that the sampler’s output is given by

y(mTb) = ±V + wout(mTb). (9.14)

The output noise sample wout(mTb) is Gaussian, zero-mean with variance

σ 2
w =

∫ ∞

−∞
Sw(f )|HR(f )|2df , (9.15)

where Sw(f ) is the PSD of the noise. The conditional pdfs of sample y(mTb) are shown in
Figure 9.15.

Since the bits are assumed to be equally likely the minimum error probability receiver
sets the threshold at zero. Its error probability is given by P[error] = Q (V/σw). To
make this as small as possible the argument V/σw, or equivalently V2/σ 2

w, needs to be
maximized.

The design problem therefore becomes: given the transmitted power PT, the channel’s
frequency response HC(f ), and the additive noise’s PSD Sw(f ), choose HT (f ) and HR(f ) so
that the zero-ISI criterion is satisfied and the SNR = V2/σ 2

w is maximized. To proceed we
need to obtain an expression for the SNR in terms of HT (f ), HR(f ). This is accomplished
as follows.

(i) The average transmitted power (of the transmitter) is given by

PT = V2

Tb

∫ ∞

−∞
|HT (f )|2df (watts), (9.16)

where the average power of a train of impulses, occurring every Tb seconds and weight
±V is V2/Tb (watts).

(ii) Using (9.15) and (9.16) we obtain

V2

σ 2
w
= PTTb

[∫ ∞

−∞
|HT (f )|2df

]−1 [∫ ∞

−∞
Sw(f )|HR(f )|2df

]−1

, (9.17)

or equivalently, the inverse of the SNR is

σ 2
w

V2
= 1

PTTb

[∫ ∞

−∞
|HT (f )|2df

] [∫ ∞

−∞
Sw(f )|HR(f )|2df

]
. (9.18)

V− V0

2σw

( ( ) | )bf y mT V( ( ) | )bf y mT V−

( )by mT

�Fig. 9.15 The conditional pdfs of y(mTb).
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(iii) Eliminate one of the variables, say HT (f ) by using (9.13). One has

σ 2
w

V2
= 1

PTTb

[∫ ∞

−∞
|SR(f )|2

|HC(f )|2|HR(f )|2 df

] [∫ ∞

−∞
Sw(f )|HR(f )|2df

]
. (9.19)

(iv) Apply the Cauchy–Schwartz inequality to minimize the above. It states that
| ∫∞−∞ A(f )B∗(f )df |2 ≤ [

∫∞
−∞ |A(f )|2df ][

∫∞
−∞ |B(f )|2df ] and holds with equality if and

only if A(f ) = KB(f ), where K is an arbitrary constant. Now identify |A(f )| =√
Sw(f )|HR(f )|, |B(f )| = |SR(f )|/|HC(f )||HR(f )|. To minimize (9.19) we want equality

to hold and therefore it follows that

|HR(f )|2 = K|SR(f )|√
Sw(f )|HC(f )| , (9.20)

and from (9.13)

|HT (f )|2 = |SR(f )|√Sw(f )

K|HC(f )| . (9.21)

If the noise is white, or at least has a flat PSD over the channel bandwidth, then the
design equations simplify to

|HR(f )|2 = K1
|SR(f )|
|HC(f )| , (9.22)

|HT (f )|2 = K2
|SR(f )|
|HC(f )| =

K2

K1
|HR(f )|2, (9.23)

where K1, K2 are arbitrary constants which set the power levels at the transmitter and
the receiver. To complete the design the phases of the filters need to be specified. They
are arbitrary but the phase functions must cancel each other. Therefore

HR(f ) = |HR(f )|ej	 HR(f ),

HT (f ) = K|HR(f )|ej	 −HR(f ),
(9.24)

which tells us that the transmit and receive filters are a matched-filter pair.
With the optimal filters in (9.21) and (9.20) the maximum output SNR is given by(

V2

σ 2
w

)
max

= PTTb

[∫ ∞

−∞
|SR(f )|√Sw(f )

|HC(f )| df

]−2

. (9.25)

In the special case where the channel is ideal, i.e., HC(f ) = 1 for |f | ≤ W and K1 = K2,
one has |HT (f )| = |HR(f )| = √|SR(f )|/√K1. If SR(f ) is a raised-cosine spectrum (and
K1 = 1), then both HT (f ) and HR(f ) assume the following square-root raised-cosine
(SRRC) spectrum:

HT (f ) = HR(f ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
Tb, |f | ≤ 1− β

2Tb√
Tb cos

[
πTb

2β

(
|f | − 1− β

2Tb

)]
,

1− β

2Tb
≤ |f | ≤ 1+ β

2Tb

0, |f | ≥ 1+ β

2Tb

. (9.26)
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It can be shown that the impulse response of a filter having SRRC spectral characteristic is
given by

hT (t) = hR(t) = sSRRC(t) = (4βt/Tb) cos[π (1+ β)t/Tb]+ sin[π (1− β)t/Tb]

(π t/Tb)[1− (4βt/Tb)2]
. (9.27)

The time waveform of the above impulse response is plotted in Figure 9.16 along with
the time waveform having the raised-cosine spectrum for β = 0.5. Note that the waveform
having SRRC spectrum does not go to zero at nonzero multiples of 1/Tb.

The following example illustrates the design procedure.

Example 9.1 Design a binary NRZ-L system with the following specifications:

(i) Transmission rate rb = 3600 bits/second.
(ii) P[bit error] ≤ 10−4.

(iii) Channel model: HC(f ) = 10−2 for |f | ≤ 2400 hertz and HC(f ) = 0 for |f | > 2400
hertz.

(iv) Noise model: Sw(f ) = 10−14 watts/Hz, ∀f (i.e., white noise).

Solut ion

(a) The transmission rate of 3600 bits/second tells us that we need a bandwidth of at least
1800 hertz to transmit without ISI. Since the available bandwidth is 2400 hertz, choose
a raised-cosine spectrum with βrb/2 = 600 or β = 1

3 . That is,

SR(f ) =
⎧⎨⎩

1
3600 , |f | < (1− β) rb

2 = 1200 hertz
1

3600 cos2
[

π
2400 (|f | − 1200)

]
, 1200 hertz ≤ |f | ≤ 2400 hertz

0, elsewhere
. (9.28)
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�Fig. 9.16 An example of waveforms having raised-cosine and SRRC spectra (β = 0.5).
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(b) The transmit and receive filters are |HT (f )| = K1|SR(f )|1/2 and |HR(f )| = |SR(f )|1/2.
The gain constant K1 is found from |HT (f )||HC(f )||HR(f )| = |SR(f )| which at f = 0
gives 1√

3600
K1(10−2) 1√

3600
= 1

3600 , or K1 = 100.
(c) To determine the transmitted power needed the specification on the required bit error

probability is used as follows:

Q

(√(
V2

σ 2
w

)
max

)
≤ 10−4 ⇒

(
V2

σ 2
w

)
max

≥ 14.04 ≈ 14. (9.29)

The transmitted power PT is given by

PT = 1

Tb

(
V2

σ 2
w

)
max

[∫ ∞

−∞
|SR(f )|√Sw(f )

|HC(f )| df

]2

= 3600× 14× 10−14

10−4

[∫ ∞

−∞
|SR(f )|df

]2

(watts), (9.30)

but
∫∞
−∞ |SR(f )|df = sR(t)|t= 0 = 1. Therefore PT = 5 microwatts.

�

All of the above discussion assumes that one has adequate bandwidth to achieve zero
ISI. However, if bandwidth is very limited, i.e., one cannot afford to use more than 1/2Tb

hertz, then it would appear that to achieve zero ISI, the overall response SR(f ) must be
flat in this frequency band. Besides being sensitive to mistiming, a more severe problem
is the design of the transmit filter to achieve this brickwall response. Among other issues,
Gibb’s phenomenon starts to come into effect. One approach to circumvent these difficul-
ties is to allow a certain amount of ISI but in a controlled manner. This is what duobinary
modulation, which is discussed next, achieves.

9.3.2 Duobinary modulation

Duobinary modulation falls in the general class that is known as partial response signaling
(PRS). The terminology “partial” reflects that the effect of a symbol is not confined to only
one symbol interval but is allowed to appear in other intervals as well, albeit as ISI. To
develop duobinary modulation consider restricting the ISI to only one term, namely that
due to the previous symbol. With impulse sampling the sampled overall response would
look like in Figure 9.17.

To determine sR(t), find SR(f ) by first determining S[sampled]
R (f ). Throw away all the

aliases of the sampled spectrum by restricting S[sampled]
R (f ) to the band

[−1/2Tb, 1/2Tb
]

hertz, and then perform the inverse transform. Therefore,

S[sampled]
R (f ) =

∫ ∞

−∞
[δ(t − Tb)+ δ(t)] e−j2π ftdt

= 1+ e−j2π fTb = 2e−jπ fTb cos(π fTb). (9.31)
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The factor e−jπ fTb = e−j2π f (Tb/2) represents a shift of the sampled signal by Tb/2 seconds
to the right. The sampling time is under our control, therefore we shift the signal back by
Tb/2 seconds and now sample it at times t = kTb + Tb/2, k = 0,±1,±2, . . .; still every
Tb seconds but offset by Tb/2. Thus the sampled signal of Figure 9.17 is shifted by Tb/2
seconds and the corresponding sampled spectrum S[sampled]

R (f ) becomes 2 cos(π fTb). The

overall spectrum SR(f ), known as duobinary modulation, is obtained by scaling S[sampled]
R (f )

by Tb (see (4.7)). It is given as

SR(f ) =
{

2Tb cos(π fTb), − 1
2Tb

≤ f ≤ 1
2Tb

0, elsewhere
(9.32)

and is shown in Figure 9.18.
The corresponding impulse response can be shown to be

sR(t) = cos(π t/Tb)

π
[

1
4 − (t/Tb)2

] . (9.33)

0
t

(1)

Samples of sR 
(t)

−3Tb −2Tb −Tb 2Tb 3Tb 4TbTb

Interfering term
(1)

[sampled](t)Rs

�Fig. 9.17 Samples of the overall response in duobinary modulation.
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�Fig. 9.18 Plot of SR(f ).
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A plot of the above waveform is shown in Figure 9.19. Note that it decays as 1/t2, as
expected since SR(f ) must be differentiated twice before an impulse appears. From (9.33)
or Figure 9.19 it is readily seen or determined that at t = −Tb/2 the sample value contains
information about the present bit and also has a component due to the previous bit. All
other bits, however, contribute zero to it.

Thus

y(tk) = Vk + Vk−1 + wout(tk), (9.34)

where tk = kTb − Tb
2 , k = 0,±1,±2, . . .. The signal sample, Vk, at the output is ±V and

therefore

y(tk) =
⎧⎨⎩

2V + wout(tk), if bits k and (k − 1) are both “1”
0+ wout(tk), if bits k and (k − 1) are different

−2V + wout(tk), if bits k and (k − 1) are both “0”
. (9.35)

Observe that if the previous bit is known, the ISI is known and can be subtracted from
the present observed signal y(tk). One is then left with standard antipodal signaling. One,
of course, needs to know the previous bits, something that the receiver is supposed to
determine from the received signal. One possible escape from this dilemma is to make a
decision on the previous bit, assume (more like hope) it is correct, and subtract out the
interference that it causes in the present bit. Make a decision on the present bit and pro-
ceed. This procedure, known as decision-feedback equalization, works very well as long
as correct decisions are made. However, when an error is made, the wrong value ISI is
subtracted. This increases the probability of the next bit being in error with the implication
that the errors will propagate. To circumvent the need for knowledge of the previous bit a
precoder can be used at the transmitter as shown in Figure 9.20.
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�Fig. 9.19 Plot of sR(t) given by (9.33).
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Observe that sample output, y(tk) is now unambiguously related to the information bit.
In essence what the precoder does is to eliminate the memory of the channel which is what
the ISI represents. Figure 9.21 shows the signal space at the sampler output along with the
conditional densities and decision thresholds.

Note that P[y(tk) = −2V] = P[y(tk) = 2V] = 1
4 ; P[y(tk) = 0] = 1

2 . The error probabil-
ity is well approximated by

P[error] ≈ 1

4
area �4 + 1

2

[
area �1 + area �2

]
+ 1

4
area �3 = 3

2
Q

(
V

σw

)
, (9.36)

where σ 2
w is the noise variance at the output of the receive filter HR(f ). The transmit and

receive filters, HT (f ), HR(f ), again are chosen to maximize (V/σw) subject to the constraint
that SR(f ) is the duobinary shape and also that the transmitted power level is fixed.

It is of interest to compare the duobinary system with the zero-forcing approach. To do
this let HC(f ) = 1 over−1/2Tb ≤ f ≤ 1/2Tb hertz. Further, let the noise be white Gaussian
with spectral density of N0/2 watts/hertz. Then for binary PAM with zero ISI we have

(
V2

σ 2
w

)
max

= PTTb

[∫ ∞

−∞
|SR(f )|√Sw(f )

|HC(f )| df

]−2

= PTTb

[√
N0/2

∫ 1
2Tb

− 1
2Tb

|SR(f )|df

]−2

. (9.37)

Precoder
Input information bits Output data bits

1,k k−b b 1k k k−= ⊕d b d

( ) 2 +

( )
k
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t V
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= ±bk 
=

 
0 then dk 

=
 
dk−1

bk 
=

 
1 then dk 

=
 
dk−1  = 0 + wout(tk)

y wout(tk)

y
⇒
⇒

�Fig. 9.20 Block diagram of a precoder.
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�Fig. 9.21 Signal space and conditional probability density functions of y(tk).
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But
∫ 1/2Tb
−1/2Tb

|SR(f )|df = 1. Therefore
(
V2/σ 2

w
)

max = PTTb (2/N0) and

P[error]binary = Q

[√
2PTTb

N0

]
. (9.38)

For the duobinary case the SNR is

(
V2

σ 2
w

)
max

= PTTb

[√
N0/2

∫ 1/2Tb

−1/2Tb

2Tb cos(π fTb)df

]−2

= (PTTb)

(
2

N0

)(π

4

)2
(9.39)

and

P[error]duobinary = 3

2
Q

(
π

4

√
2PTTb

N0

)
. (9.40)

Ignoring the 3/2 factor, the above shows that for duobinary modulation the transmitted
power must be increased by (4/π)2 or 10 log10 (4/π)2 = 2.1 decibels to achieve the same
error probability as the zero-forcing approach.

9.4 Maximum likelihood sequence estimation

Up till now the ISI caused by bandlimitation has been combated either by designing the
transmitter/receiver filter so that the overall response satisfies Nyquist’s criterion or by
allowing a controlled amount of interference. A disadvantage of these approaches is that
the receiver filter invariably is such that it enhances the noise power at its output which
degrades the potential performance. Here an approach is presented that does not attempt to
eliminate the ISI but rather takes it into account in the demodulator. The criterion changes
from minimizing the bit error probability to minimizing the sequence error probability. The
demodulator becomes a maximum likelihood sequence estimation (MLSE).

To begin consider a sequence of N equally likely bits transmitted over a bandlimited
channel where the transmission begins at t = 0 and ends at t = NTb, with Tb the bit interval.
The system block diagram is shown in Figure 9.22, where h(t) is the impulse response of
the overall chain: modulator/transmitter filter/channel. It extends over more than one bit
interval but we shall assume that h(t) is nonzero over a finite time interval of LTb or can be
reasonably approximated as such. Therefore the number of ISI terms is L.

Since there are N transmitted bits the receiver sees one of the M = 2N possible sig-
nals, si(t) =∑N−1

k=0 bi,kh(t − kTb), i = 1, 2, . . . , M = 2N , corrupted by w(t). Consider this
as a humongous M-ary problem of determining which of the M signals (or symbols or
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t t= −b Σ b
Impulse

modulator
?)(th

Modulator/transmitter filter/channel

{ }kb
( ) ( )

N − 1

k b
k = 0

kTδ
( )is t ( )tr

( )tw

�Fig. 9.22 System block diagram.

sequences) was transmitted with the criterion of minimizing the probability of sequence
error. The procedure is one that we have used before for M-ary modulation and is outlined
below.

(i) Take the M signals, si(t) and determine a set of orthonormal functions using the Gram–
Schmidt procedure that will represent the signals exactly i.e., find the orthonormal set
φ1(t), . . . , φK(t), where K ≤ M. Now

si(t) =
K∑

j=1

sijφj(t), i = 1, 2, . . . , M, with sij =
∫ ∞

−∞
si(t)φj(t)dt. (9.41)

(ii) Project the received signal r(t) = si(t)+ w(t) onto the orthonormal basis to generate
the set of sufficient statistics (or observables).

r1 =
∫ ∞

−∞
r(t)φ1(t)dt =

∫ ∞

−∞
[si(t)+ w(t)]φ1(t)dt = si1 + w1,

r2 =
∫ ∞

−∞
[si(t)+ w(t)]φ2(t)dt = si2 + w2,

...

rj = sij + wj,

...

rK = siK + wK .

Note that the jth sufficient statistic is Gaussian, mean value sij, and variance N0/2
(watts).

(iii) Determine the decision rule to minimize the sequence error probability. Assuming the
bit sequences are equally probable, which is the case if the individual bits are equally
probable and statistically independent, the decision rule is very simply

compute:
f (r1, r2, . . . , rk|si(t)) for i = 1, 2, . . . , M

and choose the si(t) or sequence that gives the largest value.
(9.42)
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The conditional density function is given by

f (r1, r2, . . . , rK |si(t) =
K∏

j=1

1√
πN0

e−(rj−sij)2/N0 . (9.43)

Take the natural logarithm, ignoring the constant term K ln
(
1/
√

πN0
)

to obtain the
decision rule:

compute:

− 1

N0

K∑
j=1

r2
j +

2

N0

K∑
j=1

rjsij − 1

N0

K∑
j=1

s2
ij, for i = 1, 2, . . . , M

and choose the largest value.

(9.44)

The first term is independent of i and can be ignored. The second and third sums can be
written as

∫∞
−∞ r(t)si(t)dt, the correlation between the received signal and test signal si(t),

and
∫∞
−∞ s2

i (t)dt, the energy in the ith signal, respectively. The decision rule becomes

compute:

γi = 2

N0

∫ ∞

−∞
r(t)si(t)dt − 1

N0

∫ ∞

−∞
s2

i (t)dt, i = 1, 2, . . . , M

and choose the largest value.

(9.45)

To bring the impulse response, h(t), into the decision rule, express si(t) in terms of it.
Very simply, it is

si(t) =
N−1∑
k=0

bi,kh(t − kTb). (9.46)

The decision rule now becomes

compute:

γi = 2

N0

N−1∑
k=0

bi,k

∫ ∞

−∞
r(t)h(t − kTb)dt

− 1

N0

N−1∑
k=0

N−1∑
j=0

bi,kbi,j

∫ ∞

−∞
h(t − kTb)h(t − jTb)dt

and choose the largest value.

(9.47)

The integral
∫∞
−∞ h(t − kTb)h(t − jTb)dt is the autocorrelation function of h(t), with the

usual properties of the autocorrelation function, namely that the output is a function of
the time difference kTb − jTb and even. Call the output hk−j. Consider now the inte-
gral

∫∞
−∞ r(t)h(t − kTb)dt = ∫∞−∞ r(t)h(t − τ )dt|τ=kTb . It can be looked upon as the output

of a filter with impulse response h(−t) and input r(t) sampled at t = kTb as shown in
Figure 9.23.

The decision rule can be written now in terms of these sampled outputs, rk, and the
autocorrelation coefficients, hk−j. Note that the rk here are not the same as the ones obtained
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bkTt =

)( th −
( )tr

( ) ( )dbk h kT
∞

−∞
= −r r∫ τ τ τ

�Fig. 9.23 Computation of
∫∞
−∞ r(t)h(t − kTb)dt.

by projecting r(t) onto φk(t). However, they serve as a set of sufficient statistics for the
decision rule which now is

compute:

γi = 2

N0

N−1∑
k=0

bi,krk − 1

N0

N−1∑
k=0

N−1∑
j=0

bi,kbi,jhk−j, i = 1, 2, . . . , M

and choose the largest value.

(9.48)

Though, in principle, the above gives the decision rule which minimizes the sequence
error probability, in practice the number M makes it infeasible. Consider a sequence length
of 50 bits. Then the number of computations is M = 250 ≈ 2(3.3)(16) ≈ 1016 (a very large
number). The computation of γi is simplified considerably and made practical by using the
Viterbi algorithm.

Consider the RHS of (9.48), which is known as a path metric for reasons that will
become apparent later. For simplicity let the index i which indicates a specific sequence
be understood. The term

∑N−1
k=0

∑N−1
j=0 bkbjhk−j is a quadratic in the sequence bits bk and

therefore can be written as a matrix multiplication.

[b0, b1, . . . , bN−1]︸ ︷︷ ︸
�b

⎡⎢⎢⎢⎢⎢⎣
h0 h−1 . . . h−N

h1 h0 . . . h−N+1
...

...
...

hN−1 hN−2 . . . h−1

hN hN−1 . . . h0

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

H

⎡⎢⎢⎢⎢⎢⎣
b0

b1
...

bN−2

bN−1

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

�b�

= �bH�b�. (9.49)

The correlation matrix H is symmetric, i.e., element hkj = hk−j = hj−k, and we write it as
a sum of three matrices

H =

⎡⎢⎢⎢⎢⎢⎣
h0 0 . . . 0
0 h0 . . . 0
...

...
...

0 0 . . . 0
0 0 . . . h0

⎤⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣

0 0 . . . 0
h1 0 . . . 0
...

...
...

hN−1 hN−2 . . . 0
hN hN−1 . . . 0

⎤⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎣
0 h1 . . . hN

0 0 . . . hN−1
...

...
...

0 0 . . . h1

0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎦ . (9.50)
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Then (9.49) becomes

�bH�b� = �b

⎡⎢⎢⎢⎢⎢⎣
h0 0 . . . 0
0 h0 . . . 0
...

...
...

0 0 . . . 0
0 0 . . . h0

⎤⎥⎥⎥⎥⎥⎦ �b� + �b
⎡⎢⎢⎢⎢⎢⎣

0 0 . . . 0
h1 0 . . . 0
...

...
...

hN−1 hN−2 . . . 0
hN hN−1 . . . 0

⎤⎥⎥⎥⎥⎥⎦ �b�

+ �b

⎡⎢⎢⎢⎢⎢⎣
0 h1 . . . hN

0 0 . . . hN−1
...

...
...

0 0 . . . h1

0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎦ �b�. (9.51)

The first term above is
∑N−1

k=0 b2
kh0. Observe that the third term is equal to the second term.

The (k + 1)th element of the vector produced by the product⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0
h1 0 . . . 0
...

...
...

hN−1 hN−2 . . . 0
hN hN−1 . . . 0

⎤⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎝
b0

b1
...

bN−2

bN−1

⎞⎟⎟⎟⎟⎟⎠ (9.52)

is given by hkb0 + hk−1b1 + · · · + h1bk−1 =∑k
j=1 bk−jhj. This element is then weighted

by bk when the vector is premultiplied by �b. The last two terms can therefore be written as

2
N−1∑
k=0

bk

k∑
j=1

bk−jhj. (9.53)

Combining all of the above, the path metric can be expressed as

γi = 2

N0

N−1∑
k=0

bi,krk − 1

N0

N−1∑
k=0

b2
i,kh0 − 2

N0

N−1∑
k=0

bi,k

k∑
j=1

bi,k−jhj. (9.54)

Since bi,k = ±1 the quantity b2
i,kh0/2 = h0/2 is a constant independent of i which means

that the second term can be ignored. Then under the assumption that h(t) = 0 for t ≥ LTb,
which means hj = 0 for j ≥ L, the path metric becomes

γi = 2

N0

N−1∑
k=0

⎧⎨⎩bi,krk − bi,k

L−1∑
j=1

bi,k−jhj

⎫⎬⎭ . (9.55)

The term in the brackets is called a branch metric, for reasons which, as for the path metric,
will soon be clear. It depends on three quantities: (i) the present output of the matched filter,
rk; (ii) the present value of the considered bit pattern, bi,k; (iii) the previous L− 1 values
of the considered bit pattern bi,k−1, bi,k−2, . . . , bi,k−(L−1).

The system thus has memory, namely the ISI terms. The finite memory aspect of the
branch metric computation suggests that it and hence the path metric generation can be
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done by using a finite state diagram and the trellis associated with the finite state dia-
gram. The situation is directly analogous to that of Miller modulation encountered in
Chapter 6. Though the memory in the two cases is due to different reasons, the approach
to determining the maximum likelihood (most probable) sequence is the same. Namely,
represent the memory by a finite state diagram and/or by the associated trellis graph.
The states are the previous L− 1 bits, where as usual a state is what is needed from the
past which along with the present input allows one to compute the present branch metric,
bi,krk − bi,k

∑L−1
j=1 bi,k−jhj, for the branch in the trellis along the ith path. The determination

of the best path through the trellis, in this case the path that yields the maximum γi, can
therefore be accomplished as a graph search procedure. This is done most efficiently using
the Viterbi algorithm.

Because of the importance of the trellis graph and the Viterbi algorithm in communi-
cations,2 an example of their application to the ISI channel is discussed in some detail
next. Let the impulse response, h(t), be as shown in Figure 9.24(a). The autocorrelation
of h(t) is Rh(τ ) = ∫∞−∞ h(t)h(t − τ )dt and is shown in Figure 9.24(b). Note that there
are two ISI terms, which are due to h1 = 0.6 and h2 = 0.2, which means that L = 3
or L− 1 = 2, i.e., the memory is two bits in length (as can be seen from the impulse
response). The branch metric term of (9.55) becomes bi,krk − 0.6bi,kbi,k−1 − 0.2bi,kbi,k−2.
The inputs bi,k−1, bi,k−2 represent the system memory and hence are states of the state
diagram. The state diagram and corresponding trellis are shown in Figure 9.25.

Before proceeding to illustrate the Viterbi algorithm some remarks are pertinent to the
state diagram and/or the trellis:

(1) The subscript i in bi,k, which refers to a specific bit sequence, has been suppressed;
however, any bit sequence pattern of length N can be traced on either figure.

(2) bk is represented by logic 0 or 1, which at the transmitter is modulated to an impulse of
strength−1 or+1, respectively. In the computation of the branch metric(s) one should
use −1 and +1 as appropriate.

0
bT2bT 2.5 bT

1 2.5 bT

( )h t

t
0

bT2bT 2.5 bTbT−2 bT−2.5 bT−

0 1h =
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h2h−2

h−1

( )

0, | | 2.5
h

b

R

T

| |
1 , | | 2.5

2.5 b
b

T
T

τ− ≤
=

>

(a) (b)

τ

τ

τ
τ

�Fig. 9.24
(a) Overall impulse response, h(t), of a bandlimited channel, and (b) the autocorrelation of h(t). Here Tb is
the bit interval.

2 The trellis graph and the Viterbi algorithm arose originally in the demodulation of the convolutional codes. They
have since been used in TCM, discussed in Chapter 11, in turbo coding/decoding, and even in the decoding of
block codes.
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�Fig. 9.25 (a) State diagram and (b) trellis for the ISI example.

(3) The starting state of the trellis was chosen to be 00. The choice is arbitrary, but the
transmitter and the receiver should agree on what it is. Before t = 0 it is assumed that
everything is zero, which means that there is no interference at t = 0.

(4) After two bit intervals, t = 2Tb, the trellis is fully developed and it is the same from
bit interval to bit interval. In general the trellis becomes fully developed at (L− 1)Tb.

(5) If two paths diverge at a state, it takes at least three bit intervals (3Tb) before they can
meet at a state. In general this would be L bit intervals.

To proceed with the example, consider the input bit sequence given in Table 9.1, a
sequence of length 20. The table also contains a sequence of 20 zero-mean Gaussian
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Table 9.1 Examples of transmitted sequence, noise sequence, and
matched filter’s sample outputs

k 0 1 2 3 4 5 6

bk 0 1 0 1 0 0 1
bk −1 +1 −1 +1 −1 −1 +1
yk −1.0 0.4 −0.6 0.6 −0.6 −1.4 0.2
wk −0.074 0.059 0.116 0.336 −0.216 −0.163 0.165
rk −1.074 0.459 −0.484 0.936 −0.816 −1.563 0.365

k 7 8 9 10 11 12 13

bk 1 0 1 0 0 0 0
bk +1 −1 +1 −1 −1 −1 −1
yk 1.4 −0.2 0.6 −0.6 −1.4 −1.8 −1.8
wk −0.062 0.220 0.050 0.247 0.113 0.311 0.080
rk 1.338 0.020 0.650 −0.353 −1.287 −1.489 −1.720

k 14 15 16 17 18 19

bk 1 1 0 0 1 0
bk +1 +1 −1 −1 +1 −1
yk 0.2 1.4 −0.2 −1.4 0.2 −0.6
wk −0.296 −0.054 −0.181 −0.034 0.189 −0.177
rk −0.096 1.346 −0.381 −1.434 0.389 −0.777

samples, generated by Matlab. The noise variance, σ 2, was set so that the SNR = Eb/σ
2

was 16 dB. This means that, if the transmitted energy per bit is set at Eb = 1 joule, then
σ = 10−SNR/20 = 0.158. The sample output is rk = yk + wk, where yk = bk + 0.6bk−1 +
0.2bk−2. Both sequences {rk} and {yk} are also given in Table 9.1.

The branch metric, bkrk − bk
∑2

j=1 bk−jhj, becomes bkrk − 0.6bkbk−1 − 0.2bkbk−2,
where as mentioned earlier subscript i, which refers to a specific path through the trel-
lis, is suppressed and bk is ±1. Table 9.2 sets up the systematic computation of the metric
for branches emanating from the trellis states.

Branch metrics are now computed for the first three bit transmissions. Figure 9.26 shows
the results along with the (partial) path metrics for all possible paths for the first three bit
transmissions.

It is at this point that the Viterbi algorithm comes into play. Consider the two paths 000
and 100, which merge at state 00 at k = 3. Their path metrics are −0.301 and −0.849,
respectively. Regardless of what happens in succeeding bit transmissions, path 100 can
never be a part of an overall path where γi is maximum. Therefore, it can be discarded. At
this stage 000 is a survivor path and −0.301 is the corresponding survivor metric, which is
also known as a state metric. Similar statements hold for the other three states. This proce-
dure is repeated for each succeeding bit transmission where a branch metric is computed
for that bit interval, added to the state (survivor) metric from which the branch emanates,
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Table 9.2 Branch metric computation for the example under consideration

bk−2 bk−1 bk Branch metric

0 (−1) 0 (−1) 0 (−1) −rk − 0.6− 0.2 = −rk − 0.8
0 (−1) 0 (−1) 1 (+1) +rk + 0.6+ 0.2 = +rk + 0.8
0 (−1) 1 (+1) 0 (−1) −rk + 0.6− 0.2 = −rk + 0.4
0 (−1) 1 (+1) 1 (+1) +rk − 0.6+ 0.2 = +rk − 0.4
1 (+1) 0 (−1) 0 (−1) −rk − 0.6+ 0.2 = −rk − 0.4
1 (+1) 0 (−1) 1 (+1) +rk + 0.6− 0.2 = +rk + 0.4
1 (+1) 1 (+1) 0 (−1) −rk + 0.6+ 0.2 = −rk + 0.8
1 (+1) 1 (+1) 1 (+1) +rk − 0.6− 0.2 = +rk − 0.8
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r0 = −1.074 r1 = 0.459 r2 = –0.484�Fig. 9.26
Branch metrics and partial path metrics for the first three bit transmissions. Note that the two branch
metrics coming out of any state are the negative of each other.

and then compared with the competing path metric at the state where the branch termi-
nates. The trellis is “pruned” by retaining only the survivor path at each stage. Figure 9.27
shows the pruned trellis up to k = 12.

The use of the Viterbi algorithm to search the trellis graph reduces in this case the num-
ber of paths that need to be considered from 2N , where N is the length of the transmitted bit
sequence to just 4, the number of states. One could therefore search the trellis to the end and
at that point choose, out of the four paths, the one that has the maximum survivor metric to
be the maximum likelihood sequence. Though N is taken to be 20 here, typically it would
be on the order of hundreds or thousands of bits. This leads to two problems: (i) a large
storage requirement in the electronic circuitry, (ii) more fundamentally, an unacceptable
delay in outputting the information bits.

These problems can be alleviated by realizing that as one progresses “deep” into the
trellis the survivor paths will exhibit a backward merge, i.e., they will all share a common
tail. This can be seen in the present example at k = 4 (Figure 9.27) where the four survivor
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k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12

12.305

10.531

11.999

7.825�Fig. 9.27 Survivor paths and survivor metrics after 12 bit transmissions.

paths share a common tail of 01. These two bits can then be outputted. The difficulty
with this is that backward merges are dependent on the specific noise sequence and hence
are random. The number of steps into the trellis needed before a backward merge occurs
depends on the severity of the noise, but the further along the trellis one goes, the more
likely it is that there will be a backwards merge.

Practically, a rule of thumb is to assume that a length of five times the memory length
(5× 2 = 10 in this example) is sufficient to ensure a backward merge, at least on the bit
interval furthest back from the present. One can then output this bit irrespective of whether
a merge actually occurred. There are several approaches to deciding on how to choose the
value of the outputted bit:

(i) One can take the survivor path with the largest metric and output its “oldest” bit.
(ii) One can take any survivor path and output its “tail” bit.

(iii) One can take a majority vote among the tail end bits of all the survivor paths (four
in the current example) to determine the output bit value. Ties would be broken by
flipping a coin.

Note that if a merge has occurred, all the approaches result in the same output bit value.
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After the decision is made on the tail bit, one goes to the next bit interval and repeats the
procedure.

Observe in the present example that if one ignores the ISI and uses simple symbol-by-
symbol demodulation based on the decision rule:

rk

1D

�
0D

0, (9.56)

then two bit errors are made. One at k = 8 and one at k = 14. Applying the Viterbi algo-
rithm for the remainder of the trellis to determine the maximum path metric, γi, it can be
shown (left as a problem) that the correct bit sequence is demodulated.

The poor performance of the symbol-by-symbol demodulation can be explained by look-
ing at the eye diagram at the output of h(−t) in the absence of AWGN. This is shown
in Figure 9.28. As can be seen from Figure 9.28, the eye is almost closed. There are
signal points that are only 0.2 units away from the threshold. Based on this worst case
scenario (which can happen quite often) and given that σ = 0.158, the bit error proba-

bility is P[bit error] = Q
(

0.2
0.158

)
≈ 0.1028, which agrees well with having two bit errors

out of 20 information bits. Alternatively the SNR in the worst case is 20 log10

(
0.2

0.158

)
≈

2 decibels, a far cry from the 16 decibels based on the transmitted energy. Therefore, while
the ISI severely degrades the performance of the symbol-by-symbol demodulation, it does
not impair the performance of the maximum likelihood sequence demodulation (MLSD).
Qualitatively, MLSD takes advantage of the signal energy, i.e., it works with an SNR of
16 decibels.

t
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bT2bTbT−2 bT−
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�Fig. 9.28
Eye diagram in the absence of AWGN for the overall impulse response considered in the ISI example.
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9.5 Summary

Bandlimitation and the subsequent effect of intersymbol interference (ISI) have been
discussed in this chapter. Various methods to combat ISI, from eliminating it (Nyquist’s
criterion) to allowing a controlled amount (partial response signaling) to using a Viterbi
algorithm (equalizer) to accomplish a maximum likelihood sequence detection in the pres-
ence of any inherent ISI have been described. The phenomenon of ISI is not only present in
what maybe considered to be traditional communication systems, ISI is also a problem in
digital storage devices, in particular magnetic disk recording systems. The ISI in this appli-
cation is limited to a few terms with a Viterbi algorithm used to demodulate the recorded
bit sequence.

9.6 Problems

9.1 Consider a bandpass channel with a bandwidth of 4 kilohertz. Assume that the PSD
of AWGN is N0/2 = 10−8 watts/hertz. Design a QAM modulator to deliver a trans-
mission rate of 9600 bits/second. Use a raised-cosine spectrum having a roll-off
factor of at least 50% for the combined transmit and receive filters. Also deter-
mine the minimum transmitted power to achieve a bit error probability of 10−6.
Hint The result on excess bandwidth to achieve zero ISI for the binary baseband
system can be extended to an M-ary passband system by replacing the bit rate with
the symbol rate.

9.2 Figure 9.29 illustrates the frequency response of a typical voice-band telephone
channel. You are asked to design a modem that transmits at a symbol rate of 2400
symbols/second, with the objective of achieving 9600 bits/second. It is also decided
that the raised-cosine spectrum is used for the overall system.

)( fHC

(Hz)f

1

3300300−300−3300�Fig. 9.29 Frequency response considered in Problem 9.2.

(a) Select an appropriate QAM signal constellation and the roll-off factor β of the
raised-cosine spectrum that utilizes the entire frequency band.

(b) Sketch the spectrum of the transmitted signal and label all the relevant frequen-
cies.
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9.3 Consider a channel with the following frequency response HC(f ) = 1+
α cos(2π fTs). Determine the frequency response characteristic of the optimum trans-
mit and receive filters that yields zero ISI at a rate of 1/Ts symbols/second and has
75% access bandwidth. Assume that the additive Gaussian noise is white.

9.4 Consider a lowpass channel with bandwidth W and the following frequency
response:

HC(f ) =
{

1+ α cos(2π ft0), −W ≤ f ≤ W, |α| < 1
0, otherwise.

(P9.1)

An input signal s(t) whose spectrum is bandlimited to W (hertz) is passed through
the channel.
(a) Show that, in the absence of AWGN, the output of the channel is

y(t) = s(t)+ 1
2α[s(t − t0)+ s(t + t0)], (P9.2)

i.e., the channel produces a pair of echoes.
(b) The received signal y(t) is passed through a filter matched to s(t). Determine the

output of the matched filter at t = kT , k = 0,±1,±2, . . .. Hint The output of the
matched filter is y(t) ∗ s(T − t) = ∫∞−∞ y(λ)s(t − (T − λ))dλ.

(c) What is the ISI pattern at the output of the matched filter if t0 = T? Comment.
9.5 Consider transmitting binary antipodal signals, ±s(t), over a nonideal bandlimited

channel. Let Eb and Tb be the signal energy (i.e., energy per bit) and signaling
interval, respectively. The channel introduces ISI over two adjacent symbols. In the
absence of AWGN, the output of the matched filter is

√
Eb at t = Tb,

√
Eb/4 at

t = 2Tb, and zero for t = kTb, k > 2.
(a) Assume that the two signals are equally probable and the two-sided PSD of

AWGN is N0/2. Determine the average probability of bit error.
(b) Plot the bit error probability obtained in (a) and that for the case of no ISI.

Determine the relative difference in SNR = Eb/N0 (decibels) for the bit error
probability of 10−5.

9.6 Figure 9.30 shows the system model for binary baseband signaling over a ban-
dlimited channel. The source rate is rb = 1/Tb and the overall response SR(f ) =
HT (f ) · HC(f ) · HR(f ) of the system is shown in Figure 9.31 in which K is an arbitrary
constant.

t = kTb

( )ty( )tr y (kTb)

( )

Gaussian noise, zero-mean
( ) W/Hz

t

PSD S fw

w

)( fHC)( fHT )( fH RBinary data

�Fig. 9.30 System model considered in Problem 9.6.
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( )RS f

(Hz)f
3000−3000 0

K

1000−1000�Fig. 9.31 The overall response considered in Problem 9.6.

(a) At what rate would you transmit if you desire the ISI terms to be zero at the
sampling instants? Explain.

(b) If you signal at rates slower than 4× 103 hertz does it follow that the ISI is zero?
Explain.

(c) What is the excess bandwidth of the above system.
9.7 Your friend has been asked to design a binary digital communication system for

a baseband channel whose bandwidth is W = 3000 hertz. The block diagram of
the system is shown in Figure 9.32. Having learnt that ISI generally occurs for a

)( fHC)( fHT )( fHR

t = kTb

)(tr )(ty )( bkTy

w(t)

Binary data

Gaussian noise, zero-mean
( ) W/HzPSD S fw�Fig. 9.32 System model considered in Problem 9.7.

bandlimited channel, which can severely degrade the system performance, she pro-
poses two possible choices for the overall system response SR(f ) = HT (f ) · HC(f ) ·
HR(f ) in Figures 9.33(a) and 9.33(b).
(a) For each choice of the overall response, at what rate should your friend transmit

if she desires the ISI terms to be zero at the sampling instants? Explain.

(Hz)f
3000−3000 0

SR ( f ) SR ( f )

(Hz)f
3000−3000 0 1000−1000

1

2

11

(a) (b)�Fig. 9.33 The two overall responses, (a) and (b), considered in Problem 9.7.
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(b) From your answers in (a), what is the excess bandwidth of the system for each
choice of the overall response?

(c) Being aware of the raised-cosine spectrum, you suggest it to your friend as an
alternative design for the spectrum in Figure 9.33(a). Neatly sketch the raised-
cosine spectrum on top of the spectrum in Figure 9.33(a).

(d) Your friend considers your suggestion by examining the eye diagrams in
Figure 9.34. What should be your friend’s choice for the overall spectrum?
Explain.
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�Fig. 9.34 Two eye diagrams considered in Problem 9.7.
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9.8 For each of the overall system responses SR(f ) = HT (f ) · HC(f ) · HR(f ) in
Figure 9.35 determine if one can signal at a rate which would result in zero ISI,
and if so what the signaling rate rb (bits/second) is.
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�Fig. 9.35 The four overall system responses considered in Problem 9.8.

9.9 The binary sequence 110010101101 is the input to a precoder whose output is used
to modulate a duobinary transmit filter. Complete Table 9.3, which shows the pre-
coded sequence, the transmitted amplitude levels, the received signal levels, and the
decoded sequence (all in the absence of the channel noise).

Table 9.3 Binary signaling with duobinary pulses

Time index k 0 1 2 3 4 5 6 7 8 9 10 11 12
Information bit {bk} 1 1 0 0 1 0 1 0 1 1 0 1
Precoded bit {dk} 0
Transmitted level
Received level
Decoded bit

9.10 Consider a generalization of the discussion of duobinary to PRS. Let sR(t) be
nonzero only at a finite number of sampled values, say N, i.e., sR(kTs) = sk, for
k = 0, 1, . . . , N − 1 and sR(kTs) = 0 otherwise.
(a) Show that

SR(f ) =
{

Tb

∑N−1
k=0 ske−j2πkTb , −1/2Tb ≤ f ≤ 1/2Tb

0, otherwise
. (P9.3)

(b) Show that sR(t) =∑N−1
k=0 sksin(π (t − kTb))/π (t − kTb).
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Remark It is common to assume that the samples are nonzero at values kTb,
where k ranges in a symmetrical range around zero, i.e., −(N − 1)/2 ≤ k ≤
(N − 1)/2.

9.11 The spectrum SR(f ) of duobinary modulation has most of its energy concentrated
around f = 0, a feature that is undesirable in communication systems that have AC
coupling to eliminate DC and low frequency drift. To overcome this you propose,
instead of a “cosine” spectrum, a “sine” spectrum on the basis that it will be zero at
f = 0. The spectrum SR(f ) is then of the form sin(2π fTb) which ensures that it is also
zero at f = ±1/2Tb. Since sR(t) is a real-time function, SR(f ) must have a magnitude
spectrum that is even and an odd phase spectrum. Bearing this in mind you arrive at
the following:

SR(f ) =
{

j2Tb sin(2π fTb), −1/2Tb ≤ f ≤ 1/2Tb

0, otherwise
. (P9.4)

(a) Determine the overall response sR(t) and plot the sampled values sR(kTb). How
does sR(t) decay with t?

(b) Determine the equation for the sampled output, yk. How many interfering terms
are there? What is the number of received levels?

(c) Design a precoder to eliminate the memory and show the decision space when
this precoder is used.

(d) What is the SNR degradation, in decibels, (with precoding) over the ideal binary
case?

9.12 A partial response system has the sampled overall impulse response shown in
Figure 9.36.

0
t

bT2− bT2bTbT− bT33 bT−

(1)

( )R bs kT

(1)

(2)

… …

�Fig. 9.36 The sampled overall impulse response considered in Problem 9.12.

(a) Show that the frequency spectrum SR(f ) is

SR(f ) =
{

4Tb cos2(π fTb), −1/2Tb ≤ f ≤ 1/2Tb

0, otherwise
. (P9.5)

(b) How does the time domain response decay with t?
(c) Derive the equation for the sampled output.
(d) How many received levels are there?
(e) Design a precoder to eliminate the ISI and show the decision regions when this

precoder is used.
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(f) What is the SNR degradation, in decibels, over the ideal binary case?
9.13 Repeat Problem 9.12 for the sampled overall impulse response shown in Figure 9.37.

0
t

bT2− bT2

……
bTbT−

bT33 bT− ( 1)−

( )R bs kT

(2)

( 1)−

�Fig. 9.37 The sampled overall impulse response considered in Problem 9.13.

9.14 Use Matlab to obtain the eye diagrams for the duobinary modulation and for the PRS
of Problem 9.11. Discuss the differences, if significant.

9.15 Use Matlab to obtain the eye diagrams for the lowpass raised-cosine filter considered
as an example in the chapter (see Figure 9.3). Let RC = 0.2Tb, Tb, 2Tb.



10 Signaling over fading channels

10.1 Introduction

Up to now we have assumed that the transmitted signal is only degraded by AWGN. Even
when it is subjected to filtering, as in the previous chapter, the filtering characteristics are
known precisely by the receiver. This knowledge is exploited in the design of the modula-
tor/demodulator by employing Nyquist’s criterion to avoid intersymbol interference (ISI),
or by allowing a certain amount of ISI as in the case of partial response systems, or by
using a maximum likelihood sequence detection based on the unavoidable ISI.

