

Computer Science Logo Style
Beyond Programming

Volume 3

Brian Harvey

SECOND EDITION

Computer Science Logo Style

Beyond Programming

The MIT Press
Cambridge, Massachusetts
London, England







′

1997 by the Massachusetts Institute of Technology

The Logo programs in this book are copyright 1997 by Brian Harvey.

These programs are free software; you can redistribute them and/or modify them
under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

These programs are distributed in the hope that they will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License (printed in the
first volume of this series) for more details.

For information on program diskettes for PC and Macintosh, please contact the Marketing
Department, The MIT Press, 55 Hayward Street, Cambridge, Massachusetts, 02142.

Copyright credits for quoted material on page 349.

This book was typeset in the Baskerville typeface.

The cover art is an untitled mixed media acrylic monotype by San Francisco artist Jon
Rife, copyright 1994 by Jon Rife and reproduced by permission of the artist.

Library of Congress Cataloging-in-Publication Data

Harvey, Brian, 1949–
Computer Science Logo Style / Brian Harvey. — 2nd ed.

p. cm.
Includes indexes.
Contents: v. 1. Symbolic computing. — v. 2. Advanced techniques —
v. 3. Beyond programming.
ISBN 0–262–58151–5 (set : pbk. : alk. paper). — ISBN
0–262–58148–5 (v. 1 : pbk. : alk. paper). — ISBN 0–262–58149–3 (v.
2 : pbk. : alk. paper). — ISBN 0–262–58150–7 (v. 3 : pbk. : alk.
paper)
1. Electronic digital computers–Programming. 2. LOGO (Computer

programming language) I. Title.
QA76.6.H385 1997
005.13 3—dc20 96–35371

CIP

ix

xvii

1

Contents

Preface

Acknowledgments

1 Automata Theory

x
xii

xiii
xiv

2
3

6
7

8
11

13
15

16
22

24
25

28
29

31
32

33
35

v

About This Series
How to Read This Book
What Isn’t Included
Computers and People

What is a Computation?
Finite-State Machines
Nondeterministic Machines
Representing Machines as Logo Lists
Text Editors: a Use for Acceptors
Regular Expressions
Rules That Aren’t Regular
Regular Expressions and Finite-State Machines
How to Translate
Making the Machine Deterministic
Eliminating Redundant States
A Finite-State Adder
Counting and Finite-State Machines
Turing Machines
Turing’s Thesis
The Halting Theorem
Proving the Halting Theorem in Logo
Program Listing

45

107

2 Discrete Mathematics

3 Algorithms and Data Structures

46
47

53
55

57
60

62
65

66
69

72
78

81
83

85
89

94
99

108
112

115
117
119

126
129

130
131

134
136

139
142

146
153

vi Contents

Propositional Logic
An Inference System
Problems with Ordering
Data Structure
Program Structure: Recording Simple Propositions
Program Structure: Recording Implications
Using Implications to Represent Orderings
Backtracking
Generalized Inference Systems and Predicate Logic
Logic and Computer Hardware
Combinatorics
Inductive and Closed-Form Definition
Pascal’s Triangle
Simulation
The Simplex Lock Problem
An Inductive Solution
Multinomial Coefficients
Program Listing

Local Optimization vs. Efficient Algorithms
Memoization
Sorting Algorithms
Sorting by Selection
Sorting by Partition
Order of Growth
Data Structures
Data Structures in Real Life
Trees
Improving the Data Representation
Trees as an Abstract Data Type
Tree Modification
Searching Algorithms and Trees
Logo’s Underlying Data Structures
Program Listing

161

209

277

4 Programming Language Design

5 Programming Language Implementation

6 Artificial Intelligence

162
169

175
177

181
183

187
190

191
194

197
199

211
214

215
217

223
225

229
235

239
245

253

278
280

282
285

290
294

295
297

300
304

Contents vii

Programming paradigms
Interactive and Non-interactive Languages
Block Structure
Statement Types
Shuffling a Deck Using Arrays
Lexical Scope
Typed Variables
Additional Types in Standard Pascal
Critique of Typed Variables
Procedures and Functions
Call by Value and Call by Reference
Parameters in Logo: Call by Binding

Formal Syntax Definition
Tokenization
Lookahead
Parsing
Expressions and Precedence
The Two-Stack Algorithm for Expressions
The Simulated Machine
Stack Frames
Data Structures
Code Generation
Program Listing

Microworlds: Student
How Student Translates English to Algebra
Pattern Matching
Solving the Equations
Age Problems
AI and Education
Combining Sentences Into One Equation
Allowing Flexible Phrasing
Using Background Knowledge
Optional Substitutions

Appendices

341

349

351

357

307
308

310
311

314

342
342

343
344
345

345
345

346

viii Contents

Bibliography

Credits

Index of Defined Procedures

General Index

If All Else Fails
Limitations of Pattern Matching
Context-Free Languages
Augmented Transition Networks
Program Listing

Read These!
Chapter 1: Automata Theory
Chapter 2: Discrete Mathematics
Chapter 3: Algorithms and Data Structures
Chapter 4: Programming Language Design
Chapter 5: Programming Language Implementation
Chapter 6: Artificial Intelligence
Computers and People

Preface

science

is
Structure and Interpretation of Computer

Programs,

is

ix

The phrase “computer science” is still, in some circles, battling for acceptance. Some
people, not necessarily antagonistic to computers, consider it an illegitimate merger of
two disconnected ideas (much as I feel myself about the phrase “computer literacy”). They
don’t see where the comes in; what is taught in computer science departments is
mostly how-to tricks of the trade, comparable to medical or legal training. Such training is
valuable to the individual and to society, but the trainees are not learning to be scientists.

My own feeling is that there is some truth on both sides. There some science
in computer science. Abelson and Sussman, in

use the words “complexity” and “process” to explain what it is that computer
scientists study. A process need not take place inside a computer, but it happens that
computer processes are particularly amenable to formal study and they shed light on the
idea of process in general. On the other hand, Abelson and Sussman are exceptional.
A great deal of what is called computer science much more a matter of programming
techniques; many computer science students are first offered courses in several different
programming languages and then taught specific techniques for particular problem
domains, like graphics or data base systems or compiler construction. And many students
who find themselves in computer science departments because they love programming
computers are impatient with theory and weak in mathematical sophistication. Such
students are perfectly satisfied with the how-to approach. (I don’t mean this as an insult.
I have in mind some excellent students I’ve taught who are brilliant programmers, very
intelligent people, but happen not to have a theoretical bent.)

My goal in this book is to provide a bridge over which a lover of practical programming
can cross into the world of theory. I envision someone who got bored or confused early
in the high school math curriculum and was left with a distaste for formal thinking,
but who is nevertheless a closet formalist when programming, getting the same joy from
representing an intellectual problem in executable form that a traditional mathematician

About This Series

procedural
declarative,

Computer Science
Logo Style.

algorithm

x Preface

* Of course, computer programs are not concrete for everyone. Despite what I said above about
students who like programming but don’t like abstraction, anyone who has learned to see programs
as concrete objects is well on the way to mastering mathematical abstraction too; that’s what gives
me hope about this enterprise. The fact that the Piagetian boundary between concrete objects
and abstract ideas is not the same for everyone, and that what was formerly abstract can become
concrete in a suitable learning environment (such as the one made possible by computers), was
the insight that led Seymour Papert to espouse computer programming as an activity for children.

gets from representing a similar problem in an axiom system. I’ve tried to discuss
the concerns of more abstract computer science using the language of concrete Logo
programs that embody those concerns. This is an ambitious goal and I’m not sure how
well I’ve succeeded.

For example, in automata theory there is an elementary result called Kleene’s
Theorem that establishes the equivalence of two different representations for a certain
class of problems. One representation, the finite-state machine, is a one, a
sequence of steps, like a Pascal program. The other, the regular expression, is
describing the desired result rather than the sequence of steps needed to get there, like
a Prolog program. The representations are equivalent in the sense that any problem
that can be described as a regular expression can be solved by a finite-state machine,
and vice versa. (Not all problems are in this category.) Automata theory texts offer a
formal proof of Kleene’s Theorem using mathematical induction. What I offer is a Logo
program that takes a regular expression as input and actually works out an equivalent
finite-state machine for that particular expression. The program and the formal proof
are similar in structure, embodying many of the same ideas. But the program is concrete
and manipulable.*

Don’t get the impression that the book contains nothing but formal mathematics,
even in executable guise. The first two chapters (on automata theory and discrete
mathematics) concern relatively abstract topics, although each has practical applications;
the later chapters are more directly about the process of computer programming.

The book you are reading is the final volume in a three-volume series,
In the introductions to the earlier volumes I have distinguished two approaches

to computer science: the software engineering approach and the artificial intelligence
approach. The former makes the idea of the central one. It thrives in a context
of well-defined problems; a computer program proposed as a solution to such a problem

Structure and
Interpretation,

Symbolic Computing,

Advanced Techniques,

Beyond Programming,

About This Series xi

can be clearly judged correct or incorrect, and it can be more or less efficient than some
other proposed solution. The artificial intelligence approach is harder to describe in one
sentence. It embraces vaguely defined problems; it emphasizes an interactive process in
which the programmer and the computer are participants.

Of course the terms in which I describe the two approaches are not value-free.
A software engineer would use different language. Nor would all experts necessarily
accept my dichotomy in the first place. Alan Perlis says, in his foreword to

“After all, the critical programming concerns of software engineering and
artificial intelligence tend to coalesce as the systems under investigation become larger.
This explains why there is such growing interest in Lisp outside of artificial intelligence.”

I have also described the sequence of stages through which I think an apprentice
programmer travels. Volume 1 of this series, teaches the rules of the
game. It is addressed to a reader who has probably done some computer programming
before, but is just starting to get serious about it. It differs from most introductory Logo
programming books in that the latter focus attention on a particular programming goal,
usually turtle graphics, and try to make the language itself as transparent as possible. I
prefer to make the rules of the language an explicit object of study, since the design of
any language embodies the designer’s ideas about the structure of computer science.

Volume 2, combines additional tutorial chapters about advanced
Logo features with a collection of more or less practical programming projects. As in
any field, apprentices learn by doing more than they learn by reading books; yet they
require the attention of a master to see that they are learning a good style of work and
not practicing bad habits. To speak of apprenticeship in this century sounds quaint, and
in fact most of our master programmers do not take on apprentices. That’s a pity, I
think; too many would-be apprentices don’t find suitable guidance. (They sometimes try
to fill the gap by learning how to break into some company’s computer, and then they
get in trouble.) No book can be as good as living contact with a master programmer, but
Volume 2 is my attempt.

This volume, is for the reader with a few substantial programming
projects, or more than a few, behind him or her, who is starting to feel bored with
programming for its own sake but isn’t sure what to do instead. Some people never
do experience that sense of constriction, and that’s okay, as I said earlier. But I love
mathematics myself, and I confess that I’m always a little disappointed if one of my best
students doesn’t come to share that love. In this volume my goal is to tempt them.

ideas

xii Preface

How to Read This Book

Slowly.

Each chapter introduces some rather sophisticated ideas. You may find that reading
the chapter once leaves you with only a vague understanding. There are two things you
can do about that: Read it again and experiment with the programs in the chapter. Test
the limits of the programs; see what problems you can solve that are similar to the ones I
solve, and what problems don’t yield to the techniques I use. Think about how you could
extend the techniques. You should understand how each program works, but don’t fall
into the trap of thinking that the program is the most important thing in the chapter. You
should also understand how the program fits into a broader theoretical framework—how
it embodies the of the chapter.

The programs in each chapter are available on diskette and through the Internet
along with Berkeley Logo, a free Logo interpreter that runs on PC, Macintosh, and Unix
systems. Please note, though, that in a few places I show alternate versions of a program
in the text. In those situations the diskette contains the final version, but it’s worth your
while to work through the development of the program by typing in the earlier versions
yourself. (I don’t do this with enormous programs.)

Most of the chapters concentrate on a single idea selected from a broad topic.
Earlier I mentioned Kleene’s Theorem as an example; that theorem is a very small piece
of automata theory, but it takes up the bulk of the chapter. Only in the final pages do I
hint at some of the other topics within automata theory. I think it’s better to teach you
one idea in depth than to give a handwavy picture of an entire area of study. You should
expect to have to explore each area further by reading books about that topic; this book
ends with a bibliography to help you.

The specific ideas I present are generally not at the cutting edge of current research
in computer science; instead, they are older, more fundamental ideas. In part this is
inherent in the introductory nature of the book. In part it reflects the limitations of my
own knowledge. And in part it reflects the limitations of the home computers I expect
my readers to have available to them. Then, sometimes the older ideas are easier to
present in a complete, coherent, concrete form. For example, in the chapter on artificial
intelligence I present an implementation of a program from 1964. In that program,
the method used in the understanding of English sentences is closely connected to the
particular problem (solving algebra word problems) that that program handles. A more
modern English sentence parsing program is not only slower and more complicated but
also is hard to demonstrate unless it’s attached to an equally slow and complicated expert

What Isn’t Included

most

What Isn’t Included xiii

system or other purposeful program. I hint about the newer techniques, but I don’t
demonstrate them.

Chapters make occasional references to earlier chapters, so it’s best if you read the
book in order, although the references are rarely so substantial that you can’t survive
skipping a chapter. (But definitely read Chapter 4 before Chapter 5.)

When I first conceived of this series I described the third volume as “the first chapter
of every graduate computer science course.” As it turned out, the actual book does not
pretend to cover anything like the entire field of computer science. It contains a selection
of topics that I know about and find most worthwhile.

Some topics are omitted because I just don’t care about them personally. For
example, I don’t have anything to say about numerical analysis. I’m glad there are people
in the world who are concerned to ensure that when I use the square root primitive in
Logo I get the right answer, but I am not such a person myself. That doesn’t mean you
have to share my taste, but if you want to know about numerical analysis you’ll have to
read someone else’s book.

Other topics are omitted because I couldn’t find any way to illustrate the topic
through Logo programming on a microcomputer, which was one of the constraints
I set for myself in planning this series. For example, one of the areas of computer
science I find interesting is operating systems. My high school students in Sudbury
had access to a Unix timesharing system on a minicomputer and they did significant
software development in that environment. But I don’t know how to make that particular
experience available on a single-user microcomputer in which the operating system is
someone’s trade secret.

Finally, some topics just didn’t fit. I originally planned to have a chapter on graphics
programming, but I decided that there are many books on the subject at both a popular
and a professional level of expertise, and I had less to say about it than about some other
areas.

The bibliography in Appendix A includes some pointers to information about some
of the missing topics. In any case, the purpose of this book isn’t to teach you everything
there is to know about computers. It’s to nurture in you a sense of what computer science
is like, or at least one approach to computer science, in the hope that you’ll be inspired
to pursue the study in the “regular” college-level texts.

Computers and People

The Second Self: Computers and the Human Spirit,

xiv Preface

Steve is a college sophomore, an engineering student who had never thought
much about psychology. In the first month of an introductory computer-
science course he saw how seemingly intelligent and autonomous systems
could be programmed. This led him to the idea that there might be something
illusory in his own subjective sense of autonomy and self-determination.

Steve’s classmate Paul had a very different reaction. He too came to ask
whether free will was illusory. The programming course was his first brush
with an idea that many other people encounter through philosophy, theology,
or psychoanalysis: the idea that the conscious ego might not be a free agent.
Having seen this possibility, he rejected it, with arguments about free will and
the irreducibility of people’s conscious sense of themselves. In his reaction
to the computer, Paul made explicit a commitment to a concept of his own
nature to which he had never before felt the need to pay any deliberate
attention. For Paul, the programmed computer became the very antithesis
of what it is to be human. The programmed computer became part of Paul’s
identity as not-computer.

Paul and Steve disagree. But their disagreement is really not about computers.
It is about determinism and free will. At different points in history this same
debate has played on different stages. Traditionally a theological issue, in the
first quarter of this century it was played out in debate about psychoanalysis.
In the last quarter of this century it looks as though it is going to be played
out in debate about machines.

— Sherry Turkle, p. 23.

The psychology of computer programming, the sociology of the computer-intensive
society, the economics of automation, the philosophy of mind, the ethics of computer
use: these are the topics I find most interesting and most important in thinking about
computers. That’s why I’m a teacher instead of a computer programmer in industry.

In the original plan for this book there was to have been a chapter called “Computers
and People” at the end of the book. I feel strongly that it’s irresponsible to train people
in the skills of computer technocracy without also encouraging their sensitivity to the
human implications of their work. I ended up not writing that chapter, for several
reasons. First, it would have to be very different in tone from the hands-on, experimental
style of the rest of the book. I was afraid that, tacked on at the end, it would sound
preachy, or worse, tokenistic and hypocritical. So instead there is this shorter discussion
in the preface, where an author is allowed to sound preachy.

either

Computers and People xv

Second, I’m not sure that the relevant issues can be presented usefully to apprentices
in the form of abstract reading. There is a lot of literature on this side of computing,
some of which is listed in the bibliography. But the books, like all theoretical psychology
or philosophy, are hard reading for people whose relevant practical experience is just
beginning. Instead I think the best way to teach about the human side of computing is
through sensitive adult attention to the actual experiences that take place in the computer
center. (In general I’ve tried to write these books in a way that leaves open exactly who
is reading them. I think this sort of approach to computer science can be useful to a
wide range of people, kids and adults, in and out of formal educational settings. But
I guess right now I am talking primarily to the teachers of high school students and
undergraduates.)

At my high school computer center the kids liked to write video game programs. For
a while some of the authors of these games included in the programs a list of which other
kids were or weren’t allowed to play the games. This practice let the game authors feel
powerful and important, but of course it wasn’t very helpful to the community spirit in
the computer center. I didn’t want to forbid the practice, making the issue one of rules
and authority. Instead, in conversation with the students I tried to turn their attention
away from ideas of intellectual property and entitlement—“It’s my program and I have
the right to decide who can use it”—and toward a sense of their own need for a strong
community. Every time you write a program you’re building on the work of last year’s
students who developed some of the techniques you use, on the work of people outside
the school who designed the programming language, operating system, and so forth,
and on the generosity of the adults in your community who paid for the equipment you
use. In the end, I think the issue was settled not so much by my eloquence as by the
example set by some other students who became important members of the community
through their willingness to help others by teaching, encouraging, and sharing their own
work. The kids all learned that it’s possible to be respected, admired, and loved instead
of respected but resented.

At many schools, when teachers express concern about the social issues in the
computer center, the main focus of that concern is around the question of software
piracy. Kids show up at school with a pirated version of the latest microcomputer game
program, very proud of themselves for having it, and the teachers try to get the kids not
to be proud of their theft of intangible property. But it seems to me that the other side
of the issue, the spirit that’s held up to kids as good computer citizenship, is marked
by secrecy, distribution of programs in compiled form only, copy protection that works
against networking, paranoia, and plain greed. I don’t like side of that dichotomy.

entire

xvi Preface

By contrast, in the university computer centers built around timesharing systems or
networked workstations I see much more of a spirit of sharing, openness, community,
programs provided with source code so that people can build on other people’s work,
trust, and an ideal of service to the community. That’s another reason I chose to set
up a Unix system in Sudbury. The ethical issues that arise in such a setting revolve
around privacy of information. Kids find it a challenge to break into other people’s
accounts just as they do in the real-world computer systems that get into the newspapers,
but at school the person who gets angry is another student rather than some faceless
administrator. And students also experience the positive moral force of software sharing
and collaboration.

I’m exaggerating the differences; I know that there is cooperation among microcom-
puter users and greed in the large computer world. Also, recent hardware developments
are making the boundary less clear; home computers and workstations are built using
the same processor chips. But the software is different and I think the style of human
interaction is different as well. Still, the technical details of the facility are less important
than the teacher’s willingness to be a humane model and not just a fount of expertise.
One of the virtues of that quaint idea of apprenticeship was that the apprentice was
involved in the way of life of the master; there was no artificial separation between
professional concerns and human concerns. What goes on among the people in a
computer center is at least as important as what goes on between person and machine.

sci.math

Acknowledgments

r

Critical Thinking

LogoWorks

xvii

As for the previous two volumes, my greatest debts are to Hal Abelson and Paul
Goldenberg. Both of them read the manuscript carefully through several drafts. Hal
is great at noticing the large problems; he makes comments like “throw out this whole
chapter” and “you are putting the cart before the horse here.” Paul’s comments were
generally on a more detailed level, pointing out sections in which potentially valuable
content was sabotaged by a presentation that nobody would understand. Together they
have improved the book enormously.

Some of the examples in this book are ones that were posed to me by other people
in other contexts. Horacio Reggini raised the issue of listing (not merely counting) the
combinations of elements of a list; Dick White asked me to investigate just how secure
the Simplex lock is; Chris Anderson taught the probability class where the question about
multinomial expansions arose. I’m grateful to Anita Harnadek, whom I’ve never met, for
a logic problem I use to demonstrate inference systems. (She is, by the way, the author of
a fantastic textbook called that I recommend to teachers of almost any
subject: math, English, or social studies.) Jim Davis’s Logo interpreter in Logo (in the

anthology I co-edited) was an inspiration for the Pascal compiler.

I’m grateful to Dan Bobrow, Sherry Turkle, and Terry Winograd for permission to
quote from their work here. In particular, Bobrow’s doctoral thesis forms the basis for
my chapter on artificial intelligence, and I’m grateful for the program design as well
as my extensive quotations from the thesis itself. He was also very patient in answering
technical questions about details of a program he wrote over 20 years ago.

Mike Clancy taught me about generating functions and used them to find the
closed form definition for the multinomial problem; Michael Somos, via the
newsgroup, provided the closed form solution to the Simplex lock problem. Paul
Hilfinger straightened me out about parser complexity.

Computer Science Logo Style
Beyond Programming

fsm

1 Automata Theory

mathematical model

equivalent

1

Program file for this chapter:

As I explained in the preface to the first volume, one of my purposes in writing this series
of books has been to urge computer hobbyists away from the view of computer expertise as
the knowledge of obscure characteristics of some particular computer—how to program
it in machine language, what magic numbers can be found where in its memory, how to
overcome the copy protection schemes on its disks, and so on. The trouble with this sort
of machine-specific expertise is that it becomes obsolete when your favorite computer
does. From my point of view, one of the virtues of Logo as a programming language is
that its high level data structures direct your attention away from questions about what
goes where in memory, allowing you to focus instead on a more abstract description of
your problem.

Automata theory is a further step in abstracting your attention away from any
particular kind of computer or particular programming language. In automata theory
we consider a of computing. Such a model strips the computational
machinery—the “programming language”—down to the bare minimum, so that it’s easy
to manipulate these theoretical machines (there are several such models, for different
purposes, as you’ll soon see) mathematically to prove things about their capabilities.
For the most part, these mathematical models are not used for practical programming
problems. Real programming languages are much more convenient to use. But the very
flexibility that makes real languages easier to use also makes them harder to talk about
in a formal way. The stripped-down theoretical machines are designed to be examined
mathematically.

What’s a mathematical model? You’ll see one shortly, called a “finite-state machine.”

The point of this study is that the mathematical models are, in some important ways,
to real computers and real programming languages. What this means is that

any problem that can be solved on a real computer can be solved using these models,

A B C

A

game

What is a Computation?

prove

2 Chapter 1 Automata Theory

ABC CBA
AAA BBB
ABCABCABC BCABCABC
A BBBBBBB
ACCCCCCCCC CAAAAAAAAA

and vice versa. Anything we can prove about the models sheds light on the real problems
of computer programming as well.

The questions asked in automata theory include these: Are there any problems that
no computer can solve, no matter how much time and memory it has? Is it possible to

that a particular computer program will actually solve a particular problem? If a
computer can use two different external storage devices (disks or tapes) at the same time,
does that extend the range of problems it can solve compared to a machine with only
one such device?

There is also a larger question lurking in the background of automata theory: Does
the human mind solve problems in the same way that a computer does? Are people
subject to the same limitations as computers? Automata theory does not actually answer
this question, but the insights of automata theory can be helpful in trying to work out an
answer. We’ll have more to say about this in the chapter on artificial intelligence.

What kinds of problems can we give to our abstract computers? In automata theory we
want to focus our attention on computation itself, not on details of input and output
devices. So we won’t try creating a mathematical model of a video game.

We will play a game, though. In this game the computer has a rule in mind. You type
in strings of letters, using only the letters , , and . The computer tells you whether
each string follows the rule or not. Your job is to guess the rule. For example, suppose
you have done these experiments:

accepted rejected

You might guess, from these examples, that the rule is “The string must begin with .”
Once you’ve made a guess you can test it out by trying more examples.

The program to play the game is called . It takes one input, a number from 1
to 10. I’ve provided ten different rules. Rules 1 to 3 should be pretty easy to guess; rules
8 to 10 should be nearly impossible. (Don’t feel too frustrated if you don’t get them.)

Finite-State Machines

accept reject game

ABC A AB ABC

[17 82]
90

[14.142 14.142]

AB

state

infinite

finite-state machine.

Finite-State Machines 3

A string can be any length, including length zero (the empty string). Each time you
type a letter the program lets you know whether the string you’ve typed so far obeys the
rule. The program indicates whether the string is accepted or rejected by displaying the
word or on the screen. In particular, as soon as you start the
program will tell you whether or not the empty string is accepted by this rule. If you type
the string you’ll really be testing three strings: , , and . You should type one
letter at a time to make sure the program has a chance to respond to it before going on
to the next letter. To start over again with a different string, press the Return key.

You should stop reading now and try the game. In the following paragraphs I’m
going to talk about some of the answers, so this is your last chance. After you’ve figured
out at least some of the rules, come back to the book.

The point of studying this game is that we’re going to look at a way to design a special-
purpose abstract computer that understands one particular rule. We can then ask
questions about how much information the computer needs to handle the job.

You’ve seen the word before in connection with the Logo turtle. Its state includes
its position and its heading. So one turtle state might be “position , heading

.” In principle, the turtle has an number of possible states, because its position
and heading don’t have to be integers. Its position might be , for
instance.

Anything that holds information can be in different states. As another example, an
on-off light switch has two states. Some lamps have four states: off, low, medium, and
high. A computer, too, has a certain number of states. The state of a computer includes
all the information in its memory at some particular time.

A machine that has only a limited number of states, like the example of the light
switch, is called a For almost all of this chapter we’ll be dealing with
finite-state machines. You might think that that imposes a very severe limit on the kinds
of computations we can do. But note that in the game I asked you to play, a rule can
accept an infinite number of possible strings and reject an infinite number of others.
The accepted or rejected strings can be of any length. (Some rules restrict the length of
a string, but others allow any length at all.) In some sense, a finite-state machine can still
perform infinitely varied computations.

Consider the third game as an example. The rule is “Accept any string that starts
with .” Here is a picture of a finite-state machine that implements that rule:

1 2 3A B ABC

START

1 2 3A B ABC

ABC

START

REJECT

BC AC

double
accepting

three

4 Chapter 1 Automata Theory

start

accept

A
A ABC

A B C
reject

reject

A reject
A B

AB

AB

Each numbered circle represents a state. This machine has three states. The
arrow indicates that the machine starts out in state 1. State 3 is shown with a circle
to indicate that it is an state. In other words, when the machine is in state 3 the
screen says . The other two states are not accepting states. Every time you type
a character the machine switches from one state to another. The arrow from state 1 to
state 2 has an next to its tail. This indicates that when the machine is in state 1, an
input of switches it to state 2. (The arrow from state 3 to itself has the three letters
at its tail. This is a shorthand notation for three separate arrows with heads and tails in
the same place, one for each letter.)

This picture is actually incomplete. For a full description of the machine we have
to indicate what happens on any input in any state. In other words, each circle should
have arrows coming out from it, one each for , , and . I’ve chosen to adopt the
convention that every machine has an unmarked state called . Any missing arrow
goes to that state; once the machine is in the reject state it stays there forever. Here, then,
is the complete diagram of the machine for game 3:

From now on I won’t draw the state, but you should remember that it’s really
part of the machine description. So this machine requires four states, not three.

If the first input letter isn’t , the machine goes to the state. If the first
letter is , the machine goes to state 2. Then, if the second letter is , the machine ends
up in state 3 and accepts the string . This is the shortest acceptable string.

Each of the three arrows from state 3 loops right back into state 3 itself. (Remember,
although only one arrow appears in the picture, it is labeled with three letters, so officially
it represents three arrows.) This means that once the machine is in state 3 it stays there
no matter what inputs it gets. Any string that starts is acceptable.

1

START

ABC

ABC

2

1

START

ABC

B

2

1

START

C

C

2

AB

Game 7

1

START

C

B 2 3

AB

Game 9

A

A

reject

reject

game

AA BB CC
A

start state accepting state.

machines

Finite-State Machines 5

Here is a machine for game number 2:

In this machine the is also an (Every machine has exactly one
start state, but it may have any number of accepting states.) This machine never gets into
the state. That doesn’t mean it doesn’t reject any strings; all odd-length strings
are rejected in state 2. But a rejected string can redeem itself by adding another input
character, so state 2 allows a return to the accepting state 1.

Here is a machine for game number 5. (Notice that I’m saying “a machine” and not
“the machine”; it is always possible to design other machines that would follow the same
rule.)

You probably had more trouble discovering rule 5 than rule 2, and it takes longer to
say the rule in English words. But the for the two rules are almost identical.
(Remember, though, that the rule-5 machine really has a third state, the state,
which is not shown in the diagram.)

Here are machines for rules 7 and 9. With these machines as hints, can you figure
out the rules? Go back to the program to test your hypotheses.

You should also get some practice translating in the other direction, from English
rules to machine diagrams. Here are a couple to work on: Rule 4 is “To be accepted a
string must be composed of doubled letters (, , and) strung together.” Rule 8 is
“To be accepted a string must contain an even number of s.”

1 2 3A C

ABC

START

Nondeterministic Machines

A C
AC ABC AACC ACAC ABCABC

A C
A B C

A A
reject

C
C

C

C C

two

nondeterministic

either

6 Chapter 1 Automata Theory

Here is rule 6: “To be accepted a string must begin with and end with .” Strings
accepted by this rule include (the shortest possible), , , , , and
so on. Between the initial and the final an accepted string can have any combination
of s, s, and s. It’s natural to think of the string as having three parts: a fixed beginning,
a variable middle, and a fixed end. The three parts of the input strings can be represented
conveniently with three states in the machine, like this:

The machine starts in state 1. To be accepted a string must start with . Therefore, an
arrow leads from state 1 to state 2. Any other input at state 1 leads to the state.

Once the machine is in state 2 it is ready for the middle part of the string. In this
middle part any combination of letters is allowed. Therefore, there are three arrows from
state 2 to itself, one for every possible letter.

Finally, a arrow leads from state 2 to state 3, signaling the end of an acceptable
string. A string must end with to be accepted.

There is a problem with this machine: There are arrows leading out from state
2. One is a loop back into state 2; the other goes on to state 3. This situation reflects the
fact that serves two different functions in this rule: is an optional part of the middle
section of the string, and it’s also the required final input in the string.

A machine with two arrows from the same state for the same input is called a
machine. Here is how such a machine could work: Whenever there are

two choices for the machine’s current state and input, the machine clones itself. One of
the copies follows each arrow. From then on, if machine is in an accepting state the
string is accepted.

Nondeterministic finite-state machines are more complicated than deterministic
ones. Does the added complexity “buy” any added power? In other words, can a
nondeterministic machine solve problems that a deterministic machine can’t? It turns
out that the answer to this question is no. Deterministic machines are just as powerful as
nondeterministic ones. This is an important theorem in automata theory. I’m not going
to prove it formally in this book, but to illustrate the theorem, here is a deterministic
machine that carries out game 6:

1 2 3A C

AB

START

C
AB

1 2 3A B ABC

START

game

1 [3]

[1 [[1 A 2] [2 B 3] [3 ABC 3]] [3]]

Representing Machines as Logo Lists

Representing Machines as Logo Lists 7

This machine is similar to the nondeterministic version. It has the same number of states
and some of the connections are identical. State 3 is more complicated, though. Also, in
this machine, it is no longer the case that each state of the machine corresponds exactly
to one of three parts of the input string. Specifically, when the machine is in state 3 the
string may or may not be finished.

The program uses finite-state machines to represent the rules by which it accepts
or rejects strings. (The machines must be deterministic for the program to work.) Logo
programs can’t read circles and arrows, so a machine is represented as a list. What
information is actually contained in an FSM diagram? The diagram shows that there are a
certain number of states (the circles), that there are certain transitions from one state to
another (the arrows), that one particular state is the start state (the start arrow), and that
certain states are accepting ones (the double circles). As in any programming project, I
could have chosen many different ways to represent that information in the program.

In the particular representation I chose, the list form of a machine has three
members. The first member is the number of the start state. The second member is a
list of arrows; each arrow is itself a list, as I’ll explain in a moment. The third member of
a machine list is a list of the accepting states of the machine. For example, here is the
machine for game 3 again, in both forms:

The number is the start state; the list is the list of accepting states. (This machine
happens to have only one accepting state.) Everything else is the list of arrows. Each
arrow is also a list with three members: the initial state (the tail of the arrow), the input
letter or letters, and the final state (the head of the arrow). The first arrow in this
machine is

−

[3 A 3] [3 B 3] [3 C 3]

Game 2:
Game 7:
Game 9:

Text Editors: a Use for Acceptors

universal

8 Chapter 1 Automata Theory

A

[3 ABC 3]

reject

reject

fsm
Game fsm

fsm

[1 A 2]

[1 [[1 A 2] [2 B 3]] [3]]

[1 [[1 ABC 2] [2 ABC 1]] [1]]
[1 [[1 AB 1] [1 C 2] [2 C 1]] [1]]
[1 [[1 AB 1] [1 C 2] [2 A 3] [2 B 1] [3 A 1]] [1]]

This is the arrow from state 1 to state 2 associated with the input .

The list in this machine represents three arrows, using the same short-
hand as in the circle-and-arrow diagrams. I could equally well have represented these
arrows separately:

As in the circle-and-arrow diagrams, I haven’t explicitly represented the transitions
to the state in these lists. The program is written so that if it doesn’t find
a transition for the current state and input in the list of transitions, it goes into state
number 1, its representation for the state.

Here are some more machine lists:

At this point you should stop and play with the program. Make up your own rules.
The procedure takes a machine list as input and accepts strings based on that
machine. (uses with particular machines as inputs.) Try out your new rules to
make sure you’ve designed the machines correctly. Then get a friend to play with your
rules. If both of you are reading this book together you can have a competition. (It’s
easy to design rules that are impossible to guess because there are too many details. If
you have a competition you should limit yourselves to three states per machine.)

You might be interested in reading through the program, which simulates a
finite-state machine when given the machine’s description as its input. It’s a pretty simple
program. If you think of a machine’s state diagram as a kind of “wiring diagram” that
might be used in building a real version of that particular machine, this Logo program is
a kind of finite-state machine implementation.

It may seem to you that accepting or rejecting strings isn’t much like what you usually
do with computers. You may wonder how this mathematical model is related to real
computer programming. There are two answers to this question. One is that it’s possible
to design finite-state machines that have more versatile outputs than simply yes or no. I’ll

t

print 2+2

print 2+

spaghetti

[Ss]paghetti

[Ss]paghet*i

search

form

ed,

any

any number

Text Editors: a Use for Acceptors 9

give an example shortly. But the other answer is that there are real situations in which
accepting or rejecting a string of symbols does come up in practical computation.

One example is in the implementation of programming languages. When you say
that

is a legal Logo instruction but

is illegal, you’re doing a more complicated version of what a finite-state acceptor does.

The command in a good text editor uses finite-state machines. Most text
editors have a command that allows you to look through a file for a particular string of
characters. Fancier editors allow searching not just for one particular string, but for any
string that follows a rule the user can provide. The editor finds a string that matches the
rule using a finite-state machine. Of course, people who use editors don’t have to specify
their search rules in the of a finite-state machine! The editing program accepts
search rules in a simpler form and translates them into FSM form. Here is an example,
the notation used by a standard editor in the Unix operating system.

A string like

just matches an identical string in the file you’re editing. A slightly more interesting case
is

which matches either “Spaghetti” or “spaghetti” (with a capital or lower case “s”). The
square brackets indicate that of the letters inside the brackets will be accepted. In
the expression

the asterisk matches (including zero) of the letter before it (in this case, the
letter). This example would match any of these:

A B

AB

ABCBA

ed

ed

ed

ed

10 Chapter 1 Automata Theory

Spaghei
Spaghettttti
spaghetti
spagheti

C[AD]*R

CAR
CDR
CADDR
CR

M[is]*p*i

[AB]*

AB[ABC]*

[ABC]*ABCBA[ABC]*

You might use this in a search command if you’re a bad speller! The bracket and asterisk
can be combined;

will match any of

Or you could use

to match the name of a famous river.

Some of the rules from the game I presented earlier can be represented as search
strings according to these rules. In the first game the machine accepted any string made
up of s and s. The corresponding expression is

The third game called for strings beginning with the sequence , followed by whatever
you like. This can be represented as

Game 10, which I’m sure you didn’t solve, accepts any string that includes the sequence
within it. In terms, that’s

I haven’t given you a complete description of the search rules. I included this
much only because I want you to see how a “real” program uses the idea of finite-state

B

[A B]

[OR [A A] B]

Regular Expressions

game

X O

A B C

A B

AB AB

or

AA B
or

or ABC [OR A B C]

ed
regular expression.

Alphabet rule.

Concatenation rule.

not

Alternatives rule.
any

Regular Expressions 11

machines. But in the remaining part of this chapter I want to use a different notation
based on Logo words and lists.

The notation I’m about to describe allows an acceptance rule, like the rules in the
program or the rules for searches, to be represented in Logo. The representation of
such a rule is called a I’m going to tell you some rules for what a regular
expression can look like. Don’t be confused: Any particular regular expression is a rule
that accepts strings of letters. I’m giving you rules that accept regular expressions—rules
about rules. As a rough analogy, “one player is and the other is ” is a rule about the
specific game Tic Tac Toe; “each player should have a fair chance to win” is a rule about
what kinds of game rules are acceptable.

Any symbol in a machine’s alphabet is a regular expression. We
represent the symbol as a one-letter Logo word. In our guessing game the alphabet
contains three symbols: , , and . So

is a regular expression.

A list whose members are regular expressions represents those
expressions one after another. For example, since is a regular expression and is a
regular expression,

is a regular expression representing the string . (Notice that the Logo word does
represent that string; the alphabet rule requires that each letter be represented as a

separate word.)

A list whose first member is the word and whose remaining mem-
bers are regular expressions represents any string that matches of those expressions.
For example,

matches either the sequence or the single symbol . As a convenience, a Logo word
containing more than one letter (other than the word) is taken as an abbreviation for
the ing of the individual letters. For example, is equivalent to .

the empty string

[* [OR [A A] B]]

B
BB
BAAB
AAAAAA
AABAA

()
AABBBBBAA

Repetition rule.

recursive
definition.

12 Chapter 1 Automata Theory

*

A A B

[* AB]
[* [ABC ABC]]
[A B [* ABC]]
[* [OR [A A] [B B] [C C]]]
[* [ABC B]]
[A [* ABC] C]
[* [OR A B [C C]]]
[[* BC] [* [A [* BC] A [* BC]]]]
[[* AB] [* [C [OR B [A A]]] [* AB]]]
[[* ABC] A B C B A [* ABC]]

A list containing exactly two members, in which the first is the asterisk
() symbol and the second is a regular expression, represents a string containing any
number (including zero) of substrings that match the regular expression. So

matches any of these:

The number of consecutive s must be even for a string of s and s to match this
expression.

These four rules constitute the definition of a regular expression. It’s a
Just as the effect of a recursive Logo procedure is defined in terms of a simpler

case of the same procedure, a complex regular expression is defined in terms of simpler
ones.

Here are the ten game rules from the beginning of this chapter in the form of
regular expressions:

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

You should go through these examples carefully, making sure you understand how the
regular expression represents the same idea as the English description or the machine
diagram you saw earlier.

Rules That Aren’t Regular

any

production rules

Rules That Aren’t Regular 13

2+3 23+
2*(3+4) 2*)3+4(
-5 /6

((3+4)/(5+6))

[[* (] something-or-other [*)]]

(((7)))))

You may be thinking that rule for accepting or rejecting strings of symbols can be
represented as a regular expression. But that’s not so. For example, consider the rules
for recognizing ordinary arithmetic expressions:

accepted rejected

Think for a moment just about the matter of balancing parentheses. Sometimes you have
parentheses within parentheses, as in

How would you represent this part of the arithmetic expression rule in the form of a
regular expression? You can’t just say something like

to mean “any number of open parentheses, something, then any number of close
parentheses.” That would allow strings like

But this string should be rejected because it has too many close parentheses. You’re not
allowed to use a close parenthesis unless you’ve already used a matching open parenthesis.
You can have any number of nested parentheses you want as long as they’re balanced.

It is possible to invent other kinds of formal notation, more powerful than regular
expressions, that will allow us to give the rules for well-formed arithmetic expressions. In
this section I’ll introduce briefly a formal notation called that’s powerful
enough to describe arithmetic expressions. For now, in this chapter, I don’t want to
discuss production rules in great detail; my only reason for introducing them at this point
is to give you a sense of how regular expressions fit into a larger universe of possible
formal systems. In the following sections I’ll have more to say about regular expressions
and finite-state machines. But we’ll return to production rules in Chapters 5 and 6, in
which we’ll need formal notations with which to discuss more interesting languages than

A B C

expr

name

recursive

terms,

14 Chapter 1 Automata Theory

name : expansion

2/3+1/6

expr : term | expr + term | expr - term
term : factor | term * factor | term / factor
factor : number | (expr)
number : digit | number digit
digit : 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

the - - language of this chapter. (In Chapter 5 we’ll be talking about Pascal; in Chapter
6 we’ll take on English.)

The key ingredient that’s missing from regular expression notation is a way to
a kind of sub-expression so that the name can be used in defining more complex

expressions. In particular, a sub-expression name can be used in its own definition to
allow a definition of the rule.

A production rule has the form

Each rule is a definition of the name on the left in terms of smaller units, analogous to
the definition of a Logo procedure in terms of subprocedures. The expansion part of
the rule is a string of symbols including both members of the “alphabet” of the system
(like the alphabet that underlies a regular expression language) and names defined by
production rules.

As an example, here is a set of production rules that defines the language of
arithmetic expressions. These rules take into account the “order of operations” for
arithmetic that you learned in elementary school: multiplication before addition. An
expression like

is ordinarily interpreted as the sum of two namely two thirds and one sixth. An
expression can be a single term, a sum of terms, or a difference of terms. Here’s how
that idea is expressed in a set of production rules; I’ll discuss the notation in more detail
in a moment.

The vertical bars separate alternatives. The first rule, the one that defines , contains
three alternatives. First, an expression can be just a single term. Second, an expression
can be a smaller expression plus a term. Third, an expression can be a smaller expression
minus a term. The symbols inside boxes are the members of the alphabet of the
arithmetic expression language. (I’ve put them in boxes to make it easier not to confuse

4+5 (4+5)
3*(4+5)

(4+5)
((4+5))

Regular Expressions and Finite-State Machines

reasons

different
algorithm,

not
result

Regular Expressions and Finite-State Machines 15

them with the punctuation characters—the colons and vertical bars—that are part of the
production rule notation itself.)

Do you see how parentheses fit in? If a string like is an expression, then
is a factor, so is a term, and so on. Since a factor is a kind of term, and a term
is a kind of expression, the factor can be considered an expression, and so it too
can be put inside parentheses. So is also acceptable as a factor.

I’ve hinted at something that I haven’t actually made explicit: Regular expressions are
equivalent to finite-state machines. In other words, if you can express a rule as a regular
expression, you can design a finite-state machine that carries out the rule. If you can’t
write a regular expression for the rule, you can’t design a finite-state machine either.

You may be thinking, “so what?” I’ve introduced two different formal notations,
finite-state machines and regular expressions, and now I’m telling you that the two are
equivalent. So why didn’t I just pick one in the first place and forget about the other? I
have a general answer and a specific answer to these questions.

The general answer is that comparing different formal systems is what automata
theory is all about. By the end of this book you’ll have been introduced to half a dozen
or so different formal systems. Some are more powerful than others. The bare assertion
that one formal system is equivalent to another, or more powerful than another, isn’t very
interesting; but if we can understand the behind those assertions then we may be
able to put the knowledge to work in practical situations. At the very end of this book,
in Chapter 6, we’ll talk about a particular formal system that’s often used in artificial
intelligence programs to recognize English sentences. By then you should know enough
about formal systems to be able to understand why that particular one is a good choice.

The specific answer is that finite-state machines and regular expressions are
from each other in an interesting way. A finite-state machine is an a sequence
of steps, or a procedure that can be followed to test whether some string matches a given
rule. It says, “start here, then if this happens do this, then...” just like a procedure in
Logo or most other programming languages. (But we’ve seen that a finite-state machine
is like a procedure written in a restricted programming language that isn’t as flexible
as Logo.) A regular expression, though, is a sequence of steps. It’s more like a
description of the that we want, leaving open the precise recipe for how to get there.
People often pose problems in a similar way. They call the plumber and say, “the drain
in my bathtub is backing up.” Part of the plumber’s expertise is to be able to translate

[1 [[1 X 2]] [2]]

How to Translate

machine

machine

machine

*
X

declarative procedural

declarative programming languages

16 Chapter 1 Automata Theory

that problem statement into a form, a sequence of steps needed to
clear up the problem. An early stumbling block in artificial intelligence research was
the seeming gulf between the procedural knowledge embodied in a computer program
and the declarative knowledge needed for human-like behavior. Recently people have
invented (the best known is Prolog, but any commercial
spreadsheet program is also in this category) that allow the user to state a problem in
declarative form. The programming language interpreter then automatically translates
this problem statement into a sequence of steps for the computer to perform.

Writing a Prolog interpreter raises many issues beyond the scope of this book. But
we can take a smaller step in the realm of translation from a declarative notation to
a procedural one. I’ve written a Logo program, listed at the end of the chapter, that
translates from a regular expression to an equivalent finite-state machine. Its top-level
procedure, , takes a regular expression as input and outputs a machine list in
the format I showed earlier.

The general claim that regular expressions are equivalent in power to finite-state machines
is called Kleene’s Theorem, named after the mathematician Stephen C. Kleene, its
discoverer. You can find a proof of this theorem in any textbook on automata theory.
I’m not going to give a proof here, but I’ll indicate how the translation is done in my
program. The same kinds of ideas are used in the proof.

Remember that there are four parts to the definition of a regular expression. The
alphabet rule provides the fundamental building blocks; the concatenation, alternatives,
and repetition rules build large regular expressions recursively out of smaller ones. The
translation process follows the same pattern: We start with a procedure to build a trivial
two-state machine that only accepts a single letter, then we add three rules for combining
smaller machines into a large machine. In the following paragraphs I’ll show how each
rule is reflected in the program.

This construction process often produces machines with more states than necessary.
The program eliminates redundant states as its final step.

The alphabet rule says that any member of the machine’s alphabet is a regular
expression. In the program, a symbol can be any one-letter word other than . The
symbol is translated into the machine

1 2A

START

[1 [[1 A 2]] [2]]

3 4B

START

[3 [[3 B 4]] [4]]

ndletter

A
B

C BBB

ndconcat

A B

[A B]

[[OR A C] [* B]]

CBBB

[A B]

concatenation rule.

both

How to Translate 17

(You’ll see that the program works by combining little machines into bigger ones. Every
time the program has to invent a new machine state it uses the next free number. So
the state numbers might not be 1 and 2 in a real example.) The procedure
handles this rule.

Next comes the The regular expression

matches a string with two parts; the first substring matches the and the second matches
the . In this simple example each “substring” matches only a single letter. In a more
complicated concatenation like

there are different choices for each substring. For example, that regular expression is
matched by the string

in which the letter matches the first part of the expression and the substring
matches the second part.

To translate a regular expression of this kind (a concatenation) into a finite-state
machine, we begin by recursively translating the subexpressions into smaller machines.
Then we have to “splice” the two machines together. Procedure does this
splicing.

We’ll begin with the simplest possible example. Suppose we want to translate the
regular expression

We have already translated the two symbols and into machines:

The combined machine must start at the start state of the first component machine,
state 1. The combined machine should be in an accepting state when component

1 2A

START

[1 [[1 A 2] [2 B 4] [3 B 4]] [4]]

3 4B
B

[OR A C]

[1 [[1 A 2] [1 C 3]] [2 3]]

5B

START

[* B]

[4 [[4 B 5] [5 B 5]] [4 5]]

4
B1

2

3

A

START

C

B

[2 B 4]

[[OR A C] [* B]]

second

18 Chapter 1 Automata Theory

machines have been satisfied; in other words, the accepting states of the combined
machine should be those of the component machine. In this case that means only
state 4.

To splice the component machines together we must add transitions (arrows)
between them. Specifically, whenever the first component machine gets into an accepting
state, the combined machine should follow the same transitions that apply to the start
state of the second component machine. In this case, when the combined machine gets
into state 2 (the accepting state of the first component machine) it should follow the
same transitions that apply to state 3 (the start state of the second machine). There is
only one such transition, a arrow into state 4. That means we must add the arrow

to the combined machine.

State 3, although it is still in the machine, is now useless. There is no way for the machine
to get into state 3. Later in the translation process another procedure removes such
“orphaned” states from the machine.

As a slightly more complicated example, consider the translation of the regular
expression

We start by supposing that we’ve already translated the two subexpressions separately:

1

2

3

A

START

[1 [[1 A 2] [1 C 3] [2 B 5] [3 B 5] [4 B 5] [5 B 5]] [2 3 4 5]]

5B

C
4

B

ndor

[4 B 5]

[2 B 5] [3 B 5]

[OR A B]

alternatives rule

How to Translate 19

(We haven’t yet discussed the alternatives rule or the repetition rule, so I haven’t yet
explained how these subexpressions are translated. For now, please just take on faith that
this picture is correct. We’ll get to those other rules shortly.)

The start state of the combined machine is the start state of the first component,
state 1. At every accepting state of the first machine we must duplicate the transitions
from the start state of the second machine. In this example the start state of the second
machine has only the transition

but there are two accepting states in the first machine, so we must add two new arrows:

A final detail is that in this example the start state of the second component machine,
state 4, is an accepting state. That means that the second substring can be empty.
Therefore the accepting states of the first component machine should also be accepting
states of the combined machine. Here is the result:

Again, state 4 is now an “orphan” and will be eliminated later in the program.

The combines two machines in parallel, so to speak, rather than in
series. It works by inventing a new state that becomes the start state of the combined
machine. Arrows leaving from the new state duplicate the arrows from the start states of
the component machines. Procedure handles this rule.

As an example, here is the translation process for

1 2A

START

[1 [[1 A 2]] [2]]

3 4B

START

[3 [[3 B 4]] [4]]

1

5

2A

A

START

[5 [5 A 2] [5 B 4] [1 A 2] [3 B 4]] [2 4]]

3 4B

B

AB

or

[OR [A B] [A C]]

20 Chapter 1 Automata Theory

(or its abbreviation). We start with two separate machines:

We combine them by inventing a new state 5:

I haven’t explained all the details of the construction process. For example, should the
new state, state 5, be an accepting state? In this example it shouldn’t be. See if you can
think of a case where it might be; then read the program listing to see the exact algorithm
that makes this decision. Again, this construction process may leave unused states for
later cleanup.

A much more serious problem is that an construction is likely to produce a
nondeterministic machine. For example, here is the machine for

1

7

4

2

5

3

6

A

A

B

C

START

A

A

[7 [[7 A 2] [7 A 5] [1 A 2] [2 B 3] [4 A 5] [5 C 6]] [3 6]]

1 2

2

3

3

A

A

B

B

START

START

[A B] → [1 [[1 A 2] [2 B 3]] [3]]

[* [A B]] → [1 [[1 A 2] [2 B 3] [3 A 2]] [1 3]]

A

1

determine

ndmany

nondet

repetition rule.

How to Translate 21

Like the unused states, the problem of nondeterminism is left for the end of the
program, when procedure translates the nondeterministic machine into a
deterministic one. (The concatenation rule can also make nondeterministic machines,
although it’s not as likely.)

The final case to be considered is the This rule acts on only one smaller
machine, not two machines as in the previous two cases. The rule doesn’t require any
new states. It has two effects. One is to add the start state to the list of accepting states.
The second is to add arrows from the (old) accepting states that mimic the arrows from
the start state. (This is exactly like the splicing of two machines in the concatenation
rule, but in this case we concatenate a single machine with itself!) Procedure
makes this transformation. It, too, can result in a nondeterministic machine.

Here is an example of the rule:

These four rules are combined by , a procedure whose input is a regular
expression and whose output is a (possibly nondeterministic) machine.

Making the Machine Deterministic

graph.
directed graph.

22 Chapter 1 Automata Theory

machine

determine states

nd.traverse
depth.first

depth.first

to nondet :regexp
if and (wordp :regexp) (equalp count :regexp 1) [output ndletter :regexp]
if wordp :regexp [output ndor reduce "sentence :regexp]
if equalp first :regexp "or [output ndor butfirst :regexp]
if equalp first :regexp "* [output ndmany last :regexp]
output ndconcat :regexp
end

output optimize determine nondet :regexp

The top-level procedure does a little initialization and then does its work with
the instruction

That is, first it creates what may be a nondeterministic machine, then if necessary it
translates that into a deterministic one (eliminating orphan states in the process), then
it gets rid of any redundant states that may have been created.

In the first volume of this series we explored the techniques of depth-first and breadth-first
tree traversal. Given a tree structure, these algorithms allow us to “visit” every node of
the tree once.

A finite state machine can be viewed as a structure almost like a tree. The machine’s
start state corresponds to the root node; the states that can be reached by an arrow from
a given state are the children of that state. But there is one important difference between
trees and machines: In a tree, every node (except for the root node) has exactly one
parent. The tree search algorithms depend on that fact to ensure that each node is visited
only once. In a machine, arrows from several different states can lead to the same state,
so a state may have several “parents.” The technical name for an arbitrary collection of
nodes with connections among them is a If the connections are one-way, as in the
finite state machine diagrams, it’s called a

Searching a graph is just like searching a tree, except that we have to keep track of
which nodes we’ve already visited, to avoid examining the same node twice. Procedure

creates a list named , initially empty, into which each state number
is added as the program examines that state. The depth first traversal of the machine is
carried out by procedure ; although this procedure looks different from
the procedure in Volume 1, it uses the same basic algorithm. Given a
state as input, it processes that state and invokes itself recursively for all of the children of
that state—the states reachable by arrows from the input state. Unlike ,

same

Making the Machine Deterministic 23

[[3 B 4] [3 B 7]]

[[8 C 4] [8 C 7]]

nondet

optimize

nd.traverse

Nd.traverse

check.nd
Check.nd

heads

check.nd
:heads check.nd

check.nd

check.nd

check.nd

check.nd

check.nd

* By the way, always creates arrows with only a single letter; if two or more letters
lead from the same state to the same state, a separate arrow is created for each of them. This
makes for a longer machine list, but makes steps like this one—looking for two arrows with the
same letter—easier. Once the deterministic machine has been created, procedure will
combine such arrows into the abbreviated form with more than one letter per arrow.

though, is an operation. It outputs a new list of moves (arrows) for the
deterministic version of the machine.

What does it mean to process a state? first checks whether this state
has already been processed; if so, it outputs an empty list, because this state will contribute
no new moves to the machine. Otherwise, it remembers this state number as having been
processed, finds all the moves starting from this state, and calls to look for
nondeterminism. takes the first available arrow whose tail is at the state we’re
processing, and looks for all arrows with the same tail and with the same letter.* The
local variable will contain a list of all the state numbers reachable by these arrows.
(The state numbers are sorted into increasing order, and duplicates eliminated. If the
machine has two completely identical arrows, that doesn’t result in nondeterminism.)

There are three cases for what must do. First, if there is only one state
number in , then there is no nondeterminism for this letter, and
includes the arrow from the original machine as part of the deterministic machine.
Second, if there is more than one state number, looks to see if we’ve already
seen the same combination of result states. If so, then we’ve already created a new state
equivalent to that combination of old states, and creates a new arrow pointing
to that existing new state. Finally, the third case is that this combination of states is one
we haven’t seen before. In that case, must create a new state, with arrows
duplicating those from all of the original states.

In other words, if there are arrows

then will invent a new state that is an “alias” for “four-and-seven.” If the same
machine also contains arrows

then will use the alias state for this pair, not inventing a new one. The
new state is given arrows matching those of all its component states (4 and 7 in this

2

4

3A B

START

A

1
C C

24 Chapter 1 Automata Theory

Eliminating Redundant States

check.nd

determine

determine
optimize

[[* [A B]] C]
State 1: [[A 2] [C 4]]
State 2: [[B 3]]
State 3: [[A 2] [C 4]]
State 4: []

example). The new state might itself contain a nondeterministic branch, but that’s okay
because the new state will eventually be processed as we continue to traverse the machine
graph.

You might think that this process could go on forever: that each new state
invents will turn out to include nondeterminism, which will require yet another new state
to resolve. Fortunately, that doesn’t happen; the process does always end eventually. (In
the next chapter we’ll see what the limit is on the number of necessary states for the
deterministic machine.)

Because uses a graph traversal algorithm to examine the original
machine’s states, it will never find “orphan” states that can’t be reached by arrows from
some other state. That’s why the process of making the machine deterministic also
eliminates orphan states, with no extra effort.

The machines produced by are runnable, but often ugly; they contain many
more states than necessary. Procedure eliminates many redundancies and
also combines arrows with the same head and tail but with different letters. First it goes
through the machine’s arrow list, creating a list for each state representing the exits from
that state:

2 1 0× × ×

A Finite-State Adder

[[1 A 2] [1 C 4]]

[[C 4] [A 2]]

stub.add

stub.add

Optimize.state

not

stub.

two

A Finite-State Adder 25

In this machine, states 1 and 3 have the same exit list. (In these lists, each arrow is
represented with only two members; the arrow’s tail is not included. That’s because states
1 and 3 would have identical lists if the tails were included. State 1’s list would be

and state 3’s list would have arrows starting with 3. In the program, the two-member form
of an arrow is called a)

The program must be careful about the order in which it puts stubs in each state’s
list, so it doesn’t end up with

for one of the states. That’s why takes trouble to insert each stub in a
well-defined position, rather than just adding each new stub at the beginning or end
of the list. It’s also in that arrows connecting the same two states but with
different letters are combined into a single arrow.

Since states 1 and 3 also agree in their acceptingness (namely they aren’t accepting
states), they can be combined into one state. can replace every
reference to state 3 with a reference to state 1.

I promised earlier to show you a use for finite-state machines other than accepting or
rejecting strings. In this section I’ll fulfill that promise by designing a machine to add two
numbers. We’ll represent the numbers in binary notation, in which each digit represents
a power of 2 instead of a power of 10.

If you’ve come across binary numbers before, you can skip this paragraph. Just as
the ordinary notation for numbers is based on the ten digits 0 to 9, binary notation is
based on digits, 0 and 1. In ordinary (“decimal”) notation, the amount that each
digit contributes to the total depends on where it is in the number. For example, in the
number 247, the digit 2 contributes two hundred, not just two, because it’s in the third
position counting from the right. Each digit’s contribution is the value of the digit itself
multiplied by a power of ten:

2 10 + 4 10 + 7 10

01

× × × × ×

2 1 0

4 3 2 1 0

4 2 0

0 0 1 1 0 1 0 0
0 0 0 1 0 1 0 1

two,

state,
input

two

pairs
bit

single

26 Chapter 1 Automata Theory

(10 is 100; 10 is 10; 10 is just 1.) In binary, the contribution of each digit is multiplied
by a power of so the binary number 10101 represents

1 2 + 0 2 + 1 2 + 0 2 + 1 2

which is 16 + 4 + 1 (2 + 2 + 2) or 21. Computers use binary notation because it’s easy to
build electrical circuits in which each wire is either on or off. In Chapter 2 we’ll talk about
an example. Right now I want to show something different—not an actual electronic
machine but an abstract machine based on the ideas we’ve been using in this chapter.

The machine will add two binary numbers, one digit position at a time, just the way
you add multi-digit numbers yourself. When you see a problem like

376
+572

you start at the right and say, “6 plus 2 is 8; 7 plus 7 is 14, which is 4 carry 1; 1 plus 3 plus
5 is 9.” The finite-state adder works the same way except that the digits are always 0 or 1.

The machine will add any numbers, but to explain how it works I want to consider
a specific example. Let’s say we want to add 52 and 21. (By the way, I didn’t pick these
numbers because they name card games, but because the pattern of digits in their binary
forms is convenient for the explanation I want to give.) 52 in binary is 110100 (32+16+4)
and 21 is 10101 (16+4+1). I’m going to write these one above the other, with a couple of
extra zeros on the left to leave room for a possible carry:

Remember how a finite-state machine works: At a given moment it’s in some then
it reads some symbol and goes to another state. In this problem, since we have two
numbers to add, the most natural way to think about it would be to give the machine
inputs at a time. This idea doesn’t quite fit in with the formal definition of a finite-state
machine, but we can let the machine’s “alphabet” consist of of digits, so something
like would be a single input. (By the way, the word is commonly used as an
abbreviation for “binary digit.”) Just as you added vertical pairs of digits (first 6 and 2,
then 7 and 7, and so on) in the earlier example, we’ll use vertical pairs of bits as the
inputs to the finite-state adder, starting from the right end. So the first input will be 01,
then 00, then 11, then 00, then 11 again, then 10, and then 00 twice. From now on, in
this section, when you see something like 10 you should remember that it is a input
to the finite-state machine, a single symbol, not two in a row. (In the diagram below, an

START

2/01/-

3/1

4/0

5/100

00

00

00

000
1
/
1
0

01/10

01/10

01
/1
0

01
/1
0

11
11

11

11

11

01/10 01
10

output

you

two two

A Finite-State Adder 27

arrow labeled represents two arrows, one for the input and one for the input
. These two arrows will always go to the same state because 0 + 1 = 1 + 0.)

We need to make one change in the notation used in machine diagrams. We no
longer want to mark each state as accepting (double circle) or rejecting (single circle).
Instead, each state produces an that can be any arbitrary symbol. In this machine
the outputs will be 0 or 1, representing the binary digits of the sum. Inside each state
circle, instead of just a state number you’ll see something like “3/1”; this means that it’s
state number 3 and that the output from that state is 1.

Here is the machine:

State 1, the start state, has no output. When the machine is in start state it hasn’t
seen any digits of the addends yet, so it can’t compute a digit of the sum. States 2 and
4 output a zero digit, while states 3 and 5 output a one. (Like the inputs, the number
that the machine outputs is presented with its rightmost bit first. The machine works this
way for the same reason that add numbers from right to left: That’s the direction in
which a “carry” digit moves from one column to another.)

Why are there zero-output states and one-output states? The reason is that
the machine is in state 4 or 5 when there is a carry into the next digit of the sum.

Let’s trace through my example. We start in state 1. The first input symbol is 01,
representing a 0 in the rightmost (binary) digit of 52 and a 1 in the rightmost digit of 21.
The machine enters state 3 and outputs a 1.

The next input is 00 because both numbers have zero as the second digit. The
machine enters state 2 and outputs 0.

The next input is 11. The machine enters state 4 and outputs 0. Being in state 4
means that there is a carry from this position into the next.

1

START

(

)

2

(

)

3

(

)

4

(

)

5

n

Counting and Finite-State Machines

length

at once

n

eight

28 Chapter 1 Automata Theory

() (()) ()()
(()()) (((()))) (((())))(())

()()()()()()()()()()()()()()

((((()))))

You can finish the example yourself. The sum should be 01001001, or 73.

Earlier we saw that you can’t write a regular expression for a rule that requires balanced
parentheses. Since regular expressions are equivalent to finite-state machines, you won’t
be surprised to learn that finite-state machines can’t count.

Actually, they can count up to a point; it’s just that each finite-state machine can only
count up to a fixed limit. For example, here is a finite-state machine that accepts strings
of balanced parentheses up to four deep:

This machine will accept strings like these:

There is no limit to the of the string this machine can handle. For example, it will
accept this:

But there can be no more than four parentheses open ; the machine will reject

Even this limited counting ability of finite-state machines is of great practical value.
Real computers, after all, are finite-state machines. Any real computer has a finite amount
of memory, and this memory can be in a finite number of states. But the number is quite
huge. If a real computer includes a parenthesis-counting program that is limited to, say,
20,000 levels of parentheses, nobody will ever notice that the limit isn’t infinite.

(The number of states in a real computer may be even larger than you’re thinking.
Each bit of computer memory isn’t a state. Instead, if a computer has bits of memory
it has 2 states! For example, a computer with three bits of memory can use those bits to
represent states:

Turing Machines

pretend

Turing Machines 29

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

[* [([* [([* [()]])]])]]

The number of possible states in a typical large computer is greater than the number of
atoms in the galaxy.)

In a moment I’m going to talk about a theoretical model of a machine with infinite
memory. You might wonder why it pays to study such machines, since any real machine
has to be limited in memory. The answer has to do with my example about the 20,000
levels of parentheses. It is theoretically possible to write a regular expression for such
strings. To show you how it’s done, here is a regular expression for up to three levels:

(I’ve drawn boxes around the actual alphabet-rule symbols just to make it a little easier
for you to distinguish between the parentheses, which are symbols in the input strings,
and the brackets, which are part of the glue that holds a regular expression together.)

There is no theoretical problem about extending this regular expression to allow
up to 20,000 parentheses. But a machine based on this technique would be very large
and complicated. Instead, it makes more sense to that the computer has an
infinite amount of memory available and use a formal system (like the production rules
I mentioned briefly) that depends on an infinite memory. Such a formal system leads to
a shorter, more elegant expression of the balanced parentheses rule. In practice, we can
provide enough memory for any of the strings our program will actually meet.

One way we might explore infinite machines is to imagine that they’re represented by
state diagrams, like those of finite-state machines, but with an infinite number of states.
For example, here is a picture of an infinite-capacity parenthesis counter:

)

51

START

(

)

2

(

)

3

(

)

4

((

)

6 ...

(

complete

you

external

internal
external

human

30 Chapter 1 Automata Theory

The trouble with this idea is that it’s hard to model precisely what’s meant by that
row of dots on the right. There’s no way we can have a formal description of an
infinitely complex machine.

Instead, consider what do when you have to solve a problem too complex to fit
in your own memory. You don’t build yourself a bigger brain; you get a pencil and some
paper. That is, you use storage. You can imagine that your brain is a finite-state
machine but that it has access to an infinite supply of paper.

Of course, this division of a problem’s necessary information into a finite
state and an infinite memory also models actual computers in an obvious way.
The internal state in the model represents the internal memory of the computer, while
the external memory in the model represents such storage devices as disks and tapes. To
solve a bigger problem you don’t have to buy a bigger computer; you just have to switch
floppy disks occasionally.

You might think that the mathematical model I’m talking about was based on the
analogy with real computers and that my story about the finite-state brain is just a
coincidence. But in fact this model was invented by Alan M. Turing in 1936, before there
were any computers! It was problem-solving that Turing wanted to model with a
machine.

What is a Turing machine? Start by imagining a finite-state machine with different
possible outputs, like the adder we saw earlier. Attached to this machine is a tape of
limitless length. Symbols from some alphabet, like the machine’s input and output
symbols, can be written on the tape. There is a reading and writing mechanism, like the
heads of a magnetic tape recorder, that can travel along the tape.

Just as each state of the machine can have an output associated with it, each state can
also take action to affect the tape: It can move the head by one symbol in either direction
and it can change the symbol at the head’s current position.

In fact, we simplify the formal description of the machine by using the tape as
the input/output device as well as the storage device. That is, we can start with some
sequence of symbols already written on the tape. That sequence serves as the input to
the machine; state transitions are based on the symbol under the tape head, not a symbol
from some other source. Likewise, the output from a state (if any) is written on the tape.

Turing’s Thesis

halting

effective procedure

any

should
shouldn’t

are

Turing’s Thesis 31

Somewhat analogous to the concept of an accepting state in our earlier examples,
a Turing machine can have states. When the machine enters a halting state it
stops its operation. There are no more state transitions. The output from the machine is
whatever sequence of symbols it leaves written on the tape.

Turing invented his abstract machine because he was trying to formalize the idea of an
: What does it mean to specify a technique for solving some problem well

enough that we can be sure it will really work? As an analogy, think about directions for
driving from here to somewhere. Someone can hand you a piece of paper with a list of
instructions like “When you get to the gas station on the left, turn right.” But sometimes
you get directions that weren’t careful enough. There may be a sharp right turn and a
mild right turn available near the gas station. There may be a fork in the road before you
even get to the gas station.

Turing’s idea is that any problem for which there is effective procedure can be
modeled by a Turing machine. The phrase “any effective procedure” is taken to include
the workings of the human mind. If Turing is right, any problem that a person can solve
can be programmed for a computer.

This claim isn’t something that can be proved or disproved mathematically because
there is no prior formal definition of “effective procedure” to which Turing machines can
be compared. Also, it may be that the idea of a procedure somehow doesn’t cover all the
different kinds of thinking that people do. Maybe it’s true, for example, that computers
are potentially as powerful as people at solving problems, but “solving problems” might
not turn out to be an appropriate description of what’s going on when we feel emotions.
If that turned out to be true, we expect a computer to become the world’s chess
champion someday, but we expect one to become the world’s champion poet.

But this possible conclusion has been attacked from both sides. Some people think
that emotions really a matter of computable procedures. Kenneth Colby’s program
called Parry attempts to model the behavior of a paranoid human being by manipulating
variables for emotions like anger and fear. On the other hand, some people think that
even chess doesn’t fall within the realm of things that people do by carrying out effective
procedures in Turing’s sense. A chess master, these people say, doesn’t analyze the chess
board in a step-by-step fashion like a computer. He looks at the board as a single, whole
entity, and the important features just spring to mind by some process that is still rather
mysterious.

The Halting Theorem

[1 [[1 A 2] [2 B 3] [3 A 2]] [1 3]]

This
program has an infinite loop

is

convenient

some
guaranteed

halting theorem.

says

32 Chapter 1 Automata Theory

What known is that several other mathematical models of effective procedures
have been shown to be equivalent to Turing machines, in the same sense in which regular
expressions are equivalent to finite-state machines. For example, all of the popular
programming languages are Turing-equivalent. There’s no such thing as a computation
that can be done in Logo but not in Pascal, or vice versa. (Of course, one language may
be more than another for a given problem.)

I’m not going to get into specific examples of Turing machine programming here. That
would take too much space for a single chapter; if you’re interested you should pursue
the topic in a book on automata theory. But I want to give one example of the theoretical
value of Turing machines.

You’ve undoubtedly had the experience of writing a Logo program with a bug that
causes an “infinite loop”—you run the program and it just sits there forever, when instead
it’s supposed to compute and print some results. That’s a frustrating kind of bug because
you’re never quite sure if the program is really broken or if it’s just very slow. Maybe if
you waited another minute it would come up with the answer. Wouldn’t it be great if,
when you started the program running, Logo could print an error message like

, just as it does for other errors?

It turns out that infinite loops can’t, in general, be detected automatically. Certainly
infinite loops are very easy to spot, and we can write programs that catch certain

categories of infinite loop. But we can’t write a program that’s to catch infinite
loops in programs, in Logo or any other Turing-equivalent language. The fact that it’s
impossible is called the

It’s a little tricky understanding just what the halting theorem says because it involves
Turing machines that manipulate Turing machines as data, which is a kind of self-
reference akin to recursion. Self-reference is always hard to talk about and can lead to
paradoxes like the classic “This statement is false.” (Is the sentence in quotes true or
false? If it’s true, then it must be false, because it says so. But if it’s false, and it it’s
false, it must really be true!) So let’s proceed carefully.

The data recorded on a Turing machine’s tape is a string of symbols. Generally we
choose the symbols to represent something meaningful; for example, a string of digits
can represent a number. Earlier in this chapter we used strings of symbols like

fsm

fsm

map
filter

Proving the Halting Theorem in Logo

that

universal

does
doesn’t

proof by

Proving the Halting Theorem in Logo 33

to represent a finite-state machine. There’s no reason we couldn’t put string of
symbols on the tape of a Turing machine as its input. For example, we could build
a Turing machine that would work like my program, simulating the finite-state
machine that it found written on its tape when it started.

Letting a Turing machine simulate a finite-state machine doesn’t raise questions
of self-reference. But a Turing machine, too, is a formal structure; it, too, can be
represented as a string of symbols.

Because a representation of a Turing machine can be the input to another Turing
machine, we can design Turing machines that answer questions about Turing machines.
For example, we can write a Turing machine, one that simulates any Turing
machine the way simulates any finite-state machine.

A universal Turing machine (a Turing machine simulator) sort of half-solves the
halting problem. Suppose we want to know whether a given machine will halt after it
is started with a given input. (This is like asking whether a certain Logo procedure
will terminate if it’s invoked with a particular input.) We can use the universal Turing
machine to simulate the one we’re interested in. If the machine halt, we’ll find out
about it. But if the machine in question halt, then the simulator won’t halt either.
We’ll still have the problem we had in the first place—how can we be sure it won’t finally
halt if we give it another minute?

To solve the halting problem, what we need is a Turing machine that accepts a
representation of any Turing machine as input, just like the universal Turing machine.
But this one has to be guaranteed to halt, even if the input machine wouldn’t halt. That’s
what the halting theorem says we can’t do.

What makes it possible to raise the question of whether a Turing machine can decide
whether another Turing machine would halt for a given input tape is the fact that one
Turing machine’s “program” can be represented as data for another Turing machine.
This is also true of Logo procedures. In particular, the higher-order procedures like
and manipulate other procedures by accepting their names as inputs. We can,
therefore, use Logo procedures to illustrate the proof of the halting theorem.

We’ll consider a Logo procedure with an input as analogous to a Turing machine
with its input tape. We want to prove that there can’t be a Logo procedure that could tell
whether such a procedure stops for a given input. The technique we use is called

haltp
Haltp

true
haltp false

haltp piglatin

haltp
try

try

contradiction. is

always

any

34 Chapter 1 Automata Theory

print haltp "piglatin "salami

print haltp "piglatin "mxyzptlk

try "try

to piglatin :word
if memberp first :word [a e i o u] [output word :word "ay]
output piglatin word bf :word first :word
end

?
true
?
false

to try :proc
if haltp :proc :proc [loop]
end

to loop
loop
end

?

haltp "try "try

In this technique we assume that there such a procedure, then show that
this assumption leads to a paradox.

So let’s imagine that someone has written a Logo predicate that takes two
inputs: the name of a procedure and an input value for that procedure. will
output if the procedure it’s testing would eventually stop, given the specified input;

outputs if the procedure it’s testing would get into an infinite loop, like
a recursive procedure without a stop rule. (In practice, if you think about your own
experience debugging programs, it’s easy to tell if a procedure doesn’t have a stop rule at
all, but not so easy to be sure that the stop rule will always eventually be satisfied. Think
about a Pig Latin program given a word of all consonants as input. We want

Remember that itself must stop, even in the case where wouldn’t
stop.)

Now consider this Logo procedure:

Since works, we’re assuming, on Logo procedure with one input, it must work
on in particular. What happens if we say

Does this stop or loop? Suppose it stops. begins its work by evaluating the expression

Program Listing

not

will

Program Listing 35

try try haltp true
try try loop

try haltp false
try try haltp

haltp

;;; Finite State Machine Interpreter (FSM)

to game :which
fsm thing word "mach :which
end

to fsm :machine
cleartext
setcursor [0 3]
localmake "start startpart :machine
localmake "moves movepart :machine
localmake "accept acceptpart :machine
fsm1 :start
end

to fsm1 :here
ifelse memberp :here :accept [accept] [reject]
fsm1 (fsmnext :here readchar)
end

to fsmnext :here :input
blank
if memberp :input (list char 13 char 10) ~

[print ifelse memberp :here :accept ["| ACCEPT|] ["| REJECT|]
output :start]

type :input
catch "error [output last find [fsmtest :here :input ?] :moves]
output -1
end

Since we’ve said will stop, given as input, will output . It follows,
from the definition of , that will invoke and will stop. Similarly, if
we start with the assumption that will loop, then must output and
so, from the definition of , you can see that stop. Whatever value
outputs turns out to be incorrect.

It was the assumption that we could write an infallible that led us into this
contradiction, so that assumption must be wrong. We can’t write a Logo procedure that
will automatically detect infinite loops in our programs. A similar proof could be made
in any language in which one program can manipulate another program as data—that is,
in any Turing-equivalent language.

36 Chapter 1 Automata Theory

to fsmtest :here :input :move
output and (equalp :here arrowtail :move) ~

(memberp :input arrowtext :move)
end

;; Display machine state

to accept
display "accept
end

to reject
display "reject
end

to blank
display "| |
end

to display :text
localmake "oldpos cursor
setcursor [15 1]
type :text
setcursor :oldpos
end

;; Data abstraction for machines

to startpart :machine
output first :machine
end

to movepart :machine
output first bf :machine
end

to acceptpart :machine
output last :machine
end

to make.machine :start :moves :accept
output (list :start :moves :accept)
end

Program Listing 37

;; Data abstraction for arrows

to arrowtail :arrow
output first :arrow
end

to arrowtext :arrow
output first butfirst :arrow
end

to arrowhead :arrow
output last :arrow
end

to make.arrow :tail :text :head
output (list :tail :text :head)
end

;; Machine descriptions for the guessing game

make "mach1 [1 [[1 AB 1]] [1]]
make "mach2 [1 [[1 ABC 2] [2 ABC 1]] [1]]
make "mach3 [1 [[1 A 2] [2 B 3] [3 ABC 3]] [3]]
make "mach4 [1 [[1 A 2] [1 B 3] [1 C 4] [2 A 1] [3 B 1] [4 C 1]] [1]]
make "mach5 [1 [[1 ABC 2] [2 B 1]] [1]]
make "mach6 [1 [[1 A 2] [2 AB 2] [2 C 3] [3 AB 2] [3 C 3]] [3]]
make "mach7 [1 [[1 AB 1] [1 C 2] [2 C 1]] [1]]
make "mach8 [1 [[1 A 2] [1 BC 1] [2 A 1] [2 BC 2]] [1]]
make "mach9 [1 [[1 AB 1] [1 C 2] [2 A 3] [2 B 1] [3 A 1]] [1]]
make "mach10 [1 [[1 A 2] [1 BC 1] [2 A 2] [2 B 3] [2 C 1]

[3 A 2] [3 B 1] [3 C 4] [4 A 2] [4 B 5] [4 C 1]
[5 A 6] [5 BC 1] [6 ABC 6]]

[6]]

;;; Regular Expression to FSM Translation (MACHINE)

to machine :regexp
localmake "nextstate 0
output optimize determine nondet :regexp
end

38 Chapter 1 Automata Theory

;; First step: make a possibly nondeterministic machine

to nondet :regexp
if and (wordp :regexp) (equalp count :regexp 1) ~

[output ndletter :regexp]
if wordp :regexp [output ndor reduce "sentence :regexp]
if equalp first :regexp "or [output ndor butfirst :regexp]
if equalp first :regexp "* [output ndmany last :regexp]
output ndconcat :regexp
end

;; Alphabet rule

to ndletter :letter
localmake "from newstate
localmake "to newstate
output (make.machine :from

(list (make.arrow :from :letter :to))
(list :to))

end

;; Concatenation rule

to ndconcat :exprs
output reduce "string (map "nondet :exprs)
end

to string :machine1 :machine2
output (make.machine (startpart :machine1)

(sentence (movepart :machine1)
(splice acceptpart :machine1 :machine2)
(movepart :machine2))

(stringa (acceptpart :machine1)
(startpart :machine2)
(acceptpart :machine2)))

end

to stringa :accept1 :start2 :accept2
if memberp :start2 :accept2 [output sentence :accept1 :accept2]
output :accept2
end

Program Listing 39

;; Alternatives rule

to ndor :exprs
localmake "newstart newstate
localmake "machines (map "nondet :exprs)
localmake "accepts map.se "acceptpart :machines
output (make.machine :newstart

(sentence map.se "movepart :machines
map.se "or.splice :machines)

ifelse not emptyp find [memberp (startpart ?)
(acceptpart ?)]

:machines
[fput :newstart :accepts]
[:accepts])

end

to or.splice :machine
output map [newtail ? :newstart] (arrows.from.start :machine)
end

;; Repetition rule

to ndmany :regexp
localmake "machine nondet :regexp
output (make.machine (startpart :machine)

sentence (movepart :machine)
(splice (acceptpart :machine) :machine)

fput (startpart :machine) (acceptpart :machine))
end

;; Generate moves from a bunch of given states (:accepts) duplicating
;; the moves from the start state of some machine (:machine).
;; Used for concatenation rule to splice two formerly separate machines;
;; used for repetition rule to "splice" a machine to itself.

to splice :accepts :machine
output map.se [copy.to.accepts ?] (arrows.from.start :machine)
end

to arrows.from.start :machine
output filter [equalp startpart :machine arrowtail ?] movepart :machine
end

40 Chapter 1 Automata Theory

to copy.to.accepts :move
output map [newtail :move ?] :accepts
end

to newtail :arrow :tail
output make.arrow :tail (arrowtext :arrow) (arrowhead :arrow)
end

;; Make a new state number

to newstate
make "nextstate :nextstate+1
output :nextstate
end

;; Second step: Turn nondeterministic FSM into a deterministic one
;; Also eliminates "orphan" (unreachable) states.

to determine :machine
localmake "moves movepart :machine
localmake "accepts acceptpart :machine
localmake "states []
localmake "join.state.list []
localmake "newmoves nd.traverse (startpart :machine)
output make.machine (startpart :machine) ~

:newmoves ~
filter [memberp ? :states] :accepts

end

to nd.traverse :state
if memberp :state :states [output []]
make "states fput :state :states
localmake "newmoves (check.nd filter [equalp arrowtail ? :state] :moves)
output sentence :newmoves map.se "nd.traverse (map "arrowhead :newmoves)
end

Program Listing 41

to check.nd :movelist
if emptyp :movelist [output []]
localmake "letter arrowtext first :movelist
localmake "heads sort map "arrowhead ~

filter [equalp :letter arrowtext ?] :movelist
if emptyp butfirst :heads ~

[output fput first :movelist
check.nd filter [not equalp :letter arrowtext ?]

:movelist]
localmake "check.heads member :heads :join.state.list
if not emptyp :check.heads ~

[output fput make.arrow :state :letter first butfirst :check.heads ~
check.nd filter [not equalp :letter arrowtext ?]

:movelist]
localmake "join.state newstate
make "join.state.list fput :heads fput :join.state :join.state.list
make "moves sentence :moves ~

map [make.arrow :join.state
arrowtext ?
arrowhead ?] ~

filter [memberp arrowtail ? :heads] :moves
if not emptyp find [memberp ? :accepts] :heads ~

[make "accepts sentence :accepts :join.state]
output fput make.arrow :state :letter :join.state ~

check.nd filter [not equalp :letter arrowtext ?] :movelist
end

to sort :list
if emptyp :list [output []]
output insert first :list sort butfirst :list
end

to insert :value :sorted
if emptyp :sorted [output (list :value)]
if :value = first :sorted [output :sorted]
if :value < first :sorted [output fput :value :sorted]
output fput first :sorted insert :value butfirst :sorted
end

42 Chapter 1 Automata Theory

;; Third step: Combine redundant states.
;; Also combines arrows with same head and tail:
;; [1 A 2] [1 B 2] -> [1 AB 2].

to optimize :machine
localmake "stubarray array :nextstate
foreach (movepart :machine) "array.save
localmake "states sort fput (startpart :machine) ~

map "arrowhead movepart :machine
localmake "start startpart :machine
foreach reverse :states [optimize.state ? ?rest]
output (make.machine :start

map.se [fix.arrows ? item ? :stubarray] :states
filter [memberp ? :states] acceptpart :machine)

end

to array.save :move
setitem (arrowtail :move) :stubarray ~

stub.add (arrow.stub :move) (item (arrowtail :move) :stubarray)
end

to stub.add :stub :stublist
if emptyp :stublist [output (list :stub)]
if (stub.head :stub) < (stub.head first :stublist) ~

[output fput :stub :stublist]
if (stub.head :stub) = (stub.head first :stublist) ~

[output fput make.stub letter.join (stub.text :stub)
(stub.text first :stublist)

stub.head :stub
butfirst :stublist]

output fput first :stublist (stub.add :stub butfirst :stublist)
end

to letter.join :this :those
if emptyp :those [output :this]
if beforep :this first :those [output word :this :those]
output word (first :those) (letter.join :this butfirst :those)
end

Program Listing 43

to optimize.state :state :others
localmake "candidates ~

filter (ifelse memberp :state acceptpart :machine
[[memberp ? acceptpart :machine]]
[[not memberp ? acceptpart :machine]]) ~

:others
localmake "mymoves item :state :stubarray
localmake "twin find [equalp (item ? :stubarray) :mymoves] :candidates
if emptyp :twin [stop]
make "states remove :state :states
if equalp :start :state [make "start :twin]
foreach :states ~

[setitem ? :stubarray
(cascade [emptyp ?2]

[stub.add (change.head :state :twin first ?2)
?1]

filter [not equalp stub.head ? :state]
item ? :stubarray

[butfirst ?2]
filter [equalp stub.head ? :state]

item ? :stubarray)]
end

to change.head :from :to :stub
if not equalp (stub.head :stub) :from [output :stub]
output list (stub.text :stub) :to
end

to fix.arrows :state :stublist
output map [stub.arrow :state ?] :stublist
end

;; Data abstraction for "stub" arrow (no tail)

to arrow.stub :arrow
output butfirst :arrow
end

to make.stub :text :head
output list :text :head
end

to stub.text :stub
output first :stub
end

44 Chapter 1 Automata Theory

to stub.head :stub
output last :stub
end

to stub.arrow :tail :stub
output fput :tail :stub
end

5

math

true false

2 Discrete Mathematics

combination

subsets

counting
logic

measurement

continuous

discrete

45

Program file for this chapter:

Computer scientists often use mathematics as a tool in their work, but the mathematical
problems that arise in computer science are of a special kind. Consider these examples:

Suppose you have a nondeterministic FSM with five states and you want to convert it
to a deterministic one. What is the largest number of states that might be required for
the new machine? Well, each state of the new machine corresponds to some
of states of the old one, because the conversion works by finding multiple transitions
(from some state via the same input character to multiple states) and creating a new state
that combines all those resulting states. How many such combinations are possible? In
other words, how many does a five-element set have? The answer is 2 or 32 states.
(31, really, because one of those is the empty subset and that will never be used.)

Suppose you want to write a program to translate telephone numbers into letters.
A telephone number has seven digits, each of which corresponds to three letters. How
many different strings of letters are possible? Well, there are three choices for the first
digit, times three for the second, and so on...

These are typical of the kinds of mathematics problems that a computer scientist
confronts in that they are problems—ones that involve integers. Another
relevant kind of problem is the problem, in which the values under consideration
are just and . These areas of mathematics are quite different from what
is studied in the usual high school and college math courses: algebra, geometry, trig,
calculus, differential equations. Those courses deal with problems, in which
the answer can be any number, including a fraction or an irrational number. This
conventional mathematics curriculum, studying functions, is dictated by the
needs of physics and the physics-based engineering subjects. Computer scientists need
a different kind of math, called mathematics. (“Discrete” is the opposite of
“continuous” and is not the same word as its homonym “discreet” meaning tactful.)

√

∨ ∨
∧ ¬

→ → ¬ ∨

Propositional Logic

sin :x sqrt :x
first sentence

sum :a :b

true
false and or not

:x=0

* On the other hand, “The Beatles are better than Led Zeppelin” is a perfectly valid, obviously
true proposition.

operation
function.

x x

f x
a b

logic truth-
valued propositions

simple compound

x
x y

p q

p q
or and not.

p q p q
false

46 Chapter 2 Discrete Mathematics

You already know that what in Logo is called an is the computer programming
version of a mathematical The inputs and outputs of Logo operations may be
numbers, or they may be other kinds of words or lists. In ordinary algebra the functions
we use have numeric values. Certain Logo operations are identical to the ones used in
algebra: is sin() and is . On the other hand, there is nothing in
ordinary school mathematics quite like or . You may have been taught
to use the word “function” only when you see a notation like (), but in fact the ordinary
arithmetic operations are functions, too. The addition in + is a function with two
arguments, just like in Logo.

In Logo there are also operations whose inputs and outputs are the words and
. The primitive operations in this category are , , and . Just as algebra

deals with numeric functions, is the branch of mathematics that deals with these
functions. Instead of numbers, these functions combine : statements

that may be true or false. A Logo expression like represents a proposition.
“Abraham Lincoln was the King of England” is a proposition; it happens to be false,
but it’s a perfectly valid one because it asserts something that’s either true or false. “It
will rain in Boston tomorrow” is a proposition whose truth value we don’t know yet.
“Chinese food is better than French food” is an example of a sentence whose validity as
a proposition is open to question. If I say that, I’m expressing my personal taste, not an
objective statement that could be proven true or false.*

Logical functions combine propositions into propositions. For
example, “Either Abraham Lincoln was the King of England or he was the President of
the United States” is a compound proposition. It’s true even though one of the simple
propositions within it is false. Just as in algebra we use letters like to represent numbers
and expressions like + to indicate the use of functions to combine numbers, in logic
we use letters to represent propositions and there are function symbols for the logical
functions. If is the proposition “Abraham Lincoln was the King of England,” and
is the proposition “Abraham Lincoln was the President of the United States,” then the
expression represents the compound proposition above. The symbol represents
the function; represents ; and ~ are alternative representations for The
symbol represents “implies”; it turns out that is equivalent to ; in other
words, the value of the function is true if either the “if” part is or the “then” part is

if→

→

°

→ →
→

An Inference System

to implies :p :q
output or (not :p) :q
end

action

proof.

reason

rules of inference.

p
q p

p q q p q
p p q q

see p

inference systems

An Inference System 47

true. An example of the former is the classic “If wishes were horses then beggars would
ride.”

(Don’t confuse the function with the Logo command. The latter isn’t a
function (an operation), but a command. It tells Logo to take some if a given
condition is met. The operation

is the Logo equivalent of the function in logic.)

The most important use of logic in mathematics is in understanding the idea of
What is a valid reason for claiming that some proposition has been proven true? Many
people come across the idea of proof for the first and last time in high school geometry.
We are asked to prove some proposition like “the sum of the interior angles of a triangle
is 180 .” For each step in the proof we must give a such as “things equal to the
same thing are equal to each other.”

In logic there are certain rules that allow us to infer one proposition from one or
more previously known propositions. These rules correspond roughly to the “reasons” in
a geometry proof. They are called You use rules of inference informally
all the time, whenever you try to convince someone of something by reasoning. “Is Jay
here?” “Yes.” “How do you know?” “I saw his car in the driveway, and if his car is here, he
must be here too.”

Suppose we use the letter to represent the proposition “Jay’s car is here” and the
letter to represent “Jay is here.” Then the reasoning quoted in the last paragraph says “
is true and is true, so must be true.” (“ ” is the proposition “If Jay’s car is here,
he must be here too.”) The fact that and allow us to infer is a rule of inference.
(Of course the rule doesn’t tell us about the truth of its component propositions. We
have to determine that by some means outside of logic, such as observation of the world.
I had to Jay’s car in the driveway to know that is true.)

What does all this have to do with computer science? One application of logic is in
: programs that deduce propositions from other ones. Such systems are

important both in business applications where large data bases are used and in artificial

Mind Benders,

unknown

exclusive-or

48 Chapter 2 Discrete Mathematics

intelligence programs that try to answer questions based on information implied by some
text but not explicit in the text.

In this section I’ll show you a special-purpose inference system that solves logic
problems. Logic problems are the ones in which you’re given certain propositions and
asked to deduce others. Mr. Smith lives next to the carpenter; John likes classical music;
who lives in the yellow house? Here is a typical problem taken from Book
B–2, by Anita Harnadek.

A cub reporter interviewed four people. He was very careless, however.
Each statement he wrote was half right and half wrong. He went back
and interviewed the people again. And again, each statement he wrote
was half right and half wrong. From the information below, can you
straighten out the mess?

The first names were Jane, Larry, Opal, and Perry. The last names were
Irving, King, Mendle, and Nathan. The ages were 32, 38, 45, and 55.
The occupations were drafter, pilot, police sergeant, and test car driver.

On the first interview, he wrote these statements, one from each person:

1. Jane: “My name is Irving, and I’m 45.”
2. King: “I’m Perry and I drive test cars.”
3. Larry: “I’m a police sergeant and I’m 45.”
4. Nathan: “I’m a drafter, and I’m 38.”

On the second interview, he wrote these statements, one from each
person:

5. Mendle: “I’m a pilot, and my name is Larry.”
6. Jane: “I’m a pilot, and I’m 45.”
7. Opal: “I’m 55 and I drive test cars.”
8. Nathan: “I’m 38 and I drive test cars.”

The chart provided with the problem is a guide to its solution. Each square in the
chart represents a proposition. For example, the box where the “Larry” row meets the
“pilot” column represents the proposition “Larry is the pilot.” In solving the problem, you
can put marks in the boxes to indicate what you know about the propositions. The status
of a proposition need not be only true or false. Initially the status of each proposition
is ; we have no idea whether it’s true or false. The structure of this particular
problem also allows the status of a proposition to be that it is linked with another
proposition in an relationship; that is, if one of the linked propositions turns
out to be true, then the other must be false, and vice versa. You can use whatever notation

Perry

Larry

Jane

N
a
t
h
a
n

M
e
n
d
l
e

K
i
n
g

I
r
v
i
n
g

Opal

draft

d
r
a
f
t

pol ser

p
o
l
 s
e
r

pilot

p
i
l
o
t

test dr

t
e
s
t
 d
r

32

3
2

38

3
8

45

4
5

55

5
5

category
individual.

An Inference System 49

you find convenient to express these possibilities. After experimenting with T and F and
with check marks and crosses, I found that circles for true propositions and crosses for
false ones made it easiest for me to see quickly the pattern of known truths. For the
linked propositions, I used the statement numbers (1 to 8) in the boxes; two boxes with
the same number represent linked statements.

You should probably solve this problem by hand before we go on to discuss the
computer solution. Stop reading now and work on the problem if you want to do it
without any hints from me.

Let me introduce a little new terminology to help in the following discussion. I’ll
call something like “last name” or “occupation” a ; something like “Mendle” or
“pilot” I’ll call an As I’m using this terminology, “Mendle” and “pilot” are two
different individuals even if they turn out, when we solve the problem, to be the same
person.

It’s important that each group of four statements contains one from each person,
because the names of the speakers include first and last names. That is, from the first
group of statements we know that Jane, King, Larry, and Nathan are four distinct people.
This falsifies such propositions as “Jane is King.” After noting the first group of statements
my chart looks like this:

Perry

Larry

Jane

N
a
t
h
a
n

M
e
n
d
l
e

K
i
n
g

I
r
v
i
n
g

Opal

draft

d
r
a
f
t

pol ser

p
o
l
 s
e
r

pilot

p
i
l
o
t

test dr

t
e
s
t
 d
r

32

3
2

38

3
8

45

4
5

55

5
5

x x y
category y

elimination

x y x z
z y w y

w x uniqueness

link
falsification link verification

50 Chapter 2 Discrete Mathematics

From the second group of statements we learn that Mendle, Jane, Opal, and Nathan
are all distinct people. When I marked an X in the “Jane is Mendle” box, I noticed that
all but one last name for Jane had been eliminated. I therefore put a circle in the “Jane
is Irving” box. This illustrates a special rule of inference for problems of this kind: If,
for a given individual , all but one proposition “ is ” have been falsified for a certain

of individuals, then the remaining proposition in that category must be true.
(The reason I’m going through this analysis is that the rules of inference I discover
while working the problem by hand are going to end up in the design of the computer
program.) I’m going to call this the rule.

Since Jane is Irving, nobody else can be Irving. This falsifies three propositions
whose status was formerly unknown: “Larry is Irving,” “Opal is Irving,” and “Perry is
Irving.” (The truth of “Jane is Irving” would also falsify “Jane is King” and so on, but we
already knew those to be false.) The general rule is that if “ is ” is true then “ is ”
must be false for all other in the same category as , and likewise “ is ” is false for all
other in the same category as . I’ll call this the rule.

The proposition “Jane is Irving” was linked with the proposition “Jane is 45” earlier.
That latter proposition must therefore be false. This is another rule of inference, the

rule. There is also a rule that comes into play when a linked
proposition is found to be false; the other linked proposition must then be true.

Perry

Larry

Jane

N
a
t
h
a
n

M
e
n
d
l
e

K
i
n
g

I
r
v
i
n
g

Opal

draft

d
r
a
f
t

pol ser

p
o
l
 s
e
r

pilot

p
i
l
o
t

test dr

t
e
s
t
 d
r

32

3
2

38

3
8

45

4
5

55

5
5

x y x z
y z x y x z y z

transitive

all

An Inference System 51

Since we know that “Jane is 45” is false, and that “Jane is Irving” is true, it follows that
“Irving is 45” must be false. The general rule is that if “ is ” is true and “ is ” is false,
then “ is ” must also be false. Similarly, if “ is ” is true and “ is ” is true, then “ is ”
must be true. I’ll call these the rules.

You should be following along with your own copy of the chart. By the elimination
rule, “Opal is King” must be true. Then, by the uniqueness rule, “Perry is King” is false.
Then, by the link verification rule, “King is test driver” must be true. By the transitive rule,
“Opal is test driver” is true also. Here is my chart after making all possible deductions
from the fact that Mendle, Jane, Opal, and Nathan are distinct people:

Looking at statement number 5, we see that “Mendle is pilot” is linked to “Mendle is
Larry.” But we already know that the latter is true, so the former must be false. We can
just put an X in that box and not bother marking the number 5 anywhere. The same
is true for statements 6 and 7; my chart after statement 7 is on the next page. I haven’t
marked anything in the age vs. occupation section of the chart, even though I can deduce
some propositions for that section. For example, I know that “Jane is pilot” is true and
that “Jane is 45” is false. By the transitive rule, “pilot is 45” must be false. I just haven’t
bothered making possible deductions; I can always fill in that section of the chart if I
get to the end of the problem and still don’t know who’s who.

Perry

Larry

Jane

N
a
t
h
a
n

M
e
n
d
l
e

K
i
n
g

I
r
v
i
n
g

Opal

draft

d
r
a
f
t

pol ser

p
o
l
 s
e
r

pilot

p
i
l
o
t

test dr

t
e
s
t
 d
r

32

3
2

38

3
8

45

4
5

55

5
5

Perry

Larry

Jane

N
a
t
h
a
n

M
e
n
d
l
e

K
i
n
g

I
r
v
i
n
g

Opal

draft

d
r
a
f
t

pol ser

p
o
l
 s
e
r

pilot

p
i
l
o
t

test dr

t
e
s
t
 d
r

32

3
2

38

3
8

45

4
5

55

5
5

52 Chapter 2 Discrete Mathematics

Before dealing with the final statement we know all the pairings of first and last
names, but we don’t know any ages and we only know half the jobs. The last statement
lets loose a flurry of deductions. The critical one is that if Nathan is 38, he or she (Perry
is an ambiguous first name) can’t be the drafter because of the link from statement 4.
Here is my final chart:

•
•
•

•
•

•

If then
If then

If then

Problems with Ordering

p q p q

ordering,

implications:

can’t

The Dell Book of Logic Problems #4.

Problems with Ordering 53

Once it was clear that I was in the final steps of the solution, I didn’t bother maintaining
the age vs. last name section. The results can be found by reading just the three sections
at the top; for example, Jane is Irving, the pilot, and 55.

The elimination, uniqueness, and transitive rules are useful in just about all logic
problems, but the link falsification and link verification rules depend on this specific
problem’s gimmick that we are given pairs of propositions and told that exactly one of
them is true. To solve other problems, a more flexible kind of linkage is needed; we must
be able to say “if is true, then is true also” or “if is false, then must be true,” and so
on.

A very common kind of linkage is an in which we are told a sequence of
events, or a row of houses on a street, for example. In the cub reporter problem, the ages
form an ordering, but aren’t used as such—that is, the problem doesn’t include clues
such as “the test driver is younger than Jane.” Suppose we did see that clue; what could
we conclude from it? Certain propositions would be settled for sure:

The test driver must not be Jane.
The test driver isn’t the oldest age (55).
Jane isn’t the youngest age (32).

Other propositions would be linked by

Jane is 38, the driver is 32.
Jane is 45, the driver is 32 or 38.

and so on. (Actually, the second of these isn’t directly representable on the chart, because
there’s no notation for a single proposition with two alternatives, like “32 or 38.” So
instead we’d represent this using propositions about what be true:

Jane is 45, the driver is not 55.

We already know that the driver isn’t Jane, so there’s no need to record the implication
that if Jane is 45 the driver isn’t 45.)

Here is another problem, called “Forgetful Footes,” by Diane C. Baldwin. It is taken
from

The forgetful Foote family fairly flew from their flat up Fleet Street to the
freeway for a fling in Florida. Before they passed five intersections, Felix

•
•
•
•
•
•
•
•
•

two

54 Chapter 2 Discrete Mathematics

If then
If then
If then

If then
If then
If then

If then
If then
If then

and the other four Footes found they each had forgotten something
(including the food) and were forced back to their flat to fetch it. Each
turnaround was made at a different street intersection, one of them at
Field Street. From the following clues, can you figure out who forgot
what and in what order, and find the order of the intersections on Fleet
Street from the Foote’s flat to the freeway?

1. The second turnaround began at the street following Flag Street and
the street before Fred had to return to the flat.

2. The men were responsible for the return for the film, the turnaround
at Fig Street, and the fifth trip back.

3. Fork Street followed the one where they returned to fetch the flashlight
and preceded the one where a woman had them make their first
turnaround.

4. The final trip back didn’t begin at Frond Street, nor was it the one to
fetch the fan.

5. Frank’s forgetfulness turned them back one block and one return trip
following Francine’s.

6. One woman was the third to forget, while the other woman turned
them back at Flag Street.

7. They returned for the fiddle just before the trip back that began at
Frond Street and just following the one requested by Flo.

This problem includes orderings. The order of the intersections with cross
streets is not necessarily the same as the time order of the return trips. That is, the Footes
might have gone four blocks before making their first turnaround, then gone only one
block before the second return, and so on. In making a chart for this problem, I used
the numbers 1–5 to represent the order of streets, and the ordinals 1st–5th to represent
the time order of return trips. Clue 1, then, gives us this series of implications:

Flag Street is 1, 2nd is 2.
Flag Street is 2, 2nd is 3.
Flag Street is 3, 2nd is 4.

2nd is 2, Flag Street is 1.
2nd is 3, Flag Street is 2.
2nd is 4, Flag Street is 3.

2nd is 2, Fred is 3.
2nd is 3, Fred is 4.
2nd is 4, Fred is 5.

•
•
•

Data Structure

categories

:age

If then
If then
If then

x y

symmetric x y y x

Data Structure 55

[first last age job]

[32 38 45 55]

pprop "Jane "King "false
pprop "King "Jane "false

Fred is 3, 2nd is 2.
Fred is 3, 2nd is 3.
Fred is 5, 2nd is 4.

It may seem that there are some missing from this list. What if Flag Street is 4? But that
can’t happen (and I so marked the chart) because then 2nd would have to be 5, and that
would make Fred 6, which is too far. But notice that we do have to include both directions
of implication between any two propositions. The clue tells us that if Flag Street is 1, then
2nd is 2, and also that if 2nd is 2, then Flag Street is 1.

See if you can solve this problem, and then we’ll talk about the Logo-based inference
system.

In addition to the status of the “ is ” propositions, the program needs to keep track of the
categories, like “first name,” and the individuals within each category. This information
is needed for the sake of the elimination and uniqueness rules. I chose to have a global
variable named containing (for the cub reporter problem) the list

Each of the elements of that list is the name of a variable containing the individuals in
that category; for example, is the list

The status of the “is” propositions is kept in property lists associated with the names
of individuals. For example, to indicate that the proposition “Jane is King” is false, the
program carries out these two instructions:

Both are necessary because we can’t predict whether we’re going to be figuring out
something about Jane or something about King when we next need this information.
Actually, the fact that the proposition is stored twice reflects another inference rule, one
that’s so obvious we don’t think about it at all when solving these problems without using
a computer: the rule says that if is , then is .

•
•

peers

56 Chapter 2 Discrete Mathematics

[Irving pilot]

[King Mendle Nathan drafter sergeant driver]

true
false

true false

true false

Jane Irving [true Jane 45 false]
Jane 45 [true Jane Irving false]

:categories
category

true
false

Jane true

false

If a given property’s value is the empty list, that means that the truth of the
proposition is unknown. (Remember that Logo property lists give the empty list as
the value of a property that you haven’t defined explicitly, so I don’t have to predefine
all possible properties.) The word means that the proposition is known to be
true; the word means that it’s known to be false. If the proposition is linked
to other propositions by implication, then the value of the property is a list containing
four-element implication lists. The first member of each implication is or to
indicate which value of this proposition implies something about the other proposition.
The next two members are names of individuals, indicating which other proposition is
determined by this one. The fourth member is again or , indicating whether
that other proposition is implied to be true or implied to be false.

For example, the statement “My name is Irving, and I’m 45” attributed to Jane is
stored as the following two implications:

Under and , the list .
Under and , the list .

Although the data structure as described so far contains all the necessary information,
it turned out to be convenient to include some redundant forms of the same information.
For example, the elimination rule and the uniqueness rule require the program to find
all the of an individual—the other individuals in the same category. It would be
possible to start with and search for the known individual in a category
list, but it was easier to give each individual a property whose value is the
name of the category to which it belongs.

Similarly, the transitive rule needs to know all of the propositions involving a
particular individual that are known to be true, and all those that are known to be
false. This information is implicit in the properties already described, but to simplify the
program each individual has a property whose value is a list of the other individuals
known to be equal to this one, and a property whose value is a list of the others
known to be different from this one. For example, after processing statement 7 we know
that Jane is Irving and that Jane is the pilot, but we don’t know Jane’s age. Therefore the
property list for has a property whose name is and whose value is the list

and one whose name is and whose value is

Program Structure: Recording Simple Propositions

Program Structure: Recording Simple Propositions 57

Jane last Irving

category differ says

differ says

differ says

to cub.reporter
cleanup
category "first [Jane Larry Opal Perry]
category "last [Irving King Mendle Nathan]
category "age [32 38 45 55]
category "job [drafter pilot sergeant driver]
differ [Jane King Larry Nathan]
says "Jane "Irving 45
says "King "Perry "driver
says "Larry "sergeant 45
says "Nathan "drafter 38
differ [Mendle Jane Opal Nathan]
says "Mendle "pilot "Larry
says "Jane "pilot 45
says "Opal 55 "driver
says "Nathan 38 "driver
print []
solution
end

Finally, it turned out that at the end of the program, in order to print out the
solutions, it was convenient to have, for each individual, properties with a category as the
name and an individual in that category as the value. For example, since Jane’s last name
is Irving, has a property whose name is and whose value is .

I wanted to enter the problem as a series of assertions, each represented by a Logo
instruction. That is, I wrote this procedure:

(The first instruction erases any old property lists left over from a previous logic problem;
the last prints out the results.) I made , , and print out their
inputs when invoked, so that you can watch the progress of the solution while it’s being
computed.

The procedures and were designed to reflect the terms in which this
problem is presented, rather than the internal workings of the inference system. That
is, if you compare the problem statement with this procedure, it’s easy to see which
instructions represent which clues, even if you have no idea how the program will actually
solve the problem! Our task is to implement and using propositional
logic.

x y

58 Chapter 2 Discrete Mathematics

differ says Differ

Says

differ

differ

falsify
falsify

falsify

differ falsify

Falsify verify
settruth

differ [Jane King Larry Nathan]

falsify "Jane "King
falsify "Jane "Larry
falsify "Jane "Nathan
falsify "King "Larry
falsify "King "Nathan
falsify "Larry "Nathan

to differ :list
print (list "differ :list)
foreach :list [differ1 ? ?rest]
end

to differ1 :a :them
foreach :them [falsify :a ?]
end

to verify :a :b
settruth :a :b "true
end

There’s an important difference between and . gives us direct
information about the truth or falsehood of some simple propositions; specifically, we
learn that several “ is ” propositions are false. , on the other hand, gives us no
direct information about simple propositions; it tells us about implications linking two
such propositions.

First let’s consider how works. The instruction

tells us that Jane is not King, Jane is not Larry, Jane is not Nathan, King is not Larry, King
is not Nathan, and Larry is not Nathan. In effect, will carry out the instructions

There’s no need to invoke for the six cases with inputs in the opposite order
(such as the proposition that King is not Jane) because, as we’ll see, knows
about the symmetric rule and will record those automatically. By the way, some of these
six are unnecessary because the two individuals have the same category and therefore
couldn’t possibly be the same, such as Jane and Larry, both first names. But
will catch these cases and return without doing anything.

Here’s how actually carries out all those instructions:

, and a similar procedure to assert the truth of a proposition, are
implemented in terms of the central procedure about propositions, :

Settruth
:a :b

settruth

settruth

Program Structure: Recording Simple Propositions 59

to falsify :a :b
settruth :a :b "false
end

to settruth :a :b :truth.value
if equalp (gprop :a "category) (gprop :b "category) [stop]
localmake "oldvalue get :a :b
if equalp :oldvalue :truth.value [stop]
if equalp :oldvalue (not :truth.value) ~

[(throw "error (sentence [inconsistency in settruth]
:a :b :truth.value))]

print (list :a :b "-> :truth.value)
store :a :b :truth.value
settruth1 :a :b :truth.value
settruth1 :b :a :truth.value
if not emptyp :oldvalue ~

[foreach (filter [equalp first ? :truth.value] :oldvalue)
[apply "settruth butfirst ?]]

end

to settruth1 :a :b :truth.value
apply (word "find not :truth.value) (list :a :b)
foreach (gprop :a "true) [settruth ? :b :truth.value]
if :truth.value [foreach (gprop :a "false) [falsify ? :b]

pprop :a (gprop :b "category) :b]
pprop :a :truth.value (fput :b gprop :a :truth.value)
end

falsify "Jane "Larry

takes three inputs, two individuals and a truth value. It records the truth or
falsehood of the proposition that is , and uses the rules of inference I’ve described
to derive other propositions when possible.

If the two individuals are in the same category, does nothing. This is to allow
for cases such as the example

as explained earlier. If the individuals are in different categories, the next step is to find
what information was previously available about this proposition. If it was already known
to be true or false, and the truth value input in this call agrees with what was known, then
the program has merely generated some redundant information and stops.
If the known value disagrees with the input value, then something is wrong; the program
has proven two contradictory propositions. Generally this means that some clue has been
represented incorrectly in the program.

→

Program Structure: Recording Implications

p q p q
implication

exclusive or.

60 Chapter 2 Discrete Mathematics

settruth
get store

:a :b
:b :a settruth1

Settruth1 findtrue findfalse
not settruth1 findtrue

settruth1
:a

settruth

says

says "Jane "Irving 45

to says :who :what1 :what2
print (list "says :who :what1 :what2)
xor :who :what1 :who :what2
end

to xor :who1 :what1 :who2 :what2
implies :who1 :what1 "true :who2 :what2 "false
implies :who1 :what1 "false :who2 :what2 "true
end

If the proposition was not already known to be true or false, then we have some new
information. After notifying the user by printing a message, must store that
fact. (Procedures and are an interface to the property list primitives that
implement the symmetric rule.) The next step is to make any possible inferences using
the elimination, uniqueness, and transitive rules; this is done separately for “ is ”
and for “ is ” by two calls to the subprocedure .

invokes either or depending on the truth value.
Because of the in the first instruction of , is called when
we are falsifying a proposition, and vice versa. This makes sense because of the tasks of
these procedures. If we are falsifying a proposition, then the elimination rule comes into
play, and we try to find a true proposition. If we are verifying a proposition, then the
uniqueness rule lets us find several false propositions on the same row or column of the
chart. The next instructions in implement the transitive rule, looking at
other individuals known to be the same as, or different from, . The last two instructions
maintain the redundant information used for printing the results and for carrying out
the transitive rule.

The final instruction in deals with implications. If we already knew that
and now we’re learning that is true, we can infer that is true. (This is another

rule of inference, which I’ll call the rule.)

Speaking of implications, we can now explore how the procedure produces and
records implications. The instruction

establishes a relationship between the two propositions “Jane is Irving” and “Jane is 45.”
The relationship is that exactly one of them must be true; the name for this is

→ ¬ ¬ →

→ ¬ → ¬

¬

→ ¬

¬

Says xor
xor

implies

true false true
false

implies1

implies1

p q p q

not

x y x
y x y

contrapositive
p q q p

q q
p

p q p p p
q

q p

Program Structure: Recording Implications 61

to implies :who1 :what1 :truth1 :who2 :what2 :truth2
implies1 :who1 :what1 :truth1 :who2 :what2 :truth2
implies1 :who2 :what2 (not :truth2) :who1 :what1 (not :truth1)
end

to implies1 :who1 :what1 :truth1 :who2 :what2 :truth2
localmake "old1 get :who1 :what1
if equalp :old1 :truth1 [settruth :who2 :what2 :truth2 stop]
if equalp :old1 (not :truth1) [stop]
if memberp (list :truth1 :who2 :what2 (not :truth2)) :old1 ~

[settruth :who1 :what1 (not :truth1) stop]
if memberp (list :truth1 :what2 :who2 (not :truth2)) :old1 ~

[settruth :who1 :what1 (not :truth1) stop]
store :who1 :what1 ~

fput (list :truth1 :who2 :what2 :truth2) :old1
end

is a special case of (a common abbreviation for exclusive or) in which the two
propositions are about a common individual, Jane in the example. The procedure
establishes two implications, and . In other words, if we learn that Jane
is Irving, then we can infer that Jane is not 45; if we learn that Jane is not Irving, we can
infer that Jane is 45. (These two implications are equivalent to each other; in general,
one might be true and the other false. But the exclusive or relationship means that both
are true.)

The procedure takes six inputs. The first three are for one proposition and
the others for the second proposition. For each proposition, two inputs are individuals
(call them and) and the third is or . If , then the proposition is “
is ”; if , the proposition is “ is not .”

Yet another rule of inference comes into play here, the rule.It says that
if is true, then so is . Although these two implications are mathematically
equivalent, we must enter both of them into our data structure because we might happen
to discover that is true, and we’ll look for relevant implications filed under rather
than under .

The first call to stores the implication in the form given to us; the second call
stores its contrapositive.

The first three instructions in check for the case in which we are told
that but we already know either or . If we already know , then we can derive
that is true. There’s no need to store the implication, because it is already serving its
purpose, which is to allow us to infer . If we already know , then we can forget about

→
→ ¬

Using Implications to Represent Orderings

q

p q
p q p

p

p

62 Chapter 2 Discrete Mathematics

this implication, because it isn’t going to do us any good. We can’t infer anything about
from this situation.

The next two instructions check for the situation in which we are told but we
already know that . In that case, must not be true, because if it were, we could
infer two contradictory conclusions. Therefore, we can falsify the proposition .

Finally, if none of these conditions is met, we add this implication to the (possibly
empty) list of already known implications about .

For another example of implications at work, here’s the Logo program for the Foote
problem:

to foote.family
cleanup
category "when [1st 2nd 3rd 4th 5th]
category "name [Felix Fred Frank Francine Flo]
category "street [Field Flag Fig Fork Frond]
category "item [food film flashlight fan fiddle]
category "position [1 2 3 4 5]
print [Clue 1]
justbefore "Flag "2nd :position
justbefore "2nd "Fred :position
print [Clue 2]
male [film Fig 5th]
print [Clue 3]
justbefore "flashlight "Fork :position
justbefore "Fork "1st :position
female [1st]
print [Clue 4]
falsify "5th "Frond
falsify "5th "fan
print [Clue 5]
justbefore "Francine "Frank :position
justbefore "Francine "Frank :when
print [Clue 6]
female [3rd Flag]
print [Clue 7]
justbefore "fiddle "Frond :when
justbefore "Flo "fiddle :when
print []
solution
end

Using Implications to Represent Orderings 63

print

falsify

male female
justbefore says

male female

justbefore

to male :stuff
differ sentence :stuff [Francine Flo]
end

to female :stuff
differ sentence :stuff [Felix Fred Frank]
end

category "sex [male female]
verify "Francine "female
verify "Flo "female
verify "Felix "male
verify "Fred "male
verify "Frank "male

to justbefore :this :that :lineup
falsify :this :that
falsify :this last :lineup
falsify :that first :lineup
justbefore1 :this :that :lineup
end

I’ve included instructions to let the user know when the program reaches
each of the seven numbered clues. Clue 4 tells us directly that two possible pairings of
individuals are false, and the program reflects this with two invocations of . But
the other clues either tell us about the sex of the family members or tell us that certain
individuals are next to each other in an ordering. The procedures , , and

reflect the language of the problem in the same way that reflected
the language of the other problem.

Needless to say, this implementation of and works only for this specific
logic problem! It’s tempting to try to use the more general category mechanism this way:

but unfortunately the structure of this inference system requires that each individual
can only match one individual in another category; once we’ve verified that Francine is
female, the uniqueness rule will deduce that Flo isn’t female!

On the other hand, I’ve tried to write in a way that will work for future
problems.

lineup

64 Chapter 2 Discrete Mathematics

The input named is a list of individuals from an ordering, in the correct order.
In this problem, it will be the list

if the clue is about street position, or

if the clue is about the order of events in time. As I explained when talking about
orderings earlier, the instruction

results in falsifying some propositions:

and also asserts some implications:

to justbefore1 :this :that :slotlist
if emptyp butfirst :slotlist [stop]
equiv :this (first :slotlist) :that (first butfirst :slotlist)
justbefore1 :this :that (butfirst :slotlist)
end

to equiv :who1 :what1 :who2 :what2
implies :who1 :what1 "true :who2 :what2 "true
implies :who2 :what2 "true :who1 :what1 "true
end

[1 2 3 4 5]

[1st 2nd 3rd 4th 5th]

justbefore "Flag "2nd :position

falsify "Flag "2nd
falsify "Flag 5
falsify "2nd 1

implies "Flag 1 "true "2nd 2 "true
implies "2nd 2 "true "Flag 1 "true
implies "Flag 2 "true "2nd 3 "true
implies "2nd 3 "true "Flag 2 "true
implies "Flag 3 "true "2nd 4 "true
implies "2nd 4 "true "Flag 3 "true
implies "Flag 4 "true "2nd 5 "true
implies "2nd 5 "true "Flag 4 "true

Backtracking

male female

yellow1

yellow2

one

not

not

backtracking.

not

Backtracking 65

category "color [yellow1 yellow2 blue brown green]

verify "Fred "yellow1

differ "architect [blue brown green]

This inference system can solve many logic problems, but sometimes it runs into trouble.
I’ve already mentioned, while discussing the and procedures, that the
program insists that each individual in a category must appear exactly once in the
solution. Suppose you have a problem about five people living in five houses; they have
five distinct first names, five last names, five occupations—but two of the houses are
yellow. It’s sometimes possible to get around this, but the technique is a little awkward.
You can set up a category like this:

then you find clue that mentions a yellow house and use for that one:

but for any other mention of something being yellow in the problem, you represent that
by saying that the individual is one of the other colors:

You never explicitly mention except in setting up the category.

That technique works if you know that yellow is the color that appears twice. What
if the problem tells you only that there are five houses and four colors? Or what if some
individuals are in the solution? For example, a problem might discuss the activities
of five people, each doing something on a different day of the week, but you don’t know
until you solve the problem which of the seven weekdays are involved.

An entirely different approach to solving logic problems by computer is
Instead of starting from the clues and making deductions, a program can start by
making arbitrary guesses about who goes with what, and then use the clues to look
for contradictions. If a contradiction is found, the program systematically makes a
different guess until every possible arrangement has been tried. (Presumably before
every possibility has been tried, one of them will lead to a contradiction, and that’s
the solution.)

In practice, backtracking is a more flexible technique than the inference system I
wrote, because it’s easy to let a backtracking program try multiple appearances of an
individual if the problem allows that. But I thought the inference system would be more
interesting to study, for two reasons. First, the inference system more closely models the

3

4

assume

∨
∨ ∨

¬ ∧

¬ ∧

¬ ∧

x y

66 Chapter 2 Discrete Mathematics

Generalized Inference Systems and Predicate Logic

* People do sometimes use a combination of inference and backtracking. If, by inference,
you’ve established that Jane must be either the pilot or the drafter, but you can’t settle which, you
might decide to that Jane is the pilot and hope that you can then infer either a complete
solution to the problem or a contradiction. In the latter case, you’d know that Jane must be the
drafter.

way people solve logic problems. In the cub reporter problem, with four people to keep
straight, there are (4!) or 13,824 possible solutions. In the Foote problem, with five
people, there are (5!) or just over 200 million possibilities. A computer can try them all,
but a person couldn’t.* (If multiple appearances were allowed, the numbers would be
even higher.) Second, backtracking doesn’t work at all unless the problem deals with a
finite set of individuals, as in a logic problem. Inference systems can be generalized to
deal with potentially unbounded problems.

The rules of inference in this program are specially designed for problems like the ones
we’ve just solved. The implication rule is applicable to any propositional logic situation,
but the ones based on categories, such as the uniqueness and elimination rules, are not.
The idea of a “category” as we’ve used it isn’t a general principle of logic; instead, that
idea should really be expressed as a series of propositions. For example, to say “there
is a category called ‘last name’ whose members are Irving, King, Mendle, and Nathan”
is really to make several statements of the form “Jane has exactly one last name,” or, in
terms of the basic “ is ” propositions,

(Jane is Irving) (Jane is King)

(Jane is Mendle) (Jane is Nathan)

(i.e., Jane has at least one last name)

((Jane is Irving) (Jane is King))

(i.e., Jane isn’t named both Irving and King)

((Jane is Irving) (Jane is Mendle))

and so on. If we wanted to solve this problem in a general inference system we’d assert
the truth of all those propositions at the beginning. Then if the program discovers that
Jane is Irving, it would have the two propositions

((Jane is Irving) (Jane is King))

true false

¬

∀

→ ∀ ∧ ∧ ¬ → ¬

equalp :x :y

z y
propositional

p x y

predicate

x y
x y

relation
<

one
many

x y x
z z y

x y z y a z a y z x z

Generalized Inference Systems and Predicate Logic 67

and
(Jane is Irving)

and from these it could infer
(Jane is King)

using the standard inference rules of propositional logic.

The “and so on” just above includes quite a large number of propositions. And yet
this small problem concerns a mere 16 individual names divided into four categories.
For a larger problem it would be nearly impossible to list all the relevant propositions,
and for a problem involving an infinite set of individuals, such as the integers, it would
be literally impossible. What would make the representation of a problem easier is if
we could use, in a formal system, the same kind of language I used in describing (in
English) the inference rules earlier: “for all other in the same category as ...” There
are two parts to such a formal notation. First, in addition to the variables like

used in propositional logic, we need variables like and that can represent objects
in the system we want to describe. Second, we need a notation for “for all.” The formal
system including these additions to propositional logic is called logic. The name
is like that used in Logo to refer to operations with or outputs because the
statements in predicate logic involve truth-valued functions of objects analogous to the
Logo predicates. For example, the formula we’ve been representing informally as “ is ”
is represented formally using the predicate function is(,). This is much like the Logo
expression

A predicate function of two arguments (“inputs” in Logo) is also called a in
mathematics. Algebraic relations include ones like = (equal) and (less than).

We are almost ready to show how the uniqueness rule can be expressed as a formula
in predicate logic. If you’re not accustomed to mathematical formalism, this formula is a
little scary—perhaps the scariest thing in this book. But I want you to see it so that you’ll
appreciate the fact that just formula of predicate logic can sum up a rule that would
require formulas in propositional logic. I’m going to introduce a new relation
called “isa” that’s true if its first argument is a member of its second argument. The first
must be an individual and the second a category. For example, isa(pilot, job) is true.
And the symbol means “for all.” The uniqueness rule says that if is then can’t also
be for any in the same category as . Here’s how to say that formally:

is(,) ((isa(,) isa(,) (=)) is(,))

⊗ ⊗

∨ ∧ ¬ ∧

⊗
¬

p q
exclusive or

p q p q

p q
p q

equivalence

symmetric
transitive

ordering

x

x x

assertions
x

68 Chapter 2 Discrete Mathematics

To indicate the linking of two propositions in the general inference system, no special
rules of inference are required. To say “the reporter wrote down these two statements;
one is true and the other false” is just to say ; I’m using the symbol to represent
the function. This formula is equivalent to

() ()

A general inference system will know that if it’s been told and then later it learns,
say, then it can infer .

The cub reporter problem is simpler than some of its type in that the only relevant
relation among individuals is “is,” which is an relation. This means that if Jane
is Irving then also Irving is Jane (the technical name for a relation with that property is

), and also that if Jane is Irving, and Irving is the pilot, then Jane is the pilot
(so the relation is). It’s relatively easy to work out all the implications of a
proposition about equivalence relations.

By contrast, the Foote problem contains relations like “is later than” that are
transitive but not symmetric. To handle such problems the inference system must have a
way to represent “ is the last.” Other problems contain relations like “lives in the house
next to” that are symmetric but not transitive. A statement like “Mr. Smith lives in the
house at the end” has to be represented formally as something like “there is only one
person such that lives in the house next to Mr. Smith.”

One reason a general inference system is harder to program than the special-purpose
one I’ve written in this chapter is that my system makes all possible inferences from any
newly verified or falsified proposition. This is possible only because there is a finite,
fairly small number of such inferences. Once you introduce variables and predicates, the
number of possible inferences is potentially infinite. A general inference system must
take care not to infer infinitely many useless results. One solution is to defer the making
of inferences until the user of the system asks a question, and then infer only what’s
needed to answer that particular question. But it isn’t always easy to know exactly what’s
needed.

An inference system like the one I’m vaguely describing is a central part of the
programming language Prolog. In that language, you program not by issuing instructions
that tell the computer what to do, but rather by making that some proposition
is true. You can then ask questions like “for what values of is this formula true?”

∧

⊗
∨

¬ ∨
↔

Logic and Computer Hardware

binary
ternary

gates
inverter

p
q

p q

p q
p q

p q
p q

Logic and Computer Hardware 69

false true

0 0 1 1
0 1 0 1

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1

Besides inference systems, another area in which logic is important in computer science is
in the design of the computers themselves. In a computer, information is represented as
electrical signals flowing through wires. (These days, a “wire” is likely to be a microscopic
conducting region on a silicon chip rather than a visible strand of metal, but the principle
is the same.) In almost all computers, each wire may be carrying one of two voltage
levels at any moment. (It is the restriction to two possible voltages that makes them
computers. It would be possible to build computer circuits using three voltages,
but I know of no practical application of that idea.) A computer is built out of small
circuit elements called that combine or rearrange binary signals in various ways.
Perhaps the simplest example of a gate is an ; it has one input signal and provides
one output signal that is the opposite of the input. That is, if you have a high voltage
coming into the inverter you get a low voltage out, and vice versa.

The voltages inside the computer can be thought of as representing numbers (zeros
and ones) or truth values (false and true). From now on I’ll use the symbols 0 and 1 to
represent the voltages, but you can mentally replace 0 with and 1 with to
see how what I’m saying here ties in with what’s gone before.

Suppose you have a gate with two input wires and one output. What are the
possibilities for how that output is determined by the inputs? Each of the two inputs
can have two possible values; that means that a gate has four different possible input
configurations. For each of those four, the gate can output 0 or 1. As you can see from
the chart below, this means that there are 16 possible kinds of two-input gates:

input :
input :

outputs:
and ()

exclusive or ()
or ()
nor (not-or, ())
equivalence ()

∧∧

∧ ∨∨

AND gate

OR gate

inverter (NOT)half-adder

carry
out

sum
out

A in

B in

→
¬ ∧

⊗
∧

1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 0 1 1
0 1 0 1
0 1 1 0
0 0 0 1

p q
p q

and

nand nor

two

A
B

A B

A B

half-adder

70 Chapter 2 Discrete Mathematics

implies ()
nand (not-and, ())

The table indicates, for example, that a gate whose output is 1 only when both inputs
are 1 is an gate, implementing the usual logical and operation. The 16 possibilities
include all the standard logic functions as well as several less obviously useful ones. Two
gate types called and represent functions rarely used in mathematical logic but
common in computer design because it is sometimes helpful to have the opposite of the
signal you’re logically interested in.

Numbers other than 0 and 1 can’t be represented as a single signal in a single wire.
That’s why there isn’t a “plus gate” along with the and gates, or gates, and so on; if both
inputs to a plus gate were 1, the output would have to be 2. To add two zero-or-one
numbers we need a more complicated device with output wires, one of which is the
“carry” to the next binary digit:

input:
input:

sum out:
carry out:

These sum and carry outputs can be defined in terms of logical operations:

Sum =

Carry =

Exclusive or gates are, in fact, not generally used as basic hardware components, so this
device is traditionally represented in terms of and gates, or gates, and inverters:

The device we’ve just built is called a for reasons that should become clear in a
moment.

∨ carry
out

sum
out

half
adder

half
adder

sum

sum

A

A

B

B

carry

carry

adder

A in

B in

carry in

adder adder adder

sum 1
out

sum 2
out

sum 4
out

B1
in

A1
in

A2
in

A4
in

B2
in

B4
in

overflow
out carry carry

⊗ ⊗
∧ ∨ ⊗ ∧

bit,

in
three

A B

A B A B

overflow
interrupt

Logic and Computer Hardware 71

To represent numbers larger than 1 we have to use more than one signal wire. Each
signal represents a binary digit, or that is implicitly multiplied by a power of 2 just
as in the ordinary decimal representation of numbers each digit is implicitly multiplied
by a power of 10. For example, if we have three signal wires for a number, they have
multipliers of 1, 2, and 4; with these signals we can represent the eight numbers from 0
(all signals 0) to 7 (all signals 1). When we want to add two such three-bit numbers, the
sum for all but the rightmost bit can involve a carry as well as a carry out. The circuit
for each bit position must have inputs, including one for the carry from the next bit
over as well as the two external inputs. The outputs are found using these formulas:

Sum = () CarryIn

CarryOut = () (() CarryIn)

This circuit can be built using two half-adders:

To add two three-bit numbers we connect three adders together this way:

The carry out signal from the leftmost adder (the one representing the largest power of
2) is the signal; if it’s true, the sum didn’t fit in the number of bits provided.
Many computers use this signal to the execution of their programs so that people
don’t end up seeing incorrect results.

The phrase “computer logic” is widely used, even by non-experts, to refer to the
inner workings of a computer. Many people, though, think that the phrase describes

2

×

2

2

Combinatorics

personality

f f f
f f f

combinatorics.

independent

72 Chapter 2 Discrete Mathematics

the of the computer, which they imagine to be like that of Mr. Spock.
“Computers may be able to play chess, but they can’t write poetry, because that isn’t
logical.” Here you’ve seen the real meaning of the phrase: Just as a Logo program
has procedures defined in terms of subprocedures and ultimately in terms of primitive
procedures, the capabilities of a computer itself are built out of smaller pieces, and the
primitive hardware components compute logical, rather than arithmetic, functions. (For
a computer to exhibit Mr. Spock’s sense of purpose, understanding of cause and effect,
drive for self-preservation, loyalty to his species and his government, and so on, would
be no less miraculous than for it to write a love poem or throw a temper tantrum. Later
we’ll discuss the efforts of artificial intelligence researchers to produce such miracles.)

Earlier I listed the 16 possible logical functions of two logical arguments. I could have
figured out that there are 16 without actually listing them this way: If a function has
two arguments, and each argument has two possible values, that makes 2 possible
combinations of argument values. A logical function is determined by its result for each
of those four possible argument combinations. (The four are (0, 0), (0, 1), (1, 0), and
(1, 1).) There are two possible results for (0, 0), two for (0, 1), and so on; the number

of possible functions is the product of all these twos, 2 or 16.

The mathematics of counting how things can be combined is called
The problem we’ve just done illustrates a fundamental rule of combinatorics, namely
that the number of possibilities for a choice with several components is the product of
the number of possibilities for each component choice. This may be easier to understand
with an example in which not all the relevant numbers are 2. Here’s a classic: Suppose
you have a group of four men and three women, and you want to form a committee
of one man and one woman chosen from this group. How many such committees are
possible? There are 4 choices for the male member of the committee and 3 choices for
the female member; that means 4 3 or 12 committees.

(The multiplication rule only works if the component choices are ; that
is, the possible outcomes of one choice can’t be affected by the outcome of any of the
others. For example, if our committees are to have a chairperson who can be of either sex
and then two other members, one man and one woman, you can’t say “there are 7 choices
for the chairperson, times 4 for the man, times 3 for the woman” because after choosing
the chairperson the number of choices for the other members is changed depending on
the sex of the chair. There are two correct ways to solve this problem. One is to say “The
chairperson is either male or female. If male, there are 4 possible chairs, times 3 possible

×

3

2 3

(3) 3 3

(3) (2)

3 2

3

1 2 6 1 4

last

probability,

brown

brown brown brown blue blue

Combinatorics 73

other male members, times 3 possible female members, for 36 possible committees. If
female, there are 3 possible chairs, times 4 possible male members, times 2 possible other
female members, for 24 committees. The total is 36 + 24 or 60 committees.” The second
solution is to pick the chairperson ; then you say “There are 4 possible male members,
times 3 possible females, times 5 possible chairs (7 people in the original group minus 2
already chosen).” Apart from arithmetic errors, almost all the mistakes people make in
solving combinatorics problems come from forgetting that events have to be independent
to allow you to multiply the choices.)

Let’s return to logical functions for a moment. Suppose we experiment with a
ternary logic in which the possible values are yes, no, and maybe. (You can represent
these using the numbers 0, 1, and 2.) How many three-argument ternary logic functions
are there? Is it 3 or is it (3) ? (It doesn’t matter which way you group the twos for the
binary logic version because the two groupings have the same value, 16, but this isn’t true
with threes.) How many two-argument ternary logic functions are there? 2 ? 3 ?
(3) ? How many three-argument binary logic functions? The virtue of these problems
is that you can check your own answers by listing all the possible functions as I did for the
two-argument binary logic functions.

Most people are introduced to combinatorics by way of the mathematics
of gambling. Given a number of equally likely possible situations, some of which win a
bet and the rest of which lose it, the probability of winning is a ratio:

probability =
number of possible winning situations

total number of possible situations

The role of combinatorics is to help in computing the numerator and denominator of
that fraction.

For example, suppose you have six brown socks and four blue socks in a drawer, and
you pull out two socks without looking. What is the probability of getting a matching
pair? I’m going to give each sock a name like for the third brown sock so that we
can talk about individual socks even if they’re the same color. How many possible pairs
of socks are there? That is, given the set

{ , , . . . , , , . . . , }

containing ten socks, how many two-sock subsets are there?

The first step in answering this question is to notice that we have 10 choices for the
first sock and then 9 choices for the second. So there are 10 9 ways to make the two
choices. (There is a subtle point here that some textbooks don’t bother explaining. The

2 5 5 2

× ×
× ×

not
number

ordered
pairs

brown brown brown brown

permutation;
combination.

74 Chapter 2 Discrete Mathematics

combs [brown1 brown2 ... brown6 blue1 ... blue4] 2

[[brown1 brown2] [brown1 brown3] ... [brown4 blue3] ... [blue3 blue4]]

choice of the second sock is independent of the first choice, since we can’t choose
the same sock twice. However, the of second choices is always 9, even though
the particular nine available socks depend on the first choice. So we can get away with
multiplying in this example.)

This isn’t quite the answer we want, though. We’ve shown that there are 90
of socks. But once we get the socks out of the drawer, it doesn’t matter which we

picked first. In other words, if we say there are 90 possible choices, we are counting
{ , } and { , } as two different choices. Since we don’t care
which sock came out of the drawer first, we are really counting every pair twice, so there
are only 90/2 or 45 possible pairs.

An ordered subset of a set is called a a subset without a particular order
is a We say that there are 90 permutations of ten things taken two at a time;
there are 45 combinations of ten things taken two at a time.

It turns out that combinations are what matters most of the time; it’s relatively rare
for permutations to turn up in a math problem. An exception is the device wrongly
called a “combination lock”; to open one, you must know a particular permutation of
the possible numbers. My high school locker “combination” was 18–24–14. If I tried
the same numbers in a different order, like 24–18–14, the lock wouldn’t open. (Actually
it’s misleading for me to use this example because the same number can appear twice
in most locks of this type, so the “combination” is not a subset of the available numbers.
If there are 50 numbers available, the total number of possibilities is not 50 49 48
but rather 50 50 50. These lock-opening patterns are therefore neither permutations
nor combinations but something else that we might call “permutations with repetition
allowed.”)

We haven’t finished solving the sock problem. How many of the possible pairs of
socks are matching pairs? One way to find out would be to list all the possible pairs and
actually count how many of them match. This is the sort of thing computers do well.
First we have to write a procedure that takes as input a list and a number, and outputs a
list of lists, each of which is a subset of the input list whose length is the input number.
That is, we want to take

and this should output a list of pairs:

−
n
n

n

Combinatorics 75

brown2 blue3

brown1

brown1 brown1

brown1
butfirst
butfirst

combs combs

[brown2 blue3]

[blue3 brown2]

to combs :list :howmany
... <stop rule> ...
output sentence (map [fput first :list ?]

combs (butfirst :list) (:howmany-1)) ~
(combs (butfirst :list) :howmany)

end

This is a fairly tricky program to write. Try it before you read further. Can you reduce
the problem to a smaller, similar problem? Don’t forget that we want combinations, not
permutations, so the output can’t have two sublists containing the same elements.

To make sure that each combination appears in the result in only one order, we can
decide explicitly what that order will be. The most convenient thing is to say that the
elements will appear in each sublist in the same order in which they appear in the original
list. That is, since the input list has before , the output will contain the list

but not the list

It follows that the very first element of the input list, , can only appear as the first
element of any output sublist. In other words, there are two kinds of sublists: ones with

as their first element and ones that don’t include at all. This is a way to
divide the problem into smaller pieces.

If we are looking for -element subsets, the first kind consists of stuck in
front of a smaller subset of 1 elements chosen from the remainder (the)
of the input list. The second kind of subset is an -element subset of the .
We can collect all of each kind by a recursive invocation of the procedure we’re going to
write, then append the two collections and output the result. So the procedure will look
like this:

By now you’ve had a lot of experience writing recursive procedures, but I’m going over
this one in detail for two reasons: It’s tricky and it’s a model for solving many other
combinatorial problems. What makes it tricky is a combination of two things. One is that
it’s recursive twice; that is, there are two recursive invocations of within .
This makes the control structure very different from the

something

show combs [a b c d e] 3

two

76 Chapter 2 Discrete Mathematics

butfirst

:howmany
:list emptyp

:howmany

combs socks

sort of recursion that may be more familiar. The second tricky part is that there are two
input variables, each of which may be made smaller (by ing or by subtracting
1) but need not be in a particular recursive call.

One implication of these complicating factors is that we need stop rules. It may
be obvious that we need one for the situation of counting down to zero, but
we also need one for getting too small. Ordinarily this latter would be an
test, but in fact any list whose length is less than is too small, not just the
empty list. Here is the finished procedure:

Now we can use on the sock problem. (Note: The procedure shown
here is not the one in the program file; there will be a modified version a few paragraphs
down the road.)

to blah :list
output fput (first :list) (blah butfirst :list)
end

to combs :list :howmany
if equalp :howmany 0 [output [[]]]
if equalp :howmany count :list [output (list :list)]
output sentence (map [fput first :list ?]

combs (butfirst :list) (:howmany-1)) ~
(combs (butfirst :list) :howmany)

end

?
[[a b c] [a b d] [a b e] [a c d] [a c e] [a d e]

[b c d] [b c e] [b d e] [c d e]]

to socks :list
localmake "total combs :list 2
localmake "matching filter [equalp butlast first ? butlast last ?] ~

:total
print (sentence [There are] count :total [possible pairs of socks.])
print (sentence [Of these,] count :matching [are matching pairs.])
print sentence [Probability of match =] ~

word (100*(count :matching)/(count :total)) "%
end

Combinatorics 77

socks [brown1 brown2 brown3 brown4 brown5 brown6
blue1 blue2 blue3 blue4]

filter socks
brown3 brown4

filter

[brown brown] [brown blue]
[blue blue]

socks

?

There are 45 possible pairs of socks.
Of these, 21 are matching pairs.
Probability of match = 46.6666667%

[brown brown brown brown brown brown blue blue blue blue]

[equalp first ? last ?]

[6 brown 4 blue]

to socks :list
localmake "total combs (expand :list) 2
localmake "matching filter [equalp first ? last ?] :total
print (sentence [There are] count :total [possible pairs of socks.])
print (sentence [Of these,] count :matching [are matching pairs.])
print sentence [Probability of match =] ~

word (100*(count :matching)/(count :total)) "%
end

The answer is that the probability of a matching pair is just under half. The template
used in the invocation of in depends on the fact that two socks match if
their names are equal except for the last character, such as and .

I’ve numbered the socks because it’s easier for us to talk about how the program
works (and about how the underlying mathematics works, too) if we can identify an
individual sock. But it’s worth noting that the program doesn’t really need individual
sock names. We could instead use the list

and change the template to

The program will generate some pairs, some pairs,
and some pairs. The number of pairs will still be 45 and the number of
matching pairs will still be 21.

Having come to that realization, we can make the “user interface” a little smoother
by having accept an input list like

and expand that into the desired list of ten socks itself. Here is the final program:

and

×

× ×

combs

socks [6 brown 4 blue]

Inductive and Closed-Form Definition

different

kinds

number

n r

78 Chapter 2 Discrete Mathematics

to expand :list
if emptyp :list [output []]
if numberp first :list ~

[output cascade (first :list)
[fput first butfirst :list ?]
(expand butfirst butfirst :list)]

output fput first :list expand butfirst :list
end

?
There are 45 possible pairs of socks.
Of these, 21 are matching pairs.
Probability of match = 46.6666667%

[brown2 brown5] [brown5 brown2]

[brown brown]

My reason for presenting this refinement of the program is that it offers a concrete
opportunity for reflection on how you can tell which differences are important in a
combinatorics problem. In discussing the first version of the program, I said that the two
lists

represent the same pair of socks, so both shouldn’t be included in the list of lists output
by . Now I’m saying that several lists that look identical like

represent pairs of socks and must all be counted. It would be a mistake to
say, “There are three possibilities: brown-brown, brown-blue, and blue-blue. So the
probability of a match is 2/3.” It’s true that there are three of pairs of socks, but
the three kinds are not equally represented in the list of 45 possible pairs.

The usual approach to problems like the one about the socks is not to enumerate the
actual combinations, but rather to compute the of combinations directly. There
are formulas for both number of combinations and number of permutations. Usually
the latter is derived first because it’s easier to understand.

With 10 socks in the drawer, the number of two-sock permutations is 10 9. If
we’d wanted three socks for a visiting extraterrestrial friend, the number of permutations
would be 10 9 8. In general, if we have things and we want to select of them, the

()

︸ ︷︷ ︸
factors

⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ −

−

−

n r

r

n r

r r n r

n r

n r
n r

r r

P n n n r

n n
n

P
n

n r

r

n r
combination n r

r r
r r P r P

C n r
r

r

n
r

C
P
P

n
r n r

Inductive and Closed-Form Definition 79

to perms :n :r
output (fact :n)/(fact (:n-:r))
end

to fact :n
output cascade :n [# * ?] 1
end

to perms :n :r
if :r=0 [output 1]
output :n * perms :n-1 :r-1
end

number of permutations is

= (1) (+ 1)

Mathematicians don’t like messy formulas full of dots, so this is usually abbreviated using
the factorial function. The notation “ !” is pronounced “ factorial” and represents the
product of all the integers from 1 to . Using this notation we can write

=
!

()!

This is an elegant formula, but you should resist the temptation to use it as the basis for a
computer program. If you write

then you’re doing more multiplications than necessary, plus an unnecessary division.
Instead, go back to the earlier version in which terms are multiplied:

The set of all permutations of things taken at a time includes several rearrange-
ments of each of things at a time. How many rearrangements of each?
Each combination is a set of things, so the number of possible orderings of those
things is the number of permutations of things at a time, or !. is greater
than , the number of combinations of things taken at a time, by this factor. In
other words, if each combination corresponds to ! permutations, then the number of
permutations is ! times the number of combinations. So we have

= = =
!