In practice, however, there arise communication channels where the received signal is
not subjected to a known transformation or filtering. In particular the gain and/or phase
of a digitally modulated transmitted signal is not known precisely at the receiver. These
parameters can be modeled as either unknown but fixed over the period of transmission or
as random. In the former case, one could transmit a known signal briefly at the beginning
of transmission to estimate the parameter(s) and then use the estimate(s) for the remain-
der of the transmission, which would be the message of interest. However, in the more
typical application, the parameters do change in time, so though they may remain reason-
ably constant over a bit interval, or several bit intervals, they do change over the course of
the entire message transmission, typically unpredictably. It is therefore common to model
these parameters, which in this context are also known as nuisance parameters, as random.

This chapter considers channel models where the amplitude and/or phase of the received
signal is random. It starts by considering amplitude effects on binary digital modulations.
This is followed by a channel model where the phase is random which introduces an addi-
tional complication into the analysis and design of the optimum receiver. The last section
of this chapter considers the most important channel model: one where both amplitude
and phase are random. The model applies to channels where “scattering” occurs; these
are found in ionospheric point-to-point transmission and in wireless communications. Fad-
ing due to scattering causes a severe degradation in error performance due to “deep” fades
where the signal is essentially obliterated. Diversity transmission as a means of overcoming
deep fades concludes the chapter.
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10.2 Demodulation with random amplitude

This is a pure fading model in which only the amplitude of the received signal is changed.
In general the received signal is

r(t) = as(t)+ w(t), (10.1)

where s(t) is the transmitted signal, w(t) is the usual ubiquitous AWGN, and a is a random
variable with known pdf, fa(a). It is assumed that a is statistically independent of both s(t)
and w(t). Further, a ≥ 0, since a negative value implies not only gain distortion but also
phase distortion, namely one of 180◦. Logically one would feel that a ≤ 1 since values
larger than 1 would mean that the received signal energy is greater than the transmitted
signal energy. However a > 1 does not mean that an increase in the received signal energy
is beneficial. Depending on the modulation it can lead to a degradation of performance.

Consider now binary modulation and the three basic schemes, on–off keying, antipodal
and orthogonal, which in passband are known as BASK, BPSK, and BFSK. The signal
space plots and decision regions are shown in Figure 10.1. For simplicity it is assumed
here and for the rest of the chapter that the bits (or symbols) are equally probable. Also the
transmitted energy is E for a nonzero signal. Since the two signals used in BPSK and BFSK
are of equal energy, the transmitted energy per bit, commonly denoted by Eb, is simply E
in these two modulation schemes. On the other hand Eb = E/2 in BASK since one signal
in this scheme is zero.

If the transmitted energy is E joules, then the received energy is a2E or the signal point is
at a distance of a

√
E from the origin. Figure 10.1 shows the signal points for the three signal

sets for a specific value of a. The following observations are readily made from Figure
10.1. The optimum receiver remains the same for antipodal and orthogonal signaling for
any a ≥ 0. This is a not unexpected result, since the information is not carried by the
amplitude. The error performance, however, is affected. It is given by

P[error] = Q

(
a

√
2Eb

N0

)
(antipodal), (10.2)

P[error] = Q

(
a

√
Eb

N0

)
(orthogonal). (10.3)

In essence, the P[error] is a random variable. To determine the average error probability
one needs to determine

E{P[error]} =
∫ ∞

0
Q

(
a

√
2Eb

N0

)
fa(a)da (antipodal), (10.4)

E{P[error]} =
∫ ∞

0
Q

(
a

√
Eb

N0

)
fa(a)da (orthogonal). (10.5)
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Though the evaluation of the integrals can be complicated or only done numerically, it can
be shown that ∫ ∞

0
Q (ax) fa(a)da ≥ Q(max), (10.6)

where ma = E{a}. The equality holds if and only if a is not random, which means fa(a) =
δ(a− ma).

Consider now BASK. The optimum receiver is changed since if a = a then the receiver
threshold becomes a

√
E/2. The minimum bit error probability and the optimum receiver

are still given by determining the following likelihood ratio:

fr1 (r1|1T )

fr1 (r1|0T )

1D

�
0D

1,

which means that the two pdfs need to be determined. The conditional pdf, fr1 (r1|0T ), is
obtained by observation. It is Gaussian, zero-mean, variance N0/2, the usual mantra. The
conditional pdf fr1 (r1|1T ) is not as straightforward since when a “1” is transmitted the
sufficient statistic becomes r1 = a

√
E + w1, where w1 is Gaussian, zero-mean, variance

N0/2. The conditional pdf fr1 (r1|1T ) can then be determined in two ways. One method is to

determine the pdf of a
√

E which is (1/
√

E)fa
(

a/
√

E
)

, and convolve this density with that

of fw1 (w1) to obtain fr1 (r1|1T ). Another approach is used here. Assume that a = a, where
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a is a specific value. Then fr1 (r1|1T , a = a) is Gaussian, mean value a
√

E, variance N0/2.
Average this pdf over all possible values of a where the weights in the average are given
by fa(a)da. Therefore:

fr1 (r1|1T ) =
∫ ∞

0
fr1 (r1|1T , a = a)fa(a)da (10.7)

= E
{
fr1 (r1|1T , a = a)

}
. (10.8)

Whether the above expectation can be evaluated and meaningfully interpreted depends
on fa(a). The threshold (and hence the decision regions) is therefore a balance between the
different regions given by the values that a takes, weighted by the probabilities that a takes
these values. This is true, even in the general M-ary case, as illustrated in Figure 10.2, for
a two-dimensional signal plot.

Note, however, that if all the signal points lie at distance of
√

Es from the origin, i.e.,
they are of equal energy Es, then the optimum decision regions are invariant to any scaling
by a, provided of course that a ≥ 0. This is exactly what was observed for the binary
antipodal and orthogonal signaling. The matched-filter or correlation receiver structure is
still optimum, one does not even need to know fa(a). The error performance, as noted
earlier, does depend crucially on a and fa(a).

10.3 Demodulation with random phase

Phase uncertainty can arise due to different effects. One possibility is slow drift in the
receiver’s local oscillator that is used to demodulate the incoming signal to baseband.
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Another common effect is changes in the propagation time of the signal between the
transmitter and receiver. To illustrate this consider BPSK modulation used at a carrier
frequency1 of 1 gigahertz. The transmitted signal is ±V cos(2π fct). The received signal is
±V cos(2π fc(t − td)), where td is the propagation delay from the transmitter to the receiver.
If constant, then the receiver oscillator can adjust and therefore the reference signal used
at the demodulator would be

√
2/Tb cos(2π fct − θd), where θd = 2π fctd. However, typi-

cally td varies due to changes in the propagation path and looks like td = tnominal ±�t. The
signal at the receiver is now±V cos(2π fc(t − tnominal ±�t)) = ±V cos(2π fct − θnominal ±
�θ ), where θnominal = 2π fctnominal and �θ = 2π fc�t. Though the receiver oscillator may
adjust to the phase θnominal, it is typically very difficult to track the �θ perturbations in
phase which can be quite large. Indeed, if �t is on the order of 1/fc, which at 1 gigahertz
is 10−9 seconds, the phase perturbation can vary from 0 to 2π as the propagation time
�t changes from 0 to 10−3 microseconds. Significant phase uncertainly can therefore be
introduced quite readily into the received signal.

Based on the above discussion, we shall model the phase uncertainty as a random vari-
able, with a uniform pdf in the range 0 to 2π or (−π to π ). It would be expected that using
BPSK as a modulation technique in the face of this phase uncertainty is a dead-end street.
However, BASK and BFSK may have potential for communications and we explore this
next. In what follows we ignore the known delay tnominal and set it to zero. As usual the bits
are assumed to be equally probable and we have AWGN. Observe also that the phase uncer-
tainty does not change the energy of the received signal, i.e.,

√
E
√

2/Tb cos(2π fct + α) has
the same energy for any α. Figure 10.3(a) shows the signal space plots at the receiver. For
completeness BPSK is also shown.

10.3.1 Optimum receiver for noncoherent BASK

Consider the optimum receiver for BASK. The signal space of Figure 10.3(a) shows that
when a “1” is transmitted the signal lies on the circumference of a circle. One would
therefore conjecture that the optimum decision boundary consists of a circle enclosing the
signal point at the origin, radius to be determined. A radius of

√
E/2 seems plausible. To

check these conjectures and intuitions the receiver is derived next.
The received signal is:

r(t) =
{

w(t), if “0T”√
E
√

2/Tb cos(2π fct − θ )+ w(t), if “1T”
. (10.9)

It is relatively straightforward to show that a set of sufficient statistics is generated by
projecting the received signal onto the two basis functions φI(t) = √2/Tb cos(2π fct) and
φQ(t) = √2/Tb sin(2π fct). The sufficient statistics become

1 Mobile communication systems are in the region of 800 MHz; personal communication systems lie in the
region of 1.6 gigahertz so the chosen carrier frequency is quite representative.
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rI =
{

wI , if “0T”√
E cos θ + wI , if “1T”

, rQ =
{

wQ, if “0T”√
E sin θ + wQ, if “1T”

, (10.10)

where wI and wQ are statistically independent Gaussian random variables, with
zero-mean, variance N0/2. As before one needs to determine the likelihood ratio,
f (rI , rQ|1T )/f (rI , rQ|0T ). The conditional pdf f (rI , rQ|0T ) is easily determined. It equals

f (rI |0T )f (rQ|0T ) = (1/πN0) exp
(
−(r2

I + r2
Q)/N0

)
.

To determine f (rI , rQ|1T ) the same approach as in Section 10.2 is used. Namely we
assume a specific value for θ , determine f (rI , rQ|1T , θ = θ ), and then average over all
values of θ . The result is
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f (rI , rQ|1T ) =
∫ 2π

0

1

πN0
exp

⎡⎢⎣−
(

rI −
√

E cos θ
)2 +

(
rQ −

√
E sin θ

)2

N0

⎤⎥⎦ 1

2π
dθ ,

(10.11)

which simplifies to

f (rI , rQ|1T ) =
[

1

πN0
e−(r2

I+r2
Q)/N0 e−E/N0

][
1

2π

∫ 2π

0
e(2
√

E/N0)(rI cos θ+rQ sin θ )dθ

]
.

(10.12)

The integral can be written as

1

2π

∫ 2π

0
e

(2
√

E/N0)
√

r2
I+r2

Q cos
(
θ−tan−1(rQ/rI )

)
dθ

and recognized to be a modified Bessel function of the first kind,2 namely

I0

(
(2
√

E/N0)
√

r2
I + r2

Q

)
. Therefore

f (rI , rQ|1T ) = 1

πN0
e−(r2

I+r2
Q)/N0 e−E/N0 I0

(
2
√

E

N0

√
r2

I + r2
Q

)
. (10.13)

The likelihood ratio becomes:

e−E/N0 I0

(
2
√

E

N0

√
r2

I + r2
Q

)
1D

�
0D

1, (10.14)

which, since I0(·) is a monotonic (increasing) function, can be written as√
r2

I + r2
Q

1D

�
0D

N0

2
√

E
I−1
0

(
eE/N0

)
. (10.15)

From (10.15) it is readily seen that the decision region is a circle in the sufficient statistic
space, (rI , rQ), of radius Th = (N0/2

√
E)I−1

0

(
eE/N0

)
. This is shown in Figure 10.4.

It is interesting to observe that the optimum threshold depends not only on the energy
E of the nonzero signal, but also on the noise level, N0. This means that the optimum
threshold is different from the radius

√
E/2 that we conjectured before. It can be shown,

however, that if the signal-to-noise ratio E/N0 is sufficiently high (which is typically the
case in practice), the optimum threshold approaches

√
E/2 quite closely. Nevertheless,

there is a noticeable performance degradation due to the use of the simpler suboptimum
threshold of

√
E/2, as illustrated later in this section.

A block diagram of the optimum receiver is shown in Figure 10.5. The generation of the

test statistic
√

r2
I + r2

Q can be done differently. Consider the received signal applied to the

filter shown in Figure 10.6. The output is given by

2 This function is defined as I0(x) � 1
2π

∫ 2π
0 ex cos θ dθ .
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�Fig. 10.6 Computation of y(t).
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y(t) =
∫ ∞

−∞
r(λ)

√
2

Tb
cos(2π fc(t − λ))[u(t − λ)− u(t − λ− Tb)]dλ

=
[∫ t

t−Tb

r(λ)

√
2

Tb
cos(2π fcλ)dλ

]
︸ ︷︷ ︸

yI (t)

cos(2π fct)

+
[∫ t

t−Tb

r(λ)

√
2

Tb
sin(2π fcλ)dλ

]
︸ ︷︷ ︸

yQ(t)

sin(2π fct)

= yI(t) cos(2π fct)+ yQ(t) sin(2π fct)

=
√

y2
I (t)+ y2

Q(t) cos

[
2π fc

(
t − tan−1 yQ(t)

yI(t)

)]
, (10.16)

where
√

y2
I (t)+ y2

Q(t) is the envelope of y(t). But at the sampling instant, t = kTb, one has

yI(kTb) = rI and yQ(kTb) = rQ, the sufficient statistics for the kth bit. Therefore the enve-

lope is precisely
√

r2
I + r2

Q, the test statistic. Therefore the optimum receiver can be realized

by the block diagram of Figure 10.7. This form of optimum demodulator realization lends
itself to the following interpretation. The matched filter, as usual, extracts the maximum
energy from the transmitted signal. However, because of the phase uncertainty, at the filter
output, only the envelope is looked at. For this reason the receiver is frequently known
as a noncoherent demodulator. Note also that the filter is a bandpass filter centered at the
carrier frequency fc.

Turning now to the error performance, P[error|0T ] is computed quite easily. It is given by

P[error|0T ] =
∫∫
 1

f (rI , rQ|0T )drIdrQ =
∫∫
 1

1

πN0
e−(r2

I+r2
Q)/N0 drIdrQ, (10.17)

which, using polar coordinates, becomes:

P[error|0T ] = 1

πN0

∫ 2π

α=0

∫ ∞

ρ=Th

ρe−ρ2/N0 dρdα = e−T2
h /N0 . (10.18)
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�Fig. 10.7 A different implementation of the optimum noncoherent demodulation of BASK.
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The error probability when a “1” is transmitted is not as readily evaluated. We have

P[error|1T ] = 1− P[correct|1T ] = 1−
∫∫
 1

f (rI , rQ|1T )drIdrQ. (10.19)

Using (10.13) for f (rI , rQ|1T ) and expressing the variables in polar coordinates the integral
becomes

1

πN0

∫ 2π

α=0

∫ ∞

ρ=Th

ρe−ρ2/N0 e−E/N0 I0

(
2
√

E

N0
ρ

)
dρdα

= 2

N0

∫ ∞

ρ=Th

ρe−(ρ2+E)/N0 I0

(
2
√

E

N0
ρ

)
dρ. (10.20)

The integral cannot be evaluated analytically, but to recognize it as a tabulated function, let
λ = √2/N0ρ. Then the integral becomes

∫∞√
2/N0Th

λe−(λ2+2E/N0)/2I0
(√

2E/N0λ
)

dλ. This
is now in the form of a function commonly called Marcum’s Q-function, defined as

Q(α, β) =
∫ ∞

β

xe−(x2+α2)/2I0(αx)dx. (10.21)

Identify α = √2E/N0 and β = √2/N0Th. The error probability is then

P[error|1T ] = 1− Q

(√
2E

N0
,

√
2

N0
Th

)
. (10.22)

Finally the overall error probability is given by

P[error] = 1

2
e−T2

h /N0 + 1

2

[
1− Q

(√
2E

N0
,

√
2

N0
Th

)]
. (10.23)

Figure 10.8 plots the above error performance as a function of Eb/N0, where Eb = E/2
is the average energy per bit, along with the coherent case, i.e., when the phase θ is known
at the receiver. It can be seen that, over the error probability range of 10−2–10−6, noncoher-
ent BASK is only about 0.5–1.0 decibels less efficient in power than its coherent version.
Also plotted in Figure 10.8 is the error performance of noncoherent BASK when the “intu-
itive,” suboptimum threshold of

√
E/2 = √Eb/2 is applied. Observe that there is about a

0.3 decibel penalty in power when using such a simpler suboptimum threshold instead of
the optimum one.

10.3.2 Optimum receiver for noncoherent BFSK

Consider now BFSK in which the frequency separation between two signals is such
that they are “noncoherently” orthogonal as discussed in Chapter 7. The two possible
transmitted signals are

s(t) =
{√

E
√

2/Tb cos(2π f1t), if “0T”√
E
√

2/Tb cos(2π f2t), if “1T”
. (10.24)
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The received signal is

r(t) =
{√

E
√

2/Tb cos(2π f1t − θ)+ w(t), if “0T”√
E
√

2/Tb cos(2π f2t − θ)+ w(t), if “1T”
. (10.25)

The relevant signal space at the receiver is 4-dimensional with basis functions√
2/Tb cos(2π f1t),

√
2/Tb sin(2π f1t),

√
2/Tb cos(2π f2t),

√
2/Tb sin(2π f2t). Projecting r(t)

onto these basis functions one gets the following sufficient statistics:

0T

r1,I =
√

E cos θ + w1,I

r1,Q =
√

E sin θ + w1,Q

r2,I = w2,I

r2,Q = w2,Q

(10.26)

1T

r1,I = w1,I

r1,Q = w1,Q

r2,I =
√

E cos θ + w2,I

r2,Q =
√

E sin θ + w2,Q

(10.27)

The random variables w1,I , w1,Q, w2,I , w2,Q are Gaussian with zero mean and vari-
ance N0/2, uncorrelated, and therefore statistically independent. The conditional pdf of,
say, f (r1,I , r1,Q, r2,I , r2,Q|0T ) can therefore be written as f (r1,I , r1,Q|0T )f (r2,I |0T )f (r2,Q|0T ).
The pdfs f (r2,I |0T ) and f (r2,Q|0T ) are each N (0, N0/2) while the pdf f (r1,I , r1,Q|0T ) is
determined using the same approach as was done in the BASK case when f (rI , rQ|1T ) was
evaluated. The final pdfs are
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f (r1,I , r1,Q, r2,I , r2,Q|0T ) = 1

πN0
e
−
(

r2
1,I+r2

1,Q

)
/N0

× e−
√

E/N0 I0

(
2
√

E

N0

√
r2

1,I + r2
1,Q

)
1

πN0
e
−
(

r2
2,I+r2

2,Q

)
/N0 ,

(10.28)

f (r1,I , r1,Q, r2,I , r2,Q|1T ) = 1

πN0
e
−
(

r2
1,I+r2

1,Q

)
/N0

× 1

πN0
e
−
(

r2
2,I+r2

2,Q

)
/N0 e−

√
E/N0 I0

(
2
√

E

N0

√
r2

2,I + r2
2,Q

)
.

(10.29)

The likelihood ratio becomes

I0

(
(2
√

E/N0)
√

r2
2,I + r2

2,Q

)
I0

(
(2
√

E/N0)
√

r2
1,I + r2

1,Q

) 1D

�
0D

1, (10.30)

or since I0(·) is a monotonically increasing function the decision rule can be simplified to√
r2

2,I + r2
2,Q

1D

�
0D

√
r2

1,I + r2
1,Q. (10.31)

A block diagram of the receiver using a matched filter–envelope detector realization is
shown in Figure 10.9. Put simply, the demodulator finds the envelope at the two frequencies
and chooses the larger one at the sampling instant.

Consider now the error performance of “noncoherent” BFSK. By symmetry P[error] =
P[error|0T ]. To determine P[error] observe that the decision rule can be expressed as

r2
2,I + r2

2,Q

1D

�
0D

r2
1,I + r2

1,Q. Fix the random variable r2
1,I + r2

1,Q at a specific value, R2, and

determine
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P
(

r2
2,I + r2

2,Q ≥ R2
∣∣0T , r2

1,I + r2
1,Q = R2

)
= P

[
(r2,I , r2,Q) falls outside the circle of radius R

∣∣0T
]

. (10.32)

Expressing the resulting integral in polar coordinates the conditional probability becomes

P
[
error

∣∣0T , r2
1,I + r2

1,Q = R2
]

= 1

πN0

∫ 2π

α=0

∫ ∞

ρ=R
ρe−ρ2/N0 dρdα = e−R2/N0 = e

−
(

r2
1,I+r2

1,Q

)/
N0 . (10.33)

Now average e
−
(

r2
1,I+r2

1,Q

)/
N0 over all possible values, i.e., find

E

{
e
−
(

r2
1,I+r2

1,Q

)/
N0

∣∣∣∣ 0T

}
=
∫ ∞

r1,I=−∞

∫ ∞

r1,Q=−∞
e
−
(

r2
1,I+r2

1,Q

)/
N0 f (r1,I , r1,Q|0T )dr1,Idr1,Q.

(10.34)

To find f (r1,I , r1,Q|0T ) fix the random variable θ at θ = α, find
f (r1,I , r1,Q|0T , θ = α) and average over all values of θ . Note that given θ (and 0T ), r1,I and
r1,Q are statistically independent random variables, with means

√
E cos α and

√
E sin α,

respectively, and variance N0/2. The pdf f (r1,I , r1,Q|0T , θ = α) becomes a product of

two pdfs, namely f (r1,I , r1,Q|0T , θ = α) = N
(√

E cos α, N0/2
)
N
(√

E sin α, N0/2
)

. The

expectation becomes

E

{
e
−
(

r2
1,I+r2

1,Q

)/
N0

∣∣∣∣ 0T

}
=
∫ 2π

α=0

[∫ ∞

r1,I=−∞
e−r2

1,I/N0N
(√

E cos α,
N0

2

)
dr1,I

]

×
[∫ ∞

r1,Q=−∞
e−r2

1,Q/N0N
(√

E sin α,
N0

2

)
dr1,Q

]
fθ (α)dα.

(10.35)

The integrations in the square brackets are accomplished by completing the square in
the exponent, and manipulating the result so that one has an integral which is the
area under a Gaussian function. The two integrals become (1/

√
2)e−E cos2 α/2N0 and

(1/
√

2)e−E sin2 α/2N0 , respectively. Therefore:

P[error] = E

{
e
−
(

r2
1,I+r2

1,Q

)/
N0

∣∣∣∣ 0T

}
=
∫ 2π

α=0

1√
2

e−E cos2 α/2N0
1√
2

e−E sin2 α/2N0
1

2π
dα = 1

2
e−E/2N0 = 1

2
e−Eb/2N0 .

(10.36)

The error performance of coherent and noncoherent demodulation of BFSK is shown
in Figure 10.8, where Eb = E is the energy per bit in BFSK. The performance advan-
tage of coherent BFSK over noncoherent BFSK can be seen clearly. It is more interesting
to observe that, although coherent BASK and BFSK perform identically in terms of
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Eb/N0, noncoherent BASK is about 0.3 decibels more power efficient than noncoherent
BFSK. This observation can be explained by the fact that phase and frequency are related
while amplitude and phase are not. Thus phase uncertainty degrades the performance of
BFSK more than BASK.

10.3.3 Differential BPSK and its optimum demodulation

Knowing that coherent BPSK is 3 decibels better than either coherent BASK or BFSK,
one wonders if there is any hope of using BPSK on a channel with a uniform phase uncer-
tainty. At first glance, this seems like an oxymoron but a little thought establishes that
what is needed is a phase reference at the receiver that is matched to the received signal,
which for BPSK is ±√Eb

√
2/Tb cos(2π fct − θ )+ w(t). Assuming that the phase uncer-

tainty changes relatively slowly with time, indeed let us assume that the change from one
bit interval to another is negligible, then the received signal in one bit interval can act as
a phase reference for the succeeding bit interval. This is shown by the block diagram of
Figure 10.10.

The sampled output is rk = ±Eb + wk + wk−1 + wk,k−1, where wk,k−1 =
(
1/
√

Eb
)∫ kTb

(k−1)Tb
w(t)w(t − Tb)dt is a random variable with a zero-mean symmetrical pdf. Based

on this the decision rule is as given in Figure 10.10. Note that the decision rule depends on
knowledge of the previous bit. This can be circumvented by initially transmitting a known
bit, using it to make a decision on the first message (information) bit, and using this deci-
sion to make a decision on the next message bit, etc. The difficulty with this approach,
however, is that if noise causes an error, then all succeeding bits will be in error, at least
until the noise causes another error, which is not a very satisfactory situation. Some (or
considerable) thought leads to the observation that the difficulty arises because at the trans-
mitter the bits are mapped into an absolute phase, irrespective of what the preceding phase
is. Instead of this, let the present phase depend not only on the present bit but also on the

( )
( 1)

d∫
b

b

kT

k T

t
−

•

bt kT=

kr

Delay Tb

1

bE

Comparator

2
( ) cos(2 ) ( )b c

b
t E f t θ

θ

t
T

π= ± − + wr

cos(2 ( ) )c b b
b b

f t
12

( )T t T
T E

π± − − + −w

If > 0, present bit equals previous bit

If 0, present bit is complement of previous bit
k

k

r

r ≤

�Fig. 10.10 Block diagram of the noncoherent demodulator for BPSK with random phase.
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previous phase. This leads to the following modulation:

if present bit = 0, let present phase = previous phase,
if present bit = 1, let present phase = previous phase plus π ,

(10.37)

or more succinctly,

0T : no phase change,
1T : π phase change.

(10.38)

The described modulation is known as differential binary phase-shift keying (DBPSK).
With DBPSK the sufficient statistic in Figure 10.10 is equal to rk = Eb + wk + wk−1 +
wk,k−1 when a “0” is transmitted and rk = −Eb + wk + wk−1 + wk,k−1 when a “1” is
transmitted. The decision rule is

rk

1D

�
0D

0 (10.39)

and, most importantly, is independent of the previous decision.
A different demodulator for DBPSK can be obtained by considering the trellis which

arises from the memory in the modulator. This is shown in Figure 10.11, where the states
are given by the previous phase.

Over the two bit intervals, observe that there are only four distinct transmitted signals,
namely:

(k − 1)th bit interval kth bit interval
⇓ ⇓

0T :

{ √
Eb
√

2/Tb cos(2π fct)
−√Eb

√
2/Tb cos(2π fct)

,
√

Eb
√

2/Tb cos(2π fct)
−√Eb

√
2/Tb cos(2π fct)

,

1T :

{−√Eb
√

2/Tb cos(2π fct)√
Eb
√

2/Tb cos(2π fct)

√
Eb
√

2/Tb cos(2π fct)
−√Eb

√
2/Tb cos(2π fct)

.

(10.40)

The two signals that represent 0T are antipodal as are the two signals representing 1T .
Further, and most importantly, the two signals that represent 0T are orthogonal to the two
signals that represent 1T . Putting this all together the four signals, at the transmitter, can be
represented by the following orthonormal basis set:⎧⎪⎪⎨⎪⎪⎩

φ1(t) = √1/Tb cos(2π fct) [u(t)− u(t − Tb)]
+√1/Tb cos(2π fct) [u(t − Tb)− u(t − 2Tb)]

φ2(t) = √1/Tb cos(2π fct) [u(t)− u(t − Tb)]
−√1/Tb cos(2π fct) [u(t − Tb)− u(t − 2Tb)]

. (10.41)

At the receiver, the received signals over the two bit intervals are

r(t) =
⎧⎨⎩
±√2Eb/Tb cos(2π fct − θ ) [u(t)− u(t − 2Tb)]+ w(t), if “0T”
±√2Eb/Tb cos(2π fct − θ ){[u(t)− u(t − Tb)]

− [u(t − Tb)− u(t − 2Tb)]} + w(t), if “1T”
. (10.42)
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�Fig. 10.11 Trellis representation of DBPSK: (a) at the transmitter; (b) at the receiver.

Note that, in both (10.41) and (10.42), for simplicity and without loss of generality, only
the first two bit intervals are considered, i.e., k = 2. Because of the phase uncertainty at the
receiver we shall need four basis functions to represent the signal part of r(t). These are

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ1,I(t) = √1/Tb cos(2π fct) [u(t)− u(t − 2Tb)] ,
φ1,Q(t) = √1/Tb sin(2π fct) [u(t)− u(t − 2Tb)] ,
φ2,I(t) = √1/Tb cos(2π fct){[u(t)− u(t − Tb)]

− [u(t − Tb)− u(t − 2Tb)]},
φ2,Q(t) = √1/Tb sin(2π fct){[u(t)− u(t − Tb)]

− [u(t − Tb)− u(t − 2Tb)]}.

(10.43)

Since at the receiver the four basis functions completely represent the signal that is due
to the transmitted signal, projecting r(t) onto them generates the sufficient statistics on
which to make a decision. These projections are
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0T :

⎧⎪⎪⎨⎪⎪⎩
r1,I = √2Eb cos θ + w1,I ,
r1,Q = √2Eb sin θ + w1,Q,
r2,I = w2,I ,
r2,Q = w2,Q,

OR

r1,I = −√2Eb cos θ + w1,I ,
r1,Q = −√2Eb sin θ + w1,Q,
r2,I = w2,I ,
r2,Q = w2,Q,

(10.44)

1T :

⎧⎪⎪⎨⎪⎪⎩
r1,I = w1,I ,
r1,Q = w1,Q,
r2,I = √2Eb cos θ + w2,I ,
r2,Q = √2Eb sin θ + w2,Q,

OR

r1,I = w1,I ,
r1,Q = w1,Q,
r2,I = −√2Eb cos θ + w2,I ,
r2,Q = −√2Eb sin θ + w2,Q,

(10.45)

where w1,I , w1,Q, w2,I , w2,Q are statistically independent Gaussian random variables,
zero-mean, variance N0/2. To form the likelihood ratio f (r1,I , r1,Q, r2,I , r2,Q|1T )/f (r1,I , r1,Q,
r2,I , r2,Q|0T ) one proceeds exactly as before, namely letting θ = θ and then averaging the
two pdfs over fθ (θ ). The only concern might be that for either 0T or 1T there are two sets
of sufficient statistics. However, it turns out that regardless of which set is considered, the
conditional pdfs are identical. The optimum decision rule becomes

√
r2

2,I + r2
2,Q

1D

�
0D

√
r2

1,I + r2
1,Q, (10.46)

or, equivalently,

r2
2,I + r2

2,Q

1D

�
0D

r2
1,I + r2

1,Q. (10.47)

The implementation of the demodulator is shown in Figure 10.12. The demodulator also
has a bandpass filter–envelope detector implementation. This is shown in Figure 10.13.

The determination of the error performance of DBPSK follows readily by observing
that DBPSK is orthogonal signaling and therefore, in principle, identical to noncoherent
BFSK. The error analysis for noncoherent BFSK therefore applies to DBPSK. The only
difference is that rather than Eb joules/bit the energy in DBPSK becomes 2Eb. The factor
2 reflects the fact that the signal over two bit intervals is used to make a decision. The error
performance is given by (10.36) and is equal to

P[error]DBPSK = 1
2 e−Eb/N0 . (10.48)

This is plotted in Figure 10.8 and shows minimal degradation (about 1 decibel) over
coherent BPSK.

Communication systems where the channel model exhibits a random phase, though
they have a performance loss, still have an error performance that behaves exponentially
with the SNR, i.e., P[error] ∼ e−Eb/N0 . The next section discusses a channel model where
both the amplitude and phase are random. The considered channel is commonly called
a Rayleigh fading channel. As shall be seen, its error performance behaves dramatically
different.
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�Fig. 10.12 Implementation of the demodulator for DBPSK.
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�Fig. 10.13 Implementation of the demodulator for DBPSK with a bandpass filter–envelope detector.

10.4 Detection with random amplitude and random phase:
Rayleigh fading channel

Nature is seldom kind. The fading channel model presents one of the most severe
environments for communications. It arises when there are multiple transmission paths,
i.e., multipaths, from the transmitter to the receiver. Two typical situations where this
happens are in ionospheric or tropospheric communications and in mobile wireless com-
munications. Figure 10.14 shows these scenarios diagrammatically. In both scenarios it is
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�Fig. 10.14
Typical scenarios in which there are multipaths between the transmitter and receiver:
(a) ionospheric/tropospheric scattering channel; (b) mobile wireless channel.

assumed that there is no line-of-sight (LOS) path between the transmitter and receiver. This
assumption can be relaxed and the effect of having a direct path is pursued in the chapter
problems. Having no direct path is the more common situation and unfortunately the more
severe situation. A model for the channel is developed next.

10.4.1 Fading channel model

To develop the model consider the following transmitted signal:

sT (t) = s(t) cos(2π fct), (10.49)
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where s(t) is a lowpass signal. For us s(t) will be±√Eb
√

2/Tb over the bit interval with bit
rate rb � fc. As seen from Figure 10.14 the transmitted signal arrives at the receiver over
many different paths and therefore

r(t) =
∑

j

rj(t) =
∑

j

s(t − tj)αj cos(2π fc(t − tj)), (10.50)

where αj represents the attenuation and tj the delay along the jth path. In general, αj and tj
are time varying due to movement of ions in the cloud, swaying of buildings, wind through
the trees, vehicles moving, etc. However, we shall assume that at least over a bit interval
they are reasonably constant. Further, the tj represents variations around an average delay,
td, which is accounted for by the synchronization at the receiver. Finally it is reasonable
to assume that the attenuations and delays are unpredictable, i.e., random. The received
signal is then

r(t) = s(t)
∑

j

αj cos
(
2π fct − 2π fctj

) = s(t)
∑

j

αj cos
(
2π fct − θ j

)
, (10.51)

where, because s(t) is lowpass, the approximation s(t) ≈ s(t − tj) is used. Since tj is on the
order of 1/fc we assume that the random phase θ j lies in the range [0, 2π ). The received
signal becomes

r(t) = s(t)

⎡⎣⎛⎝∑
j

αj cos θ j

⎞⎠ cos(2π fct)+
⎛⎝∑

j

αj sin θ j

⎞⎠ sin(2π fct)

⎤⎦ . (10.52)

Consider the random variables (�jαj cos θ j) and (�jαj sin θ j). Call them nF,I , nF,Q,
respectively, where F denotes fading, and I and Q as usual denote inphase and quadra-
ture. It is reasonable to assume that the attenuation and delay on any path are not related.
Further, they are not related between paths. By not related we mean statistically indepen-
dent. Lastly the phase θ j is assumed to be uniform over the interval [0, 2π). The first and
second moments of nF,I , nF,Q are

E
{
nF,I
} =∑

j

E{αj}E{cos θ j} = 0, (10.53)

E
{
nF,Q

} =∑
j

E{αj}E{sin θ j} = 0, (10.54)

E
{

n2
F,I

}
=
∑

j

E
{
α2

j

}
E
{

cos2 θ j

}
= σ 2

F/2, (10.55)

E
{

n2
F,Q

}
=
∑

j

E
{
α2

j

}
E
{

sin2 θ j

}
= σ 2

F/2, (10.56)

E
{
nF,InF,Q

} = E

⎧⎨⎩∑
j

αj cos θ j

∑
k

αk sin θk

⎫⎬⎭
=
∑

j

∑
k

E
{
αjαk

}
E
{
cos θ j sin θk

}︸ ︷︷ ︸
= 0

= 0, (10.57)
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where, with a slight abuse of notation, σ 2
F = �jE{α2

j } is the mean-squared value of the
attenuation effect.

Finally, since the number of multipaths is large, we invoke the central limit theorem
(see Section 10.6), which means that nF,I , nF,Q are Gaussian random variables, zero-mean,
variance σ 2

F/2, and uncorrelated and hence statistically independent. The joint pdf is

fnI ,nQ(nI , nQ) = fnI (nI)fnQ(nQ) = N
(

0,
σ 2

F

2

)
N
(

0,
σ 2

F

2

)
. (10.58)

The received signal is therefore

r(t) = s(t)
[
nF,I cos(2π fct)+ nF,Q sin(2π fct)

]
(10.59)

= s(t)
[
α cos(2π fct − θ )

]
, (10.60)

where the random variables α =
√

n2
F,I + n2

F,Q and θ = tan−1
(
nF,Q/nF,I

)
have the follow-

ing pdfs (left as an exercise):

fθ (θ ) = 1

2π
(uniform), (10.61)

fα(α) = 2α

σ 2
F

e−α2/σ 2
F u(α) (Rayleigh). (10.62)

Note that the term “Rayleigh fading” comes from the envelope distribution (statistics) given
in (10.62) of the received signal.

Equation (10.62) shows that not only is the phase of the received signal severely
degraded but that the amplitude is affected as well. The incoming signals add not only
constructively but also destructively. In the case where two paths have approximately the
same attenuation but are 180◦ out of phase they tend to cancel each other out. Since both
amplitude and phase are affected by the fading channel it seems prudent to look at FSK as
the modulation to be used over this channel. This is what we consider next.

10.4.2 Binary FSK with noncoherent demodulation in Rayleigh fading

The transmitted signal is

s(t) =
{ √

Eb
√

2/Tb cos(2π f1t), if “0T”√
Eb
√

2/Tb cos(2π f2t), if “1T”
, (10.63)

while the received signal is

r(t) =
{ √

Eb
√

2/Tbα cos(2π f1t − θ )+ w(t), if “0T”√
Eb
√

2/Tbα cos(2π f2t − θ )+ w(t), if “1T”
. (10.64)

In the following development of the optimum receiver, both the random amplitude, α,
and phase, θ are completely unknown at the receiver. This type of noncoherent demod-
ulation is commonly used due to its simple implementation. If the channel fading is
sufficiently slow, then it is possible to estimate the random phase θ from the received signal
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with a small error (typically via a pilot or training signal). In that case the ideal coherent
demodulation can be implemented and one expects a better performance to be achieved.
Coherent demodulation of BFSK as well as BPSK is considered in Section 10.4.3.

The received signal can be rewritten as

r(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
EbnF,I

√
2/Tb cos(2π f1t)︸ ︷︷ ︸

φ1,I (t)

+√EbnF,Q
√

2/Tb sin(2π f1t)︸ ︷︷ ︸
φ1,Q(t)

+w(t), if “0T”,

√
EbnF,I

√
2/Tb cos(2π f2t)︸ ︷︷ ︸

φ2,I (t)

+√EbnF,Q
√

2/Tb sin(2π f2t)︸ ︷︷ ︸
φ2,Q(t)

+w(t), if “1T”,

(10.65)

where nF,I , nF,Q are due to the fading and w(t) is the ever present thermal noise. To
derive the optimum demodulator it is simpler to work with (10.65) which shows that at
the receiver the transmitted signal lies entirely within the signal space spanned by φ1,I(t),
φ1,Q(t), φ2,I(t), and φ2,Q(t). Projecting r(t) onto these basis functions yields the following
set of sufficient statistics:

0T

r1,I =
√

EbnF,I + w1,I

r1,Q =
√

EbnF,Q + w1,Q

r2,I = w2,I

r2,Q = w2,Q

(10.66)

1T

r1,I = w1,I

r1,Q = w1,Q

r2,I =
√

EbnF,I + w2,I

r2,Q =
√

EbnF,Q + w2,Q

(10.67)

where the w1,I , w1,Q, w2,I , w2,Q are due to thermal noise and are Gaussian, statistically
independent, zero-mean, with variance N0/2. As developed in the previous section, the
terms due to fading, nF,I and nF,Q, are Gaussian, statistically independent, zero-mean with
variance σ 2

F/2. The sufficient statistics are therefore Gaussian, statistically independent,
zero-mean, with a variance of either N0/2 or Ebσ

2
F/2+ N0/2, depending on whether a

“0” or “1” was transmitted and which sufficient statistic we are considering. Note that,
given a “0” or “1” is transmitted, the difference between the sufficient statistics lies in the
received power and it will be on the basis of received power that a decision is made. This
is reasonable, since the amplitude and phase information is “obliterated” by the channel.

It is straightforward to form the likelihood ratio of

f (r1,I , r1,Q, r2,I , r2,Q|1T )

f (r1,I , r1,Q, r2,I , r2,Q|0T )
,
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take the natural logarithm, and simplify to get the following decision rule:

r2
2,I + r2

2,Q

1D

�
0D

r2
1,I + r2

1,Q, (10.68)

which says that if the received power is greater on (φ2,I ,φ2,Q) than on (φ1,I ,φ1,Q), then
choose “1” transmitted and the converse. Equivalently the decision rule can be expressed as√

r2
2,I + r2

2,Q

1D

�
0D

√
r2

1,I + r2
1,Q. (10.69)

The decision rule is identical to that of (10.31) for noncoherent BFSK and therefore the
demodulator implementation is that of Figure 10.9. In retrospect one might have antici-
pated this. Compare the received signal when fading occurs, (10.64), with that when only
the phase is random, (10.25). Since α is positive, one can incorporate it into the energy
term, i.e., the received energy term is

√
α2Eb. For any value of positive α, the decision rule

is that of (10.31). Therefore, α does not affect the form of the optimum demodulator. It
does, however, have a dramatic effect on the error performance. We turn our attention to
the error performance next.

From symmetry it follows that P[error] = P[error|0T ]. To determine P[error|0T ] con-
sider decision rule (10.69):

P[error|0T ] = P
[√

r2
2,I + r2

2,Q ≥
√

r2
1,I + r2

1,Q

∣∣∣ 0T

]
. (10.70)

To proceed, fix the value of r2
1,I + r2

1,Q at a specific value, say R2, determine

P
[√

r2
2,I + r2

2,Q ≥ R|0T ,
√

r2
1,I + r2

1,Q = R
]

and then average this probability over all

possible values of R, or equivalently over all possible values of r1,I , r1,Q. Since

P
[√

r2
2,I + r2

2,Q ≥ R|0T ,
√

r2
1,I + r2

1,Q = R
]

is the volume under f (r2,I , r2,Q|0T ) in the

region shown in Figure 10.15, it can be computed as

R

r2,Q

r2,I

Find volume under

outside the circle

( )2, 2,, | 0 in regionI Q Tf r r

Z

Z

�Fig. 10.15 Computation of P
[√

r2
2,I + r2

2,Q ≥ R|0T ,
√

r2
1,I + r2

1,Q = R
]
.
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P
[√

r2
2,I + r2

2,Q ≥ R
∣∣∣ 0T ,

√
r2

1,I + r2
1,Q = R

]
=
∫∫
Z

1

πN0
e−(r2

2,I+r2
2,Q)/N0 dr2,Idr2,Q

=
∫ 2π

λ=0

∫ ∞

ρ=R

1

πN0
ρe−ρ2/N0 dρdλ = e

−
(

r2
1,I+r2

1,Q

)/
N0 . (10.71)

Now average the error probability over all possible values of r1,I , r1,Q, i.e., find:

E

{
e
−
(

r2
1,I+r2

1,Q

)/
N0

∣∣∣∣ 0T

}
=
∫ ∞

r1,I=−∞

∫ ∞

r1,Q=−∞
e
−
(

r2
1,I+r2

1,Q

)/
N0 f (r1,I , r1,Q|0T )dr1,Idr1,Q.

(10.72)

Given 0T , the random variables r1,I , r1,Q are statistically independent Gaussian ran-
dom variables, zero-mean, with equal variances of Ebσ

2
F/2+ N0/2. The integration in

(10.72) proceeds employing an approach that has been used several times before. Namely,
(i) observe that the integral splits into a product of two identical integrals, (ii) in either
integral complete the square in the exponent, (iii) manipulate the integral so that one rec-
ognizes it as being the area under a Gaussian pdf (which by the way is still equal to 1)
along with whatever multiplicative factors arise. The algebra is left as an exercise but the
result is

P[error] = 1

2+ σ 2
FEb/N0

. (10.73)

The quantity Ebσ
2
F in the above expression can be interpreted as the received energy per bit.

The most important feature of the error performance is its behavior with respect to the
SNR. Up to now, for all modulations and channel models considered, the behavior has
been that P[error] ∝ e−SNR. Here, however, the error probability is P[error] ∝ 1/SNR, a
much much slower rate of decay. In particular, this relationship tells us that, in the log–
log plot of the P[error] versus SNR in decibels, the error performance curve appears to be
a straight line of slope −1 in the high SNR region. Figure 10.16 shows the performance
in terms of received SNR per bit, i.e., Ebσ

2
F/N0, together with the error performance of

other schemes. For example, compared to noncoherent demodulation of BFSK in random
phase only, at an error probability of 10−3 about 19 decibels more power is needed for
noncoherent demodulation of BFSK in Rayleigh fading to achieve the same performance.

10.4.3 BFSK and BPSK with coherent demodulation

As mentioned before, if the random phase introduced by fading can be perfectly estimated
at the receiver, then coherent demodulation can be achieved. Assuming a perfect phase
estimation, only the random amplitude needs to be dealt with and the situation is exactly the
same as that considered in Section 10.2. Since the Rayleigh fading channel is considered,
we know that the random amplitude α is a Rayleigh random variable.
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For BFSK, projecting the received signal r(t) over the two basis functions, φ1(t) =√
2/Tb cos(2π f1t − θ ) and φ2(t) = √2/Tb cos(2π f2t − θ ), yields the following sufficient

statistics:

0T

r1 =
√

Ebα + w1

r2 = w2

1T

r1 = w1

r2 =
√

Ebα + w2

where w1 and w2 are Gaussian, statistically independent, zero-mean, with variance N0/2.
By equating E = Eb and a = α, the signal space representation of Figure 10.1(c) applies
here. The optimum decision rule is simply

r1

0D

�
1D

r2. (10.74)

To determine the error performance, start with (10.5), which is P[error] =
E
{
Q
(
α
√

Eb/N0
)}

, where the expectation is over the Rayleigh random variable α. By
changing to the variable β = α2Eb/N0, one has P[error] = E

{
Q
(√

β
)}

, where the expec-
tation is over the random variable β. It is simple to show that if α is a Rayleigh random
variable with mean-squared value σ 2

F , then β has a decaying exponential distribution with
mean value σ 2

FEb/N0. That is,

fβ(β) = 1

σ 2
FEb/N0

exp

(
− β

σ 2
FEb/N0

)
u(β). (10.75)
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Furthermore, the expectation E
{
Q
(√

β
)}

can be evaluated conveniently by making use of
the following alternative form of the Q function, known as Craig’s formula [1]:

Q(x) = 1

π

∫ π/2

0
exp

(
− x2

2 sin2 θ

)
dθ . (10.76)

Using (10.76) and (10.75) one has

P[error]

= 1

π

1

σ 2
FEb/N0

∫ π/2

0

∫ ∞

0
exp

(
− β

2 sin2 θ

)
exp

{
− β

σ 2
FEb/N0

}
dβdθ . (10.77)

Performing the inner integration first gives

P[error] = 1

2
− 1

π

∫ π/2

0

σ 2
FEb/N0(

σ 2
FEb/N0 + 1

)− cos(2θ )
dθ . (10.78)

The integral in (10.78) can be evaluated by making use of the following identity:∫ π

0

dx

1+ a cos x
= π√

1− a2
, a2 < 1. (10.79)

The final expression for the error probability is

P[error] = 1

2

[
1−

√
σ 2

FEb/N0

2+ σ 2
FEb/N0

]
. (10.80)

For the case of BPSK, the transmitted signal is±√Eb
√

2/Tb cos(2π fct) and the received
signal is ±√Eb

√
2/Tbα cos(2π fct − θ )+ w(t). Since we assume that the phase θ is

perfectly estimated, only one basis function, namely φ1(t) = √2/Tb cos(2π fct − θ), is
needed. The sufficient statistic is r1 = ±√Ebα + w1 and the optimum decision rule is

r1

1D

�
0D

0

(see Figure 10.1(b)). The error probability of the coherent demodulation of BPSK can be
obtained in the same manner as for BFSK. It is given by

P[error] = 1

2

[
1−

√
σ 2

FEb/N0

1+ σ 2
FEb/N0

]
. (10.81)

The above error probabilities of coherent BFSK and BPSK are plotted in Figure 10.16.
As can be seen, coherent BPSK is 3 decibels more efficient that coherent BFSK, which in
turn is 3 decibels more efficient than the noncoherent BFSK. The more important observa-
tion, however, is that all three schemes have the same discouraging performance behavior
of P[error] ∝ 1/SNR. Indeed, nature is not benign. The reason for the large performance
degradation in Rayleigh fading is that it is very probable for the channel to exhibit what is
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called a deep fade, i.e., the received signal amplitude becomes very small. To circumvent
this what is resorted to is a technique called diversity where multiple copies of the same
message are transmitted in the hope that at least one of them will not experience a deep
fade. This is the topic of the next section.

10.5 Diversity

Diversity is a technique in which multiple copies of a message are transmitted to avoid
a deep fade. If the fading experienced by each transmission is statistically independent
of the others, then the probability of all of them experiencing a deep fade simultane-
ously is low. Diversity can be accomplished in several ways. The basic forms are time
diversity, frequency diversity, and space diversity but one can use some combination
of these.

Time diversity is achieved by transmitting the same message in different time slots. For
the transmissions to experience statistically independent fades the time slot spacing should
be greater than what is called the channel coherence time, i.e., the responses in the two
time slots are uncorrelated. Though not necessarily requiring an increase in the transmitted
power or bandwidth, time diversity does result in a lowering of the data rate.

Frequency diversity is accomplished by sending the message copies in different fre-
quency slots. For statistical independence, the carriers in the different slots should be
separated by the coherence bandwidth of the channel. Since the transmissions occur simul-
taneously in time the data rate is not affected. However, the transmitted power and required
bandwidth are increased.

Antenna arrays are used to realize space diversity. The multiple transmit and/or receive
antennas should be spaced far enough apart so that independent fading is achieved. For
an omnidirectional antenna in a uniformly scattering environment, this spacing is on the
order of one half-wavelength. More directional antennas require a larger separation. As
with frequency diversity, space diversity does not affect the data rate and the required
bandwidth remains unchanged. A somewhat specialized form of space diversity can be
achieved with a single antenna by using the vertical and horizontal polarizations as two
separate channels.

The three forms of diversity can be viewed as a form of coding, namely, the simplest
type of code, a repetition code. Standard codes, such as block and convolutional codes,
can be used to achieve diversity. The next chapter discusses Alamouti space-time coding
as a form of (transmit) space diversity. Spread spectrum techniques such as code-division
multiple access (CDMA) (also discussed in the next chapter) are a form of diversity as well.
In this section we develop the optimum demodulator for BFSK when diversity is used. An
analysis of error performance is also presented. The discussion is quite general in that it
applies to any of the basic diversity methods. Extensions to other modulation schemes are
explored in the problems.
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10.5.1 Optimum demodulation of binary FSK with diversity

Consider N transmissions of BFSK over a fading channel. At the transmitter the basic
signal set over a duration of Tb seconds is

s(t) =
⎧⎨⎩
√

E
′
b

√
2/Tb cos(2π f1t), if “0T”√

E
′
b

√
2/Tb cos(2π f2t), if “1T”

, (10.82)

where, as usual, the bits are equally likely, the frequencies are chosen so that f2 − f1 = k/Tb

and E
′
b is either Eb or Eb/N. The first case is typical of time diversity and NEb joules/bit are

expended. In the second situation the energy expended per bit is Eb; it arises when space
or frequency diversity is used.

Assume that time diversity is used and the signal s(t) is transmitted N times. At the
receiver the following signals are received:

rj(t) =
⎧⎨⎩
√

E
′
b

√
2/Tbαj cos(2π f1t − θj)+ w(t), if “0T”√

E
′
b

√
2/Tbαj cos(2π f2t − θj)+ w(t), if “1T”

(10.83)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
E
′
bnj,I

√
2/Tb cos(2π f1t)︸ ︷︷ ︸

φ
(1)
j,I (t)

+
√

E
′
bnj,Q

√
2/Tb sin(2π f1t)︸ ︷︷ ︸

φ
(1)
j,Q(t)

+w(t), if “0T”

√
E
′
bnj,I

√
2/Tb cos(2π f2t)︸ ︷︷ ︸

φ
(2)
j,I (t)

+
√

E
′
bnj,Q

√
2/Tb sin(2π f2t)︸ ︷︷ ︸

φ
(2)
j,Q(t)

+w(t), if “1T”

(10.84)

for (j− 1)Tb ≤ t ≤ jTb and j = 1, . . . , N. To generate the sufficient statistics, project the
received signals, rj(t), j = 1, . . . , N onto the following set of 2N basis functions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

φ
(1)
j,I (t) = √2/Tb cos(2π f1t),

φ
(1)
j,Q(t) = √2/Tb sin(2π f1t),

φ
(2)
j,I (t) = √2/Tb cos(2π f2t),

φ
(2)
j,Q(t) = √2/Tb sin(2π f2t),

for (j− 1)Tb ≤ t ≤ jTb, j = 1, . . . , N. (10.85)

Outside the signal space spanned by the above basis set there is nothing but white Gaussian
noise, w(t). The 4N sufficient statistics are summarized in Table 10.1.

The sufficient statistics are Gaussian random variables, zero-mean and have a variance
of either σ 2

t = E
′
bσ

2
F/2+ N0/2 or σ 2

w = N0/2. Given that each transmission experiences
a statistically independent fade (indeed uncorrelated is sufficient) the sufficient statistics
are also statistically independent. Number the sufficient statistics corresponding to f1 from
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Table 10.1 Sufficient statistics for optimum demodulation of BFSK with diversity.

0T

r(1)
1,I =

√
E
′
bn(1)

1,I + w(1)
1,I r(1)

1,Q =
√

E
′
bn(1)

1,Q + w(1)
1,Q

...
...

r(1)
N,I =

√
E
′
bn(1)

N,I + w(1)
N,I r(1)

N,Q =
√

E
′
bn(1)

N,Q + w(1)
N,Q

r(2)
1,I = w(2)

1,I r(2)
1,Q = w(2)

1,Q
...

...

r(2)
N,I = w(2)

N,I r(2)
N,Q = w(2)

N,Q

1T

r(1)
1,I = w(1)

1,I r(1)
1,Q = w(1)

1,Q
...

...

r(1)
N,I = w(1)

N,I r(1)
N,Q = w(1)

N,Q

r(2)
1,I =

√
E
′
bn(2)

1,I + w(2)
1,I r(2)

1,Q =
√

E
′
bn(2)

1,Q + w(2)
1,Q

...
...

r(2)
N,I =

√
E
′
bn(2)

N,I + w(2)
N,I r(2)

N,Q =
√

E
′
bn(2)

N,Q + w(2)
N,Q

1 to 2N and sufficient statistics associated with f2 from 2N + 1 to 4N. The likelihood ratio
is then

f (r1, . . . , rN ; r2N+1, . . . , r4N |1T )

f (r1, . . . , rN ; r2N+1, . . . , r4N |0T )

=

2N∏
j=1

(
1/
√

2πσw

)
e−r2

j /(2σ 2
w)

4N∏
j=2N+1

(
1/
√

2πσt

)
e−r2

j /(2σ 2
t )

2N∏
j=1

(
1/
√

2πσt

)
e−r2

j /(2σ 2
t )

4N∏
j=2N+1

(
1/
√

2πσw

)
e−r2

j /(2σ 2
w)

1D

�
0D

1. (10.86)

Canceling, taking natural logarithm, and rearranging gives the following decision rule:

4N∑
j=2N+1

r2
j

1D

�
0D

2N∑
j=1

r2
j . (10.87)

Again the decision rule is intuitively pleasing. Under the assumption, at the receiver, that a
“1” was transmitted if the received power is greater than that under the assumption that a
“0” was transmitted, then make the decision that a “1” was transmitted and vice versa.
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Consider now the error performance. By symmetry one has P[error] = P[error|1T ] =
P[error|0T ]. Define �1 =∑4N

j=2N+1 r2
j and �0 =∑2N

j=1 r2
j . The decision rule is then

�1

1D

�
0D

�0

and the determination of P[error|0T ] follows the procedure already used in this chap-
ter. Fix �0 at a specific value �0 = �0, determine the probability that �1 ≥ �0, given by∫∞
�0

f (�1|0T )d�1 and then average over all possible values of �0. Therefore

P[error|0T ] =
∫ ∞

0
f (�0|0T )

[∫ ∞

�0

f (�1|0T )d�1

]
d�0. (10.88)

The sufficient statistics have a chi-square pdf with 2N degrees of freedom. The chi-square
pdf is discussed next.

Chi-square probability density function Consider y = x2
1 + x2

2 + · · · + x2
N where the xi are

zero-mean, statistically independent Gaussian random variables with identical variances, σ2.
To find fy(y) determine the characteristic function �y(f) and then inverse transform it. The
characteristic function of y is

�y(f ) = E
{
ej2π fy

}
= E

⎧⎪⎨⎪⎩e
j2π

N∑
k=1

x2
k

⎫⎪⎬⎪⎭
= E

⎧⎨⎩
N∏

k=1

ej2π fx2
k

⎫⎬⎭ =
N∏

k=1

E
{

ej2π fx2
k

}
. (10.89)

Now E
{

ej2π fx2
k

}
= (1/

√
2πσ )

∫∞
−∞ ej2π fx2

k e−x2
k/(2σ 2)dxk = 1

/√
1− j4πσ2f. Therefore

�y(f) = 1

(1− j4πσ2f)N/2

and

fy(y) =
∫ ∞
−∞

1

(1− j4πσ2f)N/2
e−j2πyfdf,

where y ≥ 0. From the identity3 provided by Gradshteyn & Ryzhik [2, p. 343, Eqn 3.382-7],
the pdf is

fy(y) = yN/2−1e−y/(2σ 2)

2N/2σN� (N/2)
u(y), (10.90)

where the Gamma function, �(x), is defined as

�(x) =
∫ ∞

0
tx−1e−tdt (10.91)

= (x− 1)! for x integer. (10.92)

3 ∫∞−∞(β − ix)−νe−ipxdx = 2πpν−1e−βp

�(ν) u(p), where R(ν) > 0 and R(β) > 0.
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It follows from the chi-square distribution in (10.90) that

f (�1|0T ) = �N−1
1 e−�1/(2σ 2

w)

2Nσ 2N
w �(N)

u(�1), f (�0|0T ) = �N−1
0 e−�0/(2σ 2

t )

2Nσ 2N
t �(N)

u(�0).

The inner integral in (10.88) evaluates to

1

2Nσ 2N
w �(N)

∞∫
�0

�N−1
1 e−�1/(2σ 2

w)d�1
x=�1/2σ 2

w= 1

�(N)

∞∫
�0/(2σ 2

w)

xN−1e−xdx. (10.93)

Integrating by parts N − 1 times gives∫ ∞

�0

f (�1|0T )d�1 = e−�0/(2σ 2
w)

N∑
j=1

�
N−j
0

�(N − j+ 1)
(
2σ 2

w

)N−j . (10.94)

The integration with respect to �0, after some algebra, becomes

N∑
j=1

1

22N−jσ 2N
t σ

2N−2j
w �(N)(N − j)!

∫ ∞

0
�

2N−j−1
0 e−�0

[
(σ 2

t +σ 2
w)/2σ 2

t σ 2
w
]
d�0. (10.95)

Again Gradshteyn & Ryzhik [2] is consulted: Equation 3.381-4 on page 342 states∫∞
0 xν−1e−μxdx = (1/μν)�(ν), where R(μ) > 0 and R(ν) > 0. Identifying the appropri-

ate terms the integral becomes (
2σ 2

t σ 2
w

)2N−j(
σ 2

t + σ 2
w

)2N−j
�(2N − j).

More algebra yields:

P[error] =
N∑

j=1

(
σ 2

t

σ 2
w

)N−j
1(

1+ σ 2
t /σ 2

w

)2N−j

�(2N − j)

�(N)�(N − j+ 1)
. (10.96)

Define γT = E
′
bσ

2
F/N0 as the averaged SNR per transmission. Recognize that σ 2

t /σ 2
w =

1+ γT and �(x) = (x− 1)! for integer x. By changing the index variable to k = N − j, the
final expression for the error probability is4:

P[error] = 1

(2+ γT )N

N−1∑
k=0

(
N − 1+ k

k

)(
1+ γT

2+ γT

)k

. (10.97)

The error performance is plotted in Figure 10.17 versus the averaged SNR per transmis-
sion, i.e., γT . Observe that, compared with no diversity, there is a significant improvement

4 (n
k
) = n!

k!(n−k)! .
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in performance. Indeed, for large values of SNR, one can approximate 1+ γT ≈ 2+ γT ≈
γT . Then (10.97) simplifies to

P[error] ≈ 1

(γT )N

N−1∑
k=0

(
N − 1+ k

k

)
= 1

(γT )N

(
2N − 1

N

)
, (10.98)

which shows that the error performance now decays inversely with the Nth power of the
received SNR. The exponent N of the SNR is generally referred to as the diversity order
of the modulation scheme. Note that the diversity order N can also be verified from Figure
10.17 by examining the slopes of the performance curves.

10.5.2 Optimum diversity

The error performance curves with diversity show that as N, the diversity order, increases
the error performance improves. However, as mentioned, this improvement comes at the
expense of a reduced data rate in the case of time diversity, or an increase in the transmitted
power for the case of frequency or space diversity. If the transmitter’s power or equivalently
the energy expended per information bit is constrained to Eb joules, then increasing N does
not necessarily lead to a better error performance.

Qualitatively this is explained by realizing that, though with increased N we increase
the probability of avoiding a deep fade, at the same time the energy, E

′
b, of each trans-

mission is reduced. Therefore the SNR of each transmission is reduced, which in turn
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increases the error probability. All of this implies that there is an optimum value for the
diversity order N at each level of error probability. This can also be seen from Figure 10.18,
which plots the error performance in (10.97) versus the average received SNR per bit, i.e.,
Ebσ

2
F/N0. Observe that the higher slope of the error performance curve corresponding to

a larger value of N in the high-SNR region comes with an increase in the error probability
in the low-SNR region. This implies that, at each level of P[error], increasing the diversity
order is not necessarily helpful. Obtaining the optimum value analytically is an intractable
task due to the complicated dependence of error performance on N. Though approxima-
tions to the expression of error performance can be used to obtain a feel for the optimum
diversity [3] a numerical approach is used here.

Specifically divide the energy equally between each transmission, i.e., E
′
b = Eb/N. Then

at each SNR = Ebσ
2
F/N0 the error probability is determined using (10.97) as a function of

N and plotted. These plots are shown in Figure 10.19(a). A minimum can be observed
but the plots are quite “shallow,” i.e., the minimum is not that critically dependent on N.
Another observation is that the minimum N increases with SNR. Figure 10.19(b) plots
optimum N versus SNR (in decibels). From this plot the following empirical relationship
can be verified:

Nopt = Ke10 log10 γT . (10.99)

where K is some constant.
However, to reiterate, the most important aspect is that the error performance is reason-

ably insensitive over a broad range to the diversity order used. Therefore other engineering
considerations should also be considered when N is specified.
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Determining the optimum diversity order: (a) P [error] versus N with varying SNR, (b) plot of the
optimum diversity order versus the average received SNR per bit.

10.6 Central limit theorem

The central limit theorem states that under certain general conditions the sum of n statisti-
cally independent continuous random variables has a pdf that approaches a Gaussian pdf as
n increases. Let x =∑n

i=1 xi. where the xi are statistically independent random variables
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with mean, E{xi} = mi, and variance, E
{
(xi − mi)2

} = σ 2
i . Then x is a random variable

with mean mx =∑n
i=1 mi, variance σ 2

x =
∑n

i=1 σ 2
i and a pdf of

fx(x) = fx1 (x) ∗ fx2 (x) ∗ · · · ∗ fxn(x). (10.100)

By the central limit theorem fx(x) approaches a Gaussian pdf as n increases, i.e.,

fx(x) ∼ 1√
2πσx

e−(x−mx)2/2σ 2
x . (10.101)

If x is scaled so that its variance in the limit is finite, then (10.101) becomes an equality as
n →∞. Two conditions, not the most general ones but applicable in many situations, for
this to occur are:

(1)
∑n

i=1 σ 2
i →∞ as n →∞.

(2) For some k > 2,
∫∞
−∞ xk

i fxi(xi)dxi < C, a constant.

Though not the most general conditions, the above are satisfied in our applications. The
first condition is satisfied if the given random variables have equal variances, while the
second is true if all pdfs, fxi(xi), are nonzero over a finite interval only or if they decay fast
enough.

Rather than prove the theorem5, which is lengthy, the central limit theorem is illustrated
by two examples. In both examples the fxi(xi) are identical. In the first the fxi(xi) are zero-
mean and uniform, while in the second the underlying pdfs are one-sided exponentials.
The pdfs of the resultant sum for n = 2, 4, 6, 10 are shown in Figures 10.20(a), (b) along
with Gaussian fits of the same mean and variance. As can be seen, even for “small” values
of n the pdf of x approaches a Gaussian pdf. However, one should realize that the close
approximation is in the main body of the pdf, not in the tails, which are of most interest
to us. Nonetheless, as n becomes large, on the order of hundreds or thousands6 the Gaus-
sian approximation is an appropriate one, hence the preponderance of Gaussian models in
nature. Given that Gaussian problems are the most tractable analytically perhaps nature is
not all that malevolent.

To conclude consider the filter system of Figure 10.21, which is a system of n iden-
tical first-order lowpass filters in cascade. The impulse response of a section is h(t) =
(1/RC)e−t/(RC)u(t). The overall impulse response is n convolutions,

ho(t) = h(t) ∗ h(t) ∗ · · · ∗ h(t)︸ ︷︷ ︸
n times

.

By the central limit theorem as n increases, ho(t) tends to a Gaussian curve. In other words
the central limit theorem is simply a property of convolving a large number of positive
functions. As such, it does not depend on probabilistic considerations.

5 A sketch of the proof is given in [3, pp. 109–111]. For a proof the reader is referred to [4].
6 Which brings us back to the question: how many free electrons are there in a 1 ohm resistor?
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10.7 Summary

This chapter has emphasized Rayleigh fading, a model that was originally developed in the
1950s and 1960s for non-line-of-sight communications. The typical applications were for
ionospheric propagation in the 3–30 megahertz (HF) band and for the tropospheric scat-
ter experienced in the 300 megahertz–3 gigahertz (UHF) and 3–30 gigahertz (SHF) bands.
Though present day fading effects experienced by mobile digital communication systems
are somewhat different, the Rayleigh model is still relevant for design purposes. Particularly
for mobile systems such as cellular and personal communication systems (PCS) that operate
in the UHF band. Other models, besides Rayleigh, are appropriate for the envelope statistics
of received signal. When, besides the multipath components, a line-of-sight (LOS) compo-
nent is present, also referred to as a specular component, the envelope statistics become
Rician [5], basically noncentral chi-square. The optimum demodulator is a straightforward
extension of the approach used in this chapter. Indeed, it turns out to be the same. The error
performance analysis, due to the noncentral chi-square pdfs, is considerably more involved.
Experimental data have shown situations where neither the Rayleigh nor the Rician model
is entirely appropriate. An empirical model called the Nakagami-m pdf (see Problem 10.7)
has been developed for the envelope where the parameter m, 0.5 ≤ m < ∞, can be cho-
sen to fit a variety of experimental situations. For m = 1 the Nakagami-m pdf becomes
Rayleigh and as m →∞ it approaches the Rician pdf.

The fading described by all of these models is termed small-scale fading where small
changes in path length result in dramatic changes in the received signal’s amplitude and
phase. Large-scale fading, not discussed in this chapter, occurs when the receiver is “shad-
owed” by prominent geographic features such as hills, forests, a cluster of buildings, etc. It
results in an attenuation of the received power due to movement over “large” distances.
The two classes of fading lead to two types of diversity techniques. The diversity technique
discussed in this chapter is used to combat multipath. It is called microdiversity. Macrodi-
versity is used for large-scale fading. It typically involves the combining of signals received
by several base stations or access points. This implies coordination between the different
stations, which is implemented as part of the network protocols governing an infrastructure
based wireless network. There are different approaches to combining the received signals
in both micro- and macrodiversity. These are selection combining, threshold combining,
maximal-ratio combining and equal-gain combining.

The fading model described in this chapter, besides Rayleigh, is a narrowband model.
This refers to the assumption that the information signal s(t) ≈ s(t− τ n), i.e., the trans-
mitted signal is essentially confined to the symbol interval. If the delay spread (range of
τn) is such that there is significant signal energy overlapping into other symbol intervals,
then the system starts to experience ISI. When this happens the channel is called frequency
selective as opposed to frequency nonselective (or flat fading). The demodulation then
typically involves maximum likelihood sequence estimation and a Viterbi equalization type
of approach. Another popular approach to deal with a frequency-selective fading channel
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is OFDM (orthogonal frequency-division multiplexing). In OFDM the entire bandwidth is
divided into overlapping, but orthogonal, narrowband channels. Since the information sym-
bols are transmitted and demodulated independently over these narrowband channels the
ISI effects are considerably reduced.

Lastly, the modulation investigated in this chapter was binary. M-ary modulation is also
possible and desirable. This and some of the other topics mentioned in the summary are
pursued in the chapter problems. In an introductory text, such as this, it is not possible to do
full justice to the rich area of wireless communications. The reader is directed to references
[5–8] for more advanced reading.

10.8 Problems

10.1 Figure 10.8 shows that the error performance of noncoherent BASK with threshold
of
√

E/2 is slightly worse than that of the noncoherent BFSK. Based on (10.23) and
(10.36), verify this observation analytically.

10.2 Plot the optimum threshold, Th, in noncoherent BASK versus Eb/N0 over the
range 0–20 decibels. Compare it with the “intuitive” threshold of

√
E/2 = √Eb/2.

Comment.
10.3 Develop coherent demodulation of BASK in Rayleigh fading, assuming that both

the random phase and amplitude can be perfectly estimated at the receiver. Then
obtain its error performance in terms of the average received SNR per bit. Compare
the result with that of coherent BFSK and BPSK in Section 10.4.3.

10.4 Develop noncoherent demodulation of DBPSK in Rayleigh fading. Then obtain its
error performance in terms of the average received SNR per bit. Compare the result
with that of coherent BFSK and BPSK in Section 10.4.3.

10.5 Section 10.5.1 considers noncoherent demodulation of BFSK with diversity in
Rayleigh fading. If the phase can be perfectly estimated at the receiver, one can
use BPSK with diversity and its coherent demodulation.
(a) Develop the optimum coherent demodulation of BPSK with diversity order N

in Rayleigh fading.
(b) Show that the error performance is given by

P[error] =
(

1− μ

2

)N N−1∑
k=0

(
N − 1+ k

k

)(
1+ μ

2

)k

, (P10.1)

where μ = √γT/(1+ γT ), γT = E
′
bσ

2
F/N0 and E

′
b is the average energy per

transmission.
(c) To see the influence of the diversity order N at high SNR, use the following

approximations (1+ μ)/2 ≈ 1, (1− μ)/2 ≈ 1/4γT and

N−1∑
k=0

(
N − 1+ k

k

)
=
(

2N − 1

N

)
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to show that

P[error] ≈
(

2N − 1

N

)
1

(4γT )N
. (P10.2)

Comment.
10.6 Repeat the above problem for noncoherent demodulation of DBPSK in Rayleigh

fading with N diversity receptions.
10.7 (Amount of fading) For coherent demodulation in fading, it is assumed that the ran-

dom phase can be perfectly estimated and accounted for at the receiver. This means
that only the random amplitude affects the quality of the demodulation. Let fα(α)
be the pdf of the random amplitude α. Then, the severity of fading due to ran-
dom amplitude can be quantified through a single parameter, called the “amount of
fading” or fading figure, defined as

AF = var{α2}
(E{α2})2

. (P10.3)

In general, the smaller the AF, the less severe the fading is.
(a) What is the value of AF when the amplitude is a constant.
(b) Show that, for a Rayleigh amplitude, AF = 1. Recall that the Rayleigh distribu-

tion is

fα(α) = 2α

σ 2
F

e−α2
/

σ 2
F u(α). (P10.4)

(c) Consider the following Nakagami-m distribution:

fα(α) = 2mmα2m−1

�(m)σ 2m
e−mα2/σ 2

u(α), m ≥ 0.5. (P10.5)

Show that AF = 1/m.
In the chapter, differential encoding and differential demodulation were introduced to
overcome phase uncertainty in the received signal at the receiver. The phase uncer-
tainty model assumed was quite severe in that it was assumed to be equally probable
over [0, 2π ]. However, there are practical applications where the phase uncertainty is
quite restricted, namely 0◦ or 180◦. A phase of 180◦ can occur simply due to inad-
vertent insertion of an inverting amplifier in the chain. More commonly it occurs
in synchronization where phase-locked loop (PLL) circuits (discussed in Chapter 12)
can lock on, falsely, to a phase that is out by π radians. The next set of problems
explores differential encoding and differential modulation when the phase model is
thus restricted.

10.8 (Coherently demodulated DBPSK) The terminology now begins to become a bit
confusing. What “coherently demodulated DBPSK” means is that differential map-
ping (or encoding) is used at the modulator but coherent demodulation is done at
the receiver. This is possible because the phase uncertainty, as noted above, is very
restricted. How the demodulation is done and the resultant error performance are
investigated here.
(a) Consider the differential mapping rule of (10.38). How do the signals of (10.40)

change if a phase uncertainty of π radians is present.
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Table 10.2 Differential phase mapping in DQPSK

Present Previous Present phase =
symbol phase previous phase +�φ

00 φk−1 φk = φk−1+
01 φk−1 φk = φk−1+
11 φk−1 φk = φk−1+
10 φk−1 φk = φk−1+

(b) Consider the block diagram of the modulator for DBPSK in Figure 10.22. The
purpose of the logic circuit is to implement mapping rule (10.38). Thus, if
bk = 0 then dk = dk−1, and if bk = 1 then dk = dk−1 (complement of dk−1).
Therefore dk is a Boolean function of bk and dk−1, i.e., dk = g(dk−1, bk). What
is g(·)? How would you implement g(·)?

Logic
circuit

kb
NRZ-L

2
cos(

b

2 )b cE f t
T

π

kd sT (t){ }1, 1+ −

�Fig. 10.22 Block diagram of the modulator for DBPSK.

(c) Draw the signal space plot of (10.40) which shows the possible transmitted and
received signals (in the absence of AWGN) with the phase uncertainty model
with which we are dealing. Compare with the signal space plot of the Miller
modulation (see Chapter 6).

(d) Based on (b) draw a block diagram of the coherent demodulator.
(e) Determine the error performance of this demodulator and compare it with that

of DBPSK in (10.48).
(f) Come up with a mnemonic for this modulation and demodulation.

10.9 (DQPSK – differential quadrature phase-shift keying) Since QPSK offered, at seem-
ingly no cost, benefits over BPSK for the AWGN, we attempt here to develop a
differential version of it for the phase model of Problem 10.8. The phase model is
extended slightly in that not only is the phase uncertainty 0 or π , it can also be
multiples of π/2 radians. The first step is to develop a differential mapping.
(a) As in differential BPSK we do not map the two bits in any signaling interval of

Ts = 2Tb seconds to an absolute phase but to a relative one, one that depends
on the previous phase. With this in mind complete Table 10.2.

(b) Consider the following transmitted bit sequence:

01111100011010.

What is the corresponding phase sequence of the transmitted signal?
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(c) Since the modulator has (finite) memory, there is a corresponding trellis. Define
the states for the trellis and draw it.

(d) Discuss the signal space that represents the output of the modulator. What is its
dimensionality? How many signal points are there in the constellation? Where
are they located? Hint The dimensionality is greater than 3.

(e) Consider the block diagram of the DQPSK modulator. It should be similar to
the DBPSK modulator since one view of QPSK is that of two BPSK modulators
(one on the inphase, I axis, the other on the quadrature, Q axis). Thus a possi-
ble block diagram is shown in Figure 10.23. The differential mapper maps the

S/P Differential
mapper

NRZ-L

Delay
Ts 2

cos(
b

2 )b cE f t
T

π

NRZ-L

2

bT
sin(2 )b cE f tπ

Ts (t)

{ }1, 1+ −

{ }1, 1+ −

k,Id

k,Qd

k−1,Qd

k−1,Id

Delay
Ts

k, Ib

bk, Q 

kb

{ }0,1

{ }0,1

�Fig. 10.23 Block diagram of the modulator for DQPSK.

information bits, bk,I and bk,Q to dk,I and dk,Q, respectively, so that the transmit-
ted signal satisfies the map given by Table 10.2. What are the two Boolean func-
tions dk,I = g

(
bk,I , bk,Q, dk−1,I , dk−1,Q

)
and dk,Q = h

(
bk,I , bk,Q, dk−1,I , dk−1,Q

)
that would accomplish this?

10.10 (Coherent demodulation of DQPSK)
(a) As usual we need to generate a set of sufficient statistics. The received sig-

nal (ignoring the AWGN for now) depends on both the previous two bits and
the present two bits. Each set is represented by an inphase component and a
quadrature component, i.e.,

√
2/Tb cos (2π fct) and

√
2/Tb sin (2π fct). There-

fore one concludes that there are basis functions that can completely
represent the transmitted signal set.

(b) Since a transmitted signal depends on four bits, the number of signals in the
transmitted signal set is .

(c) In one dimension we have 21 = 2 quadrants, in two, 22 = 4 quadrants, in three,
23 = 8 quadrants. Therefore in four dimensions we have quadrants.

(d) To get some idea of what the signal space looks like, consider that the bits to
be transmitted in the present interval are bk−1bk = 00. Let the previous two
bits be 00 as well, i.e., bk−3bk−2 = 00. Complete Table 10.3.

Note that, there are four possible signals corresponding to the bits bk−1bk

depending on the previous phase. To see where these signals lie in the signal
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Table 10.3 Table to complete in Problem 10.10

bk−3 bk−2 bk−1 bk Previous phase Present phase

0 0 0 0 (i) 45◦(π/4)
(ii) 135◦(3π/4)
(iii) 225◦(5π/4)
(iv) 315◦(7π/4)

space, let {φk−1,I , φk−1,Q} be the basis functions for the previous interval and
{φk,I , φk,Q} that for the present interval. Thus signal (i) (see Table 10.3) lies in
the signal space illustrated in Figure 10.24.

k−1, Q (t)φ

k−1, I (t)φ
0

bE

bE

k, Q (t)φ

k, I (t)φ
0 Eb

bE

�Fig. 10.24 Signal space representation for case (i) in Table 10.3.

Here we are using two cross-sections to visualize the four-dimensional signal
space. To denote the quadrant in which signal (i) falls, let us use the notation
(+1,+1,+1,+1). Plot the other three signals, (ii), (iii), (iv), and determine in
which quadrants they fall.

(e) But, of course, the previous bits, bk−3bk−2, were just as likely to have been 01,
10, 11. Show that if the present two bits are 00, then we still have the same
signal points.

(f) Repeat (d) and (c) for the situations where bk−1bk = 01, 11, 10.
(g) If you have come this far, congratulate yourself. Now develop a block diagram

of the demodulator.
Remark The observant reader might note that in this problem we have in
essence answered some of the previous questions. Consider that a benefit of
being a widely read person.

10.11 (Error performance of coherent demodulation of DQPSK) Show that the probability
of symbol error is given by

P [error] = 4Q

(√
2Eb

N0

)
− 8Q2

(√
2Eb

N0

)

+ 8Q3

(√
2Eb

N0

)
− 4Q4

(√
2Eb

N0

)
. (P10.6)
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Plot the error probability and compare the result with that of coherent QPSK. What
penalty is paid in SNR (decibels) at, say, 10−4 for this phase uncertainty? Hint
Use symmetry to argue that P [error] = P [error |00]. Note also that only one of the
signals corresponding to 00 transmitted needs to be considered.

10.12 (Differential encoding of square QAM) First, consider as a specific example 16-
QAM. Note that any phase rotation of kπ/2 results in the same signal constellation,
i.e., the signal constellation has a four-fold symmetry.
(a) Based on the above observation come up with a differential encoding rule for

the signal constellation. Hint You should need to differentially encode only two
of the bits.

(b) Map the remaining two bits to the signals of a quadrant in a manner that you
feel (intuitively) minimizes the bit error probability.

(c) Repeat the above for 64-QAM.
(d) Generalize to any square QAM.
(e) For differentially encoded 16-QAM, draw block diagrams of the modulator and

demodulator.
10.13 Consider a channel model where there is a direct LOS path as well as the scattering

(i.e., Rician fading). The modulation is BFSK. The received signal is

r(t) =

⎧⎪⎪⎨⎪⎪⎩
√

E1
√

2/Tb cos(2π f1t)
+√E2α

√
2/Tb cos(2π f1t − θ )+ w(t), if “0T”√

E1
√

2/Tb cos(2π f2t)
+√E2α

√
2/Tb cos(2π f2t − θ )+ w(t), if “1T”

(P10.7)

where f1 and f2 are orthogonal carriers, α is a Rayleigh random variable of mean-
squared value σ 2

F , θ is uniform over [0, 2π ] and w(t) is white Gaussian noise of
two-sided PSD N0/2 (watts/hertz).
(a) Come up with a set of orthonormal basis functions and obtain the sufficient

statistics.
(b) Determine the likelihood ratio test, take natural logarithm (ln) and simplify.

Express the decision rule in terms of σ 2 ≡ N0/2 and σ 2
t ≡ E2σ

2
F/2+ N0/2.

10.14 (Rician pdf ) In Problem 10.13 the LOS component results in a test statistic that has
a Rician pdf, which comes from what is termed a noncentral chi-square density. It
is called noncentral because the Gaussian random variables have a nonzero mean.
Here we derive the Rician pdf, plot it, and compare the plots with the Rayleigh pdf
which arises from a central chi-square density.

Consider the following random variable:

z =
√

x2 + y2, (P10.8)

where x and y are statistically independent, Gaussian, random variables of equal
variance σ 2. The random variable x has a nonzero mean, m, whereas y has zero
mean.
(a) To find the pdf of z, determine the characteristic functions of x and y, i.e.,

determine �x(f ) = E
{
ej2π f x

}
and �y(f ) = E

{
ej2π f y

}
. Hint The usual trick of

completing the square, multiplying (and dividing) by an appropriate constant,
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recognizing the integral as the area under a Gaussian pdf should avoid any
integration as such.

(b) Multiply the two characteristic functions together to obtain the characteristic
function of the random variable w = x2 + y2, i.e., �w(f ) = �x(f ) ·�y(f ).

(c) Find the inverse transform of �w(f ), i.e.,
∫∞
−∞�w(f )e−j2π fwdf to obtain

fw(w) = 1

2σ 2
e−(w+m2)/2σ 2

I0

(√
w

m

σ 2

)
. (P10.9)

(d) Now z = √w. Determine fz(z) from fw(w) and show that it is given by

fz(z) = z

σ 2
e−(z2+m2)/2σ 2

I0

( zm

σ 2

)
. (P10.10)

(e) In the Rician fading channel model, the random variable z plays the role of the
channel “gain” (perhaps more accurately, the channel attenuation). The param-
eters m2 and 2σ 2 reflect the received powers in the LOS component and the
non-LOS multipath components, respectively. The Rician distribution is often
described in terms of a fading parameter κ , defined as κ = m2/2σ 2. In essence,
κ is the ratio of the power in the LOS component to the power in the non-
LOS multipath components. Note that κ = 0 corresponds to Rayleigh fading,
while κ = ∞means no fading. Let σ 2

F = m2 + 2σ 2 be the total received power.
Express fz(z) in terms of κ and σ 2

F . Then plot σFfz (z/σF) for various values of
κ . On the same figure, also plot the scaled Rayleigh pdf, i.e., σFfz (z/σF) where
κ = 0. Comment.
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11 Advanced modulation techniques

This chapter looks at three important modulation paradigms. Trellis-coded modulation
(TCM) is considered first. Developed in the late 1970s as a method to conserve band-
width without sacrificing error performance [1–3], it has become an extremely important
modulation.

The second technique is called code-division multiple access (CDMA). It falls within
the broad class of multiple access methods and is an administrator’s favorite. It makes the
addition (or deletion) of new users essentially transparent, easing the administrator’s work.
However, the technique does have technical merits that warrant its study by communication
engineers. It forms the basis for the so-called 3G (third generation) and beyond wire-
less communication systems. In contrast to TCM, CDMA is a very wideband modulation
technique.

The last modulation method studied uses space-time codes which provide diversity gain
for the fading channel through the use of multiple transmit antennas. The important Alam-
outi’s space-time block code (STBC) is discussed in some detail. It was first described in
1998 [4], almost at the same time Tarokh et al. published their paper [5] on space-time
trellis codes.

11.1 Trellis-coded modulation (TCM)

By now one can appreciate that over an AWGN channel, the basic idea in digital communi-
cations is to find signal constellations with as large a distance between signals as possible
without increasing the energy Eb (joules) expended per bit inordinately and with as small
a bandwidth as possible. To decrease bandwidth one went to M-ary modulation such as
M-PSK and M-QAM. However, as more and more signal points were packed into a circle
of radius

√
E (volts) the minimum distance between signals suffered.

On reflection, however, one realizes that the signal transmitted in symbol period
[kTs, (k + 1)Ts] is chosen independently of that transmitted in the time interval
[(k − 1)Ts, kTs]. Perhaps if one imposed some sort of constraint on the transmitted sig-
nal patterns one could increase the minimum distance between the signals. But note that
one is talking about the minimum distance between signal sequences, i.e., between signals
for time periods greater than one symbol period.1 This is the basic idea behind TCM, a

1 This is very similar to the discussion of sequence demodulation for Miller signaling in Section 6.4.
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�Fig. 11.1 8-PSK signal set and a natural mapping.
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�Fig. 11.2 Mapping from the two input information bits to the 8-PSK signal points in TCM.

modulation/coding technique first proposed by Ungerboeck2 in the late 1970s. To introduce
the method let us consider a specific example.

The signal set used by the modulator is 8-PSK as shown in Figure 11.1 along with
the Euclidean distances between the signal points. For convenience the signals have been
normalized to lie on a unit circle. Eventually it will be informative to look at the signal set
as being composed of two QPSK sets, {s1(t), s3(t), s5(t), s7(t)} and {s2(t), s4(t), s6(t), s8(t)}.

To impose a constraint on the allowable transmitted signal patterns implies that the
signal transmitted in the present signaling interval depends on what happened previously, in
other words, the modulator needs to have memory. A shift register circuit provides memory
and this is what is used in the modulator as shown in Figure 11.2.

2 Although not yet published in the literature, Ungerboeck’s invention was already well known in the late 1970s.
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For historical reasons the shift register circuit is called a convolutional encoder3 but
the important aspect of it is that it provides memory. The output bits, c(2)

k and c(3)
k , not

only depend on the present input bit, b(2)
k , but also on the two previous bits, b(2)

k−1 and

b(2)
k−2. Observe that there are three bits applied to the signal selector (mapper) block

and these three bits are used to choose one of the 8-PSK signals. The shift register
has the state diagram and trellis shown in Figure 11.3. Observe that the trellis struc-
ture is determined completely by the shift register’s memory cells, i.e., b(2)

k−1, b(2)
k−2 along

with b(1)
k .

However, what we are interested in is the transmitted signal and for this one needs to
specify the mapping from the three output bits of the encoder to the signal constellation.

01
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00 11
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(2)

denotes bk   = 1

States

�Fig. 11.3 (a) State diagram and (b) trellis of the shift register of Figure 11.2.

3 The adjective “convolutional” comes from the fact that, when represented in binary sequences, the output of the
register is a convolution of the input and a sequence representing the configuration of the shift register circuit.
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�Fig. 11.4 Trellis diagram showing the transmitted signal sequences.

For this the natural mapping,4 also shown in Figure 11.1, is chosen and Figure 11.4 shows
the trellis diagram of this TCM scheme. Due to the uncoded bit, b(1)

k , there are two parallel
branches from every state. Consider now the minimum Euclidean distance between two
signal sequences (subsequences is a more appropriate terminology) that start in a common
state, diverge, and then merge and end in a common state. For simplicity, only sequences of
one and three signaling intervals in length are considered. Using Figure 11.1, the minimum
distances are:

sequences of length 1: d2
min = d2

4 = 4,

sequences of length 3: d2
min = d2

1 + d2
1 + d2

1 = 3d2
1 = 6− 3

√
2 = 1.757.

Therefore sequences of length 3 determine the minimum distance as it is easily observed
that longer sequences will have a larger distance.

Having designed the modulation, it is of interest and necessary to see how it compares
with other modulations. To this end, take as a reference the straightforward QPSK of unit
symbol energy. Both modulations have the same energy of Eb = 1/2 (joules) expended per
bit and also the same bandwidth requirement. We know that QPSK has a d2

min = 2. Thus it
appears that all that has been achieved is a more complex modulator and a reduced d2

min!

4 The natural mapping assigns bits based on the binary representation of the symbols’ indices. In particular, since
the constellation symbols are indexed from 1 to M (the same convention used in previous chapters), the label of
sk(t) is the binary representation of the integer (k − 1). For example, in an 8-ary constellation, s1(t) is labeled
with 000, while the label of s7(t) is 110.
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However, upon reflection, one realizes that the problem is competing sequences of length
3 and that the signal assignment to the branches of the trellis may not be the best possi-
ble, i.e., the natural mapping may be inappropriate. Let us attempt to map the signal set
directly to the branches. Since signals along the parallel branches are in immediate direct
competition to determine d2

min it seems prudent to assign signals that are 180 degrees apart,
i.e., antipodal. In fact this was done previously and is shown in Figure 11.5(a), where sig-
nals {s1(t), s5(t)} are assigned to the parallel branches emanating from state 00. The other
pair of parallel branches from state 00 will eventually compete with set {s1(t), s5(t)} to
determine d2

min. Therefore let us make them not only antipodal but as far away as possible
from set {s1(t), s5(t)}. From the signal space diagram of Figure 11.1, it follows that this
pair should be set {s3(t), s7(t)} as shown in Figure 11.5(a). The same reasoning is used for
the two sets of parallel branches that merge in a common state. They should also be as far
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�Fig. 11.5 Labeling of branches diverging from and merging to: (a) states 00 and 01; (b) states 10 and 11.
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apart as possible. As Figure 11.5(a) shows this dictates that the branches from state 01 to
state 00 should be assigned signals {s3(t), s7(t)}.

The branches out of states 00 and 01 have been fully labeled with the transmitted signals.
It remains to label the branches out of states 10 and 11. For these branches we use the other
subset of signals {s2(t), s4(t), s6(t), s8(t)} and follow the same reasoning as above. Figure
11.5(b) shows the signal labeling out of state 10. Once this labeling is chosen the rest of
the labeling falls into place. Figure 11.6 shows the final mapping with two sequences of
length 3 highlighted. The squared Euclidean distance between them is

d2
2 + d2

1 + d2
2 = 2+ (2−√2)+ 2 = 6−√2, (11.1)

which is larger than d2
4 = 4, the squared distance between two parallel paths. It is left as

an exercise to show that any two sequences of length 3 that start in any common state and
end in a common state have at least this squared distance.

Therefore with this mapping, it is the parallel paths that determine the minimum dis-
tance, which is dmin = 2. Compared with QPSK, a power saving of 10 log10

(
d2

min(TCM)/

d2
min(QPSK)

) = 10 log10

(
22/(

√
2)2
)
= 3.01 decibels has been achieved without any

bandwidth expansion. The modest increase in the complexity of the modulator may well
be worth the price now.

It is very important to emphasize that the above improved modulator design is obtained
by mapping the 8-PSK signals directly to the trellis branches, i.e., the labeling of the trellis
branches in Figure 11.2 provided by the bits c(1)

k , c(2)
k , c(3)

k is not used. What 8-PSK signal
is to be transmitted over the interval of [kTs, (k + 1)Ts] depends on the trellis state at time
kTs, namely b(2)

k−1, b(2)
k−2, and the two information bits to be transmitted over that symbol
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�Fig. 11.6 Final labeling of trellis branches after combining Figures 11.5(a) and 11.5(b).
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�Fig. 11.8 8-PSK mapping for the circuitry of Figure 11.2 and TCM trellis of Figure 11.6.

interval, i.e., b(1)
k , b(2)

k . In essence the four bits b(1)
k , b(2)

k , b(2)
k−1, b(2)

k−2 are used to select the
transmitted 8-PSK signal over [kTs, (k + 1)Ts]. This is illustrated in Figure 11.7.