! ()!

−

−
−

−





()

()

combs

n
r

n r

n
r

n
r

n
r

n
r

10
2

6
2

4
2

6
2

4
2

10
2

1
1

1

to second :thing
output first butfirst :thing
end

C n r

n
r

n
r n r

closed form definition.

n
r

r
r n

inductive definition.

same

80 Chapter 2 Discrete Mathematics

The notation () is much more commonly used in mathematics and computer science
texts than . It’s pronounced “ choose .”

The traditional way to do the sock problem is this: The total number of possible pairs
of socks is (). The number of matching pairs is equal to the number of brown pairs plus
the number of blue pairs. The number of brown pairs is the number of combinations of
6 brown socks chosen 2 at a time, or (). Similarly, the number of pairs of blue socks is
(). So

probability of match =
() + ()

()
=

15 + 6
45

=
21
45

which is the same answer we got by enumerating and testing all the possible pairs.

A formula like
=

!
! ()!

defines a mathematical function in terms of other, more elementary functions. It is
comparable to a Logo procedure defined in terms of primitives, like

The “primitives” of mathematics are addition, subtraction, and so on, along with a few
more advanced ones like the trigonometric and exponential functions. These are called
“elementary functions” and a formula that defines some new function in terms of those
is called a

The function () could also be defined in a different way based on the ideas in the
program we used to enumerate combinations. The combinations fall into two

categories, those that include the first element and those that don’t. So the number of
combinations is the sum of the numbers in each category:

=
1, if = 0;
1, if = ;
() + (), otherwise.

This is called an It is analogous to a recursive procedure in Logo.

These two formulas provide alternative definitions for the function, just as
two Logo procedures can employ different algorithms but have the same input-output
behavior. How do we know that the two definitions of () really do define the same
function? Each definition was derived from the fundamental definition of “the number

n
r

()

() ()

Pascal’s Triangle

−

⋅ −

−
−

− −
− − − −

−
− −

⋅ ⋅ ⋅

n r

r

n n
n

n
n

n n n n

n
r

n
r

n
r n r

n
r n r

generating functions

periodic

Pascal’s Triangle 81

of combinations of things taken at a time” by different arguments. If those arguments
are correct, the two versions must define the same function because there is just one
correct number of combinations. It is also possible to prove the two definitions equivalent
by algebraic manipulation; start with the closed form definition and see if it does, in fact,
obey the requirements of the inductive definition. For example, if = 0 we have

0
=

!
0! (0)!

=
!
!

= 1

(It may not be obvious that 0! should be equal to 1, but mathematicians define the
factorial function that way so that the formula ! = (1)! remains true when = 1.)
See if you can verify the other two parts of the inductive definition. Here’s a hint:

1
1

+
1

=
(1)!

(1)! ((1) (1))!
+

(1)!
! (1)!

=

Why would anyone be interested in an inductive definition when the closed form
definition is mathematically simpler and also generally faster to compute? There are two
reasons. First, some functions don’t have closed form definitions in terms of elementary
functions. For those functions, there is no choice but to use an inductive definition.
Second, sometimes when you start with a non-formal definition of a function in terms
of its purpose, like “the number of combinations...” for (), it may be easier to see how
to translate that into an inductive definition as a first step, even if it later turns out that
there is also a less obvious closed form. In fact, that’s what I did in presenting the idea
of combinations. I found it more straightforward to understand the inductive definition
because it made sense to think about the actual combinations and not merely how many
of them there are. (In fact there is a mathematical technique called
that can sometimes be used to transform an inductive definition into a closed form
definition, but that technique requires calculus and is beyond the scope of this book.)

In addition to closed form and inductive definitions, it’s often helpful to present a sort
of partial definition of a function in the form of a table of values. (For logic functions,
with only a finite number of possible values for the arguments of the function, such a
table is actually a complete definition.) Partial definitions in a table of values can be
particularly useful when the function displays some regularity that allows values outside
the table to be computed easily based on the values in the table. For example, the
sine function is ; its values repeat in cycles of 360 degrees. If you need to know
the sine of 380 degrees, you can look up the sine of 20 degrees and that’s the answer.

≤

n
r

r
n

n
r

n

() () () () ()

3
5

4 4 3 2 2 3 4

4 3 2 2 3 4

r n

n

n
binomial coefficients,

a b

a b a a b a b ab b

a a b a b ab b

82 Chapter 2 Discrete Mathematics

For functions of two variables, like addition and multiplication, these function tables
are often presented as square arrays of numbers. In elementary school you learned
the addition and multiplication tables for numbers up to 10, along with algorithms for
reducing the addition and multiplication of larger numbers to a sequence of operations
on single digits.

The function () is a function of two variables, so it would ordinarily be presented
as a square table like the multiplication table, except for the fact that this particular
function is meaningfully defined only when . (There are no combinations of three
things taken five at a time, for example, so () is 0.) So instead of a square format like
this:

\ 0 1 2 3 4 5
0 1 1 1 1 1 1
1 0 1 2 3 4 5
2 0 0 1 3 6 10
3 0 0 0 1 4 10
4 0 0 0 0 1 5
5 0 0 0 0 0 1

this function is traditionally presented in a triangular form called “Pascal’s Triangle” after
Blaise Pascal (1623–1662), who invented the mathematical theory of probability along
with Pierre de Fermat (1601–1665). Pascal didn’t invent the triangle, but he did pioneer
its use in combinatorics. Each row of the triangle contains the nonzero values of () for
a particular :

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Pascal’s Triangle is often introduced in algebra because the numbers in row (counting
from zero) are the the constant factors in the terms in the expansion
of (+) . For example,

(+) = 1 + 4 + 6 + 4 + 1

=
4
0

+
4
1

+
4
2

+
4
3

+
4
4

−
−

−

− −

−

n
r

n
r

n
r

n
r

Simulation

combs

combs

4

4

3

4
1

4

2

1
1

1

a b a b
a b

aaab
abaa a b a

b
b

a b c
ab c

n r
n

r n

r n

two

simulate

Simulation 83

Do you see why the binomial coefficients are related to combinations? An expression
like (+) is a sum of products of four s and s. (How many such products? Each
term involves four choices between and ; there are 2 ways to make each choice, and
the choices are independent, so there are 2 possible products.) These products are
combined into terms based on the fact that some are equal to each other, such as
and , both of which contribute to the term. How many arrangements of three s
and one are there? That’s like asking how many ways there are to choose one slot for a

out of four possible slots, which is ().

Can you predict what the coefficients will be in the expansion of (+ +) ? For
example, what is the coefficient of ? Try to multiply it out and see if your formula is
right.

Everyone is taught in school that each number in Pascal’s Triangle, except for the
1s at the ends, is the sum of the two numbers above it. But this is usually presented as
a piece of magic with no explanation. It’s not obvious how that fact is connected to the
formula expressing () in terms of factorials. But the technique I used in writing the

procedure to enumerate the actual combinations explains how Pascal’s Triangle
works. The set of all combinations of things taken at a time can be divided into
those combinations that include the first of the things and those that don’t. How
many of the former are there? Each such combination must be completed by adjoining
to that first thing 1 out of the remaining 1 available things, so there are ()
such combinations. The second category, those not containing the first thing in the list,
requires us to choose things out of the remaining 1, so there are () of them. So
() must be the sum of those two numbers, which are indeed the ones above it in the
triangle.

Thinking about the triangle may also help you to understand why needs two
stop rules; each row contains numbers, the ones (pun) at each end, that can’t be
computed as the sum of two other numbers.

Yet another approach to solving the sock problem would be the experimental method:
Load a drawer with six brown and four blue socks, pull out pairs of socks a few thousand
times, and see how many of the pairs match. The actual experiment would be time-
consuming and rather boring, but we can the experiment with a computer
program. The idea is to use random numbers to represent the random choice of a sock.

2
3

84 Chapter 2 Discrete Mathematics

Socktest
true

socktest
socktest [6 brown 4 blue] socks

socktest
true

cascade

to socktest
localmake "first ~

pick [brown brown brown brown brown brown blue blue blue blue]
localmake "second ~

pick (if equalp :first "brown
[[brown brown brown brown brown blue blue blue blue]]
[[brown brown brown brown brown brown blue blue blue]])

output equalp :first :second
end

print (cascade 1000 [? + if socktest [1] [0]] 0) / 10

is a predicate that simulates one trial of picking a pair of socks and outputs
if the socks match. Notice how the available choices for the second sock depend on

which color sock was chosen first. (It’s a little unaesthetic that this particular selection of
six brown and four blue socks is built into the program, with three slightly different lists
explicitly present inside . It would be both more elegant and more flexible if

could take a list like as input, like , and compute
the list of possibilities for the second sock itself. But right now I’m more interested in
showing how a simulation works than in programming style; you can make that change
yourself if you like.)

What we want to do is invoke repeatedly and keep track of how many
times the output is . That can be done with an instruction like

I divide by 10 so that the result will be expressed as a percent probability. (If I made 100
trials instead of 1000 the output from would already be a percentage.) Your
results will depend on the random number generator of your computer. I tried it three
times and got results of 50.1%, 50.8%, and 45.5%. I then did 10,000 trials at once with a
result of 48.78%. The result expected on theoretical grounds was 46 %.

Simulation is generally much slower than either of the techniques we used earlier
(enumeration of possibilities and direct computation of the number of possibilities), and
it gives results that are only approximately correct. So why would anyone want to use this
method? For a simple problem like this, you probably wouldn’t. But some combinatorics
problems are too complicated to be captured by a simple formula. For example, what is
the probability of winning a game of solitaire? (To make this a sensible question, you’d
have to decide on a particular set of strategy rules to determine which card to play next
when there are several possibilities. The rule could be “play the higher ranking card” or
“choose a card at random,” for example.) In principle this question could be answered
exactly, since there are only a finite number of ways a deck of cards can be arranged and

The Simplex Lock Problem

The Simplex Lock Problem 85

we could analyze each of them. But in practice the most reasonable approach is probably
to write a solitaire simulator and have it play out a few thousand randomly ordered hands.

Solitaire is a rather complicated game; even a simulator for it would be quite a large
project. A more manageable one, if you’d like something to program, would be a craps
simulator. Remember that the 11 possible results of rolling two dice (2 to 12) are not
equally likely! You have to simulate each die separately.

This is a picture of a Simplex lock, so called because it’s manufactured by Simplex
Security Systems, Inc. It is a five-button mechanical (i.e., no electricity) combination lock
with an unusual set of possible combinations. As an example of a challenging problem
in combinatorics, I’d like you to figure out how many possible combinations there are.

What makes this lock unusual is that a combination can include more than one
button pushed at the same time. For example, one possible combination is “2, then 1
and 4 at the same time, then 3.” Here are the precise rules:

5 2
5
2

x-x x x

x x
x-x
1-4 4-1

x-x x x x x x-x-x

is

order

patterns

P

86 Chapter 2 Discrete Mathematics

1. Each button may be used at most once. For example, “2, then 2 and 3 at the same
time” is not allowed.

2. Each push may include any number of buttons, from one to five. For example, one
legal combination is “hit all five buttons at once with your fist.” (But hitting all five
buttons can’t be part of a larger combination because of rule 1.)

It follows from these rules that there can be at most five distinct pushes. (Do you see
why?) The rules also allow for the null combination, in which you don’t have to push any
buttons at all.

When working on this problem, don’t forget that when two or more buttons are
pushed at the same time, their order doesn’t matter. That is, you shouldn’t count “2 and
3 together, then 5” and “3 and 2 together, then 5” as two distinct combinations. (For this
reason, the Simplex lock entitled, at least in part, to the name “combination lock”!)

Try to figure out how many combinations there are before reading further. You can
enumerate all the possibilities or you can derive a formula for the number of possibilities.
You might want to start with a smaller number of buttons. (As a slight hint, when you buy
one of these locks, the box it comes in says “thousands of combinations.”)

I first attacked this problem by trying to enumerate all the possible combinations,
but that turns out to be quite messy. The trouble is that it isn’t obvious how to the
combinations, so it’s hard to be sure you haven’t missed any. Here is how I finally decided
to do it. First of all, divide the possible combinations into six categories depending on
how many buttons (zero to five) they use. There is exactly one combination using zero
buttons, and there are five using one button each. After that it gets tricky because there
are different of simultaneous pushes within each category. For example, for
combinations using two buttons there are two patterns: the one in which they’re pressed
together () and the one in which they’re pressed separately (). (I’m introducing
a notation for patterns in which hyphens connect buttons that are pressed together and
spaces connect the separate pushes.) How many distinct combinations are there in each
of those patterns? Figure it out before reading on.

In the pattern there are “combinations” because the order in which you push
the buttons matters. In the pattern there are only () combinations because the two
buttons are pushed together; and are the same combination. Altogether there
are 20 + 10 or 30 combinations usng two of the five buttons.

Beyond this point it gets harder to keep track of the different patterns. Among
the three-button patterns are , , and . How many more are there?
How many four-button patterns? You might, at this point, like to see if you can finish
enumerating all the possibilities for the five-button lock.

5 4P

partially
r

The Simplex Lock Problem 87

x

x x x x

x-x x x

1-2 3 4 2-1 3 4
1-3 2 4 1-2 4 3

x x-x x x x x-x

00 x x x
01 x x-x
10 x-x x
11 x-x-x

000 x x x x
001 x x x-x
010 x x-x x
011 x x-x-x
100 x-x x x
101 x-x x-x
110 x-x-x x
111 x-x-x-x

My solution is to notice that in a three-button pattern, for example, there are two
slots between the s, and each slot has a space or a hyphen. If I think of those slots as
binary digits, with 0 for space and 1 for hyphen, then each pattern corresponds to a 2-bit
number. There are four such numbers, 00 to 11 (or 0 to 3 in ordinary decimal notation).

number pattern

Similarly, there are eight four-button patterns:

number pattern

And there are 16 five-button patterns, from 0000 to 1111.

How many combinations are there within each pattern? There are two different ways
to go about calculating that number. To be specific, let’s consider four-button patterns.
The way I chose to do the calculation was to start with the idea that there are ways
to choose four buttons in order. For the pattern, this is the answer. For the
other patterns, this number (120) has to be divided by various factors to account for the
fact that the order is immaterial, just as in deriving the formula for combinations
from the formula for permutations we divided by ! because the order is completely
immaterial. Consider the pattern . In this pattern the order of the first two
numbers is immaterial, but the choice of the first two numbers as a pair matters, and so
does the order of the last two numbers. So is the same combination as
but different from or . That means the number 120 is too big by a
factor of 2, because every significant choice of combination is represented twice. For
this pattern the number of different combinations is 60. Of course the same argument
applies to the patterns and .

× ×

5
2

3
1

2
1

5
2

3
2

5 4

four

m
m

P

88 Chapter 2 Discrete Mathematics

remainder :number 2

to lock :buttons
output cascade :buttons [? + lock1 :buttons #] 1
end

x-x x-x
1-2 3-4

1-2 4-3 2-1 3-4 2-1 4-3
x-x-x x

x-x x x

x-x x-x

:number/2

lock 5
lock1 5 4

lock2 120 5 1

What about ? In this pattern there are two pairs of positions within which
order doesn’t matter. Each combination appears times in the list of 120;
is the same as , , and . So there are 30 significantly different
combinations in this pattern. What about ? In this pattern, the order of
the first three numbers is irrelevant; this means that there are 3! or 6 appearances of
each combination in the 120, so there are 20 significantly different combinations in this
pattern. The general rule is that for each group of consecutive hyphens in the pattern
you must divide by (+ 1)! to eliminate duplicates.

(My approach was to start with permutations and then divide out redundant ones.
Another approach would be to build up the pattern using combinations. The pattern

contains three groups of numbers representing three “pushes”: a group of two
and two groups of one. Since this is a five-button lock, for the first group of two there
are () choices. (Order doesn’t matter within a group.) For the second group there are
only three buttons remaining from which we can choose, so there are () choices for
that button. Finally, there are () choices for the fourth button (the third group). This
makes 10 3 2 possible combinations for this pattern, the same as the 60 we computed
the other way. For the pattern this method gives ()() or 30 combinations.)

Having worked all this out, I was ready to write a computer program to count the
total number of combinations. The trickiest part was deciding how to deal with the
binary numbers that represent the patterns. In the end I used plain old numbers. The
expression

yields the rightmost bit of a number, and then gives all but the rightmost
bit (with a little extra effort for odd numbers). To help you read the program, here is a
description of the most important procedures:

outputs the total number of combinations for the 5-button lock.
outputs the number of combinations that use 4 out of the 5 buttons.
outputs the number of combinations for the 4-button pattern cor-
responding to the binary form of the number 5 (101 or x-x x-x).
The 120 is and the 1 is always used as the third input except in
recursive calls.

Here is the program:

lock cascade

An Inductive Solution

set theory. set

one-to-one
correspondence.

An Inductive Solution 89

to lock1 :total :buttons
localmake "perms perms :total :buttons
output cascade (twoto (:buttons-1)) ~

[? + lock2 :perms #-1 1] ~
0

end

to twoto :power
output cascade :power [2 * ?] 1
end

to lock2 :perms :links :factor
if equalp :links 0 [output :perms/(fact :factor)]
if equalp (remainder :links 2) 0 ~

[output lock2 :perms/(fact :factor) :links/2 1]
output lock2 :perms (:links-1)/2 :factor+1
end

One slight subtlety is that in the third input to is 1 rather than 0 to
include the one 0-button combination that would not otherwise be added in.

When I wrote that program, I was pleased with myself for managing to turn such a messy
solution into executable form, but I wasn’t satisfied with the underlying approach. I
wanted something mathematically more elegant.

What made it possible for me to find the approach I wanted was the chance discovery
that the number of combinations that use all five buttons (541) is half of the total number
of combinations (1082). Could this possibly be a coincidence, or would that have to be
true for any number of buttons? To see that it has to be true, I used an idea from another
branch of mathematics, A is any collection of things, in no particular order.
One can speak of the set of all the fingers on my left hand, or the set of all the integers, or
the set of all the universities in cities named Cambridge. Much of the interesting part of
set theory has to do with the properties of infinite sets; for example, it turns out that the
set of all the integers is the same size as the set of all the rational numbers, but both of
these are smaller than the set of irrational numbers. What does it mean for one infinite
set to be the same size as, or to be larger than, another? The same definition works
equally well for finite sets: Two sets are the same size if they can be placed in

This means that you must exhibit a way to pair the elements of one set
with the elements of the other so that each element of one has exactly one partner in the

−

⋅ ⋅ ⋅ −

2 3-4 1-5
2 3-4

2 3-4 1-5 2 3-4 5-1

1 2-5
1 2-5 3-4

n
n

push
button

same

n
n

f n n n

f n n

n
n

g n i i n

n

f n g n g n g n g n n

90 Chapter 2 Discrete Mathematics

other. (A set is larger than another if they aren’t the same size, but a subset of the first is
the same size as the second.)

To prove that my observation about the lock combinations has to be true regardless
of the number of buttons, I have to exhibit a one-to-one correspondence between two
sets: the set of all combinations using all the buttons of an -button lock and the set
of all combinations using fewer than of the buttons. But that’s easy. Starting with a
combination that uses all the buttons, just eliminate the last push (one or more buttons
pushed at the same time) to get a combination using fewer than all the buttons. For
example, for a five-button lock, the five-button combination is paired with
the three-button combination . (We have to eliminate the last and not merely
the last for two reasons. First, if we always eliminated exactly one button, we’d
always get a four-button combination, and we want to pair five-button combinations with
all the fewer-than-five ones. Second, which is the “last” button if the last push involves
more than one? Remember, is the combination as . But
writing this combination in two different forms seems to pair it with two different smaller
ones. The rules of one-to-one correspondence say that each element of a set must have
exactly one partner in the other set.)

To show that the correspondence works in both directions, start with a combination
that doesn’t use all the buttons; its partner is formed by adding one push at the end that
contains all the missing buttons. For example, if we start with then its partner is

.

I’ve just proved that the number of all- combinations must be equal to the number
of fewer-than- combinations. So it’s not a coincidence that 541 is half of 1082. In order
to be able to talk about these numbers more succinctly, I want to define

() = number of -button combinations of an -button lock

We’ve just proved that it’s also true that

() = number of fewer-than- -button combinations

Now, what does “fewer than buttons” mean? Well, there are combinations using no
buttons, one button, two buttons, and so on up to 1 buttons. Let’s define

(,) = number of -button combinations in an -button lock

So we can formalize the phrase “fewer than ” by saying

() = (, 0) + (, 1) + (, 2) + + (, 1)

−

∑
n

i

Σ

Σ −
Σ

Σ

−

1

=0

5
3

5
3

for

lock lock1

for [i 0 [:n-1]] [make "sum :sum + (g :n :i)]

f n g n i

sigma S,
S

i n

i n g n
i

g n i
g

f n f

f n f f f n

f n
g n i i n

g n i f i

i n i
i

f

An Inductive Solution 91

Instead of using those dots in the middle, mathematicians have another notation for a
sum of several terms like this.

() = (,)

If you haven’t seen this notation before, the () symbol is the Greek letter and is
used to represent a um. It works a little like the iteration tool; the variable below
the (in this case,) takes on values from the lower limit (0) to the upper limit (1),
and for each of those values the expression following the is added into the sum. The
Logo equivalent would be

The -expression is pronounced “the sum from equals zero to minus one of of
comma .”

So far, what I’ve done is like what I did before: dividing the set of all possible
combinations into subsets based on the number of buttons used in each combination.
This is like the definition of in terms of . The next step is to see if we
can find a formula for (,). How many 3-button combinations, for example, can we
make using a 5-button lock? (That’s (5, 3).) There are many different ways in which I
might try to derive a formula, but I think it will be helpful at this point to step back and
consider my overall goal. I started this line of reasoning because I’m trying to express
the solution for the five-button lock in terms of easier solutions for smaller numbers of
buttons. That is, I’m looking for an inductive definition of () in terms of values of
for smaller arguments. I’d like to end up with a formula like

() = . . . (0) . . . (1) . . . (1) . . .

but I don’t yet know exactly what form it will take. So far I’ve written a formula for () in
terms of (,) for values of less than . It would be great, therefore, if I could express

(,) in terms of (); that would give me exactly what I want.

To put that last sentence into words, it would be great if I could express the
number of -button combinations of an -button lock in terms of the number of -button
combinations of an -button lock. For example, can I express the number of combinations
using 3 out of 5 buttons in terms of the number of combinations of 3 out of 3 buttons?
Yes, I can. The latter is the number of rearrangements of three buttons once we’ve
selected the three buttons. If we start with five buttons, there are () possible sets of
three buttons to choose. For each of those () sets of three buttons, there are (3) ways
to arrange those three buttons in a combination.

5
3

()

()

() () ()

⋅

⋅

⋅ ⋅ ⋅ ⋅ ⋅
−

⋅ −

g n i
n
i

f i

every

g
f

g f

f n g n i g n i
f i

f n
n

f
n

f
n

n
f n

92 Chapter 2 Discrete Mathematics

buttons: 1,2,3 2,3,4 1,4,5

1 2 3 2 3 4 1 4 5
1 3 2 2 4 3 1 5 4
2 1 3 3 2 4 4 1 5
2 3 1 3 4 2 4 5 1
3 1 2 4 2 3 5 1 4
3 2 1 4 3 2 5 4 1
1 2-3 2 3-4 1 4-5
2 1-3 3 2-4 4 1-5
3 1-2 4 2-3 5 1-4
1-2 3 2-3 4 1-4 5
1-3 2 2-4 3 1-5 4
2-3 1 3-4 2 4-5 1
1-2-3 2-3-4 1-4-5

(,) = ()

It may not be obvious why this is so. Suppose you list all the 3-button combinations of a
3-button lock. There are 13 of them, consisting of the numbers from 1 to 3 in various
orders and with various groups connected by hyphens. Those 13 combinations are also
some of the 3-button combinations of a 5-button lock, namely, the ones in which the
particular three buttons we chose are 1, 2, and 3. If instead we choose a different set
of three (out of five) buttons, that gives rise to a different set of 13 combinations. For
example, if we choose the buttons 2, 3, and 4, we can take the original 13 combinations
and change all the 1s to 2s, all the 2s to 3s, and all the 3s to 4s:

This table has a column for each of three possible combinations of five numbers three
at a time. The table could be extended to have a column for such combination
of numbers, and then it would contain all the lock combinations using three out of five
buttons. The total number of entries in the extended table is therefore (5, 3); the table
has (3) rows and () columns. So

(5, 3) =
5
3

(3)

which is a particular case of the general formula above.

We now have a formula for () in terms of all the (,) and a formula for (,)
in terms of (). Combining these we have

() =
0

(0) +
1

(1) + +
1

(1)

−

∑
n

i
⋅

×

()1

=0
f n

n
i

f i n >

f

n f n

An Inductive Solution 93

lock 5
simplex 5

simplex

ln ln 2
power

Fact

to simplex :buttons
output 2 * f :buttons
end

to f :n
if equalp :n 0 [output 1]
output cascade :n [? + ((choose :n (#-1)) * f (#-1))] 0
end

to choose :n :r
output (perms :n :r)/(fact :r)
end

to simp :n
output round (fact :n)/(power (ln 2) (:n+1))
end

or

() = () for 0

Like any inductive definition, this one needs a special rule for the smallest case, from
which all the others are computed:

(0) = 1

The total number of combinations for an -button lock is 2 (). I find this much
more elegant than my original solution. (So why didn’t I just show you this one to
begin with? Because I never would have figured this one out had I not first done the
enumeration of cases. I want you to see how a combinatorics problem is solved, not just
what the beautiful solution looks like.) This formula can also be turned into a computer
program:

This program is faster as well as simpler than the other; on my home computer,
takes about 4 seconds, about 2 seconds.

The function has no exact closed form equivalent, but it turns out that
there is (amazingly!) a closed form definition that, when rounded to the nearest integer,
gives the desired value:

The function, a Logo primitive, computes the “natural logarithm” of its input;
has the approximate value 0.69314718056. The function of two inputs takes the
first input to the power of the second input. is the factorial function as defined
earlier in this chapter.

() () () () ()

⋅ ⋅ × ×
⋅

⋅ ⋅ ⋅ ⋅ × × × ×

Multinomial Coefficients

combs
butfirst

first

combs

2 4

2

4
1

3
2

1
1

4
1

3
2

1
1

2

3 4
1

3
3

14 2 3 5 3

7

7

trinomial
ab c a b c

aaaa aaab ab c a
b c abbc bcab cabb

a

b
c

ab c
ac

a b c d e a b cd e

a b c d

94 Chapter 2 Discrete Mathematics

Another related programming problem is to list the actual combinations, rather than
merely count them. Probably the simplest way to do that is to use an approach similar to
the one I used in the procedure that lists combinations of members of a list: First
use recursion to find the lock combinations using only the of the available
buttons, then find the ways in which the button can be added to each of them.

Earlier, in talking about Pascal’s Triangle, I showed how binomial coefficients are related
to combinations and asked you to think about coefficients. What, for example,
is the coefficient of in the expansion of (+ +) ?

The expansion is a sum of products; each of those products contains four variables
(, , etc.). The ones that contribute to the term are the ones with one , two
s, and one ; these include , , , and so on. Out of the four slots for variables

in one of those products, how many ways can we choose a slot for one ? The answer is
(). Having chosen one, we are left with three slots and we want to choose two of them
for s. There are () ways to do that. Then we have one slot left, just enough for the one
, which makes a trivial contribution of () to the overall number of possibilities. The

total is () () () or 4 3 1 or 12, and that is the coefficient of . Similarly, the
coefficient of is () () or 4.

The same sort of argument can be used for even more complicated cases. In the
expansion of (+ + + +) what is the coefficient of ? It’s

14
2

12
3

9
1

8
5

3
3

= 91 220 9 56 1 = 10,090,080

Here is a harder question: How many terms are there in, say, (+ + +) ? It’s
easy to see that there are 4 products of four variables, but after the ones that are equal
to each other have been combined into terms, how many distinct terms are there?

Like the Simplex lock problem, this one can probably be solved most easily by re-
ducing the problem to a smaller subproblem—in other words, by an inductive definition.
This problem also has something in common with the earlier problem of listing all the
combinations of a given size from a given list, as we did in the procedure. Try to
solve the problem before reading further. (It’s hard to say how another person will find
a problem, but I think this one is easier than the Simplex one.)

In order to be able to express the original problem in terms of a smaller version, we
have to generalize it. I posed a specific problem, about the seventh power of the sum of

−

f

combs

() () ()

n
k

n
k

n
k

n
r

1 2

1
2 3 2

7

1

1 2
1

1

2

⋅ ⋅ ⋅

⋅ ⋅ ⋅ −

⋅ ⋅ ⋅
−

− −

−
−

−

t
t

t
t n k a a a

f
f

a
a b d

c

a
a a a t n k

k not a
a a

t n k

smaller power same number
fewer variables

same power.

t n k t n k t n k

n
r

n
r

n
r

r r n

Multinomial Coefficients 95

four variables. I’d like to be able to give the answer to that problem the name (4, 7) and
try to find a way to express that in terms of, let’s say, (4, 6). So I’m going to define the
function as

(,) = number of terms in (+ + +)

(If this were a “straight” math book I’d cheerfully recycle the name for the function,
even though we had a different in the last section, but I’m anticipating wanting to write
a Logo program for this problem and I can’t have two procedures named in the same
workspace.)

In writing I used the trick of dividing all possible combinations into two
groups: those including the first member of the list and those not including that member.
A similar trick will be useful here; we can divide all the terms in an expansion into two
groups. One group will contain those terms that include the first variable () and the
other will contain the rest. For example, in the original problem, is a term in the
first group, while is a term in the second group.

A term in the first group can be divided by ; the result must be a term in the
expansion of (+ + +) . How many such terms are there? There are (, 1)
of them. So that’s how many terms there are in the first group.

A term in the second group is a product of variables including . That means
that such a term is also part of the expansion of (+ +) . How many such terms are
there? There are (1,) of them. Notice the difference between the two groups. In
the first case, we associate a term with a similar term in the expansion of an expression
involving a of the of variables. In the second case, we associate a
term with an equal term in the expansion of an expression involving taken
to the

Combining these two results, we see that

(,) = (, 1) + (1,)

Since this is a function of two variables, it needs two “stop rules,” just like the function
(). Picking these limiting cases seems much simpler than inventing the induction rule,
but even so, it may repay some attention. For the rule

=
1
1

+
1

we ended up considering the limiting cases = 0 and = . I didn’t say anything about
it at the time because I didn’t want to get distracted, but it’s not obvious why there is the
asymmetry between the two variables in those limiting cases. That is, why didn’t I pick

{

∑

combs
≥

⋅ ⋅ ⋅

− −

n
r

k

i

k
n

() () ()
4
5

5
5

0

1 1
1

r n

n r
r n

t are t
t

n k t k t n
t k

k t n
a

n k
a t k a a

n t n n t

t n k
n

n k
t n k t n k

t

t t t t

t t n
t

t t t t

96 Chapter 2 Discrete Mathematics

= 0 and = 0 as the limiting cases? That would be more like what you’re accustomed
to in recursive Logo procedures, where stop rules almost always involve a comparison of
something with zero or with the empty list.

The funny limiting cases for () (and the corresponding funny stop rules in)
are related to the fact that this function is meaningful only when . The two
arguments can’t be chosen independently. If we didn’t have the = limiting case, the
inductive formula would have us compute

5
5

=
4
4

+
4
5

If we define () as zero, this equation does turn out to be true, but it isn’t a very sensible
way to compute ().

In the case of the function , the two arguments independent. Both (4, 7) and
(7, 4) are sensible things to ask for. Therefore, we should use the more obvious limiting

cases = 0 and = 0. The trouble is that it’s not obvious what the value of (0,) or (, 0)
should be. The first of these, (0,), represents the number of terms in the expansion
of () —nothing to the th power! That seems meaningless. On the other hand, (, 0)
represents the number of terms in () , which is 1. Anything to the zeroth power is
1. Does “1” count as a term? It doesn’t have any variables in it.

One solution would be to take as limiting cases = 1 and = 1. It’s much easier to
see what those values should be. () has one term, so (1,) = 1. And (+ +)
has terms, so (, 1) = . We could, then, define the function as

(,) =
1, if = 1;

, if = 1;
(, 1) + (1,), otherwise.

But it is possible to figure out appropriate values for zero arguments by working backwards
from the cases we already understand. For example, we know that (2, 1) must equal 2.
But

(2, 1) = (2, 0) + (1, 1) = (2, 0) + 1

It follows that (2, 0) must be 1. So it’s reasonable to guess that (, 0) = 1 will work in
general. Similarly, we know that (1, 2) = 1, but

(1, 2) = (1, 1) + (0, 2) = 1 + (0, 2)

x

{

{

0 0

0

− −

− −

t 4 7

combs

t t

t n k
n
k

t n k t n k

t
n k

x x

t t

t n k
k
n k >

t n k t n k

Multinomial Coefficients 97

to t :n :k
if equalp :k 0 [output 1]
if equalp :n 0 [output 0]
output (t :n :k-1)+(t :n-1 :k)
end

(A+B+C+D)^7 =
1 A^7 +
7 A^6 B +
21 A^5 B^2 +
...

Therefore (0, 2) must be 0. We can define as

(,) =
0, if = 0;
1, if = 0;
(, 1) + (1,), otherwise.

What is (0, 0)? The definition above contradicts itself about this. The answer should
be 0 because = 0 but also 1 because = 0. This reminds me of the similar problem
about powers of integers. What is 0 ? In general 0 = 0 but = 1, for nonzero . There
is really no “right” answer, but mathematicians have adopted the convention that 0 = 1.
To make our definition of truly correct I have to choose a convention for (0, 0) and
modify the definition to reflect it:

(,) =
1, if = 0;
0, if = 0 and 0;
(, 1) + (1,), otherwise.

It’s straightforward to translate this mathematical function definition into a Logo
procedure:

Using this function we can compute and find that the answer to the original
problem is 120.

(Can you write a program to display the actual expansion? That is, it should print
something like

There are two parts to this problem. One is to figure out the combinations of variables
in the 120 terms, which can be done with a procedure like , and the other is to
figure out the coefficients, which I discussed at the beginning of this section.)

()

7

7

2 4

1 2

3 4

−
−

− −

 

−
− −

−

 
 

−
−

−

a b c d

that

is

t n k
k n

n

n k n

k

a b d aabbbbd
k

a a

aabbbbd aa bbb d
d c

n
n k n

k n

xx xxx x
xxx xxxx

c d
k x n

n
k n

98 Chapter 2 Discrete Mathematics

I was introduced to this problem as a student teacher in a high school probability
class. The teacher gave “how many terms are there in the expansion of (+ + +) ”
as a quiz problem, and nobody answered it. In the ensuing class discussion, it turned out
that she meant the students to answer the much easier question of how many products of
seven variables there are. As I noted earlier, the answer to question is just 4 . But all
the students interpreted the question as meaning the harder one we’ve been exploring
here. I took the problem home that evening and reached the point we’ve reached in this
chapter. I didn’t think I could get a better answer than that until my housemate taught
me about generating functions. It turns out that there a closed form definition for this
function:

(,) =
+ 1

1

This definition is faster to compute as well as more beautiful.

Once armed with the formula, it wasn’t hard to invent a way to demonstrate that it
must be correct without going through the inductive definition and the use of calculus.
The trick is that we must be choosing 1 somethings out of a possible + 1 for
each term. What does a term look like? Ignoring the constant coefficient, it is the
product of (seven, in the specific problem given) variables, some of which may be
equal. Furthermore, when the terms are written in the usual way, the variables come in
alphabetical order. A term like represents ; there won’t be a different term
with the same letters in another order. In general, the variables will be some number
(zero or more) of s, then some number of s, and so on.

Now comes the trick. Suppose we write the string of variables with a “wall” for each
change to the next letter. So instead of I want to write . (There are
two walls before the final to reflect the fact that we skipped over .) In this notation
there are always exactly 1 walls. (That’s why I chose to put the walls in; remember,
we’re looking for 1 of something.) The term includes variables and 1 walls, for
a total of + 1 symbols.

Once the walls are there, it really is no longer necessary to preserve the individual
variable letters. The sample term we’ve been using could just as well be written .
What comes before the first wall is the first variable letter, and so on. So
represents . But now we’re finished. We have found a way to represent each possible
term as a string of copies of the letter interspersed with 1 walls. How many such
arrangements are there? How many ways are there to choose 1 positions for walls in
a string of + 1 symbols?

Earlier, in talking about the difference between closed form and inductive definitions,
I suggested that the an inductive definition might be much easier to discover even if a

Program Listing

x

Program Listing 99

closed form definition also exists. This is a clear example. If I’d given the demonstration
just above, with s and walls, without first showing you the more roundabout way I really
discovered the definition, you’d rightly complain about rabbits out of hats.

;;; Logic problem inference system

;; Establish categories

to category :category.name :members
print (list "category :category.name :members)
if not namep "categories [make "categories []]
make "categories lput :category.name :categories
make :category.name :members
foreach :members [pprop ? "category :category.name]
end

;; Verify and falsify matches

to verify :a :b
settruth :a :b "true
end

to falsify :a :b
settruth :a :b "false
end

to settruth :a :b :truth.value
if equalp (gprop :a "category) (gprop :b "category) [stop]
localmake "oldvalue get :a :b
if equalp :oldvalue :truth.value [stop]
if equalp :oldvalue (not :truth.value) ~

[(throw "error (sentence [inconsistency in settruth]
:a :b :truth.value))]

print (list :a :b "-> :truth.value)
store :a :b :truth.value
settruth1 :a :b :truth.value
settruth1 :b :a :truth.value
if not emptyp :oldvalue ~

[foreach (filter [equalp first ? :truth.value] :oldvalue)
[apply "settruth butfirst ?]]

end

100 Chapter 2 Discrete Mathematics

to settruth1 :a :b :truth.value
apply (word "find not :truth.value) (list :a :b)
foreach (gprop :a "true) [settruth ? :b :truth.value]
if :truth.value [foreach (gprop :a "false) [falsify ? :b]

pprop :a (gprop :b "category) :b]
pprop :a :truth.value (fput :b gprop :a :truth.value)
end

to findfalse :a :b
foreach (filter [not equalp get ? :b "true] peers :a) ~

[falsify ? :b]
end

to findtrue :a :b
if equalp (count peers :a) (1+falses :a :b) ~

[verify (find [not equalp get ? :b "false] peers :a)
:b]

end

to falses :a :b
output count filter [equalp "false get ? :b] peers :a
end

to peers :a
output thing gprop :a "category
end

;; Common types of clues

to differ :list
print (list "differ :list)
foreach :list [differ1 ? ?rest]
end

to differ1 :a :them
foreach :them [falsify :a ?]
end

to justbefore :this :that :lineup
falsify :this :that
falsify :this last :lineup
falsify :that first :lineup
justbefore1 :this :that :lineup
end

Program Listing 101

to justbefore1 :this :that :slotlist
if emptyp butfirst :slotlist [stop]
equiv :this (first :slotlist) :that (first butfirst :slotlist)
justbefore1 :this :that (butfirst :slotlist)
end

;; Remember conditional linkages

to implies :who1 :what1 :truth1 :who2 :what2 :truth2
implies1 :who1 :what1 :truth1 :who2 :what2 :truth2
implies1 :who2 :what2 (not :truth2) :who1 :what1 (not :truth1)
end

to implies1 :who1 :what1 :truth1 :who2 :what2 :truth2
localmake "old1 get :who1 :what1
if equalp :old1 :truth1 [settruth :who2 :what2 :truth2 stop]
if equalp :old1 (not :truth1) [stop]
if memberp (list :truth1 :who2 :what2 (not :truth2)) :old1 ~

[settruth :who1 :what1 (not :truth1) stop]
if memberp (list :truth1 :what2 :who2 (not :truth2)) :old1 ~

[settruth :who1 :what1 (not :truth1) stop]
store :who1 :what1 ~

fput (list :truth1 :who2 :what2 :truth2) :old1
end

to equiv :who1 :what1 :who2 :what2
implies :who1 :what1 "true :who2 :what2 "true
implies :who2 :what2 "true :who1 :what1 "true
end

to xor :who1 :what1 :who2 :what2
implies :who1 :what1 "true :who2 :what2 "false
implies :who1 :what1 "false :who2 :what2 "true
end

;; Interface to property list mechanism

to get :a :b
output gprop :a :b
end

to store :a :b :val
pprop :a :b :val
pprop :b :a :val
end

102 Chapter 2 Discrete Mathematics

;; Print the solution

to solution
foreach thing first :categories [solve1 ? butfirst :categories]
end

to solve1 :who :order
type :who
foreach :order [type "| | type gprop :who ?]
print []
end

;; Get rid of old problem data

to cleanup
if not namep "categories [stop]
ern :categories
ern "categories
erpls
end

;; Anita Harnadek’s problem

to cub.reporter
cleanup
category "first [Jane Larry Opal Perry]
category "last [Irving King Mendle Nathan]
category "age [32 38 45 55]
category "job [drafter pilot sergeant driver]
differ [Jane King Larry Nathan]
says "Jane "Irving 45
says "King "Perry "driver
says "Larry "sergeant 45
says "Nathan "drafter 38
differ [Mendle Jane Opal Nathan]
says "Mendle "pilot "Larry
says "Jane "pilot 45
says "Opal 55 "driver
says "Nathan 38 "driver
print []
solution
end

Program Listing 103

to says :who :what1 :what2
print (list "says :who :what1 :what2)
xor :who :what1 :who :what2
end

;; Diane Baldwin’s problem

to foote.family
cleanup
category "when [1st 2nd 3rd 4th 5th]
category "name [Felix Fred Frank Francine Flo]
category "street [Field Flag Fig Fork Frond]
category "item [food film flashlight fan fiddle]
category "position [1 2 3 4 5]
print [Clue 1]
justbefore "Flag "2nd :position
justbefore "2nd "Fred :position
print [Clue 2]
male [film Fig 5th]
print [Clue 3]
justbefore "flashlight "Fork :position
justbefore "Fork "1st :position
female [1st]
print [Clue 4]
falsify "5th "Frond
falsify "5th "fan
print [Clue 5]
justbefore "Francine "Frank :position
justbefore "Francine "Frank :when
print [Clue 6]
female [3rd Flag]
print [Clue 7]
justbefore "fiddle "Frond :when
justbefore "Flo "fiddle :when
print []
solution
end

to male :stuff
differ sentence :stuff [Francine Flo]
end

to female :stuff
differ sentence :stuff [Felix Fred Frank]
end

104 Chapter 2 Discrete Mathematics

;;; Combinatorics toolkit

to combs :list :howmany
if equalp :howmany 0 [output [[]]]
if equalp :howmany count :list [output (list :list)]
output sentence (map [fput first :list ?]

combs (butfirst :list) (:howmany-1)) ~
(combs (butfirst :list) :howmany)

end

to fact :n
output cascade :n [# * ?] 1
end

to perms :n :r
if equalp :r 0 [output 1]
output :n * perms :n-1 :r-1
end

to choose :n :r
output (perms :n :r)/(fact :r)
end

;; The socks problem

to socks :list
localmake "total combs (expand :list) 2
localmake "matching filter [equalp first ? last ?] :total
print (sentence [there are] count :total [possible pairs of socks.])
print (sentence [of these,] count :matching [are matching pairs.])
print sentence [probability of match =] ~

word (100 * (count :matching)/(count :total)) "%
end

to expand :list
if emptyp :list [output []]
if numberp first :list ~

[output cascade (first :list)
[fput first butfirst :list ?]
(expand butfirst butfirst :list)]

output fput first :list expand butfirst :list
end

Program Listing 105

to socktest
localmake "first pick [brown brown brown brown brown brown

blue blue blue blue]
localmake "second ~

pick (ifelse equalp :first "brown ~
[[brown brown brown brown brown
blue blue blue blue]] ~

[[brown brown brown brown brown brown
blue blue blue]])

output equalp :first :second
end

;; The Simplex lock problem

to lock :buttons
output cascade :buttons [? + lock1 :buttons #] 1
end

to lock1 :total :buttons
localmake "perms perms :total :buttons
output cascade (twoto (:buttons-1)) [? + lock2 :perms #-1 1] 0
end

to lock2 :perms :links :factor
if equalp :links 0 [output :perms/(fact :factor)]
if equalp (remainder :links 2) 0 ~

[output lock2 :perms/(fact :factor) :links/2 1]
output lock2 :perms (:links-1)/2 :factor+1
end

to twoto :power
output cascade :power [2 * ?] 1
end

to simplex :buttons
output 2 * f :buttons
end

to f :n
if equalp :n 0 [output 1]
output cascade :n [? + ((choose :n (#-1)) * f (#-1))] 0
end

106 Chapter 2 Discrete Mathematics

to simp :n
output round (fact :n)/(power (ln 2) (:n+1))
end

;; The multinomial expansion problem

to t :n :k
if equalp :k 0 [output 1]
if equalp :n 0 [output 0]
output (t :n :k-1)+(t :n-1 :k)
end

process.snetence

algs

process.word

3 Algorithms and Data Structures

analysis of algorithms. correctness
efficiency

algorithms programs

program verification,

107

to process.sentence :sent
output fput (process.word first :sent) (process.sentence bf :sent)
end

to process.sentence :sent
if emptyp :sent [output []]
output fput (process.word first :sent) (bf :sent)
end

Program file for this chapter:

What’s wrong with this procedure?

If you said “It’s a recursive procedure without a stop rule,” you’ve solved a simple problem
in This branch of computer science is concerned with the
and the of programs.

The field is called analysis of rather than analysis of because
the emphasis is on the meaning of a program (how you might express the program in
English) and not on the details of its expression in a particular language. For example,
the error in the procedure

is just as fatal as the error in the first example, but there isn’t much of theoretical
interest to say about a misspelled procedure name. On the other hand, another branch
of computer science, is concerned with developing techniques to
ensure that a computer program really does correctly express the algorithm it is meant
to express.

The examples I’ve given so far are atypical, it’s worth noting, in that you were able to
see the errors in the procedures without having any real idea of what they do! Without
seeing you can tell that this program is doing something or other to
each word of a sentence, but you don’t know whether the words are being translated

2

2

− ± √ −

Local Optimization vs. Efficient Algorithms

data structures,

not

order of growth,

quadratic formula

x
b b ac

a
x

ax bx c

108 Chapter 3 Algorithms and Data Structures

to quadratic :a :b :c
localmake "x1 (-:b + sqrt (:b*:b - 4*:a*:c))/2*:a
localmake "x2 (-:b - sqrt (:b*:b - 4*:a*:c))/2*:a
print (sentence [The solutions are] :x1 "and :x2)
end

to another language, converted from upper case to lower case letters, translated into a
string of phoneme codes to be sent to a speech synthesizer, or what. (Even what I just said
about doing something to the words of a sentence is an inference based on the names
of procedures and variables, which might not really reflect the results of the program.)
More interesting problems in analysis of algorithms have to do with the specific properties
of particular algorithms.

In this chapter I discuss algorithms along with the different ways in
which information can be represented in a computer program, because these two aspects
of a program interact strongly. That is, the choices you make as a programmer about
data representation have a profound effect on the algorithms you can use to solve your
problem. Similarly, once you have chosen an algorithm, that choice determines the
particular kinds of information your program will need to do its work. Algorithms and
data structures are the central concerns of software engineering, the overall name for the
study of how to turn a problem statement into a working program in a way that uses both
the computer and the programming staff effectively.

When you’re trying to make a computer program run as fast as possible, the most obvious
place to start is with the details of the instructions in the program. But that’s generally
the most effective approach. Rethinking the big picture can give much more dramatic
improvements. To show you what I mean, I’ll give some examples of both. Later I’ll talk
about a more formal way to understand this same idea.

Consider the following procedure that implements the

=
4

2
This formula gives the two values of that solve the equation

+ + = 0

−
−

−

−

2

1
2

2

2

quadratic 2 5 -3

quadratic

quadratic

quadratic

quadratic

x x
x x

x x

x
i i

robust;

common subexpression elimination.

Local Optimization vs. Efficient Algorithms 109

sqrt doesn’t like -1 as input.

sqrt (:b*:b - 4*:a*:c)

to quadratic :a :b :c
localmake "sqrt sqrt (:b*:b - 4*:a*:c)
localmake "x1 (-:b + :sqrt)/2*:a
localmake "x2 (-:b - :sqrt)/2*:a
print (sentence [The solutions are] :x1 "and :x2)
end

Before we talk about the efficiency of this program, is it correct? This is not a simple
yes-or-no question. The procedure gives the correct results for those quadratic equations
that have two real solutions. For example, the equation 2 + 5 3 = 0 has the solutions

= 3 and = ; the instruction will print those solutions. Some
quadratic equations, like 8 + 16 = 0, have only one solution; for these equations,

prints the same solution twice, which is not exactly incorrect but still a little
embarrassing. Other equations, like + 1 = 0, have solutions that are complex numbers.
Depending on our purposes, we might want to print the solutions and
for this equation, or we might want it to print “This equation has no real solutions.” But
since most versions of Logo do not provide complex arithmetic, what will really happen
is that we’ll get the error message

If is used as part of a larger project, getting the Logo error message means
that the program dies altogether in this case without a chance to recover. If we have
several equations to solve, it would be better if the program could continue to the
remaining equations even if no solution is found for one of them. A program that
operates correctly for the kinds of inputs that the programmer had in mind, but blows
up when given unanticipated inputs, is said not to be a robust program should do
something appropriate even if there are errors in its input data.

But my real reason for displaying this example is to discuss its efficiency. It computes
the expression

twice. Multiplication is slower than addition on most computers; this expression involves
three multiplications as well as the even slower square root extraction. The program
would be faster if it were written this way:

This kind of change to a program is called It’s a pretty
easy way to speed up a program; so easy, in fact, that some “optimizing compilers” for
large computers do it automatically. In other words, an optimizing compiler for Logo
would treat the first version of as if it were written like the second version.
(As far as I know, nobody has actually written such a compiler for Logo.)

2

local

n
n

n t nt
nt

n t

110 Chapter 3 Algorithms and Data Structures

quadratic

first butfirst fput
last butlast lput

fput

lput
lput

fput lput

fput
lput

reverse
reverse

first fput

* The actual time depends not only on what model of computer you have but also on how much
memory and what else is in it.

print cascade 1000 [lput # ?] []

print reverse cascade 1000 [fput # ?] []

to reverse :list
if emptyp :list [output []]
output lput first :list reverse bf :list
end

Common subexpression elimination is an example of optimization. This means
that we improved the program by paying attention to one small piece of it at a time. (A
less elegant name for local optimization is “code bumming.”) Is it worth the effort? It
depends how many times this procedure will be run. When I say that multiplication is
slow, I mean that it takes a few millionths of a second. If you are writing a
procedure to do the dozen problems in your high school algebra homework, the extra
time you spend thinking up the second version and typing it into the editor probably
outweighs the saving of time in running the procedure. But if you are trying to predict the
weather and need to solve tens of thousands of equations, the saving may be significant.

If you want to write locally optimized Logo programs, it’s important to know that
, , and take a constant amount of time regardless of the length of

the input list, whereas , , and take an amount of time proportional
to the length of the list. If you add items to a list, one by one, using , the length
of time required is times the constant amount of time for each item. But if you add
the same items using , if the first item takes microseconds, the last takes .
On the average, each takes something like /2 microseconds, so the total time is

/2. The gain in efficiency from using instead of isn’t significant if your
list has only a few items, but the gain gets more and more significant as the size of the
list increases. Suppose you want to create a list of the numbers from 1 to 1000. One
straightforward way would be

On my home computer this instruction takes about 26 seconds.* If you just use in
place of the list will come out in the wrong order, but it’s possible to reverse the
order of that list to get the same result as the first version:

You might think this would be slower, because it has the extra step. But in
fact this instruction took about 12 seconds. (It’s important that the tool in the
Berkeley Logo library uses and to do its work. If we used the more obvious

⋅ ⋅

6
2

4
2

10
2

6
3

6
2

4
1

4
3

4
2

6
1

lput cascade lput

lock

simplex

simp

lock 10
simplex 10 simp 10

global

recursive function

programming
mathematics.

three

Local Optimization vs. Efficient Algorithms 111

then the elimination of in the template would be offset by the in
the reversal.)

At the other extreme, the broadest possible optimization of a program is to
think of an entirely new algorithm based on a different way of thinking about the original
problem. As an example, in Chapter 2 there are three different programs to solve the
Simplex lock problem. The first program, , works by enumerating explicitly all
the different patterns of possible combinations. That algorithm is not fundamentally
recursive; although my Logo implementation includes recursive subprocedures, the
number of combinations for a five-button lock is not determined on the basis of the
number for a four-button lock. (The program does compute the number of combinations
that use four out of the five available buttons, but that isn’t the same thing.) The second
program, , is based on a mathematical argument relating the number of
combinations to a fairly simple —that is, a mathematical function with
an inductive definition. Because the function is computationally simple, the intellectual
energy I invested in doing the mathematics paid off with a significantly faster program.
The third version, , uses a closed form formula that solves the problem in no time!

To illustrate more sharply the differences among these three programs, I tried each
of them on a ten-button version of the Simplex lock. To compute took 260
seconds on my computer; took 80 seconds; and took less than half
a second. For this size lock, understanding the mathematical idea of a recursive function
sped up the program by a factor of three, and using the mathematical technique called
generating functions achieved an additional speedup by a factor of almost 200! What’s
important to understand about this example is that it wasn’t better skill that
made the difference, but greater knowledge of (In the next section, though,
you’ll learn a programming trick that can sometimes achieve similar speedups.)

Many “trick” math problems involve a similar shift in thinking about the fundamental
algorithm to be used. For example, in Chapter 2 we computed the probability of picking
a matching pair of socks out of a drawer containing six brown and four blue socks this
way:

pairs of 2 browns + pairs of 2 blues
total pairs

=
() + ()

()
=

21
45

Suppose we ask this question: Out of the same drawer of six browns and two blues, we
pick socks at random; what is the probability that at least two of the socks match?

The number of triples of socks in which at least two are brown is the number in
which all three are brown, (), plus the number in which two are brown and one is blue,
() (). The number in which at least two are blue is, similarly, () + () (). The

⋅ ⋅ ⋅ ⋅

socks

Memoization

10
3

6
3

6
2

4
1

4
3

4
2

6
1

10
3

112 Chapter 3 Algorithms and Data Structures

to haspair :triple
output or (memberp first :triple butfirst :triple) ~

(equalp (item 2 :triple) last :triple)
end

to t :n :k
if equalp :k 0 [output 1]
if equalp :n 0 [output 0]
output (t :n :k-1)+(t :n-1 :k)
end

total number of triples is of course (). So the probability of a matching pair within the
chosen triple is

() + () () + () + () ()

()
=

20 + 15 4 + 4 + 6 6
120

=
120
120

= 1

which is 100% probability. We could modify the procedure to get the same result
by listing all the possible triples and then filtering all the ones containing a matching
pair, using a filter like

But the problem becomes entirely trivial if you notice that there are only two possible
colors, so obviously there is no way that three randomly chosen socks can have three
distinct colors! Of course there has to be a matching pair within any possible triple.
A problem like this, that invites a messy arithmetic solution but is obvious if properly
understood, is the mathematician’s idea of a joke. (Did you get it?)

Some efficiency tricks are applicable to a number of different problems and become
part of the “toolkit” of any professional programmer. One example is relevant to many
inductively defined functions; the trick is to have the program remember the result of
each invocation of the function. For example, in Chapter 2 we defined the number of
terms in a multinomial expansion to be

1
2

t 4 7

t

t 4 7

t 8 10
t 12 12

t

t

t
t

t
t
t

t t
t
t

t

t
t t

t
t

t

t
t
t

t
t

t
t

minutes
seconds.

hours

Memoization 113













{





{









{

{

to t :n :k
localmake "result gprop :n :k
if not emptyp :result [output :result]
make "result realt :n :k
pprop :n :k :result
output :result
end

to realt :n :k
if equalp :k 0 [output 1]
if equalp :n 0 [output 0]
output (t :n :k-1)+(t :n-1 :k)
end

What happens when we compute ?

(4, 7)

(4, 6)

(4, 5)
(4, 4) . . .

(3, 5)
(3, 4) . . .
(2, 5) . . .

(3, 6) (3, 5)
(3, 4) . . .
(2, 5) . . .

(2, 6) . . .

(3, 7)
(3, 6) (3, 5)

(3, 4) . . .
(2, 5) . . .

(2, 6) . . .

(2, 7)
(2, 6) . . .
(1, 7) . . .

Many calculations are performed repeatedly. In the chart above I’ve underlined three
places where (3, 5) is computed. Each of those in turn involves repeated computation
of (3, 4) and so on. This computation took me about 18 seconds.

Here is a version of that uses property lists to remember all the values it’s already
computed. This version will calculate (3, 5) only the first time it’s needed; a second
request for (3, 5) will instantly output the remembered value.

Computing isn’t really a big enough problem to show off how much faster this
version is; even the original program takes only 2 seconds on my home computer. But
the amount of time needed grows quickly as you try larger inputs. Using the original
procedure from Chapter 2, my computer took just under five to compute ;
the program shown here took less than two This program computed in
about three seconds; I estimate that the original procedure would take five to solve
that problem! (As you can imagine, I didn’t try it.)

⋅
−

∑()1

=0

n

i

n
i

[t 120 h 83]

t
t 4 7 t 4 6 t 3 7

f n
n
i

f i

f n n
f i

f i

t h

114 Chapter 3 Algorithms and Data Structures

round ?1 ?2

0 [1] [1 1]
1 [1 1] [1 2 1]
2 [3 1 1] [1 3 3 1]
3 [13 3 1 1] [1 4 6 4 1]
4 [75 13 3 1 1] [1 5 10 10 5 1]
5 [541 75 13 3 1 1] [1 6 15 20 15 6 1]

t* I’ve used property lists of numbers to hold the remembered values of the function. If I
wanted to use the same technique for some other function in the same workspace, I’d have to find
a way to keep the values for the two functions from getting in each other’s way. For example, if

and some other function , then I might store the value

on the appropriate property list.

The memoized version of has the same structure as the original. That is, in order
to compute , the program must first carry out the two subtasks and .
The only difference between the original version and the memoized version is that in the
latter, whenever a second invocation is made with inputs that have already been seen, the
result is output immediately without repeating that subtask. Any recursive function can
be memoized in the same way.*

Sometimes, though, the same general idea—remembering the results of past
computations—can be used more effectively by changing the program structure so
that just the right subproblems are solved as they’re needed to work toward the overall
solution. Rearranging the program structure isn’t called memoization, but we’re still
using the same idea. For example, the Simplex lock function

() = ()

from Chapter 2 is a combination (sorry about the pun) of values of two functions. It
isn’t exactly helpful to remember every possible value of () because each value is used
only once. But the calculation of () uses the entire th row of Pascal’s Triangle, and
it’s easy to compute that if we remember the row above it. The values of () are used
repeatedly, so it makes sense to keep a list of them. So my plan is to have two lists, the
first of which is a list of values of () and the second a row of Pascal’s Triangle:

(4, 7) = 120 (4, 7) = 83

1
2

?1

simplex

simp

Sorting Algorithms

f
f

dynamic programming:

Sorting Algorithms 115

to simplex :buttons
output 2 * first (cascade :buttons

[fput (sumprods bf ?2 ?1) ?1] [1]
[fput 1 nextrow ?2] [1 1])

end

to sumprods :a :b
output reduce "sum (map "product :a :b)
end

to nextrow :combs
if emptyp butfirst :combs [output :combs]
output fput (sum first :combs first butfirst :combs) ~

nextrow butfirst :combs
end

The solution to the problem is twice the first member of the last value of .

Instead of starting with a request for (5) and carrying out subtasks as needed, the
new program will begin with (0) and will work its way up to larger input values until the
desired result is found. This technique is called

I tried both versions of for a 12-button lock. The version in Chapter 2 took about
5 minutes to get the answer (which is that there are about 56 billion combinations); this
version took about one second, comparable to the closed form procedure.

If you just read this program with no prior idea of what algorithm it’s using, it
must be hard to see how it reflects the original problem. But if you think of it as a
quasi-memoization of the earlier version it should make sense to you.

Every textbook on algorithms uses sorting as one of its main examples. There are several
reasons for this. First of all, sorting is one of the most useful things to do with a computer,
in a wide variety of settings. There are many different known sorting algorithms, ranging
from obvious to subtle. These algorithms have been analyzed with great care, so a lot is
known about their behavior. (What does that mean? It means we can answer questions
like “How long does this algorithm take, on the average?” “How long does it take, at
worst?” “If the things we’re sorting are mostly in order to begin with, does that make
it faster?”) And all this effort pays off, in that the cleverest algorithms really are much
faster than the more obvious ones.

> =
lessthanp

sort

show sort [5 20 3 5 18 9]

116 Chapter 3 Algorithms and Data Structures

to lessthanp :a :b
if not namep "comparisons [make "comparisons 0]
make "comparisons :comparisons+1
output :a < :b
end

to howmany
print :comparisons
ern "comparisons
end

?
[3 5 5 9 18 20]

The problem we want to solve is to take a list in unknown order and rearrange it to
get a new list of the same members in some standard order. This might be alphabetical
order if the members of the list are words, or size order if they’re numbers, or something
else. For the most part, the exact ordering relation isn’t very important. As long as we
have a way to compare two items and find out which comes first (or that they’re equal,
sometimes) it doesn’t matter what the details of the comparison are. To make things
simple, in this chapter I’ll assume we’re always sorting numbers.

Because the length of time per comparison depends on the nature of the things
being compared, and because that length isn’t really part of what distinguishes one
sorting algorithm from another, analyses of the time taken by a sorting program are
usually expressed not in terms of seconds but in terms of number of comparisons. This
measure also eliminates the effect of one computer being faster than another. To help
make such measurements, we’ll compare two numbers using this procedure:

Of course, if we want to use or comparisons in a sorting algorithm, we should write
analogous procedures for those. But in fact I’ll only need for the algorithms
I’m going to show you. After trying out a sort program, we can find out how many
comparisons it made using this convenient little tool:

After telling us the number of comparisons, this procedure erases the counter variable to
prepare for the next experiment.

If you haven’t studied sort algorithms before, it will be a good exercise for you to
invent one yourself before you continue. Your procedure should take a list of
numbers as input, and should output a list of the same numbers in order from smallest
to largest.

Sorting by Selection

unique

selection

Sorting by Selection 117

make "list cascade 100 [fput random 100 ?] []

[11 41 50 66 41 61 73 38 2 94 43 55 24 1 77 77 13 2 93 35
43 69 9 46 88 20 43 73 11 74 69 33 28 4 5 1 15 17 13 94
88 42 12 31 67 42 30 30 13 91 31 8 55 6 31 84 57 50 50 31
36 52 5 12 10 19 69 0 9 81 62 14 39 54 45 72 18 47 48 35
76 44 77 34 75 52 61 86 34 44 64 53 25 39 4 55 55 54 53 64]

Notice that it’s allowable for two (or more) equal numbers to appear in the input.

So that we can compare different algorithms fairly, we should try them on the same
input data. You can make a list of 100 random numbers this way:

You should try out both your sort procedures and mine on your random list. In case you
want to try your algorithm on my data, to compare the exact numbers of comparisons
needed, here is the list I used:

Notice in passing that this is a list of 100 random numbers, but not a list of the first 100
numbers in random order. Some numbers, like 43, appear more than once in the list,
while others don’t appear at all. This is perfectly realistic for numbers that occur in real
life, although of course some situations give rise to lists of items.

Although there are many known sorting algorithms, most fall into two main groups.
There are the ones that order the input items one at a time and there are the ones that
divide the problem into roughly equal-sized smaller problems. I’ll show you one of each.
Within a group, the differences between algorithms have to do with details of exactly how
the problem is divided into pieces, what’s where in computer memory, and so on. But
these details are generally much less important than the basic division between the two
categories. If you took my advice and wrote your own sort procedure, and if you hadn’t
studied sorting before, the one you wrote is almost certainly in the first category.

My sample algorithm in the first group is a sort. Expressed in words, the
algorithm is this: First find the smallest number, then find the next smallest, and so
on. This idea can be put in recursive form; the output from the procedure should be
a list whose first member is the smallest number and whose remaining elements are the
sorted version of the other numbers. I’ll show you two versions of this algorithm: first a
straightforward but inefficient one, and then a version that’s improved in speed but not
quite so obvious. Here’s the first version:

118 Chapter 3 Algorithms and Data Structures

ssort

remove

min

ssort

Ssort
ssort1

:in :out
:min

to ssort :list
if emptyp :list [output []]
localmake "smallest reduce "min :list
output fput :smallest (ssort remove.once :smallest :list)
end

to remove.once :item :list
if equalp :item first :list [output butfirst :list]
output fput first :list (remove.once :item butfirst :list)
end

to ssort :list
if emptyp :list [output []]
output ssort1 (first :list) (butfirst :list) []
end

to ssort1 :min :in :out
if emptyp :in [output fput :min ssort :out]
if lessthanp :min (first :in) ~

[output ssort1 :min (butfirst :in) (fput first :in :out)]
output ssort1 (first :in) (butfirst :in) (fput :min :out)
end

In this version of , we start by finding the smallest number in the list. Then we
remove that number from the list, sort what’s left, and put the smallest number back at
the front of the sorted list. The only slight complication is that I had to write my own
variant of that, unlike the standard Berkeley Logo library version, removes only
one copy of the chosen number from the list, just in case the same number appears more
than once.

By using to find the smallest number, I’ve interfered with my goal of counting
the number of comparisons, but I didn’t worry about that because I’m about to rewrite

anyway. The problem is that this version goes through the list of numbers twice
for each invocation, first to find the smallest number and then again to remove that
number from the list that will be used as input to the recursive call. The program will be
much faster if it does the finding and the removing all at once. The resulting procedure
is a little harder to read, but it should help if you remember that it’s trying to do the same
job as the original version.

is invoked once for each time a smallest number must be found. For each of
those iterations, is invoked once for each member of the still-unsorted list; the
numbers in the list are moved from to except that the smallest-so-far is singled
out in .

⋅ ⋅ ⋅

−

−

•
•
•

•
•
•

Sorting by Partition

ssort

ssort

ssort

first

isort

ssort

n
n

n n

insertion sort,

Sorting by Partition 119

Suppose we try out on our list of 100 numbers. How many comparisons will
be needed? To find the smallest of 100 numbers we have to make 99 comparisons; the
smallest-so-far must be compared against each of the remaining ones. To find the next
smallest requires 98 comparisons, and so on. Finally we have two numbers remaining
to be sorted and it takes one comparison to get them in order. The total number of
comparisons is

99 + 98 + 97 + + 2 + 1 = 4950

It makes no difference what order the numbers were in to begin with, or whether some
of them are equal, or anything else about the input data. It takes 4950 comparisons for

to sort 100 numbers, period. You can try out the program on various lists of 100
numbers to make sure I’m right.

In general, if we want to sort a list of length with the number of comparisons
required is the sum of the integers from 1 to 1. It turns out that there is a closed form
definition for this sum:

(1)
2

Selection sort uses these three steps:

Pull out the smallest value.
Sort the other values.
Put the smallest one at the front.

It’s the first of those steps that does the comparisons. A similar but different algorithm is
which defers the comparisons until the last step:

Pull out any old value (such as the).
Sort the other values.
Put the chosen one where it belongs, in order.

Try writing a procedure to implement this algorithm. How many comparisons
does it require? You’ll find that for this algorithm the answer depends on the input data.
What is the smallest possible number of comparisons? The largest number? What kinds
of input data give rise to these extreme values?

There is one fundamental insight behind all methods for sorting with fewer comparisons:
Two small sorting jobs are faster than one large one. Specifically, suppose we have 100
numbers to sort. Using requires 4950 comparisons. Instead, suppose we split up

•
•
•

•
•
•

ssort

ssort

ssort

partition sort

120 Chapter 3 Algorithms and Data Structures

to psort :list
if (count :list) < 2 [output :list]
localmake "split guess.middle.value :list
output sentence psort filter [? < :split] :list

psort filter [not (? < :split)] :list
end

to guess.middle.value :list
output ((first :list) + (last :list)) / 2
end

the 100 numbers into two groups of 50. If we use on each group, each will require
1225 comparisons; the two groups together require twice that, or 2450 comparisons.
That’s about half as many comparisons as the straight of 100 numbers.

But this calculation underestimates how much time we can save using this insight,
because the same reasoning applies to each of those groups of 50. We can split each into
two groups of 25. Then how many comparisons will be required altogether?

The basic idea we’ll use is to pick some number that we think is likely to be a
median value for the entire list; that is, we’d like half the numbers to be less than this
partition value and half to be greater. There are many possible ways to choose this
partition value; I’m going to take the average of the first and last numbers of the (not yet
sorted!) input. Then we run through the input list, dividing it into two smaller pieces by
comparing each number against the partition value. (Notice that compares pairs
of numbers within the input list; the partition sort compares one number from the list
against another number that might or might not itself be in the list.) We use the same
technique recursively to sort each of the two sublists, then append the results.

Note the similarities and differences between this selection sort algorithm:

Pull out the smallest value.
Sort the other values.
Put the smallest one at the front.

and the following algorithm:

Divide the input into the small-value half and the large-value half.
Sort each half separately.
Put the sorted small values in front of the sorted large ones.

Again, I’ll write this program more than once, first in an overly simple version and
then more realistically. Here’s the simple one:

1
2

:split

filter
count

median average

Sorting by Partition 121

[3 2 1000 5 1 4]

[3 2 5 1 4] [1000]

to psort :list
if emptyp :list [output []]
if emptyp butfirst :list [output :list]
localmake "split ((first :list) + (last :list)) / 2
output psort1 :split :list [] []
end

and

* That isn’t quite true; there is a clever algorithm that can find the median after only a partial
sorting of the values. But it’s true enough that we can’t use a sorting algorithm whose first step
requires that we’ve already done some sorting.

To minimize the number of comparisons, we want to split the input list into two
equal-size halves. It’s important to note that this program is only guessing about which
value of would achieve that balanced splitting. You may wonder why I didn’t
take the average of all the numbers in the list. There are two reasons. One is that that
would add a lot of time to the sorting process; we’d have to look at every number to
find the average, then look at every number again to do the actual splitting. But a more
interesting reason is that the average isn’t quite what we want anyway. Suppose we are
asked to sort this list of numbers:

The average of these numbers is about 169. But if we use that value as the split point,
we’ll divide the list into these two pieces:

Not a very even division! To divide this list of six values into two equal pieces, we’d need
a split point of 3 . In general, what we want is the value rather than the
value. And if you think about it, you pretty much have to have the numbers already
sorted in order to find the median.* So we just try to make a good guess that doesn’t
take long to compute.

Just as in the case of selection sort, one problem with this simple program is that it
goes through the input list twice, once for each of the calls to . And the call to

in the end test adds a third walk through the entire list. Here’s a version that fixes
those inefficiencies:

show psort [4 4 4 4 4]

psort
psort

psort1

psort
ssort

psort

high

high

quite

so all

122 Chapter 3 Algorithms and Data Structures

to psort1 :split :in :low :high
if emptyp :in [output sentence (psort :low) (psort :high)]
if lessthanp first :in :split ~

[output psort1 :split (butfirst :in) (fput first :in :low) :high]
output psort1 :split (butfirst :in) :low (fput first :in :high)
end

?

This version of has one good attribute and one bad attribute. The good attribute
is that it’s very cleanly organized. You can see that it’s the job of to choose the
partition value and the job of to divide the list in two parts based on comparisons
with that value. The bad attribute is that it doesn’t work as it stands.

As for any recursive procedure, it’s important that the input get smaller for each
recursive invocation. If not, could end up invoking itself over and over with the
same input. It’s very easy to see that avoids that danger, because the input list is
shorter by exactly one member for each recursive invocation. But divides its input
into two pieces, each of which ought to be about half the length of the original if we’re
lucky. We’re lucky if the partition value we choose is, in fact, the median value of the
input list. If we’re less lucky, the two parts might be imbalanced, say 1/4 of the members
below the partition and 3/4 of them above it. Can we be unlucky that of the input
numbers are on the same side of the partition? See if you can think of a case in which
this will happen.