From the practical implementation point of view, it is desired to process the three bits
b(2)

k , b(2)
k−1, b(2)

k−2 with simple XOR gates to produce two “coded” bits c(2)
k , c(3)

k , so that these

coded bits together with c(1)
k = b(1)

k uniquely select an 8-PSK signal according to some
constellation mapping scheme. For the 8-PSK/TCM scheme of Figures 11.6 and 11.7, it
is simple to verify that the same circuitry as in Figure 11.2 works with the constellation
mapping of Figure 11.8.

The natural question then arises: what if other signal constellations such as QAM or
other trellises, perhaps of eight or more states are considered? How does one go about
designing the modulator to achieve an increase in d2

min? To do this the above procedure
needs to be made more systematic and this is what is done next.

The starting point is to expand the signal set from the minimum needed to represent
the source bits uniquely to the number needed after some of the source bits have been
passed through the shift register circuit which provides the trellis. An explanation for this
expansion is given later. Usually, though other expansions are possible, the signal set is
expanded by a factor of 2 as was done in the previous example. After the signal constella-
tion is decided on and a memory arrangement has been chosen, one then needs to assign the
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signals to the trellis branches. To do this a concept known as set partitioning is used.
In this technique, the signal constellation is respectedly partitioned into subsets. At each
step a subset is partitioned into two subsets where the Euclidean distance between signals
within each subset is made as large as possible. Figure 11.9 illustrates this for the signal
constellation of 8-PSK.

The mapping of the signals to the trellis branches then proceeds by observing three,
essentially heuristic, guidelines:

(1) Parallel transitions, due to the uncoded bit(s), are assigned signals from within a subset
at the lowest level. Since these signal sequences are immediate candidates to determine
the minimum distance, this ensures that it is as large as possible.
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(2) Transitions that diverge or merge from a common state are assigned signal subsets with
as large an intersubset distance as possible. This also helps to ensure that the distance
between two signal sequences that diverge from a common state and later merge in a
common state is as large as possible.

(3) All signals and subsets are used with equal frequency in the trellis diagram.

Consider two further examples to illustrate the above guidelines. In the example just
considered the minimum distance was determined by the parallel branches, which in turn
arose due to the uncoded bit. The next example eliminates the parallel branches by applying
both information bits to memory cells. It also increases the number of memory cells to
three, which means that the trellis will have eight states. Figure 11.10 shows the general
modulator, whereas Figure 11.11 shows the trellis along with the signal labeling.

The mapping (trellis labeling) proceeds as follows. Call the subsets {s1(t), s3(t),
s5(t), s7(t)} and {s2(t), s4(t), s6(t), s8(t)} the odd and even subsets, respectively.

(a) First, the branches out of state 000 are labeled with signals from the lowest level of
the partition tree of Figure 11.9. Choosing the four needed signals to have the largest
possible distance between any two forces one to consider the signals in either the odd
or even subset. Choose (choice is arbitrary) the odd subset.

(b) After this, attention is turned to labeling the branches from the states that the four
branches terminate on, namely, 010, 100, 110 (state 000 is ignored since we already
know its branch labeling). The second guideline dictates the labeling of the branches
out of these states. Start with state 100 since the branches from this state merge at states
that already have a labeled branch. Choose the branch signal to be as far as possible
from the signal on the already labeled branch. In essence the signals are chosen to be
antipodal, which means that they are chosen from the odd subset. For example, the
branch from state 100 to state 000 is chosen to be s5(t) which is antipodal to s1(t), etc.

(c) It follows from the third guideline that four of the states have signals from the odd
subset and the other four have signals from the even subset. We have established
that states 000 and 100 are associated with the odd subset. Nature loves symme-
try and therefore we assign the two subsets to the states as follows: (i) even subset
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Labeling of trellis branches for an eight-state trellis and 8-PSK. Note that for clarity not all connections
are shown.

to states 001, 011, 101, 111; and (ii) odd subset to 000, 010, 100, 110. It should be
pointed out that other assignments are possible.

(d) One needs to label the branches coming out of these states. To do this turn your atten-
tion to state 001 at time 2Ts. The signal along the branch from state 001 to state 000
competes with s1(t) and comes from the even subset. Choose it for maximum dis-
tance. Either s4(t) or s6(t) could be chosen. Choose s4(t) and then label the other three
branches as shown in Figure 11.11. Though this latter labeling, at this point, can be
made arbitrarily, for aesthetic purposes, the labels are chosen to be in cyclic order.

(e) Once the branches out of state 001 have been determined, look at state 101 and label it
as shown in Figure 11.11. The branch from state 101 to state 000 is labeled with signal
s8(t) to make it antipodal to s4(t) and similarly for the other three branches. Note how
the cyclic order of branch labeling nicely falls into place.

(f) Finish the labeling for all other states.
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Table 11.1 Power savings of 8-PSK/TCM over QPSK

Number of trellis states 4 8 16 32 64 128 256
Power saving (dB) 3.0 3.6 4.1 4.6 5.0 5.2 5.8

Figure 11.11 shows the minimum squared Euclidean distances between competing paths
of length 2 and length 3. The length 3 paths determine d2

min which is 6−√2. Compared

with QPSK this means a power saving of 10 log10
6−√2

2 = 3.6 decibels. It is left as an
exercise (see Problem 11.1) to come up with a shift register circuit, principally the XOR
gates and tap connections, and 8-PSK mapping such that the three coded bits (produced
by the circuit) can uniquely select the 8-PSK signal point in accordance with the trellis
labelings of Figure 11.11.

One could attempt to increase d2
min by increasing the number of states of the trellis. What

this does is increase (with a proper arrangement of the memory cells) the length of paths
that start in a common state, diverge, and merge later in a common state. This has been
done and the gain in power savings over QPSK is shown in Table 11.1 [6].

Of course, as the number of states becomes larger the modulator and especially the
demodulator (discussed in Section 11.1.3) become more and more complex. Even for the
examples just discussed one needs to design the circuit to do the mapping from the source
bits to the modulator’s output signal. In general, the maximum saving that can be achieved
with this signal constellation (8-PSK) is on the order of 6.0 decibels.

The next example uses rectangular 16-QAM as the expanded signal constellation. Using
the factor of 2 rule-of-thumb for signal expansion this means that three information bits
are eventually mapped to the signal constellation. Since in the example one of the infor-
mation bits is chosen to be uncoded (which means that there will be parallel transitions
in the trellis) the other two information bits are input to memory cells. The memory cell
configuration is the same as that of the previous example, i.e., there are three cells and an
8-state trellis. Figure 11.12 shows the set partitioning of the 16-QAM signal constellation,
Figure 11.13 the general modulator, and Figure 11.14 the trellis and mapping. Again, the
design of a specific shift register circuit and 16-QAM constellation mapping to work with
the memory arrangement in Figure 11.13 and the trellis labelings of Figure 11.14 is left as
an exercise (see Problem 11.2).

To determine what power saving, or coding gain as it is commonly called, has been
achieved by this example one, of course, needs to compare it with a reference modulation.
The comparison is not quite as straightforward as it was for the M-PSK signals because
in going from 8-QAM signals to the expanded signal set of 16-QAM the average energy
expenditure per bit (or per symbol) has changed. To account for this define the power
saving or coding gain as

coding gain = 10 log10
d2

min(coded)/Es(coded)

d2
min(uncoded)/Es(uncoded)

, (11.2)
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�Fig. 11.12 Set partitioning applied to the 16-QAM signal constellation.

where Es(coded) and Es(uncoded) are the average symbol energies of the signal constella-
tions used in the coded and uncoded systems, respectively.

One still needs to specify the uncoded signal constellation. A simple choice is
that of 8-QAM as shown in Figure 11.15(a). From Figure 11.14 it is sequences
of length 3 that determine the minimum distance, d2

min(coded). The squared dis-
tance between the subset sequence paths {S1, S1, S1} and {S3, S5, S3}, which diverge at
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�Fig. 11.15
8-QAM signal constellations used for comparison with 16-QAM/TCM: (a) rectangular 8-QAM, and (b) a
more efficient 8-QAM.

state 000 and also merge in 000 is 2�2 +�2 + 2�2 = 5�2. The average energy for the

coded system is given by Es(coded) = 4
(

1
2�2 + 5�2 + 9

2�2
)

/16 = 5
2�2 joules/symbol.

For the 8-QAM constellation of Figure 11.15(a) the minimum squared distance

d2
min(uncoded) = �2, while the average energy is Es(uncoded) = 4

(
1
2�2 + 5

2�2
)

/8 =
3
2�2. The power saving is therefore equal to

10 log10

[(
5�2

5�2/2

) /(
�2

3�2/2

)]
= 4.77 decibels. (11.3)

The saving, of course, depends on the 8-QAM constellation chosen for comparison.
Consider the constellation of Figure 11.15(b) which still has the same minimum squared

distance of �2 but is more power efficient. Its average energy is 3+√3
4 �2 joules/symbol.

The power saving of the TCM scheme is now 3.74 decibels, still substantial. Note that
the 8-QAM constellation of Figure 11.15(b) would also require a more complicated
demodulator than that of Figure 11.15(a).

Having illustrated the concepts of TCM through the above examples we give next an
explanation of the performance improvement offered by TCM followed by a brief presenta-
tion of a generalization which allows one to deal with more complex signal constellations,
particularly those of higher dimensions than two.

11.1.1 Explanation of performance improvement achieved with TCM

Consider each transmitted signal in an interval to be chosen from a signal point in a signal
constellation. In the examples above two-dimensional signal constellations were used but
this is not necessary. Further, assume that some of the signal points do not need to be used.
When the signal set is expanded by a factor of 2 this means that strictly speaking only half
the signal points need to be used, at least coming out of any state.
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More generally, let the number of signals in the constellation be M and let M0 < M be
actually used for the transmitted signal in a signaling interval, Ts. Now consider a trans-
mitted sequence of signals corresponding to N signaling intervals. The total number of
available sequences from the overall constellation is MN , of which only MN

0 are used. The
ratio of used signal sequences to the number available is (M0/M)N . As N becomes larger
the ratio (M0/M)N tends to zero since (M0/M) < 1. Or, proportionally, fewer and fewer
of the available sequences are used as N increases. This, in turn, suggests that the distance
between the transmitted sequences can be made larger with increasing N. Not all choices
of the MN

0 sequences out of the MN possible sequences are good but the use of a trellis as
provided by the shift register circuit along with set partitioning and the associated mapping
guidelines allow one to select a good set of signal sequences.

The most popular TCM schemes have (M0/M) = 1
2 < 1, i.e., the signal set is expanded

by a factor of 2 as was done in the examples. Other expansions are possible and this gener-
alization is described briefly in the next section. However, the actual performance of TCM
depends not only on the signal expansion, but just as crucially on the introduction of mem-
ory by the shift register. What this suggests is that the design of the shift register circuit is
also very important. For this design the theory of convolutional coding (or block coding)
needs to be used, a topic beyond the scope of the present discussion.

11.1.2 A (reasonably) general approach to TCM

A common structure for a TCM modulator using a convolutional encoder is as shown in
Figure 11.16. Basically a group of λ bits is mapped onto one of 2λ+1 signal points every
signaling interval. The convolutional encoder takes λ̃ ≤ λ bits in and puts out λ̃+ 1 bits.
Since there is one extra bit this implies that the signal constellation has been expanded
by a factor of 2. The λ̃+ 1 coded bits select a sublattice of the signal constellation. A
sublattice (the lattice concept is explained below) in essence is one of the subsets we have
seen in the set partitioning method. Using lattice concepts is a useful and convenient way
to describe the process of set partitioning mathematically. Once the sublattice has been
selected the uncoded bits select the signal from within the sublattice. This signal point is
then transmitted.

The uncoded bits result in 2(λ−λ̃) parallel transitions or branches from any state to any
other state of the trellis. Therefore the sublattices should be chosen such that, all other
parameters being equal, the minimum distance between signal points in the sublattice is
maximized. The memory cells of the convolutional encoder determine the trellis structure.
The number of shift register cells determines the number of states and in turn the minimum
length of a path pair which diverge from a common state and later merge in a common state.
As a general rule the longer it takes for a merge to occur the larger the distance between
these paths is. Thus increasing the memory usually improves the minimum distance but, of
course, at the expense of a more complex modulator and demodulator. Finally, the connec-
tions from the shift register cells to the exclusive-or gates to form the coded bits provide a
convenient method to select a sublattice.
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�Fig. 11.16 General structure of modulation for TCM.

Since lattices play an important part in TCM (and other aspects of communications)
this section concludes with a discussion of them. Generally, a lattice is a regular spacing
of points over the entire extent of a n-dimensional space. The most familiar lattice is that
of regularly spaced grid points in one or two dimensions, which were used for M-ASK
or rectangular M-QAM. We discuss two-dimensional lattices next since they are the most
important ones for communications.

A two-dimensional lattice is generated by the following equation:[
s1

s2

]
=
[

b11 b21

b12 b22

] [
k1

k2

]
, (11.4)

where vector

[
s1

s2

]
is a lattice point, vectors

[
b11

b12

]
and

[
b21

b22

]
are basis vectors, and vector[

k1

k2

]
is an integer vector, i.e., k1 and k2 are any values drawn from the set of integers. Note

that a lattice point can be written as[
s1

s2

]
= k1

[
b11

b12

]
+ k2

[
b21

b22

]
, (11.5)

i.e., as a linear integer combination of the two vectors
−→
b1 =

[
b11

b12

]
and

−→
b2 =

[
b21

b22

]
,

hence the name basis. The choice of the basis vectors determines the appearance of the

lattice. The most familiar is the simple

[
b11

b12

]
=
[

1
0

]
,

[
b21

b22

]
=
[

0
1

]
, which results in a

rectangular grid but other choices are possible (actually an infinite number of choices
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is available). As an example the choice of

[
b11

b12

]
=
[√

3
2
1
2

]
and

[
b21

b22

]
=
[

0
1

]
results in a

hexagonal lattice as shown in Figure 11.17.
The signal points used in, say M-ary modulation, are then drawn from a finite set of the

lattice points, located inside a circle centered at the origin of maximum radius
√

Es. The
subsets are determined by utilizing a sublattice.

A sublattice is a subset of the lattice points with the property that any linear, integer
combination of two points in this subset results in a lattice point that is also in this subset.
Consider the simple and most frequently encountered lattice, the rectangular lattice. It is
commonly denoted as Z2 and we have used it for rectangular QAM. Figure 11.18 shows
the lattice along with a sublattice, which is defined as the set of all lattice points with the
property that the coordinates of the point are even. Obviously any linear, integer combi-
nation of two points in this sublattice has coordinates that are even and therefore is some
point in the sublattice.

The important thing about a sublattice is that it partitions the lattice into mutually exclu-
sive subsets.5 The sublattice just described partitions the lattice into four subsets (counting
itself). The three other subsets are obtained by adding (1, 0), (0, 1), (1, 1) respectively to
every point in the sublattice. The coded bits of Figure 11.16 select the subset. In this case
since there are four subsets this means that two coded bits are needed.

5 For readers familiar with finite or abstract algebra and the algebraic structures of groups, rings, fields the lattice
is a group and the sublattice is a subgroup. One of the first properties that is established for a subgroup is that
it partitions the group into mutually exclusive subsets called cosets.
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As an exercise the reader may attempt to determine other sublattices for the given lattice.
Possibilities are: (i) all lattice points whose coordinates sum to an even number, (ii) all
lattice points whose coordinates are a multiple of 4, etc. In each case you should check
that a proper sublattice has been created and, if so, how many subsets does the sublattice
partition the lattice into.

The sublattice in essence does the set partitioning mentioned earlier. However, a con-
stellation such as M-PSK does not form a lattice and therefore for it one must still rely
on set partitioning as described earlier. The sublattice concept though is very useful when
constellations of higher dimensions are considered. Using pencil and paper does not work
when one goes to a signal space dimension of 4, 8 or higher.

To illustrate the design of a TCM modulator using lattice concepts the following example
is given.

Example 11.1 TCM design with hexagonal latt ice Consider the hexagonal
lattice, which is repeated in Figure 11.19. As a sublattice we choose all points whose
coordinates are even multipliers of the lattice basis, i.e., the basis vectors for the sublattice

are

[√
3

1

]
,

[
0
2

]
. The sublattice partitions the lattice space into four cosets. These are the
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�Fig. 11.19 Lattice and sublattice considered in Example 11.1.

sublattice itself, called C1, and three other cosets with coset leaders

[
0
1

]
,

[√
3

2
1
2

]
,

[
−
√

3
2

1
2

]
,

called C2, C3, C4.
Having chosen the lattice and sublattice, the next choice is that of the shift register to

provide a coset selector. Since there are four cosets, we need two coded bits. The memory
is chosen to make the trellis simple, i.e., there are two memory cells. The circuit is shown
in Figure 11.20 along with trellis and the mapping of the cosets to the trellis branches. The
figure shows that there are four uncoded bits, which means that choosing a factor of 2 sig-
nal expansion, we have to map 25 patterns of information bits onto 26 = 64 signal points.
There are four cosets and therefore we have 64/4 = 16 points per coset. The uncoded
bits select which of these 16 signal points is to be transmitted (after a coset is selected).
To determine the actual signal points to be included from the lattice, draw a circle cen-
tered at the origin of radius large enough to include 16 signals from each coset. The final
constellation is shown in Figure 11.19.

The last step in this preliminary design is to determine the coding gain. To do this we
need to determine two distances, one between points in a coset, d(1)

min, the other between

cosets, d(2)
min. The distance d(1)

min is necessary because there are parallel branches in the trellis,

each branch being a signal point in a coset. The distance d(2)
min is due to the distance between

two sequences that diverge at a common state and then merge at some common state. For
the purpose of distance calculation, the lattice may be scaled arbitrarily since the squared
distance is divided by the average energy and the scaling factor cancels out.
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�Fig. 11.20 (a) Encoder (modulator), and (b) trellis diagram for TCM design in Example 11.1.

Based on this, it is readily seen from Figure 11.19 that d(1)
min = 2 and d(Ci, Cj) = 1,

i, j = 1, 2, 3, 4, i 	= j, where d(Ci, Cj) is the minimum distance between cosets i and j. The

distance d(2)
min is determined by the two (sub)sequences {C1, C1, C1} and {C3, C2, C3} and is

[
d(2)

min

]2 = d2(C1, C3)+ d2(C1, C2)+ d2(C1, C3) = 3. (11.6)
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Therefore dmin(coded) = min
{

d(1)
min, d(2)

min

}
= √3 = 1.73. The average transmitted energy

is found to be 9.0 joules/symbol.
To determine the coding gain we need to specify a reference uncoded constellation. For

simplicity, a rectangular 32-QAM is chosen with dmin(uncoded) = 1. Its average energy is
6.5 joules/symbol. Therefore the coding gain achieved by the designed TCM is

coding gain = 10 log10
d2

min(coded)/Es(coded)

d2
min(uncoded)/Es(uncoded)

= 10 log10

(
3

9.0
× 6.5

1

)
= 3.36 decibels. (11.7)

�

Finally, other reference constellations can be chosen (see Problem 11.3), some of which
are more energy efficient, which would reduce the coding gain. Note that the demodulator
(or modulator for that matter) for the hexagonal signal set is not as simple as that for
rectangular QAM. It is of interest, therefore, to see what happens with the same modulator,
one coded bit, four uncoded bits, and a QAM lattice. This is pursued in Problem 11.4.

Having discussed the design of TCM we now turn our attention to the demodulator and
analysis of the error performance of TCM.

11.1.3 Demodulation of TCM

The fact that the transmitted signal in TCM is a sequence of symbols (signal points of the
expanded constellation) along a path in the trellis used to define the modulation implies that
the demodulator can proceed by determining the best path (transmitted signal sequence)
through the trellis. The situation is directly analogous to that encountered in Miller base-
band modulation (Chapter 6) and in Chapter 9 when ISI was encountered. There the best
path through the trellis was determined using a Viterbi algorithm. This is also done by
the TCM demodulator. The difference is in the details: namely in how the branch metric
is computed, the facts that the energy of the transmitted symbol in any signaling interval
may be important and that there may be parallel branches in the trellis. But once the branch
metric is established the principle of adding it to the survivor metric that resides in the state
from which the branch emanates, then comparing the resultant (partial) path metric with
other (partial) path metrics at the state on which the branch terminates, choosing the one
that is most favorable, calling it the survivor (state) metric at this state, etc., etc., is the same.

The derivation of the branch metric proceeds similarly to that of Miller demodulation
and ISI demodulation. It is included here for completeness and on the principle that practice
makes perfect (the P3 approach to learning). Consider the situation where λ information
bits are mapped every signaling interval to a signal point, drawn typically from a 2λ+1

signal constellation. The constellation size is not important for the discussion here, but it
should be larger than 2λ in order to achieve a coding gain. Further, let the information bits
be equally probable and statistically independent. This means that any transmitted signal
is equally likely. Finally, the degradation is AWGN and we are synchronized.
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To determine the branch metric, start by considering N signaling intervals. There are
2λN possible transmitted signals, each signal representing a path through the TCM trellis.
The received signal is

r(t) = Si(t)+ w(t), 0 ≤ t ≤ (N − 1)Ts, Ts = λTb,

i = 1, 2, . . . , 2λN , (11.8)

where Si(t) is the signal sequence corresponding to the ith path through the trellis, which
will be simply referred to as the ith signal. Viewed as an M-ary modulation with equally
likely signals and over an AWGN channel, the demodulator would choose the signal that
the received signal r(t) is closest to in the Euclidean distance sense, i.e., the decision rule is

compute
(N−1)Ts∫

0

[(r(t)− Si(t)]
2 dt, i = 1, 2, . . . , 2λN ,

and choose the signal that has the smallest distance.

(11.9)

The above is fine in principle but useless in practice since 2λN is a large, large number,
particularly as N →∞. The problem can be overcome by rewriting the integral as:

(N−1)Ts∫
0

[(r(t)− Si(t)]
2 dt =

(N−1)Ts∫
0

r2(t)dt − 2

(N−1)Ts∫
0

r(t)Si(t)dt

+
(N−1)Ts∫

0

S2
i (t)dt. (11.10)

The first term is the same for all i and can be discarded. The last term is the energy of
the ith signal, call it Ei. By multiplying through by −1 and dividing by 2 the decision rule
becomes

compute
(N−1)Ts∫

0

r(t)Si(t)dt − Ei

2
, i = 1, 2, . . . , 2λN ,

and choose the signal that has the maximum value.

(11.11)

However, this is still no better from a computational complexity point of view than (11.9).
To simplify the computational effort write Si(t) as Si(t) =∑N

k=1 Sik(t), where Sik(t) is
the constellation symbol transmitted in the time interval [(k − 1)Ts, kTs] along the ith path
through the trellis. Then (11.11) becomes

N∑
k=1

(N−1)Ts∫
0

r(t)Sik(t)dt

︸ ︷︷ ︸
=

kTs∫
(k−1)Ts

r(t)Sik(t)dt

−1

2

N∑
k=1

N∑
j=1

(N−1)Ts∫
0

Sik(t)Sij(t)dt

︸ ︷︷ ︸
= 0, k 	= j
= Eik , k = j

, (11.12)
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where Eik is the energy of the ith signal sequence in the kth signaling interval. The decision
rule is therefore

compute

N∑
k=1

⎡⎢⎣ kTs∫
(k−1)Ts

r(t)Sik(t)dt − Eik

2

⎤⎥⎦ , i = 1, 2, . . . , 2λN ,

and choose the signal that has the maximum value.

(11.13)

Now we address how to reduce the computational complexity that is still present in
(11.13). The term in the brackets is a branch metric for the kth signaling interval. If we
knew the best (partial) path to each state and the corresponding path (or survivor or state)
metric at time (k − 1)Ts then this knowledge and the branch metrics for all branches in
the kth signaling interval could be used to compute the best (partial) path for each state at
t = kTs. The algorithm, known generically as the Viterbi algorithm, is as follows:

(1) Start in a known state at t = 0, typically the all-zero state. Compute the branch metrics
for all branches emanating from this state.

(2) Proceed to the states at t = Ts. If at this stage there are two (or more) branches merging
into a state, retain only the one with the largest branch metric and call the metric the
state metric (also called the survivor metric). If only one branch terminates at a state,
then the branch metric becomes the state metric.

(3) Compute the branch metrics for all the trellis branches for the interval [Ts, 2Ts] based
on the received signal r(t) in this interval. Now ADD the branch metric to the state
metric present at the state the branch emanates from, COMPARE the resultant path
metric with all other path metrics at the state at which the branch terminates, and
SELECT the largest path metric to be the state (survivor) metric at this state.

(4) Do Step (3) for all the states at t = 2Ts and then repeat Step (3) for the next signaling
interval [Ts, 2Ts] and so on.

Implicit in the above is that one also retains the survivor paths at each trellis stage. The
number of paths to be saved is equal to the number of trellis states, a much smaller number
than the total number of possible transmitted signals. Besides the branch metric compu-
tation one needs to do an ADD–COMPARE–SELECT operation at each state. Though
in theory one searches the trellis to the end of time or at least to the end of transmission, in
practice one uses a sliding finite block length to make a decision as per the discussion in
Chapter 9.

Having discussed the demodulator for TCM we now consider how one would evaluate
its error performance.

11.1.4 Error performance of TCM

The demodulator just described minimizes the probability of sequence error. As in the
M-ary case in Chapter 8 where we distinguished between symbol error and bit error here
we need to distinguish between sequence error and symbol error. Nonetheless we would



445 11.1 Trellis-coded modulation (TCM)
�

expect (or hope) that a demodulator that minimizes sequence error will also perform well
in regard to symbol error, and eventually in regard to the bit error. There is another, more
subtle, aspect with sequence detection. Consider a demodulator where N →∞, i.e., a
very, very, long sequence. One would expect that occasionally the demodulator might stray
from the correct trellis path. However, the demodulated sequence would agree with the
transmitted sequence in a large number of places, indeed an overwhelming majority of
places. This implies that though the probability of sequence error is 1 the meaningful error
probability is quite small.

So what is a meaningful error probability? One that allows us to make an analysis and
is a useful measure of performance. To obtain an error analysis that is useful we need
to look at the concept of what is called an error event. An error event occurs when the
demodulated path deviates from the correct (transmitted) path and then rejoins it later.
Figure 11.21 illustrates it.

In an error event the symbols between the correct path and the error event disagree at the
first step. Within the error event there is some chance that the symbols might agree with
those of the correct path but in general they disagree. Even correct symbols within the error
event are typically not that useful. The result of all this is that the probability of an error
event is, in general, a more useful way to describe the error performance of TCM than the
symbol or sequence error. However, even to compute the probability of an error event is
difficult, somewhat analogously to the M-ary case. What is presented are bounds on the
event error probability. They indicate what parameter(s) are important in TCM design. In
the final analysis one resorts to simulation to determine the error performance of a designed
TCM scheme.

Correct path (solid)

Error event (dashed)

�Fig. 11.21 Illustration of an error event.
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The first bound we establish is a lower bound. Observe that an error event is actually
part of the correct signal path through the trellis. It lies at Euclidean distance d from the
correct signal path and since an AWGN channel is considered, the probability of this error
event is Q (d/2σ), where σ 2 = N0/2 is the two-sided PSD of white Gaussian noise. The
lower bound follows immediately:

P[error event] ≥ Q

(
dmin

2σ

)
, (11.14)

where dmin is the minimum distance between two signal paths. Though correct as a lower
bound, and better than 0, (11.14) is not that tight a lower bound. However, based on it
one can get an approximate lower bound that is reasonable. Observe that if the correct
path has Ndmin neighbors at distance dmin and if the decision regions for these neighbors
have minimal intersection with respect to the probability density centered at the correct
signal, then

P[error event] � NdminQ

(
dmin

2σ

)
. (11.15)

To get an upper bound we use the pairwise union bound approach where the correct path
is compared with every other path starting at the state and containing a (single) error event.
Comparing all these error event paths in turn with the correct path we have:

P[error event] ≤
∑

all single error
event paths

Q

(
d(correct path, error event path)

2σ

)
. (11.16)

Grouping the error event paths into sets where the paths in a set are each at a common
distance di from the correct path with Ndi paths in the set we have:

P[error event] ≤
∞∑

i=0

NdiQ

(
di

2σ

)
, (11.17)

where the indexing is such that d0 = dmin < d1 < d2 < d3 < · · · . Rewrite (11.17) as

P[error event] ≤ NdminQ

(
dmin

2σ

)
+

∞∑
i=1

NdiQ

(
di

2σ

)
. (11.18)

Note that Q(·) is a function that decreases rapidly with its argument, particularly in the
“waterfall” region – the region the system typically operates in. Therefore the first term
in (11.18) is the dominant one. Ignoring the second term with respect to the first one6 an
approximate upper bound is:

P[error event] � NdminQ

(
dmin

2σ

)
. (11.19)

6 Care should be exercised here. Though the terms are small, there are many of them and discarding them may
not be appropriate, i.e., the argument is not that rigorous mathematically. However, simulations show it is
reasonable.
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Accepting the approximations to the lower and upper bounds we conclude that

P[error event] ≈ NdminQ

(
dmin

2σ

)
. (11.20)

The above expression clearly shows that maximizing dmin, the minimum Euclidean dis-
tance between any two allowable signal sequences (paths), is the main objective in the
design of a good TCM scheme. This is precisely what Ungerboeck’s design rules try to
achieve.

The above analysis of error events was carried out by taking an arbitrary path through
the trellis as a correct (reference) path. If the reference path changes, then the set of param-
eters {di, Ndi}∞i=0 in (11.17) also changes in general. This fact can be taken into account by
viewing Ndi as the average number of paths at distance di from some reference path. This
means that the parameter Ndmin in (11.20) need not be an integer. One method to determine
{di, Ndi}∞i=0 in general and {dmin, Ndmin} in particular is to work with the “transfer function”
of the TCM encoder, but this is quite complicated and beyond the scope of this book.

For the four-state 8-PSK/TCM presented earlier, it can be shown that Ndmin = 1.
Since dmin = 2 when Es is normalized to 1, it follows that dmin = 2

√
Es = √8Eb,

where Eb = Es/2 is the average transmitted energy per information bit. Substituting
this and σ = √N0/2 into (11.20) gives P[error event] ≈ Q(2

√
Eb/N0). Similarly, the 8-

state 8-PSK/TCM has Ndmin = 2 and dmin =
√

(6−√2)Eb, which yields P[error event] ≈
2Q(
√

6−√2
√

Eb/N0). These error event probabilities are plotted in Figure 11.22 together
with the probability of bit error, obtained by computer simulation, for each 8-PSK/TCM
scheme. Also shown in this figure is the probability of bit error of Gray-mapped QPSK,
which is Q

(√
2Eb/N0

)
. Observe that the probability of an error event is lower than the

probability of bit error in low to medium SNR regions, but the two probabilities are very
close at high SNR. This clearly shows the usefulness of adopting P[error event] and dmin in
the design of TCM. The simulation results in Figure 11.22 also confirm the power savings
(or coding gains) of 3.0 and 3.6 decibels at the high SNR region (Eb/N0 ≥ 7.0 decibels)
achieved by the four-state and eight-state 8-PSK/TCM over the uncoded QPSK, respec-
tively. It should be pointed out, however, that the two TCM schemes perform worse than
QPSK in the low SNR region. This is due to the fact that there are typically many more
sequences at the distance dmin and also at other distances which are close to dmin in TCM
than in the reference uncoded scheme. In the low SNR region, errors often occur not only
because of the sequences at dmin away from the correct sequence, but also because of the
sequences at larger distances.

11.1.5 Differential TCM for rotational invariance

The signals constellations of TCM are invariably I/Q signals, i.e.,
√

2/Ts cos(2π fct) and√
2/Ts sin(2π fct) are the basis set. As discussed in the next chapter on synchronization, the

synchronizer for QAM signals typically may have a phase ambiguity that is a multiple of
π/2 radians. Therefore, as in Chapter 10, where differential modulation was used to make
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�Fig. 11.22 Performance comparison between 8-PSK/TCM and uncoded QPSK.

phase ambiguities of this type transparent, one can pose the question of whether this is
possible for TCM. The answer is yes, but not for all TCM signal constellations or formats.
Since an encompassing general approach is not available we illustrate the ideas behind
differential TCM by specific examples.

Consider the TCM scheme of Figure 11.2 repeated here in Figure 11.23(b) along with the
signal constellation and signal subsets or cosets.7 Note that the uncoded bit selects which
signal is transmitted from the chosen coset and that each coset looks the same if rotated
by π radians. This suggests that if we differentially encode the uncoded bit as shown in
Figure 11.23(b) the resultant TCM signal and demodulation will be transparent to any
phase ambiguity of π radians. Further, the demodulator is as shown in Figure 11.23(c).
First the trellis is demodulated, typically using the Viterbi algorithm, to produce {b̂(2)

k , d̂k},
and then {d̂k} is passed through the inverse of the differential encoding operation to
obtain {b̂(1)

k }.
To obtain a feel for how the modulator/demodulator works let us consider a specific

information input sequence and the different signals both with and without an ambiguity
of π radians. The (partial) trellis is shown in Figure 11.24, while Table 11.2 shows the
different sequences. Only the demodulated b̂(1)

k bit is shown since a π shift does not affect
which sequence of cosets is chosen by the demodulator. The table shows the effect of a
phase shift occurring both at the beginning and also in the middle of transmission. Also
shown for illustrative purposes is the effect of a π/2 phase shift (occurring at the beginning
of the transmission). Note that we assume no AWGN since the objective is to show that a
phase shift of π still results in a valid demodulated sequence (or transmitted sequence for

7 We shall use the terminology “subsets” and “cosets” interchangeably in this section.
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�Fig. 11.24 The trellis diagram of the differential TCM in Figure 11.23(b).

that matter). Not only is the demodulated sequence valid but, except for errors where the
phase shift occurs, the sequence is correct. The errors just after a phase shift are due to the
memory of the differential coder. As seen from the last row of the table a π/2 phase shift
results in an invalid sequence and many errors.

However, as stated in the opening paragraph of this subsection, it is of greater impor-
tance to have rotational invariance to kπ/2 phase rotations, k integer. To achieve this one
must go to signal constellations where the cosets are invariant under a rotation of kπ/2
radians. Figure 11.25(a) shows a 16-PSK constellation partitioned into four QPSK subsets.
Each is invariant to a kπ/2 phase shift and therefore there is a potential to design a kπ/2
rotationally invariant TCM using it. Observing the factor of 2 signal expansion guideline
means that we shall map three information bits to the signal constellation. Two of these
information bits will select the signals within a subset which means they are uncoded.
However, to achieve rotational invariance they are differentially encoded. This differential
encoder is the standard one found for any QAM constellation that lends itself to differential
encoding (see Problem 10.12). The remaining information bit selects the subset and since
there are four of them it is mapped through a shift register (or a convolutional encoder) to
produce two coded bits. The shift register, as always, determines the trellis. Block dia-
grams of the modulator and demodulator are shown in Figures 11.25(b) and 11.25(c),
respectively.

An excellent example of a TCM that is kπ/2 rotationally invariant is the one found in
the V.32 modem.8 It is based on a 32-QAM signal constellation which is partitioned into
eight cosets of four signals each. This means that four information bits are mapped to one

8 V.32 modem standard is for digital transmission over dial-up telephone lines. It offers a maximum transmission
rate of 9600 bits/second.
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A differential TCM scheme with 16-PSK for kπ/2 rotational invariance: (a) signal constellation and
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the rotated constellation into eight subsets.



454 Advanced modulation techniques
�

of 32 signal points. Two of these information bits choose a signal point within a coset and
are uncoded. The other two bits select one of the eight cosets which means they are mapped
by a subset selector to three coded bits. Note that the term “subset selector” is used. This is
because it is not the standard linear shift register circuit we have seen till now but a nonlin-
ear logic circuit (because it contains AND gates). It has three memory cells and therefore a
state diagram of eight states and a corresponding trellis. Another difference is that it is the
coded information bits that are differentially encoded. This is because it is the cosets that
display a rotational invariance, not the signals within the coset. We now proceed to give
a more detailed, but still very brief, description of the modulator/demodulator. Detailed
explanations can be found in [7–9].

We start with the 32-QAM master constellation, which is the cross 32-QAM (Fig-
ure 11.26(a)), also known as the 32-CROSS constellation. It is then rotated by 45
degrees to yield the constellation in Figure 11.26(b). This constellation is partitioned
into eight subsets, Figure 11.26(c). Note that subsets {C1, C4, C5, C8} are kπ/2 rotation-
ally invariant within themselves as are subsets {C2, C3, C6, C7}. A block diagram of the
modulator is shown in Figure 11.27(a). The trellis of the subset selector is given in
Figure 11.28 along with the corresponding subset mapping. Note that the sequence of
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�Fig. 11.27
Block diagrams of: (a) the modulator (or encoder), and (b) the demodulator (or decoder)
for V.32 differential TCM.



455 11.2 Code-division multiple access (CDMA)
�

Input c(3)
k c(4)

k

State 00 01 10 11

000 000 010 100 110

[C1] [C3] [C5] [C7]

001 001 011 101 111

[C2] [C4] [C6] [C8]

010 000 010 100 110

[C1] [C3] [C5] [C7]

011 001 011 101 111

[C2] [C4] [C6] [C8]

100 000 010 100 110

[C1] [C3] [C5] [C7]

101 001 011 101 111

[C2] [C4] [C6] [C8]

110 000 010 100 110

[C1] [C3] [C5] [C7]

111 001 011 101 111

[C2] [C4] [C6] [C8]

000

αβγ

010

001

011

100

110

101

111

C1,C7,C3,C5

C2,C6,C8,C4

C7,C1,C5,C3

C4,C8,C6,C2

C3,C5,C1,C7

C8,C4,C2,C6

C5,C3,C7,C1

C6,C2,C4,C8

�Fig. 11.28
Trellis diagram of V.32 differential TCM. The table on the left shows the “coded” bits c(3)

k c(4)
k used to

select the coset, which is written in the squared brackets underneath.

subsets (or cosets) that appears next to each trellis state applies to the branches, either
coming from or going into that state, from top to bottom. Figure 11.29 shows the map-
ping of the bits to the signal constellation points. Finally, Figure 11.27(b) shows in block
diagram form the demodulator.9

11.2 Code-division multiple access (CDMA)

“You can fool some of the people all of the time, all of the people some of the time, but
you cannot fool all of the people all of the time.” This quotation is attributed to Abraham
Lincoln, sixteenth president of the USA and arguably its greatest. In the context of com-
munication engineering the appropriate statement is: You can use some of the bandwidth

9 It should be pointed out that the V.33 standard uses the same code as the V.32 standard, along with four uncoded
bits and a 128-CROSS constellation. Its maximum data rate with full-duplex operation over four-wire leased
lines is 14.4 kilobits/second.
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Signal mapping, c(1)
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k , of the 32-CROSS constellation used in V.32 differential TCM. Note

that the first two bits of a label are the uncoded bits, c(1)
k c(2)

k .

all of the time (FDMA), all of the bandwidth some of the time (TDMA), and you can also
use all of the bandwidth all of the time (CDMA)!

Multiple access schemes can be classified into three broad categories. Perhaps the ear-
liest multiple access scheme was frequency-division multiple access (FDMA) in which
each user is assigned a frequency band. The assigned bands typically do not overlap
and the users transmit their messages simultaneously in time but over disjoint fre-
quency bands. Commercial AM and FM radio, and television are classical examples of
this multiple access scheme as well as the first generation of mobile communications
known as Advanced Mobile Phone System (AMPS).10 In the second generation of mobile
communication as exemplified by the GSM standard,11 time-division multiple access
(TDMA) is used. Users now occupy the same frequency band simultaneously but send
their messages in different time slots, i.e., they are disjoint in time.

10 AMPS is the analog mobile phone system standard developed by Bell Labs., and officially intro-
duced in the Americas in 1983. It was the primary analog mobile phone system in North America
through the 1980s and into the 2000s, and is still widely available today (see http://en.wikipedia.org/
wiki/Advanced_Mobile_Phone_System).

11 The abbreviation “GSM” originally came from the French phrase Groupe Spécial Mobile. It is also interpreted
as the abbreviation for “Global System for Mobile communications.”
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CDMA is different from the above in that users now occupy the same frequency band
and transmit/receive simultaneously in time. Different users are separated or distinguished
by distinct codes assigned to them. CDMA relies on a technique called spread spectrum.
As the terminology suggests the spectrum of a user’s message is spread to occupy a much
wider frequency band than necessary for the given user’s signaling rate. As such the mod-
ulation philosophy is different from that encountered thus far where the emphasis was
on developing spectrally efficient modulation methods. Historically spread spectrum arose
from attempts by the military to mitigate attempts by hostile forces to jam (interfere with),
disrupt, or intercept communications. Now, however, it has been incorporated into civilian
applications and the so-called third (and beyond) generations of mobile communications
have adopted CDMA as the multiple access scheme. Since the terminology from this initial
application of spread spectrum and many of the concepts has carried over to CDMA, the
spread spectrum concept is discussed next.

11.2.1 Spread spectrum

Consider a user sending a signal using binary NRZ-L modulation at baseband and signaling
rate rb = 1/Tb bits/second, as illustrated in Figure 11.30. The modulator output, m(t), is
multiplied by another NRZ-L signal, c(t), but one of a much higher rate as shown in the
figure. This signal is the coding part of the process and its clock period is Tc seconds, where
Tc � Tb and Tb/Tc = N (an integer). Note that the two signals are aligned (synchronized)
in time. The bandwidth of m(t) is on the order of 1/Tb (hertz) while that of c(t) is on the
order of 1/Tc (hertz). Since Tc is much smaller than Tb, then compared to m(t), c(t) is a
wideband signal. The resultant spectrum of the product sT (t) = c(t)m(t) is a convolution of
the two spectra C(f ) and M(f ) and essentially it will occupy a bandwidth that is practically
the same as that of c(t). Further, c(t) is usually considered to be a random sequence of level
changes every Tc seconds; practically it is chosen to be pseudorandom which means that
the sequence is known to the user and at the desired receiver but looks random to everyone
else, in particular to any interfering signal, i(t). The signal c(t) can be written as

c(t) =
N−1∑
n=0

cnp(t − nTc), 0 ≤ t ≤ Tb, (11.21)

where

p(t) =
{

1, 0 ≤ t ≤ Tc

0, elsewhere
. (11.22)

The transmitted signal, sT (t) is sent across the channel as shown in Figure 11.31. The
channel model shows an interfering signal, i(t), added to the transmitted signal. Con-
sider now the received signal, r(t). AWGN, though it may be present, is ignored in this
discussion. At the receiver the user can recover the desired signal by despreading the
received signal as shown in Figure 11.31. It is a modulation identical to that at the trans-
mitter. The output is rout(t) = c(t)r(t) = c2(t)m(t)+ c(t)i(t). But c2(t) = 1 and therefore
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rout(t) = m(t)+ c(t)i(t). The important thing about the above is that m(t) is narrowband. If
the interfering signal, i(t), is chosen to occupy the same band as m(t), multiplication of it by
c(t) spreads its spectrum, i.e., energy, over a wide band in the frequency domain. Following
the product modulator by a lowpass filter whose bandwidth is that of m(t) filters out most
of the interference energy. Normally the lowpass filter is an integrator followed by sampler
and threshold device as shown in Figure 11.31.

The technique described is known as direct-sequence spread spectrum (DSSS). To sum-
marize a pseudorandom spreading code, c(t), is used to directly (in time) spread the
message spectrum so that the transmitted message appears noise-like to any receiver that
does not know c(t). Therefore, if an interfering signal of the same bandwidth as the message
is injected, then at the receiver one simply spreads the interference energy over the wide
bandwidth while simultaneously despreading the desired signal energy into the original
bandwidth. Conceptually this is shown in Figure 11.32.

However, what if the potential interferer knows the spread bandwidth and decides to
place the interfering signal energy over the entire bandwidth occupied by the transmitted
signal? What then are the benefits of spreading? This analysis is given next.

Analysis of benefits of spread spectrum Since for transmission purposes it is nec-
essary to shift the baseband signal spectrum the modulator of Figure 11.30 is changed
to that shown in Figure 11.33. In effect there are two stages of modulation: the signal
spectrum is first spread and then the spread signal undergoes BPSK modulation. The
transmitted output is

sT (t) = m(t)c(t)
√

Eb

√
2

Tb
cos(2π fct), 0 ≤ t ≤ Tb = NTc, (11.23)

where fc = k/Tc, for some integer k � 1. The only impairment that is considered is that
due to the interferer, denoted as i(t) in Figure 11.34.

The demodulator then has two stages of demodulation as shown in Figure 11.34. Though
the two stages can be interchanged usually the received signal is first (de)modulated back
to baseband where a lowpass filter removes the spectral components around 2fc. The output
of the lowpass filter is then despread in the next stage and passed through a matched filter
followed by the threshold device.

The signal space representation of the transmitted signal is straightforward:

sT (t) =
N−1∑
n=0

snφn,I(t), sn = ±
√

Eb
Tc

Tb
(11.24)

and

φn,I(t) =
{√

2
Tb

cos(2π fct), nTc ≤ t ≤ (n+ 1)Tc

0, elsewhere
, n = 0, 1, . . . , N − 1 (11.25)

are a set of orthonormal functions. The transmitted signal therefore lies in an
N-dimensional signal space.
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Consider now the interferer. The only knowledge available to him/her is that the trans-
mitted signal lies in the N-dimensional space. It would seem prudent to place all of the
available power at hand in exactly the same N-dimensional space. To do this the inter-
ferer would have to know the phase of the transmitted signal and even this is not available.
To estimate the phase would require knowledge of the spreading code, c(t) and it is safe to
assume this is not readily available. The interferer therefore has to place the power available
in a 2N-dimensional space, namely that spanned by the orthonormal basis:

⎧⎨⎩
φn,I(t) = √2/Tb cos(2π fct), nTc ≤ t ≤ (n+ 1)Tc

φn,Q(t) = √2/Tb sin(2π fct), nTc ≤ t ≤ (n+ 1)Tc

φn,I(t) = φn,Q(t) = 0, elsewhere
, n = 0, 1, . . . , N − 1. (11.26)

The interfering signal is then represented as

i(t) =
N−1∑
n=0

in,Iφn,I(t)+
N−1∑
n=0

in,Qφn,Q(t), 0 ≤ t ≤ Tb, (11.27)

where {
in,I =

∫ Tb
0 i(t)φn,I(t)dt

in,Q =
∫ Tb

0 i(t)φn,Q(t)dt
, n = 0, 1, . . . , N − 1. (11.28)

The average power of the interference is given by12:

Pi = 1

Tb

∫ Tb

0
i2(t)dt = 1

Tb

[
N−1∑
n=0

i2n,I +
N−1∑
n=0

i2n,Q

]
(watts). (11.29)

Further, in the absence of phase information, the best strategy for the interferer would be
to place equal power into the inphase and quadrature components, i.e., (1/Tb)

∑N−1
n=0 i2n,I =

12 Here the subscript “i” of Pi refers to “interferer”, not a dummy index as typically used.
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(1/Tb)
∑N−1

n=0 i2n,Q is a reasonable assumption. Therefore the average interfering
power is:

Pi = 2

Tb

N−1∑
n=0

i2n,I (watts). (11.30)

Since the average signal power at the input to the matched filter is Eb/Tb watts, the signal
to interference ratio (SIR), at the input is SIRin = Eb/TbPi.

Though the relevant criterion at the output of the matched filter is bit error probability we
first obtain an expression for the signal to interference ratio at the output, SIRout. The output
due to the despread BPSK signal

√
Eb
√

2/Tb cos(2π fct) is given by sout = ±√Eb (volts).
That due to the interference is given by iout = √2/Tb

∫ Tb
0 c(t)i(t) cos(2π fct)dt. Using the

expression for c(t) given in (11.21) one has

iout =
√

2

Tb

N−1∑
n=0

cn

∫ (n+1)Tc

nTc

i(t) cos(2π fct)dt. (11.31)

Substituting (11.27) into (11.31) gives

iout =
√

2

Tb

N−1∑
n=0

cn

∫ (n+1)Tc

nTc

N−1∑
l=0

il,I

√
2

Tc
cos2(2π fct)dt =

√
Tc

Tb

N−1∑
n=0

cnin,I . (11.32)

To proceed we assume that the coefficients of the spreading sequence, cn, are a set of
statistically independent and i.i.d. equally probable binary random variables. A reason-
able assumption from the point of view of the matched filter. Further, an assumption is
made that the interferer’s coefficients, in,I , though unknown, are fixed. Therefore the output
interference is a random variable

iout =
√

Tc

Tb

N−1∑
n=0

cnin,I . (11.33)

To determine the output interference power, one needs to compute the mean and variance
of iout. The mean value of iout is

E{iout} =
√

Tc

Tb

N−1∑
n=0

E{cn}in,I = 0, (11.34)

since E{cn} = 0. The variance of iout can therefore be computed as

var{iout} = E{i2out} = E

{(√
Tc

Tb

N−1∑
n=0

cnin,I

)(√
Tc

Tb

N−1∑
l=0

clil,I

)}

= Tc

Tb

N−1∑
n=0

N−1∑
l=0

E{cncl}in,I il,I = Tc

Tb

N−1∑
n=0

i2n,I , (11.35)

where we have used the fact that

E{cncl} =
{

1, n = l
0, n 	= l

. (11.36)
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In terms of the average interference power, Pi in (11.30), the average interference power at
the output is

var{iout} = PiTc

2
(watts). (11.37)

Define the output SIR as the ratio of the peak instantaneous output signal power (which
is Eb watts across a 1 ohm resistor) to the interference (average) power, i.e.,

SIRout = 2Eb

PiTc
. (11.38)

From this it follows that
SIRout

SIRin
= 2Eb/(PiTc)

Eb/(PiTb)
= 2Tb

Tc
, (11.39)

which states that the matched filter has improved the signal to noise ratio by a fac-
tor of 2Tb/Tc or in decibels by 10 log10(2Tb/Tc) = 3+ 10 log10(Tb/Tc) decibels. The
3 decibels improvement comes from the fact that the interferer had to put power into a
2N-dimensional space even though the signal lay in only an N-dimensional space, i.e.,
equal power in the inphase and quadrature components of the signal space. The second
term, however, is due to the spreading of the spectrum. The ratio Tb/Tc is referred to as the
processing gain, G. Obviously G = Tb/Tc = N, i.e., the processing gain is directly related
to the bandwidth expansion factor N. The parameter N is also commonly referred to as the
spreading factor.

To complete the discussion on spread spectrum consider the probability of bit error of
the system. For this the pdf of the interfering term at the output, iout, is needed. The usual
approximation that is made is to invoke the central limit theorem, since iout is the sum
of many (here N) i.i.d. random variables and to approximate its probability density as a
Gaussian density whose mean and variance have been determined already.

The probability of bit error is then given by

P[bit error] = Q

(√
Eb

var{iout}

)
. (11.40)

The argument of the Q-function can be manipulated to bring the processing gain explicitly
into the bit error probability expression as follows:

P[bit error] = Q

(√
2Eb

PiTc

)
= Q

(√
2Eb

TbPi

Tb

Tc

)
= Q

(√
2G

Pb

Pi

)
, (11.41)

where Pb = Eb/Tb is the average power (watts) per bit, G the processing gain, and Pi the
interferer’s average power. Note that if the interference is well modeled as Gaussian, then
the demodulator is the optimum one (assuming as usual that the bits are equally probable).

With this as background, attention is turned to CDMA. As mentioned CDMA relies on
the concept of spread spectrum with some major differences. The two major differences
are that in CDMA there is no deliberate interference as such and that there is more than
one user.
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11.2.2 CDMA

Figure 11.35 shows a block diagram of a typical CDMA transmitter at the base station. The
station relays (transmits) K message signals simultaneously in time and frequency to the
users. Each user’s bit is spread by a distinct signature waveform, c(k)(t), with the spreading

…
…

Code
generator

#1

User #1
(rate 1/Tb)

2
cos(2π fct)Eb Tb

NRZ-L
modulator (±1)

NRZ-L
modulator (±1)

User #1

m1(t)

c(1)(t)

s(1)(t)

(c0    ,c1   ,...,cN–1)
(1) (1) (1)

T

Code
generator

#k

User #k
(rate 1/Tb)

2
cos(2π fct)Eb Tb

NRZ-L
modulator (±1)

NRZ-L
modulator (±1)

User #k

mk(t)

c(k)(t)(c0    ,c1   ,...,cN–1)
(k) (k) (k)

s(k)(t)
T

mK(t)

c(K)(t)

NRZ-L
modulator (±1)

(c0    ,c1   ,...,cN–1)
(K) (K) (K)

s(K)(t)
T

Code
generator

#K

User #K
(rate 1/Tb)

User #K

NRZ-L
modulator (±1)

2
cos(2π fct)Eb Tb

�Fig. 11.35 CDMA transmitter with K users.
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sequences,13 c(k)
0 , c(k)

1 , . . . , c(k)
N−1, k = 1, . . . , K, chosen so that the signature waveforms are

orthogonal, at least ideally, i.e.,∫ Tb

0
c(k)(t)c(j)(t)dt = 0, k 	= j. (11.42)

In essence each user is given an orthogonal axis to play around in.
The kth user receives the entire transmitted signal and proceeds to demodulate the

desired message as shown in Figure 11.36. The signals in the time interval [0, Tb] at
the various points of the demodulator are as follows. The received signal r(t) at carrier
frequency fc is

r(t) =
K∑

j=1

c(j)(t)mj(t)
√

Eb

√
2

Tb
cos(2π fct)+ w(t), 0 ≤ t ≤ Tb, (11.43)

where w(t) is the usual thermal noise modeled as white Gaussian noise, zero-mean, spectral
strength, N0/2 watts/hertz.

After the double frequency filter the baseband signal is

rBB(t) =
√

Eb

Tb

K∑
j=1

c(j)(t)mj(t)+ wBB(t), 0 ≤ t ≤ Tb, (11.44)

where wBB(t) is baseband noise. The signal rBB(t) is now despread by c(k)(t). The output
of the despreading operation is

rDS(t) =
√

Eb

Tb

K∑
j=1

c(k)(t)c(j)(t)mj(t)+ c(k)(t)wBB(t), 0 ≤ t ≤ Tb. (11.45)
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( )MF = ± 0b bT E +r w
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�Fig. 11.36 CDMA demodulator for the kth user.

13 Note the meanings of the superscript and subscript: For each element c(k)
j of the spreading sequence, the

superscript indexes the user, while the subscript indexes the position of the element in the sequence.
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The output of the integrator and sampler is

rMF(Tb) =
√

Eb

Tb

K∑
j=1

∫ Tb

0
c(k)(t)c(j)(t)mj(t)dt +

∫ Tb

0
c(k)(t)wBB(t)dt. (11.46)

However, mj(t) = ±1 for any of the users. Using this and the fact that c(j)(t) and c(k)(t) are
orthogonal gives

rMF(Tb) = ±√Eb

Tb

∫ Tb

0

[
c(k)(t)

]2
dt + w0 = ±

√
Eb + w0, (11.47)

where w0 is Gaussian, zero-mean, variance N0/2 watts and the signal component is+√Eb

if user k transmitted bit 1 and −√Eb if she transmitted bit 0 (over the interval 0 ≤ t ≤ Tb).
The bit error probability is given by the usual expression for equally probable, binary,

antipodal signaling. That is,

P[bit error]user k = Q

(√
2Eb

N0

)
. (11.48)

The error probability for all the other users is the same, where it is assumed that each user
is expending and receiving the same energy per bit which is not necessarily always, if ever,
the case.

From the above one sees that the users who occupy the same bandwidth and same time
are transparent to each other. This transparency is a result of the signature waveforms
being chosen to be orthogonal over Tb seconds. One possible set of orthogonal waveforms
can be generated using what are called the Walsh–Hadamard sequences.

Walsh–Hadamard sequences Walsh–Hadamard sequences can be generated for most inte-
ger values of N but here only the case N = 2n is discussed. They are constructed iteratively
starting with n = 1 or N = 2. Then the two orthogonal signature waveforms are the first two

waveforms shown in Figure 11.37. The corresponding spreading sequences are −→c (1) =
[

1
1

]

and −→c (2) =
[

1
−1

]
, or in matrix notation H2 =

[
1 1
1 −1

]
. The matrix H2 is then used to get

the spreading sequences for N = 4 as follows:

H4 =
[

H2 H2
−H2 H2

]
=

−→c (1) −→c (2) −→c (3) −→c (4)

↓ ↓ ↓ ↓⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

← c(k)
0

1 −1 1 1 ← c(k)
1

−1 −1 1 1 ← c(k)
2

−1 1 1 −1 ← c(k)
3

(11.49)
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It is relatively easy to determine that the four sequences generate orthogonal signature
waveforms. The construction procedure is then iterated to give

H8 =
[

H4 H4
−H4 H4

]
, H16 =

[
H8 H8

−H8 H8

]
, H32 =

[
H16 H16

−H16 H16

]
, . . . . (11.50)

In general,

H2N =
[

HN HN
−HN HN

]
. (11.51)

The above demodulator’s performance is based on the signature waveforms being
orthogonal. This is the case if: (i) the spreading sequences are chosen such that the
{c(k)(t)}Kk=1 are orthogonal, and (ii) the received signals are time aligned, i.e., perfect syn-
chronization is established. Both conditions are difficult to achieve in practice. For the first
this is because one can have only so many orthogonal signals in a bandwidth W ≈ 1/Tc

and time duration Tb = NTc. Therefore if more users than this are to be accommodated
then one is forced to choose {c(k)(t)}Kk=1 that are nonorthogonal. The second condition
can be reasonably achieved in the downlink of a wireless system but not at all in the
uplink. CDMA is typically used in a cellular environment where a base station serves
many users in a geographical area (cell). Downlink is transmission from the base station
to the users while uplink is the reverse, transmission from the users to the base station (see
Figure 11.38).
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�Fig. 11.37 Walsh–Hadamard signature waveforms, N = 8.
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�Fig. 11.38 (a) Downlink and (b) uplink transmissions.

Assume that the multipath delays are not significant so that the signal received by
any user from the base station is time synchronized with regard to the signature wave-
forms, {c(k)(t)}Kk=1. Therefore Walsh–Hadamard sequences can be used at the base station
to achieve orthogonality. However, in the uplink it is unreasonable, if not impossible, to
expect the user signals to be time coordinated.

To see the effect of this, let the transmitted signals from the K users arrive at the base
station at different times, i.e., they experience different delays 0 ≤ τj ≤ Tb, j = 1, 2, . . . , K.
Since the users are at different geographical locations, their local oscillators typically have
different phases, θj, j = 1, 2, . . . , K. Furthermore, let b(j)

i ∈ {±1} denote the information
bit of the jth user transmitted in the interval iTb ≤ t ≤ (i+ 1)Tb. The received signal, over
−∞ ≤ t ≤ ∞, is

r(t) =
K∑

j=1

∞∑
i=−∞

b(j)
i c(j)(t − iTb − τj)

√
Eb

√
2

Tb
cos(2π fc(t − τj)+ θj)+ w(t)

=
K∑

j=1

∞∑
i=−∞

b(j)
i c(j)(t − iTb − τj)

√
Eb

√
2

Tb
cos(2π fct + ϕj)+ w(t),

(11.52)

where ϕj = θj − 2π fcτj. Consider the detection of the first information bit of the kth user,

namely b(k)
0 . It is assumed that the base station can track the kth user’s delay and phase

shift. With this assumption, one can set τk = 0 and ϕk = 0 and the other users’ delays and
phase shifts are interpreted relative to that of the kth user.
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Now, the baseband signal is

rBB(t) =
√

Eb

Tb

K∑
j=1

∞∑
i=−∞

b(j)
i c(j)(t − iTb − τj) cos(ϕj)+ wBB(t) (11.53)

and the despread signal is rDS(t) = rBB(t)c(k)(t). The output of the integrator and sampler is

rMF(Tb) =
√

Eb

Tb

K∑
j=1

∫ Tb

0

∞∑
i=−∞

b(j)
i c(j)(t − iTb − τj)c

(k)(t) cos(ϕj)dt + w0

= b(k)
0

√
Eb +

√
Eb

Tb

K∑
j = 1
j 	= k

[ ∫ τj

0
b(j)
−1c(j)(t + Tb − τj)c

(k)(t)dt

+
∫ Tb

τj

b(j)
0 c(j)(t − τj)c

(k)(t)dt

]
cos(ϕj)+ w0

= b(k)
0

√
Eb +

√
Eb

K∑
j = 1
j 	= k

[
b(j)
−1R̂kj(τj)+ b(j)

0 R̃kj(τj)

]
cos(ϕj)+ w0.

(11.54)

The functions

R̂kj(τj) = 1

Tb

∫ τj

0
c(k)(t)c(j)(t + Tb − τj)dt, (11.55)

R̃kj(τj) = 1

Tb

∫ Tb

τj

c(k)(t)c(j)(t − τj)dt (11.56)

are the partial crosscorrelations between the signature waveforms c(j)(t) and c(k)(t). Note
that both correlations are time correlations.

The middle term of (11.54) is interference from the other users and is usually called
multiple access interference or MAI. It depends on the crosscorrelation properties of the
signature waveforms.

To simplify the study of correlation properties of the signature waveforms, let us extend
each signature waveform toward±∞ by simply repeating it every Tb. In essence, this gives
the following periodic signature waveforms:

c(j)
P (t) =

∞∑
n=−∞

c(j)
n p(t − nTc), c(j)

n = c(j)
n+N , j = 1, 2, . . . , K. (11.57)

Further, define the full correlation between c(k)
P (t) and c(j)

P (t) as

Rkj(τ ) = 1

Tb

∫ Tb

0
c(k)

P (t)c(j)
P (t − τj)dt, 0 ≤ τ ≤ Tb. (11.58)

Note that Rkj(τ ) is also a periodic function of period Tb. Ideally the spreading sequences
are ones where the time correlations satisfy
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∫ Tb

0
c(k)

P (t)c(j)
P (t − τ )dt = 0 (or ≈ 0), j 	= k, (11.59)∫ Tb

0
c(k)

P (t)c(k)
P (t − τ )dt = 0 (or ≈ 0), τ 	= 0. (11.60)

The first condition eliminates or minimizes MAI while the second condition minimizes a
number of channel effects such as a delayed multipath component interfering with an LOS
signal. Unfortunately signature waveforms generated by Walsh–Hadamard sequences are
poor in this regard since the crosscorrelation has large peaks in it.

One approach to achieve orthogonality, particularly for crosscorrelation, is to generate
the spreading sequences as follows. Assume for the moment there are only two users, your
friend and yourself. Each of you has a fair coin and each proceeds to flip the coin every Tc

seconds to produce two sequences
{

c(1)
n

}N−1

n=0
and

{
c(2)

n

}N−1

n=0
with heads mapped to 1 and

tails to 0. The corresponding periodic spreading waveforms are

c(1)
P (t) =

∞∑
n=−∞

c(1)
n g(t − kTc), (11.61a)

c(2)
P (t) =

∞∑
n=−∞

c(2)
n g(t − kTc), (11.61b)

where g(t) is a pulse waveform (or the chip waveform). Though we have chosen it to be
the output of an NRZ-L modulator, other pulse shapes have been investigated. The NRZ-L
waveform (where g(t) = p(t) as defined in (11.22)), however, is the simplest and the one
most practical. Therefore in the ensuing discussion we shall stay with it.

Now it is reasonable to assume that: (i) the coin tosses are statistically independent of
each other, (ii) individual coin flips are statistically independent. In other words, the two
sequences are i.i.d. sequences. The correlation properties of the spreading signals are as
follows.

(1) Crosscorrelation

R12(τ ) = E
{

c(1)
P (t)c(2)

P (t − τ )
}

= E

⎧⎨⎩
∞∑

n=−∞
c(1)

n g(t − nTc)
∞∑

l=−∞
c(2)

l g(t − lTc − τ )

⎫⎬⎭
=

∞∑
n=−∞

∞∑
l=−∞

E
{

c(1)
n c(2)

l

}
g(t − nTc)g(t − lTc − τ ). (11.62)

However, E
{

c(1)
n c(2)

l

}
= 0 for all n, l. Therefore R12(τ ) = 0 for all τ .

(2) Autocorrelation The autocorrelation can be determined from (11.62) by making the

superscript for both c(1)
n and c(2)

l equal to j, where j = 1, 2. Since E
{

c(j)
n c(j)

l

}
= 0 if

n 	= l and E
{

c(j)
n c(j)

l

}
= 1 if n = l, it follows that
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Rjj(t, t − τ ) = E
{

c(j)
P (t)c(j)

P (t − τ )
}

=
∞∑

n=−∞
g(t − nTc)g(t − lTc − τ ). (11.63)

The above autocorrelation depends on t, which tells us that the c(j)
P (t) is a nonstationary

process, a consequence of the fact that c(1)
P (t) is a periodic signal. By averaging over

time, it can be shown that (see the derivation in Section 11.2.4):

Rjj(τ ) = 1

Tb

∫ Tb

0
Rjj(t, t − τ )dt

=
{

1−
(

1+ 1
N

) |τ |
Tc

, |τ | ≤ Tc,

− 1
N , |τ | > Tc,

, for |τ | < (N − 1)Tc. (11.64)

Moreover, since the spreading waveform is periodic with period Tb = NTc, Rjj(τ ) is
also periodic with the same period. Figure 11.39 plots the above autocorrelation.

Though only two users were considered above, the results hold for K users. One simply
reaches into one’s pocket and produces another K − 2 pennies. The correlation properties
of spreading signals produced by coin flipping, though ideal, suffer from two disadvan-
tages. One is that the receiver needs to know the spreading sequence in order to despread
the received signal. This could be overcome by having the coin flip occur ahead of trans-
mission, telling the user what the spreading sequence is; the user would then store it for
future use. This leads to the second disadvantage. In practice, the spreading waveform,
c(j)(t), of the jth user need not be the same over every bit interval of Tb. Instead it can be
a segment of duration Tb of the periodic waveform c(j)

P (t). The periodic waveform itself
corresponds to a periodic sequence whose period NP is on the order of 220–240. Storing
such a long c(j)

P (t) is prohibitive even if the practical fact of executing 220 coin flips is over-

looked. A deterministic method of generating one period of c(j)
P (t) is therefore needed. This

can be done by a simple shift register circuit with feedback. It generates what is called a
pseudorandom sequence, the subject we discuss next.

0

Tc–Tc τ
–NTc NTc

1

Rjj(τ)

1

N
−

�Fig. 11.39 Autocorrelation of the random spreading signal.



472 Advanced modulation techniques
�

g1 g2

…

…

gm

cn cn–1 cn–2 cn–m
1z− 1z− 1z− ( )C z−1

�Fig. 11.40 Pseudorandom sequence generator.

11.2.3 Pseudorandom sequences: generation and properties

Pseudorandom sequences are in essence deterministic sequences but possess properties
that make them appear to be random. The three key random properties that they should
possess are [10]:

(1) The relative frequencies of 0 and 1 should be 1/2, i.e., P[0] = P[1] = 1/2.
(2) Each sequence should have the same run lengths of ones and zeros that one

expects from a random sequence where half of all run lengths are unity, 1/4 are
of length 2, 1/8 of length 3, 1/2n are of length n, i.e., P[n consecutive zeros] =
P[n consecutive ones] = 1/2n.

(3) If an i.i.d. binary sequence is shifted by any nonzero number of indices, the shifted
sequence has an equal number of agreements and disagreements with the original
sequence. So should the pseudorandom sequence.

Sequences with these properties are generated by the linear binary shift register circuit
of Figure 11.40. A word about terminology is in order. The delay element is depicted by
z−1 to emphasize that z-transform concepts will be used subsequently. z-transform is a nat-
ural choice since the circuit is linear, time-invariant, and discrete. However, the algebra
that the circuit performs is Boolean algebra or what is formally known as Galois field 2,
GF(2). A common notation for the delay element is D (for delay); X is also used with the
connotation that polynomial addition and multiplication are being performed. Regardless
of the symbol the algebra is still GF(2).

Galois fields Galois fields are algebraic structures in which the number of elements is finite
and the operations of addition/subtraction, multiplication/division are well defined. Well
defined in the sense that they satisfy basic properties such as: (i) closure – operation on
any two elements results in another element of the set; (ii) associativity – one can group
elements and perform the operations in any order; (iii) inverse – each element has an inverse;
(iv) commutativity – the operations commute. Galois fields exist only for sets that have a
prime number of elements or when the number of elements is equal to the prime raised to
some integer power. GF(2) has the following addition and multiplication tables



473 11.2 Code-division multiple access (CDMA)
�

⊕ 0 1

0 0 1
1 1 0

⊗ 0 1

0 0 0
1 0 1

in which ⊕ can be recognized as an exclusive-or operation.

We now determine the response of the system to a set of nonzero initial conditions. From
the circuit the following difference equation is easily written:

cn = g1cn−1 + g2cn−2 + · · · + gmcn−m =
m∑

i=1

gicn−i. (11.65)

Further the output sequence for n ≥ 0 has the z-transform

C
(

z−1
)
=

∞∑
n=0

cnz−n. (11.66)

Substituting (11.65) into (11.66) gives

C
(

z−1
)
=

∞∑
n=0

[
m∑

i=1

gicn−i

]
z−n =

m∑
i=1

giz
−i

[ ∞∑
n=0

cn−iz
−n+i

]

l=n−i=
m∑

i=1

giz
−i

⎡⎣ ∞∑
l=−i

clz
−l

⎤⎦

=
m∑

i=1

giz
−i

⎡⎢⎢⎢⎢⎢⎣c−iz
i + · · · + c−1z1︸ ︷︷ ︸
initial condition

+
∞∑

l=0

clz
−l

︸ ︷︷ ︸
C(z−1)

⎤⎥⎥⎥⎥⎥⎦ . (11.67)

Therefore C
(
z−1
) [

1−∑m
i=1 giz−i

] =∑m
i=1 giz−i

(
c−izi + · · · + c−1z1

)
. Equivalently

C
(

z−1
)
=
∑m

i=1 giz−i
(
c−izi + · · · + c−1z1

)
1−∑m

i=1 giz−i
�

Cini
(
z−1
)

f
(
z−1
) , (11.68)

where the feedback polynomial f
(
z−1
) = 1−∑m

i=1 giz−i = 1+∑m
i=1 giz−i depends only

on the tap gains {gi}mi=1 and is known as the characteristic polynomial of the shift regis-
ter sequence generator, Cini

(
z−1
)

depends on the contents (initial condition) of the shift
register when we start the clock (at n = 0).

We now establish the following property of the output sequence. It is periodic with a
period that is less than 2m − 1. The all-zero initial condition vector is excluded since if this
is the case the output is always zero. Consider then any nonzero initial condition vector.
As the clock ticks the shift register moves from one state to another. When it reaches
a particular state that it has been in previously, then the output will repeat itself. Since
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the maximum number of nonzero states is 2m − 1, the shift register must find itself in a
previous state within this number of clock periods. The case of interest is when the period
is exactly 2m − 1, i.e., it is of maximum length. Sequences with this period are also called
m-sequences.

The period of the sequence is determined by the feedback polynomial. We now show
that if the polynomial can be factored (keep in mind that the factorization must take place
in GF(2)), then it cannot produce an m-sequence. The proof is by contradiction and the
reasoning is as follows. Assume f

(
z−1
)

is a polynomial that produces an m-sequence.
Take as an initial vector Cini

(
z−1
) = 1 = [1000 . . . 00]. There is no loss of generality

since if C
(
z−1
)

is the maximum length every nonzero vector will be at some time in the
shift register and can be considered to be an initial condition vector. Now let f

(
z−1
)

be
factorable, i.e., f

(
z−1
) = f1

(
z−1
) · f2

(
z−1
)
, where f1

(
z−1
)

is of degree m1, f2
(
z−1
)

is of
degree m2, m1 + m2 = m. Then

C
(

z−1
)
= 1

f1
(
z−1
) · f2

(
z−1
) partial=

fractions

n1
(
z−1
)

f1
(
z−1
) + n2

(
z−1
)

f2
(
z−1
) (11.69)

with period of n1
(
z−1
)
/f1
(
z−1
) ≤ 2m1 − 1 and period of n2

(
z−1
)
/f2
(
z−1
) ≤ 2m2 − 1.

Since the period of C
(
z−1
)

is less than the product of the above two periods (think back to
Fourier series), then

period of C
(

z−1
)
≤ (2m1 − 1

) (
2m2 − 1

)
= 2m − 2m1 − 2m2 + 1 ≤ 2m − 3, (11.70)

which contradicts the fact that the sequence is maximum length. Hence the feedback poly-
nomial, f

(
z−1
)

must be irreducible. However, this is just a necessary condition as the
following counterexample shows.

Consider the irreducible polynomial f
(
z−1
) = 1+ z−1 + z−2 + z−3 + z−4. Since m =

4, the maximum-length sequence is of period 24 − 1 = 15. The polynomial f
(
z−1
)

divides
1− z−5 and straightforward computation for the initial condition of 1,

C
(

z−1
)
= 1

f
(
z−1
) = 1

1+ z−1 + z−2 + z−3 + z−4

= 1+ z−1 + z−5 + z−6 + z−10 + z−11 + · · · , (11.71)

shows that the sequence has period 5. The general statement is: if f
(
z−1
)

divides
(
1− z−p

)
,

then sequence C
(
z−1
)

has period p. The feedback polynomial must not only be irreducible,
it must also be what is called primitive, i.e., the smallest value of p is 2m − 1. Fortunately,
primitive polynomials exist for every length m and just as fortunately, though they are not
easy to recognize, mathematicians have found them for us. Table 11.3 gives a list of them.
The list is complete for m ≤ 5, but only the polynomial with the smallest number of terms
is listed for each degree m > 5.

We now turn to proving that the sequence generated by a primitive polynomial satisfies
the three properties for it to look like a random sequence.
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Table 11.3 List of primitive polynomials

m

1 1+ z−1

2 1+ z−1 + z−2

3 1+ z−1 + z−3, 1+ z−2 + z−3

4 1+ z−1 + z−4, 1+ z−3 + z−4

5 1+ z−2 + z−5, 1+ z−1 + z−2 + z−3 + z−5,
1+ z−3 + z−5, 1+ z−1 + z−3 + z−4 + z−5,
1+ z−2 + z−3 + z−4 + z−5, 1+ z−1 + z−2 + z−4 + z−5

6 1+ z−1 + z−6

7 1+ z−3 + z−7

8 1+ z−2 + z−3 + z−4 + z−8

9 1+ z−4 + z−9

10 1+ z−3 + z−10

11 1+ z−2 + z−11

12 1+ z−1 + z−4 + z−6 + z−12

13 1+ z−1 + z−3 + z−4 + z−13

14 1+ z−1 + z−6 + z−10 + z−14

15 1+ z−1 + z−15

16 1+ z−1 + z−3 + z−12 + z−16

17 1+ z−3 + z−17

18 1+ z−7 + z−18

19 1+ z−1 + z−2 + z−5 + z−19

20 1+ z−3 + z−20

21 1+ z−2 + z−21

22 1+ z−1 + z−22

23 1+ z−5 + z−23

24 1+ z−1 + z−2 + z−7 + z−24

(1) Relative frequencies of ones and zeros The maximal length shift register cycles
through all the states except the all-zero one. Thus if we look at the output bit it is
equivalent to writing all possible 2m − 1 binary m-tuples, one to a line, and look-
ing at the last column (or any column). If the all-zero m-tuple was included we
would see that exactly half the values are zero and half are one (see Problem 11.11).
Because the all-zero vector is excluded we have 2m−1 ones and 2m−1 − 1 zeros. If
the initial condition vector is chosen randomly, which makes the output random, we
can say

P[0] = 2m−1 − 1

2m − 1
= 1

2

(
1− 1

2m − 1

)
, (11.72)

P[1] = 2m−1

2m − 1
= 1

2

(
1+ 1

2m − 1

)
. (11.73)
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The difference from the ideal situation is 1/(2m − 1) which for m in the range of
20 – 40 is from 10−6 to 10−12.

(2) Runlength property To show that the runlengths are those of a random sequence exam-
ine n+ 2 consecutive shift register cells where n ≤ m− 2. Consider contents that start
and end with either a zero or a one:

0c1c2 · · · cn0 or 1c1c2 · · · cn1.

Of the 2n different bit patterns possible in each case only one will have a runlength of
exactly n; n ones in the first case, n zeros in the second. The total number of sequences
are 2n+1 but only two runlengths of length n. Therefore the fraction of subsequences
that have a runlength of n for 1 ≤ n ≤ m− 2 is 2/2n+1 = 2−n. Now consider runs of
length m− 1. When they occur the shift register contents are either

000 · · · 0︸ ︷︷ ︸
m−1

1 or 111 · · · 1︸ ︷︷ ︸
m−1

0.

Therefore of the 2m−1 possible sequences only one has a runlength of m− 1 zeros and
only one has a runlength of m− 1 ones. Therefore for n ≤ m− 1 the relative frequency
of a runlength of length n is 2−n. Lastly there is only one runlength of length m which
occurs with relative frequency 1/2m−1.

(3) Number of agreements and disagreements with respect to a shifted sequence We
now show that the third condition is also satisfied. Consider a maximum-length
sequence generated by some initial condition vector, say C(1)

ini

(
z−1
)
, i.e., C1

(
z−1
) =

C(1)
ini

(
z−1
)
/f
(
z−1
)
. Now shift the sequence C1

(
z−1
)

by an arbitrary number of indices,
n ≤ 2m − 1. This results in a maximum-length sequence, C2(z−1) that was produced
by a different initial condition vector, i.e., C2

(
z−1
) = C(2)

ini

(
z−1
)
/f
(
z−1
)
. Since the

polynomial operations are linear the sum (modulo 2) of the two sequences is

C1

(
z−1
)
⊕ C2

(
z−1
)
= C(1)

ini

(
z−1
)⊕ C(2)

ini

(
z−1
)

f
(
z−1
) .

But C(1)
ini

(
z−1
)⊕ C(2)

ini

(
z−1
)

is a valid initial condition vector; it produces a sequence
that is maximal length (2m − 1) and by the first property has 2m−1 ones and 2m−1 − 1
zeros. But a one means that C1

(
z−1
)

and C2
(
z−1
)

disagree in that position and a zero
means that they agree. Condition (3) is therefore satisfied.

11.2.4 Autocorrelation and crosscorrelation of the signature waveforms

Though one can generalize to the situation where the spreading sequences are any peri-
odic sequences of the same period, here we are specifically interested in the auto- and
crosscorrelation properties of signature waveforms produced by pseudorandom sequences.
Consider two m-sequences of period NP = 2m − 1, or TP = NPTc. The two periodic
spreading signals are given by (11.61). Since the signals are periodic, so is the crosscorre-
lation with the same period. In reality the signals are also deterministic, therefore we define
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the crosscorrelation function of these two deterministic signals as

R
c(1)

P ,c(2)
P

(τ ) = 1

TP

∫ TP

0
c(1)

P (t)c(2)
P (t + τ ) dt, −∞ ≤ τ ≤ ∞. (11.74)

Using (11.61), one has

R
c(1)

P ,c(2)
P

(τ ) = 1

NP

∞∑
n=−∞

∞∑
l=−∞

c(1)
n c(2)

l
1

Tc

∫ TP

0
g(t − nTc)g(t + τ − lTc) dt. (11.75)

Note that the integral is nonzero only if the two pulse waveforms do not overlap.
We now let τ = kTc + ε, where k = (τ/Tc) and 0 ≤ ε ≤ Tc. Then the crosscorrelation

becomes a function of k and ε and is

R
c(1)

P ,c(2)
P

(k, ε) = 1

NP

∞∑
n=−∞

∞∑
l=−∞

c(1)
n c(2)

l
1

Tc

∫ TP

0
g(t − nTc)g(t + ε + (k − l)Tc) dt.

(11.76)
Change variable in the integral, λ = t − nTc, to get

R
c(1)

P ,c(2)
P

(k, ε) = 1

NP

∞∑
n=−∞

∞∑
l=−∞

c(1)
n c(2)

l
1

Tc

∫ TP−nTc

t=−nTc

g(λ)g(λ+ ε − (l− k − n)Tc) dλ.

(11.77)
Now g(λ) sets the limits on λ to be between 0 and Tc, which means that n ranges
from 0 to NP − 1 since TP − nTc = NPTc − nTc = Tc. Further, since ε ranges only over
(0, Tc), the integrand is nonzero only when (i) l− k − n = 0, which means l = n+ k, or
(ii) l− k − n = 1, which means l = n+ k + 1. Based on these two observations, one
obtains

R
c(1)

P ,c(2)
P

(k, ε) = 1

NP

NP−1∑
n=0

c(1)
n c(2)

n+k
1

Tc

∫ Tc

0
g(λ)g(λ+ ε)dλ

+ 1

NP

NP−1∑
n=0

c(1)
n c(2)

n+k+1
1

Tc

∫ Tc

0
g(λ)g(λ+ ε − Tc)dλ. (11.78)

Let g(t) be the standard rectangular chip waveform whose amplitude is unity over [0, Tc]
(i.e., g(t) is the same as p(t) given in (11.22)). Then it is easy to show that (see
Problem 11.12):

R
c(1)

P ,c(2)
P

(k, ε) =
(

1− ε

Tc

)
1

NP

NP−1∑
n=0

c(1)
n c(2)

n+k +
ε

Tc

1

NP

NP−1∑
n=0

c(1)
n c(2)

n+k+1. (11.79)
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Consider first the autocorrelation of an m-sequence, i.e., c(1)
n = c(2)

n , n = 0, 1, . . . ,
NP − 1. For k = 0, one has (1/NP)�NP−1

n=0 [c(1)
n ]2 = 1 and (1/NP)�NP−1

n=0 c(1)
n c(1)

n+k = −1/NP,
which follows from the fact that, for m-sequences, the numbers of agreements and

disagreements between
{

c(1)
n

}
and

{
c(1)

n+k

}
differ by 1. Then

R
c(1)

P ,c(2)
P

(0, ε) = 1−
(

1+ 1

NP

)
ε

Tc
. (11.80)

For k = 1, 2, . . . , NP − 2, both the discrete correlations are equal to −1/NP and the
autocorrelation is

R
c(1)

P ,c(2)
P

(k, ε) = − 1

NP
. (11.81)

Using (11.80) and (11.81) and the property that the autocorrelation is an even function in
τ , the plot of R

c(1)
P ,c(1)

P
(τ ) is shown in Figure 11.41.

The crosscorrelation depends on how the sequences of maximum length are produced.
One way to produce two such sequences is to take the same pseudorandom sequence gener-
ator and choose two different initial condition vectors. The resultant outputs will be shifted
versions of each other, say with a shift of Tc. This means that the crosscorrelation will
simply be the autocorrelation just determined but shifted on the τ -axis by Tc.

There are 2m − 1 sequences that can be generated by one feedback polynomial, one
for each shift register state and each sequence so generated could be assigned to a differ-
ent user. The crosscorrelation between any two of such sequences would be 1/(2m − 1),
provided they are synchronized, which brings us back full circle. Otherwise, if the two
sequences are shifted by only kTc seconds, and the two transmitter clocks are out by
kTc seconds then the crosscorrelation between the two signature waveforms becomes an
autocorrelation!

To overcome this problem, one can produce distinct m-sequences using different
primitive polynomials of order m as the feedback polynomials and assign these m-
sequences to different users. For a given m, the number of primitive polynomials of order
m is �(2m − 1)/m. Here �(·) is called the Euler totient function, defined as �(n) =
n
∏n

p|n
(

1− 1
p

)
, where the product is over all primes p that divide n. For example, with

0
−(2m − 1)Tc (2m − 1)Tc

2m − 1

−Tc Tc

1

1

(1)
,

(τ)

τ

RcP
(1)cP

�Fig. 11.41 Autocorrelation of periodic signature waveform constructed from an m-sequence.
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m = {5, 6, 7, 8, 9, 10, 11, 12} then �(2m − 1)/m = {6, 6, 18, 16, 48, 60, 176, 144}. Unfortu-
nately, they also have poor crosscorrelation properties. Other sets of sequences have been
proposed such as Gold and Kasami sequences that have better crosscorrelation properties.
The interested reader is referred to the literature.

One should realize that regardless of the m-sequence chosen, what has been discussed
so far is the behavior of the full-period correlation properties. In practice, the m-sequence
period might last over many information symbol periods, i.e., TP = NPTc, while Tb = NTc,
where NP is on the order of 220–250 while N (the processing gain) is on the order of 100–
1000. In such a case, the correlation properties of different spreading sequences should
be considered over Tb, leading to a partial-period correlation. Unfortunately, these are
difficult to determine analytically.

Even if one has managed to design the spreading sequence set so that the MAI is less
than 1/100, i.e., 20 decibels, of the desired signal’s power, there is still what is called
the near–far problem in a CDMA environment. This typically occurs in the uplink and
is due to two users transmitting to the base station from different geographical locations
and hence different distances. The standard plane-earth propagation model shows that
the receive power, PR, is related to the transmit power, PT , by an inverse fourth power
law, i.e.,

PR ∝ PT

d4
(watts), (11.82)

where d is the distance between the transmitter and the receiver.
Assume that one user is 0.5 kilometers from the base station while the other is 10

kilometers away. The ratio of the two received powers is

PR(0.5 kilometers)

PR(10 kilometers)
= 10 log10

104

0.54
= 52 decibels. (11.83)

Therefore if the processing gain is N = 100 or 20 decibels, the far user is completely
swamped by the MAI from the near user. Power control is therefore very crucial to a
CDMA system and it is briefly discussed next.

11.2.5 Power control

Power control can be and is done in two modes. The first mode is an open-loop control
where the mobile user measures the received signal power and then adjusts its transmit
power. This is fast but not that accurate because the correlation between the downlink
received power and uplink received power is not that strong, especially when Rayleigh
fading occurs. One link might be in a fade while the other is not.

With closed-loop power control the base station measures the received signal power
from the mobile terminal and then sends a signal to the mobile instructing it to increase or
decrease its power. Typically by a single bit command – for example, a 1 could signify an
increase, a 0 a decrease by some predetermined amount, say 1 decibel. To minimize delay
in response the power-control bits are sent at a rate in the range of 1 kilohertz.
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11.2.6 Rake receiver

As mentioned, CDMA is typically used in wireless communications. Wireless channels
invariably suffer from multipath and fading as discussed in Chapter 10. However, since
CDMA is a wideband modulation, the approximation s(t − τj) ≈ s(t), due to the narrow-
band nature of the transmitted signal, used to develop the fading channel model, no longer
holds. This assumption meant that the multipath signals were all “smeared” together. With
a wideband signal one can resolve at least groups of paths at the receiver. This modifies the
model and the resulting demodulator.

The resultant demodulator, called a Rake receiver, exploits the resolvability of the
multipath. To develop the concepts behind the model and the Rake receiver, consider
Figure 11.42.

There are L distinct scattering clusters. Each cluster has a mean delay of ti with delay
variations of τ ij around ti. Assume that the delay spreads of individual clusters do not
overlap in time. Finally, assume that the overall spread is less (much less) than the symbol
period (which is Tb for binary modulation).

The development of the model proceeds identically to that in Chapter 10. Ignoring
AWGN for now, the received signal is

r(t) =
L∑

i=1

∑
j

αijs(t − ti − τ ij)

√
2

Tb
cos
(
2π fc(t − ti)− 2π fcτ ij)

)
. (11.84)
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�Fig. 11.42 Multipath fading with a wideband transmitted signal.
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Though the overall s(t) is not narrowband and s(t − ti − τ ij) is not approximately the
same as s(t), within the range of τ ij we can state that14 s(t − ti − τ ij) ≈ s(t − ti). Further,
2π fcτ ij ranges over [0, 2π ] and is uniform over the interval. Call it θ ij. The received signal
becomes

r(t) =
√

2

Tb

L∑
i=1

s(t − ti)×
⎧⎨⎩
⎛⎝∑

j

αij cos θ ij

⎞⎠ cos (2π fc(t − ti))

+
⎛⎝∑

j

αij sin θ ij

⎞⎠ sin (2π fc(t − ti))

⎫⎬⎭ . (11.85)

Reasoning exactly as in Chapter 10, the quantities �jαij cos θ ij and �jαij sin θ ij are statisti-
cally independent, zero-mean Gaussian random variables with the same variance15 σ 2

F/2.
Call them ni,I and ni,Q respectively. Further, the random variables due to any one scatter-
ing cluster are statistically independent of any other. Restoring AWGN, the received signal
is then

r(t) =
√

2

Tb

L∑
i=1

s(t − ti)
[
ni,I cos (2π fc(t − ti))+ ni,Q sin (2π fc(t − ti))

]+ w(t)

=
√

2

Tb

L∑
i=1

s(t − ti)αi cos (2π fc(t − ti)− θ i)+ w(t), (11.86)

where αi =
√

n2
i,I + n2

i,Q is a Rayleigh random variable (see (10.62) for its pdf) and θ i =
tan−1

(
ni,Q/ni,I

)
is a uniform random variable over [0, 2π ].

For simplicity, consider that there is only one user. Let s(t) be a spread (i.e., wideband)
signal with BPSK modulation, i.e.,

s(t) = bc(t), 0 ≤ t ≤ Tb, (11.87)

where b = ±√Eb (depending on the information bit to be transmitted) and c(t) =
�N−1

n=0 cnp(t − nTc) is the spreading waveform. Note that
∫ Tb

0 s(t − ti)s(t − tj)dt =
Eb
∫ Tb

0 c(t − ti)c(t − tj)dt ≈ 0 if tj − ti > Tc, which follows from the autocorrelation prop-
erty of the spreading waveform. This means that the received signals are in essence
orthogonal if the mean delays are separated enough. We assume this to be the case. The
last assumption we make is that a genie tells us what αi and θ i, i = 1, 2, . . . , L are during a
transmission or if a genie is not to be found that we have a very good estimate of αi, θ i, so
good, that we ignore the estimation error. With all this we now develop the minimum error
probability demodulator.

14 No man is an island and no band is so wide that it cannot be looked upon as being made up of many contiguous
narrow bands.

15 The assumption of equal variance for all scattering clusters, i = 1, 2, . . . , L, is mainly for simplicity. The model
and results of this section can be easily modified to accommodate the case of unequal variances over different
scattering clusters.
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The set of sufficient statistics is generated as shown in Figure 11.43. Observe that the
integrator filters out the double frequency term and wi is the usual Gaussian noise sample,
statistically independent, zero-mean, variance N0/2. The likelihood ratio is then

f (r1, r2, . . . , rL|1T )

f (r1, r2, . . . , rL|0T )
=
∏L

i=1
1√
πN0

e−(ri−αi
√

Eb)
2
/N0∏L

i=1
1√
πN0

e−(ri+αi
√

Eb)
2
/N0

1D

�
0D

1. (11.88)

Taking the natural logarithm and doing the usual algebra we obtain the following deci-
sion rule:

L∑
i=1

αiri

1D

�
0D

0. (11.89)

A block diagram of the receiver is shown in Figure 11.44.

t = ti + Tb

(•) dt
ti+Tb

ti

r(t)

2
cos(2π fc(t − ti) − θi )c(t − ti) Tb

i = 1,2, ..., L

Ebαi + wiri = ±∫

�Fig. 11.43
Generation of the sufficient statistics for demodulation of the spread spectrum signal transmitted over a
multipath fading channel.
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�Fig. 11.44 Block diagram of the Rake receiver.
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The error performance is that of Lth-order diversity with coherent demodulation. It is
given by (see Problem 10.5):

P[error] =
(

1− μ

2

)L L−1∑
k=0

(
L− 1+ k

k

)(
1+ μ

2

)k

, (11.90)

where μ = √γT/1+ γT and γT = Ebσ
2
F/N0.