The partition value is chosen as the average of two members of the input list. If
those two members (the first and last) are unequal, then one of them must be less than
the partition value and the other greater. So there will be at least one number on each
side of the partition. But if the two averaged numbers are equal, then the partition value
will be equal to both of them. Each of them will be put in the bucket. If all the
other numbers in the list are also greater than or equal to the partition, then they’ll all
end up in the bucket, and nothing will be accomplished in the recursion step. The
simplest failing example is trying to sort a list of numbers all of which are equal, like

We could take various approaches to eliminating this bug. See how many ways you can
think of, and decide which you like best, before reading further.

Since the problem has to do with the choice of partition value, you could imagine
using a more complicated means to select that value. For example, you could start with
the first member of the input list, then look through the list for another member not
equal to the first. When you find one, average the two of them and that’s the partition
value. If you get all the way to the end of the list without finding two unequal members,

three

Sorting by Partition 123

low high equal
equal

lessthanp

equaltop
lessthanp

lessthanp psort
psort1

low

if equalp first :list last :list [...]

if lessthanp first :in :split [...]
if equaltop first :in :split [...]

to psort :list
if emptyp :list [output []]
if emptyp butfirst :list [output :list]
localmake "split ((first :list) + (last :list)) / 2
if lessthanp first :list :split ~

[output psort1 :split (butfirst :list) (list first :list) []]
output psort1 :split (butlast :list) (list last :list) []
end

declare the list sorted and output it as is. The trouble with this technique is that many
extra comparisons are needed to find the partition value. Those comparisons don’t really
help in ordering the input, but they do add to the time taken just as much as the “real”
comparisons done later.

Another approach is to say that since the problem only arises if the first and last
input members are equal, we should treat that situation as a special case. That is, we’ll
add an instruction like

Again, this approach adds a comparison that doesn’t really help to sort the file, although
it’s better than the first idea because it only adds one extra comparison per invocation
instead of perhaps several.

A more straightforward approach that might seem to make the program more
efficient, rather than less, is to divide the list into buckets, , , and .
This way, the problem gets shorter faster, since the bucket doesn’t have to be
sorted recursively; it’s already in order. The trouble is that it takes two comparisons,
one for equality and one for , to know how to direct each list member into
a three-way split. Some computers can compare numbers once and branch in different
directions for less, equal, or greater; one programming language, Fortran, includes that
kind of three-way branching through an “arithmetic IF” statement that accepts different
instructions for the cases of a given quantity being less than, equal to, or greater than
zero. But in Logo we’d have to say

with two comparisons for each list member. (I’m imagining that would keep
track of the number of comparisons just as does.)

What I chose was to do the first test for the list in instead of
, and use it to ensure that either the first or the last member of the list starts out

the bucket.

Psort1

psort ssort

ssort

round size

1 100
2 50
3 25
4 12,13
5 6,7
6 3,4
7 1,2

worst

124 Chapter 3 Algorithms and Data Structures

is unchanged.

How many comparisons should require to sort 100 numbers? Unlike ,
its exact performance depends on the particular list of numbers given as input. But we
can get a general idea. The first step is to divide the 100 numbers into two buckets, using
100 comparisons against the partition value. The second step divides each of the buckets
in two again. We can’t say, in general, how big each bucket is; but we do know that each of
the original 100 numbers has to be in one bucket or the other. So each of 100 numbers
will participate in a comparison in this second round also. The same argument applies to
the third round, and so on. Each round involves 100 comparisons. (This isn’t quite true
toward the end of the process. When a bucket only contains one number, it is considered
sorted without doing any comparisons. So as the buckets get smaller, eventually some of
the numbers “drop out” of the comparison process, while others are still not in their final
position.)

Each round involves 100 comparisons, more or less. How many rounds are there?
This is where the original ordering of the input data makes itself most strongly felt. If
we’re lucky, each round divides each bucket exactly in half. In that case the size of the
buckets decreases uniformly:

There is no round 8, because by then all of the buckets would be of length 1 and there is
no work left to do. So if all goes well we’d expect to make about 700 comparisons, really
a little less because by round 7 some of the numbers are already in length-1 buckets.
Maybe 650?

What is the case? That would be if each round divides the numbers into buckets
as unevenly as possible, with one number in one bucket and all the rest in the other.
In that case it’ll take 99 rounds to get all the numbers into length-1 buckets. You may
be tempted to estimate 9900 comparisons for that situation, but in fact it isn’t quite so
bad, because at each round one number falls into a length-1 bucket and drops out of the
sorting process. So the first round requires 100 comparisons, but the second round only
99, the third 98, and so on. This situation is very much like the way works, and so
we’d expect about 5000 comparisons.

worse

more

Sorting by Partition 125

make "bad cascade 100 [fput 20 ?] []

make "inorder cascade 100 [lput # ?] []

psort

Psort
Psort

Psort
ssort

reverse
psort

:inorder

psort

psort

:inorder

psort

Now try some experiments. Try on your random list, then try to find input
lists that give the best and worst possible results.

required 725 comparisons for my random list. That’s somewhat more than
we predicted for the best case, but not too much more. seems to have done pretty
well with this list. The simplest worst-case input is one in which all the numbers are the
same; I said

to make such a list. required 5049 comparisons to sort this list, slightly than
at 4950 comparisons.

What would a best-case input look like? It would divide evenly at each stage; that
is, the median value at each stage would be the average of the first and last values. The
simplest list that should meet that criterion is a list of all the numbers from 1 to 100 in
order:

(Or you could use the trick discussed earlier, but for only 100 numbers it didn’t
seem worth the extra typing to me.) Using to sort this list should require, we said,
somewhere around 650 to 700 comparisons. In fact it took 734 comparisons when I tried
it, slightly than my randomly ordered list (725 comparisons).

Even 734 comparisons isn’t terrible by any means, but when an algorithm performs
worse than expected, a true algorithm lover wants to know why. Test cases like these
can uncover either inefficiencies in the fundamental algorithm or else ways in which the
actual computer program doesn’t live up to the algorithm as described in theoretical
language. If we could “tune up” this program to sort in fewer than 700
comparisons, the change might well improve the program’s performance for any input.
See if you can figure out what the problem is before reading further. You can try having

print out its inputs each time it’s called, as a way to help gather information.

Here’s a very large hint. I tried using the original version of , before fixing the
bug about the recursion sometimes leaving all the numbers in one basket, and it sorted

in only 672 comparisons. (I knew the bug wouldn’t make trouble in this case
because none of the numbers in this particular input list are equal.) Can you devise a
better that both works all the time and performs optimally for the best-case input?

This partition sorting scheme is essentially similar to a very well-known algorithm
named quicksort, invented by C. A. R. Hoare. Quicksort includes many improvements
over this algorithm, not primarily in reducing the number of comparisons but in

•
•
•

•
•
•

Order of Growth

ssort

ssort psort

psort ssort

mergesort:

Merge

126 Chapter 3 Algorithms and Data Structures

decreasing the overhead time by, for example, exchanging pairs of input items in their
original memory locations instead of making copies of sublists. Quicksort also switches
to a more straightforward -like algorithm for very small input lists, because the
benefit of halving the problem is outweighed by the greater complexity. (In fact, for a
two-item input, makes one comparison and two.)

Here’s the partition sort algorithm again:

Divide the input into the small-value half and the large-value half.
Sort each half separately.
Put the sorted small values in front of the sorted large ones.

The idea of cutting the problem in half is also used in the following algorithm, called

Divide the input arbitrarily into two equal size pieces.
Sort each half separately.

the two sorted pieces by comparing values.

In a way, mergesort is to partition sort as insertion sort is to selection sort. Both insertion
sort and mergesort defer the comparisons of numbers until the final step of the algorithm.

There is one important way in which mergesort is better than partition sort. Since
mergesort doesn’t care how the input values are separated, we can ensure that the two
pieces are each exactly half the size of the input. Therefore, the number of comparisons
needed is always as small as possible; there are no bad inputs. Nevertheless, quicksort
is more widely used than mergesort, because the very best implementations of quicksort
seem to require less overhead time, for the average input, than the best implementations
of mergesort.

If you want to write a mergesort program, the easiest way to divide a list into two
equal pieces is to select every other member, so the odd-position members are in one
half and the even-position members in the other half.

I’ve mentioned that the complete quicksort algorithm includes several optimization
strategies to improve upon the partition sort I’ve presented here. How important are
these strategies? How much does overhead contribute to the cost of a program? I did
some experiments to investigate this question.

First I timed and with inputs of length 300. Here are the results:

Order of Growth 127

program comparisons time comparisons per second

program 20 numbers 100 numbers 300 numbers

psort
ssort

Ssort
psort psort

ssort

ssort lessp
lessthanp psort

Count reduce filter
ssort

slowsort
ssort

Ssort
slowsort

to slowsort :list
if (count :list) < 2 [output :list]
localmake "split (reduce "sum :list)/(count :list)
output (sentence slowsort filter [? < :split] :list

filter [? = :split] :list
slowsort filter [? > :split] :list)

end

2940 29 seconds 100
44850 313 seconds 143

seems to have much less overhead, since it can do more comparisons per second
than . Nevertheless, always seems to be faster, for every size input I tried.
The number of comparisons outweighs the overhead. (By the way, these numbers don’t
measure how fast the computer can compare two numbers! A typical computer could
perform more than a million comparisons per second, if only comparisons were involved.
Most of the time in these experiments is actually going into the process by which the Logo
interpreter figures out what the instructions in the program mean. Because Berkeley
Logo is an interpreter, this figuring-out process happens every time an instruction is
executed. By contrast, I tried on a list of length 300 in Object Logo, a compiled
version in which each instruction is figured out only once, and the total time was 3.6
seconds.)

I wanted to give local optimization the best possible chance to win the race, and so I
decided to make selection sort as fast as I could, and partition sort as slow as I could. I
modified to use the Logo primitive for comparison instead of doing the
extra bookkeeping of , and I replaced with this implementation:

This version examines every member of the input list six times on each recursive call!
(is invoked twice; looks at every list member once; and is called
three times to do the actual partition.) Under these conditions I was able to get
to win the race, but only for very small inputs:

2.7 seconds 18 seconds 63 seconds
1.2 seconds 20 seconds 182 seconds

wins when sorting 20 numbers, but both programs take less than three seconds.
For 100 numbers, is already winning the race, and its lead grows as the input
list grows. This is a common pattern: For small amounts of data, when the program is
fast enough no matter how you write it, local optimization can win the race, but once

−

Θ

2

2 2 2

2

2 2

2

2

2

2 2

2

ssort

ssort

psort

and

n

n n

n

O n n n
n n

n
n

n n n

O

n
n n

O n
n O

n n O n
O

n

128 Chapter 3 Algorithms and Data Structures

* Strictly speaking, the fact that an algorithm’s time requirement is doesn’t mean that
it’s even approximately proportional to , because only establishes an upper bound. The
time requirement could be proportional to , which would be better than , and still be .
But usually people use notation to mean that no smaller order of growth would work, even
though there’s an official notation with that meaning, , pronounced “big theta.”

the problem is large enough so that you actually care about efficiency, choosing a better
overall algorithm is always more important. (Of course the very best results will come
from choosing a good algorithm optimizing the program locally.)

What does “a better algorithm” actually mean? How do we measure the quality of an
algorithm? We’ve made a good start by counting the number of comparisons required
for our two sorting algorithms, but there is a formal notation that can make the issues
clearer.

Earlier I said that for a list of numbers, makes

(1)
2

comparisons. But in a sense this tells us more than we want to know, like saying that a
certain program took 1,243,825 microseconds instead of saying that it took somewhat over
a second. The important thing to say about is that the number of comparisons is
roughly proportional to ; that is, doubling the size of the input list will quadruple the
time needed to sort the list. More formally, we say that the time required for selection
sorting is (), pronounced “big-oh of ” or “order .” This is an abbreviation for the
statement, “for large enough , the time is bounded by times a constant.” The part
about “for large enough ” is important because the running time for some algorithm
might, for example, involve a large constant setup time. For small that setup time might
contribute more to the overall time required than the part of the algorithm proportional*
to , but once becomes large enough, the part will overtake any constant.

I’d like to have a similar representation, (something), for the number of com-
parisons used by in the typical case. We said that for 100 numbers, each round
of sorting involves about 100 comparisons, and the number of rounds required is the
number of times you have to divide 100 by 2 before you get down to 1, namely between
6 and 7. The number of comparisons expected is the product of these numbers. In the
general case, the first number is just . But what is the general formula for the number
of times you have to divide by 2 to get 1? The answer is log . For example, if we had
128 numbers in the list instead of 100, we would require exactly 7 rounds (in the best

()
(. . .)

()
(. . .)

()

≈

n

n

i

7
2 2

2

2

2 2

2

1
2

2

3

Data Structures

ssort
psort

t
simplex

simplex 10 simplex 12
Simplex 16

* Don Knuth has written an sort program, just as an example of especially bad
programming.

O n
O n n O n n

O
n n proven

O n n typical

O n linear O n quadratic. O n n

O
exponential n

O n
really

O intractable,
O n i tractable.

O n

Data Structures 129

case) because 2 = 128 and so log 128 = 7. (By the way, log 100 6.65, so the theoretical
best case for 100 numbers is 665 comparisons.)

In general, all the obvious sorting algorithms are () and all the clever ones are
(log).* (I don’t have to say (log) because the difference between logarithms

to different bases is just multiplication by a constant factor, which doesn’t count in
(. . .) notation, just as I don’t have to worry about the fact that the formula for

comparisons is nearer /2 than .) By the way, I haven’t really that is
(log) in the case, only that it is in the best case. It’s much harder to prove

things about the typical (or average) performance of any sorting algorithm, because what
is an “average” input list? For some algorithms there is no proven formula for the average
run time, but only the results of experiments with many randomly chosen lists.

An () algorithm is called and an () one (log) is in
between those, better than quadratic but not as good as linear. What other orders of
growth are commonly found? As one example, the pre-memoized procedures for the
and functions in Chapter 2 have time requirements that are (2); these are
called algorithms. This means that just adding one to makes the program
take twice as long! The experimental results I gave earlier agree with this formula:

took 80 seconds, while took 5 minutes, about four times as
long. would take over an hour. (Start with 80 seconds, and double it six
times.) The memoized versions in this chapter are () (can you prove that?), which
is much more manageable. But for some hard problems there is no known way to
make them any faster than (2); problems like that are called while ones that
are merely polynomial— () for any constant —are called

One of the reasons computers are so useful is that they can contain a tremendous amount
of information. An important part of writing a large computer program is figuring out
how to organize the information used in the program. Most of the time, a program
doesn’t have to deal with a bunch of unrelated facts, like “Tomatoes are red” and “7
times 8 is 56.” Instead there will be some kind of uniformity, or natural grouping, in the
information a program uses.

()

external
internal

Data Structures in Real Life

sorted list,
hash table.

spending space buy time.

adding

storage time retrieval

130 Chapter 3 Algorithms and Data Structures

* Why doesn’t the phone company have to do that whenever they get a new customer? The
answer is that they maintain the directory information in two forms. The printed directory is the

representation, used only for looking up information; inside their computers they use an
representation that allows for easier insertion of new entries.

We’ll see, too, that the data structures you choose for your program affect the
algorithms available to you. Organizing your data cleverly can reduce the execution time
of your procedures substantially.

Why should there be different kinds of organization? It might help to look at some
analogies with data structures outside of computers. First of all, think about your personal
address book. It probably has specific pages reserved for each letter of the alphabet.
Within a letter, the names and addresses of people starting with that letter are arranged
in no particular order; you just add a new person in the first free space on the page.

Now think about the printed telephone directory for your city. In this case the
names are not arranged randomly within each letter; they’re in strict alphabetical order.
In computer science terminology, the printed directory is a while your personal
directory is a

Obviously, if the entries in the printed directory weren’t in order it would take much
too long to find an address. You can get away with random ordering within each letter
in your personal directory because you know a small enough number of people that it
doesn’t take too long to look through each one. But you probably do know enough
people to make the separate page for each letter worthwhile, even though the page for
Q may be practically empty. By using separate pages for each letter, with unused slots on
each page reserved for expansion, you are to That is, your address
book is bigger than it would be if it were just one long list, but looking up a number is
faster this way. This tradeoff between time and space is typical of computer programming
problems also.

Why don’t you keep your personal directory in strict alphabetical order, like the
printed phone book? If you did that, looking up a number would be even faster. The
problem is that a new number would be terribly painful; you’d have to erase all
the names on the page below where the new name belongs and rewrite each of them one
line below where it was.* In this case there is a tradeoff between and

world

Beijing Guangzhou SuzhouShanghai

China

Dijon AvignonParis

France

Ottawa WindsorToronto

Ontario

Montreal Lachine

Quebec Manitoba

Winnipeg

Canada

Trees

tree.map

time;

heap.

hierarchical

tree

node.

Trees 131

* Unfortunately, there are two things called a “heap” in computer science. I’m thinking of the
storage allocation heap, not the special tree structure used in the “heapsort” algorithm.

you pay a small price in retrieval time to avoid a large price in storage time. This,
too, is a common aspect of data structure design in computer programs.

Other kinds of real-life data structures also have computer analogues. If your desk
looks like mine, with millions of little slips of paper all over the place, it is what computer
scientists call a * This might be an appropriate data structure for those cases in
which the program must deal with a large mass of unrelated facts. On the other hand,
in a large business office there will be a filing system. A file cabinet labeled
“Personnel Records” might contain a drawer labeled “Inactive A-H”; that drawer would
contain a file folder for each former employee whose name starts with an appropriate
letter. This kind of hierarchy might be represented as a in a computer program.

We’ve used the idea of trees before. In Volume 1, the program to solve pitcher pouring
problems was designed in terms of a tree of possible solution steps, although that tree
was not represented as actual data in the program. In Volume 2, I wrote as
an example of a higher order function operating on trees in which the leaf nodes are
words and the branch nodes are phrases. In this chapter we’ll work toward a general
representation of trees as an abstract data type.

Here is a hierarchical grouping of some of the world’s cities:

Recall that a diagram like this is called a tree because it resembles a real tree turned
upside-down. Each place where a word or phrase appears in the tree is called a

world

France

thing

show locate "Montreal

root node
branches. leaf
nodes. branch nodes.

binary

132 Chapter 3 Algorithms and Data Structures

?
[world Canada Quebec Montreal]

[Paris Dijon Avignon]

to worldtree
make "world [France China Canada]
make "France [Paris Dijon Avignon]
make "China [Beijing Shanghai Guangzhou Suzhou]
make "Canada [Ontario Quebec Manitoba]
make "Ontario [Toronto Ottawa Windsor]
make "Quebec [Montreal Lachine]
make "Manitoba [Winnipeg]
end

At the top of the diagram is the (). The lines between nodes are called
The cities, which do not have branches extending below them, are called

The in-between nodes, the countries and provinces, are called (The
root node is also considered a branch node since it, too, has branches below it.) This
tree tells us that Toronto is in Ontario, which is in Canada, which is in the world.

A tree is a very general data structure because its shape is very flexible. For example,
in the part of this tree that represents Canada I’ve included a level of tree structure,
representing the provinces, that isn’t included in the subtree that represents France. As
we’ll see later, some algorithms deal with restricted categories of trees. For example, a

tree is a tree with at most two branches below each branch node.

So far this data structure is just a graphic representation on paper. There are many
ways in which a tree can be implemented in a computer program. Let’s say that I want to
represent the tree of cities in a computer so that I can ask questions from this data base.
That is, I’d like to write a program that will allow interactions like

Let’s pick a particular way to represent a tree in Logo. (I should warn you that later
in the chapter I’m going to invent different representations, but I want to start with a
simple one to meet our immediate needs. So what you’re about to see is not the final
version of these procedures.) Here’s the way I’m going to do it: Each branch node will
be represented as a Logo variable whose name is the name of the node, containing as its
value a list of the names of the nodes immediately below it. For example, this tree will
include a variable named with the value

A leaf node is just a word that appears in a node list but isn’t the name of a variable. For
a branch node, of the node’s name will provide a list of the names of its children.
I can set up the tree with this procedure:

locate filter

forest,

Trees 133

show locate "Shanghai

show locate "Montreal

show cities "France

show cities "Canada

In principle, is a lot like , in the sense that we’re looking through
a data structure for something that meets a given condition. But the implementation is
a bit trickier than looking through a sequential list, because each invocation gives rise
to several recursive invocations (one per child), not merely one recursive invocation as
usual. The program will be easier to understand if we introduce the term which
means a list of trees.

Once we’ve set up this data base, we can write procedures to ask it other kinds of
questions, too.

to locate :city
output locate1 :city "world
end

to locate1 :city :subtree
if equalp :city :subtree [output (list :city)]
if not namep :subtree [output []]
localmake "lower locate.in.forest :city (thing :subtree)
if emptyp :lower [output []]
output fput :subtree :lower
end

to locate.in.forest :city :forest
if emptyp :forest [output []]
localmake "child locate1 :city first :forest
if not emptyp :child [output :child]
output locate.in.forest :city butfirst :forest
end

?
[world China Shanghai]
?
[world Canada Quebec Montreal]

to cities :tree
if not namep :tree [output (list :tree)]
output map.se [cities ?] thing :tree
end

?
[Paris Dijon Avignon]
?
[Toronto Ottawa Windsor Montreal Lachine Winnipeg]

Improving the Data Representation

make "Quebec [Montreal Quebec Lachine]

level

134 Chapter 3 Algorithms and Data Structures

locate cities

world
France Canada

world1 France2
Ontario3

Quebec3
Quebec4

cities
locate

locate
locate1 highest

true cities
false locate

There’s a problem with the representation I’ve chosen for this tree. Suppose we want
to expand the data base to include the city of Quebec. This city is in the province of
Quebec, so all we have to do is add the name to the appropriate list:

If you try this, however, you’ll find that and will no longer work. They’ll
both be trapped in infinite loops.

The problem with this program can’t be fixed just by changing the program. It’s
really a problem in the way I decided to represent a tree. I said, “a leaf node is just a word
that appears in a node list but isn’t the name of a variable.” But that means there’s no
way to allow a leaf node with the same name as a branch node. To solve the problem I
have to rethink the conventions I use to represent a tree.

Being lazy, I’d like to change as little as possible in the program, so I’m going to try
to find a new representation as similar as possible to the old one. Here’s my idea: In
my mind I associate a with each node in the tree. The node is at level 1,

and at level 2, and so on. The names of the variables used to hold the
contents of a node will be formed from the node name and the level: , ,

, and so on. This solves the problem because the node for Quebec province
will be a branch node by virtue of the variable , but the node for Quebec city
will be a leaf node because there will be no variable.

As it turns out, though, I have to change the program quite a bit to make this work.
Several procedures must be modified to take the level number as an additional input.
Also, since the variable that holds the information about a place is no longer exactly
named with the place’s name, has some extra work to do, just to find the node
whose cities we want to know. It can almost use for this purpose, but with a
slight wrinkle: If we ask for the cities in Quebec, we mean Quebec province, not Quebec
city. So we need a variant of that finds the node highest up in the tree with the
desired place name. I gave subprocedure an extra input, named ,
that’s if we want the highest matching tree node (when called from) or

if we want a matching leaf node (when called from).

Improving the Data Representation 135

to worldtree
make "world1 [France China Canada]
make "France2 [Paris Dijon Avignon]
make "China2 [Beijing Shanghai Guangzhou Suzhou]
make "Canada2 [Ontario Quebec Manitoba]
make "Ontario3 [Toronto Ottawa Windsor]
make "Quebec3 [Montreal Quebec Lachine]
make "Manitoba3 [Winnipeg]
end

to locate :city
output locate1 :city "world 1 "false
end

to locate1 :city :subtree :level :highest
localmake "name (word :subtree :level)
if and :highest equalp :city :subtree [output (list :city)]
if not namep :name

[ifelse equalp :city :subtree
[output (list :city)]
[output []]]

localmake "lower locate.in.forest :city (thing :name) :level+1 :highest
if emptyp :lower [output []]
output fput :subtree :lower
end

to locate.in.forest :city :forest :level :highest
if emptyp :forest [output []]
localmake "child locate1 :city first :forest :level :highest
if not emptyp :child [output :child]
output locate.in.forest :city butfirst :forest :level :highest
end

to cities :tree
localmake "path locate1 :tree "world 1 "true
if emptyp :path [output []]
output cities1 :tree count :path
end

to cities1 :tree :level
localmake "name (word :tree :level)
if not namep :name [output (list :tree)]
output map.se [(cities1 ? :level+1)] thing :name
end

Trees as an Abstract Data Type

show locate "Quebec

show cities "Canada

tree

selector

136 Chapter 3 Algorithms and Data Structures

[United States]

first
butfirst

locate cities
leafp

first
butfirst

?
[world Canada Quebec Quebec]
?
[Toronto Ottawa Windsor Montreal Quebec Lachine Winnipeg]

[world [France ...] [[United States] ...] [China ...] [Canada ...]]

to datum :node
output first :node
end

to children :node
output butfirst :node
end

This new version solves the Quebec problem. But I’m still not satisfied. I’d like to
add the United States to the data base. This is a country whose name is more than one
word. How can I represent it in the tree structure? The most natural thing would be to
use a list: . Unfortunately, a list can’t be the name of a variable in
Logo. Besides, now that I’ve actually written the program using this representation I see
what a kludge it is!

My next idea for representing a tree is to abandon the use of a separate variable for each
node; instead I’ll put the entire tree in one big list. A node will be a list whose
is the datum at that node and whose is a list of children of the node. So the
entire tree will be represented by a list like this:

The datum at each node can be either a word or a list.

But this time I’m going to be smarter than before. I’m going to recognize that
the program I’m writing should logically be separated into two parts: the part that
implements the data type, and the part that uses a tree to implement the data base
of cities. If I write procedures like and in terms of general-purpose
tree subprocedures like , a predicate that tells whether its input node is a leaf
node, then I can change my mind about the implementation of trees (as I’ve done twice
already) without changing that part of the program at all.

I’ll start by implementing the abstract data type. I’ve decided that a tree will be
represented as a list with the datum of the root node as its and the subtrees in the

. To make this work I need procedures:

leafp

constructor

Trees as an Abstract Data Type 137

and a procedure to build a node out of its pieces:

Selectors and constructors are the main procedures needed to define any data
structure, but there are usually some others that can be useful. For the tree, the main
missing one is .

Now I can use these tools to write the data base procedures.

to tree :datum :children
output fput :datum :children
end

to leafp :node
output emptyp children :node
end

to locate :city
output locate1 :city :world "false
end

to locate1 :city :subtree :wanttree
if and :wanttree (equalp :city datum :subtree) [output :subtree]
if leafp :subtree ~

[ifelse equalp :city datum :subtree
[output (list :city)]
[output []]]

localmake "lower locate.in.forest :city (children :subtree) :wanttree
if emptyp :lower [output []]
output ifelse :wanttree [:lower] [fput (datum :subtree) :lower]
end

to locate.in.forest :city :forest :wanttree
if emptyp :forest [output []]
localmake "child locate1 :city first :forest :wanttree
if not emptyp :child [output :child]
output locate.in.forest :city butfirst :forest :wanttree
end

to cities :name
output cities1 (finddatum :name :world)
end

to cities1 :subtree
if leafp :subtree [output (list datum :subtree)]
output map.se [cities1 ?] children :subtree
end

138 Chapter 3 Algorithms and Data Structures

cities locate
locate

world cities locate1
finddatum

cities1

:subtree

cities

:subtree

tree

to finddatum :datum :tree
output locate1 :name :tree "true
end

(list datum :subtree)

to worldtree
make "world tree "world

(list (tree "France
(list (tree "Paris [])

(tree "Dijon [])
(tree "Avignon [])))

(tree "China
(list ...

to leaf :datum
output tree :datum []
end

to leaves :leaves
output map [leaf ?] :leaves
end

Once again, depends on a variant of that outputs the subtree below
a given name, instead of the usual output, which is a list of the names on the
path from down to a city. But instead of having call directly, I
decided that it would be more elegant to provide a procedure that takes a
datum and a tree as inputs, whose output is the subtree below that datum.

In , the expression

turns out to be equivalent to just for the case of a leaf node. (It is only for leaf
nodes that the expression is evaluated.) By adhering to the principle of data abstraction
I’m making the program work a little harder than it really has to. The advantage, again,
is that this version of will continue working even if we change the underlying
representation of trees. The efficiency cost is quite low; changing the expression to

is a local optimization comparable to the common subexpression elimination
we considered early in the chapter.

I also have to revise the procedure to set up the tree. It’s going to involve many
nested invocations of , like this:

and so on. I can shorten this procedure somewhat by inventing an abbreviation for
making a subtree all of whose children are leaves.

worldtree

Tree Modification

Tree Modification 139

worldtree
show cities [United States]

show locate [Palo Alto]

So far, so good. But the procedure just above is very error-prone because of
its high degree of nesting. In the earlier versions I could create the tree a piece at a time
instead of all at once. In a practical data base system, people should be able to add new
information at any time, not just ask questions about the initial information. That is, I’d
like to be able to say

to worldtree
make "world

tree "world
(list (tree "France leaves [Paris Dijon Avignon])

(tree "China leaves [Beijing Shanghai Guangzhou Suzhou])
(tree [United States]

(list (tree [New York]
leaves [[New York] Albany Rochester

Armonk])
(tree "Massachusetts

leaves [Boston Cambridge Sudbury
Maynard])

(tree "California
leaves [[San Francisco] Berkeley

[Palo Alto] Pasadena])
(tree "Washington

leaves [Seattle Olympia])))
(tree "Canada

(list (tree "Ontario
leaves [Toronto Ottawa Windsor])

(tree "Quebec
leaves [Montreal Quebec Lachine])

(tree "Manitoba leaves [Winnipeg]))))
end

?
?
[[New York] Albany Rochester Armonk Boston Cambridge Sudbury Maynard
[San Francisco] Berkeley [Palo Alto] Pasadena Seattle Olympia]
?
[world [United States] California [Palo Alto]]

addchild :world (tree "Spain leaves [Madrid Barcelona Orense])

140 Chapter 3 Algorithms and Data Structures

addchild

world

:Canada
:world locate :Canada :world

:world
:Canada addchild

addchild

addchild

addchild (finddatum "Canada :world) (tree [Nova Scotia] leaves [Halifax])

make "world newcopy :world ...

?
?
?
[world Canada [Nova Scotia] Halifax]

to addchild :tree :child
.setbf :tree (fput :child butfirst :tree)
end

?
?
?
?
?
?
[world [Great Britain] Scotland Glasgow]

make "Canada finddatum "Canada :world
addchild :Canada (tree [Nova Scotia] leaves [Halifax])
show locate "Halifax

make "GB leaf [Great Britain]
addchild :world :GB
addchild :GB tree "England leaves [London Liverpool Oxford]
addchild :GB tree "Scotland leaves [Edinburgh Glasgow]
addchild :GB tree "Wales leaves [Abergavenny]
show locate "Glasgow

to add a subtree to the world tree. New nodes should be possible not only at the top of
the tree but anywhere within it:

Most versions of Logo do not provide tools to add a new member to an existing list.
We could write a program that would make a new copy of the entire tree, adding the new
node at the right place in the copy, so that would take the form

but there are two objections to that. First, it would be quite slow, especially for a large
tree. Second, it would work only if I refrain from assigning subtrees as the values of
variables other than . That is, I’d like to be able to say

Even though I’ve added the new node to the tree , it should also be part
of (which is where looks) because is a subtree of .
Similarly, I’d like to be able to add a node to the Canadian subtree of and have
it also be part of . That wouldn’t be true if makes a copy of its tree
input instead of modifying the existing tree.

I’m going to solve this problem two ways. In the Doctor project in Volume 2 of
this series, you learned that Berkeley Logo does include primitive procedures that allow
the modification of an existing list structure. I think the most elegant solution to the

problem is the one that takes advantage of that feature. But I’ll also show
a solution that works in any version of Logo, to make the point that list mutation isn’t
absolutely necessary; we can achieve the same goals, with the same efficiency, by other
means. First here’s the list mutation version of :

mutator

generated symbol,

Tree Modification 141

tree children
addchild :GB

addchild

.setbf
addchild

.setbf

Leafp finddatum locate cities worldtree

:world

to tree :datum :children
localmake "node gensym
make :node fput :datum :children
output :node
end

to datum :node
output first thing :node
end

to children :node
output butfirst thing :node
end

to addchild :tree :child
make :tree lput :child thing :tree
end

Just as is a constructor for the tree data type, and is a selector,
is called a for this data type. Notice, by the way, that , which was

originally built as a leaf node, can be turned into a branch node by adding children to it;
is not limited to nodes that already have children.

The solution using is elegant because I didn’t have to change any of the
procedures I had already written; this version of works with the same tree
implementation I had already set up. But suppose we didn’t have or didn’t want
to use it. (As we’ll see shortly, using list mutators does open up some possible pitfalls.)
We can write a mutator for the tree abstract data type even if we don’t have mutators for
the underlying Logo lists! The secret is to take advantage of variables, whose values can
be changed—mutated—in any version of Logo.

To make this work I’m going to go back to a tree representation somewhat like the
one I started with, in which each node is represented by a separate variable. But to avoid
the problems I had earlier about Quebec and San Francisco, the variable name won’t be
the datum it contains. Instead I’ll use a an arbitrary name made up by
the program. (This should sound familiar. I used the same trick in the Doctor project,
and there too it was an alternative to list mutation.)

This is where my use of data abstraction pays off. Look how little I have to change:

That’s it! , , , , and all work perfectly
without modification, even though I’ve made a profound change in the actual represen-
tation of trees. (Try printing in each version.)

print listcity 415

Addchild

locate Cambridge

Searching Algorithms and Trees

hierarchy part of
ordering

searching

142 Chapter 3 Algorithms and Data Structures

?
San Francisco

make "codelist [[202 Washington] [206 Seattle] [212 New York]
[213 Los Angeles] [215 Philadelphia] [303 Denver] [305 Miami]
[313 Detroit] [314 St. Louis] [401 Providence] [404 Atlanta]
[408 Sunnyvale] [414 Milwaukee] [415 San Francisco] [504 New Orleans]
[608 Madison] [612 St. Paul] [613 Kingston] [614 Columbus]
[615 Nashville] [617 Boston] [702 Las Vegas] [704 Charlotte]
[712 Sioux City] [714 Anaheim] [716 Rochester] [717 Scranton]
[801 Salt Lake City] [804 Newport News] [805 Ventura] [808 Honolulu]]

is only one of the possible ways in which I might want to modify a tree
structure. If we were studying trees more fully, I’d create tool procedures to delete a
node, to move a subtree from one location in the tree to another, to insert a new node
between a parent and its children, and so on. There are also many more questions one
might want to ask about a tree. How many nodes does it have? What is its maximum
depth?

I’ve mentioned general tree manipulation tools. There are also still some unresolved
issues about the particular use of trees in the city data base. For example, although the
problem of Quebec city and Quebec province is under control, what if I want the data
base to include Cambridge, England as well as Cambridge, Massachusetts? What should

do if given as input?

But instead of pursuing this example further I want to develop another example, in
which trees are used for a very different purpose. In the city data base, the tree represents
a (Sudbury is Massachusetts); in the example below, a tree is used to
represent an of data, as in the sorting algorithms discussed earlier.

Forget about trees for a moment and consider the general problem of through
a data base for some piece of information. For example, suppose you want a program
to find the city corresponding to a particular telephone area code. That is, I want to be
able to say

The most straightforward way to do this is to have a list containing code-city pairs, like
this:

linear

O n

binary

Searching Algorithms and Trees 143

butfirst last

find

equalp

:codelist

Listcity
listcity

to areacode :pair
output first :pair
end

to city :pair
output butfirst :pair
end

to listcity :code
output city find [equalp :code areacode ?] :codelist
end

This is a list of lists. Each sublist contains one pairing of an area code with a city. We
can search for a particular area code by going through the list member by member,
comparing the first word with the desired area code. (By the way, in reality a single area
code can contain more than one city, and vice versa, but never mind that; I’m trying
to keep this simple.) In accordance with the idea of data abstraction, we’ll start with
procedures to extract the area code and city from a pair.

The city is the rather than the to accommodate cities with names of
more than one word.

The iteration tool does exactly what’s needed, going through a list member by
member until it finds one that matches some criterion:

Time for a little analysis of algorithms. What is the time behavior of this search
algorithm as the data base gets bigger? As for the case of the sorting algorithms, I’ll
concentrate on the number of comparisons. How many times is invoked? The
best case is if we’re looking for the first code in the list, 202. In this case only one
comparison is made. The worst case is if we’re looking for the last code in the list,
808, or if we’re looking for an area code that isn’t in the list at all. This requires 31
comparisons. (That’s how many code-city pairs happen to be in this particular data base.)
On the average this algorithm requires a number of comparisons half way between these
extremes, or 16. As we increase the size of the data base, the number of comparisons
required grows proportionally; this algorithm is ().

The area codes in are in ascending order. If you were looking through
the list yourself, you wouldn’t look at every entry one after another; you’d take advantage
of the orderingby starting around the middle and moving forward or backward depending
on whether the area code you found was too low or too high. That’s called a search
algorithm. , though, doesn’t take advantage of the ordering in the list; the
pairs could just as well be jumbled up and would be equally happy.

202 212 215 305 314 404 414 504 612 614 617 704 714 717 804 808

206 303 401 415 613 702 716 805

213 408 615 801

313 712

608

tree leaves

:out fput lput
reverse

144 Chapter 3 Algorithms and Data Structures

to balance :list
if emptyp :list [output []]
if emptyp butfirst :list [output leaf first :list]
output balance1 (int (count :list)/2) :list []
end

to balance1 :count :in :out
if equalp :count 0 ~

[output tree (first :in) (list balance reverse :out
balance butfirst :in)]

output balance1 (:count-1) (butfirst :in) (fput first :in :out)
end

Binary search works by starting with the median-value area code in the data base.
If that’s the one we want, we’re finished; otherwise we take the higher or lower half of
the remaining codes and examine the median value of that subset. One way we could
implement that algorithm would be to use a binary tree to represent the code-city pairs:

(In this picture I’ve just shown the area codes, but of course the actual data structure will
have a code-city pair at each node.)

We could construct the tree from scratch, using and as I did earlier,
but since we already have the pairs in the correct sorted order it’s easier to let the
computer do it for us:

In this program I’m using the trick of building using instead of and then
using to get the left branch back in ascending order, to make the construction
a little faster.

print treecity 415

O n

Searching Algorithms and Trees 145

treecity
listcity

Treecity listcity

listcity

listcity treecity

make "codetree balance :codelist

to treecity :code
output city treecity1 :code :codetree
end

to treecity1 :code :tree
if emptyp :tree [output [000 no city]]
localmake "datum datum :tree
if :code = areacode :datum [output :datum]
if :code < areacode :datum [output treecity1 :code lowbranch :tree]
output treecity1 :code highbranch :tree
end

to lowbranch :tree
if leafp :tree [output []]
output first children :tree
end

to highbranch :tree
if leafp :tree [output []]
output last children :tree
end

?
San Francisco

will generate the tree.

Now we’re ready to write , the tree-based search program analogous to
for the linear list.

gives the same output as , but it’s faster. At worst it makes two
comparisons (for equal and less than) at each level of the tree. This tree is five levels
deep, so if the input area code is in the tree at all we’ll make at most 9 comparisons,
compared to 31 for . The average number is less. (How much less?) The
difference is even more striking for larger data bases; if the number of pairs is 1000, the
worst-case times are 1000 for and 19 for .

In general the depth of the tree is the number of times you can divide the number
of pairs by two. This is like the situation we met in analyzing the partition sort algorithm;
the depth of the tree is the log base two of the number of pairs. This is an (log)
algorithm.

Logo’s Underlying Data Structures

lowbranch highbranch
first children :tree treecity1

highbranch lowbranch highbranch

balanced.

hierarchy
part of ordering before

are

146 Chapter 3 Algorithms and Data Structures

The procedures and are data abstraction at work. I
could have used directly in , but this way I can
change my mind about the representation of the tree if necessary. In fact, in a practical
program I would want to use a representation that allows a node to have a right child
(a) without having a left child. Also, and are
written robustly; they give an output, instead of causing an error, if applied to a leaf
node. (That happens if you ask for the city of an area code that’s not in the data base.) I
haven’t consistently been writing robust programs in this chapter, but I thought I’d give
an example here.

The efficiency of the tree searching procedure depends on the fact that the tree is
In other words, the left branch of each node is the same size as its right branch.

I cheated slightly by starting with 31 area codes, a number that allows for a perfectly
balanced tree. Suppose I had started with 35 area codes. How should I have built the
tree? What would happen to the efficiency of the program? What is the maximum
possible number of trials necessary to find a node in that tree? What other numbers of
nodes allow for perfect balance?

There are two important ideas to take away from this example. The first is that the
choice of data representation can have a substantial effect on the efficiency of a program.
The second, as I mentioned at the beginning of this section, is that we have used the same
kind of data structure, a tree, for two very different purposes: first to represent a
(Sudbury is Massachusetts) and then to represent an (313 is 608).

An abstract data type, such as the tree type we’ve been discussing, must be implemented
using some lower-level means for data aggregation, that is, for grouping separate things
into a combined whole. In Berkeley Logo, there are two main built-in means for
aggregation: lists and arrays. (Every dialect of Logo has lists, but not all have arrays.)
Words can be thought of as a third data aggregate, in which the grouped elements are
letters, digits, and punctuation characters, but we don’t ordinarily use words as the basis
for abstract data types.

Logo was designed to be used primarily by people whose main interest is in something
other than computer programming, and so a design goal was to keep to a minimum the
extent to which the Logo programmer must know about how Logo itself works internally.
Even in these books, which focused on computing itself, we’ve gotten this far without
looking very deeply into how Logo’s data structures actually work. But for the purposes
of this chapter it will be useful to take that step.

#1 #2 #3 #4 #5array
address

byte
word

load

store

processor memory.

address,

consecutive

pointer

pair

Logo’s Underlying Data Structures 147

* I’m being vague about what a “value” is, and in fact most computer memories can be divided
into pieces of different sizes. In most current computers, a is a piece that can hold any of 256
different values, while a is a piece that can hold any of about four billion different values. But
these details aren’t important for my present purposes, and I’m going to ignore them. I’ll talk as if
memories were simply word-addressable.

Essentially all computers today are divided into a and a (The
exceptions are experimental “parallel processing” machines in which many small sub-
processors and sub-memories are interconnected, sometimes combining both capabilities
within a single intergrated circuit.) Roughly speaking, the processor contains the circuitry
that implements hardware primitive procedures such as arithmetic operations. (Not every
Logo primitive is a hardware primitive.) The memory holds the information used in
carrying out a program, including the program itself and whatever data it uses. The
memory is divided into millions of small pieces, each of which can hold a single value
(a number, a letter, and so on).* Each small piece has an which is a number
used to select a particular piece; the metaphor is the street address of each house on a
long street. The hardware primitive procedures include a operation that takes a
memory address as its input and finds the value in the specified piece of memory, and
a command that takes an address and a value as inputs and puts the given value
into the chosen piece of memory.

With this background we can understand how lists and arrays differ. To be specific,
suppose that we have a collection of five numbers to store in memory. If we use an array,
that means that Logo finds five pieces of memory to hold the five values, like
this:

If instead we use a list, Logo finds the memory for each of the five values as that
value is computed. The five memory slots might not be consecutive, so each memory slot
must contain not only the desired value but also a to the next slot. That is, each
slot must contain an additional number, the address of the next slot. (What I’m calling
a “slot” must therefore be big enough to hold two numbers, and in fact Logo uses what
we call a for each, essentially an array of length two.) Since we don’t care about the
actual numeric values of the addresses, but only about the pairs to which they point, we
generally use arrows to represent pointers pictorially:

#1

#3 #5

#2

#4

list
address

load

load
load

null pointer,

random access.

n
n

O

n n

n O n

dynamic allocation.

148 Chapter 3 Algorithms and Data Structures

The last pair of the list has a a special value to indicate that there is no next
pair following it, indicated by the diagonal line.

Why do we bother to provide two aggregation mechanisms? Why don’t language
designers just pick the best one? Clearly the answer will be that each is “the best” for
different purposes. In the following paragraphs I’ll compare several characteristics of
lists and arrays.

One advantage of arrays that should be obvious from these pictures is that a list uses
twice as much memory to hold the same number of values. But this is not generally an
important difference for modern computers; unless your problem is really enormous,
you don’t have to worry about running out of memory.

The most important advantage of arrays is that they are This means
that each member of an array can be found just as quickly as any other member, regardless
of its position within the array. If the program knows the address at which the array
begins, and it wants to find the th member of the array, only two operations are needed:
First add to the array’s address, then the value from the resulting address. This
takes a constant (and very short) amount of time, (1). By contrast, in a list there is
no simple arithmetic relationship between the address of the list’s first member and the
address of its th member. To find the th member, the program must the pointer
from the first pair, then use that address to the pointer from the second pair, and
so on, times. The number of operations needed is ().

On the other hand, the most important advantage of lists is This
means that the programmer does not have to decide ahead of time on how big the data
aggregate will become. (We saw an example recently when we wanted to add a child
to a node of an existing tree.) Consider the five-member aggregates shown earlier, and
suppose we want to add a sixth member. If we’ve used a list, we can say, for example,

#1

#3

#2

#4

#5

A

oldlistnewlist

foreach

make "newlist fput "A :oldlist

Logo’s Underlying Data Structures 149

and all Logo has to do is find one new pair:

By contrast, once an array has been created we can’t expand it, because the new address
would have to be adjacent to the old addresses, and that piece of memory might already
be used for something else. To make an array bigger, you have to allocate a complete
new array and copy the old values into it.

Remember that arrays sacrifice efficient expansion in order to get efficient random
access. From the standpoint of program speed, one is not absolutely better than the
other; it depends on the nature of the problem you’re trying to solve. That’s why it’s best
if a language offers both structures, as Berkeley Logo does. For the very common case
of -like iteration through an aggregate, neither random access nor dynamic
allocation is really necessary. For a data base that can grow during the running of a
program, the flexibility of dynamic allocation is valuable. For many sorting algorithms,
on the other hand, it’s important to be able to jump around in the aggregate and so
random access is useful. (A programmer using arrays can partially overcome the lack
of dynamic allocation by preallocating a too-large array and leaving some of it empty at
first. But if the order of members in the array matters, it may turn out that the “holes”
in the array aren’t where they’re needed, and so the program still has to copy blocks
of members to make room. Also, such programs have occasional embarrassing failures
because what the programmer thought was an extravagantly large array turns out not
quite large enough for some special use of the program, or because a malicious user
deliberately “overruns” the length of the array in order to evade a program restriction.)

delicious.Ice iscreamone

Spinachtwo

deal

:oldlist :newlist

fput
first butfirst

Lput last butlast

make "pile fput (first :hand) :pile
make "hand butfirst :hand

?
?

hand pile,

shuffling

sharable

O

O n

150 Chapter 3 Algorithms and Data Structures

make "one [Ice cream is delicious.]
make "two fput "Spinach butfirst butfirst :one

The solitaire program in Volume 2 of this series illustrates the different advantages
of lists and arrays. As in any card game, a solitaire player distributes the cards into several
small groups, each of which varies in size as the play continues. For example, a typical
step is to deal a card from the onto the each of which is represented as a list:

(The actual solitaire program uses somewhat different instructions to accomplish the
same effect, with a procedure that outputs the next available card after removing it
from the hand.)

On the other hand (no pun intended), the deck is easier when an array is
used to hold the card values, because the shuffling algorithm requires random jumping
around in the deck, but does not change the total number of cards, so that random
access is more important than dynamic allocation. Therefore, the program starts each
round of play with the deck in the form of an array of 52 cards. It shuffles the deck in
array form, and then copies the members of the array into a list, which is used for the
rest of that round. The advantage of an array for shuffling, and the advantage of a list for
dealing cards, together outweigh the time spent copying the array into the list.

An important consequence of dynamic allocation is that lists are data
structures. In the example above, contains five pairs and contains
six, but the total number of pairs used is six, not 11, because most of the same pairs
are part of both lists. That’s why the operation takes (1) time, unaffected by
the length of the list, as do and . (Now that you know how lists are
constructed using pairs and pointers, you should be able to understand something I’ve
mentioned earlier without explanation: , , and require () time.
It’s much faster to operate near the beginning of a list than near the end.) Arrays are
not sharable; each array occupies its own block of consecutive memory addresses.

When a data structure is both sharable and mutable, it’s possible to get into some
very mysterious, hard-to-detect bugs. Suppose we do this:

Ice iscream delicious.one

Spinachtwo

disgusting.

copy

:one :two

setitem

.setfirst .setbf

do

Logo’s Underlying Data Structures 151

?
?
Spinach is disgusting.

?
Ice cream is disgusting.

plist

.setfirst butfirst butfirst :two "disgusting.
print :two

print :one

* Also, this helps to explain the importance of property lists in Logo. Property lists are a safe
form of mutable list, because they are not sharable; that’s why the primitive outputs a
newly-allocated of the property list.

Then suppose you decide you don’t like spinach. You might say

But you haven’t taken into account that and share memory, so this instruction
has an unintended result:

This is definitely a bug!

It’s the combination of mutation and sharing that causes trouble. Arrays are mutable
but not sharable; the result of using to change a member of an array is easily
predictable. The trouble with list mutation is that you may change other lists besides the
one you think you’re changing. That’s why Berkeley Logo’s and
primitives have names starting with periods, the Logo convention for “experts only!” It’s
also why many other Logo dialects don’t allow list mutation at all.*

In order to explain to you about how something like this might happen, I’ve had to
tell you more about Logo’s storage allocation techniques than is ordinarily taught. One
of the design goals of Logo was that the programmer shouldn’t have to think in terms
of boxes and arrows as we’re doing now. But if you mutate sharable lists, you’d better
understand the boxes and arrows. It’s not entirely obvious, you see, when two lists
share storage. Suppose the example had been backwards:

i ce

t hat ' s

cr eam.

Del i c i ous,

one

spi nach.t wo

lput
fput

:one :two
:world :Canada

world
G47

:world
G47 world

not
not

into leave

name

by
accident;

152 Chapter 3 Algorithms and Data Structures

?
?
?
Delicious, that’s spinach.
?
?
Disgusting, that’s spinach.
?
Delicious, that’s ice cream.

make "one [Delicious, that’s ice cream.]
make "two lput "spinach. butlast butlast :one
print :two

.setfirst :two "Disgusting,
print :two

print :one

In this case the other list is mysteriously modified because when is used,
rather than as in the previous example, the two lists do share memory. That’s
a consequence of the front-to-back direction of the arrows connecting the boxes; it’s
possible to have two arrows pointing a box, but only one arrow can a box. You
can’t do this:

The combination of mutation and sharing, although tricky, is not all bad. The same
mutual dependence that made a mess of and in the example above was
desirable and helpful in the case of and earlier. That’s why Lisp has
always included mutable lists, and why versions of Logo intended for more expert users
have also chosen to allow list mutation.

Don’t think that without mutable lists you are completely safe from mutual depen-
dence. Any language in which it’s possible to give a datum a allows the programmer
to set up the equivalent of sharable data, just as I did in the final version of the tree of
cities. As far as the Logo interpreter is concerned, the value of the variable is some
generated symbol like . That value is immune to changes in other data structures.
But if we think of as containing, effectively, the entire tree whose root node is
called , then changes to other variables do, in effect, change the value of .
What is true is that without mutable lists you can’t easily set up a mutual dependence

you have to intend it.

By the way, by drawing the box and pointer diagrams with the actual data inside the
boxes, I may have given you the impression that each member of a list or array must be a
single number or letter, so that the value will fit in one memory address. Actually, each

D

A B C

E F

array

Program Listing

Program Listing 153

member can be a pointer to anything. For example, here’s a picture of an array that
includes lists,

{[A B C] D [E F]}

;;; Algorithms and Data Structures

;; Local optimization of quadratic formula

to quadratic :a :b :c
localmake "root sqrt (:b * :b-4 * :a * :c)
localmake "x1 (-:b+:root)/(2 * :a)
localmake "x2 (-:b-:root)/(2 * :a)
print (sentence [The solutions are] :x1 "and :x2)
end

;; Memoization of T function

to t :n :k
localmake "result gprop :n :k
if not emptyp :result [output :result]
make "result realt :n :k
pprop :n :k :result
output :result
end

to realt :n :k
if equalp :k 0 [output 1]
if equalp :n 0 [output 0]
output (t :n :k-1) + (t :n-1 :k)
end

154 Chapter 3 Algorithms and Data Structures

;; Speedup of Simplex function

to simplex :buttons
output 2 * first (cascade :buttons

[fput (sumprods butfirst ?2 ?1) ?1] [1]
[fput 1 nextrow ?2] [1 1])

end

to sumprods :a :b
output reduce "sum (map "product :a :b)
end

to nextrow :combs
if emptyp butfirst :combs [output :combs]
output fput (sum first :combs first butfirst :combs) ~

nextrow butfirst :combs
end

;; Sorting -- selection sort

to ssort :list
if emptyp :list [output []]
output ssort1 (first :list) (butfirst :list) []
end

to ssort1 :min :in :out
if emptyp :in [output fput :min ssort :out]
if lessthanp :min (first :in) ~

[output ssort1 :min (butfirst :in) (fput first :in :out)]
output ssort1 (first :in) (butfirst :in) (fput :min :out)
end

;; Sorting -- partition sort

to psort :list
if emptyp :list [output []]
if emptyp butfirst :list [output :list]
localmake "split ((first :list) + (last :list)) / 2
if lessthanp first :list :split ~

[output psort1 :split (butfirst :list) (list first :list) []]
output psort1 :split (butlast :list) (list last :list) []
end

Program Listing 155

to psort1 :split :in :low :high
if emptyp :in [output sentence (psort :low) (psort :high)]
if lessthanp first :in :split ~

[output psort1 :split (butfirst :in) (fput first :in :low) :high]
output psort1 :split (butfirst :in) :low (fput first :in :high)
end

;; Sorting -- count comparisons

to lessthanp :a :b
if not namep "comparisons [make "comparisons 0]
make "comparisons :comparisons+1
output :a < :b
end

to howmany
print :comparisons
ern "comparisons
end

;; Abstract Data Type for Trees: Constructor

to tree :datum :children
output fput :datum :children
end

;; Tree ADT: Selectors

to datum :node
output first :node
end

to children :node
output butfirst :node
end

;; Tree ADT: Mutator

to addchild :tree :child
.setbf :tree (fput :child butfirst :tree)
end

156 Chapter 3 Algorithms and Data Structures

;; Tree ADT: other procedures

to leaf :datum
output tree :datum []
end

to leaves :leaves
output map [leaf ?] :leaves
end

to leafp :node
output emptyp children :node
end

;; The World tree

to worldtree
make "world ~

tree "world ~
(list (tree "France leaves [Paris Dijon Avignon])

(tree "China leaves [Beijing Shanghai Guangzhou Suzhou])
(tree [United States]

(list (tree [New York]
leaves [[New York] Albany Rochester

Armonk])
(tree "Massachusetts

leaves [Boston Cambridge Sudbury
Maynard])

(tree "California
leaves [[San Francisco] Berkeley

[Palo Alto] Pasadena])
(tree "Washington

leaves [Seattle Olympia])))
(tree "Canada

(list (tree "Ontario
leaves [Toronto Ottawa Windsor])

(tree "Quebec
leaves [Montreal Quebec Lachine])

(tree "Manitoba leaves [Winnipeg]))))
end

to locate :city
output locate1 :city :world "false
end

Program Listing 157

to locate1 :city :subtree :wanttree
if and :wanttree (equalp :city datum :subtree) [output :subtree]
if leafp :subtree ~

[ifelse equalp :city datum :subtree
[output (list :city)]
[output []]]

localmake "lower locate.in.forest :city (children :subtree) :wanttree
if emptyp :lower [output []]
output ifelse :wanttree [:lower] [fput (datum :subtree) :lower]
end

to locate.in.forest :city :forest :wanttree
if emptyp :forest [output []]
localmake "child locate1 :city first :forest :wanttree
if not emptyp :child [output :child]
output locate.in.forest :city butfirst :forest :wanttree
end

to cities :name
output cities1 (finddatum :name :world)
end

to cities1 :subtree
if leafp :subtree [output (list datum :subtree)]
output map.se [cities1 ?] children :subtree
end

to finddatum :datum :tree
output locate1 :name :tree "true
end

;; Area code/city pairs ADT

to areacode :pair
output first :pair
end

to city :pair
output butfirst :pair
end

158 Chapter 3 Algorithms and Data Structures

;; Area code linear search

make "codelist [[202 Washington] [206 Seattle] [212 New York]
[213 Los Angeles] [215 Philadelphia] [303 Denver]
[305 Miami] [313 Detroit] [314 St. Louis]
[401 Providence] [404 Atlanta] [408 Sunnyvale]
[414 Milwaukee] [415 San Francisco] [504 New Orleans]
[608 Madison] [612 St. Paul] [613 Kingston]
[614 Columbus] [615 Nashville] [617 Boston]
[702 Las Vegas] [704 Charlotte]
[712 Sioux City] [714 Anaheim] [716 Rochester]
[717 Scranton] [801 Salt Lake City] [804 Newport News]
[805 Ventura] [808 Honolulu]]

to listcity :code
output city find [equalp :code areacode ?] :codelist
end

;; Area code binary tree search

to balance :list
if emptyp :list [output []]
if emptyp butfirst :list [output leaf first :list]
output balance1 (int (count :list)/2) :list []
end

to balance1 :count :in :out
if equalp :count 0 ~

[output tree (first :in) (list balance reverse :out
balance butfirst :in)]

output balance1 (:count-1) (butfirst :in) (fput first :in :out)
end

to treecity :code
output city treecity1 :code :codetree
end

to treecity1 :code :tree
if emptyp :tree [output [0 no city]]
localmake "datum datum :tree
if :code = areacode :datum [output :datum]
if :code < areacode :datum [output treecity1 :code lowbranch :tree]
output treecity1 :code highbranch :tree
end

Program Listing 159

to lowbranch :tree
if leafp :tree [output []]
output first children :tree
end

to highbranch :tree
if leafp :tree [output []]
output last children :tree
end

pascal

small subset

why

161

4 Programming Language Design

* The recent trend in computer science education has been a shift from Pascal to C or C++. I
haven’t followed that trend in this book because from my perspective C illuminates no new issues,
it has a more complicated syntax, and it leaves out one interesting Pascal feature: nested procedure
definitions (block structure). C++ does introduce the issue of object-oriented programming, but, I
think, not in a way that clarifies the issues; if you want to understand OOP you’d do better to learn
Object Logo.

Program file for this chapter:

This chapter and the next are about two related things: why different programming
languages are different and how a programming language is implemented. To make the
discussion concrete, I’ve chosen a specific language as an example: Pascal. That choice
seems appropriate partly because Pascal is very different from Logo and partly because it
is widely used as a vehicle for teaching introductory computer science, the same task I’m
attempting in this book using Logo.*

For the purposes of this book I’ve written a program that translates a
of Pascal into a simulated machine language. You can get a real Pascal compiler for
your computer that accepts the full language, and that’s what you should do if you want
to learn how to program in Pascal. I had two reasons for writing this subset compiler.
One is that some readers may not otherwise have access to a Pascal compiler, and mine,
despite its limitations, will enable you to explore the parts of the language I’m going to
be talking about. The other is that the next chapter is about how a compiler works, and
this compiler is accessible to examination because it’s written in Logo.

When you’re comparing two programming languages an obvious question to ask is
“which is better?” Please don’t use my partial Pascal compiler as the basis for an answer
to that question; it wouldn’t be fair. You already know my opinion, but my purpose in
this chapter is not to convince you of it. Instead I want you to understand each

•
•
•

:n

fact
*

for

Programming paradigms

programming paradigm

functional programming

sequential programming

162 Chapter 4 Programming Language Design

to fact :n
if :n=0 [output 1]
output :n * fact :n-1
end

to fact.seq :n
localmake "product 1
for [i 1 :n] [make "product (:product * :i)]
output :product
end

language is designed the way it is. For each of the language differences we’ll examine,
there are good reasons for either choice; the reasons that influence a language designer
will depend on the overall goals he or she has for this language.

Perhaps the most important aspect of the design of a programming language is the
that it encourages. A paradigm (it’s pronounced “para” as in

“parakeet” followed by “dime” as in ten cents) is an approach to organizing a complex
program: How do you combine the primitives of a language to accomplish harder tasks?
It’s an aspect of programming style, but when people say “style” they’re usually thinking
of smaller details, such as the use of comments in procedure definitions or choosing
sensible variable names. Perhaps an example of different paradigms will help.

Here’s how the factorial function is usually computed in Logo, using a recursive
operation:

The goal is to multiply several numbers together, the integers from 1 to . We do
this by carrying out one multiplication in each recursive invocation. This procedure is
written in the paradigm; the main tool for building up complexity
is composition of functions. In this example, the result of the recursive invocation
is composed with the primitive (multiplication) function.

Now consider this alternate approach:

This is an example of the paradigm, so called because the
instruction carries out a sequence of steps:

Multiply the accumulated product by 1.
Multiply the product by 2.
Multiply it by 3.

Programming paradigms 163

product

fact.seq
for

:=
make

* Even in Berkeley Logo, is a library procedure rather than a true primitive.

function fact(n:integer): integer;
begin
if n=0 then
fact := 1

else
fact := n * fact(n-1)

end;

function fact(n:integer): integer;
var product, i: integer;

begin
product := 1;
for i := 1 to n do
product := product * i;

fact := product
end;

for

... and so on. Instead of a composition of functions, we have a partial result stored in a
box, the variable . At each step, the old value is replaced with an updated value.

Although can be written in Logo, it’s not the most natural Logo style.
Most versions of Logo don’t even provide as a primitive command, although (as
we saw in Volume 2) it can be written in Logo.* As we’ve seen, Logo encourages the
functional programming paradigm, in which complicated computations are achieved by
means of function composition and recursion. Logo encourages functional programming
partly through its emphasis on recursion rather than on iterative control structures, and
partly because lists are used as the main data aggregation mechanism. As we saw in
Chapter 3, lists encourage an aggregate to be built up one member at a time (as recursive
functions do), and discourage mutation (which is crucial to the sequential approach).

In Pascal, the opposite is true. It’s possible to write a recursive factorial function in
Pascal:

but a habitual Pascal programmer would be much more likely to write this function in
sequential style:

(Don’t worry, I know the details of the notation are a mystery to you, but you should
still be able to see the relationship between each Pascal version and the corresponding
Logo version. The only crucial point about notation right now is that is the Pascal
assignment operator, like in Logo. We’ll go into the details of Pascal syntax later.)

⋅
−

∑
n

i
()1

=0





f

choose

f n

n
i

f i n >

n

f

f

164 Chapter 4 Programming Language Design

to simplex :buttons
output 2 * f :buttons
end

to f :n
if equalp :n 0 [output 1]
output cascade :n [? + ((choose :n (#-1)) * f (#-1))] 0
end

to simplex :buttons
output 2 * first (cascade :buttons

[fput (sumprods butfirst ?2 ?1) ?1] [1]
[fput 1 nextrow ?2] [1 1])

end

to sumprods :a :b
output reduce "sum (map "product :a :b)
end

to nextrow :combs
if emptyp butfirst :combs [output :combs]
output fput (sum first :combs first butfirst :combs) ~

nextrow butfirst :combs
end

Here’s a more complicated example, showing how data aggregates are used in the
two paradigms. In Chapter 2 we explored the Simplex lock problem by computing the
function

() =
(), if 0;

1, if = 0.

using these procedures:

Here, the mathematical definition of in terms of itself is reflected in the recursive
nature of the operation . In Chapter 3, we improved the efficiency of the procedure
by remembering smaller values of to avoid recomputing them; similarly, instead of
computing the function separately each time, we used old values to compute
new ones:

⋅ ⋅ ⋅

f

f f f f x
f

f f

f

f f

Programming paradigms 165

cascade
cascade

cascade map reduce

f
combs

f
combs for

for sumprods
simplex

to simplex.seq :buttons
localmake "f (array :buttons+1 0)
localmake "combs (array :buttons+1 0)
local [left right]
setitem 0 :f 1
setitem 0 :combs 1
for [i 1 :buttons] [
setitem :i :f 0
make "right 0
for [j 0 :i-1] [
make "left :right
make "right item :j :combs
setitem :j :combs :left+:right
setitem :i :f (item :i :f) + (item :j :f)*(item :j :combs)

]
setitem :i :combs 1

]
output 2 * item :buttons :f
end

The recursive nature of is less obvious in the second implementation, but the overall
technique is still composition of functions. (Recall that the job of is to invoke a
function repeatedly, in the pattern (((()))). In this case, is computing
two functions in parallel; one is a list of values of the Simplex function and the other
is a row of Pascal’s triangle.) The availability of higher order functions (in this program
I’ve used , , and) is another way in which Logo encourages the
functional paradigm.

In sequential style, the composition of functions is replaced by a sequence of steps
in which values are stored in boxes (members of arrays) and repeatedly replaced with
different values:

It may take some effort to convince yourself that this procedure really computes the
same results as the other versions! Within the procedure, the array contains the values
(0), (1), . . . as they are computed one by one; the array contains one row (at a

time) of Pascal’s triangle.

The procedure first puts (0) into the zeroth position of the array and the first
row of Pascal’s triangle (containing just one 1) in the array. Then comes a
loop that computes (1), then (2), and so on, until the desired value is reached. An
inner loop fills the same purpose as the function in the previous version
of : It computes the sum of several terms, not by function composition but by
adding each term into the sum separately. The instruction

f[i]

item setitem
for
begin end

for
for for

block structure:

166 Chapter 4 Programming Language Design

setitem :i :f (item :i :f) + (item :j :f)*(item :j :combs)

function simplex(buttons:integer): integer;
var left, right, i, j: integer;

f, combs: array [0..30] of integer;

begin
f[0] := 1;
combs[0] := 1;
for i := 1 to buttons do
begin
f[i] := 0;
right := 0;
for j := 0 to i-1 do
begin
left := right;
right := combs[j];
combs[j] := left+right;
f[i] := f[i] + (f[j] * combs[j])

end;
combs[i] := 1

end;
simplex := 2 * f[buttons]

end;

adds one additional term to the sum each time it’s carried out.

The sequential Simplex calculation looks bizarre in Logo, but it’s much more natural
in Pascal:

Pascal is well suited to this style of programming for several reasons. One is that the
notation for a member of an array is more compact and more readable than Logo’s use
of procedure invocations (calling to examine an array member and to
modify its value). Another, already mentioned, is that is built into Pascal. Perhaps
most important is Pascal’s the keywords and can be used to
group what would otherwise be separate instructions into one larger instruction. In
Logo, the instructions that are repeated in a loop must be part of a list, one of
the inputs to the procedure; in principle, the entire invocation is one Logo
instruction line.

Both Logo and Pascal are compromises between the functional paradigm and the
sequential paradigm. (In Logo, turtle graphics programs are most often done sequen-
tially, whereas the manipulation of words and sentences is generally done functionally.)
But Logo is much more of a functional language than Pascal, partly because it supports

map cascade

run apply
for while do.until

ifelse

make
setitem .setfirst

object-oriented programming.

methods,
variables,

message

Programming paradigms 167

* Today, we think of programming languages primarily as ways to express problems, rather than
as ways to model how computer hardware works. This shift in attitude has allowed the development
of non-sequential paradigms. We design languages that are well matched to the problems we want
to solve, rather than well matched to the hardware we’re using.

list processing (you can create lists in Pascal, but it’s painful), and even more importantly
because in Logo it’s easy to invent higher order functions such as and .
Pascal programmers can’t readily invent their own control structures because there’s
nothing like or in Pascal, and the built-in control structures are all sequential
ones. (In addition to , Pascal has equivalents to the and commands
in the Berkeley Logo library.) As another example, Logo’s primitive can be
used either as a command or as an operation, but the Pascal equivalent works only as a
command.

Not all programming languages compromise between paradigms. It’s rare these days
to see a purely sequential language, but it used to be common; both the original Fortran
language and the early microcomputer versions of BASIC lacked the ability to handle
recursive procedures. Purely functional languages are not widely used in industry, but
are of interest to many computer science researchers; the best known example is called
ML. In a purely functional language, there is no assignment operator (like in Logo)
and no mutators (like or).

There are other programming paradigms besides sequential and functional, al-
though those are the oldest. The sequential paradigm came first because the actual
digital computer hardware works sequentially; Fortran, which was the first higher level
programming language, was initially viewed as merely an abbreviation for the computer’s
hardware instruction sequences.* The functional paradigm was introduced with Lisp, the
second-oldest programming language still in use. Although Lisp is not a pure functional
language (it does have assignment and mutation), its design is firmly based on the idea
of functions as the way to express a computation.

Another paradigm that’s very popular today is In this
paradigm, we imagine that instead of having a single computer carrying out a single
program, the computational world includes many independent “objects,” each of which
can carry out programs on its own. Each object includes which are like local
procedures, and just like the variables we’ve used all along except that each
belongs to a particular object. If one object wants to know the value of another object’s
variable, the first object must send a to the second. A message is a request to
carry out a method, so the messages that each object accepts depends on the methods
that it knows.

forward

ask 7 [forward 100]

simulation

every

information hiding;

logic programming declarative
programming.

168 Chapter 4 Programming Language Design

Logo has had a sort of glimmer of the object paradigm for many years, because many
dialects of Logo include multiple turtles. To move a turtle, you send it a message, using
a notation something like

to send a message to turtle number 7. But this notation, even though it conveys some of
the flavor of object-oriented programming, is not truly representative of the paradigm. In
a real object system, it would be possible for specific turtles to have their own, specialized

methods. Turtle 7, for example, might be a special “dotted turtle” that draws
dotted lines instead of solid lines when it moves forward. One Logo dialect, called Object
Logo, does provide a genuine object capability.

Object-oriented programming fits naturally with the sort of problem in which the
computer is modeling or simulating a bunch of real-world objects; in fact, the paradigm
was invented for programs, used to try to answer questions such as “Will it
eliminate the traffic jams if we add another lane to this highway, or should we spend the
money on more frequent bus service instead?” The objects in the simulation program
are people, cars, buses, and lanes. Another example of a problem that lends itself to the
object paradigm is a window system, such as the one in Mac OS or in Microsoft Windows.
Each window is an object; when a window is displayed so as to hide part of another
window, the new window must send a message to the hidden one telling it not to display
the hidden region.

Some people argue that object-oriented programming should be used for pro-
gramming problem, not because the independent object metaphor is always appropriate
but because using objects helps with if every variable belongs to a
specific object, the program is less likely to have the kind of bug in which one part of a
program messes up a data structure that’s used in another part. This can be particularly
important, they say, in a large programming problem in which several programmers work
on different pieces of the program. When the different programmers’ procedures are
put together, conflicts can arise, but the object paradigm helps isolate each programmer’s
work from the others. Although this argument has some merit, I’m cautious about any
claim that one particular paradigm is best for all problems. I think programmers should
be familiar with all of the major paradigms and be able to pick one according to the
needs of each task.

Another important programming paradigm is called or
In this approach, the programmer doesn’t provide an algorithm at all, but

instead lists known facts about the problem and poses questions. It’s up to the language
implementation to search out all the possible solutions to a question. We saw a very

read write

Interactive and Non-interactive Languages

database

universal;

Then

Interactive and Non-interactive Languages 169

simplified version of this paradigm in the discussion of logic problems in Chapter 2. Logic
programming is especially well suited to problems, in which we pose questions
such as “Who are all the employees of this company who work in the data processing
division and have a salary above $40,000?” But, like all the paradigms I’ve mentioned,
logic programming is any problem that can be solved by a computer at all can
be expressed as a logic program. Logic programming is quite popular in Japan and in
Europe, but not so much in the United States, perhaps just because it wasn’t invented
here.

You use Logo by interacting with the language processor. You issue an instruction,
Logo does what you’ve told it and perhaps prints a result, and then you issue another
instruction. You can preserve a sequence of instructions by defining a procedure, in
which case that procedure can be invoked in later instructions. But you don’t have to
define procedures; young children generally start using Logo by issuing primitive turtle
motion commands one at a time. Defining procedures can be thought of as extending
the repertoire of things Logo knows how to do for future interaction.

By contrast, you write a Pascal program as a complete entity, “feed” the program to
the Pascal language processor all at once, and then wait for the results. Often, when
you type your program into the computer you aren’t dealing with the Pascal processor
at all; you use another program, a text editor, to let you enter your Pascal program into
the computer. you start up Pascal itself. (Most microcomputer versions of Pascal
include a simple text editor for program entry, just as Logo includes a procedure editor.)
Typically you store your Pascal program as a file on a disk and you give the file name as
input to the Pascal language processor.

Keep in mind that it’s the process of writing and entering a program that’s non-
interactive in Pascal. It’s perfectly possible to write a Pascal program that interacts with
the user once it’s running, alternating and statements. (However, user
input is one of the things I’ve left out of my Pascal subset, as you’ll see shortly.)

If you want to write your own Pascal programs for use with my compiler, you’ll need
a way to create a disk file containing your new program, using either Logo’s procedure
editor or some separate editing program. The sample Pascal programs in this chapter
are included along with the Logo program files that accompany this book.

Our first example of a complete Pascal program is a version of the Tower of Hanoi
puzzle. I described this problem in the first volume of this series. The Logo solution
consists of two procedures:

tower

... and so on.

hanoi 5 "a "b "c

program name;

170 Chapter 4 Programming Language Design

To use these procedures you issue an instruction like

Here is the corresponding Pascal program. This program is in the file . (As
you can see, Pascal programs begin with a in all of the examples in this
chapter the file name is the same as the program name, although that isn’t a requirement
of Pascal.) Never mind the program details for the moment; right now the point is to
make sure you know how to get the Pascal compiler to translate it into Logo.

to hanoi :number :from :to :other
if equalp :number 0 [stop]
hanoi :number-1 :from :other :to
movedisk :number :from :to
hanoi :number-1 :other :to :from
end

to movedisk :number :from :to
print (sentence [Move disk] :number "from :from "to :to)
end

?
Move disk 1 from a to b
Move disk 2 from a to c
Move disk 1 from b to c
Move disk 3 from a to b
Move disk 1 from a to c

program tower;
{This program solves the 5-disk tower of hanoi problem.}

procedure hanoi(number:integer;from,onto,other:char);
{Recursive procedure that solves a subproblem of the original problem,
moving some number of disks, not necessarily 5. To move n disks, it
must get the topmost n-1 out of the way, move the nth to the target
stack, then move the n-1 to the target stack.}

procedure movedisk(number:integer;from,onto:char);
{This procedure moves one single disk. It assumes that the move is
legal, i.e., the disk is at the top of its stack and the target stack
has no smaller disks already. Procedure hanoi is responsible for
making sure that’s all true.}

begin {movedisk}
writeln(’Move disk ’,number:1,’ from ’,from,’ to ’,onto)

end; {movedisk}

... and so on.

compile

prun
program

compile "tower

prun "tower

source file

workspace,

Interactive and Non-interactive Languages 171

begin {hanoi}
if number <> 0 then

begin
hanoi(number-1,from,other,onto);
movedisk(number,from,onto);
hanoi(number-1,other,onto,from)

end
end; {hanoi}

begin {main program}
hanoi(5,’a’,’b’,’c’)

end.

?

?
Move disk 1 from a to b
Move disk 2 from a to c
Move disk 1 from b to c
Move disk 3 from a to b
Move disk 1 from a to c

Once you have a Pascal program in a disk file, you compile it using the
command with the file name as input:

The compiler types out the program as it compiles it, partly to keep you from falling
asleep while it’s working but also so that if the compiler detects an error in the program
you’ll see where the error was found.

When the compiler has finished processing the (the file containing the
Pascal program) it stops and you see a Logo prompt. At this point the program has been
translated into a simulated machine language. To run the program, say

The input to the (Pascal run) command is the program name—the word that
comes after at the beginning of the source file.

The difference between an interactive and a non-interactive language is not just
an arbitrary choice of “user interface” style. This choice reflects a deeper distinction
between two different ways of thinking about what a computer program is. In Logo there
is really no such thing as a “program.” Each procedure is an entity on its own. You
may think of one particular procedure as the top-level one, but Logo doesn’t know that;
you could invoke any procedure directly by using an interactive instruction naming that
procedure. Logo does have the idea of a a collection of procedures stored

algs

program

Why

kinds

compiled interpreted
compilers:

machine language
simulated

interpreters:

172 Chapter 4 Programming Language Design

* I say “English” because I am writing for an English-speaking audience, but in fact Pascal was
designed by a largely European committee including native speakers of several languages; principal
designer Niklaus Wirth is Swiss. Their languages all have periods and semicolons, though.

** This is another case in which the same word has two unrelated technical meanings. The use
of “object” in describing the result of a compilation (object program, object language) has nothing
to do with object-oriented programming.

together in a file because they are related. But a workspace need not be a tree-structured
hierarchy with one top-level procedure and the others as subprocedures. It can be a
collection of utility procedures with no top-level umbrella, like the Berkeley Logo library.
It can be a group of projects that are conceptually related but with several independent
top-level procedures, like the two memoization examples, the two sorting algorithms, the
tree data base, and other projects in the workspace of Chapter 3.

By contrast, a Pascal program is considered a single entity. It always begins with
the word and ends with a period, by analogy with an English sentence. (The
subprocedures and the individual statements within the program are separated with
semicolons because they are analogous to English clauses.*) It makes no sense to give
the Pascal compiler a source file containing just procedures without a main program.

did Logo’s designers choose an interactive program development approach,
while Pascal’s designers chose a whole-program paradigm? Like all worthwhile questions,
this one has more than one answer. And like many questions in language design, this
one has two broad of answer: the answers based on the implementation strategy for
the language and the ones based on underlying programming goals.

The most obvious answer is that Pascal is a language and Logo is an
one. That is, most Pascal language processors are programs that translate a
program from one language into another, like translating a book from English into
Chinese. Most compilers translate from a source language like Pascal into the native

of whatever computer you’re using. (My Pascal compiler translates into
a machine language that’s actually processed by Logo procedures.) By contrast,
most Logo versions are programs that directly carry out the instructions in
your source program, without translating it to a different (“object”) language.**

To understand why interpreters tend to go with interactive languages, while compilers
usually imply “batch mode” program development, think about the “little person”
metaphor that’s often used in teaching Logo. If you think of the computer as being full
of little people who know how to carry out the various procedures you’ve written, the
one who’s really in charge is not the one who carries out your top-level procedure, but

run

hanoi

if for

intermediate

portable

why

Interactive and Non-interactive Languages 173

rather the one representing the Logo interpreter itself. If the procedure specialists are
like circus performers, the Logo interpreter is the ringmaster. The circus metaphor is
actually a pretty good one, because on the one hand each performer is an autonomous
person, but at the same time the performers have to cooperate in order to put on a
show. The relevance of the metaphor to this discussion is that in a compiled language
there is no “ringmaster.” The compiler is more closely analogous to a bird that hatches
an egg (your program) and then pushes the new bird out of the nest to fend for itself.
In a compiled language there is no provision for an interactive interface to which you
can give commands that control the running of your program, unless your program itself
includes such an interface.

Saying the same thing in a different way, the Logo interpreter is part of the
environment in which any Logo program operates. (That’s why Logo can provide a
facility like the command to allow your program to construct new Logo instructions
as it progresses.) But a Pascal compiler does its job, translating your program into
another form, and then disappears. Whatever mechanisms are available to control your
program have to be built into the program. For example, my Pascal version of the Tower
of Hanoi program includes the top-level instruction that starts up the solution for five
disks. In the Logo version, that instruction isn’t considered part of the program; instead,
you direct Logo interactively to invoke the procedure.

The distinction between compiled and interpreted languages is not as absolute as it
once was. There are versions of Logo in which each procedure is compiled as you define
it, but it’s still possible to give instructions interactively. (Some such versions include
both a compiler and an interpreter; in others, the “interpreter” just arranges to compile
each instruction you type as if it were a one-line program.) And many current Pascal
compilers don’t compile into the machine language of the host computer, but rather into
an language called “P-code” that is then interpreted by another program,
a P-code interpreter. P-code is called an intermediate language because the level of
detail in a P-code program is in between that of a language you’d want to use and that
of the underlying machine language. Its primitives are simple and quick, not complex
control structures like or . The advantage of a Pascal language processor based
on P-code is that the compiler is —it can work on any computer. All that’s needed
to start using Pascal on a new computer is a P-code interpreter, which is a relatively easy
programming project.

So far I’ve been explaining a language design decision (interactive or non-interactive
development) in terms of an implementation constraint (interpreted or compiled). But
it’s possible to look beyond that explanation to ask someone would choose to design
a compiler rather than an interpreter or vice versa.

incremental

never

program specification

inside

174 Chapter 4 Programming Language Design

The main advantage of a compiler is that the finished object program runs fast,
since it is directly executed in the native language of the host computer. (An interpreter,
too, ultimately carries out the program in the computer’s native language. But the
interpreter must decide which native language instructions to execute for a given source
language instruction each time that instruction is evaluated. In a compiled language
that translation process happens only once, producing an object program that requires
no further translation while it’s running.) The tradeoff is that the compilation process
itself is slow. If you’re writing a program that will be used every day forever, the compiled
language has the advantage because the development process only happens once and
then the program need not be recompiled. On the other hand, during program
development the compiled language may be at a disadvantage, because any little change
in one instruction requires that the entire program be recompiled. (For some languages
there are compilers that can keep track of what part of the program you’ve
changed and only recompile that part.)

A compiled language like Pascal (or Fortran or C), then, makes sense in a business
setting where a program is written for practical use, generally using well-understood
algorithms so that the development process should be straightforward. An interpreted
language like Logo (or Lisp or BASIC) makes more sense in a research facility where
new algorithms are being explored and the development process may be quite lengthy,
but the program may never be used in routine production. (In fact nobody uses BASIC
for research purposes, because of other weaknesses, but its interactive nature is a plus.)
Another environment in which interaction is important is education; a computer science
student writes programs that may actually be run except for testing. The program
is of interest only as long as it doesn’t work yet. For such programs the speed advantage
of a compiled program is irrelevant.

There are also reasons that have nothing to do with implementation issues. I’ve
spoken earlier of two conflicting views of computer science, which I’ve called the
software engineering view and the artificial intelligence view. In the former, the program
development process is seen as beginning with a clear, well-defined idea of what the
program should do. This idea is written down as a that forms the
basis for the actual programming. From that starting point, the program is developed
top-down; first the main program is written in terms of subprocedures that are planned
but not written yet; then the lower-level procedures are written to fill in the details. No
procedure is written until it’s clear how that procedure fits into a specific overall program.
Since Pascal’s developers are part of the software engineering camp, it’s not surprising
that a Pascal program takes the form of an integrated whole in which each procedure
must be a larger one, rather than a collection of more autonomous procedures.
By contrast, Logo is a product of the artificial intelligence camp, for whom program

Block Structure

do for

step

end

tower
begin

end
end end

begin
end end

do

integrated development
environment

debugger,

title line,
body

header

statement part

Block Structure 175

development is a more complicated process involving bottom-up as well as top-down
design. AI researchers recognize that they may begin a project with only a vague idea of
what the finished program will do or how it will be organized. It’s appropriate, then, to
start by writing program fragments that deal with whatever subtasks you understand,
then see how those pieces can fit together to complete the overall project. Development
isn’t a straight line from the abstract specification to the concrete subprocedures; it’s a
zigzag path in which the programmer gets an idea, tries it out, then uses the results as the
basis for more thinking about ideas.

Traditionally, an interpreter has been the primary tool to facilitate interactive
program development. Recently, though, software developers have brought a more
interactive flavor to compiled languages by inventing the idea of an

(IDE), in which a compiler is one piece of a package that also includes
a language-specific editor (one that knows about the syntax of the language and au-
tomatically provides, for example, the keyword that must follow a in Pascal),
online documentation, and a which is a program that permits you to follow the
execution of your program one step at a time, like the command in Berkeley Logo.
The idea is to have your cake and eat it too: You use the IDE tools during program
development, but once your program is debugged, you’re left with a fast compiled version
that can be run without the IDE.

So far we’ve been looking at how each language thinks about a program as a whole. We
turn now to the arrangement of pieces within a program or a procedure.

A Logo procedure starts with a followed by the instructions in the procedure
and then the line. The purpose of the title line is to give names to the procedure

itself and to its inputs.

The structure of a Pascal program is similar in some ways, but with some complica-
tions. The program starts with a line, very much analogous to the title line in Logo.
The word in the header line of our sample program is the name of the program.
Skipping over the middle part of the program for the moment, the part between
and in the last few lines is the of the program, just as in Logo. The word

in the Pascal program is not exactly analogous to the line in a Logo procedure;
it’s a kind of closing bracket, matching the before it. The period right after the
final is what corresponds to the Logo line.

What makes Pascal’s structure different from Logo’s is the part I’ve skipped over, the
declaration of procedures. In Logo, every procedure is a separate entity. In Pascal, the

hanoi tower

a b i j

hanoi tower

movedisk begin end

v p

movedisk
hanoi movedisk

program tower;
var a,b:real;

i,j:integer;
procedure hanoi(number:integer;from,onto,other:char);

part of

same

mean
local variable

formal parameters

actual arguments.

176 Chapter 4 Programming Language Design

* I’m misleading you a little bit by calling it a “header line.” Like any part of a Pascal program,
the header can extend over more than one line, or can be on the same line with other things. The
end of the header is marked with a semicolon. In Pascal a line break is just like a space between
words. However, there are conventions for properly formatting a Pascal program. Even though

declaration of the procedure , for example, is the program . This
particular program uses no global variables, but if it did, those variables would also have
to be declared within the program. If the program used global variables , , , and
then it might begin

In summary, a Pascal program consists of

1. the header line
2. the declaration part (variables and procedures)
3. the statement part
4. the final punctuation (period)

But notice that the procedure , declared inside , has the structure
as the entire program. It begins with a header line; its declaration part includes the
declaration of procedure ; it has a statement part between and ; its
final punctuation is a semicolon instead of a period.

What does it for one procedure to be declared inside another? You already
know what a means; if a variable belongs to a procedure then that
variable exists only while the procedure is running; at another point in the program
there might be a different variable with the same name. In Pascal, the same is true for
local procedures. In our example program, the procedure exists only while
procedure is running. It would be an error to try to invoke directly
from the main program.

The header line for a procedure can include names for its inputs, just as the title
line of a Logo procedure names its inputs. A useful bit of terminology is that the variable
names in the procedure header are called to distinguish them from the
expressions that provide particular input values when the procedure is actually invoked;
the latter are called The words “parameter” and “argument” are both
used for what we call an “input” in Logo.*

Statement Types

tower

begin end

to If
true false

true

statement statement statement

condition statement

block.
block structured

compound statements.

between

simple

Every

Statement Types 177

begin ; ; end

begin
hanoi(number-1,from,other,onto);
movedisk(number,from,onto);
hanoi(number-1,other,onto,from)

end

if then

the Pascal compiler doesn’t care about spacing and line breaks, people always do it as I’ve shown
you here, with subordinate parts of the program indented and each statement on a separate line.

The sequence of header, declarations, statements, and punctuation is called a
Pascal is called a language because of the way blocks can include smaller
blocks. Another aspect of block structure is Pascal’s use of A
sequence of the form

is called a compound statement. An example from the program is

(Notice that semicolons go statements within this sequence; none is needed after
the last statement of the group. This syntactic rule is based on the analogy between Pascal
statements and English clauses that I mentioned earlier.) For example, Pascal includes a
conditional statement whose form is

The “statement” part can be a single statement, like a procedure call, or it can
be a compound statement delimited by and . Because the general term
“block structured language” refers to any syntactic grouping of smaller units into a larger
one, including compound statements, you may hear the word “block” used to refer to a
compound statement even though that’s not the official Pascal meaning.

In Logo we don’t talk about different kinds of statements like compound, simple, and
so on. Logo instruction (well, all but) is a procedure invocation. , for
example, is a procedure whose first input is or and whose second input is a
list containing instructions to be carried out if the first input is . In Pascal there are
several different kinds of statements, each with its own syntax.

condition statement
statements condition

variable expression

structured

assignment

178 Chapter 4 Programming Language Design

if

while do.until While if
begin

end do repeat until
begin

end for

make

var
:= = equalp make

write type
writeln print

while do ;
repeat until

while x < 0 do
begin
increase(x);
writeln(x)

end;

repeat
increase(x);
writeln(x)

until x >= 0;

:=

slope := ychange/xchange

You know about compound statements. You’ve seen one example of , which is
one of several statements in Pascal. Other examples include

These are like the and tools in Berkeley Logo. , like ,
requires a single statement (which can be a compound statement between and

) after the . However, the words and implicitly delimit a compound
statement, so you can put more than one statement between them without using
and . Another example is , which you’ll see in use in a moment. Continuing the
analogy with English grammar, a compound statement is like a compound sentence with
several independent (or coordinate) clauses; a structured statement is like a complex
sentence, with a dependent (or subordinate) clause. (If you always hated grammar, you
can just ignore this analogy.)

There are basically only two kinds of simple statement: the procedure call, which
you’ve already seen, and the statement used to give a variable a new value.
This latter is Pascal’s version of in Logo; it takes the form

As I’ve already mentioned, the variable must have been declared either in a procedure
heading or in a declaration. (Assignment is represented with the two-character
symbol because by itself means rather than .)

I say there are “basically” only two kinds because each of these has some special
cases that look similar but follow different rules. For example, printing to the computer
screen is done by what looks like an invocation of (analogous to in Logo)
or (“write line,” analogous to). But these are not ordinary procedures.

before

Statement Types 179

movedisk tower
writeln

:1

movedisk :1

:x < 10 while
if If if

if true
false While

while true false

if while

number:1

writeln(1,2,3,4);
writeln(1000,2000,3000,4000);

1 2 3 4
1000 2000 3000 4000

if :x < 10 [increment "x]
while [:x < 10] [increment "x]

Not only do they take a variable number of arguments, but the arguments can take a
special form not ordinarily allowed. In the procedure in the program,
one of the arguments to is

The “ ” here means “using one print position unless more are needed to fit the number.”
Pascal print formatting is designed to emphasize the printing of numbers in columns, so
the default is to print each number with a fairly large number of characters, with spaces
at the left if the number doesn’t have enough digits. The exact number of characters
depends on the type of number and the dialect of Pascal, but 10 is a typical number for
integers. So

will give a result looking something like this:

In I had to say “ ” to avoid all that extra space.

What are the pros and cons of using a variety of syntax rules for different kinds
of statements? One reason for the Pascal approach is that differences in meaning can
be implicit in the definitions of different statement types instead of having to be made
explicit in a program. Don’t worry; you’re not expected to understand what that sentence
meant, but you will as soon as you see an example. In Logo we say

Why is the predicate expression in a quoted list in the case of but
not for ? wants the expression to be evaluated once, is invoked. The
actual input to is not that expression but the value of the expression, either or

. , on the other hand, wants to evaluate that expression repeatedly. If Logo
evaluated the expression ahead of time and gave an input of or it
wouldn’t be able to know when to stop repeating.

The fact that wants the condition evaluated once but wants to evaluate it
repeatedly has nothing to do with the syntax of Logo; the same is true in Pascal. But in
Pascal you say

if while

if while

make

make

x

"x :x

semantic
Syntax

semantics

name value

180 Chapter 4 Programming Language Design

if x<10 then increment(x);
while x<10 do increment(x);

make "new :old

new := old

x := x+1

make "x :x+1

In Logo the fact that ’s condition is evaluated in advance but ’s isn’t is made
explicit by the use of square brackets. In Pascal it’s just part of the definitions
of the and statements. (is the form in which something is represented;

is the meaning of that something.)

One more example: Beginning students of Logo often have trouble understanding
why you say

to assign the value of one variable to another variable. Why is the first quoted and the
second dotted? Of course you understand that it’s because the first input to is the

of the variable you want to set, while the second is the that you want to give
it. But in Pascal this distinction is implicit in the semantic definition of the assignment
statement; you just say

Since beginning Logo students have trouble with quotes and dots in , you might
think that the Pascal approach is better. But beginning Pascal students have a trouble of
their own; they tend to get thrown by statements like

This doesn’t look quite as bad as the BASIC or Fortran version in which the symbol for
assignment is just an equal sign, but it’s still easy to get confused because the symbol “ ”
means two very different things in its two appearances here. In the Logo version

the explicit difference in appearance between and works to our advantage.

Which way do you find it easier to learn something: Do you want to start with a
simple, perhaps partly inaccurate understanding and learn about the difficult special
cases later, or do you prefer to be told the whole truth from the beginning? I’ve posed the
question in a way that shows my own preference, I’m afraid, but there are many people
with the opposite view.

The issue about whether or not to make the semantics of some action implicit in the
syntax of the language is the most profound reason for the difference between Logo’s
single instruction syntax and Pascal’s collection of statement types, but there are other

condition statement

Shuffling a Deck Using Arrays

if

if while

while
run

cards

for

extensibility.

Shuffling a Deck Using Arrays 181

while(,)

program cards;
{Shuffle a deck of cards}

var ranks:array [0..51] of integer;
suits:array [0..51] of char;
i:integer;

procedure showdeck;
{Print the deck arrays}

begin {showdeck}
for i := 0 to 51 do
begin
if i mod 13 = 0 then writeln;
write(ranks[i]:3,suits[i]);

end;
writeln;
writeln

end; {showdeck}

implications as well. One virtue of the Pascal compound statement is that it makes
for short, manageable instruction lines. You’ve seen Logo procedures in these books
in which one “line” goes on for three or four printed lines on the page, e.g., when
the instruction list input to contains several instructions. It’s a particularly painful
problem in the versions of Logo that don’t allow continuation lines.

On the other hand, Logo’s syntactic uniformity contributes to its In the
example above, is a Logo primitive, whereas is a library procedure written in
Logo. But the difference isn’t obvious; the two are used in syntactically similar ways. You
can’t write control structures like in Pascal because there’s nothing analogous to

to allow a list of instructions to be an input to a procedure, but even if you could, it
would have to take the form

because that’s what a procedure call looks like. But it’s not what a built-in Pascal control
structure looks like.

It’s time for another sample Pascal program. Program is a Pascal version of the
problem of shuffling a deck of cards that we discussed in Chapter 3. It includes local
variables, assignment statements, and the structured statement. It also will lead us
into some additional language design issues.

182 Chapter 4 Programming Language Design

procedure deck;
{Create the deck in order}

var i,j:integer;
suitnames:packed array [0..3] of char;

begin {deck}
suitnames := ’HSDC’;
for i := 0 to 12 do
for j := 0 to 3 do
begin
ranks[13*j+i] := i+1;
suits[13*j+i] := suitnames[j]

end;
writeln(’The initial deck:’);
showdeck

end; {deck}

procedure shuffle;
{Shuffle the deck randomly}

var rank,i,j:integer;
suit:char;

begin {shuffle}
for i := 51 downto 1 do {For each card in the deck}
begin
j := random(i+1); {Pick a random card before it}
rank := ranks[i]; {Interchange ranks}
ranks[i] := ranks[j];
ranks[j] := rank;
suit := suits[i]; {Interchange suits}
suits[i] := suits[j];
suits[j] := suit

end;
writeln(’The shuffled deck:’);
showdeck

end; {shuffle}

begin {main program}
deck;
shuffle

end.

−

prun "cards

Lexical Scope

do

reserved word

invoked

Lexical Scope 183

for for

to downto
to

onto to

random

random

cards showdeck deck shuffle
showdeck

showdeck

?
The initial deck:

1H 2H 3H 4H 5H 6H 7H 8H 9H 10H 11H 12H 13H
1S 2S 3S 4S 5S 6S 7S 8S 9S 10S 11S 12S 13S
1D 2D 3D 4D 5D 6D 7D 8D 9D 10D 11D 12D 13D
1C 2C 3C 4C 5C 6C 7C 8C 9C 10C 11C 12C 13C

The shuffled deck:

2D 11D 6S 9D 6C 10H 8D 11C 3D 4C 5H 4S 1D
5C 5D 6D 9S 4D 8C 13S 13D 10C 9H 10D 5S 12D

13H 9C 3C 1S 10S 4H 12S 11S 12H 11H 2H 3H 1H
13C 8H 7C 2C 1C 7S 6H 2S 7D 8S 12C 3S 7H

Experienced Pascal programmers will notice that this program isn’t written in the
most elegant possible Pascal style. This is partly because of issues in Pascal that I don’t
want to talk about (records) and partly because of issues that I want to talk about in
the next section (scope).

Here’s what happens when you run the program:

The Pascal is somewhat like the Berkeley Logo in its semantics, although
of course the syntax is quite different. The step value must be either 1 (indicated by the
keyword) or 1 (). By the way, if you’ve been wondering why I changed one
of the variable names in the Tower of Hanoi program from in the Logo version to

in the Pascal version, it’s because is a in Pascal and can’t be used as
the name of anything.

The Pascal standard does not include a function. Most practical versions of
Pascal do provide a random number generator of some sort; since there’s no standard,
I’ve chosen to implement the kind that’s most useful for the kind of programming I’m
interested in, namely the Logo that takes an integer argument and returns an
integer between zero and one less than the argument.

Program has three procedures: , , and . Each of these
is declared directly in the top-level program. However, is not directly
at top level; it’s used by the other two procedures. (This is one of the questionable bits of
programming style I’ve put in for the sake of the following discussion; ordinarily I think
I’d have put the statements that invoke in the main program block.)

must

{showdeck, cards}

{movedisk, hanoi, tower}

{showdeck, deck, cards}

for
for cards

for
for

for

showdeck i

i deck shuffle
deck deck showdeck i

showdeck

showdeck i deck

showdeck i

showdeck

movedisk tower

showdeck

not
free reference. is

bound

dynamic scope:

the block within which the current procedure was
declared,

lexical
lexical environment.

dynamic environment.

184 Chapter 4 Programming Language Design

* Actually, the Pascal language requires that the variable used in a statement be
declared in the same procedure in which the appears; program is not legal Pascal
for that reason. What’s the purpose of that restriction? Suppose that this procedure was invoked
from within another loop in another procedure, and both use the same variable; then both
procedures would be trying to assign conflicting values to that variable. Berkeley Logo’s
automatically makes its variable local to the procedure itself, for the same reason. But my
Pascal compiler lets us get away with breaking this rule, and I’ve done it deliberately to make a
point.

If you read the program carefully you’ll see that uses a variable but
does declare that variable.* (When a variable is used but not declared within a certain
procedure, that use of the variable is called a A use of a variable that
declared in the same block is called a reference.) There are three variables named

in the program: one in the outer block, one in , and one in . When, for
example, the main program calls and calls , which variable does

use?

In Logo the answer would be that uses the belonging to , the
procedure that invoked it. That’s because Logo follows the rules of A
free reference to a variable is directed to the variables of the procedure that invoked the
current one, then if necessary to the variables of the procedure that invoked that one,
and so on up to the global variables. (Dynamic scope is discussed more fully in the first
volume of this series.)

In Pascal, uses the belonging to the main program. That’s because
a free reference to a variable is directed to

then to the block surrounding that one, and so on up to the outermost program
block. This rule is called scope. The set of blocks surrounding a given block,
smaller to larger, is its The lexical environment of is

The lexical environment of in the program is

The set of procedure invocations leading to a given procedure is its
A procedure’s dynamic environment isn’t always the same; for example, the dynamic
environment of is sometimes

v

v

v

while for run

lexicon,

in motion;

before

Lexical Scope 185

{showdeck, shuffle, cards}

while [:degrees < 0] [make "degrees :degrees+360]

and sometimes

The word “lexical” is the adjective form of which means “dictionary.” It’s used in
this computer science context because the lexical context of a procedure has to do with
where it’s defined, just as words are defined in a dictionary. The word “dynamic” means

it’s used because the dynamic context of a procedure keeps changing as the
program runs.

What are the reasons behind the choice of lexical or dynamic scope? This is another
choice that was originally made for implementation reasons. It turns out to be easy
for an interpreter to use dynamic scope, but for a compiler it’s much easier to use
lexical scope. That’s because the interpreter makes the decision about which variable
to use while the program is running and the dynamic environment is known, but the
compiler has to translate the program it is run. At “compile time” there isn’t one
fixed dynamic environment, but there is a single, already-known lexical environment.
Originally, interpreted languages like Logo, Lisp, and APL all used dynamic scope, while
compiled ones like Fortran and Pascal used lexical scope. (There was even a period of
time when Lisp systems offered both an interpreter and a compiler, and the behavior of
the same program was different depending on whether you compiled it or interpreted it
because of different scope rules.)

More recent dialects of Lisp, such as Common Lisp and Scheme, have been designed
to use lexical scope even when interpreted. Their designers think lexical scope is better
for reasons that don’t depend on the implementation technique. One reason is that
dynamic scope allows for programming errors that don’t arise when lexical scope is used.
In Logo, suppose you write a procedure that makes a free reference to some variable

. What you intended, let’s say, was to use a global variable by that name. But you’ve
forgotten that your procedure is sometimes invoked by another procedure that you wrote
two weeks ago that happens to have an input named . It can be very hard to figure
out why your procedure is suddenly getting the wrong variable. With lexical scope, it’s
much easier to keep track of the context in which your procedure is defined, to make
sure there are no local variables in the lexical environment.

It’s possible to argue in favor of dynamic scope also. One argument is that in a
lexically scoped language certain kinds of tool procedures can’t be written at all: the
ones like or that take an instruction list as input and the list repeatedly.
Suppose you write a procedure in Logo that contains an instruction like

degrees
degrees

while

while

pause

a
b c

c {c,b,a} c {c,a}
a c a b

b

showdeck deck cards

distinct

all

restriction

another procedure

186 Chapter 4 Programming Language Design

What variable do you want this instruction to use? Presumably you mean the
same variable that is used by other instructions in the same procedure. But if
Logo used lexical scope, then wouldn’t have access to the local variables of your
procedure. (It’s possible to design other features into a lexically scoped language to
get around this limitation, but the necessary techniques are more complicated than the
straightforward way you can write in Logo.)

Another argument for dynamic scope, with particular relevance to Logo, is that
dynamic scope fits better with the expectations of an unsophisticated programmer who
hasn’t thought about scope at all. One of the design goals of Logo is to be easy for
such beginners. Until now we’ve been talking about scope in terms of naming conflicts:
what happens if two variables have the same name. But suppose you write a program
with a bunch of procedures, with a bunch of variable names used as inputs. It
makes life very simple if all those variables are available whenever you want them, so you
don’t have to think in such detail about how to get a certain piece of information down
the procedure invocation chain to a subprocedure. If some variables are accessible to
subprocedures but others aren’t, that’s one more mystery to make programming seem
difficult. In particular, dynamic scope can simplify the debugging of a Logo program.
If you arrange for your program to at the moment when an error happens, then
you can enter Logo instructions, with all of the local variables of pending procedure
invocations available, to help you figure out the reason for the error. Debuggers for
lexically scoped languages require a more complicated debugging mechanism in which
the programmer must explicitly shift focus from one procedure to another.

In the situations we’ve seen, lexical scope always acts as a on the availability
of variables to subprocedures. That is, a procedure’s lexical environment is always a
subset of its dynamic environment. (Suppose procedure includes the definition of
procedure , which in turn includes the definition of . So the lexical environment
of is . You might imagine that ’s dynamic environment could be
if procedure invoked directly, but in fact that’s illegal. Just as can’t use ’s local
variables, it can’t use ’s local procedures either. The reason the dynamic environment
can be different from the lexical one at all is that two procedures can be part of the
same block, like and in the program.) In Lisp, it’s possible for
a procedure to return as its output—not just the name of the procedure
or the text of the procedure, as we could do in Logo, but the procedure itself, lexical
environment and all. When such a procedure is later invoked from some other part of
the program, the procedure’s lexical environment may not be a subset of its dynamic
environment, and so lexical scope gives it access to variables that it couldn’t use under
dynamic scope rules. That’s a powerful argument in favor of lexical scope for Lisp, but it
doesn’t apply to Pascal.

Typed Variables

var a : array [1..10] of array [1..4] of integer;

cards deck showdeck showdeck deck

integer 23
real -5.0
char ’Q’

Boolean true false

word, list, array.
variable

char, integer, array of char, array of integer,
packed array of char.

scalar

Typed Variables 187

One special scope rule in Pascal applies to procedures declared in the same block:
The one declared later can invoke the one declared earlier, but not the other way around.
In the program, can call but can’t call . There
is no deep reason for this restriction; it’s entirely for the benefit of the compiler. One of
the design goals of Pascal was that it should be easy to write a compiler that goes through
the source program once, from beginning to end, without having to back up and read
part of the program twice. In particular, when the compiler sees a procedure invocation,
it must already know what inputs that procedure requires; therefore, it must have already
read the header of the subprocedure. Usually you can get around this restriction by
rearranging the procedures in your program, but for the times when that doesn’t work
Pascal provides a kludge that lets you put the header in one place in the source file and
defer the rest of the procedure until later.

Berkeley Logo has three data types: and (Numbers are just words that
happen to be full of digits.) But a in Logo does not have a type associated with it;
any datum can be the value of any variable.

Pascal has lots of types, and every variable belongs to exactly one of them. In the
sample programs so far we’ve used five types: and

When a variable is declared, the declaration says what type it is.

The selection of data types is the area in which my Pascal compiler is most lacking;
I’ve implemented only a few of the possible types. I’ll describe the ones available in my
compiler in detail and give hints about the others.

The fundamental types out of which all others are built are the types that
represent a single value, as opposed to an aggregate like an array or a list. Pascal has four:

a positive or negative whole number (e.g.,)
a number including decimal fraction part (e.g.,)
a single character (e.g.,)

or

Pascal also has several kinds of aggregate types. The only one that I’ve implemented is
the array, which is a fixed number of uniform elements. By “uniform” I mean that all
members of the array must be of the same type. Full Pascal allows the members to be of
any type, including an aggregate type, as long as they’re all the same, so you could say

a[3,2]

1..10

frequency[’w’]

multiple indices;

range;

is

ordinal

packed array

bytes

188 Chapter 4 Programming Language Design

something

* The Berkeley Logo primitive can take an optional second input to specify a different
starting index.

var a : array [1..10, 1..4] of integer;

make "ten array 10

var ten:array [1..10] of

var frequency : array [’a’..’z’] of integer;

array

to get an array of arrays. But in my subset Pascal the members of an array must be scalars.
This restriction is not too severe because Pascal arrays can have instead of
the above you can use the equivalent

This declaration creates a two-dimensional array whose members have names like .

The notation is called a it indicates the extent of the array. Berkeley
Logo arrays ordinarily start with index one, so a Logo instruction like

is equivalent to the Pascal declaration

except that the Logo array need not have uniform members.* (Also, a subtle difference
is that the Logo array is an independent datum that can be the value of a variable just as
a number can be the value of a variable. The Pascal array the variable; you can change
the contents of individual members of the array but it’s meaningless to speak of changing
the value of that variable to be something other than that array.)

In Pascal an index range doesn’t have to be numbers; you can use any scalar type
except real:

might be used in a program that counts the frequency of use of letters, such as a
cryptography program. The members of this array would be used by referring to things
like . (In Pascal documentation there is a word for “scalar type other
than real”: It’s called an type.)

A is one that’s represented in the computer in a way that takes up as
little memory as possible. Ordinary arrays are stored so as to make it as fast as possible to
examine or change an individual element. The distinction may or may not be important
for a given type on a given computer. For example, most current home computers have
their memory organized in that are just the right size for a single character. On such

packed
cards

suitnames

suitnames

words

n

constant string

Typed Variables 189

suitnames := ’HSDC’

suitnames := ’HSDC ’

var a,b:array [3..17] of real;

a := b

var primes : array [1..4] of integer;

primes[1] := 2;
primes[2] := 3;
primes[3] := 5;
primes[4] := 7

a computer, an array of char and a packed array of char will probably be represented
identically. But one of my favorite larger computers, the Digital Equipment Corporation
PDP-10, had its memory organized in of 36 bits, enough for five 7-bit characters
with one bit left over. A packed array of char, on the PDP-10, would be represented with
five characters per word; an ordinary array of char might store only one character per
word, wasting some space in order to simplify the task of finding the th character of the
array.

My compiler, which is meant to be simple rather than efficient, ignores the
declaration. The reason I used it in the program is to illustrate a rule of Pascal:
The statement

assigns a to the array variable , and such assignments are
allowed only to packed arrays of char. Also, the size of the array must equal the length of
the string. If were an array of length 10, for example, I’d have had to say

filling up the unused part of the array explicitly with spaces.

In an assignment statement, the type of the variable on the left must be the same as
the type of the expression on the right. An assignment can copy one array into another
if it involves two variables of exactly the same type:

but except for the case of packed arrays of char mentioned above there is no way to
represent a constant array in a Pascal program. If you want an array of all the prime
numbers less than 10 you have to initialize it one member at a time:

Additional Types in Standard Pascal

not

record;

pointer

quite

190 Chapter 4 Programming Language Design

17
17.0 trunc

round Trunc
trunc(4.99) 4 Round

+ - * /

/
div mod

=
equalp < > <= >=

<>
and or not

cards

(x < 0) and (y <= 28)

var carddeck: array [0..51] of record
rank:integer;
suit:char

end;

carddeck[4].rank

In scalar assignments, a slight relaxation of the rules is allowed in that you may assign
an integer value to a real variable. The value is converted to a real number (e.g.,
to). The opposite is allowed, but there are two built-in functions (for
“truncate”) and that can be used to convert a real value to an integer. cuts
off the fraction part, so is . rounds to the nearest integer.

Pascal provides the usual infix arithmetic operations , , , and , following the
usual precedence rules, just as in Logo. The result of any of these is integer if both
operands are integer, otherwise real, except that the result of (division) is always
real. There are integer division operations (integer quotient) and (integer
remainder); both operands to these must also be integers. The relational operators
(like in Logo), (less than), (greater than), (less than or equal to),
(greater than or equal to), and (not equal to) take two real or integer operands and
yield a Boolean result. There are also Boolean operators , , and , just like the
Logo ones except that they use infix syntax:

Standard Pascal, but not my version, includes other aggregate types besides the array.
One such type is the a record is a non-uniform aggregate, but the “shape” of
the aggregate must be declared in advance. For example, you can declare a record
containing three integers and an array of 10 characters. In the program, instead
of two separate arrays for ranks and suits I could have said

Then to refer to the rank of card number 4 I’d say

and that would be an integer. A is a variable whose value is the memory address of
a record; pointer variables can be used to implement dynamic data structures like Logo
lists by building explicitly the collections of boxes and arrows illustrated in some of the
pictures in Chapter 3. But it’s hard to build anything in Pascal that’s like Logo

Critique of Typed Variables

type
var

string

integer string
type

John Paul

dieface
integer

requires

subrange

enumerated

Critique of Typed Variables 191

type string = packed array [1..10] of char;

procedure paul(words:packed array [1..10] of char);

type dieface = 1..6;

type Beatle = (John, Paul, George, Ringo);

lists, even using pointers, because what’s in each box has to belong to some particular
predeclared type.

Real Pascal also includes user-defined types. There is a declaration that goes
before the declaration in a block:

Variable declarations can then use as the type of the variable being declared. In
fact, standard Pascal the use of named types in certain situations. For example, in
a procedure header the formal parameters must be given a named type (either a built-in
scalar type like or a defined type like); since I haven’t implemented

my compiler allows

although standard Pascal doesn’t allow such a header.

You can also define types:

This type is really an integer, but it’s constrained to have only values in the given range.
This particular one might be used for a variable whose value is to represent the result of
rolling a six-sided die. Finally, there are types:

This type is used for a variable that represents one of a small number of possible things.
In reality it’s also a kind of integer; the word represents 0, is 1, and so on. In
fact, it’s only during the compilation of the program that Pascal remembers the names
of the possible values; you can’t read or print these variables during the running of the
program.

Why would anyone want to use a subrange or other restricted type? If the program
works using a variable of type , it would work just as well if the variable were of
type . The only difference is that using a subrange type is slower because the

use

not not

192 Chapter 4 Programming Language Design

cards shuffle i j
ranks suits

integer

while
i

i

for while

var i,j : 0..51;

i := 0;
while i <= 51 do
begin
writeln(ranks[i]:3,suits[i]);
i := i+1

end

* I know I said I wasn’t going to try to convince you which language is better, but on this
particular point I really think the Pascal people don’t have a leg to stand on.

program has to check (at run time) to make sure that any value you try to assign to that
variable is in the approved range.

According to Pascal enthusiasts, the virtue of restricted types, like the virtue of typed
variables in the first place, is that their use helps catch program bugs. For example, in the

program, procedure has variables and that are used to index the
arrays and . How do we know there isn’t an error in the program so that
one of those variables is given a value that isn’t a valid index for those arrays? Such an
error would be caught when we the index variable to try to refer to an array element
that doesn’t exist, but it’s easier to debug the program if we get the error message at the
moment when the variable is assigned the incorrect value. So I should have declared

instead of using . (Of course one reason I didn’t use a subrange type is that I
didn’t implement them in my compiler!)

The trouble is that strict typing of variables is an unnecessary pain in the neck.*
Take this business of array index bounds. Here is a possible piece of Pascal program:

There’s nothing wrong with this. It will print the value of each member of the two arrays,
starting from index 0 and continuing through 51. However, at the end of the
statement, the variable has the value 52. This is an error; the program does try
to refer to member 52 of the arrays. But if we declared as a subrange type the way we
“should,” the program will give an error message and die. This particular example could
be rewritten using instead of to avoid the problem, but it turns out that there
are many algorithms that jump around in an array in which the index variable sometimes
takes on a value just outside the bounds of the array. Some sort algorithms, for example,
are like that.

done

done

integer

array of char

char

robust

Critique of Typed Variables 193

to addnumbers
print [Enter the numbers, one per line.]
print [Type the word ’done’ when done.]
print se [The sum is] addnumbers1 0
end

to addnumbers1 :sum
localmake "next readnumber
if emptyp :next [output :sum]
output addnumbers1 :sum+:next
end

to readnumber
localmake "input readlist
if emptyp :input [output readnumber]
if equalp :input [done] [output []]
if numberp first :input [output first :input]
print [Please type numbers only.]
output readnumber
end

Typed variables work against program robustness. (A program is one that
keeps calm in the face of bad data or other user error, rather than dying abruptly.) For
example, suppose we want to find the sum of a bunch of numbers. Some human being is
going to type these numbers into the computer, one at a time. We don’t know in advance
how many there are, so we let the person type when done. Since the typist is only
human, rather than a computer, we want to make sure the program doesn’t blow up if
he accidentally types something other than a number or . Here’s one way to do it
in Logo:

If the user makes a typing mistake, the program says so, ignores the bad input, and keeps
going. Now, how shall we write this in Pascal? Into what type of variable should we read
each number from the keyboard? If we pick , then any entry of a non-number
will incite Pascal to print an error message and terminate the program. Instead we can
read the keyboard entry into an , one character at a time. Then anything
the user types is okay, but we can’t do arithmetic on the result—we can’t add it into the
accumulated sum. We can read it as s and then write a procedure that knows how
to look at a string of digits and compute the number that those digits represent. But this
is not the sort of thing that we should need to do ourselves in a high-level programming
language.

done

Procedures and Functions

union types.

variants,
type inference,

functions procedures

194 Chapter 4 Programming Language Design

to square :x
output :x * :x
end

function RealSquare(x:real): real;
begin
RealSquare := x * x

end;

function IntSquare (x:integer): integer;
begin
IntSquare := x * x

end;

Why should a programmer have to decide in advance whether or not the numbers
that a program will manipulate are integers? In Logo I can write a general numeric
procedure like this one:

but in Pascal I need one for each kind of number:

Why pick on the distinction between integer and non-integer values? Why not positive
and negative values, or odd and even values? The historical answer is that computer
hardware uses two different representations for integer and real numbers, but so what?
That doesn’t mean the distinction is relevant to the particular program I’m writing.

The language ML, which I mentioned earlier as an example of a pure functional
language, tries to provide the best of both worlds on this issue. It does require that
variables have types, as in Pascal, to help catch programming errors. But two features
make ML’s type system more usable than Pascal’s. One is the provision of It’s
possible to say that a particular variable must contain either a number or the word ,
for example. (Pascal has something like this, called but they’re less flexible.)
Second, the ML compiler uses a technique by which the compiler can often
figure out the appropriate type for a variable without an explicit declaration.

In Logo a distinction is made between those procedures that output a value (operations)
and those that don’t (commands). Pascal has the same categories, but they’re called

and respectively.

arguments

output

multi

memo[n,k]

type

not
right

t n k k
n

t n k

Procedures and Functions 195

function whatever () : integer;

program multi;
{Multinomial expansion problem}

var memo: array [0..4, 0..7] of integer;
i,j: integer;

function t(n,k:integer) : integer;

function realt(n,k:integer) : integer;
{without memoization}

begin {realt}
if k = 0 then
realt := 1

else
if n = 0 then
realt := 0

else
realt := t(n,k-1)+t(n-1,k)

end; {realt}

A function is a block just like a procedure block except for the minor changes
needed to accommodate the fact that the function produces a value. First of all, the
function header has to say what the of the result will be:

The function’s type must be a scalar, not an aggregate type. This restriction is in the
standard only to make life easier for the compiler, and some versions of Pascal do allow
array-valued (or record-valued, etc.) functions.

The other difference is that in the statement part of a function block we have to
tell Pascal what the value will be. That is, we need something equivalent to in
Logo. Pascal’s convention is that somewhere in the block an assignment statement must
be executed that has the name of the function as its left hand side. That is, the function
name is used in an assignment statement as though it were a variable name. (However,
the name must be declared as a variable.) This notation may be a little confusing,
because if the same name appears on the side of the assignment statement, it signals
a recursive invocation of the function. Perhaps an example will make this clear.

Program is a Pascal version of the memoized multinomial function from
Chapter 3. In the Logo version, (,) was memoized using the property name on the
property list named . In the Pascal version, since we have multi-dimensional arrays, it is
straightforward to use a two-dimensional array and store (,) in .

output

realt t

multi

196 Chapter 4 Programming Language Design

begin {t}
if memo[n,k] < 0 then
memo[n,k] := realt(n,k);

t := memo[n,k]
end; {t}

begin {main program}
{initialization}
for i := 0 to 4 do
for j := 0 to 7 do
memo[i,j] := -1;

{How many terms in (a+b+c+d)7̂?}
writeln(t(4,7));

end.

realt := 0

The assignment statements like

are the ones that control the values returned by the functions. These assignment
statements are not exactly like in Logo because they do not cause the function
to return immediately. They act just like ordinary assignments, as if there were actually
a variable named or ; when the statement part of the function is finished,
whatever value was most recently assigned to the function name is the one that’s used
as the return value. (In fact the functions in program are written so that only
one such assignment is carried out, and there are no more statements to execute after
that assignment. That’s a pretty common programming style; it’s rare to change the
assignment to the function name once it’s been made.)

Apart from arbitrary syntactic details, Pascal’s design with respect to procedures and
functions is similar to Logo’s, so I can’t ask why the two languages made different choices.
It’s probably just as well, since you shouldn’t get the impression that Pascal is the exact
opposite of Logo in every way. Instead we could compare these two languages with Lisp,
in which there are only operations, or most versions of BASIC, in which there are only
commands. But I don’t have the space to teach you enough about those languages to
make such a comparison meaningful.

Call by Value and Call by Reference

make "baz 23
increment "baz
print :baz

increment
push pop

increment

var
v Increment

name

variable parameter; value parameters.

Call by Value and Call by Reference 197

to increment :var
make :var (thing :var)+1
end

?
?
?
24

procedure increment(var v:integer);
begin
v := v+1;

end;

program whatzit;

var gub:integer;
begin
...
gub := 5;
increment(gub);
...
end.

Consider this Logo procedure:

The input to is the of a variable that you want to increment. A similar
technique is used, for example, in the and library procedures, which take the
name of a stack variable as input. The reason this technique is necessary is that we want
the procedure to be able to modify the variable—to assign it a new value.

The same technique won’t work in Pascal. For one thing, the association of a name
with a variable only exists at compile time. Once the compiled program is running, the
variables have no names, only addresses in computer memory. Also, takes
advantage of dynamic scope because the variable it wants to modify isn’t its own, but
rather a variable accessible to the calling procedure.

Here’s how you do it in Pascal:

What’s new here is the reserved word in the argument list. This word indicates that
is a ordinary ones are called would be

used in a program like this:

increment(2+3);

v := v+1

gub := gub+1

call by value
value

must

another name for the same variable

does
call by reference refers

198 Chapter 4 Programming Language Design

increment var
increment(gub)

increment gub
gub

v increment increment
v

increment v
gub v

v

v
increment

increment v

v gub

v

v

increment
increment var

Suppose had been written without the word in its header. In that
case, when the statement was executed here’s what would happen.
First, the actual argument to (namely) would be evaluated. The value
would be 5, since that’s the value of the variable . Then that value would be assigned
to the local variable in . Then the instruction part of would
be run. The assignment statement there would change the value of from 5 to 6. Then

would be finished, and its local variable would disappear. All of this would
have no effect on the variable . This ordinary interpretation of is called
because what gets associated with the name is the of the actual argument, 5 in
this example, regardless of how that 5 was derived. For example, the instruction in the
main program could have been

and it wouldn’t have mattered.

Making a variable parameter instead of a value parameter changes the operation
of the program substantially. When is invoked, the actual argument be
a variable name, not an arbitrary expression. Pascal does not find the value of the actual
argument and pass that value along to ; instead, the formal parameter
becomes named in the actual argument. In this example,

becomes another name for . So the assignment statement

isn’t really about the local variable at all; it’s another way to say

and so it affect the variable in the calling block. This use of variable parameters is
called because the formal parameter () to another variable.

One way to think about call by reference is that it provides, in effect, a sort of
limited dynamic scope. It’s a way for a superprocedure to allow a subprocedure access
to one selected variable from the superprocedure’s lexical environment. Because this
permission is given to the subprocedure explicitly, call by reference doesn’t give rise to
the possible naming bugs that argue against dynamic scope in general. Also, dynamic
scope as used in Logo has the problem that you have to be careful not to allow a formal
parameter name to be the same as the name of a variable you want to use from the
superprocedure’s environment. For example, in the Logo version of , what
if you wanted to use to increment a variable named ? If you try to say

Parameters in Logo: Call by Binding

increment

increment
v

var

increment explicitly name

Parameters in Logo: Call by Binding 199

increment "var

print butlast butfirst [Yes, this is a list evidently.]

it won’t work, because will end up trying to increment its own formal
parameter. (This is why the inputs to some of the Berkeley Logo library procedures have
such long, obscure names.) But the Pascal would have no trouble with a
variable named in the calling procedure.

On the other hand, call by reference is a little mysterious. If you’ve understood all
of the above, and you know exactly when you should say in a formal parameter list
and when you shouldn’t, you’re doing better than most beginning Pascal students. In
Logo there is only one rule about passing inputs to procedures; to make something like

work, you pass the of a variable as input.

Call by reference is generally used when a subprocedure needs to change the value
of a variable in a superprocedure. But there is also another situation in which some
people use it. Suppose you want to write a procedure that takes a large array as an
argument. If you make the array a value parameter, Pascal will allocate space for the array
in the subprocedure and will copy each member of the array from the superprocedure’s
variable into the subprocedure’s variable as the first step in invoking the subprocedure.
This time-consuming array copying can be avoided by declaring the array as a variable
parameter, thereby giving the subprocedure direct access to the superprocedure’s array.
Pascal enthusiasts consider this use of call by reference cheating, though, because it
creates the possibility that the subprocedure could accidentally change something in the
superprocedure’s array. Call by value is safer, from this point of view.

Does Logo use call by value or call by reference for passing arguments to procedures?
The official textbook answer is “call by value,” but I find that misleading, because those
two categories really make sense only in a language with a particular idea of what a
variable is. A Logo variable is different from a Pascal variable in a subtle way. If you can
understand this difference between the two languages, you’ll have learned something
very valuable.

In Logo, the world is full of data (words, lists, and arrays). These data may or may
not be associated with variables. For example, when you enter an instruction like

Logo Lisp APL

name

value

langs

name

value

mylangs

langs

mylangs langs

i j

make

make "langs [Logo Lisp APL]

make "mylangs :langs

var this,that: array [1..10] of integer;

this := that;

variable
binding

is bound to

same

is

separate

two different integers

binding

the datum

200 Chapter 4 Programming Language Design

three different lists are involved: the one you typed explicitly in the instruction and two
smaller lists. None of these three lists is the value of any variable. A is an
association (called a) between a name and a datum. If you enter the instruction

we say that the name the indicated list. If you then do

we say that the name is bound to the datum as . We’re dealing with
one list that has two names.

In Pascal a variable is not a binding in this sense. A Pascal variable the datum it
contains. If you have two array variables

and you do an assignment like

then there are two arrays that happen to have equal values stored in them. The
same thing is true, although it’s less obviously meaningful, about scalars. If integer
variables and both have the value 10, then there are that happen
to have the same value. That’s not the way a mathematician uses the word “integer”;
to a mathematician, there is only one 10. But to a Pascal programmer, an integer isn’t
something like 10; an integer is a box, and in the box there might be something like 10.

In Logo, a variable assignment (that is, an invocation of) changes the
of the given variable name so that that name is now associated with a different datum. In
Pascal, a variable assignment changes the value of that is unalterably associated
with the named variable.

setitem

actual other
proc actual

proc formal

pointer

another

mutable
can

Parameters in Logo: Call by Binding 201

The official textbook story is this: A Logo variable is a box, just as a Pascal variable
is a box. The difference is that what goes in the box, in Logo, is a to the datum
of interest. (A binding, officially, is the connection between the variable’s name and its
box. So there are two levels of indirection in finding what we ordinarily think of as the
value of a variable: First the binding gets us from the name to a box—a location in the
computer’s memory—and then in that box we find a pointer, which gets us to
location in memory, which holds the actual information we want. In this model, call by
reference can easily be described by saying that two different names are bound to the
same box.) From this point of view, it makes sense to say that Logo uses call by value,
because the “value” in question is the pointer, which is indeed copied when a procedure
is called.

But ordinarily we don’t think of the value of a Logo variable as being a pointer; we
think that the value of the variable is a word, a list, or an array. From that point of view,
parameter passing in Logo acts like call by reference in some ways but like call by value
in other ways. For example, call by value makes a copy of the datum being passed. Logo
does not copy the actual datum, so in that respect it’s like call by reference. On the
other hand, assigning a new value to a Logo formal parameter does not change the value
of any variables in the calling procedure; in that way, Logo works like call by value. On
the third hand, if the datum to which the formal parameter is bound is a data
structure, such as an array, a Logo subprocedure change the value of a variable in the
calling procedure, not by assigning a new value to the formal parameter name (changing
the binding), but by invoking on the shared datum (altering the bound datum
itself).

The chart on the next page is a graphic representation of the ideas in the last
paragraph. The three columns represent Pascal call by value, Pascal call by reference,
and Logo. In each case the main program has two arrays named and ;
it then invokes a procedure using as the actual argument providing the
value for ’s formal parameter .

[0] [1]

3 4

actual
formal

[0] [1]

5 6

other

[0] [1]

5 6

actual
formal

[0] [1]

5 6

other

(values copied)

[0] [1]

3 6

actual
formal

[0] [1]

5 6

other

(value copied)

[0] [1]

3 4

actual
[0] [1]

5 6

other

[0] [1]

3 4

formal

[0] [1]

3 4

actual
[0] [1]

5 6

other

[0] [1]

5 6

formal

(values copied)

[0] [1]

3 4

actual
[0] [1]

5 6

other

[0] [1]

3 6

formal

(value copied)

name

value

formal

name

value

other

name

value

actual

[0] [1]

3 4

[0] [1]

5 6

name

value

formal

name

value

other

name

value

actual

[0] [1]

3 4

[0] [1]

5 6

(change binding)

name

value

formal

name

value

other

name

value

actual

[0] [1]

3 6

[0] [1]

5 6

(value copied)

Pascal: call by value Pascal: call by reference Logo

initial
situation

procedure
assigns
entire array

formal
 ← other

procedure
assigns
one member

formal[1]
 ← other[1]

202
C

hapter4
Program

m
ing

L
anguage

D
esign

body body

body

proc
proc other

formal

proc

Parameters in Logo: Call by Binding 203

Pascal call by value Pascal call by reference

Logo

The first row of the figure shows the situation when is entered, before its body is
executed. The second row shows what happens if contains an assignment of
to , i.e.,

in either Pascal version or

in the Logo version. The third row shows what happens if, instead, contains an
assignment of just one member of the array, i.e.,

program pgm; program pgm;
type pair = array [0..1] type pair = array [0..1]

of integer; of integer;
var actual,other: pair; var actual,other: pair;

procedure proc(formal:pair); procedure proc(var formal:pair);
begin begin

end end

begin begin
actual[0] := 3; actual[0] := 3;
actual[1] := 4; actual[1] := 4;
other[0] := 5; other[0] := 5;
other[1] := 6; other[1] := 6;
proc(actual) proc(actual)

end. end.

make "actual {3 4}@0
make "other {5 6}@0
proc :actual

to proc :formal

end

formal := other

make "formal :other

formal[1] := other[1]

p≤p ≥p

2
−

actual proc

setitem 1 :formal (item 1 :other)

Programming Pearls

n
n

O n

median

204 Chapter 4 Programming Language Design

in either Pascal version or

in the Logo version. Your goal is to see what happens to in each case when
is finished.

Our final Pascal program example, showing the use of call by reference, is a version
of the partition sort from Chapter 3 that uses the technique of exchanging two array
members when appropriate to divide the array into two partitions “in place” (without
requiring the allocation of extra arrays to hold the partitions). This program is adapted
from Jon Bentley’s version in (Addison-Wesley, 1986). It’s much closer
in style to the real quicksort than my list-based version.

In the partition sort program of Chapter 3, I had to put a lot of effort into preventing
a situation in which every member of the list being sorted ended up on the same side
of the partition value. The quicksort solution starts by choosing some member of the
array as the partition value and excluding that member from the partitioning process.
As a result, the worst possible case is that the members of the array are divided into
the partitioning member, a partition of size 1, and a partition of size zero. If we’re
unlucky enough to hit that case every time, we’ll have an () running time, but not an
infinite loop.

How do we choose the partitioning member? It turns out that just picking one at
random is surprisingly successful; sometimes you get a very bad choice, but usually not.
But in this program I’m using a popular method that tends to work a little better (that
is, to give more balanced partition sizes): The program finds the first member of the
unsorted array, the last member, and the one halfway in between, and chooses the
of these three values—the one that’s neither the largest nor the smallest.

Once the partitioning member has been chosen, the goal is to rearrange the array
members into an order like this:

If other members of the array have the same value as the one we’ve chosen as the
partitioning member, it doesn’t really matter in which partition they end up. What
does matter is that before doing the partitioning, we don’t know where in the array
the partitioning member will belong, so how can we keep from bumping into it as

index

Parameters in Logo: Call by Binding 205

i j

i j
data[i]

data[j]
i j

exch

psort
data

i data[100]

if i > upper then ...

program psort;
{partition sort demo}

var data: array [0..100] of integer;
i: integer;

procedure showdata;
{print the array}

var i: integer;

begin {showdata}
for i := 0 to 99 do
begin
if i mod 20 = 0 then writeln;
write(data[i]:3)

end;
writeln;
writeln

end; {showdata}

we rearrange the other members? The solution is that the partitioning member is
temporarily kept in the leftmost possible position; the other members are partitioned,
and then the partitioning member is swapped back into its proper position.

The partition works using two variables and , which start at the leftmost
and rightmost ends of the part of the array that we’re sorting. (Remember that this
algorithm uses recursive calls to sort each partition, so that might not be all 100 members
of the full array.) We move toward the right, and toward the left, until we find two
members out of place. That is, we look for a situation in which is greater than
the partitioning member and is smaller than the partitioning member. We
then interchange those two members of the array and continue until and meet in the
middle. Procedure has two variable parameters and exchanges their values.

Program illustrates a fairly common but not obvious technique: the array
contains 100 “real” members in positions 0 to 99 but also has a “fence” or “sentinel”

member (with index 100) just so that the program doesn’t have to make a special case
check for the index variable reaching the end of the array. The value of
is guaranteed to be greater than all the numbers that are actually being sorted. Having
this extra member in the array avoids the need for an extra comparison of the form

and thereby helps make the program a little faster.

206 Chapter 4 Programming Language Design

function median(lower,upper:integer):integer;
{find the median of three values from the data array}
var mid: integer;

begin
mid := (lower+upper) div 2;
if (data[lower] <= data[mid]) and (data[mid] <= data[upper]) then
median := mid

else if (data[lower] >= data[mid]) and
(data[mid] >= data[upper]) then

median := mid
else if (data[mid] <= data[lower]) and

(data[lower] <= data[upper]) then
median := lower

else if (data[mid] >= data[lower]) and
(data[lower] >= data[upper]) then

median := lower
else median := upper

end;

procedure sort(lower,upper:integer);
{sort part of the array}

var key,i,j:integer;

procedure exch(var a,b:integer);
{exchange two integers}

var temp:integer;

begin {exch}
temp := a;
a := b;
b := temp

end; {exch}

Parameters in Logo: Call by Binding 207

begin {sort}
if upper > lower then
begin
exch (data[lower],data[median(lower,upper)]);
key := data[lower];
i := lower;
j := upper+1;
repeat
i := i+1

until data[i] >= key;
repeat
j := j-1

until data[j] <= key;
while (i <= j) do
begin
exch(data[i], data[j]);
repeat
i := i+1

until data[i] >= key;
repeat
j := j-1

until data[j] <= key
end;

exch(data[lower], data[j]);
sort(lower,j-1);
sort(i,upper)

end
end; {sort}

begin {main program}
data[100] := 200;
for i := 0 to 99 do
data[i] := random(100);

writeln(’Data before sorting:’);
showdata;

sort(0,99);
writeln(’Data after sorting:’);
showdata

end.

pascal

begin

209

5 Programming Language Implementation

program test;

procedure doit(n:integer);
begin

writeln(n,n*n)
end;

begin
doit(3)

end.

Program file for this chapter:

We are now ready to turn from the questions of language design to those of compiler
implementation. A Pascal compiler is a much larger programming project than most
of the ones we’ve explored so far. You might well ask, “where do we in writing a
compiler?” My goal in this chapter is to show some of the parts that go into a compiler
design.

A compiler translates programs from a language like Pascal into the machine
language of some particular computer model. My compiler translates into a simplified,
simulated machine language; the compiled programs are actually carried out by another
Logo program, the simulator, rather than directly by the computer hardware. The
advantage of using this simulated machine language is that this compiler will work
no matter what kind of computer you have; also, the simplifications in this simulated
machine allow me to leave out many confusing details of a practical compiler. Our
machine language is, however, realistic enough to give you a good sense of what
compiling into a real machine language would be like; it’s loosely based on the MIPS
microprocessor design. You’ll see in a moment that most of the structure of the compiler
is independent of the target language, anyway.

Here is a short, uninteresting Pascal program:

compile

%test

add 3 0 0

jump
g1

assembler

label

210 Chapter 5 Programming Language Implementation

[[add 3 0 0]
[add 4 0 0]
[addi 2 0 36]
[jump "g1]

%doit [store 1 0(4)]
[jump "g2]

g2 [rload 7 36(4)]
[putint 10 7]
[rload 7 36(4)]
[rload 8 36(4)]
[mul 7 7 8]
[putint 10 7]
[newline]
[rload 1 0(4)]
[add 2 4 0]
[rload 4 3(2)]
[jr 1]

g1 [store 5 1(2)]
[add 5 2 0]
[addi 2 2 37]
[store 4 3(5)]
[store 4 2(5)]
[addi 7 0 3]
[store 7 36(5)]
[add 4 5 0]
[rload 5 1(4)]
[jal 1 "%doit]
[exit]

]

If you type this program into a disk file and then compile it using as described
in Chapter 4, the compiler will translate the program into this sequence of instructions,
contained in a list in the variable named :

I’ve displayed this list of instructions with some extra spacing thrown in to make it look
somewhat like a typical listing. (An assembler is a program that translates a
notation like into a binary number, the form in which the machine hardware
actually recognizes these instructions.) A real assembler listing wouldn’t have the square
brackets that Logo uses to mark each sublist, but would instead depend on the convention
that each instruction occupies one line.

The first three instructions carry out initialization that would be the same for any
compiled Pascal program; the fourth is a instruction that tells the (simulated)
computer to skip to the instruction following the that appears later in the

Formal Syntax Definition

jump

jump

doit

n doit 36(4)
36(4)

7 8

p
r

program

procedure
begin end

optimizer

tokenization.

parser,

code generation,

Formal Syntax Definition 211

program. (A word that isn’t part of a sublist is a label.) In Pascal, the body of the main
program comes after the declarations of procedures; this instruction allows the
compiler to translate the parts of the program in the order in which they appear.

(Two instructions later, you’ll notice a to a label that comes right after the
jump instruction! The compiler issues this useless instruction just in case some internal
procedures were declared within the procedure . A better compiler would include
an that would go through the compiled program looking for ways to eliminate
unnecessary instructions such as this one. The optimizer is the most important thing
that I’ve left out of my compiler.)

We’re not ready yet to talk in detail about how the compiled instructions represent
the Pascal program, but you might be able to guess certain things. For example, the
variable in procedure seems to be represented as in the compiled program;
you can see where is printed and then multiplied by itself, although it may not yet
be clear to you what the numbers and have to do with anything. Before we get into
those details, I want to give a broader overview of the organization of the compiler.

The compilation process is divided into three main pieces. First and simplest is
The compiler initially sees the source program as a string of characters: ,

then , and so on, including spaces and line separators. The first step in compilation
is to turn these characters into symbols, so that the later stages of compilation can deal
with the word as a unit. The second piece of the compiler is the the part
that recognizes certain patterns of symbols as representing meaningful units. “Oh,” says
the parser, “I’ve just seen the word so what comes next must be a procedure
header and then a – block for the body of the procedure.” Finally, there is the
process of in which each unit that was recognized by the parser is actually
translated into the equivalent machine language instructions.

(I don’t mean that parsing and code generation happen separately, one after the
other, in the compiler’s algorithm. In fact each meaningful unit is translated as it’s
encountered, and the translation of a large unit like a procedure includes, recursively,
the translation of smaller units like statements. But parsing and code generation are
conceptually two different tasks, and we’ll talk about them separately.)

One common starting place is to develop a formal definition for the language we’re
trying to compile. The regular expressions of Chapter 1 are an example of what I mean
by a formal definition. A regular expression tells us unambiguously that certain strings

program

: program ; .

: | ()

: | ,

:

: | var

: | |

: begin end

: | ;

: procedure ; ;

: function : ; ;

parser. code generation:
object

semantics

production
rule

212 Chapter 5 Programming Language Implementation

* The component is an optional list of names of files, part of Pascal’s input/output
capability; my compiler doesn’t handle file input or output, so it ignores this list if there is one.

program identifier filenames block

filenames idlist

idlist identifier idlist identifier

block varpart procpart compound

varpart varlist

procpart procpart procedure procpart function

compound statements

statements statement statements statement

procedure identifier args block

function identifier args type block

filenames

of characters are accepted as members of the category defined by the expression, while
other strings aren’t. A language like Pascal is too complicated to be described by a regular
expression, but other kinds of formal definition can be used.

The formal systems of Chapter 1 just gave a yes-or-no decision for any input string: Is
it, or is it not, accepted in the language under discussion? That’s not quite good enough
for a compiler. We don’t just want to know whether a Pascal program is syntactically
correct; we want a translation of the program into some executable form. Nevertheless, it
turns out to be worthwhile to begin by designing a formal acceptor for Pascal. That part of
the compiler—the part that determines the syntactic structure of the source program—is
called the Later we’ll add provisions for the translation of each
syntactic unit of the source program into a piece of (executable) program that
carries out the meaning (the) of that unit.

One common form in which programming languages are described is the
notation mentioned briefly in Chapter 1. For example, here is part of a specification

for Pascal:

A program consists of six components. Some of these components are particular words
(like) or punctuation marks; other components are defined in terms of even
smaller units by other rules.*

51 7

START

2 3 4

;

6

.program identifier

pro gram_

filenames block

|

typewriter program

type range
range range

type scalar range scalar
range scalar

scalar

recursive transition network

italics block
statements

statements

Formal Syntax Definition 213

: integer | real | char | boolean | array of integer |
packed array of integer | array of real |
...

: | array of |
packed array of

: integer | real | char | boolean

A vertical bar () in a rule separates alternatives; an idlist (identifier list) is either a
single identifier or a smaller idlist followed by a comma and another identifier. Sometimes
one of the alternatives in a rule is empty; for example, a varpart can be empty because a
block need not declare any local variables.

The goal in designing a formal specification is to capture the syntactic hierarchy of
the language you’re describing. For example, you could define a Pascal type as

but it’s better to say

Try completing the syntactic description of my subset of Pascal along these lines.
You might also try a similar syntactic description of Logo. Which is easier?

Another kind of formal description is the (RTN). An RTN
is like a finite-state machine except that instead of each arrow representing a single
symbol in the machine’s alphabet, an arrow can be labeled with the name of another
RTN; such an arrow represents any string of symbols accepted by that RTN.

On this page and the next I show two RTNs, one for a program and one for
a sequence of statements (the body of a compound statement). In the former, the
transition from state 5 to state 6 is followed if what comes next in the Pascal program is
a string of symbols accepted by the RTN named “block.” In these diagrams, a word in

style like represents a single symbol, as in a finite-state machine
diagram, while a word in like represents any string accepted by the RTN of
that name. The RTN is recursive; one path through the network involves a
transition that requires parsing a smaller unit.

;

1

START
statement

statements

state m e nts_

2

4

statement

53

1

START

p

2

r

3

o

54

g r

76

a m

8 ...

Tokenization

tokens

214 Chapter 5 Programming Language Implementation

program

program tower
2 + 3 prog ram

tower

program tower ; procedure hanoi (number

readlist

In both the production rules and the RTNs I’ve treated words like as a single
symbol of the “alphabet” of the language. It would be possible, of course, to use single
characters as the alphabetic symbols and describe the language in this form:

Extending the formal description down to that level, though, makes it hard to see
the forest for the trees; the important structural patterns get lost in details about,
for instance, where spaces are required between words (as in), where
they’re optional (as in), and where they’re not allowed at all (). A similar
complication is that a comment in braces can be inserted anywhere in the program; it
would be enormously complicated if every state of every RTN had to have a transition for
a left brace beginning a comment.

Most language processors therefore group the characters of the source program into
used as the alphabet for the formal grammar. A token may be a single character,

such as a punctuation mark, or a group of characters, such as a word or a number. Spaces
do not ordinarily form part of tokens, although in the Pascal compiler one kind of token
is a quoted character string that can include spaces. Comments are also removed during
tokenization. Here’s what the program from Chapter 4 looks like in token form:

. . .

Tokenization is what the Logo operation does when it uses spaces and brackets
to turn the string of characters you type into a sequence of words and lists.

Lookahead

lexical analysis.

word

following

lookahead.

Lookahead 215

token

program
token

tower tower Token t

t

token
tower

token
token

token
tower

Getchar token
getchar readchar

to getchar
local "char
if namep "peekchar

[make "char :peekchar
ern "peekchar
output :char]

output readchar
end

Tokenization is also called This term has nothing to do with lexical
scope; the word “lexical” is used not to remind us of a dictionary but because the root
“lex” means and lexical analysis divides the source program into words.

I’ve been talking as if the Pascal compiler first went through the entire source file
tokenizing it and then went back and parsed the result. That’s not actually how it works;
instead, the parser just calls a procedure named whenever it wants to see the
next token in the source file. I’ve already mentioned that Pascal was designed to allow
the compiler to read straight through the source program without jumping around and
re-reading parts of it.

Consider the situation when the parser has recognized the first token () as the
beginning of a program and it invokes to read the second token, the program
name. In the program, the desired token is . reads the letter ;
since it’s a letter, it must be the beginning of an identifier. Any number of letters or digits
following the will be part of the identifier, but the first non-alphanumeric character
ends the token. (In this case, the character that ends the token will be a semicolon.)