The demodulator block diagram looks like a garden rake, and hence the name rake
receiver. However, the fingers of the rake are very unevenly spaced and it would be hard to
do a decent job of raking with it. Therefore let us revisit the model and revise it somewhat.

Let the delay spread in a CDMA environment be QTc, where Q is considerably less
than N, the processing gain. The delays are a continuum on the delay axis as shown in
Figure 11.45. But because of the wideband nature of spread signal, we can discretize it into
bins of width Tc and within each bin represent the multipath by a joint pdf in the random
variables α and θ . Typically the joint pdf is taken to be Rayleigh but other pdfs such as
Rician (see Problem 10.14) or Nakagami-m (see Problem 10.7) are possible. Indeed, as the
system becomes more wideband, it is able to resolve the signal on a finer scale implying
that fewer and fewer multipaths fall in a bin, so that the central limit theorem works with
fewer and fewer terms, implying that the Rayleigh model might not be that appropriate.
The model may then need to be determined empirically, i.e., by experiment.

Be that as it may, we shall stay with the Rayleigh model. Crucially we assume that
the random variables α and θ in one bin are uncorrelated (and hence statistically inde-
pendent) from those of another bin. Assuming L bins, the model is exactly the same as
discussed except the time delays are uniformly spaced at intervals of Tc. The block dia-
gram of the demodulator then looks like that of Figure 11.46. The fingers of the rake are
evenly spaced. The bit error probability of the receiver is also given as in (11.90). It is
plotted in Figure 11.47 versus the average received SNR per bit per branch, Ebσ

2
F/N0, for

different values of L. Note how the error performance is dramatically improved with the
number of rake fingers (branches). Thus, from the performance perspective, it is desired
to have as many fingers as possible. However, it is important to realize that the number
of available fingers depends on the wireless environment as well as the bandwidth of the
spread transmitted signal.

Finally, the above analysis and result assume there is only one user in the system. In
the case of multiple users, the Rake receiver still applies. However, the analysis of its error
performance is more involved, because one needs to account for the MAI. A simple method
is to treat MAI as Gaussian noise, in addition to and independent of the thermal Gaussian
noise, and determine its power. Then use (11.90) but with γT = Ebσ

2
F/(PMAI + N0), where

0 Tc 3Tc2Tc LTc (L + 1)Tc

(α1,θ1) (α2,θ2) (α3,θ3) (αL,θL)
τ

…

�Fig. 11.45 Discrete-time approximation of the delay spread.
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�Fig. 11.46 Block diagram of the rake receiver with discrete-time approximation of the delay spread.
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�Fig. 11.47 Bit error probability of the rake receiver: single user and Rayleigh fading.

PMAI is the power of MAI. Even with this simple approximation, the determination of PMAI

depends on the specific set of signature waveforms used and is still cumbersome. Another
issue is that the MAI is not well approximated by Gaussian noise, especially when the
number of users is small.
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11.3 Space-time transmission

In Chapter 10 we saw that, in terms of the received SNR, the error performance of a
communication system operating over a fading channel is severely degraded. To improve
performance, the diversity concept and technique were introduced to combat the effect of
a deep fade. Though effective, time and frequency diversity techniques have disadvantages
and limitations.

Time diversity can be used if the fading channel changes reasonably fast compared with
the delay requirement of the application. This allows one to rearrange (interleave) the mul-
tiple copies of the same symbol before transmitting them so that each copy experiences
a statistically independent channel. If repetition coding is used in combination with inter-
leaving to realize time diversity, then the information rate is decreased in proportion to the
diversity order.

Frequency diversity relies on the fact that the channel response varies over frequency
subbands and if the subbands are sufficiently far apart, the corresponding channels are
more or less statistically independent. Typically frequency diversity is most suitable in
wideband communication systems (such as CDMA and OFDM systems) where the channel
bandwidth is much wider than the bandwidth of the information-bearing signal. Otherwise,
frequency diversity also requires an increased bandwidth in proportion to the diversity
order.

When neither time diversity nor frequency diversity is available, such as in a slowly
varying, narrowband communication system, it is of interest to have another means of
providing diversity. This can be achieved by space diversity which is the topic of this
section.16 In general, space diversity is achieved by having multiple antennas, at either the
receiver or the transmitter or both, that are spaced sufficiently far apart (on the order of
a wavelength). The case of one transmit antenna and multiple receive antennas is known
as receive diversity. It is typically found in the uplink of a mobile communication system.
Conversely, when there are multiple transmit antennas and a single receive antenna, we
have transmit diversity. This is most often found in the downlink.

Here we discuss both transmit and receive diversity for the simplest cases of: (i) one
transmit antenna and two receive antennas, and (ii) two transmit antennas and one receive
antenna. Though simple, the discussion results in the introduction of the Alamouti space-
time block code, originally developed in reference [4] for transmit diversity with two
transmit antennas and one receive antenna. The coding aspect of this elegant and prac-
tical diversity scheme comes from not only using the space diversity offered by the two
transmit antennas, but more importantly, by also introducing a clever constraint over time.

Before proceeding to the discussion, a word about the model with which we are working.
We assume that the channel is slow fading so that at least over two symbol transmission

16 Even when time diversity and/or frequency diversity are available, it might still be attractive and desirable to
provide space diversity. In fact most modern wireless communication systems try to exploit all the available
means of diversity in order to improve the system performance.



486 Advanced modulation techniques
�

periods (also referred to as time slots) the fading coefficients (αi, θ i) of each space trans-
mission path remain constant. The slow fading implies that one can obtain good estimates
of the random variables (αi, θ i), so good that we assume they are perfect. This means that
the BPSK, QPSK, or M-QAM signal set can be used at the modulator.

11.3.1 Receive diversity

Consider the receive diversity of Figure 11.48(a). Over the interval [0, Tb] a single bit
is transmitted with BPSK modulation. Assume that the receive antennas are spaced far
enough apart so that the fading coefficients (α1, θ1), (α2, θ2) are statistically indepen-
dent. Then it follows from Section 10.5 and Problem 10.5 that a second-order diversity
is achieved without any decrease in throughput (information data transmission rate) or
increase in bandwidth. One can easily visualize extending the above to the system with
one transmit antenna and N receive antennas to achieve Nth-order diversity, as long as the
(αi, θ i) pairs are statistically independent.

As mentioned earlier, to achieve statistically independent fading channels, the receive
antennas should be spaced far apart, on the order of a wavelength. Consider a typical carrier

frequency of 1 gigahertz. Then the wavelength is c/f = 3×108

109 m = 30 cm (≈ 12 inches).
Though this requirement is quite reasonable at the base station, it is not possible to
achieve with a pocket-size mobile receiver unless one is willing to strap the antennas
onto body extremities. Thus, although simple in the concept, receive diversity might
not be available in many situations, such as in the downlink of a mobile communica-
tion system. This practical limitation of receive diversity leads us to consider transmit
diversity next.

Receive antenna 1

Receive antenna 2

Transmit antenna 1

Transmit antenna

Transmit antenna 2

Receive antenna

(α1,θ1) (α1,θ1)

(α2,θ2) (α2,θ2)

(b)(a)

�Fig. 11.48
Space diversity: (a) one transmit and two receive antennas and (b) two transmit and one receive antennas.
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11.3.2 Transmit diversity

Consider the system setup in Figure 11.48(b), where the fading coefficients (α1, θ1),
(α2, θ2) are statistically independent (visualize that the transmit antennas are at the base
station and there should be no difficulty in spacing them far enough apart). Again, the
objective is to transmit one information bit over the bit duration Tb by BPSK.

As the first attempt, in every bit interval, let us send the information bit simultaneously
over both transmit antennas. Over the kth bit interval, [(k − 1)Tb, kTb], the received signal
is given by

r(t) = bk

√
E
′
bα1

√
2

Tb
cos(2π fct − θ1)︸ ︷︷ ︸

over transmit antenna 1

+ bk

√
E
′
bα2

√
2

Tb
cos(2π fct − θ2)︸ ︷︷ ︸

over transmit antenna 2

+w(t), (11.91)

where bk = ±1 is the information bit. Note that E
′
b is the transmitted energy per bit per

antenna, hence the energy per bit is Eb = 2E
′
b. Equation (11.91) can be rewritten as

r(t) = bk

√
E
′
b

√
2

Tb

[
(α1 cos θ1 + α2 cos θ2) cos(2π fct)

+ (α1 sin θ1 + α2 sin θ2) sin(2π fct)
]+ w(t). (11.92)

But α1 cos θ1 = n1,I , α2 cos θ2 = n2,I , α1 sin θ1 = n1,Q, α2 sin θ2 = n2,Q are Gaussian
random variables, zero-mean, variance σ 2

F/2 and statistically independent. For conve-
nience, define nI = n1,I + n2,I and nQ = n1,Q + n2,Q. They are two statistically indepen-
dent Gaussian random variables with zero mean and variance σ 2

F . Therefore (11.92) can be
written as

r(t) = bk

√
E
′
bα

√
2

Tb
cos(2π fct − θ )+ w(t), (11.93)

where α =
√

n2
I + n2

Q and θ = tan−1
(
nQ/nI

)
are Rayleigh and uniform random variables,

respectively. Unfortunately, the received signal in (11.93) is the same as that over a single
fading channel (e.g., in a single transmit antenna and single receive antenna). This means
that only a diversity order of 1 can be achieved with the above transmission scheme. We
have not achieved anything with the two transmit antennas, except perhaps doubled the
received signal power.

Upon reflection, the fact that the above transmission scheme can only achieve a first-
order diversity can be explained as follows. Although we have two transmitted signals
for the same information bit, these two signals are superimposed in the air before arriv-
ing at the single receive antenna. The superposition of the transmitted signals is beyond
an engineer’s control and therefore she cannot “constructively” combine the two signals
to achieve a diversity order of 2. As another explanation, from the perspective of a trans-
mission link from one transmit antenna to the single receive antenna, the second transmit
antenna simply appears (or acts) as a scattering cluster! One can generalize the argument to
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the case of N transmit antennas and 1 receive antenna to see that, as long as the same signal
is transmitted simultaneously over all N antennas, only a first-order diversity is achieved.

Recognizing that sending the same signal simultaneously over the two antennas is not
helpful, another possibility is to turn one antenna on for Tb seconds, then switch it off and
turn the other antenna on for the next Tb seconds. Here we have a choice. We can either
transmit the next information bit, which would maintain the throughput (i.e., information
data rate), but obviously the diversity order is still 1. Or we could retransmit the same
information bit so that we obtain two independent received signals, over two consecutive
bit intervals, for the same information bit. This is nothing more than a repetition code and
though a diversity order 2 is achieved, the throughput has halved. The choice turned out
to be somewhat of a Hobson’s choice.17 The transmission scheme just described can be
represented in matrix form as

⎡⎣bk

√
E
′
b

√
2/Tb cos(2π fct) 0

0 bk

√
E
′
b

√
2/Tb cos(2π fct)

⎤⎦
︸ ︷︷ ︸

[(k−1)Tb,kTb]
︸ ︷︷ ︸

[kTb,(k+1)Tb]

antenna 1

antenna 2

time −→ (11.94)

where bk = ±1 is the information bit. Note also that the average transmitted energy per bit
in this scheme is also Eb = 2E

′
b.

The limitations of the previous two transmission schemes motivate one to seek a scheme
that can transmit one information bit every Tb and achieve diversity order 2. Intuitively,
such a scheme must use the two transmit antennas all the time and should be designed over
multiple bit intervals. It is also desired that the transmitted signals from the two antennas be
“decoupled” at the receiver. With this in mind, consider the following transmitted signals
from the two antennas over two bit intervals:

⎡⎣ bk

√
E
′
b

√
2/Tb cos(2π fct) ?

bk+1

√
E
′
b

√
2/Tb cos(2π fct) ?

⎤⎦
︸ ︷︷ ︸

[(k−1)Tb,kTb]
︸ ︷︷ ︸

[kTb,(k+1)Tb]

antenna 1

antenna 2

time −→
(11.95)

We wish to fill in the question marks in such a manner that the signal transmitted over the
first antenna (the first row) is always orthogonal to that transmitted over the second antenna
(the second row) over [(k − 1)Tb, (k + 1)Tb], regardless of the bit pattern (bk, bk+1). We
also want bk and bk+1 involved in both antennas (i.e., they should appear in both rows
of the above matrix) so that each information bit is transmitted over both independent
fading channels. This ensures that a diversity of 2 is achieved. Finally, the signals in

17 See Wikipedia: “http://en.wikipedia.org/wiki/Hobson’s_choice” and decide if this is a true Hobson’s choice.
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the second bit interval (time slot) should come from the BPSK signal set. Some thought
(there are not that many possibilities) results in the following transmission scheme (see
Problem 11.14):

⎡⎣ bk

√
E
′
b

√
2/Tb cos(2π fct) −bk+1

√
E
′
b

√
2/Tb cos(2π fct)

bk+1

√
E
′
b

√
2/Tb cos(2π fct) bk

√
E
′
b

√
2/Tb cos(2π fct)

⎤⎦
︸ ︷︷ ︸

[(k−1)Tb,kTb]
︸ ︷︷ ︸

[kTb,(k+1)Tb]

antenna 1

antenna 2

time −→
(11.96)

Note that E
′
b is the transmitted energy on each antenna over one bit duration. The transmit-

ted energy per bit is Eb = 2E
′
b. The above scheme is an Alamouti space-time block code

for the BPSK signal constellation.
Having designed the modulator, we turn our attention to the demodulator and its error

performance. The received signal is

r(t) = r1(t)+ r2(t)+ w(t), (k − 1)Tb ≤ t ≤ (k + 1)Tb, (11.97)

where the bits bk, bk+1 ∈ {−1,+1} and w(t) is the usual zero-mean AWGN whose two-
sided PSD is N0/2 watts/hertz. The two components r1(t) and r2(t) are given by

[
r1(t)
r2(t)

]

=
⎡⎣ bk

√
E
′
bα1

√
2/Tb cos(2π fct − θ1) −bk+1

√
E
′
bα1

√
2/Tb cos(2π fct − θ1)

bk+1

√
E
′
bα2

√
2/Tb cos(2π fct − θ2) bk

√
E
′
bα2

√
2/Tb cos(2π fct − θ2)

⎤⎦ .

︸ ︷︷ ︸
[(k−1)Tb,kTb]

︸ ︷︷ ︸
[kTb,(k+1)Tb]

(11.98)

To obtain the demodulator, we use the approach that has been a constant theme: find a
signal space for the received signal, project r(t) onto it to get a set of sufficient statistics
and the likelihood ratio to obtain a decision rule. As noted before, the receiver has perfect
estimates of the fading coefficients. This means that the demodulator knows and works
with specific coefficients (α1, θ1), (α2, θ2).

Because of the phase shifts in the channels, the signal space is four-dimensional with
the following basis set:

φ1,I(t) = √2/Tb cos(2π fct), φ2,I(t) = √2/Tb cos(2π fct),
φ1,Q(t) = √2/Tb sin(2π fct), φ2,Q(t) = √2/Tb sin(2π fct).

(11.99)︸ ︷︷ ︸
t∈[(k−1)Tb,kTb]

︸ ︷︷ ︸
t∈[kTb,(k+1)Tb]
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Projecting r(t) onto the basis functions results in the following set of sufficient statistics:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r1,I = bk

√
E
′
bα1 cos θ1 + bk+1

√
E
′
bα2 cos θ2 + w1,I

r1,Q = bk

√
E
′
bα1 sin θ1 + bk+1

√
E
′
bα2 sin θ2 + w1,Q

r2,I =−bk+1

√
E
′
bα1 cos θ1 + bk

√
E
′
bα2 cos θ2 + w2,I

r2,Q = −bk+1

√
E
′
bα1 sin θ1 + bk

√
E
′
bα2 sin θ2 + w2,Q

. (11.100)

Write the above as two matrix equations:[
r1,I

r2,I

]
=
√

E
′
b

[
α1 cos θ1 α2 cos θ2

α2 cos θ2 −α1 cos θ1

] [
bk

bk+1

]
+
[

w1,I

w2,I

]
, (11.101a)

[
r1,Q

r2,Q

]
=
√

E
′
b

[
α1 sin θ1 α2 sin θ2

α2 sin θ2 −α1 sin θ1

] [
bk

bk+1

]
+
[

w1,Q

w2,Q

]
, (11.101b)

where the noise terms w1,I , w1,Q, w2,I , w2,Q are statistically independent Gaussian random
variables, zero-mean, variance N0/2 (watts). Premultiply (11.101a) by the transpose of the
inphase part of the channel transmission matrix. Similarly, premultiply (11.101b) by the
transpose of the quadrature part of the channel transmission matrix to obtain a new set of
sufficient statistics:[

r̂1,I

r̂2,I

]
=
√

E
′
b

[
α2

1 cos2 θ1 + α2
2 cos2 θ2 0

0 α2
1 cos2 θ1 + α2

2 cos2 θ2

] [
bk

bk+1

]
+
[

ŵ1,I

ŵ2,I

]
,

(11.102a)[
r̂1,Q

r̂2,Q

]
=
√

E
′
b

[
α2

1 sin2 θ1 + α2
2 sin2 θ2 0

0 α2
1 sin2 θ1 + α2

2 sin2 θ2

] [
bk

bk+1

]
+
[

ŵ1,Q

ŵ2,Q

]
,

(11.102b)

where ŵ1,I , ŵ2,I , ŵ1,Q, ŵ2,Q are still zero-mean Gaussian random variables which are
uncorrelated and hence statistically independent. However, their variances are not equal.
In particular one can show that (see Problem 11.15):

var{ŵ1,I} = var{ŵ2,I} =
(
α2

1 cos2 θ1 + α2
2 cos2 θ2

) N0

2
, (11.103a)

var{ŵ1,Q} = var{ŵ2,Q} =
(
α2

1 sin2 θ1 + α2
2 sin2 θ2

) N0

2
. (11.103b)

To find the decision rule(s), recognize that information about bit bk is only provided
by the sufficient statistics

(
r̂1,I , r̂1,Q

)
, while information for bk+1 is only provided by(

r̂2,I , r̂2,Q
)
. Consider the derivation of the decision rule for bk. Rewrite the sufficient

statistics for it as

r̂1,I =
√

E
′
b

(
α2

1 cos2 θ1 + α2
2 cos2 θ2

)
bk + ŵ1,I , (11.104a)

r̂1,Q =
√

E
′
b

(
α2

1 sin2 θ1 + α2
2 sin2 θ2

)
bk + ŵ1,Q. (11.104b)
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To make the noise variances equal, we make one final transformation of the sufficient

statistics. Specifically, divide (11.104a) by
√

α2
1 cos2 θ1 + α2

2 cos2 θ2 and (11.104b) by√
α2

1 sin2 θ1 + α2
2 sin2 θ2 to obtain

rI =
√

E
′
b

√
α2

1 cos2 θ1 + α2
2 cos2 θ2 · bk + wI , (11.105a)

rQ =
√

E
′
b

√
α2

1 sin2 θ1 + α2
2 sin2 θ2 · bk + wQ, (11.105b)

where wI and wQ are zero-mean statistically independent Gaussian random variables with
the same variance N0/2 (see Problem 11.16). Now form the likelihood ratio:

f (rI , rQ|bk = 1)

f (rI , rQ|bk = −1)

1D

�
0D

1. (11.106)

Taking the logarithm and simplifying results in the decision rule:√
α2

1 cos2 θ1 + α2
2 cos2 θ2 · rI +

√
α2

1 sin2 θ1 + α2
2 sin2 θ2 · rQ

1D

�
0D

0. (11.107)

The decision rule can also be obtained from (11.105) in a different way, by using the
geometry of Figure 11.49 and the fact that wI and wQ are the usual zero-mean statistically
independent Gaussian random variables. The decision rule is a minimum-distance rule and
since the information bits are equally likely, it partitions the (sufficient statistics) signal
space as shown. From high-school geometry we recall that if y = mx then the perpendicular
is the line y = −(1/m)x. Here the equation of the line joining the two “signal” points is

rQ =
√

α2
1 sin2 θ1 + α2

2 sin2 θ2√
α2

1 cos2 θ1 + α2
2 cos2 θ2

rI

and the equation of the perpendicular bisector is

rQ = −
√

α2
1 cos2 θ1 + α2

2 cos2 θ2√
α2

1 sin2 θ1 + α2
2 sin2 θ2

rI .

From this one obtains the decision rule of (11.107).
The bit error performance of the receiver that implements the decision rule in (11.107)

can be readily obtained from Figure 11.49. Given the fading coefficients (α1, θ1) and

(α2, θ2), the Euclidean distance between the two “signal” points is 2
√

E
′
b

√
α2

1 + α2
2.

Therefore the conditional error probability is given by

P[error|α1 = α1, θ1 = θ1, α2 = α2, θ2 = θ2] = Q

⎛⎝√2E
′
b

(
α2

1 + α2
2

)
N0

⎞⎠ . (11.108)

It should be pointed out that, although the above conditional error probability depends
only on α1 and α2, it does not mean that the receiver does not need the perfect estimates
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0D

�Fig. 11.49
The signal space representation of the sufficient statistics for the detection of bk. Here

mI =
√

E′b
√

α2
1 cos2 θ1 + α2

2 cos2 θ2 and mQ =
√

E′b
√

α2
1 sin2 θ1 + α2

2 sin2 θ2.

of the phases θ1 and θ2. Recall that knowledge of the phases is needed to perform various
transformations on the sufficient statistics in order to arrive at the decision rule in (11.107).

The conditional error probability in (11.108) applies for a specific set of parameters α1

and α2. Though we assumed that α1 and α2 are known to the demodulator, we should
not forget that they are random variables drawn from an underlying probabilistic sam-
ple space.18 Therefore during the transmission of a long sequence of bits, (α1, α2) will
vary according to two independent Rayleigh pdfs. Therefore the average error probability
should be obtained by averaging (11.108) over the pdfs of α1 and α2, or equivalently over
the pdf of y = α2

1 + α2
2. This is basically what was considered in Problem 10.5 and it is

summarized below.
Let σ 2

F be the mean-squared value of both α1 and α2. Since α1 and α2 are independent
Rayleigh random variables, the random variable y is a chi-square random variable with
four degrees of freedom (see (10.90)). Its pdf is

fy(y) = ye−y/σ 2
F

σ 4
F

u(y). (11.109)

Therefore,

P[error] = E

⎧⎨⎩Q

⎛⎝√Eb
(
α2

1 + α2
2

)
N0

⎞⎠⎫⎬⎭ = E

{
Q

(√
Eb

N0

√
y

)}

= 1

π

1

σ 4
F

∫ π/2

0

∫ ∞

0
exp

(
− y

2 sin2 θ

Eb

N0

)
y exp

{
− y

σ 2
F

}
dydθ , (11.110)

18 That is the nature of random events or variables. Once you see them or know them they are no longer random,
but before that they are unpredictable.
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where we have substituted Eb = 2E
′
b and used Craig’s formula for the Q-function (see

(10.76)). Performing the inner integration first gives

P[error] = 1

π

∫ π/2

0

1(
1+ γT/sin2 θ

)2 dθ , (11.111)

where γT = E
′
bσ

2
F/N0 = Ebσ

2
F/2N0. To evaluate the integral in (11.111), expand the square

and use the identity in (10.79) and the following identity:∫ π

0

dx

(b+ a cos x)2
= πb

(b2 − a2)
√

b2 − a2
, |a| < b. (11.112)

The final expression is

P[error] =
(

1

2
− 1

2

√
γT

1+ γT

)2 (
2+

√
γT

1+ γT

)
. (11.113)

At high SNR, i.e., γT � 1, we can use the approximations 1
2 − 1

2

√
γT/(1+ γT ) ≈

1/4γT and 2+√γT/(1+ γT ) ≈ 3 to obtain

P[error] ≈ 3

(4γT )2
= 3

4

1(
Ebσ

2
F/N0

)2 , (11.114)

which clearly shows that a diversity order of 2 is achieved.
Another, perhaps simpler, way to see that the diversity order is 2 is as follows. Start with

(11.108) and use the approximation Q(x) < 1
2 e−x2/2 to obtain

P[error] = E

⎧⎨⎩Q

⎛⎝√Eb
(
α2

1 + α2
2

)
N0

⎞⎠⎫⎬⎭ <
1

2
E

{
exp

[
− Eb

2N0

(
α2

1 + α2
2

)]}

= 1

2

∫ ∞

α1=0

∫ ∞

α2=0
exp

[
− Eb

2N0

(
α2

1 + α2
2

)]
fα1 (α1)fα2 (α2)dα1dα2

= 1

2

[∫ ∞

α1=0
exp

(
− Eb

2N0
α2

1

)
fα1 (α1)dα1

]2

, (11.115)

where the last equality follows from fα1 (α1) = fα2 (α1) = (α1
/
σ 2

F

)
e−α2

1

/
2σ 2

F . Substituting
the pdf of α1 and doing the integration gives19

P[error] <
1

2

1(
1+ Ebσ

2
F/2N0

)2 ≈ 2(
Ebσ

2
F/N0

)2 , (11.116)

which means that a diversity order of 2 is achieved.
Figure 11.50 plots the bit error probability (11.113) and the upper bound (11.116)

versus the average received SNR per bit, defined as Ebσ
2
F/N0. Also shown for compari-

son is the bit error probability of BPSK with coherent detection over a Rayleigh fading

19 Note that, instead of averaging over the pdf of α1, one could also change the variable to β = α2
1 and average

over the pdf of β, which is a decaying exponential fβ (β) = (1/σ 2
F) exp

(
−β/σ 2

F

)
.
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Bit error probability of the Alamouti scheme with BPSK. Also shown for comparison are its upper bound
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�Fig. 11.51 Transmission of two consecutive QPSK symbols.

channel when there are single transmit and receive antennas, which can be shown to be
1
2

[
1−√γb/(1+ γb)

]
, where γb = Ebσ

2
F/N0. These performance curves clearly verify the

diversity orders of the two schemes.
Upon examining the above derivations of the error performance of the Alamouti space-

time code, one should realize that the achieved diversity order 2 is a direct consequence
of the fact that transmission and reception of the Alamouti code yield an effective gain√

α2
1 + α2

2. The pdf of
√

α2
1 + α2

2 is more favorable than the Rayleigh pdf of the individual
channel gains α1 and α2 in the sense that the probability that the channel gain is small (i.e.,
that both channels are in a deep fade) becomes smaller.

The Alamouti space-time code just described can be extended to QAM signal con-
stellations. Consider QPSK and two consecutive symbol transmissions as illustrated in
Figure 11.51. In each symbol duration (time slot) of Ts a QPSK signal (symbol) is formed
as usual by modulating the inphase and quadrature carriers separately using the respective
bits. The signals to be transmitted are
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b(I)
k

√
E
′
b

√
2

Ts
cos(2π fct)+ b(Q)

k

√
E
′
b

√
2

Ts
sin(2π fct), (11.117)

b(I)
k+1

√
E
′
b

√
2

Ts
cos(2π fct)+ b(Q)

k+1

√
E
′
b

√
2

Ts
sin(2π fct). (11.118)

These signals are transmitted over the two antennas over [(k − 1)Ts, kTs], which are
represented as the first column of the following transmission matrix:

√
E
′
b

√
2/Ts

[
b(I)

k cos(2π fct)+ b(Q)
k sin(2π fct) ?

b(I)
k+1 cos(2π fct)+ b(Q)

k+1 sin(2π fct) ?

]
.︸ ︷︷ ︸

[(k−1)Ts,kTs]
︸ ︷︷ ︸
[kTs,(k+1)Ts]

(11.119)

Once again, the question marks in the second column are to be filled by signals from the
QPSK constellation to “decouple” the two channels, i.e., make the transmitted signals over
the two antennas orthogonal. Again, some thought leads to the following design:√

E
′
b

√
2/Ts

×
[

b(I)
k cos(2π fct)+ b(Q)

k sin(2π fct) −b(I)
k+1 cos(2π fct)+ b(Q)

k+1 sin(2π fct)

b(I)
k+1 cos(2π fct)+ b(Q)

k+1 sin(2π fct) b(I)
k cos(2π fct)− b(Q)

k sin(2π fct)

]
.︸ ︷︷ ︸

[(k−1)Ts,kTs]
︸ ︷︷ ︸

[kTs,(k+1)Ts]

(11.120)

To develop the demodulator, write the received signal as

r(t) = r1(t)+ r2(t)+ w(t), (k − 1)Ts ≤ t ≤ (k + 1)Ts, (11.121)

where w(t) is the usual zero-mean AWGN whose two-sided PSD is N0/2 watts/hertz. The
two components r1(t) and r2(t) are

[
r1(t)
r2(t)

]
=
√

E
′
b

√
2/Ts

[
b(I)

k α1 cos(2π fct − θ1)+ b(Q)
k α1 sin(2π fct − θ1)

b(I)
k+1α1 cos(2π fct − θ1)+ b(Q)

k+1α1 sin(2π fct − θ1)︸ ︷︷ ︸
first column: [(k−1)Ts,kTs]

−b(I)
k+1α1 cos(2π fct − θ1)+ b(Q)

k+1α1 sin(2π fct − θ1)

b(I)
k α1 cos(2π fct − θ1)− b(Q)

k α1 sin(2π fct − θ1)

]
.︸ ︷︷ ︸

second column: [kTs,(k+1)Ts]

(11.122)
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Then project r(t) onto the following basis set

φ1,I(t) = √2/Ts cos(2π fct), φ2,I(t) = √2/Ts cos(2π fct),
φ1,Q(t) = √2/Ts sin(2π fct), φ2,Q(t) = √2/Ts sin(2π fct)

(11.123)︸ ︷︷ ︸
t∈[(k−1)Ts,kTs]

︸ ︷︷ ︸
t∈[kTs,(k+1)Ts]

and obtain the sufficient statistics:

⎡⎢⎢⎣
r1,I

r1,Q

r2,I

r2,Q

⎤⎥⎥⎦ = √E
′
b

⎡⎢⎢⎣
α1 cos θ1 −α1 sin θ1 α2 cos θ2 −α2 sin θ2

α1 sin θ1 α1 cos θ1 α2 sin θ2 α2 cos θ2

α2 sin θ2 α2 sin θ2 −α1 cos θ1 −α1 sin θ1

α2 sin θ2 −α2 cos θ2 −α1 sin θ1 α1 cos θ1

⎤⎥⎥⎦
︸ ︷︷ ︸

“transmission matrix” A

⎡⎢⎢⎢⎣
b(I)

k

b(Q)
k

b(I)
k+1

b(Q)
k+1

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎣
w1,I

w1,Q

w2,I

w2,Q

⎤⎥⎥⎦ . (11.124)

Premultiply both sides of the above equation with A� to get the following new set of the
sufficient statistics:

⎡⎢⎢⎣
r̂1,I

r̂1,Q

r̂2,I

r̂2,Q

⎤⎥⎥⎦ = √E
′
b

(
α2

1 + α2
2

)⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

b(I)
k

b(Q)
k

b(I)
k+1

b(Q)
k+1

⎤⎥⎥⎥⎦+
⎡⎢⎢⎣

ŵ1,I

ŵ1,Q

ŵ2,I

ŵ2,Q

⎤⎥⎥⎦

=
√

E
′
b

(
α2

1 + α2
2

)⎡⎢⎢⎢⎣
b(I)

k

b(Q)
k

b(I)
k+1

b(Q)
k+1

⎤⎥⎥⎥⎦+
⎡⎢⎢⎣

ŵ1,I

ŵ1,Q

ŵ2,I

ŵ2,Q

⎤⎥⎥⎦ , (11.125)

where the noise variables are all i.i.d. zero-mean Gaussian random variables with variance(
α2

1 + α2
2

)
N0/2. The above relationship shows that the four information bits are essentially

decouped in a four-dimensional signal space with an individual bit lying (antipodally) on
its own orthogonal axis.

The decision rule for each bit follows immediately. The conditional bit error probability

is Q

(√
2E

′
b

(
α2

1 + α2
2

)
/N0

)
= Q

(√
Eb
(
α2

1 + α2
2

)
/N0

)
, where Eb = 2E

′
b is also the aver-

age transmitted energy per information bit for the Alamouti scheme described in (11.120).
This is exactly the same as that of Alamouti space-time code using BPSK. Therefore all
the analysis of the average bit error probability and diversity order done for BPSK also
holds for QPSK.
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Time slot 1 Time slot 2

QAM signal 1 QAM signal 2

λ bits λ bits
… …

�Fig. 11.52 Transmission of two consecutive QAM symbols.

Now let us generalize the Alamouti space-time code to M-QAM. Consider two QAM
signals, each representing λ = log2 M bits (see Figure 11.52). Write the two signals, where
each occupies an interval of Ts seconds, as follows:

si(t) = si,I

√
2

Ts
cos(2π fct)+ si,Q

√
2

Ts
sin(2π fct), (11.126)

sj(t) = sj,I

√
2

Ts
cos(2π fct)+ sj,Q

√
2

Ts
sin(2π fct). (11.127)

Similar to the case of QPSK, the transmission matrix over two symbol intervals is as
follows:√

2

Ts
×
[

si,I cos(2π fct)+ si,Q sin(2π fct) −sj,I cos(2π fct)+ sj,Q sin(2π fct)
sj,I cos(2π fct)+ sj,Q sin(2π fct) si,I cos(2π fct)− si,Q sin(2π fct)

]
.︸ ︷︷ ︸

[(k−1)Ts,kTs]
︸ ︷︷ ︸

[kTs,(k+1)Ts]

(11.128)

The demodulator is also very simple and similar to that of QPSK. Specifically, identify
si,I → b(I)

k , si,Q → b(Q)
k , sj,I → b(I)

k+1, sj,Q → b(Q)
k+1 to obtain an expression of the form of

(11.125). We then make decisions on si,I , si,Q, sj,I , sj,Q if the QAM is rectangular and
the bits are independently mapped onto inphase and quadrature components. The generic
block diagram of the receiver is illustrated in Figure 11.53, and also applies for the cases
of BPSK and QPSK.

Since the Alamouti transmission scheme yields an equivalent channel for each QAM

symbol whose effective channel gain is
√

Es

√
α2

1 + α2
2, where Es is the average symbol

energy (see Figure 11.54), the conditional symbol and bit error probabilities are those
obtained for M-QAM over an AWGN channel in Chapter 8. The final symbol and bit error
probabilities are obtained by averaging the conditional error probabilities over the pdf of
the random variable y = α2

1 + α2
2, given in (11.109).

Finally, it should be pointed out that space-time codes for more than two transmit anten-
nas exist [11] and new codes are still to be found. In general, if there are N transmit
antennas and one receive antenna and if the transmit antennas are placed sufficiently far
apart, the maximum diversity order is N. The main criteria to design a space-time code for
a given number of transmit antennas, say N, are summarized below.
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Block diagram of the receiver for the Alamouti space-time transmission with rectangular QAM.
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�Fig. 11.54
An example of (a) a QAM constellation at the transmitter and (b) the effective constellation at the receiver
(without AWGN) provided by Alamouti space-time transmission.

(1) The code should achieve a high throughput. Ideally, the code should transmit one sym-
bol (belonging to any constellation) per one symbol duration, i.e., the maximum rate
is 1 symbol/slot.

(2) The code should achieve a high diversity order. The maximum diversity order is N.
(3) The maximum likelihood receiver should be as simple as possible. The simplest max-

imum likelihood receiver is the one that can demodulate each symbol separately
(symbol-wise ML demodulator).
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Interestingly enough, Alamouti space-time code designed for two transmit antennas is the
only known space-time code that optimally meets the above three criteria.

11.4 Problems

11.1 Design a shift register circuit based on the memory arrangement in Figure 11.10
and an 8-PSK constellation mapping such that the three coded bits uniquely select
an 8-PSK signal according to the trellis labelings in Figure 11.11.

11.2 Design a shift register circuit based on the memory arrangement in Figure 11.13
and a 16-QAM constellation mapping such that the three coded bits together with
the uncoded bit uniquely select a 16-QAM signal according to the trellis labelings
in Figure 11.14.

11.3 Instead of a rectangular 32-QAM, use the 32-CROSS QAM constellation in Figure
8.18 as a reference uncoded system. Determine the coding gain achieved by the
TCM scheme of Example 11.1.

11.4 Design a TCM modulator with a rectangular lattice where there is one coded bit (to
choose one of two cosets) and four uncoded bits (to choose a signal point within a
coset). Compare the coding gain (or loss) of the designed TCM scheme with that
obtained in Example 11.1.

11.5 Justify the trellis mapping of Figure 11.14.
11.6 (TCM demodulation with the Viterbi algorithm) Consider the TCM scheme

described by Figures 11.2, 11.6, and 11.8. The following sequence of sufficient
statistics is obtained at the receiver:

rI =−0.173 −0.702 −1.166 1.476 0.838 0.632 0.472 −0.055
rQ = 0.334 0.822 1.183 −0.015 −0.637 0.997 0.166 −0.954

(P11.1)

where rI is the projection onto the inphase axis and rQ that onto the quadrature axis.
Using the Viterbi algorithm determines the most probable transmitted bit sequence.
Assume that one starts in the 00 state and that the average transmitted signal energy
is Es = 1 joule.

11.7 Verify Table 11.2.
11.8 This problem examines and compares the PSDs of typical spreading waveform and

message signals.
(a) Determine the PSD of a spreading waveform, c(t), produced by an m-sequence

for m = 20 and m = 40 (see (11.80) and Figure 11.41). Since the autocorrela-
tion is periodic, the spectrum is discrete. However, plot the “envelope” of the
discrete spectrum in terms of fn = fTc.

(b) Determine also the PSD of the message signal m(t) where the modulation is
NRZ-L. Express the PSD in terms of the processing gain G and the chip interval
Tc. On the same (horizontal) scale as the plot in (a), plot the PSD for G = 100.
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11.9 The expression of the bit error probability in (11.41) is obtained by ignoring the
usual AWGN. What happens if the AWGN is considered in the analysis.

11.10 It is of interest to get a feel for how long it takes the shift register that produces
the pseudorandom sequence to repeat itself. Consider a chip rate of 1 gigahertz (not
an unreasonable assumption). How long is the period of the shift register if it is of
length: (a) 20 and (b) 40? If the source rate is 105 bits/second, how many source bits
occur before the spreading sequence starts to repeat itself?

11.11 Write all possible 2m − 1 binary m-tuples, one to a line, and look at any column.
Show that if the all zero m-tuple was included we would see that exactly half the
values are zero and half are one.

11.12 Verify (11.79).
11.13 (Multiuser detection) Section 11.2.2 discusses synchronous CDMA systems where

the users’ signature waveforms are orthogonal and the received signals are time
aligned. Here we examine the case that the system is synchronous but the users’
signature waveforms are not orthogonal. Such a situation arises, for example, when
the number of users exceeds the processing gain, i.e., the system is overloaded.

As the simplest example, consider a CDMA system with only two users whose
signature waveforms are c(1)(t) and c(2)(t). Each waveform lasts over [0, Tb] and has
unit energy. Moreover, the two signature waveforms are correlated with crosscorre-
lation coefficient ρ = ∫ Tb

0 c(1)(t)c(2)(t)dt. Also let bj = ±1, j = 1, 2, denote the jth
user’s information bit in the first signaling interval.
(a) Consider the receiver in Figure 11.55 (see also Figure 11.36), known as the

correlation or the matched-filter receiver. Show that the bit error probability of
this receiver is

Pcorr.[bit error] = 1

2
Q

(√
2Eb

N0
(1− ρ)

)
+ 1

2
Q

(√
2Eb

N0
(1+ ρ)

)
. (P11.2)

Hint In the detection of one user, say user 1, treat the component due to user 2’s
signal at the output of the integrate-and-dump circuit as interference.
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�Fig. 11.55 Correlation (or matched-filter) receiver for a CDMA system.
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(b) Now consider the receiver in Figure 11.56, known as the decorrelating receiver,

where R =
[

1 ρ

ρ 1

]
is the correlation matrix of the signature waveforms and[

ŷ1

ŷ2

]
= R−1

[
y1

y2

]
. Show that the bit error probability of this receiver is

Pdecorr.[bit error] = Q

(√
2Eb

N0

√
1− ρ2

)
. (P11.3)
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�Fig. 11.56 Decorrelating receiver for a two-user CDMA system.

(c) Plot the error probabilities of the correlation and decorrelating receivers versus
Eb/N0 for ρ = 0.2 and ρ = 0.8. Comment.

(d) Develop an optimum multiuser receiver that jointly detects the two bits b1 and
b2. Hint There are four combinations of b1 and b2 and the optimum receiver is
similar to that of quaternary modulation in AWGN. Sketch a block diagram of
the optimum receiver. Also clearly illustrate the signal space diagram and the
decision boundary when ρ = 0.5.

11.14 Verify that S1(t) and S2(t) defined as the first and second rows of the matrix in
(11.96) are orthogonal over [(k − 1)Tb, (k + 1)Tb].

11.15 Show that the random variables ŵ1,I , ŵ2,I , ŵ1,Q, ŵ2,Q in (11.102a) and (11.102b)
are zero-mean statistically independent Gaussian random variables with variances
given in (11.103a) and (11.103b).

11.16 Verify that wI and wQ in (11.105a) and (11.105b) are zero-mean statistically
independent Gaussian random variables with the same variance N0/2.

11.17 (A space-time code) We have seen that the simple repetition coding applied to
two transmit antennas as described in (11.94) can achieve a diversity order 2,
but at the price of a reduced (by half) transmission rate. To improve the trans-
mission rate, your friend suggests the following space-time transmission scheme.
Let bk

√
Eb
√

2/Tb cos(2π fct) and bk+1
√

Eb
√

2/Tb cos(2π fct) be two BPSK signals.
First, perform the following “rotation” on these two BPSK symbols:
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S(1)
i (t)

S(2)
i (t)

]
=
[

bk
√

Eb
√

2/Tb cos(2π fct)
bk+1

√
Eb
√

2/Tb cos(2π fct)

] [
cos θ sin θ

− sin θ cos θ

]
,

(P11.4)

where θ is some angle. Then the signals S(1)
i (t) and S(2)

i (t) are space-time transmitted
as follows: [

S(1)
i (t) 0

0 S(2)
i (t)

]
︸ ︷︷ ︸

[(k−1)Tb,kTb]
︸ ︷︷ ︸

[kTb,(k+1)Tb]

antenna 1

antenna 2

time −→
(P11.5)

Note that the superscripts of S(1)
i (t) and S(2)

i (t) refer to the first and second transmit
antennas, while the subscript i refers to one of the four specific signals, depend-
ing on the bit pattern (bk, bk+1). Define Si(t) = [S(1)

i (t), S(2)
i (t)] over (k − 1)Tb ≤

t ≤ (k + 1)Tb.
(a) Obtain the signal space representation of the transmitted signal set {Si(t)}4i=1.
(b) Obtain the sufficient statistics for the detection of the bits bk and bk+1. Is it

possible to decouple the detections of these bits? What do you think the diversity
order achieved by this space-time transmission scheme is?

(c) Let φ1(t) and φ2(t) be the two orthonormal basis functions used to represent the
signal set {Si(t)}4i=1 in (a). It can be shown that, over the Rayleigh fading chan-
nels, the bit error probability is minimized by maximizing the minimum product
distance, dP, defined as d2

P = min i,j
i	=j
|Si1 − Sj1||Si2 − Sj2|. Find the angle θ that

maximizes dP.
11.18 The Alamouti scheme with BPSK modulation sends 1 bit/time slot and achieves a

full diversity order of 2. We have seen that applying a repetition coding to two trans-
mit antennas (being turned on and off alternately over two slots) can also achieve
a diversity order 2. To maintain the throughput of 1 bit/time slot, 4-ASK can be
employed. Assuming that Gray mapping is used with 4-ASK, obtain the exact
bit error probability of the repetition coding. Compare it with that of the Alam-
outi/BPSK scheme by plotting (in Matlab) the two error probabilities on the same
figure. Comment.

11.19 Inspired by the Alamouti scheme, your friend proposes the following space-time
transmission with QPSK:√

E
′
b

√
2/Ts

×
[

b(I)
k cos(2π fct)+ b(Q)

k sin(2π fct) −b(I)
k+1 cos(2π fct)− b(Q)

k+1 sin(2π fct)

b(I)
k+1 cos(2π fct)+ b(Q)

k+1 sin(2π fct) b(I)
k cos(2π fct)+ b(Q)

k sin(2π fct)

]
.︸ ︷︷ ︸

[(k−1)Ts,kTs]
︸ ︷︷ ︸

[kTs,(k+1)Ts]

(P11.6)
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Note that, according to the above proposal: (i) the transmitted signal over the first
antenna in the second time slot is the negative of the signal transmitted over the
second antenna in the first time slot, and (ii) the transmitted signal over the second
antenna in the second time slot is the same as the transmitted signal over the first
antenna in the first time slot.
(a) Show that, over two time slots, the signal transmitted over the first antenna is

orthogonal to the signal transmitted over the second antenna.
(b) Following the same steps as those done for the Alamouti/QPSK scheme, show

that the sufficient statistics are given as:⎡⎢⎢⎣
r1,I

r1,Q

r2,I

r2,Q

⎤⎥⎥⎦ = √E
′
b

⎡⎢⎢⎣
α1 cos θ1 −α1 sin θ1 α2 cos θ2 −α2 sin θ2

α1 sin θ1 α1 cos θ1 α2 sin θ2 α2 cos θ2

α2 cos θ2 −α2 sin θ2 −α1 cos θ1 α1 sin θ1

α2 sin θ2 α2 cos θ2 −α1 sin θ1 −α1 cos θ1

⎤⎥⎥⎦
︸ ︷︷ ︸

“transmission matrix” B

⎡⎢⎢⎢⎣
b(I)

k

b(Q)
k

b(I)
k+1

b(Q)
k+1

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎣
w1,I

w1,Q

w2,I

w2,Q

⎤⎥⎥⎦ . (P11.7)

(c) Premultiply both sides of (P11.7) with B� to obtain the following new set of the
sufficient statistics:⎧⎪⎪⎪⎨⎪⎪⎪⎩

r̂1,I = (α2
1 + α2

2)b(I)
k + [2α1α2 sin(θ1 − θ2)]b(Q)

k+1 + ŵ1,I

r̂1,Q = (α2
1 + α2

2)b(Q)
k + [−2α1α2 sin(θ1 − θ2)]b(I)

k+1 + ŵ1,Q

r̂2,I = [−2α1α2 sin(θ1 − θ2)]b(Q)
k + (α2

1 + α2
2)b(I)

k+1 + ŵ2,I

r̂2,Q = [2α1α2 sin(θ1 − θ2)]b(I)
k + (α2

1 + α2
2)b(Q)

k+1 + ŵ2,Q

. (P11.8)

Find the statistical properties of the noise components, i.e., their mean values,
variances, and crosscorrelations.