What this means is that has to read one character too many in order to find
the end of the word . The semicolon isn’t part of that token; it’s part of the

token. (In fact it’s the entire following token, but in other situations that need
not be true.) Ordinarily begins its work by reading a character from the source
file, but the next time we call it has to deal with the character it’s already read.
It would simplify things enormously if could “un-read” the semicolon that ends
the token . It’s possible to allow something like un-reading by using a technique
called

is the procedure that calls to read the next character from the
source file. Ordinarily just invokes the primitive to read a character

peekchar getchar
Token

token
peekchar

Getchar peekchar

Token

list

lookahead. one-character lookahead

token token

216 Chapter 5 Programming Language Implementation

* I’m lying. The real is slightly more complicated because it checks for an unexpected
end of file and because it prints the characters that it reads onto the screen. The program listing
at the end of the chapter tells the whole story.

from the file.* But if there is a variable named , then just outputs
whatever is in that variable without looking at the file. can now un-read a character
by saying

This technique only allows to un-read a single character at a time. It would be
possible to replace with a of pre-read characters to be recycled. But in fact
one is enough. When a program “peeks at” characters before they’re read “for real,” the
technique is called uses because
only stores a single character.

It turns out that, for similar reasons, the Pascal parser will occasionally find it
convenient to peek at a and re-read it later. therefore provides for one-
lookahead using a similar mechanism:

make "peekchar :char

to token
local [token char]
if namep "peektoken [make "token :peektoken

ern "peektoken output :token]
make "char getchar
if equalp :char "|{| [skipcomment output token]
if equalp :char char 32 [output token]
if equalp :char char 13 [output token]
if equalp :char char 10 [output token]
if equalp :char "’ [output string "’]
if memberp :char [+ - * / = (,) |[| |]| |;|] [output :char]
if equalp :char "|<| [output twochar "|<| [= >]]
if equalp :char "|>| [output twochar "|>| [=]]
if equalp :char ". [output twochar ". [.]]
if equalp :char ": [output twochar ": [=]]
if numberp :char [output number :char]
if letterp ascii :char [output token1 lowercase :char]
(throw "error sentence [unrecognized character:] :char)
end

getchar

2

3

Parsing

parser generator.

any
n O n

O n ambiguous

Parsing 217

token Char 32 char 13
char 10 Skipcomment

String

Number
1.10 1..10

twochar
<

<= <> Twochar

token
compile

to twochar :old :ok
localmake "char getchar
if memberp :char :ok [output word :old :char]
make "peekchar :char
output :old
end

As you can see, is mainly a selection of special cases. is a space;
or is the end-of-line character. skips over characters until it
sees a right brace. accumulates characters up to and including a single quote
(apostrophe), except that two single quotes in a row become one single quote inside the
string and don’t end the string. is a little tricky because of decimal points (the
string of characters is a single token, but the string is three tokens!) and
exponent notation. I’m not showing you all the details because the compiler is a very
large program and we’ll never get through it if I annotate every procedure. But I did
want to show you because it’s a good, simple example of character lookahead
at work. If the character is seen in the source program, it may be a token by itself or
it may be part of the two-character tokens or . takes a peek at the next
character in the file to decide.

If the character that reads isn’t part of any recognizable token, the procedure
generates an error. (The error is caught by the toplevel procedure so that it can
close the source file.) This extremely primitive error handling is one of the most serious
deficiencies in my compiler; it would be better if the compilation process continued,
despite the error, so that any other errors in the program could also be discovered. In a
real compiler, more than half of the parsing effort goes into error handling; it’s relatively
trivial to parse a correct source program.

There are general techniques for turning a formal language specification, such as a
set of production rules, into an algorithm for parsing the language so specified. These
techniques are analogous to the program in Chapter 1 that translates a regular expression
into a finite-state machine. A program that turns a formal specification into a parser is
called a

The trouble is that the techniques that work for set of rules are quite slow. The
time required to parse a sequence of length is () if the grammar is unambiguous
or () if it’s ambiguous. A grammar is if the same input sequence can be
parsed correctly in more than one way. For example, if the production rule

idlist

idlist , identifier

Beatles

identifier Who

idlist , identifier Zombies

idlist , identifier Kinks

idlist

Beatles Zombies KinksWho

identifier identifier identifieridentifier

idlist , idlist

idlist , idlist idlist , idlist

: | ,

Beatles,Who,Zombies,Kinks

: | ,

218 Chapter 5 Programming Language Implementation

idlist identifier idlist identifier

idlist identifier idlist idlist

is applied to the string

then the only possible application of the rule to accept the string produces this left-to-right
grouping:

However, if the rule were

this new rule would accept the same strings, but would allow alternative groupings like

The former rule could be part of an unambiguous grammar; the new rule makes the
grammar that contains it ambiguous.

compiler compiler

deterministic grammars,

predictive grammar

Parsing 219

if

if
if x > 0 then writeln(’positive’)

if := 87
if

:=

var procedure function

* A parser generator is also called a because it treats the formal specification as
a kind of source program and produces a compiler as the object program. But the name isn’t quite
accurate because, as you know, there’s more to a compiler than the parser.

It’s usually not hard to devise an unambiguous grammar for any practical program-
ming language, but even a quadratic algorithm is too slow. Luckily, most programming
languages have which is a condition even stricter than being un-
ambiguous. It means that a parser can read a program from left to right, and can figure
out what to do with the next token using only a fixed amount of lookahead. A parser for
a deterministic grammar can run in linear time, which is a lot better than quadratic.

When I said “figure out what to do with the next token,” I was being deliberately
vague. A deterministic parser doesn’t necessarily know exactly how a token will fit into the
complete program—which production rules will be branch nodes in a parse tree having
this token as a leaf node—as soon as it reads the token. As a somewhat silly example,
pretend that the word is not a “reserved word” in Pascal; suppose it could be the
name of a variable. Then, when the parser is expecting the beginning of a new statement
and the next token is the word , the parser doesn’t know whether it is seeing the
beginning of a conditional statement such as
or the beginning of an assignment statement such as . But the parser could
still be deterministic. Upon seeing the word , it would enter a state (as in a finite
state machine) from which there are two exits. If the next token turned out to be the

assignment operator, the parser would follow one transition; if the next token was a
variable or constant value, the parser would choose a different next state.

The real Pascal, though, contains no such syntactic cliffhangers. A Pascal compiler
can always tell which production rule the next token requires. That’s why the language
includes keywords like , , and . For the most part, you could
figure out which kind of declaration you’re reading without those keywords by looking
for clues like whether or not there are parentheses after the identifier being declared.
(If so, it’s a procedure or a function.) But the keywords let you know from the beginning
what to expect next. That means we can write what’s called a for Pascal,
even simpler to implement than a deterministic one.

There are general algorithms for parsing deterministic languages, and there are
parser generators using these algorithms. One widely used example is the YACC (Yet
Another Compiler Compiler) program that translates production rules into a parser in
the C programming language.* But because Pascal’s grammar is so simple I found it just
as easy to do the translation by hand. For each production rule in a formal description
of Pascal, the compiler includes a Logo procedure that parses each component part of

pif

Statement

begin for if while repeat
statement

recursive descent parser.

220 Chapter 5 Programming Language Implementation

the production rule. A parser written in this way is called a Here’s
a sample:

Many of the details of have to do with code generation, but never mind those parts
now. For the moment, my concern is with the parsing aspect of these procedures: how
they decide what to accept.

is an important part of the parser; it is invoked whenever a Pascal
statement is expected. It begins by checking the next token from the source file. If
that token is , , , , or then we’re finished with the token
and turns to a subprocedure to handle the syntax of whatever structured

to statement
local [token type]
ifbe "begin [compound stop]
ifbe "for [pfor stop]
ifbe "if [pif stop]
ifbe "while [pwhile stop]
ifbe "repeat [prepeat stop]
ifbe "write [pwrite stop]
ifbe "writeln [pwriteln stop]
make "token token
make "peektoken :token
if memberp :token [|;| end until] [stop]
make "type gettype :token
if emptyp :type [(throw "error sentence :token [can’t begin statement])]
if equalp :type "procedure [pproccall stop]
if equalp :type "function [pfunset stop]
passign
end

to pif
local [cond elsetag endtag]
make "cond pboolean pexpr
make "elsetag gensym
make "endtag gensym
mustbe "then
code (list "jumpf :cond (word "" :elsetag))
regfree :cond
statement
code (list "jump (word "" :endtag))
code :elsetag
ifbe "else [statement]
code :endtag
end

empty

must

optional

Parsing 221

ifstatement boolean statement
boolean statement statement

end until

statement
Gettype

real procedure function
gettype

pif if p

if

pif if statement
Pexpr

Pboolean
boolean

then

pif mustbe

mustbe pif statement

else

: if then |
if then else

mustbe "then

to mustbe :wanted
localmake "token token
if equalp :token :wanted [stop]
(throw "error (sentence "expected :wanted "got :token))
end

ifbe "else [statement]

statement type we’ve found. If the token isn’t one of those, then the statement has to be
a simple statement and the token has to be an identifier, i.e., the name of a procedure, a
function, or a variable. (One other trivial possibility is that this is an statement, if
we’re already up to the semicolon, , or that marks the end of a statement.)
In any of these cases, the token we’ve just read is important to the parsing procedure
that will handle the simple statement, so un-reads it before deciding what
to do next. outputs the type of the identifier, either a variable type like

or else or . (The compiler data structures that underlie
the work of will be discussed later.) If the token is a procedure name, then
this is a procedure call statement. If the token is a function name, then this is the
special kind of assignment inside a function definition that provides the return value
for the function. Otherwise, the token must be a variable name and this is an ordinary
assignment statement.

The procedure parses statements. (The letter in its name stands for
“Pascal”; many procedures in the compiler have such names to avoid conflicts with Logo
procedures with similar purposes.) The syntax of Pascal is

When begins, the token has just been read by . So the first thing
that’s required is a boolean expression. parses an expression; that task is relatively
complicated and will be discussed in more detail later. ensures that the
expression just parsed does indeed produce a value of type .

The next token in the source file be the word . The instruction

in ensures that. Here’s :

If returns successfully, then invokes recursively to parse the
true branch of the conditional. The production rule tells us that there is then an
false branch, signaled by the reserved word . The instruction

51 64

START

2 3

elseboolean then

pif_

statement statement

222 Chapter 5 Programming Language Implementation

ifbe

ifbeelse
Ifbeelse

output stop
ifbe statement

pif

.macro ifbe :wanted :action
localmake "token token
if equalp :token :wanted [output :action]
make "peektoken :token
output []
end

.macro ifbeelse :wanted :action :else
localmake "token token
if equalp :token :wanted [output :action]
make "peektoken :token
output :else
end

to pif
pboolean pexpr
mustbe "then
statement
ifbe "else [statement]
end

handles that possibility. If the next token matches the first input to then the second
input, an instruction list, is carried out. Otherwise the token is un-read. There is also an

that takes a third input, an instruction list to be carried out if the next token
isn’t equal to the first input. (still un-reads the token in that case, before
it runs the third input.) These must be macros so that the instruction list inputs can
include or instructions (as discussed in Volume 2), as in the invocations of

in seen a moment ago.

If there were no code generation involved, would be written this way:

This simplified procedure is a straightforward translation of the RTN

The need to generate object code complicates the parser. But don’t let that distract you;
in general you can see the formal structure of Pascal syntax reflected in the sequence of
instructions used to parse that syntax.

a + b * c + d

a + (b * c) + d

Expressions and Precedence

pfor pwhile
pif procedure

function proc1

pexpr

var

pboolean

boolean

+ - not -3
6-3

at compile
time

operator precedence

unary
binary

Expressions and Precedence 223

* It’s unfortunate that the word “binary” is used in computer science both for base-2 numbers
and for two-input operations. Kenneth Iverson, in his documentation for the language APL, used

The procedures that handle other structured statements, such as and ,
are a lot like . Procedure and function declarations (procedures ,

, and in the compiler) also use the same straightforward parsing
technique, but are a little more complicated because of the need to keep track of
type declarations for each procedure’s parameters and local variables. Ironically, the
hardest thing to compile is the “simple” assignment statement, partly because of operator
precedence (multiplication before addition) in expressions (procedure in the
compiler) and partly because of the need to deal with the complexity of variables,
including special cases such as assignments to parameters and array elements.

I haven’t yet showed you because you have to understand how the
compiler handles expressions first. But it’s worth noticing that Pascal can check

whether or not an expression is going to produce a value even though the
program hasn’t been run yet and the variables in the expression don’t have values yet.
It’s the strict variable typing of Pascal that makes this compile-time checking possible. If
we were writing a Logo compiler, the checking would have to be postponed until run
time because you can’t, in general, know what type of datum will be computed by a Logo
expression until it’s actually evaluated.

Arithmetic or boolean expressions appear not only on the right side of assignment
statements but also as actual parameters, array index values, and as “phrases” in structured
statements. One of the classic problems in compiler construction is the translation of these
expressions to executable form. The interesting difficulty concerns —
the rule that in a string of alternating operators and operands, multiplications are done
before additions, so

means

Pascal has four levels of operator precedence. The highest level, number 4, is the
operators , , and . (The first two can be used as unary operators () or
ones (); it’s only in the unary case that they have this precedence.)* Then

and
or =

expression expression

make

left recursive:

224 Chapter 5 Programming Language Implementation

the words and instead of unary and binary to avoid that ambiguity. But those terms
haven’t caught on.

expression term expression term expression term
term factor term factor term factor
factor variable number expression

monadic dyadic

: | + | -
: | * | /
: | | ()

to expression
local [left op right]
make "left expression
ifbe "+
[make "op "+
make "right term]
[ifbe "-

[make "op "-
make "right term]

[make "op []]]
...

comes multiplication, division, and logical at level 3. Level 2 has binary addition,
subtraction, and . And level 1 includes the relational operators like .

The formalization of precedence could be done using the mechanisms we’ve already
seen. For example, here is a production rule grammar for expressions using only the
four basic arithmetic operations.

This grammar also introduces into the discussion the fact that the precedence of
operations can be changed by using parentheses.

This grammar, although formally correct, is not so easy to use in a recursive descent
parser. One subtle but important problem is that it’s Some of the alternative
forms for an start with an . If we tried to translate this into a
Logo procedure it would naturally start out

But this procedure will never get past the first ; it’s an infinite loop. It will never
actually read a token from the source file; instead it keeps invoking itself recursively.

Left association is a problem for automatic compiler compilers, too. There are
ways to solve the problem but I don’t want to get into that because in fact arithmetic
expressions are generally handled by an entirely different scheme, which I’ll show you in
a moment. The problem wouldn’t come up if the order of the operands were reversed,
so the rules said

| |

| |

|

|

Step 1.

*
*

a + b * - c - d

+
*

2,3

0 2,2 2,3 1,4 2,2 0

0

: | + | -

a + b * - c - d

operation: []

data: []

The Two-Stack Algorithm for Expressions

any

The Two-Stack Algorithm for Expressions 225

expression term term expression term expression

and so on. Unfortunately this changes the meaning, and the rules of Pascal say that
equal-precedence operations are performed left to right.

In any case, the formalization of precedence with production rules gets more
complicated as the number of levels of precedence increases. I showed you a grammar
with two levels. Pascal, with four levels, might reasonably be done in a similar way, but
think about the C programming language, which has 15 levels of precedence!

What we’re after is an algorithm that will allow the compiler to read an expression once,
left to right, and group operators and operands correctly. The algorithm involves the use
of two stacks, one for operations and one for data. For each operation we need to know
whether it’s unary or binary and what its precedence level is. I’ll use the notation “ ”
to represent binary at precedence level 3. So the expression

will be represented in this algorithm as

– –

The symbols – and – aren’t really part of the source expression; they’re imaginary
markers for the beginning and end of the expression. When we read a token that doesn’t
make sense as part of an expression, we can un-read that token and pretend we read a –
instead. These markers are given precedence level zero because they form a boundary
for operators inside them, just as a low-precedence operator like is a boundary for
the operands of a higher-precedence operator like . (For the same reason, you’ll see
that parentheses are considered precedence zero.)

The two minus signs in this expression have two different meanings. As you read
the following algorithm description, you’ll see how the algorithm knows whether an
operation symbol is unary or binary.

We initialize the two stacks this way:

–

|

|

|

|

0

0

2,2

2,2 0 2,2

2,3

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

226 Chapter 5 Programming Language Implementation

+ a*b+c

* a+b*c
c

a+b

1 [] []
2 [a] a
3 +
4 +
6 [+] +
2 [b a] b
3 *
4 *

We are now expecting a datum, such as a variable. Read a token. If it’s an
operation, it must be unary; subscript it accordingly and go to step 4. If it’s a datum, push
it onto the data stack. (If it’s neither an operation nor a datum, something’s wrong.)

We are now expecting a binary operation. Read a token. If it’s an operation,
subscript it as binary and go to step 4. If not, we’ve reached the end of the expression.
Un-read the token, and go to step 4 with the token – .

We have an operation in hand at this point and we know its precedence
level and how many arguments it needs. Compare its precedence level with that of the
topmost (most recently pushed) operation on the stack. If the precedence of the new
operation is less than or equal to that of the one on the stack, go to step 5. If it’s greater,
go to step 6.

The topmost operation on the stack has higher precedence than the one we
just read, so we should do it right away. (For example, we’ve just read the in ;
the multiplication operation and both of its operands are ready on the stacks.) Pop
the operation off the stack, pop either one or two items off the data stack depending
on the first subscript of the popped operation, then compile machine instructions to
perform the indicated computation. Push the result on the data stack as a single quantity.
However, if the operation we popped is –, then we’re finished. There should be only one
thing on the data stack, and it’s the completely compiled expression. Otherwise, we still
have the new operation waiting to be processed, so return to step 4.

The topmost operation on the stack has lower precedence than the one we
just read, so we can’t do it yet because we’re still reading its right operand. (For example,
we’ve just read the in ; we’re not ready to do either operation until we read the

later.) Push the new operation onto the operation stack, then return to step 2.

Here’s how this algorithm works out with the sample expression above. In the data
stack, a boxed entry like means the result from translating that subexpression into
the object language.

step operation stack data stack token

–

–

|

|

|

|

|

|

|

|

| |

|

[sub 2 2]

[minus 1 4]

does

The Two-Stack Algorithm for Expressions 227

2,3 2,2 0 2,3

1,4

1,4 2,3 2,2 0 1,4

2,2

2,3 2,2 0 2,2

2,2

2,2 0 2,2

2,2

0 2,2

2,2

2,2 0 2,2

0

0 0

0

0

6 [* +] *
2 -
4 -
6 [- * +] -
2 [c b a] c
3 -
4 -
5 [* +] [-c b a] -
4 -

5 [+] [b* -c a] -
4 -

5 [] [a+ b* -c] -

4 -
6 [-] -

2 [d a+ b* -c] d
3
4

5 [] [a+ b* -c -d]

5 [] [a+ b* -c -d]

(

Pgetunary
pgetbinary

-

–

–

–

–

–

–

–
–

– –

–

The final value on the data stack is the translation of the entire expression.

The algorithm so far does not deal with parentheses. They’re handled somewhat like
operations, but with slightly different rules. A left parenthesis is stored on the operation
stack as , like the special marker at the beginning of the expression, but it does not
invoke step 5 of the algorithm before being pushed on the stack. A right parenthesis

invoke step 5, but only as far down the stack as the first matching left parenthesis; if
it were an ordinary operation of precedence zero it would pop everything off the stack.
You might try to express precisely how to modify the algorithm to allow for parentheses.

Here are the procedures that embody this algorithm in the compiler.
and output a list like

for binary or

step 1

step 2

step 3

228 Chapter 5 Programming Language Implementation

unary binary
op.prec

ppopop

Pexpr1 pdata
Pdata

pexpr

to pexpr
local [opstack datastack parenlevel]
make "opstack [[popen 1 0]]
make "datastack []
make "parenlevel 0
output pexpr1
end

to pexpr1
local [token op]
make "token token
while [equalp :token "|(|] [popen make "token token]
make "op pgetunary :token
if not emptyp :op [output pexprop :op]
push "datastack pdata :token
make "token token
while [and (:parenlevel > 0) (equalp :token "|)|)]

[pclose make "token token]
make "op pgetbinary :token
if not emptyp :op [output pexprop :op]
make "peektoken :token
pclose
if not emptyp :opstack [(throw "error [too many operators])]
if not emptyp butfirst :datastack [(throw "error [too many operands])]
output pop "datastack
end

for unary minus. (I’m leaving out some complications having to do with type checking.)
They work by looking for a or property on the property list of the
operation symbol. Procedures with names like are selectors for the members
of these lists.

In this algorithm, only step 5 actually generates any instructions in the object
program. This is the step in which an operation is removed from the operation stack
and actually performed. Step 5 is carried out by the procedure (Pascal pop
operation); most of that procedure deals with code generation, but I’ve omitted that part
of the procedure in the following listing because right now we’re concerned with the
parsing algorithm. We’ll return to code generation shortly.

invokes when it expects to read an operand, which could be a
number, a variable, or a function call. , which I’m not showing here, generates
code to make the operand available and outputs the location of the result in the simulated
computer, in a form that can be used by .

The Simulated Machine

The Simulated Machine 229

step 4

step 6

step 5

... code generation omitted ...

to pexprop :op
while [(op.prec :op) < (1 + op.prec first :opstack)] [ppopop]
push "opstack :op
output pexpr1
end

to ppopop
local [op function args left right type reg]
make "op pop "opstack
make "function op.instr :op
if equalp :function "plus [stop]
make "args op.nargs :op
make "right pop "datastack
make "left (ifelse equalp :args 2 [pop "datastack] [[[] []]])
make "type pnewtype :op exp.type :left exp.type :right

push "datastack (list :type "register :reg)
end

to popen
push "opstack [popen 1 0]
make "parenlevel :parenlevel+1
end

to pclose
while [(op.prec first :opstack) > 0] [ppopop]
ignore pop "opstack
make "parenlevel :parenlevel - 1
end

We’re ready to move from parsing to code generation, but first you must understand
what a computer’s native language is like. Most computer models in use today have a
very similar structure, although there are differences in details. My simulated computer
design makes these detail choices in favor of simplicity rather than efficiency. (It wouldn’t
be very efficient no matter what, compared to real computers. This “computer” is actually
an interpreter, written in Logo, which is itself an interpreter. So we have two levels of
interpretation involved in each simulated instruction, whereas on a real computer, each
instruction is carried out directly by the hardware. Our compiled Pascal programs, as
you’ve probably already noticed, run very slowly. That’s not Pascal’s fault, and it’s not even
primarily my compiler’s fault, even though the compiler doesn’t include optimization
techniques. The main slowdown is in the interpretation of the machine instructions.)

a
b

parallel

c := a + b

rload 8 a
rload 9 b
add 10 8 9
store 10 c

processor,
memory,

integrated
circuit, chip,

circuit board

registers.

load
store

230 Chapter 5 Programming Language Implementation

* One current topic in computer architecture research is the development of computers
with many processors working together. In some of these designs, each processor includes its own
medium-size memory within the processor chip.

Every computer includes a which decodes instructions and carries out the
indicated arithmetic operations, and a in which information (such as the values
of variables) is stored. In modern computers, the processor is generally a single

nicknamed a which is a rectangular black plastic housing one or two inches
on a side that contains thousands or even millions of tiny components made of silicon.
The memory is usually a containing several memory chips. Computers also
include circuitry to connect with input and output devices, but we’re not going to have
to think about those. What makes one computer model different from another is mainly
the processor. If you have a PC, its processor is probably an Intel design with a name like
80486 or Pentium; if you have a Macintosh, the processor might be a Motorola 68040 or
a Power PC chip.

It turns out that the wiring connecting the processor to the memory is often the
main limiting factor on the speed of a computer. Things happen at great speed within
the processor, and within the memory, but only one value at a time can travel from one
to the other. Computer designers have invented several ways to get around this problem,
but the important one for our purposes is that every modern processor includes a little
bit of memory within the processor chip itself. By “a little bit” I mean that a typical
processor has enough memory in it to hold 32 values, compared to several million values
that can be stored in the computer’s main memory. The 32 memory slots within the
processor are called *

Whenever you want to perform an arithmetic operation, the operands must already
be within the processor, in registers. So, for example, the Pascal instruction

isn’t compiled into a single machine instruction. First we must the values of and
from memory into registers, then add the two registers, then the result back into

memory:

bits

load

load

load

as-
sembly language assembler

address.

The Simulated Machine 231

rload a
add

c

add 0023 add
0023100809

opsetup

add
sub mul div quo rem land

* Really I should have called this instruction , but my machine simulator uses Logo
procedures to carry out the machine instructions, and I had to pick a name that wouldn’t conflict
with the Logo primitive.

** This, too, is a simplification. In real computers, different data types require different amounts
of memory. A character value, for example, fits into eight (binary digits) of memory, whereas
an integer requires 32 bits in most current computers. Instead of a single instruction, a real
computer has a separate one for each datum size.

The first instruction loads the value from memory location into register 8.* The
instruction adds the numbers in registers 8 and 9, putting the result into register 10.

(In practice, you’ll see that the compiler would be more likely to conserve registers by
reusing one of the operand registers for the result, but for this first example I wanted to
keep things simple.) Finally we store the result into the variable in memory.

The instructions above are actually not machine language instructions, but rather
instructions, a kind of shorthand. A program called an translates

assembly language into machine language, in which each instruction is represented as a
number. For example, if the instruction code for is , then the instruction
above might be translated into , with four digits for the instruction code
and two digits for each of the three register numbers. (In reality the encoding would use
binary numbers rather than the decimal numbers I’ve shown in this example.) Since a
machine language instruction is just a number, the instructions that make up a computer
program are stored in memory along with the program’s data values. But one of the
simplifications I’ve made in my simulated computer is that the simulator deals directly
with assembly language instructions, and those instructions are stored in a Logo list,
separate from the program’s data memory.

The simulated computer has 32 processor registers plus 3000 locations of main
memory; it’s a very small computer, but big enough for my sample Pascal programs. (You
can change these sizes by editing procedure in the compiler.) The registers are
numbered from 0 to 31, and the memory locations are numbered from 0 to 2999. The
number of a memory location is called its Each memory location can hold one
numeric value.** A Pascal array will be represented by a contiguous block of memory
locations, one for each member of the array. Each register, too, can hold one numeric
value. In this machine, as in some real computers, register number 0 is special; it always
contains the value zero.

The simulated computer understands 50 instruction codes, fewer than most real
computers. The first group we’ll consider are the 14 binary arithmetic instructions: ,

, , (real quotient), (integer quotient), (remainder), (logical

add 10 8 9

addi 10 8 9

y := x - 5

add

system call

immediate

232 Chapter 5 Programming Language Implementation

lor eql neq less
gtr leq geq

0 1
lnot sint

sround srandom

eql lnot
neq

sint sround srandom

s

i addi subi

* One important simplification is that in the simulated computer, the same instructions are used
for all kinds of numbers. A typical computer has three instructions: one for integers, one for
short reals (32 bits), and one for long reals (64 bits).

and), (logical or), (compare two operands for equality), (not equal), ,
(greater than), (less than or equal), and (greater than or equal). The result

of each of the six comparison operators is for false or for true. The machine also
has four unary arithmetic instructions: (logical not), (truncate to integer),

(round to integer), and . Each of these 18 arithmetic instructions
takes its operands from registers and puts its result into a register.

All but the last three of these are typical instructions of real computers.* (Not every
computer has all of them; for example, if a computer has and , then it doesn’t
really need a instruction because the same value can be computed by a sequence
of two instructions.) The operations , , and are less likely to be
machine instructions on actual computers. On the other hand, most real computers
have a mechanism, which is a machine instruction that switches the computer
from the user’s program to a part of the operating system that performs some task on
behalf of the user. System calls are used mainly for input and output, but we can pretend
that there are system calls to compute these Pascal library functions. (The letter in the
instruction names stands for “system call” to remind us.)

The simulated computer also has another set of 18 instructions, with the
letter added to the instruction name: , , and so on. In these instructions, the
rightmost operand in the instruction is the actual value desired, rather than the number
of a register containing the operand. For example,

means, “add the number in register 8 and the number in register 9, putting the result
into register 10.” But

means, “add the number in register 8 to the value 9, putting the result in register 10.”

It’s only the right operand that can be made immediate. So, for example, the Pascal
assignment

The Simulated Machine 233

newline

putch puttf
putint putreal

putstr

rload 8 x
subi 8 8 5
store 8 y

y := 5 - x

addi 8 0 5
rload 9 x
sub 8 8 9
store 8 y

putint 10 8

putstr 1 [The shuffled deck:]

can be translated into

but the Pascal assignment

must be translated as

This example illustrates one situation in which it’s useful to have register 0 guaranteed to
contain the value 0.

Our simulated machine has six more system call instructions having to do with
printing results. One of them, , uses no operands and simply prints a newline
character, moving to the beginning of a new line on the screen. Four more are for
printing the value in a register; the instruction used depends on the data type of the
value in the register. The instructions are for a character, for a boolean
(true or false) value, for an integer, and for a real number. Each takes
two operands; the first, an immediate value, gives the minimum width in which to print
the value, and the second is a register number. So the instruction

means, “print the integer value in register 8, using at least 10 character positions on the
line.” The sixth printing instruction, , is used only for constant character strings
in the Pascal program; its first operand is a width, as for the others, but its second is a
Logo list containing the string to print:

This is, of course, unrealistic; in a real computer the second operand would have to be
the memory address of the beginning of the array of characters to print. But the way I
handle printing isn’t very realistic in any case; I wanted to do the simplest possible thing,
because worrying about printing really doesn’t add anything to your understanding of
the process of compilation, which is the point of this chapter.

if while
jump

jump

jumpt

jumpf

jal
jal

jr

exit

rload store

label

234 Chapter 5 Programming Language Implementation

* In a real computer, each instruction is stored in a particular memory location, so the address
of an instruction is the address of the memory location in which it’s stored. In this simulated
computer, I keep the program in the form of a Logo list, and so I cheat and put the sublist starting
at the next instruction into the register. This isn’t quite as much of a cheat as it may seem, though,
since you know from Chapter 3 that Logo represents a list with the memory address of the first pair
of the list.

The next group of instructions has to do with the flow of control in the computer
program. Ordinarily the computer carries out its instructions in sequence, that is, in
the order in which they appear in the program. But in order to implement conditionals
(such as), loops (such as), and procedure calls, we must be able to jump out of
sequence. The instruction takes a single operand, a that appears somewhere
in the program. When the computer carries out a jump instruction, it looks for the
specified label and starts reading instructions just after where that label appears in the
program. (We saw an example of labels at the beginning of this chapter.)

The instruction is used for unconditional jumps. In order to implement
conditionals and loops, we need a way to jump if some condition is true. The instruction

(jump if true) has two operands, a register number and a label. It jumps to the
specified label if and only if the given register contains a true value. (Since registers hold
only numbers, we use the value 1 to represent true, and 0 to represent false.) Similarly,

jumps if the value in the given register is false.

For procedure and function calls, we need a different mechanism. The jump is
unconditional, but the computer must remember where it came from, so that it can
continue where it left off once the called procedure or function returns. The instruction

(jump and link) takes two operands, a register and a label. It puts into the register
the address of the instruction following the instruction.* Then it jumps to the
specified label. To return from the called procedure, we use the (jump register)
instruction. It has one operand, a register number; it jumps to the instruction whose
address is in the register.

One final instruction that affects the flow of control is the system call. It
requires no operands; it terminates the running of the program. In this simulated
computer, it returns to a Logo prompt; in a real computer, the operating system would
start running another user program.

The only remaining instructions are and . You already know what
these do, but I’ve been showing them in oversimplified form so far. The second operand
can’t just be a variable name, because that variable might not be in the same place
in memory every time the procedure is called. Think, for example, about a recursive

c

c
c

store 8 5(4)

Stack Frames

index register offset

allocate,

frame.

deallocated,

stack,

stack frame

global frame
global pointer,

Stack Frames 235

procedure. Several invocations may be in progress at once, all of them carrying out the
same compiled instructions, but each referring to a separate set of local variables. The
solution to this problem is that the compiler arranges to load into a register the address
of a block of memory containing all the local variables for a given procedure call. If the
variable , for example, is in the sixth memory location of that block, an instruction to
load or store that variable must be able to say “the memory location whose address is the
contents of register 4 (let’s say) plus five.” So each load and store instruction contains an

in parentheses following an to be added to the contents of that register.
We’d say

to store the contents of register 8 into the variable , provided that register 4 points to
the correct procedure invocation’s local variables and that is in the sixth position in the
block. (The first position in the block would have offset 0, and so on.)

The first step in invoking a procedure or function is to set aside, or a block of
memory locations for use by that invocation. This block will include the procedure’s
local variables, its arguments, and room to save the values of registers as needed.
The compiler’s data structures include, for each procedure, how much memory that
procedure needs when it’s invoked. That block of memory is called a

In most programming languages, including Pascal and Logo (but not, as it turns
out, Lisp), the frame allocated when a procedure invocation begins can be released, or

when that invocation returns to its caller. In other words, the procedure’s local
variables no longer exist once the invocation is finished. In these languages, the frames
for all the active procedure invocations can be viewed as a a data structure to which
new elements are added by a Push operation, and elements are removed using a Pop
operation that removes the most recently pushed element. (In this case, the elements
are the frames.) That is, suppose that procedure A invokes B, which invokes C, which
invokes D. For each of these invocations a new frame is pushed onto the stack. Which
procedure finishes first? It has to be D, the last one invoked. When D returns, its frame
can be popped off the stack. Procedure C returns next, and its frame is popped, and so
on. The phrase is used to refer to frames that behave like elements of a stack.

My Pascal compiler allocates memory starting at location 0 and working upward. At
the beginning of the program, a is allocated to hold the program’s global
variables. Register 3, the always contains the address of the beginning of

add 5 2 0
addi 2 2 N

store 4 3(5)

add 4 5 0

N

N

pproccall1

reg.frameptr
frame.prevframe

frame pointer,

stack pointer,

new frame pointer,

236 Chapter 5 Programming Language Implementation

the global frame, so that every procedure can easily make use of global variables. (Since
the global frame is the first thing in memory, its address is always zero, so the value in
register 3 is always 0. But in a more realistic implementation the program itself would
appear in memory before the global frame, so its address would be greater than zero.)

At any point in the program, register 4, the contains the address of
the beginning of the current frame, that is, the frame that was created for the current
procedure invocation. Register 2, the contains the address of the first
currently unused location in memory.

My compiler is a little unusual in that when a procedure is called, the stack frame
for the new invocation is allocated by the caller, not by the called procedure. This
simplifies things because the procedure’s arguments can be stored in its own frame; if
each procedure allocates its own frame, then the caller must store argument values in its
(the caller’s) frame, because the callee’s frame doesn’t exist yet. So, in my compiler, the
first step in a procedure call is to set register 5, the to point to the first
free memory location, and change the stack pointer to allocate the needed space. If
memory locations are needed for the new frame, the calling procedure will contain the
following instructions:

The first instruction copies the value from register 2 (the first free memory location) into
register 5; the second adds to register 2. (I’ve left out a complication, which is that
the old value in register 5 must be saved somewhere before putting this new value into it.
You can read the code generation instructions at the beginning of , in the
program listing at the end of the chapter, for all the details.) The current frame pointer
is also saved in location 3 of the new frame:

The compiler uses data abstraction to refer to these register numbers and frame slots; for
example, the procedure takes no arguments and always outputs 4, while

outputs 3.

The next step is to put the argument values into the new frame. During this process,
the calling procedure must use register 4 to refer to its own variables, and register 5 to
refer to the callee’s variables. The final step, just before calling the procedure, is to make
the frame pointer (register 4) point to the new frame:

procedure B

procedure C

procedure A

main program

proc1

Stack Frames 237

jal 1 "proclabel

store 1 0(4)

rload 1 0(4)
add 2 4 0
rload 4 3(2)
jr 1

Once the caller has set up the new frame and saved the necessary registers, it can
call the desired procedure, putting the return address in register 1:

The first step in the called procedure is to save the return address in location zero of its
frame:

The procedure then carries out the instructions in its body. When it’s ready to
return, it must load the saved return address back into register 1, then restore the old
stack pointer and frame pointer to deallocate its frame, and finally return to the caller:

(Procedure in the compiler generates these instructions for each procedure.)

One final complication about stack frames comes from Pascal’s block structure.
Suppose we have a program with internal procedures arranged in this structure:

Then suppose that the main program calls procedure A, which calls B, which calls C,
which calls itself recursively. The current (inner) invocation of C has access to its own
variables, those of procedure A, and the global variables, but not to procedure B’s
variables. How does procedure C know where procedure A’s stack frame is located? The

global frame

free memory

A

B

C

C

global pointer
(register 3)

frame pointer
(register 4)

stack pointer
(register 2)

indicates pointer
to previous frame

indicates pointer
to lexically
enclosing frame

lexically enclosing

238 Chapter 5 Programming Language Implementation

* If procedures used the previous-frame pointers to make variable references, we would be
compiling a dynamically scoped language! In this example, because Pascal is lexically scoped,
procedure C can’t refer to procedure B’s variables, even though B called C.

answer is that every frame, in addition to saving a pointer to the previous frame, must
include a pointer to the frame. The calling procedure sets this up; it
can do this because it knows its own lexical depth and that of the called procedure. For
example, when procedure B calls procedure C, C’s lexically enclosing frame will be the
same as B’s (namely, the frame for the invocation of A), because B and C are at the same
lexical depth. (They are both declared inside A.) But when procedure A calls procedure
B, which is declared within itself, A must store its own frame pointer as B’s lexically
enclosing frame. Here is a picture of what’s where in memory:

If all these pointers between frames confuse you, it might help to keep in mind that
the two kinds of pointers have very different purposes. The pointer to the previous frame
is used only when a procedure returns, to help in putting everything back the way it was
before the procedure was called (in particular, restoring the old value of register 4). The
pointer to the lexically enclosing frame is used while the procedure is running, whenever
the procedure makes reference to a variable that belongs to some outer procedure (for
example, a reference in procedure B or C to a variable that belongs to procedure A).*

Data Structures

Data Structures 239

[myproc procedure %myproc [2 46]]

:idlist

program
procedure function

doit
g14

symbol

%symbol

In this section I’ll describe the main data structures used during compilation (abstract
data types for identifiers and for expressions) and during the running of the program
(registers and frames).

The main body of information that the compiler must maintain is the list of Pascal
identifiers (variable, procedure, and function names). Since Pascal is lexically scoped,
some attention is necessary to ensure that each compiled Pascal procedure has access to
precisely the variables that it should. At any point during the compilation, the value of

is a list of just those identifiers that may be used in the part of the program
being compiled. We’ll see in a moment how that’s accomplished.

There are two main categories of identifier: procedure names (including the main
program and functions in this category) and variable names. The information maintained
for a procedure name looks like this example:

The first member of this list is the Pascal name of the program, procedure, or function.
The second member is the type indicator, which will be one of the words ,

, or . The third member is the procedure’s “Logo name,” the
unique name used within the compiler to represent this program or procedure. The
program’s Logo name is used as the variable name whose value will be the compiled
program; the Logo names for procedures and functions are used as the labels in the
compiled program at which each procedure or function begins. The fourth member of
the list contains the frame information for the procedure; it’s a list of two numbers, the
lexical depth and the frame size. The lexical depth is 0 for the main program, 1 for a
procedure declared inside the main program, 2 for a procedure declared inside a depth-1
procedure, and so on. The frame size indicates how many memory locations must be
allocated for each invocation of the procedure. (For the main program, the frame size
indicates the size of the global frame.)

Because of the Pascal scope rules, there can be two procedures with the same name,
each declared within a different region of the program. But there is no scoping of labels
in the compiled program; each label must be unique. The simplest solution would be
to use a distinct program-generated name for every Pascal procedure; the Pascal
would become the Logo . In fact I chose to modify this approach somewhat. When an
identifier is declared in the source program, the compiler looks to see whether
another identifier with the same name has appeared anywhere in the program. If not,
the Logo name is used; if so, a generated symbol is used. This rule makes the

[i integer [1 41] false]

[integer [0 6] [5 3]]

pointer

240 Chapter 5 Programming Language Implementation

%symbol
newlname

id.type id.lname id.frame

getid

true var false

i

array [0..5, 5..7] of integer

[3..7] [3 5]

41(4)

id.type id.pointer id.varp

idlist

Idlist program procedure
function

compiled program a little easier to read, while preserving the rule that all Logo names
must be unique. The percent sign in ensures that this Logo name doesn’t
conflict with any names used in the compiler itself. Procedure in the compiler
takes a Pascal identifier as input and generates a new Logo name to correspond.

The selectors , , and are used for the second through
fourth members of these lists. There’s no selector for the first member, the Pascal name,
because the compiler never extracts this information explicitly. Instead, the Pascal name
is used by procedure , which takes a Pascal name as its input and returns the
corresponding identifier list.

For variable names, the identifier information looks a little different:

The first two members of this list are the Pascal name and the type, the same as for
a procedure. The third member is the information for the variable: its lexical
depth and the offset within a frame where it should be kept. The compiler will use this
information to issue instructions to load or store the value of the variable. The fourth
member of the list is if this variable is a (call by reference) parameter,
otherwise.

The variable above has a scalar type, so its type indicator is a word. Had it been an
array, the type indicator would be a list such as

for a variable declared as .

For each dimension of the array, the first number in the list is the smallest possible index,
while the second number is the number of possible index values in this dimension. That
is, the range is represented by the list because there are five possible
values starting from 3. Notice that there is no “Logo name” for a variable; in the compiled
program, a variable is represented as an offset and an index register, such as .

For variables, the selectors used are , , and .

The information about currently accessible identifiers is kept in the list .
This variable holds a list of lists; each Pascal identifier is represented by a list as indicated
above. is a local variable in the compiler procedures , ,
and . That is, there is a separate version for each block of the Pascal source
program. Each local version starts out with the same value as the higher-level version;
identifiers declared within a block are added to the local version but not to the outer

the dynamic environment at compile time reflects the lexical environment at run
time. contains

invokes invokes

outer

Data Structures 241

idlist

idlist
idlist

idlist

tower tower hanoi
movedisk program tower

procedure hanoi procedure
movedisk

push idlist
idlist

Proc1
idlist

to procedure
proc1 "procedure framesize.proc
end

to function
proc1 "function framesize.fun
end

to proc1 :proctype :framesize
localmake "procname token
localmake "lexical.depth :lexical.depth+1
localmake "frame (list :lexical.depth 0)
push "idlist (list :procname :proctype (newlname :procname) :frame)
localmake "idlist :idlist
...
end

localmake "idlist :idlist

one. When the compiler finishes a block, the (Logo) procedure in charge of that block
stops and the outer becomes current again.

This arrangement may or may not seem strange to you. Recall that we had to invent
this mechanism because Pascal’s lexical scope is different from Logo’s dynamic
scope. The reason we have these different versions of is to keep track of which
identifiers are lexically available to which blocks. And yet we are using Logo’s dynamic
scope to determine which is available at any point in the compilation. The reason
this works is that

For example, in the program, the fact that , which
in turn contains , is reflected in the fact that (compiling)

(compiling), which in turn recursively
(compiling). Earlier I said that lexical scope is easier for a compiler than
dynamic scope; this paragraph may help you see why that’s true. Even dynamically scoped
Logo naturally falls into providing lexical scope for a Pascal compiler.

Here is how procedure and function declarations are compiled:

(I’m leaving out the code generation part for now.) What I want to be sure you understand
is that the instruction adds the new procedure name to the ; after
that, it creates a new whose initial value is the same as the old one. It’s very
important that the instruction

comes where it does and not at the beginning of the procedure. needs access to
the outer when it starts, and then later it “shadows” that variable with its own

242 Chapter 5 Programming Language Implementation

local
var

Getid
idlist

program
procedure function

compileprocedure

getid idlist
procedure function

statement procedure function
program

idlist

pexpr

local version. This example shows that Logo’s command really is an executable
command and not a declaration like Pascal’s declaration. In Pascal it would be
unthinkable to declare a new local variable in the middle of a block.

depends on Logo’s dynamic scope to give it access to the right version of
. Think about writing a Pascal compiler in Pascal. There would be a large

block for with many other procedures inside it. Two of those inner procedures
would be the ones for and . (Of course they couldn’t have those
names, because they’re Pascal reserved words. They’d be called
or some such thing. But I think this will be easier to follow if I stick with the names
used in the Logo version of the compiler.) Those two procedures should be at the same
level of block structure; neither should be lexically within the other. That’s because
a Pascal procedure block can include a function definition or vice versa. Now, where
in the lexical structure does belong? It needs access to the local of
either or , whichever is currently active. Similarly, things like

need to be lexically within both and , and actually
also within because the outermost program block has statements too. It would
theoretically be possible to solve the problem by writing three identical versions of each
of these subprocedures, but that solution is too horrible to contemplate. Instead a
more common technique is to have only one variable, a global one, and write
the compiler so that it explicitly maintains a stack of old values of that variable. The
Pascal programmer has to do the work that the programming language should be doing
automatically. This is an example in which dynamic scope, while not absolutely essential,
makes the program much easier to write and more straightforward to understand.

For every procedure or function in the Pascal source program, the compiler creates
a global Logo variable with the same name as the corresponding label—that is, either a
percent-prefix name or a generated symbol. The value of this variable is a list of types,
one for each argument to the procedure or function. (For a function, the first member
of the list is the type of the function itself; the butfirst is the list of types of its arguments.)
The compiler examines this “type signature” variable when a procedure or function is
invoked, to make sure that the types of the actual arguments match the types of the
formal parameters.

The other important compile-time data structure is the one that represents a
compiled expression. When the compiler calls , its job is to parse an expression
from the Pascal source program and generate code to compute (when the compiled
program runs!) the value of the expression. The generated code leaves the computed

scalar

Members

Data Structures 243

pexpr

register

15 pexpr

pexpr

x

a

exp.type
exp.mode register immediate exp.value

+

Passign

[real register 8]

[integer immediate 15]

x := 15

addi 7 0 15
store 7 48(4)

x := a+15

rload 7 53(4)
addi 7 7 15
store 7 48(4)

value in some register. What returns to its caller is a data structure indicating
which register and what type the expression has, like this:

The first member of this list is the type of the expression. Most of the time, the second
member is the word and the third member is the register number in which
the expression’s value can be found. The only exception is for a constant expression; if
the expression is, for example, then will output

For the most part, these immediate expressions are useful only within recursive calls to
. In compiling the Pascal assignment

we’re going to have to get the value 15 into a register anyway in order to be able to store
it into ; the generated code will be something like

An immediate expression is most useful in compiling something like

in which we can avoid loading the value 15 into a register, but can directly add it to the
register containing :

The members of an expression list are examined using the selectors ,
(the word or), and (the register number

or immediate value).

In this compiler an “expression” is always a type; although the formal definition
of Pascal allows for array expressions, there are no operations that act on arrays the way
operations like act on scalars, and so an array expression can only be the name of
an array variable. (of arrays can, of course, be part of a scalar expression.)

, the compiler procedure that handles assignment statements, first checks for

x := f(3)+f(4)

runtime

244 Chapter 5 Programming Language Implementation

pexpr

reg.zero
reg.retaddr
reg.stackptr
reg.globalptr
reg.frameptr
reg.newfp
reg.retval
reg.firstfree

newregister

regfree newregister

frame.retaddr
frame.save.newfp
frame.outerframe
frame.prevframe
frame.regsave
frame.retval

the special case of an array assignment and then, only if the left side of the assignment is
a scalar, invokes to parse a scalar expression.

In order to understand the code generated by the compiler, you should also know
about the data structures used by compiled programs. First, certain registers are
reserved for special purposes:

number name purpose

0 always contains zero
1 return address from procedure call
2 first free memory address
3 address of global frame
4 address of current frame
5 address of frame being made for procedure call
6 return value from function
7 first register available for expressions

We’ve already seen most of these while discussing stack frames. A Pascal function returns
its result in register 6; the caller immediately copies the return value into some other
register so that it won’t be lost if the program calls another function, for a case like

Whenever a register is needed to hold some computed value, the compiler calls the
Logo procedure , which finds the first register number starting from 7
that isn’t currently in use. When the value in a register is no longer needed, the compiler
calls to indicate that that register can be reassigned by .

The other noteworthy runtime data structure is the use of slots within each frame
for special purposes:

number name purpose

0 address from which this procedure was called
1 saved register 3 while filling this new frame
2 the frame lexically enclosing this one
3 the frame from which this one was called

4–35 space for saving registers
36 function return value

Why is there both a register and a frame slot for a function’s return value? Remember
that the way you indicate the return value in a Pascal function is by assigning to the
function’s name as if it were a variable. Such an assignment is not necessarily the last

if

Code Generation

recursive

Code Generation 245

rload 6 36(4)

to pif
local [cond elsetag endtag]
make "cond pboolean pexpr
make "elsetag gensym
make "endtag gensym
mustbe "then
code (list "jumpf :cond (word "" :elsetag))
regfree :cond
statement
code (list "jump (word "" :endtag))
code :elsetag
ifbe "else [statement]
code :endtag
end

instruction in the function; it may do more work after computing the return value. The
compiler notices as assignment to the function name and generates code to save the
computed value in slot 36 of the current frame. Then, when the function actually returns,
the compiler generates the instruction

to copy the return value into register 6. The function’s frame is about to be freed, so the
caller can’t look there for the return value; that’s why a register is used.

Each frame includes a block of space for saving registers when another procedure is
called. That’s because each procedure allocates register numbers independently; each
starts with register 7 as the first free one. So if the registers weren’t saved before a
procedure call and restored after the call, the values in the registers would be lost.
(Although the frame has enough room to save all 32 registers, to make things simple, not
all 32 are actually saved. The compiler knows which registers contain active expression
values at the moment of the procedure call, and it generates code to save and restore
only the necessary ones.)

You might think it would be easier to have each procedure use a separate set of
registers, so saving wouldn’t be necessary. But this doesn’t work for two reasons. First,
there are only a few registers, and in a large program we’d run out. Even more important,
the compiled code for a procedure is going to use the same registers in each
invocation, so we certainly can’t avoid saving registers in that situation.

Let’s look again at how the compiler handles a Pascal statement:

246 Chapter 5 Programming Language Implementation

if

if
if pif

if
boolean

pexpr
pboolean

pboolean
pif

if

condition statement
condition statement statement

cond
cond

... get condition into register ...

... code for statement ...

... code for statement ...

if then
if then else

make "cond pboolean pexpr

to pboolean :expr [:pval noimmediate :expr]
if equalp exp.type :pval "boolean [output exp.value :pval]
(throw "error sentence exp.type :pval [not true or false])
end

to noimmediate :value
if equalp exp.mode :value "immediate ~

[localmake "reg newregister
code (list "addi :reg reg.zero exp.value :value)
output (list exp.type :value "register :reg)]

output :value
end

jumpf "g5
then

jump "g6
g5

else
g6

I showed you this procedure while talking about parsing, asking you to ignore the
parts about code generation. Now we’ll come back to that part of the process.

The format of the statement is either of these:

(There is probably a semicolon after the statement, but it’s not officially part of the ;
it’s part of the compound statement that contains the .) When we get to , the
compiler has already read the token ; the next thing to read is an expression, which
must be of type , providing the condition part of the statement.

In the instruction

the call to generates code for the expression and returns an expression list, in the
format shown earlier. The procedure does three things: First, it checks the
mode of the expression; if it’s immediate, the value is loaded into a register. Second, it
checks the type of the expression to ensure that it really is boolean. Third,
returns just the register number, which will be used in code generated by .

Overall, the code compiled for the statement will look like this:

Code Generation 247

make "elsetag gensym
make "endtag gensym

code (list "jumpf :cond (word "" :elsetag))
regfree :cond

sub 8 8 9

g5 g6

pif pexpr
jumpf

jumpf
:cond regfree

for while repeat

ppopop

ppopop

Ppopop

minus

pproccall1

procargs

passign

The labels and in this example are generated symbols; they’ll be different each
time. The labels are generated by the instructions

in . After we call to generate the code for the conditional expression, we
explicitly generate the instruction:

Notice that once we’ve generated the instruction, we no longer need the value in
register , and we call to say so. The rest of this code generation process
should be easy to work out. All of the structured statements (, , and)
are similarly simple.

The code generation for expressions is all in . Most of the complexity of
dealing with expressions is in the parsing, not in the code generation; by the time we get
to , we know that we want to carry out a single operation on two values, both of
which are either in registers or immediate values. The simple case is that both are in
registers; suppose, for example, that we are given the subtraction operation and the two
operands are in registers 8 and 9. Then we just generate the instruction

and declare register 9 free. is a little long, because it has to check for special
cases such as immediate operands. Also, a unary minus is turned into a subtraction from
register zero, since there is no unary operation in our simulated machine.

Ironically, it’s the “simple” statements that are hardest to compile: assignment and
procedure calling. For procedure (or function) calling, the difficulty is in matching
actual argument expressions with formal parameters. Procedure generates
the instructions to manipulate frame pointers, as described earlier, and procedure

fills the newly-created frame with the actual argument values. (If an argument
is an array passed by value, each member of the array must be copied into the new
frame.) Assignment, handled by procedure in the compiler, is similar to
argument passing; a value must be computed and then stored into a frame. I wouldn’t
be too upset if you decide to stop here and take code generation for memory references
on faith.

Suppose we are compiling the assignment

expression

really index

248 Chapter 5 Programming Language Implementation

Passign x getid
passign

passign1
passign

pfunset

pexpr Check.type
pboolean

codestore

var

make "name token

make "id getid :name
make "pointer id.pointer :id
make "type id.type :id

make "value check.type :type pexpr
codestore :value (id.pointer :id) (id.varp :id) :index

x :=

to passign
local [name id type index value pointer target]

make "index []
ifbe "|[| [make "index commalist [pexpr] mustbe "|]|]
mustbe "|:=|

passign1
end

to passign1
if and (listp :type) (emptyp :index) [parrayassign :id stop]
setindex "false

regfree :value
end

reads the name and uses to find the information associated with that
name. If the assignment is to an array member, then must also read the array
indices, but let’s say that we are assigning to a scalar variable, to keep it simple.

Procedure contains the steps that are in common between ordinary
assignment (handled by) and assignment to the name of the current function,
to set the return value (handled by , which you can read in the complete listing
at the end of the chapter).

We call to generate the code to compute the expression. is like
, which you saw earlier, except that it takes the desired type as an argument. It

returns the number of the register that contains the expression value.

The real work is done by , which takes four inputs. The first is the
register number whose value should be stored; the other three inputs indicate where in
memory the value should go. First comes the pointer from the identifier list; this, you’ll
recall, tells us the lexical depth at which the variable was declared and the offset within
its frame where the variable is kept. Next is a true or false value indicating whether or
not this variable is a parameter; if so, then its value is a pointer to the variable whose
value we want to change. Finally, the input will be zero for a scalar variable,
or the number of a register containing the array index for an array member. (Procedure

that

Code Generation 249

lindex

codeload
Codestore memsetup

rload store
41(4) memsetup

[41 4] targetaddr

Memsetup

var

frame.outerframe frame.outerframe

var

tower

to codestore :reg :pointer :varflag :index
localmake "target memsetup :pointer :varflag :index
code (list "store :reg targetaddr)
regfree last :target
end

, whose name stands for “linear index,” has been called to generate code to
convert the possible multi-dimensional indices, with possibly varying starting values, into
a single number indicating the position within the array, starting from zero for the first
member.)

(There is a similar procedure used to generate the code to load a variable’s
value into a register.) invokes a subprocedure whose job is to
work out an appropriate operand for an or machine instruction. That
operand must be an offset and an index register, such as . What
returns is a list of the two numbers, in this case . Procedure turns
that into the right notation for use in the instruction.

is the most complicated procedure in the compiler, because there are so
many special cases. I’ll describe the easy cases here. Suppose that we are dealing with
a scalar variable that isn’t a parameter. Then there are three cases. If the lexical
depth of that variable is equal to the current lexical depth, then this variable is declared
in the same block that we’re compiling. In that case, we use register 4 (the current
frame pointer) as the index register, and the variable’s frame slot as the offset. If the
variable’s lexical depth is zero, then it’s a global variable. In that case, we use register
3 (the global frame pointer) as the index register, and the variable’s frame slot as the
offset. If the variable’s depth is something other than zero or the current depth, then
we have to find a pointer to the variable’s own frame by looking in the current frame’s

slot, and perhaps in frame’s slot, as
many times as the difference between the current depth and the variable’s depth.

If the variable is a parameter, then we go through the same cases just described,
and then load the value of that variable (which is a pointer to the variable we really want)
into a register. We use that new register as the index register, and zero as the offset.

If the variable is an array member, then we must add the linear index (which is
already in a register) to the offset as computed so far.

Perhaps an example will help sort this out. Here is the compiled version of the
program, with annotations:

250 Chapter 5 Programming Language Implementation

set up initial pointers

jump to main program

save return value
jump to body of

body of

reload return address
free stack frame

return to caller

[[add 3 0 0]
[add 4 0 0]
[addi 2 0 36]
[jump "g1]

%hanoi [store 1 0(4)]
[jump "g2] hanoi

%movedisk [store 1 0(4)]
[jump "g3]

g3 [putstr 1 [Move disk]] movedisk
[rload 7 36(4)]
[putint 1 7] write(number:1)
[putstr 1 [from]]
[rload 7 37(4)]
[putch 1 7] write(from:1)
[putstr 1 [to]]
[rload 7 38(4)]
[putch 1 7] write(to:1)
[newline]
[rload 1 0(4)]
[add 2 4 0]
[rload 4 3(2)]
[jr 1]

Code Generation 251

body of

allocate new frame

set previous frame

set enclosing frame

first arg is

next arg is

next arg is

next arg is
switch to new frame

recursive call

set up for

note different enclosing frame

copy args

call

g2 [rload 7 36(4)] hanoi
[neqi 7 7 0] if number <> 0
[jumpf 7 "g4]
[store 5 1(2)]
[add 5 2 0]
[addi 2 2 40]
[store 4 3(5)]
[rload 7 2(4)]
[store 7 2(5)]
[rload 7 36(4)]
[subi 7 7 1]
[store 7 36(5)] number-1
[rload 7 37(4)]
[store 7 37(5)] from
[rload 7 39(4)]
[store 7 38(5)] other
[rload 7 38(4)]
[store 7 39(5)] onto
[add 4 5 0]
[rload 5 1(4)]
[jal 1 "%hanoi]

[store 5 1(2)] movedisk
[add 5 2 0]
[addi 2 2 39]
[store 4 3(5)]
[store 4 2(5)]
[rload 7 36(4)]
[store 7 36(5)]
[rload 7 37(4)]
[store 7 37(5)]
[rload 7 38(4)]
[store 7 38(5)]
[add 4 5 0]
[rload 5 1(4)]
[jal 1 "%movedisk] movedisk

252 Chapter 5 Programming Language Implementation

second recursive call

end of ...

return to caller

body of main program
prepare to call

constant argument

ASCII code for

ASCII code for

ASCII code for

call

[store 5 1(2)]
[add 5 2 0]
[addi 2 2 40]
[store 4 3(5)]
[rload 7 2(4)]
[store 7 2(5)]
[rload 7 36(4)]
[subi 7 7 1]
[store 7 36(5)]
[rload 7 39(4)]
[store 7 37(5)]
[rload 7 38(4)]
[store 7 38(5)]
[rload 7 37(4)]
[store 7 39(5)]
[add 4 5 0]
[rload 5 1(4)]
[jal 1 "%hanoi]
[jump "g5] if then

g4
g5 [rload 1 0(4)]

[add 2 4 0]
[rload 4 3(2)]
[jr 1]

g1 [store 5 1(2)]
[add 5 2 0] hanoi
[addi 2 2 40]
[store 4 3(5)]
[store 4 2(5)]
[addi 7 0 5] 5
[store 7 36(5)]
[addi 7 0 97] ’a’
[store 7 37(5)]
[addi 7 0 98] ’b’
[store 7 38(5)]
[addi 7 0 99] ’c’
[store 7 39(5)]
[add 4 5 0]
[rload 5 1(4)]
[jal 1 "%hanoi] hanoi
[exit]

]

Program Listing

Program Listing 253

to compile :file
if namep "peekchar [ern "peekchar]
if namep "peektoken [ern "peektoken]
if not namep "idlist [opsetup]
if not emptyp :file [openread :file]
setread :file
ignore error
catch "error [program]
localmake "error error
if not emptyp :error [print first butfirst :error]
setread []
if not emptyp :file [close :file]
end

;; Global setup

to opsetup
make "numregs 32
make "memsize 3000
pprop "|=| "binary [eql 2 [boolean []] 1]
pprop "|<>| "binary [neq 2 [boolean []] 1]
pprop "|<| "binary [less 2 [boolean []] 1]
pprop "|>| "binary [gtr 2 [boolean []] 1]
pprop "|<=| "binary [leq 2 [boolean []] 1]
pprop "|>=| "binary [geq 2 [boolean []] 1]
pprop "|+| "binary [add 2 [[] []] 2]
pprop "|-| "binary [sub 2 [[] []] 2]
pprop "or "binary [lor 2 [boolean boolean] 2]
pprop "|*| "binary [mul 2 [[] []] 3]
pprop "|/| "binary [quo 2 [real []] 3]
pprop "div "binary [div 2 [integer integer] 3]
pprop "mod "binary [rem 2 [integer integer] 3]
pprop "and "binary [land 2 [boolean boolean] 3]
pprop "|+| "unary [plus 1 [[] []] 4]
pprop "|-| "unary [minus 1 [[] []] 4]
pprop "not "unary [lnot 1 [boolean boolean] 4]
make "idlist ‘[[trunc function int [1 ,[framesize.fun+1]]]

[round function round [1 ,[framesize.fun+1]]]
[random function random [1 ,[framesize.fun+1]]]]

make "int [integer real]
make "round [integer real]
make "random [integer integer]
end

254 Chapter 5 Programming Language Implementation

;; Block structure

to program
mustbe "program
localmake "progname token
ifbe "|(| [ignore commalist [id] mustbe "|)|]
mustbe "|;|
localmake "lexical.depth 0
localmake "namesused []
localmake "needint "false
localmake "needround "false
localmake "needrandom "false
localmake "idlist :idlist
localmake "frame [0 0]
localmake "id (list :progname "program (newlname :progname) :frame)
push "idlist :id
localmake "codeinto word "% :progname
make :codeinto []
localmake "framesize framesize.proc
program1
mustbe ".
code [exit]
foreach [int round random] "plibrary
make :codeinto reverse thing :codeinto
end

to program1
localmake "regsused (array :numregs 0)
for [i reg.firstfree :numregs-1] [setitem :i :regsused "false]
ifbe "var [varpart]
.setfirst butfirst :frame :framesize
if :lexical.depth = 0 [code (list "add reg.globalptr reg.zero reg.zero)

code (list "add reg.frameptr reg.zero reg.zero)
code (list "addi reg.stackptr reg.zero :framesize)]

localmake "bodytag gensym
code (list "jump (word "" :bodytag))
tryprocpart
code :bodytag
mustbe "begin
blockbody "end
end

to plibrary :func
if not thing (word "need :func) [stop]
code :func
code (list "rload reg.firstfree (memaddr framesize.fun reg.frameptr))
code (list (word "s :func) reg.retval reg.firstfree)
code (list "add reg.stackptr reg.frameptr reg.zero)
code (list "rload reg.frameptr (memaddr frame.prevframe reg.stackptr))
code (list "jr reg.retaddr)
end

Program Listing 255

;; Variable declarations

to varpart
local [token namelist type]
make "token token
make "peektoken :token
if reservedp :token [stop]
vargroup
foreach :namelist [newvar ? :type]
mustbe "|;|
varpart
end

to vargroup
make "namelist commalist [id]
mustbe ":
ifbe "packed []
make "type token
ifelse equalp :type "array [make "type arraytype] [typecheck :type]
end

to id
localmake "token token
if letterp ascii first :token [output :token]
make "peektoken :token
output []
end

to arraytype
local [ranges type]
mustbe "|[|
make "ranges commalist [range]
mustbe "|]|
mustbe "of
make "type token
typecheck :type
output list :type :ranges
end

to range
local [first last]
make "first range1
mustbe "..
make "last range1
if :first > :last ~

[(throw "error (sentence [array bounds not increasing:]
:first ".. :last))]

output list :first (1 + :last - :first)
end

256 Chapter 5 Programming Language Implementation

to range1
localmake "bound token
if equalp first :bound "’ [output ascii first butfirst :bound]
if equalp :bound "|-| [make "bound minus token]
if equalp :bound int :bound [output :bound]
(throw "error sentence [array bound not ordinal:] :bound)
end

to typecheck :type
if memberp :type [real integer char boolean] [stop]
(throw "error sentence [undefined type] :type)
end

to newvar :pname :type
if reservedp :pname [(throw "error sentence :pname [reserved word])]
push "idlist (list :pname :type (list :lexical.depth :framesize) "false)
make "framesize :framesize + ifelse listp :type [arraysize :type] [1]
end

to arraysize :type
output reduce "product map [last ?] last :type
end

;; Procedure and function declarations

to tryprocpart
ifbeelse "procedure ~

[procedure tryprocpart] ~
[ifbe "function [function tryprocpart]]

end

to procedure
proc1 "procedure framesize.proc
end

to function
proc1 "function framesize.fun
end

Program Listing 257

to proc1 :proctype :framesize
localmake "procname token
localmake "lexical.depth :lexical.depth+1
localmake "frame (list :lexical.depth 0)
push "idlist (list :procname :proctype (newlname :procname) :frame)
localmake "idlist :idlist
make lname :procname []
ifbe "|(| [arglist]
if equalp :proctype "function ~

[mustbe ":
localmake "type token
typecheck :type
make lname :procname fput :type thing lname :procname]

mustbe "|;|
code lname :procname
code (list "store reg.retaddr (memaddr frame.retaddr reg.frameptr))
program1
if equalp :proctype "function ~

[code (list "rload reg.retval (memaddr frame.retval reg.frameptr))]
code (list "rload reg.retaddr (memaddr frame.retaddr reg.frameptr))
code (list "add reg.stackptr reg.frameptr reg.zero)
code (list "rload reg.frameptr (memaddr frame.prevframe reg.stackptr))
code (list "jr reg.retaddr)
mustbe "|;|
end

to arglist
local [token namelist type varflag]
make "varflag "false
ifbe "var [make "varflag "true]
vargroup
foreach :namelist [newarg ? :type :varflag]
ifbeelse "|;| [arglist] [mustbe "|)|]
end

to newarg :pname :type :varflag
if reservedp :pname [(throw "error sentence :pname [reserved word])]
localmake "pointer (list :lexical.depth :framesize)
push "idlist (list :pname :type :pointer :varflag)
make "framesize :framesize + ifelse (and listp :type not :varflag) ~

[arraysize :type] [1]
queue lname :procname ifelse :varflag [list "var :type] [:type]
end

;; Statement part

to blockbody :endword
statement
ifbeelse "|;| [blockbody :endword] [mustbe :endword]
end

258 Chapter 5 Programming Language Implementation

to statement
local [token type]
ifbe "begin [compound stop]
ifbe "for [pfor stop]
ifbe "if [pif stop]
ifbe "while [pwhile stop]
ifbe "repeat [prepeat stop]
ifbe "write [pwrite stop]
ifbe "writeln [pwriteln stop]
make "token token
make "peektoken :token
if memberp :token [|;| end until] [stop]
make "type gettype :token
if emptyp :type [(throw "error sentence :token [can’t begin statement])]
if equalp :type "procedure [pproccall stop]
if equalp :type "function [pfunset stop]
passign
end

;; Compound statement

to compound
blockbody "end
end

;; Structured statements

to pif
local [cond elsetag endtag]
make "cond pboolean pexpr
make "elsetag gensym
make "endtag gensym
mustbe "then
code (list "jumpf :cond (word "" :elsetag))
regfree :cond
statement
code (list "jump (word "" :endtag))
code :elsetag
ifbe "else [statement]
code :endtag
end

to prepeat
local [cond looptag]
make "looptag gensym
code :looptag
blockbody "until
make "cond pboolean pexpr
code (list "jumpf :cond (word "" :looptag))
regfree :cond
end

Program Listing 259

to pfor
local [var init step final looptag endtag testreg]
make "var token
mustbe "|:=|
make "init pinteger pexpr
make "step 1
ifbeelse "downto [make "step -1] [mustbe "to]
make "final pinteger pexpr
mustbe "do
make "looptag gensym
make "endtag gensym
code :looptag
localmake "id getid :var
codestore :init (id.pointer :id) (id.varp :id) 0
make "testreg newregister
code (list (ifelse :step<0 ["less] ["gtr]) :testreg :init :final)
code (list "jumpt :testreg (word "" :endtag))
regfree :testreg
statement
code (list "addi :init :init :step)
code (list "jump (word "" :looptag))
code :endtag
regfree :init
regfree :final
end

to pwhile
local [cond looptag endtag]
make "looptag gensym
make "endtag gensym
code :looptag
make "cond pboolean pexpr
code (list "jumpf :cond (word "" :endtag))
regfree :cond
mustbe "do
statement
code (list "jump (word "" :looptag))
code :endtag
end

;; Simple statements: procedure call

to pproccall
localmake "pname token
localmake "id getid :pname
localmake "lname id.lname :id
localmake "vartypes thing :lname
pproccall1 framesize.proc
end

260 Chapter 5 Programming Language Implementation

to pproccall1 :offset
code (list "store reg.newfp (memaddr frame.save.newfp reg.stackptr))
code (list "add reg.newfp reg.stackptr reg.zero)
code (list "addi reg.stackptr reg.stackptr (last id.frame :id))
code (list "store reg.frameptr (memaddr frame.prevframe reg.newfp))
localmake "newdepth first id.frame :id
ifelse :newdepth > :lexical.depth ~

[code (list "store reg.frameptr
(memaddr frame.outerframe reg.newfp))] ~

[localmake "tempreg newregister
code (list "rload :tempreg (memaddr frame.outerframe reg.frameptr))
repeat (:lexical.depth - :newdepth)

[code (list "rload :tempreg
(memaddr frame.outerframe :tempreg))]

code (list "store :tempreg (memaddr frame.outerframe reg.newfp))
regfree :tempreg]

if not emptyp :vartypes [mustbe "|(| procargs :vartypes :offset]
for [i reg.firstfree :numregs-1] ~

[if item :i :regsused
[code (list "store :i (memaddr frame.regsave+:i reg.frameptr))]]

code (list "add reg.frameptr reg.newfp reg.zero)
code (list "rload reg.newfp (memaddr frame.save.newfp reg.frameptr))
code (list "jal reg.retaddr (word "" :lname))
for [i reg.firstfree :numregs-1] ~

[if item :i :regsused
[code (list "rload :i (memaddr frame.regsave+:i reg.frameptr))]]

end

to procargs :types :offset
if emptyp :types [mustbe "|)| stop]
localmake "next procarg first :types :offset
if not emptyp butfirst :types [mustbe ",]
procargs butfirst :types :offset+:next
end

to procarg :type :offset
if equalp first :type "var [output procvararg last :type]
if listp :type [output procarrayarg :type]
localmake "result check.type :type pexpr
code (list "store :result (memaddr :offset reg.newfp))
regfree :result
output 1
end

Program Listing 261

to procvararg :ftype
local [pname id type index]
make "pname token
make "id getid :pname
make "type id.type :id
ifelse wordp :ftype ~

[setindex "true] ~
[make "index 0]

if not equalp :type :ftype ~
[(throw "error sentence :pname [arg wrong type])]

localmake "target memsetup (id.pointer :id) (id.varp :id) :index
localmake "tempreg newregister
code (list "addi :tempreg (last :target) (first :target))
code (list "store :tempreg (memaddr :offset reg.newfp))
regfree last :target
regfree :tempreg
output 1
end

to procarrayarg :type
localmake "pname token
localmake "id getid :pname
if not equalp :type (id.type :id) ~

[(throw "error (sentence "array :pname [wrong type for arg]))]
localmake "size arraysize :type
localmake "rtarget memsetup (id.pointer :id) (id.varp :id) 0
localmake "pointreg newregister
code (list "addi :pointreg reg.newfp :offset)
localmake "ltarget (list 0 :pointreg)
copyarray
output :size
end

;; Simple statements: write and writeln

to pwrite
mustbe "|(|
pwrite1
end

to pwrite1
pwrite2
ifbe "|)| [stop]
ifbeelse ", [pwrite1] [(throw "error [missing comma])]
end

262 Chapter 5 Programming Language Implementation

to pwrite2
localmake "result pwrite3
ifbe ": [.setfirst (butfirst :result) token]
code :result
if not equalp first :result "putstr [regfree last :result]
end

to pwrite3
localmake "token token
if equalp first :token "’ ~

[output (list "putstr 1 (list butlast butfirst :token))]
make "peektoken :token
localmake "result pexpr
if equalp first :result "char [output (list "putch 1 pchar :result)]
if equalp first :result "boolean [output (list "puttf 1 pboolean :result)]
if equalp first :result "integer [output (list "putint 10 pinteger :result)]
output (list "putreal 20 preal :result)
end

to pwriteln
ifbe "|(| [pwrite1]
code [newline]
end

;; Simple statements: assignment statement (including function value)

to passign
local [name id type index value pointer target]
make "name token
make "index []
ifbe "|[| [make "index commalist [pexpr] mustbe "|]|]
mustbe "|:=|
make "id getid :name
make "pointer id.pointer :id
make "type id.type :id
passign1
end

to pfunset
local [name id type index value pointer target]
make "name token
make "index []
if not equalp :name :procname ~

[(throw "error sentence [assign to wrong function] :name)]
mustbe "|:=|
make "pointer (list :lexical.depth frame.retval)
make "type first thing lname :name
make "id (list :name :type :pointer "false)
passign1
end

Program Listing 263

to passign1
if and (listp :type) (emptyp :index) [parrayassign :id stop]
setindex "false
make "value check.type :type pexpr
codestore :value (id.pointer :id) (id.varp :id) :index
regfree :value
end

to noimmediate :value
if not equalp exp.mode :value "immediate [output :value]
localmake "reg newregister
code (list "addi :reg reg.zero exp.value :value)
output (list exp.type :value "register :reg)
end

to check.type :type :result
if equalp :type "real [output preal :result]
if equalp :type "integer [output pinteger :result]
if equalp :type "char [output pchar :result]
if equalp :type "boolean [output pboolean :result]
end

to preal :expr [:pval noimmediate :expr]
if equalp exp.type :pval "real [output exp.value :pval]
output pinteger :pval
end

to pinteger :expr [:pval noimmediate :expr]
localmake "type exp.type :pval
if memberp :type [integer boolean char] [output exp.value :pval]
(throw "error sentence exp.type :pval [isn’t ordinal])
end

to pchar :expr [:pval noimmediate :expr]
if equalp exp.type :pval "char [output exp.value :pval]
(throw "error sentence exp.type :pval [not character value])
end

to pboolean :expr [:pval noimmediate :expr]
if equalp exp.type :pval "boolean [output exp.value :pval]
(throw "error sentence exp.type :pval [not true or false])
end

264 Chapter 5 Programming Language Implementation

to parrayassign :id
localmake "right token
if equalp first :right "’ ~

[pstringassign :type (butlast butfirst :right) stop]
localmake "rid getid :right
if not equalp (id.type :id) (id.type :rid) ~

[(throw "error (sentence "arrays :name "and :right [unequal types]))]
localmake "size arraysize id.type :id
localmake "ltarget memsetup (id.pointer :id) (id.varp :id) 0
localmake "rtarget memsetup (id.pointer :rid) (id.varp :rid) 0
copyarray
end

to pstringassign :type :string
if not equalp first :type "char [stringlose]
if not emptyp butfirst last :type [stringlose]
if not equalp (last first last :type) (count :string) [stringlose]
localmake "ltarget memsetup (id.pointer :id) (id.varp :id) 0
pstringassign1 newregister (first :ltarget) (last :ltarget) :string
regfree last :ltarget
end

to pstringassign1 :tempreg :offset :reg :string
if emptyp :string [regfree :tempreg stop]
code (list "addi :tempreg reg.zero ascii first :string)
code (list "store :tempreg (memaddr :offset :reg))
pstringassign1 :tempreg :offset+1 :reg (butfirst :string)
end

to stringlose
(throw "error sentence :name [not string array or wrong size])
end

;; Multiple array indices to linear index computation

to setindex :parseflag
ifelse listp :type ~

[if :parseflag
[mustbe "|[| make "index commalist [pexpr] mustbe "|]|]

make "index lindex last :type :index
make "type first :type] ~

[make "index 0]
end

to lindex :bounds :index
output lindex1 (offset pinteger noimmediate first :index

first first :bounds) ~
butfirst :bounds butfirst :index

end

Program Listing 265

to lindex1 :sofar :bounds :index
if emptyp :bounds [output :sofar]
output lindex1 (nextindex :sofar

last first :bounds
pinteger noimmediate first :index
first first :bounds) ~

butfirst :bounds butfirst :index
end

to nextindex :old :factor :new :offset
code (list "muli :old :old :factor)
localmake "newreg offset :new :offset
code (list "add :old :old :newreg)
regfree :newreg
output :old
end

to offset :indexreg :lowbound
if not equalp :lowbound 0 [code (list "subi :indexreg :indexreg :lowbound)]
output :indexreg
end

;; Memory interface: load and store instructions

to codeload :reg :pointer :varflag :index
localmake "target memsetup :pointer :varflag :index
code (list "rload :reg targetaddr)
regfree last :target
end

to codestore :reg :pointer :varflag :index
localmake "target memsetup :pointer :varflag :index
code (list "store :reg targetaddr)
regfree last :target
end

to targetaddr
output memaddr (first :target) (last :target)
end

to memaddr :offset :index
output (word :offset "\(:index "\))
end

266 Chapter 5 Programming Language Implementation

to memsetup :pointer :varflag :index
localmake "depth first :pointer
localmake "offset last :pointer
local "newreg
ifelse equalp :depth 0 ~

[make "newreg reg.globalptr] ~
[ifelse equalp :depth :lexical.depth

[make "newreg reg.frameptr]
[make "newreg newregister
code (list "rload :newreg

(memaddr frame.outerframe reg.frameptr))
repeat (:lexical.depth - :depth) - 1

[code (list "rload :newreg
(memaddr frame.outerframe :newreg))]]]

if :varflag ~
[ifelse :newreg = reg.frameptr

[make "newreg newregister
code (list "rload :newreg (memaddr :offset reg.frameptr))]

[code (list "rload :newreg (memaddr :offset :newreg))]
make "offset 0]

if not equalp :index 0 ~
[code (list "add :index :index :newreg)
regfree :newreg
make "newreg :index]

output list :offset :newreg
end

to copyarray
localmake "looptag gensym
localmake "sizereg newregister
code (list "addi :sizereg reg.zero :size)
code :looptag
localmake "tempreg newregister
code (list "rload :tempreg (memaddr (first :rtarget) (last :rtarget)))
code (list "store :tempreg (memaddr (first :ltarget) (last :ltarget)))
code (list "addi (last :rtarget) (last :rtarget) 1)
code (list "addi (last :ltarget) (last :ltarget) 1)
code (list "subi :sizereg :sizereg 1)
code (list "gtr :tempreg :sizereg reg.zero)
code (list "jumpt :tempreg (word "" :looptag))
regfree :sizereg
regfree :tempreg
regfree last :ltarget
regfree last :rtarget
end

Program Listing 267

;; Expressions

to pexpr
local [opstack datastack parenlevel]
make "opstack [[popen 1 0]]
make "datastack []
make "parenlevel 0
output pexpr1
end

to pexpr1
local [token op]
make "token token
while [equalp :token "|(|] [popen make "token token]
make "op pgetunary :token
if not emptyp :op [output pexprop :op]
push "datastack pdata :token
make "token token
while [and (:parenlevel > 0) (equalp :token "|)|)] ~

[pclose make "token token]
make "op pgetbinary :token
if not emptyp :op [output pexprop :op]
make "peektoken :token
pclose
if not emptyp :opstack [(throw "error [too many operators])]
if not emptyp butfirst :datastack [(throw "error [too many operands])]
output pop "datastack
end

to pexprop :op
while [(op.prec :op) < (1 + op.prec first :opstack)] [ppopop]
push "opstack :op
output pexpr1
end

to popen
push "opstack [popen 1 0]
make "parenlevel :parenlevel + 1
end

to pclose
while [(op.prec first :opstack) > 0] [ppopop]
ignore pop "opstack
make "parenlevel :parenlevel - 1
end

to pgetunary :token
output gprop :token "unary
end

268 Chapter 5 Programming Language Implementation

to pgetbinary :token
output gprop :token "binary
end

to ppopop
local [op function args left right type reg]
make "op pop "opstack
make "function op.instr :op
if equalp :function "plus [stop]
make "args op.nargs :op
make "right pop "datastack
make "left (ifelse equalp :args 2 [pop "datastack] [[[] []]])
make "type pnewtype :op exp.type :left exp.type :right
if equalp exp.mode :left "immediate ~

[localmake "leftreg newregister
code (list "addi :leftreg reg.zero exp.value :left)
make "left (list exp.type :left "register :leftreg)]

ifelse equalp exp.mode :left "register ~
[make "reg exp.value :left] ~
[ifelse equalp exp.mode :right "register

[make "reg exp.value :right]
[make "reg newregister]]

if equalp :function "minus ~
[make "left (list exp.type :right "register reg.zero)
make "function "sub
make "args 2]

if equalp exp.mode :right "immediate ~
[make "function word :function "i]

ifelse equalp :args 2 ~
[code (list :function :reg exp.value :left exp.value :right)] ~
[code (list :function :reg exp.value :right)]

if not equalp :reg exp.value :left [regfree exp.value :left]
if (and (equalp exp.mode :right "register)

(not equalp :reg exp.value :right)) ~
[regfree exp.value :right]

push "datastack (list :type "register :reg)
end

to pnewtype :op :ltype :rtype
localmake "type op.types :op
if emptyp :ltype [make "ltype :rtype]
if not emptyp last :type [pchecktype last :type :ltype :rtype]
if and (equalp :ltype "real) (equalp :rtype "integer) [make "rtype "real]
if and (equalp :ltype "integer) (equalp :rtype "real) [make "ltype "real]
if not equalp :ltype :rtype [(throw "error [type clash])]
if emptyp last :type ~

[if not memberp :rtype [integer real]
[(throw "error [nonarithmetic type])]]

if emptyp first :type [output :rtype]
output first :type
end

Program Listing 269

to pchecktype :want :left :right
if not equalp :want :left [(throw "error (sentence :left "isn’t :want))]
if not equalp :want :right [(throw "error (sentence :right "isn’t :want))]
end

;; Expression elements

to pdata :token
if equalp :token "true [output [boolean immediate 1]]
if equalp :token "false [output [boolean immediate 0]]
if equalp first :token "’ [output pchardata :token]
if numberp :token [output (list numtype :token "immediate :token)]
localmake "id getid :token
if emptyp :id [(throw "error sentence [undefined symbol] :token)]
localmake "type id.type :id
if equalp :type "function [output pfuncall :token]
local "index
setindex "true
localmake "reg newregister
codeload :reg (id.pointer :id) (id.varp :id) :index
output (list :type "register :reg)
end

to pchardata :token
if not equalp count :token 3 ~

[(throw "error sentence :token [not single character])]
output (list "char "immediate ascii first butfirst :token)
end

to numtype :number
if memberp ". :number [output "real]
if memberp "e :number [output "real]
output "integer
end

to pfuncall :pname
localmake "id getid :pname
localmake "lname id.lname :id
if namep (word "need :lname) [make (word "need :lname) "true]
localmake "vartypes thing :lname
localmake "returntype first :vartypes
make "vartypes butfirst :vartypes
pproccall1 framesize.fun
localmake "reg newregister
code (list "add :reg reg.retval reg.zero)
output (list :returntype "register :reg)
end

270 Chapter 5 Programming Language Implementation

;; Parsing assistance

to code :stuff
if emptyp :stuff [stop]
push :codeinto :stuff
end

to commalist :test [:sofar []]
local [result token]
make "result run :test
if emptyp :result [output :sofar]
ifbe ", [output (commalist :test (lput :result :sofar))]
output lput :result :sofar
end

.macro ifbe :wanted :action
localmake "token token
if equalp :token :wanted [output :action]
make "peektoken :token
output []
end

.macro ifbeelse :wanted :action :else
localmake "token token
if equalp :token :wanted [output :action]
make "peektoken :token
output :else
end

to mustbe :wanted
localmake "token token
if equalp :token :wanted [stop]
(throw "error (sentence "expected :wanted "got :token))
end

to newregister
for [i reg.firstfree :numregs-1] ~

[if not item :i :regsused [setitem :i :regsused "true output :i]]
(throw "error [not enough registers available])
end

to regfree :reg
setitem :reg :regsused "false
end

Program Listing 271

to reservedp :word
output memberp :word [and array begin case const div do downto else end ~

file for forward function goto if in label mod nil ~
not of packed procedure program record repeat set ~
then to type until var while with]

end

;; Lexical analysis

to token
local [token char]
if namep "peektoken [make "token :peektoken

ern "peektoken output :token]
make "char getchar
if equalp :char "|{| [skipcomment output token]
if equalp :char char 32 [output token]
if equalp :char char 13 [output token]
if equalp :char char 10 [output token]
if equalp :char "’ [output string "’]
if memberp :char [+ - * / = (,) |[| |]| |;|] [output :char]
if equalp :char "|<| [output twochar "|<| [= >]]
if equalp :char "|>| [output twochar "|>| [=]]
if equalp :char ". [output twochar ". [.]]
if equalp :char ": [output twochar ": [=]]
if numberp :char [output number :char]
if letterp ascii :char [output token1 lowercase :char]
(throw "error sentence [unrecognized character:] :char)
end

to skipcomment
if equalp getchar "|}| [stop]
skipcomment
end

to string :string
localmake "char getchar
if not equalp :char "’ [output string word :string :char]
make "char getchar
if equalp :char "’ [output string word :string :char]
make "peekchar :char
output word :string "’
end

to twochar :old :ok
localmake "char getchar
if memberp :char :ok [output word :old :char]
make "peekchar :char
output :old
end

272 Chapter 5 Programming Language Implementation

to number :num
localmake "char getchar
if equalp :char ". ~

[make "char getchar ~
ifelse equalp :char ". ~

[make "peektoken ".. output :num] ~
[make "peekchar :char output number word :num ".]]

if equalp :char "e [output number word :num twochar "e [+ -]]
if numberp :char [output number word :num :char]
make "peekchar :char output :num
end

to token1 :token
localmake "char getchar
if or letterp ascii :char numberp :char ~

[output token1 word :token lowercase :char]
make "peekchar :char output :token
end

to letterp :code
if and (:code > 64) (:code < 91) [output "true]
output and (:code > 96) (:code < 123)
end

to getchar
local "char
if namep "peekchar [make "char :peekchar ern "peekchar output :char]
ifelse eofp [output char 1] [output rc1]
end

to rc1
localmake "result readchar
type :result output :result
end

;; Data abstraction: ID List

to newlname :word
if memberp :word :namesused [output gensym]
if namep word "% :word [output gensym]
push "namesused :word
output word "% :word
end

to lname :word
localmake "result getid :word
if not emptyp :result [output item 3 :result]
(throw "error sentence [unrecognized identifier] :word)
end

Program Listing 273

to gettype :word
localmake "result getid :word
if not emptyp :result [output item 2 :result]
(throw "error sentence [unrecognized identifier] :word)
end

to getid :word [:list :idlist]
if emptyp :list [output []]
if equalp :word first first :list [output first :list]
output (getid :word butfirst :list)
end

to id.type :id to id.varp :id
output item 2 :id output item 4 :id
end end

to id.pointer :id to id.frame :id
output item 3 :id output item 4 :id
end end

to id.lname :id
output item 3 :id
end

;; Data abstraction: Operators

to op.instr :op to op.types :op
output first :op output item 3 :op
end end

to op.nargs :op to op.prec :op
output first bf :op output last :op
end end

;; Data abstraction: Expressions

to exp.type :exp
output first :exp
end

to exp.mode :exp
output first butfirst :exp
end

to exp.value :exp
output last :exp
end

274 Chapter 5 Programming Language Implementation

;; Data abstraction: Frame slots

to frame.retaddr to frame.regsave
output 0 output 4
end end

to frame.save.newfp to framesize.proc
output 1 output 4+:numregs
end end

to frame.outerframe to frame.retval
output 2 output 4+:numregs
end end

to frame.prevframe to framesize.fun
output 3 output 5+:numregs
end end

;; Data abstraction: Registers

to reg.zero to reg.frameptr
output 0 output 4
end end

to reg.retaddr to reg.newfp
output 1 output 5
end end

to reg.stackptr to reg.retval
output 2 output 6
end end

to reg.globalptr to reg.firstfree
output 3 output 7
end end

;; Runtime (machine simulation)

to prun :progname
localmake "prog thing word "% :progname
localmake "regs (array :numregs 0)
local filter "wordp :prog
foreach :prog [if wordp ? [make ? ?rest]]
localmake "memory (array :memsize 0)
setitem 0 :regs 0
if not procedurep "add [runsetup]
prun1 :prog
end

Program Listing 275

to prun1 :pc
if emptyp :pc [stop]
if listp first :pc [run first :pc]
prun1 butfirst :pc
end

to rload :reg :offset :index
setitem :reg :regs (item (item :index :regs)+:offset :memory)
end

to store :reg :offset :index
setitem (item :index :regs)+:offset :memory (item :reg :regs)
end

to runsetup
foreach [[add sum] [sub difference] [mul product] [quo quotient]

[div [int quotient]] [rem remainder] [land product]
[lor [tobool lessp 0 sum]] [eql [tobool equalp]]
[neq [tobool not equalp]] [less [tobool lessp]]
[gtr [tobool greaterp]] [leq [tobool not greaterp]]
[geq [tobool not lessp]]] ~

[define first ?
‘[[dest src1 src2]

[setitem :dest :regs ,@[last ?] (item :src1 :regs)
(item :src2 :regs)]]

define word first ? "i
‘[[dest src1 immed]

[setitem :dest :regs ,@[last ?] (item :src1 :regs)
:immed]]]

foreach [[lnot [difference 1]] [sint int] [sround round] [srandom random]] ~
[define first ?

‘[[dest src]
[setitem :dest :regs ,@[last ?] (item :src :regs)]]

define word first ? "i
‘[[dest immed]

[setitem :dest :regs ,@[last ?] :immed]]]
end

to tobool :tf
output ifelse :tf [1] [0]
end

to jump :label
make "pc fput :label thing :label
end

to jumpt :reg :label
if (item :reg :regs)=1 [jump :label]
end

276 Chapter 5 Programming Language Implementation

to jumpf :reg :label
if (item :reg :regs)=0 [jump :label]
end

to jr :reg
make "pc item :reg :regs
end

to jal :reg :label
setitem :reg :regs :pc
jump :label
end

to putch :width :reg
spaces :width 1
type char (item :reg :regs)
end

to putstr :width :string
spaces :width (count first :string)
type :string
end

to puttf :width :bool
spaces :width 1
type ifelse (item :bool :regs)=0 ["F] ["T]
end

to putint :width :reg
localmake "num (item :reg :regs)
spaces :width count :num
type :num
end

to putreal :width :reg
putint :width :reg
end

to spaces :width :count
if :width > :count [repeat :width - :count [type "| |]]
end

to newline
print []
end

to exit
make "pc [exit]
end

student

6 Artificial Intelligence

human

Human Problem Solving

277

Program file for this chapter:

Can a computer be intelligent? What would it mean for a computer to be intelligent?
John McCarthy, one of the founders of artificial intelligence research, once defined the
field as “getting a computer to do things which, when done by people, are said to involve
intelligence.” The point of the definition was that he felt perfectly comfortable about
carrying on his research without first having to defend any particular philosophical view
of what the word “intelligence” means.

There have always been two points of view among AI researchers about what their
purpose is. One point of view is that AI programs contribute to our understanding of

psychology; when researchers take this view they try to make their programs reflect
the actual mechanisms of intelligent human behavior. For example, Allen Newell and
Herbert A. Simon begin their classic AI book with the sentence,
“The aim of this book is to advance our understanding of how humans think.” In one
of their research projects they studied cryptarithmetic problems, in which digits are
replaced with letters in a multi-digit addition or multiplication. First they did a careful
observation and analysis of how a human subject attacked such a problem, then they
pointed out specific problem-solving techniques that the person used, and used those
techniques as the basis for designing a computer simulation. The other point of view
is that AI programs provide a more abstract model for intelligence in general; just as
one can learn about the properties of computers by studying finite-state machines, even
though no real computer operates precisely as a formal finite-state machine does, we can
learn about the properties of any possible intelligent being by simulating intelligence in a
computer program, whether or not the mechanisms of that program are similar to those
used by people.

In the early days of AI research these two points of view were not sharply divided.
Sometimes the same person would switch from one to the other, sometimes trying to
model human thought processes and sometimes trying to solve a given problem by

Microworlds: Student

cognitive science,

expert systems
knowledge engineering,

microworld.

Natural Language Input for a Computer Problem Solving
System,

278 Chapter 6 Artificial Intelligence

whatever methods could be made to work. More recently, researchers who hold one or
the other point of view consistently have begun to define two separate fields. One is

in which computer scientists join with psychologists, linguists, biologists,
and others to study human cognitive psychology, using computer programs as a concrete
embodiment of theories about the human mind. The other is called or

in which programming techniques developed by AI researchers
are put to practical use in programs that solve real-world business problems such as the
diagnosis and repair of malfunctioning equipment.

In this chapter I’m going to concentrate on one particular area of AI research: teaching a
computer to understand English. Besides its inherent interest, this area has the advantage
that it doesn’t require special equipment, as do some other parts of AI such as machine
vision and the control of robot manipulators.

In the 1950s many people were very optimistic about the use of computers to
translate from one language to another. IBM undertook a government-sponsored project
to translate scientific journals from Russian to English. At first they thought that this
translation could be done very straightforwardly, with a Russian-English dictionary and a
few little kludges to rearrange the order of words in a sentence to account for differences
in the grammatical structure of the two languages. This simple approach was not
successful. One problem is that the same word can have different meanings, and even
different parts of speech, in different contexts. (According to one famous anecdote, the
program translated the Russian equivalent of “The spirit is willing but the flesh is weak”
into “The vodka is strong but the meat is rotten.”)

A decade later, several AI researchers had the idea that ambiguities in the meanings
of words could be resolved by trying to understand English only in some limited context.
If you know in advance that the sentence you’re trying to understand is about baseball
statistics, or about relationships in a family tree, or about telling a robot arm to move
blocks on a table (these are actual examples of work done in that period) then only
certain narrowly defined types of sentences are meaningful at all. You needn’t think about
metaphors or about the many assumptions about commonsense knowledge that people
make in talking with one another. Such a limited context for a language understanding
program is called a

This chapter includes a Logo version of Student, a program written by Daniel G.
Bobrow for his 1964 Ph.D. thesis,

at MIT. Student is a program that solves algebra word problems:

The price of a radio

understands

Microworlds: Student 279

variable1 units

variable1 variable2

variable2

student [The price of a radio is $69.70. If this price is 15 percent
less than the marked price, find the marked price.]

?

The marked price is 82 dollars

The weight of a giant size detergent box is 69.70 ounces. If this weight
is 15 percent less than the weight of an enormous size box, find the
weight of an enormous size box.

= 69.70

= 0.85 *

Find .

(In this illustration I’ve left out some of Student’s display of intermediate results.)
The program has two parts: one that translates the word problem into the form of
equations and another that solves the equations. The latter part is complex (about 40
Logo procedures) but straightforward; it doesn’t seem surprising to most people that
a computer can manipulate mathematical equations. It is Student’s understanding of
English sentences that furthered the cause of artificial intelligence.

The aim of the research reported here was to discover how one could build
a computer program which could communicate with people in a natural
language within some restricted problem domain. In the course of this
investigation, I wrote a set of computer programs, the Student system, which
accepts as input a comfortable but restricted subset of English which can be
used to express a wide variety of algebra story problems...

In the following discussion, I shall use phrases such as “the computer under-
stands English.” In all such cases, the “English” is just the restricted subset
of English which is allowable as input for the computer program under dis-
cussion. In addition, for purposes of this report I have adopted the following
operational definition of understanding. A computer a subset of
English if it accepts input sentences which are members of this subset, and
answers questions based on information contained in the input. The Student
system understands English in this sense. [Bobrow, 1964.]

How does the algebra microworld simplify the understanding problem? For one
thing, Student need not know anything about the meanings of noun phrases. In the
sample problem above, the phrase is used as a variable name.
The problem could just as well have been

For Student, either problem boils down to

student :radio

student :radio

How Student Translates English to Algebra

mathematical

mandatory substitutions

280 Chapter 6 Artificial Intelligence

15 percent less than
0.85 times

student

price, price ,
student1

idioms percent less than
perless

?

?

The problem to be solved is

The price of a radio is $69.70. If this price is 15 percent less than the
marked price, find the marked price.

With mandatory substitutions the problem is

Student understands particular words only to the extent that they have a
meaning. For example, the program knows that means the
same as .

Student translates a word problem into equations in several steps. In the following
paragraphs, I’ll mention in parentheses the names of the Logo procedures that carry out
each step I describe, but don’t read the procedures yet. First read through the description
of the process without worrying about the programming details of each step. Later you
can reread this section while examining the complete listing at the end of the chapter.

In translating Student to Logo, I’ve tried not to change the capabilities of the
program in any way. The overall structure of my version is similar to that of Bobrow’s
original implementation, but I’ve changed some details. I’ve used iteration and mapping
tools to make the program easier to read; I’ve changed some aspects of the fine structure
of the program to fit more closely with the usual Logo programming style; in a few cases
I’ve tried to make exceptionally slow parts of the program run faster by finding a more
efficient algorithm to achieve the same goal.

The top-level procedure takes one input, a list containing the word
problem. (The disk file that accompanies this project includes several variables containing
sample problems. For example,

will carry out the steps I’m about to describe.) Student begins by printing the original
problem:

The first step is to separate punctuation characters from the attached words. For
example, the word “ ” in the original problem becomes the two words “ ”
with the comma on its own. Then () certain are applied
(). For example, the phrase is translated into the single
word . The result is printed:

How Student Translates English to Algebra 281

of

numof
times of

numof [of / op]
[Bill / person] [has / verb]

bracket

as old as age years old

senform

marked price

The price numof a radio is 69.70 dollars . If this price is 15 perless
the marked price , find the marked price .

The simple sentences are

The price numof a radio is 69.70 dollars .

This price is 15 perless the marked price .

Find the marked price .

Mary is 24 years old.

Mary s age is 24 .

The equations to be solved are

Equal [price of radio] [product 69.7 [dollars]]

Equal [price of radio] [product 0.85 [marked price]]

(The word in an algebra word problem can have two different meanings. Sometimes
it means “times,” as in the phrase “one half of the population.” Other times, as in this
problem, “of” is just part of a noun phrase like “the price of a radio.” The special word

is a flag to a later part of the program and will then be further translated either
into or back into . The original implementation of Student used, instead of a
special word like , a “tagged” word represented as a list like . Other
examples of tagging are and .)

The next step is to separate the problem into simple sentences ():

Usually this transformation of the problem is straightforward, but the special case of “age
problems” is recognized at this time, and special transformations are applied so that a
sentence like

is translated into

An age problem is one that contains any of the phrases , , or .

The next step is to translate each simple sentence into an equation or a variable
whose value is desired as part of the solution ().

The third simple sentence is translated, not into an equation, but into a request to solve
these equations for the variable .

The translation of simple sentences into equations is the most “intelligent” part
of the program; that is, it’s where the program’s knowledge of English grammar and

Pattern Matching

patterns

282 Chapter 6 Artificial Intelligence

this price
this nmtest

this

senform1

$1

shelf
4

$1

something verb number unit

unit something verb number

Joe weighs 163 pounds .
The United States Army has 8742 officers .

.

The number of is .

Equal [number of pounds Joe weighs] 163

Equal [number of officers United States Army has] 8742

(* ($ ($1 / verb) (fn nmtest) $1 $ ($1 / dlm)) 0
(/ (*s shelf (*k equal (fn opform (*k the number of 4 1 2))

(fn opform (*k 3 5 6))))) return)

vocabulary come into play and many special cases must be considered. In this example,
the second simple sentence starts with the phrase . The program recognizes
the word (procedure) and replaces the entire phrase with the left hand
side of the previous equation (procedure).

Student analyzes a sentence by comparing it to several (). For example,
one sentence form that Student understands is exemplified by these sentences:

The general pattern is

Student treats such sentences as if they were rearranged to match

and so it generates the equations

The original version of Student was written in a pattern matching language called Meteor,
which Bobrow wrote in Lisp. In Meteor, the instruction that handles this sentence type
looks like this:

The top line contains the pattern to be matched. In the pattern, a dollar sign represents
zero or more words; the notation represents a single word. The zero at the end of
the line means that the text that matches the pattern should be deleted and nothing
should replace it. The rest of the instruction pushes a new equation onto a stack named

; that equation is formed out of the pieces of the matched pattern according to
the numbers in the instruction. That is, the number represents the fourth component
of the pattern, which is .

n

interesting part

Match

Match true

!
& @
? ^

^

Advanced Techniques,

first substring

pattern
sentence. matches

quantifier

O n
O

Pattern Matching 283

if match [^one !verb1:verb !factor:numberp #stuff1 !:dlm] :sent
[output (list (list "equal

opform (sentence [the number of]
:stuff1 :one :verb1)

opform (list :factor)))]

[^beg #end]

#
#var
#:pred
#var:pred

match

rmatch

* The version in this project is modified slightly; the procedure first does a fast test to try
to reject an irrelevant pattern in time before calling the actual pattern matcher, which could
take as much as time to reject a pattern, and which has been renamed (for “real
match”) in this project.

Here is the corresponding instruction in the Logo version:

The pattern matcher I used for Student is the same as the one in
the second volume of this series.* Student often relies on the fact that Meteor’s pattern
matcher finds the of the text that matches the pattern, rather than requiring
the entire text to match. Many patterns in the Logo version therefore take the form

where the “interesting part” is all that appeared in the Meteor pattern.

Here is a very brief summary of the Logo pattern matcher included in this program.
For a fuller description with examples, please refer to Volume 2. is a predicate
with two inputs, both lists. The first input is the and the second input is the

outputs if the sentence the pattern. A word in the pattern
that does not begin with one of the special characters listed below matches the
identical word in the sentence. A word in the pattern that does begin with a quantifier
matches zero or more words in the sentence, as follows:

zero or more words exactly one word
one or more words zero or more words (test as group)
zero or one word zero or more words (as few as possible)

All quantifiers match as many consecutive words as possible while still allowing the
remaining portion of the pattern to be matched, except for . A quantifier may be used
alone, or it can be followed by a variable name, a predicate name, or both:

()
(2)

−2

list

y x x

284 Chapter 6 Artificial Intelligence

true

factor @
true

?
!

opform
equal

[x]
price of radio

sum minus

!factor:numberp

to threep :list
output equalp count :list 3
end

@:threep

[equal [y] [sum [product 3 [square [x]]] [product 6 [x]] [minus 1]]]

If a variable name is used, the word or words that match the quantifier will be stored
in that variable if the match is successful. (The value of the variable if the match is not
successful is not guaranteed.) If a predicate is used, it must take one word as input; in
order for a word in the sentence to be accepted as (part of) a match for the quantifier,
the predicate must output when given that word as input. For example, the word

in the pattern above requires exactly one matching word in the sentence; that word must
be a number, and it is remembered in the variable . If the quantifier is then
the predicate must take a as input, and it must output for all the candidate
matching words taken together as a list. For example, if you define a procedure

then the pattern word

will match exactly three words in the sentence. (Student does not use this last feature of
the pattern matcher. In fact, predicates are applied only to the single-word quantifiers
and .)

Pattern matching is also heavily used in converting words and phrases with mathe-
matical meaning into the corresponding arithmetic operations (). An equation
is a list of three members; the first member is the word and the other two are
expressions formed by applying operations to variables and numbers. Each operation
that is required is represented as a list whose first member is the name of the Logo
procedure that carries out the operation and whose remaining members are expressions
representing the operands. For example, the equation

= 3 + 6 1

would be represented by the list

The variables are represented by lists like rather than just the words because in
Student a variable can be a multi-word phrase like . The difference
between two expressions is represented by a of one expression and the other,

student :tom

Solving the Equations

Solving the Equations 285

difference

squared times
plus

plus

opform

[^left !op:op1 #right]

?

The problem to be solved is

If the number of customers Tom gets is twice the square of 20 per cent of
the number of advertisements he runs, and the number of advertisements he
runs is 45, what is the number of customers Tom gets?

With mandatory substitutions the problem is

rather than as the of the expressions, because this representation turns out
to make the process of simplifying and solving the equations easier.

In word problems, as in arithmetic expressions, there is a precedence of operations.
Operations like apply to the variables right next to them; ones like are
intermediate, and ones like apply to the largest possible subexpressions. Student
looks first for the lowest-priority ones like ; if one is found, the entire rest of the
clause before and after the operation word provide the operands. Those operands are
recursively processed by ; when all the low-priority operations have been found,
the next level of priority will be found by matching the pattern

Student uses the substitution technique to solve the equations. That is, one equation is
rearranged so that the left hand side contains only a single variable and the right hand
side does not contain that variable. Then, in some other equation, every instance of
that variable is replaced by the right hand side of the first equation. The result is a new
equation from which one variable has been eliminated. Repeating this process enough
times should eventually yield an equation with only a single variable, which can be solved
to find the value of that variable.

When a problem gives rise to several linear equations in several variables, the
traditional technique for computer solution is to use matrix inversion; this technique is
messy for human beings because there is a lot of arithmetic involved, but straightforward
for computers because the algorithm can be specified in a simple way that doesn’t depend
on the particular equations in each problem. Bobrow chose to use the substitution
method because some problems give rise to equations that are linear in the variable for
which a solution is desired but nonlinear in other variables. Consider this problem:

numof
of

student1 student2 trysolve

dollars feet

square linear

units.

286 Chapter 6 Artificial Intelligence

If the number numof customers Tom gets is 2 times the square 20 percent
numof the number numof advertisements he runs , and the number numof
advertisements he runs is 45 , what is the number numof customers
Tom gets ?

The simple sentences are

The number numof customers Tom gets is 2 times the square 20 percent
numof the number numof advertisements he runs .

The number numof advertisements he runs is 45 .

What is the number numof customers Tom gets ?

The equations to be solved are

Equal [number of customers Tom gets]
[product 2 [square [product 0.2 [number of advertisements

he runs]]]]

Equal [number of advertisements he runs] 45

The number of customers Tom gets is 162

The problem is solved.

The first equation that Student generates for this problem is linear in the number of
customers Tom gets, but nonlinear in the number of advertisements he runs. (That
is, the equation refers to the of the latter variable. An equation is in a
given variable if that variable isn’t multiplied by anything other than a constant number.)
Using the substitution method, Student can solve the problem by substituting the value
45, found in the second equation, for the number of advertisements variable in the first
equation.

(Notice, in passing, that one of the special words in this problem was
translated into a multiplication rather than back into the original word .)

The actual sequence of steps required to solve a set of equations is quite intricate.
I recommend taking that part of Student on faith the first time you read the program,
concentrating instead on the pattern matching techniques used to translate the English
sentences into equations. But here is a rough guide to the solution process. Both

and call with four inputs: a list of the equations to
solve, a list of the variables for which values are wanted, and two lists of A unit is a
word or phrase like or that may be part of a solution. Student treats units

[product 69.7 [dollars]]

How many inches is a yard?

only

all

association list

Solving the Equations 287

units
feet

3 feet nmtest aunits
find how many

senform1

[inches]
aunits units

trysolve

Trysolve solve pranswers
Solve solver

solve.reduce Solver
:wanted solve1

solve1 solver

alis

Solve1

solver
solve1 solve1 solver

solver
solve1 solver

solve1
solveq

Solveq

like variables while constructing the equations, so the combination of a number and a
unit is represented as a product, like

for $69.70 in the first sample problem. While constructing the equations, Student
generates two lists of units. The first, stored in the variable , contains any word or
phrase that appears along with a number in the problem statement, like the word
in the phrase (). The second, in the variable , contains units
mentioned explicitly in the or sentences that tell Student what variables
should be part of the solution (). If the problem includes a sentence like

then the variable , and that variable, is allowed to be part of the answer. If
there are no -type variables in the problem, then any of the variables may
appear in the solution ().

first calls to solve the equations and then uses to
print the results. calls to do most of the work and then passes its output
through for some final cleaning up. works by picking one
of the variables from the list and asking to find a solution for that
variable in terms of the other variables—the other wanted variables as well as the
units allowed in the ultimate answer. If succeeds, then invokes itself,
adding the newly-found expression for one variable to an (in the variable

) so that, from then on, any occurrence of that variable will be replaced with the
equivalent expression. In effect, the problem is simplified by eliminating one variable
and eliminating one equation, the one that was solved to find the equivalent expression.

first looks for an equation containing the variable for which it is trying
to find a solution. When it finds such an equation, the next task is to eliminate from
that equation any variables that aren’t part of the wanted-plus-units list that
gave as an input. To eliminate these extra variables, invokes
with the extras as the list of wanted variables. This mutual recursion between
and makes the structure of the solution process difficult to follow. If
manages to eliminate the extra variables by expressing them in terms of the originally
wanted ones, then can go on to substitute those expressions into its originally
chosen equation and then use to solve that one equation for the one selected
variable in terms of all the other allowed variables. manipulates the equation
more or less the way students in algebra classes do, adding the same term to both sides,
multiplying both sides by the denominator of a polynomial fraction, and so on.

288 Chapter 6 Artificial Intelligence

solve

Trysolve

solve

[dollars]
Solve

insufficient

solver solve1 Solver
solve1

solve1 Solve1

solve1

Equal [price of radio] [product 69.7 [dollars]]

Equal [price of radio] [product 0.85 [marked price]]

(1) solve [[marked price]]
[[equal [price of radio] [product 69.7 [dollars]]]
[equal [price of radio] [product 0.85 [marked price]]]]
[[dollars]]

(2) solver [[marked price]] [[dollars]] [] []

(3) solve1 [marked price]
[[dollars]]
[]
[[equal [price of radio] [product 69.7 [dollars]]]
[equal [price of radio] [product 0.85 [marked price]]]]

[]

(4) solve1 [marked price]
[[dollars]]
[]
[[equal [price of radio] [product 0.85 [marked price]]]]
[[equal [price of radio] [product 69.7 [dollars]]]]

Here is how solves the radio problem. The equations, again, are

evaluates the expression

(I’m numbering these expressions so that I can refer to them later in the text.) The first
input to is the list of variables wanted in the solution; in this case there is only
one such variable. The second input is the list of two equations. The third is the list of
unit variables that are allowed to appear in the solution; in this case only is
allowed. evaluates

(There is a fifth input, the word , but this is used only as an error flag if
the problem can’t be solved. To simplify this discussion I’m going to ignore that input
for both and .) picks the first (in this case, the only) wanted
variable as the major input to :

Notice that the first input to is a single variable, not a list of variables.
examines the first equation in the list of equations making up its fourth input. The
desired variable does not appear in this equation, so rejects that equation and
invokes itself recursively:

Solving the Equations 289

outputs
to

outputs
to

outputs
to

Solve1
:eqns solve :eqt

[marked price] [dollars]
[price of radio]

solver
solve1

Solve1
Solve1 solveq

solveq
solve1 solveq

solveq

Solve1

Solver :wanted

(5) solver [[price of radio]] [[marked price] [dollars]] [] []

(6) solve1 [price of radio]
[[marked price] [dollars]]
[]
[[equal [price of radio] [product 69.7 [dollars]]]]
[]

(7) solveq [price of radio]
[equal [price of radio] [product 69.7 [dollars]]]

solveq (7) [[price of radio] [product 69.7 [dollars]]
solve1 (6)

solve1 (6) [[[price of radio] [product 69.7 [dollars]]]
solver (5)

solver (5) [[[price of radio] [product 69.7 [dollars]]]
solve1 (4,3)

This time, the first (and now only) equation on the list of candidates does contain the
desired variable. removes that equation, not from its own list of equations
(), but from ’s overall list (). The equation, unfortunately, can’t be
solved directly to express in terms of , because it contains
the extra, unwanted variable . We must eliminate this variable by
solving the remaining equations for it:

As before, picks the first (again, in this case, the only) wanted variable and asks
to solve it:

does find the desired variable in the first (and only) equation, and this time
there are no extra variables. can therefore ask to solve the equation:

It isn’t part of ’s job to worry about which variables may or may not be part of the
solution; doesn’t call until it’s satisfied that the equation is okay.

In this case, has little work to do because the equation is already in the
desired form, with the chosen variable alone on the left side and an expression not
containing that variable on the right.

appends this result to the previously empty association list.

only had one variable in its list, so its job is also finished.

Age Problems

outputs
to

outputs

to

290 Chapter 6 Artificial Intelligence

solve1 [marked price]
[price of radio]

solveq

solveq

Solve1

solver solve
solve trysolve solve.reduce

[price of radio]
[marked price] solve.reduce
subord

solve

personp s age ageify

agepron their ages ageprob

(8) solveq [marked price]
[equal [product 69.7 [dollars]] [product 0.85 [marked price]]]

solveq (8) [[marked price] [product 82 [dollars]]]
solve1 (4,3)

solve1 (4,3) [[[price of radio] [product 69.7 [dollars]]]
[[marked price] [product 82 [dollars]]]]

solver (2)

This outer invocation of was trying to solve for an equation
that also involved . It is now able to use the new association list to
substitute for this unwanted variable an expression in terms of wanted variables only; this
modified equation is then passed on to :

This time has to work a little harder, exchanging the two sides of the equation
and dividing by 0.85.

appends this result to the association list:

Since has no other wanted variables, it outputs the same list to , and
outputs the same list to . (In this example, has no

effect because all of the expressions in the association list are in terms of allowed units
only. If the equations had been different, the expression for might
have included and then would have had to substitute
and simplify ().)

It’ll probably take tracing a few more examples and beating your head against the
wall a bit before you really understand the structure of and its subprocedures.
Again, don’t get distracted by this part of the program until you’ve come to understand
the language processing part, which is our main interest in this chapter.

The main reason why Student treats age problems specially is that the English form of
such problems is often expressed as if the variables were people, like “Bill,” whereas
the real variable is “Bill’s age.” The pattern matching transformations look for proper
names () and insert the words after them (). The first such age
variable in the problem is remembered specially so that it can be substituted for pronouns
(). A special case is the phrase , which is replaced ()
with a list of all the age variables in the problem.

student :uncle

Age Problems 291

92

92. 92

Bill’s Bill s

(Note that in the original problem statement there is a space between the number and
the following period. I had to enter the problem in that form because of an inflexibility
in Logo’s input parser, which assumes that a period right after a number is part of the
number, so that “ ” is reformatted into without the dot.)

Student represents the possessive word as the two words because
this representation allows the pattern matcher to manipulate the possessive marker as a

?

The problem to be solved is

Bill’s father’s uncle is twice as old as Bill’s father. 2 years from now
Bill’s father will be 3 times as old as Bill. The sum of their ages is
92 . Find Bill’s age.

With mandatory substitutions the problem is

Bill s father s uncle is 2 times as old as Bill s father . 2 years
from now Bill s father will be 3 times as old as Bill . sum their
ages is 92 . Find Bill s age .

The simple sentences are

Bill s father s uncle s age is 2 times Bill s father s age .

Bill s father s age pluss 2 is 3 times Bill s age pluss 2 .

Sum Bill s age and Bill s father s age and Bill s father s uncle s age
is 92 .

Find Bill s age .

The equations to be solved are

Equal [Bill s father s uncle s age] [product 2 [Bill s father s age]]

Equal [sum [Bill s father s age] 2] [product 3 [sum [Bill s age] 2]]

Equal [sum [Bill s age]
[sum [Bill s father s age] [Bill s father s uncle s age]]] 92

Bill s age is 8

The problem is solved.

student :ann

every

292 Chapter 6 Artificial Intelligence

as old as ageprob

2 years from now in 2
years

Bill s age in 2 years
Bill s age pluss 2 years

agewhen pluss plus
opform squared

plus in 2 years
agesen

in 2 years
Bill s father s age Bill s age

pluss

plus
their ages

3 times [Bill s age pluss 2]

[3 times Bill s age] plus 2

?

The problem to be solved is

Mary is twice as old as Ann was when Mary was as old as Ann is now. If
Mary is 24 years old, how old is Ann?

With mandatory substitutions the problem is

Mary is 2 times as old as Ann was when Mary was as old as Ann is now . If
Mary is 24 years old , what is Ann ?

The simple sentences are

Mary s age is 2 times Ann s age minuss g1 .

Mary s age minuss g1 is Ann s age .

separate element to be matched. A phrase like is just deleted ()
because the transformation from people to ages makes it redundant.

The phrase in the original problem is first translated to
. This phrase is further processed according to where it appears in a sentence.

When it is attached to a particular variable, in a phrase like , the
entire phrase is translated into the arithmetic operation
(). (The special word is an addition operator, just like , except for
its precedence; treats it as a tightly binding operation like instead of a
loosely binding one like the ordinary .) When a phrase like appears at
the beginning of a sentence, it is remembered () as an implicit modifier for
age variable in that sentence that isn’t explicitly modified. In this example,
modifies both and . The special precedence of

is needed in this example so that the equation will be based on the grouping

rather than

as it would be with the ordinary operator. You can also see how the substitution for
works in this example.

Here is a second sample age problem that illustrates a different kind of special
handling:

was when

g1 was
when

ageprob
bracket

g1 years ago agesen
agewhen

implicit
now some number

generated symbol

before

Age Problems 293

Mary s age is 24 .

What is Ann s age ?

The equations to be solved are

Equal [Mary s age] [product 2 [sum [Ann s age] [minus [g1]]]]

Equal [sum [Mary s age] [minus [g1]]] [Ann s age]

Equal [Mary s age] 24

Ann s age is 18

The problem is solved.

Mary is 2 times as old as Ann was when Mary was as old as Ann is now .

was g1 years ago . g1 years ago

Mary s age is 2 times Ann s age g1 years ago .

G1 years ago Mary s age was Ann s age now .

Mary s age is 2 times Ann s age minuss g1 .

Mary s age minuss g1 is Ann s age .

What is new in this example is Student’s handling of the phrase in the
sentence

Sentences like this one often cause trouble for human algebra students because they
make reference to a quantity that is not explicitly present as a variable. The
sentence says that Mary’s age is twice Ann’s age of years ago, but that
number is not explicit in the problem. Student makes this variable explicit by using a

like the word in this illustration. Student replaces the phrase
with the words

This substitution (in) happens the division of the problem statement
into simple sentences (). As a result, this one sentence in the original problem
becomes the two sentences

The phrase in each of these sentences is further processed by
and as discussed earlier; the final result is

will
be when

AI and Education

in g2 years . in g2 years

heuristic
algorithm,

intelligent CAI

debugs

294 Chapter 6 Artificial Intelligence

A new generated symbol is created each time this situation arises, so there is no conflict
from trying to use the same variable name for two different purposes. The phrase

is handled similarly, except that the translated version is

These decoupling heuristics are useful not only for the Student program but
for people trying to solve age problems. The classic age problem about Mary
and Ann, given above, took an MIT graduate student over 5 minutes to solve
because he did not know this heuristic. With the heuristic he was able to
set up the appropriate equations much more rapidly. As a crude measure of
Student’s relative speed, note that Student took less than one minute to solve
this problem.

This excerpt from Bobrow’s thesis illustrates the idea that insights from artificial intel-
ligence research can make a valuable contribution to the education of human beings.
An intellectual problem is solved, at least in many cases, by dividing it into pieces and
developing a technique for each subproblem. The subproblems are the same whether
it is a computer or a person trying to solve the problem. If a certain technique proves
valuable for the computer, it may be helpful for a human problem solver to be aware of
the computer’s methods. Bobrow’s suggestion to teach people one specific heuristic for
algebra word problems is a relatively modest example of this general theme. (A
is a rule that gives the right answer most of the time, as opposed to an a rule
that always works.) Some researchers in cognitive science and education have proposed
the idea of (computer assisted instruction), in which a computer would
be programmed as a “tutor” that would observe the efforts of a student in solving a
problem. The tutor would know about some of the mistaken ideas people can have about
a particular class of problem and would notice a student falling into one of those traps.
It could then offer advice tailored to the needs of that individual student.

The development of the Logo programming language (and so also, indirectly, this
series of books) is another example of the relationship between AI and education. Part
of the idea behind Logo is that the process of programming a computer resembles, in
some ways, the process of teaching a person to do something. (This can include teaching
oneself.) For example, when a computer program doesn’t work, the experienced
programmer doesn’t give up in despair, but instead the program. Yet many
students are willing to give up and say “I just don’t get it” if their understanding of some
problem isn’t perfect on the first try.

student :nums

Combining Sentences Into One Equation

deliberately

Mindstorms

Combining Sentences Into One Equation 295

?

The problem to be solved is

A number is multiplied by 6 . This product is increased by 44 . This
result is 68 . Find the number.

The critic is afraid that children will adopt the computer as model and
eventually come to “think mechanically” themselves. Following the opposite
tack, I have invented ways to take educational advantage of the opportunities to
master the art of thinking like a computer, according, for example,
to the stereotype of a computer program that proceeds in a step-by-step,
literal, mechanical fashion. There are situations where this style of thinking
is appropriate and useful. Some children’s difficulties in learning formal
subjects such as grammar or mathematics derive from their inability to see the
point of such a style.

A second educational advantage is indirect but ultimately more important.
By deliberately learning to imitate mechanical thinking, the learner becomes
able to articulate what mechanical thinking is and what it is not. The exercise
can lead to greater confidence about the ability to choose a cognitive style
that suits the problem. Analysis of “mechanical thinking” and how it is
different from other kinds and practice with problem analysis can result in
a new degree of intellectual sophistication. By providing a very concrete,
down-to-earth model of a particular style of thinking, work with the computer
can make it easier to understand that there is such a thing as a “style of
thinking.” And giving children the opportunity to choose one style or another
provides an opportunity to develop the skill necessary to choose between
styles. Thus instead of inducing mechanical thinking, contact with computers
could turn out to be the best conceivable antidote to it. And for me what is
most important in this is that through these experiences these children would
be serving their apprenticeships as epistemologists, that is to say learning to
think articulately about thinking. [Seymour Papert, , Basic Books,
1980, p. 27.]

In age problems, as we’ve just seen, a single sentence may give rise to two equations.
Here is an example of the opposite, several sentences that together contribute a single
equation.

senform1

this
this

partial

296 Chapter 6 Artificial Intelligence

With mandatory substitutions the problem is

A number ismulby 6 . This product is increased by 44 . This result is
68 . Find the number .

The simple sentences are

A number ismulby 6 .

This product is increased by 44 .

This result is 68 .

Find the number .

The equations to be solved are

Equal [sum [product [number] 6] 44] 68

The number is 4

The problem is solved.

A number ismulby 6 .

[product [number] 6]

[sum [product [number] 6] 44]

Student recognizes problems like this by recognizing the phrases “is multiplied by,”
“is divided by,” and “is increased by” (). A sentence containing one of these
phrases is not translated into an equation; instead, a equation is saved until the
next sentence is read. That next sentence is expected to start with a phrase like “this
result” or “this product.” The same procedure () that in other situations uses the
left hand side of the last equation as the expression for the -phrase notices that there
is a remembered partial equation and uses that instead. In this example, the sentence

remembers the algebraic expression

The second sentence uses that remembered expression as part of a new, larger expression
to be remembered:

The third sentence does not contain one of the special “is increased by” phrases, but
is instead a standard “A is B” sentence. That sentence, therefore, does give rise to an
equation, as shown above.

senform1

Allowing Flexible Phrasing

stereotyped;

Allowing Flexible Phrasing 297

Robert has a certain number of jelly beans. This number is twice the
number of jelly beans Linda has.

The number of jelly beans Robert has is twice the number of jelly beans
Linda has.

if match [^one !verb1:verb a certain number of #stuff1 !:dlm] :sent
[push "ref opform (se [the number of] :stuff1 :one :verb1)
op []]

Perhaps the most interesting thing to notice about this category of word problem
is how narrowly defined Student’s criterion for recognizing the category is. Student
gets away with it because algebra word problems are highly there are just a
few categories, with traditional, standard wordings. In principle there could be a word
problem starting

These two sentences are together equivalent to

But Student would not recognize the situation because the first sentence doesn’t talk
about “is increased by.” We could teach Student to understand a word problem in this
form by adding the instruction

along with the other known sentence forms in . (Compare this to the pattern
matching instruction shown earlier for a similar sentence but with an explicitly specified
number.)

Taking advantage of the stereotyped nature of word problems is an example of how
the microworld strategy helped make the early AI programs possible. If word problems
were expressed with all the flexibility of language in general, Student would need many
more sentence patterns than it actually has. (How many different ways can you think of
to express the same idea about Robert and Linda? How many of those ways can Student
handle?)

In the examples we’ve seen so far, Student has relied on the repetition of identical or
near-identical phrases such as “the marked price” or “the number of advertisements
he runs.” (The requirement is not quite strictly identical phrases because articles are
removed from the noun phrases to make variable names.) In real writing, though, such
phrases are often abbreviated when they appear for a second time. Student will translate
such a problem into a system of equations that can’t be solved, because what should be
one variable is instead a different variable in each equation. But Student can recognize

student :sally

student2 vartest

298 Chapter 6 Artificial Intelligence

this situation and apply heuristic rules to guess that two similar variable names are meant,
in fact, to represent the same variable. (Some early writers on AI considered the use of
heuristic methods one of the defining characteristics of the field. Computer scientists
outside of AI were more likely to insist on fully reliable algorithms. This distinction still
has some truth to it, but it isn’t emphasized so much as a critical issue these days.) Student
doesn’t try to equate different variables until it has first tried to solve the equations as
they are originally generated. If the first attempt at solution fails, Student has recourse to
less certain techniques (calls).

?

The problem to be solved is

The sum of Sally’s share of some money and Frank’s share is $4.50.
Sally’s share is twice Frank’s. Find Frank’s and Sally’s share.

With mandatory substitutions the problem is

sum Sally s share numof some money and Frank s share is 4.50 dollars .
Sally s share is 2 times Frank s . Find Frank s and Sally s share .

The simple sentences are

Sum Sally s share numof some money and Frank s share is 4.50 dollars .

Sally s share is 2 times Frank s .

Find Frank s and Sally s share .

The equations to be solved are

Equal [sum [Sally s share of some money] [Frank s share]]
[product 4.50 [dollars]]

Equal [Sally s share] [product 2 [Frank s]]

The equations were insufficient to find a solution.

Assuming that
[Frank s] is equal to [Frank s share]

Assuming that
[Sally s share] is equal to [Sally s share of some money]

Frank s is 1.5 dollars

student :guns

variable1 variable2

Allowing Flexible Phrasing 299

[dollars]

[the
number of ice cream cones the children eat]

[the number of ice cream cones they eat]

Sally s share is 3 dollars

The problem is solved.

[equal]

?

The problem to be solved is

The number of soldiers the Russians have is one half of the number of
guns they have. They have 7000 guns. How many soldiers do they have?

With mandatory substitutions the problem is

The number numof soldiers the Russians have is 0.5 numof the number numof
guns they have . They have 7000 guns . howm soldiers do they have ?

The simple sentences are

The number numof soldiers the Russians have is 0.5 numof the number numof
guns they have .

They have 7000 guns .

In this problem Student has found two pairs of similar variable names. When it finds
such a pair, Student adds an equation of the form

to the previous set of equations. In both of the pairs in this example, the variable that
appears later in the problem statement is entirely contained within the one that appears
earlier.

Another point of interest in this example is that the variable is included
in the list of units that may be part of the answer. The word problem does not explicitly ask
“How many dollars is Sally’s share,” but because one of the sentences sets an expression
equal to “4.50 dollars” Student takes that as implicit permission to express the answer in
dollars.

The only other condition under which Student will consider two variables equal is
if their names are identical except that some phrase in the one that appears earlier is
replaced with a pronoun in the one that appears later. That is, a variable like

will be considered equal to a
later variable . Here is a problem in
which this rule is applied:

geteqns

student :jet

Using Background Knowledge

background

300 Chapter 6 Artificial Intelligence

In some word problems, not all of the necessary information is contained within the
problem statement itself. The problem requires the student to supply some piece of
general knowledge about the world in order to determine the appropriate equations. This
knowledge may be about unit conversions (one foot is 12 inches) or about relationships
among physical quantities (distance equals speed times time). Student “knows” some of
this information and can apply it () if the equations determined by
the problem statement are insufficient.

Howm soldiers do they have ?

The equations to be solved are

Equal [number of soldiers Russians have]
[product 0.5 [number of guns they have]]

Equal [number of guns they have] 7000

The equations were insufficient to find a solution.

Assuming that
[number of soldiers they have] is equal to
[number of soldiers Russians have]

The number of soldiers they have is 3500

The problem is solved.

?

The problem to be solved is

The distance from New York to Los Angeles is 3000 miles. If the average
speed of a jet plane is 600 miles per hour, find the time it takes to
travel from New York to Los Angeles by jet.

With mandatory substitutions the problem is

The distance from New York to Los Angeles is 3000 miles . If the average
speed numof a jet plane is 600 miles per hour , find the time it takes to
travel from New York to Los Angeles by jet .

The simple sentences are

number of

1 foot 2 feet

Using Background Knowledge 301

Student’s library of known relationships is indexed according to the first word of the
name of each variable involved in the relationship. (If a variable starts with the words

it is indexed under the following word.) The relationships, in the form of
equations, are stored in the property lists of these index words.

Property lists are also used to keep track of irregular plurals and the corresponding
singulars. Student tries to keep all units in plural form internally, so that if a problem
refers to both and the same variable name will be used for both. (That
is, the first of these will be translated into

The distance from New York to Los Angeles is 3000 miles .

The average speed numof a jet plane is 600 miles per hour .

Find the time it takes to travel from New York to Los Angeles by jet .

The equations to be solved are

Equal [distance from New York to Los Angeles] [product 3000 [miles]]

Equal [average speed of jet plane]
[quotient [product 600 [miles]] [product 1 [hours]]]

The equations were insufficient to find a solution.

Using the following known relationships

Equal [distance] [product [speed] [time]]

Equal [distance] [product [gas consumption]
[number of gallons of gas used]]

Assuming that
[speed] is equal to [average speed of jet plane]

Assuming that
[time] is equal to [time it takes to travel

from New York to Los Angeles by jet]

Assuming that
[distance] is equal to [distance from New York to Los Angeles]

The time it takes to travel from New York
to Los Angeles by jet is 5 hours

The problem is solved.

student :span

302 Chapter 6 Artificial Intelligence

1

remember

remember
pprop

remember

idioms

[distance]
[distance from New York

to Los Angeles]

[product 1 [feet]]

Feet is the plural of foot

Distance equals speed times time

?

The problem to be solved is

If 1 span is 9 inches, and 1 fathom is 6 feet,
how many spans is 1 fathom?

With mandatory substitutions the problem is

in Student’s internal representation. Then the opposite translation is needed if the
product of and some unit appears in an answer to be printed.

The original Student also used property lists to remember the parts of speech of
words and the precedence of operators, but because of differences in the syntax of
the Meteor pattern matcher and my Logo pattern matcher I’ve found it easier to use
predicate operations for that purpose.

The original Student system included a separately invoked procedure
that allowed all these kinds of global information to be entered in the form of English
sentences. You’d say

or

and would use patterns much like those used in understanding word problems
to translate these sentences into instructions. Since Lisp programs, like Logo pro-
grams, can themselves be manipulated as lists, could even accept information
of a kind that’s stored in the Student program itself, such as the wording transformations
in , and modify the program to reflect this information. I haven’t bothered to
implement that part of the Student system because it takes up extra memory and doesn’t
exhibit any new techniques.

As the above example shows, it’s important that Student’s search for relevant known
relationships comes before the attempt to equate variables with similar names. The
general relationship that uses a variable named simply doesn’t help unless
Student can identify it as relevant to the variable named

in the specific problem under consideration.

Here is another example in which known relationships are used:

spans

inches feet fathoms

Using Background Knowledge 303

Besides the use of known relationships, this example illustrates two other features of
Student. One is the use of an explicitly requested unit in the answer. Since the problem
asks

Student knows that the answer must be expressed in . Had there been no explicit
request for a particular unit, all the units that appear in phrases along with a number
would be eligible to appear in the answer: , , and . Student might
then blithely inform us that

If 1 span is 9 inches , and 1 fathom is 6 feet , howm spans is 1 fathom ?

The simple sentences are

1 span is 9 inches .

1 fathom is 6 feet .

Howm spans is 1 fathom ?

The equations to be solved are

Equal [product 1 [spans]] [product 9 [inches]]

Equal [product 1 [fathoms]] [product 6 [feet]]

Equal g2 [product 1 [fathoms]]

The equations were insufficient to find a solution.

Using the following known relationships

Equal [product 1 [yards]] [product 3 [feet]]

Equal [product 1 [feet]] [product 12 [inches]]

1 fathom is 8 spans

The problem is solved.

How many spans is 1 fathom?

1 fathom is 1 fathom

The problem is solved.

Optional Substitutions

unit,

always

optional

304 Chapter 6 Artificial Intelligence

[product 1 [fathoms]]

[equal g2 [product 1 [fathoms]]

[equal g3 [marked price]]

[Fathoms]

g2

2 times twice perless percent
less than

tryidiom

the perimeter of the rectangle

twice the sum of the length and width of the
rectangle

The other new feature demonstrated by this example is the use of a generated symbol
to represent the desired answer. In the statement of this problem, there is no explicit
variable representing the unknown. is a not a variable for which a value
could be found. The problem asks for the value of the expression

in terms of spans. Student generates a variable name () to represent the unknown
and produces an equation

to add to the list of equations. A generated symbol will be needed whenever the “Find”
or “What is” sentence asks for an expression rather than a simple variable name. For
example, an age problem that asks “What is the sum of their ages” would require the
use of a generated symbol. (The original Student used a generated symbol for
the unknowns, even if there was already a single variable in the problem representing an
unknown. It therefore had equations like

in its list, declaring one variable equal to another. I chose to check for this case and
avoid the use of a generated symbol because the time spent in the actual solution of the
equations increases quadratically with the number of equations.)

We have seen many cases in which Student replaces a phrase in the statement of a problem
with a different word or phrase that fits better with the later stages of processing, like
the substitution of for or a special keyword like for

. Student also has a few cases of substitutions that may or may not be
made ().

There are two ways in which optional substitutions can happen. One is exemplified by
the phrase . Student first attempts the problem
without any special processing of this phrase. If a solution is not found, Student
then replaces the phrase with

and processes the resulting new problem from the beginning. Unlike
the use of known relationships or similarity of variable names, which Student handles
by adding to the already-determined equations, this optional substitution requires the

student :sumtwo

Optional Substitutions 305

twice
2 times

two
numbers

one of
the numbers and the other number one number and the other number

entire translation process to begin again. For example, the word that begins the
replacement phrase will be further translated to .

The second category of optional substitution is triggered by the phrase
. This phrase must always be translated to something, because it indicates

that two different variables are needed. But the precise translation depends on the
wording of the rest of the problem. Student tries two alternative translations:

and .
Here is an example in which the necessary translation is the one Student tries second:

?

The problem to be solved is

The sum of two numbers is 96, and one number is 16 larger than the other
number. Find the two numbers.

The problem with an idiomatic substitution is

The sum of one of the numbers and the other number is 96 , and one
number is16 larger than the other number . Find the one of the numbers
and the other number .

With mandatory substitutions the problem is

sum one numof the numbers and the other number is 96 , and one number
is 16 plus the other number . Find the one numof the numbers and the
other number .

The simple sentences are

Sum one numof the numbers and the other number is 96 .

One number is 16 plus the other number .

Find the one numof the numbers and the other number .

The equations to be solved are

Equal [sum [one of numbers] [other number]] 96

Equal [one number] [sum 16 [other number]]

The equations were insufficient to find a solution.

idiom

306 Chapter 6 Artificial Intelligence

There is no essential reason why Student uses one mechanism rather than another
to deal with a particular problematic situation. The difficulties about perimeters and
about the phrase “two numbers” might have been solved using mechanisms other than
this optional substitution one. For example, the equation

might have been added to the library of known relationships. The difficulty about
alternate phrasings for “two numbers” could be solved by adding

to the list of idiomatic substitutions in .

Not all the mechanisms are equivalent, however. The “two numbers” problem
couldn’t be solved by adding equations to the library of known relationships, because

The problem with an idiomatic substitution is

The sum of one number and the other number is 96 , and one number is 16
larger than the other number . Find the one number and the other number .

With mandatory substitutions the problem is

sum one number and the other number is 96 , and one number is 16 plus the
other number . Find the one number and the other number .

The simple sentences are

Sum one number and the other number is 96 .

One number is 16 plus the other number .

Find the one number and the other number .

The equations to be solved are

Equal [sum [one number] [other number]] 96

Equal [one number] [sum 16 [other number]]

The one number is 56

The other number is 40

The problem is solved.

[equal [perimeter] [product 2 [sum [length] [width]]]]

[[one of the !word:pluralp] ["one singular :word]]

student :ship

If All Else Fails

If All Else Fails 307

something something else

sum
sum the sum of

and tst.sum

student2

that phrase appears as part of a larger phrase like “the sum of two numbers,” and
Student’s understanding of the word doesn’t allow it to be part of a variable name.
The word only makes sense to Student in the context of a phrase like

. (See procedure .)

Sometimes Student fails to solve a problem because the problem is beyond either its
linguistic capability or its algebraic capability. For example, Student doesn’t know how to
solve quadratic equations. But sometimes a problem that Student could solve in principle
stumps it because it happens to lack a particular piece of common knowledge. When a
situation like that arises, Student is capable of asking the user for help ().

?

The problem to be solved is

The gross weight of a ship is 20000 tons. If its net weight is 15000
tons, what is the weight of the ships cargo?

With mandatory substitutions the problem is

The gross weight numof a ship is 20000 tons . If its net weight is 15000
tons , what is the weight numof the ships cargo ?

The simple sentences are

The gross weight numof a ship is 20000 tons .

Its net weight is 15000 tons .

What is the weight numof the ships cargo ?

The equations to be solved are

Equal [gross weight of ship] [product 20000 [tons]]

Equal [its net weight] [product 15000 [tons]]

The equations were insufficient to find a solution.

Do you know any more relationships among these variables?

Weight of ships cargo

Limitations of Pattern Matching

308 Chapter 6 Artificial Intelligence

The weight of a ships cargo is the gross weight minus the net weight

and

and

suppose
suppose you the russians

suppose
how many

jelly beans
Tom give each

Its net weight

Tons

Gross weight of ship

Assuming that
[net weight] is equal to [its net weight]

Assuming that
[gross weight] is equal to [gross weight of ship]

The weight of the ships cargo is 5000 tons

The problem is solved.

Suppose you have 14 jelly beans. You give 2 each to Tom, Dick, and
Harry. How many do you have left?

You give 2 each to Tom , Dick .

Harry .

Student relies on certain stereotyped forms of sentences in the problems it solves. It’s
easy to make up problems that will completely bewilder it:

The first mistake Student makes is that it thinks the word following a comma
separates two clauses; it generates simple sentences

This is quite a fundamental problem; Student’s understanding of the difference between
a phrase and a clause is extremely primitive and prone to error. Adding another pattern
won’t solve this one; the trouble is that Student pays no attention to the words in between
the key words like .

There are several other difficulties with this problem, some worse than others.
Student doesn’t recognize the word as having a special function in the sentence,
so it makes up a noun phrase just like . This could be
fixed with an idiomatic substitution that just ignored . Another relatively small
problem is that the sentence starting doesn’t say how many of what; Student
needs a way to understand that the relevant noun phrase is and not, for
example, . The words (representing subtraction) and (representing

1 4

START

2 3

what is

are
any any

dlm

[^ what !:in [is are] #one !:dlm]

is

dlm

any

Limitations of Pattern Matching 309

percent less
the number of

jelly beans you have

@
student

dlm

counting a set and then multiplying) have special mathematical meanings comparable
to . A much more subtle problem in knowledge representation is that
in this problem there are two different quantities that could be called

: the number you have at the beginning of the problem and the
number you have at the end. Student has a limited understanding of this passage-of-time
difficulty when it’s doing an age problem, but not in general.

How many more difficulties can you find in this problem? For how many of them
can you invent improvements to Student to get around them?

Some difficulties seem to require a “more of the same” strategy: adding some new
patterns to Student that are similar to the ones already there. Other difficulties seem
to require a more fundamental redesign. Can that redesign be done using a pattern
matcher as the central tool, or are more powerful tools needed? How powerful pattern
matching, anyway?

Answering questions like these is the job of automata theory. From that point of
view, the answer is that it depends exactly what you mean by “pattern matching.” The
pattern matcher used in Student is equivalent to a finite-state machine. The important
thing to note about the patterns used in Student is that they only apply predicates to one
word at a time, not to groups of words. In other words, they don’t use the quantifier.
Here is a typical pattern:

For the purposes of this discussion, you can ignore the fact that the pattern matcher can
set variables to remember which words matched each part of the pattern. In comparing
a pattern matcher to a finite-state machine, the question we’re asking is what categories
of strings can the pattern matcher accept. This particular pattern is equivalent to the
following machine:

The arrow that I’ve labeled is actually several arrows connecting the same states,
one for each symbol that the predicate accepts, i.e., period, question mark, and
semicolon. Similarly, the arrows labeled are followed for any symbol at all. This
machine is nondeterministic, but you’ll recall that that doesn’t matter; we can turn it into
a deterministic one if necessary.

@

@

Context-Free Languages

embedding

context-free

isn’t

310 Chapter 6 Artificial Intelligence

[I see !:in [the a an] ?:numberp &:adjective !:noun #:adverb]

this := that

abc
aabbcc
aaabbbccc
aaaabbbbcccc

To be sure you understand the equivalence of patterns and finite-state machines, see
if you can draw a machine equivalent to this pattern:

This pattern uses all the quantifiers that test words one at a time.

If these patterns are equivalent to finite-state machines, you’d expect them to have
trouble recognizing sentences that involve of clauses within clauses, since these
pose the same problem as keeping track of balancing of parentheses. For example, a
sentence like “The book that the boy whom I saw yesterday was reading is interesting”
would strain the capabilities of a finite-state machine. (As in the case of parentheses,
we could design a FSM that could handle such sentences up to some fixed depth of
embedding, but not one that could handle arbitrarily deep embedding.)

If we allow the use of the quantifier in patterns, and if the predicates used to test
substrings of the sentences are true functions without side effects, then the pattern
matcher is equivalent to an RTN or a production rule grammar. What makes an RTN
different from a finite-state machine is that the former can include arrows that match
several symbols against another (or the same) RTN. Equivalently, the quantifier
matches several symbols against another (or the same) pattern.

A language that can be represented by an RTN is called a language. The
reason for the name is that in such a language a given string consistently matches or
doesn’t match a given predicate regardless of the rest of the sentence. That’s the point
of what I said just above about side effects; the output from a test predicate can’t depend
on anything other than its input. Pascal is a context-free language because

is always an assignment statement regardless of what other statements might be in the
program with it.

What a context-free language? The classic example in automata theory is the
language consisting of the strings

a b
c

a b

var

Augmented Transition Networks

assignment : identifier := expression

any

all

Augmented Transition Networks 311

and so on, with the requirement that the number of s be equal to the number of s
and also equal to the number of s. That language can’t be represented as RTNs or
production rules. (Try it. Don’t confuse it with the language that accepts any number
of s followed by any number of s and so on; even a finite-state machine can represent
that one. The equal number requirement is important.)

The classic formal system that can represent language for which there are precise
rules is the Turing machine. Its advantage over the RTN is precisely that it can “jump
around” in its memory, looking at one part while making decisions about another part.

There is a sharp theoretical boundary between context-free and context-sensitive
languages, but in practice the boundary is sometimes fuzzy. Consider again the case
of Pascal and that assignment statement. I said that it’s recognizably an assignment
statement because it matches a production rule like

(along with a bunch of other rules that determine what qualifies as an expression).
But that production rule doesn’t really express the requirements for a legal Pascal
assignment statement. For example, the identifier and the expression must be of the
same type. The actual Pascal compiler (any Pascal compiler, not just mine) includes
instructions that represent the formal grammar plus extra instructions that represent the
additional requirements.