(d) Can the detection of the four information bits be decoupled? What do you think
the diversity order of this scheme is?
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12 Synchronization

12.1 Introduction

A successful communication system must establish synchronization, in addition to uti-
lizing the modulation and demodulation techniques discussed so far. Synchronization is
required at several levels. At the physical-layer level the receiver needs to know or esti-
mate three parameters: (i) the incoming carrier frequency, fc (hertz); (ii) for coherent
demodulation any phase shift or phase drift, θ (t) (radians), introduced during transmis-
sion; (iii) the bit (symbol) timing, i.e., where on the time axis do the kTb (or kTs)
(seconds) ticks occur. How to obtain estimates of these parameters is the subject of this
chapter.

The reader should realize, however, that one needs to establish other levels of syn-
chronization. After detection of the transmitted bit sequence the sequence needs to be
segmented or parsed into “words.” The best example of this is perhaps voice where the
bit sequence needs to be segmented typically into eight-bit words, each word representing
a voice sample. If error coding has been used, the sequence needs to be parsed pro-
perly into codewords for error decoding. Another example occurs in time-division multiple
access where the communication channel is time shared. In this case the time slots need
to be properly segmented to route the information from the different users properly. Such
synchronization is typically called frame synchronization.

Frequency, phase, symbol, and frame synchronization are done at the receiver. In a
mobile cellular environment where two (or more) base stations may be involved in trans-
mitting to (or receiving from) a mobile receiver, the transmitters need to be synchronized
for satisfactory operation. Such synchronization is usually called network synchronization.
Frame and network synchronization are normally established by insertion of special char-
acters (special bit sequences) and by protocol. As such they are done at the network-layer
level.

As mentioned, this chapter is concerned only with the fundamental level of synchroniza-
tion. Many circuits and techniques are available for this synchronization. Increasingly, they
are implemented by digital signal processing. However, arguably, the concepts involved
are well illustrated by the discussion of the analysis and design of two basic circuits: the
phase-locked loop (PLL) for fc and θ (t) estimation and the early–late gate synchronizer for
symbol timing.

But before presenting the two circuits it is of interest to obtain a feel for the effect of
improper phase or symbol timing on the system’s error performance. Consider the effect



506 Synchronization
�

bE

1T0T

1R

(a)

0R

bE−

0

Ir

0D 1D

Phase error

cos θbEcos θbE−

0

Qr

2 bE

(b)

0

Phase
error

Transmitted
Received

4
+

0 Ir

Qr
2 sin

4bE +

2 cos
4bE θ +

1(Q)
D

0(Q)
D

1(I )
D0(I )

D

φQ(t)

φI(t)

φQ(t)

φI(t)

π

π

π

θ

θ
θ

θ

�Fig. 12.1
Effect of a phase error on (a) BPSK and (b) QPSK signal constellations and received
sufficient statistics.

of a phase error on the performance of BPSK and QPSK modulation. Figure 12.1 shows
the transmitted and received signal constellations along with the effect on the received
sufficient statistics.

It is quite straightforward to establish that (see Problems 7.8 and 7.9) the bit error
probabilities in AWGN are:

BPSK: P [bit error] = Q

(√
2Eb

N0
cos θ

)
, (12.1)

QPSK: P [bit error] = 1

2
Q

(√
2Eb

N0
(cos θ − sin θ)

)

+ 1

2
Q

(√
2Eb

N0
(cos θ + sin θ)

)
, (12.2)
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�Fig. 12.2 Effect of a phase error on the bit error probabilities of (a) BPSK and (b) QPSK in AWGN.

where, as usual, the bits are assumed to be equally probable and Gray mapping is used for
QPSK. Plots of these bit error probabilities are shown in Figure 12.2 for various values of
phase error. They show that as long as the phase error is less than ±5 degrees the error
performance is relatively insensitive to the actual phase. Further, as intuitively expected,
QPSK is more sensitive to phase error than BPSK.
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To illustrate error performance when symbol timing error is encountered, consider NRZ-
L modulation.1 Figure 12.3 shows the appropriate model for the demodulator.

The sufficient statistic r depends on whether two consecutive bits agree or disagree. In
particular, r = ±√Eb + w when they agree and r = ±√Eb(1− 2ε)+ w if they disagree.
The bit error probability is then given by

( )
( 1

∫
)

dt
b

b

T

T

+

•

= b( 1)t T+

t
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bT 2 bT
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�Fig. 12.3 Model to study the effect of symbol timing error on the demodulation of NRZ-L.
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�Fig. 12.4 Effect of the symbol timing error on the bit error probability of NRZ-L in AWGN.

1 Note that this analysis is applicable for BPSK or QPSK, where we first shift the received signal to baseband
and then demodulate the resulting baseband NRZ-L signal.
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P [bit error] = 1

2
Q

(√
2Eb

N0

)
+ 1

2
Q

(√
2Eb

N0
(1− 2ε)

)
. (12.3)

A plot of error performance for various value of ε is shown in Figure 12.4.
Phase and symbol synchronization are similar in that both need an accurate time ref-

erence for synchronization, i.e., the t = 0 point. However, there are typically a very large
number of carrier (fc) cycles per symbol (Tb or Tc) period,2 which means that symbol
synchronization is a more “coarse” synchronization. The two types of synchronization are
therefore done with different circuitry. Phase synchronization is done with some version of
a PLL circuit and this is discussed next.

12.2 Phase offset and carrier frequency estimation

12.2.1 Phase-locked loop (PLL)

As the name suggests, the PLL is a circuit that locks onto the frequency3 ωc (radi-
ans/second) of a received sinusoid, V cos(ωct + θ ) and estimates the phase offset, θ

(radians). Loop implies a feedback circuit and this is precisely what a PLL is. It is a
feedback control system whose function is to track the frequency and phase of an input
sinusoid. Thus even if ωc and θ change (slowly) over time the feedback circuit can adjust.
Figure 12.5 shows a generic block diagram of a PLL. In practice, there are many different
possible implementations of a PLL. To gain an understanding of the PLL we follow what
could be considered the classical approach. Hopefully, this will give the reader a good
grasp of the concepts underlying PLL analysis and design.

Many of the differences between PLL circuits involve the phase detector block and
the loop filter block. Figure 12.6 shows what is called a sinusoid phase detector, while

Loop
filter

Phase
detector

Voltage controlled
oscillator

cos(ω (t))c iV t + ϕ

cos(ω )cV t +
in(t)v

out ( )v t

θ

�Fig. 12.5 Generic block diagram of a PLL.

2 As a typical example take mobile voice communication: fc is on order of gigahertz, hence Tc = 1/fc is on order
of nanoseconds. On the other hand, Tc/Tb is on the order of kilohertz, which means that Tb is on the order of
milliseconds, or Tb/Tc is on the order of 106.

3 Though throughout the text we have thus far used f hertz or cycles/second as the frequency variable, with the
PLL it is much more convenient to use ω (radians/second) as the frequency variable. This is because we are
dealing with phase and the natural unit for phase is radians.
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Figure 12.7 presents four possible loop filters. Because of the multiplier one would suspect
that the circuit is a nonlinear one and so it is. The implication of this is that analysis of
the circuit is difficult since transform methods (Laplace or Fourier) which proved to be so
useful and powerful for linear circuits are no longer applicable. One must resort to analysis
in the time domain.

Consider the simplest case where the loop filter is that of Figure 12.7(a), a length of
copper wire which one could call an allpass filter. The governing equation for the phase
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error, which we now derive, is a nonlinear, first-order differential equation. The PLL is
therefore called a first-order PLL. The signal at point �A of the loop in Figure 12.6 is

KmVVc

2
{cos [(ωc + ωi)+ θ + ϕ(t)]+ cos [(ωc − ωi)t + θ − ϕ(t)]} , (12.4)

where Km is the multiplier constant, ωi is the nominal frequency of the VCO, reasonably
close to ωc, and ϕ(t) is a slow phase variation in the output of the VCO. The spectrum of
the first term lies around ωc + ωi ≈ 2ωc and is filtered out. Therefore

νin(t) = KmVVc

2
cos [(ωc − ωi) t + θ − ϕ (t)] = KmVVc

2
cos ψ (t) , (12.5)

where ψ(t) ≡ (ωc − ωi)t + θ − ϕ(t) = (ωct + θ )− (ωit + ϕ(t)) is the instantaneous phase
error. To obtain the differential equation for ψ(t), note that for the chosen loop filter
νout(t) = νin(t). Further the VCO output is

ωout(t) = ωi + Kvcoνout(t) = ωi + Kvcoνin(t)

= ωi + KvcoKmVVc

2
cos ψ(t)

= ωi + Kloop cos ψ(t), (12.6)

where Kloop ≡ KvcoKmVVc/2 is called the loop gain. Note that the loop gain depends on
the signal levels V , Vc, a manifestation of the nonlinearity of the feedback loop. Since
ωout(t) is the instantaneous frequency of the VCO output, one has

ωout(t) = d

dt
[ωit + ϕ(t)] = ωi + dϕ(t)

dt
= ωi + Kloop cos ψ(t). (12.7)

It then follows that
dϕ(t)

dt
= Kloop cos ψ(t). (12.8)

To obtain the differential equation in ψ(t), let �ω ≡ (ωc − ωi), the difference in the
angular frequencies4 at t = 0. Therefore ψ(t) = �ωt + θ − ϕ(t). Write the left-hand side
of (12.8) as

d

dt
[(ϕ(t)− θ −�ωt)+�ωt] = d

dt
[−ψ(t)+�ωt] = −dψ(t)

dt
+�ω. (12.9)

One then obtains the following differential equation governing the phase error, ψ(t):

dψ(t)

dt
+ Kloop cos ψ(t) = �ω, t ≥ 0. (12.10)

Though nonlinear, the differential equation (12.10) can be solved explicitly for ψ(t). How-
ever, insight into the PLL performance can be obtained by a graphical technique used in
nonlinear control system analysis, called the phase plane method. The phase plane is a plot
of the derivative of a variable versus the variable, in this case dψ(t)/dt versus ψ(t). This
plot is shown in Figure 12.8.

4 As time progresses the VCO frequency, ωi, will change (hopefully) so that it becomes ωc.
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From the phase plane plot one can make the following observations:

(1) The phase error, ψ(t), at all times has to be a point on the trajectory. Where one starts
depends on ψ(0), the initial condition. But since it is “inside” a sinusoid the phase
value is only relevant modulo 2π .

(2) The intersection points represent equilibrium or solution points in the steady state,
i.e., as t →∞ and the transient response has died out. However, some are stable and
others are unstable. Note that dψ(t)/dt > 0 implies that ψ(t) increases with time, while
dψ(t)/dt < 0 means ψ(t) decreases. From this one arrives at the stable and unstable
operating points as shown.

(3) The stable operating points are given by

ψ(t)
∣∣∣
t→∞ = − cos−1

(
�ω

Kloop

)
+ 2kπ , k = 0,±1,±2, . . . . (12.11)

(4) Consider the stable operating point of − cos−1
(
�ω/Kloop

)
. Since ψ(t) =

(ωc − ωi)t + θ − ϕ(t) approaches a constant as t →∞, we conclude that the angular
frequency ωi approaches ωc as t →∞, i.e., the loop locks onto the incoming fre-
quency. The phase ϕ(t), however, tends to

[
θ + cos−1

(
�ω/Kloop

)]
. Therefore there is

a phase error of magnitude,
∣∣cos−1

(
�ω/Kloop

)∣∣.
(5) The stable operating point and achievement of lock occurs only if −Kloop < �ω <

Kloop, i.e., the trajectory must intersect the ψ axis. Otherwise the phase error either
keeps increasing if �ω > Kloop, or keeps decreasing if �ω < −Kloop, with time.

(6) Observe that if �ω = 0 at t = 0, i.e., initially the incoming frequency and VCO fre-
quency are the same, the steady-state phase error is −π/2, i.e., the VCO signal is in
quadrature with the incoming signal.
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In general the phase plane can usually provide information about the stable and unstable
equilibrium points, the lock range, and the steady-state phase error of a PLL. What it does
not provide is the transient performance of the PLL, i.e., how the phase error behaves as
a function of time. Of particular interest is the acquisition time of the PLL, i.e., how long
does it take (practically) to lock onto the incoming frequency. To obtain this information
one must solve the differential equation, either numerically, by simulation, or by judicious
approximation methods. The nonlinear differential equation of (12.10), however, can be
solved explicitly.

Rewrite (12.10) as

ψ(t)∫
ψ(t=0)

dψ

�ω − Kloop cos ψ
=

t∫
t=0

dt = t. (12.12)

The LHS can be integrated (see [1, p. 148, Eqn. 2.553.3]) to yield

⎡⎣ 1√
K2

loop − (�ω)2
ln

⎧⎨⎩
√

K2
loop − (�ω)2 tan ψ

2 +�ω − Kloop√
K2

loop − (�ω)2 tan ψ
2 −�ω + Kloop

⎫⎬⎭
⎤⎦ψ=ψ(t)

ψ=ψ(0)

= t, (12.13)

where |�ω| < Kloop (the lock-in region). Factoring out K2
loop, defining ωd ≡ �ω/Kloop,

we get

ln

⎧⎨⎩
√

1− ω2
d tan(ψ(t)/2)− (1− ωd)√

1− ω2
d tan(ψ(t)/2)+ (1− ωd)

⎫⎬⎭ =
Kloop

(√
1− ω2

d

)
t + ln

⎧⎨⎩
√

1− ω2
d tan (ψ(0)/2)− (1− ωd)√

1− ω2
d tan (ψ(0)/2)+ (1− ωd)

⎫⎬⎭ . (12.14)

Without loss of generality we let 0 < �ω < Kloop, which means 0 < ωd < 1. Therefore
the numerator of the LHS is less than the denominator of the LHS. Multiply both sides of
the above equation by −1 and then take the exponential of both sides. Define parameters

a ≡
√

1− ω2
d; b ≡ (1− ωd). The result is:

a tan (ψ(t)/2)+ b

a tan (ψ(t)/2)− b
=
[

a tan (ψ(0)/2)+ b

a tan (ψ(0)/2)− b

]
e−a Kloop t, t ≥ 0. (12.15)

From the above equation we infer that ψ(t) approximately decays exponentially to its
steady-state value with a time constant of 1/a Kloop. Approximately because ψ is present
only implicitly on the LHS of (12.15). Letting

A ≡
[

a tan ψ(0)
2 + b

a tan ψ(0)
2 − b

]
,
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the explicit expression for ψ(t) is

ψ(t) = 2 tan−1

{
−b
(
1+ Ae−a Kloop t

)
a
(
1− Ae−a Kloop t

) } . (12.16)

Figure 12.9 shows plots of ψ(t) for various values of ωd and ψ(0). It confirms that the
decay is reasonably exponential and that steady state is reached within 3/aKloop to 5/aKloop

seconds. Note that this holds well as long as ωd � 1.

12.2.2 Equivalent model of a sinusoidal PLL

In practice the loop filter is chosen so that the PLL becomes a second-order PLL, meaning
that the differential equation for the phase error is a second-order, nonlinear, differential
equation. The loop filter in this case is chosen from one of those shown in Figure 12.7 (b),
(c), or (d).5 A second-order PLL extends the lock range, has better performance in noise,
and can achieve a steady-state phase error of zero, i.e., not only is frequency lock achieved
but phase lock as well. We now develop a somewhat more general model for the sinusoidal
PLL. It could be termed the equivalent baseband model or the incremental model because
the frequency ωc is suppressed. We start with the PLL as shown in Figure 12.10(a). The
time reference for the incoming signal and the VCO output signal, based on observation
(6) in the previous section, is chosen so that the two signals are in quadrature, i.e., one
is a sine, the other a cosine. Furthermore, the VCO output is assumed to have an angular
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ψ(
t)

ψ (0) = π/4

ψ (0) = –π/10

−cos−1( d)

 

 

ωd = 0.1

ωd = 0.5

�Fig. 12.9 Plots of ψ(t) for different values of ωd and ψ(0).

5 The loop filters are first-order filters but together with the VCO the PLL becomes second-order.
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�Fig. 12.10
PLL models: (a) sinusoidal PLL, (b) equivalent model of the sinusoidal PLL, (c) linear model
of the sinusoidal PLL.

frequency of ωc, any deviation from this, say �ωt, is subsumed in the instantaneous phase,
ϕ(t), i.e., ϕ(t) = �ωt + ϕ′(t). The loop filter is described by its impulse response h(t). Thus
its output is given by νout(t) = h(t) ∗ νin(t). Note that though the overall loop is nonlinear
the loop filter is linear and one can use convolution, a linear system operation, to describe
its input–output relationship. As in the case with the first-order PLL we can establish the
following relationships:
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dϕ(t)

dt
= Klooph(t) ∗ sin(θ (t)− ϕ(t)), (12.17a)

dψ(t)

dt
+ Klooph(t) ∗ sin ψ(t) = dθ (t)

dt
, (12.17b)

where ψ(t) ≡ θ (t)− ϕ(t) is the phase error.
From Equation (12.17a) we have ϕ(t)=Kloop

∫
h(t) ∗ sin(θ (t)−ϕ(t))dt=Kloop

∫
νout(t)dt.

This leads to the model of the PLL shown in Figure 12.10(b). Note the sinusoidal nonlinear-
ity (hence the name) which represents the phase detector. Other nonlinearities for the phase
detector are possible, with different characteristics. Two such characteristics are shown in
Figure 12.11. The operating signals for these are no longer sinusoidal but square waves.
The reader is referred to the literature for more detail.

If the phase error is small enough, a situation that occurs once the PLL has locked onto
the frequency of the incoming signal and now is tracking slow phase changes in it, then
sin ψ ≈ ψ (ψ � 1) and the PLL can be represented by a linear model as shown in Figure
12.10(c). One can now apply all the standard concepts and techniques from linear systems
theory. However, before the PLL can be linearized it must achieve lock and for this one
must deal with the nonlinearity. In the case of the first-order PLL we were able to achieve
an explicit solution. We now consider the second-order PLL.

12.2.3 Second-order phase-locked loop dynamics

Once again we want to derive the nonlinear differential equation describing the behav-
ior of the PLL’s phase error. Consider as a specific example the filter of Figure
12.7(d). To obtain the differential equation relating the output, νout(t), to the input,
νin(t), we can use transform methods (again only at this local level). Let the transfer

0−π −π π
ππ

π

V

−V

Output (V)

Phase error
(rad) 0

V

V−

Output (V)

2
−

2

Phase error
(rad)

(b)(a)�Fig. 12.11
Two commonly encountered phase characteristics: (a) sawtooth, and (b) triangular. Note these are
encountered when the input signal and VCO output are (or are converted to) square waves. In this case the
phase error is more appropriately thought of as a timing error.
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function be6 H(s) = 1+ a/s with any possible gain (or attenuation) factor absorbed by
Kloop. The filter output is Vout(s) = ((s+ a)/s)Vin(s) which in the time domain becomes
dνout(t)/dt = aνin(t)+ dνin(t)/dt. Since dϕ(t)/dt = Kloopνout(t) and νin(t) = sin ψ(t) (see
Figure 12.10(b)), one has

d2ϕ(t)

dt2
= Kloop

dυout(t)

dt
= aKloop sin ψ(t)+ Kloop cos ψ(t)

dψ(t)

dt
. (12.18)

Again d2ϕ(t)/dt2 = (d2/dt2) [ϕ(t)− θ (t)+ θ (t)] = − (d2ψ(t)/dt2
)+ (d2θ (t)/dt2

)
which

means the differential equation for the phase error is

d2ψ(t)

dt2
+ Kloop cos ψ(t)

dψ(t)

dt
+ aKloop sin ψ(t) = d2θ (t)

dt2
. (12.19)

Consider now a constant frequency input, i.e., θ (t) = �ωt. Equation (12.19) becomes

d2ψ(t)

dt2
+ Kloop cos ψ(t)

dψ(t)

dt
+ aKloop sin ψ(t) = 0. (12.20)

Unfortunately, no solution is available for (12.20), so one must resort to simulation, approx-
imations, numerical techniques, or the phase plane method to obtain insight into the PLL
behavior.

We shall obtain the phase plane plot for (12.20) but first make the observation that
when the transients die out, which means d2ψ(t)/dt2 → 0 and dψ(t)/dt → 0, then we
have sin ψ(t) = 0. This implies that ψ(t) = 0 (as t →∞) which in turn implies that (i)
there is no steady-state phase error, i.e., the PLL is locked in both frequency and phase,
(ii) the lock-in range is theoretically infinite, i.e., for−∞ < �ω < ∞ the system achieves
lock. All of this is true provided the system is stable.7 A theoretical justification of the lock
range will be given shortly but first we derive the phase plane plot.

To this end, we first normalize the time axis by letting τ ≡ Kloopt to eliminate one of the
parameters. Equation (12.20) becomes

K2
loop

[
d2ψ(τ )

dτ 2
+ cos ψ(τ )

dψ(τ )

dτ
+ a

Kloop
sin ψ(τ )

]
= 0 (12.21)

and upon defining a′ ≡ a/Kloop we have

d2ψ(τ )

dτ 2
+ cos ψ(τ )

dψ(τ )

dτ
+ a′ sin ψ(τ ) = 0. (12.22)

6 Note that the Laplace transform, which is a generalization of the Fourier transform, is used here. For readers
unfamiliar with the Laplace transform simply substitute s = jω. In the time domain s = jω corresponds to the
differentiation operation, i.e., to d(·)/dt, s2 = (jω)2 = −ω2 to d2(·)/dt2, and in general sn = (jω)n to dn(·)/dtn.

7 Traditionally stability in a control system is defined as bounded input–bounded output. Due to the sinusoidal
nonlinearity this definition is not applicable. A more suitable definition for stability would be that the PLL is
able to lock onto an incoming frequency.
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Now d2ψ(τ )/dτ 2 = (d/dτ )
[
dψ(τ )/dτ

]
, so if we divide (12.22) by dψ(τ )/dτ , upon

realizing that

d

dτ

[
dψ(τ )

dτ

]
dψ(τ )

dτ

=
d

[
dψ(τ )

dτ

]
dψ(τ )

we get

dψ̇

dψ
= − cos ψ − a′ sin ψ

ψ̇
, (12.23)

where ψ̇ = dψ(τ )/dτ (we have switched to Newton’s notation).
The phase plane is a plot of ψ̇ versus ψ and (12.23) gives us the slope of the trajecto-

ries at each point (ψ̇ , ψ) in the phase plane. This can be used to obtain the phase plane
trajectories. These trajectories are shown in Figure 12.12 for two different values of a′.

To show that the lock-in range is theoretically infinite, multiply (12.23) by ψ̇ and
integrate it between −π and π :

1

2

[
ψ̇2(π )− ψ̇2(−π )

]
= −

π∫
−π

ψ̇ cos ψdψ − a′
π∫

−π

sin ψdψ . (12.24)

The second term on the RHS is zero. Integrate the first term by parts (where the parts are
u = ψ̇ → du = dψ̇ and dv = cos ψdψ = d(sin ψ)) to obtain

1

2

[
ψ̇2(π )− ψ̇2(−π )

]
=

π∫
−π

sin ψdψ̇ . (12.25)
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�Fig. 12.12 Phase plane plot of (12.23): (a) a′ = 1/2, (b) a′ = 1/8.
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But dψ̇ = [− cos ψ − a′sin ψ/ψ̇
]

dψ . Substituting into (12.25) yields

1

2

[
ψ̇2(π )− ψ̇2(−π )

]
= −

π∫
−π

sin ψ cos ψdψ

︸ ︷︷ ︸
=0

−a′
π∫

−π

sin2 ψ

ψ̇
dψ

= −a′
π∫

−π

1− cos(2ψ)

ψ̇
dψ . (12.26)

Therefore if ψ̇ = dψ(τ )/dτ is positive, the RHS of (12.26) is negative and if ψ̇ < 0 the
RHS is positive. This, in turn, says that for any cycle of width 2π the value of |ψ̇ | must
decrease regardless of the initial value of ψ̇ , i.e., the lock range is infinite provided the
integrator is perfect.

The phase plane method can be generated by the state-space approach.8 In this approach
a high-order differential equation, linear or nonlinear, is changed into a set of first-order
differential equations which can then be solved numerically. Consider (12.22) and define
the following two states y = dψ(τ )/dτ and x = ψ(τ ). Then the equation is represented by
the following two first-order differential equations:

dy

dτ
= −y cos x− a′ sin x,

dx

dτ
= y.

(12.27)

The above set can be solved numerically by a standard mathematical package such as
ode23 found in Matlab. Figure 12.13 shows several plots of x = ψ(τ ) for different initial
conditions.

The plots in Figure 12.12 show that there is a region in the (ψ̇ , ψ) plane (the region inside
the thicker trajectories) where the phase error converges to 0 without the phase exceeding
the [−π , π ] range. Outside the region the PLL still converges to a stable point, but one
that is a multiple of 2π . This phenomenon is known as cycle skipping (or slipping) and
can be seen from Figure 12.13. The number of skipped cycles depends on the initial value
of dψ(τ )/dτ , i.e., ψ̇(0). The larger it is, the more cycles are (potentially) skipped. The
phase plane plot is shown only in the range [−π , π ] since it is seen from (12.23) that the
plot is periodic with period 2π . Note it is the plot that is periodic, not any individual tra-
jectory. Finally, there are singular points at (ψ̇ = 0, ψ = k2π ) which are stable operating
points and also singular points at (ψ̇ = 0, ψ̇ = (2k + 1)π ). The latter, however, are unsta-
ble and are called saddle points. Figure 12.14 illustrates trajectory behavior in the region
of a saddle point.

A similar analysis can be carried out for the other loop filters, though in detail the per-
formances will differ. In particular the lock-in range will not be infinite as was the case for
the perfect integrator. It will lie somewhere between ∞ and that of a first-order PLL. The

8 The state-space approach is a generalization of the phase plane. It deals with differential equations of order
greater than 1.
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�Fig. 12.13 Plots of x = ψ(τ ) for different initial conditions: (a) a′ = 1/2; (b) a′ = 1/8.
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�Fig. 12.14 Trajectory behavior in the region of a saddle point.

infinite lock-in range when there is a perfect integrator in the loop is somewhat intuitive.
As long as there is a nonzero phase error (θ (t)− ϕ(t)) and therefore a nonzero input to
the integrator, it will produce an increasing (or decreasing) output which in turn drives the
VCO into phase lock. Besides the lock-in frequency range, another parameter of interest
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is what is called the tracking range. This is the range of input frequencies that the PLL
can stay locked onto after it has achieved frequency lock. In general, the tracking range is
greater than or equal to the lock-in range. They are equal for the first-order PLL. Synonyms
for the lock-in range and tracking range are pull-in and pull-out respectively.

Finally the operation of the PLL depends on the fact that the incoming signal has a spec-
tral component (i.e., an impulse theoretically) at the carrier frequency, fc. Modulations such
as BPSK, QPSK, and M-QAM do not have one in general, i.e., they are suppressed carrier
modulations. How to obtain a spectral component for these modulations is the subject of
the next section.

12.3 Phase and carrier frequency acquisition
for suppressed carrier modulation

Consider the simplest case of phase modulation, that of BPSK. The received signal can be
written as

r(t) =
⎧⎨⎩

∞∑
k=−∞

bk [u(kTb)− u((k + 1)Tb)]

⎫⎬⎭︸ ︷︷ ︸
I(t)

×√Eb

√
2

Tb
cos(2π fct + θ )+ w(t), (12.28)

where bk = ±1. The PSD of BPSK does not contain an impulse at f = fc and hence there
is no spectral component for the PLL to lock on. However, we can create one by squaring
r(t). Upon squaring one gets

r2(t) = I2(t)Eb

(
2

Tb

)
cos2(2π fct + θ )+ noise terms. (12.29)

But I2(t) = 1 for all t and using the trigonometric identity cos2 x = 1/2+ (1/2) cos(2x),
r2(t) becomes

r2(t) = Eb

Tb
+ cos(2π (2fc)t + 2θ )+ noise terms. (12.30)

It has a spectral component at 2fc for the PLL to lock on (the DC component is eas-
ily filtered, the noise terms less so). A block diagram of the synchronizer is shown in
Figure 12.15.

We now turn our attention to QPSK, which also has no spectral component at fc.
Since QPSK is conceptually two “interleaved” BPSK signals, intuitively squaring it should
produce a spectral component at fc. The received signal is

r(t) = I(t)
√

Eb

√
2

Ts
cos(2π fct + θ )+ Q(t)

√
Eb

√
2

Ts
sin(2π fct + θ )+ w(t), (12.31)
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where

I(t) ≡
∞∑

k=−∞
b(I)

k [u(kTs)− u((k + 1)Ts)] , (12.32)

Q(t) ≡
∞∑

k=−∞
b(Q)

k [u(kTs)− u((k + 1)Ts)], (12.33)

Ts = 2Tb, and {b(I)
k , b(Q)

k } = ±1. Squaring it gives

r2(t) = I2(t)Eb

(
2

Ts

)
cos2(2π fct + θ )+ Q2(t)Eb

(
2

Ts

)
sin2(2π fct + θ )

+ 2I(t)Q(t)Eb

(
2

Ts

)
cos(2π fct + θ ) sin(2π fct + θ )

+ noise terms. (12.34)

But I2(t) = Q2(t) = 1 and cos2 x+ sin2 x = 1. Therefore

r2(t) = 2Eb

Ts
+ 2Eb

Ts
I(t)Q(t) sin(2π (2fc)t + 2θ )+ noise terms. (12.35)

Since I(t)Q(t) can be treated as a zero-mean random process the term I(t)Q(t) sin(2π

(2fc)t + 2θ ) is a double sideband suppressed-carrier (DSB-SC) modulation, i.e., there is
no spectral component at 2fc. To produce a spectral component, let us square r2(t). Now
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r4(t) =4E2
b

T2
s
+ 8E2

b

Tb
I(t)Q(t) sin(2π (2fc)t + 2θ )

+ 4E2
b

T2
s

I2(t)Q2(t) sin2(2π (2fc)t + 2θ )

+ even more noise terms. (12.36)

The third term is
(
2E2

b/T2
s

) [
1− cos(2π (4fc)t + 4θ )

]
, which means that a spectral compo-

nent at 4fc is present, due to the term − (2E2
b/T2

s

)
cos(2π (4fc)t + 4θ ). Figure 12.16 shows

the synchronizer’s block diagram.
BPSK requires a squarer or a second-power block to produce a spectral component (at

2fc), QPSK needs a fourth-power block to produce a spectral component (at 4fc). In general
M-PSK needs an Mth-power block to produce a spectral component at Mfc for the PLL
circuit. We now consider QAM, specifically QAM with signals on a rectangular grid. Write
the modulated signal part of the received signal as

s(t) =
⎧⎨⎩

∞∑
k=−∞

Ii,k [u(kTs)− u ((k + 1)Ts)]

⎫⎬⎭︸ ︷︷ ︸
≡ I(t)

√
2

Ts
cos(2π fct + θ )

+
⎧⎨⎩

∞∑
k=−∞

Qj,k [u(kTs)− u ((k + 1)Ts)]

⎫⎬⎭︸ ︷︷ ︸
≡Q(t)

√
2

Ts
sin(2π fct + θ ), (12.37)
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�Fig. 12.16 Block diagram of the fourth-power synchronizer for carrier recovery for QPSK.
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where Ii,k is one of the amplitudes (±�,±3�, . . .) on the inphase axis and Qj,k is one of
the amplitudes (±�,±3�, . . .) on the quadrature axis, i = 1, 2, . . . , 2λI , j = 1, 2, . . . , 2λQ .

We treat I(t), Q(t) as two random processes and note that E{I(t)} = E{Q(t)} = 0;
E{I(t)Q(t)} = E{I(t)}E{Q(t)} = 0; E{I2(t)} = σ 2

I ; E{Q2(t)} = σ 2
Q where, as usual, the

information bits are equally likely and statistically independent. This means that the
amplitudes, Ii,k, Qj,k are equally likely and statistically independent.

The received signal is

r(t) = I(t)

√
2

Ts
cos(2π fct + θ )+Q(t)

√
2

Ts
sin(2π fct + θ )+ w(t). (12.38)

Upon squaring it one gets

r2(t) = 2

Ts
I2(t) cos2(2π fct + θ )+ 2

Ts
Q2(t) sin2(2π fct + θ )

+ 4

Ts
I(t)Q(t) cos (2π fct + θ) sin(2π fct + θ )+ noise terms. (12.39)

If σ 2
I 	= σ 2

Q (as would be the case for rectangular 8-QAM or 32-QAM), then the mean
value of squared output is

E
{

r2(t)
}
= 2

Ts
σ 2

I sin2(2π fct + θ )+ 2

Ts
σ 2

Q sin2(2π fct + θ )+ A

= σI
2 + σQ

2

Ts
+ σI

2 − σQ
2

Ts
cos
[
2π (2fc)t + 2θ + A

]
(12.40)

since E {I(t)Q(t)} = 0 and E{noise terms} = A. The above means that there is a spectral
component at 2fc, provided σ 2

I 	= σ 2
Q. To conclude, for nonsymmetrical QAM constella-

tions squaring provides a spectral component and one can use the same synchronizer circuit
as for BPSK.

Symmetrical QAM constellations, where σ 2
I = σ 2

Q = σ 2, however, need a fourth-power
block to obtain a spectral component related to fc. The output of this block is

r4(t) = 4

T2
s

I4(t) cos4(2π fct + θ )+ 4

T2
s

Q4(t) sin4(2π fct + θ )

+ 24

T2
s

I2(t)Q2(t) cos2(2π fct + θ ) sin2(2π fct + θ )

+ 16

T2
s

I3(t)Q(t) cos3(2π fct + θ ) sin(2π fct + θ )

+ 16

Ts
2

I(t)Q3(t) cos (2π fct + θ) sin3(2π fct + θ )

+more and more noise terms. (12.41)
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The mean value of r4(t) is

E
{

r4(t)
}
= 3

T2
s

[
E
{

I4(t)
}
− σ 4

]
+ 1

T2
s

[
E
{

I4(t)
}
− 3σ 4

]
cos(2π (4fc)t + 4θ )+ B

(12.42)

There is a spectral component at 4fc. Therefore the QPSK synchronizer block diagram can
be used for symmetrical QAM.

A difficulty encountered in circuit implementation of the described synchronizers is
the squaring or fourth-power block, especially at high frequencies. A circuit design that
avoids this is one that is known as a Costas loop. This design is shown in block diagram
form in Figure 12.17 for BPSK and in Figure 12.18 for QPSK. We describe its operation
for BPSK. Ignore the AWGN and let r(t) = a(t) cos(2π fct + θ ). Initially the VCO output
is a frequency that is close to the carrier frequency fc. Any difference in frequency and
initial phase difference is accounted for by the phase ϕ. The multipliers in the I and Q
loops produce 2fc terms which are filtered out and the two low-frequency terms show at
the outputs of the lowpass filters. These two outputs are multiplied together and lowpass
filtered to eliminate any amplitude fluctuations due to a(t). The output of this lowpass
filter is a phase error signal that drives the VCO to make the phase error smaller and
smaller.

The working principle of the Costas loop for QPSK is similar. One difficulty, not present
in BPSK, is maintaining a balance between the I and Q channels. The bipolar limiters in
each arm are used to achieve this balance.

We conclude the chapter with a general discussion of symbol timing determination or
what is commonly known as clock recovery.

To
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( )ˆ= θ

θ
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sin( )

2

I t−

( )r t

�Fig. 12.17 Costas loop for carrier recovery for BPSK.
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�Fig. 12.18 Costas loop for carrier recovery for QPSK. Typically ψ = θ − θ̂ is close to zero.

12.4 Determination (estimation) of symbol timing

Symbol timing recovery circuits can be broadly classified into open-loop symbol syn-
chronizers and closed-loop symbol synchronizers. They may be further classified into
non-data-aided (NDA) synchronizers and data-aided (DA) synchronizers which utilize
either previous decisions or have a known data sequence inserted into the information
sequence to aid in the synchronization process. Here we consider NDA symbol synchro-
nizers and restrict ourselves to binary baseband signals. Extension to nonbinary baseband
signals (hopefully) should be straightforward.

If a baseband modulation m(t) has a spectral component at f = 1/Tb, then one only
needs to pass the demodulated signal to a bandpass filter, centered at 1/Tb hertz, followed
by a sgn(·) function to produce a square wave with proper timing (Figure 12.19). However,
most popular baseband modulations, NRZ-L, Miller, biphase, etc., do not have a spectral
component at 1/Tb. In this case, as in the carrier–phase recovery circuits, one needs to
be created. This again is accomplished by a nonlinearity such as a multiplier, squarer or
full-wave rectifier.

Figure 12.20 shows two different implementations of an open-loop synchronizer for
this situation. In the first one the waveform m1(t) is always positive in the second half of
every bit period, Tb. It will be negative in the first half if two successive bits disagree.
This produces a spectral component at the data rate rb = 1/Tb as well as at the harmon-
ics. The bandpass filter isolates the appropriate spectral component. The second circuit is
essentially an edge detector where the differentiator produces positive or negative spikes
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Clock recovery circuit when m(t) has a spectral component at 1/Tb hertz. Here BPF means bandpass filter.
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�Fig. 12.20
Two different open-loop symbol synchronizers in which the baseband modulation has no
spectral component at 1/Tb hertz. Note that, for clarity, noise component w0(t) is ignored. Also LPF
means lowpass filter.

at symbol transitions. Differentiation, however, is a process that is very sensitive to wide-
band noise, where wideband implies there are rapid changes in the time signal. Hence a
lowpass filter precedes the differentiator. It, of course, causes any rapid transitions to be
rounded out, i.e., there is a finite rise and fall time. The result is that rather than having an
impulse at any transition point, one has a pulse-like signal that will still be of considerable
amplitude.

The main disadvantage of an open-loop synchronizer is an unavoidable nonzero average
tracking error. Though small for large SNR, it cannot be made zero. A closed-loop sym-
bol synchronizer, being a feedback system, circumvents this problem. The most popular
closed-loop symbol synchronizer is one called the early–late gate synchronizer. It is shown
in block diagram form in Figure 12.21. The operation of the synchronizer is explained by
referring to Figure 12.22. Let the t = 0 point be set by the square-wave clock generated
locally by the VCO. When this clock and the incoming data, m(t), are in perfect syn-
chronization, both integrators will accumulate the same amount of signal energy over the
period (Tb − d), at least ideally. Therefore, the error signal is zero. If, however, the incom-
ing data are delayed by � < d as shown, then the early-gate integrator accumulates signal
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�Fig. 12.21 Early–late gate clock synchronizer.
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�Fig. 12.22 Timing illustration of early–late gate synchronizer operation.

energy over a period of (Tb −�− d), while the late-gate integrator still accumulates sig-
nal energy over (Tb − d) seconds. The error signal is therefore proportional to −�, which
would reduce the VCO frequency and delay its timing to bring it in synchronization with
the timing of m(t). The opposite happens when the data timing is in advance of the VCO
timing.

12.5 Summary

As stated at the beginning of the chapter, synchronization is a vast topic. Only the most basic
aspects of synchronization have been dealt with in this chapter. Important issues such as the
performance of the PLL in noise, other synchronization techniques (such as sending known
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symbols to aid in the estimation of the “nuisance” parameters), the effect of different loop
filters on the PLL’s locking and tracking performance, etc., is not examined. In large part,
this is because of the nonlinear nature of the circuits involved. Though some analysis is
possible, as done in the chapter, eventually one needs to resort to simulation to obtain
an appreciation of the circuit’s behavior. If a linear approximation is justified, then standard
linear system theory can be used. This approach and other issues are pursued in the problem
set. To reiterate, synchronization is a very important aspect of digital communications and
the reader is well advised to pursue further study of it.

12.6 Problems

The first three problems investigate further the effect of gain, phase, and frequency

imperfections.

12.1 Consider BPSK and QPSK where not only is there a phase offset of θ radians in the
received signal but also an attenuation of α. Derive the resultant bit error probabil-
ities and plot the resultant error performance (see Figure 12.2 for a reference). Let
the attenuation range from 0 to 20%.

12.2 As pointed out in Section 12.1, QPSK is more sensitive to phase uncertainty than
BPSK. Here we investigate the sensitivity of higher-order QAM constellations,
namely those on a rectangular grid with a spacing of � on each axis. The phase
uncertainty rotates the signal constellation by θ degrees. The geometry for a general
signal point is shown in Figure 12.23.
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�Fig. 12.23 Geometrical representation of a general QAM signal point with phase uncertainty.
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(a) Show that:

x1 = �

2

√
(2i− 1)2 + (2j− 1)2 cos

[
tan−1

(
2j− 1

2i− 1

)
+ θ

]
− 2(i− 1),

x2 = i�− �

2

√
(2i− 1)2 + (2j− 1)2 cos

[
tan−1

(
2j− 1

2i− 1

)
+ θ

]
,

y1 = j�− �

2

√
(2i− 1)2 + (2j− 1)2 sin

[
tan−1

(
2j− 1

2i− 1

)
+ θ

]
,

y2 = �

2

√
(2i− 1)2 + (2j− 1)2 sin

[
tan−1

(
2j− 1

2i− 1

)
+ θ

]
− 2(j− 1).

(b) The probability of symbol error for the usual AWGN channel, where the signals
are equally likely, depends on whether the signal is an inner signal (which has
four nearest neighbors), an outer signal (which has three nearest neighbors), or
a corner signal (which has two nearest neighbors). Using the geometry of the
figure show that the conditional error probabilities are given by

Pinner[error] = Q
(x1

σ

)
+ Q

(x2

σ

)
+
[
Q
(y1

σ

)
+ Q

(y2

σ

)] [
1− Q

(x1

σ

)
− Q

(x2

σ

)]
(inner signals),

(P12.1)

Pouter-V[error] = Q
(x1

σ

)
+
[
Q
(y1

σ

)
+ Q

(y2

σ

)] [
1− Q

(x1

σ

)]
(“vertical” outer signals),

(P12.2)

Pouter-H[error] = Q
(y2

σ

)
+
[
Q
(x1

σ

)
+ Q

(x2

σ

)] [
1− Q

(y2

σ

)]
(“horizontal” outer signals),

Pcorner[error] = Q
(x1

σ

)
+ Q

(x1

σ

) [
1− Q

(y2

σ

)]
(corner signals),

(P12.3)

where σ = √N0/2.
(c) The distances x1, x2, y1, y2 have the parameter � in them. Express this parameter

as a function of Eb = Es/λ, the energy per bit, and M = 2λ, the number of
signals.

(d) Obtain an expression for P[symbol error]. Note that you need to consider only
the first quadrant and the sum for the inner signals should index from i = 1 to
2λI/2 − 1 = NI − 1 and j = 1 to 2λQ/2 − 1 = NQ − 1; for the outer signals from
i = NI , j = 1 to NI − 1 and i = 1 to NI − 1, j = NI ; and for the corner signal,
i = NI and j = NQ.

(e) Plot P[symbol error] versus the SNR ≡ Eb/N0 (in decibels) for 16-QAM and
64-QAM for phase offsets of θ = 0, 3, 5, 7 degrees and θ = 0, 1, 2, 3 degrees,
respectively. Compare with BPSK and QPSK.

12.3 The phase offset thus far has been considered to be an unknown, but constant param-
eter. A more realistic model is one where it is a random variable. When a PLL is
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used to estimate the phase, a common model for the pdf of the phase error is what
is known as Tikhonov’s density. It is given as

fθ (θ ) = 1

2π I0(�m)
e�m cos θ , (P12.4)

where the parameter �m is known as the loop SNR and changing its values results
in a wide range of pdfs. In particular, �m = 0 corresponds to a uniform distribution,
whereas �m = ∞ gives an impulse function.
(a) Plot fθ (θ ) for different values of the parameter �m.
(b) Consider BPSK with this phase offset model. The error probability is given

by Q
(√

2Eb/N0 cos θ
)

and is a random variable. Obtain an expression for the
average error probability and plot the error performance for various values
of �m.

12.4 (Frequency offset) Consider BPSK with carrier frequency fc hertz. At the receiver,
the demodulator’s local oscillator has a frequency that is slightly offset, i.e., it is fc +
�f hertz. Obtain the expression for the error probability. Plot it for various values
of �fTb. One can always overcome any performance degradation by increasing the
transmitted power. How accurate must the local oscillator be if this increase is to be
limited to 1 decibel or less? Assume Tb is on the order of milliseconds, while fc is
on the order of gigahertz.

12.5 Consider BFSK with frequencies f1 and f2 hertz. The local oscillators at the demod-
ulator are offset by �f1 and �f2, respectively. Derive an expression for the resultant
bit error probability and plot it. Make whatever assumptions you deem necessary.