The type agreement rule is an example of context sensitivity. The types of the
relevant identifiers were determined in declarations earlier in the program; those
declarations are part of what determines whether the given string of symbols is a legal
assignment.

One could create a clean formal description of Pascal, type agreement rules and all, by
designing a Turing machine to accept Pascal programs. However, Turing machines aren’t
easy to work with for any practical problem. It’s much easier to set up a context-free
grammar for Pascal and then throw in a few side effects to handle the context-sensitive
aspects of the language.

Much the same is true of English. It’s possible to set up an RTN (or a production
rule grammar) for noun phrases, for example, and another one for verb phrases. It’s
tempting then to set up an RTN for a sentence like this:

1 3

START

2

se nte nce_

nounphrase verbphrase

3 n

number
number

agreement run runs

augmented transition network

conditions
actions

Language as a Cognitive Process, Volume 1: Syntax

O n O

312 Chapter 6 Artificial Intelligence

This machine captures some, but not all, of the rules of English. It’s true that a sentence
requires a noun phrase (the subject) and a verb phrase (the predicate). But there
are rules for person and number (I but he) analogous to the type
agreement rules of Pascal.

Some artificial intelligence researchers, understanding all this, parse English sen-
tences using a formal description called an (ATN). An ATN is
just like an RTN except that each transition arrow can have associated with it not only the
name of a symbol or another RTN but also some that must be met in order to
follow the arrow and some that the program should take if the arrow is followed.
For example, we could turn the RTN just above into an ATN by adding an action to
the first arrow saying “store the number (singular or plural) of the noun phrase in the
variable ” and adding a condition to the second arrow saying “the number of the
verb phrase must be equal to the variable .”

Subject-predicate agreement is not the only rule in English grammar best expressed
as a side effect in a transition network. On the next page is an ATN for noun phrases
taken from by Terry Winograd (page 598).
I’m not going to attempt to explain the notation or the detailed rules here, but just to
give one example, the condition labeled “h16p” says that the transition for apostrophe-s
can be followed if the head of the phrase is an ordinary noun (“the book’s”) but not if
it’s a pronoun (“you’s”).

The ATN is equivalent in power to a Turing machine; there is no known mechanism
that is more flexible in carrying out algorithms. The flexibility has a cost, though. The
time required to parse a string with an ATN is not bounded by a polynomial function.
(Remember, the time for an RTN is ().) It can easily be exponential, (2). One
reason is that a context-sensitive procedure can’t be subject to memoization. If two
invocations of the same procedure with the same inputs can give different results because
of side effects, it does no good to remember what result we got the last time. Turning an
ATN into a practical program is often possible, but not a trivial task.

In thinking about ATNs we’ve brought together most of the topics in this book:
formal systems, algorithms, language parsing, and artificial intelligence. Perhaps that’s a
good place to stop.

Augmented Transition Networks 313

Program Listing

314 Chapter 6 Artificial Intelligence

to student :prob [:orgprob :prob]
say [The problem to be solved is] :prob
make "prob map.se [depunct ?] :prob
student1 :prob [[[the perimeter of ! rectangle]

[twice the sum of the length and width of the rectangle]]
[[two numbers] [one of the numbers and the other number]]
[[two numbers] [one number and the other number]]]

end

to student1 :prob :idioms
local [simsen shelf aunits units wanted ans var lasteqn

ref eqt1 beg end idiom reply]
make "prob idioms :prob
if match [^ two numbers #] :prob ~

[make "idiom find [match (sentence "^beg first ? "#end) :orgprob] :idioms ~
tryidiom stop]

while [match [^beg the the #end] :prob] [make "prob (sentence :beg "the :end)]
say [With mandatory substitutions the problem is] :prob
ifelse match [# @:in [[as old as] [age] [years old]] #] :prob ~

[ageprob] [make "simsen bracket :prob]
lsay [The simple sentences are] :simsen
foreach [aunits wanted ans var lasteqn ref units] [make ? []]
make "shelf filter [not emptyp ?] map.se [senform ?] :simsen
lsay [The equations to be solved are] :shelf make "units remdup :units
if trysolve :shelf :wanted :units :aunits [print [The problem is solved.] stop]
make "eqt1 remdup geteqns :var
if not emptyp :eqt1 [lsay [Using the following known relationships] :eqt1]
student2 :eqt1
end

to student2 :eqt1
make "var remdup sentence (map.se [varterms ?] :eqt1) :var
make "eqt1 sentence :eqt1 vartest :var
if not emptyp :eqt1 ~

[if trysolve (sentence :shelf :eqt1) :wanted :units :aunits
[print [The problem is solved.] stop]]

make "idiom find [match (sentence "^beg first ? "#end) :orgprob] :idioms
if not emptyp :idiom [tryidiom stop]
lsay [Do you know any more relationships among these variables?] :var
make "reply map.se [depunct ?] readlist
if equalp :reply [yes] [print [Tell me.] make "reply readlist]
if equalp :reply [no] [print [] print [I can’t solve this problem.] stop]
if dlm last :reply [make "reply butlast :reply]
if not match [^beg is #end] :reply [print [I don’t understand that.] stop]
make "shelf sentence :shelf :eqt1
student2 (list (list "equal opform :beg opform :end))
end

Program Listing 315

;; Mandatory substitutions

to depunct :word
if emptyp :word [output []]
if equalp first :word "$ [output sentence "$ depunct butfirst :word]
if equalp last :word "% [output sentence depunct butlast :word "percent]
if memberp last :word [. ? |;| ,] ~

[output sentence depunct butlast :word last :word]
if emptyp butfirst :word [output :word]
if equalp last2 :word "’s [output sentence depunct butlast butlast :word "s]
output :word
end

to idioms :sent
local "number
output changes :sent ~

[[[the sum of] ["sum]] [[square of] ["square]] [[of] ["numof]]
[[how old] ["what]] [[is equal to] ["is]]
[[years younger than] [[less than]]] [[years older than] ["plus]]
[[percent less than] ["perless]] [[less than] ["lessthan]]
[[these] ["the]] [[more than] ["plus]]
[[first two numbers] [[the first number and the second number]]]
[[three numbers]
[[the first number and the second number and the third number]]]

[[one half] [0.5]] [[twice] [[2 times]]]
[[$!number] [sentence :number "dollars]] [[consecutive to] [[1 plus]]]
[[larger than] ["plus]] [[per cent] ["percent]] [[how many] ["howm]]
[[is multiplied by] ["ismulby]] [[is divided by] ["isdivby]]
[[multiplied by] ["times]] [[divided by] ["divby]]]

end

to last2 :word
output word (last butlast :word) (last :word)
end

to changes :sent :list
localmake "keywords map.se [findkey first ?] :list
output changes1 :sent :list :keywords
end

to findkey :pattern
if equalp first :pattern "!:in [output first butfirst :pattern]
if equalp first :pattern "?:in ~

[output sentence (item 2 :pattern) (item 3 :pattern)]
output first :pattern
end

316 Chapter 6 Artificial Intelligence

to changes1 :sent :list :keywords
if emptyp :sent [output []]
if memberp first :sent :keywords [output changes2 :sent :list :keywords]
output fput first :sent changes1 butfirst :sent :list :keywords
end

to changes2 :sent :list :keywords
changes3 :list :list
output fput first :sent changes1 butfirst :sent :list :keywords
end

to changes3 :biglist :nowlist
if emptyp :nowlist [stop]
if changeone first :nowlist [changes3 :biglist :biglist stop]
changes3 :biglist butfirst :nowlist
end

to changeone :change
local "end
if not match (sentence first :change [#end]) :sent [output "false]
make "sent run (sentence "sentence last :change ":end)
output "true
end

;; Division into simple sentences

to bracket :prob
output bkt1 finddelim :prob
end

to finddelim :sent
output finddelim1 :sent [] []
end

to finddelim1 :in :out :simples
if emptyp :in ~

[ifelse emptyp :out [output :simples]
[output lput (sentence :out ".) :simples]]

if dlm first :in ~
[output finddelim1 (nocap butfirst :in) []

(lput (sentence :out first :in) :simples)]
output finddelim1 (butfirst :in) (sentence :out first :in) :simples
end

to nocap :words
if emptyp :words [output []]
if personp first :words [output :words]
output sentence (lowercase first :words) butfirst :words
end

Program Listing 317

to bkt1 :problist
local [first word rest]
if emptyp :problist [output []]
if not memberp ", first :problist ~

[output fput first :problist bkt1 butfirst :problist]
if match [if ^first , !word:qword #rest] first :problist ~

[output bkt1 fput (sentence :first ".)
fput (sentence :word :rest) butfirst :problist]

if match [^first , and #rest] first :problist ~
[output fput (sentence :first ".) (bkt1 fput :rest butfirst :problist)]

output fput first :problist bkt1 butfirst :problist
end

;; Age problems

to ageprob
local [beg end sym who num subj ages]
while [match [^beg as old as #end] :prob] [make "prob sentence :beg :end]
while [match [^beg years old #end] :prob] [make "prob sentence :beg :end]
while [match [^beg will be when #end] :prob] ~

[make "sym gensym
make "prob (sentence :beg "in :sym [years . in] :sym "years :end)]

while [match [^beg was when #end] :prob] ~
[make "sym gensym
make "prob (sentence :beg :sym [years ago .] :sym [years ago] :end)]

while [match [^beg !who:personp will be in !num years #end] :prob] ~
[make "prob (sentence :beg :who [s age in] :num "years #end)]

while [match [^beg was #end] :prob] [make "prob (sentence :beg "is :end)]
while [match [^beg will be #end] :prob] [make "prob (sentence :beg "is :end)]
while [match [^beg !who:personp is now #end] :prob] ~

[make "prob (sentence :beg :who [s age now] :end)]
while [match [^beg !num years from now #end] :prob] ~

[make "prob (sentence :beg "in :num "years :end)]
make "prob ageify :prob
ifelse match [^ !who:personp ^end s age #] :prob ~

[make "subj sentence :who :end] [make "subj "someone]
make "prob agepron :prob
make "end :prob
make "ages []
while [match [^ !who:personp ^beg age #end] :end] ~

[push "ages (sentence "and :who :beg "age)]
make "ages butfirst reduce "sentence remdup :ages
while [match [^beg their ages #end] :prob] [make "prob (sentence :beg :ages :end)]
make "simsen map [agesen ?] bracket :prob
end

318 Chapter 6 Artificial Intelligence

to ageify :sent
if emptyp :sent [output []]
if not personp first :sent [output fput first :sent ageify butfirst :sent]
catch "error [if equalp first butfirst :sent "s

[output fput first :sent ageify butfirst :sent]]
output (sentence first :sent [s age] ageify butfirst :sent)
end

to agepron :sent
if emptyp :sent [output []]
if not pronoun first :sent [output fput first :sent agepron butfirst :sent]
if posspro first :sent [output (sentence :subj "s agepron butfirst :sent)]
output (sentence :subj [s age] agepron butfirst :sent)
end

to agesen :sent
local [when rest num]
make "when []
if match [in !num years #rest] :sent ~

[make "when sentence "pluss :num make "sent :rest]
if match [!num years ago #rest] :sent ~

[make "when sentence "minuss :num make "sent :rest]
output agewhen :sent
end

to agewhen :sent
if emptyp :sent [output []]
if not equalp first :sent "age [output fput first :sent agewhen butfirst :sent]
if match [in !num years #rest] butfirst :sent ~

[output (sentence [age pluss] :num agewhen :rest)]
if match [!num years ago #rest] butfirst :sent ~

[output (sentence [age minuss] :num agewhen :rest)]
if equalp "now first butfirst :sent ~

[output sentence "age agewhen butfirst butfirst :sent]
output (sentence "age :when agewhen butfirst :sent)
end

;; Translation from sentences into equations

to senform :sent
make "lasteqn senform1 :sent
output :lasteqn
end

Program Listing 319

to senform1 :sent
local [one two verb1 verb2 stuff1 stuff2 factor]
if emptyp :sent [output []]
if match [^ what are ^one and ^two !:dlm] :sent ~

[output fput (qset :one) (senform (sentence [what are] :two "?))]
if match [^ what !:in [is are] #one !:dlm] :sent ~

[output (list qset :one)]
if match [^ howm !one is #two !:dlm] :sent ~

[push "aunits (list :one) output (list qset :two)]
if match [^ howm ^one do ^two have !:dlm] :sent ~

[output (list qset (sentence [the number of] :one :two "have))]
if match [^ howm ^one does ^two have !:dlm] :sent ~

[output (list qset (sentence [the number of] :one :two "has))]
if match [^ find ^one and #two] :sent ~

[output fput (qset :one) (senform sentence "find :two)]
if match [^ find #one !:dlm] :sent [output (list qset :one)]
make "sent filter [not article ?] :sent
if match [^one ismulby #two] :sent ~

[push "ref (list "product opform :one opform :two) output []]
if match [^one isdivby #two] :sent ~

[push "ref (list "quotient opform :one opform :two) output []]
if match [^one is increased by #two] :sent ~

[push "ref (list "sum opform :one opform :two) output []]
if match [^one is #two] :sent ~

[output (list (list "equal opform :one opform :two))]
if match [^one !verb1:verb ^factor as many ^stuff1 as

^two !verb2:verb ^stuff2 !:dlm] ~
:sent ~

[if emptyp :stuff2 [make "stuff2 :stuff1]
output (list (list "equal ~

opform (sentence [the number of] :stuff1 :one :verb1) ~
opform (sentence :factor [the number of]

:stuff2 :two :verb2)))]
if match [^one !verb1:verb !factor:numberp #stuff1 !:dlm] :sent ~

[output (list (list "equal ~
opform (sentence [the number of] :stuff1 :one :verb1) ~
opform (list :factor)))]

say [This sentence form is not recognized:] :sent
throw "error
end

to qset :sent
localmake "opform opform filter [not article ?] :sent
if not operatorp first :opform ~

[queue "wanted :opform queue "ans list :opform oprem :sent output []]
localmake "gensym gensym
queue "wanted :gensym
queue "ans list :gensym oprem :sent
output (list "equal :gensym opform (filter [not article ?] :sent))
end

320 Chapter 6 Artificial Intelligence

to oprem :sent
output map [ifelse equalp ? "numof ["of] [?]] :sent
end

to opform :expr
local [left right op]
if match [^left !op:op2 #right] :expr [output optest :op :left :right]
if match [^left !op:op1 #right] :expr [output optest :op :left :right]
if match [^left !op:op0 #right] :expr [output optest :op :left :right]
if match [#left !:dlm] :expr [make "expr :left]
output nmtest filter [not article ?] :expr
end

to optest :op :left :right
output run (list (word "tst. :op) :left :right)
end

to tst.numof :left :right
if numberp last :left [output (list "product opform :left opform :right)]
output opform (sentence :left "of :right)
end

to tst.divby :left :right
output (list "quotient opform :left opform :right)
end

to tst.tothepower :left :right
output (list "expt opform :left opform :right)
end

to expt :num :pow
if :pow < 1 [output 1]
output :num * expt :num :pow - 1
end

to tst.per :left :right
output (list "quotient ~

opform :left ~
opform (ifelse numberp first :right [:right] [fput 1 :right]))

end

to tst.lessthan :left :right
output opdiff opform :right opform :left
end

to opdiff :left :right
output (list "sum :left (list "minus :right))
end

Program Listing 321

to tst.minus :left :right
if emptyp :left [output list "minus opform :right]
output opdiff opform :left opform :right
end

to tst.minuss :left :right
output tst.minus :left :right
end

to tst.sum :left :right
local [one two three]
if match [^one and ^two and #three] :right ~

[output (list "sum opform :one opform (sentence "sum :two "and :three))]
if match [^one and #two] :right ~

[output (list "sum opform :one opform :two)]
say [sum used wrong:] :right throw "error
end

to tst.squared :left :right
output list "square opform :left
end

to tst.difference :left :right
local [one two]
if match [between ^one and #two] :right [output opdiff opform :one opform :two]
say [Incorrect use of difference:] :right throw "error
end

to tst.plus :left :right
output (list "sum opform :left opform :right)
end

to tst.pluss :left :right
output tst.plus :left :right
end

to square :x
output :x * :x
end

to tst.square :left :right
output list "square opform :right
end

to tst.percent :left :right
if not numberp last :left ~

[say [Incorrect use of percent:] :left throw "error]
output opform (sentence butlast :left ((last :left) / 100) :right)
end

322 Chapter 6 Artificial Intelligence

to tst.perless :left :right
if not numberp last :left ~

[say [Incorrect use of percent:] :left throw "error]
output (list "product ~

(opform sentence butlast :left ((100 - (last :left)) / 100)) ~
opform :right)

end

to tst.times :left :right
if emptyp :left [say [Incorrect use of times:] :right throw "error]
output (list "product opform :left opform :right)
end

to nmtest :expr
if match [& !:numberp #] :expr [say [argument error:] :expr throw "error]
if and (equalp first :expr 1) (1 < count :expr) ~

[make "expr (sentence 1 plural (first butfirst :expr)
(butfirst butfirst :expr))]

if and (numberp first :expr) (1 < count :expr) ~
[push "units (list first butfirst :expr) ~
output (list "product (first :expr) (opform butfirst :expr))]

if numberp first :expr [output first :expr]
if memberp "this :expr [output this :expr]
if not memberp :expr :var [push "var :expr]
output :expr
end

to this :expr
if not emptyp :ref [output pop "ref]
if not emptyp :lasteqn [output first butfirst last :lasteqn]
if equalp first :expr "this [make "expr butfirst :expr]
push "var :expr
output :expr
end

;; Solving the equations

to trysolve :shelf :wanted :units :aunits
local "solution
make "solution solve :wanted :shelf (ifelse emptyp :aunits [:units] [:aunits])
output pranswers :ans :solution
end

to solve :wanted :eqt :terms
output solve.reduce solver :wanted :terms [] [] "insufficient
end

Program Listing 323

to solve.reduce :soln
if emptyp :soln [output []]
if wordp :soln [output :soln]
if emptyp butfirst :soln [output :soln]
localmake "part solve.reduce butfirst :soln
output fput (list (first first :soln) (subord last first :soln :part)) :part
end

to solver :wanted :terms :alis :failed :err
local [one result restwant]
if emptyp :wanted [output :err]
make "one solve1 (first :wanted) ~

(sentence butfirst :wanted :failed :terms) ~
:alis :eqt [] "insufficient

if wordp :one ~
[output solver (butfirst :wanted) :terms :alis

(fput first :wanted :failed) :one]
make "restwant (sentence :failed butfirst :wanted)
if emptyp :restwant [output :one]
make "result solver :restwant :terms :one [] "insufficient
if listp :result [output :result]
output solver (butfirst :wanted) :terms :alis (fput first :wanted :failed) :one
end

to solve1 :x :terms :alis :eqns :failed :err
local [thiseq vars extras xterms others result]
if emptyp :eqns [output :err]
make "thiseq subord (first :eqns) :alis
make "vars varterms :thiseq
if not memberp :x :vars ~

[output solve1 :x :terms :alis (butfirst :eqns)
(fput first :eqns :failed) :err]

make "xterms fput :x :terms
make "extras setminus :vars :xterms
make "eqt remove (first :eqns) :eqt
if not emptyp :extras ~

[make "others solver :extras :xterms :alis [] "insufficient
ifelse wordp :others

[make "eqt sentence :failed :eqns
output solve1 :x :terms :alis (butfirst :eqns)

(fput first :eqns :failed) :others]
[make "alis :others
make "thiseq subord (first :eqns) :alis]]

make "result solveq :x :thiseq
if listp :result [output lput :result :alis]
make "eqt sentence :failed :eqns
output solve1 :x :terms :alis (butfirst :eqns) (fput first :eqns :failed) :result
end

324 Chapter 6 Artificial Intelligence

to solveq :var :eqn
localmake "left first butfirst :eqn
ifelse occvar :var :left [localmake "right last :eqn] ~

[localmake "right :left make "left last :eqn]
output solveq1 :left :right "true
end

to solveq1 :left :right :bothtest
if :bothtest [if occvar :var :right [output solveqboth :left :right]]
if equalp :left :var [output list :var :right]
if wordp :left [output "unsolvable]
localmake "oper first :left
if memberp :oper [sum product minus quotient] ~

[output run (list word "solveq. :oper)]
output "unsolvable
end

to solveqboth :left :right
if not equalp first :right "sum [output solveq1 (subterm :left :right) 0 "false]
output solveq.rplus :left butfirst :right []
end

to solveq.rplus :left :right :newright
if emptyp :right [output solveq1 :left (simone "sum :newright) "false]
if occvar :var first :right ~

[output solveq.rplus (subterm :left first :right) butfirst :right :newright]
output solveq.rplus :left butfirst :right (fput first :right :newright)
end

to solveq.sum
if emptyp butfirst butfirst :left ~

[output solveq1 first butfirst :left :right "true]
output solveq.sum1 butfirst :left :right []
end

to solveq.sum1 :left :right :newleft
if emptyp :left [output solveq.sum2]
if occvar :var first :left ~

[output solveq.sum1 butfirst :left :right fput first :left :newleft]
output solveq.sum1 butfirst :left (subterm :right first :left) :newleft
end

to solveq.sum2
if emptyp butfirst :newleft [output solveq1 first :newleft :right "true]
localmake "factor factor :newleft :var
if equalp first :factor "unknown [output "unsolvable]
if equalp last :factor 0 [output "unsolvable]
output solveq1 first :factor (divterm :right last :factor) "true
end

Program Listing 325

to solveq.minus
output solveq1 (first butfirst :left) (minusin :right) "false
end

to solveq.product
output solveq.product1 :left :right
end

to solveq.product1 :left :right
if emptyp butfirst butfirst :left ~

[output solveq1 (first butfirst :left) :right "true]
if not occvar :var first butfirst :left ~

[output solveq.product1 (fput "product butfirst butfirst :left)
(divterm :right first butfirst :left)]

localmake "rest simone "product butfirst butfirst :left
if occvar :var :rest [output "unsolvable]
output solveq1 (first butfirst :left) (divterm :right :rest) "false
end

to solveq.quotient
if occvar :var first butfirst :left ~

[output solveq1 (first butfirst :left) (simtimes list :right last :left) "true]
output solveq1 (simtimes list :right last :left) (first butfirst :left) "true
end

to denom :fract :addends
make "addends simplus :addends
localmake "den last :fract
if not equalp first :addends "quotient ~

[output simdiv list (simone "sum
(remop "sum

list (distribtimes (list :addends) :den)
first butfirst :fract))

:den]
if equalp :den last :addends ~

[output simdiv (simplus list (first butfirst :fract) (first butfirst :addends))
:den]

localmake "lowterms simdiv list :den last :addends
output simdiv list (simplus (simtimes list first butfirst :fract last :lowterms)

(simtimes list first butfirst :addends
first butfirst :lowterms)) ~

(simtimes list first butfirst :lowterms last :addends)
end

to distribtimes :trms :multiplier
output simplus map [simtimes (list ? :multiplier)] :trms
end

326 Chapter 6 Artificial Intelligence

to distribx :expr
local [oper args]
if emptyp :expr [output :expr]
make "oper first :expr
if not operatorp :oper [output :expr]
make "args map [distribx ?] butfirst :expr
if reduce "and map [numberp ?] :args [output run (sentence [(] :oper :args [)])]
if equalp :oper "sum [output simplus :args]
if equalp :oper "minus [output minusin first :args]
if equalp :oper "product [output simtimes :args]
if equalp :oper "quotient [output simdiv :args]
output fput :oper :args
end

to divterm :dividend :divisor
if equalp :dividend 0 [output 0]
output simdiv list :dividend :divisor
end

to factor :exprs :var
localmake "trms map [factor1 :var ?] :exprs
if memberp "unknown :trms [output fput "unknown :exprs]
output list :var simplus :trms
end

to factor1 :var :expr
localmake "negvar minusin :var
if equalp :var :expr [output 1]
if equalp :negvar :expr [output -1]
if emptyp :expr [output "unknown]
if equalp first :expr "product [output factor2 butfirst :expr]
if not equalp first :expr "quotient [output "unknown]
localmake "dividend first butfirst :expr
if equalp :var :dividend [output (list "quotient 1 last :expr)]
if not equalp first :dividend "product [output "unknown]
localmake "result factor2 butfirst :dividend
if equalp :result "unknown [output "unknown]
output (list "quotient :result last :expr)
end

to factor2 :trms
if memberp :var :trms [output simone "product (remove :var :trms)]
if memberp :negvar :trms [output minusin simone "product (remove :negvar :trms)]
output "unknown
end

to maybeadd :num :rest
if equalp :num 0 [output :rest]
output fput :num :rest
end

Program Listing 327

to maybemul :num :rest
if equalp :num 1 [output :rest]
output fput :num :rest
end

to minusin :expr
if emptyp :expr [output -1]
if equalp first :expr "sum [output fput "sum map [minusin ?] butfirst :expr]
if equalp first :expr "minus [output last :expr]
if memberp first :expr [product quotient] ~

[output fput first :expr
(fput (minusin first butfirst :expr) butfirst butfirst :expr)]

if numberp :expr [output minus :expr]
output list "minus :expr
end

to occvar :var :expr
if emptyp :expr [output "false]
if wordp :expr [output equalp :var :expr]
if operatorp first :expr [output not emptyp find [occvar :var ?] butfirst :expr]
output equalp :var :expr
end

to remfactor :num :den
foreach butfirst :num [remfactor1 ?]
output (list "quotient (simone "product butfirst :num)

(simone "product butfirst :den))
end

to remfactor1 :expr
local "neg
if memberp :expr :den ~

[make "num remove :expr :num make "den remove :expr :den stop]
make "neg minusin :expr
if not memberp :neg :den [stop]
make "num remove :expr :num
make "den minusin remove :neg :den
end

to remop :oper :exprs
output map.se [ifelse equalp first ? :oper [butfirst ?] [(list ?)]] :exprs
end

328 Chapter 6 Artificial Intelligence

to simdiv :list
local [num den numop denop]
make "num first :list
make "den last :list
if equalp :num :den [output 1]
if numberp :den [output simtimes (list (quotient 1 :den) :num)]
make "numop first :num
make "denop first :den
if equalp :numop "quotient ~

[output simdiv list (first butfirst :num) (simtimes list last :num :den)]
if equalp :denop "quotient ~

[output simdiv list (simtimes list :num last :den) (first butfirst :den)]
if and equalp :numop "product equalp :denop "product [output remfactor :num :den]
if and equalp :numop "product memberp :den :num [output remove :den :num]
output fput "quotient :list
end

to simone :oper :trms
if emptyp :trms [output ifelse equalp :oper "product [1] [0]]
if emptyp butfirst :trms [output first :trms]
output fput :oper :trms
end

to simplus :exprs
make "exprs remop "sum :exprs
localmake "factor [unknown]
catch "simplus ~

[foreach :terms ~
[make "factor (factor :exprs ?) ~
if not equalp first :factor "unknown [throw "simplus]]]

if not equalp first :factor "unknown [output fput "product remop "product :factor]
localmake "nums 0
localmake "nonnums []
localmake "quick []
catch "simplus [simplus1 :exprs]
if not emptyp :quick [output :quick]
if not equalp :nums 0 [push "nonnums :nums]
output simone "sum :nonnums
end

to simplus1 :exprs
if emptyp :exprs [stop]
simplus2 first :exprs
simplus1 butfirst :exprs
end

Program Listing 329

to simplus2 :pos
localmake "neg minusin :pos
if numberp :pos [make "nums sum :pos :nums stop]
if memberp :neg butfirst :exprs [make "exprs remove :neg :exprs stop]
if equalp first :pos "quotient ~

[make "quick (denom :pos (maybeadd :nums sentence :nonnums butfirst :exprs)) ~
throw "simplus]

push "nonnums :pos
end

to simtimes :exprs
local [nums nonnums quick]
make "nums 1
make "nonnums []
make "quick []
catch "simtimes [foreach remop "product :exprs [simtimes1 ?]]
if not emptyp :quick [output :quick]
if equalp :nums 0 [output 0]
if not equalp :nums 1 [push "nonnums :nums]
output simone "product :nonnums
end

to simtimes1 :expr
if equalp :expr 0 [make "nums 0 throw "simtimes]
if numberp :expr [make "nums product :expr :nums stop]
if equalp first :expr "sum ~

[make "quick
distribtimes (butfirst :expr)

(simone "product maybemul :nums sentence :nonnums ?rest)
throw "simtimes]

if equalp first :expr "quotient ~
[make "quick

simdiv (list (simtimes (list (first butfirst :expr)
(simone "product

maybemul :nums
sentence :nonnums ?rest)))

(last :expr))
throw "simtimes]

push "nonnums :expr
end

to subord :expr :alist
output distribx subord1 :expr :alist
end

to subord1 :expr :alist
if emptyp :alist [output :expr]
output subord (substop (last first :alist) (first first :alist) :expr) ~

(butfirst :alist)
end

330 Chapter 6 Artificial Intelligence

to substop :val :var :expr
if emptyp :expr [output []]
if equalp :expr :var [output :val]
if not operatorp first :expr [output :expr]
output fput first :expr map [substop :val :var ?] butfirst :expr
end

to subterm :minuend :subtrahend
if equalp :minuend 0 [output minusin :subtrahend]
if equalp :minuend :subtrahend [output 0]
output simplus (list :minuend minusin :subtrahend)
end

to varterms :expr
if emptyp :expr [output []]
if numberp :expr [output []]
if wordp :expr [output (list :expr)]
if operatorp first :expr [output map.se [varterms ?] butfirst :expr]
output (list :expr)
end

;; Printing the solutions

to pranswers :ans :solution
print []
if equalp :solution "unsolvable ~

[print [Unable to solve this set of equations.] output "false]
if equalp :solution "insufficient ~

[print [The equations were insufficient to find a solution.] output "false]
localmake "gotall "true
foreach :ans [if prans ? :solution [make "gotall "false]]
if not :gotall [print [] print [Unable to solve this set of equations.]]
output :gotall
end

to prans :ans :solution
localmake "result find [equalp first ? first :ans] :solution
if emptyp :result [output "true]
print (sentence cap last :ans "is unitstring last :result)
print []
output "false
end

Program Listing 331

to unitstring :expr
if numberp :expr [output roundoff :expr]
if equalp first :expr "product ~

[output sentence (unitstring first butfirst :expr)
(reduce "sentence butfirst butfirst :expr)]

if (and (listp :expr)
(not numberp first :expr)
(not operatorp first :expr)) ~

[output (sentence 1 (singular first :expr) (butfirst :expr))]
output :expr
end

to roundoff :num
if (abs (:num - round :num)) < 0.0001 [output round :num]
output :num
end

to abs :num
output ifelse (:num < 0) [-:num] [:num]
end

;; Using known relationships

to geteqns :vars
output map.se [gprop varkey ? "eqns] :vars
end

to varkey :var
local "word
if match [number of !word #] :var [output :word]
output first :var
end

;; Assuming equality of similar variables

to vartest :vars
if emptyp :vars [output []]
local [var beg end]
make "var first :vars
output (sentence (ifelse match [^beg !:pronoun #end] :var

[vartest1 :var (sentence :beg "& :end) butfirst :vars]
[[]])

(vartest1 :var (sentence "# :var "#) butfirst :vars)
(vartest butfirst :vars))

end

to vartest1 :target :pat :vars
output map [varequal :target ?] filter [match :pat ?] :vars
end

332 Chapter 6 Artificial Intelligence

to varequal :target :var
print []
print [Assuming that]
print (sentence (list :target) [is equal to] (list :var))
output (list "equal :target :var)
end

;; Optional substitutions

to tryidiom
make "prob (sentence :beg last :idiom :end)
while [match (sentence "^beg first :idiom "#end) :prob] ~

[make "prob (sentence :beg last :idiom :end)]
say [The problem with an idiomatic substitution is] :prob
student1 :prob (remove :idiom :idioms)
end

;; Utility procedures

to qword :word
output memberp :word [find what howm how]
end

to dlm :word to article :word
output memberp :word [. ? |;|] output memberp :word [a an the]
end end

to verb :word
output memberp :word [have has get gets weigh weighs]
end

to personp :word
output memberp :word [Mary Ann Bill Tom Sally Frank father uncle]
end

to pronoun :word
output memberp :word [he she it him her they them his her its]
end

to posspro :word
output memberp :word [his her its]
end

to op0 :word
output memberp :word [pluss minuss squared tothepower per sum difference numof]
end

to op1 :word
output memberp :word [times divby square]
end

Program Listing 333

to op2 :word
output memberp :word [plus minus lessthan percent perless]
end

to operatorp :word
output memberp :word [sum minus product quotient expt square equal]
end

to plural :word
localmake "plural gprop :word "plural
if not emptyp :plural [output :plural]
if not emptyp gprop :word "sing [output :word]
if equalp last :word "s [output :word]
output word :word "s
end

to singular :word
localmake "sing gprop :word "sing
if not emptyp :sing [output :sing]
if not emptyp gprop :word "plural [output :word]
if equalp last :word "s [output butlast :word]
output :word
end

to setminus :big :little
output filter [not memberp ? :little] :big
end

to say :herald :text to lsay :herald :text
print [] print []
print :herald print :herald
print [] print []
print :text foreach :text [print cap ? print []]
print [] end
end

to cap :sent
if emptyp :sent [output []]
output sentence (word uppercase first first :sent butfirst first :sent) ~

butfirst :sent
end

;; The pattern matcher

to match :pat :sen
if prematch :pat :sen [output rmatch :pat :sen]
output "false
end

334 Chapter 6 Artificial Intelligence

to prematch :pat :sen
if emptyp :pat [output "true]
if listp first :pat [output prematch butfirst :pat :sen]
if memberp first first :pat [! @ # ^ & ?] [output prematch butfirst :pat :sen]
if emptyp :sen [output "false]
localmake "rest member first :pat :sen
if not emptyp :rest [output prematch butfirst :pat :rest]
output "false
end

to rmatch :pat :sen
local [special.var special.pred special.buffer in.list]
if or wordp :pat wordp :sen [output "false]
if emptyp :pat [output emptyp :sen]
if listp first :pat [output special fput "!: :pat :sen]
if memberp first first :pat [? # ! & @ ^] [output special :pat :sen]
if emptyp :sen [output "false]
if equalp first :pat first :sen [output rmatch butfirst :pat butfirst :sen]
output "false
end

to special :pat :sen
set.special parse.special butfirst first :pat "
output run word "match first first :pat
end

to parse.special :word :var
if emptyp :word [output list :var "always]
if equalp first :word ": [output list :var butfirst :word]
output parse.special butfirst :word word :var first :word
end

to set.special :list
make "special.var first :list
make "special.pred last :list
if emptyp :special.var [make "special.var "special.buffer]
if memberp :special.pred [in anyof] [set.in]
if not emptyp :special.pred [stop]
make "special.pred first butfirst :pat
make "pat fput first :pat butfirst butfirst :pat
end

to set.in
make "in.list first butfirst :pat
make "pat fput first :pat butfirst butfirst :pat
end

Program Listing 335

to match!
if emptyp :sen [output "false]
if not try.pred [output "false]
make :special.var first :sen
output rmatch butfirst :pat butfirst :sen
end

to match?
make :special.var []
if emptyp :sen [output rmatch butfirst :pat :sen]
if not try.pred [output rmatch butfirst :pat :sen]
make :special.var first :sen
if rmatch butfirst :pat butfirst :sen [output "true]
make :special.var []
output rmatch butfirst :pat :sen
end

to match#
make :special.var []
output #test #gather :sen
end

to #gather :sen
if emptyp :sen [output :sen]
if not try.pred [output :sen]
make :special.var lput first :sen thing :special.var
output #gather butfirst :sen
end

to #test :sen
if rmatch butfirst :pat :sen [output "true]
if emptyp thing :special.var [output "false]
output #test2 fput last thing :special.var :sen
end

to #test2 :sen
make :special.var butlast thing :special.var
output #test :sen
end

to match&
output &test match#
end

to &test :tf
if emptyp thing :special.var [output "false]
output :tf
end

336 Chapter 6 Artificial Intelligence

to match^
make :special.var [] output ^test :sen
end

to ^test :sen
if rmatch butfirst :pat :sen [output "true]
if emptyp :sen [output "false]
if not try.pred [output "false]
make :special.var lput first :sen thing :special.var
output ^test butfirst :sen
end

to match@
make :special.var :sen output @test []
end

to @test :sen
if @try.pred [if rmatch butfirst :pat :sen [output "true]]
if emptyp thing :special.var [output "false]
output @test2 fput last thing :special.var :sen
end

to @test2 :sen
make :special.var butlast thing :special.var
output @test :sen
end

to try.pred
if listp :special.pred [output rmatch :special.pred first :sen]
output run list :special.pred quoted first :sen
end

to quoted :thing
ifelse listp :thing [output :thing] [output word "" :thing]
end

to @try.pred
if listp :special.pred [output rmatch :special.pred thing :special.var]
output run list :special.pred thing :special.var
end

to anyof :sen to always :x
output anyof1 :sen :in.list output "true
end end

to anyof1 :sen :pats to in :word
if emptyp :pats [output "false] output memberp :word :in.list
if rmatch first :pats :sen [output "true] end
output anyof1 :sen butfirst :pats
end

Program Listing 337

;; Sample word problems

make "ann [Mary is twice as old as Ann was when Mary was as old as Ann is now.
If Mary is 24 years old, how old is Ann?]

make "guns [The number of soldiers the Russians have is
one half of the number of guns they have. They have 7000 guns.
How many soldiers do they have?]

make "jet [The distance from New York to Los Angeles is 3000 miles.
If the average speed of a jet plane is 600 miles per hour,
find the time it takes to travel from New York to Los Angeles by jet.]

make "nums [A number is multiplied by 6 . This product is increased by 44 .
This result is 68 . Find the number.]

make "radio [The price of a radio is $69.70.
If this price is 15 percent less than the marked price, find the marked price.]

make "sally [The sum of Sally’s share of some money and Frank’s share is $4.50.
Sally’s share is twice Frank’s. Find Frank’s and Sally’s share.]

make "ship [The gross weight of a ship is 20000 tons.
If its net weight is 15000 tons, what is the weight of the ships cargo?]

make "span [If 1 span is 9 inches, and 1 fathom is 6 feet,
how many spans is 1 fathom?]

make "sumtwo [The sum of two numbers is 96,
and one number is 16 larger than the other number. Find the two numbers.]

make "tom [If the number of customers Tom gets is
twice the square of 20 per cent of the number of advertisements he runs,
and the number of advertisements he runs is 45,
what is the number of customers Tom gets?]

make "uncle [Bill’s father’s uncle is twice as old as Bill’s father.
2 years from now Bill’s father will be 3 times as old as Bill.
The sum of their ages is 92 . Find Bill’s age.]

;; Initial data base

pprop "distance "eqns ~
[[equal [distance] [product [speed] [time]]]
[equal [distance] [product [gas consumtion] [number of gallons of gas used]]]]

pprop "feet "eqns ~
[[equal [product 1 [feet]] [product 12 [inches]]]
[equal [product 1 [yards]] [product 3 [feet]]]]

pprop "feet "sing "foot
pprop "foot "plural "feet
pprop "gallons "eqns ~
[[equal [distance] [product [gas consumtion] [number of gallons of gas used]]]]

pprop "gas "eqns ~
[[equal [distance] [product [gas consumtion] [number of gallons of gas used]]]]

pprop "inch "plural "inches
pprop "inches "eqns [[equal [product 1 [feet]] [product 12 [inches]]]]
pprop "people "sing "person
pprop "person "plural "people
pprop "speed "eqns [[equal [distance] [product [speed] [time]]]]
pprop "time "eqns [[equal [distance] [product [speed] [time]]]]
pprop "yards "eqns [[equal [product 1 [yards]] [product 3 [feet]]]]

Appendices

341

Bibliography

This book is a little like the previews of coming attractions at the movies; it’s meant to
whet your appetite in several directions, without giving you the complete story about
anything. To find out more, you’ll have to consult more specialized books on each topic.

There are a lot of books on computer programming and computer science, and
whichever I chose to list here would be out of date by the time you read this. Instead of
trying to give current references in every area, in this edition I’m listing only the few most
important and timeless books, plus an indication of the sources I used for each chapter.

Computer science is a fast-changing field; if you want to know what the current hot
issues are, you have to read the journals. The way to start is to join the Association
for Computing Machinery, 1515 Broadway, New York, NY 10036. If you are a full-time
student you are eligible for a special rate for dues, which as I write this is $25 per year. (But
you should write for a membership application with the current rates.) The Association
publishes about 20 monthly or quarterly periodicals, plus the newsletters of about 40
Special Interest Groups in particular fields.

Read These!

Chapter 1: Automata Theory

Structure and Interpretation
of Computer Programs,

Gödel, Escher, Bach: an Eternal Golden Braid,

Computation: Finite and Infinite Machines,

342 Bibliography

If you read no other books about computer science, you must read these two. One is
an introductory text for college computer science students; the other is intended for a
nonspecialist audience.

Abelson, Harold, and Gerald Jay Sussman with Julie Sussman,
MIT Press, Second Edition, 1996.

The introductory computer science text at MIT, this book uses Lisp
as the vehicle for an intense study of everything from data structures
to machine architecture. Although it’s not a book about artificial
intelligence as such, this is the definitive presentation of the artificial
intelligence view of what computer science in general is about, and the
best computer science book ever written.

Hofstadter, Douglas R., Basic Books, 1979.

This book won the Pulitzer Prize for its success in explaining to readers
who aren’t computer scientists some of the deepest ideas of computer
science, and it makes a strong case for the view that those ideas also have
a lot to teach us about human intelligence.

The reference I used in thinking about this chapter was

Minsky, Marvin, Prentice-Hall, 1967.

Part of the interest of this particular text is that its author is a leading
figure in artificial intelligence research, and so the question of whether
the insights of automata theory apply also to human intelligence is always
visible as a motivating force in the presentation of the theory. Minsky’s
bibliography will refer you to the original papers by Turing, Kleene,
Church, and so on as well as some left-field references to biological
information processing from people like Lettvin and McCulloch.

Chapter 2: Discrete Mathematics

Elements of Discrete Mathematics,

What Is the Name of This Book?
The Lady or the Tiger?
5000 B.C. and Other Philosophical Fantasies,
Alice in Puzzle-Land,

Chapter 2: Discrete Mathematics 343

This chapter touches on several topics. An overall introduction for computer scientists is

Liu, Chung Laung, McGraw-Hill, Second Edition, 1985.

This book requires no advanced mathematical background, but it does
require that the reader feel comfortable with mathematical notation and
the notion of formal proof. The topics include both purely mathematical
ones, like set theory, combinatorics, and modern algebra, and related
computer science ones like computability, formal languages, automata
theory, analysis of algorithms, and recursion. This list is not unlike the
one in the book you’re reading now, and in fact Professor Liu expresses
a goal similar to mine: to show computer science undergraduates the
relevance of mathematics to their work. The difference is that I use
actual programs to illustrate the ideas whenever possible, whereas his is
a “straight” math book. (Of course another difference is that he treats
all these topics in much more depth. But don’t be scared away; he starts
simply.)

On the topic of mathematical logic, there is a range of books that vary in accessibility.
Among the most pleasant are

Smullyan, Raymond, Prentice-Hall, 1978
—, Knopf, 1982
—, St. Martin’s, 1984
—, Penguin, 1984.

These are books of puzzles based on logic, but they go beyond the simple
propositional inference puzzles like the one in the text. Smullyan starts
with some of the classic puzzle categories, like the Liars and Truth-
Tellers puzzle, and builds up to an exposition in puzzle form of topics
like self-reference, modal logic, and Gödel’s Theorem.

“Logic programming” is the use of mathematical logic formalisms as a programming
language. It is also called “declarative programming” because instead of issuing com-
mands to the computer, the programmer makes statements about things known to be
true. The algorithm by which the programming system makes inferences from these
statements is not explicitly provided by the programmer, but is built into the language.

Chapter 3: Algorithms and Data Structures

Beginning Micro-Prolog,

Programming Pearls,

Com-
munications

344 Bibliography

The most widely known logic programming language, although not the only one, is
Prolog. An accessible introductory text is

Ennals, Richard, Harper & Row, Second Edition, 1984.

I list this book here because it’s a Prolog text and therefore relevant
to mathematical logic, but for me the main interest of the book is that
it argues for the use of Prolog in teaching kids, as an alternative to
Logo. The book gives examples of logic programming at work in various
curriculum areas.

To a software engineer, the issues in this chapter are among the central ones in computer
science. That’s not my own way of thinking, so it’s possible that my presentation doesn’t
give the field all the pizazz that an enthusiast would manage. To compensate for that,
you should read

Bentley, Jon, Addison-Wesley, 1986.

This is a collection of monthly articles written by Bentley for the
of the Association for Computing Machinery. It requires

virtually no formal mathematics and is extremely readable. If the book
has a moral, it’s “Think first, program later.” It makes its case with a
number of true-to-life examples of projects in which orders of magni-
tude were saved in the execution time of a program by rethinking its
fundamental structure.

Chapter 4: Programming Language Design

Chapter 5: Programming Language Implementation

Chapter 6: Artificial Intelligence

Structure and Interpretation of
Computer Programs,

Pascal User Manual and Report,

should

Essentials of Programming
Languages,

Language as a Cognitive Process, Volume 1: Syntax,

Chapter 6: Artificial Intelligence 345

There are textbooks in “comparative programming languages,” but I’m going to stick to
the strategy of the chapter by using Pascal as the example.

one of my must-reads, will be useful as a contrast here, giving the Lisp
point of view.

Jensen, Kathleen, and Niklaus Wirth, Springer-Verlag,
Third Edition, 1985.

This is the official report of the international committee responsible for
the design of the language. The book has two parts, a reference manual
and the committee report itself. The latter includes some explicit
discussion of the design decisions in the language.

I really didn’t have a reference for this chapter; I just sort of forged ahead on my own!
But here’s the book I have read first:

Friedman, Daniel P., Mitchell Wand, and Christopher T. Haynes,
MIT Press, 1992.

This book uses the Scheme dialect of Lisp as the basis for a study of
programming language interpreters. It’s harder reading than most of
the books in this bibliography, but it encourages the reader to think very
deeply about how programming languages work.

I’ll list two references here; one on language understanding in general and one that
contains a paper about the Student program specifically.

Winograd, Terry, Addison-Wesley, 1983.

A planned second volume on semantics was not published. This is a
technically meaty book, but considering its depth it is quite readable.

Computers and People

Semantic Information Processing,

The Second Self: Computers and the Human Spirit,

Computer Power and Human Reason: From Judgment to Calculation,

346 Bibliography

The book strikes a good balance among technical programming issues,
psychological issues, and the ideas of mainstream linguistics. It includes
an extensive bibliography. When I attended Terry’s course at Stanford
in which he first presented the material that became this book, it was the
first time I experienced a course that ended with a standing ovation for
the instructor. The book shows the same clarity of explanation and the
same enthusiasm.

Minsky, Marvin L., MIT Press, 1969.

This is a collection of early research reports. I include it here because
one of its chapters is a paper by Bobrow on STUDENT, and you won’t
be able to find the more complete description in Bobrow’s unpublished
thesis. Other chapters describe similar microworld-strategy projects of
the same vintage.

Last but far from least, some of the most fascinating reading connected with computer
science is found outside of the technical literature, in the reactions of psychologists,
philosophers, and sociologists to the computer as a social force. You owe it to yourself to
understand the human context of your work; you owe it to everyone else to be strongly
aware of the social implications of what you do.

Turkle, Sherry, Simon and Schuster, 1984.

A sociologist’s view of the computer culture, this book explores both the
psychology of computer experts and the ways in which a computer-rich
environment has changed the thinking of non-experts not only about
technology but about what it means to be human.

Weizenbaum, Joseph, W.
H. Freeman, 1976.

Weizenbaum is a computer scientist, and this book is in part a technical
argument about the limitations of what computers can do. But it is more
importantly a call to computer scientists to take responsibility for the
uses to which their inventions are put. Weizenbaum argues that there

shouldn’t can

What Computers Still Can’t Do: A Critique of Artificial Reason,

The Psychology of Computer Programming,

Computers and People 347

are things we do with computers, even if we learn how to
overcome the technical obstacles. Computer-based weapons of war are
an obvious example, but Weizenbaum is also worried about things like
automated psychotherapy, which was just a daydream when the book
appeared but has since become a reality to a limited extent. Many
computer scientists find this book offensive, and it is certainly possible
to find flaws in the details. But the critics rarely present an alternative
with an equally strong social conscience.

Dreyfus, Hubert L., MIT Press,
1992.

Dreyfus is a philosopher who uses the phenomenological ideas of Hei-
degger and others to suggest a fundamental flaw in the assumptions AI
researchers make about human intelligence. To try to sum it up in one
sentence, the sort of thinking that people do in solving a puzzle is very
different from the much more profound intelligence we use in carrying
out our more customary activities. AI programs mimic the former but
not the latter. This is a revision of an earlier book, taking into account
more recent developments in AI research.

Weinberg, Gerald M., Van Nostrand Reinholt,
1971.

This book studies programming as a social activity, programming as an
individual activity, and the programming environment. In my opin-
ion, its main contribution is the idea of “egoless programming,” which
means more or less that when your friend finds that impossible bug in
your program for you, you should feel happy rather than threatened.
Weinberg offers several good ideas for how to act as part of a program-
ming community. On the other hand, I’m less enthusiastic about his
manager’s-eye view of the programmer as a cog in the machine, rather
than as a creative artist. But overall I think this book is well worth
reading; it’s also entertainingly written.













Credits

The Second Self: Computers and the Human Spirit

Mind Benders B–2

The Dell Book of Logic Problems #4.

Natural Language Input for a Computer Problem
Solving Program

Mindstorms: Children, Computers, and Powerful Ideas

Language as a Cognitive Process, Volume 1: Syntax

349

Material on page xiv quoted from by
Sherry Turkle. Copyright 1984 by Sherry Turkle. Reprinted by permission of Simon
& Schuster, Inc.

Material on page 48 quoted from by Anita Harnadek. Copyright
1978 by Midwest Publications (now called Critical Thinking Press, Box 448, Pacific Grove,
CA 93950). Reprinted by permission of the publisher.

Material on page 53 by Diane C. Baldwin quoted from
Copyright 1989 by Dell Publishing, a division of Bantam Doubleday Dell Publishing
Group, Inc., reprinted by permission of Dell Magazines.

Material on pages 279 and 294 quoted from
by Daniel G. Bobrow (unpublished Ph.D. thesis). Copyright 1964 by

Daniel G. Bobrow. Reprinted by permission of the author.

Material on page 295 quoted from
by Seymour Papert. Copyright 1984 by Basic Books, Inc., publishers. Reprinted by
permission of the publisher.

The illustration on page 313 quoted from
by Terry Winograd. Copyright 1983 by Addison-Wesley Publishing Company, Inc.
Reprinted by permission of the publisher.

A B

C

351

Index of Defined Procedures

This index lists example procedures whose definitions are in the text. The general index
lists technical terms and primitive procedures.

335
335

335
335
336

336
336

336

331
36

36
140, 141, 155

193
318

317
318

318
318

336
336

336
143, 157

257
42

256
255

43
37

39
37
37

332

144, 158
158

317
36

257
316

333
181

99
43

316
315

316

#gather
#test
#test2
&test
@test
@test2
@try.pred
^test

abs
accept
acceptpart
addchild
addnumbers
ageify
ageprob
agepron
agesen
agewhen
always
anyof
anyof1
areacode
arglist
array.save

arraysize
arraytype
arrow.stub
arrowhead
arrows.from.start
arrowtail
arrowtext
article

balance
balance1
bkt1
blank
blockbody
bracket

cap
cards
category
change.head
changeone
changes
changes1

D

E

F

G

H

352 Index of Defined Procedures

316
316
41

263
136, 141, 155

93, 104
133, 135, 137, 157

157
143, 157

102
270

265
249, 265

75, 76, 104
270

258
40

266
57, 102

136, 141, 155
182

325
315

40
58, 100

100
36

325
326

326
332

64, 101
206
276

273
273

273
78, 104

224

320

93, 105, 164
79, 104, 162, 163

162
326

326
326

100
59, 99

63, 103
138, 157
316

316
100

315
100

43
62, 103

274
274

274
274

35
35

35
36

241, 256

35
101

215, 272
331

273
273

120

34
170

changes2
changes3
check.nd
check.type
children
choose
cities
cities1
city
cleanup
code
codeload
codestore
combs
commalist
compound
copy.to.accepts
copyarray
cub.reporter

datum
deck
denom
depunct
determine
differ
differ1
display
distribtimes
distribx
divterm
dlm

equiv
exch
exit
exp.mode
exp.type
exp.value
expand
expression

expt

f
fact
fact.seq
factor
factor1
factor2
falses
falsify
female
finddatum
finddelim
finddelim1
findfalse
findkey
findtrue
fix.arrows
foote.family
frame.outerframe
frame.prevframe
frame.retaddr
frame.save.newfp
fsm
fsm1
fsmnext
fsmtest
function

game
get
getchar
geteqns
getid
gettype
guess.middle.value

haltp
hanoi

I

J

L

M

N

Index of Defined Procedures 353

112
145, 159

116, 155

255
273

273
273

315
222

222
47, 61, 101

101
336

197
41

194

276
276

275
276
275

63, 100
101

315
138, 156

137, 156
138, 156

116, 155
42

272
264

265
143, 158

333
272

133, 135, 137, 156

133, 135, 137, 157
157

88, 105
105
105

145, 159

37
37

36
43

63, 103
333

335
335
335
335
336
336

326
327

206
265

266
327

170
36

195
221, 270

40
38
38

39
39

257
276

272
270

40
40

haspair
highbranch
howmany

id
id.lname
id.pointer
id.type
idioms
ifbe
ifbeelse
implies
implies1
in
increment
insert
IntSquare

jal
jr
jump
jumpf
jumpt
justbefore
justbefore1

last2
leaf
leafp
leaves
lessthanp
letter.join
letterp
lindex
lindex1
listcity
lsay
lname
locate

locate.in.forest
locate1
lock
lock1
lock2
lowbranch

machine
make.arrow
make.machine
make.stub
male
match
match!
match#
match&
match?
match@
match^
maybeadd
maybemul
median
memaddr
memsetup
minusin
movedisk
movepart
multi
mustbe

nd.traverse
ndconcat
ndletter
ndmany
ndor
newarg
newline
newlname
newregister
newstate
newtail

O

P

354 Index of Defined Procedures

256
265

115, 154, 164
322

316
246, 263

22, 38
272

269

327
265

273
273

332
332
333

320
333

320
320

253
320

42
43

39

264
334

248, 262
248, 263
246, 263

263
269

269
229, 267

269
100
79, 104

332
228, 267

267
229, 267

259
269

262
268

267
220, 222, 245, 258

263
254

333
268

229, 267
332

229, 268
259

260
330

330
263

334
258

241, 257
260

260
261

241, 256
261

254
254

332
274

275
120, 121, 123, 154, 205

155
264

264
276

276
276

276
276

259
261

261

newvar
nextindex
nextrow
nmtest
nocap
noimmediate
nondet
number
numtype

occvar
offset
op.instr
op.nargs
op0
op1
op2
opdiff
operatorp
opform
oprem
opsetup
optest
optimize
optimize.state
or.splice

parrayassign
parse.special
passign
passign1
pboolean
pchar
pchardata
pchecktype
pclose
pdata
peers
perms
personp
pexpr

pexpr1
pexprop
pfor
pfuncall
pfunset
pgetbinary
pgetunary
pif
pinteger
plibrary
plural
pnewtype
popen
posspro
ppopop
pproccall
pproccall1
prans
pranswers
preal
prematch
prepeat
proc1
procarg
procargs
procarrayarg
procedure
procvararg
program
program1
pronoun
prun
prun1
psort
psort1
pstringassign
pstringassign1
putch
putint
putreal
putstr
puttf
pwhile
pwrite
pwrite1

Q

R

S

Index of Defined Procedures 355

262
262

262

319
108, 109, 153

336
332

255
256

272
193
194

113, 153, 195
274

274
274

274
270

36
327

327
327

118
271

110
275

334
331
275

333
60, 103

318
319

334
334

264

333
59, 99

100
205
181

182
328
328

93, 106
93, 105, 115, 154, 164, 166

165
328

328
329
329

329
333

271
127

76, 77, 104
84, 105
102

322
323

102, 323
324

325
325

325
325

324
324

324
324

324
324

323
41, 206

276
334

39
194, 321

118, 154
154

36

pwrite2
pwrite3
pwriteln

qset
quadratic
quoted
qword

range
range1
rc1
readnumber
RealSquare
realt
reg.globalptr
reg.retaddr
reg.stackptr
reg.zero
regfree
reject
remfactor
remfactor1
remop
remove.once
reservedp
reverse
rload
rmatch
roundoff
runsetup

say
says
senform
senform1
set.in
set.special
setindex

setminus
settruth
settruth1
showdata
showdeck
shuffle
simdiv
simone
simp
simplex
simplex.seq
simplus
simplus1
simplus2
simtimes
simtimes1
singular
skipcomment
slowsort
socks
socktest
solution
solve
solve.reduce
solve1
solveq
solveq.minus
solveq.product
solveq.product1
solveq.quotient
solveq.rplus
solveq.sum
solveq.sum1
solveq.sum2
solveq1
solveqboth
solver
sort
spaces
special
splice
square
ssort
ssort1
startpart

T

U

V

W

X

356 Index of Defined Procedures

220, 258
101, 275

38, 271
38

264
42

44
44
43

314
314

329
329
330
330

115, 154, 164

97, 106, 112, 113, 153, 195
265

322
275

216, 271
272

170
137, 141, 155

145, 158
158

34
336
332

256
322

321
320

320
321

321
320

320
321
322

321
321

321
321

321
322

320
217, 271

89, 105
256

331

332
255

331
255

330
331

331
332

58, 99

132, 135, 138, 139, 156

60, 101

statement
store
string
stringa
stringlose
stub.add
stub.arrow
stub.head
stub.text
student1
student2
subord
subord1
substop
subterm
sumprods

t
targetaddr
this
tobool
token
token1
tower
tree
treecity
treecity1
try
try.pred
tryidiom
tryprocpart
trysolve
tst.difference
tst.divby
tst.lessthan
tst.minus
tst.minuss
tst.numof
tst.per
tst.percent
tst.perless
tst.plus
tst.pluss

tst.square
tst.squared
tst.sum
tst.times
tst.tothepower
twochar
twoto
typecheck

unitstring

varequal
vargroup
varkey
varpart
varterms
vartest
vartest1
verb
verify

worldtree

xor

A

B

357

begin

∀
∧
¬
∨
⊗
Σ
→

General Index

This index lists technical terms and primitive procedures. There is also an index of
defined procedures, which lists procedures whose definitions are in the text.

67
46
46
46
68
91
46

Abelson, Harold ix, xvii, 342
accepting state 4
access, random 148
actual argument 176
adder 71
adder, finite-state 25
address 147, 231
age problem 281, 290
aggregate type 187
algebra word problems 278
algorithm 15, 107, 294
algorithm, two-stack 225
algorithms, analysis of 107
allocation, dynamic 148
alphabet rule 11, 16
alternatives rule 11, 19
ambiguous 217

analysis of algorithms 107
analysis, lexical 215
Anderson, Chris xvii
APL 224
apprenticeship xi
argument, actual 176
array 181, 187, 199
array, packed 188, 189
artificial intelligence 277
assembly language 231
assignment statement 178, 180, 195
Association for Computing Machinery 341
association list 287
ATN 312
augmented transition network 312
automata theory 1, 309

background 300
backtracking 65
balanced tree 146
balancing parentheses 13, 28
Baldwin, Diane C. 53
BASIC 196
Beatles 46

(Pascal) 175

C

D

Boolean

char

358 General Index

Bentley, Jon 344
bibliography 341
binary computer 69
binary number 25, 88
binary operator 223
binary search algorithm 143
binary tree 132, 144
binding, call by 199
binomial coefficient 82
bit 26, 28, 71
block structure 166, 177
Bobrow, Daniel G. xvii, 278

(Pascal) 187
bottom-up 175
bound reference 184
branch node 132
byte 147, 188

C 225
CAI, intelligent 294
call by binding 199
call by reference 197, 198
call by value 197, 198
call, procedure 178
category 49

(Pascal) 187
checking, compile-time 223
Chinese food 46
circuit, integrated 230
Clancy, Michael xvii
closed form definition 80, 98
code generation 211, 245
coefficient, binomial 82
coefficient, multinomial 94
cognitive science 278
Colby, Kenneth 31
combination 74, 79
combination lock 74, 86
combinatorics 72
common subexpression elimination 109
community xv
compile-time checking 223
compiler 172

compiler compiler 219, 224
compiler, incremental 174
compiler, optimizing 109
compiler, Pascal 209
complexity ix
composition of functions 162
compound proposition 46
compound statement 177
computer assisted instruction 294
computer center xv
computer hardware 69
computer logic 71
computer science ix
computer, binary 69
concatenation rule 11, 17
conditional statement 177
constant string 189
constructor 137
context, limited 278
context-free language 310
continuous function 45
contradiction, proof by 34
contrapositive rule 61
correctness 107
correspondence, one-to-one 89
counting problem 45

data structure 107, 129
data type 187
Davis, Jim xvii
declaration part 176
declarative knowledge 16
declarative programming 168
declarative programming languages 16
declarative representation x
definition, closed form 80, 98
definition, formal 211
definition, inductive 80, 91, 94, 112
definition, recursive 12
descent, recursive 220
deterministic grammar 219
directed graph 22
discrete mathematics 45

E

F

G

H

General Index 359

end

first

for

function

Dreyfus, Hubert L. 347
dyadic 224
dynamic allocation 148
dynamic environment 184, 241
dynamic programming 115
dynamic scope 184, 185, 197, 198, 242

economics xiv
editor, text 9, 169
education 294
effective procedure 31
efficiency 107
elementary function 80
elimination rule 50
embedding 310

(Pascal) 175
engineering, knowledge 278
English 278
Ennals, Richard 344
enumerated type 191
environment, dynamic 184, 241
environment, lexical 184, 198, 241
equation 281, 285
equivalence relation 68
ethics xiv
exclusive or 68
expansion, multinomial 112
experimental method 83
expert system 278
exponential 129
expression 223
expression, regular 11, 15, 211
extensibility 181
external memory 30

factorial 79
fence 205
Fermat, Pierre de 82
finite-state adder 25
finite-state machine 3, 15, 213, 309

110

food, Chinese 46
forest 133
formal definition 211
formal parameter 176
formal thinking ix

(Pascal) 178, 181, 183
frame pointer 236
frame, stack 235
free reference 184, 185
Friedman, Daniel P. 345
function, continuous 45
function, elementary 80
function, generating 81, 98
function, predicate 67
function, sine 81
function, truth-valued 46, 67
functional programming 162
functions, composition of 162

(Pascal) 194

gate 69
general knowledge 300
generated symbol 141, 239, 293, 304
generating function 81, 98
generation, code 211, 245
global optimization 111
global pointer 235
Goldenberg, Paul xvii
grammar, deterministic 219
grammar, predictive 219
graph 22
graph, directed 22
graphics xiii

half-adder 70
halting state 31
halting theorem 32
Hanoi, Tower of 169
hardware, computer 69
Harnadek, Anita xvii, 48
hash table 130

I

J

K

L

360 General Index

if

integer

last

load

Haynes, Christopher T. 345
heap 131
heapsort 131
heuristic 294, 298
hierarchy 131, 146
hierarchy, syntactic 213
Hilfinger, Paul xvii
Hoare, C. A. R. 125
Hofstadter, Douglas R. 342

(Pascal) 221
immediate 232
implication rule 60
incremental compiler 174
independent 72
index register 235
index variable 205
individual 49
induction, mathematical x
inductive definition 80, 91, 94, 112
inference system 47
inference, rules of 47
infinite loop 32
infinite set 89
insertion sort 119
instruction, computer assisted 294
integers, sum of the 119

(Pascal) 187
integrated circuit 230
intellectual property xv
intelligence, artificial 277
intelligent CAI 294
interactive language 169
intermediate language 173
internal state 30
interpreter 172
intractable 129
inverter 69
Iverson, Kenneth E. 224

Jensen, Kathleen 345

joke 112

keyword 219
Kleene, Stephen C. 16
knowledge engineering 278
knowledge representation 309
knowledge, declarative 16
knowledge, general 300
knowledge, procedural 16
Knuth, Donald E. 129

label 234
language, context-free 310
language, interactive 169
language, intermediate 173
language, machine 172, 209
language, non-interactive 169

110
leaf node 132
lexical analysis 215
lexical environment 184, 198, 241
lexical scope 183
limited context 278
linear 129, 286
linear search algorithm 143
Lisp 185, 196, 282
list, association 287
list, property 301
list, sorted 130
Liu, Chung Laung 343

147
local optimization 110
local procedure 176
lock, combination 74, 86
lock, Simplex 85, 114
logarithm 129
logic problem 45, 48
logic programming 168
logic, computer 71
logic, predicate 67
logic, propositional 46

M

N

O

P

numof

General Index 361

logic, ternary 73
Logo 169, 294
Logo pattern matcher 283
Logo variable 199
lookahead 215
lookahead, one-character 216
loop, infinite 32

machine language 172, 209
machine, finite-state 3, 15, 213, 309
machine, nondeterministic 6, 22
machine, theoretical 1
mandatory substitution 280
matching, pattern 282, 308
mathematical induction x
mathematical model 1
mathematics, discrete 45
memoization 112, 312
memory 147, 230
memory, computer 28
memory, external 30
mergesort 126
Meteor 282
microworld 278, 297
Minsky, Marvin 342, 346
model, mathematical 1
modification, tree 139
monadic 224
multinomial coefficient 94
multinomial expansion 112
multiplication rule 72
mutator 141

nand 70
network, augmented transition 312
network, recursive transition 213
Newell, Allen 277
node, branch 132
node, leaf 132
node, root 132
non-interactive language 169

nondeterministic machine 6, 22
nor 70
null pointer 148
number, binary 25, 88
number, random 83
numerical analysis xiii

281, 286

object-oriented programming 167
offset 235
one-character lookahead 216
one-to-one correspondence 89
operating systems xiii
operator precedence 223
operator, binary 223
operator, relational 224
operator, unary 223
optimization, global 111
optimization, local 110
optimizing compiler 109
optional substitution 304
ordered subset 74
ordering 146
ordering relation 68
ordinal type 188
overflow signal 71

P-code 173
packed array 188, 189
pair 147
Papert, Seymour x, 295
paradigm, programming 162
parameter, formal 176
parameter, value 197
parameter, variable 197
parentheses 227
parentheses, balancing 13, 28
Parry 31
parser 211, 212, 217
parser generator 217
partition sort 120, 204

Q

R

362 General Index

procedure

program

real

repeat

Pascal 161, 310, 345
Pascal compiler 209
Pascal program 172
Pascal variable 199
Pascal’s Triangle 82, 94
Pascal, Blaise 82
pattern matcher, Logo 283
pattern matching 282, 308
periodic 81
Perlis, Alan J. xi
permutation 74, 79
philosophy xiv
Piaget, Jean x
piracy, software xv
pointer 147, 190
pointer, frame 236
pointer, global 235
pointer, null 148
pointer, stack 236
portable 173
precedence 225, 285
precedence, operator 223
predicate function 67
predicate logic 67
predictive grammar 219
probability 73
problem, logic 48
procedural knowledge 16
procedural representation x
procedure call 178
procedure, effective 31
procedure, local 176
procedure, recursive 75, 80

(Pascal) 176, 194
process ix
processor 147, 230
production rule 13, 212, 310
program verification 107
program, Pascal 172
programming languages, declarative 16
programming paradigm 162
programming, declarative 168
programming, dynamic 115
programming, functional 162
programming, logic 168

programming, object-oriented 167
programming, sequential 162

(Pascal) 171, 172
Prolog 16, 68, 344
proof by contradiction 34
property list 55, 301
property, intellectual xv
proposition, compound 46
proposition, simple 46
propositional logic 46
psychology xiv, 277

quadratic 129
quadratic formula 108
quantifier 283
quicksort 125

random access 148
random number 83
range 188

(Pascal) 187
record 190
recursive definition 12
recursive descent 220
recursive procedure 75, 80
recursive transition network 213
reference, bound 184
reference, call by 197, 198
reference, free 184, 185
Reggini, Horacio xvii
register 230
register, index 235
regular expression 11, 15, 211
reject state 4
relation 67
relation, equivalence 68
relation, ordering 68
relational operator 224

(Pascal) 178
repetition rule 11, 21
reserved word 183

S

T

round

store

General Index 363

retrieval time 131
robust 109, 146, 193
root node 132

(Pascal) 190
RTN 213, 310
rule, production 13, 212
rules of inference 47

scalar type 187
science, cognitive 278
scope 239, 241
scope, dynamic 184, 185, 197, 198, 242
scope, lexical 183
search algorithm, binary 143
search algorithm, linear 143
searching 142
selection sort 117
selector 136
self-reference 32
semantics 180
sentence, simple 281
sentinel 205
sequential programming 162
set theory 89
set, infinite 89
sharable 150
sigma 91
Simon, Herbert A. 277
simple proposition 46
simple sentence 281
simple statement 177, 178
Simplex lock 85, 114
simulation 83
sine function 81
Smullyan, Raymond 343
sociology xiv
software engineering x, 174
software piracy xv
Somos, Michael xvii
sort, insertion 119
sort, partition 120, 204
sort, selection 117
sorted list 130

sorting 115
source file 171
space, time and 130
Spock, Mr. 72
spreadsheet 16
stack frame 235
stack pointer 236
start state 5
state 3
state, accepting 4
state, halting 31
state, internal 30
statement part 175
statement, assignment 178, 180, 195
statement, compound 177
statement, conditional 177
statement, simple 177, 178
statement, structured 178
storage time 130

147
string, constant 189
structure, block 177
structured statement 178
Student 278
subrange type 191
subset, ordered 74
substitution technique 285
substitution, mandator y 280
substitution, optional 304
sum of several terms 91
sum of the integers 119
Sussman, Gerald Jay ix, 342
Sussman, Julie 342
symbol, generated 141, 239, 293, 304
symmetric 68
syntactic hierarchy 213
syntax 179
system, expert 278
system, inference 47

table of values 81
table, hash 130
ternary logic 73

U

V

W

Y

364 General Index

trunc

type

var

while

writeln
write

text editor 9, 169
theoretical machine 1
thinking, formal ix
time and space 130
time, retrieval 131
time, storage 130
timesharing systems xvi
token 214
tokenization 211, 214
top-down 174
Tower of Hanoi 169
tractable 129
tradeoff 130
transition network, augmented 312
transition network, recursive 213
transitive 68
transitive rules 51
tree 131
tree modification 139
tree, balanced 146
tree, binary 132, 144

(Pascal) 190
truth-valued function 46, 67
Turing machine 30, 311
Turing machine, universal 33
Turing’s thesis 31
Turing, Alan M. 30
Turkle, Sherry xiv, xvii, 346
two-stack algorithm 225
type, aggregate 187
type, data 187
type, enumerated 191
type, ordinal 188
type, scalar 187
type, subrange 191
type, user-defined 191
typed variable 187

(Pascal) 191

unambiguous 217
unary operator 223
uniqueness rule 50, 67
unit 286

universal Turing machine 33
Unix xiii, xvi, 9
user-defined type 191

value parameter 197
value, call by 197, 198
variable parameter 197
variable, index 205
variable, Logo 199
variable, Pascal 199
variable, typed 187

(Pascal) 176, 178, 197
verification, program 107

Wand, Mitchell 345
Weinberg, Gerald M. 347
Weizenbaum, Joseph 346

(Pascal) 178
White, Dick xvii
Winograd, Terry xvii, 312, 345
Wirth, Niklaus 345
word 147, 189
word problems, algebra 278
word, reserved 183
workspace 171
workstations xvi

(Pascal) 178
(Pascal) 178

YACC 219

	v3ch00.pdf
	v3ch01.pdf
	v3ch02.pdf
	v3ch03.pdf
	v3ch04.pdf
	v3ch05.pdf
	v3ch06.pdf
	v3ch07.pdf