12.6 The phase detector characteristic discussed in the chapter was sinusoidal. In gen-
eral, one can state that υ(t) = g[ψ(t)], where υ(t) is the output of the phase detector,
ψ(t) = θ (t)− ϕ(t) is the phase error, and g[·] is the phase detector’s nonlinear char-
acteristic. Show that the general nonlinear differential equation governing the PLL’s
behavior is

dψ(t)

dt
+ Kvcoh(t) ∗ g[ψ(t)] = dθ (t)

dt
, (P12.5)

where h(t) is the loop filter’s impulse response and ∗ denotes the convolution
operation.

12.7 Using the result of Problem 12.6 and the loop filter of Figure 12.7(a), derive the
appropriate equation and obtain the corresponding phase plane plot for the following
phase detector’s characteristics:
(a) sawtooth,
(b) triangular.
The input is a unit step in frequency, i.e., θ (t) = �ωtu(t). Discuss the stable
operating points, steady-state error, etc.

12.8 Consider the loop filter of Figure 12.7(b) and a sinusoidal nonlinearity for the phase
detector.
(a) Derive the differential equation for the phase error.
(b) Write the state equations for the system in terms of Kloop and τ ≡ RC.
(c) Using the ode function in Matlab try to obtain the phase plane plot.
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12.9 Repeat Problem 12.8 for the loop filter of Figure 12.7(c). The loop filter of Figure
12.7(c) can be termed a leaky integrator. Under what condition does it act as a
reasonable integrator?

12.10 Show that the loop filter of Figure 12.7(d) realizes the transfer function discussed in
Section 12.2.3.

If the phase error can be assumed to be sufficiently small and the sinusoidal non-

linearity can be approximated by a linear characteristic, then linear system theory can

be used to gain insight into the PLL behavior. This is explored in the next series of

problems.

12.11 Show that if the phase error is less than π/6 radians then the sinusoidal nonlinearity
can be approximated by a straight line to within 5%.

With the linear approximation of Problem 12.11 the PLL has the linear model shown

in Figure 12.24. Problems 12.12–12.15 are concerned with such a linear PLL model.

12.12 Consider ϕ(s) as the loop’s output, in Figure 12.24.
(a) Show that

ϕ(s) = KloopH(s)/s

1+ KloopH(s)/s
�(s). (P12.6)

+
Kloop ( )H s

−
( )sΘ

( )sϕ

Ψ(s)

1
s�Fig. 12.24 Linear model of the PLL.

The transfer function

T(s) = KloopH(s)/s

1+ KloopH(s)/s

is known as the closed-loop transfer function.
(b) Show that �(s) = [1− T(s)]�(s).

12.13 Consider H(s) = 1, i.e., the loop filter of Figure 12.7(a). Let the input be θ (t) =
�ωt + θ0, t ≥ 0, where θ0 is an initial phase. Show that

�(s) = �ω

s(s+ Kloop)
+ θ0

s+ Kloop

and determine ψ(t). What is the steady-state error and how does it compare with the
steady-state error determined in the chapter (see page 512)? Compare the transient
response given by the linear model to the exact response given in the chapter (see
page 514).
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12.14 Consider H(s) = 1+ a/s, a parallel combination of an ideal integrator with gain
a and a direct connection. Again, as in Problem 12.13, let the input be �(s) =
�ω/s2 + θ0/s. Determine the phase error expression for �(s). Though one can
invert this to obtain the time-domain expression (if interested you are invited to
do it) here we shall only look at the steady-state phase, i.e., ψ(t) as t →∞. To do
this use the final-value theorem for Laplace transforms, which states

lim
t→∞ψ(t) = lim

s→0
s�(s). (P12.7)

Compare with the result obtained in the chapter.
12.15 The loop filter of Figure 12.7(c) can be used to realize the perfect integrator.

(a) Show that the transfer function H(s) is of the form K(s+ a)/(s+ b). Identify K,
a, and b.

(b) Let the attenuation K be compensated for by a high-gain amplifier, gain 1/K.
Show that the closed-loop transfer function is

T(s) = Kloop(s+ a)

s2 + (Kloop + b)s+ aKloop
(P12.8)

and that

�(s) = s(s+ a)

s2 + (Kloop + b)s+ aKloop

(
�ω

s2
+ θ0

s

)
. (P12.9)

The input is still θ (t) = (�ωt + θ0)u(t).
(c) Use the final-value theorem in (P12.14) to obtain the steady-state phase error.

Compare this steady-state error with that of the first-order loop and that of the
perfect integrator.

In Chapter 7 (see Problems 7.14–7.20) it was shown that the bandpass noise, n(t),
can be represented by an equivalent lowpass (or baseband) noise as

n(t) = nI(t) cos(ωct)+ nQ(t) sin(ωct), (P12.10)

where nI(t) and nQ(t) have identical PSDs, which are the same as the PSD of n(t)

but translated down by ωc so that they are centered about zero frequency (0 hertz).
Furthermore, if n(t) is Gaussian and zero-mean, then so are nI(t) and nQ(t). They are
also statistically independent. With all this in mind we now proceed to develop a
model of the sinusoidal PLL where there is additive white noise at the input.

12.16 Let the input to the sinusoidal PLL be

vin(t) = V sin(ωct + θ (t))+ n(t)

= V sin(ωct + θ (t))+ nI(t) cos(ωct)+ nQ(t) sin(ωct)

(P12.11)

and the VCO’s output be K cos(ωct + ϕ(t)).
(a) Show that the output of the phase detector is

vout(t) = C sin(θ (t)− ϕ(t))+ C1nI(t) cos(ωct)− C2nQ(t) sin(ωct). (P12.12)

Identify the constants C, C1, and C2.



534 Synchronization
�

(b) Show that the PLL model when additive noise is present can be represented by
the block diagram of Figure 12.25.
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�Fig. 12.25 PLL model with the presence of additive noise.

(c) Obtain the differential, more appropriately the integro-differential, equation for
ψ(t). It can be argued that, if n(t) is a stationary Gaussian process, then so is
n′(t).

12.17 Consider the linearized model with additive noise developed in Problem 12.16. To
investigate the effect of the loop filter on the noise, let θ (t) = 0. Note that because
the system is linear, superposition holds and considering the noise independently of
the input is legitimate, as long as the linear assumption is valid.

Since n′(t) is a Gaussian process, then so are ψ(t) and ϕ(t). The two important
parameters are the mean and variance of the processes. Note that ψ(t) = −ϕ(t).
(a) Determine the mean values of ψ(t) and ϕ(t).
(b) Show that the PSDs of ψ(t) and ϕ(t) are

Sψ (ω) = Sϕ(ω) =
∣∣∣∣ KH(jω)/(jω)

1+ AKH(jω)/(jω)

∣∣∣∣2 Sn′ (ω). (P12.13)

(c) Let the noise be white of spectral strength N0/2. Show that the PSD of the phase
error due to the noise is

Sψ (ω) = N0

2A2
|T(jω)|2 , (P12.14)

where T(jω) is the closed-loop transfer function.
(d) The variance of the phase error due to noise, σ 2

ψ , is
∫∞
−∞ Sψ (ω)dω/2π . Define

the loop-noise bandwidth as Bloop ≡
∫∞

0 |T(jω)|2dω/2π . Show that

σ 2
ψ =

N0Bloop

A2
(watts). (P12.15)

Remark It is of interest and useful to compute Bloop for the various loop filters
discussed in the chapter. The interested reader may pursue this. The integration
is perhaps most readily accomplished by using residue theory from complex
variables.

12.18 Show that to create a spectral component for M-PSK one needs to raise the
received signal to the Mth power. Hint Express the signal point as

√
Esej2πk/M ,
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k = 1, 2, . . . , M. In essence you wish to create a (nonzero) constant value by the
power operation.

12.19 Consider what is commonly called ring QAM. The signal points lie on concen-
tric circles and are uniformly spaced on each circle. A general figure of the signal
constellation is shown in Figure 12.26.

0

where C is the number of rings and

l

l

k
j2π ms al= 1, 2,…,e , { 0,1,…, 1l l

l = C
k m

ml is the number of points on the lth ring.

= −

I axis

Q axis

�Fig. 12.26 General ring QAM constellation.

The signal constellation is obviously symmetrical and does not have a spectral
component at fc. To what power would you raise the received signal to create a
spectral component?

12.20 Implement the early–late gate circuit using Matlab Simulink or Labview and inves-
tigate its performance. Note that the problem is quite open and the reader can pursue
many aspects of the performance.
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A posteriori probability, 78
A priori probability, 78, 171, 208, 227, 234, 274, 304
A-law compression, 153, 168
Acquisition

of phase and carrier frequency, 521–525
ADC, see Analog-to-digital converter
Add–compare–select, in Viterbi algorithm, 444
Additive white Gaussian noise (AWGN), 104–106,

171
Advanced mobile phone system (AMPS), 456
Alamouti space-time code, 404, 422, 485–497, 502
Aliasing, 138, 347–348
Alternate–mark–inverse nonreturn-to-zero

(AMI-NRZ), 256–258
Alternate–mark–inverse return-to-zero (AMI-RZ),

258
AMI-NRZ, see Alternate–mark–inverse

nonreturn-to-zero
AMI-RZ, see Alternate–mark–inverse return-to-zero
Amount of fading, 416
Amplitude-shift keying (ASK), 263

binary (BASK), 264–266, 379
M-ary, 305–310

AMPS, see Advanced mobile phone system
Analog-to-digital (A/D) converter, 161
Anti-Gray mapping, 278, 293
Antipodal signaling, 201, 222, 224, 229, 236
ASCII code, 5, 302
ASK, see Amplitude-shift keying
Autocorrelation function, 362, 365

of a power signal, 70
of a random process, 94–99
of a sequence, 207
of an energy signal, 54–58
of i.i.d. spreading sequences, 470
of m-sequences, 478–479
of NRZ waveform, 292
of thermal noise, 105
of white noise, 105–107

AWGN, see Additive white Gaussian noise

Bandlimited channel, 10, 253, 329, 343–345
Bandpass filter, see Filters, bandpass
Bandwidth, 5, 7, 8, 44, 52, 54, 71, 144, 343

based on percentage of captured energy, 71, 339
based on percentage of captured power, 27, 290

expansion factor, 463
null-to-null, 260, 290, 339
of the communication channel, 231
requirement of the modulation, 249

Bandwidth efficiency, of a signaling (modulation)
scheme, 328–329

Bandwidth-efficient modulation
M-PSK, 310–315
M-QAM, 315–321
MSK, 283–290
OQPSK, 283
QPSK, 272–283
TCM, 422–456

Base station, 414, 464, 467–468, 479, 487, 505
Baseband modulation

AMI-NRZ, 256–258
AMI-RZ, 258
Biφ (or Manchester), 234–235
CMI, 259
conditioned biphase, 255–256
definition, 8
differential NRZ-L, 251–252
DMI, 259
Miller, 235
NRZ, 232
NRZI, 253–255
RZ, 232–234

Baseband signaling, see Baseband
modulation

Basis functions, 62, 173, 194
BASK, see Amplitude-shift keying, binary
Baud rate, 272
Bayes’ rule, 79, 80, 123, 186
BER (bit error rate), see Bit error

probability
Bernoulli random variable (density), 82
Bessel function, 66, 384
BFSK, see Frequency-shift keying, binary
Binary amplitude-shift keying (BASK), see

Amplitude-shift keying, binary
Binary frequency-shift keying (BFSK), see

Frequency-shift keying, binary
Binary modulator, 222
Binary phase-shift keying (BPSK), see Phase-shift

keying, binary
Binary source, 302
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Binary symmetric channel (BSC), 121
Binomial random variable (density), 83
Biorthogonal modulation (signals), 338
Bit energy, see Energy per bit
Bit error probability

approximation, of M-PSK, 314
as the criterion for receiver design, 185
of Alamouti space-time code with BPSK, 493
of Alamouti space-time code with M-QAM, 497
of AMI-NRZ code, 258
of BASK 265; with coherent demodulation in

Rayleigh fading, 402–403
of BFSK, 269; with diversity reception over a

Rayleigh fading channel, 407–409; with
noncoherent demodulation over a Rayleigh
fading channel, 400–401

of Biφ-L code, 236
of BPSK, 267; over a CDMA channel with Rake

receiver, 483; with coherent demodulation in
Rayleigh fading, 403

of CDMA, with orthogonal signature waveforms,
466

of DBPSK, 394
of duobinary signaling, 360
of general binary modulation in AWGN, 197–201
of M-ASK, 309
of M-FSK, 325–328
of M-L code: with sequence demodulation (Viterbi

algorithm), 248; with symbol-by-symbol
demodulation, 240

of MSK, 286
of noncoherent BASK, 386–387
of noncoherent BFSK, 389–391
of NRZ-L code, 236

with symbol timing error, 509
of NRZI, 254
of OQPSK, 283
of QPSK, 278, 279

with phase error, 507
of RZ-L code, 236
of spread spectrum, 463
of TCM, 445
relation to message error probability, 302, 309

Bit error rate (BER), see Bit error
probability

Bit rate, 302, 328–329, 371
Bit rate-to-bandwidth ratio, 328–329
Boltzmann’s constant, 105
BPSK, see Phase-shift keying, binary
Branch metric

for MLSE of ISI with Viterbi algorithm, 364–366
for sequence demodulation of Miller signaling,

246–247
for Viterbi decoding of TCM, 442–444

Branch, in trellis, 245, 427
BSC, see Binary symmetric channel

Capacity of a bandlimited AWGN channel, 330–331
Carrier frequency, 75, 265, 382, 386, 505
Carrier recovery for

BPSK, with 2nd-power synchronizer, 522
BPSK, with Costas loop, 525
QPSK, with 4th-power synchronizer, 523
QPSK, with Costas loop, 526
symmetrical rectangular QAM, 523–525

Cauchy–Schwartz inequality
for deterministic signals, 60, 71, 222, 354
for random variables, 129

cdf, see Cumulative distribution function
CDMA, see Code-division multiple access
Central limit theorem, 398, 411–412, 463
Central moments

joint, of two random variables, 89
nth order, of a random variable, 87
second-order: of a random process, 94; of a random

variable, 87
Channels

AWGN, 171
bandwidth-limited, 329
BSC, 121
coaxial cable, 7, 8, 256, 258
downlink, 467, 468, 485, 486
fiber optics, 7, 229, 258, 259, 343
microwave, 7, 8, 263, 329
multipath, 396, 480
power-limited, 329
Rayleigh fading, 395–398, 483
Rician fading, 414, 420
satellite, 7, 171, 256, 343
telephone, 90, 229, 343
time-varying, 8
twisted-pair wire, 7, 256, 258
uplink, 467, 468, 479, 485

Characteristic function, of a random variable,
127–128, 407, 420

Chebyshev inequality, 87
Chi-square (χ2) random variable (density), 407
Closed-loop power control, in CDMA, 479
Closed-loop symbol synchronizers, 527–528
CMI, see Coded mode inversion
Coaxial cable channel, 7, 8, 256, 258
Code-division multiple access (CDMA), 422,

455–484
chip waveform, 470, 477
near–far problem, 479
power control, 479
probability of bit error, 466
pseudorandom (m) sequences, 457, 459, 471–476
rake receiver, 480–484
signature waveforms, 465, 476–479
transmitter and receiver, 464–466
Walsh–Hadamard sequences, 466–468, 470

Coded mode inversion, 259
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Coded modulation, 6, 9
Coherence bandwidth, 404
Coherence time, 404
Combining, of received signals, 414
Compander, 151
Complementary error function (erfc), 201–202
Compression

A-law, 168
μ-law, 152–155

Conditional probability, 78
Conditional probability density function, 88
Constant envelope, 287, 291
Continuous random variable, 81
Continuous-phase frequency-shift keying

(CPFSK), 287, 292
Continuous-phase modulation (CPM), 287, 292
Convolutional code, 404
Convolutional encoder, 424, 436
Correlation receiver, 188–189
Coset, in TCM, 438–455
Coset leader, 440
Costas loop, 525
Covariance, between two random variables, 86, 89
CPFSK, see Continuous-phase frequency-shift keying
CPM, see Continuous-phase modulation
Craig’s formula, 403
Crest factor, 149, 167
Crosscorrelation function

between signature waveforms, 469
of energy signals, 55–58
of i.i.d. spreading sequences, 470
of m-sequences, 478–479

Cumulative distribution function, 80–81
Cycle skipping, 519

Decision regions (decision rule) for
BASK, 265
with random phase, 385
BASK, BPSK and BFSK with random

amplitude, 380
BFSK, 269
Biφ-L code, 238
general M-ary modulation, 305
general binary modulation, 185, 187
general two-dimensional M-ary modulation with

random amplitude, 381
M-ASK, 307
M-PSK, 312
Miller-L code, 240
NRZ-L code, 236
QPSK, 274, 277
RZ-L code, 237

Decision-feedback equalizer, 358
Defense Advanced Research Projects Agency

(DARPA), 3
Delay spread

discrete-time approximation, 483

in a CDMA environment, 483
Delta function (or impulse function)

as a test signal, 53
as autocorrelation of white noise, 105
definition, parameters and properties, 18–19
Fourier transform, 42

Delta modulation, 169
Demodulation

coherent, of: BASK in Rayleigh fading, 415; BFSK
in Rayleigh fading, 402; BPSK in Rayleigh
fading, 403; BPSK with diversity, 415;
DQPSK, 418; DSB-SC or AM, 72

in frequency-selective fading, 414
noncoherent: of AM, 72; of DBPSK in Rayleigh

fading, 415; of DBPSK with diversity, 416; for
BFSK in Rayleigh fading, 398–400

of BFSK with diversity, 405–406
of differential NRZ-L, 252
of differential phase-shift keying, 391–394
of differential TCM, 448
of intersymbol interference, 343

symbol-by-symbol, 370
with MLSE, 360–370

of spread spectrum signal, 459
of TCM (with Viterbi algorithm), 442–444
optimum sequence, of Miller signaling, 242–248
symbol-by-symbol, of Miller signaling, 246,

248, 251
with random amplitude, 379–381
with random phase (noncoherent), 381–382

DFE, see Decision-feedback equalizer
Differential baseband modulation, 251–252
Differential mode inversion, 259
Differential encoding

for QAM constellation, 420
in conditioned biphase, 255
in DBPSK, 392
in differential NRZ-L, 252
in differential TCM, 448, 450
in DQPSK, 417

Differential phase-shift keying, 391–394
Differential pulse-code modulation, 160–161
Differential quantization, 155–161
Differential TCM, 447–456
Diffraction, 7
Direct-sequence spread spectrum, see Spread

spectrum
Discrete random variable, 81
Distance, between two signals, 175
Diversity

frequency, 404, 485
gain, by multiple transmit antennas, 422
macro, 414
micro, 414
optimum, with multiple transmissions of BFSK,

409–410
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Diversity (cont.)
order, 485, 487–499
performance of Rake receiver, 483
receive, 485–486
space, 404, 485
time, 404, 485
transmit, 485, 487–499
with multiple transmissions of BFSK, 405–409

DM, see Delta modulation
DMI, see Differential mode inversion
Double sideband suppressed-carrier (DSB-SC)

modulation, 72, 522
Downlink channel, 467, 468, 485, 486
DPCM, see Differential pulse-code modulation
DPSK, see Differential phase-shift keying
DSB-SC modulation, see Double sideband

suppressed-carrier modulation
DSSS, see Direct-sequence spread spectrum
Duobinary modulation, 356–360, 376, 377

Early–late gate synchronizer, 505, 527–528
Eb/N0 (SNR measure), 229, 241, 308, 325, 326, 328,

331, 387, 391
Encoding

in biphase, 234
in conditioned biphase, 255
in DBPSK, 392
in differential NRZ-L, 251, 252
in differential TCM, 448, 450
in DQPSK, 417
in Miller, 235, 243, 244
of quantized values in PCM, 145, 161
source, 8

Energy
received, 379, 400, 401
transmitted, 227, 307, 313, 318, 319, 379, 447,

487–489, 496
Energy per bit, 227, 240, 308, 401, 447, 487
Energy per symbol, 337, 425, 497
Energy signal, 36, 42, 43, 54, 58, 96

autocorrelation function, 54–58
crosscorrelation function, 55–58

Ensemble average, 99, 101, 102, 261
Envelope

constant, of MSK signal, 287
constant, of QPSK signal, 283
detection, for AM, 72
detection, in noncoherent demodulation of

BASK, 386
detector, in demodulation of DBPSK, 394
detector, in optimum demodulator for BFSK, 389
of Q2PSK signal, 340
statistics: Nakagami-m, 414; Rayleigh, 398;

Rician, 414
Equal-gain combining, 414
Equalizer

decision-feedback, 358

for correction of channel distortion, 143
MLSE (Viterbi algorithm), 360–371, 414

Equivalent baseband model, 27, 292, 297, 514
Equivalent baseband representation of

convolution operation, 300
passband processes (or noise), 298–300
passband signals, 298

erf function, 167
erfc function, 201–202
Ergodicity, 99–102
Error correction

Hamming codes, 2
in OSI model, 5
of channel codes, 5
of data link layer, 3

Error detection
capability, of line codes, 232
Hamming codes, 2
in OSI model, 5
of channel codes, 5

Error event, in decoding of TCM, 445–447
Error function (erf), 167
Error probability (bit), see Bit error probability
Error probability (symbol or message), see Symbol

error probability
Estimation

maximum-likelihood sequence, of ISI, 360–370
of phase offset and carrier frequency, 509–521
of symbol timing, 526–528

Euclidean distance, 278, 319, 321, 423, 427, 429, 432,
443, 446, 447

Euler totient function, 478
Events

certain, 80
complement, 122
conditionally independent, 124
definition, in random experiments, 78
error in: decoding of TCM, 445–447; demodulation

of M-FSK, 325; demodulation of M-QAM,
318; demodulation of general binary
signaling, 186

impossible (null), 80
intersection, 122
mutually exclusive, 78, 186, 198
pairwise statistically independent, 124
statistically independent, 78
union, 122

Excess bandwidth, 349, 371
Expected value of

random processes, 93–94
random variables, 86–93

Eye diagram, 350–351, 370

Fading
amount of, 416
channel, 422, 485, 486
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Fading (cont.)
coefficients, 486, 487
frequency-nonselective (flat), 414
frequency-selective, 414
independent, 404
large-scale, 414
multipath, 10, 77, 480
Nakagami-m, 414
Rayleigh, 394–398, 401, 414, 483
Rician, 414, 420
slow, 398, 485
small-scale, 414

FBC, see Foldover binary coding
FDM, see Frequency-division multiplexing
FDMA, see Fequency-division multiple access
Feedback loop, 159, 511
Filters

bandpass, 283, 386, 394, 526
lowpass, 106, 138, 141, 142, 344, 350, 412, 459,

525, 527
matched, 189, 193, 194, 196, 201, 244, 354, 364,

386, 389, 459, 462, 463
raised-cosine, 350
square-root raised-cosine, 355

Final-value theorem, for Laplace transforms, 533
First-order diversity, 487
First-order loop filters, 514
First-order lowpass filter, 412
First-order PLL, 510–515, 521
First-order prediction, 158, 169
First-order probability density function, 91
FM, see Frequency modulation
Foldover binary coding (FBC), 161
Fourier integral, 48
Fourier series

examples, 18–25
frequency spectrum, 25–31
of a product of two signals, 31–34
properties, 16–18
relationship to Fourier transform, 51–52
representation of periodic signals, 11–16

Fourier transform
examples, 37–46
of a random process, 96
of an autocorrelation function, 95
properties, 46–51
relationship to Fourier series, 51–52
representation of nonperiodic signals, 34–37
table of properties, 46
table of relationships, 47

Fractional out-of-band energy, 339
Fractional out-of-band power, 290
Frame synchronization, 505
Frequency deviation, 268
Frequency diversity, 404, 485
Frequency modulation (FM), 65, 67, 144, 269

Frequency response, 133, 353
Frequency-division multiple access (FDMA), 456
Frequency-division multiplexing (FDM), 263
Frequency-shift keying (FSK), 263

binary (BFSK), 267–270, 379
M-ary, 322–328

FSK, see Frequency-shift keying
Functions of random variables, 84–86, 118–119

Gain
channel, 494
coding, 422, 432, 440, 442, 447
DC, 103
loop, 159, 511
power, 248, 432
processing, 463, 479, 483
tap, 473

Galois fields, 472–473
Gamma function, 167, 407
Gamma random variable (density), 167
Gaussian channel, 171
Gaussian joint, random variables, 110–119
Gaussian noise, 104–106, 171
Gaussian probability density function, 84, 108–119
Gaussian random process, 108–119
Gaussian random variable, 84, 108–119
Gold sequences, 479
Gram–Schmidt procedure, 174–182
Gray mapping, 161, 278, 283, 309, 310, 333, 334,

502, 507
GSM (Groupe Spécial Mobile), 3, 456

Hamming codes, 2
Hilbert transform, 46, 62, 73–76

Impairment due to
AWGN, 256
interferer, 459

Impossible event, 80
Impulse function, see Delta function
Impulse modulator model, 207
Impulse response of

a first-order lowpass filter, 412
an LTI system, 53
overall system with duobinary modulation, 357
SRRC filter, 355

Independent events, 78
Independent fading channels, 488
Independent random variables, 89
Inphase axis, 418, 524
Inphase bit stream, 290
Inphase bits, 280, 319
Inphase carrier, 287, 315, 320, 494
Inphase component, 280, 461, 463, 497
Inphase part, of channel transmission matrix, 490
Inphase signal, 319
Integrate-and-dump receiver, 188
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Interleaving, 485
Intersymbol interference (ISI)

as an effect of bandlimitation, 343
controlled, 343
duobinary modulation, 356–360, 376, 377
equalization, 358
eye diagram, 350–351, 370
Nyquist’s first criterion, 343, 346–351
optimum demodulation, with MLSE, 360–370
partial response signaling, 343, 356, 375
RC spectrum, 350
SRRC spectrum, 355
symbol-by-symbol demodulation, 370

Inverse Q-function, 202
Inverse erfc function, 202
Ionospheric transmission, 378, 395, 414
ISI, see Intersymbol interference

Jacobian, 118
Jamming signal, 56
Joint cumulative distribution function, 88
Joint probability density function, 88
Jointly Gaussian random variables, 110–119

Kasami sequences, 479

LAN, see Local area network
Laplace transform, 510, 517
Laplacian noise, 225
Laplacian random variable, 110, 122, 164
Laser, in optical communications, 226, 259
Lattice (or sublattice), in TCM, 436–442
Leibniz’s rule, 150
Likelihood ratio, 186, 187, 195, 380, 383, 384, 389,

394, 399, 406, 482, 489, 491
Likelihood ratio test, 212, 225
Limiters, in Costas loop for QPSK, 525
Line codes, see Baseband modulation
Line spectrum, 249
Line-of-sight component, 414
Line-of-sight distance, 2
Line-of-sight path, 396
Line-of-sight signal, 470
Linear function, of a Gaussian random variable, 85
Linear predictor

first-order, in delta modulation, 169
in differential quantizer, 157–159

Linear time-invariant (LTI) systems
impulse response, 53
input/output relationship, 52–53
response to random processes, 102–104
transfer function, 53

Linearly independent
equations, 118
signal set, 176

Lloyd–Max conditions, for optimal (memoryless)
quantizer, 151

Local area network (LAN), 235
Local oscillator, 267, 381–382, 468
Lock-in range, of PLL, 513, 517–519
Logarithmic compressing function, 152
Loop filters, in PLL, 510
Loop gain, 159, 511
Lowpass filter, see Filters, lowpass
LTI systems, see Linear time-invariant systems

M-ary modulation
comparison of different methods, 328–329
M-ASK, 305–310
M-FSK, 322–328
M-PSK, 310–315
M-QAM, 315–321

m-sequences
autocorrelation, 478–479
crosscorrelation, 478–479
generation, 472–474
properties, 474–476

Magnetic recording, 250, 253, 256
MAI, see Multiple-access interference
Manchester coding, 255–256
Marcum’s Q-function, 387
Markov process, 256
Matched filter, see Filters, matched
Maximum likelihood receiver, for space-time codes,

498
Maximum likelihood sequence estimation (MLSE),

of ISI, 360–370
Memoryless quantization, 146–151
Message error probability, see Symbol error

probability
Midrise quantizer characteristic, 147–148
Midtread quantizer characteristic, 147–148
Miller signaling, 235
Minimum shift keying (MSK), 283–290
Mixed random variable, 81
MLSE, see Maximum likelihood sequence estimation
Modem standards

V.29, 335
V.32, 450–456
V.33, 455

Modulation
bandwidth-efficient, see Bandwidth-efficient

modulation techniques
baseband, see Baseband modulation
M-ary, see Passband modulation (basic)

Moment generating function, of a random variable,
127–128, 407, 420

Moments
as general statistical averages, 86
central, see Central moments
first, of a random variable, 86
joint, of random processes, 93–95
joint: of two random variables, 89; of a random

variable, 87
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Moments (cont.)
second, of a random variable, 87

MSK, see Minimum shift keying
μ-law compression, 152–155, 167, 168
Multipath channel, 396, 480
Multiple random variables, 88–89
Multiple-access interference (MAI), 469
Multiple-access techniques

CDMA, see Code-division multiple access
FDMA, 456
TDMA, 456, 505

Multiuser detection, for CDMA, 500
Multivariate Gaussian random variables

(density), 119
Mutually exclusive events, 78, 186, 198

Nakagami-m fading, 414
Nakagami-m random variable (density), 414, 416
Narrowband interference, 460
Natural binary coding (NBC), 161
Near–far problem, in CDMA, 479
Nearest neighbors, 260, 278, 318, 332, 333, 340
Network synchronization, 505
99% power bandwidth, 290
Noise

Gaussian, 84, 104
thermal, 91, 104–105
white, 105–107

Noise power, 201, 330, 360
Noise sources, 95, 104, 225
Noncoherent demodulation, see Demodulation,

noncoherent
Nonlinearity

effect of nonlinear transformation on a random
variable, 84, 87

effect on a random process, 103
in creating spectral component for baseband

modulation, 526
in laser diode, 259
in nonuniform quantization, 151
in phase-locked loop, 511, 516
in power amplifier, 283

Nonperiodic signals, characterization and analysis
with Fourier transform, 34–52

Nonreturn-to-zero (NRZ), 232
Nonreturn-to-zero-inverse (NRZI), 253–255
Nonstationary random process, 92, 98
Nonuniform quantization, 151–155
NRZ, see Nonreturn-to-zero
NRZI, see Nonreturn-to-zero-inverse
Null event, 80
Null-to-null bandwidth, 260, 290, 339
Nyquist rate, in sampling, 139
Nyquist’s first criterion, for zero ISI, 343, 346–351

OFDM, see Orthogonal frequency-division
multiplexing

Offset quadrature PSK (OQPSK), 283
On–off keying (OOK), 206, 263
OOK, see On-off keying
Open system interconnection (OSI) model, 3–5
Open-loop power control, in CDMA, 479
Open-loop symbol synchronizers, 526–527
Optical channel, 7, 229, 258, 259, 343
Optimum quantization, 150–151
Optimum receiver, see Receivers, optimum
OQPSK, see Offset quadrature PSK
Orthogonal frequency-division multiplexing (OFDM),

332, 415, 485
Orthogonal signaling, 379, 381, 394
Orthogonal signature waveforms, 466, 467
Orthonormal basis functions for

BASK, 265
BFSK, 269
Biφ-L, 238
M-ASK, 306
M-FSK, 322
M-PSK, 310
M-QAM, 315
Miller-L, 237
MSK, 286
noise, 184
NRZ-L, 235
Q2PSK, 339
QPSK, 280
received BASK signal with random phase, 382
received BFSK signal in fading and coherent

demodulation, 402
received BFSK signal in Rayleigh fading, 399
received BFSK signal with diversity, 405
received BFSK signal with random phase, 388
received DBPSK signal with random phase, 393
received signal in Alamouti space-time code with

BPSK, 489
representation of arbitrary signal set, 303
RZ-L, 236
spread spectrum signal, 459
transmitted DBPSK signal, 392

Oscillator, 267, 381–382, 468
OSI model, see Open system interconnection

(OSI) model

PAM, see Pulse-amplitude modulation
Parseval’s theorem for

nonperiodic energy signals, 54, 55, 68
nonperiodic power signals, 70
periodic signals, 27

Partial response signaling (PRS), 343, 356, 375
Passband modulation (basic)

BASK, 264–266
BFSK, 267–270
BPSK, 266–267
comparison of BASK, BPSK and BFSK,

270–271



543 Index
�

Path metric for
MLSE of ISI with Viterbi algorithm, 363–370
sequence demodulation of Miller signaling, 246
Viterbi decoding of TCM, 442–444

PCM, see Pulse-code modulation
pdf, see Probability density function
Peak signal-to-quantization noise ratio, 170
Periodic signals, characterization and analysis

with Fourier series, 11–34
Periodic signature waveforms, 469, 470, 476
Phase ambiguity, 447, 448
Phase detector, of PLL, 509–510, 516
Phase plane, in PLL, 511–513
Phase synchronization, 268, 509
Phase-locked loop (PLL)

acquisition time, 513
Costas loop, 525
cycle skipping, 519
first-order, dynamics analysis, 510–514
general block diagram, 509
linear approximation of sinusoidal nonlinearity,

532–533
lock-in range, 513, 517–519
loop filters, 510
phase plane, 511–513
saddle points, 519
second-order, dynamics analysis, 516–519
sinusoidal, equivalent model, 514–516
sinusoidal, with additive white noise, 533–534
steady-state phase error, 512, 517
tracking range, 521
transient performance, 513
transient response, 512

Phase-shift keying (PSK), 263
binary (BPSK), 266–267, 379
M-ary, 310–315

Pilot signal, 399
Planck’s constant, 226, 259
PLL, see Phase-locked loop
pmf, see Probability mass function
Power amplifier, 283
Power control, in CDMA, 479
Power spectral density (PSD)

comparison of BPSK, QPSK/OQPSK and MSK,
290–291

of a random process, 96–99
of AMI-NRZ, 260
of amplitude modulation, 205–207
of arbitrary binary modulation, 207–211
of BASK, 266
of BFSK, 269–270
of Biφ, 249
of BPSK, 267
of Miller, 250
of MSK, 289–290
of NRZ-L, 249

of NRZI, 255
of OQPSK, 283
of QPSK, 283
of white noise, 105

PPM, see Pulse-position modulation
Precoder, in duobinary modulation, 358
Prediction, see Linear predictor
Primitive polynomials, 474–479
Probability density function (pdf)

Bernoulli, 82
binomial, 83
chi-square (χ2), 407
Gamma, 167
Gaussian, 84, 108–119
jointly Gaussian, 110–119
Laplacian, 110, 122, 164
multivariate Gaussian, 119
Nakagami-m, 414, 416, 483
Rayleigh, 91, 122, 398
Rician, 414, 420, 483
Tikhonov, 531
uniform, 83

Probability mass function (pmf), 82
Probability of (bit) error, see Bit error probability
Probability of (symbol or message) error, see Symbol

error probability
Processing gain, 463, 479, 483
PRS, see Partial response signaling
PSD, see Power spectral density
Pseudorandom sequences, 457, 459, 471–476
PSK, see Phase-shift keying
Pulse shaping functions

half-cosine, 285
in Q2PSK, 339
raised-cosine, 349
rectangular, 144, 290
sinc, 348
square-root raised-cosine, 354

Pulse-amplitude modulation (PAM), 144, 161, 359
Pulse-code modulation (PCM), 135, 161, 171
Pulse-position modulation (PPM), 144
Pulse-width modulation (PWM), 144
PWM, see Pulse-width modulation

Q-function, 198–202, 321, 403, 463, 493
QAM, see Quadrature amplitude modulation
QPSK, see Quadrature phase-shift keying
Quadrature

axis, 418, 524
bit stream, 290
bits, 280, 319
carrier, 287, 315, 320, 494
component, 280, 461, 463, 497
signal, 319

Quadrature amplitude modulation (QAM), 315–321
Quadrature phase-shift keying (QPSK),

272–283
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Quantization
differential, 155–161
general description and definition, 135,

145–146
memoryless, 146–151
nonuniform, 151–155
optimum, 150–151
robust, 151–155
uniform, 147–149

Quantization error, 83
of differential quantizer, 160–161
of uniform quantizer, 148–149

Quantization noise power, 150, 155, 157

Radar, a toy problem, 55–56
Raised-cosine (RC) pulse, 349
Rake receiver, 480–484
Random experiment, 77
Random processes

and LTI systems, 102–104
classification into non-stationary or stationary,

92–93
ensemble, 90–92
ergodicity, 99–102
Gaussian, 108–119
general description and examples, 90–92
power spectral density, 96–99
statistical averages, 93–95

Random variables
Bernoulli, 82
binomial, 83
cdf, 80–81
central limit theorem, 398, 411–412, 463
central moments, 87
chi-square (χ2), 407
continuous, 81
covariance, 86, 89
definition, 80
discrete, 81
expected values, 86–93
Gamma, 167
Gaussian, 84, 108–119
joint cdf, 88
joint central moments, 89
joint moments, 89
joint pdf, 88
jointly Gaussian, 110–119
Laplacian, 110, 122, 164
mixed, 81
moments, 86
multivariate Gaussian, 119
Nakagami-m, 416
pdf, see Probability density function
pmf, 82
Rayleigh, 91, 122, 398
Rician, 420
standard deviation, 87

statistically independent, 89
Tikhonov, 531
transformation, 84–86, 118–119
uncorrelated, 89
uniform, 83
variance, 87

Rayleigh fading, 394–398, 401, 414, 483
Rayleigh random variable (density), 91, 122, 398
Receive diversity, 485–486
Receivers: M-ASK, 306; M-FSK, 322–323; M-PSK,

310–311; M-QAM, 316
correlation, 188–189, 196, 212; for

CDMA, 500
decorrelating, for CDMA, 501
for Alamouti space-time modulation, 497
for antipodal signaling, with random amplitude,

379
for BASK, with random amplitude, 380
for CMI, 259
for DPCM system, 160
for orthogonal signaling, with random amplitude,

379
for spread spectrum modulation, 458
integrate-and-dump, 188
jointly optimum, for CDMA, 501
matched-filter, 189, 196
maximum likelihood, for space-time codes, 498
minimum-distance, 212, 276, 305, 311, 316, 323
minimum-distance, for Miller-L, 237
minimum-error-probability, for QPSK,

273–276, 281
MLSE, for ISI, 360–370
optimum, for: BASK, 265; BFSK, 269; BPSK, 267;

general binary modulation, 171, 184–187;
general M-ary modulation, 303–305; Miller-L,
244; MSK, 286; noncoherent BASK, 382–386;
noncoherent BFSK, 387–389; OQPSK, 283

Rake, 480–484
symbol-by-symbol, for Miller-L, 242–243

Rectangular pulse, 144, 290
Redundancy

added by channel encoder, 5, 9
by multiple antennas, 9
in message (signal), 5, 135, 156–157

Reference signal, 382
Reflection, 7
Refraction, 7
Regenerative repeater, 228–229
Repetition coding, 121, 404, 485, 488, 502
Repetition frequency, 14
Return-to-zero (RZ), 232–234
Rician fading, 414, 420
Ripple factor, 30–31
RMS value, see Root-mean-squared value
Robust quantization, 151–155
Roll-off factor, 349, 350, 371
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Root-mean-squared (RMS) value, 31, 87, 100, 201
Runlength property, of m-sequences, 476
RZ, see Return-to-zero

S-law compressor, 168
Sample function, 100, 101, 108
Sample space, 77–90
Sampling

aliasing, 138, 347–348
flat-top, 141–143
ideal (or impulse), 136–139
interpolation (formula), 139
natural, 139–141
Nyquist criterion, 139, 141, 142
Nyquist interval, 139
Nyquist rate, 139
sample and hold, 141
theorem, 139

Scattering
clusters, 480, 481, 487
effect, 378
environment, 404

Second moment, of a random variable, 87
Selection combining, 414
Self-synchronization, of line codes, 231
Sequences

Gold, 479
Kasami, 479
m (or maximum-length shift register), see

m-sequences
Walsh–Hadamard, 466–468, 470

Set partitioning, in TCM, 429–455
Shannon, C. E.

capacity theorem, 330–331
limit, 331

Sidelobes, 283–291
Signal space

decision regions, see Receivers
Gram–Schmidt procedure, 174–182
representation of: binary signals, 173–182;

M signals, 303–305
Signal-to-noise ratio (SNR),

8, 221, 229, 241, 310, 312, 313, 328, 351, 384
Signal-to-quantization noise ratio (SNRq)

of nonuniform quantizer with μ-law compander,
155

of uniform quantizer, 148–149
Signature sequences, see Sequences
Simplex signal set, 216
Sinc function, 139, 142
Single-sideband (SSB) modulation,

73–74, 328
Source coding, 135, 162
Space diversity, 404, 485
Space-time block code, 404, 422, 485–497, 502
Spectrum

amplitude density (of nonperiodic signals), 37

of nonperiodic signals, 34–37
of periodic signals, 25–31
power density, see Power spectral density

Spread spectrum
benefits, 459–463
jamming signal, 56
probability of bit error, 463
processing gain, 463, 479, 483
spreading factor, 463
transmitter and receiver, 457–459

Spreading code (signal), 459, 461, 470, 471
Spreading factor, 463
Square-root raised-cosine (SRRC) pulse, 354
SSB modulation, see Single-sideband modulation
State diagram of

AMI-NRZ, 258
Class2K, 261
DMI, 259
ISI, 365–367
Miller, 244
NRZI, 254
shift register (in TCM), 424, 454

Stationary random processes
first-order, 93
second-order, 93
strict-sense, 93
wide-sense, 95

Statistical averages of
random processes, 93–95
random variables, 86–93

Statistical independence of
events, 78
random variables, 89

STBC, see Space-time block code
Stochastic processes, see Random processes
Sublattice, in TCM, 436–442
Sufficient statistic(s) in

coherent demodulation of: BFSK in Rayleigh
fading, 402; BPSK in Rayleigh
fading, 403

demodulation of Alamouti space-time code: with
BPSK, 489–490; with QPSK, 496

demodulation of BASK with random amplitude,
380

demodulation of BFSK with diversity, 405–407
demodulation of BPSK/QPSK with

phase error, 506
demodulation of DBPSK, 392
demodulation of M-ASK, 306
demodulation of NRZ-L code with timing error,

508
MLSE of ISI, 361, 363
noncoherent demodulation of BASK, 382, 386
noncoherent demodulation of: BFSK, 388, 393; of

BFSK in Rayleigh fading, 399
rake receiver, 482
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Survivor path (or survivor) in
MLSE of ISI with Viterbi algorithm, 367–369
sequence demodulation of Miller signaling,

246–248
Viterbi decoding of TCM, 444

Symbol energy, see Energy per symbol
Symbol error probability

as the criterion for receiver design, 302
lower bound for M-PSK, 312
of Alamouti space-time code with M-QAM, 497
of M-ASK, 309
of M-FSK, 323–325
of QPSK, 276
upper bound for: M-PSK, 313; M-QAM, 320–321

Symbol rate, 272, 371
Symbol timing

closed-loop, early-late gate synchronizer,
527–528

error, in NRZ-L demodulation, 508–509
open-loop, NDA synchronizer, 526–527

Synchronization
data-aided (DA), 526
frame, 505
network, 505
non data-aided (NDA), 526–528
phase and carrier frequency acquisition,

521–525
phase and carrier frequency estimation, 509–521
symbol timing, 526–528

T1 carrier system, 258
TCM, see Trellis-coded modulation
TDMA, see Time-division multiple access
Telephone channel, 90, 229, 343
Theorem of expectation, 126
Thermal noise, 91, 104–105
Tikhonov random variable (density), 531
Time averaging, of random processes, 99–102
Time diversity, 404, 485
Time-bandwidth product, 45, 52, 58–61, 71
Time-division multiple access (TDMA),

456, 505
Time-invariant systems, see Linear time-invariant

systems
Time-varying channel, 8
Timing information, 232, 234
Timing property, 205
Timing recovery, see Symbol timing
Total probability theorem, 79
Tracking range, in PLL, 521
Training signal, 399
Transfer function

of an LTI system, 53
of linear PLL model, 532
power, of an LTI system, 104

Transformation of random variables, 84–86,
118–119

Transition probabilities, 125
Transmit diversity, 485, 487–499
Trellis (diagram) of

DBPSK, 392, 393
ISI, 365, 366
Miller, 244–246
shift register (in TCM), 424, 425, 428,

430, 436
Trellis-coded modulation (TCM)

coding gain, 432–435
concepts and examples, 422–435
decoding (demodulation), 442–444
differential, for rotational invariance, 447–456
encoding (general approach), 436–442
error performance, 444–447
explanation of performance improvement,

435–436
set partitioning, 429–455

Tropospheric transmission, 395
Twisted-pair wire channel, 7, 256, 258

Uncorrelated random variables, 89
Uniform quantization, 147–149
Uniform random variable (density), 83–84
Union bound, 326, 446
Union of events, 122
Unit impulse function, see Delta function
Uplink channel, 467, 468, 479, 485

V.29 modem standard, 335
V.32 modem standard, 450–456
V.33 modem standard, 455
Variance, of a random variable, 87
Viterbi algorithm

add-compare-select operation, 444
branch metric, see Branch metric
in demodulation of TCM, 442–444, 448
in MLSE of ISI, 343, 360–370, 414
in sequence demodulation of Miller signaling,

244–248, 251
path metric, see Path metric
survivor path (or survivor), see Survivor path (or

survivor)
Voltage-controlled oscillator (VCO), 269, 509–516,

525, 527–528

Walsh–Hadamard sequences, 466–468, 470
White noise

autocorrelation function, 105–107
power spectral density, 105

Wide-sense stationary (WSS) random
process, 95

Yule–Walker equations, 158

z-transform, 158, 159, 472, 473
Zero-forcing equalization, 343
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